

Lecture Notes in Computer Science 5026
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Fabrice Kordon Tullio Vardanega (Eds.)

Reliable
Software Technologies –
Ada-Europe 2008

13th Ada-Europe International Conference
on Reliable Software Technologies
Venice, Italy, June 16-20, 2008
Proceedings

13

Volume Editors

Fabrice Kordon
Université Pierre et Marie Curie
Laboratoire d’Informatique de Paris 6
Modeling and Verification
CNRS UMR 7606, 4 place Jussieu, 75252 Paris Cedex 05, France
E-mail: Fabrice.Kordon@lip6.fr

Tullio Vardanega
University of Padua
Department of Pure and Applied Mathematics
via Trieste 63, 35121 Padua, Italy
E-mail: tullio.vardanega@math.unipd.it

Library of Congress Control Number: 2008927854

CR Subject Classification (1998): D.2, D.1, D.3, C.2.4, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-68621-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68621-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12275687 06/3180 5 4 3 2 1 0

Preface

The 13th edition of the International Conference on Reliable Software Technologies
(Ada-Europe 2008) marked its arrival in Italy by selecting the splendid venue of
Venice. It did so after having been hosted twice in Switzerland, Spain and the UK
(Montreux for its inauguration in 1996 and Geneva in 2007; Santander in 1999 and
Palma de Mallorca in 2004; London in 1997 and York in 2005), and having visited
Sweden (Uppsala, 1998), Germany (Potsdam, 2000), Belgium (Leuven, 2001),
Austria (Vienna, 2002), France (Toulouse, 2003) and Portugal (Porto, 2006). It was
certainly high time that the conference came to Italy!

The conference series, which is run and sponsored by Ada-Europe, chooses its
yearly venue following two driving criteria: to celebrate the activity of one of its
national member societies in a particular country, and/or to facilitate the formation, or
the growth, of a national community around all aspects of reliable software
technologies. The success of this year’s conference, beside the richness of its
technical and social program, will thus be measured by its lasting effects. We can
only hope that the latter will be as good and vast as the former!

Owing to the absence of a national society associated with Ada-Europe in Italy, the
organization of the conference was technically sustained by selected members of the
Board of Ada-Europe, its governing body, with some invaluable local support. The
Board thus faced the very serious challenge of having to keep up with the high
standard of previous Ada-Europe conferences. With all aspects of the organization
behind us, we can be satisfied that the success of the conference was confirmed,
continued and increased.

The conference took place on June 16–20, 2008 and featured a rich, dense and
attractive program. Following its usual style the conference spanned a full week, with
10 tutorials offered on Monday and Friday, and a technical program from Tuesday to
Thursday, which included 3 keynote talks, 20 peer-reviewed papers, 12 industrial
presentations, a special session on software engineering education, the traditional
vendor session and the accompanying industrial exhibition. Let us now look at the
highlights of the conference program in some more detail.

The keynote talks were given by eminent and inspired speakers:

 Alberto Sangiovanni-Vincentelli (University of California at Berkeley, USA),
a most authoritative member of the embedded systems community worldwide,
delivered a talk entitled: Embedded Software Design: Art or Science?

 Robert Dewar (New York University, USA), a renowned expert in
programming technologies and a talented public speaker, discussed where
programming languages are expected to go next in a talk evocatively entitled:
Lost in Translation.

 Christian Queinnec (Université Pierre et Marie Curie, Paris, France), a leading
researcher in programming language semantics and the programming of the
Web, explored the inner heart of Service-Oriented Architecture in a talk
entitled: Three Ways to Improve SOA Reliability.

 Preface VI

Submissions to the peer-reviewed track of the conference came from 15 countries
worldwide, which caused a fairly competitive selection process that resulted in the
making of 7 technical sessions on topics ranging from formal verification to real-time
systems via concurrency, embedded systems, language technologies, model-driven
engineering and applications of Petri Nets. The conference proceedings published in
this volume fully cover this track of the conference.

The tutorial program featured a rich variety of topics, all presented by recognized
domain experts, in close match with the core scope of the conference, as follows:

 AADL: Architecture Analysis and Design Language, Jean-Pierre Rosen (Adalog,
France)

 The Best of Ada 2005, John Barnes (John Barnes Informatics, UK)
 Object-Oriented Programming in Ada 2005, Matthew Heaney (On2

Technologies, USA)
 Preserving Model-Asserted Properties at Run Time for High-Integrity Systems,

Tullio Vardanega (University of Padua, Italy) and Juan Antonio de la Puente
(Technical University of Madrid, Spain)

 Technical Basis of Model Driven Engineering, and
 Verification Techniques for Dependable Systems, both by William Bail (The

MITRE Corporation, USA)
 A Practical Introduction to Model-Driven Software Development Using

Eclipse, Cristina Vicente-Chicote and Diego Alonso-Cáceres (Universidad
Politécnica de Cartagena, Spain)

 Languages for Safety-Critical Software: Issues and Assessment, Benjamin
Brosgol (AdaCore, USA)

 Service-Oriented Architecture Concepts and Implementations, Ricky Sward
(The MITRE Corporation, USA)

 Real-Time Scheduling Analysis of Ada Applications, Frank Singhoff (University
of Brest, France).

The industrial track received the largest number of submissions since its inception
in 2005. We read this as a twofold token of the thriving activity of the high-integrity
industry worldwide and of the need of its representatives to meet with researchers and
practitioners in reliable software technologies. The conference program included the
following industrial talks:

 A Discussion on the U.S. Federal Aviation Administration’s Use of and
Experiences with Ada, Including the Current Modernization Efforts, Jeffrey
O’Leary (FAA, USA) and Alok Srivastava (Northrop Grumman Corporation,
USA)

 Experiences Developing the Flight Services Component of the ERAM System,
Howard Ausden (Lockheed Martin, USA)

 Challenges in Implementing a Ravenscar Runtime in an ARINC 653 Partition,
Jean-Pierre Fauche and Tom Grossman (Aonix, France)

 Binary Data Comparison Automation, Matt Mark (Lockheed Martin, USA)
 Industrial Feedback on the Separation of Functional and Real-Time

Constraints, and Object Orientation for Embedded Application, Mathieu Le
Coroller, Gérald Garcia (ThalesAlenia Space, France)

 Preface VII

 Advanced Real-Time Analysis in ASSERT – Application on Satellite Central
Flight Software, Dave Thomas, Jean-Paul Blanquart (EADS/Astrium
Satellites, France), Marco Panunzio (Università di Padova, Italy)

 Porting Naval Command and Control Systems to Ada 2005, Jeff Cousins
(BAE Systems, UK)

 Distributed Status Monitoring and Control Using Remote Buffers and Ada
2005, Brad Moore (General Dynamics, Canada)

 A Comparison of Industrial Coding Rules, Jean-Pierre Rosen (Adalog, France)
 Growing a Tree that Lives Forever: Automatic Storage Management and

Persistence of Complex Data Structures, S. Tucker Taft (SoftCheck, USA)
 Exceptionally Safe, Arnaud Charlet, Cyrille Comar, Franco Gasperoni

(AdaCore, France)
 Genesis. Automation, via Generation, via ASIS, of Tests of Ada Software,

Mário A. Alves, Nuno Almeida (Critical Software, Portugal).

The special session on software engineering education hosted four talks and a
lively panel discussion. The following presentations were given:

 A Rational Approach to Software Engineering Education or: Java Considered

Harmful, Ed Schonberg, Robert Dewar (New York University, USA)
 Ada and Software Engineering Education: One Professor's Experiences, John

W. McCormick (University of Northern Iowa, USA)
 Is Ada Education Important?, Jean-Pierre Rosen (Adalog, France)
 Use of Ada in a Student CubeSat Project, Carl Brandon (Vermont Technical

College, USA).

Reports on the tutorial program, the industrial track and the special session on
software engineering education will all be published in issues of the Ada User Journal
produced by Ada-Europe.

Before closing this preface, we would like to acknowledge the work of those who
contributed to the success of the conference, in various roles, moments and levels of
visibility. First and foremost we want to express our gratitude to the authors of all
presentations included in the program: the success of the conference was also largely
theirs. We would also like to thank the members of the program committee at large:
while they operated mostly in the background, their effort was crucial to keeping the
level of the program quality as high as expected by soliciting worthwhile submissions
as well as by carrying out the critical task of peer-reviewing. A smaller group of
people accomplished the year-long task of following the preparation, construction and
execution of the conference program as a whole. They deserve to be thanked for their
effort and dedication: the Local Chair, Sabrina De Poli; the Publicity Chair, Dirk
Craeynest; the Exhibition Chair, Ahlan Marriott; and the Tutorial Chair, Jorge Real.

We, who had the privilege of running the organization team, do hope that the
attendees enjoyed the conference, in both its technical and social program, as much as
we enjoyed coordinating it. We close this volume with the confidence of a job well
done and the satisfaction of a thoroughly enjoyable experience.

June 2008 Fabrice Kordon

Tullio Vardanega

Organization

Conference Chair

Tullio Vardanega, Università di Padova, Italy

Program Co-chairs

Tullio Vardanega, Università di Padova, Italy
Fabrice Kordon, Université P. & M. Curie, France

Tutorial Chair

Jorge Real, Universidad Politécnica de Valencia, Spain

Exhibition Chair

Ahlan Marriott, White Elephant GmbH, Switzerland

Publicity Chair

Dirk Craeynest, Aubay Belgium & K.U. Leuven, Belgium

Local Chair

Sabrina De Poli, Sistema Congressi srl, Italy

Ada-Europe Conference Liaison

Fabrice Kordon, Université P. & M. Curie, France

Sponsoring Institutions

AdaCore Praxis High-Integrity Systems
Aonix Rapita Systems Ltd
Ellidiss Software Telelogic

Dipartimento di Matematica Pura ed Applicata, Università di Padova, Italy

 Organization X

Program Committee

Nabil Abdennadher, University of Applied Sciences, Switzerland
Alejandro Alonso, Universidad Politécnica de Madrid, Spain
Johann Blieberger, Technische Universität Wien, Austria
Maartin Boasson, University of Amsterdam, The Netherlands
Bernd Burgstaller, Yonsei University, Korea
Dirk Craeynest, Aubay Belgium & K.U. Leuven, Belgium
Alfons Crespo, Universidad Politécnica de Valencia, Spain
Juan A. de la Puente, Universidad Politécnica de Madrid, Spain
Raymond Devillers, Université Libre de Bruxelles, Belgium
Michael González Harbour, Universidad de Cantabria, Spain
José Javier Gutiérrez, Universidad de Cantabria, Spain
Serge Haddad, Université Paris-Dauphine, France
Andrew Hately, Eurocontrol CRDS, Hungary
Jerôme Hugues, Télécom Paris, France
Günter Hommel, Technische Universität Berlin, Germany
Hubert Keller, Institut für Angewandte Informatik, Germany
Yvon Kermarrec, ENST Bretagne, France
Fabrice Kordon, Université Pierre & Marie Curie, France
Albert Llemosí, Universitat de les Illes Balears, Spain
Kristina Lundqvist, MIT, USA
Franco Mazzanti, ISTI-CNR Pisa, Italy
John McCormick, University of Northern Iowa, USA
Stephen Michell, Maurya Software, Canada
Javier Miranda, Universidad Las Palmas de Gran Canaria, Spain
Daniel Moldt, Universität Hamburg, Germany
Laurent Pautet, Télécom Paris, France
Laure Petrucci, LIPN, Université Paris 13, France
Luís Miguel Pinho, Polytechnic Institute of Porto, Portugal
Erhard Plödereder, Universität Stuttgart, Germany
Jorge Real, Universidad Politécnica de Valencia, Spain
Alexander Romanovsky, University of Newcastle upon Tyne, UK
Jean-Pierre Rosen, Adalog, France
José Ruiz, AdaCore, France
Lionel Seinturier, Université de Lille, France
Man-Tak Shing, Naval Postgraduate School, USA
Alok Srivastava, Northrop Grumman, USA
Tullio Vardanega, Università di Padova, Italy
Andy Wellings, University of York, UK
Jürgen Winkler, Friedrich-Schiller-Universität, Germany
Luigi Zaffalon, University of Applied Sciences, Switzerland

 Organization XI

Industrial Committee

Guillem Bernat, Rapita Systems, UK
Olivier Devuns, Aonix, France
Franco Gasperoni, AdaCore, France
Rei Stråhle, Saab Systems, Sweden
Dirk Craeynest, Ada-Europe (Vice-President), Belgium
Tullio Vardanega, Ada-Europe (President), Italy

Table of Contents

A New Approach to Memory Partitioning in On-Board Spacecraft
Software . 1

Santiago Urueña, José A. Pulido, Jorge López,
Juan Zamorano, and Juan A. de la Puente

Design and Development of Component-Based Embedded Systems for
Automotive Applications . 15

Marco Di Natale

On the Timed Automata-Based Verification of Ravenscar Systems 30
Iulian Ober and Nicolas Halbwachs

Operational Semantics of Ada Ravenscar . 44
Irfan Hamid and Elie Najm

Practical, Fast and Simple Concurrent FIFO Queues Using Single
Word Synchronization Primitives . 59

Claude Evéquoz

A Modelling Approach with Coloured Petri Nets . 73
Christine Choppy, Laure Petrucci, and Gianna Reggio

A Tailored V-Model Exploiting the Theory of Preemptive Time
Petri Nets . 87

Laura Carnevali, Leonardo Grassi, and Enrico Vicario

Concurrent Program Metrics Drawn by Quasar . 101
Claude Kaiser, Christophe Pajault, and
Jean-François Pradat-Peyre

A Comparison of the Object-Oriented Features of Ada 2005 and
JavaTM . 115

Benjamin M. Brosgol

A Framework for CFG-Based Static Program Analysis of Ada
Programs . 130

Raul Fechete, Georg Kienesberger, and Johann Blieberger

A Type-Safe Database Interface . 144
Florian Villoing and Emmanuel Briot

StateML+: From Graphical State Machine Models to Thread-Safe Ada
Code . 158

Diego Alonso, Cristina Vicente-Chicote, Juan A. Pastor, and
Bárbara Álvarez

XIV Table of Contents

Experience in the Integration of Heterogeneous Models in the
Model-driven Engineering of High-Integrity Systems 171

Matteo Bordin, Thanassis Tsiodras, and Maxime Perrotin

A Systematic Approach to Automatically Generate Multiple
Semantically Equivalent Program Versions . 185

Sri Hari Krishna Narayanan and Mahmut Kandemir

Increasing Confidence in Concurrent Software through Architectural
Analysis . 199

Robert G. Pettit IV

Fast Scheduling of Distributable Real-Time Threads with Assured
End-to-End Timeliness . 211

Sherif F. Fahmy, Binoy Ravindran, and E.D. Jensen

RCanalyser: A Flexible Framework for the Detection of Data Races in
Parallel Programs . 226

Aoun Raza and Gunther Vogel

Can We Increase the Usability of Real Time Scheduling Theory? The
Cheddar Project . 240

Frank Singhoff, Alain Plantec, and Pierre Dissaux

An Ada 2005 Technology for Distributed and Real-Time
Component-Based Applications . 254

Patricia López Mart́ınez, José M. Drake, Pablo Pacheco, and
Julio L. Medina

Real-Time Distribution Middleware from the Ada Perspective 268
Héctor Pérez, J. Javier Gutiérrez, Daniel Sangorŕın, and
Michael González Harbour

Author Index . 283

A New Approach to Memory Partitioning in

On-Board Spacecraft Software�

Santiago Urueña, José A. Pulido, Jorge López,
Juan Zamorano, and Juan A. de la Puente

Universidad Politénica de Madrid (UPM), E28040 Madrid, Spain
{suruena,pulido,jorgel,jzamorano,jpuente}@dit.upm.es

http://www.dit.upm.es/rts/

Abstract. The current trend to use partitioned architectures in on-
board spacecraft software requires applications running on the same
computer platform to be isolated from each other both in the tempo-
ral and memory domains. Memory isolation techniques currently used in
Integrated Modular Avionics for Aeronautics usually require a Memory
Management Unit (MMU), which is not commonly available in the kind
of processors currently used in the Space domain. Two alternative ap-
proaches are discussed in the paper, based on some features of Ada and
state-of-the art compilation tool-chains. Both approaches provide safe
memory partitioning with less overhead than current IMA techniques.
Some footprint and performance metrics taken on a prototype imple-
mentation of the most flexible approach are included.

Keywords: Ravenscar Ada, high-integrity, hard real-time, embedded
systems, integrated modular avionics.

1 Introduction

On-board embedded computers play a crucial role in spacecraft, where they
perform both platform control functions, such as guidance and navigation control
or telemetry and tele-command management, and payload specific functions,
such as instrument control and data acquisition. One distinctive characteristic
of on-board computer systems is that computational resources are scarce, due
to the need to use radiation-hardened hardware chips and also to weight and
power consumption constraints. In this kind of systems, the more computational
resources on-board the higher energy consumption, which in turn results in more
power cells and thus more weight, increasing the total weight and the costs
required to launch the spacecraft. Another key aspect of these systems is the
presence of high-integrity and hard real-time requirements, which raises the need
for a strict verification and validation (V&V) process both at the system and
software levels [1].
� This work has been funded in part by the Spanish Ministry of Education, project

no. TIC2005-08665-C03-01 (THREAD), and by the IST Programme of the European
Commission under project IST-004033 (ASSERT).

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 1–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.dit.upm.es/rts/

2 S. Urueña et al.

Current trends envisage systems with increased functionality and complexity.
Such systems are often composed of several applications that may have different
levels of criticality. In such a scenario, the most critical applications must be
isolated from the less critical ones, so that the integrity of the former is not com-
promised by failures occurring in the latter. Isolation has often been achieved by
using a federated approach, i.e. by allocating different applications to different
computers. However, the growth in the number of applications and the increas-
ing processing power of embedded computers foster an integrated approach, in
which several applications may be executed on a single computer platform. In
this case, alternate mechanisms must be put in place in order to isolate ap-
plications from each other. The common approach is to provide a number of
logical partitions1 on each computer platform, in such a way that each parti-
tion is allocated a share of processor time, memory space, and other resources.
Partitions are thus isolated from each other both in the temporal and spatial
domains. Temporal isolation implies that a partition does not use more pro-
cessor time than allocated, and spatial isolation means that software running
in a partition does not read or write into memory space allocated to another
partition.

This approach has been successfully implemented in the aeronautics domain
by so-called Integrated Modular Avionics (IMA) [2]. While IMA is industri-
ally supported and effectively provides temporal and spatial isolation, its use
in spacecraft systems raises some problems due to the need of complex com-
puter boards that call for alternative, more flexible solutions. In this context,
Ada 2005 [3] provides a new set of real-time mechanisms that open the way to
new approaches to inter-partition isolation. Some strategies for providing tem-
poral isolation using the new Ada execution-time monitoring mechanisms have
already been developed by the authors [4], and prototype implementations have
been built in the framework of the ASSERT project2 [5].

This paper presents new research directed at providing spatial isolation based
on alternative approaches to current IMA architectures, including features of
the Ada language and operating system-level mechanisms. The basic idea be-
hind the proposed strategies is to modify the compilation toolchain to make
a better use of the scarce computational resources at run-time. The available
hardware memory protection is still used at run-time, but predictability losses
due to address translation in MMUs are avoided. The rest of the paper is or-
ganized as follows. Section 2 describes the main aspects of the current IMA
architectures. Section 3 introduces some alternative approaches to spatial iso-
lation. Section 4 discusses the architecture of real-time kernels with respect to
memory protection, while section 5 details a set of changes needed in the compi-
lation tool-chain needed to implement the two new strategies. Finally, section 6
references some related work, and section 7 summarizes the main conclusions of
this paper.

1 Notice that the term partition is not used here in the sense defined in the ALRM
(10.2/2), but as an implementation of protection as specified in the DO-178B (2.3.1).

2 http://www.assert-project.net/

http://www.assert-project.net/

A New Approach to Memory Partitioning in On-Board Spacecraft Software 3

2 Integrated Modular Avionics

Integrated Modular Avionics (IMA) is a generic term to describe an architec-
ture where different avionics applications are executed independently on a sin-
gle CPU. Applications may have different criticality levels [6], and be logically
distributed on different partitions of the same processor or over a network of
computers connected by a communication link.

In order to support different criticality levels, applications have to be isolated
from each other. Otherwise all the code would have to be certified to the highest
criticality, an extremely expensive (and probably impossible) burden. To this
purpose, each computer node is divided into one or more partitions, each of
which is a virtual container for one or more applications with the same level of
criticality, which are isolated in the time and memory domain from applications
running in other partitions. An important consequence of partitioning is that
applications can be updated individually without requiring re-certification of
the whole system. Figure 1 shows an example of an IMA system.

Fig. 1. Four applications with different criticality levels executing inside three parti-
tions over the same computing node

Implementing an IMA architecture requires a specialized operating system
layer that provides temporal and spatial isolation between partitions. The AR-
INC 653 standard [7] defines an architecture for such an operating system. There
are diverse ARINC 653 implementations available from multiple vendors, and
the standard has been successfully used in a number of commercial and mili-
tary avionics systems. However, in spite of its success in the aeronautics field,
its application to spacecraft systems raises some problems. First of all, the
partition scheduling method is too rigid, and does not allow spare processor
time to be re-allocated to other partitions. This may reduce the schedulabil-
ity of applications on the comparatively slow processors that are currently used
in spacecraft computers. The other main problem is that current ARINC 653

4 S. Urueña et al.

implementations require a MMU, which is seldom available on space
computers. Indeed, current processors used by ESA3, such as LEON2 [8], do not
have an MMU. Therefore, other methods not relying on the presence of MMU
devices should be explored in order to implement spatial isolation in spacecraft
systems.

3 Approaches to Spatial Isolation

3.1 Static Analysis

SPARK is an Ada-based language designed for high-integrity systems. The lan-
guage is restricted to a safe subset of Ada, augmented with formal annotations
enabling efficient static analysis. A particular kind of annotation refers to the
integrity—or criticality—level of program elements, enabling static analysis of
violations in the criticality segregation [9]. In this way, static information-flow
analysis of source code can be used to guarantee that an application will not
write into the memory space of another application.

In principle this method can provide spatial isolation for a node with appli-
cations with high criticality levels, and it can also be used to ensure fault con-
tainment inside a specific application. However, this approach requires all the
software in a computer node to be programmed in SPARK, a language intended
only for high-criticality applications. Therefore, it is not suitable for the general
case where low-criticality applications, possibly written in other languages, are
present. On the other hand, it is an interesting approach to spatial isolation in
computers which only host highly critical code, and can also be combined with
other methods in a more general situation.

3.2 Run-Time Checks

A second approach is to use the extensive set of compile-time and run-time
checks provided by the Ada language to detect possible violations of memory
isolation. For example, forbidding using a memory pool in more than one parti-
tion seems a reasonable restriction. Following a similar reasoning, the run-time
system can be designed so that there is a separate secondary stack for each parti-
tion, and an exception is raised in case of overflow. Additional run-time controls
for checking that no task can write outside its partition memory area can also be
implemented, e.g. when using general access objects a check can be made that
the address is inside the partition space, and the same can be done for all access
types if ’Unchecked Access or Unchecked Conversion is allowed.

Wahbe et al [10] proposed a different software technique to avoid writing out-
side the memory region of the application called address sandboxing. Some code
is added before dereferencing a pointer which applies a mask to the high bits of
the pointer so that the destination address always falls into the memory range
of the application. Therefore, even if the pointer is incorrect, the mask ensures

3 European Space Agency.

A New Approach to Memory Partitioning in On-Board Spacecraft Software 5

that it will not write outside its memory region. Address sandboxing does not
detect failures, but can be more efficient than run-time checks.

The main problem of these approaches is that they add complexity to the com-
piler and run time support, which may make it difficult to certify high-criticality
applications. They can be retained, however, to implement fault containment
regions within a partition.

3.3 Hardware Protection

Some kind of hardware memory protection is available on virtually all processors,
usually allowing read and write access, read-only access, or completely hiding a
memory region. In addition, a memory area can be made non-executable, which
is useful if the area contains only data. The memory protection setting cannot
be modified when the processor is in user mode, but only in supervisor mode,
and thus it can only be changed by the operating system. These mechanisms
can thus be used to ensure that applications of mixed criticality can safely run
on the same node. Furthermore, only the operating system must be certified to
the highest criticality level, as it is the only subsystem that deals with memory
protection.

An MMU is not always available in spacecraft computers because it is a com-
plex hardware component with a comparatively high power consumption [11], as
its internal cache for translating addresses, the TLB, is usually fully-associative
and frequently accessed. Moreover, the possibility of TLB misses hinders the
predictability of the system and introduces some overhead due to address trans-
lation and TLB flushes [12]. The complexity of MMU chips also makes them
prone to single event upsets (bit flips due to high-energy particles) [2].

There is another main kind of hardware memory protection mechanism, fence
registers. Fence registers provide a limited functionality, protecting a fixed num-
ber of memory segments of any size. In contrast, an MMU can provide sophis-
ticated memory management schemes, including pagination, segmentation, and
virtual memory. While such schemes are usually required in general-purpose
operating systems, they are of less use in embedded computing, even with re-
programmability in mind, due to the fact that embedded hard real-time appli-
cations are usually statically loaded at system initialization time, at least in
spacecrafts. For example, the LEON2 processor has a pair of fence registers
that can be used to avoid writings outside the two specified segments of the
SRAM.

In this case, there is no hardware relocation, and therefore all applications
share a single address space. Memory reads are always allowed by the fence reg-
isters. This limits their usefulness as a spatial isolation mechanism, as attempts
to read or execute outside the allowed memory area are not detected. In spite of
this limitation, fence registers are a simple and robust mechanism without the
complexity and comparatively high power consumption of MMUs. Two schemes
for implementing spatial isolation based on generic fence registers are described
in the following sections.

6 S. Urueña et al.

4 Kernel Architecture

4.1 Architecture of Current Real-Time Kernels

The current practice in the space domain is to execute all the embedded software
in supervisor mode, i.e. any application and not only the kernel can execute
privileged instructions. Furthermore, all the code executes inside a single (flat)
memory space, and all the applications are linked statically into a single binary
image, also including the real-time kernel, regardless of their criticality. As shown
in figure 2, all the executable code is linked into a single . text section, the global
variables are located in the .data and . bss sections, and the stack for each thread
is created in the . bss section during initialization.

.bss
stack task 1

stack task n

...

SRAM start

SRAM end

.data

.textexecutable code

global data
initialized

uninit. global data

Fig. 2. Current memory map

This model has several advantages, like increased CPU performance and mem-
ory footprint reduction. There is no code duplication because all the applications
share the same code, including static libraries. The operating system can be sim-
pler, e.g. there is no application loader. However, hardware memory protection
cannot be used to provide complete memory isolation because all the global
variables are located in the same section (.data or . bss), regardless of their criti-
cality level. Only the task stacks can have some memory protection because they
are clearly separated in memory. ORK, RTEMS, and ThreadX are examples of
real-time kernels currently used in the European space industry that follow this
memory allocation model.

4.2 Needed Architectural Changes

Some changes to the above scheme are required in order to implement spatial
isolation using fence registers. Specifically, the global data and stacks (and heap,
if available) of each partition must be allocated to separate memory areas, so
that the kernel can provide write permission only to the data area of the partition
of the thread that is currently executing.

A New Approach to Memory Partitioning in On-Board Spacecraft Software 7

An example of a memory map implementing this principle is shown in figure 3.
In this figure, the code and data of each partition (including the kernel) are
grouped into dedicated memory zones. Other schemes are possible, for example
one with all the executable code in an adjacent area, which can be more efficient
as only one segment has to be used for protecting non-executable memory.

.text

.data

stack task 1

stack task n
...

.text

.data

stack task 1
...

stack task n

Partition 1

Partition N

Kernel

Shared library 1

...

.text

.text

.data

SRAM start

SRAM end

Fig. 3. Memory map for spatial isolation

It should be noticed that the code shared among partitions is compiled as
shared libraries, i.e. each partition using a specific shared library reserves in
its private data section the space required for the global variables of the shared
library. Otherwise, the code would be duplicated in each partition thus increasing
the memory footprint. In addition, it is worth noting that some free memory
space should be reserved for on-line reprogrammability.

The above schemes show that implementing spatial isolation with fence regis-
ter requires changes not only in the real-time kernel, but in the compilation and
linking process as well. These changes are discussed in the next section.

5 Modifying the Compilation Toolchain

5.1 Basic Considerations

In order to implement a partitioned system, the tasks and global data that are
included in each partition must be identified in the first place. Possible commu-
nication between co-operating applications running on different partitions must
also be analysed. This in turn requires some kind of inter-partition communica-
tion mechanism to be defined.

In the following paragraphs two alternative strategies for developing parti-
tioned systems are explored. The first one is based on building a custom linking
script for the partitioned system, and the second one uses a new tool called
meta-linker. In both cases the compilation model and the linking method that

8 S. Urueña et al.

are used to produce the executable code are modified with respect to the basic
model described in section 4.

5.2 Custom Linking Script

Compilation model. The current practice when using common compilation
toolchains is to have all applications in the same computer node compiled as
a single Ada program. Spatial isolation can be achieved if all applications are
programmed according to a set of rules that clearly mark the tasks and data
belonging to each application, e.g. using new pragmas or formal annotations.
An ASIS [13] tool can then be used to check the source code and detect possible
problems at a system-wide level and to generate a custom script that is used by
the linker to produce an appropriate memory map (figure 4).

This approach requires a precise set of Ada rules for partitioning to be defined.
Some rules are straightforward, e.g. “tasks belonging to different applications
may not be declared in the same package”, but some others are more complex,
e.g. those on data types transmitted to other applications in order to avoid
cross-partition pointers. Overall, a set of rules similar to the Ada Distributed
Systems Annex (DSA) [3, App. E] can be defined, with the difference that the
run-time system can be shared among all the partitions in the same computer
node.

Protected objects (marked with a specific pragma) can be used for inter-
partition communication (note again footnote 1). Such objects are located in
a specific shared memory region, independent of those allocated to partitions.
However, when the proxy-model implementation of protected objects is used (as
in e.g. GNAT), a task can execute some entry code on behalf of some other task
[14]. This means that the proxy task may need to write some results in a stack
belonging to another partition. One possible solution is to forbid out parameters
in protected entries that are used for inter-partition communication. In this case,
the entry is used only for signalling the arrival of an inter-partition message, and
a protected procedure is then called to read the data.

Fig. 4. Approach 1: Custom linking-script

A New Approach to Memory Partitioning in On-Board Spacecraft Software 9

Linking method. The linker binds each symbol (subprogram or global data) to
a specific memory address [15]. This first approach relies on using an appropriate
linking method for partitioning code and data into disjoint memory areas, in or-
der to be able to take advantage of hardware memory protection. This approach
also requires the kernel to be slightly modified so that it creates the stack of
each thread in the global data area allocated to its partition.

The simplest way to implement this approach is to make an ASIS tool that
checks the programming rules and generates a custom linking script for the
system. The script specifies the location of each piece of data and each memory
stack according to the partition it belongs to. The linker uses this custom script
to generate an executable image with code and data allocated to the specified
areas and symbol resolution (see figure 4).

An important advantage of this strategy is that existing response time analysis
techniques can still be used. However, a new set of complex programming rules
needs to be defined in order to provide partitioning among applications, and
some of them may not be amenable to efficient static checking. In addition, the
tool must support all the programming languages used in the system, which may
be infeasible in some cases.

5.3 Meta-Linker

Compilation model. The second strategy for memory isolation is based on
compiling each partition as a separate Ada program, with all its tasks and global
data belonging to that partition. Task priorities are global, i.e. the scheduler
does not have any notion of partitions. On the other hand, no global variables
can be shared among partitions. Hence, a new kernel service for inter-partition
communication, similar to a message queue, has to be implemented. This service
can be specially crafted to be very efficient in CPU time and memory space.
Only one-way communication is needed, so blocking time can be minimized with
respect to intra-partition synchronization primitives. The main requirement is
that inter-partition communications must be predictable so that response time
analysis can still be performed.

Fig. 5. Approach 2: Meta-linker

10 S. Urueña et al.

The problem with this approach is how to perform application-wide analysis
with applications running in multiple partitions. Since there are no global shared
data, the Ada Distributed Systems Annex can be used as a basis. Notice that the
DSA also supports partition-wide strong typing enforcing by the compiler. The
DSA is designed so that each partition has a separate run-time system. However,
in this case the run-time can be shared among all partitions in order to reduce
memory footprint. Distribution transparency is achieved as any partition can
be moved to another node without source code modification. Therefore Ada
provides all the needed support, and there is no need for language extensions
like new pragmas as in the previous approach.

Linking method. Under this approach each partition is first linked separately,
but relocation information is retained in a linkable output format (e.g. ELF of-
fers this possibility). Then a new tool called meta-linker finally sets the memory
area of each partition, the kernel, and all shared libraries (including the Standard
Ada Libraries) into a single executable. The data of each partition are bound to a
separate location by the meta-linker so hardware memory protection can be used,
taking into account the size and alignment requirements. The meta-linker also cre-
ates some data structures describing the layout of the partition. This information
is needed by the kernel to adjust the fence registers in each context switch.

The meta-linker can be seen as an alternative to the address translation per-
formed by an MMU, although in this case the address translation is performed
statically within the compilation chain. It can be simple enough to be a qualified
tool [6, §12.2], and therefore there is no need to certify again all the partitions
if a change in the size of one of them results in modifying their base addresses.

It is often required that a partition can be independently modified without a
need for re-linking and re-certifying other partitions. This can be done in two
ways. The first one is that the linker resolves all symbols with an arbitrary base
address, retaining all the relocation information for each symbol in the object
code. The meta-linker adjusts the base address of all symbols for each partition at
the time of building the final executable. The alternative is to generate Position
Independent Code (PIC), so that the meta-linker only needs to adjust some
symbols and specific pointers to global data. The problem with the first solution
is that it makes the meta-linker more complex, and it also may require some
changes in the compiler and linker, this making qualification more difficult. On
the other hand, compiling as PIC often leads to larger and slower code, which
may be a problem when computing resources are scarce.

5.4 Prototyping

In order to evaluate performance penalties, a meta-linker prototype and a new
version of GNAT/ORK for LEON (a variant of GNAT4 which uses an evolved
version of the ORK kernel [16]), which can generate PIC, have been built.

The first problem that has been investigated is a potential increase in foot-
print. Preliminary measurements have been taken in order to evaluate the

4 http://www.adacore.com/

http://www.adacore.com/

A New Approach to Memory Partitioning in On-Board Spacecraft Software 11

differences between PIC and non-PIC executables. Compiling both synthetic
benchmarks and real code used in space projects, the increase in the number of
instructions can be considered tolerable for this type of embedded systems. The
size increase of the executable code (. text section) has been found to be about
7–15%, and the penalty in the total memory usage is only 1–4%, including also
the data and stack segments, as shown in table 1.

Table 1. Footprint increase of Position Independent Code (PIC)

Executable code Global data Stacks Total
non-PIC PIC non-PIC PIC non-PIC PIC

Benchmark 1 59 KB 67 KB 383 KB 384 KB 220 KB 661 KB 670 KB

Benchmark 2 104 KB 118 KB 385 KB 387 KB 420 KB 908 KB 925 KB

Application 1 439 KB 478 KB 422 KB 429 KB 320 KB 1181 KB 1227 KB

Application 2 1060 KB 1134 KB 599 KB 610 KB 320 KB 1979 KB 2064 KB

Position Independent Code (PIC) also has an execution time penalty when
calling to a function in a shared library or referring to a global variable. As
the linker cannot know where the code will be loaded, non-static routines must
be called via a Procedure Linkage Table (PLT) and two actual jumps are per-
formed instead of just one as usual. In order to measure the negative impact on
performance, a set of composite benchmarks and high-level algorithms from the
Performance Issue Working Group (PIWG) test suite were used. Table 2 shows
the results which for the Dhrystone and Whetstone benchmarks, as well as three
complex algorithms. The significant differences are just in the Dhrystone and
Whetstone benchmarks, as the differences in the high level algorithm tests and
other PIWG tests are negligible or even favour PIC.

The most significant difference is in the Dhrystone benchmarks with full op-
timization where the performance penalty of PIC is about 38%. The penalty is
about 21% for this test with no optimization. However, the Dhrystone bench-
mark consists of composite calls to integer routines with a very short execution
time. Conversely, the Whetstone benchmark routines perform floating point cal-
culations with considerably longer execution times. In this cases, the penalty
ranges from 0.5% to 4.5%. Of course, a program calling mostly short routines
will pay a comparatively higher penalty due to extra jumps.

The real situation is likely to be closer to the high level algorithms, where the
maximum penalty is about 12%, and the minimum one is negligible. Therefore,
it can be said that the penalty of using PIC is acceptable both in footprint and
performance for typical real situations. It must be noticed that using an MMU
approach for spatial isolation also pays a significant performance penalty due to
heavier context switches.

In summary, it can be said the best way to provide spatial isolation based
on fence registers as the only hardware support is the second proposed strategy,
i.e. writing separate source code for each application and compiling and linking
each partition separately, keeping the relocation information. A qualified meta-
linker is then used to examine the sizes of the kernel, the shared libraries, and

12 S. Urueña et al.

Table 2. Comparison in execution time

No optimization Full optimization
Description non-PIC PIC non-PIC PIC

Dhrystone 91.50 μs 111.52 μs 30.56 μs 41.66 μs

Whetstone manufacturers math routines 228.00 ms 233.50 ms 128.62 ms 131.88 ms

Whetstone with built-in math routines 207.76 ms 208.76 ms 66.68 ms 69.56 ms

NASA Orbit determination 586.00 ms 635.50 ms 281.50 ms 316.50 ms

JIAWG Kalman benchmark 185.76 ms 186.00 ms 20.28 ms 20.18 ms

Tracker centroid algorithm 5.64 ms 5.58 ms 2.08 ms 2.08 ms

the partitions, adjust the base address of the whole application, and generate a
single binary image. Finally, the real-time kernel adjusts the fence registers and
processor mode at run time in order to provide the required strong hardware
memory protection between partitions.

This is an elegant and powerful solution as it enables distributed applications
(e.g. using a specialized DSA implementation) to be written in any programming
language, including Ravenscar Ada and SPARK for high-criticality applications,
or full Ada and C for low-criticality ones. It enables the performance and pre-
dictability problems of an MMU to be avoided, and allows individual partitions
to be modified without having to certify again the whole system.

No modifications are required to current compilers, assemblers, or linkers, and
the meta-linker is designed to be simple enough to be qualified for the develop-
ment of high-integrity software. Furthermore, no extensions are required to the
Ravenscar profile for enabling spatial isolation using the meta-linker approach.
The few and localized additions to the kernel are not expected to hinder certifi-
cation, being less complex or at least comparable to the software implementation
support required by an MMU.

6 Related Work

The implications of the MMU in Integrated Memory Avionics have also been
studied by Audsley and Bennet [12]. Using SPARK for mixed criticality high-
integrity systems was proposed by Amey and others [9].

The performance penalties with respect to Position Independent Code have
been analysed by several authors. However, measurements comparing PIC and
non-PIC executables for embedded systems are not easy to find. One exam-
ple of measurements for general purpose C++ applications is presented by
Hamilton [17].

Other industrial domains could take advantage of the proposed techniques for
achieving spatial isolation. For example, Autosar [18] is an automotive standard
with a similar objective as Integrated Modular Avionics. The target CPUs used
in those systems do not usually have an MMU, and therefore the standard does
not consider spatial isolation. However, some of the techniques proposed in this
paper can be a solution to provide memory protection on such systems.

A New Approach to Memory Partitioning in On-Board Spacecraft Software 13

7 Conclusions

Spatial isolation is needed to comply with the requirements of the the next-
generation systems in the aerospace domain. A Memory Management Unit is
commonly used for this purpose in general purpose operating systems, but per-
formance and predictability problems appear when using MMUs in hard real-
time embedded systems. Indeed, processors currently used in the European space
industry an other embedded application domains, only include basic memory
protection mechanisms, such as fence registers.

Several techniques have been explored in order to find a memory isolation
scheme that can be used in this type of systems, most of them taking advantage
of the unique characteristics of the Ada language. The recommended approach
for systems composed only of high-integrity code is to use a safe subset of the lan-
guage, such as SPARK, which also enables the absence of errors to be statically
proved under appropriate conditions.

For systems composed of high- and low-criticality applications, a novel and
powerful solution, involving a separate compilation of each partition, and a quali-
fied meta-linker to generate the final executable, has been proposed. This flexible
approach provides the same features as traditional techniques like strong mem-
ory partitioning, independent certification of partitions and maintenance, but it
requires less hardware functionality and adds less overhead as specific processing
is done statically at build time. Finally, additional Ada run-time checks can be
used to detect programming errors inside each partition. A special-purpose im-
plementation of the Ada Distributed Systems Annex can be used to enable static
program-wide analysis of applications spanning multiple partitions, a character-
istic which is often required for the certification of high-integrity systems.

A meta-linker prototype has been implemented as a proof of concept of the
whole approach. The tool is simple enough to be qualified to a high-integrity
level, and experimental performance and footprint metrics show that there is
not a substantial penalty if the partitions are compiled as Position Independent
Code. No modifications are required to the compiler, assembler or linker.

Future work includes specific compiler modifications to improve the generation
of position independent code for embedded platforms, and research about how
to reduce the impact of processor mode changes in space processors.

References

1. ECSS: ECSS-Q-80B Space Product Assurance — Software Product Assurance.
Available from ESA (2003)

2. Rushby, J.: Partitioning for safety and security: Requirements, mechanisms, and
assurance. NASA Contractor Report CR-1999-209347, NASA Langley Research
Center (June 1999) Also to be issued by the FAA

3. Tucker Taft, S., Duff, R.A., Brukardt, R.L., Plödereder, E., Leroy, P.: Ada 2005
Reference Manual. LNCS, vol. 4348. Springer, Heidelberg (2006)

14 S. Urueña et al.

4. Pulido, J.A., Urueña, S., Zamorano, J., de la Puente, J.A.: Handling Temporal
Faults in Ada 2005. In: Abdennahder, N., Kordon, F. (eds.) Ada-Europe 2007.
LNCS, vol. 4498, pp. 15–28. Springer, Heidelberg (2007)

5. Zamorano, J., de la Puente, J.A., Hugues, J., Vardanega, T.: Run-time mechanisms
for property preservation in high-integrity real-time systems. In: OSPERT 2007 —
Workshop on Operating System Platforms for Embedded Real-Time Applications,
Pisa. Italy (July 2007)

6. RTC: RTCA SC167/DO-178B — Software Considerations in Airborne Systems and
Equipment Certification (1992); Also available as EUROCAE document ED-12B

7. ARINC: Avionics Application Software Standard Interface — ARINC Specification
653-1 (October 2003)

8. Gaisler Research: LEON2 Processor User’s Manual (2005)
9. Amey, P., Chapman, R., White, N.: Smart Certification of Mixed Criticality Sys-

tems. In: Vardanega, T., Wellings, A.J. (eds.) Ada-Europe 2005. LNCS, vol. 3555,
pp. 144–155. Springer, Heidelberg (2005)

10. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault
isolation. ACM SIGOPS Operating Systems Review 27(5), 203–216 (1993)

11. Chang, Y.J., Lan, M.F.: Two new techniques integrated for energy-efficient TLB
design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 15(1),
13–23 (2007)

12. Bennett, M.D., Audsley, N.C.: Predictable and efficient virtual addressing for
safety-critical real-time systems. In: Proceedings of the 13th Euromicro Confer-
ence on Real-Time Systems (ECRTS 2001), pp. 183–190. IEEE Computer Society
Press, Los Alamitos (2001)

13. ISO: Ada Semantic Interface Specification (ASIS). ISO/IEC- 15291:1999 (1999)
14. Giering, E.W., Baker, T.P.: Implementing Ada protected objects—interface issues

and optimization. In: TRI-Ada 1995: Proceedings of the conference on TRI-Ada
1995, pp. 134–143. ACM Press, New York (1995)

15. Levine, J.R.: Linkers and Loaders. Morgan Kaufmann, San Francisco (2000)
16. Urueña, S., Pulido, J.A., Redondo, J., Zamorano, J.: Implementing the new

Ada 2005 real-time features on a bare board kernel. Ada Letters XXVII(2), 61–66
(2007); Proceedings of the 13th International Real-Time Ada Workshop (IRTAW
2007)

17. Hamilton, G., Nelson, M.N.: High performance dynamic linking through caching.
Technical report, Sun Microsystems, Inc., Mountain View, CA, USA (1993)

18. Heinecke, H., Schnelle, K.P., Fennel, H., Bortolazzi, J., Lundh, L., Leflour, J., Maté,
J.L., Nishikawa, K., Scharnhorst, T.: AUTomotive Open System Architecture —
an industry-wide initiative to manage the complexity of emerging Automotive E/E-
Architectures. In: Convergence 2004 (2004)

Design and Development of Component-Based

Embedded Systems for Automotive Applications

Marco Di Natale

Scuola Superiore S. Anna, Pisa, Italy
marco@sssup.it

Abstract. Automotive software systems are characterized by increas-
ing complexity, tight safety and performance requirements, and need
to be developed subject to substantial time-to-market pressure. Model-
and component-based design methodologies can be used to improve the
overall quality of software systems and foster reuse. In this work, we dis-
cuss challenges in the adoption of model-based development flows, and
we review recent advances in component-based methodologies, including
existing or upcoming standards, such as the MARTE UML profile, ADL
languages and AUTOSAR. Finally, the paper provides a quick glance at
results on a methodology based on virtual platforms and timing analysis
to perform the exploration and selection of architecture solutions.

1 Introduction

The automotive domain is experiencing evolutionary changes because of the de-
mand for new advanced functions, technological opportunities and challenges,
and organizational issues. The increased importance and value of electronics
systems and the introduction of new functions with unprecedented complex-
ity, timing and safety issues are changing the way systems are designed and
developed and are bringing a revolution in the automotive supply chain. New
standards and methodologies are being developed that will likely impact not
only automotive electronics systems, but also other application domains, which
share similar problems.

The automotive supply chain is currently structured in tiers

– Car manufacturers (or Original Equipment Manufacturers OEMs).
– Tier 1 suppliers who provide electronics subsystems to OEMs.
– Tier 2 suppliers e.g., chip manufacturers, IP providers, RTOS, middleware

and tool suppliers, who serve OEMs and more likely Tier 1 suppliers.
– Manufacturing suppliers providing manufacturing services.

Currently, automotive systems are an assembly of components that are designed
and developed in house or, more often, by Tier 1 suppliers. These subsystems
have traditionally been loosely interconnected, but the advent of active-safety
and future safety-critical functions, including by-wire systems, and the inter-
dependency of these functions is rapidly changing the scenario. Furthermore,

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 15–29, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 M. Di Natale

subsystems are developed using different design methods, software architec-
tures, hardware platforms, real-time operating systems and middleware layers.
To give an idea of architecture complexity, the number of Electronic Control
Units (ECUs) in a vehicle is presently in the high tens, and further increasing.
In the face of this scenario, OEMs need to understand and control the emerging
behavior of the complex distributed functions, resulting from the integration of
subsystems. This includes both functional and para-functional properties, such
as timing and reliability. The supply process, traditionally targeted at simple,
black-box integrated subsystems, will evolve from the current situation, where
the specifications issued to the OEMs consist of the message interface and gen-
eral performance requirements, to more complex component specifications that
allow plug-and-play of portable software sub-systems.

The essential technical problem to solve for this vision is the establishment
of standards for interoperability among IPs, both software and hardware, and
tools. AUTOSAR [1], a world-wide consortium of almost all players in the supply
chain of automotive electronics, has this goal very clear in mind. However, several
issues need to be solved for function partitioning and subsystem integration, in
the presence of real-time and reliability requirements, including:

– Composability and refinement of subsystems. The automotive indus-
try together with the avionic industry was the first to embrace model-based
design, as a tool to remove coding errors and to speed up the software de-
velopment process. This approach was made possible by the introduction of
powerful simulation tools where the functionality of the system is captured
with a mathematically-oriented formalism, such as Simulink [12]. However,
the definition of a process that goes from system-level to component models,
in which behaviors are formally and unambiguously defined, such that they
can verified at design time, and that allows for automatic code generation,
is a quite challenging task. Such a process would indeed require that all rel-
evant functional and non-functional constraints and properties are captured
by the models used at all levels and that model semantics is preserved at
each refinement/transformation steps. In Section 2 we discuss the issues re-
lated to model-based development and we review the impact of AUTOSAR
on the design methodology.

– Time predictability. This issue is related to the capability of predicting
the system-level timing behavior (latencies and jitter), resulting from the
synchronization between tasks and messages, but also from the interplay
that different tasks can have at the RTOS level and the synchronization and
queuing policies of the middleware. The timing of end-to-end computations
depends, in general, on the deployment of the tasks and messages on the
target architecture and on the resource management policies. In Section 3,
we review issues in this domain.

– Dependability. The deployment of the functions onto the ECUs and the
communication and synchronization policies must be selected to meet de-
pendability targets. A system-level design tool should integrate support for
design patterns suited to the development of highly-reliable systems with

Design and Development of Component-Based Embedded Systems 17

fault containment both at the functional level and at the timing level. Such
tools should also support the automatic construction of fault-trees to com-
pute the probability of a hazard occurrence.

Complex automotive functions, including active-safety and safety-critical sys-
tems, are characterized by non-functional requirements, including timing and
performance, requirements for safety, and cost, together with reusability and ex-
tensibility of the architecture artifacts. System-level analysis and new modeling
and analysis methods and tools are not only needed for predictability and com-
posability when partitioning end-to-end functions, but also for providing guid-
ance and support in the evaluation and selection of the electronics and software
architectures. In Section 4, we provide the description of a design methodology
based on virtual platforms in which models of the functions and of the possible
solutions for the physical architecture are defined and matched to select the best
possible hardware platform with respect to performance. Opportunities for the
automatic synthesis of the software architecture are also discussed.

2 Model-Based Design, Composability and AUTOSAR

Model-based design methodologies are increasingly adopted for improving the
quality and the reusability of software. A model-based environment allows the
development of control and dataflow applications in a graphical language that
is familiar to control engineers and domain experts. The possibility of defining
components (subsystems) at higher levels of abstraction and with well defined
interfaces allows separation of concerns and improves modularity and reusabil-
ity. Furthermore, the availability of verification tools (often by simulation) gives
the possibility of a design-time verification of the system properties. However,
when considered in the context of a design flow that starts from the early stages
of architecture exploration and analysis and supports complex interacting func-
tions with real-time requirements, deployed on a distributed architecture, most
modern tools for model-based design have a number of shortcomings

Lack of separation between the functional model and the architecture model: such
a separation is fundamental for exploring different architecture options with
respect to a set of functionality and for reusing an architecture platform with
different functions.

Lack of support for the definition of the task and resource model: Most model-
based flows support the transition from the functional model directly to the
code implementation. The designer has limited control on the generation of the
task set and the task and resource model is scantly addressed. Placement of
tasks in a distributed environment is typically performed at the code level. The
specification of the task and message design and of the resource allocation is
necessary to evaluate the timing and dependability properties of the system.

Insufficient support for the specification of timing constraints and attributes:
The definition of end-to-end deadlines, as well as jitter constraints is often not
considered by modeling languages.

18 M. Di Natale

Lack of modeling support for the analysis and the back-annotation of scheduling-
related delays: Most tools support simulation and verification of the functional
model, which is typically based on an assumption of zero communication and
computation delays. The definition of the deployment on a given architecture al-
lows the analysis of the delays caused by resource sharing. In a sound design flow,
tools should support this type of analysis, and the communication and schedul-
ing delays should be back-annotated into the model to verify the performance
of the function on a given architecture solution.

Issue of semantics preservation: The generation of the code starting from a
model description is not always performed in such a way that the original se-
mantics is preserved. It is important that designers and developers understand
under what conditions the code generation stage can preserve the model seman-
tics and what are the implications of an incorrect implementation.

Some of these issues can be reviewed in more detail, with reference to an ab-
stract design flow, which encompasses all the refinement steps, from the system-
level view, down to the code implementation (Figure 1).

���������
���������
���������

���������
���������
���������

OSEKMarte

ASCET

Simulink
Behavior

Task
models

models

Physical architecture
models

AUTOSARmodels
Component

UML−SysML / ADL
(functional) design
System−level

Process gaps
(possible inconsistencies
and omissions)

Fig. 1. An abstract development flow: standards and process gaps

The highest level in the description of the system corresponds to the early
decomposition of high-level end-to-end functions (typically derived from user
requirements). The system description is characterized by a behavior specifica-
tion, but also by reliability and time requirements. Candidate languages and
standards for system-level modeling, which may include a first-level decomposi-
tion into major functional blocks or subsystems, are the Unified Modeling Lan-
guage (UML) and its specialized profile SysML, and Architecture Description
Languages (ADL), like the EAST/ADL [22].

In order to allow for the specification and modeling of time and reliability
requirements, UML has recently been extended by two profiles (specialized re-
strictions of the language semantics), the MARTE profile for the specification
of timing requirements and properties [20] and the UML Profile for Modeling
QoS and Fault Tolerance Characteristics and Mechanisms [21]. Both standards
are expected to provide support for expressing time and reliability properties
and requirements. However, because of the need of dealing with the general-
ity of the UML language, they are typically cumbersome (the MARTE profile

Design and Development of Component-Based Embedded Systems 19

specification is currently 658 pages long) and must rely on faithful and efficient
implementation by tool vendors, which presently cannot be guaranteed.

Subsystem specifications are then passed from OEMs to Tier-1 suppliers, who
are responsible for their development. Although UML can still be used at this
stage, the AUTOSAR development partnership [1], including several OEM man-
ufacturers, Tier-1 suppliers, tool and software vendors, has been created with
the purpose of developing an open industry standard for component specification
and later integration.

To achieve the technical goals of modularity, scalability, transferability and
re-usability of functions, AUTOSAR provides a common software infrastructure
based on standardized interfaces for the different layers. The current version of
the AUTOSAR model includes a reference architecture and interface specifica-
tions. AUTOSAR has been focused on the concepts of location independence,
standardization of interfaces and portability of code. While these goals are un-
doubtedly of extreme importance, their achievement is not a sufficient condition
for improving the quality of software.

The current specification has at least two major shortcomings. The AU-
TOSAR metamodel, as of now, is affected by the lack of a clear and unam-
biguous communication and synchronization semantics and the lack of a timing
model. The AUTOSAR consortium recently acknowledged that the specification
was lacking a formal model of components for design time verification of their
properties. As a result, the definition of the AUTOSAR metamodel was started.
Similarly to UML, the AUTOSAR metamodel is sufficiently mature in its static
or structural part, but offers an often incomplete behavioral description, which
is planned for significant updates in its upcoming revision. Furthermore, the
standard does not address adequately issues related to timing and performance,
therefore underestimating the complexity of current and future applications, in
which component interactions generate a variety of timing dependencies due
to scheduling, communication, synchronization, arbitration, blocking, buffering.
The reuse of a component requires that the behavior of the reused components
and the result of the composition with respect to time can be predicted in the
new configuration. If this problem is not addressed, the composition will even-
tually lead to (possibly transient) timing problems. The definition of a timing
model for AUTOSAR and the development of a standardized infrastructure for
the handling of time specifications is the objective of the ITEA project TIMMO,
which started in April 2007 and includes car manufacturers like Audi, PSA, Volvo
Technology and Volkswagen, as well as electronics and tool suppliers, including
Bosch, Continental, ETAS, Siemens VDO, Symtavision and TTTech.

On a separate context, a discussion of the issues that need to be considered
when mapping UML into AUTOSAR (and vice-versa) and the possible gaps and
inconsistencies in this transformation can be found in [22].

Components must be characterized by (a set of) behavior requirements and a
corresponding internal behavior model. In AUTOSAR, the behavior of Atomic-
SoftwareComponents is represented by a set of RunnableEntities (Runnables for
short) communicating with each other over the ports of the container structural

20 M. Di Natale

entities (components). Like in UML, structural and behavioral entities are linked
to each other but are kept separated. AUTOSAR provides several mechanisms
for Runnables to access the data items for sender/receiver communication and
the services of client/server communication, but the synchronization and timing
semantics in the execution of Runnables is only partly specified. In AUTOSAR,
the runtime environments (RTEs) of each ECU are responsible for establishing
the communication between the Runnables (local or remote) and triggering their
execution using the following events:

– Timing Event triggering periodical execution of Runnables.
– DataReceivedEvent upon reception on a Sender/Receiver communication.
– OperationInvokedEvent for invocation of Client/Server service.
– DataSendCompleteEvent upon sending a Sender/Receiver communication.
– WaitPoint allows blocking a runnable while waiting for an Event.

Behavioral models are not supported in AUTOSAR, but the standard relies on
external behavioral modeling tools like Simulink and ASCET, which brings the
issue of the composition of (possibly heterogeneous) models. Therefore, any inte-
gration environment (EAST-ADL2 [22] is an example), must define the triggering
and execution semantics of functions. This semantic should be deterministic to
allow execution verification.

An example of the possible issues in the definition of the execution semantics
(and also an example of model translation issues) can be found in Figure 2
(adapted from [22]), in which three models of a control algorithm, respectively
in Simulink, UML (activity diagram) and AUTOSAR are represented.

AUTOSAR

Add
Integrator

Mul ConstVal

Display

C_mul

C_integr

C_val

C_displ

Simulink

UML

C_add
C_gen

+
+
Add Integrator

Step

2
Mul

Scope
z−1

K Ts

Step_sig

Fig. 2. Model-to-model transformation issues

Despite a similarity in their structure, the three models differ in the execution
order of the actions. Contrary to UML activity diagrams, in Simulink, blocks
are not executed in lexicographic order. In Simulink, blocks for which the output
does not depend on the input at any given time, such as the Integrator in the
Figure, can be executed before the others. Indeed, the simulation behavior of
the depicted Simulink model will start with the output of the Integrator, and

Design and Development of Component-Based Embedded Systems 21

then continue with the Mul and Add blocks. In the UML activity diagram, the
Add action will run before the Integrator block. The difference in the execution
order may lead to different model behaviors and different simulation results.

In UML, in fact, the triggering order is defined when operations are called, but
the execution order is undefined in the case of communication by data (streams)
received on ports. SysML tries to define the semantics of data reception on ports,
but the bindings between behavior parameters, and either the flow properties or
the containing block properties are a semantic variation point [22]. In conclusion,
for triggering semantics that differ from the loose UML standard definition,
designers are required to explicitly define their own semantics by introducing
stereotypes (specializing generic UML concepts by additional constraints and
tagged values) in a dedicated profile .

However, execution order is not the only problemwith our example. In Simulink,
all blocks react at the same time and produce outputs in zero time (according
to the Synchronous Reactive semantics), which leads to possible problems when
the model has algebraic loops (instantaneous cyclic dependencies of signals from
themselves). In this case, the system may have a fixed point solution or the model
may be simply not correct. The definition of a Synchronous Reactive semantics
in UML is probably possible by leveraging the Marte profile, but it would re-
quire the adoption of a stereotyped (discrete) time model. Additional diagrams
are probably required to synchronize triggers and/or enforcing the correct ex-
ecution order (possibly state diagrams). Finally, in case other types of timing
constraints on end-to-end computations exist, an additional sequence diagram
(and a stereotyped notation for timed events) would be required as well.

Finally, the AUTOSAR specification is based on the OSEK specification for
Operating Systems. In an OSEK system, tasks are executing concurrently with
priorities and subject to preemption. Hence, special care must be taken in the
code generation stage, when the structural and behavioral part of the specifi-
cation are mapped into concurrent tasks using automatic code generation tech-
niques. Runnables and functional blocks must be executed by tasks in such a
way to ensure data consistency of the variables implementing the communication
links, and also time determinism in the execution of blocks. Furthermore, the
implementation must guarantee the enforcement of the set of partial orders in
the execution of blocks, as determined by the model semantics.

3 Timing Predictability, Timing Isolation and Standards

The automotive domain has been traditionally receptive to methods and tech-
niques for timing predictability and time determinism. The standard Controller
Area Network (CAN) bus [6] for communication is based on the concept of a
deterministic resolution of the contention and on the assignment of priorities
to messages. The OSEK standard for real-time operating systems [14] not only
supports predictable priority-based scheduling [10], but also bounded worst-case
blocking time through an implementation of the immediate priority ceiling pro-
tocol [17] and the definition of non-preemptive groups [18] for a possible further

22 M. Di Natale

improvement of some response times and to allow for stack space reuse. In the
absence of faults, and assuming that the worst-case execution time of a task can
be safely estimated, these standards allow the designer to predict the worst-case
timing behavior of computations and communications.

Priority-based scheduling of tasks and messages fits well within the tradi-
tional design cycle, in which timing properties are largely verified a-posteriori
and applications require conformance with respect to worst-case latency con-
straints rather than tight time determinism. Furthermore, control algorithms
are designed to be tolerant with respect to small changes in the timing behavior
and to the nondeterminism in time that possibly arises because of preemption
and scheduling delays [7], or even possibly to overwritten data or skipped task
and message instances because of temporary timing faults. Finally, although
formally incorrect, there is a common perception that small changes in the tim-
ing parameters (decreased periods and/or wrong estimates of the computation
times) typically only result in a graceful degradation of the response times of
tasks and messages and that such degradation will in any case preserve the high
priority computations.

These assumptions can be misleading and faulty. The worst-case response
times of tasks and messages, scheduled on priority-based systems, such as those
defined by the OSEK and CAN standards can be computed using a fixed point
formula. For a periodic task τi, activated with period Ti and worst-case compu-
tation time Ci, the worst-case response time ri is given by (in case ri ≤ Ti, the
general case is discussed in [11])

ri = Bi + Ci +
∑

j∈hp(i)

⌈
ri

Tj

⌉
Cj (1)

Where j ∈ hp(i) means all the indexes of the generic tasks τj with a priority
higher than τi and Bi is the worst-case blocking time in which the task cannot
execute because of an activity (typically a critical section or an interrupt handler)
executed on behalf of a lower priority task. The worst-case latency of a CAN
message can be upper bound as shown in [9], where the factor Bi is the largest
transmission time of any message frame.

wi = Bi +
∑

j∈hp(i)

⌈
wi

Tj

⌉
Cj (wi > 0)

ri = wi + Ci

(2)

In the face of the development of larger and more complex applications, which
are deployed with a significant amount of parallelism on each ECU and consist of
a densely connected graph of distributed computations, and of new safety-critical
functions, which require tight deadlines and guaranteed absence of timing faults,
a new rigorous science needs to be established. A number of issues need to be
considered with respect to the current standards and the use of priority based
scheduling of tasks and messages.

Design and Development of Component-Based Embedded Systems 23

– Priority-based scheduling can lead to discontinuous behavior in time and
timing anomalies. The dependency of the response time of a lower priority
task or message with respect to the computation time (or period) of a higher
priority task is not linear and not even continuous. Furthermore, especially
in distributed systems, it may even be possible that shorter computation
times result in larger latencies [16]. A recently developed branch of worst-
case timing analysis is focusing on sensitivity analysis [5][16] as a means for
understanding which computation and communication loads are critical for
the preservation of deadlines.

– Variability of the response times between the worst-case and the best case
scenario, together with the possible preemptions, can lead to the violation
of time-deterministic model semantics in the implementation of software
models by priority scheduled tasks and messages [4].

– Extensibility and (to some degree) tolerance with respect to unexpectedly
large resource requirements from tasks and messages that is allowed by
priority-based scheduling comes at the price of additional jitter and latency
and lack of timing isolation.

– Future applications, including safety critical (x-by-wire) and active safety
need shorter latencies and time determinism (reduced jitter) because of in-
creased performance. The current model for the propagation of informa-
tion, based on communication by periodic sampling, among non-synchronized
nodes has very high latency in the worst-case and a large amount of jitter
between the best case and the worst-case delays. Even if communication-
by-sampling can be formally studied and platform implementations can be
defined to guarantee at least some fundamental properties of the communica-
tion flow (such as data preservation), time determinism is typically disrupted
and the application must be able to tolerate the large latencies caused by
random sampling delays.

– The deployment of reliable systems requires timing isolation in the execution
of the software components, and protection from timing faults. One of the
major downsides of priority-based scheduling of resources is that faulty high
priority computation or communication flows can easily obtain the control
of the ECU or the bus, subtracting time from lower priority tasks or mes-
sages. For example, an excessive request of computation time from any high
priority task impacts the response time of lower priority tasks on the same
ECU. Timing protection is even more important in the light of AUTOSAR,
when components from Tier1 suppliers are integrated into the same ECU,
leveraging the standardization of interfaces, and faulty behaviors (functional
and temporal) need to be contained and isolated.

– The development of future applications will also require the enforcement
of composability and compositionality not only in the functional domain
but also for para-functional properties of the system, including the timing
behavior of the components and their reliability. (see next section)

Time-based schedulers, including those supported by the FlexRay and OSEK-
Time [13] standards force context switches on the ECUs and the assignment of

24 M. Di Natale

the communication bus at predefined points in time, regardless of the outstand-
ing requests from the tasks for computation and communication bandwidth.
Therefore, they are better suited to provide temporal protection, except that
the enforcement of a strict time window for the execution and communication
requires a much better capability of the designer in predicting the worst case ex-
ecution times of tasks so that the execution window can be appropriately sized,
and guardians are needed to ensure that an out-of-time transmission will not
disrupt the communication flow on the bus.

4 Platform-Based Design for Architecture Selection

Platform-based design requires/entices the identification of clear abstraction lay-
ers and a design interface that allows for the separation of concerns between the
refinement of the functional architecture specification and the abstractions of
possible implementations. The application-layer software components are thus
decoupled from changes in microcontroller hardware, ECU hardware, I/O de-
vices, sensors, actuators, and communication links. The basic idea is captured on
the left side of Figure 3. The vertex of the two cones represents the combination of
the functional model and the architecture platform. Decoupling the application-
layer logic from dependencies on infrastructure-layer hardware or software en-
ables the application-layer components to be reused without changes across
multiple vehicle programs. A prerequisite for the adoption of the platform-based

5

vehicle

of platform
independent

s1

Application Space

Architecture Space

Arch. option

Application
instance

Platform abstractions platform model
system

of both
independent

architect. model
execution

of functionality
independent

f2 f3 f4

f5 f6

s2 s4

s3
s5

f1

task task

task tasksr
1

1
1

2

2msg

msg

3 4

CAN

ECUECU ECU ECU ECU

CAN 1

1 2

2

3 4

functional model

Fig. 3. Platform-based design and models

design and of the meet-in-the-middle approach is the definition of the right mod-
els and abstractions for the description of the functional platform specification
and for the architecture solutions at the top and the bottom of the hourglass
of Figure 3. The platform interface must be isolated from lower-level details
but, at the same time, must provide enough information to allow design space
exploration with a fairly accurate prediction of the properties of the implemen-
tation. This model may include size, reliability, power consumption and timing;
variables that are associated to the lower level abstraction.

Design and Development of Component-Based Embedded Systems 25

Design space exploration consists of seeking the optimal mapping of the sys-
tem platform model into the candidate execution platform instances. The map-
ping must be driven by a set of methods and tools providing a measure of the
fitness of the architecture solutions with respect to a set of feasibility constraints
and optimization metric functions. This work focuses on timing constraints and
metrics. In Section 4.2, we discuss the possibility for the automatic selection of
part of the platform configuration by software tools. The technology, however,
is not mature yet for a full synthesis of the task and message design and the
definition of the architecture mapping. The approach that is currently viable is
a what-if analysis where different options are selected as representatives of the
principal platform options and evaluated according to measurable metrics.

Functional Model
The starting point for the definition of ECS based vehicle architecture is the
specification of the set of features that the system is expected to provide. A
feature is a very high level description of a system capability, such as an active-
safety function. The software component of each feature is further developed
by control engineers who devise algorithms fulfilling the design goals. Typically,
these algorithms are captured by a hierarchical set of block diagrams produced
with commercial tools for control design. The functional model(s) are created
from the decomposition of the feature in a hierarchical network of components
encapsulating a behavior, within a provided and required interface, expressed
by a set of ports or by a set of methods with the corresponding signature. This
view abstracts from the details of the functional behavior and models only the
interface and the communication semantics, including the specification of the
activation signal for each functional block, be it periodic, sporadic, or arriving,
together with the incoming data, from one of its input ports. The functional
description is further endowed with the required constraints. For example, timing
constraints are expressed in the context of the functional architecture by adding
end-to-end deadlines to the computation paths, maximum jitter requirements to
any signal and time correlation constraints between any signal pair.

Architecture Model
The model of the architecture is hierarchical and captures the logical topology
of the vehicle network, including the communication buses, such as CAN [6] and
time triggered links, the number of processors for each ECU and the resource
management policies that control the allocation of each ECU and BUS. At this
stage, the hardware and software resources that are available for the execution
of the application tasks and the resource allocation and scheduling policies must
also be specified.

Platform Model
The system platform model is where physical concurrency and resource re-
quirements are expressed. The system platform model(s) are a representation
of the mapping process. Tasks are defined as units of computation processed
concurrently in response to environment stimuli or prompted by an internal

26 M. Di Natale

clock. Tasks cooperate by exchanging messages and synchronization or activa-
tion signals and contend for use of the processing and communication resource(s)
(e.g., processors and buses) as well as for the other resources in the system. The
system platform model entities are, on one hand, the implementation of the
functional model and, on the other hand, are mapped onto the target hardware.
The mapping phase consists of allocating each functional block to a software
task and each communication signal variable to a virtual communication object
(right side of Figure 3). The task activation rates are derived from the functional
blocks activation rates. As a result of the mapping of the platform model into
the execution architecture, the entities in the functional models are put in re-
lation with timing execution information derived by worst-case execution time
analysis or back-annotations extracted from physical or virtual implementation.
Given a mapping, it is possible to determine which signals are local (because the
source and destination functions are deployed onto the same ECU) and which
are remote and, hence, need to go over the network. Each communication signal
is therefore mapped to a message, or to a task private variable or to a protected
shared variable. Each message, in turn, is mapped to a serial data link. The
mapping of the threads and message model into the corresponding architecture
model and the selection of resource management policies allows the subsequent
validation against timing constraints.

4.1 What-If Analysis

The procedure for architecture selection and evaluation is a what-if iterative pro-
cess. First, the set of metrics and constraints that apply to the design is defined.
Then, based on the designer’s experience, a set of initial candidate architec-
ture configurations is produced. These architectures are evaluated and, based
on the results of the quantitative analysis, a solution can be extracted from the
set as the best fit. If the designer is not satisfied with the result, a new set of
candidate architectures can be selected. The iterative process continues, until a
solution is obtained. The intervention of the designer is required in two tightly
related stages of the exploration cycle. The designer must provide the initial
set of architecture options. After the options have been scored and annotated
by the analysis and simulation tools, the designer must understand the results
of the analysis and select the architecture options that are the best fit to the
exploration goals and (more importantly) understand the results of the analysis
to add other options to the next set of configurations that needs to be evalu-
ated. The set of analysis methods that are available for architecture evaluation
are:

– Evaluation of end-to-end latency and schedulability against deadlines for
chains of computations spanning tasks and messages scheduled with fixed
priority [19].

– Sensitivity analysis for tasks and messages scheduled with fixed priorities
and sensitivity analysis for resources scheduled with fixed priorities [5].

Design and Development of Component-Based Embedded Systems 27

– Evaluation of message latencies in CAN bus networks [8].
– System level simulation of time properties and functional behaviors (based

on the Metropolis engine [3]).
– Analysis of fault probability and cutsets (conditions leading to critical faults)

based on fault trees.

4.2 Automatic Configuration of the SW Architecture

The mapping of the functional model into the execution platform is part of the
platform-based design referred in the previous sections and of the Y-chart design
flow [2] shown in Figure 4, where the application description and architectural
description are joined in an explicit mapping step. The mapping definition and
the creation of the task and resource models can be performed in several ways.
In single processor systems, the problem is usually very simple, and often sub-
sumed by the code generation phase. In distributed architectures, the design of
the software architecture is a more complex task and it is very often delegated
to the experience of the designer. When a software implementation is not feasi-
ble because of resource constraints, design iterations may be triggered and the
functional model itself or the architecture configuration may be modified.

Function allocation

Code implementation

ArchitectureFunctional ArchitecturePhysical

ECU selection
topology

period
activ. and synch.

Deployment

Task allocation
Priority assignment

Fig. 4. Design flow stages and period synthesis

Once the function and the architecture are defined, there are several possible
options for the intermediate layer, and automated tools can provide guidance in
the selection of the optimal configuration with respect to the timing constraints
and a performance-related metric function.

The mapping consist of the following stages: function to task mapping; task to
ECU deployment and signal to message mapping, and, finally, of the assignment
of priorities to tasks and messages. When iterations are required on the functional
model, a different selection of the execution periods of the functions, or different
synchronization and communication solutions may be explored.

We defined solutions based on mixed integer linear programming (MILP) and
geometric programming (GP), respectively, for the problem of optimizing the
activation mode of tasks and messages [19] and the selection of task periods [8].

28 M. Di Natale

The effectiveness of these approaches has been demonstrated by application to on
an experimental vehicle system case. We are currently exploring approximated
solutions for the selection of a feasible mapping of tasks to ECUs and signals to
messages and the assignment of priorities to tasks and messages.

5 Conclusions

The structure of the automotive electronic industry and the state-of-the-art of
automotive electronics design methodology was summarized. Issues on model-
based design, composability and timing protection and a quick look at the op-
portunities and the limitations of the existing standards were also discussed.
We concluded with a proposed methodology for architecture exploration, based
on virtual platforms and the separation of functional and physical architecture
models. We envision the availability of an intermediate platform layer in which
the functions are mapped into the architecture option and the result is evalu-
ated with respect to para-functional metrics and constraints related to timing,
dependability and cost. It will be of highest importance to support the evolution
of the automotive standards to ensure the feasibility of a correct and robust
design flow based on virtual platform.

References

1. AUTOSAR. Consortium web page, www.autosar.org
2. Balarin, F., et al.: Hardware-Software Co-Design of Embedded Systems – The Polis

Approach. Kluwer Academic Publishers, Dordrecht (1997)

3. Balarin, F., Lavagno, L., Passerone, C., Watanabe, Y.: Processes, interfaces and
platforms. Embedded software modeling in Metropolis. In: Proc. of the 2nd ACM
EMSOFT, Grenoble, France (October 2002)

4. Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli, A.: Efficient em-
bedded software design with synchronous models. In: Proc. of the 5th ACM EM-
SOFT. ACM Press, New York (2005)

5. Bini, E., Natale, M.D., Buttazzo, G.: Sensitivity analysis for fixed-priority real-time
systems. In: Euromicro ECRTS, Dresden, Germany (June 2006)

6. Bosch, R.: Controller area network specification, version 2.0. Stuttgart (1991)
7. Caspi, P., Benveniste, A.: Toward an approximation theory for computerised con-

trol. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS,
vol. 2491, pp. 294–304. Springer, Heidelberg (2002)

8. Davare, A., Zhu, Q., Natale, M.D., Pinello, C., Kanajan, S., Sangiovanni-
Vincentelli, A.: Period optimization for hard real-time distributed automotive sys-
tems. In: Design Automation Conference, San Diego, CA (June 2007)

9. Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (can)
schedulability analysis: refuted, revisited and revised. Real-Time Systems 35, 239–
272 (2007)

10. Harbour, M.G., Klein, M., Lehoczky, J.: Timing analysis for fixed-priority sched-
uling of hard real-time systems. IEEE Transactions on Software Engineering 20(1)
(January 1994)

www.autosar.org

Design and Development of Component-Based Embedded Systems 29

11. Lehoczky, J.P., Sha, L., Ding, Y.: The rate-monotonic scheduling algorithm: Exact
characterization and average case behavior. In: Proc. of the 10th RTSS, Santa
Monica, CA (December 1989)

12. Mathworks. The Mathworks Simulink and StateFlow User’s Manuals,
http://www.mathworks.com

13. OSEK. OSEK/VDX Steering Committee: Time-Triggered Operating System,
http://www.osek-vdx.org

14. OSEK. OS vers. 2.2.3 specification (2006), http://www.osek-vdx.org
15. DSpace TargetLink product page, http://www.dspaceinc.com
16. Racu, R., Ernst, R.: Scheduling anomaly detection and optimization for distributed

systems with preemptive task-sets. In: 12th RTAS, San Jose (April 2006)
17. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach

to real-time synchronization. IEEE Transactions on computers 39(9), 1175–1185
(1990)

18. Wang, Y., Saksena, M.: Scheduling fixed priority tasks with preemption threshold.
In: Proc. of the RTCSA Conference (December 1999)

19. Zheng, W., Natale, M.D., Pinello, C., Giusto, P., Sangiovanni-Vincentelli, A.: Syn-
thesis of task and message activation models in real-time distributed automotive
systems. In: Proc. of the DATE conference, Nice, April 15-18 (2007)

20. Object Management Group MARTE profile: Modeling and Analysis of Real-time
and Embedded systems, http://www.omgmarte.org/

21. Object Management Group UML Profile for Modeling QoS and Fault Toler-
ance Characteristics and Mechanisms, http://www.omg.org/cgi-bin/doc?ptc/
2006-12-02

22. ATESST Advanced Traffic Efficiency and Safety through Software Technology De-
liverable 3.2 Report on behavior modeling with the EAST-ADL 2.0 (July 12, 2007)

http://www.mathworks.com
http://www.osek-vdx.org
http://www.osek-vdx.org
http://www.dspaceinc.com
http://www.omgmarte.org/
http://www.omg.org/cgi-bin/doc?ptc/2006-12-02
http://www.omg.org/cgi-bin/doc?ptc/2006-12-02

On the Timed Automata-Based Verification of

Ravenscar Systems

Iulian Ober1 and Nicolas Halbwachs2

1 Université de Toulouse - IRIT
118 Route de Narbonne, 31062 Toulouse, France

iulian.ober@irit.fr
2 CNRS - VERIMAG

2, av. de Vignate, 38610 Gières, France
Nicolas.Halbwachs@imag.fr

Abstract. The Ravenscar profile for Ada enforces several restrictions
on the usage of general-purpose tasking constructs, thereby facilitating
most analysis tasks and in particular functional and timing verification
using model checking. This paper presents an experiment in translating
the Ravenscar fragment of Ada into the input language of a timed model
checker (IF [7, 8]), discusses the difficulties and proposes solutions for
most constructs supported by the profile. The technique is evaluated in
a small case study issued from a space application, on which we present
verification results and conclusions.

1 Introduction

This paper discusses an experiment in applying model checking techniques to
the verification of functional and non-functional (timing) aspects of Ada systems
complying with the Ravenscar profile [1, 10].

We targeted the IF model checker [7, 8] for several reasons including its ability
to handle complex structured data, dynamic object allocation (necessary to sim-
ulate the procedural control flow of Ada), both timed and non-timed execution
aspects, and last but not least for the automatic abstraction features of the IF
tool which help to cope efficiently with large specifications.

Ravenscar is a standardized set of restrictions for the Ada language and run-
times, set forward in order to facilitate the verification of concurrent real-time
programs and to make their implementation more reliable and efficient. The
incentive to apply model checking to Ravenscar systems was the fact that the
profile is used as the runtime and semantic baseline by several work tracks [5, 22]
within the IST ASSERT European project1, and it has recently been formalized
in [17]. ASSERT aims at developing novel systems engineering methods for dis-
tributed and embedded real time systems in the aerospace domain, based on
formal model-centric techniques.

1 This work was partially supported by ASSERT, an Integrated Project of the 6th

Framework Programme IST of the EU, see http://www.assert-project.net

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 30–43, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Timed Automata-Based Verification of Ravenscar Systems 31

The paper is structured as follows. Section 2 is a brief overview of the Raven-
scar Ada profile. Section 3 presents the IF language and tools. Section 4 is the
main part of the paper, describing the mapping of the main Ada concepts to IF,
and discussing how the Ravenscar profile restrictions may help. Then, in Section
5 we present experimental results on a small case study, before concluding.

2 The Ravenscar Ada Profile

The Ada language exhibits a rich set of constructs for programming concur-
rent and time-aware systems. However, as analyzed in [10, 1], the total freedom
granted by the tasking and inter-task communication model of the language
comes at a high cost. Firstly, this freedom exposes the systems to various run-
time problems related to schedulability (like unbounded blocking times or pri-
ority inversion) and concurrency control (like deadlocks). Secondly, it makes it
impossible to apply most currently available analysis techniques to verify the
resulting system: known schedulability analyses [12] like rate monotonic analy-
sis [20] or response time analysis [19] do not work on such general models, and
the application of more general purpose techniques like model checking [13] is
hindered.

Several factors cause the aforementioned problems, among which: tasks may
be created dynamically (either explicitly or implicitly), their activation patterns
are arbitrary (a task may be suspended and activated by arbitrary delay state-
ments, by rendez-vous, etc.), they may communicate in various ways (through
rendez-vous, through shared protected objects, etc.).

The Ravenscar profile makes a number of restrictions on the tasking and syn-
chronisation constructs that may be used, and additionally it imposes a schedul-
ing policy – namely fixed priority preemptive scheduling with priority ceiling
protocol (for a description, see for example [12]) – thus aiming to render the re-
sulting systems analysable and to guarantee by construction certain properties
such as absence of deadlocks and mutual exclusive access to shared resources.
The restrictions, defined in [1] and motivated in [10], are the following:

– The task set is static and flat, i.e. there is no dynamic task creation, and all
tasks are created at package level and depend directly on the environment
task. Tasks are also not permitted to terminate or abort.

– Interrupt handlers are only attached statically to interrupts.
– Task rendez-vous is forbidden, only protected objects can be used for inter-

task communication and synchronization. Moreover, the set of protected
objects is static as they are only allowed to be created at package level. Pro-
tected objects are also subject to further restrictions: they may have at most
one protected entry (along with any number of procedures and functions),
the maximum queue length at the entry is one (otherwise, an exception is
raised), the entry barrier must be a simple Boolean variable, and requeue is
not allowed.

– All delays must be absolute (that is, only delay until statements are legal).

32 I. Ober and N. Halbwachs

signal queue

(process type)

PID
FPAR
VAR

 (creation data parameters)
(local data, private or public)

(process instance)

(state machine)

(process type)

Fig. 1. Constituents of an IF model

To achieve analysability of the resulting systems, all tasks must be structured
such that they are either periodic or sporadic (i.e., event driven with a mini-
mum inter-arrival time enforced). This restriction is not formally imposed by
the Ravenscar profile since it can be verified neither statically nor at run-time.
However, [10] contains coding patterns for these two types of tasks.

To end this section, we note that there are currently two runtimes which com-
ply with the Ravenscar profile requirements: the commercial ObjectAda Real-
Time RAVEN from Aonix [4] and the open source Open Ravenscar Real-Time
Kernel ORK [14].

3 The IF Model Checker

The validation approach proposed in this work is based on the formal model of
communicating extended timed automata, as it is embodied in the IF language
and the execution and validation environment built around this language [7, 8].
This section provides a brief overview of IF, necessary for understanding the rest
of the paper.

The IF language is dedicated to modeling distributed systems that can ma-
nipulate complex data, may involve dynamic process creation and real time con-
straints. The language constructs allow to represent the behavior of a system
at an arbitrary level of abstraction, ranging from very abstract descriptions in-
volving lots of non-determinism and un-interpreted actions, to very concrete
descriptions involving concrete data manipulation, algorithmic structures, etc.
In particular, the richness of the language allows to describe the semantics of
higher level formalisms, like UML [16] or SDL [18], and has been used as a format
for inter-connecting modelling and validation tools.

The main purpose of IF models is validation by formal techniques (simula-
tion, property verification), which explains why some features of the language
presented below, such as default transition atomicity, could be considered “un-
realistic” from an implementation perspective.

Communicating extended timed automata. An IF system is composed of
a set of communicating processes that run in parallel (see figure 1). Processes are

On the Timed Automata-Based Verification of Ravenscar Systems 33

instances of process types, they have an identity (PID), may own data variables
and their behavior is defined by a state machine. The state machine may be
hierarchical (i.e., making use of composite states) and the effect of transitions is
described by usual structured imperative statements.

Data variables are statically typed, and may contain either simple scalars
(boolean, integer, real) or structured data (arrays, records, objects).

Processes inter-communicate by sending asynchronous signals, which are
stored in per-process signal queues until the destination process is ready to han-
dle them. Additionally, processes may communicate via shared variables, which
are public variables exported by some process and that every other process can
read/write. Parallel processes are composed asynchronously (i.e., they progress
independently from each other). The model also allows dynamic creation of
processes, which is an essential feature for modeling object-based systems or
procedural control flow, as will be shown later in this paper.

The link between system execution and time progress may be described in
a precise manner, and thus offers support for modeling real time constraints.
For this, IF uses the constructs of timed automata with urgency [6]: there are
special variables called clocks which measure time progress. All clocks progress
at the same rate during a system run, and they differ only by the moments when
they are started; a dedicated statement, set x:= 0, is used to (re)start a clock
x. Comparisons between a clock and an integer value may be used in transition
guards. A special attribute of each transition, called urgency, specifies if time
may progress when the transition is enabled.

Dynamic priorities. On top of the above model, priority rules allow for spec-
ifying dynamic priorities as partial orders between processes. The theoretical
foundation of this framework is given in [3].

A priority rule has the following form:
p1 < p2 if state_condition(p1,p2)

where state_condition(p1,p2) is a boolean expression with free PID variables
p1 and p2, which can be interpreted in the context of a given system state. The
semantics of the rule is the following: given a system state, for any pair of
processes P1 and P2 which have enabled transitions in that state, if the (closed)
formula state_condition(P1,P2) evaluates to true then the transitions of P1
are not allowed to execute (i.e., P2 has priority over P1).

It is shown in [3] how this kind of rules may be used to model different
scheduling policies, including fixed priority scheduling, Earliest Deadline First
(EDF) and others.

Property specification with observers. Behavioral properties of IF models
may be expressed using observer automata. These are special processes that
monitor the changes in a system’s state (variable values, contents of queues, etc.)
and the events occurring during the execution of transitions (inputs, outputs,
creation and destruction of processes, etc.). To express desired safety properties
of a system, some of the observer states are labeled as error states: if a system
execution leads to such a state then the property represented by the observer
was violated. This allows to express arbitrary safety properties.

34 I. Ober and N. Halbwachs

Analysis techniques: the IF toolbox. The IF toolbox [7, 8] is the valida-
tion environment built around the formalism presented before. It is composed
of three categories of tools. Behavioral tools are used for simulation, veri-
fication of properties, automatic test generation, state space minimization and
comparison. The tools implement techniques such as partial order reductions and
symbolic simulation of time, and thus present a good level of scalability. Static
analysis tools provide source-level optimizations (data flow analysis such as
dead variable reduction, slicing, etc.) that help reducing further the state space
of the models. Front-ends and exporting tools which provide coupling to
higher level languages (UML, SDL) and to other verification tools.

4 The Mapping of Ravenscar Ada to IF

In this section we describe the principles of the mapping of Ada programming
constructs to IF model elements. In IF the only first class language citizen is the
process: it is used for encapsulating data and behavior, it is the only one that
can be referenced (by PID), can be dynamically created and killed. Therefore,
most of the constructs of Ada like packages, tasks, procedures, protected objects
and referenced data will be encoded using processes.

Note that although this encoding significantly increases the number of pro-
cesses employed to “simulate” a Ravenscar system, it does not add to the combi-
natorial complexity of system behavior, as most of the processes are just passively
encapsulating data or waiting for some event (see §4.2). In general, the number
of “active” processes in a given state is equal to the number of active threads in
the corresponding configuration of the Ada system.

4.1 Packages, Data and Statements

Ada packages are static containers for various types of content: data variables,
tasks, protected objects, procedures, types and other packages. Some of the
content has an actual runtime existence (variables, tasks, objects) while in the
case of procedures, types and nested packages, the encapsulating package acts
only as a static namespace.

In IF, a package is mapped to a process which only contains variables cor-
responding to the Ada data, task or object variables. The static namespace
function of a package cannot be fulfilled directly by an IF process since nesting
is not allowed, therefore we use a naming scheme for mapping qualified Ada
entity names to flat IF process names. This kind of manipulation is common
in all compilers which generate low-level object code from a high level language
with complex scoping rules. Similarly, generic packages and instantiation are also
handled using naming rules and code replication (code size optimization is not
important for verification).

Scalar data is restricted to the types supported by IF: boolean, integer and
real. This limitation is not very strong when the goal is formal verification of
high-integrity systems, since the control flow of such systems is rarely affected

On the Timed Automata-Based Verification of Ravenscar Systems 35

by other types of data. Complex data types are constructed using the IF array
and record constructors, or by encapsulation within dedicated processes (e.g.,
for constructing records with variants). Processes are also used to represent
any entity which is handled by reference, like tasks and protected objects (the
reference is then the PID).

The mapping of computation statements is defined as follows:

– The points of control before and after a statement are represented by IF
states, and the statements are represented by transitions between states.

– Assignments and elementary operations have a direct counterpart in IF.
– Procedure and function calls and evaluation of expressions containing calls

is done according to the simple principles described in §4.2.
– Control flow statements like alternatives and loops are encoded in the struc-

ture of the state / transition graph.

We note that several statements, like those involved in (bounded) rendez-vous,
etc., are forbidden by the Ravenscar profile. Other statements, which are not
forbidden (e.g., delay until), are explained below.

4.2 Procedural Control Flow and Tasks

Procedures, functions and protected object entries (collectively referred to as
subroutines in this section) are represented by processes which are dynamically
created upon call and killed upon return of control. Thus, the runtime call stack
of a task has a direct representation in IF as a linked list of processes. The
processes hold the subroutine local variables and parameters, and realize the
subroutine behavior by their automaton.

IF allows passing data parameters (fpars) at process creation which allows
us to represent very directly the passing of in parameters. Along with these, a
caller also passes as parameter its identity and the identity of the task on behalf
of which the call is made. These references are used for returning the control,
which is represented by the sending of a return_<procedure name> signal from
the callee to the caller, just before the callee kills itself. The signal also carries
the out parameters of the procedure, if any.

Figure 2 shows the mapping of a complete procedure, illustrating the mecha-
nisms of call and return (as well as the implementation of actions by automata,
the access to variables, etc.). For clarity, we have presented the IF process in a
graphical form which is isomophic to the textual form actually used by the tool.

Finally, tasks are mapped to processes which encapsulate local task variables
and realize the task behavior (body) by their automaton.

4.3 Protected Objects

Protected objects are the synchronization mechanism used in Ravenscar Ada.
They provide functions (which may only read but not modify object attributes)
that can be executed concurrently, together with procedures and entries that are

36 I. Ober and N. Halbwachs

procedure Compute
(Value : in out Natural) is

begin
OPCS.Compute (Value);

end Compute;

process GNC Compute(0) /*scheme for qualified names*/
fpar thread pid, caller pid, Value integer

a1

/ fork GNC OPCS Compute(thread, self, Value)

input return GNC OPCS Compute(Value) /
output return GNC Compute(Value) to caller

Fig. 2. Mapping of procedural control flow

protected body OBCS is
...
function Count_Requests

return Integer is
begin

...
return x;

end Get_Request;
end OBCS;

a1

fpar thread pid, caller pid, monitor pid
process OBCS Count Requests(0)

...

initial

({OBCS}monitor).readers ++;

[not ({OBCS}monitor).writing and
and ({OBCS}monitor).readers = 0]ε

[not ({OBCS}monitor).writing]λ

({OBCS}monitor).readers ++;

/output return OBCS Count Requests(x)
to caller;
({OBCS}monitor).readers −−;

Fig. 3. Mapping of protected objects: functions

executed in mutual exclusion from each other and from functions. This corre-
sponds to the classical readers-writers problem and Ada runtimes solve it using
lower level mutual exclusion mechanisms. In IF however, the solution is much
facilitated by the fact that the language offers mutually exclusive and atomic
transitions by default, and transitions are provided with guard conditions that
may be readily used for conditional waiting.

A protected object is mapped to a process that encapsulated its data, together
with two additional variables used for implementing the readers-writers protocol:
a boolean writing and an integer readers. Functions, procedures and entries are,
as mentioned before, mapped to processes that are created upon calling and they
receive an additional parameter – monitor – pointing to owning the protected
object. The readers-writers protocol implemented in our mapping is a variant of
the classical solution that may be found in many textbooks (see for ex. [11]):

– Procedures and entries begin by waiting in an initial state until readers=0
and not writing. For entries, this condition is augmented with the barrier.

On the Timed Automata-Based Verification of Ravenscar Systems 37

When this condition is true, it is followed atomically by writing := true.
At the end of procedures/entries, writing is reset to false.

– Functions begin by waiting in an initial state until not writing. When
this condition is true, they atomically increment readers. At the end of the
function, readers is decremented.

To preserve the generality of the solution, we also allow functions to stay
in the initial state if at least one other function is executing in the ob-
ject. Thus, the model includes both the behavior where functions eagerly
begin execution regardless of waiting procedures/entries (possibly leading to
the starvation of the latter), and the behavior where functions lazily wait
giving the possibility to procedures/entries to start (possibly leading to the
starvation of tasks executing the functions).

At the level of IF (see Figure 3), this is achieved by declaring the transition
from initial as having lazy urgency (see [6]). However, a reader function is
not allowed to wait when the protected object is free of any access, i.e. when
readers = 0 and not writing. To enforce this, a second (eager) transition
is added.

The mapping of functions is illustrated in Figure 3 (for space reasons we do not
include an illustration for procedures, described above). Note that the transition
guards are represented inside square brackets, with the urgency specified as an
exponent (λ for lazy, ε for eager). They are followed by a slash and the actions
executed (atomically) by the transition. Also, note that the expression ({A}p).B
in IF (used for accessing variables from the monitor process) denotes the casting
of an untyped PID p to the type of process A followed by access to variable B
exported by p.

Since Ravenscar disallows more than one task waiting on an entry, we need
not represent the waiting queues in the IF model. The waiting tasks are simply
those whose calls are in the initial state. Note that one interesting use of IF
may be to verify the satisfaction of the queue length restriction.

4.4 Time and Delays

As mentioned before, in Ravenscar tasks may suspend themselves only using
absolute delays. In practice, the coding patterns presented in §5 of [10] show
that the absolute dates are always computed relatively to a “timestamp” (e.g.,
obtained with Ada.Real_Time.Clock). This kind of waiting falls within the ex-
pressive power of timed automata. In Figure 4 we show how the Cyclic task from
[10] is mapped to IF using clocks (see the description of clocks in §3).

4.5 Scheduling Policy and Timing Model

The Ravenscar profile fixes the scheduling policy to FIFO within priorities with
priority ceiling locking. One can suppose that every task and protected object
contains a pragma Priority directive, and that the assigned priority levels ob-
serve the ceiling rule.

38 I. Ober and N. Halbwachs

task body Cyclic is
Next_Period : Ada.Real_Time.Time;
Period : constant

Ada.Real_Time.Time_Span := ...;
begin

Next_Period :=
Ada.Real_Time.Clock + Period;

loop
delay until Next_Period;
Next_Period := Next_Period

+ Period;
...

end loop;
end Cyclic;

[Next Period = Period]

process Cyclic(0)
var Next Period clock;
var Period integer := ...;

a1

set Next Period := 0;

a2

...

set Next Period := 0;

Fig. 4. Mapping of a cyclic task

The dynamic priority framework of IF is more expressive than this policy,
and therefore it allows a quite straightforward mapping for it. The mapping
idea is that every process corresponding to a task has a priority attribute,
which is dynamically updated to reflect the ceiling priority when entering/exiting
subroutines of a protected object. Then, the policy is simply modeled by an IF
dynamic priority rule equivalent to this:

x < y if x.priority < y.priority

(The actual IF rule, equivalent to this one, is slightly more complex because
attribute access like x.priority cannot be directly made for non-typed PIDs
like x and y. Such implementation details are out of scope here.)

The only aspect which is not captured by the mapping above is the FIFO
rule for equal priority tasks. In such cases, there will be a non-deterministic
choice between tasks x and y. This induces an overapproximation of the system
behavior (in the sense that the set of behaviors modeled in IF is a superset
of those of the real system), which is a conservative abstraction for any safety
properties verified on the IF model [13].

Timed automata are in principle not expressive enough to model execution
times in preemptive systems (for which a stopwatch concept strictly stronger
than the timed automata clocks is in general necessary). There are particular
cases in which an encoding is possible, like the one in [15] which only works for
systems of tasks with fixed execution time (i.e., best case and worst case exe-
cution times are equal), but they are rarely applicable in real systems. Another
possibility is to use discrete (integer) counters instead of clocks to model execu-
tion times (or, equivalently, to use discrete representations for clocks in analysis),
but this yields complex models and worsens the perspectives for combinatorial
explosion during verification. For Ravenscar systems, the use of such techniques
for schedulability analysis is not justified, since the constraints imposed by the
profile render them analyzable for example by response time analysis (RTA)
techniques rooted in [19].

On the Timed Automata-Based Verification of Ravenscar Systems 39

Consequently, we base the timing of the IF model not on the worst case
execution times of tasks, but on the response times previously computed by
RTA. Concretely, every task has an associated response clock which is not
allowed to grow past a max_response_time issued from RTA, a condition that
is clearly expressible with classical timed automata clocks. This timing model
also yields a conservative overapproximation of the real system’s timing (the
proof of this statement is considered out of scope here).

4.6 Interrupts and the Environment

In order to verify properties on the IF model resulting from an Ada system, one
has to close it with a model of the environment, which embodies the hypotheses
that are made about what it is reasonable to expect from it. Typically, the
environment can interact with a system either by triggering interrupts or by
calling sub-programs of the system, and the hypotheses concern the order in
which such events arrive, the inter-arrival times, etc. Currently the environment’s
behavior is modeled directly in IF and we do not pose any restrictions on how
this is done. An interrupt can be modeled as a call to the attached procedure.

We note that the behavioral and temporal non-determinism allowed in IF is
key to a simple and expressive modelling of the environment hypotheses, which
generally contain some degree of uncertainty.

5 Experimental Results

5.1 The Case Study

We validated the mapping defined in §4 on a typical task synchronization exam-
ple issued from a spaceborne application provided by Astrium Space Transporta-
tion within the ASSERT project. Although the functionality of the example is
quite simple, the number of Ada objects involved and the size of the code is
significant owing to the fact that the code is automatically generated from a
high-level architecture description (conforming to the approach described in [5])
and contains different mechanisms for separating functional and architectural
aspects, for implementing “archetypical” architectural elements like cyclic and
sporadic tasks, etc. The code features two tasks, three protected objects and
some 20 procedures, functions and object entries, all spread across 8 packages
(including generic ones).

A simplified view of the architecture of the example is depicted in Figure 5.
(The notation is inspired from AADL [21]. Rounded rectangles stand for pack-
ages, rectangles stand for protected objects, dotted parallelograms stand for
tasks, double line connectors signify access to operations. For simplicity, we have
renamed some of the system entities to more meaningful names.) In short, the
functionality of the example is as follows:

– A task TMTC receives sporadic requests (in reality, telecommands from a
ground system) upon which it attempts to update an attribute of a pro-
tected object (POS). For receiving the requests, TMTC uses a protected object

40 I. Ober and N. Halbwachs

Put_Request(rd : ReqDesc)

TMTC POS GNC

TMTC_Sync acquire

read : Natural
write(i : Natural)

Cyclic_Op
Compute(p : in out Natural)Get_Request(rd : out ReqDesc)

Fig. 5. Architecture of the example

(TMTC_Sync) which exhibits a Put_Request procedure and a Get_Request
entry. The sporadic task implements a protection mechanism against re-
quests made more often than a minimum inter-arrival time (MIAT).

– Another task, GNC (for Guidance-Navigation-Control), periodically reads the
attribute of POS, performs some computation based on its value, and finally
updates it.

– It is required that, when a TMTC request comes, the value written to POS
shall not be overwritten by a value written by the GNC, (so that the next
cyclic read by the GNC reads the value sent by the ground). In the example,
this is achieved by encapsulating the entire GNC read-compute-write cycle in
a protected operation (called acquire) of POS, thus rendering it mutually
exclusive with the writes from TMTC.

The property that one wants to verify on this model corresponds to the re-
quirement stated informally above. The requirement is however not sufficiently
precise, and one has to express it in terms of strictly defined events like the
reception of a Put_Request by the TMTC_Sync, the effective execution of Write
by POS after acquiring the monitor lock, etc. While doing so, we realized that
the requirement is actually a conjunction of two simpler safety properties:

P1. After the effective execution of POS.write with value p on behalf of the
TMTC task, the next execution of POS.read on behalf of GNC returns p.

By itself this property is not sufficient since it does not exclude unfair
executions in which an effective TMTC write is delayed for several GNC cycles
after the request arrives. Consequently, we added the following property
which expresses the fact that a telecommand is effectively handled at latest
at the end of the current GNC cycle.

P2. The POS.write executedby the TMTC after receiving TMTC_Sync.Put_Request
must start before the next cycle of GNC starts execution.

The two properties can be expressed as IF observers, the automata structures
are shown in Figure 6 (the event observation details are omitted).

In order to verify the model, we had to close it with a model of the environ-
ment. The chosen environment is a time-non-deterministic ground component
which calls TMTC_Sync.Put_Request from time to time (though no more often
than 1 time unit). In order to reduce the verification state space, we discard traces
where a second TC is sent while the previous TC is still pending in TMTC_Sync.

On the Timed Automata-Based Verification of Ravenscar Systems 41

POS.write(p) by task GNC

POS.write(p) by task TMTC

POS.read returns p’

[p=p’]

error

[p �= p’]

wait write

wait read

(P1)

wait TC

error

trigger sporadic task TMTC

POS.write(p) by task GNC
counter := counter + 1

[counter > 1][counter = 1]

POS.write(p) by
task TMTC
counter := 0

wait write

(P2)

Fig. 6. Desired properties of the example

5.2 Verification Results

Two temporal parameters come into play when verifying the satisfaction of prop-
erties by the model: the minimum inter-arrival time (MIAT) enforced for TMTC
requests, and the cycle time of the GNC. The values specified initially in the Ada
code were respectively 10ms and 8ms. However, it should be noted that the
MIAT is seen as a protection mechanism of the sporadic TMTC task, and may
not be actually observed by the environment, which may try to send requests
more often.

We have experimented with the following combinations of values (state space
size, verification times and results are summarized in Table 1):

– GNC Cycle=8ms, TMTC MIAT=10ms, actual MIAT observed by the environ-
ment < 10ms (1ms). In this case P1 is verified, but P2 may be violated.
The result is not surprising, since when a second TMTC request comes sooner
than expected, it may be delayed for a certain time, and more than one Read
request from the GNC may overtake it.

– GNC Cycle=8ms, TMTC MIAT=10ms, actual MIAT observed by the environ-
ment=10ms. Both P1 and P2 are verified.

Table 1. Verification results

Parameters Results State space metrics User time

GNC Cycle=8ms,
TMTC MIAT=10ms, P1:true
actual env. MIAT=1ms P2:false (stopped after 30 error scenarios) < 1s

GNC Cycle=8ms,
TMTC MIAT=10ms, P1:true
actual env. MIAT=10ms P2:true 45332 states / 122953 transitions < 5s

GNC Cycle=8ms,
TMTC MIAT=6ms, P1:true
actual env. MIAT=1s P2:true 336487 states / 902696 transitions < 46s

42 I. Ober and N. Halbwachs

– GNC Cycle=8ms, TMTC MIAT < 8ms (e.g., 6ms), actual MIAT observed by
the environment=1ms. Both P1 and P2 are verified. Note that when the
TMTC MIAT is less than the length of the GNC cycle, P2 is verified regardless
of the frequency with which the environment sends the requests.

Note that P1, which is the essential property of the system (no value written
by the TMTC is ever overwritten by the GNC) is satisfied in all configurations.

6 Conclusions

We have proved the feasibility of formal verification of Ada Ravenscar systems
by translation to a sufficiently powerful formal language based on timed au-
tomata, which is supported by the model-checker IF [7, 8]. Due to particular
features of the IF language, like dynamic process creation, we have been able to
produce a mapping which is structure-preserving, meaning that every construct
of the initial Ada specification can be identified as an entity in the resulting
code (in general an IF process). This potentially allows traceability between the
two representations, with the obvious benefits. Previous applications of model
checking to Ada systems, such as the one presented in [9], do not offer this kind
of structure preservation (and consequently, they also lend themselves less eas-
ily to automation), in general because of the lack of expressivity in the target
language (UPPAAL in [9]).

The translation overhead (in terms of verification state space) also proves to
be moderate in our case: for example, the case study presented in §5 yields a large
set of 34 IF processes, but thanks to the efficient sub-state sharing algorithms
used in IF this does not contribute significantly to the size of the state space,
only the combinatorial complexity generated by the two tasks does.

The first part of this work was concerned with defining the translation method
and with validating it on a prototypical example. In order for these results to be
applicable in practice, an implementation in the form of a compiler is needed. For
that, we could rely on the GNAT-based open-source implementation of Raven-
scar. Resources allowing, these are our plans for the future.

Acknowledgements. We wish to thank the ASSERT team from the University of
Padua for providing the Ada code of the example as well as the initial motivation
for this work. We also thank all other partners of the ASSERT project for fruitful
discussions around the topics presented here.

References

[1] Tucker Taft, S., Duff, R.A., Brukardt, R.L., Plödereder, E., Leroy, P. (eds.): Ada
2005 Reference Manual. LNCS, vol. 4348. Springer, Heidelberg (2006)

[2] Abdennahder, N., Kordon, F. (eds.): Ada-Europe 2007. LNCS, vol. 4498. Springer,
Heidelberg (2007)

On the Timed Automata-Based Verification of Ravenscar Systems 43

[3] Altisen, K., Gößler, G., Sifakis, J.: A Methodology for the Construction of Sched-
uled Systems. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 106–120.
Springer, Heidelberg (2000)

[4] Aonix. ObjectAda Real-Time RAVEN,
http://www.aonix.com/objectada raven.html

[5] Bordin, M., Vardanega, T.: Correctness by construction for high-integrity real-
time systems: A metamodel-driven approach. In: [2], pp. 114–127

[6] Bornot, S., Sifakis, J.: An algebraic framework for urgency. Inf. Comput. 163(1),
172–202 (2000)

[7] Bozga, M., Graf, S., Mounier, L.: IF-2.0: A Validation Environment for
Component-Based Real-Time Systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 343–348. Springer, Heidelberg (2002)

[8] Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF Toolset. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 237–267. Springer,
Heidelberg (2004)

[9] Burns, A., Wellings, A.J.: How to verify concurrent Ada programs: the application
of model checking. ACM SIGADA Ada Letters 19(2), 78–83 (1999)

[10] Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the Ada Ravenscar
profile in high integrity systems. Ada Lett. XXIV(2), 1–74 (2004)

[11] Burns, A., Wellings, A.: Real-Time Systems and Programming Languages, 3rd
edn. Addison-Wesley, Reading (2001)

[12] Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Al-
gorithms and Applications, 2nd edn. Real-Time Systems Series, vol. 23. Springer,
Heidelberg (2005)

[13] Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

[14] de la Puente, J.A., Ruiz, J.F., Zamorano, J.: An open Ravenscar real-time ker-
nel for GNAT. In: Keller, H.B., Plödereder, E. (eds.) Ada-Europe 2000. LNCS,
vol. 1845, pp. 5–15. Springer, Heidelberg (2000)

[15] Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability Analysis Using
Two Clocks. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 224–239. Springer, Heidelberg (2003)

[16] Object Management Group. Unified modeling language,
http://www.omg.org/spec/UML/

[17] Hamid, I., Najm, E.: Operational semantics of Ada Ravenscar. In: 13th Interna-
tional Conference on Reliable Software Technologies - AdaEurope, Proceedings.
LNCS, vol. 5026. Springer, Heidelberg (2008)

[18] ITU-T. Languages for telecommunications applications – Specification and De-
scription Language (SDL). ITU-T Revised Recommendation Z.100 (1999)

[19] Joseph, M., Pandya, P.: Finding response times in a real-time system. The Com-
puter Journal 29(5), 390–395 (1986)

[20] Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM 20(1), 46–61 (1973)

[21] SAE Aerospace. Architecture Analysis & Design Language (AADL). SAE Tech-
nical Standard (November 2004)

[22] Zalila, B., Hamid, I., Hugues, J., Pautet, L.: Generating distributed high integrity
applications from their architectural description. In: [2], pp. 155–167

http://www.aonix.com/objectada_raven.html
http://www.omg.org/spec/UML/

Operational Semantics of Ada Ravenscar

Irfan Hamid and Elie Najm

Telecom ParisTech – LTCI-UMR 5141 CNRS
46, rue Barrault, 75013 – Paris, France

Irfan.Hamid@enst.fr, Elie.Najm@enst.fr

Abstract. The Ada programming language has been designed from the
ground up for safety-critical real-time systems. This trend has continued
with the Ada 2005 language definition which has incorporated the Raven-
scar Profile for high-integrity systems into the language standard. Here
we describe the operational semantics for Ada Ravenscar code generated
automatically from an architecture description of the system given in the
Architecture Analysis and Design Language.

1 Introduction

The Ada Ravenscar Profile [2] is a restriction of the rich tasking subset of the
Ada language and associated runtime that aims to make the language more
amenable to the development of safety-critical real-time systems. The Architec-
ture Analysis and Design Language (AADL) [13] is an architecture description
language targeted specifically to the real-time and avionics domain. The code
generation rules given with the AADL standard are incomplete and rely on the
existance of an “AADL executive”, in effect, an operating system that provides
all the services needed by an AADL application.

Since such an operating system does not exist, we used ORK [6], a Ravenscar-
compliant executive. We developed code generation rules for AADL to Ada that
faithfully preserve semantics when run on the ORK platform. We also developed
a code generator as an Eclipse plugin (ARC http://aadl.enst.fr/arc/) that
transforms AADL models to Ada source. The code generation rules and toolset
were introduced in [9]. In this paper, we present a static semantics for the Raven-
scar code that we generate, which is a subset of Ada Ravenscar. We also present
a structured operational semantics that represents the dynamic evolution of the
generated system. The Ravenscar Profile restrictions on Ada eliminate certain
features from the language and associated runtime:

– All tasks must be either periodic or sporadic (for schedulability analysis)
– Tasks may only communicate among themselves through protected objects
– No dynamic creation or destruction of tasks or protected objects
– Rendezvous are prohibited (no entries on Ada tasks)
– Protected objects may have at most one entry
– A protected object entry’s queue is of size 1
– All delays must be absolute (no delay <time expression> allowed)

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 44–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://aadl.enst.fr/arc/

Operational Semantics of Ada Ravenscar 45

– Scheduling is priority based, priority assignment is RMA [15] or RTA [3]
– The priority ceiling protocol [16] is used for access to protected objects

ARC relies upon the OSATE AADL toolkit [14] to parse AADL models. The
OSATE toolkit uses the Eclipse Modeling Framework [1] to represent the ab-
stract syntax of the parsed model. Instead of directly generating Ada code from
the AADL model, we chose to implement an intermediate meta-model to rep-
resent the Ravenscar system. The front-end transforms the AADL model to
an instance of this meta-model. The code generator traverses this intermedi-
ate model—which we call the Ravenscar Meta-model (RMM)—to generate Ada
code. Two advantages of this approach are a reduction in complexity (RMM is
simpler than the AADL meta-model), and ease of writing code generators for
other languages. Because all AADL models cannot be transformed to Ravenscar-
compliant code, we verify the AADL model against a set of Object Constraint
Language rules before a model transformation from AADL to an instance of
the RMM is carried out. The paper is structured as follows. Sec. 2 presents the
static semantics. Sec. 3 presents the dynamic semantics of the generated Raven-
scar code using a structured operational semantic approach [12]. Sec. 4 relates
our contribution to past and ongoing research and concludes.

2 Static Semantics

The static semantics provided in this section are a formalization of the structure
of the RMM using set theory, and mirrors the static structure of code generated
by ARC. This static semantics will be used in the ensuing section on dynamic
semantics, specifically to manipulate the entities in the operational semantic
transitions.

2.1 Ravenscar Computational Units

A Ravenscar system is given by five finite and pairwise disjoint sets, endowed
with five functions and related by four relations. The five sets are:

Periodic tasks Tp={P1 . . . Pn}
Sporadic tasks Ts={S1 . . . Sm}

Interrupts U={U1 . . . Uk}
Synchronisers D={D1 . . . Dl}

Exchangers E={E1 . . . Er}

– Sporadic tasks are dispatched upon the reception of an event. A minimum
time—characteristic to each task—between successive dispatches is enforced

– Periodic tasks are dispatched at regular time intervals called their period
– Interrupts can be raised at any time except if a previous occurence is already

being executed. Thus, at any time, there can be at most k = |U| interrupts
present in the system

46 I. Hamid and E. Najm

– Exchangers are protected objects with an internal data buffer and Get and
Set procedures. They are used for simple data exchange among tasks

– Synchronisers are protected objects with an internal queue of events that
expose a Send Event procedure for depositing events. A Get Event entry is
exposed upon which the associated sporadic task waits for dispatch

We define four derived sets, namely, Tasks (T), Activities (A), Protected
objects (PO), and Computational units (C); as follows:

T = Tp ∪ Ts

A = Tp ∪ Ts ∪ U
PO = E ∪ D

C = A ∪ PO

2.2 Functions on Computational Units

Five functions on computation units are defined with the following signatures:

priority : C → ANYPRIORITY (1)
holdingtime : T → TIME (2)

prog : C → PROGS (3)

TIME is a discrete time domain. holdingtime is defined as the period for a
periodic and minimum inter-dispatch time for a sporadic task. ANYPRIORITY is a
bounded subset of the set N of natural numbers and gives valid priorities. PROGS

is the subset of Ada 95 that the code of computational units conforms to. The
code of a computational unit γ is given by prog(γ).

2.3 Conformant PROGS Programs

We focus on an abstraction of programs that represents execution steps relevant
to our semantics, which gives legal instructions and their sequencing:

– comp: A sequential execution step
– Set(E): A Set call to exchanger E
– Get(E): A Get call to exchanger E
– Send Event(D): A Send Event call to synchroniser D
– Get Event(D): A Get Event call to synchroniser D
– delay until: request to be suspended until a future instant
– ret: return statement

The legal execution sequences of these steps depend on the type of the compu-
tational unit. They are defined using BNF grammars. The code of each compu-
tational unit must respect its prescribed grammar (BP is for periodic tasks, BS
for sporadic, BU for interrupts, BE for exchangers, BD for synchronizers):

Operational Semantics of Ada Ravenscar 47

BP := comp; BP | Set(E); BP | Get(E); BP | Send Event(D); BP | delay until
BS := Get Event(D); BP
BU := Send Event(D) | Set(E)
BE := [Set − > CC , Get − > CC]
BD := [Send Event − > CC, Get Event − > CC]
CC := comp ;CC | ret

2.4 Topological Relations on Computational Units

By an analysis of the set of programs prog, we can construct the communication
topology between the various computational units. Four topological relations,
sets, gets, sends event, and gets event are induced by prog:

sets :
Set

⊂ A × E (4)

gets :
Get

⊂ T × E (5)

sends event :
Send Event

⊂ A × D (6)

gets event :
Get Event

⊂ Ts × D (7)

they are defined according to the following conditions:

Set(E) occurs-in prog(α) ⇔ α
Set

E (8)

Get(E) occurs-in prog(T) ⇔ T
Get

E (9)

Send Event(D) occurs-in prog(α) ⇔ α
Send Event

D (10)

Get Event(D) occurs-in prog(S) ⇔ S
Get Event

D (11)

We also need three derived relations, namely: dispatches (DIS), writes to
(W TO) and accesses (ACC). dispatches is the inverse of gets event, writes to is
the union of gets and sends event , and accesses is the union of the four primitive
relations. Formally:

D
DIS

S � S
Get Event

D (12)

α
WTO

π � (π ∈ E ∧ α
Set

π) ∨ (π ∈ D ∧ α
Send Event

π) (13)

α
ACC

π � (π ∈ E ∧ α
Set

π) ∨ (π ∈ E ∧ α
Get

π) (14)

∨ (α ∈ A ∧ π ∈ D ∧ α
Send Event

π)

∨ (α ∈ Ts ∧ π ∈ D ∧ α
Get Event

π)

48 I. Hamid and E. Najm

The topological relations must satisfy the following constraints:

∀ D, ∃ S unique satisfying: D
DIS

S (15)

∀ S, ∃ D unique satisfying: S
Get Event

D (16)

∀ U, ∃ π unique satisfying: U
WTO

π (17)

U
WTO

π and U ′
WTO

π ⇒ U = U ′ (18)

At most one task is dispatched by a synchronizer (15). For every sporadic task,
there exists one and only one synchronizer that dispatches it (16). Each interrupt
writes on one and only one protected object (17). At most one interrupt may
write to a protected object (18). Constraints (15) and (16) imply that relations
DIS and Get Event are bijective and mutually inverse functions. From (17) and
(18) it follows that relation W T O , when restricted to U , is an injective function
with co-domain in PO.

Priority Ceiling Protocol. All priorities must comply with PCP. Function
priority must satisfy the following property (ACC from equation 14):

For any activity α and any protected object π :
(α

ACC
π) ⇒ priority(π) ≥ priority(α) (19)

3 Dynamic Semantics

The dynamic semantics of the system will be described using a form of structured
operational semantics [12] which describes the evolution of the system over time.

3.1 Execution Context

Execution context c =

⎧
⎨

⎩

σ, σs Scheduler
ι Idle task
a An active execution context

The above equation states that three entities may possess processing resources,
the scheduler (σ and σs), the system idle task (ι), or an activity (a). The sched-
uler can be in one of two states: σ when the scheduler has seized control, σs

when the scheduler is ready to grant control. Thus, σ and σs represent two steps
in the excuction of the scheduler functions, allowing the assignment of different
execution times to both in order to accurately model context switches. An active
context, a, may have one of the following forms:

Sporadic tasks: S, S Set E, S Send Event D, S Get E, S Get Event D

Periodic tasks: P , P Set E, P Send Event D, P Get E

Interrupts: U , U Set E, U Send Event D

Operational Semantics of Ada Ravenscar 49

The priority function is extended to active contexts and in conformance with
the priority ceiling protocol, as follows (where the form α x π corresponds to
the context of a protected object π executing a call x issued by activity α):

priority(α
x

π) = priority(π) (20)

We use a record notation—as defined in [4]—to maintain the state information
of computational units. The fields corresponding to each computational unit are
given in Table 1. We will use the dot notation to extract fields from records.
T ·Beh is the value of field Beh in the record T . The update of a field in a record
is performed as in the following example where D′ is the record obtained by
updating in record D the field Bar with true and field Queue with ε:

D′ = 〈D ← Bar = true ← Queue = ε〉

Table 1. Fields present in state records of Ravenscar Computational Units

Description of field Name Type D E Ts Tp U
Current program state Beh PROGS

√ √ √ √ √

Next dispatching time Nd TIME

√ √

Elapsed time Et TIME

√ √ √

Processing time Pt TIME

√ √ √

Queue on entry Queue Ts ∪ {ε} √

Barrier state Bar BOOL

√

Event count Ec N
√

3.2 Ready Queue

A ready queue, R, is made of a (possibly empty) sequence of active execution
contexts. We use ◦ as a sequence operator, hence, if a is an execution context
and R a ready queue then (a ◦ R) is a ready queue whose head is a and whose
tail is R. The empty ready queue will be denoted by ε. Ready queues satisfy the
priority-ordered property, which is inductively defined as follows:

(i) ε is priority-ordered
(ii) a◦R is priority-ordered iff: − R is priority-ordered and

− ∀a′ ∈ R : priority(a′) ≤ priority(a)

The satisfaction by a queue R of the priority-ordered property implies that R is
an ordered list of queues having the form: R = rp1 ◦ . . . ◦rpn where for each rpn :

∀i, j : i < j ⇒ pi > pj and (21)
∀i, ∀a ∈ rpi : priority(a) = pi (22)

All active contexts in the same subqueue have the same priority (22), and
subqueues are ordered according to their priorities (21). We define priority head
insertion and priority tail insertion for ready queues as both methods are used:

50 I. Hamid and E. Najm

Let pk = priority(a)
Priority Head Insertion a�R =

rp1 ◦ . . . ◦ a ◦ rpk
◦ . . . ◦ rpn when R = rp1 ◦ . . . ◦ rpk

◦ . . . ◦ rpn

rp1 ◦ . . . ◦ rpi ◦ a ◦ rpj . . . rpn when R = rp1 ◦ . . . ◦rpi ◦rpj ◦ . . . ◦rpn ∧ pi < pk < pj

(23)
Priority Tail Insertion R�a =

rp1 ◦ . . . ◦rpk
◦a◦ . . . ◦ rpn when R = rp1 ◦ . . . ◦ rpk

◦ . . . ◦ rpn

rp1 ◦ . . . ◦ rpi ◦ a ◦ rpj . . . rpn when R = rp1 ◦ . . . ◦rpi ◦rpj ◦ . . . ◦rpn ∧ pi < pk < pj

(24)

A task taken from the blocked set to the ready queue is inserted at the tail of
the ready queue for its priority, whereas one that is preempted during execution
by the scheduler is inserted at the head of the ready queue for its priority.

3.3 Structure of the State of a Ravenscar System

The state of a Ravenscar system has a static part made up of the set of records
of all computational units, and a dynamic part which is given by the vector:

IL �
[
c, R, B, ns, t

]
(25)

– IL: list of interrupts present in the system, waiting to be handled. When the
list of interrupts is empty, the leading “IL � ” may be ommitted

– c: current execution context
– R: ready queue
– B: set of blocked tasks
– ns: time of the next system clock tick when control is passed to the scheduler
– t: current time, i.e.: the current age of the system

Each of the execution context types (scheduler, idle, or active) may perform
specific execution steps. These steps cause the state of the system to evolve over
time. The steps performed by the active context depend on the current state of
the code of its activity, given by the Beh field of the state record of the activity.
The steps performable by the scheduler are: (i) suspending activity a and taking
control (a as−−→ σ); (ii) suspending idle task and taking control ((ι is−−→ σ);
(iii) self suspention to handle interrupts (σs

ss−−→ σ); (iv) handling an interrupt
(σ ih−−→ σ); (v) updating the ready queue (σ ud−−−→ σs); (vi) granting control to
activity a (σs

sa−−→ a); (vii) granting control to idle task (σs
si−−→ ι). The idle

task performs one type of steps which is idling: (σs
idling−−−−−→ ι).

3.4 Initial State of a Ravenscar System

The initial state of a Ravenscar system is given by:
[
σ, R0, B0, 0, 0

]
(26)

Operational Semantics of Ada Ravenscar 51

where the initial ready queue, R0, is a priority-ordered list of all tasks: R0 =
T1◦ . . . ◦Tn, and B0 the initial set of blocked tasks is an empty set: B0 = {}.
Moreover, the initial state of each of the periodic tasks, the sporadic tasks, the
synchronisers and the exchangers, is given by their associated records:

P = 〈 Beh = prog(P), Nd = 0, Et = 0, Pt = 0 〉
S = 〈 Beh = prog(S), Nd = 0, Et = 0, Pt = 0 〉
E = 〈 Beh = prog(E) 〉
D = 〈 Beh = prog(D), Queue = ε, Ec = 0, Bar = false 〉

3.5 State Transitions of a Ravenscar System

The execution of a Ravenscar system is given by the set of structured operational
semantics rules, having the structure of a fraction:

Antecedents

IL �
[
c, R, B, ns, t

] act−−−→ IL’ �
[
c′, R,′B′, ns’, t

]
+̂ δ(act)

SHORT NAME

Antecedents (numerator) are conditions which need to hold for the Consequent
(denominator) part to be applied. Antecedents depend on the current state of
the system. Consequent part denotes the transition taken and the action—act—
performed. act represents the smallest possible uninterruptible instruction. It
is an indivisible unit; interrupts will either be fired before or after such an in-
struction. Complex instructions like delay until are considered a sequence of
simpler instructions with the final indivisible one actually having the intended
impact. IL and IL’ are optional, they represent the list of interrupts present
before and after the transition. δ(act) is the time consumed by the transition,
and +̂ δ(act) is the ageing operator. It is formally defined as follows:

[
c, R, B, ns, t

]
+̂ δ =

[
c +̂ δ, R +̂ δ, B, ns, t + δ

]

where:

c +̂ δ =

⎧
⎨

⎩

σ if c = σ
ι if c = ι
〈α ← Et = α · Et + δ ← Pt = α · Pt + δ〉 if c = α ∨ c = α x π

R +̂ δ = 〈a1 ← Et = a1.Et + δ〉◦ . . . ◦〈an ← Et = an.Et + δ〉 for R = a1◦ . . . ◦an

The above equations state that if the currently executing task is either the
scheduler or the idle task then the ageing operator has no effect on it. However, if
the excution context is an active one then the ageing operator adds the δ(action)
amount of time to both the elapsed time (Et) and processing time (Pt) fields of
the record of the activity. On the other hand, for all tasks in the ready queue R,
the ageing operator only adds the δ(action) amount of time to the elapsed time
field (they are not budgeted for this time). We now provide the transition rules,
starting with the system idle task and ending with rules for interrupt handling.

52 I. Hamid and E. Najm

Idling: Rule IDLE shows the idle task executing. The antecedent shows that
the system can only idle if it hasn’t reached the next scheduling instant ns. The
age of the system advances by an amount δ(idling).

t < ns
[
ι, R, B, ns, t

] idling−−−−−→
[
ι, R, B, ns, t

]
+̂ δ(idling)

IDLE

Pure Computation Steps: The CMPT and CMPO transitions represent se-
quential computations that have no side-effects on tasking or inter-task commu-
nication. CMPT denotes a task carrying out a sequential computation, CMPO
denotes a protected object carrying out a sequential computation. The behavior
(Beh) must in both cases have comp instruction at the head, the current time
must be less than the next dispatching time for the scheduler.

T · Beh = comp; C ∧ t < ns[
T, R, B, ns, t

] comp−−−−→
[
T ′, R, B, ns, t

]
+̂ δ(comp)

T ′ = 〈T ← Beh = C〉

CMPT

π · Beh = comp; C ∧ t < ns[
α x π, R, B, ns, t

] comp−−−−→
[
α x π′, R, B, ns, t

]
+̂ δ(comp)

π′ = 〈π ← Beh = C〉

CMPO

Protected Objects: The rule NBCL represents an activity (task or interrupt)
calling a procedure of a protected object. The antecedent states that the current
behaviour of the activity is a call to a procedure, and that the current time is
less than the next scheduler launching time. The consequent is that the code of
the protected object is being executed in the context of the activity α (α′ x π).

α · Beh = x(π); C ∧
x ∈ {Get, Set, Send Event} ∧ t < ns[

α, R, B, ns, t
] x−−→

[
α′ x π, R, B, ns, t

]
+̂ δ(x)

α′ = 〈α ← Beh = C〉
π′ = 〈π ← Beh = prog(π).x〉

NBCL

The transitions RET1 through RET4 depict how calls from protected ob-
jects return. RET1 represents the return from a protected object procedure.
The consequent shows that the execution time is budgeted to the task’s pro-
cessing time Pt. The calling activity is placed at the head of the ready queue
and the scheduler takes control to evaluate barriers. RET2 shows a synchronizer
returning from a Send Event procedure when the entry queue is empty. Transi-
tion RET3 shows a synchronizer returning from a Send Event procedure when

Operational Semantics of Ada Ravenscar 53

the entry queue is not empty. The blocked Get Event entry is immediately exe-
cuted in the context of the task waiting on it. RET4 gives the situation where a
synchronizer returns from Get Event entry call. The task in whose context the
execution was taking place is preempted and is placed at the head of its ready
queue, and the scheduler takes over.

E · Beh = ret ∧ x ∈ {Get, Set} ∧ t < ns
[
α x E, R, B, ns, t

] ret−−−→
[
σ, α′�R, B, ns, t

]
+̂ δ(ret)

α′ = 〈α ← Pt = α · Pt + δ(ret)〉

RET1

D · Beh = ret ∧ D · Queue = ε ∧ t < ns
[
α Send Event D, R, B, ns, t

] ret−−−→
[
σ, α′�R, B, ns, t

]
+̂ δ(ret)

D′ = 〈D ← Bar = true ← Ec = D · Ec + 1〉
α′ = 〈α ← Pt = α′ · Pt + δ(ret)〉

RET2

D · Beh = ret ∧ D · Queue = S ∧ t < ns
[
α Send Event D, R, B, ns, t

] ret
−−−→

[
S′

Get Event D′, α′
�R, B′, ns, t

]
b+ δ(ret)

B′ = B \ {S}
S′ = 〈S ← Nd = t + holdingtime(S)〉
D′ = 〈D ← Bar = true ← Ec = D · Ec + 1〉
α′ = 〈α ← Pt = α · Pt + δ(ret)〉

RET3

D · Beh = ret; C ∧ t < ns
[
S Get Event D, R, B, ns, t

] ret−−−→
[
σ, S′�R, B, ns, t

]
+̂ δ(ret)

D′ = 〈D ← Bar = (D · Ec > 1) ← Ec = D · Ec − 1 ← Queue = ε〉
S′ = 〈S ← Pt = S · Pt + δ(ret)〉

RET4

Rules OBCL and CBCL represent a sporadic task issuing a Get Event call.
Rule OBCL represents when the barrier is open and the call is immediately
executed. Rule CBCL represents when the barrier is closed, the call remains
blocked on the entry until a Set Event is issued by another task or interrupt.

S ·Beh = Get Event(D); C ∧ D ·Bar = True ∧ t < ns
[
S, R, B, ns, t

] Get Event
−−−−−−−−→

[
S′

Get Event D′, R, B, ns, t
]

b+ δ(Get Event)

S′ = 〈S ← Beh = C ← Nd = t + holdingtime(S)〉
D′ = 〈D ← Beh = prog(D) · Get Event〉

OBCL

54 I. Hamid and E. Najm

S ·Beh = Get Event(D); C ∧ D ·Bar = False ∧ t < ns
[
S, R, B, ns, t

] Get Event−−−−−−−−→
[
S′, R, B, ns, t

]
+̂ δ(Get Event)

S′ = 〈S ← Beh = C ← Bar = true〉
D′ = 〈D ← Queue = S〉

CBCL

Scheduler. The scheduler also takes control at certain points called scheduling
points. Some of these have already been explained (the RETi transitions). Others
occur when the active context executes a delay until instruction, and when
the scheduler is scheduled to execute, represented by the ns variable in the
system configuration and calculated just before the scheduler cedes control. NS-
IDLE and NS-ACT represent the scheduler preempting the idle task and an
activity (respectively) as its launch time arrives. SDELAY and PDELAY show
a sporadic task and a periodic task (respectively) execute a delay until. ns
is the minimum of Nd fields of all tasks in the blocked set where Nd represents
the next dispatching time for the task: ns = minTi∈B(Ti · Nd). SCUD is the
evolution of the scheduler as it evaluates and updates the ready queue and
blocked tasks. SCAC shows the scheduler calculating its next dispatching time
and then granting control to the highest priority ready task. SCID is the action
carried out by the scheduler when the ready queue is empty.

ns ≤ t
[
ι, R, B, ns, t

] is−−→
[
σ, R, B, ns, t

]
+̂ δ(is)

NS-IDLE

ns ≤ t[
a, R, B, ns, t

] as−−→
[
σ, a◦R, B, ns, t

]
+̂ δ(as)

NS-ACT

T ·Beh = delay;C ∧ t < ns
[
T, R, B, ns, t

] delay−−−−→
[
σ, R, B′, ns, t

]
+̂ δ(delay)

T ′ = 〈T ← Beh = prog(T) ← Pt = T · Pt + δ(delay)〉
B′ = B ∪ {T ′}

SDELAY

T ·Beh = delay ; C, t < ns
[
T, R, B, ns, t

] delay−−−−→
[
σ, R, B′, ns, t

]
+̂ δ(delay)

T ′ = 〈T ← Beh = prog(T) ← Pt = T · Pt + δ(delay)
← Nd = T · Nd + Holdingtime(T)〉

B′ = B ∪ {T ′}

PDELAY

Operational Semantics of Ada Ravenscar 55

−
[
σ, R, B, ns, t

] ud−−−→
[
σs, R

′, B′, ns, t
]

+̂ δ(ud)

B′ = B \ ready(B, t)
R′ = R � ready(B, t)
ready(B, t) = {T ∈ B | T ·Nd ≥ t}

SCUD

−[
σs, a◦R, B, ns, t

] sa−−→
[
a, R, B, ns’, t

]
+̂ δ(sa)

ns’ = MinT∈B(T ·Nd)

SCAC

−
[
σs, ε, B, ns, t

] si−−→
[
ι, ε, B, ns’, t

]
+̂ δ(si)

ns’ = MinT∈B(T ·Nd)

SCID

Interrupt Handling. Rule NEWI models the arrival of a new interrupt. I-AS
and I-US depict the scheduler preempting an activity and an idle task (respec-
tively) in presence of interrupts in order to handle them. In case of arrival of
interrupt during interrupt handling by the scheduler, the scheduler is restarted
(transition I-SS). I-IH depicts the scheduler selecting the highest priority inter-
rupt and inserting it at the tail of its priority list in the ready queue (all interrupt
priorities are greater than all task priorities so an interrupt will preempt a task).

U /∈ ({c} ∪ R ∪ IL)
IL �

[
c, R, B, ns, t

]
−−→ IL◦U �

[
c, R, B, ns, t

] NEWI

IL �= φ

IL �
[
a, R, B, ns, t

] as−−→ IL �
[
σ, a�R, B, ns, t

]
+̂ δ(as)

I-AS

IL �= φ

IL �
[
ι, R, B, ns, t

] is−−→ IL �
[
σ, R, B, ns, t

]
+̂ δ(is)

I-IS

IL �= φ

IL �
[
σs, R, B, ns, t

] ss−−→ IL �
[
σ, R, B, ns, t

]
+̂ δ(ss)

I-SS

−
U ◦IL �

[
σ, R, B, ns, t

] ih−−→ IL �
[
σ, R�U, B, ns, t

]
+̂ δ(ih)

I-IH

56 I. Hamid and E. Najm

3.6 Discussion

One of the outcomes of providing a formal semantics (of a model, language or
algorithm) is that it allows to disambiguate the informal description in the nat-
ural language. One can thus formally reason about properties of the system thus
described. As an example, in our semantics, we made a choice in the way the
inter-dispatch time is computed. If we had strictly obeyed the Ravenscar code
patterns, we would have used a modified syntax for sporadic tasks in PROGS

whereby we would have made explicit the capture of the current clock from the
system. We would have also had to decompose rules RET3 and CBCL, intro-
ducing an additional step reflecting the capture of the current clock. A small
discrepancy would then arise due to the non-atomic nature of the sporadic task
release and computation of the next dispatch time, i.e., a higher priority task may
preempt the sporadic task between these two actions. In case of a preemption
by a higher priority task between the release of the task and the computation of
the next release, a longer than stipulated inter-dispatch time may be enforced.
This does not impact schedulability but can result in the sporadic tasks respond-
ing more sluggishly. This problem can be solved by assigning synchronizers the
maximum priority in the system (Max Interrupt Priority), and returning the
instance of time when the entry is executed. The maximum priority ensures that
a task cannot be preempted while it is in the entry, thus ensuring the atomicity of
the two actions. In our semantics, we chose a solution whereby the computation
of the next release of sporadic tasks is performed as a side effect of the sporadic
task entering the synchroniser. One may think of the scheduler performing this
computation. Indeed, although the scheduler is not explicitely stated in rules
rules RET3 and CBCL, nevertheless, it is the scheduler which is responsible for
granting control of the sporadic task when it enters the synchroniser. Thus, the
scheduler performs the computation in an atomic fashion.

4 Conclusions

Previously, work has been undertaken ([8], [10], [17] and [7]) to formalize the
semantics of real-time kernels and Ravenscar-like executives. In [7], the author
defines an extension of CCS aimed at studying muti-tasking systems. Similarly
to our approach, the general behaviour of systems made of concurrent tasks can
be modeled. However, in our work, we represent the kernel functions explicitly,
allowing us to account for system overhead. The work that is the closest to ours
is perhaps [8] where the authors use the RTL and PVS formalisms to develop a
Ravenscar-like kernel. A major difference with our contribution is that [8] aims
at prescribing the development of the kernel functions whereas our contribution
does provide an operational semantics which captures the global behaviour of
Ravenscar systems (composed from the kernel and the running application).
Another main difference with existing work is that our paper is the first direct
approach at providing semantics using the structured operational semantics and
not requiring any other notational support. In [11], the authors present a timed
automata-based approach to the verification of Ravenscar systems.

Operational Semantics of Ada Ravenscar 57

The structured operational semantic formalization of RMM is pivotal to our
tool chain as it provides to developers a direct and unambiguous description
of the running behaviour of their hard real-time applications. Our semantics
helped also to explicitly define the kernel functions and scheduler overheads due
to context switches and interrupt handling. While the AADL is an architecture
description language with open and loose semantics, our AADL to RMM trans-
formation tool determines a rigourous semantic definition for a subset of AADL
(the subset that is translatable into RMM). It must be kept in mind that the
semantics given here are for executable systems generated from AADL models
that are to run on a Ravenscar executive.

As stated in the introduction, with the RMM semantics we have a complete
and unambiguous description of the interaction of functional code with the gen-
erated framework. This is possible due to the abstraction of functional code into
the set of PROGS legal programs for all units. The work achieved can be use-
fully extended according to the approach of “semantic anchoring”, whereby our
operational semantics could be transposed using Abstract State Machines as a
supporting anchoring language [5].

Acknowledgements. Work funded via the ASSERT project (IST-FP6-2004 004033)
funded in part by the European Commission. We would like to thank Tullio Vardanega
and Juan Antonio de la Puente for their insightful remarks.

References

1. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling
Framework. Addison-Wesley, Reading (2004)

2. Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the Ada Ravenscar
Profile in High Integrity Systems. Ada Lett. XXIV(2), 1–74 (2004)

3. Burns, A., Wellings, A.: Real-Time Systems and Programming Languages, 3rd edn.
Addison-Wesley, Reading (2001)

4. Cardelli, L., Mitchell, J.C.: Operations on Records. In: Proceedings of the fifth
international conference on Mathematical Foundations of Programming Semantics,
pp. 22–52. Springer, New York (1990)

5. Chen, K., Sztipanovits, J., Neema, S.: Toward a Semantic Anchoring Infrastructure
for Domain-specific Modeling Languages. In: EMSOFT 2005: Proceedings of the
5th ACM international conference on Embedded software, pp. 35–43. ACM Press,
New York (2005)

6. de la Puente, J.A., Ruiz, J.F., Zamorano, J.: An Open Ravenscar Real-Time Ker-
nel for GNAT. In: Keller, H.B., Plödereder, E. (eds.) Ada-Europe 2000. LNCS,
vol. 1845, pp. 5–15. Springer, Heidelberg (2000)

7. Fidge, C.J.: The Algebra of Multi-tasking. In: Rus, T. (ed.) AMAST 2000. LNCS,
vol. 1816, pp. 213–227. Springer, Heidelberg (2000)

8. Fowler, S., Wellings, A.: Formal Development of a Real-Time Kernel. In: RTSS
1997: Proceedings of the 18th IEEE Real-Time Systems Symposium (RTSS 1997),
p. 220. IEEE Computer Society, Washington, DC (1997)

9. Hamid, I., Zalila, B., Najm, E., Hugues, J.: A Generative Approach to Building
a Framework for Hard Real-Time Applications. In: 31st Annual NASA Goddard
Software Engineering Workshop (SEW 2007) (March 2007)

58 I. Hamid and E. Najm

10. Lundqvist, K., Asplund, L.: A Formal Model of a Run-Time Kernel for Ravenscar.
In: RTCSA 1999: Proceedings of the Sixth International Conference on Real-Time
Computing Systems and Applications, p. 504. IEEE Computer Society, Washing-
ton, DC (1999)

11. Ober, I., Halbwachs, N.: On the Timed Automata-based Verification of Ravenscar
Systems. In: Ada-Europe 2008. LNCS, vol. 5026, pp. 30–43. Springer, Heidelberg
(to appear, 2008)

12. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

13. SAE. Architecture Analysis & Design Language (AS5506) (September 2004),
http://www.sae.org

14. SEI. Open Source AADL Tool Environment (2006), http://la.sei.cmu.
edu/aadl/currentsite/tool/osate.html

15. Sha, L., Klein, M.H., Goodenough, J.B.: Rate Monotonic Analysis for Real-Time
Systems. Computer 26(3), 73–74 (1993)

16. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority Inheritance Protocols: An Approach
to Real-Time Synchronization. IEEE Transactions on Computers 39(9), 1175–1185
(1990)

17. Vardanega, T., Zamorano, J., de la Puente, J.A.: On the Dynamic Semantics and
the Timing Behavior of Ravenscar Kernels. Real-Time Syst. 29(1) (2005)

http://www.sae.org
http://la.sei.cmu.edu/aadl/currentsite/tool/osate.html
http://la.sei.cmu.edu/aadl/currentsite/tool/osate.html

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 59 – 72, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Practical, Fast and Simple Concurrent FIFO Queues
Using Single Word Synchronization Primitives*

Claude Evéquoz

University of Applied Sciences Western Switzerland
CH-1400 Yverdon-les-Bains, Switzerland
Claude.Evequoz@heig-vd.ch

Abstract. We present an efficient and practical non-blocking implementation of
a concurrent array-based FIFO queue that is suitable for preemptive multi-
threaded systems. It is well known that concurrent FIFO queues relying on
mutual exclusion cause blocking, which have several drawbacks and degrade
overall system performance. Link-based non-blocking queue algorithms have a
memory management problem whereby a removed node from the queue can
neither be freed nor reused because other threads may still be accessing the
node. Existing solutions to this problem introduce a fair amount of overhead
and are shown to be less efficient compared to array-based algorithms, which
inherently do not suffer from this problem. In addition to being independent in
advance knowledge of the number of threads that can access the queue, our new
algorithm improves on previously proposed algorithms in that it does not re-
quire any special instruction other than a load-linked/store-conditional atomic
instruction operating on pointer-wide number of bits.

Keywords: Concurrent queue, lock-free, non-blocking, compare-and-swap
(CAS), load-linked/store-conditional (LL/SC).

1 Introduction

Lock-free data structures have received a large amount of interest as a mechanism that
ensures that the shared data is always accessible to all threads and a temporarily or
permanently inactive thread cannot render the data structure inaccessible. A concur-
rent data structure implementation is non-blocking (or lock-free) if it guarantees that
at least one thread is guaranteed to finish its operation on the shared objects in a finite
number of steps, even if there are other halted or delayed threads currently accessing
the shared data structure. By definition, non-blocking implementations have no criti-
cal sections in which preemption can occur. These data structures also do not require
any communication with the kernel and have been repeatedly reported to perform
better than their counterparts implemented with critical sections [11]. There are two
other classes of progress guarantee other than non-blocking synchronization. Wait-
free synchronization [4] is a stronger progress guarantee since it advocates designing

* This work was partially funded by the University of Applied Science of Western Switzerland

(HES-SO) research project no. 15516 RASMAS.

60 C. Evéquoz

implementations that guarantee that any thread can complete any operation in a finite
number of steps, irrespective of the execution speed of other threads. Unfortunately,
eliminating starvation has proved in general to be difficult to implement efficiently,
thereby motivating weaker progress guarantees such as non-blocking and obstruction-
free synchronizations where starvation can theoretically occur. Obstruction-free syn-
chronization [6] guarantees progress only in the absence of contention, thus allowing
both starvation and livelock. This is the weakest progress guarantee but it is usually
sufficient on uniprocessors where threads are scheduled by priority levels or by
round-robin. On these schedulers, a thread is allotted more than enough time to com-
plete alone an operation on the shared data structure before being preempted.

First-in-first-out (FIFO) queues are an important abstract data structure lying at the
heart of most operating systems and application software. They are needed for re-
source management, message buffering and event handling. As a result, the design of
efficient implementations of FIFO queues has been widely researched. A FIFO queue
supports 2 operations: an enqueue operation inserts a new item at the tail of the
queue, and a dequeue operation removes an item from the head of the queue if the
queue is not empty.

This paper addresses the problem of designing a practical non-blocking FIFO
queue based on a bounded circular array using only widely available pointer-wide
atomic instructions. We begin by reviewing previous work done on FIFO queues and
the memory reclamation problem inherent in link-based algorithms. Of particular
interest in that section are algorithms that can adapt to a varying number of threads;
these algorithms are called population-oblivious [7]. Section 3 presents the problems
that must to be dealt with when designing non-blocking circular array FIFO queues.
Section 4 introduces our algorithm, which is population-oblivious and has a space
consumption depending only on the number of items in the queue. Its correctness is
presented in Section 5. Performance evaluations of our algorithm are conducted in
Section 6. The paper concludes in Section 7.

2 Related Work

Most non-blocking algorithms are based on the popular compare-and-swap (CAS) in-
struction, which takes 3 parameters: the address of a memory location, an expected
value, and a new value. The new value is written into the memory location if and only
if the location holds the expected value and the returned value is a Boolean indicating
whether the write occurred.

Practical algorithms of non-blocking FIFO queues fall into two categories. The
first category consists of algorithms based on finite or infinite arrays. Herlihy and
Wing [3] gave a non-blocking FIFO queue algorithm requiring an infinite array. Wing
and Gong [17] later removed the requirement of an infinite array. In their implemen-
tation, the running time of the dequeue operation is proportional to the number of
completed enqueue operations since the creation of the queue. Treiber [14] also pro-
posed a similar algorithm that does not use an infinite array. Although the enqueue
operation requires only a single step, the running time needed for the dequeue opera-
tion is proportional to the number of items in the queue. These last two algorithms are
thus inefficient for large queue lengths and many dequeue attempts. Valois [16] also

 Practical, Fast and Simple Concurrent FIFO Queues 61

presented an algorithm based on a bounded circular array. However, both enqueue
and dequeue operations require that two array locations which may not be adjacent be
simultaneously updated with a CAS primitive. Unfortunately this primitive is not
available on modern processors. Shann et al. [13] present an efficient FIFO queue
based on a circular array where each array element stores 2 fields: a data field and a
reference counter field that prevents the so-called ABA problem (see section 3). Their
algorithm is useful for processors that offer atomic instructions that can manipulate an
array element as a whole. Because certain 32-bit architectures (e.g., Pentium) support
32- and 64-bit atomic instructions, the data field may also represent a pointer to a
record when there is a need to expand the data field size. Current and emerging 64-bit
architectures do not provide atomic access to more than 64-bit quantities, thus it is no
longer possible to pack a large reference counter along with pointer-wide values in
64-bit applications. When application software exploiting these 64-bit capabilities
becomes widespread [2], their algorithm will be of limited use. Tsigas and Zhang [15]
proposed the first practical non-blocking FIFO queue based on a circular array using
single word synchronization primitives found on all modern architectures and suitable
for 64-bit applications. Their algorithm applies only to queued items that are pointers
to data and they show that it outperforms link-based FIFO queues. However, for
queueing operations to appear as FIFO (linearizability property [3]), the algorithm
assumes that an enqueue or a dequeue operation cannot be preempted by more than s
similar operations, where s is the array size. Their algorithm is therefore not popula-
tion-oblivious.

The second category of FIFO queues is implemented by a linked list of queued
nodes. Michael and Scott [10] proposed an implementation based on a single-linked
list consisting of a Head pointer, which points to a dummy node, and a Tail pointer
that points to the dummy node when the queue is empty or to the most recently in-
serted node. An enqueue operation adds a new node by making the last inserted node
point to the new node and adjusting the Tail pointer to the new node. A dequeue op-
eration advances the Head pointer, frees the dummy node and returns the data found
in the now new dummy node. An enqueue operation requires 2 successful CAS op-
erations and a dequeue operation completes after a single successful CAS. More re-
cently, Ladan-Mozes and Shavit [8] presented an algorithm based on a doubly-linked
list requiring one successful atomic synchronization instruction per queue operation.
Although there are more pointers to update, all but Head and Tail are updated by
simple reads and writes. They show that their algorithm consistently performs better
than the single-linked list suggested in [10].

Although the advantage of linked-based FIFO queues over array-based implemen-
tations is that the size of the queue and the number of nodes it holds may vary dy-
namically, these queues are subject to a memory management problem. A dequeued
node can be freed and made available for reuse only when the dequeuer is the only
thread accessing the node. It would seem that array-based FIFO queues face the same
problem, as an array slot cannot be overwritten if a dequeuer is still accessing the slot.
However this problem can easily be avoided if array items are pointers to the data. In
this case, a dequeuer can atomically exchange the pointer with a null marker to free
the slot and be the only thread referencing the data. For linked-based FIFO queues,
the easiest approach to deal with this problem is to ignore it and assume the presence
of a garbage collector. However not all systems and languages provide garbage

62 C. Evéquoz

collector support. Another approach is to never free the node and to store it in a free
pool for subsequent reuse once it is dequeued. When a new node is required, the node
is obtained from the free pool. An important drawback of this approach is that the
actual size of FIFO is equal to the maximum queue size since its initialization and is
not really dynamically sized. Valois [16] presented an approach that actually frees a
dequeued node. The mechanism associates a reference counter field with each node.
Each time a thread accesses a node, it increments the node's reference counter; when
it no longer accesses the node, it decrements the counter. The reference counter re-
flects the number of pointers that point to the node. A node can be freed only if the
value of its reference counter drops to zero. Although the scheme is simple, a basic
problem arises making this scheme impractical. Suppose a thread accesses a node and
is then delayed before it can increment the reference counter associated with the node
it is pointing to; while the thread is not running, it is possible that another thread de-
queues and removes the last reference to the node. The solution proposed by Valois
[16] and later corrected by Michael and Scott [9] involves 3 steps: (1) a pointer is set
to the node that is to be accessed, (2) the reference counter of the possibly reclaimed
node is then incremented, and (3) the pointer is verified that it still points to the
correct node. Should the verification step (3) fail, the reference counter is decre-
mented and all three steps repeated. Note that the reference counter of a node can be
accessed and modified even after it has been freed. None of the reclaimed node can
thus be definitely released to the memory allocator and reused for arbitrary purposes
without possibly corrupting memory locations; all must again be stored in some free
pool. Detlefs et al. [1] alleviate the above problem by performing steps (1) and (2)
atomically. But because the reference to a node and its associated reference counter
are not contiguous in memory, the needed primitive requires the atomic update of
two arbitrary memory locations that is not supported in hardware by any modern
processor.

Michael [12] presented a lock-free memory management technique that allows safe
memory reclamation. Whenever a thread is about to reference a node, it publishes the
address of the node in a global memory location. When the dequeuer removes a node
from the queue, it scans the published accesses of the other threads. If a match is not
found, the node may safely be freed. Otherwise the node is stored until a subsequent
scan. A similar scheme, but not using pointer-wide instructions, was also independ-
ently proposed by Herlihy et al. [5].

Doherty et al. [2] present the first link-based FIFO queue that is population-oblivi-
ous and has a space consumption depending only on the number of queued items and
the number of threads currently accessing the queue. However, their algorithm intro-
duces significant overheads and trades memory space for computational time.

3 ABA Problem

The ABA problem is a well-known problem in the context of data structures imple-
mented by CAS statements. The desired effect of a CAS operation is that it should
succeed only if the value of a location does not change since the previous reading
of the contents of the location. A thread may read value A from a shared location
and then attempt to modify the contents of the location from A to some other value.

 Practical, Fast and Simple Concurrent FIFO Queues 63

However it is possible that between the read and the CAS other threads change the
contents of the location from A to B and then back to A again. The CAS therefore
succeeds when it should fail. The semantics of read and CAS prevent them from
detecting that a shared variable has not been written after the initial read. This
problem is a common source of bugs in algorithms based on CAS operations.

In a circular list based on a finite array, there are 3 different ABA problem sources.
First, the Head and Tail indices are each prone to the ABA problem, which we call
the index-ABA problem. Next, each slot in the array holds 2 different value types: a
queued data item and a null item that indicates that the slot is empty and available for
reuse. Each of these 2 data values gives rise to an ABA problem that may be solved
differently. In order to distinguish them, we respectively refer to them as the data-
ABA and the null-ABA problem. In the following we illustrate an instance of how
each identified ABA problem manifests itself and the means to elude the problem.

The enqueue and dequeue operations increment their respective indices once they
have inserted or removed an item in or from the array. If these operations are delayed
immediately prior to the increment but after modifying the contents of the array, other
threads may successfully complete s – 1 identical operations and leave the index con-
cerned by the delayed operation in the same state, where s is the size of the circular
array. When the delayed operation resumes, it wrongly adjusts its index. Fig. 1 illus-
trates such a scenario.

 0 1 2 3

Q: — — — — Tail = 0 Initially array Q is empty.

Q: A — — — Tail = 0 Thread T1 inserts item A into Q[0] and then gets preempted.

Q: A — — — Tail = 1 Thread T2 adjusts Tail in order to perform its insertion.

Q: A B C D Tail = 0 T2 inserts items B, C, and D, while adjusting Tail.

Q: — — — D Tail = 0 Thread T3 dequeues items A, B, and C.

Q: — — — D Tail = 1 T1 resumes and increments Tail. The next insertion will
 wrongly take place in Q[1].

Fig. 1. Scenario with 3 threads illustrating the index-ABA problem

The index-ABA problem can easily be dealt with if we let each counter occupy a
word and only increment these counters. The enqueue and dequeue functions can then
map the counter into a valid index before accessing an array slot with a modulo op-
erator. Although this solution does not guarantee that the ABA problem will not oc-
cur, its likelihood is extremely remote. On a 32-bit word with a million of increment
operations per second, a wraparound occurs roughly after 1 hour. For the ABA prob-
lem to occur with a probability of 2⋅10-10 (or 2-32), there should also be a thread that is
suspended in the midst of one of the queueing functions for a period longer than an
hour while other threads monopolize the processor.

A simple example of the data-ABA problem can be given for an array having 2
slots. Assume that the array initially contains a single item A. Since a dequeue opera-
tion must first read the contents of the slot before removing it, a dequeuer may read
item A and then be preempted before it gets a chance to remove A from the array.
During its preemption, another thread may dequeue item A and then successively
enqueue items B and A. The array is now full and when the preempted dequeue

64 C. Evéquoz

operation resumes, it wrongly removes item A instead of B. The implementation pro-
posed in [15] circumvents this difficulty by assuming that the duration of preemption
cannot be greater than the time for the indices to rewind themselves. This assumption
may result into an exceedingly oversized array or be impossible to meet when the
upper bound on the number of threads is unknown.

If we assume for the ease of explanation that the array is infinite, the array can be
divided into 3 consecutive intervals: a possibly empty succession of empty slots that
held removed items, a possibly empty series of enqueued items, and finally a series of
empty slots that never held any item. A null-ABA problem occurs when an enqueuer
mistakenly inserts an item into a free slot that belongs to the first interval. An en-
queuer reads the contents of the first slot in the 3rd interval, notices that it is empty
but gets preempted before inserting its item in the slot. Another thread may then insert
an item and dequeue all the items in the array. When the enqueuer resumes, it incor-
rectly inserts its item in the first interval of the array. This flaw is corrected in [15] by
cleverly having 2 empty indicators. Initially the array slots are set to null0 (3rd inter-
val) and once items are removed from the array the slots are marked with null1 to
become part of the 1st interval. When the head index rewinds to 0, the interpretations
of the null values are switched from their corresponding intervals. The most common
solution to this and other ABA problems is to split each shared memory location into
2 parts that are accessed simultaneously: a part for a version number or counter and a
part for the shared data item; when a thread updates the memory location it also in-
crements the counter in the same atomic operation. Because the version number is not
unbounded, this technique does not guarantee the ABA scenario will not occur but it
makes it extremely unlikely. Shann et al. [13] rely on this technique to solve the data-
ABA and null-ABA problem for their FIFO queue implemented by a circular array.
Algorithm designers using this technique usually assume that the version number and
the data item each occupy a single word and that the architecture supports double-
word atomic operations. In practice, this assumption is valid for some 32-bit archi-
tectures, but it is invalid for the emerging 64-bit architectures.

4 A New FIFO Algorithm

Modern instruction-set architectures, such as ARMv6 and above, DEC Alpha, MIPS
II and PowerPC processors, do not provide atomic primitives that read and update a
memory location in a single step because it is much more complex than a typical
RISC operation and difficult to pipeline. Instead these processors provide an
alternative mechanism based on two atomic instructions, load-linked (LL, also called
load-lock or load reserve) and store-conditional (SC). The usual semantics of LL and
SC assumed by most algorithm designers are given in Fig. 2. A shared variable X ac-
cessed by these instructions can be regarded as a variable that has an associated
shared set of thread identifiers validX, which is initially empty. Instruction LL returns
the value stored in the shared location X and marks it as reserved by including the
calling thread identifier in set validX. This read operation always succeeds. Instruction
SC takes the address of a shared location X and a value Y as parameters. It checks if
the calling thread's identifier is in validX, and if so, completely clears validX and
updates the location before returning success; otherwise the instruction returns failure
without modifying location X.

 Practical, Fast and Simple Concurrent FIFO Queues 65

LL(X) ≡ validX ∪ {threadID}; return X
SC(X,Y) ≡ if threadID ∈ validX then validX ← ∅; X ← Y; return true

else return false
end if

Fig. 2. Equivalent atomic statements specifying the theoretical semantics of LL/SC

Based on the semantics of the LL and SC instructions, we can design a FIFO queue
that is immune to ABA problems. Fig. 3 shows our algorithm in a self-explanatory
pidgin C notation. For clarity, various type casts are missing but pointer dereferencing
follows strict C notation. Following standard practice, all global variables have iden-
tifiers beginning with an uppercase letter and variables completely in lowercase are
local to an operation.

Our FIFO queue is implemented as a circular list by an array of Q_LENGTH slots
named Q, along with two indices named Head and Tail. An array slot contains
either a pointer to a data item or the value null to indicate that it is currently free. Prior
to calling an enqueue operation, enqueued items are allocated by a memory allocator.
These items are later returned to the memory allocator for arbitrary future reuse once
removed from the queue and no longer used by the dequeuer. Head refers to the first
slot of the queue that may hold an item. Tail designates the next free slot where a
new item can be inserted. To avoid the index-ABA problem, Head and Tail are
incremental counters that are mapped into valid array indices by means of a modulo
Q_LENGTH operation. The queue is empty when Head is equal to Tail, and it is full
when Head + Q_LENGTH equals Tail. We assume that Q_LENGTH is a power of
2 so that Head and Tail can wraparound without skipping array slots. Finally, the
array slots are initialized to null and the indices are set to 0 prior to calling an enqueue
or a dequeue operation.

To add a data item, the enqueuer first reads the current Tail value (line E5) and
proceeds only if there is an available free slot in the queue. The free slot the enqueuer
intends to insert the item into and mapped by Tail is then marked (line E9). The test
on line E10 verifies that the reserved slot still corresponds to the one mapped by
Tail, and its purpose is to avoid the null-ABA problem. After successfully marking
an array slot, the enqueuer checks the contents of the slot. If the slot is not empty,
another concurrent thread has successfully inserted an item but was preempted before
it had the chance to update Tail and the Tail value read on line E5 is lagging be-
hind. In this case, the enqueuer helps the delayed thread and advances the Tail index
(line E13) on its behalf before restarting its loop. If the marked slot is empty, the
enqueuer tries to insert its item into it with a SC instruction (line E15) that can only
succeed if no other enqueuer has changed the contents of the slot since the LL in-
struction on line E9. On success, the enqueuer updates Tail for the next enqueue
operation (E17). If the SC instruction on line E15 fails, the enqueuer is notified that a
concurrent operation took place and that the value of Tail read on line E5 was
modified or needs to be updated. In this case the enqueuer starts over again from the
beginning.

66 C. Evéquoz

 Q: array[0..Q_LENGTH-1] of *DATA; // Circular list
 unsigned int Head, Tail; // Extraction and insertion indices

E1: BOOL Enqueue(DATA *node) {
E2: unsigned int t, tailSlot;
E3: DATA *slot;
E4: while (true) {
E5: t = Tail; // Get current Tail index
E6: if (t == Head + Q_LENGTH) // Check for full queue
E7: return FULL_QUEUE; // Return failure
E8: tailSlot = t % Q_LENGTH; // Get starting slot
E9: slot = LL(&Q[tailSlot]); // Reserve the slot
E10: if (t == Tail) { // Check consistency
E11: if (slot != null) { // Got an empty slot?
E12: if (LL(&Tail) == t) // Tail is lagging behind
E13: SC(&Tail,t+1); // Adjust for this insertion
E14: }
E15: else if (SC(&Q[tailSlot],node)) { // Try to insert node
E16: if (LL(&Tail) == t) // Adjust for next insertion
E17: SC(&Tail,t+1);
E18: return OK; // Return success
E19: }
E20: }
E21: }
E22: } /* end of Enqueue */

D1: DATA *Dequeue(void) {
D2: unsigned int h, headSlot;
D3: DATA *slot;
D4: while (true) {
D5: h = Head; // Get current Head index
D6: if (h == Tail) // Is queue empty?
D7: return null; // Return failure
D8: headSlot = h % Q_LENGTH; // Get starting slot
D9: slot = LL(&Q[headSlot]); // Read and reserve slot
D10: if (h == Head) { // Check consistency
D11: if (slot == null) { // Is Head lagging behind?
D12: if (LL(&Head) == h) // Adjust for current dequeue
D13: SC(&Head,h+1);
D14: }
D15: else if (SC(&Q[headSlot],null)) { // Remove new node
D16: if (LL(&Head) == h) // Adjust for next dequeue
D17: SC(&Head,h+1);
D18: return slot; // Return node
D19: }
D20: }
D21: }
D22: } /* end of Dequeue */

Fig. 3. ABA problem-free implementation of a FIFO queue

The dequeue operation removes the oldest item in the queue and returns it to its
caller. The first 10 lines of the dequeue operation are similar to those of the enqueue
operation. A dequeuer reads the current Head index, checks that the queue is not
empty before carrying on by marking the array slot mapped by the read Head index.
The test on line D10 confirms that the marked slot is indeed the oldest item that can
be removed. Without this check, a dequeuer can read the current Head index, say h,
and be preempted anywhere between lines D5 and D10. During this preemption, other
threads can enqueue and dequeue items wrapping the array as they do so. When the
preempted dequeuer resumes its execution and carries out the LL operation on line
D9, Q[h] may hold an item that is not the oldest. Fig. 4 illustrates such a scenario for a
queue with 5 slots.

 Practical, Fast and Simple Concurrent FIFO Queues 67

 0 1 2 3 4

Q: — A B — — Snapshot of Q when a dequeue operation begins. Head = h = 1, Tail = 3

Q: E F — C D Snapshot of Q when the dequeuer executes line D10.
 h = 1, Head = 3, and Tail = 2

Fig. 4. Possible snapshots experienced by a dequeuer immediately prior to and following its
preemption.

After the test on line D10, the slot may be in one of two states. If it is empty, the
dequeuer can infer that the Head index is falling behind since the dequeuer checked
that the queue was not empty (line D6) before attempting to remove an item. In this
case, the dequeuer tries to update Head before restarting from the beginning. On the
other hand, if the slot is not empty, the dequeuer attempts to substitute the slot for a
null with a SC instruction (line D15) and then, if it succeeds, tries to update Head
before returning the dequeued item. The SC instruction fails when other concurrent
operations have invalidated the LL instruction on line D9 and the dequeuer must start
anew from the beginning.

5 Correctness

In this section, we prove that our algorithm satisfies liveness and certain safety properties.

5.1 Lock Freedom and Liveness

By definition of lock freedom applied to a FIFO queue, an implementation is lock-
free if it guarantees that for an active thread trying to execute an enqueue or dequeue
operation, the operation performed by the same or some other thread completes within
a finite number steps. Lock freedom guarantees progress to at least one thread,
theoretically allowing starvation but not livelock.1

Lemma 1. One enqueue operation always completes regardless of the operations
performed by other concurrent operations.

Proof. We say that an operation is delayed at line i if the operation on line i – 1 is
completed but the one on line i is not yet completely done. The enqueue operation
contains a single unbounded loop that can delay the termination of the operation. The
loop can reiterate for 3 different reasons.

Case 1: The SC operation on line E15 fails.
An enqueuer fails its store if it loses its reservation for the slot tailSlot it acquired on
line E9. Since a dequeue operation can remove an item from slot tailSlot on line D15
only if the slot is not empty and since slot tailSlot was empty prior to the store on line

1 On uniprocessor systems, the quantum allotted to a thread is greater than the time needed to

perform several enqueue or dequeue operations. For our algorithm to perform efficiently on
multiprocessor systems, we require that the contention for the FIFO queue to be such that a
thread can execute at least an iteration of an enqueue or dequeue operation without any
interference by other threads.

68 C. Evéquoz

E15, a concurrent enqueue operation modified slot tailSlot. This store only occurs on
line E15. Therefore some other enqueue operation succeeded E15 and terminated
through line E18.
Case 2: The condition on line E11 is true.
When the enqueuer executed the condition on line E10, either slot tailSlot it reserved
on line E9 was empty or it was not. Assume that it was: another concurrent enqueue
operation succeeded its store into slot tailSlot. Assume that it wasn't: since the en-
queue operation failed the condition on line E6, the queue is not full and Tail is
lagging behind. Therefore another concurrent enqueue operation was delayed at line
E16 or E17 at the time Tail was read on line E5. In both cases an enqueue operation
terminates.
Case 3: The condition on line E10 fails.
Tail changed value from the time it was read on line E5. Tail can change only by
means of successful SC instructions on lines E13 and/or E17. For the SC to succeed
on line E13, another concurrent enqueue operation verified that its reserved slot is no
longer empty on line E11. By Case 2 of this lemma, that enqueue operation reiterates
its loop because of a 3rd concurrent enqueue operation, which terminates.
The SC operation on line E17 succeeds when another concurrent enqueue operation
successfully inserted its item into the array (line E15). Therefore that enqueue opera-
tion terminates.

In all 3 cases, one enqueue operation always completes.

Lemma 2. One dequeue operation always completes regardless of the operations
performed by other concurrent operations.

Proof. The proof follows exactly the same reasoning as Lemma 1 and is omitted.

5.2 Safety

Each operation is defined by 2 events: an event that modifies the state of the array,
and an event that modifies the counter associated with the operation. For the enqueue
operation, we denote these events by ENQ(x) (line E15) and INC_TAIL(x) (lines E13
and E17), where x is the element to insert. For the dequeue operation, the corre-
sponding events are DEQ(x) (lines D15) and INC_HEAD(x) (lines D13 and D17). A
history is an ordered sequence of events on a linear time axis, and each concurrent
operation occupies a time interval on the axis. The precedence relation → is a strict
partial order that relates operations or events in a history; OP1 → OP2 means that OP2
starts only when OP1 ends. Operations unrelated by → are said to be concurrent or to
overlap.

Lemma 3. Enqueue operations cannot overlap.

Proof. The statement is equivalent to stating that an enqueue operation can begin if
and only if the previous enqueue operation is complete.

Assume that there are 2 items, x and y, that are concurrently being inserted into the
FIFO array.

We first show that events ENQ(x) and ENQ(y) cannot occur at the same time. An
ENQ(x) event can occur only when a thread executes the SC instruction on line E15.

 Practical, Fast and Simple Concurrent FIFO Queues 69

For the SC to succeed, the contents of Q[tailSlot] must not change since it was
last read on line E9 and its contents must be equal to null, otherwise the SC instruc-
tion is not reached. Once a SC instruction succeeds, the value stored into the slot is
non-null. Therefore, for ENQ(x) and ENQ(y) to occur at the same time, these events
must operate on different slots, i.e., on different tail values. We now show that this is
impossible. To simultaneously execute their respective SC instruction, both enqueue
operations execute lines E5 through E15. As these lines only read Tail, both SC
operations operate on the same slot, a contradiction.

Since events ENQ(x) and ENQ(y) cannot occur at the same time, they must occur
one after the other. Assume that ENQ(x) → ENQ(y). We need to show that if
INC_TAIL(x) is done, then ENQ(y) can occur. Assume INC_TAIL(x) is done. Event
INC_TAIL(x) can occur if (1) Tail is not modified since it was last read on line E5,
and (2) Q[Tail mod Q_LENGTH] ≠ null. Since INC_TAIL(x) is done, it was done
by an enqueue operation executing line E13 or E17. In either case, statement (2) is
true. After INC_TAIL(x), Tail indicates the next available slot, the slot on which
ENQ(y) can occur. For ENQ(y) to occur, the SC instruction on line E15 must succeed.
To succeed, the following 4 statements must be true: (1) Tail < Head +
Q_LENGTH, i.e., the queue is not full, (2) Tail does not change value since it was
last read on line E5, (3) Q[Tail mod Q_LENGTH] = null, and (4) Q[Tail mod
Q_LENGTH] has not changed since it was last read on line E9. Provided the queue is
not full, statements (2) and (4) are eventually true by Lemma 1. Because of
INC_TAIL(x), statement (3) is also true, and ENQ(y) can occur. So, if INC_TAIL(x)
is done, then ENQ(y) can be done.

We need to prove the converse to complete the proof. Assume that ENQ(y) can
occur, i.e., the SC on line E15 can succeed. Let ty = Tail mod Q_LENGTH. To
succeed, Q[ty] = null, otherwise line E15 is unreachable. But because ENQ(x)
occurred before, it modified Q[tx], where tx = Tail mod Q_LENGTH. Hence,
Q[tx] ≠ null. For ENQ(y) to succeed, ty ≠ tx. The only instructions that modify
Tail are E13 and E17, and either one generated INC_TAIL(x). So, if ENQ(y) can
occur, then INC_TAIL(x) is done.

Therefore ENQ(y) can occur if and only if the previous enqueue operation is com-
pletely done.

As a consequence of Lemma 3, we can infer that regardless of the number of con-
current enqueue operations performed, the events associated with the operations do
not overlap in the history. In other words, the enqueue events appear to be sequential.
This is also the case for dequeue operations.

Lemma 4. Dequeue operations cannot overlap.

Proof. The proof follows the same line of reasoning as Lemma 3 and is omitted.

Lemma 5. An item can be dequeued if and only if the enqueue operation that inserted
the item is complete.

Proof. We need to prove that DEQ(x) can occur if and only if INC_TAIL(x) is done.
Assume DEQ(x) can occur. In order to do so, it must succeed the SC instruction on
line D15. Thus, condition on line D10 is true, and Head cannot change since it was

70 C. Evéquoz

last read on line D5. But Head indicates which slot to remove on line D15, and the
condition on line D6 must fail. Hence Head ≠ Tail. Since the enqueue operation
inserts x into the slot indicated by Tail, if DEQ(x) can occur, then INC_TAIL(x) is
done.

We need to prove the converse to complete the proof. Assume INC_TAIL(x) is
done. Since INC_TAIL(x) is generated after ENQ(x), x is in the queue. Assume x
occupies slot s. If s is equal to Q[t mod Q_LENGTH], then Tail is equal to t + 1
at the time INC_TAIL(x) occurs. To dequeue an item, the following 2 statements
must be true: (1) slot s is not empty, and (2) Head = t ≠ Tail. Therefore, DEQ(x)
can occur. So, if INC_TAIL(x) is done, then DEQ(x) can occur.

Therefore, DEQ(x) can occur if and only if INC_TAIL(x) is done.

We are now in position to prove our main result.

Lemma 6. If ENQ(x) → ENQ(y) then DEQ(x) → DEQ(y).

Proof. Assume ENQ(x) → ENQ(y). By Lemmas 3 and 5, we also have ENQ(x) →
INC_TAIL(x) → ENQ(y) → INC_TAIL(y) → ENQ(y). Because elements are dequeued
in increasing values of Head and provided that Head = Tail when the queue is
empty, DEQ(x) occurs before DEQ(y), and by Lemma 5, after INC_TAIL(x).

6 Experimental Results

We evaluated the performance of our FIFO queue algorithm relative to other known
algorithms by running a set of synthetic benchmarks written in C using pthreads for
multithreading. In all our experiments, each thread performs 10000 iterations con-
sisting of a series of 5 enqueue operations followed by 5 dequeue operations. Each
enqueue operation is immediately preceded by allocating a new node and each de-
queued node is freed. We synchronized the threads so that none can begin its itera-
tions before all others finished their initialization phase. We report the average of 50
runs where each run is the mean time needed to complete the thread's iterations.

We conducted experiments on a PowerPC G4 1.5 GHz running on Darwin 8.8.0,
which has only pointer-wide LL/SC instructions that can be accessed in C by imple-
menting them as functions written in assembler. 32-bit CAS operations are provided
by libkern, which are implemented by LL/SC instructions. On the PowerPC, we were
able to compare our algorithm with 2 different implementations of Michael and
Scott's link-based FIFO algorithm [10] that allow safe memory reclamation. The first
implementation uses hazard pointers [12] (MS-Hazard Pointers) and the second is the
algorithm proposed in [2] (MS-Doherty et al.). Both implementations require only
pointer-wide CAS instructions.

Fig. 5 shows the normalized running times of the selected algorithms as a function to
the number of threads. The basis of normalization was chosen to be our implementation.

As can be seen from the graph, the normalized running time of the MS-hazard im-
plementation steadily increases as a function of the number of threads. This is because
the accessed nodes by a thread are stored in a list that needs to be traversed before
freeing a node. When memory reclamation is an issue, an array-based implementation
is approximately 70 to 110% faster.

 Practical, Fast and Simple Concurrent FIFO Queues 71

 0.9

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 4 8 12 16 20 24 28 32

N
or

m
al

iz
ed

 T
im

e

Number of Threads

FIFO Array LL/SC
MS-Doherty et al.

MS-Hazard Pointers

Fig. 5. Normalized running time as a function of the number of threads

7 Conclusions

We have presented a non-blocking implementation of a concurrent FIFO queue based
on a bounded circular array, which uses load-linked/store conditional atomic
instructions. Compared to concurrent non-blocking link-based FIFO queues, we
showed that array-based implementations are approximately twice as fast when con-
sidering memory management problems. Compared to other non-blocking FIFO
queue implementations, our new algorithm improves on previous ones by using only
pointer-wide atomic instructions, as well as reducing space requirements and the need
for advance knowledge of the number of threads that will access the queue.

We believe that our new algorithm is of highly practical interest for multithreaded
applications because it is based on atomic primitives that are available in today's
processors and microcontrollers.

Acknowledgments. The author would like to express his gratitude to the anonymous
reviewers for their invaluable remarks and comments, which helped to improve the
quality of this paper.

References

1. Detlefs, D.L., Martin, P.A., Moir, M., Steele Jr., G.L.: Lock-Free Reference Counting. In:
Proc. of the 20th Annual ACM Symposium on Principles of Distributed Computing
(PODC 2001), August 2001, pp. 190–199 (2001)

2. Doherty, S., Herlihy, M., Luchangco, V., Moir, M.: Bringing Practical Lock-Free
Synchronization to 64-bit Applications. In: Proc. of the 23rd Annual ACM Symposium on
Principles of Distributed Computing (PODC 2004), July 2004, pp. 31–39 (2004)

3. Herlihy, M.P., Wing, J.M.: Linearizability: A Correctness Condition for Concurrent
Objects. ACM Trans. Progrmg. Lang. Syst (TOPLAS) 12(3), 463–492 (1990)

72 C. Evéquoz

4. Herlihy, M.P.: Wait-Free Synchronization. ACM Trans. Progrmg. Lang. Syst
(TOPLAS) 13(1), 124–149 (1991)

5. Herlihy, M., Luchangco, V., Moir, M.: The Repeat Offender Problem: A Mechanism for
Supporting Dynamic-Sized, Lock-free Data Structures. In: Malkhi, D. (ed.) DISC 2002.
LNCS, vol. 2508, pp. 339–353. Springer, Heidelberg (2002)

6. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-Free Synchronization: Double-
Ended Queues as an Example. In: Proc. 23rd IEEE Int. Conf. on Dist. Comp. Sys. (ICDCS
2003), Providence, RI, May 2003, pp. 522–529 (2003)

7. Herlihy, M., Luchangco, V., Moir, M.: Space- and Time-adaptive Nonblocking
Algorithms. In: CATS 2003 Proc. of Computing: The Australasian Theory Symposium,
April 2003, pp. 260–280 (2003)

8. Ladan-Mozes, E., Shavit, N.: An Optimistic Approach to Lock-Free FIFO Queues. In:
Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 117–131. Springer, Heidelberg
(2004)

9. Michael, M.M., Scott, M.L.: Correction of a Memory Management Method for Lock-Free
Data Structures. Technical Report, Computer Science Department, University of Rochester
(1995)

10. Michael, M.M., Scott, M.L.: Nonblocking Algorithms and Preemption-Safe Locking on
Multiprogrammed Shared Memory Multiprocessors. J. Parallel Distrib. Comput. 51(1), 1–
26 (1998)

11. Michael, M.M.: High Performance Dynamic Lock-Free Hash Tables and List-Sets. In:
Proc. of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA 2001), August 2002, pp. 73–82 (2002)

12. Michael, M.M.: Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEE
Trans. on Parallel and Distributed Systems 15(6), 491–504 (2004)

13. Shann, C.-H., Huang, T.-L., Chen, C.: A Practical Nonblocking Queue Algorithm Using
Compare-And-Swap. In: Proc. of the 7th International Conf. on Parallel and Distributed
Systems (ICPADS 2000), July 2000, pp. 470–475 (2000)

14. Treiber, R.: Systems Programming: Coping With Parallelism. Technical Report RJ5118,
IBM Almaden Research Center (April 1986)

15. Tsigas, P., Zhang, Y.: A Simple, Fast and Scalable Non-Blocking Concurrent FIFO Queue
for Shared Memory Multiprocessor Systems. In: Proc. of the 13th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA 2001), July 2001, pp. 134–
143 (2001)

16. Valois, J.D.: Lock-Free Linked Lists Using Compare-And-Awap. In: Proc. of the 14th
ACM Symposium on Principles of Distributed Computing (PODC 1995), August 1995,
pp. 214–222 (1995)

17. Wing, J.M., Gong, C.: Testing and Verifying Concurrent Objects. J. Parallel Distrib.
Comput. 17(1-2), 164–182 (1993)

A Modelling Approach with Coloured Petri Nets

Christine Choppy1, Laure Petrucci1, and Gianna Reggio2

1 LIPN, Institut Galilée - Université Paris XIII, France
2 DISI, Università di Genova, Italy

Abstract. When designing a complex system with critical requirements
(e.g. for safety issues), formal models are often used for analysis prior
to costly hardware/software implementation. However, writing the for-
mal specification starting from the textual description is not easy. An
approach to this problem has been developed in the context of alge-
braic specifications [CR06], and was later adapted to Petri nets [CP04,
CPR07]. Here, we show how such a method, with precise and detailed
guidelines, can be applied for writing modular coloured Petri nets. This
is illustrated on a model railway case study, where modules are a key
aspect.

Keywords: specification method, modelling method, coloured Petri nets,
modular design.

1 Introduction

While formal specifications are well advocated when a good basis for further
development is required, they remain difficult to write in general. Among the
problems are the complexity of the system to be developed, and the use of a
formal language. Hence, some help is required to start designing the specification,
and then some guidelines are needed to remind essential features to be described.

Petri nets have been successfully used for concurrent systems specification.
Among their attractive features, is the combination of a graphical language and
an effective formal model that may be used for formal verification. Expressiveness
of Petri nets is dramatically increased by the use of high-level Petri nets [JKW07],
and also by the addition of modularity allowing for quite large case studies.

While the use of Petri nets becomes much easier with the availability of high
quality environments and tools, to our knowledge, little work had been devoted
to a specification method for writing Petri nets.

Inspired by the work on algebraic specifications in [CR06], we proposed a
method, providing detailed and precise guidelines. An initial approach was pre-
sented in [CP04], and further developed in [CPR07] where the different steps for
building a coloured Petri net from a textual description of a system are shown.

In this paper, we push our work a step further and start introducing the use
of modularity. Section 2 gives an overview of our design method. The role of the
different steps is explained. In the following sections, these steps are detailed
individually before being applied to a model railway case study. First, section 3

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 73–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

74 C. Choppy, L. Petrucci, and G. Reggio

describes the running example and its expected behaviour in an informal way,
as could be given to a designer. The constituent features and modular struc-
ture of our system are derived from the description. Section 4 expresses the
expected properties of the system in terms of the previously identified elements.
Then, sections 5 and 6 show how this is all transformed into a modular coloured
Petri net and the properties validated. In these different steps, the basic opera-
tions from [CPR07] are summarised while focusing on the new modular aspects.
In particular, we shall see that sometimes it is sufficient to consider modules
independently of one another, whereas for other issues it is necessary to con-
sider the system as a whole. Finally, section 7 discusses re-engineering (because
some properties were not valid). This re-engineering phase modifies part of the
train routing policy in some modules identified during the properties verifica-
tion phase. The conclusion (section 8) summarises the design method and draws
lessons from this experience w.r.t. modularity, refinement and re-engineering.

2 Overview of the Design Method

The goal of the proposed method is to obtain a modular coloured Petri net
modelling a given system. The general approach is described in Fig. 2. While a
modular structure is being built, the method is based on two key ingredients, the
constituent features, that are events and state observers. Events are, as usual,
e.g. an action of some component, or a change in some part of the system.

[need to modify
state observers/events]

Build the Coloured

Petri net

Check the

properties

[need to modify
state observers/events]

[need to modify
modular structure]

Find Events and State

Observers

Find Properties

Find Modular Structure

[need to modify
modular structure]

Fig. 1. Design method

A state observer instead defines some-
thing that may be observed on the
states of the system, defined by the
values of some type. These constituent
features are grouped into the rele-
vant modules, that represent the dif-
ferent components (or subsystems) of
the system. Both events and state ob-
servers can appear in different modules
when they are part of their interface
(e.g. synchronised events and shared
resources).

Starting from an informal (textual)
description, the first step consists in
identifying the state observers and the
events characterising the system, as
well as the components in which they
take part. This leads to a set of mod-
ules, each with two lists of events and
state observers: those that are proper
(local) to the module, and those that
are part of its interface. The identified
data types may also be local or global,

A Modelling Approach with Coloured Petri Nets 75

depending on whether they are used
by a single module or several. Note that in Figure 2, the identification of mod-
ules and constituent features are separated. This is due to the re-engineering
phase, which may lead to modifications at a more or less large extent.

Associated properties are then determined and expressed, leading to possible
modifications of state observers and events. New ones can be introduced and
conversely others may be removed if they are duplicates. The lists of identified
elements are updated accordingly.

When reaching a stable set of events, state observers, datatypes and prop-
erties, the modular coloured Petri net can be built and the properties checked.
Several modular constructs for Petri nets exist, which basically correspond to
place and transition fusion. We chose to adopt the presentation of [Kin07] since
it has a clear presentation of both modules and their interface, and is considered
as a good candidate within the Petri nets extensions standardisation process
(ISO/IEC 15909-3 [Pet07]).

The analysis may lead to modifications of the model, in which case the process
should be repeated. The nature of the modifications may be within the mod-
ules, or involve large parts of the system and therefore require reconsidering the
modular structure.

In the following sections, we describe shortly the different steps and apply
them to a model railway case study. For more details about the individual steps
in a non-modular framework, the reader is referred to [CPR07].

3 Analysing the System Description

3.1 Guidelines for Identifying Modules and Constituent Features

The first task of the proposed method is to find the events and the state ob-
servers that are relevant. A grammar-based analysis of an informal description
is proposed, as advocated by classical object-oriented methods (see e.g. [CY91]).
Some figures may be part of this description, and be refered to and/or (partly)
commented in the text.

The text describing the system is examined, and the verbs, the nouns (or
better the verbal and the noun phrases), and the adjectives outlined. Unless the
same words are used for different meanings, phrases are outlined only once. Note
that verb phrases and noun phrases can be nested. There may also be sentences
that do not carry any information, and are therefore discarded.

In general, the outlined verbs (or verbal phrases) lead to find out the events,
while the outlined nouns and adjectives lead to find out the modules, the state
observers and the datatypes.

Thus all outlined verbs are listed, grouping together the synonyms or different
phrases refering to the same concept, and each one is examined in order to
decide whether it should yield an event. Each event is then given a name (an
identifier), accompanied by a short sentence describing it. Similarly, the outlined
nouns and adjectives are listed, grouping synonyms, and examined in order to
decide whether they yield modules, datatypes or state observers. Each outlined

76 C. Choppy, L. Petrucci, and G. Reggio

state observer is then given a name (an identifier) and a type, accompanied by
a short sentence describing what it observes in the system.

All the datatypes needed to type the state observers should be listed apart,
together with a (chosen) name and if possible a definition or some operations.

The picture and the textual description can lead to identify modules, either
because a particular complex entity is mentioned (e.g. a sender and a receiver
in a network protocol) or because it becomes obvious that some of the other
elements are strongly related to each other. In this latter case, these elements
should be grouped together within a same module. It might also be the case that
this module structure does not appear at this stage, but later on.

When modules are identified, they contain state observers and/or events. They
are also linked to other modules in the global system, through an interface. The
elements of the interface can be state observers or events participating in several
modules whereas the other ones are local to the sole module they are involved
in. As concerns datatypes, they can either be particular to a single module (e.g.
a characteristic of a sender process) and can be declared locally, or shared by
several modules (e.g. a message type) in which case we shall consider them as
global.

For the system and each module, three lists are resulting from this step: (i)
events, (ii) state observers, (iii) datatypes.

3.2 Case Study: Identifying Events and State Observers

The running example is a model railway issued from [BP01], where it was used
as a case study for a students’ project. It is complex enough to show how our
method could help to specify it and obtain a coloured net model.

The informal description of this case study is given below with emphasis on
verbal phrases, noun phrases, or both (when nested).

◦ ◦ ◦

◦

◦ ◦ ◦

◦

switch1

switch2 switch3

switch4

◦ ◦

B2

B1 B11

B12

B4 B8

B5 B9

B3 B7

B10B6

Fig. 2. The tracks of the model railway

Informal description. The model
railway is depicted in Figure 2.
It consists of about 15 meters of
tracks, divided into 12 sections
(blocks B1 to B12) connected by
four switches. The way the trains
can pass the switches is indi-
cated by the arrows in Figure 2.
The traffic on all tracks can
go both ways. The railway is con-
nected to a computer via a serial
port which allows to read informa-
tion from sensors and send orders
to trains through the tracks or di-
rectly to switches. Each section is
equipped with one sensor at each
end, to detect the entrance or

A Modelling Approach with Coloured Petri Nets 77

exit of a train. The orders sent to trains can be either stop or go
forward/backwards at a given speed.

This railway is used by a toy shop to attract people in the store. Hence the
company wants to run several trains at the same time, but these should not
be subject to accidents (i.e. there should be no collision) and should run forever
without human intervention. Thus, an adaptive routing strategy will be
adopted: the behaviour of trains adapts to local conditions instead of
following a pre-determined route. Namely, at each switch, the train route
can be chosen among several tracks and a train may even go back when
it cannot continue forward.

Informal description analysis. The first task to achieve is to analyse the
textual description (as described in Sect. 3.1) so as to find out relevant elements
about subsystems (or modules), the events, the state of the system (expressed
in terms of state observers), and the data involved (either directly mentioned in
the text, or returned by the state observers).

Here we also have to deal with a picture, and parts of it are commented in
the text, but not necessarily all. For instance, the picture clearly suggests the
switches as subparts, which may yield some Switch modules in a hierarchy. Note
that, in the picture, all switches are alike, i.e. there is one track on one side and
two on the other. The arrows also indicate that a train goes from one side of the
switch to the other side (e.g. from B1 to B3, and not from B3 to B4).

In this analysis of the text, we discard sentences that do not bring any elements
for our concern, e.g. :
“The model railway is depicted in Figure 2.”
“This railway is used by a toy shop to attract people in the store.”

The text is not fully a “processing narrative”, different levels of discourse are
mixed, such as the “physical (or hardware) level” (e.g. describing how the railway
is connected to a computer) which is not relevant for us, and the “logical level”
which provides us with the needed information. There are also some slightly
ambiguous parts, e.g. the “speed” of trains is mentioned but from the context
we can assume it is expected to be constant except when the train stops. It is
also mentioned that a train can stop, however, again from the context of the
shop we understand that the trains are not supposed to remain stopped.

We also choose the category (verbal or nominal phrase) depending on the kind
of information we expect to extract, for instance in the sentence:
“It consists of about 15 meters of tracks, divided into 12 sections (blocks B1
to B12), connected by four switches. ”, “it consists” is not a verb potentially
related to any event. We rather have a description of the (here permanent) state
of the tracks display. Sentences about “sensors” are usually related with state
observers, while sentences about “orders” may be related with some events.

We first list the verb phrases and the noun phrases and discuss for each
whether it leads to relevant information. Redundant texts (that describe the
same thing) are grouped together. Then, the modules, events, state observers
and datatypes lists are extracted.

78 C. Choppy, L. Petrucci, and G. Reggio

Verbs (verbal phrases)

– Several sentences refer to the moves and the positions of the trains:

• the trains can pass the switches
• The traffic on all tracks can go both ways
• a train may even go back when it cannot continue forward.
• The orders sent to trains can be either stop or go forward/back-

wards at a given speed.

⇒ the changeTrackSec event expresses that a train is moving from one track
section to another, and the changeTrackSwitch event expresses that a train
is moving from one track section to another through a switch. As mentioned
above, an order is often associated with some events that are induced by the
order “completion”. Some event(s) may be associated with a train passing a
switch (specified, e.g. by its number). It is also mentioned that trains can go
“both ways”, this information can be expressed either by a state parameter
of a train (forward/backward/stopped), and/or by stating the tracks from
and to which a train is travelling. The “speed” does not need to be a state
parameter of a train.

– run several trains at the same time ⇒ here is an example of a verbal
phrase that may refer to a state of the system where several trains are
travelling at the same time, and this may be observed

– run forever without human intervention ⇒ rather a property of the
system that does not reach a final state

– ⇒ The two sentences below express a non-determinism property
• the behaviour of trains adapts to local conditions instead of

following a pre-determined route.
• the train route can be chosen among several tracks and . . .

List of events
There are several events of two kinds:

changeTrackSec. A train is moving from one track section to another (not via
a switch), for instance from B1 to B2, and from B2 to B1, . . .

changeTrackSwitch. A train is moving from one track section to another through
a switch, e.g. for Switch1, from B1 to B3, from B1 to B4, from B4 to B1, and
from B3 to B1.

Nouns (noun phrases)
– about 15 meters of tracks, divided into 12 sections (blocks B1 to B12), con-

nected by four switches. ⇒ as mentioned above, this refers to the permanent
state of the tracks display, and this sentence does not describe in detail
which track is connected to which others, and whether it is a simple connec-
tion or via a switch, since all this information is shown in Figure 2; often,
state observers relate to some chosen information (rather than to the whole
state), and further work (on the properties) will point out which are needed.
However, it should be appropriate to have the TrackSection datatype. As
mentioned earlier, we have Switch modules. Similarly, we can have modules
associated with the (non-switch) connections between sections.

A Modelling Approach with Coloured Petri Nets 79

– The railway is connected to a computer via a serial port which allows to read
information from sensors and send orders to trains through the tracks or
directly to switches. ⇒ this describes the electronic part of the system which
is not considered in the specification.

– Each section is equipped with one sensor at each end, to detect the en-
trance or exit of a train. ⇒ a sensor typically is an observer, trainPresent
observes whether a train is present on a given track section (or not), thus
the Train datatype provides either a train identifier or “none” that denotes
that there is no train.

– not be subject to accidents (i.e. there should be no collision) ⇒ this is a
property that should be ensured by the system.

List of datatypes

TrainId ::= {t1, . . . , tn} where n is the number of trains.
TrackSection ::= B1 | B2 | . . . B12 Train ::= TrainId | none

List of state observers

trainPresent : TrackSection → Train
observes whether a train is present on a given track section (or not)

List of modules

System is the (toplevel) module of the whole system.
Switch1, Switch2, Switch3, Switch4 are the four modules associated with

the four switches, where the details of the train moves within a switch are
expressed. As noted before, they are all alike and can be instantiations of a
same module Switch. Each switch is connected to one track section on one
side (that we shall name O afterwards) and two on the other (T1 and T2).
The corresponding event names are constructed with the name of the initial
track and the name of the destination track, e.g. OT1 means a move from O
to T1.

MoveSec1, . . . MoveSec6 similarly, we can introduce details of the train
moves from one section to another one simply connected (no switch) in both
ways, as instantiations of a module MoveSec (with sections S1 and S2).

In table 1, we summarise the elements identified for each module. Those in the
System are global for the system and thus inherited by the other modules. The
other modules have a local part and an interface.

Table 1. Events, state observers and datatypes per module

System Switch MoveSec
TrackSection local: changeTrackSwitch local: changeTrackSec
Train, TrainId OT1, OT2, T1O, T2O S1S2, S2S1
trainPresent interface: O, T1, T2: Train interface: S1, S2: Train

80 C. Choppy, L. Petrucci, and G. Reggio

4 Expected Properties

Let us assume that we have the three lists (events, state observers and datatypes)
produced in the previous step. Now we consider the task of finding the most
relevant/characteristic properties of the system and of its behaviour, and to
express them in terms of the identified events and state observers (using also the
identified datatypes). Our method helps to find out these properties by providing
precise guidelines for the net designer to examine all relevant relationships among
events and state observers, and all aspects of events and state observers.

4.1 Finding Properties

For each state observer SO returning a value of type DT (declared as SO: DT),
we look for:
– properties on the values returned by SO (e.g. assuming DT = INT, SO should

always return positive values);
– properties relating the values observed by SO with those returned by other

state observers (e.g. the value returned by SO is greater than the value
returned by state observer SO1).

The state observers also allow for expressing the following properties:
– initial condition: a property about state observers that must hold in any

initial state;
– final condition: a property about state observers that must hold in all final

states, if any.

For each event EV we look for its:
– precondition which must hold before EV happens;
– postcondition which must hold after EV happened;
– other properties:

• on the past : properties on the possible pasts of EV;
• on the future : properties on the possible futures of EV;
• vitality when it should be possible for EV to happen;
• incompatibility: the events EVi such that there cannot exist a state in

which both EV and EVi may happen.

While writing the properties, we may have to revise the lists obtained at the
previous step, either to add new elements or to remove duplicates.

4.2 Properties of the Model Railway Case Study

Event properties
changeTrackSec a train tr is moving from one track section ts1 to another ts2

precondition the two tracks should be connected (we introduce a new state
observer connected), there should be no train on ts2, and the train is on
ts1 and is moving in the direction of ts2 (in the given layout of Figure 2
a simple and generic way to denote the train direction td is clockwise and

A Modelling Approach with Coloured Petri Nets 81

anticlockwise that are the two values of a TrainDirection type, and the
TrainId should now include this information together with an operation
direction to retrieve it ; moreover, the connected observer should include
this parameter)
connected (ts1, ts2, td) ∧ direction (tr)=td ∧ trainPresent (ts1)= tr ∧
trainPresent (ts2)=none

postcondition the train is on ts2, and there is no train on ts1 anymore
trainPresent (ts2)=tr ∧ trainPresent (ts1)=none

more incompatibility properties (it is not possible that several events occur
concurrently towards the same track).

changeTrackSwitch a train tr is moving from one track section ts1 to another
ts2 through a switch
precondition the two tracks should be connected via a switch (we intro-

duce a new state observer switched), there should be no train on ts2, and
the train should be moving in the direction of ts2
switched (ts1, ts2, td) ∧ direction (tr)=td ∧ trainPresent (ts1)= tr ∧ train-
Present (ts2)=none

postcondition the train is on ts2, and there is no train on ts1 anymore
trainPresent (ts2)=tr ∧ trainPresent (ts1)=none

more incompatibility properties (it is not possible that several events occur
concurrently towards the same track).

While expressing the properties of the events, we identified the following new
state observers, datatypes and operations:
(New) List of state observers

connected : TrackSection × TrackSection × TrainDirection → BOOL
switched : TrackSection × TrackSection × TrainDirection → BOOL

(New) datatypes and operations over the TrainId datatype
TrainNumber ::= {t1, . . . , tn} where n is the number of trains.
TrainDirection ::= clockwise | anticlockwise
TrainId ::= pair (TrainNumber,TrainDirection)

direction: TrainId → TrainDirection
direction (pair (tn,td))=td

Train ::= TrainId | none (unchanged)

State observers properties
trainPresent : TrackSection → Train

observes whether a train is present on a given track section (or not), and
this depends on the state of the system

connected : TrackSection × TrackSection × TrainDirection → BOOL
these are axioms about the layout, e.g.
connected (B2, B1, clockwise)=true; connected (B2, B4, anticlockwise)=false;

switched : TrackSection × TrackSection × TrainDirection → BOOL
these are axioms about the layout, e.g.
switched (B3,B1,anticlockwise)=true; switched (B3,B5,clockwise)=false;

82 C. Choppy, L. Petrucci, and G. Reggio

initial state. Initially, n trains are on different tracks, each heading one direc-
tion or the other.
∀tr ∈ TrainNumber : ∃!ts ∈ TrackSection : ∃d ∈ TrainDirection :
trainPresent(ts) = (tr, d)

final state. There should not be any final state, since the system should never
terminate.

Note that switches 1 and 3 behave identically since a train present on O head-
ing clockwise can go on either T1 or T2, while it is the case in switches 2 and
4 if the train is running anticlockwise. Therefore, the Switch module can be
parameterised with the direction (as in section 5.2). This entails that for a mod-
ule Switch(dir), we have: switched (O,T1,dir)=true; switched (O,T2,dir)=true;
switched (T1,O,!dir)=true; switched (T2,O,!dir)=true, where !dir is the direc-
tion opposite to dir, and all the other possibilities are false. A similar approach
can be applied to connected in the Move Sec modules.

5 Construction of the Modular Coloured Petri Net

At this point, we can assume that we have the list of modules with their inter-
faces, as well as the state observers and events (plus the list of used datatypes
with their operations) resulting from the previous steps, and that for each event
the pre/postconditions have been expressed. Other properties about the state
observers and the events have also been found, that will be checked in the last
step of the method, once the net is built.

5.1 Deriving the Net

Starting from the above elements, a coloured Petri net modelling the system can
be built from the different modules and their interfaces. For each module, we
first express the conditions in a canonical way. The canonical form requires that:

1. each state observer has type MSet(T) for some type T;
2. the pre/postconditions have the following form 1

pre (∧i=1,...,n expi ≤ SOi) ∧ (∧j=n+1,...,m expj ≤ SOj) ∧ cond,
post (∧i=1,...,n SO′i = SOi − expi + exp′i) ∧ (∧j=n+1,...,m SO′j = SOj − expj)∧

(∧h=m+1,...,r SO′h = SOh + exp′h) ∧ cond′,
where

– SOl (l = 1, . . . , r) are all distinct,
– the free variables occurring in expl and exp′l (l = 1, . . . , r) may occur in

cond and in cond′,
– no state observer occurs in cond, cond′, expl and exp′l (l = 1, . . . , r),
– and cond and cond′ are first order formulae.

1 ≤, + and − denote respectively the inclusion, union and the difference between
multisets.

A Modelling Approach with Coloured Petri Nets 83

cond /\ cond’

SOi

SO
j

SOk

exp i

exp’i

exp j

exp k

Fig. 3. Deriving arcs

In [CPR07], some often encountered schemes have
been identified so as to obtain a canonical form.

Assume that all elements are in the canonical form.
The coloured Petri net is defined as follows. The state
observers and the events determine the places and the
transitions, while the pre/postconditions determine the
arcs. Each state observer SO : MSet(T) becomes a place
named SO coloured by T, and each event EV becomes a
transition, named EV. Pre/postconditions of an event
EV lead to the set of arcs as pictured in Fig. 3.

5.2 Coloured Petri Net Modelling the Railway

We deduce from the previous analysis that the net modelling the railway is com-
posed of 4 Switch (figure 5(b)) and 6 MoveSec modules (figure 5(a)). Moreover,
a toplevel structure (figure 4) indicates how these different modules are linked
together via their interfaces. The notations adopted here are those of [Kin07].
For the sake of figures readability, anticlockwise and clockwise are shortened to
acl and cl respectively. Note that the track sections are modelled by places
containing a token with the contents of the section itself.

switch1: Switch(cl)

T1

T2

O

switch2: Switch(acl)

T1

T2

O

switch3: Switch(acl)

T1

T2

O

switch4: Switch(cl)

T1

T2

O

B1B2: MoveSec

S1 S2
B5B9: MoveSec

S1 S2

B6B10: MoveSec

S1 S2

B11B12: MoveSec

S1 S2

B3B7: MoveSec

S2 S1

B4B8: MoveSec

S2 S1

Fig. 4. The toplevel net model of the model railway

6 Checking the Properties

6.1 Checking the Expected and Required Properties

The previous steps of our design method did exhibit several properties which
must be satisfied by the system. These properties should be expressed accord-
ing to the language accepted by the coloured Petri nets tool to be used. Then the

84 C. Choppy, L. Petrucci, and G. Reggio

MoveSec
import type : Train

S1 : Train S2 : Train

var t : TrainNumber

S1 S2

S1S2

(t,acl)

nonenone

(t,acl)

S2S1

(t,cl)

none none

(t,cl)

(a) The MoveSec module

Switch(dir)
import type : Train

T1 : Train T2 : Train

O : Train

var t : TrainNumber

T1 T2

O

T1O

(t,!dir)

none

none

(t,!dir)

OT1
(t,dir)

none

none

(t,dir)

T2O

(t,!dir)

none

none

(t,!dir)

OT2
(t,dir)

none

none

(t,dir)

(b) The Switch(dir) module

Fig. 5. The modules

properties should be checked using the tool, e.g. generate the occurrence graph
and check that all states satisfy the properties.

6.2 The Railway Properties

After generating the occurrence graph for an initial marking with 4 trains, we
check the expected properties. We find that there are deadlocks, e.g. with a
train going clockwise in B11 and a train going in the other direction in B12.
The other deadlocks are similar with either adjacent track sections or sections
connected by a switch. Hence the policies for moving between adjacent tracks
must be improved in both kinds of modules.

7 Re-engineering

7.1 Modifying the Model

In case some properties do not hold, the designer should investigate the causes
of the problem by e.g. closely examining the states not satisfying the property
and the paths leading to these states. This gives insight to locate the source of
the problem. The model then has to be modified accordingly, and the process
repeated until all properties hold. It might also be the case that some properties
derived from the informal specification are not correctly expressed. Then the
properties should be changed and the new ones checked.

7.2 New Version of the Railway Model

The policy in module MoveSec is changed by having a new event retboth where
both trains return when each of them wants to go on the other train track, as

A Modelling Approach with Coloured Petri Nets 85

depicted in figure 6(a). Similarly, the policy in module Switch is improved by
adding an event retO where in case of deadlock, the train on the side of the switch
with a single section returns to go in the opposite direction as in figure 6(b).

The new model is analysed again and the properties are satisfied.

MoveSec
import type : Train

S1 : Train S2 : Train

var t,t1,t2 : TrainNumber

S1 S2

S1S2

(t,acl)

nonenone

(t,acl)

S2S1

(t,cl)

none none

(t,cl)

retboth
(t2,cl)

(t1,acl) (t2,acl)

(t1,cl)

(a) The new MoveSec module

Switch(dir)
import type : Train

T1 : Train T2 : Train

O : Train

var t,t1,t2 : TrainNumber

T1 T2

O

T1O

(t,!dir)

none

none

(t,!dir)

OT1
(t,dir)

none

none

(t,dir)

T2O

(t,!dir)

none

none

(t,!dir)

OT2
(t,dir)

none

none

(t,dir)

retO(t,!dir) (t,!dir)

(t,!dir) (t,dir)

(b) The new Switch(dir) module

Fig. 6. The new modules

8 Conclusion and Future Work

Designing a formal specification has proved to be important to check properties
of a system prior to hardware and software costly implementation. However,
even if such an approach reduces both the costs and the experimenting time,
designing a formal model is difficult in general for an engineer.

This paper gives guidelines to help with the design process. The main idea is
to derive key features from the textual description of the problem to model, in a
rather guided manner so as to deduce the important entities handled, and then
to transform all this into Petri net elements. At the same time, some properties
inherent to the system appear, that are also formalised and should be proven
valid on the model at an early stage. When a coloured net is obtained, with
these properties satisfied, further analysis can be carried out, leading to possible
changes in the specification.

Our method, inspired by [CR06], was developed in [CPR07] for writing flat
coloured Petri nets. Here, we have started exploring the addition of a modular
structure, which is most helpful when designing large systems. The process is
applied to a simple model railway case study, which nevertheless raises issues for
future work.

The process for obtaining modules should be investigated further and for-
malised. In the case study, the Switch module emerged early in the specification
process. On the contrary, it seemed relevant and consistent to introduce MoveSec.

86 C. Choppy, L. Petrucci, and G. Reggio

The notations used for the description of modules are those of [Kin07]. How-
ever, it does not completely take into account the main (toplevel) system descrip-
tion. Therefore, a clean expression of the hierarchy and the connection between
components interfaces is required.

When listing the constituent features of the modules, some were obviously
part of a single module, hence local, while others were shared by several modules.
This is particularly the case for datatypes. We chose here to make these latter
global by declaring them at the system level. However, for efficiency purposes, in
particular during the analysis phase, we should rather consider which modules
use them and which ones do not.

Our case study did exhibit several instances of a same module, and then a
parameterised one. Here, finding these elements was rather simple, but we should
investigate different cases where the use of such concepts is worthwhile.

The last phase of our method aims at checking that the system model satisfies
the expected properties. However, we could imagine adding some refinement
procedure there, in order to describe part of the system with additional detail.

Finally, the verification was performed using CPNTools [JKW07]. For the
moment, no tool suite handles these modular mechanisms, having an interface to
modules with possibly both places and transitions. The development of modular
nets in the framework of ISO/IEC 15909-3 standardisation will not only enhance
the theoretical constructs and notations, but also be an incentive for adequate
tool implementation.

References

[BP01] Berthelot, G., Petrucci, L.: Specification and validation of a concurrent
system: An educational project. Journal of Software Tools for Technology
Transfer 3(4), 372–381 (2001)

[CP04] Choppy, C., Petrucci, L.: Towards a methodology for modelling with Petri
nets. In: Proc. Workshop on Practical Use of Coloured Petri Nets, Aarhus,
Denmark, October 2004, pp. 39–56 (2004) Report DAIMI-PB 570, Aarhus,
DK

[CPR07] Choppy, C., Petrucci, L., Reggio, G.: Designing coloured Petri net models:
a method. In: Proc. Workshop on Practical Use of Coloured Petri Nets,
Aarhus, Denmark (October 2007)

[CR06] Choppy, C., Reggio, G.: A formally grounded software specification method.
Journal of Logic and Algebraic Programming 67(1-2), 52–86 (2006)

[CY91] Coad, P., Yourdon, E.: Object-Oriented Analysis. Prentice-Hall, Englewood
Cliffs (1991)

[JKW07] Jensen, K., Kristensen, L., Wells, L.: Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. Journal of Software Tools
for Technology Transfer 9(3-4), 213–254 (2007)

[Kin07] Kindler, E.: Modular PNML revisited: Some ideas for strict typing. In: Proc.
AWPN 2007, Koblenz, Germany (September 2007)

[Pet07] Petrucci, L.: ISO/IEC 15909 — Part 3: Extensions (November 2007) Work-
ing document of ISO/IEC JTC1-SC7-WG19, ref. PA2-018

A Tailored V-Model Exploiting the Theory

of Preemptive Time Petri Nets

Laura Carnevali, Leonardo Grassi, and Enrico Vicario

Dipartimento di Sistemi e Informatica - Università di Firenze
{carnevali,grassi,vicario}@dsi.unifi.it

http://www.dsi.unifi.it

Abstract. We describe a methodology that embeds the theory of pre-
emptive Time Petri Nets (pTPN) along development and verification
activities of a V-Model lifecycle to support the construction of concur-
rent real time SW components. Design activities leverage on a pTPN
specification of the set of concurrent timed tasks. This supports design
validation through simulation and state space analysis, and drives disci-
plined coding based on conventional primitives of a real-time operating
system. In verification activities, the pTPN model comprises an Oracle
for unit and integration testing and its symbolic state space supports
test case selection, test sensitization and coverage evaluation.

Keywords: concurrent real-time systems, V-Model, preemptive Time
Petri Nets, formal methods, state space analysis.

1 Introduction

Intertwined effects of concurrency and timing comprise one of the most challeng-
ing factors of complexity in the development of safety critical SW components.
Formal methods may provide a crucial help in facing this complexity, supporting
both design and verification activities, reducing the effort of development, and
providing a higher degree of confidence in the correctness of products.

Integration of formal methods in the industrial practice is explicitly encour-
aged in certification standards such as RTCA/DO-178B [1], with specific
reference to software with complex behavior deriving from concurrency, synchro-
nization, and distributed processing, under the recommendation that proposed
methods are smoothly integrated with design and testing activities prescribed by
a defined and documented SW lifecyle. This recommendation can be effectively
referred to the framework of the V-Model [22], which is often adopted by pro-
cess oriented standards ruling the development of safety critical software subject
to explicit certification requirements, such as airborne systems [1], railway and
transport applications [17], medical control devices [21].

In this paper, we describe a tailoring of the V-Model life cycle that leverages
on the theory of preemptive Time Petri Nets (pTPN) [5] to support design,
coding and testing of complex concurrent and real time task sets. The proposed
tailoring spans over the activities of Preliminary and Detailed SW Design, SW

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 87–100, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.dsi.unifi.it

88 L. Carnevali, L. Grassi, and E. Vicario

Implementation, and SW Integration. During SW design, the architecture of the
task set is specified using the intuitive formalism of timelines, which can be au-
tomatically translated into a pTPN model. In turn, this supports validation of
design with respect to sequencing and timeliness requirements through timed
simulation and/or timed state space analysis. During SW implementation, the
pTPN specification of the task set is implemented through a disciplined coding
approach relying on conventional primitives of a real time operating system. The
implementation produces a so-called operational architecture which supports in-
cremental integration and testing of low-level SW components. During SW Inte-
gration, the pTPN specification comprises an Oracle for integration testing, while
symbolic state space analysis supports test-case-selection, test-sensitization and
coverage-evaluation.

The rest of the paper is organized in six sections. The specification of the
real-time task set architecture and its validation are discussed in Sect.2, while
Sect.3 describes how to implement the specification model on top of LinuX RTAI
APIs. Sect.4 illustrates how pTPNs support testing activities, both in test case
selection/sensitization and in the evaluation of executed tests. Sect.5 organizes
all the activities to outline a tailoring of the V-Model SW life cycle. Conclusions
are drawn in Sect.6.

2 Preemptive Time Petri Nets in the Specification and
Architectural Validation of Real-Time Task Sets Using
the Oris Tool

In this section, we introduce preemptive Time Petri Nets (pTPN) [5][8], showing
how they support the modeling of real-time task sets and how simulation and
analysis of the specification model are employed in the architectural validation
of the task set itself, supporting tight schedulability analysis and verification of
the correctness of logical sequencing.

2.1 Specification of Real-Time Task Sets through Timelines

We assume a general setting that includes the patterns of process concurrency
and interaction which are commonly encountered in the context of real-time
systems [9].

The task set is comprised by tasks. Tasks release jobs in recurrent manner
with three different possible release policies: i) periodic, in which tasks have
a deterministic release time; ii) sporadic, in which tasks have a minimum but
not a maximum release time; and iii) jittering, in which tasks have a release
time constrained between a minimum and a maximum. Task deadline is usually
coincident with its minimum release period.

Jobs can be internally structured as a sequence of chunks, each characterized
by a nondeterministic execution time constrained within a minimum and a max-
imum value. Chunks may require preemptable resources, notably one or more
processors. In this case, they are associated with a priority level and run under

A Tailored V-Model Exploiting the Theory of pTPN 89

static priority preemptive scheduling. Chunks may be synchronized through bi-
nary semaphores, to guarantee mutual exclusion in the use of shared resources:
a chunk acquires a semaphore before starting its execution and releases it at the
end of its execution.

Task sets can be conveniently specified through timelines, which represent a
temporal scheme annotated with parameters of tasks and chunks (release period,
deadline, resource request, priority). Fig.4 reports an example with 4 tasks. T1

is a periodic task synchronized by semaphore m1 to the sporadic task T4; tasks
T2 and T3 are periodic and synchronized through semaphore m2.

2.2 Preemptive Time Petri Nets

A timeline schema can be easily translated into an equivalent pTPN. Preemptive
Time Petri Nets [8][5] extend Time Petri Nets (TPN) [10][11] with an additional
mechanism of resource assignment, making the progress of timed transitions
be dependent on the availability of a set of preemptable resources. Syntax and
semantics are formally expounded in [5], and we report here only an informal
description. As in TPN, each transition is associated with a static firing interval
made up of an earliest and a latest static firing time, and each enabled transition
is associated with a clock evaluating the time elapsed since it was newly enabled:
a transition cannot fire before its clock has reached the static earliest firing time,
neither it can let time pass without firing when its clock has reached the static
latest firing time. In addition, each transition may request a set of preemptable
resources, each request being associated with a priority level: an enabled transi-
tion is progressing and advances its clock if no other enabled transition requires
any of its resources with a higher priority level; otherwise, it is suspended and
maintains the value of its clock. This supports representation of the suspen-
sion mechanism and thus of preemptive behavior, attaining an expressivity that
compares to that of stopwatch automata [7][6][5].

Translating a timeline schema into a pTPN model: The Oris Tool supports
both the editing of a timeline schema and its automatic translation into an
equivalent preemptive Time Petri Net. Repetitive job releases performed by a
task are modeled as an always-enabled transition with static firing interval equal
to the task release range; chunks are modeled as transitions with static firing
intervals corresponding to their min-max range of execution time and with the
same resource requests and priority. A binary semaphore is modeled by a place
containing one token, which represents the permission to acquire the semaphore
itself.

Priority inversion frequently occurs in practical systems and limiting its ad-
verse effects is extremely important in a system where any kind of predictable
response is required. For instance, priority inversion can occur when a high prior-
ity chunk requires exclusive access on a resource that is being currently accessed
by a low priority chunk: if one or more medium priority chunk then run while
the resource is locked by the low priority chunk, the high priority chunk can
be delayed indefinitely. To avoid priority inversion, we extend pTPN formalism

90 L. Carnevali, L. Grassi, and E. Vicario

to assume priority ceiling emulation protocol, which raises the priority of any
locking chunk to the highest priority of any chunk that ever uses that lock (i.e.,
its priority ceiling).

Fig.5 reports the pTPN modeling the timeline schema of Fig.4.

Timeliness expressivity: In principle, the specification model could be expressed
directly using pTPNs. However the usage of timelines, that represent an intuitive
formalism, augments modeling convenience and facilitates industrial acceptance
and interoperability. In addition, timelines provide a structural restriction on
the expressivity of pTPNs which gives meaning to some relevant concepts in the
theory of real-time systems such as task, job, chunk, hyperperiod and idle state.
As a drawback, this restriction prevents an explicit representation of priority
ceiling emulation protocol within timeline formalism.

2.3 Architectural Validation through Simulation or State Space
Enumeration of the pTPN Model

The pTPN specification model can be simulated or analyzed to perform archi-
tectural validation of the real-time task set.

The state of a pTPN can be represented as a pair s = 〈M, τ〉 , where M
is a marking and τ is a vector of times to fire for enabled transitions. Since τ
takes values in a dense domain, the state space of a pTPN is covered using state
classes, each comprised of a pair S = 〈M, D〉 , where M is a marking and D is a
firing domain encoded as the space of solutions for the set of constraints limiting
the times to fire of enabled transitions. A reachability relation is established
among classes: a state class S′ is reachable from class S through transition
t0 , and we write S

t0→ S′, if and only if S′ contains all and only the states that
are reachable from some state collected in S through some feasible firing of t0.
This reachability relation, sometimes called AE relation [12], defines a graph of
reachability among classes that we call state class graph (SCG).

The AE reachability relation turns out to collect together the states that are
reached through the same firing sequence but with different times [11][13][14].
A path in the SCG thus assumes the meaning of symbolic run, representing the
dense variety of runs that fire a given set of transitions in a given qualitative
order with a dense variety of timings between subsequent firings. A symbolic
run is then identified by a sequence of transitions starting from a state class in
the SCG, and it is associated to a completion interval, calculated over the set of
completion times of the dense variety of runs it represents. Note that the same
sequence of firings may be firable from different starting classes. According to
this, we call symbolic execution sequence the finite set of symbolic runs with the
same sequence of firing but with different starting classes.

If the model does not include preemptive behavior, i.e. if it can be represented
as a TPN, firing domains can be encoded as Difference Bound Matrixes (DBM),
which enable efficient derivation and encoding of successor classes in time O(N2)
with respect to the number of enabled transitions N . Moreover, the set of timings
for the transitions fired along a symbolic run can also be encoded as a DBM,

A Tailored V-Model Exploiting the Theory of pTPN 91

thus providing an effective and compact profile for the range of timings that let
the model run along a given firing sequence [14].

When the model includes preemptive behavior, then derivation of the succes-
sor class breaks the structure of DBM, and takes the form of a linear convex
polyhedron. This results in exponential complexity for the derivation of classes
and, more importantly, for their encoding [8][5][6][15]. To avoid the complexity,
[5] replaces classes with their tightest enclosing DBM, thus yielding to an over-
approximation of the SCG. For any selected path in the over-approximated SCG,
the exact set of constraints limiting the set of feasible timings can be recovered,
thus supporting clean-up of false behaviors and derivation of exact tightening
durational bounds along selected critical runs. In particular, the algorithm pro-
vides a tight bound on the maximum time that can be spent along the symbolic
run and provides an encoding of the linear convex polyhedron enclosing all and
only the timings that let the model execute along a symbolic run.

The Oris tool [16] supports enumeration of the SCG, selection of symbolic
runs attaining specific sequencing and timing conditions and tightening of their
range of timings. The example of Fig.5 has a symbolic state space comprised by
29141 state classes, having 134 different markings. For each task, the analysis
of the SCG allows the identification of the paths starting with the release of a
job and ending with its completion, which we call task symbolic runs, and of
the corresponding execution sequences, which we call task execution sequences.
Specifically, tasks T1, T2, T3 and T4 have 6915, 10816, 22093 and 13837 symbolic
runs and 244, 951, 2823 and 1935 symbolic execution sequences, respectively.
The analysis provides the worst case completion time for each task (70, 100,
170 and 140 time units for T1, T2, T3 and T4, respectively), thus verifying that
deadlines are met and with which minimum laxity (80, 80, 70 and 220 time units
for T1, T2, T3 and T4, respectively).

3 Coding Process

The pTPN specification model enables a disciplined coding of the task set archi-
tecture on top of conventional primitives of a real-time operating system. The
procedure is described with reference to the APIs of Linux RTAI, a patch for
the Linux kernel which introduces a hardware abstraction layer and an applica-
tion interface supporting the development of real-time applications for several
processor architectures.

The task set is implemented as a kernel module, with functions init module()
and cleanup module() as entry points for loading and unloading. Tasks are cre-
ated in init module() through rt task init() and they are started by calling
rt task make periodic() or rt task resume() depending on they are recurrent
or one-shot tasks, respectively; they are destroyed in cleanup module() by invok-
ing rt task delete(). Chunks are implemented as C functions, invoked by their
respective tasks. Semaphore operations must be appropriately combined with
priority handling, to guarantee proper implementation of the specification model.
RTAI provides resource semaphores, which implement priority inheritance, and

92 L. Carnevali, L. Grassi, and E. Vicario

binary semaphores, which instead leave the programmer control over priority
handling. We use binary semaphores to obtain an implementation conforming
to the semantics of pTPN models with static priorities, though dynamic priorities
could also be encompassed in pTPN expressivity and analysis [8]. More specif-
ically, when a low priority task acquires a semaphore, priority boost requested
for priority ceiling emulation must precede semaphore wait operation; viceversa,
at release, priority must be restored to the previous level after semaphore signal
operation. Data structures of the application, such as semaphores and real-time
FIFO queues, are created and destroyed in init module() and cleanup module(),
respectively.

In our approach, a disciplined manual translation has been preferred to
non-supervised, model-based code generation. By leaving the programmer the
responsibility of the coding process, we ensure human control over the imple-
mentation and we preserve the readability and maintainability of the output
source code. Disciplined coding enables to fully exploit the flexibility of pro-
gramming languages in the realization of real time design patterns; besides, the
axiomatic semantics of programming languages and IPC primitives ensure con-
struction (i.e. types) and procedural consistency and are still to be retained as
better specified than the semantics and notation of formal modeling languages.

However, we believe that automatic code generation is achievable without
considerable efforts on the part of the developers and without critically impacting
the proposed approach. As a proof, let’s consider the structural decomposition
of a pTPN specification into its semantic components, i.e. tasks, jobs chunks
and synchronization structures. In our approach, each model component has a
context-free translation into a corresponding code element, i.e. a C function or a
OS IPC primitive; according to this partitioning, the entire specification model
can be modularly implemented by composing code structures inductively derived
from individual pTPN elements.

This seems to greatly reduces the complexities related to the generation of
code and to the verification of its correctness thus allowing to seamlessly inte-
grate automated model-to-code translation within the development process.

4 Supporting the Testing Process through Preemptive
Time Petri Nets and the Oris Tool

We address the testing phase and, in order to detect failures in the implementa-
tion, we show how the pTPN specification model can be employed in the evalua-
tion of logs produced during testing and in test case selection and execution.

Fault model and failure detection: We consider failures deriving from types of
fault that do not guarantee a proper implementation of the specification model
with respect to the sequencing and the timing of individual actions (i.e. job
releases, chunk completions, signal and wait operations): i) time frame viola-
tion fault, i.e. a fault in the chunk implementation leading a an action to assume
values out of its nominal interval; ii) cycle stealing fault, i.e. the presence of addi-
tional tasks which steal computational resources (these can be unexpected tasks,

A Tailored V-Model Exploiting the Theory of pTPN 93

services provided by the operating system, or tasks intentionally not represented
in the specification because considered not critical for the real-time application
to be realized); iii) faults in concurrency control and task interactions, i.e. a
wrong priority assignment, a semaphore operation which is not appropriately
combined with priority handling, or in general, a wrong implementation of any
IPC mechanism.

We assume that the implementation is instrumented so as to provide a time-
stamped log of actions represented in the specification model [20]. Therefore,
each run provides a finite sequence of timed actions tr = {〈an, τn〉}N

n=1, where
an is an action corresponding to a unique transition tn in the pTPN model
and τn represents the time at which an has occurred. According to this, the
operational semantics of the pTPN model can be exploited as a time-sensitive
Oracle in order to evaluate an execution run. The Oracle off-line simulates the
execution of the sequence of timed actions and emits a failure verdict as soon
as any timed action is not accepted by the simulator; a pass verdict is emitted
when the run is finished.

It can be easily verified that any time frame violation fault, as well as any
fault in concurrency control and task interaction, is detected as a failure by
the time-sensitive Oracle, either because a transition is not firable or because
it is firable but not with the observed timing. Viceversa, a cycle stealing fault
is recognized provided that its duration exceeds the laxity between an actual
computation and its expected upper bound.

The time-sensitive Oracle somehow performs the function of the observers
proposed in [2] [15]. In [2], an observer is an automaton employed online during
the testing process to collect auxiliary information that is used for coverage eval-
uation. In [15], an observer is used to evaluate quantitative properties through
state space enumeration of the specification model augmented with additional
places and transitions. Differently from both the concepts of observer, our Or-
acle evaluates off-line the execution logs produced by an implementation. This
is done by verifying if the sequence of timed actions is a subset of the dynamic
behavior that the semantics of the specification model may accept.

Test case selection and execution: While the analysis of the specification model
supports early validation of the process architecture, confidence in the confor-
mance of the implementation to the specification can be achieved through test-
ing. In this step, which is in any case requested for certification purposes [1][17],
the state space of the specification model can be exploited to select test cases and
to identify timed inputs that let the system run along selected cases [2][3][4][18].
Both steps face the existence of behaviors that are legal in the specification
model but cannot be observed in a real implementation. In fact, when the spec-
ification of a software component is developed, various temporal parameters are
necessarily associated with a nondeterministic range of variation, not only to
accommodate changes in the embedding context and allow a margin of laxity
for the implementation, but also to support a re-engineering process or reuse of
a component within a modular architecture. Also, specification models usually
neglect dependencies among temporal parameters, both to keep the specification

94 L. Carnevali, L. Grassi, and E. Vicario

model relatively simple and to avoid the difficulty in quantifying these dependen-
cies. Besides, when software requires high Integrity Levels, the implementation
must be deterministic.

According to this, coverage criteria cannot rely on the selection of determinis-
tic test cases, as many of these could be not feasible. We thus propose that test
cases be specified as symbolic runs, as they represent the dense variety of runs
that follow the same sequence of actions with a dense variety of timings. A test
case is considered covered when any of its runs has been executed. As proposed
in [2], a symbolic run can be selected as the witness of a specific test purpose
determined trough a model checking technique, or it can be part of a test suite
identified through a coverage criterion defined on the state class graph (i.e. all
nodes, all edges, all paths). Regardless of the number of identified failures, a
metric of coverage is needed to provide a measure of confidence in the absence
of residual faults and it can be derived by mapping on the state class graph the
sequence of actions reproduced by the time-sensitive Oracle.

A procedure to sensitize a selected test case has been proposed in [19]. It
is based on the observation that not all temporal parameters are controllable:
in fact, periodic and asynchronous release times can be effectively controlled
through conventional primitives of a real-time operating system, whereas con-
trolling computation times is often impractical. This gives a major relevance to
state classes of the specification where no computational chunk is pending and
all jobs are waiting for their next release, that we call idle classes. Given a test
case ρ with initial class Starget, the procedure identifies the temporal constraints
representing the necessary condition to first reach Starget starting from an idle
class Sidle and then execute ρ. Therefore, the IUT is started from any state
within Sidle and controllable actions are forced to occur within the identified
constraints.

5 Using Preemptive Time Petri Nets within the Software
Life Cycle V-Model

In this section we show how the theory of preemptive Time Petri Nets can be
smoothly integrated as a formal method in the V-Model of the software life cycle,
also with reference to the RTCA/DO-178B standard, which provides guidelines
for the production of software for avionic systems. In particular, we illustrate
how the effort at modeling a real-time task set through pTPNs provides relevant
advantages in the subsequent stages of software development: in fact, as also
evidenced in the previous sections, analysis and simulation of pTPN models
support both design and verification activities.

The V-Model of the German Federal Administration regulates the processes
of system development, maintenance and modification in the software life cycle.
The standard describes the development process from a functional point of view,
defining a set of activities and products (results) that have to be produced. Since
it has general validity and it is publicly available, it has been adopted by many
companies and tailored to a variety of specific application contexts. Fig.1 reports

A Tailored V-Model Exploiting the Theory of pTPN 95

 SD1
S y s t e m R e q u i r e m e n t s
 Ana lys is

 SD2
 S y s t e m D e s i g n

U s e r R e q u i r e m e n t s

S y s t e m A r c h i t e c t u r e

 SD3
S W / H W R e q u i r e m e n t s
 Ana lys is

T e c h n i c a l R e q u i r e m e n t s

 SD4 -SW
P r e l i m i n a r y S o f t w a r e
 Des ign

S o f t w a r e A r c h i t e c t u r e

 S D 5 - S W
D e t a i l e d S o f t w a r e
 Des ign

 SD6-SW
 SW
 I m p l e m e n t a t i o n

 SD7 -SW
 SW
 In tegra t ion

 SD8
 Sys tem
 In tegra t ion

 SD9
 T rans i t ion
 to Ut i l i za t ion

 S o f t w a r e D e s i g n

S y s t e m L e v e l

S y s t e m L e v e l

U n i t L e v e l

S W C o m p o n e n t L e v e l

S W M o d u l e L e v e l

Fig. 1. Overview of Activities of Submodel System Development of the V-Model

a graphical representation of the activities pertaining the System Development
(SD) submodel, emphasizing the integration between design and verification ac-
tivities (left/right) and the hierarchical decomposition from System to Module
Levels (top/down). Even if the order of activities appears sequential, iterations
are very common during the development process.

With reference to a case example, we illustrate how pTPNs can be casted in
the development life cycle of real-time software, focusing on those activities of
the V-Model which the adoption of pTPNs as a formal method mainly supports.

5.1 Casting pTPNs within the V-Model of the Software Life Cycle

As a case example, we consider the activities pertaining the development of
an avionic radar system. Fig.2 evidences the first three design activities. Sys-
tem Requirements Analysis (SD1) defines User Requirements, specifying both
functional requirements and non-functional requirements, such as transmission
radius, power and frequencies. System Design (SD2) identifies main system units
(a receiving/transmission antenna unit, a receiver unit, a converter unit, a sig-
nal/data processing unit) and allocates User Requirements to each of them.
Software/Hardware Requirements Analysis (SD3) examines both software and
hardware resources of each unit, decomposing them into software and hardware
components which, according to the notation of Software Configuration Manage-
ment, are referred to as Computer Software Configuration Items (CSCIs) and
Hardware Configuration Items (HCIs). Referring to the example, requirements
pertaining the signal/data processing unit are allocated to three separate CSCIs:
a raw-image elaborator, a tracker and a central processor. It is worth noting that

96 L. Carnevali, L. Grassi, and E. Vicario

 SD1
S y s t e m R e q u i r e m e n t s
 Ana lys is

U s e r R e q u i r e m e n t s

 SD2
 S y s t e m D e s i g n

 S y s t e m A r c h i t e c t u r e

T / R R e c e i v e r

C o n v e r t e r

P r o c e s s o r

 SD3
S W / H W R e q u i r e m e n t s
 Ana lys is

 T e c h n i c a l R e q u i r e m e n t s

 SD4 -SW
P r e l i m i n a r y S o f t w a r e
 Des ign

S o f t w a r e A r c h i t e c t u r e

R e c e i v e r
P r o c e s s o r

D a t a s t r e a m
C P U Fi l t -

A m p

T x G e n -
 C o n v

R e f O s c

T / R

C o n v e r t e r

i m a g e

t r a c k e r

 e l a b

Fig. 2. The first three design activities in the development of an avionic radar system

SD1 and SD2 pertain the entire system under development, while subsequent
design activities are repeated for each unit.

Preliminary Software Design (SD4-SW, see Fig.3) defines the Software Ar-
chitecture of each CSCI, allocating it to a task set defined in terms of commu-
nicating tasks with assigned functional modules and prescribed release times
and deadlines. Detailed Software Design (SD5-SW, see Fig.3) allocates resources
and time requirements to software modules and produces the Software Design
of each CSCI; in particular, the sub-activity of Analysis of Resources and Time
Requirements (SD5.2-SW, not shown in Fig.1) addresses the evaluation of archi-
tecture feasibility. pTPNs allow the description of a shared resource environment

 SD4 -SW
P r e l i m i n a r y S o f t w a r e
 Des ign

S o f t w a r e A r c h i t e c t u r e

 S D 5 - S W
 D e t a i l e d S o f t w a r e
 Des ign

 S o f t w a r e D e s i g n

T 1

T 2

T 1

T 2

[4 5 , 6 0]

[1 0 , 1 5] [3 0 , 4 0]

 T e c h n i c a l r e q u i r e m e n t s

[1 0 , 1 0] [2 0 , 2 5] [0 , 1 0]

Fig. 3. Preliminary and Detailed Design activities in the development of an avionic
radar system

with concurrent tasks subject to temporal constraints and running under priority
preemptive scheduling, thus supporting both design activities. More specifically,
Software Architecture of a CSCI can be modeled through a pTPN where timing
requirements on computational chunks are left unspecified. This pTPN model
can then be refined through the definition of low-level requirements, by associat-
ing each computational chunk with a minimum and a maximum execution time.
It is worth noting that constraints on computation times can be assigned conser-
vatively through estimations based on emulators or by attained experience with

A Tailored V-Model Exploiting the Theory of pTPN 97

reused components and prototypes. However, they can also be assigned without
any measurement on code but only according to a resource allocation policy.
Hence, pTPNs as a formal method can be smoothly integrated within design ac-
tivities; in addition, modeling convenience can be enhanced by considering the
equivalent timeline schema.

Referring to the example, Fig.4 and Fig.5 show the timeline and the pTPN
model, respectively, pertaining the Software Design of the tracker CSCI. Simu-
lation and analysis of the pTPN specification model is employed in the architec-
tural validation of the task set (Analysis of Resources and Time Requirements,
SD5.2-SW, not shown in Fig.1), supporting tight schedulability analysis and
verification of the correctness of logical sequencing.

Fig. 4. The timeline schema of the Tracker CSCI, composed of four tasks synchronized
by two semaphores. T1 is a periodic task (period 150 ms) for the retrieval of radar data
from Raw Image Processor CSCI. T2 is a periodic task (period 180 ms) for the trans-
mission of track data to the CPU CSCI. T3 is a periodic task (period 240) representing
plot extraction, fusion and Track-while-Scan (TWS) tracking. T4 is a sporadic task
(minimum interarrival time 360 ms) for the management of console commands (i.e.
the request of radar pulse change). T1 releases jobs made of a unique chunk, having
an execution time constrained between 20 and 30 ms and requiring resource cpu with
priority level 0 (low priority numbers correspond to high priority levels). This chunk
is synchronized through semaphore m1 with the unique chunk of T4. The acquisition
(wait) and the release (signal) of a semaphore performed by a chunk are represented
through two circles embracing the rectangle which represents that chunk.

The refined and validated pTPN model enables a disciplined coding of the
CSCI (Software Implementation, SD6-SW, see Fig.6) which relies on conven-
tional primitives of a real-time operating system, as reported in Sect.3.

Verification processes proceed from Module to System Levels through subse-
quent integrations, which may provide a feedback to the corresponding design
activity. Software Implementation (SD6-SW) includes an activity of testing on
single modules (Self Assessment of the Software Module, SD6.3-SW, not shown
in Fig.1), which is aimed at testing single modules within an emulated envi-
ronment. Software Integration (SD7-SW) achieves the integration of CSCIs and
their modules into a software unit, performing self-assessment of both CSCIs
and units, whereas System Integration (SD8) composes units and performs self-
assessment of the system. Transition To Utilization (SD9) comprises tasks that
are required to install a completed system at the intended application site and
to put it into operation. Note that the integration process (SD7-SW and SD8)

98 L. Carnevali, L. Grassi, and E. Vicario

t
0

[1 5 0 , 1 5 0] [0 ,0] [2 0 , 3 0]
{ c p u } : 0{ c p u } : 0

p
1

p
0

t1 t
2

[1 8 0 , 1 8 0] [1 0 , 1 0] [0 ,0]
{ c p u } : 1{ c p u } : 1

ppt
3

t4
t
5

2 3

[1 0 , 2 0]
{ c p u } : 1

t6

[2 4 0 , 2 4 0] [0 , 30] [0 ,0]
{ c p u } : 2

ppt
7

t8 t
95 6

[0 ,0]
{ c p u } : 1

t1 0

p
4

m
1

m2

p
7

[3 0 , 4 0]
{ c p u } : 1

t1 1
p

8

[0 ,0] [0 ,0]
{ c p u } : 0{ c p u } : 3

ppt
1 2

t
1 3 t

1 41 0

[4 0 , 4 0]
{ c p u } : 0

t1 5p
9 1 1

[360,]

Fig. 5. The pTPN model for the timeline schema of Fig.4. Transitions t0, t3, t7 and
t12 account for repetitive job releases for tasks T1, T2, T3 and T4, respectively. They
all have an output place, enabling the transition modeling the first chunk of the corre-
sponding task. Subsequent chunks are modeled by chaining the transition representing
the chunk and its input place. Places m1 and m2 model the two semaphores synchro-
nizing the tasks. Transition t1 models the acquisition of semaphore m1 performed by
the first chunk of T1 with null execution time. Its firing enables transition t2, which
represents the nondeterministic execution time of the chunk and also performs release
of the semaphore, having place m1 as an output place. Since priority ceiling emulation
protocol is assumed, in the translation from the timeline schema to the pTPN model,
priority of tasks T3 and T4 is modified at the acquisition of semaphores m2 and m1,
respectively. In particular, immediate transitions t9 and t13 are added to T3 and T4,
respectively, to model priority boost operations. The corresponding de-boost opera-
tions are represented by transitions t11 and t15, which also model signal operations on
semaphores m2 and m1, respectively.

S o f t w a r e A r c h i t e c t u r e

 S D 5 - S W
D e t a i l e d S o f t w a r e
 Des ign

 S o f t w a r e D e s i g n

... .
s t a t i c vo i d t ask_ func t i on {
 wh i le (1) {
 r t _ s e m _ w a i t (& m 1) ;
 r t _ change_p r i o (r t _whoam i () , 1) ;
 / * computa t ion * /
 r t _ s e m _ s i g n a l (& m 1) ;
 r t _ change_p r i o (r t _whoam i () , 3) ;
 r t _ task_wa i t_pe r iod () ;
 }
}
. . .

 SD6-SW
 SW
 Imp lemen ta t i on

Fig. 6. Implementation activity in the development of an avionic radar system

is carried out iteratively, due to the replacement of dummies (such as simula-
tors, prototypes and emulators) with operative software and due to the exchange
of modules/components/units with improved versions or off-the-shelf products:
therefore, during integration, software components and units can be tested in
isolation or within an emulated environment, and integration may be run until
all dummies in the system have been replaced. As described in Sect.4, pTPNs
can be effectively integrated within verification activities, to enable test case
selection and to support test case execution and subsequent evaluation.

A Tailored V-Model Exploiting the Theory of pTPN 99

6 Conclusions

In this paper, we described how preemptive Time Petri Nets can be smoothly
integrated into the life cycle of real-time software, supporting both design and
verification stages. Preemptive Time Petri Nets permit modeling of a task set
subject to temporal constraints, enabling architectural validation of the spec-
ification through its analysis and simulation. The pTPN specification model
drives the implementation stage, supporting a disciplined coding of the task set
architecture, and enables the definition of oracles which can be employed in the
evaluation of time-stamped logs produced during the execution. We pointed out
how coverage criteria can be defined on the symbolic state space of the pTPN
model and motivated the adoption of paths in the state space as test cases,
illustrating a procedure to sensitize them.

For large models, validation of process architecture through state space enu-
meration may become unfeasible due to state space explosion. However, partial
verification limited to a portion of the state space can provide a relevant sup-
port in testing activities. In fact, the pTPN model of the specification can still
be employed as an oracle in failures detection, also providing a level of coverage
with respect to the portion of the state space which has been enumerated. In
addition, the state space, even if uncomplete, can be employed to select critical
behaviors to be tested and sensitized.

Acknowledgments. This research was supported as a part of Iniziativa Soft-
ware FINMECCANICA. We are grateful to R. Loiacono, S. Orsi and P. Viliani
of GA - Firenze, for their precious contribution in filling the gap between theory
and practice.

References

1. RTCA (Radio Technical Commission for Aeronautics). Do-178b, software consid-
erations in airborne systems and equipment certification, http://www.rtca.org/

2. Hessel, A., Larsen, K., Nielsen, B., Pettersson, P., Skou, A.: Time-Optimal Real-
Time Test Case Generation Using Uppaal. In: Petrenko, A., Ulrich, A. (eds.)
FATES 2003. LNCS, vol. 2931, pp. 114–130. Springer, Heidelberg (2004)

3. Larsen, K., Mikucionis, M., Nielsen, B.: Online Testing of Real-Time Systems Using
UPPAAL: Status and Future Work. Perspectives of Model-Based Testing (2005)

4. Krichen, M., Tripakis, S.: Black-Box Conformance Testing for Real-Time Systems.
In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer,
Heidelberg (2004)

5. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed state space analysis of real
time preemptive systems. IEEE Trans.on Soft.Eng. 30(2), 97–111 (2004)

6. Roux, O.H., Lime, D.: Time Petri Nets with Inhibitor Hyperarcs. Formal Semantics
and State Space Computation. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004.
LNCS, vol. 3099, pp. 371–390. Springer, Heidelberg (2004)

7. Larsen, K.G., Cassez, F.: The Impressive Power of Stopwatches. In: Palamidessi,
C. (ed.) CONCUR 2000. LNCS, vol. 1877. Springer, Heidelberg (2000)

http://www.rtca.org/

100 L. Carnevali, L. Grassi, and E. Vicario

8. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Modeling flexible real time systems
with preemptive time petri nets. In: Proceedings of the 15th Euromicro Conference
on Real-Time Systems (ECRTS 2003) (2003)

9. Buttazzo, G.: Hard Real-Time Computing Systems. Springer, Heidelberg (2005)
10. Merlin, P., Farber, D.J.: Recoverability of communication protocols. IEEE Trans.on

Communications 24(9) (1976)
11. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems

using time petri nets. IEEE Trans. on Soft. Eng. 17(3) (1991)
12. Penczek, W., Pó�lrola, A.: Specification and Model Checking of Temporal Properties

in Time Petri Nets and Timed Automata. In: Cortadella, J., Reisig, W. (eds.)
ICATPN 2004. LNCS, vol. 3099, pp. 37–76. Springer, Heidelberg (2004)

13. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri
nets. In: Information Processing: proc. of the IFIP congress, vol. 9, pp. 41–46 (1983)

14. Vicario, E.: Static analysis and dynamic steering of time dependent systems using
time petri nets. IEEE Trans. on Soft. Eng. (2001)

15. Berthomieu, B., Lime, D., Roux, O.H., Vernadat, F.: Reachability problems and
abstract state spaces for time petri nets with stopwatches. LAAS Report (2004)

16. Sassoli, L., Vicario, E.: Analysis of real time systems through the oris tool. In:
Proc. of the 3rd Int. Conf. on the Quant. Evaluation of Sys. (QEST) (2006)

17. CENELEC-prEN50128: Railway applications: Sw for railway control and protec-
tion systems (1997)

18. Jard, C., Jéron, T.: Tgv: theory, principles and algorithms, a tool for the automatic
synthesis of conformance test cases for non-deterministic reactive systems. Software
Tools for Technology Transfer (STTT) 6 (2004)

19. Carnevali, L., Sassoli, L., Vicario, E.: Sensitization of symbolic runs in real-time
testing using the oris tool. In: Proc. of the 12th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA) (2007)

20. Carnevali, L., Sassoli, L., Vicario, E.: Casting preemptive time petri nets in the
development life cycle of real-time software. In: Proc. of the 19-th Euromicro Con-
ference on Real-Time Systems (ECRTS) (2007)

21. IEC 62304 International Standard Edition 1.0 Medical device software - Software
life cycle processes (2006)

22. Developing Standard for IT Systems of the Federal Republic of Germany. Lifecycle
Process Model General Directive No. 250. (1997)

Concurrent Program Metrics Drawn by Quasar

Claude Kaiser1, Christophe Pajault1, and Jean-François Pradat-Peyre2

1 CEDRIC - CNAM Paris
292, rue St Martin, F-75003 Paris

{kaiser,pajault}@cnam.fr
2 LIP6 - Université Pierre et Marie Curie

104 avenue du Président Kennedy, F-75016 Paris
peyre@lip6.fr

http://quasar.cnam.fr/

Abstract. Aiming at developing reliable concurrent software, the engi-
neering practice uses appropriate metrics. Our tool Quasar analyses au-
tomatically the concurrent part of programs and produces data reporting
its analysis process. We attempt to use the data as metrics for concur-
rent programming. The first aim of Quasar is the validation of concurrent
code; in addition, the reported data may be relevant to mark the qual-
ity of code, to evaluate different concurrency semantics, to compare the
execution indeterminism of different implementations of a concurrency
pattern and to estimate the scalability of a solution. As a case study we
analyse with Quasar several implementations of a distributed symmetric
non-deterministic rendezvous algorithm. We consider two possible uses
of the collected data for indeterminism estimation and for concurrent
software quality.

1 Concurrent Program Metrics

Metrics are used for program quality control. Following the seminal works of
McCabe in 1976 [15] and Halstead in 1977 [10], several metrics are now available
through specific software engineering tools (such as Telelogic Logiscope, IBM-
Rational tools suite, IPL klockwork). Source code programming style guides
(such as GSS [17], JavaRanch [19]) emphasize qualitative characteristics such as
style, readability, concision, good structure, absence of design and coding errors.

Asynchronous execution of concurrent processes is highly non deterministic.
Thus concurrency introduces temporal dimensions of correctness, i.e., safety (ab-
sence of deadlock or livelock, coherence of shared variables) and liveness (absence
of starvation), which are central concerns in any concurrent design and imple-
mentation. Besides static or dynamic tools used for concurrency correctness,
additional metrics may help to deal with concurrency complexity [5,18], effec-
tive parallelism usage, response time, indeterminism [4], execution behaviour
observability, implementation comparison, scalability of concurrent solutions.

We have developed Quasar, a static analysis tool based on the use of slicing
[20,21] and of model checking [6]. We believe that, besides its initial validation
purpose, this tool can deliver some metrics for concurrency.

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 101–114, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://quasar.cnam.fr/

102 C. Kaiser, C. Pajault, and J.-F. Pradat-Peyre

We base our assumption on the following. A way of evaluating a program code
(with available documentation) consists of giving it to an expert for appraisal.
Of course this is crude, subjective, the expert is more or less competent, may get
tired, makes errors; thus this method has been refined and has led to elaborate
code review techniques. As Quasar also analyses the source code, it proceeds
rather like the expert, systematically trying to get rid of unimportant parts and
to reduce the analysis by means of structural properties or symmetries, finally
focusing on the most crucial part of concurrent code. Quasar produces data,
which reports on this analysis and reduction process and which we attempt to
use as concurrency metrics.

2 Quasar

Quasar is an automatic concurrency analysis tool. It takes as input the applica-
tion source code and uses it to generate and validate a semantic model.

Like any validation method, this one has to confront the explosion in the
number of states which need to be analysed. Therefore the number of states
that Quasar must consider is automatically reduced as soon as possible so far as
the program structure allows it.

The analysis of the program concurrent behaviour is performed in four auto-
matic steps.

1. First, the original text of the program is automatically sliced in order to re-
move parts of the program that are not relevant to the concurrency property
the user wants to check. The sliced program is an executable and smaller pro-
gram, equivalent to the original one for the checked property. This program
will be easier to analyse in the next steps.

2. Second, the sliced program is translated into a concurrency model using a
library of patterns. A pattern is a meta model of coloured Petri net corre-
sponding to a declaration, a statement or an expression. Each pattern defini-
tion is recursive in such a way that its definition may contain one or several
other patterns. The target model mapping the whole sliced program is ob-
tained by replacing each meta-net by its corresponding concrete sub-nets
and by merging all sub-nets. Performing structural reductions, also called
static reductions, on the target model optimises this mapping.

3. In the third step Quasar checks the required property on the target model,
generating a reachability graph. Quasar uses graph reductions such as delta
marking which allow a symbolic storage of states, and a coloured stubborn
sets technique which optimises state based enumeration (model-checking).
These reductions are called dynamic reductions.

4. Finally, if the required property is not verified, Quasar displays the state in
which the application is faulty and a reports a sequence leading to the faulty
state.

A detailed description of this process can be found in [7,8].
The current Quasar version focuses on Ada concurrent programs.

Concurrent Program Metrics Drawn by Quasar 103

Besides the property check, Quasar displays a) the sliced executable program,
b) the number of places and transitions of the coloured Petri net model, c)
reachability graph data, especially the number of graph states, the number of
graph arcs and the number of arcs visited during the graph traversal, the graph
compilation time and the graph searching time for model checking, the size of
the memory used for storing the graph elements, d) the memory size and CPU
time used.

3 Comparing Several Versions of a Concurrent Program

Several implementations of non-deterministic pairing provide static analysis data,
which serve as a basis for their comparison and for an attempt to define metrics.

3.1 Non-deterministic Symmetric Pairing

Non-deterministic pairing occurs in a system when a concurrent process becomes
a candidate to constitute a pair with any other candidate process. The pairing
is said to be symmetrical since candidate partners all behave similarly, i.e. they
all have the same capabilities for sending or receiving partner requests. The
pair is the result of the non-deterministic interaction between two (or more)
candidate partners. Once paired the processes are no longer candidates and
become partners. One of them is chosen to lead the pair interactions: the leader
calls while the other accepts a call (this dissymetry prevents deadlock). The
partnership ends after a while allowing both processes of the pair to return to
the state of possible candidate partners. The absence of candidate partners will
not last forever.

The functionality required is very simple; once two candidates A and B have
been selected for connection, the pairing specification is:

{(A, Partner(A) = nil, Leader(A) = nil)and(B, Partner(B) = nil, Leader(B) = nil)}
Pairing

{(A, Partner(A) = B, Leader(A) = Leader(B))and(B, Partner(B) = A, Leader(B) =
Leader(A))}

The challenge is to carry out a connexion as soon as possible once at least two
processes are candidates. Pairing must concern two and only two processes. No
third process should be allowed to disturb the creation of a single pair and the
notification to each pair member of its partner name.

We consider a distributed system made of a set of at least two asynchronous
non-failing concurrent processes and we propose to examine two algorithms. In
the first one, a candidate process takes advantage of a shared pairing service; in
the second one, it has to send requests to other processes until it finds one which
is also candidate. A more detailed specification, which is outside the scope of
this paper, can be found in [12,13].

3.2 The Different Implementations of Non-deterministic Pairing

We compare several reliable (i.e. deadlock free) solutions corresponding to vari-
ous concurrency features. The main program declares and creates N concurrent

104 C. Kaiser, C. Pajault, and J.-F. Pradat-Peyre

processes and calls each of them to allocate unique Ids. Thus each process starts
accepting a call to grasp its unique Id and then loops forever. Each cycle starts by
a call to the pairing component to get a current partner and performing a peer-
to-peer transaction with it. This partnership is delimited by two rendezvous:
Start Peering and Finish Peering.

Shared agora. In this first solution a meeting place, called the Agora, is known
to all seeking processes that use it as a pairing data container [13]. Implementa-
tions use shared data and shared procedures controlled by semaphores or by a
monitor [11].

The semaphore implementation (AgoraServerPosix) programs explicitly a mu-
tual exclusion and uses the synchronisation technique called “passing the baton”
[2]. It corresponds to the style of concurrency expression allowed by POSIX. We
simulate each semaphore by an Ada protected object.

Several possible monitor based concurrency semantics have been used in the
past and a classification is presented in [3]. Every implementation provides mu-
tual exclusion during the execution of a distinguished sequence (synchronised
method in Java, lock in C#, protected object subprograms in Ada) using a lock
for every object. The semantics differ in the chosen policies for blocking, sig-
nalling and awaking processes. Three kinds of monitor structure are used for
experimentation in this paper.

Three implementations use explicit self-blocking and signalling instructions
and are based on Java style using wait(), notify() and notifyAll() clauses with a
unique waiting queue per encapsulated object (termed synchronized). We simu-
late the Java concurrency structure in Ada [9]. The first implementation (Ago-
raServerJava) emulates a native Java concurrency semantic with its weak fair-
ness which moves awoken threads into a single system queue of ready threads.
This weak semantic requires defensive programming in order to avoid deadlock.
The other two implementations (AgoraServerJavastrong and AgoraServerJavaS-
trongdc) enforce a strong fairness semantic and give precedence to the awoken
threads over other ready threads. In the first one the defensive code has not been
coded although it has been kept in the second despite being useless.

The third monitor structure implemented (AgoraServerAda) uses implicit self-
blocking and signalling [14] as provided by Ada protected objects [16] with entry
barriers and automatic entry re-evaluation. The strong fairness semantic is the
result of the so-called Ada eggshell model for protected objects which gives
precedence to awaken calls over new calls. The requeue statement enables a
request to be processed in several steps, each one associated with an entry call.

Shared remote server. In this second solution, all the seeking processes call
up an additional process which acts as a shared pairing server. Two implementa-
tions (RendezvousServerMonitor and RendezvousServerNested) take advantage
of the Ada rendezvous between tasks. The task of the first one acts as a monitor
structure for its clients while the task of the second one realizes an anonymous
rendezvous which hooks two calling client tasks [12].

Concurrent Program Metrics Drawn by Quasar 105

Distributed cooperation. The third solution [12] is fully distributed and
does not use a common agora or a common server. Each candidate process
consults other processes until it discovers a candidate process and, since the
pairing is symmetrical and non-deterministic, it must also answer requests of
other candidate processes. This behaviour excludes a deadlock situation where all
processes have called the others or where all processes wait for a call. Thus each
process must be non-deterministically either requesting or listening. A requesting
candidate sends only one request at a time (there is no calling concurrency to
manage). A listening process picks and serves its received requests one at a
time (there is no listening concurrency to manage). Each called process must
answer indicating whether it is a candidate or not. The pairing implies that
both partners are candidates and that one is requesting and the other is listening.
Finally the pairing decision is taken by the listening partner (thus no distributed
consensus is required).

The implementation (CooperativeAdaTask) associates each process with a lo-
cal assistant task, which takes advantage of the Ada selective non-deterministic
rendezvous between tasks and which cooperates with other assistant tasks.

Dummy component. This implementation (Dummy) provides a low bound
model with just a shared procedure call which returns a predefined partner name,
the same for all candidates (since this call is superfluous for concurrency, it is
normally sliced. Quasar provides a means for signalling that a statement should
not be sliced). All transactions performed with the fixed predefined partner are
no longer peer-to-peer transactions. This choice maintains a reliable solution.

List of reliable implementations
Monitor like implementations:

AgoraServerAda: Ada protected object
AgoraServerJava: native Java semantic: plus defensive programming
AgoraServerJavaStrong: Java modified for strong fairness
AgoraServerJavaStrongdc: same as above plus defensive programming
AgoraServerPosix: Semaphore solution

Remote server implementations:
RendezvousServerMonitor: classical Ada style
RendezvousServerNested: Ada rendezvous server task

Distributed cooperation:
CooperativeAdaTask: fully distributed

Dummy component:
Dummy: a fixed partnership

3.3 The Verdict Returned by Quasar

All these implementations have been ultimately written in Ada and use Ada
tasks as process structure, declaration and activation. When POSIX semaphores
and Java monitors are concerned, they have been emulated and their emulation
is used instead of Ada concurrency features directly. All implementations have
thus been analysed and proven deadlock free by Quasar. They are available on

106 C. Kaiser, C. Pajault, and J.-F. Pradat-Peyre

the Quasar Website [1]. Previously some, detected as faulty, had been corrected
by adding defensive code (AgoraServerJava and RendezvousServerMonitor).

The first group of data drawn by Quasar concerns the coloured Petri net
model. The sliced Ada program, which contains only concurrency relevant text, is
automatically compiled into its coloured Petri net model. This model is simplified
by structural reductions, which operate on superfluous places or transitions due
to verbose programming or to the automatic generation in the compilation phase.
P/Pr (resp. T /Tr) records the number of places (resp. transitions) in the original
and in the reduced Petri net model.

The second group of data concerns the reachability graph that is built during
the model-checking step. It records the number of states and the number of arcs
visited to check that the required property is not violated. The ratio compares
the sizes of the graphs for two successive values of the number of concurrent
processes.

The last group of data concerns CPU and memory used by Quasar for its
analysis. Execution records the time (in seconds) needed to compile the Petri
net and the time spent in the graph traversal while model checking (recorded as
Comp/Trav).

3.4 Metrics and Insights Derived from the Collected Data

We have tried to obtain some insight from the data recorded from the different
implementations of the pairing component. The results are recorded in Table 1.

Quality of code. The size of the Petri net gives an idea of the conciseness of
code and of the style of programming. It can be used as a quality assessment
metric for the concurrent part of a program, extending the cyclomatic complexity
of functions. Note that the coloured Petri net of a given implementation is the
same for all values N of the number of concurrent processes and that Quasar
performs a static reduction of about 4.

As foreseeable the distributed cooperation is the most complex. Surprisingly
the reduced Petri net of the distributed solution is only twice as large as the
rendezvous server monitor which uses also rendezvous between tasks.

All shared paring service solutions are roughly equivalent. This reflects the
fact that they use the same algorithm. The differences result from the additional
code used for emulation.

The homogeneity of the metrics also reflects the fact that all the examples
have been programmed with the same algorithm and by the same person(s).

Nondeterminism. The reachability graph records all the successive states that
a program execution will visit. It does it for all possible executions of a program.
The lower the number of elements in the graph, the less complex is the program
execution; but also: the lower the number of elements, the less task interleav-
ing. The graph size is thus related both to the execution efficiency and to the
execution indeterminacy.

Again the distributed cooperation is the most complex. Let us compare the
distributed cooperation and the rendezvous server monitor and examine the ratio

Concurrent Program Metrics Drawn by Quasar 107

Table 1. Quasar data collected for pairing with peer to peer transaction

Program name T P /Pr T /Tr #States #Arcs visited Ratio Exec. (s) Space
stored N/N-1 Comp/Trav (Mb)

AgoraServerAda
4

267/70 249/52
4 182 4 369 - 146/0 10.6

5 138 980 147 901 33.8 159/5 12.4
6 5 256 768 5 652 471 38.2 421/368 89.6

AgoraServerJava
4

392/93 372/73
8 292 8 633 - 253/1 10.7

5 312 619 330 480 38.3 549/18 15.1
6 13 140 700 14 027 263 42.4 351/1142 207

Ag.ServerJavaStrong
4

338/88 318/68
6 542 6 729 - 121/0 10.6

5 215 708 224 629 33.4 136/9 13.6
6 8 104 338 8 500 041 37.8 138/389 128

Ag.ServerJavaStrongdc
4

395/100 375/80
8 326 8 565 - 166/0 10.6

5 280 641 291 914 34.1 162/10 14.6
6 9 920 178 10 323 753 35.4 148/686 160

AgoraServerPosix
4

414/89 396/69
162 912 212 221 - 97/12 12.7

5 27 779 147 37 633 949 177 103/4 757 401

RdvServerMonitor
5

329/78 308/57
4 739 4 926 - 139/0 10.6

6 152 218 160 839 32.7 223/5 12.6
7 5 638 789 6 018 940 37.4 148/182 87.2

RdvServerNested
5

238/61 219/42
2 824 3 011 - 98 /0 10.6

6 99 040 107 289 35.6 232/6 11.8
7 3 822 728 4 169 915 38.8 262/177 60.3

CooperativeAdaTasks
7

550/126 519/95
23 266 24 070 - 356/1 10.9

9 2 277 347 2 374 070 98.5 363/177 48.5

Dummy

4

225/51 212/38

108 109 - 99/1 10.5
5 151 153 1.4 107/1 10.5
6 194 197 1.8 107/0 10.5
7 237 241 2.2 97/1 10.5

of the number of arcs visited in the reachability graph; this ratio is about 6 for
3 processes and about 14 for 4 processes.

The shared pairing service solutions show a difference between monitor like
features (in Ada and Java) and low level semaphore programming. This latter
is more complex because the analysis (and the execution) cannot consider that
the critical sections of code embedded by programmed P and V operations of a
mutual exclusion semaphore are really sequential, as it can be supposed when
a monitor is used. Thus the analysis has to consider the interleaving of the
instructions of the critical section instead of considering them as serializable.

The genuine Java like solution has more execution indeterminacy since the
weak fairness semantic creates more process switching possibilities. When using
strong fairness semantic as in AgoraServerJavaStrong, the indeterminacy is at
least 25% less. If the defensive code is kept as in AgoraServerJavaStrongdc, the
indeterminacy is still less than with the regular Java semantic.

Comparison of implementations. The shared pairing service solutions can
be ordered in terms of Petri net or reachability graph sizes. The same order holds
for the Petri net size as for the reachability graph size.

For high-level concurrency structures the best is the RendezvousServerNested
implementation, since it has no shared variables and the information is thus
passed from input parameter to output parameter. The second best is the

108 C. Kaiser, C. Pajault, and J.-F. Pradat-Peyre

Ada protected object implementation, showing the quality of this feature. The
increasing order is:

RendezvousServerNested >AgoraServerAda >RendezvousServerMonitor > Ago-
raServerJavaStrong > AgoraServerJava > CooperativeAdaTask.

Note that being able to compare the different implementations of a concur-
rency pattern can be a useful criterion of choice for automatic code generation.

Scalability. Analysing solutions with different process number provides some
insight into the indeterminacy scalability.

For the shared pairing services, the scale factor is about 35 when they are im-
plemented with high-level concurrency structures. It may be conjectured about
180 for the semaphore implementation. This results probably from the interleav-
ing of the instructions within the critical section.

For the distributed cooperation, the scale factor seems to be near 100.

Comparing with a simpler utilization of the shared component. As
Quasar analyses the global behaviour of programs, not the behaviour of a compo-
nent per se, we wonder whether the comparison of the different implementations
is modified when the component is used differently. Thus the pairing component
has been used in a simpler program where the processes call the pairing compo-
nent only and have no other interactions. The results are available on [1]. The
preceding comparisons remain true. However some anomalies may be observed.

Some indeterminacy anomalies. Since the program with an empty sequence
of process interaction is shorter than the program with a peer-to-peer transac-
tion, which has two additional rendezvous, its Petri net and its reachability
graph should be smaller. This is not the case for some component implementa-
tions (AgoraServerJava, AgoraServerPosix, CooperativeAdaTasks).

Let us examine some possible explanations.
In AgoraServerJava (genuine Java), the weak fairness semantic induces much

process context switching due to the move of released processes into the system
ready queue. When processes are in a peer to peer transaction, they cannot be
in the ready queue and the combinatorics is smaller. Note that this anomaly is
not present when using strong fairness with Java.

For CooperativeAdaTasks, the same effect occurs, there are fewer processes
that are in effective possible competition since at least two of them are already
in peer-to-peer interaction.

For AgoraServerPosix the mutual exclusion is not known by Quasar, thus the
critical section of code is not considered as a unique serializable flow of program
and all its instructions may be interleaved causing very large combinatorics.

4 About Indeterminacy Estimation

We consider now two other possible uses of this data. First we observe how they
evolve when a component is combined with other concurrency features. Second
we examine a possible estimation of software quality.

Concurrent Program Metrics Drawn by Quasar 109

4.1 Program Code Incrementations

We have analysed two sets of programs with 3 processes calling a pairing com-
ponent, one using the Ada protected object implementation (AgoraServerAda),
the other using the dummy implementation (Dummy). Each set starts with a
program in which the processes repeatedly get a partner and have no other in-
teraction with it. Each subsequent program of the set is built by adding a new
protected object or a new rendezvous used by the partner. This provides data
for insights on program code implementation. The results are available on the
Quasar website [1].

As the Petri net model is built gradually, adding a pattern for each feature,
we may expect that the original and reduced Petri net sizes reflect this additive
structure. We inspect the data to detect whether the indeterminacy variation
may be somehow predictable, although model checking evolution is not linear,
even in such a simple case.

The set of data collected by Quasar are displayed in [1] in Tables 3, 4 and 5.
The latter table presents the results when Quasar is used without setting the
usual static or dynamic reductions (also in this paper in Table 2).

Adding a protected object causes an almost fixed Petri net growth: it adds
about 24 places and 22 transitions to the original net, about 7 places and 4
transitions to the reduced net. The non reduced reachability graph extension
shows in both cases an extension due to an additional indeterminism: tasks
are either before the call to the protected object or after the call. The size
of the ultimately reduced reachability graph does not necessarily follow this
augmentation, thanks to dynamic reductions performed during its construction.

Adding a rendezvous also causes some fixed Petri net extension with again two
situations: the first rendezvous introduction adds 37 places and 36 transitions to
the original net, 8 places and 7 transitions to the reduced net, while the other
extensions add only 20 places and 19 transitions to the original net, 4 places and
3 transitions to the reduced net. This difference can be explained by the fact that
in the last cases some places are shared between different rendezvous patterns
while this is not possible in the first case (which contains a unique rendezvous).

This underlines the difficulty of evaluating the complexity of a program through
the size of the corresponding Petri net or through the size of the reachability
graph of the model.

Firstly, the Petri net size cannot be easily predicted since the Petri net is
not generated by a simple juxtaposition of patterns; in fact, patterns are meta
models of Petri nets from which concrete subnets are derived recursively and
some of these subnet places are merged to provide the final net. Predicting a
Petri net size is therefore as imprecise as predicting the size of the code generated
by an optimizer compiler.

Secondly, model checking is highly combinatorial and is not a process de-
composable into separate parts. Thus the number of states, and therefore the
indeterminacy, grows exponentially and depends on the number of tasks, syn-
chronisation points, statements, . . .

110 C. Kaiser, C. Pajault, and J.-F. Pradat-Peyre

Finally, estimating the metrics of a concurrent program from the metrics
defined for its components, as can be done for sequential code, is still an open
problem.

4.2 The Reduction Ability as a Quality Factor

Quasar can be used without setting the static or dynamic reductions. This al-
lows another examination of a concurrent program, although limited because of
the huge size of the graph without reductions. Let us do this analysis for the pre-
ceding programs. Results are displayed in Table 2 and summarized by Figure 1.
They display high reduction factors, especially when the code contains few pro-
cess interactions and is almost parallel. The reductions operating on the shared
procedure component produce a ratio of at least 690 for static reduction, and
of at least 118 108 for static followed by dynamic reduction. The respective ra-
tios for the protected object component are 188 and 5 137. Let us explain how
Quasar proceeds.

0

100

200

300

400

500

600

1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

nu
m

be
r

of
 p

la
ce

s
an

d
tr

an
si

tio
ns

number of states and arcs

xx_dummy3
s1_dummy3
s2_dummy3
s3_dummy3

dummy3

t1_dummy3
t2_dummy3

s1_agoraserverada3
s2_agoraserverada3
s3_agoraserverada3

t0_agoraserverada3
t1_agoraserverada3
t2_agoraserverada3
xs_agoraserverada3

no reductions

dynamic reductions

static & dynamic reductions
static reductions

Fig. 1. Graph summarizing the different reductions performed by Quasar

When process code includes sequences of statements which are serializable (in
this case their behaviour is easily understandable), Quasar reduces the size of
the Petri net model since these serializable sequences of actions are detected and
replaced by equivalent atomic actions. We can observe this on data provided: the
simpler the sequences of actions performed by tasks, the higher the structural
(static) reduction ratio.

Concurrent Program Metrics Drawn by Quasar 111

Table 2. Quasar data with different kind of reductions

Different contincrementations P ratio T ratio #States stored ratio #Arcs visited ratio

Dummy component with a shared procedure

xx Dummy3 (0 RV, 0 PO)
no reduction 168 - 157 - 9 608 380 - 37 388 544 -
static reduction only 37 4.5 26 6 8 548 1124 28 758 1 300
dynamic reduction only 168 - 157 - 303 31 711 303 123 395
static + dynamic reduction 37 4.5 26 6 29 331 323 29 1 289 260

s1 Dummy3 (0 RV, 1 PO)
no reduction 192 - 179 - 16 062 612 - 62 491 204 -
static reduction only 44 4.4 30 6 14 185 1 132 48 147 1 298
dynamic reduction only 192 - 179 - 526 30 537 528 118 355
static + dynamic reduction 44 4.4 30 6 65 247 117 65 961 403

s2 Dummy3 (1 RV, 0 PO)
no reduction 205 - 193 - 13 160 577 - 50 916 986 -
static reduction only 47 4.3 35 5.5 19 081 690 63 071 807
dynamic reduction only 205 - 193 - 632 20 824 633 80 437
static + dynamic reduction 47 4.3 35 5.5 102 129 025 103 494 340

s3 Dummy3 (1 RV, 1 PO)
no reduction 229 - 215 - 19 989 509 - 77 383 894 -
static reduction only 52 4.4 37 5.8 21 861 914 72 483 1 067
dynamic reduction only 229 - 215 - 1 422 14 057 1 430 54 115
static + dynamic reduction 52 4.4 37 5.8 102 195 976 103 751 300

Dummy3 (2 RV, 0 PO)
no reduction 225 - 212 - 13 312 421 - 51 459 540 -
static reduction only 47 4.8 34 6.2 13 053 1 020 42 511 1 210
dynamic reduction only 225 - 212 - 670 19 869 671 76 690
static + dynamic reduction 47 4.8 34 6.2 103 129 247 104 494 803

t1 Dummy3 (2 RV, 1 PO)
no reduction 249 - 234 - 20 166 873 - 78 017 848 -
static reduction only 56 4.4 40 5.8 22 185 909 72 281 1 079
dynamic reduction only 249 - 234 - 1 662 12 134 1 672 46 661
static + dynamic reduction 56 4.4 40 5.8 108 186 730 109 715 760

t2 Dummy3 (3 RV,0 PO)
no reduction 245 - 231 - 13 464 265 - 52 002 094 -
static reduction only 55 4.5 41 5.6 19 705 683 64 607 805
dynamic reduction only 245 - 231 - 708 19 017 709 73 346
static + dynamic reduction 55 4.5 41 5.6 114 118 108 115 452 192

AgoraServerAda Ada protected object implementation

xs AgoraServerAda3 (0 RV, 0 PO)
no reduction 212 - 196 - 17 316 336 - 64 230 366 -
static reduction only 58 3.7 42 4.7 91 878 188 268 874 239
dynamic reduction only 212 - 196 - 13 534 1 279 13 669 4 699
static + dynamic reduction 58 3.7 42 4.7 3 279 5 281 3 414 18 814

s1 AgoraServerAda3 (0 RV, 1 PO)
no reduction 236 - 218 - 72 406 616 - 273 741 102 -
static reduction only 65 3.6 46 4.7 182 484 397 561 181 488
dynamic reduction only 236 - 218 - 57 282 1 264 58 351 4 691
static + dynamic reduction 65 3.6 46 4.7 3 766 19 226 3 901 70 172

s2 AgoraServerAda3 (1 RV, 0 PO)
no reduction 249 - 232 - 23 798 499 - 88 896 730 -
static reduction only 68 3.7 51 4.5 75 223 316 218 483 407
dynamic reduction only 249 - 232 - 16 342 1 456 16 503 5 387
static + dynamic reduction 68 3.7 51 4.5 4 208 5 656 4 369 20 347

s3 AgoraServerAda3 (1 RV, 1 PO)
no reduction 273 - 254 - 65 691 467 - 247 715 698 -
static reduction only 73 3.7 53 4.8 123 451 532 369 703 670
dynamic reduction only 273 - 254 - 53 720 1 223 54 567 4 540
static + dynamic reduction 73 3.7 53 4.8 4 416 14 876 4 577 54 122

AgoraServerAda3 (2 RV, 0 PO)
no reduction 267 - 249 - 24 563 347 - 91 637 360 -
static reduction only 72 3.7 54 4.6 77 077 319 222 947 411
dynamic reduction only 267 - 249 - 17 980 1 366 18 167 5 044
static + dynamic reduction 72 3.7 54 4.6 4 572 5 373 4 759 19 256

t1 AgoraServerAda3 (2 RV, 1 PO)
no reduction 293 - 273 - 66 789 871 - 251 631 984 -
static reduction only 77 3.8 56 4.9 125 593 532 374 887 671
dynamic reduction only 293 - 273 - 56 494 1 182 57 391 4 385
static + dynamic reduction 77 3.8 56 4.9 4 780 13 973 4 967 50 661

t2 AgoraServerAda3 (3 RV,0 PO)
no reduction 287 - 268 - 25 355 511 - 94 456 846 -
static reduction only 76 3.8 57 4.7 78 931 321 227 411 415
dynamic reduction only 287 - 268 - 19 722 1 286 19 935 4 738
static + dynamic reduction 76 3.8 57 4.7 4 936 5 137 5 149 18 345

112 C. Kaiser, C. Pajault, and J.-F. Pradat-Peyre

When performing dynamic reductions (reductions performed during the build-
ing of the reachability graph), Quasar tries to detect independent behaviours
and, depending on some conditions, reduces the number of states and arcs that
have to be built and explored (without altering the true value of the analysed
property); thus the more independent the processes are (and consequently the
more understandable the program) the higher the dynamic reduction ratio is.
This is the case for the Dummy component. Remember that its shared procedure
has no effect on concurrency and was prevented from being sliced. Consequently
the shared procedure is suppressed by any later reduction. In xx Dummy (no
additional rendezvous, no protected object) the remaining code is parallel and
is analysed with 29 states only (with 9 million states without reduction, this
corresponds to a reduction factor of over 300 000).

Many reductions performed by Quasar are favoured by the presence in the
code of purely parallel structure and symmetries, by high-level synchronisation
structures (for example the monitor concept), by code structuring (for example
paradigm and pattern use), evidence and clarity of code. These code properties,
which are required engineering practices when reliable code is needed, also have
a positive side effect on concurrency analysis.

As all reductions performed by Quasar aim to concentrate the analysis to the
genuine part of synchronisation which is involved in the property examined, the
ability of a program to be strongly reduced by Quasar may be considered as a
credible mark of its code readability and concurrency quality.

5 Conclusion

We have compared several implementations of a concurrent non-deterministic
rendezvous algorithm. Data provided by their static analysis with Quasar have
enabled us to:

– Verify whether a concurrency property, as absence of deadlock, holds,
– Give insights into the quality of the concurrent code,
– Provide a metrics for execution indeterminacy,
– Compare different implementations of a given concurrent pattern,
– Give an idea of the scalability evolution of a given implementation,
– Consider estimations for compound programs,
– Attempt to use the reductions performed as quality indicators.

All the programs and the data collected by their Quasar analysis are available
on the Quasar website [1].

We envisage creating an extension to use programmers’ assumptions of critical
section of statements or of serialization of statements (similar to writer sequence
and reader sequence). Quasar may benefit from these assumptions and verify
them a posteriori. The slicing phase may also be extended to automatically
generate causality time stamps and to use them at run-time to perform dynamic
testing as in [22] as a complement to the static code analysis performed by
Quasar.

Concurrent Program Metrics Drawn by Quasar 113

From this analysis we can feedback some guidelines for reliable concurrent
program design. (1) A high level language derives benefit from its large grain of
mutual exclusion access. (2) A monitor based structure controlled by assertions
is a good way of improving determinism. (3) Strong fairness semantic facilitates
reliability. Moreover weak fairness requires defensive programming to counterbal-
ance this weakness and to provide reliability. (4) Using concurrency paradigms
rather than ad hoc concurrency code helps to provide code that is easier to
understand and to observe.

Acknowledgments

Olivier Alzeari, Sami Evangelista, Claude Kaiser, Christophe Pajault, Jean-
François Pradat-Peyre and Pierre Rousseau contributed to the present version
of Quasar. We thank the 5 anonymous reviewers for their precious advice.

References

1. Quasar website, http://quasar.cnam.fr/files/concurrency papers.html
2. Andrews, G.R.: Concurrent programming: principles and practice. Benjamin-

Cummings Publishing Co. Inc., USA (1991)
3. Buhr, P.A., Fortier, M., Coffin, M.H.: Monitor classification. ACM Comput.

Surv. 27(1), 63–107 (1995)
4. Cha, S., Chung, I.S., Kwon, Y.R.: Complexity measures for concurrent programs

based on information-theoretic metrics. Inf. Proc. Lett. 46(1), 43–50 (1993)
5. Chung, C.-M., Shih, T.K., Wang, Y.-H., Lin, W.-C., Kou, Y.-F.: Task decom-

position testing and metrics for concurrent programs. In: Proc. of the 7th Int.
Symposium on Software Reliability Engineering (1996)

6. Peled, D., Clarke, E., Grumberg, O.: Model Checking. MIT Press, Cambridge
(1999)

7. Evangelista, S., Kaiser, C., Pradat-Peyre, J.-F., Rousseau, P.: Quasar: A New Tool
for Concurrent Ada Programs Analysis. In: Rosen, J.-P., Strohmeier, A. (eds.)
Ada-Europe 2003. LNCS, vol. 2655, pp. 168–181. Springer, Heidelberg (2003)

8. Evangelista, S., Kaiser, C., Pradat-Peyre, J.F., Rousseau, P.: Verifying linear time
temporal logic properties of concurrent ada programs with quasar. In: Proc. of the
2003 Annual ACM Int. Conf. on Ada (SIGAda 2003), pp. 17–24 (2003)

9. Evangelista, S., Kaiser, C., Pradat-Peyre, J.-F., Rousseau, P.: Comparing Java,
C# and Ada monitors queuing policies: a case study and its Ada refinement. Ada
Letters XXVI(2), 23–37 (2006)

10. Halstead, M.H.: Elements of Software Science. Operating and programming sys-
tems series. Elsevier Science Inc., New York (1977)

11. Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun.
ACM 17(10), 549–557 (1974)

12. Kaiser, C., Pajault, C., Pradat-Peyre, J.-F.: Modelling remote concurrency with
Ada. Case study of symmetric non-deterministic rendez-vous. In: Abdennahder,
N., Kordon, F. (eds.) Ada-Europe 2007. LNCS, vol. 4498, pp. 192–207. Springer,
Heidelberg (2007)

13. Kaiser, C., Pradat-Peyre, J.F.: Chameneos, a concurrency game for Java, Ada and
others. In: Int. Conf. ACS/IEEE AICCSA 2003 (2003)

http://quasar.cnam.fr/files/concurrency_papers.html

114 C. Kaiser, C. Pajault, and J.-F. Pradat-Peyre

14. Kessels, J.L.W.: An alternative to event queues for synchronization in monitors.
Commun. ACM 20(7), 500–503 (1977)

15. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineer-
ing 2, 308–320 (1976)

16. Brukardt, R., Tucker Taft, S., Duff, R.A., Plödereder, E.: Consolidated Ada Ref-
erence Manual. Language and Standard Libraries. LNCS, vol. 2219. Springer, Hei-
delberg (2001)

17. Geotechnical Software Services. Java programming style guidelines (2007)
18. Shatz, S.M.: Towards complexity metrics for Ada tasking. IEEE Trans. on Softw.

Eng. 14(8), 1122–1127 (1988)
19. JavaRanch Project standards. Java programming style guide (2007)
20. Tip, F.: A survey of program slicing techniques. Journal of programming lan-

guages 3, 121–189 (1995)
21. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.

SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)
22. Yu, Y., Rodeheffer, T., Chen, W.: Racetrack: efficient detection of data race con-

ditions via adaptive tracking. ACM SIGOPS OSR 39(5), 221–234 (2005)

A Comparison of the Object-Oriented Features

of Ada 2005 and JavaTM

Benjamin M. Brosgol

AdaCore; 104 Fifth Ave., New York NY 10011 USA
brosgol@adacore.com

Abstract. Ada 2005 and Java offer comparable Object-Oriented Pro-
gramming (“OOP”) support, but exhibit significant differences in both
their general philosophies and their specific features. Each language allows
the programmer to define class inheritance hierarchies (including a limited
form of multiple inheritance through “interfaces”) and to employ encap-
sulation, polymorphism, and dynamic binding. Whereas OOP forms the
foundation of Java’s semantic model, OOP in Ada is largely orthogonal to
the rest of the language. In Java it is difficult to avoid using OOP; in Ada
OOP is brought in only when explicitly indicated in the program. Java
is a “pure” OO language in the style of Smalltalk, with implicit pointers
and implementation-provided garbage collection. Ada is a methodology-
neutral OO language in the manner of C++, with explicit pointers and
program-specified storage reclamation. Java uses OOP to capture the
functionality of exception handling, multi-threading, enumeration types,
and other facilities that are not necessarily related to object orientation.
Ada supplies specific features for such functionality, independent of its OO
model. Java is oriented towards manipulating dynamic data structures.
Ada offers more opportunities for optimization and run-time efficiency,
and greater flexibility in the choice of programming styles.

1 Introduction

Ada [1] and Java [2] both offer comprehensive support for Object-Oriented soft-
ware development, but through rather different approaches and, perhaps confus-
ingly, at times using the same terms or syntactic forms with different meanings.
This paper contrasts the two languages’ OO facilities from the perspectives of
semantics, expressiveness/style, and efficiency. It is a major update to [3], taking
into account the new facilities in both Ada 2005 and Java 1.5.

2 Object and Class

Ada and Java differ in several fundamental ways with respect to their support
for Object-Oriented Programming (OOP):

• The role of the class construct
• Whether pointers are implicit or explicit
• Whether automatic storage reclamation (“garbage collection”) is provided

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 115–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

116 B.M. Brosgol

Java’s class construct serves multiple purposes, as illustrated by the three
occurrences of the class name in the following example:

class Fum{
Fum f = new Fum();
...
}

The class name denotes:
• a module for defining the members of the class (e.g. methods, fields),
• a data type for references to instances of that class or any of its subclasses,

and
• a constructor for instances of that specific class

Java lacks an explicit pointer facility but instead is “reference-based”: declaring
a variable of class Fum reserves space only for a reference to an object. The
reference, null by default, can designate an allocated instance from class Fum or
from any of its subclasses. Garbage collection is provided.

Ada supplies separate features — the package, the tagged type, and the stan-
dard function facility — to capture the several purposes of a Java class name. A
Java class thus generally corresponds to an Ada package whose specification im-
mediately declares a tagged type. Since Ada is a traditional stack-based language
where references (access values) need to be explicit, an Ada package declaring a
tagged type T will generally declare an access-to-T’Class type. A function (pos-
sibly parameterized) delivering a value of type T corresponds to a general Java
constructor. In simple situations a no-arg constructor may be modeled by default
initializations for fields in the tagged type, and a constructor with arguments
can sometimes be modeled by discriminants to the tagged type.

An Ada implementation is permitted but not required to supply garbage
collection, and thus the application program generally needs to attend to storage
reclamation through unchecked deallocation, storage pools, or controlled types.

Java uses traditional OOP method invocation syntax: an instance method foo
from class Bar is invoked via ref.foo(parameters) where ref is a (non-null)
reference to an object of class Bar or any of its subclasses; ref is passed as
an implicit parameter named this. Ada 2005 allows the same syntax, but the
target of the operation corresponds to an explicit formal parameter (rather than
an implicit this parameter as in Java).

An Ada tagged type has data components only, and these components are al-
ways per-instance. Java allows a per-instance field to be declared final (meaning
that it is a constant), whereas in Ada a record component other than a discrim-
inant is always a variable rather than a constant.

Both languages allow setting a default value for a field/component.
A Java instance method takes an implicit parameter, this, which is an object

reference. The corresponding Ada construct is a primitive subprogram taking an
explicit parameter of the tagged type; a parameter of a tagged type is passed by
reference. A Java static data member (“class variable”) or static method (“class
method”) is modeled in Ada by a variable or subprogram declared in the same
package as the tagged type.

A Comparison of the Object-Oriented Features of Ada 2005 and JavaTM 117

The languages’ different philosophies towards pointers lead to different trade-
offs. In Java, the implementation of objects (including arrays) through implicit
references, and the existence of automatic storage reclamation, offer dynamic
flexibility and notational succinctness, and free the programmer from the error-
prone task of explicitly deallocating storage.1 However, these same properties
prevent Java from being used as a systems programming language. There is no
way in Java to define a type that directly models, say, a data structure compris-
ing an integer, a sequence of characters, and some bit flags, with each field at a
particular offset. Instead, one must define the data structure in another language
and then resort to native methods to access the components.

In Ada the choice of indirection in data structure representation is always
explicit in the program. If one declares a String, then the array’s storage is
reserved directly as part of the elaboration of the declaration. The benefits are
flexibility of style (the programmer, not the language, decides when indirection
will be used), and run-time efficiency both in data space and time. Ada’s dis-
criminant facility allows defining a parameterized type with declaration-time
control over size (number of elements in a component that is an array) and
shape (which variant is present). Java has no such mechanism. The drawbacks
to Ada’s approach are some notational overhead to declare the necessary access
types, run-time implementation complexity to deal with issues such as functions
returning values of “unconstrained” types, and the need for the programmer to
take care of dynamic storage management.

Both Java and Ada support abstract classes and abstract methods for such
classes. The Ada terminology for these concepts is abstract type and abstract
operation. In both languages an abstract class with abstract methods is to be
completed when extended by a non-abstract class. An abstract class in Java
can be used to work around Java’s omission of a facility for passing methods as
parameters, i.e., what in other languages would be called a pointer to a function.

3 Encapsulation and Visibility

3.1 Access Control

Both Java and Ada have mechanisms that enforce encapsulation; i.e., that con-
trol the access to declarations so that only those parts of the program with a
“need to know” may reference the declared entities. Java accomplishes this with
an access control modifier that accompanies a class or any of its members.

• A class may be declared public, in which case its name is accessible any-
where its containing package is accessible. If a class is not specified as public,
then it is accessible only from within the same package.

• A member is only accessible where its class is accessible, and an access control
modifier may impose further restrictions.

◦ A public member has the same accessibility as its containing class.
1 Garbage collection does not prevent storage leaks; e.g. an infinite loop may add a

new element to a list at each iteration.

118 B.M. Brosgol

◦ A protected member is accessible to code in the same package, and also
to subclasses.

◦ A private member is accessible only to code in the same class.
◦ If no access control modifier is supplied, then the effect is known as

“package” accessibility: the member is accessible only to code in the
same package.

The location of a declaration in an Ada package (visible part, private part,
body) models the accessibility of the corresponding method or static field in
Java (public, protected, and private, respectively). There is no direct Ada analog
to Java’s “package” accessibility. Moreover, modeling a Java class that contains
a private per-instance data member in Ada requires some circumlocution: a
tagged private type with a component that is an access value to an incomplete
type whose full declaration is in the package body.

Ada’s subtype facility provides a convenient way to show a program’s intent;
e.g.:

subtype SSN is String;

Lacking such a mechanism, Java requires defining a new class:

class SSN{ String s; }

but that induces run-time overhead; creating an SSN involves allocating not just
the String object but also the SSN that contains a reference to the String.

3.2 “Final” Entities

Java allows the programmer to specify an entity as final, implying that its
properties are frozen at the point of declaration. If a per-instance method in a
class is declared final, then each subclass inherits the method’s implementation
and is not allowed to override it. (The application of final to a static method
makes no sense semantically, since static methods are not inherited, but is per-
mitted.) If a class itself is declared final, then no subclasses of it can be declared.
If a variable is declared final, then it is a constant after its initialization.

The application of final to a method or class enables certain optimizations;
for example, the invocation of a final method can be compiled with static rather
than dynamic binding, since the called method is the same for each class in the
hierarchy.

Java’s notion of “final” has several analogs in Ada’s semantic model. A final
static variable directly corresponds to an Ada constant. A “blank final” instance
variable corresponds to an Ada discriminant, which is set to a constant value
when an object is created. A final method (which ensures that the same code is
used for all classes in the hierarchy) somewhat corresponds to an Ada subpro-
gram taking a class-wide parameter.

3.3 Separation of Interface and Implementation

Perhaps surprisingly, given the otherwise careful attention paid to encapsulation,
Java does not separate a class into a specification and a body. Rather, the method

A Comparison of the Object-Oriented Features of Ada 2005 and JavaTM 119

bodies occur physically within the class declaration, thus revealing to the user
of the class more information than is needed, and imposing recompilation costs
when, for example, a method implementation changes. If one wants to make
available the source code for a set of classes that reveals only the methods’
signatures (and not their implementation) than a tool is needed to extract this
from the compilable units.

Ada enforces a strict separation between a unit’s specification and its body;
the “package specs” that comprise a system’s interface are legitimate compilation
units and do not contain algorithmic code. The latter forms the implementation
and is found in the package bodies. The price for the specification/body sepa-
ration is some additional complexity in language semantics. For example, Ada
is susceptible to “access before elaboration” problems, a sometimes subtle run-
time error in which a subprogram is invoked before its body has been elaborated.
Java allows forward references to classes and methods and thus the concept of
“access before elaboration” does not arise. However, Java’s rules for class and
object initialization involve a variety of syntactic and semantic subtleties (static
initializers, initialization blocks, class loading) and, although deterministic, are
the source of traps and pitfalls, especially for interdependent classes.

3.4 Parameter Protection

Ada provides parameter modes (in, out, in out) that control whether the actual
parameter may be updated by the called subprogram. Thus the programmer
knows by reading a subprogram’s specification whether its parameters may be
updated.

Ada’s access parameter mechanism provides a somewhat analogous facility,
with the Ada 2005 access constant parameter indicating that the designated
object may not be assigned via the formal parameter.

Java has no such mechanism: a method’s implementation has read/write ac-
cess to the objects denoted by its reference-type parameters. Thus in Java there
is no way to tell from a method’s signature whether it updates either the object
denoted by its this parameter or the objects denoted by any other reference-type
formal parameters. Research is underway on annotations to mark a formal pa-
rameter as “readonly” (yielding the same effect as Ada 2005’s access constant
parameters), e.g. [4]) but these are not in the Java language, and indeed they
raise some semantic issues (e.g., [5]).

Java’s “call by value” semantics implies that a modification to a formal pa-
rameter of a primitive type has no effect on the actual parameter. In order to
update, say, an int, the programmer must either declare a class with an int
member or use an int array with one element. Both styles are clumsier and less
efficient than Ada’s approach with an out, in out, or access parameter.

3.5 Data Abstraction and Type Differentiation

da’s private type facility supports data abstraction: the ability to define a data
type while exposing only the interface and hiding the representation. A variable

120 B.M. Brosgol

of a private type is represented directly, not through a reference, and its operations
are bound statically. Data abstraction in Java is part of the OO model, resulting
in run-time costs for indirection, heap management, and dynamic binding.

A somewhat related facility is the ability to partition data into different types
based on their operations, so that mismatches are caught at compile time. Ada’s
derived type and numeric type features satisfy these goals. Java does not have
an analogous mechanism for its primitive types.

4 Modularization

Java has two main mechanisms for modularization and namespace control: the
package and the class. Ada does not have a direct analog to the Java package;
the way in which compilation unit names are made available to the Ada compiler
is implementation dependent. On the other hand, Java does not have a feature
with the functionality of Ada’s child units, a facility that allows a hierarchical
namespace for compilation units. Inner classes in Java need to be physically
nested within a “top level” class and are analogous to nested packages, not child
packages, in Ada.

In Ada, related “classes” (tagged types) may be defined in the same module
(package). Although a somewhat similar semantic effect may be achieved in Java
by defining static inner classes in an enclosing class, this usage is a bit clumsy
and in practice most “interesting” classes are defined at the top level.

Classes in Java may be interdependent; the implicit reference semantics avoid
what would otherwise be a circularity problem. For example:

class Foo{ Bar b; }
class Bar{ Foo f; }

Modeling such classes was a problem in Ada 95, but the Ada 2005 limited
with mechanism, coupled with a generalization of anonymous access types, pro-
vides the necessary functionality:

limited with Bar Pkg; limited with Foo Pkg;
package Foo Pkg is package Bar Pkg is

type Foo is tagged type Bar is tagged
record record

B : access Bar Pkg.Bar; F : access Foo Pkg.Foo;
end record ; end record;

end Foo Pkg; end Bar Pkg;

5 Inheritance

Java and Ada support class hierarchies based on single inheritance, and also
provide a simple form of multiple inheritance through a mechanism known as

A Comparison of the Object-Oriented Features of Ada 2005 and JavaTM 121

an interface.2 Inheritance in Java is realized through class extension, and in Ada
through type extension coupled with child package visibility semantics.

5.1 Simple Inheritance

In Java, each non-private instance method defined in the superclass is implic-
itly inherited by the subclass, with the superclass’s implementation. The sub-
class may override with its own implementation any of these that the superclass
did not specify as final. The super.member notation is used within an instance
method to reference fields or methods defined for the immediate superclass.
Static methods are not inherited.

If a Java class does not explicitly extend another class, then it implicitly
extends the ultimate ancestral class Object. The Object class allows the user to
define “generic”3 container classes, heterogeneous arrays, and similar constructs.

Ada has no immediate analog to Java’s Object class, although the types
Controlled and Limited Controlled in Ada.Finalization serve this role to
some extent. This absence is not critical, since Ada’s generic facility allows defin-
ing container data structures, and an access value designating a class-wide type
offers heterogeneity. On the other hand, Java’s provision of a “root” class is con-
venient since a number of useful methods are defined there, such as toString().

Ada allows a (primitive) procedure to be declared as null. This is especially
useful for abstract tagged types and interface types, since it is often desirable
to have a simple non-abstract descendant type with a default “no-op” behavior
for some (perhaps all) of the abstract procedures. In Java, the program must
explicitly define a so-called “adapter” class, with empty bodies for the methods,
to get this effect.

Both Java and Ada allow a reference to be viewed as though it designates an
object of a different type in the same class hierarchy. In Java this is known as a
cast, in Ada it is a view conversion to a class-wide type. The semantics is roughly
the same in both languages, with cast/conversion always allowed “towards the
root”, and also permitted “away from the root” but with a run-time check that
the designated object is in the target class or one of its subclasses. Unless the
source type is either a (direct or indirect) ancestor or descendant of the target
type, the cast/conversion is illegal in both languages.

In Java, selecting a member from a cast expression provides static binding
using the reference type of the cast when the member is a field, but dynamic
binding using the type of the designated instance when the member is a method.
Strictly speaking, Ada has the same semantics (for a view conversion to a class-
wide type), but Ada does not allow the same component name to be used in
both a parent record and an extension part, so the issue of static versus dynamic
interpretation of field names does not arise.

2 Ada’s interface feature, introduced in Ada 2005, was heavily influenced by its Java
counterpart.

3 Java 1.5 has introduced a generic mechanism that provides additional functionality;
it is outside the scope of this paper.

122 B.M. Brosgol

A common OOP style is “passing the buck”: the implementation of a method
for a subclass invokes the overridden method from the superclass. Java uses a
special syntax, super.method(...), for this effect, but it applies only to the
immediate superclass. The Ada style is to invoke the desired subprogram on a
view conversion of the parameter to the desired ancestor specific tagged type.
This is generally the immediate ancestor but in general may be at any higher
level.

OOP provides the opportunity to make several kinds of mistakes. Unintended
inheritance occurs when an instance method that is intended to override a su-
perclass method is entered incorrectly, for example by misspelling the method
name. The resulting program is still legal, and the superclass’s method is implic-
itly inherited (rather than overridden), which was not the programmer’s intent.
In the other direction, unintended overriding occurs when an overridable in-
stance method is added to an existing superclass and it has the same signature
as a method already present in some subclass. When the subclass is recompiled,
the previously defined method now overrides the method that was added to the
superclass. This is likely to be an error.

In Java, unintended inheritance can be prevented by prepending the @Override
annotation (added in Java 1.5) to the method signature. There is no language
feature to prevent unintended overriding.

Ada 2005 has introduced syntax to prevent both sorts of errors, since a sub-
program may be specified as overriding or not overriding.

5.2 Multiple Inheritance and Interfaces

Multiple inheritance — the ability to define a class that inherits from more
than one ancestor — is a controversial topic in OO language design. Although
providing expressive power, it also complicates the language semantics and the
compiler implementation. C++ provides direct linguistic support (see [6] and [7]
for arguments pro and con), as do Eiffel and Common Lisp; on the other hand,
Smalltalk and Simula provide only single inheritance.

Java takes an intermediate position. Recognizing the problems associated with
implementation inheritance, Java allows a class to extend only one superclass.
However, Java has a class-like construct known as an interface and allows a class
to inherit from — or, in Java parlance, implement — one or more interfaces.
Thus a user- defined class always extends exactly one superclass, either Object
by default or else a class identified in an extends clause, but may implement an
arbitrary number of interfaces.

Like a class, an interface is a reference type, and it is legal to declare a variable
of an interface type. Like an abstract class, an interface does not allow creation
of instances.

• Each method defined by an interface is implicitly abstract (that is, it lacks
an implementation) and public

• An interface is not allowed to have any static methods
• Each variable in an interface is implicitly static and final (constant)

A Comparison of the Object-Oriented Features of Ada 2005 and JavaTM 123

An interface thus has no implementation and no “state”. When a class imple-
ments an interface, it must provide a “body” for each method declared in the
interface. The instanceof operator may be used to test whether an object is of
a class that implements a particular interface.

Ada 2005’s interface types are similar to the Java mechanism, providing sin-
gle inheritance of implementation and multiple inheritance of specifications. A
tagged type can have a parent that it extends, and one or more interfaces that
it implements. An interface is an abstract type with no components. A non-
abstract type that implements an interface must provide bodies for all inherited
operations other than null procedures.

Ada provides a taxonomy of interfaces that unifies polymorphism and concur-
rency; this unification is a major advance in programming language design. If a
type is declared to be a synchronized interface, it can be implemented either by
a task type or a protected type. Thus an algorithm that uses such an interface
describes an abstraction that can be implemented either with concurrent entities
that have independent threads of control, or with passive data structures pro-
vided with locking and exclusive access. Java’s Runnnable interface is somewhat
similar but not as expressive.

type I1 is interface;
function Retrieve (Obj : I1) return integer is abstract;
procedure Modify (Obj : in out I1) is null;
...
type I2 is interface;
procedure Merge (Obj1, Obj2 : in out I2) is abstract;
...
type Root is tagged record

Value : Integer;
end Root;
type Thing is new Root and I1 and I2 with record

Size : Long_Float;
end record;

The package that contains the declaration of Thing must include declarations for
operations Retrieve and Merge, which are abstract in its ancestors. Procedure
Modify is declared as a null procedure and does not need to be overridden.

In both Java and Ada it is possible to define interfaces that cannot be jointly
implemented. In Java the problem arises because overloading is not allowed
based on method result. Thus there is no class that can implement both of the
following interfaces:

interface I1{ void foo(); }
interface I2{ int foo(); }

In Ada the problem arises when two profiles differ in a formal parameter’s
subtype:

124 B.M. Brosgol

type I1 is interface;
procedure P(I : I1; N : Natural) is abstract;

type I2 is interface;
procedure P(I : I2; N : Integer) is abstract;

The clash is preventable in Ada, since one can adopt the convention that
subprograms for interface types take parameters that are declared with base
types and not subtypes. There is no such straightforward solution in Java, and
incompatible interfaces can thus interfere with reuse and system composition.

5.3 Covariance

Java 1.5 added a feature that is sometimes known in OOP parlance as “covari-
ance”: the result type in an overriding method may be a subclass of the type
that would be used if the method were inherited instead of overridden. As an
example:

class Doctor{ ... }
class Hospital{

Doctor chief(){ ... } // The chief of a Hospital is a Doctor
}
class EyeDoctor extends Doctor{...}
class EyeHospital extends Hospital{

@overriding
EyeDoctor chief(){ ... }
// The chief of an EyeHospital is an EyeDoctor

}

The declaration of EyeHospital.chief() would have been an illegal over-
loading in earlier versions of Java, but it is considered as an overriding method
(emphasized by the annotation) in Java 1.5.

The Ada version of this example would be expressed a bit differently. In-
stead of declaring Chief for Hospital to return Doctor (which would be in-
herited by EyeHospital even if an explicit Chief were declared there to return
an EyeDoctor), the Chief function for Hospital should be declared to return
Doctor’Class. Then it could be overridden for EyeHospital, with result type
still Doctor’Class, but with the returned value now an EyeDoctor. Thus a
class-wide result type has the effect of covariance without the need for a special
rule.

6 Summary of Overloading, Polymorphism and Dynamic
Binding

Java and Ada both allow overloading, but Ada is more general in allowing over-
loading for operator symbols and also overloading of functions based on the
result type.

A Comparison of the Object-Oriented Features of Ada 2005 and JavaTM 125

Polymorphism, the ability of a variable to be in different classes of an in-
heritance hierarchy at different times, is implicit in Java. If p is declared as a
reference to class C, then p can designate an instance of either C or any of its di-
rect or indirect subclasses. In contrast, polymorphism is explicit in Ada, through
a variable of a class-wide type, or access-to-classwide type. In Java a variable of
type Object is completely polymorphic, capable of designating an object from
any class. The closest Ada analog is a variable of an access type whose desig-
nated type is Ada.Finalization.Controlled’Class, which can designate an
object of any type derived from the predefined type Controlled.

Instance method invocation in Java is in general bound dynamically: in a
call p.foo() the version of foo() that is invoked is the one defined by the
class of the object that p designates. Static binding applies, however, in several
situations: an invocation super.method(...); an invocation of a final method;
or an invocation of a private method (from within the class defining the method).
A static method is also bound statically. Ada subprograms calls are in general
bound statically: dynamic binding only occurs when the actual parameter is of
a(n) (access-to) class-wide type T’Class and the called subprogram is a primitive
operation for the tagged type T.

In Java there is an important (but perhaps subtle) difference in the semantics
between an invocation of a method on super versus on any other reference. If p
is a reference to an object of class C, then the invocation p.foo() is dynamically
bound based on the type of the designated object, but super.foo() is statically
resolved to foo() defined for C’s superclass. Confusingly, this.foo() is bound
dynamically, in contrast to super.foo(). The Ada view conversion approach
has more consistent semantics.

In Ada, an object X of a class-wide type T1’Class can be “view converted”
to a specific tagged type T2 that is either a descendant or ancestor of T1, with
a run-time check that X is in T2’Class if T2 is a descendant of T1. If the view
conversion T2(X) is passed as an actual parameter to a primitive operation of T2,
the binding is static, not dynamic. Java lacks an equivalent facility for forcing
static binding. Even if a reference x to a t1 object is cast to type t2, a method
invocation ((t2)x).f() is dynamically bound to the method f() in t1, not the
version in t2. The Ada analog to a Java cast is thus a view conversion to a
class-wide type, not to a specific type.

In Ada it is possible to obtain dynamic binding through access values desig-
nating aliased class-wide variables rather than allocated objects; this avoids the
overhead of heap management. Java has no such mechanism: all objects go on
the heap.

7 User-Controlled Basic Behavior

A number of operations dictate the fundamental behavior for instances of a
data type, including construction/initialization and finalization. Both Java and
Ada allow the author of the type to specify these operations’ availability and
implementation, though with some stylistic and semantic differences.

126 B.M. Brosgol

7.1 Construction/Initialization

A Java class may include one or more constructors; a constructor is similar
to a method but with special syntax and semantics; it is called during object
creation/allocation.

A constructor has the same name as the class and lacks a return type. It may
have a throws clause.4 Java’s overloading rules allow the declaration of multiple
constructors; this is a common style. A constructor is invoked as an effect of
an object allocation, after the object’s instance variables have been set to their
default values and after any explicit initializers have been executed.

An explicit constructor invocation is only permitted as the first statement of
another constructor; the invocation will either specify this (for a constructor
in the same class) or super (for a constructor in the superclass). If the first
statement of a constructor is not an explicit invocation of another constructor,
then an implicit call of the no-arg superclass constructor super() is inserted.
(It is an error if no such constructor is accessible in the superclass.)

A subtle error in Java is to invoke an instance method for a class in a construc-
tor for that class. Since a constructor is called before the explicit initializations
of the instance fields have been performed, there is the risk of the construc-
tor accessing a field and obtaining the language-defined default value (whatever
corresponds to zero for that type) rather than the intended initialized value.

Ada has no immediate analog to Java constructors, but simulates their effect
through functions returning a value of the given type, initialization procedures,
and controlled types. A type derived from Controlled can be provided with an
explicit Initialize procedure that is invoked whenever an object of the type
is created. Controlled types can also be provided with an Adjust procedure,
which is invoked whenever an object of the type is assigned to another. This
corresponds to the actions of a C++ copy constructor. The closest analog to
Adjust in Java is the control over cloning (through the Cloneable interface and
the clone() method inherited from Object).

7.2 Finalization

The root class java.lang.Object supplies a protected method finalize()
that can be overridden to do any resource cleanup required before the object
is garbage collected. For example, if an object contains fields that reference open
files, then these files should be closed when the object is reclaimed, versus waiting
until program termination.

Finalization in Ada differs from Java both stylistically and semantically. Since
Ada does not guarantee garbage collection, finalization is often used in Ada to
obtain type-specific storage management such as reference counts. In Java there
4 Although propagating an exception from a constructor may appear to risk leaving

the new object in an inconsistent state, it would only cause problems in the rare
situation where the constructor had first copied the this reference to a static field.
Programming conventions (deferring such assignments until immediately before re-
turning) would avoid such problems.

A Comparison of the Object-Oriented Features of Ada 2005 and JavaTM 127

is no need for finalize to do storage reclamation. Semantically, Finalize is called
in Ada not only when a controlled object is deallocated but also when it goes out
of scope or is the target of an assignment. Moreover, since the Java language does
not define when garbage collection occurs, a programmer cannot predict exactly
when finalize() will be called, or the order in which finalizers are executed.
In fact, the JVM may exit without garbage collecting all outstanding objects,

Table 1. Comparison of OOP in Ada 2005 and Java

Ada 2005 Java

Class Class as module is package
Class as data template is
(discriminated) tagged type

Combines module and data template

Pointers Explicit (access values) Implicit

Storage reclamation Garbage collection, if provided by
implementation
Controlled type or storage pool
defined by class author
Unchecked deallocation by
application programmer

Implementation-provided garbage
collection (no explicit free)

Instance method invocation subprogram(obj,...)
obj.subprogram(...)

obj.method(...)

Inheritable entity Primitive subprogram for a tagged
type

Non-private, non-final instance
method

Single inheritance A type that is derived from a tagged
type

A class that extends a superclass

Multiple inheritance A type that is derived from a tagged
type and one or more interface types

A class that extends a superclass and
implements one or more interfaces

Polymorphism Explicit through object of (access to)
class-wide type

Implicit for any variable of a class or
interface type

Method binding Static except for primitive operation
invoked on parameter of (access to)
class-wide type

Dynamic except for methods that are
static, final, private, or invoked
on super

Fundamental operations Controlled types (Initialize,
Finalize, Adjust)

Constructors
finalize()
clone
equals()

Encapsulation Placement of entity declaration in a
package (visible part, private part,
body)
Child unit

Access modifier (public,
protected, private, none) for
class member

128 B.M. Brosgol

implying that some finalizers might never be invoked. In brief, finalization in
Java has rather ill-defined semantics; the programmer cannot know when, if at
all, finalize() is invoked on a given object.

A Java object is not necessarily freed immediately after being finalized, since
the finalize()method may have stored its this parameter in an outer variable,
thus “resurrecting” it ([8], p. 114). Nonetheless the JVM invokes finalize()
only once. In Ada, under some circumstances the Finalize procedure will be
invoked automatically several times on the same object.5 The programmer can
attend to such a possibility by implementing Finalize to be “idempotent” (i.e.
applying it multiple times has the same effect as applying it once), for example
by storing a Boolean component in the controlled object that keeps track of
whether finalization has already occurred.

In Java, an exception thrown by finalize() is lost (i.e., not propagated),
despite the fact that the signature for finalize in class Object has a throws
clause. In Ada it is a bounded error for a Finalize procedure to propagate an
exception.

8 Conclusions

As can be seen in the comparison summary (Table 1), both Ada and Java are
bona fide Object-Oriented languages. Java treats object orientation as its central
mission; this brings a number of advantages (consistent integration of features,
safe automatic storage reclamation, dynamic flexibility in data structures) but
also some drawbacks (run-time overhead due to implicit heap usage and manage-
ment, absence of several fundamental data structuring facilities, awkwardness in
applying an OO style to a problem whose essence is process/function-related; im-
plementation challenges in trying to deploy Java in domains requiring real-time
predictability or safety-critical certification). Ada treats object orientation as one
methodology, but not necessarily the only one, that might be appropriate for a
software developer, and hence its OO support complements and supplements a
more traditional set of stack-based “third-generation language” features. For ex-
ample, in many situations simple Ada83-style data encapsulation (Ada private
types) will be sufficient; the full generality of OOP is not needed.

Ada’s advantages include run-time efficiency — a program only incurs heap
management costs if it explicitly uses dynamic allocation — design method neu-
trality, and standardization. On the other hand, Ada induces a heavier notation
and the need for applications to attend to storage management versus relying
on a garbage collector.

Java 1.5 brought some relatively minor enhancements to its OOP support:6

the ability for an overriding method to specify a result type that is a subclass of
5 This will occur when Finalize is first invoked implicitly during assignment to an

object of a non-limited controlled type, and the object subsequently undergoes fi-
nalization ([9], §7.6.1).

6 Templates are a major new feature introduced in Java 1.5 and are based on OOP
semantics, but from a linguistic point of view they offer orthogonal functionality.

A Comparison of the Object-Oriented Features of Ada 2005 and JavaTM 129

the result type of the method that otherwise would have been inherited, and an
annotation to indicate that a method is overriding. In contrast, the Ada 2005
OOP enhancements were significant, including object.subprogram() notation,
interface types, syntax to make explicit a subprogram’s intent as either overriding
or not overriding, and features such as limited with clauses that make it easier
to specify cyclic dependences across modules. With these sorts of improvements,
Ada 2005 offers at least comparable OOP support to Java’s and in some ways
surpasses it.

Acknowledgements

The author is grateful to Ed Schonberg and Bob Duff (AdaCore), and to the
anonymous referees, for their commments and suggestions.

References

1. ISO/IEC JTC1/SC 22/WG 9. Ada Reference Manual – ISO/IEC 8652:2007(E) with
Technical Corrigendum 1 and Amendment 1 – Language and Standard Libraries
(2007)

2. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. Addison-Wesley, Reading (2005)

3. Benjamin, M., Brosgol, A.: Comparison of the Object-Oriented Features of Ada 95
and Java. In: Proc. TRI-Ada 1997. ACM, New York (1997)

4. Tschantz, M.S.: Javari: Adding Reference Immutability to Java. Master’s thesis,
Massachusetts Institute Of Technology (August 2006)

5. Boyland, J.: Why we should not add readonly to Java (yet). In: ECOOP 2005
Workshop FTfJP, vol. 5(5) (June 2006) (special issue)

6. Waldo, J.: The case for multiple inheritance in C++. In: Waldo, J. (ed.) The Evo-
lution of C++, pp. 111–120. MIT Press, Cambridge (1993)

7. Cargill, T.A.: The case against multiple inheritance in C++. In: Waldo, J. (ed.) The
Evolution of C++, pp. 101–110. MIT Press, Cambridge (1993)

8. Flanagan, D.: Java in a Nutshell, 5th edn. O’Reilly & Associates, Sebastopol (2005)
9. ISO/IEC JTC1/SC 22/WG 9. Annotated Ada Reference Manual – ISO/IEC

8652:2007(E) with Technical Corrigendum 1 and Amendment 1 – Language and
Standard Libraries (2007)

A Framework for CFG-Based Static Program

Analysis of Ada Programs

Raul Fechete, Georg Kienesberger, and Johann Blieberger

Institute for Computer-Aided Automation, TU Vienna
Treitlstr. 1-3, A-1040 Vienna, Austria

{fechete,kienes,blieb}@auto.tuwien.ac.at

Abstract. The control flow graph is the basis for many code optimi-
sation and analysis techniques. We introduce a new framework for the
construction of powerful CFG-based representations of arbitrary Ada
programs. The generated data holds extensive information about the
original Ada source, such as visibility, package structure and type defini-
tions and provides means for complete interprocedural analysis. We use
ASIS-for-GNAT as an interface to the Ada environment and extract the
needed information in a single traversal of the provided syntax trees. In
addition, further refinement of the resulting data structures is done.

1 Introduction

Many control and data flow analysis approaches [1,2,3,4,5,6] rely on the repre-
sentation of a program in form of a control flow graph (CFG) [7].

We introduce a framework that generates CFG-based data structures holding
comprehensive information about the original Ada source. The packages and
CFGs of the input program are structured in trees according to their hierarchical
organisation. We also use trees to represent complex expressions, allowing an
in-depth analysis of the control flow. Types and variables are saved together
with their complete definitions, thereby providing means to track them over
several inheritance levels. Furthermore, we facilitate interprocedural analysis by
referencing the target CFG in each subprogram call.

During the transformation, we extract the needed information from the ab-
stract syntax trees (AST) [7] provided by ASIS-for-GNAT. Afterwards, in a post
transformation phase, we further refine the resulting structures.

2 The Library

We designed Ast2Cfg as a library that uses ASIS [8] to get the information that
is needed to build the CFG for a given Ada program. In fact we use the ASIS-
for-GNAT implementation of the ASIS standard. Therefore, the so-called tree
files for an Ada program, which are generated by GNAT [9], are used as input.
Then ASIS provides us with the abstract syntax tree of the input program.
During the traversal of this AST, which is done using depth first search (DFS)

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 130–143, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Framework for CFG-Based Static Program Analysis of Ada Programs 131

with Ada.Text IO; use Ada.Text IO; with Ast2Cfg.Pkgs; use Ast2Cfg.Pkgs;
with Ast2Cfg.Control; with Ast2Cfg.Flow World; with Ast2Cfg.Output;

procedure Run is
World: Ast2Cfg.Flow World.World Object Ptr;
Pkgs: Pkg Class Ptr List.Object;
Pkg: Pkg Class Ptr := null;

begin
-- Initialisations
Ast2Cfg.Output.Set Level(Ast2Cfg.Output.Warning);
Ast2Cfg.Control.Init;

-- Fill the World with flow data
World := Ast2Cfg.Control.Generate;

-- Output the name of all top-level packages
Pkgs := Ast2Cfg.Flow World.Get Pkgs(World.all);
Pkg Class Ptr List.Reset(Pkgs);
while Pkg Class Ptr List.Has Next(Pkgs) loop

Pkg Class Ptr List.Get Next(Pkgs, Pkg);
Put Line(Get Name(Pkg.all));

end loop;

-- Finalisation
Ast2Cfg.Control.Final;

end Run;

Fig. 1. A small application using Ast2Cfg

[10], we simultaneously build the corresponding CFG. Next, right after some
refinement, the control flow information is made available to the library user in
form of a single object, the flow world. Figure 1 shows a small application that
uses Ast2Cfg to output the name of all top-level packages of the adt-files in the
current directory.

We already developed a simple program, called Cfg2Dot, that uses the Ast2Cfg
library to output the CFG for a program in dot graphics format [11]. Ast2Cfg,
Cfg2Dot and additional documentation [12] are available from http://cfg.w3x.org.

2.1 The World Object

All information gathered during the transformation phase is saved in an object
of type World Object. It contains a list of package objects (Pkg Object) that
correspond to the top-level packages of the analysed Ada program.
Pkg Object is derived from the abstract Flow Object. The same applies to

CFG Object, that represents a control flow, and Node Object, which is used
by CFG Object. Also, as described in detail below, each of these types has a
series of subclasses such that a more fine-grained classification is possible. Where
necessary, the derived types are also grouped into specifications and bodies.
Figure 2 shows an overview of the class hierarchy where rectangles with dashed
lines represent abstract types and those with solid lines concrete ones.

Since in Ada subprograms and packages may be declared within each other
we have to keep track of such nesting relationships. Every flow object has a list
of predecessors and successors. While node objects use those lists to build up a
CFG, package and CFG objects use them to represent the nesting structure we

132 R. Fechete, G. Kienesberger, and J. Blieberger

Node Object

Flow Object

...

CFG Object

Body Object Spec Object

...
...

Body Object

Pkg Object

Spec Object

...
...

Fig. 2. An overview of the class hierarchy for the flow types

call Pkg/CFG tree. In other words, if B is declared within A, B is a successor of
A and A a predecessor of B.

Another important tree structure is the parameter tree that we generate when-
ever an expression is encountered. A parameter tree is saved directly in the flow
object that contains the expression and holds information on the used variables,
functions, etc. and their nesting. As a result a parameter tree is a complete hier-
archical representation of an expression, allowing the user to implement powerful
static analysis algorithms.

Figure 3 shows the Cfg2Dot output for the single assignment statement
C(1) := Outer(A, Inner(X => B)); where A and B are variables, C is an array
and Inner and Outer are functions. The CFG consists of a single assignment
node with two parameter trees, highlighted by dashed lines: one for the part to
the left of the assignment operator and one for the right hand side. Every level
in the parameter tree represents a nesting level in the underlying expression.

Flow Object. Every flow object has a unique id which may be tested for
equality. In addition, flow objects have names. However, for node objects which
are derived from flow objects, the name is empty in most cases. Furthermore, lists
of variable declarations, generic formal parameters and renamings are available.
Finally, we also store a list of with, use and use type clauses in every flow
object.

CFG Types. CFG objects use node objects to represent the control flow infor-
mation of different Ada entities like subprograms, blocks, initialisation sequences
etc. Therefore in every CFG object we save a reference to the root node, the
total number of nodes (without those in parameter trees) and, since many CFG
objects represent subprograms, a list of parameters.
CFG Object itself is declared abstract, hence all actual CFG objects have to

be of one of the more specific, concrete subtypes. In the simplest case a subpro-
gram has to be represented, which is done by either creating a Proc Object
for a procedure and, in case of a function, a Func Object. For a block, which
is located within some other CFG object, we create a separate Block Object.
Next we insert a call node, which is used to represent a subprogram call, at
the position where the block used to be within the enclosing CFG. So, in fact,

A Framework for CFG-Based Static Program Analysis of Ada Programs 133

Assignment Node 1.3.14:
Idents: C,Outer,Inner

C(1) := Outer(A, Inner(X => B));

Parameter Node 1.3.13:
ASSIGN/LHS

Parameter Node 1.3.16:
ASSIGN/RHS

Parameter Node 1.3.15:
Variable: C
IDX/COMP

Parameter Call Node 1.3.17:
Dest: Outer

FUNC/PARAM/ROOT

Parameter Node 1.3.18:
Variable: A

PARAM/NODE

Parameter Call Node 1.3.20:
Dest: Inner

FUNC/PARAM/ROOT

Parameter Node 1.3.21:
Variable: B
Name: X

PARAM/NODE

Fig. 3. A node with two parameter trees

a block is handled like a parameterless procedure, called when the block is de-
clared. We transform an initialisation sequence of a package body into a so-called
Init Object and create an Except Object for every exception handler.

In case we encounter a task body, a Task Object is created where every
accept block is represented separately by an Entry Object. As it was the case
with simple blocks, we link such an Entry Object to its enclosing task by using
a call node. Furthermore, we also map the protected entries of a protected object
to entry objects. To represent the abortable part of a select – then abort
statement we use an Abort Object, which is, again, linked to the enclosing
CFG using a call node.

Finally, there are three CFG objects which actually do not contain any control
flow information. The main reason why we use them is that because of their
position in the Pkg/CFG tree we are able to keep track where they are defined
and can gain visibility information later on. So for a task type declaration we
create a Task Type Object, while a simple task specification is represented by
a Single Task Object. Finally, whenever we encounter a generic procedure
or a generic function specification we create a Generic Object.

Package Types. The Pkg Object, like the CFG Object, is abstract, which is
why variables have to be of a more specific subtype. The main purpose of package
objects is to help building the Pkg/CFG tree, and therefore the successor and
predecessor lists are the most important components. Another component every
package object except for the Prot Object and the Def Object has, is a list
of the variables that are declared within.

134 R. Fechete, G. Kienesberger, and J. Blieberger

For uniformity reasons we introduce an artificial default package of type
Def Object which contains CFGs that do not have an enclosing package such
as library level procedures. A Prot Object represents the body of a protected
object or type, which may contain subprograms and entries. We map the speci-
fication that belongs to such a Prot Object to a Prot Type Object in case
of a protected type declaration and to a Single Prot Object otherwise. The
body of a generic package requires no special handling, however, we transform
the corresponding specification into a Gen Object.

Finally, for representing ordinary packages not mentioned above, we use a
Simple Spec Object and, in case there is an accompanying body, a Simple
Body Object.

Node Types. Any node that is not treated specifically as described below
is of type Node Object. If a statement has a label, then the label is saved
as the name of the node representing this statement. Also, for every node we
store a string that holds at least part of the code that this node is repre-
senting. Furthermore, all nodes have a right hand side parameter tree, and the
Assign Node Object, which corresponds to an assignment statement, also has
a left hand side parameter tree for the part to the left of the assignment operator.
Finally, for every node we save the Asis.Element that is the source of this
node. The Asis.Element can be seen as a link back into the ASIS AST. Con-
sequently additional information can be acquired by analysing the AST starting
at the element of an arbitrary node.

As already mentioned, we not only use a Call Node Object for the
representation of a subprogram call, but also in several situations that are
treated similarly. Clearly, the most important component of a call node
is the reference to its destination CFG. We derived several subtypes from
Call Node Object to convey additional information on the type of the call.
So, for example we use an Accept Node Object to link an Entry Object
to its enclosing task body, while we represent a call of such an entry with
an Entry Call Node Object. Likewise an Abort Node Object links the
abortable part of a select – then abort statement into its CFG. Finally,
there is a subtype of Call Node Object that we exclusively use within pa-
rameter trees to represent a function call: the Param Call Node Object.

Whenever we encounter a goto we use a Goto Jump Node Object
to point to the destination of the goto. Moreover we create an
Exit Jump Node Object for every exit statement within a loop. Note that
the target of an exit jump node is empty in case it exits the innermost enclosing
loop. For a return statement, we also create a special node, which is of type
Return Node Object. A Loop Node Object marks the header of a loop, and
the two concrete subtypes enable to distinguish between a while or for loop
and a simple loop statement.

A parameter tree is built by nodes of type Param Node Object, Param
Alloc Node Object and the already mentioned parameter call nodes. We use
the Param Node Object to save the name of the variable that was supplied
as a parameter and the name of the parameter itself, in case it is known. The

A Framework for CFG-Based Static Program Analysis of Ada Programs 135

Param Alloc Node Object, however, represents a dynamic allocation using
the new keyword.

Whenever we encounter an if or case statement, a special header node of
type Branch Node Object is created so that its successors contain the branch-
ing conditions. After such a node with a branching condition the subgraph for
the actual branch follows, until control flow is united again in an end node.

3 Transformation

We obtain the control flow data from the AST by using a two-phase mechanism.
The first step, the transformation, includes extracting information from the tree
and building the raw flow structure. The second one, the post transformation,
further refines the output of the former.

The information retrieval is constructed on an inorder traversal skeleton pro-
vided by ASIS. The program walks the tree one node at a time, generating three
types of events.

1. A PreOp event is triggered when the traversal reaches a node for the first
time, before any other processing is done.

2. A PostOp event is triggered immediately after the traversal has left a node,
as soon as all processing involving it has finished.

3. A CHF (child-has-finished) event provides us with a binary relation between
a parent and a child node and is thereby context-sensitive. The previous two
events, however, are context-insensitive, bearing no information of a node’s
relatives. CHF is triggered for each of a node’s children, right after their
processing has finished.

The event triggering traversal imposes a state-machine-like architecture on
our transformation mechanism. We employ stacks to hold the current traversal
state and three callback functions, one for each event named above. Since each
method must be able to handle any of the ASIS node types, all three have a
symmetrical structure.

One of the strengths of the ASIS abstract syntax trees is that they employ
a relatively small set of node types, to describe any program, regardless of its
complexity. To achieve this goal, ASIS combines the available types to ample
configurations, creating specialised subtrees.

The Ada syntactical constructs can be divided into classes, with the members
of each class sharing a common syntax subtree configuration. Usually, each ASIS
type has its own case branch in the callback functions, but we take advantage
of the tree similarities, by pulling the corresponding branches together.

As an example, let us consider the variable declarations, the component dec-
larations of the aggregate types and the subprogram parameter specifications.
A typical subtree for one of the declarations above holds the name of the new
entity, its type and its initialisation expression. The only node that tells us what
kind of tree this is, is the root. This information, however, is transparent to the
handling mechanism of the tree. The complete information about the new entity

136 R. Fechete, G. Kienesberger, and J. Blieberger

N1

N2

N3

N4

(a)

N1

N2

N3

N4

(b)

Fig. 4. AST path with
associated element stack

C1

P2

C3

P1

C2

(a)

C1

P2

C3

P1

(b)

C1

P2

C3

(c)

Fig. 5. AST path with associated flow tree, flow
stack and node stacks

is gathered in an interim storage common to all the declarations of this class,
and only the PostOp handling of the root node decides where the data should
be transferred in the flow world.

The example above is also illustrative for the use of the interim storage, the
transformation data container (TDC). Many ASIS types can, however, be added
to the flow world immediately upon being reached. As an example, let us consider
the handling of statements. Their flow world counterparts are the CFG nodes,
and a statement PreOp triggers automatically the addition of a node to the
current flow entity.

3.1 Element Stack

The element stack is the backbone of the AST traversal. It holds the path from
the tree root to the current node. The stack grows with each PreOp event, as
the search goes deeper, and diminishes with each PostOp event, as it returns.

Figure 4(a) shows an AST with the thicker edges and nodes indicating the
current traversal state. The nodes in the active path are marked N1 to N4 with
no regard to their syntactical value in the original program. Figure 4(b) displays
the corresponding element stack state.

Keeping only a pointer to the current node is not enough, because for each
node in the path we must be able to store additional information. We may need to
access this information repeatedly, as the search keeps returning to this element.
Such information is the count of already visited children, i.e. the number of CHF
events, and the corresponding flow world structure for this node, e.g. a CFG node
for a statement or a package pointer for the root of a package declaration subtree.

The element stack also provides us with an additional consistency check. The
flow structure on top must also be the current one in the flow world.

3.2 Flow Stack

Ada allows both the nesting of subprograms in packages and vice versa. This
fact leads to complex nesting hierarchies. We will represent these relationships

A Framework for CFG-Based Static Program Analysis of Ada Programs 137

in the flow world using a tree structure, that we call the flow tree. Its root is the
outermost package or CFG. The children of a node in the flow tree represent
the structures immediately nested in the construct the parent node stands for.
The tree only describes the nesting of packages and CFGs. No information about
other nesting relationships, like that of loops, is saved in the flow tree.

Due to similar considerations as in the case of the AST, we will also employ
a stack (the flow stack) to keep the active path in the current flow tree.

Figure 5(a) depicts an AST with the thicker edges and nodes indicating the
current traversal state. The nodes P1 and P2 represent packages, whereas C1 to
C3 represent CFGs. We can clearly see, that the AST describes an Ada program
built of a subprogram C1. Immediately nested in this CFG, are the packages P1

and P2 and the CFG C2. Nested in the package P2 is the CFG C3. The purpose
of the empty nodes in the same figure, is to underline the fact, that even though
a package or CFG has to be situated in the AST subtree rooted in the node of
its enclosing structure, it does not, however, from a syntactical point of view,
have to be an immediate child of it.

Figure 5(b) displays the current flow tree and the active path in it. Please
note that the tree does not hold the CFG C2, since the AST traversal has not
reached it yet.

Figure 5(c) shows the current state of the flow stack. Each CFG on the stack
also holds a reference to a node stack (see Sect. 3.3).

3.3 Node Stack

In the vast majority of the cases, an AST statement node undergoes a one-to-one
transformation to a CFG node. Each time the traversal reaches a new statement,
we add a new node at the end of the presently open CFG. As explained earlier,
the current flow structure can be found on top of the flow stack.

We now need a mechanism to keep track of the last node that has been
appended. In the standard scenario, the next node will be saved as successor of
the former. In some cases, on the other hand, we would need information about
several previous nodes, so keeping only one pointer proves to be insufficient. We
opt again for a stack structure, but this time, with slightly different semantics.

The node stack usually holds only one element, maintaining the pointer to
the last node that has been appended. This pointer is replaced each time a new
node is added to the CFG. The stack grows only when explicit information about
nodes handled in the past is necessary. This need arises in two cases:

1. When processing loops, we must not lose track of the loop head. The last
node in the block must be linked back to it.

2. When processing if statements, we must not lose track of the if head. This
node must be linked to all the decision branches.

Figure 6(a) depicts the standard scenario: an AST describing a subprogram
P with two statements A and B. The nodes are added one after the other to
the graph. In each of the two transformation steps, we see the graph and the
associated node stack. The stack remains one level high in both cases.

138 R. Fechete, G. Kienesberger, and J. Blieberger

A

B

B

A

A

P

BA

(a) Standard

L

A

B

L L L

L L L L

L

A A

A

B

B

L

BA

(b) Loop statement

IFIF

A

IF

B

IF

EI

A

A

A B

B

IF IF IF

EI EI

EI EI EI

EI

IF

BA

EI

(c) If statement

Fig. 6. CFG construction examples with node stack

Figure 6(b) shows a loop transformation: the AST is composed of a loop L
holding two statements A and B. This time, the node stack holds the loop head
at all times. The inner nodes are being saved on the stack one level higher, so
when the loop finishes, we have the possibility to link B, in this case, back to L.

Figure 6(c) illustrates an if transformation: the AST describes a program built
of an if statement with two alternatives A and B. This time, our stack must hold
two extra nodes: the if head and the endif node. The former must be linked to
each of the alternatives, while each branch must have a link to the latter. We
use the endif node to pull all the branches back together, and thereby improve
the CFG readability without adding alien control flow semantics to it. At the
end of each alternative, we perform the described linking operations, and restore
the if-endif stack structure. When the processing finishes we leave only the endif
node behind. Semantically, this is the last node in the CFG so far.

The standard scenario works only with the stack’s top and is thereby oblivious
of the lower levels. This allows us to perform the special if and loop operations
completely transparent to the rest of the transformation.

Please note that all three ASTs depicted in Fig. 6 have a similar configuration.
Only their head nodes (P, L and IF) identify their type.

3.4 Parameter Stack

The statement is the basic control flow unit in ASIS while the CFG node is
its basic counterpart in the flow world. ASIS has, however, other control flow
relevant structures that cannot be represented as nodes. Such are the function
calls, which are categorised as expressions. For each non-trivial call, i.e. other

A Framework for CFG-Based Static Program Analysis of Ada Programs 139

f(g(i),h(j+k))

g(i) h(j+k)f

g i h j+k

+ j k

(a)

f

g h

+

j k

i

(b)

f

h

+

j

(c)

Fig. 7. AST path with associated parameter tree and stack

than an operation symbol like +, the execution leaves the original control flow
temporarily and passes over to the function’s body. This makes it imperative to
save them in the CFG too.

A function call can also be nested inside another, as parameter of the former.
These compositions can be structured into trees, with the primary called function
in the root, and its parameters as children. The definition is recursive and the
tree grows as the nesting hierarchy becomes deeper. Such parameter trees provide
excellent means for static parameter aliasing, i.e. for determining the parameters
used in function calls, regardless of the nesting depth.

When constructing parameter trees, we need to store the current path in
them. Again, the best way to do so is to employ a stack, the parameter stack.

Figure 7 depicts a possible parameter tree construction scenario [12]. In Fig.
7(a) we can see an abstract syntax subtree describing a complex function call.
The thick edges and nodes mark the current traversal state.

Figure 7(b) shows the corresponding parameter tree generated so far, with
the thick edges standing for the current traversal state. The primary function
f resides in the root. g and h are the functions used as parameters for f. The
nesting, and therefore the tree, ends with the variables i, j and k. The edge
and node for the variable k are dotted, displaying its future position. It has not
been added so far, since the AST traversal has not reached it yet.

Figure 7(c) depicts the present state of the parameter stack. It is clearly visible
that the current path in the tree is saved on the stack.

4 Post Transformation

4.1 Loop Refinement

After the transformation phase, for and while loops without exit or return
statements are already represented correctly. However, simple loops and loops
that contain exit or return statements need some refinement. For example
consider the loop in Fig. 8(a). First, there should be no edge from the loop
header to the loop end, since there is no condition in the header. Second, there
should be an edge from the node containing the exit statement to the loop
end. Figure 8(b) shows the refined, correct representation of this loop.

140 R. Fechete, G. Kienesberger, and J. Blieberger

Node 1.1.5:
loop

Node 1.1.8:
Idents: >

exit when I > 3;

Node 1.1.19:
Loop End

Assignment Node 1.1.14:
Idents: I,+
I := I + 1;

(a)

Infinite Loop Node 1.1.5:
loop

Exit Jump Node 1.1.8:
Idents: >

exit when I > 3;

Assignment Node 1.1.14:
Idents: I,+
I := I + 1;

Node 1.1.19:
Loop End

(b)

Fig. 8. Cfg2Dot output for a simple loop before (a) and after (b) loop refinement

Loop refinement is done after the main transformation phase, when the pre-
liminary CFG has already been built. Consequently, we need to find the loops
first. This has to be done since ASIS provides information only on the loop head-
ers in a convenient way. Also, due to the considerable complexity of the traversal
itself, it is easier to construct a raw version of the graph without extensive con-
trol flow semantics, and to gather this information in the post transformation
phase. For that purpose, we employ Tarjan’s algorithm for constructing the loop
forest as it is presented by Ramalingam [13]. This algorithm needs the set of
backedges of a CFG, which is why we first compute them using a simple DFS.
This is possible since in a reducible CFG every retreating edge is a backedge [7].

The loop refinement is done in the Collapse procedure of Tarjan’s algorithm.
Every found loop results in a call of Collapse which takes the loop header and
the body as parameters. After every node in the loop body is collapsed on its
header, we collect the exit jump nodes for the current loop and those for outer
loops in two different lists. The list with the exit jump nodes for outer loops is
retained between different calls to Collapse.

Next, we determine the edge to the first statement after the loop which, at
the current stage, is the only edge that points outside the loop. After that, we
connect the exit jump nodes for the current loop and, in case the current loop
has a label, also search the list with the exit jump nodes for outer loops. Note
that Tarjan’s algorithm always finds inner loops first, so that an exit jump node
is always found before the corresponding loop. Finally, in case the current loop
is a simple loop statement, we remove the edge from the loop header to the
loop end. Return statements are handled in a similar way.

However, if the loop does not contain an exit statement, and therefore is an
endless loop, there is the chance that some nodes, right after the loop, are not
reachable any more by following only successor links. Apart from the problem
of memory leakage, the fact that they still may be reached by traversing the
CFG backwards, using only predecessor links, makes proper deallocation of those
nodes necessary. So before the edge from loop header to loop end is removed, its
target node is saved and handled later on (see Sect. 4.3).

A Framework for CFG-Based Static Program Analysis of Ada Programs 141

target

goto1

2

3 4

5

6

7

(a)

target

goto1

2

3 4

5

6

7

(b)

1

2

3 4

5

6

7

(c)

target

goto1

6

7

(d)

Fig. 9. Removing dangling nodes from the CFG

4.2 Connecting Gotos

During the transformation phase we only stored the target of a goto statement
as a string but did not add an appropriate edge to the CFG. Instead, we con-
nected the goto jump node to the node for the statement right after the goto.
Now we have to remove that edge, and add one correctly representing the jump
to the target of the goto.

Since the labels of a statement were also saved as strings, we basically build
two lists during a DFS: a list of sources containing all found goto jump node
objects and another one containing all nodes with at least one label, that is,
all targets. Note that a goto statement itself may also be a target. Then we
connect each node in the list of sources to the corresponding target and remove
the existing, auxiliary edge.

However, as with endless loops, there may be unreachable statements following
a goto. We will have to remove and correctly deallocate the nodes representing
these statements later (see Sect. 4.3), which is why we store the target of the
auxiliary edge.

4.3 Removing Dangling Nodes

As stated previously, we have to remove the subgraphs no longer reachable by
only following their successor links. For example consider Fig. 9 where solid lines
represent successor links and dotted lines correspond to predecessor links.

After we connect the goto node to its target as shown in Fig. 9(b) there
now is a subgraph, rooted at Node 2, that is only reachable by following the
predecessor link from Node 6 to Node 5.

We first perform a DFS on the CFG and add all reachable nodes to a set. In
Fig. 9(c) this set is surrounded by a solid edge. Next, at each node that may be
the root of an unreachable subgraph we start another DFS and create a second

142 R. Fechete, G. Kienesberger, and J. Blieberger

set containing all visited nodes. In our example in Fig. 9(c) this set is surrounded
by a dashed edge. Finally we subtract the set with the nodes that are reachable
through normal DFS from the set containing the nodes of unreachable subgraphs
and remove the resulting nodes as shown in Fig. 9(d).

5 Performance

To measure the performance of Ast2Cfg, we recorded the execution time of
Cfg2Dot, which introduces only minimal overhead. The test was performed with
the Linux command time on a machine with a single Athlon XP 2800+ processor
and a gigabyte of RAM. We generated the tree files for the contents of the include
directories of a typical GNAT and ASIS-for-GNAT installation. The generation
of the 588 tree files with a total of 426.4MB lasted approximately 91 seconds.
Then we used Cfg2Dot to generate 5472 separate CFGs in 213 seconds.

6 Conclusions and Future Work

We developed a framework for static program analysis, which provides a CFG-
based structure of Ada programs. Since currently, neither GNAT nor ASIS, fully
support the Ada 2005 standard, it was not possible for us to fully implement
it either. However, our work already covers most of the language specification.
Ast2Cfg is therefore still in an early stage, and will be developed further.

Apart from the simple Cfg2Dot utility, there are already two projects in the
field of static control flow analysis that use Ast2Cfg.

The first one aims at the detection of busy waiting. Busy waiting is a form of
synchronisation [14] that is considered bad practice since it results in a severe
overhead and even may be responsible for system failure because of race condi-
tions [15]. Busy waiting occurs whenever a loop is only exited in case the value
of a variable is changed from outside the loop. That is, the loop exit condition
is not influenced from within the loop. To be able to statically detect such oc-
currences the algorithm proposed by Blieberger et al. [15] is implemented and
extended in order to yield more accurate results.

The second project’s goal is to detect access anomalies. They are an issue
concerning multitasking environments employing non-protected shared memory
areas. They occur when several concurrent execution threads access (write-write,
or read-write) the same memory area without coordination. [16]

An implementation of the analysis framework proposed by Blieberger et al.
[17] aims at detecting such access anomalies by means of static analysis.

References

1. Allen, F.E.: Control flow analysis. In: Proceedings of a symposium on Compiler
optimization, pp. 1–19 (1970)

2. Ryder, B.G., Paull, M.C.: Elimination algorithms for data flow analysis. ACM
Comput. Surv. 18(3), 277–316 (1986)

A Framework for CFG-Based Static Program Analysis of Ada Programs 143

3. Fahringer, T., Scholz, B.: A unified symbolic evaluation framework for parallelizing
compilers. IEEE Trans. Parallel Distrib. Syst. 11(11), 1105–1125 (2000)

4. Blieberger, J.: Data-flow frameworks for worst-case execution time analysis. Real-
Time Syst. 22(3), 183–227 (2002)

5. Allen, F.E., Cocke, J.: A program data flow analysis procedure. Commun.
ACM 19(3), 137 (1976)

6. Sreedhar, V.C., Gao, G.R., Lee, Y.F.: A new framework for elimination-based data
flow analysis using dj graphs. ACM TOPLAS 20(2), 388–435 (1998)

7. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers. Addison-Wesley, Reading (1986)
8. International Organization for Standardization: ISO/IEC 15291:1999: Information

technology — Programming languages — Ada Semantic Interface Specification
(ASIS). ISO, Geneva, Switzerland (1999)

9. AdaCore: ASIS-for-GNAT User’s Guide. Revision 41863 (January 2007)
10. Sedgewick, R.: Algorithms, 2nd edn. Addison-Wesley, Reading (1988)
11. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-

tions to software engineering. Software — Practice and Experience 30(11), 1203–
1233 (2000)

12. Fechete, R., Kienesberger, G.: Generating control flow graphs for Ada programs.
Technical Report 183/1-139, Institute for Computer-Aided Automation, TU Vi-
enna, Treitlstr. 1-3, A-1040 Vienna, Austria (September 2007)

13. Ramalingam, G.: Identifying loops in almost linear time. ACM Trans. Program.
Lang. Syst. 21(2), 175–188 (1999)

14. Andrews, G.R.: Concurrent programming: principles and practice. Benjamin-
Cummings Publishing Co. Inc., Redwood City (1991)

15. Blieberger, J., Burgstaller, B., Scholz, B.: Busy wait analysis. In: Reliable Software
Technologies - Ada-Europe, pp. 142–152 (2003)

16. Schonberg, D.: On-the-fly detection of access anomalies. In: PLDI 1989: Proceed-
ings of the ACM SIGPLAN 1989 Conference on Programming language design and
implementation, pp. 285–297. ACM Press, New York (1989)

17. Burgstaller, B., Blieberger, J., Mittermayr, R.: Static Detection of Access Anoma-
lies in Ada95. In: Pinho, L.M., González Harbour, M. (eds.) Ada-Europe 2006.
LNCS, vol. 4006, pp. 40–55. Springer, Heidelberg (2006)

A Type-Safe Database Interface

Florian Villoing and Emmanuel Briot

AdaCore, 46 rue d’Amsterdam, 75009 Paris, France
villoing@adacore.com, briot@adacore.com

Abstract. This paper describes the design and implementation of a
type-safe, vendor-neutral Application Programming Interface (API) to
interact with a database system. It reviews the current practice in this
area and summarizes the problems and limitations, and shows some so-
lutions that were developed in response. The paper explains the benefits
that Ada brings to the task of writing a high level SQL API.

1 Introduction

Many applications need to store persistent data. The amount of data can vary,
of course, but tends to grow with the use of the application, and it therefore
generally needs to be structured to facilitate its retrieval.

Database Management Systems (DBMS) vendors provide off-the-shelf solu-
tions, with the relational model being by far the most popular. In a relational
DBMS, servers are accessed through a Standard Query Language called SQL.
The products in this area, either proprietary (such as Oracle and DB2) or open
source (such as PostgreSQL [1] or MySQL [2]), are now very mature.

Ada itself does not specify a standard interface for accessing those servers.
However, various libraries are available, sometimes provided by the DBMS ven-
dors themselves (although in general they provide only a C API), and sometimes
through open source software. Two such open source libraries are GNADE [3]
and APQ [4]. The first part of this article describes a number of solutions cur-
rently available.

Ada is a strongly typed language, designed so that compilers can provide
early warnings about potential errors in the code (uninitialized variables, unused
parameters, etc.). However, when the program needs to access a database, this
paper will show that the current solutions do not provide the necessary type-
safety and early warnings.

As part of AdaCore’s customer support infrastructure, we have developed
a number of tools internally to integrate our support services (such as report
tracking) with data about our customers. This integration includes managing
customer and contact information, tracking email exchanges with customers,
and making this information available to customers themselves through web
interfaces. Since we needed to integrate a large amount of information, it was
natural to use a DBMS (PostgreSQL in our case). The development was carried
out in Ada. As we quickly encountered the limitations described in the first part
of this article, we started developing an in-house system to overcome them. This

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 144–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Type-Safe Database Interface 145

article describes the solution we ended up with and explains some of the design
choices we made.

The resulting library has not yet been made widely available, although this is
likely to happen in the future. This library has some PostgreSQL-specific parts,
although, as we will show, it should be easy to adapt it to other systems. It is also
a layer on top of GNADE, but that too could be changed if there was a need.

2 Review of Existing SQL Solutions

There are several ways to interact with a relational database. All end up sending
a query (written in SQL) to the server, and reading the result.

Fig. 1. API layers

A DBMS always comes with an applica-
tion programming interface (API), generally
written in C, that allows a program to in-
teract with the underlying database. Such
an API typically provides subprograms to
send a SQL query to the database, retrieve
the exit status of the query, and access the
data returned by a SELECT query. The data
itself is often returned as tuples of strings,
which the application needs to convert to the
proper types.

Using the API provided by the DBMS has
one major drawback: it is tightly coupled
with the underlying database. If the DBMS
needs to be changed (or even when upgrad-
ing to a newer version), the code must be
adapted in all the places where interactions
take place. This is partly mitigated by the
fact that DBMS APIs usually provide inter-
faces with a similar level of abstraction.

Since the API is generally low-level, a
change in the database schema has implicit
(and possibly hard-to-deduce) effects on the code. For instance, changing the
name of a column in a table requires the programmer to search for all occur-
rences of the column throughout the code, and rename them all.

The Open Database Connectivity (ODBC [5]) offers a way to solve the first
issue, by abstracting the access to the database. The core ODBC library on the
one hand provides an API that is common to all DBMS, and on the other hand is
responsible for translating calls to the API into calls to the DBMS-specific API.
This way the DBMS-specific details are hidden from the user, who can switch from
one DBMS to another without modifying the application. ODBC, however, has a
reputation for being much slower than the corresponding DBMS-specific API.

The ODBC approach solves the transition issue that arises in the vendor-
specific approach. However, it remains relatively difficult to integrate in the

146 F. Villoing and E. Briot

code, getting values from local variables, and reading the result into some other
variables. All communication is through strings and is therefore not type safe.
Moreover, the same issue arises when the database schema is changed, and the
code for the entire program needs to be reviewed in such cases.

There are several Ada bindings available that provide one or both of these
two approaches (vendor-specific and ODBC). APQ was initially designed as a
PostgreSQL-only API, and has subsequently been extended to other DBMS.
It does not provide an ODBC binding, however. It also tries to provide a rela-
tively high-level binding, using only Ada types and isolating the application from
the underlying C types. GNADE covers more DBMS systems, both through a
DBMS-specific API for each of these, and through an ODBC interface.

As mentioned above, regardless of the communication layer chosen, the SQL
queries themselves are ultimately transferred to the server as strings. If one
directly uses either the ODBC or the vendor-specific API, the code will still
contain those queries as strings, with the limitations mentioned earlier.

Software developers have thus designed a standard way to write SQL queries,
while providing a tighter integration with the rest of the source code. This is
called “Embedded SQL”. The query is written as part of the code itself, in a
section marked by special keywords. A preprocessor is then used to transform
the embedded SQL sequence into calls to the DBMS API (or possibly to ODBC,
although this is rarely used in this context). The conditions used in the SQL
query can directly contain variables from the code. The result is made available
through variables (generally cursors, i.e. iterators over all matching tuples).

EXEC SQL DECLARE BEGIN
empno : SQL_Standard.INTEGER;

EXEC SQL END-EXEC
EXEC SQL
WHENEVER SQLERROR raise My_Exception;

EXEC SQL
DECLARE cursor FOR

SELECT empno INTO :empno FROM employees
WHERE manager = :to_find;

Fig. 2. Embedded SQL example (from GNADE [6])

This embedded SQL somewhat improves code readability (fewer function
calls), at the cost of using a preprocessor. The latter means that compiling the
application involves an additional step, and, more importantly, the source files
themselves are no longer valid Ada, which complicates using them in standard
Integrated Development Environments (IDEs).

The embedded SQL solution also has several limitations: it does not ensure
that the SQL query is syntactically correct (for example there may be mis-
matched parenthesis, or missing FROM statements in select queries), nor does it
solve the maintenance problem when the database schema is changed. The next
section of this article will describe a solution that addresses these two issues.

A Type-Safe Database Interface 147

3 Integrity and Type-Safety in SQL Queries

For the development of the AdaCore information system, we selected the Post-
greSQL DBMS. Thus the abstraction offered by ODBC was not needed, and
we decided to develop a framework based on direct use of the PostgreSQL API
through the binding provided by GNADE.

The problems we needed to solve through this framework were the following:

1. Integrity of the queries with regard to the database schema
Whenever the database schema changes, we must have a way to know which
part of the code becomes invalid. Relying on run-time testing is error prone.

2. Checking SQL syntax at compile time
It should be impossible, or at least difficult, to write syntactically invalid
SQL queries.

3. Easy interaction with Ada variables
It should be straightforward to use local program variables in the query, in
particular in the WHERE clause of SELECT statements.

4. Ensure type-safety
To the extent possible, the interface should ensure that the type of an Ada
variable matches the type stored in the database.

3.1 Database Schema and Query Consistency

As noted in the previous section, we want to verify the correctness of a SQL
query as early as possible in the development process, i.e., at compile time.

A first step toward that goal is to generate some Ada code from the database
content as part of the compilation process, and use this generated code when
writing our queries. We generate an Ada package that declares string constants
representing the various database elements such as table names and field names
(see figure 3). These constants are used when writing SQL queries in the user
code (see figure 4).

package Database is
package Table1 is

T : constant String := "table1";
S_Field1 : constant String := "field1";
S_Field2 : constant String := "field2";
Field1 : constant String := T & "." & S_Field1;
Field2 : constant String := T & "." & S_Field2;

end Table1;
...

end Database;

Fig. 3. The generated package Database

148 F. Villoing and E. Briot

declare
Id : constant Integer := 12;
Query : constant String :=

" SELECT " & Table1.Field1 & " FROM " & T
& " WHERE " & Table1.Field2 & " = "
& Integer’Image (Id);

begin
...

end

Fig. 4. User code using the generated package

This brings two improvements, solving the first issue mentioned earlier:

– Typing mistakes in the name of database entities are avoided
Depending on the context, we need either a fully qualified name for the fields
or just a simple name (in an INSERT query for instance). This is why our
package contains two variants for each field.

– Whenever the database schema changes, the code no longer compiles
If for instance we rename a column that is used in one of the SQL queries,
say “field1” in the example above, we will get a compilation error because
the constant Field1 no longer exists.

Fig. 5. database.ads generation

The Database Package Generation. The
Database package generation is achieved
through the package builder tool. This
tool works in two steps. Firstly, it accesses
the database in order to collect informa-
tion about its structure. This is done using
GNADE and SQL queries, since in Post-
greSQL, a database schema is stored in a
database itself. Then the database.ads file
is generated using the Templates Parser [7]
that comes with AWS and an Ada template,
database.tads. database.ads must be re-
generated every time the database schema
changes. This could in fact be done before
each compilation, but that would require a
running database environment to recompile
the application, which would be an unnecessary additional constraint.

The tool needs to access specific internal code of the DBMS to query the schema,
since SQL does not provide a standard way to retrieve that information. This is
DBMS specific, and needs to be rewritten when moving to another system. It is
quite limited in scope, though, which makes it relatively easy to port.

Figure 6 shows the template that can be used to generate the Database pack-
age in Figure 3. From the database schema, package builder produces a set of

A Type-Safe Database Interface 149

package Database is
...
@@TABLE@@ @@-- For each table

package @_CAPITALIZE:TABLE_NAME_@ is
T : constant String := "@_TABLE_NAME_@";

@@TABLE@@ @@-- For each field
S_@_CAPITALIZE:FIELD_NAME_@ : constant String := "@_TABLE_NAME_@";

@@END_TABLE@@

@@TABLE@@ @@-- For each field
@_CAPITALIZE:FIELD_NAME_@ : constant String :=

T & "." & S_@_CAPITALIZE:FIELD_NAME_@;
@@END_TABLE@@

end @_CAPITALIZE:TABLE_NAME_@;
@@END_TABLE@@

end Database;

Fig. 6. The Database package template

internal vectors that are then processed through the template, to generate an
actual Ada package.

In addition, a few Ada constants, extracted from the database, are also gener-
ated (see figure 7). These allow the use of Ada identifiers in the application and
avoid the need to reference the internal identifiers used by the database system.
This is a fast and effective way to implement the application. Ultimately, the
code must remove the use of such constants, since changes to the database (when
installing in another context for instance) might break the application.

Contract_Type_Subscription : constant Contract_Type_Id := 1;
Contract_Type_Service : constant Contract_Type_Id := 2;

Fig. 7. Generated constants

This solution has proved very flexible when we needed to enhance the gener-
ated packages, as we will see in the following sections. Generally the templates
file is the only file that needs to be modified, which makes maintenance easier
compared to enhancing package builder.adb if it generated the database.ads
files by printing strings directly.

3.2 Syntactically Correct SQL Queries

Although the above solution provides a partial solution, it is still possible to
write an invalid query. For instance, we might omit a closing parenthesis, or
forget the FROM part of our SELECT statement. To solve this, we have developed

150 F. Villoing and E. Briot

another package called SQL, which provides a set of functions that help write
the SQL queries.

As figure 8 shows, we no longer write a string directly. Instead, the query
is generated on the fly through calls to Ada subprograms like SQL Select or
SQL Insert. This comes from the idea that an SQL query consists of several
clauses that are not all of the same kind: immediately after a SELECT should
come a list of fields, and a FROM clause expects a list of tables as its parameter.
New types were therefore introduced to represent such constraints, replacing
the string constants generated previously. Queries are thus written in terms of
SQL Table, SQL Field, SQL Criteria and SQL Assignment. Constructors are
provided to create new instances of those types, which are no longer compatible
with the predefined type String.

The "=" operator is redefined, which helps create instances of SQL Criteria
to build the WHERE clause. It expects as usual two operands: one a SQL Field
and the other an Integer. Other overridings are provided for the predefined
types. The & operator is overridden to build lists (of tables or fields).

The SQL package supports most of the SQL language structures, including all
its operators (such as “in” and “like”), nested queries, function calls, insertion
and deletion of rows, and so on.

declare
Id : constant Integer := 12;
Query : constant SQL_Query := SQL_Select
(Fields => Field1 & Field2,
From => T,
Where => Field2 = Id);

begin
...

end

Fig. 8. Syntactically correct SQL queries

This new version also automatically knows whether SQL expects a fully qual-
ified name for fields, or a simple name, so we no longer need to generate both
Field1 and S Field1 as before. The templates used to generate database.ads
have been enhanced so that instances of SQL Table and SQL Field are directly
generated.

This solution solves issues 2 and 3 that we highlighted at the beginning of
this section.

Compared to the use of strings, or to the use of embedded SQL, this solution
is very flexible in the way that queries are built: the types we have redefined
are not constrained, and can therefore be built on the fly, for instance as part of
more complex Ada statements (figure 9).

This limits the amount of code duplication: very often the fields expected
from a query are the same, and there are just one or two conditions that change.
Most of the code is shared, except the condition that is built dynamically.

A Type-Safe Database Interface 151

declare
W : SQL_Criteria; -- controlled, initialized to No Criteria
Q : SQL_Query;

begin
if <has_id> then

W := W and Field2 = Id;
end if;
Q := SQL_Select (Fields => Field1, Where => W);

end;

Fig. 9. Incremental build of SQL queries

It is worth noting that this SQL package is independent of the actual DBMS
system (unless some non-standard SQL extensions are used, but they are clearly
documented and the programmer has full knowledge of such things), and of the
actual connection layer (ODBC or vendor-specific).

The SQL package provides a way to automatically complete the FROM and
GROUP BY clauses of an SQL query. They are computed from the values provided
for the other clauses. This eases the writing of SQL queries as well as their
maintenance. For instance, it ensures on the one hand that only the necessary
tables are listed in the FROM clause of a SELECT query even after some columns
have been removed from the SELECT clause. On the other hand, if a column
from another table is added to the SELECT clause, the corresponding table will
be automatically added to the FROM clauses, thus reducing the probability of
introducing discrepancies in the SQL queries.

3.3 Bringing Type-Safety to SQL Queries

The generated package Database is still not perfect. There is no way to ensure
that we are not mixing a constant representing a table with a constant represent-
ing a column, or that a condition used in a WHERE clause is actually a Boolean
expression.

It also does not prevent mixing variables of different types. For instance, in
the above example there is no indication of whether Field2 is actually an integer
(as its comparison with Id seems to imply), or a string, or some other type.

As a result, we decided to change the generated package so that the fields are
no longer all of type SQL Field, but instances of derived types instead, which
we have called SQL Field Integer, SQL Field Text,. . .

By redefining the appropriate operators and functions, we ensure that the
resulting SQL query is valid syntactically, and that type safety can be checked
at compile time by the compiler itself.

As visible Figure 10, each column of a table is accessed through a primitive
operation of the Table object. Using primitive functions rather than constants
closely associates the field with the actual table. In SQL, a given query might
reference the same table multiple times under different names (the “as” key-
word in SQL). As a result, the Ada code would create two instances of Table,

152 F. Villoing and E. Briot

one for each name used in the query, and would call the primitive function of
each of these two instances depending on the context. Syntactically, thanks to
Ada 2005’s dotted notation, the source code is the same regardless of whether
constants or primitive operations are used. The other reason for using primitive
operations, and therefore binding the field name and its table, is to have an
unambiguous representation of the query in memory, which helps to implement
the previously-mentioned auto-completion.

Using the SQL Field * types associates semantic information with a column,
compared to the previous manipulation of the SQL Field type. For example,
an attempt to write a criterion for a WHERE clause in which Field1 of type
SQL Field Integer is compared to a Boolean variable will be caught and re-
jected by the compiler. This provides a solution to the fourth issue mentioned
at the beginning of this section.

package Database is
package Table1 is

type Table is new SQL_Table with null record;
function Field1 (Self : Table) return SQL_Field_Integer;
function Field2 (Self : Table) return SQL_Field_Boolean;

end Table1;
Table1 : aliased constant T_Table1.Table;
...

end Database;

Fig. 10. The enhanced generated package Database

4 Safe Execution of SQL Queries

So far we stayed focused on how to write the actual SQL queries. But there are
still a number of ways in which a database interface could help prevent errors.
Our library provides some of these mechanisms. They are described below and
are part of a package called SQL Exec.

4.1 Network Failures and Database Connection

A DBMS system is implemented as a client-server interface. The server generally
runs on a different machine, which introduces an additional possibility for failure
in the execution of queries.

Our library automatically reconnects to the server should the connection be
down. It then attempts to re-execute the current query, up to a certain number
of times. All of this is transparent to the rest of the application.

4.2 Caching

In a given database, there are often some tables that act as enumerated types
and do not change very often. An example in our information system technology

A Type-Safe Database Interface 153

is the list of possible priorities for a support ticket, or the various engineers to
whom such a ticket can be assigned.

In addition, these tables are needed often, since they provide information
that a user can directly manipulate: it is for example much easier to manipu-
late “enhancement request” than the corresponding internal id. Thus, each time
information is presented to the user we need to perform a search of the ticket
priority table, and every time the user enters information we need to convert it
to the internal ids.

In order to improve performance, the SQL exec package provides an optional
caching system whereby the result of queries can be cached. Whenever the user
executes a query that has been cached previously, no network communication is
necessary, just a search in a local hash table, which is generally much faster.

The difficulty here is to ensure integrity when the database is changed. Our
application automatically invalidates the cache every hour, which is good enough
to ensure that the copy of the data is not too obsolete, and that a change in one
of the enumeration tables becomes visible after at most one hour.

In addition, our web servers provide a special URL that forces an immediate
reset of the cache.

When we implemented this cache, we saw a dramatic improvement in the
speed of our web servers. The following figures come from a test that issued
hundreds of queries against typical pages in our internal Customer Relationship
Management (CRM) system. The PostgreSQL database is running on a remote
host across the Atlantic. The measurements are derived from two cases:

1. The first test is for a page that lists details for a specific customer. In this test,
none of the queries can be cached, because the information is too volatile.
This test provides the worst-case scenario for the caching system, and en-
sures that activating the cache, even if there is no hit, does not impact
performance.

2. The second test lists details for a specific ticket. Here, 43% of the queries can
be cached (1190 out of 2706 upon 100 executions) because they are used to
query information such as the possible assignees for a ticket, or its possible
status. This information almost never changes, so is cached for efficiency.
In addition to the database queries, this test also parses mailboxes, and
therefore runs much more slowly.

Without caching With caching Improvement

Test 1 1m9.943s 1m9.190s −1.01%
Test 2 4m41.678s 2m50.359s −65.3%

Fig. 11. Impact of the caching system

The results for the first case show that the caching system has no effect when
not used (the minor difference is most likely related to a different load on the
system, and was sometimes in favor of caching, sometimes against). The second
case however shows the major speed improvement that can be expected.

154 F. Villoing and E. Briot

4.3 SQL Transactions and Error Handling

There are various ways in which a query may fail:

– a SELECT query may fail because it is referencing invalid tables or columns
(although queries written through our SQL package should not have such
errors);

– the connection to the database may be invalid (although, as we mentioned
earlier, our library automatically tries to reconnect);

– the query might be executed in the middle of a failed SQL transaction, which
is invalid;

– an INSERT query may fail because some constraint is not satisfied;
– a DELETE query may fail because there is no matching line in the table, and

so on.

In all of these cases, the way the DBMS reports the error may vary. This also
depends on the connection layer (ODBC or vendor specific) that is used. Some-
times an exception will be raised, and sometimes an exit status is set.

The SQL Exec package attempts to isolate the rest of the application from
these features and to provide a consistent error-handling mechanism.

Often a specific customer action results in a sequence of SQL queries that
must be executed either in their entirety or not at all; i.e. if one of them fails,
then the whole sequence must be canceled, and no change should be visible to
the rest of the database.

SQL supports this requirement through transactions. These are sequences of
SQL queries that are executed in a “sandbox”, until either the whole sequence
is validated successfully (i.e. COMMIT’d), or canceled (i.e. ROLLBACK’d).

As an example, suppose that your application should insert an element in a
table A and upon success insert it in table B. But if the insertion in B fails you
do not want it to remain in A since that would be a database corruption.

In the case of PostgreSQL, it is also faster to execute queries in a transaction
and commit them afterward, since less locking occurs.

The SQL Exec package provides an enhanced support for transactions, and
automatically starts a new transaction whenever a change of the database is
about to take place (if there is no running transaction already). It then provides
a subprogram so that the user can commit or rollback the whole transaction
depending on the success of its queries.

We consider this to be an important step towards safe execution of an appli-
cation that relies on a database in the sense that even if something unexpected
happens while the application is running, the integrity of the database is au-
tomatically preserved. A user action that result in the insertion of data in the
database will either be performed entirely or be rejected as a whole.

4.4 Multi-tasking Issues

In the context of an application such as an information system that includes
web servers, one has to be careful about issues specific to multi-tasking. A web

A Type-Safe Database Interface 155

server is typically a multi-tasking application. There is a pool of threads running
concurrently and each thread handles one request at a time.

Multi-tasking raises some subtle issues, and indeed a problem may arise in
connection with transactions. The troublesome scenario occurs when a single
connection to the database is shared by all threads in the application, and indeed
this situation arose in the initial implementation of our tools.

For example, assume that a client request leads to the execution of the transac-
tion described above. The transaction is started, the element is added to table A.
In the mean time, another client request leads to the execution of a query whose
execution fails. That marks the transaction as “in error”. In this case, the trans-
action initiated by the first client will be rolled back. This is unfortunate and in
more complex situations can be very troublesome.

This example demonstrates that each thread must use a distinct database
connection.

4.5 Suggested Code Organization

This section describes an effective software architecture for code that stores data
in a DBMS, based on our implementation experience.

One difficulty is that very often various parts of the code need to access
similar, but not quite the same, data (say the list of support tickets assigned
to one of the staff members, or the list of support tickets that are marked as
urgent). If the code duplicates the queries, changing the database schema will
force the rewrite of several parts of the code. Fortunately, with the approach
described in this paper, the compiler will tell us which parts need updating. But
it still remains a tedious job.

Another issue is that data structures tend to be organized in the same way as
the database tables, although Ada provides much more advanced data structures.

Historically, our information system used flat text files to store the various
pieces of information, and it was a large (although rewarding) effort to integrate
all these into a single source of data in a DBMS. If some day we decide to
move to some other technology (perhaps a remote web server queried through
SOAP), we would like to reduce the porting effort and minimize the changes to
the application.

One feature that our library has not been handling so far is how to read
the result of queries from the DBMS. For that we rely on GNADE and its
PostgreSQL-specific interface. Should we move to another DBMS, we will have
to rewrite a part of our application. If the queries are found all over the code, that
means examining and changing code throughout the application. Once again, the
compiler would help and point out what needs to be changed, but it would still
be a major effort.

Based on these considerations, we now try to write the SQL queries only in a
limited number of shared packages, which the rest of the code uses. The rest of
the code stays away from SQL itself. These packages provide the results of the
queries through Ada 2005 containers.

For efficiency, the SQL strings returned by the query are converted to scalar
types (Boolean, Integer, etc.) as much as possible. There remain cases where the

156 F. Villoing and E. Briot

result is actually a string. Since the queries are shared, it often happens that
part of the result is not needed by the part of the application that requested it
(say the “first name” column, when that part of the application is just trying to
validate a login).

Once again for efficiency, the C strings (aka char*) are not converted immedi-
ately to String Access, only on demand. That saves memory and system calls.

The last aspect of efficiency is that the Ada 2005 lists that represent a multi-
line result are not created immediately. Instead, we store the result of the query
itself (GNADE has the type Result which we have made reference-counted for
that purpose) and publish it as an Unparsed List type. That way no memory
allocation takes place until the data actually gets used. That makes it relatively
cheap to share queries.

5 Conclusion

The framework and tools we have put in place integrate the application code
tightly with the database schema. This brings safety: many errors are detected at
compile time, whereas they would have been caught only at run time otherwise,
either during the testing phase or, worse, only after the application has been put
into production.

There are several aspects that could be enhanced. Parts of the library are
specific to Postgres (most notably the generation of database.ads and retrieval
of query results). Auto-completion of queries is very useful and helps in main-
taining complex queries. It is however not as smart as we would sometimes wish
it: for instance, it would be nice if it could automatically complete the WHERE
clause to join tables. Since the library works by representing queries in memory,
it could be enhanced to easily connect to several databases in parallel: for read-
only queries, we could connect to one or more slaves of the DBMS to provide
load balancing, while all write queries would be done on the common master (in
the case of a CRM system, there are many more read-only queries).

With respect to performance, there is only a small additional overhead. This
is negligible compared to the cost of transfering queries and their results over
the network.

Internal discussions are in progress concerning the release of this library. Addi-
tional work is needed, in particular a few contributions to the GNADE package.

References

1. PostgreSQL 8.3.0 Documentation,
http://www.postgresql.org/docs/8.3/static/index.html

2. MySQL 6.0 Reference Manual,
http://dev.mysql.com/doc/refman/6.0/en/index.html

3. Erdmann, M.: GNADE user’s guide,
http://gnade.sourceforge.net/gnade/gnade.pdf

4. Gay, W.W.: APQ home page, http://home.cogeco.ca/∼ve3wwg/software.html

http://www.postgresql.org/docs/8.3/static/index.html
http://dev.mysql.com/doc/refman/6.0/en/index.html
http://gnade.sourceforge.net/gnade/gnade.pdf
http://home.cogeco.ca/~ve3wwg/software.html

A Type-Safe Database Interface 157

5. ODBC–Open Database Connectivity Overview, http://support.microsoft.com/
kb/110093

6. Erdmann, M.: Embedded SQL with GNADE,
http://gnade.sourceforge.net/#ESQL

7. Templates Parser User’s Guide, https://libre.adacore.com/aws/templates
parser-gpl-2.3.0.pdf

8. Erdmann, M.: GNAT Ada Database Development Environment. In: Blieberger, J.,
Strohmeier, A. (eds.) Ada-Europe 2002. LNCS, vol. 2361, pp. 334–343. Springer,
Heidelberg (2002)

9. North, K.: Understanding multidatabase APIs and ODBC (1994),
http://www.dbmsmag.com/9403d13.html

10. IBM, SQL Reference Volume 1, ftp://ftp.software.ibm.com/ps/products/db2/
info/vr9/pdf/letter/en US/db2s1e90.pdf

11. Dewar, R.B.K.: Quality control in a multi-platform multi-product software com-
pany (June 2001), http://www.adacore.com/2001/03/02/quality-control-in-
a-multi-platform-multi-product-software-company/

http://support.microsoft.com/kb/110093
http://support.microsoft.com/kb/110093
http://gnade.sourceforge.net/#ESQL
https://libre.adacore.com/aws/templates_parser-gpl-2.3.0.pdf
https://libre.adacore.com/aws/templates_parser-gpl-2.3.0.pdf
http://www.dbmsmag.com/9403d13.html
ftp://ftp.software.ibm.com/ps/products/db2/info/vr9/pdf/letter/en_US/db2s1e90.pdf
ftp://ftp.software.ibm.com/ps/products/db2/info/vr9/pdf/letter/en_US/db2s1e90.pdf
http://www.adacore.com/2001/03/02/quality-control-in-a-multi-platform-multi-product-software-company/
http://www.adacore.com/2001/03/02/quality-control-in-a-multi-platform-multi-product-software-company/

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 158–170, 2008.
© Springer-Verlag Berlin Heidelberg 2008

StateML+: From Graphical State Machine Models to
Thread-Safe Ada Code∗

Diego Alonso, Cristina Vicente-Chicote, Juan A. Pastor,
 and Bárbara Álvarez

Departamento de Tecnologías de la Información y las Comunicaciones
División de Sistemas y Ingeniería Electrónica (DSIE)

Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
{diego.alonso,cristina.vicente,

juanangel.pastor,balvarez}@upct.es

Abstract. This paper presents the StateML+ tool aimed at designing state-
machines and automatically generating thread-safe and multi-tasking modular
Ada code from them, following a Model-Driven Engineering approach. The
StateML+ meta-model is an extension of a previous version, and now it offers
improved modeling capabilities, which include regions and macro-state
definition. In this paper, a case study regarding the design of a robotic system
will be used to demonstrate the benefits of the proposed approach.

Keywords: Model-Driven Engineering, Model-To-Text Transformation, Finite
State Machines, Thread-Safe Code Generation, Eclipse platform.

1 Introduction

Model-Driven Engineering (MDE) technologies offer a promising approach to
address the inability of third-generation languages to alleviate the complexity of
platforms and express domain concepts effectively [1]. Objects are replaced by
models, and model transformations appear as a powerful mechanism to automatically
and incrementally develop software [2].

The work presented in this paper starts from the definition of the ACRoSeT [3]
abstract architectural framework, aimed at developing abstract software components
for tele-operated robots. This framework allows designers to define the software
architecture of a robotic system in terms of abstract (platform independent) robotic
components. ACRoSET components are designed taking into account both structural
and behavioral aspects.

Although the adoption of ACRoSET for component-based robotic system design
has demonstrated many advantages, the translation of its abstract components into
concrete ones has not been automated yet and, thus, it remains an error-prone process.
This is one of the current aims of our research group and this paper covers it partially.

To tackle the problem of automatically translating ACRoSET abstract components
into concrete ones, we propose a MDE approach based on a previous experience,

∗ This research has been funded by the Spanish CICYT project MEDWSA (TIN2006-15175-

C05-02) and the Regional Government of Murcia Seneca Program (02998-PI-05).

 StateML+: From Graphical State Machine Models to Thread-Safe Ada Code 159

already published in [4]. In that work, we presented a basic state-machine meta-
model, called StateML, and a graphical modeling tool built on top of it, which
allowed designers to depict and to validate very simple state-machine models. These
models could then be automatically translated into Ada code using a model-to-text
transformation, also implemented as part of that work.

State machines provide very powerful behavioral descriptions. This is why they are
quite commonly used for modeling general-purpose processes and, in particular, why
they have been extensively adopted by the robotics community. Even when using a
Component-Based Software Development (CBSD) [5] approach for robotic
application design, as the one proposed in ACRoSET, state-machines are a very
appropriate and natural way for describing component behavior, since they allow
designers to define how components react to different external and internal stimuli. In
addition, state machines provide a very natural and precise notation for describing
aspects such as concurrency.

However, in order to model ACRoSET abstract components, the state-machine
models built using the previous StateML tool presented in [4] was not expressive
enough, since it did not include mechanisms to model concurrency. Thus, instead of
tackling the whole problem of translating ACRoSET abstract components into concrete
ones, we decided to first complete the state-machine models and the translation of the
component behavior part, leaving the structural aspects for a later stage.

In this vein, this paper presents the extended StateML+ meta-model, which includes
all the concepts needed to model the behavior of ACRoSET abstract components,
including those related to concurrency. Besides, the new tools implemented on top of
this meta-model are also presented, i.e. a new graphical model editor and a new
automatic model-to-code transformation, which generates a thread-safe Ada code
implementation of the input state-machine model. Although developed in the context
of ACRoSeT, StateML+ can be used as a stand-alone tool by any designer who wants
to generate a multi-threaded Ada skeleton from a hierarchical state machine.

Before entering into details, the following section presents an outline of the research
goals covered in this paper. Then, the rest of the paper is organized as follows. Firstly,
section 2 presents the extended StateML+ meta-model, and the graphical modeling tool
implemented to support the newly added elements. This section also presents a case
study on robotics that will be used through the rest of the paper to illustrate the benefits
of the proposed approach. Then, the automatic model-to-code transformation, from
StateML+ models to thread-safe Ada code, is presented in section 3. Finally, section 4
presents the conclusions and some future research lines.

1.1 Goals of the Paper

In reactive systems, software commonly interacts simultaneously with multiple
external elements (sensors, actuators, robots, conveyor belts, etc.). Actually, the real-
world is inherently concurrent and this must be somehow captured in software
applications. This obviously requires using platforms and programming languages
which provide concurrency mechanisms.

As previously stated, the StateML meta-model did not offer any mechanism to
model concurrency, although in [4] we proposed this extension as a future work. The
main goal of this paper is to show how we have addressed this extension presenting

160 D. Alonso et al.

the improved StateML+ meta-model, which now can deal with concurrency aspects.
To achieve this goal, the following sub-goals have been addressed:

• Firstly, the state-machine meta-model was extended with new concepts in order to
improve its modeling capabilities. Among others, it now includes orthogonal
regions to represent independent and concurrently active states. The extension of
the meta-model implied the addition of a comprehensive set of OCL (Object
Constraint Language) [6] expressions in order to complete the syntax and the
semantics of the meta-model, as it will be further explained in section 2.1.

• A new graphical modeling tool was also developed to allow designers to
graphically define state-machine models and to validate them against the meta-
model and the set of additional OCL constraints. This tool was validated building
different robotic-related case studies, such as the one presented in section 2.2.

• A suitable design pattern [7] had to be selected in order to perform the model-to-
code transformation. This implied reviewing some of the architectural patterns that
could cope with the run-to-completion semantics associated to the state-machine
artifacts. After a careful reviewing process, the Reactor Pattern [8] was finally
selected, as it will be further justified in section 3.1.

• Finally, a new MOFScript [9] model-to-code transformation was implemented in
order to generate thread-safe Ada code from any input state-machine model. This
transformation, which implements the selected Reactor Pattern, is detailed in
section 3.2.

After covering these goals, the paper will present some conclusions and future
research lines.

2 StateML+: Improving FSM Modeling Capabilities

As stated in the introduction, this paper presents StateML+, which is an improved
version of StateML, already presented in [4]. The state-machine meta-model included
in StateML was designed as a quite simplified version of the UML 2.x [10]
counterpart.

In StateML, designers could model state-machines consisting of states linked by
transitions, which could be external or internal, depending on whether the state was
actually exited or not. Designers could also include in their models one initial pseudo-
state (to initialize the state-machine and to mark the first state to be executed) and one
or more final states (to mark the state-machine execution end). The StateML meta-
model was enriched with a complete set of OCL constraints in order to assert that
models built from it were syntactically and semantically correct.

In spite of the good results obtained by the StateML tools, it was quite clear that its
modeling capabilities were very limited, particularly to modeling real world system
behavior. As already stated, one of the biggest limitations of StateML was the lack of
macro-states and orthogonal regions, since (1) macro-states help avoiding state
explosion in state-machines [11], and (2) orthogonal regions make it possible to
model the concurrent aspects of a state.

 StateML+: From Graphical State Machine Models to Thread-Safe Ada Code 161

The new StateML+, presented in this paper, tries to overcome the limitations of the
previous version, extending the underlying state-machine meta-model with orthogonal
regions (among other modeling elements), and, thus, providing extended modeling
capabilities. Accordingly, the graphical modeling tool (see section 2.2), and the
automatic model-to-Ada transformation (see section 3) have also been extended to
support the new StateML+ extended meta-model.

2.1 The StateML+ Extended Meta-Model

The StateML+ extended meta-model is shown in Fig. 1. As justified before, when
compared to the previous version (StateML meta-model [4]), the main difference is
the inclusion of the Region concept, which now plays a central role. The elements
included in the meta-model and the relationships existing between them are briefly
described next.

• Region. As previously stated, this concept has been newly added to the meta-
model. Each Region is contained in a State, but a special one, called
topRegion, which is contained in the StateMachine itself. In this new
version, Regions contain Vertexes and Transitions, which were directly
stored in the StateMachine in the previous StateML version.

• StateMachine. As already explained, in this new version of the meta-model,
the StateMachine contains a topRegion instead of directly containing the
Vertexes and Transitions that constitute the state machine. Besides, it has a
unexpectedTransitionPolicy property which can take values {IGNORE,
NOTIFY_ERROR}. According to the value of this property, the StateMachine
will react differently when it receives an event which does not trigger any of the
outgoing transitions of the current state. Specifically, the StateMachine will
ignore the unexpected event if the IGNORE value has been selected, and it will call
an error handler otherwise (NOTIFY_ERROR value selected). This fact is
considered as a “semantic variation point” in the UML 2.x specification and was
outlined in [4] as a future improvement of StateML.

• State. In this extended version of the meta-model it is possible to create States
containing Regions which may contain other States (and Transitions), up
to any nesting level. Thus, this structure allows for creating macro-states. The
State element has also been enriched with three boolean properties named
hasOnEntry, hasDo, and hasOnExit, which allow designers to establish
whether the implementation of the State will have any of these operations. These
boolean properties are parsed during the model-to-Ada transformation step, as it
will be widely explained in section 3.2.

• Transition. This element remains similar to the one included in the previous
version. It keeps the kind property, which can take values {INTERNAL,
EXTERNAL} as before, and includes two new boolean properties requiresGuard
and hasFire, which control whether the designer wants a Transition to have a
guard and a fire operation. These boolean properties, together with those added to the
State element, are used during the model-to-Ada transformation step.

162 D. Alonso et al.

Fig. 1. The StateML+ extended meta-model

• Pseudostate. This element remains identical to the one included in StateML,
i.e. it only includes a property kind of type PseudostateKind. However, as
shown in Fig. 1, the PseudostateKind enumerated type has been enriched
with new elements to cope with the new needs derived from the inclusion of
Regions in the meta-model. Thus, the property kind can now take values
{INITIAL_STATE, HISTORY_STATE, JOIN_STATE, FORK_STATE}. The
syntax, and the semantics of these pseudo-states has been taken form the one
defined in the UML 2.x specification [10], and it is summarized next.
» INITIAL_STATE / HISTORY_STATE. Initial vertexes represent a default

vertex that is the source for a single Transition to the default State of a
Region. In the case of HISTORY_STATEs, they have the ability to
“remember” the last active State the Region was in before exiting (the
Region). Thus, when the Region is entered again, the HISTORY_STATE re-
starts the last active State execution again. There can be at most one initial
vertex (either INITIAL_STATEs or HISTORY_STATEs) in a Region. The
outgoing Transition from the initial vertex can not have either a fire
operation or a guard.

» JOIN_STATE. JOIN_STATE Pseudostates allow to merge several
Transitions emanating from source States belonging to orthogonal
Regions, enabling their synchronization. The Transitions entering a
JOIN_STATE Pseudostate cannot have either guards or fire operations.

» FORK_STATE. FORK_STATE Pseudostates allow to split an incoming
Transition into two or more Transitions terminating on orthogonal
target States (i.e., States in different Regions of a macro-state). The
Transitions outgoing from a FORK_STATE Pseudostate must not have
guards or fire operations.

The StateML+ meta-model extension made arise many additional syntactic and
semantic constraints, which could not be directly expressed in the meta-model, given
the limitations of using a MOF [12] meta-class diagram. As a consequence, a

 StateML+: From Graphical State Machine Models to Thread-Safe Ada Code 163

comprehensive set of OCL [6] constraints had to be implemented to cope with the
new modeling restrictions. For space reasons, only two of these constraints are
included in this paper (see Table 1).

Next section presents the new graphical model editor built to support the new
modeling capabilities of StateML+, together with a robotic system case study
developed using this new tool.

Table 1. Two of the OCL constraints included to complete the formal syntax of StateML+

Target domain element: Transition

Description: Pseudostates cannot have internal transitions

OCL rule:

self.kind=TransitionKind::INTERNAL

 implies not(self.source.oclIsTypeOf(Pseudostate))

Target domain element: Transition

Description: External Transitions from INITIAL, HISTORY, and FORK and to JOIN
Pseudostates must have requiresGuard=false and hasFire =false

OCL rule:

 ((self.kind=TransitionKind::EXTERNAL) and

 ((self.source.oclIsTypeOf(Pseudostate))
or
 (self.target.oclIsTypeOf(Pseudostate))) and

 ((self.source.oclAsType(Pseudostate).kind=
 PseudostateKind::INITIAL_STATE)
or (self.source.oclAsType(Pseudostate).kind=
 PseudostateKind::HISTORY_STATE)
or (self.source.oclAsType(Pseudostate).kind=
 PseudostateKind::FORK_STATE)
or (self.target.oclAsType(Pseudostate).kind=
 PseudostateKind::JOIN_STATE)))
implies
 (self.requiresGuard=false and self.hasFire=false)

2.2 Building Graphical StateML+ Models: A Case Study on Robotics

A new graphical modeling tool has been developed to support the new modeling
capabilities of StateML+ and also the new restrictions needed to complete the meta-
model specification, as previously introduced in section 2.1.

As the previous version of the tool, the StateML+ graphical model editor was
implemented using the Eclipse Graphical Modeling Framework (GMF). Thus, we
followed a similar approach as the one described in [4] but, in this case, the new
elements included in the StateML+meta-model and the new OCL constraints were
taken into account.

As shown in Fig. 2, the new tool offers a richer palette, where the user can now
select new elements such as Region or the new different kinds of pseudo-states.

164 D. Alonso et al.

Besides, users can validate their models both against the meta-model and against the
newly added set of additional OCL constraints, thus assuring that their models are
totally correct before proceeding to the model-to-code transformation step.

In order to test both the new modeling capabilities of the StateML+ meta-model,
the graphical modeling tool built on top of it, and the automatic model-to-Ada code
transformation implemented afterwards, we needed a simple yet real-world case
study. Given that, as stated in the introduction, our application domain is very related
to robotics, we decided to use the state machine model proposed in [13] and depicted
in Fig. 2.

Fig. 2. State-machine model depicted using the StateML+ graphical modeling tool. This state
machine models the behavior of the robotic arm used as the case study in this paper.

The state-machine model shown in Fig. 2 models the behavior of a robotic arm
which holds a tool (e.g. a gripper, a welder, etc.). As the movement of the arm and the
movement of the tool are independent of each other, they have been modeled with two
orthogonal regions (toolRegion and armRegion) to show this independence.
Each of these regions contains the states in which the tool or the arm can be in,
independently of the current state of the other region. The rest of the states (i.e.
Ready, Error, EmergencyStop and Finished) are directly contained in the
topRegion of the state-machine. In addition:

• An initial pseudo-state has been added to each region to mark its default initial
state, i.e. where the region starts its execution. This restriction is checked by an
OCL expression.

 StateML+: From Graphical State Machine Models to Thread-Safe Ada Code 165

• A fork pseudo-state has been included in the topRegion to split the contCmd
transition from the Ready state to two states included in the orthogonal regions
defined in the Moving state.

• A join pseudo-state has also been added to the topRegion to synchronize the
outgoing transition from the Moving state, i.e. from two of the internal states
belonging to its internal regions.

This case study uses all the new elements added to StateML+, showing a simple yet
rich enough case study. This case study has served also as the input to test our model-
to-Ada code transformation that is explained in the following section.

3 From StateML+ Models to Thread-Safe Ada Code

The meta-model of a system plays a central and fundamental role in the MDE
paradigm, since it is the basis that supports the rest of the MDE development process,
namely: model creation and model transformations [14]. Therefore, changing the
meta-model implies updating the graphical model editor and the model-to-Ada
transformation that were previously developed for the StateML tool.

The model-to-Ada transformation, which is described in section 3.2, has suffered a
deep modification and now generates Ada code that can cope not only with the new
modeling capabilities of StateML+ but that is also ready to be included in any multi-
tasking application. Besides, we have seized the fact that we should update the model
transformation to include some of the characteristics that were outlined as “future
work” in the previous StateML tool [4].

Section 3.1 briefly describes some of the architectural design pattern that could
have been used to implement the concurrency aspects derived as a consequence of the
improvement of the StateML tool, together with the main characteristic of the chosen
implementation pattern: the Reactor/Dispatcher pattern.

3.1 Decoupling State Activities Execution from State-Machine Management:
Using the Reactor Pattern

One of the main challenges of the model-to-code transformation of the state machine
artifact resides in the run-to-completion semantics associated to the state machine.
The run-to-completion semantics, as appears in the UML superstructure (see [10],
chapter 13) specifies that:

“An event occurrence can only be taken from the pool and dispatched if the
processing of the previous event occurrence is fully completed. Before
commencing on a run-to-completion step, a state machine is in a stable state
configuration, with all entry/exit/internal activities (but not necessarily state (do)
activities) completed. The same conditions apply after the run-to-completion step
is completed. Thus, an event occurrence will never be processed while the state
machine is in some intermediate and inconsistent situation. The run-to-completion
step is the passage between two state configurations of the state machine. The run-
to-completion assumption simplifies the transition function of the state machine,
since concurrency conflicts are avoided during the processing of event, allowing
the state machine to safely complete its run-to-completion step”.

166 D. Alonso et al.

This run-to-completion requirement was not a problem in the previous StateML tool,
as it does not allow the creation of regions, and thus there is always one and only one
active state. But, in StateML+, the presence of regions breaks this rule, as there may
be many active states inside any given macro-states. A possible alternative consists of
the execution of every active state in its own thread. But using multi-threading in such
an uncontrolled way has the following drawbacks:

• Threading may be inefficient and non-scalable.
• Threading may require the use of complex concurrency control schemes

throughout the state machine code.
• Concurrency usually implies longer development times, as it has its own problems.

In our case, it was very advisable to come up with a scalable solution according to the
number of states appearing in the model, and that could shorten implementation time
from the former model-to-Ada transformation.

The Reactor/Dispatcher architectural pattern [8] provides a solution that
accomplish this requirement. This pattern allows event-driven applications to de-
multiplex and dispatch service requests that are delivered to an application from one
or more clients. The handlers of these service requests are registered within a reactor
thread that runs an infinite loop in which the registered handlers are run sequentially.
The reactor thread provides a way to add and remove event handlers at run-time, so
the application can adapt itself to changing requirements. The use of the Reactor
pattern has allowed us to:

• Achieve “concurrency” for the states contained in orthogonal regions, eliminating
the need of complex synchronization mechanisms and shortening in this way the
implementation time of the transformations.

• Decouple the state machine management and the short duration activities involved
in the run-to-completion semantics of the state-machine (transitions, entry and exit
actions execution) from the long duration activities that may be associated to
states.

However, the Reactor pattern is not suitable for long duration activities, as they are
executed sequentially by the Reactor. Thus, the main liability has been the need of
constraint the duration of the activities associated to states. Activities should be of
short duration, though they are repeated every time the Reactor executes its cycle while
the state machine remains in the given state. In this case, the reactor pattern can be seen
as a cyclic executive scheduler. Long duration activities are more effectively handled
using separate threads. This can be achieved via other patterns, such as Active Object
or Half Sync/Half Async [8]. In general, the Reactor pattern is difficult to test and
debug, but in our case simplicity helps avoiding these drawbacks.

3.2 Model-To-Ada Transformation: Implementing the Reactor Pattern

As said before, the Reactor pattern will be use to embed the run-to-completion
semantics of the state-machine artifact in the resulting Ada code implementation of a
StateML+ model. In this case, the handlers executed by the reactor task are the
Do_Activity associated to each state, while the events that trigger their execution
are the transitions of the state-machine. When a transition occurs, the activity

 StateML+: From Graphical State Machine Models to Thread-Safe Ada Code 167

associated to the new state is registered in the reactor while the activity associated to
the old state is removed from it. The same happens when entering or exiting a macro-
state with orthogonal regions.

Fig. 3 shows the UML package diagram that describes the structure of the Ada
code generated after the model-to-code transformation, which generates:

• A main procedure, called Simulator, which contains a command-line program that
can command and control the generated state machine. This program is used only
for different testing purposes. The state-machine is completely usable on itself
without this procedure.

Fig. 3. UML package diagram showing the structure of the generated Ada code. Highlighted
packages (those with a thicker border) are private childs of the outer package.

• A package, which name depends on the name of the state-machine model name
(Main_Fsm in Fig. 3), implements all the structure and control logic of the state
machine. This package contains: (1) the private child packages (depicted in Fig. 3
with a thicker border) that implement the different modules of the Reactor pattern
as it will be explained in the following items, (2) the parameter-less procedures that
signal the event occurrence that may trigger the fire of a transition of the state-
machine, (3) a function to get the state machine current state and the corresponding
types to correctly deal with it, and (4) the procedures that notify that an unexpected

168 D. Alonso et al.

event has happened (these procedures are created when using the
NOTIFY_ERROR value in the unexpectedTransitionPolicy property of
the State-machine, see section 2.1).

• A private child package, named Main_Fsm.Fsm_Task, which contains a protected
buffer to store event signaling and the task that controls the flow of states. The
protected buffer accomplishes two main objectives: (1) it decouples event signaling
from event processing, just as the Reactor pattern specifies, by using the Command
design pattern [7], and (2) it makes the use of StateML+ state-machines in multi-
threaded applications possible. The task created in this package is in charge of
controlling the state-machine and changing its state, depending on the received
event. This task embodies the run-to-completion semantics that is associated to the
state-machine execution, which includes event processing, entry/exit/fire activities
execution and state change, but not do_activity execution.

• Another private child package, named Main_Fsm.Reactor_Task, that plays the
role of the reactor that corresponds to its name. This package contains the list of
currently active states (those whose Do_Activity has to be executed), together
with the reactor task in charge of sequentially executing them. The list of activities
to be executed is maintained and updated by the Main_Fsm.Fsm_Task when it
processes an event that changes state. This design decision frees the Fsm_Task
from executing the Do_Activity, so it can process the next event as soon as it
completes the run-to-completion step.

• The private child package Main_Fsm.Transitions contains the specification and
empty bodies of (1) the procedures that describe the activity that should be
executed when a transition is fired (named Fire_XXX_Transition), and
(2) the functions that check whether the transition should be executed or not, that
is, the guard of the transition (Can_Fire_XXX_Transition). All of these
subprograms are automatically generated if the corresponding attribute of the
Transition is set (hasFire for generating the fire procedure and
requiresGuard for the guard function). Of course, all these subprograms must
be filled-in by the developer of the final application. Besides generating the
specification of these subprograms, the transformation also generates the
corresponding calls to these subprograms inside the procedures that control the
state machine flow (implemented in the Main_Fsm.Fsm_Task package). This
design decision eliminates the generation of unneeded code and reduces the
number of subprogram calls, making the application smaller and more efficient.

• Another private child package, named Main_Fsm.States, contains the definition of
all the states of the state-machine as well as the specification of the procedures that
should be executed when entering (On_Entry procedure), exiting (On_Exit
procedure) or when staying (Do_Activity procedure) in the state. As in the case
of the Transition concept above, the specification, empty body and
corresponding subprogram invocations are generated depending on the value of the
hasOnEntry, hasOnExit and hasDo properties of the States.

The body of the reactor task contains a select statement to perform an Asynchronous
Transfer Control (ATC) [15] back to the reactor. In the case in which the reactor is
executing the Do_Activity of the state that is going to be exited as a consequence

 StateML+: From Graphical State Machine Models to Thread-Safe Ada Code 169

of the received event, this ATC will abort the corresponding procedure, as the
execution of the state machine artifact demands.

Finally, to end this section about the model-to-Ada transformation of a StateML+
model, it only remains to explain the implementation of the different values of the
unexpectedTransitionPolicy attribute of the State-Machine concept.
As was said in section 2, UML 2.x says that the behavior of the state machine after
receiving an event that does not trigger the fire of any of the transitions of the current
state is undefined (UML calls this a “semantic variation point”). The StateML+
completes this lack definition by offering the designer two possible alternative
behaviors when state machine receives such a transition: it may silently ignore the
unexpected transition or it may call a registered procedure to notify other parts of the
program the occurrence of this condition.

In the later case, two new procedures, named Subscribe_Handler and
Erase_Handler, are added to the generated Main_Fsm.Fsm_Task package in
order to allow interested units to subscribe to the occurrence of unexpected
transitions. These handlers will be sequentially called by the state machine when it
detects such an unexpected transition.

4 Conclusions and Future Research

State-machines have been used in software system design since the early 1970s, being
part of many software applications and, for their characteristics they are particularly
useful in the embedded system domain. As a consequence, many tools have been
developed to describe and generate executable code for these artifacts. Among these
tools, probably one of the most widely used is STATEMATE [11].

The OMG adopted state-machines to describe the behavior of the elements that
appear in their UML standard. As a consequence, new UML-compliant tools appeared
in the marketplace allowing designers to use this artifact in their designs. However, as
the scope of these tools is wider than just generating code for state-machines, they
commonly produce complex and cumbersome code, making it difficult to extract the
state machine code. In this sense, the main advantage of the MDE approach is that
developers can decide the abstraction level, the scope of their applications and the way
models are transformed into code, having full control over the development process.

This paper has presented an extended version of the previously developed StateML
tool, aimed at designing non-hierarchical state-machines and generating the
corresponding Ada code implementation. According to the research objectives
outlined in the introduction of the paper, the improved StateML+ meta-model now
allows designers to model the behavior of the ACRoSeT abstract components and to
generate the corresponding Ada implementation. Therefore, the work presented in this
paper represents a first and decided step in the road to implementing a full MDE
process for generating robotic applications.

The extended StateML+ meta-model and tools now include many improvements
over the previous versions, being these the most important: (1) the addition of regions,
which enable the creation of hierarchical and concurrent state-machines, (2) a better
implementation of the run-to-completion semantics associated to the state-machine
artifact, and (3) the generated Ada code is thread-safe and ready for working in a

170 D. Alonso et al.

multi-tasking environment. We are still working on some additional improvements in
the following directions:

• To allow designers to define different concurrency policies for each state. This
would allow them to decide whether the do_activity of a state should be
executed in the Reactor or in a new thread created for this purpose.

• To implement and test alternative design patterns, such as the Proactor or the
Active Object [8] ones, which may help improving the overall system flexibility, as
explained in section 3.1.

• To define additional model-to-text transformations to different target languages.
Finding alternatives to Ada can be a tough work, as there are not many languages
providing such a good multi-task support.

References

1. Schmidt, D.: Model-Driven Engineering. IEEE Computer 39, 25–31 (2006)
2. Bézivin, J.: On the Unification Power of Models. Software and Systems Modeling 4, 171–

188 (2005)
3. Álvarez, B., Sánchez, P., Pastor, J.Á., Ortiz, F.J.: An architectural framework for modeling

teleoperated service robots. Robotica 24, 411–418 (2006)
4. Alonso, D., Vicente-Chicote, C., Sánchez, P., Álvarez, B., Losilla, F.: Automatic Ada

Code Generation Using a Model-Driven Engineering Approach. In: Abdennahder, N.,
Kordon, F. (eds.) Ada-Europe 2007. LNCS, vol. 4498, pp. 168–179. Springer, Heidelberg
(2007)

5. Szyperski, C.: Component Software - Beyond Object-Oriented Programming. Addison-
Wesley / ACM Press (2002)

6. OMG: Object Constraint Language (OCL) Specification v2.0. The Object Management
Group (2006)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, Reading (1995)

8. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture. In: Patterns for Concurrent and Networked Objects, vol. 2. Wiley, Chichester
(2000)

9. The Eclipse MOFScript subproject., http://www.eclipse.org/gmt/mofscript/
10. OMG: Unified Modeling Language: Superstructure v 2.0. The Object Management Group

(2005)
11. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Transactions on

Software Engineering Methodology 5, 293–333 (1996)
12. OMG: Meta-Object Facility Specification v2.0. The Object Management Group (2004)
13. Douglass, B.P.: Real Time UML: Advances in the UML for Real-Time Systems. Addison-

Wesley Professional, Reading (2004)
14. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-driven

software development. IEEE Software 20, 42–45 (2003)
15. Burns, A., Wellings, A.: Concurrent and Real-time Programming in Ada 2005. Cambridge

University Press, Cambridge (2007)

Experience in the Integration of Heterogeneous

Models in the Model-driven Engineering of
High-Integrity Systems

Matteo Bordin, Thanassis Tsiodras, and Maxime Perrotin

University of Padua, Department of Pure and Applied Mathematics,
via Trieste 63, 35121 Padua, Italy

mbordin@math.unipd.it
Semantix Information Technologies, K. Tsaldari 62, 11476, Athens, Greece

ttsiodras@semantix.gr
European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands

maxime.perrotin@esa.int

Abstract. The development process of high-integrity systems has
shifted from manual coding to designing with modeling tools that verify
the correctness of the design well before production. The parallel applica-
tion of several different modeling tools in the design of separate parts of
the same system is now a common industrial practice. The advantage of
using several, domain-specific tools is however balanced by an increasing
complexity in the integration phase: it is indeed necessary to guarantee
the correctness of the interaction of the several subapplications, which
also includes the integration of the source code automatically generated
by the different modeling tools. This constitutes a major concern for the
introduction of several modeling tools in the industrial community, as
well as for certification institutes. In this paper we present our practi-
cal experiences in the definition of a computer-aided sound development
process to permit model-driven integration of heterogeneous models.

Keywords: Model-driven Integration, High-Integrity Systems, Auto-
mated Code Generation.

1 Introduction

The development of high-integrity systems stands to gain much from exploitation
of different tools and languages in the implementation of a component based sys-
tem. For example, in the domain of space-related applications (which is our main
domain of interest), the system implementation is usually co-developed by several
different providers, each one using a tool specifically suited for a particular sub-
set of the application: Matlab [1] for the implementation of algorithms, SDL [2]
for state machine logic, UML2 [3] for object-oriented architectures, AADL [4]
or the emerging SysML [5] for system modeling, etc. The use of domain-specific
tools offers two main advantages: (i) domain-specific semantics greatly simplifies
the design and verification of a precise kind of applications; and (ii) the men-
tioned tools usually provide for automated source code generation through a

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 171–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

172 M. Bordin, T. Tsiodras, and M. Perrotin

specifically tailored process (for example, the code generator which comes with
SCADE has been qualified for DO-178B level A systems [6]).

The exploitation of several, domain-specific tools providing automated code
generation to implement the functional specification surely decreases the verifi-
cation and validation costs; but it also increases the criticality of the integration
phase, as the switch from software modeling to system modeling - which is
the design of the system architecture - may negatively affect the semantics of
common data types and the non-functional properties of the system. Currently,
the integration process is handled manually, making it very error-prone and a
possible source of defects.

The idea we present in this paper is to exploit model-driven technologies to au-
tomate the integration phase, guaranteeing that the whole process can be applied
in domains subject to strict certification standards. Model-Driven Engineering
(MDE, [7]) is currently one of the main innovation vectors in software engineer-
ing. The whole idea at the heart of model-driven engineering is to promote the
use of a formal, high-abstraction, representation of the system, a model, during
each phase of the development cycle. In a model-driven development process,
models are designed, analyzed, transformed, verified and executed. The notion
of model transformation is particularly meaningful in MDE. Models are usually
designed at a very high abstraction level, which may be agnostic on aspects such
as target execution platform, deployment, and distribution middleware: a model
transformation which takes as input the model and the platform specification
may automatically generate the implementation of the system for a particular
platform. Ideally, the developers do not need to cope with low-level represen-
tations of the system at all: the generation of source code is for example just
one of the several possible transformations a model is subject to. In mainstream
software engineering, model-driven engineering has de facto taken the name of
the OMG initiative named Model-Driven Architecture (MDA, [8]); MDE is how-
ever not limited to the OMG world: SCADE or Matlab Simulink [9] are indeed
excellent examples of MDE infrastructures because they permit to design, verify
and deploy systems using a high-abstraction modeling semantics. Another key
aspect of model-driven engineering is the concept of domain-specific metamodel-
ing (DSM), which is the definition of design languages and tools to fully support
MDE in a particular domain.

Model-driven principles and technologies have already been applied to the
integration problem [10]: the OMG MOF facility is by itself an integration frame-
work for heterogeneous metamodels. The most common domain for the appli-
cation of model-driven integration is enterprise computing. One of the most
typical application is the reverse engineering of legacy components (usually in
the from of source code, CORBA interfaces, XML) to UML models, so as to
permit the generation of a middleware layer to interface the components [11].
Another common application is the interoperaction between metadata defined
with domain-specific metamodels which are all traced to a common metamodel,
usually in the form of UML profiles [12].

Experience in the Integration of Heterogeneous Models 173

Our first main contribution to the field of model-driven integration is the do-
main we target: high-integrity systems, in particular in the space domain. The
most well-known (and probably unique) example of model integration in the
high-integrity domain is the SCADE Simulink Gateway which permits to import
Simulink models in SCADE, modify them and generate code using the SCADE
code generation engine. As a first notable difference, we aim to integrate mod-
els designed with radically different tools along with their generated code. The
models we plan to integrate are functional models because they represent the
functional (sequential) specification of the system. The integration process must
thus guarantee that the interaction between the models designed with different
tools does not corrupt the properties proved during the modeling phase and that
the interfacing of the generated code does not corrupt the semantics of the ex-
changed data: the solution of this last problem cannot be found in mainstream
technologies like CORBA, SOAP or WEB-services, because of the peculiarities of
the target domain (embedded systems with strict performance and predictability
requirements). Finally, we also wish to verify system-level properties (in partic-
ular the timing behaviour) of the integrated system via model-based analysis: to
achieve this goal, the integration process must be able to extract the information
relevant to the analysis from the imported models.

1.1 The Overall Picture

The work presented in this paper is part of a toolchain infrastructure for the
design, verification and implementation of high-integrity real-time systems. The
main aim of our work is to define a new development process for high-integrity
systems and develop a set of tools to support it. We have already developed
a full Eclipse plug-in for the design of high-integrity, real-time systems. The
plug-in is based on a domain-specific metamodel called RCM [13]. The RCM
metamodel is conceptually traceable to a UML2 profile: it allows functional
modeling by means of class and state machine diagrams and system modeling
through component and deployment diagrams. The RCM metamodel guarantees
that any designed system abides by the constraints enforced by the Ravenscar
Computational Model [14] and can thus be statically analyzed for its timing
behavior. The timing analysis is automatically performed on the model itself and
encompasses logically and physically distributed systems [15]. The plug-in also
comes with an automated code generation engine targeting Ada 2005 [16], which
achieve 100% code generation for the concurrent and distributed architecture of
the system [13].

2 System Models as an Integration Framework

The notion of heterogeneity entails that functional models are defined with dif-
ferent semantics: in MDE terms, we would say that the metamodel underlying
each model is potentially different. This is in fact the case, as tools like SCADE,
SDL and UML have their own semantics; the same fact applies also to manually

174 M. Bordin, T. Tsiodras, and M. Perrotin

written code, as a programming language - or more accurately, its grammar and
semantics - is by itself a metamodel.

The place where the (different) semantics of (heterogeneous) functional mod-
els fit together is the system model, which is the model representing the overall
system in terms of both functional and non-functional (like concurrency and de-
ployment) features. We believe that a system model should be considered as a
true integration framework — a pivotal representation of the system — because
this is the place where software and system semantics merge: only in a system
model is it possible to assure the correct interaction between integrated models
and verify system-level properties which are affected by both the software and
system modeling process. Our metamodel of choice for system modeling is the
RCM metamodel, briefly introduced in section 1.1 and described in [13] and [17].

Merging heterogeneous functional models within a single system model may
render particularly challenging to:

1. verify that the functional models do not interfere with the synchronization
mechanism of the concurrent architecture;

2. assure that the concurrent architecture does not corrupt the properties of
functional models by introducing race condition or deadlocks;

3. guarantee that the (possibly remote) interactions between heterogeneous
functional models are semantically preserving, which basically means they
do not corrupt the passed data;

4. keep the software and system view consistent with each other.

Coping with items 1 - 2 above is straightforward. If the concurrent semantics is
prohibited in functional models, then the functional specification cannot affect
the synchronization of the system; it is quite easy to identify the elements (or key
words in a programming language) related to concurrency in the metamodel for
functional modeling and prohibit their use. Tools for functional modeling usu-
ally permit to express some sort of aggregation properties for services accessing
the same functional state: a SCADE block or a UML class are such examples.
In order to avoid the corruption of the functional specification by the concur-
rent execution of the system, it is enough to constrain the concurrent semantics
to permit at most one task at a time to access a functional model — in other
words, to have a single executer behind the state machine underlying the func-
tional model1. This constraint leaves two possible choices for stateful functional
models: (i) a single dedicated task always executes the state machine; or (ii) each
triggering procedure of the state machine presents a synchronization protocol as-
suring mutual access to the whole functional state. Stateless functional models
(for example mathematical functions) do not require any particular attention in
deciding their concurrent behavior. By choosing the concurrent semantics in a
way the aforementioned constraints are guaranteed, no race condition may hap-
pen; deadlocks can also be prevented by enforcing the immediate priority ceiling
protocol [18] and implementing remote communication with an asynchronous,
message-based protocol.
1 We do not consider non-intersecting, parallel state machines within the same class.

Experience in the Integration of Heterogeneous Models 175

To guarantee semantic preservation of exchanged data (point 3) we use ASN.1
[19] for data modeling and an appropriate compiler to generate stubs to convert
the raw representation of data between different languages/architecture: it is
however less clear how we can integrate with the code generated by different
modeling tools (SCADE, SDL, etc.). View-consistency (point 4) requires more
attention and is strongly related with cross-cutting concerns. Cross-cutting con-
cerns are aspects of the system affected by both the software and the system
modeling process. A typical example of cross-cutting concerns is the definition
of (execution/information/data) flows: they of course depend on the connection
between component instances and on their deployment; but they also depend
on the functional specification, which basically tells which services are invoked
in response to the execution of a functional procedure. A sound determination
of flows is a fundamental requirement for several kinds of model-based analysis,
it being related to, for example, timing performance or security preservation. In
the scope of our experimentation, we used the modelization of execution flows
to perform model-based timing analysis [15].

3 Semantic Preservation in Practice

Three main dimensions require particular care if several modeling tools are ex-
ploited: (i) the semantics of common data types, and in particular their physical
representations on different execution platforms; (ii) the integration of the code
generated by the different modeling tools; and (iii) the extraction and evaluation
of cross-cutting concerns.

3.1 Data Semantics Preservation

Abstract Syntax Notation One [19,20] (ASN.1) is a standard and flexible nota-
tion that allows detailed data structure representation, as well as portable and
efficient encoding and decoding of data into bitstreams.

In the context of our work, ASN.1 was used as the center of a “star formation”;
all the communication taking place between the subsystems (possibly modeled in
different modeling tools) is done through ASN.1 messages. This enforces a com-
mon semantic “contract” between the communicating entities, in terms of what
information is exchanged; ASN.1 therefore guarantees the semantic equivalence
of the data types used in the different modeling tools.

To enforce this semantic equivalence contract, a semantic translation takes
place immediately after the definition of the ASN.1 grammar that describes the
exchanged data. The ASN.1 definitions of the messages form the basis; the de-
sired target definitions are the semantically equivalent ones in the data definition
languages offered by the modeling tools. A custom tool was built [21] that reads
the ASN.1 definitions and translated them into the equivalent data definitions,
to the extent supported by the target modeling tool languages (e.g. Lustre (for
SCADE), SDL (for ObjectGeode), etc).

176 M. Bordin, T. Tsiodras, and M. Perrotin

The translation process is guided from the overall system view; by parsing it
and learning about the implementation platform of each subsystem, the trans-
lation tool is in a position to know the desired target language per message and
accurately translate it preserving the semantic information.

As an example, from this ASN.1 data definition:

EXAMPLE DEFINITIONS IMPLICIT TAGS : := BEGIN PosData : :=
[APPLICATION 1] SEQUENCE {

x INTEGER, y INTEGER,
d e s c r i p t i o n OCTET STRING (SIZE (1 . . 8 0))

} END

we get this translation in Lustre:

l e t type System Types
PosData = [x : int , y : int , d e s c r i p t i o n : char ˆ 8 0] ;

t e l ;

This translation is in fact the key to guarantee semantic consistency; e.g. the
team developing a subsystem in SCADE will use the structure definitions as they
are generated from the translation tool, knowing in advance that this process
will neither introduce new content nor prune existing ones. If there is informa-
tion in the ASN.1 definitions that is not translatable to the target modeling tool
language, the translation tool will complain and warn the user about it - provid-
ing early feedback about the potential loss of information and preventing side
effects from this loss. Notice also that by using the overall system view, the tool
knows exactly what targets it needs to generate code for, thus being minimal
and complete - optimal - in the generated definitions.

3.2 Integration of Generated Code

Creating semantically equivalent definitions is the first step - it guarantees that
all subsystems will be functionally modeled with equivalent message definitions.
This is not enough, however. Each modeling tool follows its own scheme in terms
of how it generates code. To be precise, the code generated by the tools can be
conceptually split in two categories:

– Code that implements the logic of the subsystem: state machines, algorithmic
descriptions of work to be done in response to incoming signals, etc

– Code that describes the data structures of the exchanged messages

Since the data definitions have been produced by the translation tool, the data
structures generated are certainly equipped with the same data. The details
however - e.g. variable names, ordering, language-specific type definitions, etc -
vary a great deal between different modeling tools. As a consequence, the actual
generated code cannot interoperate as it is; error-prone manual labour is required
to “glue” the pieces together. This is the source of multiple problems2, and it is
2 http://awads.net/wp/2005/12/05/ten-worst-software-bugs/

Experience in the Integration of Heterogeneous Models 177

another reason for using ASN.1: by placing it at the center of a star formation
amongst all modeling tools, the “glue-ing” can be done automatically:

– An ASN.1 compiler is used to create encoders and decoders for the messages
exchanged between subsystems [22]

– Another custom tool is used [21], that creates mapping code (“glue” code);
code that translates the data at runtime between the data structures of the
ASN.1 compiler, and the data structures generated by the modeling tools.

As long as the mapping is a well defined one - that is, as long as the modeling tools
follow specific rules in how they translate message data into data structures -
this mapping work is feasible at compile time. This translation tool starts from
the overall system view, just as the first one (Section 3.1) did: it learns about all
the “paths” that messages have to go across, and thus, it knows what kind of glue
code to generate at the source and the destination of each message exchange.

Fig. 1. Mapping data using ASN.1

This process is significantly easier to test and verify - compared to the manual
translation process that would have to take place in its absence. Instead of
painstakingly checking all the manually written code parts that marshal data
back and forth between the data structures of the modeling tools’ generated
code, the only tests that need to be done are performed on the code generating
primitives, that is; mapping of integers, mapping of floating point numbers,
mapping of strings, etc. When each category has been tested and is known to
be handled in the correct manner, no further testing is necessary, regardless
of the complexity of the message structure itself. This significantly lessens the
effort required to use complex messages in the exchanges taking place between
different modeling tools.

Additionally, this glue layer offers a central point for tool-indifferent mar-
shalling: common mapping API can be developed that pertain to specific type

178 M. Bordin, T. Tsiodras, and M. Perrotin

mapping and tool categories; as an example, SCADE/Lustre are just one of the
technologies adhering to a synchronous modeling paradigm; common patterns
for all such tools can be extracted into a message marshalling portability layer.

Here is an example declaration section from the glue code generated:

#inc lude <s t d l i b . h> /∗ f o r s i z e t ∗/ i n t
Convert From ASN1C To TCLink In TC Parser Id (

void ∗pBuffer , s i z e t iBu f f e r S i z e) ;

A number of marshalling functions are generated, one (or more) per message
marshalling interface: they convey the message data as (pBuffer, iBufferSize)
pairs into the appropriate data structures generated by the modeling tools; data
are passed via (pBuffer, iBufferSize) pairs because it is a language-neutral rep-
resentation of a series of octet - the ASN.1 message. Their implementation is
completely automated, and their code generation process can cope with arbi-
trarily complex message definitions in a transparent way. The end user simply
calls them, without ever worrying about the details of the mapping code.

3.3 Managing Cross-Cutting Concerns

Cross-cutting concerns (as the representation of functional provided/required
services or the identification of execution flows) require the correct understand-
ing of both the software and the system specification. A simple but illustrative
example is the following. Given a state machine SM, suppose that the state
entered by invoking method p() includes, among its actions, the invocation of
method r() on object o (a class member). It is evident that there is a flow from p()
to o.r(), but from the pure software specification it is not possible to determine
which object resolves the invocation, because this information is contained in
the deployment diagram where objects are linked; similarly the semantics of the
invocation of o.r() is obscure in the functional model, as it may be synchronous
or asynchronous, local or remote: this information is again contained in the sys-
tem specification. On the other side, by looking at a pure system specification
(it being written in RCM, SysML or AADL), it is not possible to determine the
functional behavior behind the invocation of a service, as the action semantics
is not completely visible from a system model. The current industrial practice
would require the manual translation of cross-cutting concerns from a software
to a system model (or viceversa): for example, flows may be manually identified
in the system level, assuming the designer has a complete knowledge of the un-
derlying functional specification. This process is inevitably error-prone: design
errors may of course be caught during the verification phase, but this approach
still requires additional manual intervention and thus increases the cost of vali-
dation. The presence of several possible modeling tools (each one with its own
metamodel), makes it even harder for the designer to completely understand
all possible formalisms for software design and extract the required information
from the software models. Furthermore, to correctly identify cross-cutting con-
cerns, the designer is actually required to define a semantic mapping between

Experience in the Integration of Heterogeneous Models 179

the metamodel used for system modeling and the metamodel(s) for software
modeling. Industrial practitioners often seem to overlook the hidden complexity
of that kind of mapping, which is definitely a potential source of inconsistency
between system and software models.

In order to try to overcome the limits intrinsic to the manual nature of cop-
ing with cross-cutting concerns, we reasoned on the possibility of automating
the interchange of semantic information between software and system models,
and in particular to automatically import heterogeneous functional models in
the system model. In section 2 we have acknowledged the pivotal role of the
system model: our idea is to automatically determine the system representation
of (part of) cross-cutting concerns by importing software models into the system
model; in this manner, the design process would be guided by the automatically
imported information, avoiding errors and inconsistencies between the system
and software specification by construction. The import of a functional model is
basically a model transformation which transforms a functional model conform-
ing to the metamodel of the tool used to design it, to a model which conforms
to the RCM metamodel: the first metamodel is said to be the source meta-
model, while the second is the target metamodel. When importing a functional
model, two distinct options are possible: we can import the entire semantics of
the source model or we can extract just the information required to create a
valid RCM model. In the first case, we should guarantee that the target meta-
model (RCM) is expressive enough for every possible functional metamodel and
develop a complex model transformation encompassing the entire semantics of
the source metamodel: this solution may not even be possible to implement. In
the case of importing a selected subset of the functional model, we are required
to extract only the information that is needed for an RCM model: basically,
the target metamodel specifies which kind of semantics must be present in the
source metamodel to permit a meaningful import process. The required sub-
set of semantics of the source metamodel is usually determined by the needs
for system-level model-based analysis and code generation: in our case, to per-
form model-based timing analysis, we are interested in just provided/required
services of each functional model and in their relation (basically, the execution
flow: which required service is invoked during the execution of a provided one).
In order to obtain the best cost/benefit ratio, we chose the second option.

The following step is the definition of the semantic mapping between the
source metamodel and the RCM metamodel. From a purely conceptual point of
view, a semantic mapping requires the comparison of the semantics of two differ-
ent languages and the definition of a series of functions to move from the source
to the target metamodel. Unfortunately, a mathematically sound methodology
to specify and prove semantic mappings in MDE is yet to come: we thus still
rely on the comparison of the language standards to define the model transfor-
mations. On a more pragmatic dimension, the model transformation requires to
extract a set of information from a functional model, which may come in the
form of a textual language (SDL, SCADE) or via an XML-based representa-
tion (UML2). If the source model is encoded using the latest (meta)modeling

180 M. Bordin, T. Tsiodras, and M. Perrotin

technologies, the model importer can exploit state-of-the-art tools to directly
transform the source model into the target model. On the other side, importing
a model specified via a textual language is more complex, because it requires a
sort of “double-pass” transformation: first the model is parsed, then it must be
transformed into an XML tree on which perform a model transformation.

The import process creates RCM entities representing the imported functional
models within the functional view of an RCM model. Such entities are basically
read-only, because they were designed, verified and deployed (transformed to
code) with extern modeling tools. At the same time, the generated entities are
marked with an appropriate tag to permit the RCM code generator to generate
the code required to interface with the source generated by the original modeling
tool. Once the software model is imported into an RCM model, the RCM rep-
resentations of system-level provided/required services and possible execution
flows are automatically determined out of the functional specification (see [17]
for a complete explanation): it is thus impossible for system-level properties to
be specified in a manner which is inconsistent with the imported software mod-
els. From this perspective, the RCM metamodel presents a clear advantage over
other system modeling languages: it guarantees view consistency by strongly
relating semantic element of each view. The RCM system model thus contains
all the information required to perform model-based timing analysis: from this
point on, the verification process proceeds as described in [15].

At the moment, we have developed prototype importers of UML2, Object-
Geode (SDL) and SCADE (Lustre) models into an RCM model: the UML2
importer is not particular interesting because, since RCM mimics the UML2
semantics, its development is purely a technical (not conceptual) exercise; SDL
and SCADE importers are indeed worth of additional explanation. The tools we
used to parse and transform SDL and SCADE models are, respectively, Ope-
nArchitectureWare xText and the Atlas Transformation Language (ATL).

Importing SCADE models. In order to preserve the properties of SCADE
blocks (verified and proved with the appropriate modeling tool), we decided to
prohibit the invocation of extern operations from within a SCADE block. For
this reason, a SCADE block is always the leaf of an execution flow: in other
words, it does not present required interfaces. The importing process of SCADE
block is thus quite simple: it is simply mapped as a RCM class providing the
service(s) offered by the block.

Importing SDL models. The import of SDL models is more complicated
because they may have both provided and required interfaces - meaning that
it is necessary to extract not only provided and required services, but also the
execution flow. After the parsing, the transformation process is divided into three
main steps:

1. Each SDL process is mapped onto an RCM class in the functional model:
the accepted input signal are mapped as public methods of the class.

Experience in the Integration of Heterogeneous Models 181

2. The output signals or calls executed by the SDL process compose the re-
quired interface of the RCM class: they are grouped by their target element,
which may be another SDL state machine, a SCADE block or an UML class.

3. For every output signal or call sent in response to an input signal, an exe-
cution flow between the method corresponding to the input signal and the
required interface corresponding to the output signal or call is generated in
the RCM class.

All information imported from the SDL model are automatically represented in
the system view, thanks to the view consistency enforced by the RCM meta-
model. To some extent, the SDL importer is still primitive because it does not
take into account conditional execution: all possible execution flows are consid-
ered at the same time, even those which are mutually exclusive. For the purpose
of timing analysis, this limit induces a clear pessimism, because the worst case
execution path is composed by the union of all paths. To limit the pessimism, in
the first prototype of our tool we permit to manually select which flows must be
considered for the analysis: we are aware that a manual intervention may poten-
tially corrupt the model consistency, but we consider this solution as a temporary
defect induced by technical reasons, rather than by conceptual difficulties.

4 Results and Discussion

To evaluate our approach and the tools we developed, we designed a simple
example using the RCM metamodel and related tools. The prototype is a sim-
plification of the software architecture of a subset of the embedded software of
a satellite, in particular the positioning and guidance and navigation system: it
is composed by communicating applications designed in SCADE (algorithmical
computations), SDL (state machines modeling) and RCM (system modeling).
The prototype has been demonstrated during the final review of the ASSERT
project (cf. the Acknowledgements section). The designed system is an approx-
imation of a real-life architecture, but it demonstrates most of the components
categories usually present in this family of applications; our purpose of evaluating
our approach in model-driven integration of heterogenous models is adequately
illustrated by this simplified prototype. Our evaluation is based on a set of met-
rics quite common in model-driven development, namely semantic preservation
in model transformations, ease of model-based analysis, model-to-code traceabil-
ity and the quality and size of generated code.

The prototype importer tools developed to generate RCM functional models
from SCADE and SDL models enabled us to accurately determine the system-
level representation of provided and required services; at the same time, possible
execution paths are identified during the importing process, permitting a safer
identification of the flows of interest for model-based (timing) analysis: with the
described approach, the identification of cross-cutting concerns cannot be a pos-
sible cause of semantic inconsistency anymore. The presence of an XML-based
and well-defined metamodel for all involved modeling tools is a highly desired re-
quirement to simplify any importing process by using more productive modeling

182 M. Bordin, T. Tsiodras, and M. Perrotin

technologies: modeling technologies using XML and OCL (or equivalent) -based
technologies render the development of the model importer/analysis tools eas-
ier and more cost effective. The effort we spent in developing an SDL importer
(starting from a textual specification) is a practical indication of the truth behind
this statement: state-of-the-art modeling technologies permit much easier model
query and manipulation, thanks to the exploitation of domain-specific tools;
as an exemplary quantitative evaluation, just the implementation (and not the
conception of the semantic mapping) of a UML2 importer from an EMF-based
implementation took us less than half of the time than the development of the
corresponding tool for SDL. Our belief is strengthened by the general industrial
trend toward some sort of XML-based metamodeling technology, even for lan-
guages originally born as a pure textual specification such as SCADE or AADL
(cf. the TOPCASED project).

Our automated code generation process proved to be useful and efficient when
applied to the described test case: the code generated from SCADE and Object-
GEODE (an SDL tool) could be automatically integrated with the code gen-
erated from the system view (designed in RCM) to implement the concurrent
and deployment architecture of the system. From a quantitative point of view,
the amount of generated code is comparable in sheer size to the source gen-
erated to handle the concurrent and distribution infrastructure, but probably
not more than what we would have written in a manual development process:
such an evaluation is a good empirical estimation of the productive advantages
of the developed tools. We are currently working to integrate the overall trans-
formation chain (including the code generator for RCM models and the tools
described in sections 3.1 and 3.2) within a single Eclipse plug-in: in this man-
ner, we plan to decrease the effort required by the end user to generate code
integrating heterogenous models within a single system model.

From a purely technological point of view, the results we achieved are quite
important, since they represent one of the first (if not the first) successful attempt
to apply model-driven integration in the space application domain: our test case
— while simple — is a valid proof of concepts and exploits tools widely used in
the industrial community. Some concerns however still remain.

First, some optimization concerns: while ASN1 modeling is surely an effective
way to guarantee the preservation of the semantics of data types across different
languages/architectures, when the interacting subsystems are designed in the
same modeling tool and they “live” in the same process space, they can commu-
nicate more optimally (speed-wise) by directly accessing each other’s data struc-
tures. This would avoid the overhead of needless data conversions. On the code
generation side, the choice of always passing through ASN1 (un)marshalling has
two main drawbacks: (i) it induces a penalty on the execution time: the penalty
is not evident in the model and cannot be evaluated on the functional specifi-
cation (it is introduced by the code generator), making it difficult to perform
accurate model-based timing analysis; and (ii) it makes model-to-code trace-
ability difficult, as the invocation of any required service is actually mapped as
an invocation to a sort of middleware composed by the ASN1 (un)marshallers,

Experience in the Integration of Heterogeneous Models 183

instead of a proper method invocation like in the originating model. To partially
overcome the cited problems, we may consider to extend our tools to apply ASN1
(un)marshalling only when strictly required and add traceability information to
the generated code.

5 Conclusion

In this paper we have described an experimental approach to model-driven
integration for the development of high-integrity systems exploiting multiple
modeling tools. By identifying in the system model the place where heteroge-
neous models should be integrated, we developed a set of tools allowing a highly
automated integration process encompassing model importing and automated
generation of glue code. The main difference of our approach when compared
to mainstream solutions is its focus on integrating radically different models
and their generated code, with particular attention for the consistency of cross-
cutting concerns and the verification of system-level properties in the integrated
system model: the integration process indeed also includes the extraction of in-
formation relevant to model-based analysis from the imported models. During
our investigation, two main results rose. First of all, multiple-view consistency
emerged as a highly desirable property for system modeling languages aiming
to support model-based analysis in the high-integrity domain: contrary to the
RCM metamodel, current state-of-the-art modeling languages do not enforces
any form of view consistency, forcing the designer to manually guarantee it. In
addition, selective3 model import via automated model transformations showed
to be a worthy solution for analysis-oriented model-driven integration.

The industrial need for the developed technologies is strongly related to the
heterogeneity of modeling tools/platforms/architectures for the domain of inter-
est: the more the variety, the more useful our tools are. In current-generation sys-
tems the weight of the side-effects introduced by the chosen technological solutions
is not small, in particular for what regards model-based analysis, model-to-code
traceability and performance; next-generation applications are however expected
to drastically increase their complexity, along with the amount of exploited mod-
eling formalisms and programming languages: the recent rise of AADL, SysML
and RTSJ are a clear example of this trend. We thus expect the integration issue
to gain more and more importance in the development of future systems; the in-
dustrial community must then strive to find effective and cost-wise solutions to
solve it: the approach we presented in this paper is a good starting point in that
direction and surely a valid reference milestone for future improvements.

Acknowledgments. The research work from which this paper has originated
was carried out in the ASSERT project (IST-FP6-2004 004033) partially funded
by the European Commission as part of the 6th Framework Programme. The
authors gratefully acknowledge Yuri Yushtein (European Space Agency) for his
valuable suggestions.
3 Only part of the imported models is mapped onto the target metamodel.

184 M. Bordin, T. Tsiodras, and M. Perrotin

References

1. Matlab: http://www.mathworks.com/
2. SDL: Specification and Description Language, http://www.sdl-forum.org/
3. OMG: UML2 Metamodel Superstructure (2005)
4. AADL: Architecture Analysis and Design Language, http://www.aadl.info
5. SysML: Systems Modeling Language, http://www.omgsysml.org/
6. RTCA: Radio Technical Commission for Aeronautics, rtca.org
7. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Com-

puter 39(2), 25–31 (2006)
8. The Object Management Group: (Model Driven Architecture), www.omg.org
9. Mathworks: (Simulink), http://www.mathworks.com/products/simulink/

10. Denno, P., Steves, M.P., Libes, D., Barkmeyer, E.J.: Model-driven integration using
existing models. IEEE Software 20(5), 59–63 (2003)

11. E2E: Model Driven Integration: Transparent Virtualization of Distributed Ap-
plications (E2E technical white paper), http://www.e2ebridge.com/live/files/
E2E-WP-MDI-070112en.pdf

12. Noogle, B.J., Lang, M.: Model Driven Information Architecture. TDAN.com
(2002), http://www.tdan.com/view-articles/4989

13. Bordin, M., Vardanega, T.: Correctness by Construction for High-Integrity Real-
Time Systems: a Metamodel-driven Approach. In: Reliable Software Technologies
- Ada-Europe (2007)

14. Burns, A., Dobbing, B., Vardanega, T.: Guide for the Use of the Ada Ravenscar
Profile in High Integrity Systems. Technical Report YCS-2003-348, University of
York (2003)

15. Panunzio, M., Vardanega, T.: A Metamodel-Driven Process Featuring Advanced
Model-Based Timing Analysis. In: Abdennahder, N., Kordon, F. (eds.) Ada-Europe
2007. LNCS, vol. 4498, pp. 128–141. Springer, Heidelberg (2007)

16. Bordin, M., Vardanega, T.: Automated Model-Based Generation of Ravenscar-
Compliant Source Code. In: Proc. of the 17th Euromicro Conference on Real-Time
Systems (2005)

17. Bordin, M., Vardanega, T.: A Domain-specific Metamodel for Reusable, Object-
Oriented, High-Integrity Components. In: OOPSLA DSM 2007. ACM, New York
(2007)

18. Goodenough, J.B., Sha, L.: The priority ceiling protocol: a method for minimizing
the blocking of high priority Ada tasks. In: IRTAW 1988: Proc. of the second
international workshop on Real-time Ada issues, pp. 20–31 (1988)

19. ITU-T: (Rec. X.680-X.683, ISO/IEC: Abstract Syntax Notation One (ASN.1))
20. Dubuisson, O.: ASN.1 - Communication between heterogeneous systems (2000)
21. Semantix Information Technologies: The ASSERT project ASN.1 toolchain (2002),

http://www.semantix.gr/assert/
22. asn1c: The Open Source ASN.1 compiler (2002-2007),

http://lionet.info/asn1c/

http://www.mathworks.com/
http://www.sdl-forum.org/
http://www.aadl.info
http://www.omgsysml.org/
rtca.org
www.omg.org
http://www.mathworks.com/products/simulink/
http://www.e2ebridge.com/live/files/E2E-WP-MDI-070112en.pdf
http://www.e2ebridge.com/live/files/E2E-WP-MDI-070112en.pdf
http://www.tdan.com/view-articles/4989
http://www.semantix.gr/assert/
http://lionet.info/asn1c/

A Systematic Approach to Automatically Generate
Multiple Semantically Equivalent Program Versions�

Sri Hari Krishna Narayanan and Mahmut Kandemir

Computer Science and Engineering Department
The Pennsylvania State University, University Park, PA 16802, USA

{snarayan,kandemir}@cse.psu.edu

Abstract. Classic methods to overcome software faults include design diver-
sity that involves creating multiple versions of an application. However, design
diverse techniques typically require a staggering investment of time and man-
power. There is also no guarantee that the multiple versions are correct or equiv-
alent. This paper presents a novel approach that addresses the above problems,
by automatically producing multiple, semantically equivalent copies for a given
array/loop-based application. The copies, when used within the framework of
common design diverse techniques, provide a high degree of software fault toler-
ance at practically no additional cost. In this paper, we also apply our automated
version generation approach to detect the occurrence of soft errors during the
execution of an application.

1 Introduction

Design diversity is a technique used for achieving a certain degree of fault tolerance in
software engineering [1,2,3,4,5]. Since exact copies of a given program cannot always
improve fault tolerance, creating multiple, different copies is essential [6]. However, this
is not a trivial task as independently designing different versions of the same application
software can take a lot of time and resources, most of which is spent verifying that these
versions are indeed semantically equivalent and they exhibit certain diversity which
helps us catch design errors as much as possible (e.g., by minimizing the causes for
identical errors). The problem becomes more severe if a large number of versions are
required.

Automatically generating different versions of a given program can be useful in two
aspects, provided that the versions generated are sufficiently diverse for catching the
types of errors targeted. First, design time and cost can be dramatically reduced as a
result of automation. Second, since the versions are generated automatically, we can
be sure that they are semantically equivalent save for the errors of interest. However,

� This work is supported in part by NSF grants # 0720645 , # 0702519 and support from the
Gigascale Systems Research Focus Center, one of the five research centers funded under SRCs
Focus Center Research Program. The authors would like to thank the anonymous reviewers
for their helpful remarks. The authors would like to thank Seung Woo Son and Shiva Prasad
Kasiviswanathan for their suggestions. Finally, the authors would like to thank, our shepherd,
Dr. Erhard Plödereder who helped finalize the paper.

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 185–198, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 S.H.K. Narayanan and M. Kandemir

as mentioned earlier, these versions should be sufficiently different from each other,
depending on the types of errors targeted.

Numerical applications which make extensive use of arrays and nested loops are
good candidates for automatic version generation as they are amenable to be analyzed
and restructured by optimizing compilers. Current compilers restructure such applica-
tions to optimize data locality and improving loop-level parallelism as well as for other
reasons [7,8,9,10]. The main stumbling block to full fledged re-ordering of computa-
tions are data dependences in the program code.

The main contribution of this paper is a tool that generates different versions of a
numerical application automatically a priori. The tool generates these versions by re-
structuring the given application code in a systematic fashion using the concept of data
tiles. A data tile is a portion of an array which may be manipulated by the applica-
tion. Hence, an array can be thought of as a series of data tiles. Given such a series of
data tiles, of a particular size and shape, we can generate a new version of the code
by restructuring the code in such a fashion that the accesses to each tile are completed
before moving to the next tile. As a result, computations are performed on a per tile
basis. Therefore, a different tile shape or a different order of tiles (to the extent allowed
by data) gives an entirely different version of the application, thereby contributing to
diversity. In this paper, we also present a method for selecting the tile shapes as well as
method to systematically reorder them based on the number of versions required.

We apply our tool to the emergent architectural challenge of soft errors. Soft errors
are a form of transient errors that occur when charged neutrons strike logic devices
which hold charges to indicate the bit that they represent [11,12,13,14]. A neutron strike
can change the charge held on the device either by charging or discharging it. This
change in charge can lead to a bit flip in memory or logic components of the system
which can affect the end results generated by the application. We show how the tool
can be used to detect errors that remain undetected by a state of the art architectural
recovery approach.

The remainder of this paper is organized as follows. Section 2 presents the theory
behind the proposed approach. Section 3 presents implementation details of our tool as
well as results obtained using a scientific benchmark. Section 4 concludes the paper by
summarizing our major contributions and giving a brief outline of the planned future
work.

2 Detailed Analysis

This section explains the details of the approach proposed to automatically create the
multiple versions of a given array/loop based application. Our goal is to obtain different
(but semantically equivalent) versions of a given code fragment by restructuring the
fragment based on a data tile shape. The input to our approach is a code fragment that
consists of the series of loop nests and the data array(s) that is accessed in the fragment.
The loop nests in the fragment contain expressions, called array references, that access
locations within the array. Figure 1(a) shows an example code fragment and the array
being accessed in the loop nests.

Automatically Generating Multiple Semantically Equivalent Program Versions 187

Fig. 1. (a) A code fragment. (b) Data tiles formed from a seed tile. (c) Iteration set that accesses
the data in a data tile. (d) Co-tile identification. (e) Default order of iteration sets. (f) New order
of iteration sets, as a result of restructuring.

Our approach first creates a seed tile which is a uniquely shaped subsection of the
array (selection of a seed tile is detailed in Section 2.7). Using this seed tile as a tem-
plate, we logically divide the array into multiple sections called data tiles as shown in
Figure 1(b). In the following paragraphs we discuss what is performed on a particular
data tile.

In the next stage shown in 1(c), we identify for each loop nest the array references
that accesses locations within the data tile. Then, for each loop nest, we use these refer-
ences to determine the set of iterations that access this particular data tile. The iterations
from a loop nest that are associated with a particular data tile are called the iteration set
of that data tile with respect to that loop nest.

Now, let us consider the case for a particular iteration set associated with a data tile. It
is possible that these iterations access array locations outside the data tile as well. These
external locations are called the extra tile, and the original data tile and the extra tile are
collectively referred to as the co-tile. Figure 1(d) shows the co-tile corresponding to an
iteration set.

Our idea is to first identify, for each combination of data tile and loop nest, the as-
sociated iteration set. Once we have the iteration set corresponding to a data tile and
loop nest, we can execute all the computations that should take place on that pair. The
original code can therefore be thought of as the default order of iteration sets shown in
Figure 1(e). Next, in order to create new codes, we systematically re-order the iteration
sets to create multiple different sequences as shown in Figure 1(f). Each unique order of
iteration sets leads to a unique version of the code. Such a re-ordering is legal provided
that data dependences do not exist between iteration sets. Data dependences, impose an
ordering constraint on the iteration sets and prevent full fledged re-ordering. If depen-
dences do exist between the iteration sets, we explore other data tile shapes to arrive at
a dependence free group of iteration sets.

The rest of this section details our approach. After presenting basic definitions in Sec-
tion 2.1, Section 2.2 presents our method of forming data tiles. Section 2.3 shows how
iteration sets and co-tiles are calculated. Our algorithm to detect dependences (legality
requirements) are presented in Section 2.4. Section 2.5 shows how the iteration sets
are systematically re-ordered. Section 2.6 presents the overall algorithm used to create

188 S.H.K. Narayanan and M. Kandemir

multiple versions of code. Section 2.7 discusses how data tiles of different shapes and
sizes are created, and Section 2.8 explains how we deal with code that accesses multiple
arrays.

2.1 Basic Definitions

This subsection presents important definitions that we use to formalize our approach.

• Program : A program source code fragment is represented as P = {N , A}, where
N is a list of loop nests and A is the set of arrays declared in P that are accessed in
N . Figure 2 shows the benchmark source code fragment employed.

• Array : An array Aa is described by its dimensions, δ, and the extent (size) in
each dimension, γ, Aa = {δ, γ}. For example, the array DW defined in the code
fragment in Figure 2 can be expressed as DW = {3, {10, 10, 4}} in our framework.

• Loop Nest : A loop nest Ni, is represented as {α, AN , I, L, U , S, ψ}, where α is
the number of loops in the nest and L, U , and S are vectors that give, respectively,
the values of the lower limit, upper limit, and the step of the loop index variables
which are given in I . It is assumed that at compile time all the values of these vec-
tors are known. The body of the loop nest is represented by ψ. The arrays accessed
within Ni are represented as ANi where ANi ⊆ A, i.e., each loop nest typically ac-
cesses a subset of the arrays declared in the program code. For example, the second
loop nest in Figure 2 can be represented as

N1 =

⎧
⎨

⎩3, DW,

⎡

⎣
N
J
I

⎤

⎦ ,

⎡

⎣
1
2
2

⎤

⎦ ,

⎡

⎣
4

10
10

⎤

⎦ ,

⎡

⎣
1
1
1

⎤

⎦ , ψ

⎫
⎬

⎭ .

• Loop Body : A loop body is made of a series of statements which use the references
to the arrays A declared in P . Consequently, loop body ψ can be expressed as a set
of references.

• Iteration : For a loop nest, Nn, an iteration is a particular combination of legal val-
ues that its index variables in I can assume. It is expressed as Iσ , and it represents
an execution of the loop body.

• Iteration Space : The iteration space of a loop nest Ni is the set of all iterations in
the loop nest.

• Data Space : The data space of a data structure (e.g., an array) are all the individual
memory locations that form the data structure in question.

• Reference : It is an element of ψ expressed as (ψr/w
p = {Nn, AA, L, o}). It is an

affine relation from the iteration space of a loop nest Nn = {α, An, I, L, U , S, ψ}
to the data space of an array (Aa = {δ, γ}). From compiler theory [7], it is known
that this relation can be described by Li + o where i is a vector that captures the
loop indices of N , L is a matrix of size δ ∗α, and o is an offset displacement vector.
As an example, the reference A[i + j − 1][j + 2] is represented by

ψr/w
p =

[
1 1
0 1

]
∗

[
i
j

]
+

[
−1

2

]
.

A reference within the body of a loop nest helps us calculate the locations of an
array that the loop nest accesses. Further, a reference can be a read reference, which

Automatically Generating Multiple Semantically Equivalent Program Versions 189

int DW[10][10][4];

for (N=1;N<=4;N++) {
for (J=2;J<=10;J++)
DW[1][J][N] = 0;

}

for (N=1;N<=4;N++) {
for (J=2;J<=10;J++)
for (I=2;I<=10;I++)
DW[I][J][N] = DW[I][J][N]

-R*(DW[I][J][N]
-DW[I-1][J][N]);

}

for (N=1;N<=4;N++) {
for (J=2;J<=10;J++)
DW[10][J][N] = T1*DW[10][J][N];

}

for (N=1;N<=4;N++) {
for(II=3; II<= 9; II++)
for (J=2;J<=10;J++)
DW[II][J][N] = DW[II][J][N]

-R*(DW[II][J][N]
-DW[II+1][J][N]);

}

Fig. 2. A code fragment with four loop
nests and an array

Fig. 3. (a) Seed tile for the array DW in the code
fragment of Figure 2. (b) The array DW divided
into multiple tiles using the seed tile

means that an array location is read from, or a write reference, which means that
an array location is written to. This is identified by attaching a r/w superscript to
the reference. Hence, ψr

p(Nn) represents the set of all array locations read by the
reference in loop nest Nn.

2.2 Data Tile Formation

In this paper, we use the concept of data space tiling to logically divide the data space
of an array into multiple sections. This subsection provides the theoretical basis and the
algorithm used to perform tiling.

• Data Tile : A data tile DAa,L,U is a regular subpart (region) of the array Aa. The
size of the data tile in each dimension is given by the difference between L and U
plus 1. It is assumed that the size of a data tile is not zero in any dimension. Based
on the definition of a data tile, data space of DAa,L,U can be formally expressed as
follows:

DAa,L,U = {{d1, d2..dδ} | L1 ≤ d1 ≤ U1

&& L2 ≤ d2 ≤ U2 ... && Lδ ≤ dδ ≤ Uδ}

• Seed Data Tile : A data tile, DAa,L,U , is described as a seed data tile if L = 0. This
tile is used (as a template) to partition the array Aa into further tiles. As an example,
Figure 3(a) shows a seed tile for the array DW that is defined in Figure 2, and Figure
3(b) illustrates how DW is partitioned into multiple tiles using this seed tile. This
partitioning is outlined in Algorithm 1. Multiple seed tiles can simply formed by

190 S.H.K. Narayanan and M. Kandemir

Algorithm 1. DataT ile(DAa,L,U)
1: Tile list := ∅
2: for iδ = 1 to γδ by U [δ] do
3: L′[δ] := iδ

4: U ′[δ] := min(iδ + U [δ]− 1, γδ)

5: for iδ−1 = 1 to γδ−1 by U [δ − 1] do
6: L′[δ − 1] := iδ−1

7: U ′[δ − 1] := min(iδ−1 + U[δ − 1]− 1,

8: γδ−1)

9: .
10: .
11: for i1 = 1 to γ1 by U [1] do
12: L′[1] := i1
13: U ′[1] := min(i1 + U [1]− 1, γ1)

14: Tile := DAa,L′,U′

15: Tile list := Tile list
⋃

Tile
16: end for
17: end for
18: end for

19: Return Tile list

Fig. 4. The iteration set corresponding a data tile
in the array DW (accessed by the code fragment
in Figure 2) and the second loop nest in the code
fragment

changing the values of the entries of U . By supplying different seed tiles as input to
Algorithm 1, we are able to split an array into differently shaped tiles.

2.3 Iteration Set and Co-tile Formation

An iteration set is associated with a loop nest Nn, and a data tile DAa,L,U . It is the
subset of the iteration space of Nn, in which the elements (iterations) have the property
that ψ

r/w
p (Iσ) ∈ DAa,L,U . That is, it is the set of all iterations in a particular loop

nest that accesses the locations in a given data tile. We can calculate the iteration set
I(DAa,L,U , Nn) of data tile DAa,L,U and loop nest Nn as

I(DAa,L,U ,Nn) =
⋃

ψ
r/w
p ∈ψ

⋃

Iσ∈Nn

{ Iσ | {ψr/w
p (Iσ) ∩DAa,L,U} �= ∅ }. (1)

Figure 4 shows the iteration set corresponding to the data tile of the array DW and
the second loop nest in the code given in Figure 2. It is possible that the iteration
set I(DAa,L,U , Nn) accesses locations in the array Aa that lie outside the data tile,
DAa,L,U . In other words, (

⋃
ψp

ψp(I(DAa,L,U , Nn))) − DAa,L,U �= ∅ may be true.
Recall that our overall goal is to capture all the computations that need to be performed

by a loop nest on a data tile. As a consequence, we need to express the extra locations
that are accessed by the iteration set. As mentioned earlier, the extra locations and the
original data tile together are called the co-tile of the iteration set and is given by:

CDAa,L,U ,Ni
=

⋃

∀ψp∈Nn

ψp(I(DAa,L,U ,Nn)) (2)

Using the formulation for iteration set in Equation (1), the formulation for a co-tile
given in Equation (2) and the list of all data tiles generated by Algorithm 1, we can

Automatically Generating Multiple Semantically Equivalent Program Versions 191

Algorithm 2. DependenceDetector(T ile list)

1: Dep Array := 0
2: for all Dm ∈ Tile list do
3: for allNi ∈ N do
4: calculate IDm,Ni

5: end for
6: end for
7: for all Dm ∈ Tile list do
8: for allNi ∈ N do
9: for all Dn ∈ Tile list do

10: for allNj ∈ N do
11: if {(⋃ψw

p
ψw

p (IDm,Ni
))

⋂
(
⋃

ψr
p′

ψr
p′(IDn,Nj

))} �= ∅||
{(⋃ψr

p
ψr

p(IDm,Ni
))

⋂
(
⋃

ψw
p′

ψw
p′(IDn,Nj

))} �= ∅||
{(⋃ψw

p
ψw

p (IDm,Ni
))

⋂
(
⋃

ψw
p′

ψw
p′(IDn,Nj

))} �= ∅ then

12: Dep Arraym,i,n,j := 1

13: end if
14: end for
15: end for
16: end for
17: end for

18: Return Dep Array

now generate a list of all iteration set/co-tile pairs. The default list of pairs describes
the default program behavior (i.e., without any restructuring). It is this behavior that we
want to change while maintaining the same semantics as the original code.

2.4 Data Dependences Across Iteration Sets

All iterations in the given program fragment are executed in a default order called the
program order. This program order can be extended to the pairs of iteration sets and
co-tiles. In order to change the code, the execution of iteration sets must be re-ordered.
A fundamental restriction on whether we can re-order the iteration sets are ordering
relations among them, which are also known as data dependences.

The execution order of any two iterations can be arbitrary with respect to each other
as long as these two iterations do not have any data dependence between them. A data
dependence exists between two iterations within a loop nest if one iteration reads a value
of a variable computed by another iteration or if both iterations compute the value of
the same variable [7].

Consequently, in order to re-order any two iteration sets, there should not be any
data dependence there between them. Furthermore, if we want to arbitrarily re-order all
the iteration sets, there should not be any data dependence between any two iteration
sets. Otherwise, it is possible that the wrong data is read by one iteration set or written
by another iteration set. The rest of this sub-section presents our algorithm to detect
data dependences between iteration set and co-tile pairs. This analysis is different from
conventional data dependence analysis as we perform it at an iteration set and co-tile
granularity.

Formally, two iterations Iσ and I ′σ within a nest Nn have a data dependence between
them if and only if

192 S.H.K. Narayanan and M. Kandemir

Fig. 5. Arrows indicate the data dependence between iteration sets formed by loop nests in Figure
2 and data tiles formed using the seed tile in Figure 3(a)

ψ
r
p(Iσ) = ψ

w
p′(I′

σ)||ψw
p (Iσ) = ψ

r
p′(I′

σ)||ψw
p (Iσ) = ψ

w
p′(I′

σ) (3)

is true, where ψ
r/w
p and ψ

r/w
p′ are two references that appear in Nn.

This formulation can be extended to iteration sets and the co-tiles that are accessed
in them. In the context of our paper, a dependence is said to exist between two iteration
sets if and only if,

{(
⋃

ψw
p

ψ
w
p (I(DAa,L,U ,Nn)))

⋂
(
⋃

ψr
p′

ψ
r
p′(I(DAa,L′,U′ ,Nn′)))} �= ∅||

{(
⋃

ψr
p

ψr
p(I(DAa,L,U ,Nn)))

⋂
(
⋃

ψw
p′

ψw
p′(I(DAa,L′,U′ ,Nn′)))} �= ∅||

{(
⋃

ψw
p

ψw
p (I(DAa,L,U ,Nn)))

⋂
(
⋃

ψw
p′

ψw
p′(I(DAa,L′,U′ ,Nn′)))} �= ∅

(4)

is true.
Based on Equation (4), Algorithm 2 detects the data dependences between the iter-

ation sets formed from a list of data tiles. As we are not interested in re-ordering the
iterations within an iteration set, dependence detection is performed at the level of loop
nest granularity. The algorithm sets Dep Array[m, i, n, j] to 1 if a dependence exists
between the iteration set IDm,Ni and the iteration set IDn,Nj , where Dm and Dn are
data tiles created by Algorithm 1. For two iteration sets associated with the same loop
nest, the dependence flows from the iteration set that contains the earlier iterations to
the other iteration set. Let us now discuss what the matrix Dep Array represents. The
dependence relations between iteration sets can be described by a graph in which the
nodes are the individual iteration sets. A directed edge from the node that represents
iteration set IDm,Ni to the node that represents IDn,Nj means that IDn,Nj is dependent
on IDm,Ni . Consequently a node that represents an iteration set that is independent of
all other iteration sets has a fan-in value of zero in this graph. Given these observa-
tions, we can conclude that the matrix Dep Array is simply the representation of this

Automatically Generating Multiple Semantically Equivalent Program Versions 193

Position Code Version
1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 3 4 5 6 7 8 1
3 3 4 5 6 7 8 1 2
4 4 5 6 7 8 1 2 3
5 5 6 7 8 1 2 3 4
6 6 7 8 1 2 3 4 5
7 7 8 1 2 3 4 5 6
8 8 1 2 3 4 5 6 7

Fig. 6. The different orders of itera-
tion sets in the different versions of the
code

Algorithm 3. V ersionGenerator(Po, V)

1: Generate Seed Tile
2: Create Iteration Sets and Partitions
3: Verify dependences
4: while Dependences exist do
5: if Generate New Seed Tile() == failure then
6: Return Error
7: end if
8: Create Iteration Sets and Partitions
9: Verify dependences

10: end while

11: Create V Versions

graph in an adjacency matrix form. The dependence relations between iteration sets is
represented pictorially in Figure 5.

At this point, we have generated a list of iteration sets which when executed indi-
vidually perform all the computations that should be performed on a particular data tile
by the associated loop nest. However, it is possible that two iteration sets, IDn,Nj and
IDn′ ,Nj , which are associated with the same nest and have a dependence between them,
might intersect. That is, some iterations may belong to both IDn,Nj and IDn′ ,Nj . In or-
der to produce code that is semantically identical to the original code, the intersecting
iterations need to be associated with only one of the iteration sets. Assuming that the
iteration set IDn′ ,Nj is dependent on IDn,Nj , the intersecting iterations are executed by
IDn′ ,Nj . That is, IDn,Nj is set to IDn,Nj − (IDn,Nj ∩ IDn′ ,Nj).

2.5 Re-ordering Iteration Sets

The key requirement for full re-ordering of iteration sets is that there should be no data
dependence at all between iteration sets. However, this behavior is not exhibited by most
real applications. Therefore, we relax this requirement and allow reordering when the
only dependences are between iteration sets corresponding to the same data tile. That
is, directed edges of the form, IDn,Ni to IDn,Nj which represents data dependences
between iteration sets associated with the same data tile are allowed. Once this condition
has been satisfied, we first group all the iteration sets associated with each tile. Then, we
partition the groups of iteration sets into V groups, where V is the number of versions
of code that are required and number each partition from 1 to V . We use this numbering
to create a circular sequence over all the iteration set partitions. That is, to create the
ith version of the code the order of iteration set partitions is : i, i + 1 ... V − 1, V , 1,
2....i − 2, i − 1. Figure 6 presents the orders of partitions when V is 8.

2.6 Generating Multiple Versions

This section describes Algorithm 3 to create the multiple versions of an input program.
The input to the algorithm is the original program Po and number of versions, V , of
the code that are desired. In order to create a semantically equivalent version of Po, a

194 S.H.K. Narayanan and M. Kandemir

new seed element (that has not been used previously) is formed. Then, using this seed
element, the data space of Po is broken up into further data tiles.

Using these data tiles and the loop nests in Po, the dependence graph between the
iteration sets that correspond to these data tiles is created. If there are no dependences
between iteration sets corresponding to different data tiles, then the different versions of
the code are created using orders as explained in Section 2.5. If however, dependences
do exist, a new seed tile is used. If no satisfactory seed tile can be found, an error
is reported. In order to generate the actual code, we rely on the Omega Library [15]
which is a polyhedral tool in which iteration spaces can be described using Presburger
arithmetic [16]. Given the description and order of the iteration tiles, the codegen utility
of the Omega Library is used to generate the actual loop nests. Once the loops have
been generated, they are combined so that the generated code is as compact as possible.
However, the combining is done such that the order between the iteration sets remains
the same. In fact, the combining method simply generates loops that iterate over the
partitions of iteration sets. A portion of the semantically equivalent version of the code
corresponding to one data tile is shown in Figure 7.

2.7 Data Tile Selection

So far we have ignored the
int DW[10][10][4];

for (J=2;J<=5;J++)
DW[1][J][1] = 0;

for (J=2;J<=5;J++)
for (I=2;I<=10;I++)

DW[I][J][1] = DW[I][J][1] -R*(DW[I][J][1]
-DW[I-1][J][1]);

for (J=2;J<=5;J++)
DW[10][J][1] = T1*DW[10][J][1];

for(II=3; II<= 9; II++)
for (J=2;J<=5;J++)

DW[II][J][1] = DW[II][J][1] -R*(DW[II][J][1]
-DW[II+1][J][1]);

Fig. 7. The code generated for one data tile of the code given in
Figure 2

problem of generating the
actual seed tiles which di-
vide the array data space
into its component tiles.

The potential space to
explore in order to select
appropriate seed tiles is
vast. We first trim this
space by considering only
those tiles whose bound-
aries are parallel to the
axes of the array that is be-
ing tiled. The rationale be-
hind this is that the output codes generated using such tiles tend to be simpler that
those generated using arbitrary tiles. That is, if the array is δ-dimensional, the seed is
shaped regularly, and the references from the loop nest to the array are through affine
expressions; then iteration sets that access the data tiles are regular in shape.

Further, as we require V different versions, we assume that the size of the seed tile
should imply that there are V data tiles. This also implies that the iteration sets in an
iteration set partition are all associated with the same data tile.

Let us consider a δ-dimensional array, A[n1, n2, ..nδ] for which V unique seed
tiles are required. As A is δ-dimensional, any seed tile of A, S[s1, s2, ..sδ], is also δ-
dimensional. Therefore, the problem of finding the values of s1, s2, ..sδ which defines
the shape of the seed tile translates into the problem of selecting an appropriate value of
si from the factors of ni such that

∑
i si = V . As ni is bounded by the array size large,

the number of combinations from which S[s1, s2, ..sδ] is selected is not very large.

Automatically Generating Multiple Semantically Equivalent Program Versions 195

2.8 Handling Multiple Arrays

Our formulation so far has assumed that the references in the loop nests (of the code for
which we meant to generate multiple versions) access a single array. In order to extend
our approach to multiple arrays, we first need to extend the concept of an iteration set.
An iteration set is now associated with a loop nest as well as data tiles belonging to
different arrays. As a result, the iteration set is expressed as I{D},Nj

, where {D} is
the set of data tiles (from different arrays) which are accessed in that iteration set. If
the loop nest associated with the iteration set does not contain references that access
an array {D} will not contain a data tile from that array. Consequently, dependences
between two iteration sets can potentially occur if they both access a common location
in any array used by the program.

Another consideration with multiple arrays is how the seed tile for each array is
created. One approach is to simply have the same seed tile for each array. Another
approach is to create different seed tiles for different arrays, where the shape of a seed
tile associated with one array is independent of the seed tile chosen for another array. In
yet another approach, a seed tile is created for a chosen array As with a fixed number
of elements. The ratio of the elements in a seed tile for an array As′ is fixed relative to
the number of elements in a seed tile used for As, and based on the number of elements
in this seed tile, the shape of the tiles is determined. Consequently, by changing the
number of elements in the seed tile used for As the seed tile used for As′ is changed. As
each approach potentially gives us different versions of code, the approach we choose
depends on the number of versions that need to be created. The default approach used
is the one in which each tile in each array is of the same shape.

3 Implementation and Experiments

While our automated approach can be useful in any scenario where multiple versions
of the same code are needed, we focus on one particular scenario in this work. This
section first describes the targeted scenario where our proposed approach is applied. It
then illustrates the architecture of the tool that is created based on the approach. Fi-
nally, it describes the experiments conducted using the tool in the targeted scenario. As
mentioned earlier, soft errors are a growing threat to the correct execution of an appli-
cation [11,12,13]. A soft error is defined as an unwanted change in the state of a bit in
a computer’s component such as the memory system. It can result from particle strikes
on logic devices which cause the bit represented by the device to flip. Increased scaling
of technology has exacerbated this problem [14]. As result, the problem of soft errors
has received considerable attention with many proposed hardware as well as software
solutions. In chip multiprocessor (CMP) architectures, redundant-threading (RT) is one
of the ways to overcome soft errors [17]. In an RT framework the same code is simul-
taneously executed across all the processors and periodically the results are compared
to check if the computed results across the different threads agree. If they agree, it is
assumed that no error has occurred as only a single soft error is expected in any sin-
gle thread and in any time frame. Another way is to run the code multiple times one
after another and to check whether the results from each run agree with each other.
Obviously, running each version simultaneously, if the resources are available, is the

196 S.H.K. Narayanan and M. Kandemir

Fig. 8. Details of the flow within the tool. Phase 1 involves the creation of data tiles (Section 2.2)
using a unique seed tile (Section 2.7). Phase 2 involves the parsing of the input code fragment,
formation of iteration sets (Section 2.3), and detection of data dependences between them (Sec-
tion 2.4). Phase 3 re-orders iteration sets (Section 2.5). Finally, phase 4 generates the output code
fragment using the Omega Library (Section 2.6).

preferred option as it results in a faster finish time for the thread. The disadvantage is
that in a CMP that is based on the shared memory concept, threads that operate simulta-
neously in the RT framework would read the same data from memory in close temporal
proximity. Therefore, if a datum in memory is corrupted by a soft error, running the
same code multiple times in parallel could result in the corrupted value being read by
all threads. Such a read could result in the wrong result being computed and this error
would remain undetected in current techniques. Although error correcting codes (ECC)
have been proposed to overcome errors in the caches, ECC is not a viable solution
in all computing systems due to the high costs it involves, especially form the power
consumption angle [18,19]. Furthermore, ECC would not catch multiple errors, which
would be detected by our method.

We propose to use our automatic versioning algorithm to create multiple versions of
the thread. These versions, when run in parallel, will access data in different temporal
orders. Thus, the proposed approach will achieve temporal diversity without increasing
the overall execution time. As a result, a particular datum which is corrupted at some
time during the execution of the threads, could be accessed before corruption by one
thread and after corruption by another. Therefore, it is possible that the changed value
of the datum will be observable in the results of the different threads. Obviously, if
the datum does not affect the end result, the proposed approach would perform exactly
like the RT case and declare that no soft error has occurred. However, if that datum
affects the end results, our approach is more likely to detect it. A tool was implemented
based on the data tile based code restructuring approach (see Figure 8). This tools uses
the Omega Library to evaluate the relations described in Section 2 and to generate the
loops corresponding to the final relations using the Library’s codegen utility on each
relation one by one [20]. The tool was used to automatically create eight versions of the
tsf benchmark shown in Figure 2 using the seed tile shown in Figure 3(a). Each version
used a different order of iteration tiles shown in Figure 6. Therefore, each iteration set

Automatically Generating Multiple Semantically Equivalent Program Versions 197

Fig. 9. The graph shows the number of errors in the array DW for different error injection rates
using the default RT scheme and the proposed approach

will execute at a particular time slot in at least one version. In an error free scenario, the
different versions should generate the same results. However, in case of a soft error, two
versions may differ in the results generated for a particular iteration set. In that case,
the version that scheduled the iteration set earlier than the other is assumed to be the
correct one. That is, the error is assumed to have occurred between the executions of
the earlier set and set executed later.

We ran the original benchmark in conjunction with a fault injection module [21] to
simulate execution under the soft error scenario. This setup was used to record the stage
at which each error was injected and where in the memory space it occurred. Then, each
automatically generated version of the code was run under the error injection mode
using the previously recorded error occurrence and the results were compared with
each other. A simple arbiter is used to reason about the results that are generated. If the
results of any data tile in the automatically generated versions were different, the arbiter
chose the results of the version in which the iteration tile corresponding to the data tile
is executed earlier. In order to simulate RT, the errors recorded earlier are injected for
each version, one at a time. At each stage, any error that is not injected into the memory
is assumed to be caught, but any changes to the memory itself are allowed to propagate.
Figure 9 shows the number of remaining errors in the proposed approach as compared to
the standard RT approach (which uses the same version in each processor) for different
injection rates. It can be seen that the proposed approach reduces the number of errors
that affect the end result.

4 Concluding Remarks

This paper presents a tool that uses code restructuring techniques to automatically gen-
erate multiple semantically equivalent versions of a given numerical application that is
organized as a series of loops that access data in arrays. We created different versions
of the code that differ in the order in which they access the data and used these dif-
ferent versions of the code to detect the occurrence of soft errors during the execution

198 S.H.K. Narayanan and M. Kandemir

of the code. We believe that, this tool provides an inexpensive and automated method
to enable fault tolerance to critical applications. Our planned future work includes de-
veloping more techniques to generate seed tiles easily and developing techniques to
generate more compact code. We also plan to use our tool in other scenarios that benefit
from multiple versions.

References

1. Avizienis, A.: On the implementation of nversion programming for software fault tolerance
during execution. Proceedings of the IEEE 66(10), 1109–1125 (1978)

2. Elmendorf, W.: Fault-tolerant programming. In: FTCS-2, pp. 79–83 (1972)
3. Randell, B.: System structure for software fault tolerance. IEEE Trans. on Software Engi-

neering SE-1(2), 220–232 (1975)
4. Horning, J.J., et al.: A program structure for error detection and recovery. In: Operating

Systems, Proceedings of an Int. Symposium, pp. 171–187. Springer, Heidelberg (1974)
5. Pullum, L.: A new adjudicator for fault tolerant software applications correctly resulting in

multiple solutions. In: Digital Avionics Systems Conference, pp. 147–152 (1993)
6. Pullum, L.L.: Software Fault Tolerance Techniques and Implementation. Artech House

(2001)
7. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley, Reading

(1996)
8. Wolfe, M.J.: Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge (1990)
9. Kodukula, I., et al.: Data-centric multi-level blocking. In: PLDI, pp. 346–357 (1997)

10. Kadayif, I., Kandemir, M.: Data space-oriented tiling for enhancing locality. Trans. on Em-
bedded Computing Sys. 4(2), 388–414 (2005)

11. Michalak, S., Harris, K., Hengartner, N., Takala, B., Wender, S.: Predicting the number of
fatal soft errors in los alamos national laboratory’s asc q supercomputer. IEEE Transactions
on Device and Materials Reliability 5(3), 329–335 (2005)

12. Wang, N., Quek, J., Rafacz, T.: patel, S.: Characterizing the effects of transient faults on a
high-performance processor pipeline. In: DSN 2004: Proceedings of the 2004 International
Conference on Dependable Systems and Networks, p. 61 (2004)

13. Patel, J.: Characterization of soft errors caused by single event upsets in cmos processes.
IEEE Trans. Dependable Secur. Comput. 1(2), 128–143 (2004)

14. Degalahal, V., Ramanarayanan, R., Vijaykrishnan, N., Xie, Y., Irwin, M.J.: The effect of
threshold voltages on the soft error rate. In: International Symposium on Quality Electronic
Design, pp. 503–508 (2004)

15. Kelly, W., et al.: The omega calculator and library v1.1.0. Technical report, Dept. of CS,
Univ. of Maryland (1996)

16. Kreisel, G., Krivine, J.L.: Elements of mathematical logic. North-Holland Pub. Co., Amster-
dam (1967)

17. Reinhardt, S., Mukherjee, S.: Transient fault detection via simultaneous multithreading.
SIGARCH Comput. Archit. News 28(2), 25–36 (2000)

18. Chen, C., Hsiao, M.: Error-correcting codes for semiconductor memory applications: a state
of the art review. Reliable Computer Systems - Design and Evaluation, 771–786 (1992)

19. Pradhan, D.K. (ed.): Fault-tolerant computer system design (1996)
20. Kelly, W., et al.: Code generation for multiple mappings. Technical report, Dept. of CS, Univ.

of Maryland (1994)
21. Gurumurthi, S., Parashar, A., Sivasubramaniam, A.: Sos: Using speculation for memory error

detection. In: Workshop on High Performance Computing Reliability Issues (2005)

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 199 – 210, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Increasing Confidence in Concurrent Software through
Architectural Analysis

Robert G. Pettit IV

The Aerospace Corporation, 15049 Conference Center Drive,
Chantilly, Virginia, USA 20151
rob.pettit@aero.org

Abstract. Mission critical real-time and embedded software systems often use
significant degree of concurrency within their architecture designs. Experience
has shown that common problems surrounding the design of these systems
include underspecified performance requirements; underspecified state-
dependent behavior; and inadequately capturing concurrent interactions.
Dynamic architectural models capturing the overall behavioral properties of the
software system are often constructed using ad hoc techniques with little
consideration given to the resulting performance or implications of concurrent
behavior until the project reaches implementation. To address this issue and
thus increase the confidence that a concurrent software architecture design will
behave as desired, we have developed an approach to augment UML-based
software designs with colored Petri nets, thus increasing the analytical
capabilities at design time. An illustration of this approach using a rover control
case study is included in this paper.

1 Introduction

Mission critical real-time and embedded software systems often use significant degree of
concurrency within their architecture designs. Experience[1,2] has shown that common
problems surrounding the design of these systems include underspecified performance
requirements; underspecified state-dependent behavior (e.g. a lack of state machines);
and inadequately capturing concurrent interactions. Dynamic architectural models
capturing the overall behavioral properties of the software system are often constructed
using ad hoc techniques with little consideration given to the resulting performance or
implications of concurrent behavior until the project reaches implementation. Efforts to
analyze the behavior of these architectures typically occur through opportunistic rather
than systematic approaches and are inherently cumbersome, unreliable, and unrepeatable.

One means of increasing confidence that concurrent software architectures result in
the desired behavioral aspects is to provide greater emphasis on architectural analysis
during the design stage. The approach taken in this paper is to integrate formalisms
(specifically colored Petri nets) within the software architecture design and to thus
increase the analytical capabilities that can be applied to the design.

For the software architecture design, we start with a set of concurrently executing
objects and the messages that are passed between them. This is expressed in the

200 R.G. Pettit IV

Unified Modeling Language (UML) [3] using interaction diagrams. The UML is used
for this design as its adoption is quite prevalent among software engineers and it
provides a means of capturing concurrently executing objects (i.e active objects) in a
manner intuitive to the software architect.

The approach used in the paper [4] then augments the native object-oriented design
by seamlessly integrating an underlying colored Petri net (CPN) representation and
then using the CPN model to analyze the concurrent behavior of the architecture.
Results from the analysis can be applied back to the original UML design in order to
increase the confidence that the final implementation of the design will be satisfactory
in terms of the concurrent behavior.

The remainder of this paper includes a brief background on related works and an
overview of colored Petri nets; a description of how UML-based software architecture
models are augmented with CPN behavioral templates; and an illustration of applying
the modeling and analysis techniques using a case study of an autonomous rover.

2 Overview of Colored Petri Nets for Modeling Concurrency

The basic notation for Petri nets is a bipartite graph consisting of places and
transitions that alternate on a path and are connected by directional arcs. In general,
places are represented by circles, whereas transitions are represented by bars or boxes.
Tokens are used to mark places, and under certain conditions, actions associated with
transitions are allowed to occur, thus causing a change in the placement of tokens.

When a transition occurs, that transition is said to be fired. A transition can only be
fired if each of the input places to the transition contains at least one token. The
transition is then said to be enabled. The firing of a transition results in the removal of
a token from each input place and the addition of a token to each output place.

When a transition is enabled, we know that it will be fired. However, in the basic
Petri net model, there is no timing constraint that can be used to determine when the
transition will be fired. There are variations of the basic model that allow timing
constraints to be introduced (e.g. timed Petri nets). These variations will be briefly
mentioned as they apply to creating the templates used in this paper.

A colored Petri net is a special case of Petri net in which the tokens have
identifying attributes; in this case the color of the token [20]. At first, colored Petri
nets seem less intuitive than the basic Petri net. However, by allowing the tokens to
have an associated attribute, colored Petri nets scale to large problems much better
than the basic Petri net.

Petri net models can be mixed to provide a hybrid Petri net model that supports
multiple characteristics. These hybrid models prove useful in modeling real-time
systems by allowing the combinations of such attributes as timing constraints and
colored tokens.

The Petri net system used in this research follows Jensen’s [20] colored Petri nets,
which support hierarchical construction and the inclusion of timing information. The
basic notation for these Petri nets is illustrated in Figure 1. As seen in this figure,
ovals represent places and boxes represent transitions. Each place must be labeled
with a particular color set indicating the color (or type) of tokens that may reside on
that place. Transitions may perform behavior as simple as moving a token from one

 Increasing Confidence in Concurrent Software through Architectural Analysis 201

place to another. More often, though, they may contain additional information such as
guard conditions that place explicit conditions on the firing of the transition; code
regions that may perform complex transformations on the tokens; or time regions that
may be used to increment the time stamp on tokens. Additionally, transitions form the
basis for hierarchical construction in the CPN model. “Substitution transitions” may
be created that are decomposed into lower level CPN segments. This feature allows
an engineer to view the CPN model at different levels of abstraction, depending on
the desired focus for modeling and analysis.

Fig. 1. CPN Notation

2.1 Related Works

There are many existing works dealing with the use of Petri nets for describing
software behavior. As they relate to this paper, the existing works can be broadly
categorized into the modeling of software code and the modeling of software designs.
Our approach differs from the former by choosing to focus on analyzing the software
design rather than to delay performance analysis to the software code. Specifically,
this research focuses on the modeling and analysis of concurrent object-oriented
software designs.

In terms of object-oriented design, the related Petri net research can be broadly
categorized into three areas. New development methodologies [5-8] involve the
creation of development processes where the software engineer applies Petri net
modeling as the primary tool for capturing concurrent behavior among objects.
Object-oriented extensions to Petri nets [9-11] involve extending existing Petri net
formalisms to support object-oriented constructs.

The integration of Petri nets with existing object-oriented methodologies [12-19]
involves identifying ways to augment mainstream design practices and notations with
an underlying Petri net formalism. It is within this last category that our work falls.
Our approach does not seek to replace UML models with Petri nets. Nor do we seek
to extend the definition of CPNs beyond the current standard. Rather, one of the goals
of this research falls into the last category above as one of our primary goals is to
provide a method that requires no additional tools or language constructs beyond
those currently available for the UML and CPN definitions. Within this category of
related research, the main features that distinguish our approach from other related
works include our focus on the concurrent software architecture design and the use of
consistent, reusable CPN templates to model the behavior of concurrent objects and
their interactions (rather than a direct, but not reusable CPN translation).

202 R.G. Pettit IV

3 Modeling UML Architectures with Colored Petri Nets

The approach used in this paper for developing executable models for concurrent
software designs is to model object behavior in the form of behavioral design patterns
(BDP), which are then mapped to Colored Petri Net (CPN) templates [4]. Each BDP
represents the behavior of an individual object together with associated
communication constructs between that object and other objects with which it
collaborates. The BDP for a given object is identified by its UML stereotype. In this
approach we utilize the stereotypes from the COMET software design method [21] as
shown in Figure 2. An example of a behavioral design pattern for an asynchronous
device input concurrent object is given in Figure 3a.

Fig. 2. Stereotype Hierarchy of Behavioral Roles

For each BDP, a self-contained CPN template is designed, which by means of its
places, transitions, and tokens, models a given concurrent behavioral pattern. Figure
3b depicts the CPN template for an asynchronous device input concurrent object.
Each template is generic in the sense that it provides a basic behavioral pattern and
component connections for the concurrent object but does not contain any
application-specific information. Furthermore, concurrent component templates are
designed such that they can be interconnected via connector templates.

The software architecture is organized using the concept of components and
connectors, in which concurrent objects are designed as components that can be
connected through passive message communication objects and entity objects. Using
this approach, a concurrent software architecture is described in terms of
interconnected concurrent behavioral design patterns (i.e. components), which are
then mapped to a CPN model by connecting the corresponding CPN templates. The
CPN templates are elaborated to include application specific behavior necessary to
conduct our analyses. This additional information is captured in the UML model via
tagged values and includes:

− Execution Type: passive, asynchronous, or periodic
− IO: input and/or output
− Communication Type: synchronous or asynchronous
− Activation Time: periodic activation rate

 Increasing Confidence in Concurrent Software through Architectural Analysis 203

Fig. 3. Asynchronous Input Concurrent Object: (a) Behavioral Design Pattern; (b) CPN
Template

− Processing Time: estimated execution time for one cycle
− Operation Type: read or write
− Statechart: for each «state dependent» object.

To illustrate pairing these architectural parameters with BDPs, refer once again to Fig.
. In Fig. (a) we have an active object, “asyncInputInterface” that implements the I/O
behavioral pattern as indicated by its stereotype. Furthermore, tagged types are used
to capture specific architectural properties of the object, namely that it executes
asynchronously; handles only input; and has a yet-to-be specified processing time of
<process time>. The resulting CPN representation in Fig. (b) reflects these parameters
with the selection of an asynchronous, input-only CPN template and by setting the
time inscription on the Process Input transition to @+<process time>.

This <process time> parameter is an estimate for the time required by the object to
complete one activation cycle. Initially, this is simply an analyst’s best estimate.
However, as additional platform specific information is known, this parameter can be
updated to increase the fidelity of the model [22].

Once the CPN model is fully elaborated, it is analyzed in a CPN tool (e.g. by
simulation or state space analysis) and the results used to reason about the original
UML software architecture.

4 Case Study: Rover Control

To illustrate this CPN modeling and analysis approach, this section introduces a case
study based on the Lego® Robotics Invention System™ (RIS), commonly known as

204 R.G. Pettit IV

Mindstorms™[23]. The case study was employed in the context of a graduate software
project laboratory course at George Mason University [24]. This project consisted of
designing and constructing software on the RIS to implement an autonomous rover
employing an infrared light sensor and two motors. The goal of the rover was to search
an area for colored discs, while staying within the course boundary and avoiding
obstacles. In this project, the light sensor was used as the sole input sensor, responsible
for detecting boundary markings, obstacle markings, and discs according to different
color schemes. Students were required to develop a concurrent, object-oriented design
for the system using UML and to then implement the design using the Java language.

4.1 Rover Control Software Architecture

While there were some variations across student designs, one plausible architecture
model for the autonomous rover is illustrated in Figure 4. In this particular scenario,
we are interested in navigating the course; responding to changes from the light
sensor; and taking the appropriate action based on the detection event.

In this design, there are three active, concurrently executing objects (detect, rover,
and nav) and one passive object (map). External I/O objects (depicted as actors in
Figure 4) are also shown for receiving light sensor input and for modeling output to
the two motors. Each of the objects is stereotyped according to the hierarchy
previously shown in Figure 1, thus indicating the behavioral design pattern (BDP)
implemented by each object. Further details about the behavioral properties are
augmented with architectural parameters as follows:

The detect, rover, and nav objects all operate asynchronously and have an
Execution Type tagged value of “async”. As the input interface for the light sensor,
the detect object has an IO tagged value of “input”. All messages between the active

Fig. 4. Sequence Diagram for Rover control

 Increasing Confidence in Concurrent Software through Architectural Analysis 205

objects have a Communication Type tagged value of “synchronous”, indicating
synchronous, buffered communication. This particular design decision was made to
decrease the risk of missing a boundary or obstacle detection event. Other design
choices for this system would be to employ FIFO or priority queuing. The effects of
these design decisions could also be analyzed using the techniques presented in this
paper, but are not shown due to space limitations. Finally, the update() operation on
the map object has an Operation Type tagged value of “writer”.

4.2 CPN Architecture Representation

Using the above design information, we can now begin to construct a Colored Petri Net
(CPN) representation of the software architecture. Using a top-down approach we start
with a context level model, capturing the system as a black box (transition) and external
sensors and actuators represented as places. This model, allowing us to focus on the
highest level of abstraction with observed inputs and outputs is shown in Figure 5.

Fig. 5. RoverBot Context Level CPN Model

Moving forward, the second step is to decompose the RoverBot system-level
transition into a layer of abstraction representing the concurrent object architecture.
This architecture level model is shown in Figure 6. At this level, each of the active
objects from Fig. is represented as its own transition (box) in the CPN model. Each
of these will be further decomposed to implement the specific CPN template
matching the objects behavioral design pattern. We have also included the single
«entity» object containing map data and it is represented by a place for the map data
to be stored along with a transition and two places representing the behavior for
calling the update() operation. Finally, as all message communication between active
objects in the RoverBot system is synchronous, there is a CPN place modeling a
buffer for the synchronous communication between detect and rover and between
rover and nav. Notice that our external input and output places have also been carried
down to this level as well.

Once an architecture-level model is established, each of the transitions representing
an active object is then decomposed by applying the CPN template associated with
the behavioral design pattern of that object. For the asynchronous, input-only «IO»
object, detect, this CPN object-level model is shown in Figure 7. Here, the CPN

206 R.G. Pettit IV

template has been inserted and instantiated specifically for the detect object by setting
the object ID to “1” as seen by the number appended to place and transition names.
The specific control token, C1 has also been added as has the function for processing
detections, detection (sensorReading). To maintain consistency, the main transition of
this template, Pin1, has also been connected to the sensor input place and to the
roverBuf message buffer place. Additionally, an initial estimate for the processing
time (21 ms) was applied to the <process time> paramter.

Fig. 6. RoverBot CPN Architecture

 Increasing Confidence in Concurrent Software through Architectural Analysis 207

Fig. 7. Detect Object CPN Template with Time

4.3 Analysis of Rover Software Architecture

Recall from the sequence diagram of Fig. that the primary purpose of the autonomous
rover system is to navigate an area, mapping objects discovered by the light sensor and
taking evasive action when the light sensor detects obstacles or course boundaries. To
begin analyzing this behavior with the corresponding CPN model, we use a test driver
to provide simulated input events at random intervals. One of the first things we want
to discover is how quickly the architecture responds to the detection of an obstacle or
boundary. This can be analyzed from the context-level model by taking the difference
in time stamps from the time an obstacle or boundary event arrives on the light sensor
place to the time that a command is issued to the motors. For example, in Figure 8, the
first obstacle was detected at time 6459 (all time is in milliseconds in this model).
From the timestamps on the Motor places, we can see that from the time an input
arrives to the time the system responded, there was an elapsed time of 31ms. The
degree to which the CPN model represented the ultimate implementation of this design
was validated using student implementations for the project [24].

The analytical CPN information could then be used, along with the speed of the
rover, to determine if the reaction time is sufficient using this software architecture and
this particular platform. Other forms of analysis could include altering the architecture

208 R.G. Pettit IV

Fig. 8. Observing Reaction Time from the Context Level Model

to explore “what if” scenarios. Such examples could include changing the assumptions
about hardware device performance or changing message communication mechanisms
from synchronous to asynchronous. Additionally, one could perform some level of state
space analysis on the CPN model to investigate conditions that may arise in a
deadlocked state. One could also drill down through the CPN model to observe
interactions at the architecture level or within an individual object. Additional resources
can also be added to model such aspects as memory consumption as was done with the
RAM place in Figure 8. Further details on resource modeling is discussed in [22].

5 Conclusions and Future Research

The ultimate goal of this research effort is to provide an automated means of translating a
UML concurrent software architecture design into an underlying CPN representation that
can then be used to conduct behavioral analysis and applying the results to the original
UML model. To date, we have developed a method for systematically translating a UML
software architecture design (represented as an interaction diagram of concurrent objects)
into a CPN representation. This method employs reusable, consistent CPN segments that
model the behavior of a set of objects according to their stereotyped behavioral roles.
Once the CPN representation has been created, the properties of Petri nets (along with the
corresponding tool support) allow for analysis to be performed on a number of aspects

 Increasing Confidence in Concurrent Software through Architectural Analysis 209

related to the behavior of the concurrently executing objects. By constructing a CPN
representation that maintains the structure of the concurrent object architecture, the
results from the CPN analysis can easily be applied to the original UML model. By
conducting analyses on the concurrent architecture early in the project lifecycle, we can
increase the confidence that the final implementation will meet the desired behavior.
Furthermore, we are more likely to find and correct problems at a time when it is
significantly less costly (in terms of both time and money) to fix them.

The current state of this research provides a systematic method for translating a
concurrent software design captured in UML to an underlying CPN model. We have
also given examples of how to apply various CPN analysis techniques and have
expanded the modeling capabilities to handle the inclusion of platform specific
characteristics. Future research in this area will need to investigate approaches to
facilitate the automated translation from a UML model into a CPN model. Furthermore,
most of the analysis conducted with this research effort has focused on the use of
simulations for functional and performance. Additional research need to be conducted to
explore the use of state space analysis and to determine how scalable such state space
analysis would be for larger systems. Such state analysis properties of CPNs are quite
powerful and could be used to analyze such features as the absence of deadlock
conditions as well as system-wide state changes.

In conclusion, this paper has provided a brief description of a systematic and
repeatable method for translating concurrent UML software architectures into an
underlying CPN model. This CPN model may then be analyzed for functionality and
performance and thus provide insight to the software engineer regarding the concurrent
behavior of the design. By adjusting the software design based on the results from the
CPN analysis, an engineer may increase confidence in the software architecture design,
identifying and avoiding concurrent behavioral problems earlier in the lifecycle.

References

1. Pettit, R.G., Street, J.A.: Lessons Learned Applying UML in the Design of Mission
Critical Software, In: Proc. UML 2004, Lisbon, Portugal (October 2004)

2. Pettit, R.G.: Lessons Learned Applying UML in Embedded Software Systems Design. In:
Proc. WSTFEUS 2004, Vienna, Austria (May 2004)

3. OMG, The Unified Modeling Language®, Version 2.1.2, The Object Mangagement Group
(November 2007)

4. Pettit, R.G., Gomaa, H.: Modeling Behavioral Design Patterns of Concurrent Objects. In:
Proc. 28th International Conference on Software Engineering (ICSE), Shanghai, China
(May 2006)

5. Baldassari, M., Bruno, G., Castella, A.: PROTOB: an Object-Oriented CASE Tool for
Modeling and Prototyping Distributed Systems. Software-Practice & Experience 21, 823–
844 (1991)

6. Mikolajczak, B., Sefranek, C.A.: Integrating Object Oriented Design with Concurrency
Using Petri Nets. In: IEEE International Conference on Systems, Man and Cybernetics,
Piscataway, NJ, USA (2001)

7. Aihua, R.: An Integrated Development Environment for Concurrent Software Developing
Based on Object Oriented Petri Nets. In: Fourth International Conference/Exhibition on
High Performance Computing in the Asia-Pacific Region, Los Alamitos, CA, USA (2000)

210 R.G. Pettit IV

8. He, X., Ding, Y.: Object Orientation in Hierarchical Predicate Transition Nets. In:
Concurrent Object-Oriented Programming and Petri Nets. Advances in Petri Nets, pp.
196–215. Springer, Berlin (2001)

9. Biberstein, O., Buchs, D., Guelfi, N.: Object-Oriented Nets with Algebraic Specifications:
The CO-OPN/2 Formalism. In: Agha, G.A., De Cindio, F., Rozenberg, G. (eds.) APN
2001. LNCS, vol. 2001, pp. 73–130. Springer, Heidelberg (2001)

10. Camurri, A., Franchi, P., Vitale, M.: Extending High-Level Petri Nets for Object-Oriented
Design. In: IEEE International Conference on Systems, Man and Cybernetics, New York,
NY, USA (1992)

11. Hong, J.E., Bae, D.H.: Software Modeling and Analysis Using a Hierarchical Object-
Oriented Petri Net. Information Sciences 130, 133–164 (2000)

12. Azzopardi, D., Holding, D.J.: Petri Nets and OMT for Modeling and Analysis of DEDS.
Control Engineering Practices 5 (1997)

13. Lakos, C.A.: Object Oriented Modelling with Object Petri Nets. In: Agha, G.A., De
Cindio, F., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 1–37. Springer,
Heidelberg (2001)

14. Maier, C., Moldt, D.: Object Coloured Petri Nets- A Formal Technique for Object
Oriented Modelling. In: Concurrent Object-Oriented Programming and Petri Nets.
Advances in Petri Nets, pp. 406–427. Springer, Berlin (2001)

15. Saldhana, J.A., Shatz, S.M., Zhaoxia, H.: Formalization of Object Behavior and
Interactions from UML Models. International Journal of Software Engineering &
Knowledge Engineering 11, 643–673 (2001)

16. Baresi, L., Pezze, M.: On Formalizing UML with High-Level Petri Nets. In: Agha, G.A.,
De Cindio, F., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 276–304. Springer,
Heidelberg (2001)

17. Hansen, K.M.: Towards a Coloured Petri Net Profile for the Unified Modeling Centre for
Object Technology, Aarhus, Denmark, Technical Report COT/2-52-V0.1 (DRAFT) (2001)

18. Jørgensen, J.B.: Coloured Petri Nets in UML-Based Software Development - Designing
Middleware for Pervasive Healthcare. In: CPN 2002, Aarhus, Denmark (2002)

19. Bordbar, B., Giacomini, L., Holding, D.J.: UML and Petri Nets for Design and Analysis of
Distributed Systems. In: International Conference on Control Applications, Anchorage,
Alaska, USA (2000)

20. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use,
vol. I-III. Springer, Berlin (1997)

21. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML.
Addison-Wesley, Reading (2000)

22. Pettit, R.G., Gomaa, H.: Analyzing Behavior of Concurrent Software Designs for
Embedded Systems. In: Proc. ISORC 2007, Santorini, Greece (2007)

23. Lego, “Lego Mindstorms”, http://mindstorms.lego.com
24. Pettit, R.: SWE 626: Software Project Lab for Real-Time and Embedded Systems. George

Mason University (2006)

Fast Scheduling of Distributable Real-Time

Threads with Assured End-to-End Timeliness

Sherif F. Fahmy1, Binoy Ravindran1, and E.D. Jensen2

1 ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA
2 The MITRE Corporation, Bedford, MA 01730, USA

Abstract. We consider networked, embedded real-time systems that
operate under run-time uncertainties on activity execution times and ar-
rivals, node failures, and message losses. We consider the distributable
threads abstraction for programming and scheduling such systems, and
present a thread scheduling algorithm called QBUA. We show that
QBUA satisfies (end-to-end) thread time constraints in the presence of
crash failures and message losses, has efficient message and time com-
plexities, and lower overhead and superior timeliness properties than past
thread scheduling algorithms. Our experimental studies validate our the-
oretical results, and illustrate the algorithm’s effectiveness.

1 Introduction

Some emerging, networked embedded real-time systems (e.g., US DoD’s Network
Centric Warfare systems [1]) are subject to resource overloads (due to context-
dependent activity execution times), arbitrary activity arrivals, and arbitrary
node failures and message losses. Reasoning about end-to-end timeliness is a
difficult and unsolved problem in such systems. A distinguishing feature of such
systems is their relatively long activity execution time scales (e.g., milliseconds
to minutes), which permits more time-costlier real-time resource management.

Maintaining end-to-end properties (e.g., timeliness, connectivity) of a control
or information flow requires a model of the flow’s locus in space and time that
can be reasoned about. Such a model facilitates reasoning about the contention
for resources that occur along the flow’s locus and resolving those contentions
to optimize system-wide end-to-end timeliness. The distributable thread pro-
gramming abstraction which first appeared in the Alpha OS [2], and later the
Real-Time CORBA 1.2 standard directly provides such a model as their first-
class programming and scheduling abstraction. A distributable thread is a single
thread of execution with a globally unique identity that transparently extends
and retracts through local and remote objects. We focus on distributable threads
as our end-to-end programming/scheduling abstraction, and hereafter, refer to
them as threads, except as necessary for clarity.

Contributions. In this paper, we consider the problem of scheduling threads in
the presence of the previously mentioned uncertainties, focusing particularly on
(arbitrary) node failures and message losses. Past efforts on thread scheduling

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 211–225, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 S.F. Fahmy, B. Ravindran, and E.D. Jensen

(e.g., see [3] and references therein) can be broadly categorized into two classes:
independent node scheduling and collaborative scheduling. In the independent
scheduling approach, threads are scheduled at nodes using propagated thread
scheduling parameters and without any interaction with other nodes. Thread
faults are managed by integrity protocols that run concurrent to thread exe-
cution. Integrity protocols employ failure detectors (or FDs), and use them to
detect thread failures. In the collaborative scheduling approach, nodes explicitly
cooperate to construct system-wide thread schedules, detecting node failures us-
ing FDs while doing so. In this work, we compare QBUA to three previous thread
scheduling algorithms, HUA, CUA, and ACUA (see [3] and references therein).

HUA is an independent scheduling algorithm, which sometimes may make
locally optimal decisions that may not be globally optimal. This is overcome by
CUA and ACUA, which are collaborative scheduling algorithms that use uniform
consensus [4] for unanimously deciding on system-wide thread schedules in the
presence of node failures. In [3], it is shown that ACUA has superior timeliness
properties (e.g., lower number of missed deadlines) than HUA and CUA. In
addition, HUA and CUA consider synchronous computational models (i.e., those
with deterministically bounded time variables). In contrast, ACUA considers
the partially synchronous model in [5], where message delay and message loss
are probabilistically described. Though this increases ACUA’s coverage1, the
algorithm has high overhead, thereby only allowing threads that can tolerant
this large overhead to reap the algorithm’s superior timeliness.

In this paper, we present a collaborative scheduling algorithm called the
Quorum-Based Utility Accrual scheduling (or QBUA) that precisely overcomes
ACUA’s overhead disadvantage. The algorithm considers the partially
synchronous model in [5], and uses a Quorum set of nodes for majority agree-
ment on constructing system-wide thread schedules. We show that QBUA sat-
isfies thread time constraints in the presence of node crash failures and message
losses, has efficient message and time complexities that compare favorably with
other algorithms in its class, and lower overhead and superior timeliness than
past algorithms including CUA and HUA. We also show that the algorithm’s
lower overhead enables it to allow more threads to benefit from its superior
timeliness, than that allowed by past algorithms.

2 Models and Objective

Distributable Thread Abstraction. Distributable threads, our computing abstrac-
tion, execute in local and remote objects by location-independent invocations
and returns. The portion of a thread executing an object operation is called a
thread segment. Thus, a thread can be viewed as being composed of a concate-
nation of thread segments. A thread can also be viewed as being composed of a
1 As defined in [6], coverage is the decreasing likelihood for the algorithm’s timing

assurances to be violated, when the underlying synchrony assumptions are violated
at run-time (e.g., due to overloads or other exigencies). This likelihood reduces when
coverage increases.

Fast Scheduling of Distributable Real-Time Threads 213

sequence of sections, where a section is a maximal length sequence of contiguous
thread segments on a node. A section’s first segment results from an invocation
from another node, and its last segment performs a remote invocation. We as-
sume that execution time estimates of sections of a thread are known when the
thread arrives into the system and are described using TUFs (see our timeliness
model). The sequence of remote invocations and returns made by a thread can
typically be estimated by analyzing the thread code. The total number of sec-
tions of a thread is thus assumed to be known a-priori. The application is thus
comprised of a set of threads, denoted T = {T1, T2, . . .} and the set of sections
of a thread Ti is denoted as [Si

1, S
i
2, . . . , S

i
k]. See [7] for more details.

Timeliness Model. We specify the time constraint of each thread using a Time/
Utility Function (TUF) [8]. A TUF allows us to decouple the urgency of a thread
from its importance. This decoupling is a key property allowed by TUFs since
the urgency of a thread may be orthogonal to its importance. A thread Ti’s TUF
is denoted as Ui (t). A classical deadline is unit-valued—i.e., Ui(t) = {0, 1}, since
importance is not considered. Downward step TUFs generalize classical deadlines
where Ui(t) = {0, {m}}. We focus on downward step TUFs, and denote the
maximum, constant utility of a TUF Ui (t), simply as Ui. Each TUF has an
initial time Ii, which is the earliest time for which the TUF is defined, and a
termination time Xi, which, for a downward step TUF, is its discontinuity point.
Ui (t) > 0, ∀t ∈ [Ii, Xi] and Ui (t) = 0, ∀t /∈ [Ii, Xi] , ∀i.

System Model. Our system consists of a set of client nodes
∐

= {1, 2, · · · , N}
and a set of server nodes Π = {1, 2, · · · , n} (server and client are logical des-
ignations given to nodes to describe the algorithm’s behavior). Bi-directional
logical communication channels are assumed to exist between every client-server
and client-client pair. We also assume that the basic communication channels
may loose messages with probability p, and communication delay is described
by some probability distribution. On top of this basic communication channel,
we consider a reliable communication protocol that delivers a message to its
destination in probabilistically bounded time provided that the sender and re-
ceiver both remain correct, using the standard technique of sequence numbers
and retransmissions. We assume that each node is equipped with two proces-
sors: a processor that executes thread sections on the node and a scheduling
co-processor as in [2]. We also assume that nodes in our system have access to
GPS clocks that provides each node with a UTC time-source with high preci-
sion (e.g., [9]) and are equipped with appropriately tuned QoS FDs [5]. Further
details about our system model are provided in [7].

Exceptions and Abort Model. Each section of a thread has an associated exception
handler. We consider a termination model for thread failures including time-
constraint violations and node failures. In the case of time constraint-violation
or node failure, these exception handlers are triggered to restore the system to a
safe state. The exception handlers we consider have time constraints expressed
as relative deadlines. See [7] for more details.

214 S.F. Fahmy, B. Ravindran, and E.D. Jensen

Failure Model. The nodes are subject to crash failures. When a process crashes,
it loses it state memory — i.e., there is no persistent storage. If a crashed client
node recovers at a later time, we consider it a new node since it has already lost
all of its former execution context. A client node is correct if it does not crash;
it is faulty if it is not correct. In the case of a server crash, it may either recover
or be replaced by a new server assuming the same server name (using DNS or
DHT — e.g, [10] — technology). We model both cases as server recovery. Since
crashes are associated with memory loss, recovered servers start from their initial
state. A server is correct if it never fails; it is faulty if it is not correct. QBUA
tolerates up to N − 1 client failures and up to fs

max ≤ n/3 server failures. The
actual number of server failures is denoted as fs ≤ fs

max and the actual number
of client failures is denoted as f ≤ fmax where fmax ≤ N − 1.

Scheduling Objectives. Our primary objective is to design a thread scheduling
algorithm to maximize the total utility accrued by all threads as much as pos-
sible. The algorithm must also provide assurances on the satisfaction of thread
termination times in the presence of (up to fmax) crash failures. Moreover, the
algorithm must exhibit the best-effort property (see Section 1 of [7] for details).

3 Algorithm Rationale

QBUA is a collaborative scheduling algorithm, which allows it to construct
schedules that result in higher system-wide accrued utility by preventing lo-
cally optimal decisions from compromising system-wide optimality. It also allows
QBUA to respond to node failures by eliminating threads that are affected by
the failures, thus allowing the algorithm to gracefully degrade timeliness in the
presence of failures. There are two types of scheduling events that are handled
by QBUA, viz: a) local scheduling events and b) distributed scheduling events.

Local scheduling events are handled locally on a node without consulting
other nodes. Examples of local scheduling events are section completion, section
handler expiry events etc. For a full list of local scheduling events please see
Algorithm 7 in [7]. Distributed scheduling events need the participation of all
nodes in the system to handle them. In this work, only two distributed scheduling
events exit, viz: a) the arrival of a new thread into the system and b) the failure
of a node. A node that detects a distributed scheduling event sends a START
message to all other nodes requesting their scheduling information so that it
can compute a System Wide Executable Thread Set (or SWETS). Nodes that
receive this message, send their scheduling information to the requesting node
and wait for schedule updates (which are sent to them when the requesting node
computes a new system-wide schedule). This may lead to contention if several
different nodes detect the same distributed scheduling event concurrently.

For example, when a node fails, many nodes may detect the failure concur-
rently. It is superfluous for all these nodes to start an instance of QBUA. In
addition, events that occur in quick succession may trigger several instances of
QBUA when only one instance can handle all of those events. To prevent this,
we use a quorum system to arbitrate among the nodes wishing to run QBUA. In

Fast Scheduling of Distributable Real-Time Threads 215

order to perform this arbitration, the quorum system examines the time-stamp
of incoming events. If an instance of QBUA was granted permission to run later
than an incoming event, there is no need to run another instance of QBUA since
information about the incoming event will be available to the version of QBUA
already running (i.e., the event will be handled by that instance of QBUA).

4 Algorithm Description

As mentioned above, whenever a distributed scheduling event occurs, a node
attempts to acquire permission from the quorum system to run a version of
QBUA. After the quorum system has arbitrated among the nodes contending
to execute QBUA, the node that acquires the “lock” executes Algorithm 1. In
Algorithm 1, the node first broadcasts a start of algorithm message (line 1) and
then waits 2T time units2 for all nodes in the system to respond by sending
their local scheduling information (line 2). After collecting this information, the
node computes SWETS (line 3) using Algorithm 4. After computing SWETS,
the node contacts affected nodes (i.e. nodes that will have sections added or
removed from their schedule as a result of the scheduling event).

Algorithm 1. Compute SWETS

Broadcast start of algorithm message, START;1:
Wait 2T collecting replies from other nodes;2:
Construct SWETS using information collected;3:
Multicast change of schedule to affected nodes;4:
return;5:

Algorithm 2 shows the details of the algorithm that client nodes run when at-
tempting to acquire a “lock” on running a version of QBUA. The algorithm is
loosely based on Chen’s solution for FTME [11]. Upon the arrival of a distributed
scheduling event, a node tries to acquire a “lock” on running QBUA (the try1

part of the algorithm that starts on line 3).
The first thing that the node does (lines 4-5) is check if it is currently run-

ning an instance of QBUA that is in its information collection phase (line 2 in
Algorithm 1). If so, the new event that has occurred can simply be added to
the information being collected by this version of QBUA. However, if no current
instance of QBUA is being hosted by the node, or if the instance of QBUA being
hosted has passed its information collection phase, then the event may have to
spawn a new instance of QBUA (this starts at line 6 in the algorithm).

The first thing that Algorithm 2 does in this case is send a time-stamped
request to the set of server nodes, Π , in the system (lines 8-10). The time-stamp
is used to inform the quorum nodes of the time at which the event was detected
by the current node. Beginning at line 3, Algorithm 2 collects replies from the
servers. Once a sufficient number of replies have arrived (line 14), Algorithm 2
checks whether its request has been accepted by a sufficient (� 2n

3 � see Section 5)
number of server nodes. If so, the node computes SWETS (lines 15-16).
2 T is communication delay derived from the random variable describing the commu-

nication delay in the system.

216 S.F. Fahmy, B. Ravindran, and E.D. Jensen

On the other hand, if an insufficient number of server nodes support the
request, two possibilities exist. The first possibility is that another node has
been granted permission to run an instance of QBUA to handle this event. In
this case, the current node does not need to perform any additional action and
so releases the “lock” it has acquired on some servers (lines 17-21).

The second possibility is that the result of the contention to run QBUA at
the servers was inconclusive due to differences in communication delay. For

Algorithm 2. QBUA on client node i

timestamp; // time stamp variable initially set to nil1:
upon thread arrival or detection of a node failure:2:

try1:3:
if a current version of QBUA is waiting for information from other nodes then4:

Include information about event when computing SWETS;5:

else6:
timestamp← GetTimeStamp;7:
for all rj ∈ Π do8:

resp[j] ← (nil, nil);9:
send (REQUEST, timestamp) to rj;10:

repeat11:
wait until [received (RESPONSE, owner, t) from some rj];12:
if (c1 �= owner or timestamp = t) then resp[j] ← (owner, t);13:
if among resp[], at least m of them are not (nil, nil) then14:

if at least m elements in resp[] are (c1, t) then15:
return Compute SWETS;16:

else if at least m elements in resp[] agree about a certain node then17:
for all rk ∈ Π such that resp[k] �= (nil, nil) do18:

if resp[k].owner = c1 then19:
send (RELEASE,timestamp) to rk;20:

Skip rest of algorithm; //Event is already being handled21:

else22:
for all rk ∈ Π such that resp[k] �= (nil, nil) do23:

if resp[k].owner = c1 then24:
send (YIELD,timestamp) to rk;25:

else26:
send (INQUIRE,timestamp) to rk;27:

resp[k] ← (nil, nil);28:

until forever ;29:
exit1:30:

oldtimestamp← timestamp;31:
timestamp← GetTimeStamp;32:
for all rk ∈ Π do33:

send (RELEASE, oldtimestamp) to rj;34:
return;35:

upon receive (CHECK, t) from rj36:
if for all instances of QBUA running on this node, timestamp �= t then37:

send (RELEASE, t) to rj ;38:

upon receive (START) from some client node39:
Update REi

j for all sections;40:
send σj and REi

j ’s to requesting node;41:

example, assume that we have 5 servers and three clients wishing to run QBUA
and all three clients send their request to the servers at the same time, also
assume different communication delay between each server and client. Due to

Fast Scheduling of Distributable Real-Time Threads 217

these communication differences, the messages of the clients may arrive in such
a pattern so that two servers support client 1, another 2 servers support client
2 and the last server supports client 3. This means that no client’s request is
supported by a sufficient — i.e., 2n

3 — number of server nodes. In this case, the
client node sends a YIELD message to servers that support it and an INQUIRE
message to nodes that do not support it (line 22-28) and waits for more responses
from the server nodes to resolve this conflict. Lines 30-35 release the “lock” on
servers after the client node has computed SWETS, lines 36-38 are used to handle
the periodic cleanup messages sent by the servers and lines 39-41 respond to the
START of algorithm message (line 1, Algorithm 1).

Algorithm 3. QBUA on server node i

cowner[]; Array of nodes holding lock to run QBUA1:
towner[]; towner[i] contains time-stamp of event that triggered QBUA for node in cowner[i]2:
tgrant[]; tgrant[i] contains time at which node in cowner[i] was granted lock to run QBUA3:
Rwait[]; Rwait[i] is waiting queue for instance of QBUA being run by cowner[i];4:
upon receive (tag, t)5:

CurrentTime← GetTimeStamp;6:
if (c1, t′) appears in (cowner[],towner []) or Rwait[] then7:

if t < t’ then Skip rest of algo; //This is an old message8:

if tag = REQUEST then9:
if ∃ tgrant ∈ tgrant[] such that t ≤ tgrant then10:

send (RESPONSE, c, tgrant) to c1; //where c← cowner[i], such that11:
tgrant[i] = tgrant;
Enqueue (c1, t) in Rwait[i], such that tgrant[i] = tgrant;12:
Skip rest of algorithm;13:

else14:
AddElement(cowner[], c1);15:
AddElement(towner[], t);16:
AddElement(tgrant[], CurrentT ime);17:
send (RESPONSE, c1, t) to c1;18:

else if tag = RELEASE then19:
Delete entry corresponding to c1, t from cowner[], towner[], tgrant[], and Rwait[];20:

else if tag = YIELD then21:
if (c1, t) ∈ (cowner[], towner []) then22:

For i, such that (c1, t) = (cowner[i], towner [i])23:
Enqueue (c1, t) in Rwait[i];24:
(cwait, twait)← top of Rwait[i];25:
cowner[i]← cwait; towner [i]← twait;26:
tgrant[i]← CurrentTime;27:
send (RESPONSE, cwait, twait) to cwait;28:

if c1 /∈ cowner[] then29:
(c, tp)← (cowner[i], towner[i]), for min i such that t ≤ tgrant[i];30:
send (RESPONSE, c, tp) to c1;31:

else if tag = INQUIRE then32:
(c, tp)← (cowner[i], towner [i]), for min i such that t ≤ tgrant[i];33:
send (RESPONSE, c, tp) to c1;34:

upon suspect that cowner[i] has failed:35:
HandleFailure(cowner[i],cowner[], towner [],tgrant[],Rwait[]);36:

periodically:37:
∀ cowner ∈ cowner[]:38:

send (CHECK, towner) to cowner; //NB. towner is the entry in towner [] that39:
corresponds to cowner.

218 S.F. Fahmy, B. Ravindran, and E.D. Jensen

Algorithm 3 is run by the servers, the function of this algorithm is to arbi-
trate among the nodes contending to run QBUA so as to minimize the number
of concurrent executions of the algorithm. Since there may be more than one in-
stance of QBUA running at any given time, the server nodes keep track of these
instances using three arrays. The first array, cowner[], keeps track of which nodes
are running instances of QBUA, the second, towner[], stores the time at which a
node in cowner[] sends a request to the servers (i.e., the time at which that node
detects a certain scheduling event), and tgrant[] keeps track of the time at which
server nodes grant permission to client nodes to execute QBUA. In addition, a
waiting queue for each running instance of QBUA is kept in Rwait[].

When a server receives a message from a client node, it first checks to see
if this is a stale message (which may happen due to out of order delivery). A
message from a client node, c1, that has a time-stamp older than the last message
received from c1 has been delivered out of order and is ignored (line 7-8). Starting
at line 9, the algorithm begins to examine the message it has received. If it is a
REQUEST message, the server checks if the time-stamp of the event triggering
the message is less than the time at which a client node was granted permission
to run an instance of QBUA. If such an instance exists, a new instance of QBUA
is not needed since the event will be handled by that previous instance of QBUA.
Algorithm 3, inserts the incoming request into a waiting queue associated with
that instance of QBUA and sends a message to the client (lines 10-13).

However, if no current instance of QBUA can handle the event, a client’s re-
quest to start an instance of QBUA is granted (lines 14-18). If a client node sends
a YIELD message, the server revokes the grant it issued to that client and selects
another client from the waiting queue for that event (lines 21-31). This part of
the algorithm can only be triggered if the result of the first round of contention
to run QBUA is inconclusive (as discussed when describing Algorithm 2). Re-
call that this inconclusive contention is caused by different communication delays
that allow different requests to arrive at different severs in different orders. How-
ever, all client requests for a particular instance of QBUA are queued in Rwait[],
therefore, when a client sends a YIELD message, servers are able to choose the
highest priority request (which we define as the request with the earliest time-
stamp and use node id as a tie breaker). Thus, we guarantee that this contention
will be resolved in the second round of the algorithm. Lines 32-34 show servers’
response to INQUIRE messages and lines 35-39 show the clean up procedures
to remove stale messages. See [7] for how we handle failures (line 36).

Algorithm 4 is used by a client node to compute SWETS once it has received
information from all other nodes in the system (line 2 in Algorithm 1). It per-
forms two basic functions, first, it computes a system wide order on threads
by computing their global Potential Utility Density (PUD). It then attempts to
insert the remaining sections of each thread, in non-increasing order of global
PUD, into the scheduling queues of all nodes in the system. After the insertion
of each thread, the schedule is checked for feasibility. If it is not feasible, then
the thread is removed from SWETS (after scheduling the appropriate exception
handler if necessary).

Fast Scheduling of Distributable Real-Time Threads 219

First we need to define the global PUD of a thread. Assume that a thread, Ti,
has k sections denoted {Si

1, S
i
2, · · · , Si

k}. We define the global remaining execu-
tion time, GEi, of the thread to be the sum of the remaining execution times of
each of the thread’s sections. Let {REi

1, REi
2, · · · , REi

k} be the set of remaining
execution times of Ti’s sections, then GEi =

∑k
j=1 REi

j . Assuming that we are
using step-down TUFs, and Ti’s TUF is Ui(t), then its global PUD can be com-
puted as Ti.PUD = Ui(tcurr + GEi)/GEi, where U is the utility of the thread
and tcurr is the current time. Using global PUD, we can establish a system wide
order on the threads in non-increasing order of “return on investment”. This
allows us to consider the threads for scheduling in an order that is designed to
maximize accrued utility [12].

We now turn our attention to the method used to check schedule feasibil-
ity. For a schedule to be feasible, all the sections it contains should complete
their execution before their assigned termination time. Since we are considering
threads with end-to-end termination times, the termination time of each section
needs to be derived from its thread’s end-to-end termination time. This deriva-
tion should ensure that if all the section termination times are met, then the
end-to-end termination time of the thread will also be met.

For the last section in a thread, we derive its termination time as simply the
termination time of the entire thread. The termination time of the other sections
is the latest start time of the section’s successor minus the communication delay.
Thus the section termination times of a thread Ti, with k sections, is:

Si
j .tt =

{
Ti.tt j = k
Si

j+1.tt − Si
j+1.ex − T 1 ≤ j ≤ k − 1

where Si
j .tt denotes section Si

j ’s termination time, Ti.tt denotes Ti’s termination
time, and Si

j .ex denotes the estimated execution time of section Si
j . The commu-

nication delay, which we denote by T above, is a random variable Δ. Therefore,
the value of T can only be determined probabilistically. This implies that if each
section meets the termination times computed above, the whole thread will meet
its termination time with a certain, high, probability (see Lemma 6 in [7]).

In addition, each section’s handler has a relative termination time, Sh
j .X .

However, a handler’s absolute termination time is relative to the time it is
released, more specifically, the absolute termination time of a handler is equal
to the sum of the relative termination time of the handler and the failure time
tf (which cannot be known a priori). In order to overcome this problem, we
delay the execution of the handler as much as possible, thus leaving room for
more important threads. We compute the handler termination times as follows:

Sh
j .tt =

{
Si

k.tt + Sh
j .X + TD + ta j = k

Sh
j+1.tt + Sh

j .X + T 1 ≤ j ≤ k − 1

where Sh
j .tt denotes section handler Sh

j ’s termination time, Sh
j .X denotes the

relative termination time of section handler Sh
j , Si

k.tt is the termination time of
thread i’s last section, ta is a correction factor corresponding to the execution

220 S.F. Fahmy, B. Ravindran, and E.D. Jensen

time of the scheduling algorithm, and TD is the time needed to detect a failure by
our QoS FD [5]. From this termination time decomposition, we compute latest
start times for each handler: Sh

j .st = Sh
j .tt − Sh

j .ex for 1 ≤ j ≤ k, where Sh
j .ex

denotes the estimated execution time of section handler Sh
j . In Algorithm 4,

each node, j, sends the node running QBUA its current local schedule σp
j . Using

these schedules, the node can determine the set of threads, Γ , that are currently
in the system. Both these variables are inputs to the scheduling algorithm (lines
1 and 2 in Algorithm 4). In lines 3-6, the algorithm computes the global PUD
of each thread in Γ .

Before we schedule the threads, we need to ensure that the exception handlers
of any thread that has already been accepted into the system can execute to
completion before its termination time. We do this by inserting the handlers of
sections that were part of each node’s previous schedule into that node’s current
schedule (lines 7-9). Since these handlers were part of σp

j , and QBUA always
maintains the feasibility of a schedule as an algorithm invariant, we are sure
that these handlers will execute to completion before their termination times.

In line 10, we sort the threads in the system in non-increasing order of PUD
and consider them for scheduling in that order (lines 11-21). In lines 13-14 we
mark as failed any thread that has a section hosted on a node that does not
participate in the algorithm. If the thread can contribute non-zero utility to the
system and the thread has not been rejected from the system, then we insert its
sections into the scheduling queue of the node responsible for them (line 17).

Algorithm 4. ConstructSchedule

input: Γ ; //Set of threads in the system1:
input: σp

j , Hj ← nil; //σp
j : Previous schedule of node j, Hj : set of handlers scheduled2:

for each Ti ∈ Γ do3:
if for some section Si

j belonging to Ti, tcurr + Si
j .ex > Si

j .tt then4:
Ti.PUD ← 0;5:

else Ti.PUD ← Ui(tcurr+GEi)
GEi

;6:

for each task el ∈ σp
j do7:

if el is an exception handler for section Si
j then Insert(el, Hj , el.tt);8:

σj ← Hj ;9:
σtemp ← sortByPUD(Γ);10:
for each Ti ∈ σtemp do11:

Ti.stop←false;12:
if did not receive σj from node hosting one of Ti’s sections Si

j then13:
Ti.stop←true;14:

for each remaining section, Si
j , belonging to Ti do15:

if Ti.PUD > 0 and Ti.stop �=true then16:
Insert(Si

j, σj , Si
j.tt);17:

if Sh
j /∈ σp

j then Insert(Sh
j , σj , Sh

j .tt);18:
if isFeasible(σj)=false then19:

Ti.stop←true;20:
Remove(Si

k, σk, Si
k.tt) for 1 ≤ k ≤ j;21:

if Si
j /∈ σp

j then Remove(Sh
j , σj , Sh

j .tt);22:

for each j ∈ N do23:
if σj �= σp

j then Mark node j as being affected by current scheduling event;24:

Fast Scheduling of Distributable Real-Time Threads 221

After inserting the section into its corresponding ready queue (at a position
reflecting its termination time), we check to see whether this section’s handler
had been included in the previous schedule of the node. If so, we do not insert
the handler into the schedule since this has been already taken care of by lines
7-8. Otherwise, the handler is inserted into its corresponding ready queue (line
18). Once the section, and its handler, have been inserted into the ready queue,
we check the feasibility of the schedule (line 19). If the schedule is infeasible, we
remove the thread’s sections from the schedule (line 21). However, we first check
to see whether the section’s handler was part of a previous schedule before we
remove it (line 22). We perform this check before removing the handler because
if the handler was part of a previous schedule, then its section has failed and we
should keep its exception handler for clean up purposes. Finally, if the schedule
of any node has changed, these nodes are marked to have been affected by the
current instance of QBUA (lines 23-24). It is to these nodes that the current node
needs to multicast the changes that have occurred (line 4, Algorithm 1). In order
to test the feasibility of a schedule, we need to check if all the sections in the
schedule can complete before their derived termination times. The full algorithm
is depicted in Algorithm 6 in [7]. QBUA’s dispatcher is shown in Algorithm 7
in [7]. Only two scheduling events result in collaborative scheduling, viz: the
arrival of a thread into the system, and the failure of a node, all other scheduling
events are handled locally. Since we are talking about a partially synchronous
system, the FD we use to detect node failures can make mistakes. Thus, QBUA
may be started due to an erroneous detection of failure. The this can be reduced
by designing a QoS FD [5] with appropriate QoS parameters.

5 Algorithm Properties

We establish several properties of QBUA. Due to space limitations, some of the
properties and all of the proofs are omitted here, and can be found in [7]. Below,
T is the communication delay, and Γ is the set of threads in the system.

Lemma 1. A node determines whether or not it needs to run an instance of
QBUA at most 4T time units after it detects a distributed scheduling event, with
high, computable probability, Plock.

Lemma 2. Once a node is granted permission to run an instance of QBUA, it
takes O(T + N + |Γ | log(|Γ |)) time units to compute a new schedule, with high,
computable, probability, PSWETS .

Theorem 3. A distributed scheduling event is handled at most O(T + N +
|Γ | log(|Γ |) + TD) time units after it occurs, with high, computable, probability,
Phand.

Lemma 4. The worst case message complexity of the algorithm is O(n + N).

Theorem 5. If all nodes are underloaded, no nodes fail (i.e. f = 0) and each
thread can be delayed O(T +N + |Γ | log(|Γ |)) time units once and still be schedu-
lable, QBUA meets all the thread termination times yielding optimal total utility
with high, computable, probability, Palg.

222 S.F. Fahmy, B. Ravindran, and E.D. Jensen

Theorem 6. If N − f nodes do not crash, are underloaded, and all incoming
threads can be delayed O(T + N + |Γ | log(|Γ |)) and still be schedulable, then
QBUA meets the execution time of all threads in its eligible execution thread set,
Γ , with high computable probability, Palg.

Lemma 7. QBUA has a quorum threshold, m, (see Algorithm 2) of � 2n
3 � and

can tolerate fs = n
3 faulty servers.

Theorem 8. QBUA has a better best-effort property than HUA and CUA and
a similar best-effort property to ACUA.

Theorem 9. QBUA has lower overhead than ACUA and its overhead scales
better with the number of node failures.

Theorem 10. QBUA limits thrashing by reducing the number of instances of
QBUA spawned by concurrent distributed scheduling event.

6 Experimental Results

We performed a series of simulation experiments on ns-2 to compare the perfor-
mance of QBUA to ACUA, CUA and HUA in terms of Accrued Utility Ratio
(AUR) and Termination-time Meet Ratio (TMR). We define AUR as the ratio
of the accrued utility (the sum of Ui for all completed threads) to the utility
available (the sum of Ui for all available jobs) and TMR as the ratio of the num-
ber of threads that meet their termination time to the total number of threads
in the system. We considered threads with three segments. Each thread starts
at its origin node with its first segment. The second segment is a result of a re-
mote invocation to some node in the system, and the third segment occurs when
the thread returns to its origin node to complete its execution. The periods of
these threads are fixed, and we vary their execution times to obtain a range
of utilization ranging from 0 to 200%. For fair comparison, all algorithms were
simulated using a synchronous system model, where communication delay var-
ied according to an exponential distribution with mean and standard deviation
0.02 seconds but could not exceed an upper bound of 0.5 seconds. Our system
consisted of fifty client nodes and five servers. In our experiments, the utilization
of the system is considered the maximum utilization experienced by any node.

QBUA is a collaborative scheduling algorithm, as such, its strength lies in its
ability to give priority to threads that will result in the most system-wide accrued
utility even if the sections of those threads do not maximize local utility on the
nodes they are hosted. The thread set that highlights this property contains
threads that would be given low priority if local scheduling is performed but
should be assigned high priority due to the system-wide utility they accrue.
Therefore, we chose a thread set that contains high utility threads that have
one section with above average execution time (resulting in low PUD for that
section) and other sections with below average execution times (resulting in high
PUD for those sections). Such thread sets test the ability of the algorithm to take
advantage of collaboration to avoid making locally optimal decisions that would

Fast Scheduling of Distributable Real-Time Threads 223

compromise global optimality. We also conducted experiments under a broad
range of thread sets. Those results are omitted here due to space constraints;
they can be found in [7] and they all exhibit the same trend.

As Figures 1 and 2 show, the performance of QBUA during underloads, in
the absence of failure, is similar to that of other algorithms. However, during
overloads, QBUA begins to outperform other algorithms due to its better best
effort property. During overloads, QBUA accrues, on average, 17% more utility
that CUA, 14% more utility than HUA and 8% more utility than ACUA. The
maximum difference between the performance of QBUA and other algorithms in
our experiment was the 22% difference between ABUA’s and CUA’s AUR at the
1.88 system load point. Throughout our experiment, the performance of ACUA
was the closest to QBUA with the difference in performance between these two
algorithms getting more pronounced as system load increases (the largest differ-
ence in performance is 11.7% and occurs at about 2.0 system load). The reason
for this is that QBUA has a similar best-effort property to ACUA (see Theo-
rem 8). In addition, the difference between these two algorithms becomes more
pronounced as system load increases because the scheduling overhead becomes
more apparent at high system loads, allowing QBUA, with its lower overhead,
to scale better with system load. Also, QBUA does not accrue 100% utility dur-
ing all cases of underload; as the load approaches 1.0 some deadlines are missed
because the overhead of QBUA becomes more significant at this point. This is
also true for other collaborative scheduling algorithms such as CUA and ACUA,
and, to a lesser extent, for non-collaborative scheduling algorithms such as HUA.

Figures 3 and 4 show the effect of failures on QBUA. In these experiments we
programmatically fail fmax = 0.2N nodes — i.e., we fail 20% of the client nodes.
From Figure 3, we see that failures do not degrade the performance of QBUA
compared to other scheduling algorithms — i.e., the relationship between the
utility accrued by QBUA to the utility accrued by other scheduling algorithms
remains relatively the same in the presence of failures. However, QBUA accrues,
on average, 18.5% more utility than CUA, 13.6% more utility than HUA and
9.9% more utility than ACUA. Both ACUA and CUA suffer a further loss in
performance relative to QBUA in the presence of failures because their time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

A
U

R

Utilization

AUR vs Utilization

QBUA
HUA
CUA

ACUA

Fig. 1. AUR vs. Utilization (no failures)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

D
S

R

Utilization

DSR vs Utilization

QBUA
HUA
CUA

ACUA

Fig. 2. TMR vs. Utilization (no failures)

224 S.F. Fahmy, B. Ravindran, and E.D. Jensen

complexity is a function of the number of node failures, therefore they have
higher overheads in the presence of failures. In Figure 4 we compare the behavior
of QBUA in the presence of failure to its behavior in the absence of failure.

As can be seen, QBUA’s performance suffers a degradation in the presence of
failures. This degradation is most pronounced during underloads, and becomes
less pronounced as the system load is increased. This occurs because, during
underloads all threads are feasible and therefore the failure of a node deprives
the system of the utility of all the threads that have a section hosted on that
node. However, during overloads, not all sections hosted by a node are feasible,
thus the failure of that node only deprives the system of the utility of the feasible
threads that have a section hosted by that node. Thus the loss of utility during
overloads is less than during underloads.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

A
U

R

Utilization

AUR vs Utilization

QBUA
HUA
CUA

ACUA

Fig. 3. AUR vs. Utilization (failures)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

A
U

R

Utilization

Effect of Failures on QBUA

No Failures
Failures

Fig. 4. Effect of failures on QBUA

7 Conclusions

We presented a collaborative scheduling algorithm for distributed real-time sys-
tems, QBUA. We showed that QBUA has better best-effort properties and mes-
sage and time complexities than previous distributed scheduling algorithms. We
validated our theoretical results using ns-2 simulations. The experiments show
that QBUA outperforms other algorithms most during overloads in the presence
of failure, due to its better best-effort property and its failure invariant overhead.

References

1. Cares, J.R.: Distributed Networked Operations: The Foundations of Network Cen-
tric Warfare. iUniverse, Inc. (2006)

2. Clark, R., Jensen, E., Reynolds, F.: An architectural overview of the alpha real-
time distributed kernel. In: 1993 Winter USENIX Conf., pp. 127–146 (1993)

3. Fahmy, S.F., Ravindran, B., Jensen, E.D.: Scheduling distributable real-time
threads in the presence of crash failures and message losses. In: ACM SAC, Track
on Real-Time Systems (to appear, 2008),
http://www.real-time.ece.vt.edu/sac08.pdf

http://www.real-time.ece.vt.edu/sac08.pdf

Fast Scheduling of Distributable Real-Time Threads 225

4. Aguilera, M.K., Lann, G.L., Toueg, S.: On the impact of fast failure detectors on
real-time fault-tolerant systems. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508,
pp. 354–370. Springer, Heidelberg (2002)

5. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of failure detectors.
IEEE Transactions on Computers 51(1), 13–32 (2002)

6. Hermant, J.F., Lann, G.L.: Fast asynchronous uniform consensus in real-time dis-
tributed systems. IEEE Transactions on Computers 51(8), 931–944 (2002)

7. Fahmy, S.F., Ravindran, B., Jensen, E.D.: Fast scheduling of distributable real-
time threads with assured end-to-end timeliness. Technical report, Virginia Tech,
ECE Dept. (2007), http://www.real-time.ece.vt.edu/RST TR.pdf

8. Jensen, E., Locke, C., Tokuda, H.: A time driven scheduling model for real-time
operating systems. IEEE RTSS, 112–122 (1985)

9. Sterzbach, B.: GPS-based clock synchronization in a mobile, distributed real-time
system. Real-Time Syst. 12(1), 63–75 (1997)

10. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage
utility. In: HOTOS 2001, pp. 75–80 (2001)

11. Chen, W., Lin, S., Lian, Q., Zhang, Z.: Sigma: A fault-tolerant mutual exclusion
algorithm in dynamic distributed systems subject to process crashes and memory
losses. In: PRDC 2005, pp. 7–14. IEEE Computer Society, Washington, DC (2005)

12. Clark, R.K.: Scheduling Dependent Real-Time Activities. PhD thesis, CMU CMU-
CS-90-155 (1990)

http://www.real-time.ece.vt.edu/RST_TR.pdf

RCanalyser: A Flexible Framework for the Detection of
Data Races in Parallel Programs

Aoun Raza and Gunther Vogel

University of Stuttgart
Institute of Software Technology, Universitaetsstrasse 38

70569 Stuttgart, Germany
{raza,vogel}@informatik.uni-stuttgart.de

Abstract. Creating multiple threads for performance gain is not only common
for complex computations on supercomputers but also for ordinary application
programs. Multi-threaded/parallel programs have many advantages but also in-
troduce new types of errors that do not occur in purely sequential programs.
Race conditions are one important class of these special problems because the
effects of race conditions occur nondeterministically and range from incorrect re-
sults to unexpected program behaviour. This paper presents RCanalyser, a tool
for the detection of race conditions, which is based on a Must Locks analysis
using a flexible interface for the integration of different points-to analyses. As the
problem of detecting race conditions is NP-hard in the general case, the tool is
restricted to the detection of so-called data races [1]. The tool is able to analyse
C/C++programs that use thread APIs for the implementation and synchronization
of concurrent units. We applied the tool to a set of real programs, which use the
POSIX thread API, and present results and statistics.

1 Introduction

In parallel programs, different threads are created and often communicate with each
other. Different communication methods are available for these interactions, e.g., mes-
sage passing or shared memory. Furthermore, threads may need to claim other system
resources that are shared among them. As multiple threads try to access shared re-
sources, their actions must be protected through some synchronisation mechanism to
avoid interleaving. Absence of such a mechanism during these accesses can lead to
inconsistent states of shared resources, which can result in abnormal or unpredictable
program behavior. An important class of inter-process or inter-thread anomalies is race
conditions. A race condition occurs when different threads simultaneously perform read
and write access on shared data without prior synchronization. Such erroneous situa-
tions tend to be very difficult to detect or to recreate by test runs; they arise in real-life
execution as an inexplicable, sudden, and not re-creatable, sometimes disastrous mal-
function of the system. Debugging of parallel programs requires tools and mechanisms
that can discover such situations and assist programmers in locating the culprit source
code. Moreover, for parallel programs using shared resources, mechanisms are required
to determine when a race condition can manifest and, to provide further assistance in
locating it. Due to their critical effects on the deterministic behaviour of software, guide-
lines on thread programming have been devised to avoid data races [2]. However, this

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 226–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

RCanalyser: A Flexible Framework 227

can restrict a programmer’s benefits achievable through full use of the concurrency fea-
tures of a programming language.

Many research communities have investigated this issue and have proposed different
dynamic and static techniques to detect race conditions [3,4,5,6,7,8,9,10]. The available
race detection techniques exhibit different limitations depending on the nature of anal-
yses underneath, i.e., dynamic or static analyses. Some of them raise the degree of false
positives while others impose overhead in terms of time and space complexity [11].

This paper presents the tool RCanalyser, which performs flow- and context-sensitive
analyses of the program to find a Probable Lock for each shared variable. Further,
it provides the flexibility to combine different points-to analysis mechanisms while
present tools do not incorporate points-to analysis or cover only simple aspects. Our
mechanism performs detection of data races based on locks and shared variable analy-
sis. Shared variable discovery has a major effect on the accuracy of data race detection.
Therefore, unlike others [4,12], in our approach we first discover shared variables and
then investigate if they are consistently protected. For the safe detection of accesses to
shared variables and the execution of synchronization operations, knowledge about the
potential targets of pointers is essential. RCanalyser is a part of the Bauhaus [13] tool
suite and uses its interface for different points-to analysis techniques implemented in
the infrastructure which helps us to increase the precision for those programs which
heavily use pointers. This paper is structured as follows; section 2 discusses the related
work in this area. In section 3 we explain our definitions and terminology for the scope
of this paper. The design and implementation of RCanalyser is described in section 4.
Section 5 presents the evaluation of RCanalyser. Finally, section 6 concludes the paper
and discusses future trends.

2 Related Work

Since the detection of race conditions in parallel programs is notoriously difficult, a
large community has focused on this issue. In fact, it is quite difficult to detect such
problems by manually testing the programs. Additionally, most of the existing concur-
rent software systems are written in C. Therefore, the need of an efficient mechanism
for detecting parallel program anomalies is always present. As a consequence of dif-
ficulties involved in the race detection process, tools and mechanisms which provide
automatic detection are extremely valuable. Hence, there has been a substantial amount
of past work in building tools for analysis and detection of data races [3,4,5,6,7,8,9,10].
These tools are either based on the verification of access event ordering or they verify
a locking discipline for mutual exclusion [7]. This means, if there is no unordered ac-
cess to a shared variable such that at least one access is a write, the program is free
from race conflicts. Similarly, if the accesses to shared variables in a program obey
a locking discipline then the program is race free. In the traditional manner, the re-
search can be categorised as on-the-fly, ahead-of-time, and post-mortem techniques.
These techniques exhibit different strengths for race detection in programs. The ahead-
of-time approaches encompass those detection techniques that apply static analysis and
compile-time heuristics while on-the-fly approaches are dynamic in nature.

228 A. Raza and G. Vogel

In well-known techniques and tools RacerX, Locksmith and Chord are based on static
analysis, whereas Eraser uses dynamic analysis. RacerX [4] performs a flow-sensitive
inter-procedural analysis to extract lock-set information and uses it for race and dead-
lock detection. It detects multi-threaded parts of the program and shared accesses that
can be dangerous. However, RacerX assumes that code segments which are protected
through locks perform parallel accesses to shared variables which may not be true if
they are contained in threads which do not run in parallel. Eraser [5] employs a binary
code instrumentation approach for runtime race detection, which is further extended
for Java by [7] [6]. Chord [14] detects race conditions in Java programs by employ-
ing a combination of static analyses (reachability, aliasing, escape and lockset anal-
yses) for successive reduction of memory access pairs. Locksmith [12] assumes the
common approach that shared memory locations are consistently protected by a lock
(consistent correlation). It uses a constraint-based analysis that context-sensitively in-
fers the consistent correlation, and uses its outcome to check the proper guarding of
locations by locks. However, these tools have restrictions in terms of time and space
complexity. Some of them use very naive points-to information. Therefore, the need
for a scalable solution is always present considering the pervasive presence of complex
multi-threaded applications.

3 Terminology

Here we present the terminologies and definitions, which are used throughout this paper.

3.1 Threads

In sequential programs there is only one thread, which controls the execution of the pro-
gram in a defined order. However, a sequential execution on a multi-processor system
is unable to utilize the multiple processors in an efficient manner. Further, sequential
programs cannot support the response time characteristics required in complex sys-
tems. These problems are alleviated by parallel programs by creating multiple threads
of control. Unlike processes, threads share the same memory area and resources. Com-
munication among threads is achieved through shared program memory. In this paper
the term thread is used to refer to a POSIX thread, which is defined by the tuple

t = (id, attributes, start routine, data)

Each thread has a unique id, attributes (e.g., scope, state, stacksize, etc. or can be
NULL if default attributes are meant to be used), a procedure to start with and some
data that can be either a shared resource or specific to it.

Threads Execute in Parallel: Threads which are active at the same time may run
in parallel. On a single processor system threads execute concurrently (logical paral-
lelism), whereas on a multi-processor system they can truly run in parallel. Unless the
execution of threads depends on each other and is synchronised through some mech-
anism, this paper considers them to be running in parallel. Further, the execution of a
thread is parallel to other threads if its execution is not deterministic with respect to

RCanalyser: A Flexible Framework 229

those threads. If T represents the set of threads of a program and SynchOrder is a re-
lation of synchronization between threads ti and tj then the parallel relation is defined
as follows:

ti‖tj ⇔ ¬SynchOrder(ti, tj)

The parallel relation ‖ is symmetric, therefore if ti‖tj then also tj‖ti. As threads
are created dynamically we need a static representation for threads such that each static
thread corresponds to a set of dynamic threads. In RCanalyser we chose invocation
sites of thread-create functions for the representation of threads, as a call to a thread-
create API might be performed in a loop with the same start routine and create multiple
threads at runtime. There is no further distinction between the created threads and we
consider the static thread having multiple instances. If the invocation is guaranteed to
be performed only once in each execution of the program, the static thread is considered
to be a single thread.

The parallel relation is reflexive iff multiple instances of a (static) thread are present
in the program and might run in parallel.

3.2 Race Condition (RC)

A race condition can be formalised through different definitions, however for the scope
of this paper the following equation defines a race for a memory location m ∈ M as a
symmetric binary relation RC(m) ⊆ S(m)×S(m). Where S is the set of all statements
in a program source and S(m) contains all those statements s which access a shared
memory location m such that S(m) ⊆ S.

S(m) = {s | m ∈ DEF (s) ∪ USE(s)}

As in standard data-flow analysis, the sets DEF (s) and USE(s) contain memory
elements which are modified or read by the statement s ∈ S(m). The set of shared
memory locations M is defined in section 3.3. Race conditions relating to m ∈ M are
defined as

RC(m) = {(si, sj) | si ‖ sj ∧ m ∈ DEF (si) ∩ (DEF (sj) ∪ USE(sj))}

si ‖ sj represents the parallel relation between ststaments si, sj and is defined in
section 3.6.

3.3 Shared Accesses

Shared variables or memory locations (used interchangeably in this paper) are gen-
erally variables in parallel programs, which are accessed from more than one thread.
Therefore shared memory locations are potential targets of data races. A shared mem-
ory location can include stack, global and heap variables. We do not consider volatile
and atomic variables. Depending upon the requirements of the analysis compound ob-
jects and elements/components of these objects are distinguished. Additionally, a local
variable whose reference is passed to other threads through a pointer also belongs to
the category of shared memory locations. However, reference variables require special

230 A. Raza and G. Vogel

consideration because their accessibility to more than one thread does not necessarily
result in the same memory location during dereference. RCanalyser can perform two
different analyses for shared memory location for compound types and their elements:
it can either consider an access to a compound object’s element as an access to the
whole compound object or consider all elements as individual variables in a program.
Differentiation between elements of the compound object will decrease the number of
false positives. Furthermore, local static variables are also treated as global variables
because they remain preserved even after a call to the enclosing procedure has finished.
With this, the set of shared memory locations M is defined as:

M = {m | ∃si, sj ∈ S : ∃ti, tj ∈ T :
(si ∈ statements(ti) ∧ sj ∈ statements(tj)∧
(ti
= tj ∨ (ti = tj ∧ ti ∈ mult inst))) ∧ m ∈ Nonlocals∧
m ∈ (DEF (si) ∪ USE(si)) ∧ m ∈ (DEF (sj) ∪ USE(sj))}

In the above definition, T represents all threads of the program, statements(t) con-
tains all statements reachable by a thread t and multi inst indicates if multiple active
instances of a thread might exist at runtime. Nonlocals are global variables accessible
in all functions and procedures of a program but are not local to them. Further, they also
include those references which escape their definition scope.

int *arrptr;

int *copy (int *p, int size)
{
int *tmp;
tmp = malloc(size * sizeof(int));
for(int i=0; i<size; i++) tmp[i] = p[i];
return tmp;

}

int main() {
int a[5];
...
arrptr = copy(&a, 5);
...

}

For example in the above code snippet arrptr, the allocated heap object and the
array a are nonlocal objects.

Existing techniques [4,5] perform shared variable detection based on the underlying
assumption that accesses to shared variables almost always follow a lock acquisition.
By focusing on the lock variable relation, however, consideration of only such variables
as shared can lead to false negatives of data races, because shared variables may be
accessed without lock acquisition if a programmer assumes its access is safe without
acquiring a lock e.g., in interactive user input. Therefore, we discover shared variables

RCanalyser: A Flexible Framework 231

according to the above definitions and then detect if they need to be protected or not.
For details see section 4.3

3.4 Critical Section (CS)

A critical section is a part of the program that accesses shared resources and needs
to be executed atomically by threads, i.e., no other thread may enter a critical section
if a thread is currently executing it. Critical sections are necessary to avoid inconsis-
tent states of shared variables during successive operations. Critical sections implement
mutual exclusion mechanisms, which prevent other threads to access the shared data si-
multaneously. Critical sections can be implemented using synchronization instructions
such as semaphores, locks or synchronized objects. During execution a thread acquires
a lock and enters the critical section. Meanwhile, other threads who want to acquire the
lock before entering the critical region have to wait until the lock is released. On release
waiting threads attempt to obtain the lock and execute their critical code. RCanalyser
considers a section of the program protected by a lock as a critical section to be ex-
tended to the point where it finds a release statement for the lock. A critical section of
a thread t can be defined as a single-entry single-exit sequence of statements between
lock acquire and release statements in a thread t:

CS(l, t) = {sn |∃π = (s1, . . . , sn) :
∀si ∈ π : si ∈ statements(t)∧
s1 locks l∧
 ∃sx ∈ π : unlocks l}

This definition of a critical section does not differentiate between global locks and
locks which are kept as fields of dynamic data-structure. If RCanalyser does not find any
shared variables we argue that it is unnecessary to implement critical sections for mutual
exclusion because threads do not contain accesses to shared variables and resources.

3.5 Locks and Thread Synchronisation

Critical sections are protected by locks or other synchronisation mechanisms. However,
in the scope of this paper we consider locks as a mutual exclusion mechanism used
for the protection of the critical sections. The term lock is synonymously used for mu-
tex. Before entering into a critical section a thread must obtain the associated lock and
on exit it must release the lock to allow other threads to execute their critical section.
If the critical section contains more than one shared variable then all these variables
are protected using the lock associated with this critical section. This condition must
hold for all accesses to shared variables in critical sections in other threads, otherwise
inconsistent lock protection to shared variables could lead to race conditions during ac-
cesses among different threads. A thread can contain nested critical sections accessing
variables shared between different threads and protected through multiple locks. The
only constraint is that threads must hold a common lock before performing accesses
to shared variables, locks protecting critical sections may hold locks for the contained

232 A. Raza and G. Vogel

shared variables. All locks definitely held at a statement s in a thread t without consid-
ering path conditions can be defined as the set of Must Locks

Must Locks(s, t) = {l |l ∈ Locks∧
∀π = (t.entry, . . . , s) : l is held at s}

In the above definition Must Locks contains all locks held by a thread before exe-
cuting a statement s. We define a function LockCount(m, l) to compute the number of
statements which hold the lock l and access the shared variable m.

Lock Count(m, l) = |{s ∈ S(m) | l ∈ Must Locks(s, t)}|

The Lock Count(m, l) serves two purposes, first we use it to compute a single lock
i.e., Probable Lock(m) which must be obtained before an access to the shared variable
m in a safe program. The computed lock has the highest acquisition number for shared
variable m. Second, if two locks have the same acquisition number for a shared variable
then both locks become plausible and are considered in Probable Lock(m). However,
during race detection accesses to the shared variable are considered unprotected due to
inconsistent locking and both locks are reported to the user to decide the appropriate
lock.

Probable Lock(m) ={l ∈ Locks |
∀l′ ∈ Locks : l
= l′ ∧ Lock Count(m, l) ≥ Lock Count(m, l′)}

3.6 Statements Exceuting in Parallel

The statements of two threads which run in parallel potentially participate in a race
condition if they are not synchronised. However, if two threads run in parallel not all of
their statements necessarily run in parallel. Statements accessing a shared resource can
only happen in parallel if they are not synchronised through common locks, however,
this does not represent their execution order i.e., a statement will happen before the
other.

si‖sj ⇔ ∃ti, tj ∈ T : si ∈ statements(ti) ∧ sj ∈ statements(tj)∧
ti‖tj∧
 ∃l ∈ Locks : si ∈ CS(l, ti) ∧ sj ∈ CS(l, tj)

Simultaneously reachable statements participate in a data race, therefore, statements
in critical sections of two different threads with the same lock cannot execute concur-
rently. Additionally, statements cannot execute in parallel or perform parallel accesses,
if there is a prior access to the must lock associated with shared variables.

4 Design and Implementation

The static recognition of race conditions in parallel programs is not a simple problem.
Therefore many tools and mechanisms analyse the synchronisation structure of input

RCanalyser: A Flexible Framework 233

programs and perform unsafe approximations to detect the absence of necessary syn-
chronisation [4]. RCanalyser assumes that a shared variable is consistently protected
by a single lock. Hence, if different locks protect a shared variable then the lock with
a higher acquisition count will be considered. RCanalyser has been designed and im-
plemented in six different stages as illustrated in figure 1. In the following sections we
discuss them in detail.

May and Must Lock

Thread Analysis

Analysis

Analysis

Compiler
Frontend

Pointer
Analysis

Control−Flow
Analysis

Lock and Shared Memory
Detection of Data Races

Prioritisation of Errors

Backtracking

Bauhaus Infrastructure

Fig. 1. The components of RCanalyser

4.1 Bauhaus Infrastructure

RCanalyser has been implemented on top of the Bauhaus infrastructure [13]. Bauhaus
provides a base for implementing different high and low-level static program analyses.
For our implementation we have used different Bauhaus features, e.g., an annotated
abstract syntax graph (IML) for the full source program generated through language
frontend and a local control-flow analysis to obtain intra-procedural control-flow graphs
for all subprograms. The generic pointer analysis interface of Bauhaus provides us with
different classical points-to analyses, e.g, Steensgaard [15], Das [16], and Andersen
[17], which approximate the effects of pointers and determine the targets of indirect or
dispatching calls.

4.2 Escape Analysis

If a majority of locks and shared variables are accessed via pointer dereferences in an
analysed program, then the precision of the analysis depends directly on the quality of

234 A. Raza and G. Vogel

the pointer analysis. By inaccuracies of the points-to analysis, the degree of false posi-
tives will be high, since apparent accesses to shared variables will be noted through the
analysis, which will not occur during execution of the program. Therefore, to mitigate
the imprecise effect of points-to analyses, RCanalyser provides the flexibility to use
different points-to analyses to achieve different levels of precision. Further, RCanal-
yser performs a thread specific escape analysis to improve the quality of error reports.
RCanalyser checks if a local variable’s reference is ever assigned to a pointer during
execution and marks such locals as escaped references. If a reference never escapes its
scope a race condition on such variable is considered spurious and ignored, because
a flow- and context-insensitive points-to analysis result for a pointer can nevertheless
contain this variable’s reference.

4.3 Lock and Shared Variable Analyses

Shared variable analysis detects all variables which are accessed (read, write) in at least
two threads. Therefore, all accesses to global and reference variables are computed on
a per-thread basis. If a global variable is read or written in a statement by a thread it is
immediately marked as a shared access. An access to a reference variable is registered
as an access to all global or local variables to which it possibly refers. However, if a
local variable’s address is never assigned to a reference variable it cannot contribute in
a data race and accesses to it are simply ignored. Shared variable analysis determines
read and write accesses on a variable and stores this information for each thread in the
program. Later this information is used to determine conflicts between threads.

The lock analysis is one of the most important parts of RCanalyser. RCanalyser per-
forms a flow- and context-sensitive lock analysis as defined in [4]. The task of this
analysis is to compute Must Locks for each statement. It is important to note that it
is not determined which lock in the program is always set for a statement, but all the
acquired locks are computed. This benefits the analysis by providing the information
if a lock is obtained on all paths in the program. However, due to flow- and context-
sensitivity its runtime complexity can increase exponentially. The analysis is performed
in a depth first search order. To determine all possible locks RCanalyser computes which
locks are acquired before a procedure call and visits the control-flow-graph of the pro-
cedure to determine which locks are acquired and released during the procedure call.
This result is propagated back to the call site and Must Locks information is updated
along the analysed path. If a procedure call contains more than one possibility to exit,
then information propagated to the call site can contain different locks or locksets of
Must Locks. Further analysis then has to compute Must Locks within the context of
each lock or lockset. The resulting Must Locks of this procedure is saved in a cache
to avoid a re-computation, in case the procedure is called again with the same locks.
In the same manner Must Locks information for statements is computed and saved in
the cache.

4.4 Thread Analysis

Thread analysis computes which threads in the program can run in parallel. RCanalyser
considers threads in parallel with other threads if their start and end is in the range

RCanalyser: A Flexible Framework 235

of the other thread’s execution span. To determine the execution span of threads, a
global logical clock is defined in such a way that it is incremented each time a thread
starts or gets joined by other threads independent from its runtime execution behavior.
Execution span is calculated flow sensitively in topological ordering from the value of
the global clock at a thread’s creation call to its corresponding join call. Therefore, the
termination of a thread in relation to other threads is defined by the clock count value
when its join call is found. After execution spans are computed for all threads, a run
in parallel relation between threads is computed for each thread. All threads which are
alive during the execution span of a specific thread are considered to potentially run in
parallel. Due to the symmetric nature of the run in parallel relation, the computation
complexity is reducible.

4.5 Variable Lock Relation

The next step in RCanalyser is to determine Must Locks for each shared variable as
defined in section 3.5. For each shared variable we count the number of statements
which access the shared variable and hold a specific lock l. The lock with the highest
number of statements is considered as must lock for the shared variable. If the number
of statements and lock acquisition count is equal then shared variables are consistently
protected. If a statement appears in two critical sections protected through different
locks which include accesses to a shared variable such that one critical section is nested
in a thread and the other is not then there will be no data race on this variable if a
common lock is held by both threads. This common lock will be considered as a must
lock for this variable.

4.6 Detection of Data Races

Having computed the information about threads, shared variables and must locks, a
potential data race can be determined by using the equation defined in section 3.2.
If RCanalyser does not find a required lock for a shared variable v which is held at
all parallel statements accessing v, we consider accesses to this variable as data races.
However, read accesses are not considered as a data race, at least one single write access
on a shared variable is necessary for a data race. It is possible that a thread makes a
procedure call after obtaining a lock and another thread without acquiring a lock calls it
and itself holds the lock for a shared variable, such a case will not fall in the category of
race condition. Because a common lock is always held before the access is performed.
Furthermore, accesses on a shared variable with different locks held in different threads
will also indicate a race condition.

4.7 Prioritization and Backtraces

RCanalyser computes a prioritisation between detected data races depending upon the
type of the shared variables and the threads’ run in parallel information. The criterion
followed for prioritisation based on severity and probability are

236 A. Raza and G. Vogel

Prioritization: Severe Errors

– If a global variable is involved in a data race it has a high priority.
– The priority of a data race in a thread where must lock for a variable is not acquired

is high as compared to the thread which acquires a lock for a shared variable but
run in parallel with this thread.

Prioritization: Probable Errors

– If the involved variable is accessed in a loop the priority is high.
– For reference variables with many possible destinations the priority is low.
– If the accessed object is of a compound type, i.e., a structure or an array, the priority

is low because the exact location index of the accessed element may be imprecisely
calculated.

– When two threads who cannot possibly run in parallel access a shared variable
without acquiring a common lock the priority of data race is also low.

The error reports can be viewed using RCanalyser interactive shell in the order of
their priority. Backtraces report the path along which a data race can occur. If the path
contains conditional statements the trace report represents which branch is considered.

5 Experimental Results and Evaluation

RCanalyser delivers results to our expectations, i.e., all locks are computed, and shared
variables are recognised. It computes the parallel threads and must locks for each vari-
able and partially excludes the variable initializations from data races, and successfully
prioritizes the errors, depending upon their nature. Nevertheless, due to the conservative
nature of analyses implemented by RCanalyser it can also report false positives. It can
report a data race on a compound object accessed through a pointer even if different
elements are involved during accesses. However, this can be mitigated by enabling the
field sensitive points-to analysis for program variables. Similarly, it is undecideable to
distinguish between different elements of an array object. An access to an array element
is considered as an access to the complete array. RCanalyser performs a context- and
flow-sensitive lock analysis. Therefore, the tool handles function calls precisely and it
does not consider infeasible paths due to invocations of functions. Nevertheless, infea-
sible paths might be considered in local contexts because the tool does not evaluate
conditions and always considers all paths after a branch.

Currently RCanalyser can be configured to detect races in POSIX/Apache Runtime
Environment based multi-threaded C programs. The experimental results of our test
suite downloaded from sourceforge.net are listed below. We have used Das analysis to
compute points-to information for these programs. The result clearly shows the effective
discovery of shared variables and number of threads in each program (columns Sh Vars
and Threads). The results also illustrate that RCanalyser is scalable and can be applied
to benchmarks with up to 6.1 kloc (same as Locksmith [12] tool.)

The column Warnings shows the number of locations where a race condition might
manifest. The reported numbers are higher as compared to others [12], because, after lo-
cating the first unprotected access to a shared variable we record all following locations

RCanalyser: A Flexible Framework 237

Benchmark KLOC Threads Sh Vars Warnings Unguarded Real Races

aget-0.4 1.6 4 13 49 47 11
smtprc-2.0.3 6.1 3 10 200 180 7
ctrace-1.2 1.8 3 14 53 50 6
tplay-0.6.1 3.9 3 5 47 46 2

Fig. 2. Test Results

as well. The figures in column Unguarded describe program statements performing
access to a shared variable without lock acquisition. These figures do not contain the
locations where a lock has been held before access to a shared variable. It might be
possible that these warnings are only about some shared variables which are targets of a
data race. Real races presents the number of data races found after a careful inspection
of unguarded program locations.

5.1 Discussion of Results

Due to the conservative nature of the static analyses in RCanalyser, it will safely find
all potential race conditions in a program. But it may also report false positives which
come from over-approximations done in the base analyses and RCanalyser itself.

In Figure 2 we can see that the differences of the number of Warnings and the num-
ber of Real races are still high. A detailled inspection lets us conclude that many of
the reported false positives are manifestations of the features not yet present in our
implementation.

A great deal of inaccuracy has its cause in an inadequate handling of (conceptual)
reference parameters in our base analyses. The context- and flow-insensitive pointer
analyses which are currently used in Bauhaus merge the targets of a reference param-
eter for multiple invocations of a subprogram. Therefore RCanalyser currently does
not distinguish between different invocation contexts. The usage of a context-sensitive
pointer analysis would bring a great benefit and is planned as a future work.

Another reason for false positives was the lack of path conditions in RCanalyser. The
analysis currently considers all branches in the control flow of a program as equally
feasible. A first step towards an improvement is the integration of a copy propagation
analysis which lets us detect if a condition is always true or false. This helps us to
remove dead code which can not contribute to a race condition. We expect another im-
provement from the implementation of a same-value analysis which determines if the
values of different conditions are definitely the same. With that we are able to exclude
infeasible paths as a reason for race conditions. A same-value analysis for thread vari-
ables will also mitigate the decision process of which thread gets joined or canceled at
a given point, because thread identifier are integers and may get another value during
program execution.

6 Conclusion and Future Work

Obtaining information about which threads run in parallel has significant applications in
the detection of anomalies such as race conditions and deadlocks. Further, C-programs

238 A. Raza and G. Vogel

make intensive use of pointers, which make it difficult to find data races in parallel
threads. Algorithms which can compute this information effectively and precisely are
of great value. Previous approaches analyse programs without significant consideration
of points-to information. We developed RCanalyser, a tool for the conservative detec-
tion of data races in multi-thread/parallel programs using Must Locks analysis with
flexibility to incorporate different points-to analysis mechanisms. The framework can
handle multi-threaded programs of practical nature. The results have shown that due to
the conservativeness of our technique and unavailability of a flow- and context-sensitive
points-to analysis, it can produce false positives. However, RCanalyser can handle all
types of pointer used in C programs. In the future, we plan to improve our mechanisms
to correctly identify the accessed components of compound data types and thread es-
cape analysis to optimize the precision and reduce the number of false positives. Ad-
ditionally, we would like to implement a data-flow analysis for parallel programs in
our framework to detect updates which may change thread identifiers. A further goal
is to make RCanalyser more scalable to handle larger program code up 50-100K and
incorporate the most used synchronization techniques e.g., condition variables, signal
wait etc.

Acknowledgement

We would like to thank our colleagues at ISTE/PS department at university of Stuttgart
and reviewers for their insightful comments on this paper.

References

1. Netzer, R.H.B., Miller, B.P.: What are race conditions?: Some issues and formalizations.
ACM Letters on Programming Languages and Systems 1, 74–88 (1992)

2. Sun Microsystems, Inc.: Multithreaded Programming Guide (2002), http://docs.sun.
com/app/docs/doc/806-6867/

3. Sterling, N.: WARLOCK - A Static Data Race Analysis Tool. In: USENIX Winter Technical
Conference, pp. 97–106 (1993)

4. Engler, D., Ashcraft, K.: RacerX: Effective, Static Detection of Race Conditions and Dead-
locks. In: Proceedings of the 19th ACM Symposium on Operating Systems Principles, pp.
237–252. ACM Press, New York (2003)

5. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A Dynamic Data
Race Detector for Multi-Threaded Programs. In: Proceedings of the 16th ACM Symposium
on Operating Systems Principles, pp. 27–37. ACM Press, New York (1997)

6. Choi, J.D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridharan, M.: Efficient and
Precise Datarace Detection for Multithreaded Object-Oriented Programs. In: Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 258–269. ACM Press, New York (2002)

7. von Praun, C., Gross, T.R.: Object Race Detection. In: Proceedings of the 16th ACM SIG-
PLAN Conference on Object Oriented Programming, Systems, Languages, and Applications,
pp. 70–82. ACM Press, New York (2001)

8. Naumovich, G., Avrunin, G.S.: A Conservative Data Flow Algorithm for Detecting All Pairs
of Statements that May Happen in Parallel. In: Proceedings of the 6th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, pp. 24–34 (1998)

http://docs.sun.com/app/docs/doc/806-6867/
http://docs.sun.com/app/docs/doc/806-6867/

RCanalyser: A Flexible Framework 239

9. Masticola, S.P., Ryder, B.G.: Non-concurrency Analysis. In: Proceedings of the fourth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 129–138
(1993)

10. Burgstaller, B., Blieberger, J., Mittermayr, R.: Static Detection of Access Anomalies in
Ada95. In: Pinho, L.M., González Harbour, M. (eds.) Ada-Europe 2006. LNCS, vol. 4006,
pp. 40–55. Springer, Heidelberg (2006)

11. Raza, A.: A Review of Race Detection Mechanisms. In: Grigoriev, D., Harrison, J., Hirsch,
E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 534–543. Springer, Heidelberg (2006)

12. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: Context-Sensitive Correlation Analysis
for Race Detection. In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 320–331. ACM Press, New York (2006)

13. Raza, A., Vogel, G., Ploedereder, E.: Bauhaus – A Tool Suite for Program Analysis and Re-
verse Engineering. In: Pinho, L.M., González Harbour, M. (eds.) Ada-Europe 2006. LNCS,
vol. 4006, pp. 71–82. Springer, Heidelberg (2006)

14. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 308–319. ACM Press, New York (2006)

15. Steensgaard, B.: Points-to Analysis in Almost Linear Time. In: Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 32–41. ACM
Press, New York (1996)

16. Das, M.: Unification-based Pointer Analysis with Directional Assignments. In: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 35–46 (2000)

17. Andersen, L.O.: Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen (1994)

Can We Increase the Usability of Real Time

Scheduling Theory?
The Cheddar Project

Frank Singhoff1, Alain Plantec1, and Pierre Dissaux2

1 LISyC/University of Brest, 20, av Le Gorgeu, 29238 Brest Cedex 3, France
2 Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France

{singhoff,plantec}@univ-brest.fr, pierre.dissaux@ellidiss.com

Abstract. The Cheddar project deals with real time scheduling theory.
Many industrial projects do not perform performance analysis with real
time scheduling theory even if the demand for the use of this theory is
large. The Cheddar project investigates why real time scheduling theory
is not used and how its usability can be increased. The Cheddar project
was launched at the University of Brest in 2002. This article presents a
summary of its contributions and ongoing works.

1 Introduction

Real time scheduling theory provides algebraic methods and algorithms in or-
der to predict the temporal behavior of real time systems. The foundations of
real time scheduling theory were proposed in 1970 [1] and it leads to exten-
sive researchs. Since 1990, it makes it possible the analysis of systems composed
of periodic tasks sharing resources and running on a single processor [2]. Nu-
merous operating systems provide features allowing the implementation of such
applications. Some standards and compilers also provide tools to enforce that
an application meets real time scheduling theory assumptions. The Ravenscar
profile defined in the Ada 2005 standard allows this assumption checking [3].

Real time scheduling theory was successfully used in many projects [4]. Nev-
ertheless, many practical cases also do not perform analysis with such a method
even if our experience shows that the demand for the use of this analysis method
is large.

Several reasons can explain why real time scheduling analysis is not applied
as much as it could be. Of course, there exists some architectures on which
real time scheduling analysis is difficult. For example, few analytical methods
were proposed for the analysis of distributed systems [5]. Sometimes, there is no
analytical method for architectures made of complex schedulers or task models.
In these cases, a real time scheduling toolset should at least provide means to
model the system and to run simulations.

Furthermore, we believe that this theory is not so easy to understand and to
be applied for many engineers. Many analytical methods and algorithms were
proposed during the last 30 years. Each analytical method allows to compute

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 240–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Can We Increase the Usability of Real Time Scheduling Theory? 241

different performance criteria. Each criterion requires that a set of assumptions
must be meet by the investigated system. Then, it may be difficult for a designer
to choose the relevant analytical method. Unfortunately, there is currently few
supports by design languages and CASE tools which can help him to automati-
cally apply real time scheduling theory.

This article presents three possible ways investigated by the Cheddar project
in order to increase the usability of real time scheduling theory. Section 2 presents
a set of tools which aims at helping the designer to automatically apply real time
scheduling theory on an architecture model. Section 3 depicts how the use of an
architecture design language can help the designer to apply real time scheduling
theory. Section 4 presents a domain specific language and a set of tools that
the designer can use when no analytical method can be applied in order to
investigate performances of a specific architecture. Finally, section 5 is devoted
to a conclusion and presents Cheddar project ongoing works.

2 Increasing the Usability of Real Time Scheduling
Theory: Easing Analysis with Flexible Tools

Real time scheduling theory provides scheduling algorithms and algebraic meth-
ods usually called feasibility tests which help the system designer to analyze the
timing behaviour of his architecture. With the Liu and Layland real time task
model [1], each task periodically performs a treatment. This ”periodic” task is
defined by three parameters: its deadline (Di), its period (Pi) and its capacity
(Ci). Pi is a fixed delay between two release times of the task i. Each time the
task i is released, it has to do a job whose execution time is bounded by Ci units
of time. This job has to be ended before Di units of time after the task wake
up time. From this task model, some feasibility tests can provide a proof that
an architecture will meet its periodic task performance requirements. Scheduling
algorithms allow the designer to compute scheduling simulations of the archi-
tecture to analyze. Usually, simulations can not lead to a proof. However with
deterministic schedulers and periodic tasks, scheduling simulation may lead to a
schedulability proof if the designer is able to compute the scheduling during the
base period [6]. Different kinds of feasibility tests exist such as tests based on
processor utilization factor or tests based on worst case task response time. The
worst case response time feasibility test consists in comparing the worst case
response time of each task with their deadline. Joseph, Pandia, Audsley et al.
[7] have proposed a way to compute the worst case response time of a task with
pre-emptive fixed priority scheduler by:

ri = Ci +
∑

∀j∈hp(i)

⌈
ri

Pj

⌉
Cj (1)

Where ri is the worst case response time of the task i and hp(i) is the set of
tasks which have a higher priority level than i. This feasibility test must be
extended to take into account task waiting time on shared resources, jitter on

242 F. Singhoff, A. Plantec, and P. Dissaux

task release time or task precedency relationships. To apply a feasibility test,
the designer must check that his design and his executive fulfill all the feasibility
test assumptions. As an example, with the feasibility test of the equation (1),
Di must be less or equal than Pi and all tasks must have the same first release
time. Then, for a designer who has not a deep knowledge of real time scheduling
theory, verifying an architecture with feasibility tests becomes a difficult task
because, for each part of the architecture to verify, he must (see figure 1):

1. Choose the performance criterion he would like to check.
2. Find the right model for each entity of his architecture. For example, should

he model a function of his architecture as a set of periodic tasks or as a set of
sporadic tasks ? The designer must select the right abstraction level which
decreases the model complexity but which takes into account properties re-
quired for analysis.

3. Select a feasibility test which is able to compute the criterion chosen in (1)
and which is compliant with the models chosen in (2). For such a purpose, he
must check that his model is compliant with the feasibility test assumptions.

Fig. 1. From the modelling to the analysis

But of course, in many cases, this work can be quite simple since the studied
architecture is simple too. A real time scheduling analysis toolset should actually
provide several using levels. Several real time scheduling tools exist such as
MAST [8], Rapid-RMA [9] or Cheddar. Cheddar is a toolset composed of an
editor and of a framework. The designer can specify his architecture model with
the Cheddar editor. However, it is expected that designers perform modelling
with dedicated CASE tools. The Cheddar framework consists in a set of Ada
packages which includes most current feasibility tests and most of the classical
real time scheduling algorithms. This framework also offers a domain specific
language together with an interpreter and a compiler, for the design and the
analysis of schedulers which are not already implemented into the framework.

Can We Increase the Usability of Real Time Scheduling Theory? 243

Cheddar offers different using levels depending on the architecture to analyze,
on the CASE tool Cheddar is supposed to work with or on the knowledge of the
designer. Typical use cases are:

– Just load an architecture model into the Cheddar editor and simply push a
button to perform its analysis. In this case, Cheddar chooses the feasibility
test, checks if the feasibility test assumptions are met and displays the result.
It is assumed that the designer makes use of a design pattern handled by
Cheddar. For example, the designer can model his architecture with the
Ravenscar design pattern. Ravenscar is a part of the Ada 2005 standard
[3]. It is a set of Ada program restrictions usually enforced at compilation
time, which guaranties that the software architecture is real time scheduling
theory compliant. Ravenscar is an Ada subset from which one can write
applications composed of a set of tasks and shared data. Ravenscar assumes
that tasks are scheduled with a fixed priority scheduler and that shared data
are accessed with ICPP. This first way to use Cheddar is also the best suited
for students who have to understand real time scheduling foundations.

– A second way is to let the designer choose which performance criteria to
compute. The designer must handle the Cheddar editor menus to customized
which criteria the Cheddar framework has to compute. In this case, feasibility
test assumptions are always automatically checked by Cheddar.

– Third, if the scheduling algorithms or the feasibility tests implemented into
Cheddar can not be applied, then the designer must extend the Cheddar
framework. Two ways exist for such a purpose. The framework can be ex-
tended by the Cheddar domain specific language with the process explained
in section 4. Otherwise, the designer manually implements the performance
analysis tools. In this case, he must well understand the Cheddar framework
design.

There exists many other ways to use a toolset such as Cheddar. As an exam-
ple, Cheddar can be embedded into CASE tools such as Stood [10] or Ocarina
[11] in order to increase its usability. In this case, the designer does not use the
Cheddar editor anymore and the Cheddar framework is directly called by em-
bedding CASE tools. Cheddar exports analysis results as an XML data stream
which can be displayed back by the CASE tools. The next section presents how
an architecture language can be used to achieve CASE tool and analysis tool
interoperability.

3 Increasing the Usability of Real Time Scheduling
Theory: From the Engineering Process to the
Performance Analysis

A possible way to help the designer to apply real time scheduling theory, is to
embed such a knowledge into the engineering process with the help of design
languages and design patterns.

244 F. Singhoff, A. Plantec, and P. Dissaux

Panunzio and Vardanega have proposed a metamodel which permits the ex-
ecution of timing analysis [12]. An UML profile called MARTE which allows
such a timing analysis is also currently investigated by Frédéric et al. [13]. The
SAE Architecture Analysis and Design Language (AADL) is a textual and a
graphical language support for model-based engineering of embedded real time
systems. AADL has been approved and published as SAE Standard AS-5506
[14]. AADL is used to design and analyze software and hardware architecture
of embedded real-time systems. In the context of the Cheddar project, AADL
was chosen to investigate how real time scheduling theory can be automatically
applied. As Cheddar provides the most known real time scheduling feasibility
tests and scheduling algorithms, it was primilary used in order to check that the
first AADL standard can be actually analyzed with real time scheduling theory
tools. Then, we have investigated how memory footprint analysis can be con-
ducted with AADL [15] and finally, some design patterns expressed in AADL
were proposed in order to ease interoperability between AADL tools [10].

3.1 Investigating AADL Suitability for Real Time Scheduling
Theory

An AADL model is a set of hardware and software components such as data,
threads, processes (the software side of a specification), processors, devices and
busses (the hardware side of a specification). A data component may represent
a data structure in the program source. An AADL data component can be
implemented by an Ada tagged record. A thread is a sequential flow of control
that executes a program. An AADL thread can be implemented by an Ada task.
AADL threads can be released according to several policies: a thread may be
periodic, sporadic or aperiodic. An AADL process models an address space. An
AADL operational system instantiates a set of process components encompassing
thread and data components that are bound to an execution platform composed
of processor, memory and bus components. Properties can be defined for most
of AADL components. A property is defined by a name, a value and a type.
Information provided by component properties can be related to the component
behavior, its state, the way it will be implemented in Ada or anything else that
makes it possible to perform analysis.

Figure 2 shows an AADL specification. This specification contains a shared
resource (called R1) accessed by two threads (threads TH1 and TH2). The
threads and the shared resource are defined into one address space (process
proc0). The process proc0 is bound to a processor called cpu0.

The first release of the AADL standard provides component properties re-
quired in order to apply the simplest real time scheduling analysis methods.
Nevertheless, some properties were missing to apply several usual real time
scheduling theory analysis methods. AADL provides a way to extend the AADL
standard property sets. We have proposed a set of property extensions [16] to
model:

– Usual properties of real time schedulers (eg. quantum, preemptivity, POSIX
1003.1b policies).

Can We Increase the Usability of Real Time Scheduling Theory? 245

data shared resource type
end shared resource type;
data implementation shared resource type.Impl

properties
Concurrency Control Protocol => PRIORITY CEILING PROTOCOL;

end shared resource type.Impl;
thread task type

features
can access : requires data access shared resource type;

end task type;
thread implementation task type.Impl

properties
Dispatch Protocol => Periodic;
Period => 50;
Compute Execution time => 3 ms .. 3 ms;
Cheddar Properties::POSIX Scheduling Policy => SCHED FIFO;
Cheddar Properties::Fixed Priority => 5;
Cheddar Properties::Dispatch Jitter => 10;

end task type.Impl;
processor a cpu
end a cpu;
processor implementation a cpu.Impl

properties
Scheduling Protocol => RATE MONOTONIC;
Cheddar Properties::Scheduler Quantum => 1;
Cheddar Properties::Preemptive Scheduler => true;

end a cpu.Impl;
process a proc
end a proc;
process implementation a proc.Impl

subcomponents
TH1 : thread task type.Impl;
TH2 : thread task type.Impl;
R1 : data shared resource type.Impl;

connections
data access R1 − > TH1.can access;
data access R1 − > TH2.can access;

end a proc.Impl;
system a system
end a system;
system implementation a system.Impl

subcomponents
cpu0 : processor a cpu.Impl;
proc0 : process a proc.Impl;

properties
Actual Processor Binding => reference cpu0 applies to proc0;

end a system.Impl;

Fig. 2. Example of an AADL model

246 F. Singhoff, A. Plantec, and P. Dissaux

– Usual thread properties such as fixed priority, jitter, offset, shared resource
blocking time, ...

– Properties to define when shared resources are accessed by threads.
– And finally, the current AADL standard leading to some ambiguities, some

properties to express thread precedency relationships which can not be com-
puted from standard AADL connections.

Some of the lacks presented above will be fixed in the next AADL standard with
the Behavioral Annex [17] and with some of the Cheddar properties which will
be included in the standard AADL property set.

3.2 Memory Footprint Analysis with AADL

One of the most interesting part of an architecture design language as AADL,
is that it allows performance analysis on multiple resources. This is especially
mandatory with distributed real time systems which may be composed of several
processors, memory units and communication devices. The figure 3 shows a
distributed system composed of two processors exchanging messages througth
a TCP/IP socket. With such a system, performance analysis on processors and
memory units can not be performed independently:

Fig. 3. Part of a distributed system

– In one hand, if the periodic receiving/sending threads have a high priority
level, and then a short worst case response time, the required memory in the
socket to store messages may be low.

– In the other hand, when sending/receiving threads have a long worst case
response time, the memory requirement into the socket may be high if no
message have to be lost.

By defining all the parts of a system, AADL allows such an analysis. As an
example, in [18], Legrand et al. have proposed a set of feasibility tests based on
queueing system. These feasibility tests were adapted to AADL in [15]. It was
shown how to perform memory footprint analysis with AADL models containing
event data ports. Event data ports represent connection points for transfer of
messages that may be queued. For example, if both producers and consumers
are periodic AADL thread exchanging messages through an event data port, L,
the worst case number of messages in the event data port is equal to L = 2.n
if threads are harmonic, or L = 2.n + 1 otherwise. Where n is the number of
producers. As any feasibility test, this memory footprint feasibility test has to
meet several assumptions (eg. Kirchhoff’s law).

Can We Increase the Usability of Real Time Scheduling Theory? 247

3.3 About Interoperability between AADL Tools

Coupling of modelling and analysis tools requires that both ends strictly comply
with the same semantic definition of the exchanged model. This is particularly
important for real-time systems and software architectures. Such a guaranty can
be brought by a standard use of the AADL all along the tool-chain. In the sequel,
we show how AADL can be used as a pivot language between Cheddar and a
modelling tool called Stood.

Stood is a software design tool that provides an extended support for AADL
in addition to its compliancy with the HOOD methodology. Stood makes it
possible to manage a complete software project by building libraries of reusable
components, reversing legacy code and specifying the real time application as
well as its execution platform. Most of the modelling activities can be performed
graphically and the corresponding AADL code is automatically generated by the
tool.

To ease interoperability between Stood and Cheddar, in [10], we have
proposed a set of AADL design patterns which models usual real time
synchronization/threads-communication paradigms (eg. ARINC 653 [19]):

1. Synchronous data-flows design pattern: This first design pattern is
the simplest one. The data sharing is achieved by a clock synchronization
of the threads as Meta-H [14] proposed it. In this synchronization schema,
thread dispatch is not affected by the inter-thread communications that are
expressed by pure data-flows. Each thread reads its input data ports at
dispatch time and writes its output data ports at complete time. This design
pattern does not require the use of a shared data component. In this simple
case, the execution platform consists in one processor running a scheduler
such as Rate Monotonic [1].

2. Ravenscar design pattern: Main drawback of the previous pattern is its
lack of flexibility at run time. Each thread will always execute, read and
write data at pre-defined times, even if useless. In order to introduce more
flexibility, asynchronous inter-thread communications can be proposed. An
example of such a run-time environment is given by the Ravenscar profile. In
Ravenscar, threads access shared data components asynchronously according
to priority inheritance protocols.

3. Blackboard design pattern: Ravenscar allows a thread to allocate/release
several shared resources (eg. AADL data). Real time scheduling theory usu-
ally models such a shared resource as a semaphore, to represent, for example,
a critical section. In classical operating systems, there exists many synchro-
nization design patterns such as critical section, barrier, readers-writers, pri-
vate semaphore, and various producers-consummers. The blackboard design
pattern implements a readers-writers synchronization protocol. At a given
time, only one writer can get the access to the blackboard in order to up-
date the stored data, as opposed to the readers which are allowed to read
the data simultaneously. The usual implementation of this protocol implies
that readers and writers do not perform the same semaphore access, that
requires extra analysis.

248 F. Singhoff, A. Plantec, and P. Dissaux

4. Queued buffer design pattern: In the blackboard design pattern, at any
time, only the last written message is made available to the threads. Some
real time executives provide communication features which allow to store all
written messages in a memory unit. AADL also propose such a feature with
event data ports or shared data components.

For each pattern, an applicative test case was described under the form of an
AADL model which has been formatted in purpose to highlight some of the possi-
ble performance analysis that Cheddar is able to automatically compute (thread
worst case response time, bound on shared resource blocking time, memory foot-
print analysis, ...) [10].

4 Increasing the Usability of Real Time Scheduling
Theory: When No Feasibility Test Exists

Many practical cases can not be analyzed by real time scheduling theory feasi-
bility tests. Complex industrial real time architectures frequently make use of
specific task models or schedulers. In this case, no feasibility tests exists and
building new feasibility tests is a difficult and expensive work. Furthermore, in-
dustrial real time systems may be composed of a large number of entities (eg.
tasks, processors, memory units ...). These large scale systems can not be effi-
ciently analyzed with model-checking. The only way people can expect to verify
performances of such real time systems is to perform analysis with extensive
simulations.

Languages and models were proposed for such a purpose. CPN tools [20] pro-
vides simulation features based on Petri Net for example. Unfortunately, the use
of these general purpose simulation tools usually implies that the designer must
model real time scheduling low level abstractions such as task preemption. A
second way is to develop ad-hoc simulation programs, but this solution implies
a very low reusability of the simulation programs. The Cheddar framework pro-
poses a third way by the use of a domain specific language and a set of tools
(compiler, interpreter, code generator ...). This domain specific language allows
the designer to build models of his schedulers and tasks.

We also propose an engineering process from which the designer can test his
models and automatically generate a simulation program. This model driven
engineering process is implemented with Platypus [21].

4.1 A Language for the Modelling of Real Time Schedulers

Real time schedulers are composed of two different aspects:

1. Arithmetic and logical statements which allow to select a task amoung a set
of ready tasks or to compute task priorities.

2. Temporal constraints and synchronizations between entities (eg. tasks and
schedulers). These synchronizations describe how entities must work all to-
gether in order to share processors.

Can We Increase the Usability of Real Time Scheduling Theory? 249

The Cheddar language is then defined by two parts : 1) a subset of Ada for
the modelling of arithmetic and logical statements of the schedulers and 2) a
timed automaton language for the synchronizations modelling scheduler and task
relationships. A detailed description of this language is given into the Cheddar
users’s guide [22].

An Ada subset language. This part of the Cheddar language allows to express
the arithmetic and logical statements on simulation data. Simulation data are
associated to the entities composing the architecture to analyze (eg. task release
time, scheduler quantum, shared resource protocol, ...). This language allows
the designer to express sort rules as Earliest Deadline for example. A Cheddar
program is organized in sub-programs called sections. These sub-programs are
typed:

– Some sub-programs are devoted to data simulation declaration and initial-
ization. They are called start section.

– Some sub-programs allow to select a task amoung a set of ready tasks ac-
cording to simulation data (eg. priority). These sub-programs are called
election section.

– Finally, some sub-programs contain statements which have to be ran at each
unit of time before the task selection. They are called priority section.

The language defines usual operators and statements. Schedulers can be mod-
elled with loops, conditional tests or assignements. This domain specific language
also provides statements and operators that are specific to real time scheduling
theory. For example, the uniform/exponential statements customize the way
random values are generated during simulations. The lcm operator computes
last common multiplier of simulation data. The max to index operator looks for
the ready task which has the highest priority level.

The language is typed and provides usual types as integer, boolean or string.
Some types related to real time scheduling theory are also defined.

A timed automaton language. The second part of a Cheddar scheduler
model is a network of timed automata. A scheduler model can contain timed
automata similar to those proposed by UPPAAL [23,24]. UPPAAL is a toolbox
for the modelling and the verification of real time systems.

A network of timed automata models timing and synchronization between
schedulers and tasks. The Ada subset described above is enough to model sched-
ulers which have fixed synchronization relationships between tasks and sched-
ulers. By the past, we have shown that this language makes it possible the
modelling of simple schedulers like Earliest Deadline First, Rate Monotonic ou
Maximum Urgency First. However, some real time schedulers require the mod-
elling of complex synchronizations. This is the case of hierarchical schedulers.
An architecture based on hierarchical scheduling is an architecture in which sev-
eral entities work all together for the processor sharing. Hierarchical scheduling
has been initially proposed in the context of time sharing systems. In time shar-
ing systems, hierarchical schedulers were proposed in order to define user-level

250 F. Singhoff, A. Plantec, and P. Dissaux

scheduling policies (eg. fair process scheduling [25]). Today, hierarchical schedul-
ing also exists in several real time system standards such as ARINC 653, POSIX
1003 or Ada 2005 [26,3,19].

Every automaton may fire a transition separately or synchronize with an-
other automaton. Transitions may be guarded with time constraints. Delays can
express time consumption at transition firing. Finally, at transition firing, au-
tomata may run Ada subset sections in order to compute task priorities or to
choose the next task to run.

For further readings, a model of an ARINC 653 hierarchical scheduling mod-
elled with the Cheddar language is given in [27].

Fig. 4. A process to perform simulations from Cheddar scheduler models

4.2 Engineering Process of a Cheddar Scheduler Model: From the
Model to the Scheduling Simulation

Figure 4 depicts the process that a designer runs to perform scheduling simula-
tions with specific scheduler or task models:

1. With the Cheddar toolset the designer models a new scheduler. This model can
be directly interpreted using the Cheddar framework. This feature eases the
design step and allows the designer to perform small scheduling simulations.

2. When his scheduler has been tested, the designer can generate Ada packages
implementing his scheduler into the Cheddar framework. The Ada pack-
age generator is implemented within Platypus. Platypus [21] is a meta-
environment suitable for model driven engineering activities.

3. The generated Ada packages can be integrated into the Cheddar framework.
The Cheddar framework is then compiled in order to enrich it with this new
scheduler.

4. The designer can actually run large scale simulations with this new Cheddar
framework embedding his scheduler. The designer makes use of his scheduler
through this enriched Cheddar framework in the same way he will make
use of standard schedulers manually implemented into Cheddar (eg. Rate
Monotonic).

Can We Increase the Usability of Real Time Scheduling Theory? 251

5 Conclusion and Ongoing Works

This article presents three possible ways investigated by the Cheddar project in
order to increase the usability of real time scheduling theory. We have presented
a set of tools which help the designer to apply real time scheduling theory. This
toolset allows several levels of use and is able to perform analysis of models
written with design languages such as AADL. We also have presented a domain
specific language to investigate performances of architectures on which real time
scheduling theory does not propose analytical method.

At the time we are writing this article, it is difficult to state if Cheddar has
actually helped people to apply real time scheduling theory on practical cases.
The toolset has been used to build many real time scheduling courses. It has
been experimented in different research and development projects related to
avionic or robotic applications, with different design languages. Besides these
first encouraging results, the Cheddar project have raised several interesting
open research questions.

First, Ellidiss technologies will distribute Cheddar with its modelling tool
Stood. We expect to spread the use of real time scheduling theory on practition-
ers. For such a purpose, we have started to investigate how to apply Cheddar
to modelling design patterns that practitioners usually handle with Stood [10].
For this project, we have chosen AADL as a pivot language between Stood and
Cheddar.

Second, the Cheddar language we have defined to model schedulers was ex-
perienced in several projects. We know that this language is well suited for
this purpose. The language is based on an Ada subset, which allows static
analysis (eg. SPARK [28]) and on a timed automaton language which allows
dynamic analysis (eg. model-checking with UUPPAL). We plan to investigate
how Cheddar scheduler model analysis can help designers to compare their
models.

Finally, the complexity of real time systems has been growing quickly for these
15 last years. In the past, the only resource requiring deep and accurate analysis
was the processor. But now, many real time systems are distributed over several
processors and several resources have to be managed all together: processors,
communication networks and memory units. In the next months, we plan to
focus on memory footprint analysis with queueing system models.

Acknowledgments

Cheddar is an open-source toolset and many people have helped the Ched-
dar team. The Cheddar team would like to thank all contributors (see
http://beru.univ-brest.fr/~singhoff/cheddar/). Cheddar AADL analysis features
rely on Ocarina [11]. We also would like to thank the Ocarina’s Team (B. Zalila,
J. Hugues, L. Pautet and F. Kordon).

252 F. Singhoff, A. Plantec, and P. Dissaux

References

1. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environnment. Journal of the Association for Computing Machin-
ery 20(1), 46–61 (1973)

2. Sha, L., Rajkumar, R., Lehoczky, J.: Priority Inheritance Protocols: An Approach
to real-time Synchronization. IEEE Transactions on computers 39(9), 1175–1185
(1990)

3. Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E., Leroy, P.: Ada 2005
Reference Manual. Language and Standard Libraries. International Standard
ISO/IEC 8652/1995(E) with Technical Corrigendum 1 and Amendment 1. LNCS,
vol. 4348(XXII). Springer, Heidelberg (2006)

4. SEI: The Rate Monotonic Analysis. Technical report, In the Software Technology
Roadmap (2003), http://www.sei.cmu.edu/str/descriptions/rma body.html

5. Tindell, K.W., Clark, J.: Holistic schedulability analysis for distributed hard real-
time systems. Microprocessing and Microprogramming 40(2-3), 117–134 (1994)

6. Leung, J., Merril, M.: A note on preemptive scheduling of periodic real time tasks.
Information processing Letters 3(11), 115–118 (1980)

7. George, L., Rivierre, N., Spuri, M.: Preemptive and Non-Preemptive Real-time
Uni-processor Scheduling, INRIA Technical report number 2966 (1996)

8. Harbour, M.G., Garćıa, J.G., Gutiérrez, J.P., Moyano, J.D.: MAST: Modeling
and Analysis Suite for Real Time Applications. In: Proc. of the 13th Euromicro
Conference on Real-Time Systems, Delft, The Netherlands, pp. 125–134 (2001)

9. Tri-Pacific: Rapid-RMA : The Art of Modeling Real-Time Systems (2003),
http://www.tripac.com/html/prod-fact-rrm.html

10. Dissaux, P., Singhoff, F.: Stood and Cheddar: AADL as a Pivot Language for
Analysing Performances of Real Time Architectures. In: Proceedings of the Euro-
pean Real Time System conference, Toulouse, France (2008)

11. Hugues, J., Zalila, B., Pautet, L.: Rapid Prototyping of Distributed Real-Time Em-
bedded Systems Using the AADL and Ocarina. In: 18th IEEE/IFIP International
Workshop on Rapid System Prototyping (RSP 2007), Porto Allegre, Brazil (2007)

12. Panunzio, M., Vardanega, T.: A Metamodel-Driven Process Featuring Advanced
Model-Based Timing Analysis. In: Abdennahder, N., Kordon, F. (eds.) Ada-Europe
2007. LNCS, vol. 4498, pp. 128–141. Springer, Heidelberg (2007)

13. Frédéric, T., Gérard, S., Delatour, J.: Towards an UML 2.0 profile for real-time
execution platform modeling. In: Proceedings of the 18th Euromicro Conference
on Real-Time Systems (ECRTS 2006) Work in progress session (2006)

14. Inc., S.: Architecture Analysis and Design Language (AADL) AS 5506. Technical
report, The Engineering Society For Advancing Mobility Land Sea Air and Space,
Aerospace Information Report, Version 1.0 (2004)

15. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Scheduling and Memory require-
ments analysis with AADL. In: ACM SIGAda Ada Letters, vol. 25(4), pp. 1–10.
ACM Press, New York (2005)

16. Singhoff, F.: The Cheddar AADL property set (Release 2.x, LISyC Technical re-
port, number singhoff-03-2007) (2007),
http://beru.univ-brest.fr/∼singhoff/cheddar

17. Inc., S.: AADL Annex Behavior (draft V1.6), AS 5506. Technical report, The
Engineering Society For Advancing Mobility Land Sea Air and Space, Aerospace
Information Report (2007)

http://www.sei.cmu.edu/str/descriptions/rma_body.html
http://www.tripac.com/html/prod-fact-rrm.html
http://beru.univ-brest.fr/~singhoff/cheddar

Can We Increase the Usability of Real Time Scheduling Theory? 253

18. Legrand, J., Singhoff, F., Nana, L., Marcé, L.: Performance Analysis of Buffers
Shared by Independent Periodic Tasks, LISyC Technical report, number legrand-
02-2004 (2004), http://beru.univ-brest.fr/∼singhoff/cheddar

19. Arinc: Avionics Application Software Standard Interface. The Arinc Committee
(1997)

20. Wells, L.: Performance Analysis using CPN Tools. In: Proceedings of the First In-
ternational Conference on Performance Evaluation Methodologies and Tools 2006.
ValueTools 2006. ACM Press, New York (2006)

21. Platypus Technical Summary and download (2007),
http://cassoulet.univ-brest.fr/mme/

22. Singhoff, F.: Cheddar Release 2.x User’s Guide, LISyC Technical report, number
singhoff-01-2007 (2007), http://beru.univ-brest.fr/∼singhoff/cheddar

23. Alur, R., Dill, D.L.: Automata for modeling real time systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

24. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on UPPAAL, Technical Re-
port Updated the 17th November 2004, Department of Computer Science, Aalbord
University, Denmark (2004)

25. Kay, J., Lauder, P.: A Fair Share Scheduler. Communications of the ACM 31, 44–45
(1988)

26. Gallmeister, B.O.: POSIX 4: Programming for the Real World. O’Reilly and As-
sociates, Sebastopol (1995)

27. Singhoff, F., Plantec, A.: AADL Modeling and Analysis of a hierarchical schedulers.
In: ACM SIGAda Ada Letters, vol. 27(3), pp. 41–50. ACM Press, New York (2007)

28. Barnes, J.: High integrity software: The Spark approach to safety and security.
Addison-Wesley Publishing Company, Reading (2003)

http://beru.univ-brest.fr/~singhoff/cheddar
http://cassoulet.univ-brest.fr/mme/
http://beru.univ-brest.fr/~singhoff/cheddar

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 254–267, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Ada 2005 Technology for Distributed and Real-Time
Component-Based Applications

Patricia López Martínez, José M. Drake, Pablo Pacheco, and Julio L. Medina

Departamento de Electrónica y Computadores, Universidad de Cantabria,
39005-Santander, SPAIN

{lopezpa,drakej,pachecop,medinajl}@unican.es

Abstract: The concept of interface in Ada 2005 significantly facilitates its usage
as the basis for a software components technology. This technology, taking ben-
efit of the resources that Ada offers for real-time systems development, would be
suitable for component-based real-time applications that run on embedded plat-
forms with limited resources. This paper proposes a model based technology for
the implementation of distributed real-time component-based applications with
Ada 2005. The proposed technology uses the specification of components and
the framework defined in the LwCCM standard, modifying it with some key fea-
tures that make the temporal behaviour of the applications executed on it, pre-
dictable, and analysable with schedulability analysis tools. Among these
features, the dependency on CORBA is replaced by specialized communication
components called connectors, the threads required by the components are cre-
ated and managed by the environment, and interception mechanisms are placed
to control their scheduling parameters in a per-transaction basis. This effort aims
to lead to a new IDL to Ada mapping, a prospective standard of the OMG.

Keywords: Ada 2005, Component-based technology, embedded systems, real-
time, OMG standards

1 Introduction1

While in the general-purpose software applications domain the component-based soft-
ware engineering (CBSE) approach is progressing as a promising technology to improve
productivity and to deal with the increasing complexity of applications, in the embedded
and real-time systems domain, instead, its usage has evolved significantly slower. The
main reason for this delay is that the most known CBSE technologies like EJB, .NET, or
CCM, are inherently heavy and complex, they introduce not easily predictable overheads
and do not scale well enough to fit the significant restrictions on the availability of
resources usually suffered by embedded systems.

Trying to find an appropriate solution to this problem, european research projects like
COMPARE [1] and FRESCOR [2], tackle from different points of view, the development

1 This work has been funded by the European Union’s FP6 under contracts FP6/2005/IST/5-
034026 (FRESCOR project) and IST-004527 (ARTIST2 One) and by the Spanish Govern-
ment under grant TIC2005-08665-C03 (THREAD project) and the ITEA SPICES project.
This work reflects only the author’s views; the EU is not liable for any use that may be made
of the information contained herein.

An Ada 2005 Technology 255

of a real-time component-based technology compatible with the embedded systems
constraints. Their approach is based on the usage of the Container/Component model
pattern defined in the LwCCM specification developed by OMG [3], but avoiding the
usage of CORBA as communication middleware, which is too heavy for this kind of
applications. With this pattern, the interaction of the component with the run-time
environment is completely carried out through the container, whose code is generated by
automatic tools with the purpose of isolating the component developer from the details
concerning the code of the execution environment.

The recent modification of the Ada language specification [4], so called Ada 2005,
provides an enhanced option for the implementation of fully Ada native component-
based technologies, which is really suitable for embedded platforms. Ada’s native support
for concurrency, scheduling policies, synchronization mechanisms, and remote
invocations has always been a strength for implementing real-time and distributed
systems. New to Ada 2005 is the concept of interface, which provides support for multiple
inheritance. This is a key aspect in a component-based technology because it allows the
components to inherit characteristics from both the technology with which they are
developed as well as the application domain to which they belong. Besides, interfaces are
used to encapsulate the services offered by the components (Facets in LwCCM) and also
as the mechanism to make reference to the required services (Receptacles in LwCCM).

This paper proposes a component-based technology based on Ada. It implements the
LwCCM framework, with the container/component model, and both the code of the
environment and the code of the components are written in Ada 2005. The technology
incorporates mechanisms to the running environment, and extends the specification of the
components, in such a way that the timing behaviour of the final application is totally
controlled by the automatically generated execution environment. In this way, real-time
models of the application can be elaborated and analysed in order to verify its
schedulability when the application is run in closed platforms, or to define the resource
usage contracts required to operate in open environments like FRESCOR[2][5]. The
description and deployment of applications and components in the technology follow the
“Deployment and Configuration of Component-Based Distributed Applications”
standard of the OMG [6] (D&C). The paper is focused in the description of the framework
that is the base of the technology, particularly on the resources used to guarantee the
required predictability.

Various proposals dealing with the adaptation of CBSE to real-time systems have
appeared in the last years, though none of them have fully satisfied the industry
requirements [7]. In the absence of a standard, some companies have developed their own
solutions, adapted to their corresponding domains. Examples of that kind of technologies
are Koala [8], developed by Philips, or Rubus [9], developed by Arcticus Systems and
used by Volvo. These technologies have been successfully applied in the companies that
created them, though none of them have stimulated an inter-enterprise software
components market. However, they have served as the basis of other academic
approaches. The Robocop component model [10] is based on Koala and adds some
features to support analysis of real-time properties; Bondarev et al. [11] have developed
an integrated environment for the design and performance analysis of Robocop models.
Similarly, Rubus has been used as the starting point of the SaveCCT technology [12]; the
component concept in SAVE is applied at a very low granularity. Under appropriate

256 P. López Martínez et al.

assumptions for concurrency, simple RMA analysis can be applied and the resulting
timing properties introduced as quality attributes of the assemblies. SaveCCT focuses on
control systems for the automotive domain. In a similar way, COMDES-II [13]
encapsulates control tasks following a hierarchical composition scheme, applied in an ad-
hoc C based RT-kernel. The technology presented in this paper follows the idea proposed
by PECT (Prediction-Enabled Component Technology) [14]. Sets of constraints in the
components allow one to predict the behaviour of an assembly of components. In our case,
this approach is applied to obtain the complete real-time model of the application. Though
the Ada language is significantly used in the design and implementation of embedded
real-time systems, we have not found references of its usage in support of component-
based environments. This is probably due to the lack of support for multiple inheritance in
the previous versions of the language.

The rest of this paper is organized as follows. Section 2 describes the two main
processes involved in a components technology, emphasizing the main contributions of
the proposal. Section 3 describes in detail the reference model of the framework, and the
aspects included for developing analysable applications. Section 4 details the architecture
and classes to which a component is mapped in the technology. Finally, Section 5 and 6
shows some practical experiences, conclusions and future work.

2 Real-Time Component-Based Development

A component technology defines two different development processes, shown in Figure 1.
The components development process comprises the specification, implementation, and
packaging of components as reusable and independently distributable entities. The devel-
opment of component-based applications includes specification, configuration, deploy-
ment and launching of applications built as assemblies of available components. Both
processes are independent and they are carried out by different agents in different stages,
however, they require to be coordinated because the final products of the first process are

Fig. 1. Main processes in a component technology

Componentsdevelopment

Required
functionality

Component
specification

(idl3 file)

Component
specification

(idl3 file)

Component
Implementation

Component
Implementation

Component
Implementation

Component
Description

(code,metadata,
real-time model…)

Component
Description

(code,metadata,
real-time model…)

Applicationdevelopment

Application
Specification Deployment

Plan
Deployment

Plan
Application
Execution
Application
Execution

Ada 2005
Codegeneration

Automatic
tool

Packager
Tool

Design
Tool

Launching
Tool

Real-Time
Model

Real-Time
Model

Real-Time
Model

Workload
Model

Workload
Model RT Model

Compiler
Application
RT Model

Application
RT Model

RT Analysis
Tool

Componentpackage

Repository

Platform
description& model Componentpackage

Repository

Platform
description& model

Specifier Developer

Packager

Assembler/
Planner

Executor

Real-time
Requirements

An Ada 2005 Technology 257

the inputs for the second. So, in order to guarantee their coherence, a component technol-
ogy must define a set of rules about the kind of products and information that are generated
in each phase of the process, and the formats in which they are supplied. A key aspect in a
component technology is the opacity of the components; during the process of application
development, components must be used without any knowledge of the internal details of
their implementation or code. To achieve this opacity, models and information concerning
functional and non-functional aspects of the component must be added to its implementa-
tion in the package that describes the component.

A component development process starts when the “specifier”, who is an expert in a
particular application domain, creates the specification of a component with concrete
functionality in the domain. The “developer” implements this specification and creates
models that describe the installation requirements of the component. This work is
supported by automatic tools, which generate the skeletons for the code of the component
based on the selected technology. Therefore, the developer task is reduced to design and
implement the specific business code of the component without having to be aware of
internal details about the technology. Finally, the “packager” gathers all the information
required to make use of the component, and creates and publishes the distributable
element that constitutes the component. Relevant aspects of the proposed technology
related to components development are:

• The methodology for functional specification of components and the framework
proposed by the LwCCM specification have been adopted as the basis for the
technology. Hence, a container/component model is used in the component
implementations, but CORBA is replaced by simpler static communication
mechanisms with predictable behaviour, and suitable for the execution platform.
Remote communication between components is achieved by using connectors. They
are special components whose code is completely generated by the tools and which
encapsulate all the support for interactions among components.

• Since component implementations are generated in Ada2005, it has been necessary
to define the set of Ada packages to which the components and the elements of the
LwCCM framework are mapped. An automatic code generation tool has been
developed. This tool takes the specification of a component as input and generates all
the code elements that provide support for the component inside the framework.

• The technology follows the D&C specification for the description of the package that
holds the distributable component.

In order to apply the technology to hard real-time component-based applications, both
standard specifications, D&C and LwCCM, have been extended with new elements that
are used to describe the temporal behaviour of components and the requirements they
impose on the resources in order to meet timing requirements:

• D&C specification has been extended in order to associate a temporal behaviour
model to the specifications and implementations of components. This real-time
model is used to describe the temporal responses of the component and the
configuration parameters that it requires. This paper does not detail the modelling
approach used. For a complete explanation of the approach see [15]. The basic idea is
that the real-time model of a component is a parameterized model, independent of the

258 P. López Martínez et al.

application in which the component is used, which describes the component
temporal behaviour through references to the models of the platform in which the
component is executed and to the models of other components that it uses in order to
implement its functionality. Once all these elements are known in the context of an
application deployed in a concrete platform, as it is shown in Figure 2a, the real time
model of the complete application can be generated by composition of the individual
real-time models of the software and hardware components that form it. This model
describes the set of real-time transactions [16] executed in the application, as the one
in Figure 2b, and can be used to obtain the response time of services, analyse the
schedulability or evaluate the scheduling parameters required to satisfy the timing
requirements imposed to the application. In our case, the real-time models of the
components are formulated according to the MAST model [16], so that the set of
tools offered by the MAST environment can be used to analyse the system.

• The LwCCM functional specification of a component has been refined with the
purpose of controlling threading characteristics of the components. These
characteristics include the number and assignment of threads and scheduling
parameters. A component can not create threads inside its business code. Instead of
that, for each thread that a component requires, it declares a port in its specification.
This port implements one of the predefined interfaces OneShotActivation or
PeriodicActivation (see Section 3).

• Interception mechanisms are used to control the scheduling parameters with which
each invocation received by a component is executed. The specification of a
component declares the configuration parameters required to assign concrete values
of these scheduling parameters to a component instance.

The application development process consists in assembling component instances,
choosing them from those which have been previously developed, and stored in the repos-
itory of the design environment. This process is carried out by three different agents in
three consecutive phases. The “assembler” builds the application choosing the required
component instances and connecting them according to their instantiation requirements.

Fig. 2. RT Modeling of component-based applications

Client
component

Processor A

<<periodicActivation>>
Client thread

Client
Thread

Dispatch A
Thread

Dispatch B
Thread

Servant
Thread

Activation period
from Cliente RT-Model

update() processing time
from Cliente RT-Model

operation() processing time
from Server RT-Model

Communication processing time
from Connector RT-Model

Scheduling parameters
from Proc. A RT_ model

Scheduling parameters
from Client RT_ model

Scheduling parameters
from Servant RT_ model

Scheduling parameters
from Proc. B RT_ model

<<active>>

Server
component

<<passive>>

Client
RT-model

Platform
RT-model

Servant
RT-model

Processor B

Network

Connector
<<OneShotActivation>>

Servant thread

Connector
RT-model

(a) Component model (b) Reactive and RT-Model

An Ada 2005 Technology 259

This work is led by the functional specification of the application, the real-time require-
ments of the application, and the description of the available components. The result of
this first stage is a description of the application as a composite component, which is use-
ful by itself. The “planner” (usually the same agent as the assembler) takes this description
and designs a deployment model for the application. This model includes assigments of
component instances to nodes and the communication mechanisms between them. The
result of this stage is the deployment plan, which completely describes the application and
the way in which it is planned to be executed. Finally, the “executor” deploys, installs, and
executes the application, taking the deployment plan and the information about the execu-
tion platform as inputs. This labour is usually assisted by automatic tools. Relevant
aspects of the proposed technology regarding application development are:

• As well as describing components, the D&C specification is the basis for the process
of designing and deploying an application. D&C defines the structure of the
deployment plan that leads this process. It describes the component instances that
form the application, their connections, the configuration parameters assigned to
each instance and the assignment of instances to nodes.

• A deployment tool processes the information provided by the deployment plan. It
selects the code of the components suitable for the target platform and generates the
code required to support the execution of the components in each node. Specifically,
it automatically generates the connectors, which provide the communication
mechanisms between remote component instances, as well as the code for the main
procedures executed on each node.

The specific aspects included in the application development process to support hard real-
time applications are:

• Once the planner has developed the deployment plan, the local or remote nature of
each connection between component ports is defined. Then, an automatic tool
generates the code of the connectors based on the selected communication service
and its corresponding configuration parameters, which were assigned to the
connection in the deployment plan. The communication service used must hold a
predictable behaviour, hence, the tool generates also the real-time models that
describe the temporal behaviour of those connectors.

• Once the connectors have been developed together with their real-time models, and
based on the deployment plan, a tool elaborates the real-time model of the application
by composition of the real-time models of the components that form it (connectors
included) and the models of the platform resources. This model is used either to
analyse the schedulability of the application under a certain workload, or to calculate
the resource usage contracts necessary to guarantee its operation in an open
contractual environment [5]. In the latter case, these contracts will be negotiated,
prior to the application execution, by the launching tool.

• The execution environment includes a special internal service as well as interception
mechanisms that are used to manage in an automated way the scheduling parameters
of the threads involved in the application execution. The configuration parameters of
this service, whose values may be obtained by schedulability analysis, are specified
in the deployment plan and assigned to the service at launching time.

260 P. López Martínez et al.

3 Reference Model of the Technology

The proposed technology is based on the reusability (with no modification) of the busi-
ness code of the components, and the complete generation by automatic tools of the code
that adapts the component to the execution environment. This code is generated according
to the reference model shown in Figure 3. It takes the LwCCM framework as a starting
point, and adds to it the features required to control the real-time behaviour of the applica-
tion execution. Each of the elements that take part in the execution environment are
explained below.

Component: A component is a reusable software module that offers a well-defined
business functionality. This functionality is specified through the set of services that the
component offers to other components, grouped in ports called facets, and the set of
services it requires from other components, grouped in ports called receptacles.

With the purpose of having complete control of the threading and scheduling
characteristics of an application, and in the look for being able to analyse it, components in
our technology are passive. The operations they offer through their facets are made up of
passive code that can call protected objects. But this does not mean that there can not be
active components in the framework, concurrency is provided by means of activation
ports. When a component requires a thread for implementing its functionality, it declares
a port that implements one of the two special interfaces defined in the framework:
OneShotActivation or PeriodicActivation. These ports are recognized by the
environment, which creates and activates the corresponding threads for their execution
once the component is instantiated, connected and configured. The interface
OneShotActivation declares a run() procedure, which will be executed once by the
created thread, while the interface PeriodicActivation declares an update() procedure,
which will be invoked periodically. A component can declare several activation ports,
each of them representing an independent unit of concurrency managed by the
component, and which are independent of the business invocations.

 Activation ports are declared in the component specification (in the IDL file), and all
the elements required for their execution are created by the code generation tool. Their
configuration parameters, which include the scheduling parameters of the threads as well
as the activation period (in case of PeriodicActivation ports) are assigned for each
component instance in the deployment plan.

Fig. 3. Reference model of the technology

Client
Component
(bussiness
code)

Server
Component
(business
code)

Connectorinstance

Proxy
fragment

Servant
fragment

Client
Adapter

Server
Adapter

Interceptor

Executionenvironment

Activation
port

Environmentservices

Scheduling
AttributeService

Receptacle Facet

An Ada 2005 Technology 261

Adapter: An adapter is the part of the component’s code which provides the run-time
support for the business code. All the platform related aspects are included in the adapter.
Its code is automatically generated according to the component/container model. With
this programming approach the component developer does not need to know any detail
about the underlying technology, he is only in charge of business code development.

Connector: A connector is the mechanism through which a component communicates
with another component connected to it through a port. In our technology, a connector has
the same structure as a component, but its business code is also generated by the
deployment tool, based on:

• The interface of the connected ports. The connectors are generated from a set of
templates which are adapted so that they implement the operations of the required
interface.

• The location of the components (local vs remote), and the type of invocation
(synchronous or asynchronous). Combinations among these different characteristics
lead to different types of connectors. For local and synchronous invocations, the
connector is not necessary, the client component invokes the operation directly on the
server. For local and asynchronous invocations the connector requires an additional
thread to execute the operation (obtained through activation ports). If the invocation
is distributed, the connector is divided in two fragments: the proxy fragment, which is
instantiated in the client node, and the servant fragment, which is instantiated in the
server node. The communication between the two fragments is achieved by means of
the communication service selected for the connection. In this case, the connector
can also implement synchronous or asynchronous invocations, including the
required mechanisms in the proxy fragment.

• The communication service or middleware used for the connection and its
corresponding configuration parameters, which are assigned for each connection
between ports in the deployment plan.

Interceptors: The concept of interception is taken from QoSforCCM [17]. It brings a way
to support the management of non-functional features of the application. An interceptor
allows to incorporate calls to the environment services inside the sequence of an
invocation by executing certain actions before and after the operation is executed on the
component. The support for interceptors is introduced in the adapter, so it is hidden to the
component developer. Their introduction is optional for each operation, and it is specified
in the deployment plan.

In our technology, interceptors are used to control the scheduling parameters with
which each received invocation is executed. Based on the configuration parameters
assigned to it in the deployment plan, each interceptor knows the scheduling parameter
which corresponds to the current invocation, and uses the SchedulingParameterService to
modify it in the invoking thread. With this strategy, different schemes for scheduling
parameters assignment can be implemented. Besides common assignment policies, like
Client Propagated or Server Declared [18], our technology allows to apply an assignment
based on the transactional model of the application. With this policy, a service can be
executed with different scheduling parameters inside the same end-to-end flow
depending on the particular step inside the flow in which the invocation takes place. This

262 P. López Martínez et al.

scheme enables better schedulability results [19]. The values of these parameters are
obtained from the analysis using holistic priority assignment tools like the ones included
in MAST, which is used as analysis environment in our technology.

SchedulingParameterService: It is an internal environment service which is invoked by
the interceptors to change the scheduling parameters of the invoking thread. The kind of
scheduling parameters that will be effectively used depends strongly on the execution
platform, it may be a single priority, deadline, or the contract to use in the case of a FRES-
COR flexible scheduling platform.

4 Architecture of a Component Implementation

There are two complementary aspects that a component implementation must address:

• The component has to implement the functionality that it offers through its facets,
making use of its own business logic and the services of other components.

• The implementation must include the necessary resources to instantiate, connect and
execute the component in the corresponding platform. This aspect is addressed by
implementing the appropriate interfaces which allow to manage the component in an
standard way. In our case, those defined by LwCCM.

Each aspect requires knowledge about different domains. For the first aspect, an expert on
the application domain corresponding to the component functionality is required. For the
second, however, what it is required is an expert on the corresponding component technol-
ogy. The proposed architecture for a component implementation tries to find an structural
pattern to achieve independency of the Ada packages that implement each aspect.
Besides, the packages that implement the technology related aspects are to be automati-
cally generated according to the component specification. With this approach, the compo-
nent developer only has to design and implement the business code of the component.

The proposed architecture is based on the reference one proposed by LwCCM, but
adapted for:

• Making use of the abstraction, security and predictability characteristics of Ada.
• Including the capacity for controlling threading characteristics of the components.
• Facilitating the automatic generation of code taking the IDL3 specification of the

component as input and generating the set of classes that represent a component in the
technology.

• Providing a well-defined frame in which the component developer designs and
writes the business code.

In the proposed technology, the architecture of a component is significantly simplified as
a consequence of the usage of connectors. When two connected components are installed
in different nodes, the client component interacts only with the proxy fragment of the con-
nector, while the server component interacts only with the servant fragment of the connec-
tor. Therefore, all the interactions between components are local, since it is the connector
who hides the communications mechanisms used for the interaction.

For each component, four Ada packages are generated. Three of them are completely
generated by the tool, while the last package leaves the “blank” spaces in which the

An Ada 2005 Technology 263

component developer must include the business code of the component. The first module
represents the adapter (or container) of the component. It includes the set of resources that
adapt the business code of the component to the platform, following the interaction rules
imposed by the technology. It defines three classes:

• The wrapper class of the component, called {ComponentName}_Wrapper, which
represents the most external class of the component. It offers the equivalent interface
of the component, which LwCCM establishes as the only interface that can be used
by clients or by the deployment tool to access to the component. With this purpose,
the class implements the CCMObject interface, which, among others, offers
operations to access to the component facets, or to connect the corresponding server
components to the receptacles. Besides, the capacity to incorporate interceptors is
achieved by implementing the Client/ServerContainerInterceptorRegistration
interfaces, a modified version of the interfaces with the same name defined in
QoSCCM [17]. As it is shown in Figure 4, this class is a container which aggregates or
references all the elements that form the component:
- The component context, through which components access to their receptacles.
- The home, which represents the factory used to create the component instance.
- The executor of the component, which represents its real business code imple-

mentation. Its structure is explained below.
- An instance of a facet wrapper class that is aggregated for each facet of the

component. They capture the invocations received in the component and trans-
fer them to the corresponding facet implementations, which are defined in the
executor. The facet wrappers are the place in which the interceptors for manag-
ing non-functional features are included.

• The class that represents the context implementation, called {ComponentName}_
Context. It includes all the information and resources required by the component to
access to the components which are connected to its receptacles.

• The {ComponentName}_Home_Wrapper, which implements the equivalent
interface of the home of the component. It includes the class procedures (static) that
are used as factories for component instantiation.

Fig. 4. Example of Component Wrapper Structure for ComponentX

CCMObject

provide_facet()
connect()

<<Interface>>

ServerContainerInterceptorRegistration

register_server_interceptor()

<<Interface>>

ClientContainerInterceptorRegistration

register_client_interceptor()

<<Interface>>

Interface_A

operA()

<<Interface>>

CCM_ComponentX_Context

get_connection_thePortU()

<<Interface>>

ComponentX_Context

CCM_ComponentX
<<Interface>>

CCMHome

create_component()

<<Interface>>

ServerInterceptor

receive_request()

<<Interface>>

wrapper_Interface_A

delegated : CCM_Interface_A

0..n

interceptor_for_OperA

0..n

ComponentX_Wrapper
1

theContext
1

1

theHome

1
1

thePort_A_Facet
1

1 theExecutor1

264 P. López Martínez et al.

The rest of generated Ada packages contain the classes that represent the implementation
of the business code of the component (the executor). The LwCCM standard fixes a set of
rules that define the programming model to follow in order to develop a component imple-
mentation. Taking the IDL3 specification of a component, LwCCM defines a set of
abstract classes and interfaces which have to be implemented, either automatically or by
the user, to develop the functionality of the component. This set of root classes and inter-
faces are grouped in the generated package {ComponentName}_Exec. The {Compo-
nentName}_Exec_Impl package includes the concrete classes for the component
implementation which inherit from the classes defined in the previous package. The class
that represents the component implementation, {ComponentName}_Exec_Impl, which
is shown in Figure 5, has the following attributes:

• A reference to the component context. It is set by the environment through the
set_session_context() operation, and it is used to access to the receptacles.

• An aggregated object of the {ComponentName}_Impl class, whose skeleton is
generated by the tool and has to be completed by the developer.

• Each activation port defined in the specification of the component, represents a
thread that is required by the component to implement its functionality. For
implementing those threads two kinds of Ada task types have been defined. The
OneShotActivationTask executes once the corresponding run() procedure of the
port, while the PeriodicActivationTask executes periodically the update() procedure
of the corresponding port. Both types of task receive as a discriminant during its
instantiation, a reference to the data structure that qualify their execution, including
scheduling parameters, period, state of the component and the procedure to execute.
For each activation port defined in the component, a thread of the corresponding type
is declared. They will be activated and terminated by the environment by means of
standard procedures that LwCCM includes in the CCMObject interface to control the
lifecycle of the component.

The {ComponentName}_Impl class, represented in Figure 5, is defined in a new package,
in order to hide the environment internals to the code developer. It represents the reference
frame in which the developer introduces the business code. Relevant elements of this class
are:

Fig. 5. Example of Component Implementation Structure for ComponentX

CCM_ComponentX

set_session_context()
get_thePortA()
set_attribute1()

<<Interface>>

Interface_A
<<Interface>>

thePortA_Port

ComponentX_State

thePortU : Interface_U
attribute1 : Attr_Type_1
...

OneShotActivationBlock

PeriodicActivationBlock

theState

CCM_ComponentX_Context
<<Interface>>

ComponentX_Impl

get_state() : ComponentX_State
theOSAPort_run()
thePAPort_update()

thePortA_facet

1

theState

1

OneShotActivationTask

1

1

1
block

1

PeriodicActivationTask

1block 1

ComponentX_Exec_Impl

theContext

1

theImpl

1

1

theOSAPort

1

1

-thePAPort

1

An Ada 2005 Technology 265

• For each facet offered by the component, a facet implementation object is aggregated.
However, in the case of simple components, the class itself can implement the
interfaces supported by the facets.

• All the implementation elements (facet implementations, activation tasks, etc.)
operate according to the state of the component, which is unique for each instance.
Based on that, the state has been implemented as an independent aggregated class,
which can be accessed by the rest of the elements, avoiding cyclic dependencies.

• For each activation port defined in the component specification, the corresponding
{PortName}_run() or {PortName}_update procedures are declared.

Most of the code of this class is generated automatically, the component developer only
has to write the body of the activation port procedures (run or update), and the body of the
operations offered by each of the facets implementations. The developer, who knows the
temporal behaviour of the code, must also elaborate the real-time model of the compo-
nent. In the case of a connector, the structure generated is exactly the same, but the “busi-
ness” code, which in that case consists in the code required to implement remote
invocations, is also automatically generated by the deployment tool.

The current available Ada mapping for IDL [20] is based in Ada95, so for the
development of the code generation tool, it has been necessary to define new mappings for
some IDL types in order to get benefit of the new concepts introduced in Ada 2005. The
main change concerns to the usage of interfaces. The old mapping for the IDL “interface”
type led to a complex Ada structure while now can be directly mapped to an Ada interface.
Besides, some data structures defined in IDL, as for example the “sequence” type, can be
implemented now with the new Ada 2005 containers.

5 Practical Experience

At the time of the first attempts made to validate the proposed technology, there was no
real-time operating system with support for Ada 2005 applications, so the tests were run
on a Linux platform, using the GNAT (GAP) 2007 compiler. The construction of the con-
nectors for the communication between remote components, was made using the native
Ada Distributed System Annex (DSA), Annex E of the Ada specification. The implemen-
tation of DSA used was GLADE [21]. Distributed test applications were developed and
executed successfully. The platforms used in this evaluation were sufficient for the con-
ceptual validation of the technology, since from the point of view of the software architec-
ture the final code is equivalent, but of course, it is not appropriate for the validation of the
timing properties of real-time applications.

The recently released new version of MaRTE_OS [22] provides now support for the
execution of Ada 2005 applications, and allows to test the technology over a hard real-
time environment. Still there is a lack for a real-time communication middleware. An
enhanced version of GLADE that enables messages priority assignment exists for
MaRTE_OS & GNAT [23], but it has not been ported to the new versions. To overcome
this limitation, we have developed simpler connectors using a link layer real-time
protocol. Our first tests on a real-time platform have been done with connectors that use
directly the RT-EP [24] protocol for the communication between remote components.

266 P. López Martínez et al.

The same application tested in the linux platform was used in MaRTE_OS, and as
expectable, the code of the components did not require any modification, the only
necessary change was the development of the new connectors suitable for the new
communication service (RT-EP) used.

6 Conclusions and Future Work

This paper proposes a model based technology for the development of real-time compo-
nent-based applications. The usage of the Ada language for its implementation, makes it
particularly suitable for applications that run in embedded nodes with limited resources
and strict timing requirements. The technology is based on the D&C and LwCCM stand-
ard specifications, which have been extended in order to support the development of
applications with a predictable and analysable behaviour.

The key features of this technology have been specified and tested successfully.
Nevertheless some challenges arise for this community to face. The most rewarding of
them is the availability of an Ada native communication middleware, here used in the
development of connectors, which must hold predictable behaviour, and allow a priority
assigment for the messages based on the transactional (or so called end-to-end flow)
model. Our aim is to develop the connectors using the Ada Distributed System Annex so
that applications rely only on the Ada run-time infrastructure with no additional
middleware, which is highly desirable to target small embedded systems.

As future work, some more tests have to be applied in order to quantify the concrete
overheads introduced by the technology. A planned enhancement for the technology is the
construction of a graphical environment to integrate all the stages of development of an
application: design, code generation, analysis, and finally, execution. Another effort that
has been started in the OMG and arise from this work is the elaboration of an updated
version of the mapping from IDL to Ada 2005 [25].

References

[1] IST project COMPARE: Component-based approach for real-time and embedded systems,
http://www.ist-compare.org

[2] IST project FRESCOR: Framework for Real-time Embedded Systems based on Contracts,
http://www.frescor.org

[3] OMG: Lightweight Corba Component Model, ptc/03-11-03 (November 2003)
[4] Tucker Taft, S., Duff, R.A., Brukardt, R.L., Plödereder, E., Leroy, P.: Ada 2005 Reference

Manual. LNCS, vol. 4348, pp. 43–48. Springer, Heidelberg (2006)
[5] Aldea, M., et al.: FSF: A Real-Time Scheduling Architecture Framework. In: Proc. of 12th

RTAS Conference, April 2006, San Jose, USA (2006)
[6] OMG: Deployment and Configuration of Component-Based Distributed Applications Spec-

ification, version 4.0, Formal/06-04-02 (April 2006)
[7] Möller, A., Åkerholm, M., Fredriksson, J., Nolin, M.: Evaluation of Component Technolo-

gies with Respect to Industrial Requirements. In: Proc. of 30th Euromicro Conference on
Software Engineering and Advanced Applications (August 2004)

[8] Ommering, R., Linden, F., Kramer, J.: The koala component model for consumer electronics
software. IEEE Computer, IEEE, 78–85 (2000)

An Ada 2005 Technology 267

[9] Lundbäck, K.-L., Lundbäck, J., Lindberg, M.: Component based development of dependable
real-time applications Arcticus Systems, http://www.arcticus-systems.com

[10] Bondarev, E., de With, P., Chaudron, M.: Predicting Real-Time Properties of Component-
Based Applications. In: Proc. of 10th RTCSA Conference, Goteborg (August 2004)

[11] Bondarev, E., et al.: CARAT: a toolkit for design and performance analysis of component-
based embedded systems. In: Proc. of DATE 2007 Conference (April 2007)

[12] Åkerholm, M., et al.: The SAVE approach to component-based development of vehicular
systems. Journal of Systems and Software 80(5) (May 2007)

[13] Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: A Component-Based Framework for Gen-
erative Development of Distributed Real-Time Control Systems. In: Proc. of 13th RTCSA
Conference (August 2007)

[14] Wallnau, K.C.: Volume III: A Technology for Predictable Assembly from Certifiable Com-
ponents, Technical report, Software Engineering Institute, Carnegie Mellon University,
April 2003, Pittsburgh, USA (2003)

[15] López, P., Drake, J.M., Medina, J.L.: Real-Time Modelling of Distributed Component-Based
Applications. In: Proc. of 32h Euromicro Conference on Software Engineering and
Advanced Applications, August 2006, Croatia (2006)

[16] González Harbour, M., Gutiérrez, J.J., Palencia, J.C., Drake, J.M.: MAST: Modeling and
Analysis Suite for Real-Time Applications. In: Proc. of the Euromicro Conference on Real-
Time Systems (June 2001)

[17] OMG: Quality of Service for CORBA Components, ptc/06-04-05 (April 2006)
[18] OMG: Real-Time CORBA Specification, v1.2 formal/05-01-04. Enero (2005)
[19] Gutiérrez García, J.J., González Harbour, M.: Prioritizing Remote Procedure Calls in Ada

Distributed Systems. In: Proc. of the 9th Intl. Real-Time Ada Workshop, ACM Ada Letters,
XIX, 2, pp. 67–72 (June 1999)

[20] OMG: Ada Language Mapping Specification - Version 1.2 (October 2001)
[21] Pautet, L., Tardieu, S.: GLADE: a Framework for Building Large Object-Oriented Real-

Time Distributed Systems. In: Proc. of the 3rd IEEE Intl. Symposium on Object- Oriented
Real-Time Distributed Computing, March 2000, Newport Beach, USA (2000)

[22] Aldea, M., González, M.: MaRTE OS: An Ada Kernel for Real-Time Embedded Applica-
tions. In: Strohmeier, A., Craeynest, D. (eds.) Ada-Europe 2001. LNCS, vol. 2043. Springer,
Heidelberg (2001)

[23] López-Campos, J., Gutiérrez, J.-J., González-Harbour, M.: The Chance for Ada to Support
Distribution and Real-Time in Embedded Systems. In: Llamosí, A., Strohmeier, A. (eds.)
Ada-Europe 2004. LNCS, vol. 3063, pp. 91–105. Springer, Heidelberg (2004)

[24] Martínez, J.M., González, M.: RT-EP: A Fixed-Priority Real Time Communication Protocol
over Standard Ethernet. In: Vardanega, T., Wellings, A.J. (eds.) Ada-Europe 2005. LNCS,
vol. 3555, pp. 180–195. Springer, Heidelberg (2005)

[25] Medina, J.: Status report of the Ada2005 expected impact on the IDL to Ada Mapping. OMG
documents mars/07-09-12 and mars/07-06-13 (2007), http://www.omg.org

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 268–281, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Real-Time Distribution Middleware from the Ada
Perspective∗

Héctor Pérez, J. Javier Gutiérrez, Daniel Sangorrín, and Michael González Harbour

Computers and Real-Time Group
Universidad de Cantabria, 39005 - Santander, SPAIN

{perezh,gutierjj,daniel.sangorrin,mgh}@unican.es
http://www.ctr.unican.es/

Abstract. Standards for distribution middleware sometimes impose restrictions
and often allow the implementations to decide on aspects that are fundamental to
the correct and efficient behaviour of the applications using them, especially
when these applications have real-time requirements. This work presents a study
of two standard approaches for distribution middleware that can be used from
Ada applications: RT-CORBA, and the Distributed Systems Annex (DSA) of
Ada. The study focuses on the problems associated with the real-time behaviour
of some implementations of these approaches, and on possible solutions that can
be derived from our experience with Ada implementations. Moreover, the paper
considers the problem of integration of the distribution middleware with a new
generation of scheduling mechanisms based on contracts.

Keywords: distribution middleware, real-time, communications, RT-CORBA,
Ada DSA, performance.

1 Introduction

The concept of a distributed application is not new; it has existed since two computers
were first connected. However, the programming techniques of these systems have
evolved greatly and they have become especially relevant in the last decade.
Traditionally, message-passing mechanisms were used for communication among the
parts of a distributed application where the communications among the application
parts were done explicitly by the programmer. Since then, new object distribution
techniques have evolved, for instance using Remote Procedure Calls (RPCs) that allow
operations to be transparently used regardless of whether the functionality is offered in
the local processor or in a remote one.

The object distribution paradigm is probably the most relevant in current industrial
applications, and an important example is the CORBA standard [12] which provides a

∗ This work has been funded in part by the Spanish Ministry of Science and Technology under

grant number TIC2005-08665-C03-02 (THREAD), and by the IST Programme of the
European Commission under project FP6/2005/IST/5-034026 (FRESCOR). This work reflects
only the author’s views; the EU is not liable for any use that may be made of the information
contained herein.

 Real-Time Distribution Middleware from the Ada Perspective 269

language for the specification of interfaces (IDL, Interface Definition Language) that
enables the use of different programming languages in the development of an
application. There exist other distribution techniques of higher level coming from
CORBA such as CCM (CORBA Component Model), or DDS (Data Distribution
Service), but their degree of acceptance in industry is still lower compared to CORBA.

In addition to distribution standards, there are programming languages that allow the
development of distributed applications. This is the case of Java (a de facto standard)
with its specification for distributed systems, Java RMI (Java Remote Method
Invocation) [17], based on the distribution of objects. Also, the Ada standard allows
distribution through its DSA (Distributed Systems Annex, Annex E) [19], which
supports both distribution of objects and RPCs.

This work will focus on analysing the real-time characteristics for distribution
within the CORBA and Ada standards. It does not consider Java RMI because the
real-time aspects of Java have not been fully addressed yet. RT-CORBA [13] offers the
CORBA specification for real-time systems, and although Ada’s DSA is not
specifically designed for real-time systems, there are works that demonstrate that it is
possible to write real-time implementations within the standard [14,7,8]. One goal of
this paper is to make a comparative study of the scheduling models offered by these
standards for implementing distributed real-time applications, an analysis of some of
their implementations from the viewpoint of management of calls to remote resources,
and an experimental evaluation on a real-time platform of the response times that can
be obtained in remote calls in order to get an idea of the overheads introduced. Another
objective of this work is to establish the basis for incorporating the experience acquired
in systems programmed in Ada into the world of RT-CORBA.

The evolving complexity of real-time systems has lead to the need for using more
sophisticated scheduling techniques, capable of simultaneously satisfying multiple
types of requirements such as hard real-time guarantees and quality of service
requirements, in the same system. To better handle the complexity of these systems,
instead of asking the application to interact directly with the scheduling policies,
scheduling services of a higher level of abstraction are being designed, usually based on
the concept of resource reservations [2]. The FRESCOR European Union project [3] in
which we are participating is aimed at investigating these aspects by creating a
contract-based scheduling framework. In [8], some initial ideas were given about the
integration of middleware and advanced scheduling services, and in this paper we
extend those ideas to address the problem of handling distributed transactions.

The document is organized as follows. Section 2 is dedicated to the presentation of
the basic characteristics of the distribution middleware based on RT-CORBA and
Ada’s DSA, and their implementations. Section 3 analyses in detail the aspects of
scheduling, distribution mechanisms, and management of the remote calls proposed in
the two standards and their implementations. The evaluation and discussion of the
overheads in remote operations for these implementations is dealt with in Section 4.
Section 5 proposes the integration of the distribution middleware with the framework
for flexible scheduling. Finally, Section 6 draws the conclusions and considers
future work.

270 H. Pérez et al.

2 Real-Time Distribution Middleware

This section will describe the scheduling models of RT-CORBA and of the DSA for the
execution of remote calls and will discuss how the distributed transaction model can be
supported. Furthermore, the different implementations to be analysed, all of which are
open source code, will be briefly introduced.

A distributed transaction is defined as a part of an application consisting of multiple
threads executing code in multiple processing nodes, and exchanging messages with
information and events through one or more communication networks. In a transaction,
events arriving at the system trigger the execution of activities, which can be either task
jobs in the processors or messages in the networks. These activities, in turn, may
generate additional events that trigger other activities, and this gives way to a chain of
events and activities, possibly with end-to-end timing requirements [8]. This model is
traditionally used for analysing the response time in real-time distributed applications.
We will discuss how this model can be supported by the middleware.

2.1 RT-CORBA Model

The main characteristics of the architecture proposed by RT-CORBA in its
specification [12] with respect to scheduling are the following:

• Use of threads as scheduling entities, for which an RT-CORBA priority can
be applied and for which there are functions for conversion to the native
priorities of the system on which they run.

• Use of two models for the specification of the priority of remote calls
(following the Client-Server model): Client_Propagated (the invocation is
executed in the remote node at the priority of the client, which is
transmitted with the request message), and Server_Declared (all the
requests to a particular object are executed at a priority preset in the server).
In addition, it is possible for the user to define priority transformations that
modify the priority associated with the server. This is done with two
functions called inbound (which transforms the priority before running the
server's code) and outbound (which transforms the priority with which the
server makes calls to other remote services).

• Definition of Threadpools as mechanisms for managing remote requests.
The threads in the pool may be preallocated, or can be created dynamically.
There may be several groups of threadpools, each group using a specific
priority band.

• Definition of Priority-Banded Connections. This mechanism is proposed
for reducing priority inversions when a transport protocol without priorities
is used.

The specification of RT-CORBA incorporates a chapter dedicated to dynamic
scheduling, which basically introduces two concepts:

• The possibility of introducing other scheduling policies in addition to the
fixed priority policy, such as, EDF (Earliest Deadline First), LLF (Least
Laxity First), and MAU (Maximize Accrued Utility). The scheduling

 Real-Time Distribution Middleware from the Ada Perspective 271

parameters are defined as a container that can contain more than one simple
value, and can be changed by the application dynamically.

• The Distributable Thread that allows end-to-end scheduling and the
identification of Scheduling Segments each one of which can be run on a
processor. This concept is similar to the distributed transaction presented
in [8].

RT-CORBA does not consider explicitly the possibility of passing scheduling
parameters to the communications networks.

2.2 Ada DSA Model

Ada DSA does not have any mechanism for transmission of priorities and so its
implementation is left up to the criterion of the implementation. The specification
requires support for executing concurrent remote calls and for waiting until the return
of the remote call. The communication among active partitions is carried out in a
standard way using the Partition Communication Subsystem (PCS).

The concurrency and the real-time mechanisms are supported by the language itself
with tasks, protected types and the services specified in Annex D. In [4], a mechanism
for handling the transmission of priorities in the DSA is proposed. This mechanism is in
principle more powerful than that of RT-CORBA, as it allows total freedom in the
assignment of priorities both in the processors and in the networks used.

Ada included in its latest revision the scheduling policies EDF and Round Robin as
part of its Real-Rime Systems Annex (Annex D). Nevertheless, it does not contemplate
the existence of distributed transactions. Like RT-CORBA, Ada DSA does not consider
the possibility of passing scheduling parameters to the communications networks.

2.3 Implementations Under Study

This work analyses and assesses the following implementations of RT-CORBA and the
DSA:

• TAO [18] is an open source implementation of RT-CORBA that has been
evolving for several years. The applications are programmed in C++ and
the version we have used (1.5) runs on Linux and TCP/IP. It is offered as an
implementation of the complete specification.

• PolyORB [15,20] is presented as a “schizophrenic” middleware that can
support distribution with different personalities such as CORBA,
RT-CORBA, or DSA. It is distributed with the GNAT compiler [1] and in
principle it is envisaged for applications programmed in Ada. The version
used (2007) supports CORBA and some basic notions of RT-CORBA
(priorities and their propagation), and allows distribution through the DSA
although it does not allow specifying scheduling parameters. The execution
platform is Linux and TCP/IP.

• GLADE [14] is the original implementation of the DSA offered by GNAT
[1] to support the development of distributed applications with real-time
requirements. The scheduling is done through fixed priorities and
implements two policies for distribution of priorities in the style of

272 H. Pérez et al.

RT-CORBA (Client Propagated and Server Declared). The 2007 version is
used, and once again the execution platform is Linux and TCP/IP.

• RT-GLADE is a modification of GLADE that optimizes its real-time
behaviour. There are two versions: in the first one [7], free assignment of
priorities in remote calls is allowed (both in the processors and in the
communication networks). The second version [8] proposes a way of
incorporating distributed transactions into the DSA and giving support to
different scheduling policies in a distributed system. The execution platform
is MaRTE OS [9] and the network protocol is RT-EP [10]. This
communication protocol is based on token passing in a logical ring over
standard Ethernet, and it supports three different scheduling policies: fixed
priorities, sporadic servers, and resource reservations through contracts [2,3].

3 Analysis of Distribution Middleware Implementations

The objective of this section is to analyse the scheduling aspects of the mechanisms for
management of remote calls used by the implementations of RT-CORBA or DSA to
support their respective specifications. It also discusses the properties of the solutions
adopted and proposes some improvements that could be made both in the standards and
in their implementations.

3.1 Implementations of RT-CORBA and DSA

From the viewpoint of management of remote calls, TAO defines several elements that
can be configured [16]:

• Number of ORBs. The ORB is the management unit of the calls to a
service. There may be several or only one, given that each ORB can accept
requests from different parts of the application.

• The strategy of the concurrency server. Two models are defined: Reactive,
in which a thread is executed to provide service to multiple connections;
and thread-per-connection, in which the ORB creates a thread to serve
each new connection.

• The threadpools. Two types of thread groups are defined with two different
behaviours. In the ORB-per-Thread model each thread has an associated
ORB that accepts and processes the services requested. In the
Leader/Followers model the user can create several threads and each ORB
will select them in turns so they await and process new requests arriving
from the network.

For the management of remote calls, PolyORB defines the following configurable
elements [15]:

• ORB tasking policies. Four policies are defined:
o No_Tasking: the ORB does not create threads and uses the

environment task to process the jobs

 Real-Time Distribution Middleware from the Ada Perspective 273

o Thread_Pool: a set of threads is created at start-up time; this set
can grow up to an absolute maximum, and unused threads are
removed from it if its size exceeds a configurable intermediate
value.

o Thread_per_Session: a thread is created for each session that is
opened

o Thread_per_Request: a thread is created for each request that
arrives and is destroyed when the job is done

• Configuration of the tasking runtimes. It is possible to choose among a
Ravenscar-compliant, no tasking, or full tasking runtime system.

• ORB control policies. Four policies are defined that affect the internal
behaviour of the middleware:

o No Tasking: a loop monitors I/O operations and processes the jobs
o Workers: all the threads are equal and they monitor the I/O

operations alternatively
o Half Sync/Half Async: one thread monitors the I/O operations and

adds the requests to a queue, and the other threads process them
o Leader/Followers: Several threads take turns to monitor I/O

sources and then process the requests once arrived. However, if
RT-CORBA is in use, the selected thread will add the request to
an intermediate queue where another thread will process it at the
proper priority.

The implementation of the DSA carried out in GLADE [14] defines a group of threads
to process the requests with similar parameters to those of PolyORB in terms of the
number of threads (minimum number of threads created at start-up time, stable value
and absolute maximum), and uses another two intermediate threads for the requests;
one awaits the arrival of requests from the network, and the other one processes these
requests and selects one of the threads of the group to finally process the job.

The modifications made to GLADE to obtain the first version of RT-GLADE [7]
eliminated one of the intermediate threads, so that there was a thread waiting for
requests arriving from the net, which in turn activated one of the threads of the group to
carry out the job. In the second version of RT-GLADE [8], an API was provided to
allow an explicit configuration of the threads that execute the jobs, and they are
designed to wait directly on the net. This is done through the definition of
communication endpoints which handle the association with the remote thread and
support the scheduling parameters for the network. These parameters, that can be
complex, are associated with the appropriate entity when a distributed transaction is
installed and do not need to be transmitted each time the remote service is called.

TAO, PolyORB, and GLADE all use the priority assignment policies defined in
RT-CORBA. In contrast, in the first version of RT-GLADE [7] free assignment of
priorities is allowed for the remote services and for the request and reply messages.
This approach enables the use of optimization techniques in the assignment of priorities
in distributed systems.

In the second version of RT-GLADE [8], the definition of the connection endpoints
allows the programming of distributed transactions, which are identified just by
specifying a small number at the beginning of the transaction. Moreover, the transaction

274 H. Pérez et al.

is executed with the scheduling parameters associated to its threads and messages. This
concept is similar to the distributable thread of RT-CORBA, except that this
specification never takes the network scheduling into account. TAO implements
this part of the dynamic scheduling of RT-CORBA, in which dynamic changing of the
scheduling parameters of a scheduling segment is permitted [5].

In this work, we have made a prototype porting of PolyORB to the MaRTE OS [9]
real-time operating system and we have adapted it to the RT-EP real-time network
protocol [10]. The personality of CORBA (PolyORB-CORBA) allows the use of the
control policies of the ORB defined in PolyORB. The DSA personality of PolyORB
does not currently allow choosing among different control policies. For this personality
(PolyORB-DSA), a basic version of the scheduling defined in [8] has been implemented
over our real-time platform to obtain results comparable to those of RT-GLADE.

3.2 Discussion

Based on the analysis above, this subsection discusses some objectives that the
real-time distribution middleware must pursue, and proposes solutions or extensions
that the standards and/or the implementations should incorporate.

• Allow a schedulability analysis of the complete application. Although the
middleware is executed in the processor, in many cases the timing
behaviour of the networks has a strong influence on the overall response
times, and therefore the networks should be scheduled with appropriate
techniques [6]. The middleware should have the ability to specify the
scheduling parameters of the networks through suitable models.
RT-GLADE could be used as a reference [8].

• Transactions or distributable threads. In agreement with the previous point,
the transactions or distributable threads should incorporate all the
information about scheduling in the processors and networks, either in the
model proposed by RT-CORBA or in the one proposed in RT-GLADE [8].

• Control of remote calls. The task models implemented in TAO and
PolyORB can be used as a reference, adding an extra case in which there is
one dedicated thread per kind of request, directly waiting on the net (as in
the second version of RT-GLADE). The latter case can be useful in flexible
scheduling environments when threads execute under contracts and the cost
of negotiating or changing contracts is very high. In the case when there are
intermediate threads for managing remote calls (GLADE, RT-GLADE or
PolyORB) it is important to control their scheduling parameters. This is
also the case of groups of threads in which threads can execute with
different parameters each time.

• Allow the free assignment of scheduling parameters. This is the approach
used in RT-GLADE. In RT-CORBA there is a specification for static
real-time systems, and an extension for dynamic real-time systems (see
Section 3 in [13]). The specification for static systems imposes restrictions
on the assignment of priorities, but these restrictions are removed in the
specification for dynamic systems, which allows implementations to define
scheduling policies.

 Real-Time Distribution Middleware from the Ada Perspective 275

4 Evaluating Distribution Middleware Implementations

The objective of this section is to provide an idea about the predictability and the
overhead introduced by the analysed implementations in a distributed application, but
not to make a straight comparison among them, as they are of different nature.

In this work, we have made a prototype porting of PolyORB to the MaRTE OS [9]
real-time operating system and we have adapted it to the RT-EP real-time network
protocol [10]. The personality of CORBA (PolyORB-CORBA) allows the use of the
control policies of the ORB defined in PolyORB. The DSA personality of PolyORB
does not currently allow the definition of any particular control policy. For this
personality (PolyORB-DSA), a basic version of the scheduling defined in [8] has been
implemented over our real-time platform. Furthermore, GLADE 2007 has been
modified to support the mechanisms included in the second version of RT-GLADE.

In flexible scheduling environments threads are executed under contracts and the
cost of negotiating or changing them could be very high for the system. To minimize
context switches and therefore fit those requirements, RT-GLADE uses dedicated
threads that wait for the event arrivals and then process the received events. The
Leader/Followers pattern uses a similar concept, with threads that perform both
communication and processing roles, thus minimizing context switches. This pattern is
the one that is most similar to the RT-GLADE approach, and consequently it will be
used in this evaluation both for TAO and PolyORB.

A hardware platform consisting of two 800-MHz AMD Duron processors and a
dedicated 100-Mbps Ethernet has been used. The following two software platforms
have also been used:

• Linux kernel 2.6.10 with TCP/IP to evaluate the implementations of TAO
(version 5.5), PolyORB (version 2.3) with CORBA personality and
GLADE (version 2007).

• MaRTE OS 1.7 with RT-EP [10] to evaluate PolyORB-CORBA (version
2.3), PolyORB-DSA (version 2.3) and RT-GLADE (adapted from GLADE
2007).

The tests will measure the execution time of a remote operation that adds two integers
and returns the result. The measurement is carried out from the time when the call is
made until the response is returned. This operation will be carried out in two modes:
alone, and with four other clients carrying out the same operation, but at a lower
priority. The objective is not to obtain exhaustive measurements of the platform, but to
get a rough idea of the performance (predictability and overheads) that can be achieved
with the middleware. In all the tests the operation to be evaluated is executed 10,000
times, and the average, maximum, and minimum times are evaluated, together with the
standard deviation and the relative frequency of time values that are within a deviation
from the maximum of 10% of the difference between the maximum and average values.

Tables 1 and 2 show the results of the measurements taken with the Linux platforms,
using the middleware configurations that introduce the least overhead. For the case of a
single client in TAO the reactive concurrency model with a single thread in the group
has been used. In PolyORB the model with full tasking without internal threads has been
used for the experiment with one client. For the five-client case both in TAO and in

276 H. Pérez et al.

PolyORB a configuration of a group of 5 threads with a Leader/Followers model has
been used. In GLADE, a static group of threads equal to the number of clients is defined.
The priority specification model for TAO, PolyORB and GLADE was client
propagated. In order to make the middleware overhead measurements more comparable,
the temporal cost of using the net is also evaluated. Thus, Table 1 includes the average,
maximum and minimum times for the case when a message is sent and a response is
received; the program on the server side answers immediately upon reception.

Table 1. Measurements in Linux for oneclient (times in μs)

Avg. Time Max. Time Min. Time Std. Deviation 10% from Max. (%)

TAO 998 1380 914 75 0.06

PolyORB-CORBA 1424 4302 1189 373 0.01

GLADE 415 3081 340 261 0.02

Stand-alone network 129 678 118 40 0.12

Table 2. Measurements in Linux forthe highest priority client, five clients (times in μs)

Avg. Time Max. Time Min. Time Std. Deviation 10% from Max. (%)

TAO 1371 6376 889 356 0.02

PolyORB-CORBA 5399 11554 1593 1050 0.02

GLADE 1700 5953 595 496 0.12

In the results obtained for one client in Linux, it can be observed that GLADE

achieves better average and minimum response times than TAO and PolyORB, which
can be explained because it has a lighter code. The maximum times obtained for
PolyORB and GLADE in the case of one client are much higher than the average times
compared to TAO. The average numbers for one and five clients show large differences
in PolyORB and GLADE, while in TAO they are relatively similar. We can conclude
that this configuration of TAO makes a better management of the priorities and the
queues on this platform.

Tables 3 and 4 show the results of the measurements carried out over the three
implementations on the MaRTE OS/RT-EP platform. The configuration of
PolyORB-CORBA is the same as for Linux. The PolyORB-DSA configuration creates
a task explicitly to attend the remote requests. The group of threads for RT-GLADE is
configured to be equal to the number of clients. As for RT-EP, the parameter
corresponding to the delay between arbitration tokens is set to a value of 150 μs. This
value limits the overhead in the processor due to the network. A simple transmission in
the network is also evaluated for the same reason as in the case of Linux (see Table 3).

From the results obtained in the evaluation on the real-time platform, it can be
observed that, firstly, the network protocol has a greater latency and it makes the times
of a simple round-trip transmission higher than in Linux; the trade-off is that this is a
predictable network with less dispersion among the values of the measurements.

 Real-Time Distribution Middleware from the Ada Perspective 277

Furthermore, the minimum and average times of RT-GLADE for one client are also
greater than those of GLADE over Linux, although the maximum time remains within a
bound indicating a much lower dispersion. An important part of the response times
obtained for RT-GLADE is due to the network, but is also due to the operating system
and the dynamic memory manager used [11] (to make the timing predictable). If we
observe the times of RT-GLADE for five clients, we can see that only the minimum time
is worse than in GLADE, although with less difference; in contrast the average time and
specially the maximum are now clearly better. The increase in the maximum times of
RT-GLADE with respect to the case of one client is reasonable and can be justified by
the blocking times that can be suffered both in the processor and in the network.

Table 3. Measurements inMaRTE OS for oneclient (times in μs)

Avg. Time Max. Time Min. Time Std. Deviation 10% from Max. (%)

PolyORB-CORBA 2997 3012 2770 6 0.01

PolyORB-DSA 4117 4487 3835 300 42.50

RT-GLADE 1080 1151 955 23 0.03

Stand-alone network 959 964 707 3 0.01

Table 4. Measurements in MaRTE OS forthe highest priority client, five clients (times in μs)

Avg. Time Max. Time Min. Time Std. Deviation 10% from Max. (%)

PolyORB-CORBA 3527 6566 2748 727 0.11

PolyORB-DSA 4516 5299 3531 320 0.02

RT-GLADE 1000 1462 896 27 0.06

In the measurement of the times of PolyORB-CORBA over MaRTE OS we have

found a great disparity of the measurements for five clients depending on the priorities
used in them. This can be explained because of the architecture used to implement the
Leader/Followers model. This is a part which could be improved by using an
implementation model similar to TAO. In any case, the measurements reflected in
Table 4 for PolyORB-CORBA with five clients have been obtained in a best-case
scenario in which the low-priority clients are not preempted by any of the threads in the
thread pool. Referring to PolyORB-DSA, the response times obtained are comparable
to those of PolyORB-CORBA, but with higher predictability.

As a consequence of the response times of PolyORB over MaRTE OS, it is again
shown, by comparing the results with those of RT-GLADE, that the pure
implementation of the DSA can be much lighter than that of RT-CORBA. Comparing
the tests of PolyORB-CORBA for one and for five clients it can be seen that there is an
important difference between the minimum and maximum times for five clients, which
is due to the priority inversion introduced by the intermediate tasks.

278 H. Pérez et al.

5 Integration of the Distribution Middleware with a Contract-
Based Scheduling Framework

The FRESCOR (Framework for Real-time Embedded Systems based on COntRacts)
EU project [3] has the objective of providing engineers with a scheduling framework
that represents a high-level abstraction that lets them concentrate on the specification of
the application requirements, while the system transparently uses advanced real-time
scheduling techniques to meet those requirements. In order to keep the framework
independent of specific scheduling schemes, FRESCOR introduces an interface
between the applications and the scheduler, called the service contract. Application
requirements related to a given resource are mapped to a contract, which can be verified
at design time by providing off-line guarantees, or can be negotiated at runtime, when it
may or may not be admitted. As a result of the negotiation a virtual resource is created,
representing a certain resource reservation. The resources managed by the framework
are the processors, networks, memory, shared resources, disk bandwidth, and energy;
additional resources could be added in the future.

Careful use of virtual resources allows different parts of the system (whether they
are processes, applications, components, or schedulers) to use budgeting schemes. Not
only can virtual resources be used to help enforce temporal independence, but a process
can interact with a virtual resource to query its resource usage and hence support the
kinds of algorithms where execution paths depend on the available resources.

When distribution middleware is implemented on operating systems and network
protocols with priority-based scheduling, it is easy to transmit the priority at which a
remote service must be executed inside the messages sent through the network.
However, this solution does not work if more complex scheduling policies, such as the
FRESCOR framework, are used. Sending the contract parameters of the RPC handler
and the reply message through the network is inefficient because these parameters are
large in size. Dynamically changing the scheduling parameters of the RPC handler is
also inefficient because dynamically changing a contract requires an expensive
renegotiation process.

The solution proposed in [8] consisted in explicitly creating the network and
processor schedulable entities required to establish the communication and execute the
remote calls. The contracts of these entities are negotiated and created before they are
used. They are then referenced with a short identifier that can be easily encoded in the
messages transmitted. For identifying these schedulable entities the transactional
model is used and the identifier, called an Event_Id, represents the event that triggers
the activity executed by the schedulable entity.

In the current FRESCOR framework, support for the transactional model is being built.
A tool called the Distributed Transaction Manager (DTM) is a distributed application
responsible for the negotiation of transactions in the local and remote processing nodes in
a FRESCOR system that implements the contract-scheduling framework. Managing
distributed transactions cannot be done on an individual processing node because it
requires dynamic knowledge of the contracts negotiated in the other nodes, leading to a
distributed consensus problem. The objective of the Distributed Transaction Manager is to
allow the remote management of contracts in distributed systems, including capabilities

 Real-Time Distribution Middleware from the Ada Perspective 279

 for remote negotiation and renegotiation, and management of the coherence of the results
of these negotiation processes. In this way, FRESCOR provides support for distributed
global activities or transactions consisting of multiple actions executed in processing
nodes and synchronized through messages sent across communication networks.

The implementation of the DTM contains an agent in every node, which listens to
messages either from the local node or from remote nodes, performs the requested
actions, and sends back the replies. In every node there is also a DTM data structure
with the information used by the corresponding agent. Part of this information is shared
with the DTM services invoked locally from the application threads. This architecture
could benefit from the presence of a distribution middleware, by making the agents
offer operations that could be invoked remotely, thus simplifying the current need for a
special communications protocol between the agents.

The current version of the transaction manager limits its capabilities just to the
management of remote contracts. In the future, the DTM should also provide a full
support for the transactional model, integrated with the distribution middleware. For
this purpose the following services would need to be added to it:

• Specification of the full transaction with identification of its activities,
remote services and events, and contracts for the different resources
(processors and networks).

• Automatic deployment of the transaction in the middleware. This would
require:

o choosing unused Event_Ids for the transaction events
o choosing unused ports in the involved nodes, for the

communications
o creating send endpoints for the client-side of the communications,

using the desired contracts and networks
o creating receive endpoints for the reception of the reply in the

client-side of the communications, using the desired networks,
ports, and event ids.

o creating the necessary RPC handlers with their corresponding
contracts

o creating the receive endpoints of the server-side of the
communications using the desired contracts and networks

o creating the send endpoints of the server-side of the
communication using the desired contracts and networks.

All this deployment would be done by the DTM from the information of the
transaction, which could be written using a suitable deployment and configuration
language. After this initialization, the transaction would start executing, its RPCs
would be invoked and the middleware would automatically direct them through the
appropriate endpoints and RPC handlers almost transparently. We would just specify
the appropriate event ids.

With the described approach we would achieve a complete integration of the
distribution middleware and the transactional model in a system managed through a
resource reservation scheduler.

280 H. Pérez et al.

6 Conclusions and Future Work

The work presented here reports an analysis and evaluation of some implementations of
distribution middleware from the viewpoint of their suitability for the implementation
of real-time systems. Specifically, the following aspects have been highlighted: the way
remote calls are managed, the mechanisms for establishing the scheduling parameters,
and the importance of giving support to the transactions or distributable threads.

The time measurements have been carried out over Linux as the native operating
system of the middleware analysed, and over a real-time platform based on the MaRTE
operating system and the RT-EP real-time network protocol, to which PolyORB has
been ported in this work. In the measurements obtained, it can be observed that the
implementations of Ada’s DSA are lighter than the implementations of RT-CORBA.
This suggests that Ada is a good option for programming distributed systems, and that
it could find its niche in medium-sized embedded distributed real-time systems. The
measurements on the real-time platform also show that the predictability has a cost in
terms of overhead in the network and in memory management.

Furthermore, new mechanisms for contract-based resource management in a
distributed real-time system have been identified, and the necessity to integrate the
distribution middleware with them has been described, together with some ideas on
future work needed to support this integration.

Our work will continue with experimentation on the PolyORB real-time platform
that we already have, given our experience in Ada and in GLADE. The objective will
be to progress with the improvement of specific real-time aspects over this platform
both for the DSA and for RT-CORBA, and to integrate the distributed transaction
model along with their managers and the new contract-based scheduling mechanisms
for processors and networks using the ideas described in this paper. The ultimate goal
would be to make proposals for inclusion in the corresponding standards and
implementations.

References

1. Ada-Core Technologies, The GNAT Pro Company, http://www.adacore.com/
2. Aldea, M., Bernat, G., Broster, I., Burns, A., Dobrin, R., Drake, J.M., Fohler, G., Gai, P.,

González Harbour, M., Guidi, G., Gutiérrez, J.J., Lennvall, T., Lipari, G., Martínez, J.M.,
Medina, J.L., Palencia, J.C., Trimarchi, M.: FSF: A Real-Time Scheduling Architecture
Framework. In: Proc. of the 12th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2006, San Jose, CA, USA (2006)

3. FRESCOR project web page: http://frescor.org
4. Gutiérrez, J.J., González Harbour, M.: Prioritizing Remote Procedure Calls in Ada

Distributed Systems. In: Proc. of the 9th International Real-Time Ada Workshop, ACM Ada
Letters, June 1999, XIX, 2, pp. 67–72 (1999)

5. Krishnamurthy, Y., Pyarali, I., Gill, C., Mgeta, L., Zhang, Y., Torri, S., Schmidt, D.C.: The
Design and Implementation of Real-Time CORBA 2.0: Dynamic Scheduling in TAO. In:
Proc. of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS 2004), Toronto, Canada (May 2004)

6. Liu, J.: Real-Time Systems. Prentice-Hall, Englewood Cliffs (2000)

 Real-Time Distribution Middleware from the Ada Perspective 281

7. López Campos, J., Gutiérrez, J.J., González Harbour, M.: The Chance for Ada to Support
Distribution and Real Time in Embedded Systems. In: Llamosí, A., Strohmeier, A. (eds.)
Ada-Europe 2004. LNCS, vol. 3063. Springer, Heidelberg (2004)

8. López Campos, J., Gutiérrez, J.J., González Harbour, M.: Interchangeable Scheduling
Policies in Real-Time Middleware for Distribution. In: Pinho, L.M., González Harbour, M.
(eds.) Ada-Europe 2006. LNCS, vol. 4006. Springer, Heidelberg (2006)

9. MaRTE OS web page, http://marte.unican.es/
10. Martínez, J.M., González Harbour, M.: RT-EP: A Fixed-Priority Real Time Communication

Protocol over Standard Ethernet. In: Vardanega, T., Wellings, A.J. (eds.) Ada-Europe 2005.
LNCS, vol. 3555. Springer, Heidelberg (2005)

11. Masmano, M., Ripoll, I., Crespo, A., Real, J.: TLSF: A New Dynamic Memory Allocator
for Real-Time Systems. In: Proc of the 16th Euromicro Conference on Real-Time Systems,
Catania, Italy (June 2004)

12. Object Management Group. CORBA Core Specification. OMG Document, v3.0
formal/02-06-01 (July 2003)

13. Object Management Group. Realtime CORBA Specification. OMG Document, v1.2
formal/05-01-04 (January 2005)

14. Pautet, L., Tardieu, S.: GLADE: a Framework for Building Large Object-Oriented
Real-Time Distributed Systems. In: Proc. of the 3rd IEEE Intl. Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC 2000), Newport Beach, USA
(March 2000)

15. PolyORB web page, http://polyorb.objectweb.org/
16. Pyarali, I., Spivak, M., Schmidt, D.C., Cytron, R.: Optimizing Thread-Pool Strategies for

Real-Time CORBA. In: Proc. of the ACM SIGPLAN Workshop on Optimization of
Middleware and Distributed Systems (OM 2001), Snowbird, Utah (June 2001)

17. Sun Developer Network, http://java.sun.com
18. TAO web page, http://www.cs.wustl.edu/~schmidt/TAO.html
19. Tucker Taft, S., Duff, R.A., Brukardt, R.L., Plödereder, E., Leroy, P. (eds.): Ada 2005

Reference Manual. LNCS, vol. 4348. Springer, Heidelberg (2006)
20. Vergnaud, T., Hugues, J., Pautet, L., Kordon, F.: PolyORB: a Schizophrenic Middleware to

Build Versatile Reliable Distributed Applications. In: Llamosí, A., Strohmeier, A. (eds.)
Ada-Europe 2004. LNCS, vol. 3063. Springer, Heidelberg (2004)

Author Index

Alonso, Diego 158
Álvarez, Bárbara 158

Blieberger, Johann 130
Bordin, Matteo 171
Briot, Emmanuel 144
Brosgol, Benjamin M. 115

Carnevali, Laura 87
Choppy, Christine 73

de la Puente, Juan A. 1
Di Natale, Marco 15
Dissaux, Pierre 240
Drake, José M. 254

Evéquoz, Claude 59

Fahmy, Sherif F. 211
Fechete, Raul 130

Grassi, Leonardo 87
Gutiérrez, J. Javier 268

Halbwachs, Nicolas 30
Hamid, Irfan 44
Harbour, Michael González 268

Jensen, E.D. 211

Kaiser, Claude 101
Kandemir, Mahmut 185
Kienesberger, Georg 130

López, Jorge 1
López Mart́ınez, Patricia 254

Medina, Julio L. 254

Najm, Elie 44
Narayanan, Sri Hari Krishna 185

Ober, Iulian 30

Pacheco, Pablo 254
Pajault, Christophe 101
Pastor, Juan A. 158
Pérez, Héctor 268
Perrotin, Maxime 171
Petrucci, Laure 73
Pettit IV, Robert G. 199
Plantec, Alain 240
Pradat-Peyre, Jean-François 101
Pulido, José A. 1

Ravindran, Binoy 211
Raza, Aoun 226
Reggio, Gianna 73

Sangorŕın, Daniel 268
Singhoff, Frank 240

Tsiodras, Thanassis 171

Urueña, Santiago 1

Vicario, Enrico 87
Vicente-Chicote, Cristina 158
Villoing, Florian 144
Vogel, Gunther 226

Zamorano, Juan 1

	Title Page
	Preface
	Organization
	Table of Contents
	A New Approach to Memory Partitioning in On-Board Spacecraft Software
	Introduction
	Integrated Modular Avionics
	Approaches to Spatial Isolation
	Static Analysis
	Run-Time Checks
	Hardware Protection

	Kernel Architecture
	Architecture of Current Real-Time Kernels
	Needed Architectural Changes

	Modifying the Compilation Toolchain
	Basic Considerations
	Custom Linking Script
	Meta-Linker
	Prototyping

	Related Work
	Conclusions
	References

	Design and Development of Component-Based Embedded Systems for Automotive Applications
	Introduction
	Model-Based Design, Composability and AUTOSAR
	Timing Predictability, Timing Isolation and Standards
	Platform-Based Design for Architecture Selection
	What-If Analysis
	Automatic Configuration of the SW Architecture

	Conclusions
	References

	On the Timed Automata-Based Verification of Ravenscar Systems
	Introduction
	The Ravenscar Ada Profile
	The IF Model Checker
	The Mapping of Ravenscar Ada to IF
	Packages, Data and Statements
	Procedural Control Flow and Tasks
	Protected Objects
	Time and Delays
	Scheduling Policy and Timing Model
	Interrupts and the Environment

	Experimental Results
	The Case Study
	Verification Results

	Conclusions

	Operational Semantics of Ada Ravenscar
	Introduction
	Static Semantics
	Ravenscar Computational Units
	Functions on Computational Units
	Conformant PROGS Programs
	Topological Relations on Computational Units

	Dynamic Semantics
	Execution Context
	Ready Queue
	Structure of the State of a Ravenscar System
	Initial State of a Ravenscar System
	State Transitions of a Ravenscar System
	Discussion

	Conclusions
	References

	Practical, Fast and Simple Concurrent FIFO Queues Using Single Word Synchronization Primitives
	Introduction
	Related Work
	ABA Problem
	A New FIFO Algorithm
	Correctness
	Lock Freedom and Liveness
	Safety

	Experimental Results
	Conclusions
	References

	A Modelling Approach with Coloured Petri Nets
	Introduction
	Overview of the Design Method
	Analysing the System Description
	Guidelines for Identifying Modules and Constituent Features
	Case Study: Identifying Events and State Observers

	Expected Properties
	Finding Properties
	Properties of the Model Railway Case Study

	Construction of the Modular Coloured Petri Net
	Deriving the Net
	Coloured Petri Net Modelling the Railway

	Checking the Properties
	Checking the Expected and Required Properties
	The Railway Properties

	Re-engineering
	Modifying the Model
	New Version of the Railway Model

	Conclusion and Future Work
	References

	A Tailored V-Model Exploiting the Theory of Preemptive Time Petri Nets
	Introduction
	Preemptive Time Petri Nets in the Specification and Architectural Validation of Real-Time Task Sets Using the Oris Tool
	Specification of Real-Time Task Sets through Timelines
	Preemptive Time Petri Nets
	Architectural Validation through Simulation or State Space Enumeration of the pTPN Model

	Coding Process
	Supporting the Testing Process through Preemptive Time Petri Nets and the Oris Tool
	Using Preemptive Time Petri Nets within the Software Life Cycle V-Model
	Casting pTPNs within the V-Model of the Software Life Cycle

	Conclusions
	References

	Concurrent Program Metrics Drawn by Quasar
	Concurrent Program Metrics
	Quasar
	Comparing Several Versions of a Concurrent Program
	Non-deterministic Symmetric Pairing
	The Different Implementations of Non-deterministic Pairing
	The Verdict Returned by Quasar
	Metrics and Insights Derived from the Collected Data

	About Indeterminacy Estimation
	Program Code Incrementations
	The Reduction Ability as a Quality Factor

	Conclusion
	References

	A Comparison of the Object-Oriented Features of Ada 2005 and ${{\rmJava}^{\rm TM}}$
	Introduction
	Object and Class
	Encapsulation and Visibility
	Access Control
	``Final" Entities
	Separation of Interface and Implementation
	Parameter Protection
	Data Abstraction and Type Differentiation

	Modularization
	Inheritance
	Simple Inheritance
	Multiple Inheritance and Interfaces
	Covariance

	Summary of Overloading, Polymorphism and Dynamic Binding
	User-Controlled Basic Behavior
	Construction/Initialization
	Finalization

	Conclusions
	References

	A Framework for CFG-Based Static Program Analysis of Ada Programs
	Introduction
	The Library
	The World Object

	Transformation
	Element Stack
	Flow Stack
	Node Stack
	Parameter Stack

	Post Transformation
	Loop Refinement
	Connecting Gotos
	Removing Dangling Nodes

	Performance
	Conclusions and Future Work
	References

	A Type-Safe Database Interface
	Introduction
	Review of Existing SQL Solutions
	Integrity and Type-Safety in SQL Queries
	Database Schema and Query Consistency
	Syntactically Correct SQL Queries
	Bringing Type-Safety to SQL Queries

	Safe Execution of SQL Queries
	Network Failures and Database Connection
	Caching
	SQL Transactions and Error Handling
	Multi-tasking Issues
	Suggested Code Organization

	Conclusion
	References

	${{\rmStateML}^{\rm +}}$: From Graphical State Machine Models to Thread-Safe Ada Code
	Introduction
	Goals of the Paper

	${{\rmStateML}^{\rm +}}$: Improving FSM Modeling Capabilities
	The ${{\rmStateML}^{\rm +}}$ Extended Meta-Model
	Building Graphical ${{\rmStateML}^{\rm +}}$ Models: A Case Study on Robotics

	From ${{\rmStateML}^{\rm +}}$ Models to Thread-Safe Ada Code
	Decoupling State Activities Execution from State-Machine Management: Using the Reactor Pattern
	Model-To-Ada Transformation: Implementing the $Reactor Pattern$

	Conclusions and Future Research
	References

	Experience in the Integration of Heterogeneous Models in the Model-driven Engineering of High-Integrity Systems
	Introduction
	The Overall Picture

	System Models as an Integration Framework
	Semantic Preservation in Practice
	Data Semantics Preservation
	Integration of Generated Code
	Managing Cross-Cutting Concerns

	Results and Discussion
	Conclusion

	A Systematic Approach to Automatically Generate Multiple Semantically Equivalent Program Versions
	Introduction
	Detailed Analysis
	Basic Definitions
	Data Tile Formation
	Iteration Set and Co-tile Formation
	Data Dependences Across Iteration Sets
	Re-ordering Iteration Sets
	Generating Multiple Versions
	Data Tile Selection
	Handling Multiple Arrays

	Implementation and Experiments
	Concluding Remarks

	Increasing Confidence in Concurrent Software through Architectural Analysis
	Introduction
	Overview of Colored Petri Nets for Modeling Concurrency
	Related Works

	Modeling UML Architectures with Colored Petri Nets
	Case Study: Rover Control
	Rover Control Software Architecture
	CPN Architecture Representation
	Analysis of Rover Software Architecture

	Conclusions and Future Research
	References

	Fast Scheduling of Distributable Real-Time Threads with Assured End-to-End Timeliness
	Introduction
	Models and Objective
	Algorithm Rationale
	Algorithm Description
	Algorithm Properties
	Experimental Results
	Conclusions

	RCanalyser: A Flexible Framework for the Detection of Data Races in Parallel Programs
	Introduction
	Related Work
	Terminology
	Threads
	Race Condition (RC)
	Shared Accesses
	Critical Section (CS)
	Locks and Thread Synchronisation
	Statements Exceuting in Parallel

	Design and Implementation
	Bauhaus Infrastructure
	Escape Analysis
	Lock and Shared Variable Analyses
	Thread Analysis
	Variable Lock Relation
	Detection of Data Races
	Prioritization and Backtraces

	Experimental Results and Evaluation
	Discussion of Results

	Conclusion and Future Work

	Can We Increase the Usability of Real Time Scheduling Theory? The Cheddar Project
	Introduction
	Increasing the Usability of Real Time Scheduling Theory: Easing Analysis with Flexible Tools
	Increasing the Usability of Real Time Scheduling Theory: From the Engineering Process to the Performance Analysis
	Investigating AADL Suitability for Real Time Scheduling Theory
	Memory Footprint Analysis with AADL
	About Interoperability between AADL Tools

	Increasing the Usability of Real Time Scheduling Theory: When No Feasibility Test Exists
	A Language for the Modelling of Real Time Schedulers
	Engineering Process of a Cheddar Scheduler Model: From the Model to the Scheduling Simulation

	Conclusion and Ongoing Works

	An Ada 2005 Technology for Distributed and Real-Time Component-Based Applications
	${\rm Introduction}^{\rm 1}$
	Real-Time Component-Based Development
	Reference Model of the Technology
	Architecture of a Component Implementation
	Practical Experience
	Conclusions and Future Work
	References

	Real-Time Distribution Middleware from the Ada Perspective
	Introduction
	Real-Time Distribution Middleware
	RT-CORBA Model
	Ada DSA Model
	Implementations Under Study

	Analysis of Distribution Middleware Implementations
	Implementations of RT-CORBA and DSA
	Discussion

	Evaluating Distribution Middleware Implementations
	Integration of the Distribution Middleware with a Contract-Based Scheduling Framework
	Conclusions and Future Work
	References

	Author Index

