
ompP: A Profiling Tool for OpenMP�

Karl Fürlinger and Michael Gerndt

Institut für Informatik,
Lehrstuhl für Rechnertechnik und Rechnerorganisation

Technische Universität München
{Karl.Fuerlinger, Michael.Gerndt}@in.tum.de

Abstract. In this paper we present a simple but useful profiling tool for
OpenMP applications similar in spirit to the MPI profiler mpiP [16]. We
describe the implementation of our tool and demonstrate its functionality
on a number of test applications.

1 Introduction

For developers of scientific and commercial applications it is essential to un-
derstand the performance characteristics of their codes in order to take most
advantage of the available computing resources. This is especially true for par-
allel programs, where a programmer additionally has to take issues such as load
balancing, synchronization and communication into consideration. Accordingly,
a number of tools with varying complexity and power have been developed for
the major parallel programming languages and systems.

Generally, tools collect performance data either in the form of traces or pro-
files. Tracing allows a more detailed analysis as temporal characteristics of the
execution is preserved, but it is usually more intrusive and the analysis of the
recorded traces can be involved and time-consuming. Profiling, on the other
hand, has the advantage of giving a concise overview where time is spent while
causing less intrusion.

The best-known tracing solution for MPI is Vampir [12] (now Intel Trace
Analyzer [6]) while mpiP [16] is a compact and easy to use MPI profiler. Both
Vampir and mpiP rely on the MPI profiling interface that allows the intercep-
tion and replacement of MPI routines by simply re-linking the user-application
with the tracing or profiling library. Unfortunately no similar standardized pro-
filing or performance analysis interface exists for OpenMP yet, making OpenMP
performance analysis dependant on platform- and compiler specific mechanisms.

Fortunately, a proposal for a profiling interface for OpenMP is available in the
form of the POMP specification and an instrumenter called Opari [10] has been
developed that inserts POMP calls around instrumented OpenMP constructs.
The authors of POMP and Opari also provide a tracing library, while we have
implemented a straightforward POMP-based profiler that is similar in spirit to
mpiP and which accordingly we call ompP [13].
� This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG)

under contract GE1635/1-1.

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 15–23, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 K. Fürlinger and M. Gerndt

The rest of the paper is organized as follows: In Sect. 2 we describe the design
and implementation of our tool and in Sect. 3 we demonstrate its functionality on
some example programs. Finally in Sect. 4 we review related work, we conclude
and present ideas for future work in Sect. 5.

2 Tool Design and Implementation

In this section we present the design and implementation of our profiling tool
ompP.

2.1 Instrumentation

Opari [10] is an OpenMP source-to-source instrumenter for C, C++ and Fortran
developed by Mohr et al. that inserts calls to a POMP compliant monitoring li-
brary around OpenMP constructs. For each instrumented OpenMP construct
Opari creates a region descriptor structure that contains information such as the
name of the construct, the source file and the begin and end line numbers. Each
POMP_* call passes a pointer to the descriptor of the region being affected. In the
example shown in Fig. 1, Opari creates one region descriptor for the parallel region
and this descriptor is used for the POMP_Parallel_[fork,join,begin,end] and
also for the POMP_Barrier_[Enter,Exit] calls. The barrier is added by Opari in
order to measure the load imbalance in the parallel region, similar implicit barriers
are added to OpenMP worksharing constructs.

POMP_Parallel_fork [master]
�
�
enter

�
���������������

main
#pragma omp parallel {

POMP_Parallel_begin [team]
�
�������

body

POMP_Barrier_Enter [team]
�
�
ibarr

#pragma omp barrier
POMP_Barrier_Exit [team]

POMP_Parallel_end [team]
�
�
exit

}
POMP_Parallel_join [master]

Fig. 1. Instrumentation added by Opari for the OpenMP parallel construct. The
original code is shown in boldface, the square brackets denote the threads that execute
a particular POMP_* call. The right part shows the pseudo region nesting used by ompP.

2.2 Performance Data Collection

Our profiler keeps track of counts and inclusive times for the instrumented
OpenMP constructs. In order to simplify performance data bookkeeping (the
same region descriptor can be used in a multitude of POMP_* calls), each Opari
region is broken down into smaller conceptual “pseudo” regions and performance

ompP: A Profiling Tool for OpenMP 17

data (i.e, timestamps and execution counts) are recorded on the basis of these
pseudo regions. In the example shown in Fig. 1, the pseudo regions are main,
body, enter, exit and ibarr.

Instead of keeping track of all possible POMP_* calls for the individual Opari
regions there are only two events for a pseudo region, namely enter and exit.
For an enter event we record the enter timestamp (wall-clock time) that is later
used in the exit event to increment the summed execution time by the elapsed
time. Additionally a counter is incremented to count the number of executed
instances of the pseudo region.

seq main body ibarr enter exit

MASTER ×
ATOMIC ×
BARRIER ×
FLUSH ×
USER_REGION ×
LOOP × ×
SECTIONS × × ×
SINGLE × × ×
CRITICAL × × × ×
WORKSHARE × ×
PARALLEL × × × × ×
PARALLEL_LOOP × × × × ×
PARALLEL_SECTIONS × × × × × ×
PARALLEL_WORKSHARE × × × × ×

Fig. 2. List of pseudo regions for the different OpenMP constructs

A list of pseudo regions for the different Opari regions is shown in Fig. 2, the
first column gives the name of the corresponding OpenMP construct as reported
by ompP (LOOP refers to the for construct in C and the do construct in Fortran).

The pseudo regions have the following semantic meaning:

main Corresponds to the main region of the construct (unless the region is
executed by one thread only then this role is taken by seq), if the construct
has nested sub-regions, this refers to the “outer” part of a construct. An
example is a sections construct that contains one or more section blocks.

body Corresponds to the “inner” part of a construct, for example a section
region inside a sections directive.

ibarr Corresponds to the implicit barrier added by Opari to worksharing con-
structs (unless a nowait clause is present) to measure load imbalance.

enter Allows the measurement of the time required to enter a construct. For
critical sections this is the waiting time at the entry of the critical section. For
parallel sections (and combined parallel worksharing regions) this measures
the thread startup overhead.

18 K. Fürlinger and M. Gerndt

exit Measures the time required to leave a construct. For critical sections this
is the time required for leaving the critical section.1 For parallel sections
and combined parallel worksharing constructs this corresponds to the thread
teardown overhead.

seq Measures the sequential execution time for a construct, i.e., the time spent
by the master thread in a master construct or the time passing between
POMP_Fork and POMP_Join in a parallel construct or combined parallel
worksharing constructs.

Performance data is collected on a region stack basis. That is, similar to a call-
path profile [8,3] where performance data is attributed not to a function itself
(that would be a flat profile) but rather to the call-path that leads to a function,
a stack of entered Opari regions is maintained and data is attributed to the
stack that leads to a certain region. This region stack is currently maintained for
POMP regions only, i.e., only automatically instrumented OpenMP constructs
and user-instrumented regions2 are placed on the stack, general functions or
procedures are not handled unless manually instrumented by the user.

Including all called functions in our region stack would certainly be useful.
However, this requires us to either perform a stackwalk (as mpiP does) or make
use of compiler-supplied function instrumentation (i.e., the -f instrument-
functions for the GNU compiler collection). Note that in either approach un-
wanted exposition to the compiler’s implementation of the OpenMP standard
(e.g., compiler outlining of parallel regions) has to be expected.

2.3 Performance Data Presentation

The performance data collected by ompP is kept in memory and written to a
report file when the program finishes. The report file has the following sections:

– A header containing general information such as date and time of the pro-
gram run.

– A list of all identified Opari regions with their type (PARALLEL, ATOMIC,
BARRIER, . . .) source file and line number information.

– A region summary list where performance data is summarized over the
threads in the parallel execution. This list is sorted according to summed
execution time and is intended to enable the developer to quickly identify
the most time-consuming regions (and thus the most promising optimization
targets).

– A detailed region summary for each identified region and for a specific region
stack. This information allows the identification of load imbalances in the
execution time and many other causes of inefficient or incorrect behavior.

1 Usually one doesn’t expect much waiting time at the end of a critical section. How-
ever, a thread might incur some overhead for signaling the critical section as “free”
to other waiting threads.

2 Users can instrument arbitrary regions by using the pomp inst begin(name) and
pomp inst end(name) pragmas.

ompP: A Profiling Tool for OpenMP 19

– A region summary for each region, where data is summed over all different
region stacks that lead to the particular region (i.e., the flat profile for the
region).

To produce a useful and concise profiling report, data are not reported as
times and counts for each individual pseudo regions but specific semantic names
are given according to the underlying Opari region. The following times and
counts are reported:

– execT and execC count the number of executions and the total inclusive
time spent for each thread (this is derived from the main or body pseudo
region depending on the particular OpenMP construct).

– exitBarT and exitBarC are derived from the ibarr pseudo region and cor-
respond to time spent in the implicit “exit barrier” in worksharing constructs
or parallel regions. Analyzing the distribution of this time reveals load im-
balances.

– startupT and startupC are defined for the OpenMP parallel construct
and for the combined parallel work-sharing constructs (parallel for and
parallel sections and parallel workshare), the data is derived from
the enter pseudo region. If large fraction of time is spent in startupT and
startupC is high, this indicates that a parallel region was repeatedly exe-
cuted (maybe inside a loop) causing high overhead for thread creation and
destruction.

– shutdownT and shutdownC are defined for the OpenMP parallel construct
and for the combined parallel work-sharing constructs, the data is derived
from the exit pseudo region. Its interpretation is similar to startupT and
startupC.

– singleBodyT and singleBodyC are reported for single regions and report
the time and execution counts spent inside the single region for each thread,
the data is derived from the body pseudo region.

– sectionT and sectionC are reported for a sections construct and give the
time and counts spent inside a section construct for each thread. The data
is derived from the body pseudo region.

– enterT, enterC, exitT and exitC give the counts and times for entering
and exiting critical sections, the data is derived from the enter and exit
pseudo regions.

3 Application Examples

We report on a number of experiments that we have performed with ompP, all
measurements have been performed on a single 4-way Itanium-2 SMP systems
(1.3 GHz, 3 MB third level cache and 8 GB main memory), the Intel compiler
version 8.0 was used.

20 K. Fürlinger and M. Gerndt

3.1 APART Test Suite (ATS)

The ATS [11] is a set of test applications (MPI and OpenMP) developed within
the APART 3 working group to test the functionality of automated and manual
performance analysis tools. The framework is based on functions that generate
a sequential amount of work for a process or thread and on a specification of
the distribution of work among processes or threads. Building on this basis,
individual programs are generated that exhibit a certain pattern of inefficient
behavior, for example “imbalance in parallel region”.

Previous work already tested existing OpenMP performance analysis tools with
respect to their ability to detect the performance problems in the ATS framework
[2]. With Expert [17], also a POMP-based tool was tested and generally with ompP
a developer is able to detect the same set of OpenMP related problems as Expert
(although with Expert the process is somewhat more automated).

The ompP output below is from a profiling run for the ATS program that
demonstrates the “imbalance in parallel loop” performance problem. Notice the
exitBarT column and the uneven distribution of time with respect to threads
{0,1} and {2,3}. This example is typical for a number of load imbalance problems
that are easily spottable by analyzing the exit barrier.

R00003 LOOP pattern.omp.imbalance_in_parallel_loop.c (15--18)
001: [R0001] imbalance_in_parallel_loop.c (17--34)
002: [R0002] pattern.omp.imbalance_in_parallel_loop.c (11--20)
003: [R0003] pattern.omp.imbalance_in_parallel_loop.c (15--18)

TID execT execC exitBarT exitBarC
0 6.32 1 2.03 1
1 6.32 1 2.02 1
2 6.32 1 0.00 1
3 6.32 1 0.00 1
* 25.29 4 4.05 4

3.2 Quicksort

Süß and Leopold compare several parallel implementations of the Quicksort
algorithm with respect to their efficiency in representing its recursive divide-
and-conquer nature [15]. The code is now part of the OpenMP source code
repository [1] and we have analyzed a version with a global work stack (called
sort_omp_1.0 in [15]) with ompP. In this version there is a single stack of work
elements (sub-sequences of the vector to be sorted) that are placed on or taken
from the stack by the threads. Access to the stack is protected by critical section.
The ompP output below shows the two critical sections in the code and it clearly
indicates that a considerable amount of time is spent due to critical section con-
tention. The total execution time of the program (summed over threads) was
61.02 seconds so the 9.53 and 6.27 seconds represent a considerable amount.

3 Automated Performance Analysis: Real Tools.

ompP: A Profiling Tool for OpenMP 21

R00002 CRITICAL cpp_qsomp1.cpp (156--177)
001: [R0001] cpp_qsomp1.cpp (307--321)
002: [R0002] cpp_qsomp1.cpp (156--177)

TID execT execC enterT enterC exitT exitC
0 1.61 251780 0.87 251780 0.31 251780
1 2.79 404056 1.54 404056 0.54 404056
2 2.57 388107 1.38 388107 0.51 388107
3 2.56 362630 1.39 362630 0.49 362630
* 9.53 1406573 5.17 1406573 1.84 1406573

R00003 CRITICAL cpp_qsomp1.cpp (211--215)
001: [R0001] cpp_qsomp1.cpp (307--321)
002: [R0003] cpp_qsomp1.cpp (211--215)

TID execT execC enterT enterC exitT exitC
0 1.60 251863 0.85 251863 0.32 251863
1 1.57 247820 0.83 247820 0.31 247820
2 1.55 229011 0.81 229011 0.31 229011
3 1.56 242587 0.81 242587 0.31 242587
* 6.27 971281 3.31 971281 1.25 971281

To improve the performance of the code, Süß and Leopold implemented a
second version using thread-local stacks to reduce the contention for the global
stack. We also analyzed the second version with ompP and the timing result for
the two critical sections appears below.

In this version the overhead with respect to critical sections is clearly smaller
than the first one (enterT and exitT have been improved by about 25 percent)
The overall summed runtime reduces to 53.44 seconds, an improvement of about
12 percent, which is in line with the results reported in [15]. While this result
demonstrates a nice performance gain with relatively little effort, our analysis
clearly indicates room for further improvement; an idea would be to use lock-free
data structures.

R00002 CRITICAL cpp_qsomp2.cpp (175--196)
001: [R0001] cpp_qsomp2.cpp (342--358)
002: [R0002] cpp_qsomp2.cpp (175--196)

TID execT execC enterT enterC exitT exitC
0 0.67 122296 0.34 122296 0.16 122296
1 2.47 360702 1.36 360702 0.54 360702
2 2.41 369585 1.31 369585 0.53 369585
3 1.68 246299 0.93 246299 0.37 246299
* 7.23 1098882 3.94 1098882 1.61 1098882

R00003 CRITICAL cpp_qsomp2.cpp (233--243)
001: [R0001] cpp_qsomp2.cpp (342--358)
002: [R0003] cpp_qsomp2.cpp (233--243)

22 K. Fürlinger and M. Gerndt

TID execT execC enterT enterC exitT exitC
0 1.22 255371 0.55 255371 0.31 255371
1 1.16 242924 0.53 242924 0.30 242924
2 1.32 278241 0.59 278241 0.34 278241
3 0.98 194745 0.45 194745 0.24 194745
* 4.67 971281 2.13 971281 1.19 971281

4 Related Work

A number of performance analysis tools for OpenMP exist. Vendor specific tools
such as Intel Thread Profiler [5] and Sun Studio [14] are usually limited to
the respective platform but can make use of details of the compiler’s OpenMP
implementation.

Expert [17] is a tool based on POMP that performs tracing of hybrid MPI
and OpenMP applications. After a program run traces are analyzed by Expert
which performs an automatic search for patterns of inefficient behavior. Another
POMP-based profiler called PompProf is mentioned in [4] but no further details
are given.

TAU [7] is also able to profile OpenMP applications by utilizing the Opari in-
strumenter. TAU additionally profiles user functions, provides support for hard-
ware counters and includes a visualizer for performance results. ompP differs in
the way performance data is presented. We believe that due to its simplicity,
limited purpose and scope, ompP might be easier to use for programmers want-
ing to get an overview of the behavior of their OpenMP codes that the more
complex and powerful TAU tool set.

5 Conclusion and Future Work

We have presented our OpenMP profiler ompP. The tool can be used to quickly
identify regions of inefficient behavior. In fact by analyzing execution counts
the tool is also useful for correctness debugging in certain cases (for example to
verify that a critical section is actually entered a certain, known number of times
for given input data).

An important benefit is the immediate availability of the textual profiling
report after the program run, as no further post-processing step is required.
Furthermore the tool is naturally very portable and can be used on virtually
any platform making it straightforward to compare the performance (and the
performance problems) on a number of different platforms.

For the future we are considering the inclusion of hardware performance coun-
ters in the data gathering step. Additionally we are investigating to use Tool
Gear [9] to be able to related the profiling data to the user’s source code in a
nice graphical representation.

ompP: A Profiling Tool for OpenMP 23

References

1. Dorta, A.J., Rodŕıguez, C., de Sande, F., Gonzáles-Escribano, A.: The OpenMP
source code repository. In: Proceedings of the 13th Euromicro Conference on Par-
allel, Distributed and Network-Based Processing (PDP 2005), February 2005, pp.
244–250 (2005)

2. Gerndt, M., Mohr, B., Träff, J.L.: Evaluating OpenMP performance analysis tools
with the APART test suite. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.)
Euro-Par 2004. LNCS, vol. 3149, pp. 155–162. Springer, Heidelberg (2004)

3. Graham, S.L., Kessler, P.B., McKusick, M.K.: gprof: A call graph execution pro-
filer. SIGPLAN Not. 17(6), 120–126 (1982)

4. IBM HPC Toolkit, http://www.spscicomp.org/ScicomP10/Presentations/
Austin Klepacki.pdf

5. Intel Thread Profiler,
http://www.intel.com/software/products/threading/tp/

6. Intel Trace Analyzer,
http://www.intel.com/software/products/cluster/tanalyzer/

7. Malony, A.D., Shende, S.S.: Performance technology for complex parallel and dis-
tributed systems, pp. 37–46 (2000)

8. Malony, A.D., Shende, S.S.: Overhead Compensation in Performance Profiling.
In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS,
vol. 3149, pp. 119–132. Springer, Heidelberg (2004)

9. May, J., Gyllenhaal, J.: Tool Gear: Infrastructure for parallel tools. In: Proceed-
ings of the 2003 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2003), pp. 231–240 (2003)

10. Mohr, B., Malony, A.D., Shende, S.S., Wolf, F.: Towards a performance tool in-
terface for OpenMP: An approach based on directive rewriting. In: Proceedings of
the Third Workshop on OpenMP (EWOMP 2001) (September 2001)

11. Mohr, B., Träff, J.L.: Initial design of a test suite for automatic performance analy-
sis tools. In: Eighth International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS 2003), pp. 77–86 (2003)

12. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.-C., Solchenbach, K.: VAMPIR:
Visualization and analysis of MPI resources. Supercomputer 12(1), 69–90 (1996)

13. ompp webpage, http://www.ompp-tool.com
14. Sun Studio, http://developers.sun.com/prodtech/cc/hptc index.html
15. Süß, M., Leopold, C.: A user’s experience with parallel sorting and OpenMP. In:

Proceedings of the Sixth Workshop on OpenMP (EWOMP 2004) (October 2004)
16. Vetter, J.S., Mueller, F.: Communication characteristics of large-scale scientific

applications for contemporary cluster architectures. J. Parallel Distrib. Com-
put. 63(9), 853–865 (2003)

17. Wolf, F., Mohr, B.: Automatic performance analysis of hybrid MPI/OpenMP ap-
plications. In: Proceedings of the 11th Euromicro Conference on Parallel, Distrib-
uted and Network-Based Processing (PDP 2003), February 2003, pp. 13–22. IEEE
Computer Society, Los Alamitos (2003)

http://www.spscicomp.org/ScicomP10/Presentations/
Austin_Klepacki.pdf
http://www.intel.com/software/products/threading/tp/
http://www.intel.com/software/products/cluster/tanalyzer/
http://www.ompp-tool.com
http://developers.sun.com/prodtech/cc/hptc_index.html

	\texttt{ompP}: A Profiling Tool for OpenMP
	Introduction
	Tool Design and Implementation
	Instrumentation
	Performance Data Collection
	Performance Data Presentation

	Application Examples
	APART Test Suite (ATS)
	Quicksort

	Related Work
	Conclusion and Future Work

