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Abstract. Video object detection and tracking in surveillance scenar-
ios is a difficult task due to several challenges caused by environmental
variations, scene dynamics and noise introduced by the CCTV camera
itself. In this paper, we analyse the performance of an object detector
and tracker based on background subtraction followed by a graph match-
ing procedure for data association. The analysis is performed based on
the CLEAR dataset. In particular, we discuss a set of solutions to im-
prove the robustness of the detector in case of various types of natural
light changes, sensor noise, missed detection and merged objects. The
proposed solutions and various parameter settings are analysed and com-
pared based on 1 hour 21 minutes of CCTV surveillance footage and its
associated ground truth and the CLEAR evaluation metrics.

1 Introduction

People and vehicle tracking in surveillance scenarios is an important require-
ment for many applications like traffic analysis, behaviour monitoring and event
detection. The tracking task is usually performed in two steps: first objects of
interest (targets) are detected in each frame of the sequence, next the detections
are linked from frame to frame in order to obtain the track of each targets.

In real-world surveillance scenarios the biggest challenges are due to sensor
noise, inter-target occlusions and natural environmental changes in the scene.
The environmental changes are usually caused by global illumination variations
due to the night-and-day cycle, passage of clouds, cast and self shadows, vehicle
headlights and street lamps. Also, movement of vegetation due to wind, rain and
snow fall can have a major impact on the reliability of an object detector.

1.1 Object Detection

Object detectors can be divided into two main classes, namely background model
based and object model based. In the first class the detection is performed by
learning a model of the background and then by classifying as objects of interest
connected image regions (blobs) that do not fit the model [1,2,3]. This solution
is mainly used to detect moving objects in the scene. In the second class the
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detector learns a model of the objects of interest and then the model is used by
a classifier that is generally applied to each frame of the sequence [4]. Although
this approach is also appropriate in applications with non-static cameras, it can
only detect object classes belonging to the training dataset.

A popular background model based adaptive method uses Gaussian Mixture
Models (GMM) [5,6,7]. The distribution of a colour of each pixel is approximated
by a Gaussian mixture where the parameters are updated to cope with slow
changes in natural light conditions. However, when an object becomes static
it is gradually assimilated into the background model. The update speed for
the parametric model is usually a trade-off between a fast update required to
cope with sudden illumination changes and a slow update necessary to allow
the detection of slow or stopping objects. A possible solution is to modify the
learning rate in the region around a moving object depending on its speed [5].
Also, edge information can help detecting objects when they become static [6].
Once the edge structure of the background is learned, a pixel is classified as
foreground by comparing its gradient vector with the gradient distribution of
the background model.

A major problem with background-based detection algorithms is the difficulty
to deal with object interactions, such as object proximity and occlusions. In such
a case, two objects that are close are likely to generate a merged foreground
region that produces one detection only, instead of multiple detections. However,
when an occlusion is partial, projection histograms can be used to split the
merged objects [5]. Also, motion prediction based on trajectory data can help to
estimate the likelihood of an occlusion thus allowing a single blob to represent
two objects [8].

Unlike background model based methods, object model based techniques [4,9]
learn local representative features of the object appearance and perform de-
tection by searching for similar features in each frame. Edgelets [10] or Haar
wavelets [11] are used in Adaboost algorithms as weak object classifiers that
combined in a cascade form a strong classifier [12]. Approaches based on learned
classifiers are also used after background subtraction to categorize the detections
(i.e. to differentiate pedestrians from vehicles) [13]. Similarly, Support Vector
Machines using simple object features, such as object size and object width-
height ratio, can be used [8].

1.2 Object Tracking

Once object detection is performed, data association is needed to link different
instances of the same object over time. Generating trajectories requires an esti-
mate of the number of targets and of their position in the scene. As modelling of
all the possible object interactions is (in theory) necessary, the tracking problem
has a complexity that is exponential with the number of targets in the scene.
Joint probabilistic data association filter (JPDA) [14] is a widely used data as-
sociation technique. An alternative is to model the problem with a graph [15]
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(a) (b)

Fig. 1. CLEAR dataset scenarios for the pedestrian and vehicle tracking task. (a)
Scenario 1: Broadway Church (BC). (b) Scenario 2: Queensway (QW).

where the nodes are associated to the detections and the edges represent the
likelihood that two detections in consecutive frames are generated by the same
object. Smoothing or target state estimation can be performed by initializing a
Kalman Filter for each target [5] and by assuming Gaussianity of the posterior
density at every time step. This limiting assumption can be alleviated by using
Particle Filters [7]. An alternative to probabilistic methods is Mean Shift (MS),
a non-parametric kernel-based method used for target localization [8]. Smooth-
ing and clutter filtering can also be performed prior to data association using a
Probability Hypothesis Density (PHD) filter [16], a Bayesian recursive method
with linear complexity (with the number of targets). The PHD filter approxi-
mates the multi-target statistics by propagating only the first order moments of
the posterior probability.

1.3 Detection and Tracking Algorithm Under Evaluation

The detection and tracking algorithm we evaluate in this paper [2] performs
object detection using a statistical background model [3] and data association
using graph matching [15]. Because performance varies depending on different
environmental conditions, the testing and evaluation of a detection and tracking
algorithm requires a large amount of (annotated) data from real word scenarios.
The CLEAR dataset provides a large testbed making it easier to evaluate how
different features impact on the final detection and tracking results.

In this paper we analyse the results of a total of 13 runs on the complete
CLEAR dataset consisting of 50 sequences with ground truth annotation, for a
total of 121.354 frames per run (i.e., approximately 1 hour 21 minutes of recorded
video). To reduce the computational time we processed the sequences at a half
the original resolution (i.e., 360x240 pixels). The dataset consists of outdoor
surveillance sequences of urban areas (Fig. 1) and the annotation provides the
bounding boxes of pedestrians and vehicles in the scene. The complexity of the
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Fig. 2. Examples of challenging situations for the pedestrian and vehicle detection and
tracking task in the CLEAR dataset (the ground-truth detection are shown in green).
(a) Objects in low visibility regions. (b) Objects in close proximity. (c) Objects with
low contrast compared to the background. (d) Occluded objects.

CLEAR dataset is related to the challenges discussed earlier in this section. A
set of samples illustrating these difficult situations is shown in Fig. 2: objects
with low visibility located in the shade generated by a building (Fig. 2 (a));
merged detections (Fig. 2 (b)) due to either the physical closeness or to the
camera perspective view; objects with little contrast compared to the background
(Fig. 2 (c)); partial and total occlusions (Fig. 2 (d)).

The detection and tracking performance is measured by means of a set of
scores (i.e., Multi-Object Detection Precision (MODP), Detection Accuracy
(MODA), Tracking Precision (MOTP) and Tracking Accuracy (MOTA)) defined
by the CLEAR evaluation protocol [17]. These scores give a weighted summary
of the detection and tracking performance in terms of False Positives (FP), False
Negatives (FN) and object identity switches.

1.4 Organization of the Paper

This paper is organized as follows. Section 2 discusses the improvements in the
detection algorithm under natural environmental changes (using background
model update and edge analysis), illumination flickering (using spatio-temporal
filtering), sensor noise (using noise modelling), miss-detections and clutter (us-
ing the PHD filter), and merged objects (using projection histograms). Finally,
in Section 3 we discuss the results and we draw the conclusions.



164 M. Taj, E. Maggio, and A. Cavallaro

(a) (b) (c)

Fig. 3. Comparison of background subtraction results with and without update of the
background model. (a) Original scene, (b) sample result without background update
and (c) sample result with background update.

2 Performance Evaluation

2.1 Natural Environmental Changes

As described in Section 1, rapidly changing illumination conditions and inap-
propriate background modelling can lead to a situation where most of the pixels
are classified as foreground pixels (Fig. 3). For background modelling, we use
a linear update strategy with a fixed update factor. At time t the background
model I

(bk)
t−1 is updated as I

(bk)
t = αIt + (1 − α)I(bk)

t−1 , where It−1 is the previous
frame and α is the update factor. The choice of α depends on a trade-off between
update capabilities and resilience to merging stopped or slow foreground objects
in the background model. Figure 4 shows the performance comparison varying
α in the range [0.00005, 0.005]. Increasing α from α = 0.00005 to α = 0.0005
precision and accuracy improve (Fig. 4); FPs are reduced without a significative
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Fig. 4. Comparison of tracking results with different update factors for the background
model. (a) Pedestrian tracking. (b) Vehicle tracking.
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α = 0.00005 α = 0.0005 α = 0.005

Fig. 5. Sample tracking results with different update factors for the background model.
A reduction of False Positives is observed by increasing α (from left to right). When
α = 0.005 no False Positives are returned at the cost of one False Negative.

(a) (b)

Fig. 6. Sample tracking results with and without change detection enhanced by edge
analysis (EA). (a) Without edge analysis, (b) with edge analysis.

increase of FNs. However, when increasing α to 0.005, the accuracy improves but
the precision decreases for pedestrian tracking. Figure 5 shows how the model
update manages to reduce FPs; however, the car that stopped on the road be-
comes part of the background model thus producing a FN. A value of α = 0.005
is therefore a good compromise between accuracy and precision.

To avoid erroneously including slow moving objects into the background, we
use Edge Analysis (EA). EA enhances the difference image obtained after back-
ground subtraction using an edge detector. In our implementation we compute
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(a) (b) (c)

Fig. 7. Comparison of background subtraction results obtained with and without edge
analysis. (a) Without edge analysis the results contain a large number of spurious blobs.
(b) With edge analysis the spurious blobs are partially removed, however this generates
holes in the pedestrian and an enlarged mask for the vehicle. (c) Superimposed result
showing the extra pixels (halo) around the vehicle.

the edges by taking the difference between consecutive frames. Figure 6 shows an
example of a correct detection of a vehicle despite it had stopped. The price to
pay for these correct detections is an artificial enlargement of the blobs produced
by fast moving objects (Fig. 7).

2.2 Flickering Illumination

To reduce the effect on the object detector of short-term illumination variations
we use a spatio-temporal filtering (STF) on the result of the frame difference. An
n-frame window is used to smooth the output using past and future information.
Figure 8 shows the comparative results using pixel-wise temporal filtering. The
improvements in terms of accuracy and precision are of 58% and 4%, respectively,
for vehicle detection and of 2% and 7%, respectively, for pedestrian tracking.

2.3 Sensor Noise

The video acquisition process introduces noise components due to the CCTV
cameras themselves. To reduce the effect of the sensor noise, the simplest solution
is to threshold the frame difference, either using luminance information only or
using the three colour channels. The problem with using a fixed threshold is
the inability of the algorithm to adapt to different illumination conditions and
therefore is not appropriate for long sequences or across different sequences, as
manual tuning is necessary. An alternative is to model the noise assuming that
its distribution is Gaussian [3,18] or Laplacian [19].

In this work we performed object detection assuming additive white Gaussian
noise on each frame and using a spatial observation window [3]. To account for
camera perspective and to preserve small blobs associated to objects in regions
far from the camera (top of the frame), unlike our previous work [2], we learn
or adapt σ according to the spatial location [1]. We divide the image into three
horizontal regions and apply three different multipliers to σ, namely 0.75, 1 and
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Fig. 8. Comparison of tracking results with and without spatio-temporal filtering
(STF). (a) Pedestrian tracking, (b) vehicle tracking. The scores show a significant
improvement especially in terms of accuracy.
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Fig. 9. Comparison of tracking results by changing the model parameter of the sensor
noise. (a) Pedestrian tracking. (b) Vehicle tracking.

1.25. The amplitude of the noise (σ = 0.8) was estimated experimentally. Fig-
ure 9 shows the impact of σ on vehicle and pedestrian tracking. The value σ = 1.0
produces better results for pedestrians but also an important performance de-
crease in terms of accuracy for vehicle tracking. Figure 10 shows sample detection
results: the highest value of σ does not allow the detection of the pedestrians,
whereas with σ = 0.8 the classification of most of the pixels belonging to the
object is correct.
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(a) (b) (c) (d)

Fig. 10. Comparison of background masks of pedestrians by changing the model of the
sensor noise. (a) σ = 1.2, (b) σ = 1.0, (c) σ = 0.8. (d) Sample tracking results.

2.4 Filtering Clutter and Miss-Detections

To mange the intrinsic exponential complexity of the multi-target tracking prob-
lem we recently proposed to use the PHD filter, a tracking algorithm that
achieves linear complexity by propagating only the first order statistics of the
multi-target posterior. This spatio-temporal filter is able to model birth and
death of targets, background clutter (i.e., FP), miss detections (i.e., FN) and
the spatial noise on the detections. Figure 11 shows the comparative results of
introducing the PHD spatio-temporal filtering stage at the detection level. In
vehicle tracking, the PHD filter allows for a 6% improvement in accuracy and
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Fig. 11. Comparison of tracking results with and without PHD Filter. (a) Pedestrian
tracking: enabling the PHD filter the tracker achieves higher precision scores. (b) Ve-
hicle tracking: the tracker achieves both higher precision and accuracy scores.
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Fig. 12. Comparison of tracking results obtained by splitting the blobs associated
to more than one target using projection histograms. (a) Pedestrian tracking: small
decrease in the scores. (b) Vehicle tracking: large accuracy improvement.

2% improvement in precision. In pedestrian tracking, there is 2% increase in
precision whereas there is no significant change in accuracy.

2.5 Merged Objects

Multiple objects in proximity to each other may be grouped into one blob only
by background subtraction based detection algorithms. In order to maintain a
separate identity for these objects, a possible solution is to analyse the histograms

Fig. 13. Sample tracking results obtained with and without blob spitting using pro-
jection histograms. Top row: without blob splitting. Bottom row: with blob splitting.
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Fig. 14. Sample tracking results on Broadway Church (BC) and Queensway(QW) sce-
narios

of the pixels of a blob projected on one of the two Cartesian coordinates [20]. This
solution assumes that the modes of the histogram correspond to the different
pedestrians that can be split by separating the modes.

Figure 12 shows the tracking performance comparison with and without the
use of the projection histograms based blob splitting. The impact of this pro-
cedure on the scores is biased by the vehicle-pedestrian classification. As the
classification depends on the width-height ratio of the bounding boxes, the split-
ting allows to assign the correct label to group of pedestrians and therefore the
accuracy of vehicle tracking increases by 16%. However, previous errors assigned
to the vehicle tracking scores are now transferred to pedestrian tracking. An
example of tracks obtained with and without splitting is shown in Figure 13.
The merged blobs associated to the two pedestrians on the right are constantly
split by analysing the projection histograms.

To conclude, Fig. 14 shows sample detection and tracking results generated
by the proposed framework on the BC and QW scenarios under different illumi-
nation conditions.

2.6 Failure Modes

Figure 15 shows three failure modalities of the proposed tracker. In Fig. 15 (a
and b) two objects are merged and the use of the projection histograms based
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(a) (b)

(c) (d)

Fig. 15. Sample failure modalities on the CLEAR Broadway Church (BC) and
Queensway (QW) scenarios (red boxes indicate the areas of the frame where the failure
occurred). Top row: merged objects. Bottom left: missed detections caused by small
objects. Bottom-right: object incorporated into the background model.

splitting does not help as the objects are not merged along the horizontal axis.
A possible solution could be the use of a body part detector to estimate the
number of targets in a blob. Figure 15 (c) shows missed detections caused by
(i) static, (ii) small and (iii) similar-to-the-background objects. Figure 15(d)
shows a failure due to an occlusion. To overcome this problem, information from
multiple cameras could help disambiguating the occlusion.

3 Conclusions

In this paper we analysed major challenges of video tracking in real-world surveil-
lance scenarios. Starting from this analysis and a well-tested tracking platform,
we evaluated the inclusion of a set of new features into the framework. The main
added features are a background model update strategy, a spatio-temporal fil-
tering, edge analysis, a PHD filtering step and splitting blobs containing nearby
objects by means of projection histograms. The evaluation was performed on
the CLEAR dataset and showed that the new features improve the accuracy
and precision of the tracker by 76% and 50%, respectively. Further work in-
cludes the improvement of the vehicle-pedestrian classification step by means of
a dedicated object classifier.
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