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Preface

OpenMP is an application programming interface (API) that is widely accepted
as a standard for high-level shared-memory parallel programming. It is a portable,
scalable programming model that provides a simple and flexible interface for de-
veloping shared-memory parallel applications in Fortran, C, and C++. Since
its introduction in 1997, OpenMP has gained support from the majority of
high-performance compiler and hardware vendors. Under the direction of the
OpenMP Architecture Review Board (ARB), the OpenMP standard is being
further improved. Active research in OpenMP compilers, runtime systems, tools,
and environments continues to drive its evolution. To provide a forum for the dis-
semination and exchange of information about and experiences with OpenMP,
the community of OpenMP researchers and developers in academia and industry
is organized under cOMPunity (www.compunity.org).

Workshops on OpenMP have taken place at a variety of venues around the
world since 1999: the European Workshop on OpenMP (EWOMP), the North
American Workshop on OpenMP Applications and Tools (WOMPAT), and the
Asian Workshop on OpenMP Experiences and Implementation (WOMPEI) were
each held annually and attracted an audience from both academia and industry.
The intended purpose of the new International Workshop on OpenMP (IWOMP)
was to consolidate these three OpenMP workshops into a single, yearly interna-
tional conference. The first IWOMP meeting was held during June 1–4, 2005, in
Eugene,Oregon,USA. The second meeting tookplace during June 12–15, in Reims,
France. Each event drew over 60 participants from research and industry through-
out the world. In keeping with the objectives and format of the prior workshops,
IWOMP includes technical papers and panels, tutorials, and a hands-on labo-
ratory (OMPlab), where OpenMP users and developers worked together to test
compilers, tune applications, and experiment with OpenMP tools. The first of
these workshops was organized under the auspices of cOMPunity. In the mean-
time, a Steering Committee has been established to oversee the organization of
these events and to guide the further development of the workshop series.

The first two IWOMP meetings were successful in every respect. To a large ex-
tent, this success was due to the generous support received from the IWOMP spon-
sors. Intel Corporation, Sun Microsystems, Hewlett Packard, STMicroelectronics,
PathScale, Microsoft, the University and City of Reims, the Region Champagne-
Ardenne, and the ARB all gave financial support to these conferences. Fujitsu Sys-
tems Europe LTD, Microway, the Technical University of Denmark, the Centre
Informatique National de l´Enseignement Supérieur, Reims Universtiy, RWTH
Aachen University, and Technische Universität Dresden provided access to sys-
tem platforms for the OMPlab. The level of support given demonstrates a strong
interest in the success of OpenMP in both industry and research.



VI Preface

The cOMPunity webpage (see http://www.compunity.org) provides access
to the talks given at the meetings and to photos of the activities. The IWOMP
webpage (see http://www.iwomp.org) provides information on the latest event.
This book contains the proceedings of the first two IWOMP workshops. In total,
35 papers were accepted for the technical program sections.

It was a pleasure to help ignite the IWOMP workshop series. We look forward
to a bright future for both OpenMP and this workshop.

February 2008 Matthias S. Müller
Barbara Chapman

Bronis R. de Supinski
Allen D. Malony

Michael Voss
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Performance Analysis of Large-Scale OpenMP

and Hybrid MPI/OpenMP Applications with
VampirNG

Holger Brunst1 and Bernd Mohr2

1 Center for High Performance Computing
Dresden University of Technology

Dresden, Germany
brunst@zhr.tu-dresden.de

2 Forschungszentrum Jülich, ZAM
Jülich, Germany
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Abstract. This paper presents a tool setup for comprehensive event-
based performance analysis of large-scale openmp and hybrid openmp/
mpi applications. The kojak framework is used for portable code instru-
mentation and automatic analysis while the new VampirNG infrastruc-
ture serves as generic visualization engine for both openmp and mpi

performance properties. The tools share the same data base which en-
ables a smooth transition from bottleneck auto-detection to manual in-
depth visualization and analysis. With VampirNG being a distributed
data-parallel architecture, large problems on very large scale systems can
be addressed.

Keywords: Parallel Computing, openmp, Program Analysis, Instru-
mentation.

1 Introduction

openmp is probably the most commonly used communication standard for shared-
memory based parallel computing. The same applies to mpi when talking about
parallel computing on distributed-memory architectures. Both approaches have
widely accepted characteristics and qualities. openmp stands for an incremental
approach to parallel computing which can be easily adapted to existing sequen-
tial software. mpi has a very good reputation with respect to performance and
scalability on large problem and system sizes. Yet, it typically requires a thorough
(re-) design of a parallel application. So far, most parallel applications are either
native openmp or native mpi applications. With the emergence of large clusters
of SMPs, this situation is changing. Clearly, hybrid applications that make use
of both programming paradigms are one way to go. openmp has proven to work
effectively on shared memory systems. mpi on the other hand can be used to
bridge the gap between multiple SMP nodes. In a sense, this strategy follows
the original idea of openmp which is to incrementally parallelize a given code.

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 5–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



6 H. Brunst and B. Mohr

In a hybrid scenario only minor changes (i. e. adding openmp directives) are re-
quired to achieve a moderate performance improvement while going beyond the
memory boundaries of an SMP node requires more sophisticated techniques like
message passing. Quite natural, a program that combines multiple programming
paradigms is not easy to develop, maintain, and optimize. Portable tools for pro-
gram analysis and debugging are almost essential in this respect. Yet, existing
tools [1,2,3] typically concentrate on either mpi or openmp or exist for dedicated
platforms only [4,5]. It is therefore difficult to get on overall picture of a hy-
brid large-scale application. This paper presents a portable, distributed analysis
infrastructure which enables a comprehensive support of hybrid openmp appli-
cations. The paper is organized as follows. The next section deals with collecting,
mapping, and automatic classification of openmp/mpi performance data. Based
hereon, Section 3 goes a step further and presents an architecture for in-depth
analysis of large hybrid openmp applications. In Section 4 mixed mode analysis
examples are given. Finally, Section 5 concludes the joint tool initiative.

2 The kojak Measurement System

The kojak performance-analysis tool environment provides a complete tracing-
based solution for automatic performance analysis of mpi, openmp, or hybrid
applications running on parallel computers. kojak describes performance prob-
lems using a high level of abstraction in terms of execution patterns that result
from an inefficient use of the underlying programming model(s). kojak’s overall
architecture is depicted in Figure 1. The different components are represented as
rectangles and their inputs and outputs are represented as boxes with rounded
corners. The arrows illustrate the whole performance-analysis process from in-
strumentation to result presentation.

The kojak analysis process is composed of two parts: a semi-automatic multi-
level instrumentation of the user application followed by an automatic analysis
of the generated performance data. The first part is considered semi-automatic
because it requires the user to slightly modify the makefile.

To begin the process, the user supplies the application’s source code, written
in either c, c++, or Fortran, to opari, which is a source-to-source transla-
tion tool. Opari performs automatic instrumentation of openmp constructs and
redirection of openmp-library calls to instrumented wrapper functions on the
source-code level based on the pomp openmp monitoring api [6,7]. This is done
to capture openmp events relevant to performance, such as entering a parallel
region. Since openmp defines only the semantics of directives, not their im-
plementation, there is no equally portable way of capturing those events on a
different level.

Instrumentation of user functions is done either during compilation by a
compiler-supplied instrumentation interface or on the source-code level using
tau [8]. Tau is able to automatically instrument the source code of c, c++,
and Fortran programs using a preprocessor based on the pdt toolkit [9].
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executable

user program instrumented
user program

EPILOG
library

PAPI
library

EPILOG
event trace analysis result

VTF3
event trace

compiler / linker

OPARI / TAU
instrumentation

run

EXPERT
pattern search

CUBE
visualizer

VAMPIR
trace visualizer

trace conversion

manual analysis

automatic analysis

 semi-automatic instrumentation

POMP / PMPI
libraries

Fig. 1. kojak overall architecture

Instrumentation for mpi events is accomplished with a wrapper library based
on the pmpi profiling interface, which generates mpi-specific events by intercept-
ing calls to mpi functions. All mpi, openmp, and user-function instrumentation
calls the epilog run-time library, which provides mechanisms for buffering and
trace-file creation. The application can also be linked to the papi library [10] for
collection of hardware counter metrics as part of the trace file. At the end of the
instrumentation process, the user has a fully instrumented executable.

Running this executable generates a trace file in the epilog format. After
program termination, the trace file is fed into the expert analyzer. (See [11] for
details of the automatic analysis, which is outside of the scope of this paper.)
In addition, the automatic analysis can be combined with a manual analysis
using Vampir [12] or Vampir NG [13], which allows the user to investigate the
patterns identified by expert in a time-line display via a utility that converts
the epilog trace file into the Vampir format.

3 The Distributed Vampir NG Program Analysis System

The distributed architecture of the parallel performance analysis tool Vam-

pir NG [13] outlined in this section has been newly designed based on the expe-
rience gained from the development of the performance analysis tool Vampir.
The new architecture uses a distributed approach consisting of a parallel analy-
sis server running on a segment of a parallel production environment and a
visualization client running on a potentially remote graphics workstation. Both
components interact with each other over the Internet through a socket based
network connection.
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MasterWorker 1

Trace 1
Worker 2

Worker m

Trace 2
Trace 3

Trace N

File SystemLarge Parallel Application VNG Analysis Server

Parallel I/O MPI Com.

VNG Visualization Client
Internet

One Process

Performance 
Run-time System

Event Streams

Closeup 
Indicator

768 Tasks
in Thumbnail

16 Tasks in
Timeline

Fig. 2. VampirNG Architecture Overview

The major goals of the distributed parallel approach are:

1. Keep event trace data close to the location where they were created.
2. Analyze event data in parallel to achieve increased scalability

(# of events ∼ 1, 000, 000, 000 and # of streams (processes) ∼ 10, 000).
3. Provide fast and easy to use remote performance analysis on end-user plat-

forms.

Vampir NG consists of two major components: an analysis server (vngd) and
a visualization client (vng). Each is supposed to run on a different machine. Fig-
ure 2 shows a high-level view of the overall software architecture. Boxes represent
modules of the components whereas arrows indicate the interfaces between the
different modules. The thickness of the arrows gives a rough measure of the
data volume to be transferred over an interface, whereas the length of an arrow
represents the expected latency for that particular link.

In the top right corner of Figure 2 we can see the analysis server, which runs
on a small interactive segment of a parallel machine. The reason for this is two-
fold. Firstly, it allows the analysis server to have closer access to the trace data
generated by an application being traced. Secondly, it allows the server to execute
in parallel. Indeed, the server is a heterogeneous parallel program, implemented
using mpi and pthreads, which uses a master/worker approach. The workers are
responsible for storage and analysis of trace data. Each of them holds a part of
the overall data to be analyzed. The master is responsible for the communication
to the remote clients. He decides how to distribute analysis requests among the
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workers. Once the analysis requests are completed, the master merges the results
into a single response package that is subsequently sent to the client.

The bottom half of Figure 2 depicts a snapshot of the Vampir NG visu-
alization client which illustrates the timeline of an application run with 768
independent tasks. The idea is that the client is not supposed to do any time
consuming calculations. It is a straightforward sequential GUI implementation
with a look-and-feel very similar to performance analysis tools like Jumpshot [1],
Paraver [4], Vampir [12], Paje [3], etc. For visualization purposes, it communi-
cates with the analysis server according to the user’s preferences and inputs.
Multiple clients can connect to the analysis server at the same time, allowing
simultaneous viewing of trace results.

As mentioned above, the shape of the arrows indicates the quality of the
communication links with respect to throughput and latency. Knowing this, we
can deduce that the client-to-server communication was designed to not require
high bandwidths. In addition, the system should operate efficiently with only
moderate latencies in both directions. This is basically due to the fact that only
control information and condensed analysis results are to be transmitted over
this link. Following this approach we comply with the goal of keeping the analysis
on a centralized platform and doing the visualization remotely.

The big arrows connecting the program traces with the worker processes indi-
cate high bandwidth. The major goal is to get fast access to whatever segment of
the trace data the user is interested in. High bandwidth is basically achieved by
reading data in parallel by the worker processes. To support multiple client ses-
sions, the server makes use of multi-threading on the boss and worker processes.

4 In-Depth Analysis of Large-Scale openmp Programs

The kojak analysis infrastructure primarily addresses automatic problem detec-
tion. Previously collected trace data is searched for pre-defined problems [14]. The
results are displayed in a hierarchical navigator tool which provides links to the
respective source code locations. This approach is very effective as it does not
require complicated user interactions or expert knowledge. Yet, it is limited to
known problems and sometimes the real cause of a phenomenon remains obscure.

With the help of the collected trace data it is even possible to go into further
detail. The measurement system in kojak supports the generation of Vampir NG

compatible traces which can be examined according to the hints made by the
expert tool.

Having access to the same central data base, VampirNG offers a rich set of
scalable remote visualization options for arbitrary program phases. In the follow-
ing, the sPPM benchmark code [15] will serve as example application demonstrat-
ing combined openmp and mpi capabilities of Vampir NG. The code has been
equipped with openmp directives and was executed on 128 mpi tasks with eight
openmp threads each. The test platform was a Power4-based, 30-way SMP clus-
ter system. Altogether, 1024 independent event data streams had to be handled.



10 H. Brunst and B. Mohr

4.1 Custom Profiles

VampirNG supports a grouping concept for flat profile charts à la gprof. The
summarized information reflects either the entire program run or a time interval
specified by the user. The information provided is not limited to functions. De-
pending on the application, openmp and mpi related information like message
sizes, counter values etc. can be summarized additionally.

Fig. 3. Summary profile of a sPPM run on 1024 processes/threads

Figure 3 depicts a summary profile of the full program run which lasted 1:15
minutes. Exclusive timing information is shown as percentages relative to the
overall accumulated run-time. The kojak openmp instrumentation creates the
following six default sub-groups of program states:

1. USR: Code regions which are not parallelized with openmp

2. OMP: openmp parallel execution
3. OMP-SYNC: openmp implicit and explicit barrier synchronization
4. PREG: openmp thread startup and termination
5. MPI: mpi communication and synchronization
6. IDLE: Idle openmp threads

Quite obviously, the application spends too much time (20%) doing nothing
(IDLE ). Its cause is unknown. We will come to this phenomenon in the next
section. 75% percent of the runtime is spent in openmp parallel code. The re-
maining five percent are spent in mpi and openmp synchronization code.

The same display can be used to further analyze the six sub-groups of program
states. Figures 4(a) to 4(d) depict summary profiles for the states in OMP, OMP-
SYNC, and MPI respectively. From Figure 4(a) we can read that our application
has twelve major openmp do-loops from which six contribute with more than
8.5 seconds each (per process). Only these loops should be considered for fur-
ther optimization. In Figure 4(b), openmp synchronization overhead is depicted.
The first two barrier constructs are interesting candidates to be analyzed in fur-
ther detail. Their active phases during run-time can be located with a navigator
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(a) openmp Loop Profile (b) openmp Synchronization Profile

(c) mpi Profile (d) mpi Invocation Profile

Fig. 4. Adaptive VampirNG Profiles

display similar to traditional timelines. Depending on user defined queries, the
“navigator” (not depicted) highlights selected states only. Figure 4(c) provides
information on how mpi is used in this code. Synchronization is the dominant
part. Last not least, the number of mpi function calls as depicted in Figure 4(d)
tells us that approximately 100,000 messages are exchanged altogether. Consid-
ering the 128 mpi processes involved and the short amount of time spent in mpi,
this information is more interesting for code debugging than for optimization.

4.2 Hierarchical Timelines

Sometimes, adaptive profiles are not sufficient for understanding an application’s
inner working. An event timeline as depicted in Figure 5 is very useful to obtain
a better understanding. The event timeline visualizes the behavior of individual
processes over time. Here, the horizontal axis reflects time, while the vertical
axis identifies the process. Colors are used to represent the already mentioned
sub-groups of program states. Apparently, navigating on the data of 1024 in-
dependent processing entities is a rather complex task. Therefore, an overview
of the full set of processes and threads is depicted on the right hand side. The
rectangular marking identifies the selection of the trace that is depicted in full
detail on the left hand side (process 48 to process 64).

Having access to this kind of application overview, it quickly becomes evident
where the 20% idle-time in the profile comes from. Due to the large number of
processes and openmp threads, the execution platform needs a substantial time
(approximately 17 seconds) to spawn the full application. Having a closer look
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Fig. 5. Event timeline of a sPPM run on 128x8 processes/threads

Fig. 6. Synchronization of sPPM run on 128x8 processes/threads

at the startup phase (light/beige section) reveals that the spawning of the mpi

processes (MPI Init) is varying a lot in time. Apparently, MPI Init has to wait
until all processes are up and running before it lets the processes start their
individual tasks.

We will now take a closer look at the locations where openmp and mpi syn-
chronization takes place. Figure 6 illustrates a section which includes the barrier
that has been mentioned earlier in Section 4.1. The program highlights the se-
lected openmp barrier with bold dotted lines. From this kind of display we can
learn many things, one of which is that mpi and openmp synchronization have
to work in close cooperation in mixed codes. This particular example shows how
mpi collective communication is carried out on the master threads only (which
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(a) Single Timeline – mpi Process (b) Single Timeline – openmp Thread

Fig. 7. Hybrid mpi/openmp Synchronization

is a common mpi constraint) while openmp barriers guarantee that the thread
parallelism is not continuing to process inconsistent data. Figure 7 illustrates
the differences between an mpi communication process and a respective openmp

thread by means of a single-task-timeline showing the detailed function call-path.

5 Conclusion

Data distribution and synchronization in large-scale openmp and hybrid mpi/
openmp applications can lead to critical performance bottlenecks. Profiling alone
can hardly help to identify the real cause of problems that fall into this category.
Event-based approaches on the other hand are known to generate large volumes
of data. In this difficult situation, automatic event-based performance analysis
has the potential to quickly detect most known synchronization problems. When
dealing with uncommon features or for detailed examination of already detected
problems, manual analysis has certain advantages due to human intuition and
pattern recognition capabilities. Therefore, an incremental approach with pro-
filing and automatic techniques forming a solid starting point and event-based
analysis being used for more detailed questions is advisable. PAPI [10] counter
support in both tools completes the detailed performance examination. Finally,
our work has shown that both approaches can be effectively combined in a
portable way.
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Abstract. In this paper we present a simple but useful profiling tool for
OpenMP applications similar in spirit to the MPI profiler mpiP [16]. We
describe the implementation of our tool and demonstrate its functionality
on a number of test applications.

1 Introduction

For developers of scientific and commercial applications it is essential to un-
derstand the performance characteristics of their codes in order to take most
advantage of the available computing resources. This is especially true for par-
allel programs, where a programmer additionally has to take issues such as load
balancing, synchronization and communication into consideration. Accordingly,
a number of tools with varying complexity and power have been developed for
the major parallel programming languages and systems.

Generally, tools collect performance data either in the form of traces or pro-
files. Tracing allows a more detailed analysis as temporal characteristics of the
execution is preserved, but it is usually more intrusive and the analysis of the
recorded traces can be involved and time-consuming. Profiling, on the other
hand, has the advantage of giving a concise overview where time is spent while
causing less intrusion.

The best-known tracing solution for MPI is Vampir [12] (now Intel Trace
Analyzer [6]) while mpiP [16] is a compact and easy to use MPI profiler. Both
Vampir and mpiP rely on the MPI profiling interface that allows the intercep-
tion and replacement of MPI routines by simply re-linking the user-application
with the tracing or profiling library. Unfortunately no similar standardized pro-
filing or performance analysis interface exists for OpenMP yet, making OpenMP
performance analysis dependant on platform- and compiler specific mechanisms.

Fortunately, a proposal for a profiling interface for OpenMP is available in the
form of the POMP specification and an instrumenter called Opari [10] has been
developed that inserts POMP calls around instrumented OpenMP constructs.
The authors of POMP and Opari also provide a tracing library, while we have
implemented a straightforward POMP-based profiler that is similar in spirit to
mpiP and which accordingly we call ompP [13].
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under contract GE1635/1-1.

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 15–23, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



16 K. Fürlinger and M. Gerndt

The rest of the paper is organized as follows: In Sect. 2 we describe the design
and implementation of our tool and in Sect. 3 we demonstrate its functionality on
some example programs. Finally in Sect. 4 we review related work, we conclude
and present ideas for future work in Sect. 5.

2 Tool Design and Implementation

In this section we present the design and implementation of our profiling tool
ompP.

2.1 Instrumentation

Opari [10] is an OpenMP source-to-source instrumenter for C, C++ and Fortran
developed by Mohr et al. that inserts calls to a POMP compliant monitoring li-
brary around OpenMP constructs. For each instrumented OpenMP construct
Opari creates a region descriptor structure that contains information such as the
name of the construct, the source file and the begin and end line numbers. Each
POMP_* call passes a pointer to the descriptor of the region being affected. In the
example shown in Fig. 1, Opari creates one region descriptor for the parallel region
and this descriptor is used for the POMP_Parallel_[fork,join,begin,end] and
also for the POMP_Barrier_[Enter,Exit] calls. The barrier is added by Opari in
order to measure the load imbalance in the parallel region, similar implicit barriers
are added to OpenMP worksharing constructs.

POMP_Parallel_fork [master]
�
�
enter

�
���������������

main
#pragma omp parallel {

POMP_Parallel_begin [team]
�
�������

body

POMP_Barrier_Enter [team]
�
�
ibarr

#pragma omp barrier
POMP_Barrier_Exit [team]

POMP_Parallel_end [team]
�
�
exit

}
POMP_Parallel_join [master]

Fig. 1. Instrumentation added by Opari for the OpenMP parallel construct. The
original code is shown in boldface, the square brackets denote the threads that execute
a particular POMP_* call. The right part shows the pseudo region nesting used by ompP.

2.2 Performance Data Collection

Our profiler keeps track of counts and inclusive times for the instrumented
OpenMP constructs. In order to simplify performance data bookkeeping (the
same region descriptor can be used in a multitude of POMP_* calls), each Opari
region is broken down into smaller conceptual “pseudo” regions and performance
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data (i.e, timestamps and execution counts) are recorded on the basis of these
pseudo regions. In the example shown in Fig. 1, the pseudo regions are main,
body, enter, exit and ibarr.

Instead of keeping track of all possible POMP_* calls for the individual Opari
regions there are only two events for a pseudo region, namely enter and exit.
For an enter event we record the enter timestamp (wall-clock time) that is later
used in the exit event to increment the summed execution time by the elapsed
time. Additionally a counter is incremented to count the number of executed
instances of the pseudo region.

seq main body ibarr enter exit

MASTER ×
ATOMIC ×
BARRIER ×
FLUSH ×
USER_REGION ×
LOOP × ×
SECTIONS × × ×
SINGLE × × ×
CRITICAL × × × ×
WORKSHARE × ×
PARALLEL × × × × ×
PARALLEL_LOOP × × × × ×
PARALLEL_SECTIONS × × × × × ×
PARALLEL_WORKSHARE × × × × ×

Fig. 2. List of pseudo regions for the different OpenMP constructs

A list of pseudo regions for the different Opari regions is shown in Fig. 2, the
first column gives the name of the corresponding OpenMP construct as reported
by ompP (LOOP refers to the for construct in C and the do construct in Fortran).

The pseudo regions have the following semantic meaning:

main Corresponds to the main region of the construct (unless the region is
executed by one thread only then this role is taken by seq), if the construct
has nested sub-regions, this refers to the “outer” part of a construct. An
example is a sections construct that contains one or more section blocks.

body Corresponds to the “inner” part of a construct, for example a section
region inside a sections directive.

ibarr Corresponds to the implicit barrier added by Opari to worksharing con-
structs (unless a nowait clause is present) to measure load imbalance.

enter Allows the measurement of the time required to enter a construct. For
critical sections this is the waiting time at the entry of the critical section. For
parallel sections (and combined parallel worksharing regions) this measures
the thread startup overhead.
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exit Measures the time required to leave a construct. For critical sections this
is the time required for leaving the critical section.1 For parallel sections
and combined parallel worksharing constructs this corresponds to the thread
teardown overhead.

seq Measures the sequential execution time for a construct, i.e., the time spent
by the master thread in a master construct or the time passing between
POMP_Fork and POMP_Join in a parallel construct or combined parallel
worksharing constructs.

Performance data is collected on a region stack basis. That is, similar to a call-
path profile [8,3] where performance data is attributed not to a function itself
(that would be a flat profile) but rather to the call-path that leads to a function,
a stack of entered Opari regions is maintained and data is attributed to the
stack that leads to a certain region. This region stack is currently maintained for
POMP regions only, i.e., only automatically instrumented OpenMP constructs
and user-instrumented regions2 are placed on the stack, general functions or
procedures are not handled unless manually instrumented by the user.

Including all called functions in our region stack would certainly be useful.
However, this requires us to either perform a stackwalk (as mpiP does) or make
use of compiler-supplied function instrumentation (i.e., the -f instrument-
functions for the GNU compiler collection). Note that in either approach un-
wanted exposition to the compiler’s implementation of the OpenMP standard
(e.g., compiler outlining of parallel regions) has to be expected.

2.3 Performance Data Presentation

The performance data collected by ompP is kept in memory and written to a
report file when the program finishes. The report file has the following sections:

– A header containing general information such as date and time of the pro-
gram run.

– A list of all identified Opari regions with their type (PARALLEL, ATOMIC,
BARRIER, . . . ) source file and line number information.

– A region summary list where performance data is summarized over the
threads in the parallel execution. This list is sorted according to summed
execution time and is intended to enable the developer to quickly identify
the most time-consuming regions (and thus the most promising optimization
targets).

– A detailed region summary for each identified region and for a specific region
stack. This information allows the identification of load imbalances in the
execution time and many other causes of inefficient or incorrect behavior.

1 Usually one doesn’t expect much waiting time at the end of a critical section. How-
ever, a thread might incur some overhead for signaling the critical section as “free”
to other waiting threads.

2 Users can instrument arbitrary regions by using the pomp inst begin(name ) and
pomp inst end(name ) pragmas.
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– A region summary for each region, where data is summed over all different
region stacks that lead to the particular region (i.e., the flat profile for the
region).

To produce a useful and concise profiling report, data are not reported as
times and counts for each individual pseudo regions but specific semantic names
are given according to the underlying Opari region. The following times and
counts are reported:

– execT and execC count the number of executions and the total inclusive
time spent for each thread (this is derived from the main or body pseudo
region depending on the particular OpenMP construct).

– exitBarT and exitBarC are derived from the ibarr pseudo region and cor-
respond to time spent in the implicit “exit barrier” in worksharing constructs
or parallel regions. Analyzing the distribution of this time reveals load im-
balances.

– startupT and startupC are defined for the OpenMP parallel construct
and for the combined parallel work-sharing constructs (parallel for and
parallel sections and parallel workshare), the data is derived from
the enter pseudo region. If large fraction of time is spent in startupT and
startupC is high, this indicates that a parallel region was repeatedly exe-
cuted (maybe inside a loop) causing high overhead for thread creation and
destruction.

– shutdownT and shutdownC are defined for the OpenMP parallel construct
and for the combined parallel work-sharing constructs, the data is derived
from the exit pseudo region. Its interpretation is similar to startupT and
startupC.

– singleBodyT and singleBodyC are reported for single regions and report
the time and execution counts spent inside the single region for each thread,
the data is derived from the body pseudo region.

– sectionT and sectionC are reported for a sections construct and give the
time and counts spent inside a section construct for each thread. The data
is derived from the body pseudo region.

– enterT, enterC, exitT and exitC give the counts and times for entering
and exiting critical sections, the data is derived from the enter and exit
pseudo regions.

3 Application Examples

We report on a number of experiments that we have performed with ompP, all
measurements have been performed on a single 4-way Itanium-2 SMP systems
(1.3 GHz, 3 MB third level cache and 8 GB main memory), the Intel compiler
version 8.0 was used.
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3.1 APART Test Suite (ATS)

The ATS [11] is a set of test applications (MPI and OpenMP) developed within
the APART 3 working group to test the functionality of automated and manual
performance analysis tools. The framework is based on functions that generate
a sequential amount of work for a process or thread and on a specification of
the distribution of work among processes or threads. Building on this basis,
individual programs are generated that exhibit a certain pattern of inefficient
behavior, for example “imbalance in parallel region”.

Previous work already tested existing OpenMP performance analysis tools with
respect to their ability to detect the performance problems in the ATS framework
[2]. With Expert [17], also a POMP-based tool was tested and generally with ompP
a developer is able to detect the same set of OpenMP related problems as Expert
(although with Expert the process is somewhat more automated).

The ompP output below is from a profiling run for the ATS program that
demonstrates the “imbalance in parallel loop” performance problem. Notice the
exitBarT column and the uneven distribution of time with respect to threads
{0,1} and {2,3}. This example is typical for a number of load imbalance problems
that are easily spottable by analyzing the exit barrier.

R00003 LOOP pattern.omp.imbalance_in_parallel_loop.c (15--18)
001: [R0001] imbalance_in_parallel_loop.c (17--34)
002: [R0002] pattern.omp.imbalance_in_parallel_loop.c (11--20)
003: [R0003] pattern.omp.imbalance_in_parallel_loop.c (15--18)

TID execT execC exitBarT exitBarC
0 6.32 1 2.03 1
1 6.32 1 2.02 1
2 6.32 1 0.00 1
3 6.32 1 0.00 1
* 25.29 4 4.05 4

3.2 Quicksort

Süß and Leopold compare several parallel implementations of the Quicksort
algorithm with respect to their efficiency in representing its recursive divide-
and-conquer nature [15]. The code is now part of the OpenMP source code
repository [1] and we have analyzed a version with a global work stack (called
sort_omp_1.0 in [15]) with ompP. In this version there is a single stack of work
elements (sub-sequences of the vector to be sorted) that are placed on or taken
from the stack by the threads. Access to the stack is protected by critical section.
The ompP output below shows the two critical sections in the code and it clearly
indicates that a considerable amount of time is spent due to critical section con-
tention. The total execution time of the program (summed over threads) was
61.02 seconds so the 9.53 and 6.27 seconds represent a considerable amount.

3 Automated Performance Analysis: Real Tools.
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R00002 CRITICAL cpp_qsomp1.cpp (156--177)
001: [R0001] cpp_qsomp1.cpp (307--321)
002: [R0002] cpp_qsomp1.cpp (156--177)

TID execT execC enterT enterC exitT exitC
0 1.61 251780 0.87 251780 0.31 251780
1 2.79 404056 1.54 404056 0.54 404056
2 2.57 388107 1.38 388107 0.51 388107
3 2.56 362630 1.39 362630 0.49 362630
* 9.53 1406573 5.17 1406573 1.84 1406573

R00003 CRITICAL cpp_qsomp1.cpp (211--215)
001: [R0001] cpp_qsomp1.cpp (307--321)
002: [R0003] cpp_qsomp1.cpp (211--215)

TID execT execC enterT enterC exitT exitC
0 1.60 251863 0.85 251863 0.32 251863
1 1.57 247820 0.83 247820 0.31 247820
2 1.55 229011 0.81 229011 0.31 229011
3 1.56 242587 0.81 242587 0.31 242587
* 6.27 971281 3.31 971281 1.25 971281

To improve the performance of the code, Süß and Leopold implemented a
second version using thread-local stacks to reduce the contention for the global
stack. We also analyzed the second version with ompP and the timing result for
the two critical sections appears below.

In this version the overhead with respect to critical sections is clearly smaller
than the first one (enterT and exitT have been improved by about 25 percent)
The overall summed runtime reduces to 53.44 seconds, an improvement of about
12 percent, which is in line with the results reported in [15]. While this result
demonstrates a nice performance gain with relatively little effort, our analysis
clearly indicates room for further improvement; an idea would be to use lock-free
data structures.

R00002 CRITICAL cpp_qsomp2.cpp (175--196)
001: [R0001] cpp_qsomp2.cpp (342--358)
002: [R0002] cpp_qsomp2.cpp (175--196)

TID execT execC enterT enterC exitT exitC
0 0.67 122296 0.34 122296 0.16 122296
1 2.47 360702 1.36 360702 0.54 360702
2 2.41 369585 1.31 369585 0.53 369585
3 1.68 246299 0.93 246299 0.37 246299
* 7.23 1098882 3.94 1098882 1.61 1098882

R00003 CRITICAL cpp_qsomp2.cpp (233--243)
001: [R0001] cpp_qsomp2.cpp (342--358)
002: [R0003] cpp_qsomp2.cpp (233--243)
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TID execT execC enterT enterC exitT exitC
0 1.22 255371 0.55 255371 0.31 255371
1 1.16 242924 0.53 242924 0.30 242924
2 1.32 278241 0.59 278241 0.34 278241
3 0.98 194745 0.45 194745 0.24 194745
* 4.67 971281 2.13 971281 1.19 971281

4 Related Work

A number of performance analysis tools for OpenMP exist. Vendor specific tools
such as Intel Thread Profiler [5] and Sun Studio [14] are usually limited to
the respective platform but can make use of details of the compiler’s OpenMP
implementation.

Expert [17] is a tool based on POMP that performs tracing of hybrid MPI
and OpenMP applications. After a program run traces are analyzed by Expert
which performs an automatic search for patterns of inefficient behavior. Another
POMP-based profiler called PompProf is mentioned in [4] but no further details
are given.

TAU [7] is also able to profile OpenMP applications by utilizing the Opari in-
strumenter. TAU additionally profiles user functions, provides support for hard-
ware counters and includes a visualizer for performance results. ompP differs in
the way performance data is presented. We believe that due to its simplicity,
limited purpose and scope, ompP might be easier to use for programmers want-
ing to get an overview of the behavior of their OpenMP codes that the more
complex and powerful TAU tool set.

5 Conclusion and Future Work

We have presented our OpenMP profiler ompP. The tool can be used to quickly
identify regions of inefficient behavior. In fact by analyzing execution counts
the tool is also useful for correctness debugging in certain cases (for example to
verify that a critical section is actually entered a certain, known number of times
for given input data).

An important benefit is the immediate availability of the textual profiling
report after the program run, as no further post-processing step is required.
Furthermore the tool is naturally very portable and can be used on virtually
any platform making it straightforward to compare the performance (and the
performance problems) on a number of different platforms.

For the future we are considering the inclusion of hardware performance coun-
ters in the data gathering step. Additionally we are investigating to use Tool
Gear [9] to be able to related the profiling data to the user’s source code in a
nice graphical representation.
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Abstract. Iteration space tiling is a well-explored programming and
compiler technique to enhance program locality. Its performance benefit
appears obvious, as the ratio of processor versus memory speed increases
continuously. In an effort to include a tiling pass into an advanced par-
allelizing compiler, we have found that the interaction of tiling and par-
allelization raises unexplored issues. Applying existing, sequential tiling
techniques, followed by parallelization, leads to performance degradation
in many programs. Applying tiling after parallelization without consid-
ering parallel execution semantics may lead to incorrect programs. Doing
so conservatively, also introduces overhead in some of the measured pro-
grams. In this paper, we present an algorithm that applies tiling in con-
cert with parallelization. The algorithm avoids the above negative effects.
Our paper also presents the first comprehensive evaluation of tiling tech-
niques on compiler-parallelized programs. Our tiling algorithm improves
the SPEC CPU95 floating-point programs by up to 21% over non-tiled
versions (4.9% on average) and the SPEC CPU2000 Fortran 77 programs
up to 49% (11% on average). Notably, in about half of the benchmarks,
tiling does not have a significant effect.

1 Introduction and Motivation

With processor speeds increasing faster than memory speeds, many compiler
techniques have been developed to improve cache performance. Among them,
iteration space tiling is a well known technique, used to reduce capacity
misses [15,?]. Tiling combines stripmining and loop-permutation to partition
a loop’s iteration space into smaller chunks, so as to help the data stay in the
cache until it is reused. Several contributions have improved the initial tiling
algorithms, by tiling imperfectly-nested loops [1,14], carefully selecting the tile
size, and avoiding conflict misses by copying and/or padding [7,8,?,?,?].

Enhancing locality is an important optimization technique to gain better per-
formance, not only on a single processor, but also on a parallel machine. Tiling
has been applied in parallelizing compilers, based on the sequential tiling algo-
rithms [3,9]. It has also been used in distributed memory machines [13]. The
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present paper was motivated by an effort to include a tiling technique into our
Polaris parallelizing compiler [5,12] for shared memory machines. (Polaris trans-
lates sequential Fortran 77 programs into parallel OpenMP form. The trans-
formed parallel program will be compiled by the OpenMP backend compiler.)
We have found existing tiling techniques to be insufficient for this purpose, as
they are defined on a sequential program. Although a performance memory
model has been presented that trades off parallelism against locality [9], it has
not been discussed in the context of tiling. Also, a tiling technique for parallel
programs was introduced in [3], however the interaction of the technique with
other compiler passes has not been considered.

Without considering the interaction of tiling and parallelization, two ap-
proaches are open: pre-parallelization tiling and post-parallelization tiling. The
pre-parallelization tiling algorithm performs tiling on the sequential program, fol-
lowed by the parallelization pass. We have measured that this approach causes
substantial performance degradation, primarily due to load imbalance of small
loops. The post-parallelization tiling algorithm performs tiling after paralleliza-
tion. To avoid incorrect results, this transformation needs to be conservative, also
causing overheads. In Section 5, we will use these two tiling options as reference
points and discuss their overheads in more detail.

The goal of this paper is to present an algorithm for tiling in concert with par-
allelization. First, the algorithm selects the candidate loop nests for tiling, based
on data dependence and reuse information. Next, it trades off parallelism versus
locality and performs the actual tiling transformation through loop stripmining
and permutation. It factors parallelism information into tile sizes and the load
balancing scheme. It also interacts with other parallelization passes by properly
updating the list of private and reduction variable attributes.

Our algorithm outperforms both pre-parallelization and post-parallelization
tiling. It improves the SPEC CPU95 floating point benchmarks by up to 21%
(4.9% on average) over the parallel codes without tiling. The SPEC CPU 2000
Fortran 77 benchmarks are improved by up to 49% (11% on average). Our mea-
surements confirm that tiling can have a significant performance impact on indi-
vidual programs. However, they also show that, on today’s architectures, about
half of the programs benefit insignificantly.

The specific contributions of this paper are as follows:

1. We show how tiling affects the parallelism attributes of a loop nest. We prove
these properties from data dependence information.

2. We introduce a new parallelism-aware tiling algorithm and show that it
performs significantly better than existing techniques.

3. We discuss tiling-related issues in a parallelizing compiler: load balancing,
tile size, and the trade-off between parallelism and locality.

4. We compare the performance of our algorithm with best alternatives. We
discuss the measurements relative to an upper limit that tiling may achieve.

In the next section, we review some basic concepts of tiling, data reuse analy-
sis, and data dependence directions. Section 3 analyzes the parallelism of tiled
loops. Section 4 presents the algorithm for tiling in concert with parallelism
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and discusses related issues arising in a parallelizing compiler. Section 5 shows
experimental results using the SPEC benchmarks and compares our new tiling
algorithm to the pre-parallelization and post-parallelization tiling algorithms.

2 Background

2.1 Tiling Algorithm

Tiling techniques combine stripmining and loop permutation in order to reduce
the volume of data accessed between two references to the same array element.
Thus, it increases the chances that cached data can be reused. It has often been
shown that tiling can significantly improve the performance of matrix multipli-
cation and related linear algebra algorithms [8,9,10].

(a) Matrix Multiply (b) Tiled Matrix Multiply
DO K2 = 1, M, B

DO J2 = 1, M, B
DO I = 1, M DO I = 1, M

DO K = 1, M DO K1 = K2, MIN(K2+B-1,M)
DO J = 1, M DO J1 = J2, MIN(J2+B-1,M)

Z(J,I) = Z(J,I) + X(K,I) * Y(J,K) Z(J1,I) = Z(J1,I) + X(K1,I) * Y(J1,K1)

Fig. 1. Tiling of a matrix multiplication code

Figure 1 shows a simple example of the original and the tiled versions of a
matrix multiplication code. Loop K in the original version is stripmined into two
loops, K1 and K2. Loop K1 in the tiled version iterates through a strip of B;
we call it the in-strip loop. Loop K2 in the tiled version iterates across different
strips; we call this the cross-strip loop. B is called the tile size.

2.2 Data Reuse Analysis

Data reuse analysis [10] identifies program data that is accessed repeatedly, and it
quantifies the amount of data touched between consecutive accesses. To improve
data locality, one attempts to permute loop nests so as to place the loop that
carries the most reuse in the innermost position. If there are multiple accesses
to the same memory location, we say that there is temporal reuse. If there are
multiple accesses to a nearby memory location that share the same cache line,
we say that there is spatial reuse. Both types of reuse may result from a single
array reference, which we call self reuse, or from multiple references, which we
call group reuse [11,15].

2.3 Direction Vectors

In this paper, we use data dependence direction vectors to determine parallelism
and the legality of a loop permutation. The direction “<” denotes a forward
cross-iteration dependence. The direction “>” denotes a backward cross-iteration
dependence. We refer to [2,4,18,17] for a thorough description of direction vec-
tors. We make use of the following lemmas, given in these papers.
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Lemma 1. Reordering: Permuting the loops of a nest reorders the elements
of the direction vector in the same way.

Lemma 2. Permutability: A loop permutation is legal as long as it does not
produce an illegal direction vector. In a legal direction vector, the leftmost non-
equal direction must be “<” (i.e., it cannot be “>”).

Lemma 3. Parallelism: Given a direction vector, its leftmost “<” direction
makes the corresponding loop serial. Furthermore, serializing this loop covers the
given dependence on all inner loops. That is, w.r.t. this dependence, all inner
loops are parallel.

Lemma 4. After stripmining the loop L into (L′, L′′), its direction vector
changes from [d] to [d′, d′′], as follows: [=] → [=, =]; [<] → [=, <] or [<, ∗];
[>] → [=, >] or [>, ∗]. That is, either the cross-strip direction is “=” and the
in-strip loop takes on the direction of the original loop, or the cross-strip loop
takes on the original direction (“<” or “>”) and the in-strip direction becomes
unknown (“*”).

Direction vectors of the original (pre-tiling) loops can be used to determine the
direction vectors of the tiled loops [19]. Lemma 1 and 4 aid in deriving those
new direction vectors. Lemma 2 aids in finding all legally tiled versions of a loop
nest. Lemma 3 decides parallelism of the tiled loops.

3 Parallelism of Tiled Loops

Theorem 1. After tiling, the in-strip loops have the same parallelism as the
original ones. The cross-strip loop L′

i is serial, if the corresponding original loop
Li is serial. But the cross-strip loop may become serial, even if the corresponding
original is parallel.

(a) Original loop (b) Tiled loop
DO J1 = 1, M, B (serial)

DO I = 1, N (serial) DO I = 1, N (serial)
DO J = 1, M (parallel) DO J = J1, MIN(J1+B-1,M) (parallel)

A(J,I) = A(J+1,I+1) A(J,I) = A(J+1,I+1)

Fig. 2. Reduced parallelism as a result of tiling

This theorem can be strictly proved based on the previous lemmas. In this paper,
limited by space, we only explain the rationales. The dependence inside one tile
is essentially the same as the dependence in the pre-tiling loops. So, parallelism
of the in-strip loops is not changed. According to Lemma 4, tiling introduces new
dependence across the tiles. So, a cross-strip loop may become serial. Figure 2
shows an example. In the original loop, loop I is serial and loop J is parallel.
After tiling, the cross-strip loop J1 is serial, loop I is serial, and loop J is parallel.

Theorem 1 shows that a parallelizing compiler cannot simply apply tiling after
parallelization. The compiler needs to analyze the parallelism of the cross-strip
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loops, unless it only chooses to parallelize the in-strip loops, whose parallelism
does not change. The following section develops the tiling algorithm considering
the interaction of tiling and parallelization.

4 Parallelism-Aware Tiling

4.1 Algorithm

Our tiling in concert with parallelization algorithm uses the direction vectors
of the original loop nest to determine the parallelism of the tiled loop nest, as
discussed in Section 2 and Section 3. It then trades off parallelism and locality
and determines a balanced tile size. Figure 3 shows the pseudo code.

Subroutine ParallelTiling(LoopNest L)
1 P = the number of processors;
2 DV s = the set of all direction vectors;
3 Perform data reuse analysis;
4 For each possible tiled version V of L
5 Decide parallelism of V based on the DV s;
6 C = the cost of V based on its parallelism and reuse information;
7 X = the tiled version with the least cost;
8 T = raw tile size computed by LRW [10], considering

loop parallelism and cache configuration;
9 S = BalancedTileSize(X,T ,P );
10 Substitute the tile size S into the tiled version X;
11 Update reduction/private variable attributes;
12 Generate two versions if iteration number unknown;

//L is called when not enough iterations; Otherwise, X is called.

Fig. 3. Parallelism-aware tiling algorithm

Our algorithm considers all legally tiled loop nest versions and selects the
one with the least cost. It is worth noting that the order of the cross-strip
loops may be different from the order of the in-strip loops. Enumerating all
possible tiled versions is feasible, because most loops are nested with two or
three levels. Step 5 follows Section 2 and Section 3. Step 6 uses a simple model
that assumes that placing a parallel loop in an outer position is preferable over
increased reuse, which will be discussed in Section 4.2. (This model suffices for
our machine environment; more advanced schemes can be used without change of
the algorithm). Steps 8 and 9 follow Sections 4.3 and 4.4, respectively. Step 12 is
important for reducing potential tiling overheads. If the number of loop iterations
is unknown at compile time, a two-version loop is created that selects between
the tiled and non-tiled variants at runtime.

Our compiler pass also deals with imperfectly nested loops. It transforms
such loops into perfect nests through loop fusion, loop distribution and code
sinking [16]. Inner loops with fixed small number of iterations are unrolled. Then,
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tiling is applied to the perfectly nested loops. We have verified that this approach
generates comparable results to the methods proposed in [1,?] for the SPEC
CPU benchmarks, except in TOMCATV and SWIM. (In SWIM, the higher
performance was achieved through manual source modifications; TOMCATV is
an obsolete benchmark.)

4.2 Trading Off Parallelism and Locality

Locality enhancement and parallelization may have conflicting performance
goals. Per Theorem 1, although the parallelism of the in-strip loops is the same
as that of the original loops, the parallelism of the cross-strip loops can be dif-
ferent. For example, in Figure 2, loop I is serial in both versions, while loop J is
parallel in both versions. However, after tiling, the cross-strip loop, J1, becomes
serial. Thus, the tiled nest invokes the parallel loop more times than the original
loop nest, causing higher fork-join overhead.

Table 1. Effect of tiling on fork-join overhead

Original parallelism Parallelism after tiling Fork-join overhead

[S, P ] [S, S, P ] increased
[S, P ] [P, S, P ] decreased
[P, S] [S, P, S] increased
[S, S] [S, S, S] not changed
[P, P ] [P, P, P ] not changed

Five different scenarios may occur after tiling a doubly nested loop, depending
on the parallelism. We list these cases in Table 1. S indicates that the correspond-
ing loop is serial; P indicates the loop is parallel. (If there are more than two
loops, the change in fork-join overhead can be determined by similar analysis.)
For example, in the first and second rows of Table 1, the original outer loop
is serial and the original inner loop is parallel. Per Section 4, after tiling, the
cross-strip loop is serial (in Row 1) or parallel (in Row 2), which results in an
increase or decrease of fork-join overhead.

In summary, the parallelism of the cross-strip loops determines if tiling will
increase or reduce fork-join overhead. Thus, tiling a parallel program can result in
either higher or reduced parallel loop execution cost. In an advanced performance
model, both the fork-join overhead and the benefit of increased locality need to
be considered.

4.3 Tile Size Selection

The tile size is a critical parameter for tiling. We use the LRW algorithm [10]
to compute the raw tile size, which fits in cache. In addition, for distributed
caches, if the parallel loop is an in-strip loop, a tile needs to fit in multiple
caches; for a shared cache, if the parallel loop is a cross-strip loop, the cache
needs to hold multiple tiles. So, the computation of the raw tile size depends
on the cache configurations and parallelism of the loops. This computed raw
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tile size is tuned further to balance the loads among processors, which will be
described in Section 4.4.

4.4 Load Balancing

If the cross-strip loop is executed in parallel, load balancing can become an
important issue. Tiling splits the number of iterations of the parallel loop into
chunks. If the split is uneven, load imbalance results. This effect is more pro-
nounced for programs or program sections that operate on small data sets rela-
tive to the available cache size. Hence, for a given data size, this issue tends to
increase with newer generations of processors.

For example, in Figure 4, all loops are parallel and the tile size is 80. Suppose
we run the program on a four processor machine. Before tiling, loop I has 512
iterations and each processor executes 128 iterations. But after tiling, the cross-
strip loop J1 has 512/80 + 1 = 7 iterations, which cannot be evenly divided
among the processors, causing load imbalance.

(a) Before tiling (balanced) (b) After tiling (not balanced)
DO J1 = 1, 512, 80

DO I = 1, 512 DO I = 1, 512
DO J = 1, 512 DO J = 1, MIN(J1+79,512)

... ...

Fig. 4. Load imbalance after tiling

Tiling sequential loops does not require balanced strip-mining. The tile size is
obtained by computing the number of memory references that fit in the cache.
However, the parallelizing compiler needs to tune the tile size, so that each
processor will execute nearly the same number of iterations. For the previous
example, the compiler can set the tile size to be 64. Then, after tiling the cross-
strip loop J1 has 512/64 = 8 iterations. Each processor will get 2 iterations with
the same load. A more general rule is to find the largest size that is less than
the original tile size and that creates a balanced load:

Suppose that the un-tuned, raw tile size is T , the number of iterations is I,
and the number of processors is P . We choose a tile size S such that S ∗ P is
divisible by I and S is as close to T as possible, based on the following formula.

S = I
�I/(P∗T )�∗P

This formula applies to parallel cross-strip loops (cases 2, 3, and 5 in Table 1).
If the in-strip loop is parallel (case 1), it suffices to make the tile size a multiple
of the number of processors.

5 Experiments

5.1 Reference Points: Tiling Independent of Parallelization

In order to verify the effectiveness of our tiling algorithm, we compare it with two
algorithms that apply tiling independent of parallelization: pre-parallelization
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tiling and post-parallelization tiling. To our knowledge, they represent the best
that can be realized with tiling techniques for sequential programs, as proposed
in related work.

Pre-parallelization tiling determines the tiled loop shape and tile size before
the parallelization passes. In most cases, the chosen parallel loop is a cross-strip
loop. Load balancing, as discussed in Section 4.4 is not applied. Sequential tiling
semantics is fully valid in this case, as parallelization has not yet been applied.

Post-parallelization tiling would generate incorrect code, if the tiling algo-
rithm simply propagated parallel loop attributes from an original loop to its
stripmined pair. So, conservatively, the cross-strip loop is always serialized. To
further increase the fairness of our comparison, we have added an optimization
to reduce fork-join overheads, when the scheduled parallel loop does not carry
cross-processor dependences. In that case, this optimization moves the parallel
region to the outer loops and reduces the number of barrier synchronizations by
using the OpenMP “nowait” clause on the parallel loop.

5.2 Experimental Environment

We implemented the tiling algorithm presented in Section 4 in the Polaris [6,12]
parallelizing compiler. The experiments were done on an Ultra SPARC II ma-
chine with four 250 MHZ processors. Each processor is equipped with a 16K
direct-mapped L1 cache and a 1M direct-mapped L2 cache. Both caches are
distributed. We measured the performance of all compiler-parallelized SPEC
CPU95 floating point benchmarks with and without tiling. In addition, in or-
der to evaluate how increasing data sets impacts the performance of tiling, we
measured all of the six SPEC CPU2000 Fortran 77 benchmarks.

5.3 Experimental Results

The baseline of our experimentation is parallelization without tiling. In Figure 5
and Figure 6, the first two bars for every benchmark show the performance of
the reference points. The third bar shows the performance of our new algorithm
for tiling in concert with parallelization.

In most benchmarks of the SPEC CPU95 suite, pre-parallelization tiling does
not improve performance over parallelization without tiling. Two main effects
degrade the performance of APSI, HYDRO2D, MGRID, SWIM and TOMCATV
significantly. First, the data size is small relative to the available cache size, so
that the important loops contain very few tiles, causing load imbalance. Second,
since no information about parallel loops is known, the tiling algorithm does
not permute the most beneficial loops to outermost positions. In the SPEC
CPU2000 codes, the data size is much larger, reducing the load imbalance effect.
For the measured SPEC CPU2000 benchmarks, APSI, APPLU and SWIM show
improvements over parallelization alone. SWIM is improved by 49%, most of
which is due to the fact that tiling yields many stride-one access patterns.

In the SPEC CPU95 suite, post-parallelization tiling also degrades the
performance over parallelization without tiling for APSI, HYDRO2D, MGRID
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Fig. 5. Performance of tiling relative to non-tiled parallel codes for SPEC95
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Fig. 6. Performance of tiling relative to non-tiled parallel codes for selected SPEC2000
benchmarks

and SWIM. First, post-parallelization tiling may cause load imbalance, if it par-
allelizes the in-strip loop and the tile size is small. Second, in post-parallelization
tiling, the chosen parallel loop tends to have finer granularity than in tiling
in concert with parallelization. Although the synchronization optimization
reduces the fork-join overhead, some of this overhead remains. Another obser-
vation is that, in general, post-parallelization tiling performs better than pre-
parallelization tiling for SPEC CPU95 benchmarks, but not for SPEC CPU2000.
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The reason is that a large data size reduces load imbalance for pre-parallelization
tiling, but not for post-parallelization tiling.

Our experiments show that tiling in concert with parallelization performs sig-
nificantly better than tiling independent of parallelization. Our new algorithm
never degrades performance. Five out of the ten benchmarks in the SPEC CPU95
suite show improvements over parallelization alone. The largest improvement is
21% in TOMCATV (TOMCATV is a small kernel benchmark, which is now
considered obsolete). Tiling can add some control overhead, offsetting parallel
performance. We have found this to be the reason for very minor performance
degradation to APSI and HYDRO2D. In FPPPP, post-parallelization tiling per-
forms slightly better than our algorithm. It is a rare case where the cost of
computing a balanced tile size at runtime is noticeable. Most SPEC CPU2000
benchmarks show improvements. SWIM is improved by 49%. It is important
to note, that although matrix multiply (a code frequently used to demonstrate
tiling) is very important in WUPWISE, all matrices are small and do not benefit
from tiling.

As expected, our measurements show only small improvements on the SPEC
CPU95 codes, whose data sets mostly fit in cache. Tiling improves more signifi-
cantly the SPEC CPU2000 codes, which have larger data sets and, consequently,
increased cache misses in the original programs.

5.4 On Performance Bounds for Tiling

The fact that half of our program suite does not benefit from tiling raises the
question of how much better a further improved algorithm could perform. In
order to find an upper bound on the performance achievable by tiling, we mea-
sured the percentage of tilable loops in the SPEC CPU95 benchmarks based on
reuse analysis. A tilable loop nest must satisfy two conditions. First, at least
two loops in the nest carry reuses, otherwise loop interchanging would suffice.
Second, it does not contain subroutine calls or I/O operations. The last column
in Table 2 shows the execution time percentage of the loop nests satisfying both
conditions. This percentage gives us an upper bound on tilable loops.

Table 2. Percentage of tilable loops based on reuse analysis. Each column shows,
respectively, the numbers of loops, loops carrying reuses, loop nests with at least two
loops carrying reuses, and those loop nests without subroutine calls or I/O operations.
The data in the parentheses are the execution time percentage of the loop nests with
more than two loops carrying reuses and without subroutine calls.

Benchmark Total Reuse Nested w/o Call
APPLU 149 125 55 54 (97.60%)
APSI 388 310 111 59 (19.50%)
FPPPP 49 37 15 8 ( 5.80%)
HYDRO2D 170 117 21 21 (53.70%)
MGRID 38 24 8 8 (86.40%)
SU2COR 208 177 37 22 (14.90%)
SWIM 24 15 3 3 (60.10%)
TOMCATV 16 14 5 5 (95.90%)
TURB3D 64 43 12 11 (22.20%)
WAVE5 362 274 59 57 (19.70%)
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For all benchmarks other than HYDRO2D, the result in Table 2 is consistent
with that in Figure 5. The benchmarks gaining significant performance from our
tiling algorithm spend a large percentage of execution time in tilable loop nests,
and vice versa. In HYDRO2D, although 53.7% of the execution time is spent in
tilable loops, each loop nest only refers to a small amount of memory, which can
fit into cache. Therefore, tiling does not reduce cache misses.

Our results also show that, while tiling can be an important locality enhance-
ment technique for individual programs, especially for stencil operations, its
performance benefit is not as broad as commonly assumed. Tiling does not gain
significant performance in half of the benchmarks. The major reason is limited
data reuse that is amenable to tiling.

6 Conclusions

We have presented a new tiling algorithm that works in concert with other
parallelization passes. We have shown that applying existing tiling techniques,
designed for sequential programs before or after parallelization, would lead to
significant performance degradation or incorrect programs. Our algorithm avoids
these negative effects, hence it represents new technology, relevant to any paral-
lelizing compiler.

Furthermore, in evaluating tiling techniques comprehensively, we have
found that the benefit is less than commonly assumed. Tiling – along with
other locality enhancement techniques – is believed to be very important,
as the memory-to-processor speed ratio in new computer architectures keeps
decreasing. However, this technique has often been demonstrated on simple
linear algebra kernels. Although our measurements confirm improvements on
stencil computations, tiling has only limited effect on other programs, which
is due to limited data reuse, amenable to tiling. Increasing cache sizes and
increasing data sets are two opposite trends that will impact the performance
of tiling techniques on future computer systems.
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1 Introduction

Writing correct and efficient parallel programs is more difficult than doing so for
sequential programs. One of the challenges comes from the nature of concurrent
execution of a parallel program by different threads.1 Determining exact con-
currency is NP-hard[10], and is impossible for real-world programs at compile
time.

OpenMP provides an easy and incremental way to write parallel programs.
The well-structured OpenMP constructs and well-defined semantics of OpenMP
directives make compiler analyses more effective on OpenMP programs than
on more loosely structured parallel programs that are solely based on runtime
libraries, such as MPI and Pthreads.

In this paper, we present a static nonconcurrency analysis technique that de-
tects, at compile time, whether two statements in an OpenMP program will not
be executed concurrently by different threads in a team. Similar to the method
presented in [5], ours is a close underestimation of the real nonconcurrency in a
program. When our method determines that the executions of two statements are
nonconcurrent, these two statements will not be executed concurrently. When
the method fails, the two statements may, but need not, execute concurrently.

Our nonconcurrency analysis models and uses the semantics of OpenMP di-
rectives. For example, in the following codes,

1. !$omp parallel
2.
3. a = ...
4.
5. !$omp single
6. b = ...
7. c = ...
8. !$omp end single
9.

1 Concurrency is where the execution order of different threads is not enforced, and
thus synchronization must be used to control shared resources. Parallelism is where
different threads actually execute in parallel. Parallelism is an instance of concur-
rency. Parallel execution is concurrent, but concurrent execution is not necessarily
parallel.

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 36–50, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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10. !$omp do
11. do i=1, 100
12. c(i) = ...
13. end do
14. !$omp end do nowait
15.
16. !$omp end parallel

there is one implicit barrier at line 8, which partitions the statements inside
the parallel region (lines 3-14) into two phases. Phase one contains statements 3
through 8, and phase two contains statements 10 through 14. No two statements
from different phases (such as statements 3 and 12) will ever be executed con-
currently, while statements within the same phase (such as statements 3 and 6,
or two instances of statement 3) may. In addition, the single directive mandates
only one thread can execute statements 6 and 7. Therefore statements 6 and 7,
though in the same phase, will never execute concurrently. Our analysis is able
to recognize the OpenMP directives and use them to derive the nonconcurrency
information.

This paper makes the following contributions,

– It gives a graph representation (OpenMP control flow graph) to model
the control flow in parallel OpenMP programs, and a tree representation
(OpenMP region tree) to model the hierarchical structure of loops and
OpenMP constructs. Similar to the control flow graph and loop tree rep-
resentations for sequential programs, these two representations serve as the
base for further compiler analysis of parallel OpenMP programs.

– It presents an efficient static nonconcurrency analysis for OpenMP programs
which are more tractable than general parallel programs. The phase parti-
tioning algorithm has a complexity that is linear to the size of the program
being analyzed for most real-life applications.

– It shows the usefulness of the nonconcurrency analysis by building a compile-
time data race detection technique upon it.

The rest of the paper is organized as follows. Section 2 describes the OpenMP
control flow graph and OpenMP region tree. Section 3 presents the phase parti-
tion algorithm. Section 4 gives the static nonconcurrency analysis. Section 5 uses
data race detection to illustrate the use of nonconcurrency analysis. Section 6
compares related work and section 7 concludes the paper.

To be concise, we use Fortran as the base language, while our technique is not
specific to Fortran.

2 OpenMP Control Flow Graph and OpenMP Region
Tree

2.1 Program Model

The techniques in this paper work on OpenMP standard compliant programs[1].
Nested parallelism and orphaned directives are allowed, recognized and handled
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Fig. 1. Directive nodes in OpenMP control flow graph (solid lines are flow edges and
dotted lines are construct edges)

accordingly. Our techniques also recognize and use the properties of all OpenMP
synchronization constructs and directives (such as barrier, master, critical
and ordered).

We assume 1) all parallel regions can be active and none is serialized; 2) there
is an infinite number of threads available; and 3) the exact number of threads
that execute any particular parallel region is unspecified. These assumptions not
only simplify the problem but also make the result of our nonconcurrency analy-
sis independent of runtime environment. We ignore calls to OpenMP runtime
lock routines, and make no attempt to recognize ‘roll-your-own’ synchroniza-
tions, such as busy-waiting. Knowledge of this information could add to the
nonconcurrency result, but could never invalidate a nonconcurrency relationship
between statements that our method finds.

2.2 OpenMP Control Flow Graph

An OpenMP control flow graph (OMPCFG) models the transfer of control flow
in a subroutine of an OpenMP program.

The statements in an OpenMP subroutine are partitioned into basic blocks
and each OpenMP directive is put into an individual block. Each block be-
comes a node in OMPCFG. The nodes representing basic blocks are called
basic nodes, and the nodes representing directive blocks are called directive
nodes. A single Entry node and a single Exit node are created for an
OMPCFG.
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Fig. 2. (a) simple phases in one parallel region. (b) phases when there is a branch (c)
phases in a loop. (d) phases in nested parallel regions. (e) orphan phases.

Table 1. Notations: attributes of different types OpenMP constructs

ORC(N) the immediately enclosing OpenMP construct for node N .

ORC(N).type the type of ORC(N), i.e. root, do, sections, section,
critical, single, master, ordered.

ORC(N).crit.name the name for ORC(N) whose ORC(N).type is critical.
ORC(N).ordered.bound the binding worksharing do loop for ORC(N) whose

ORC(N).type is ordered
ORC(N).parent the parent OpenMP construct of ORC(N)

in the OpenMP region tree

ORC(N).pregion the parallel region that encloses ORC(N)

In an OMPCFG, to make compiler analysis easier, implicit barriers are made
explicit2, and each combined parallel work-sharing construct (such as parallel
do and parallel sections) is separated into a nowait work-sharing construct
nested in a parallel region. parallel begin directive nodes and parallel end
directive nodes are considered as barrier nodes in the parallel region defined
by the two directive nodes. Fortran specific ‘WORKSHARE’ construct can be
converted into a set of other OpenMP constructs, therefore it is not presented
directly in an OMPCFG.

An edge in OMPCFG represents a possible transfer of control flow executed
by a thread. Edges between basic nodes are created in a way similar to that in

2 To model the dataflow in an OpenMP program, it would be better to make all
implicit flushes explicit. To be concise, we do not do so in this paper because our
nonconcurrency analysis does not depend on inter-thread dataflow information.
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sequential programs. Edges between basic nodes and directive nodes and edges
between directive nodes are created according to OpenMP semantics.

Statements inside an OpenMP construct form a single-entry/single-exit re-
gion. For each OpenMP construct, an edge is created from the directive begin
node to the single entry node of the region for the construct, and an edge is
created from the single exit node of the region to the directive end node. Edges
to and from the barrier and flush nodes are created as if they are basic nodes.
An edge is created from a sections begin node to each binding section be-
gin node. And an edge is created from each section end node to its binding
sections end node. For the do construct, the loop control statements are not
represented in the OMPCFG.

Figure 1 illustrates all the directive nodes and the corresponding edges. The
construct edges (dotted lines) are explained in the next section.

2.3 OpenMP Region Tree

In OpenMP programs, we use a region tree to model both the hierarchical loop
structure and the hierarchical OpenMP construct structure in a subroutine.

In OMPCFG, for each OpenMP construct (except for do constructs), we add
an edge from the end construct directive node to the begin construct directive
node. We call this edge a construct edge and represent it using a dotted line in
an OMPCFG. A construct edge does not reflect any control flow. It is inserted
so that an OpenMP construct forms a cycle in the OMPCFG. Therefore, the
normal loop tree detection algorithm for sequential programs can be used to find
both loops and OpenMP construct regions in an OMPCFG.

Because the statements in an OpenMP construct form a single-entry/single-
exit region, the OpenMP constructs in a subroutine are properly nested. If we
treat the whole subroutine as a root construct, then all the OpenMP constructs
form a tree structure. The OpenMP constructs are also properly nested with
loops in the subroutine. When we combine the loop tree with the OpenMP
construct tree, we get the OpenMP region tree. Each node in an OpenMP region
tree represents either a loop or an OpenMP construct.

For a node N in an OMPCFG, we use ORC(N) to represent the immediately
enclosing OpenMP construct for node N in the OpenMP region tree. Table 1
lists the notations used to represent the attributes of different types of OpenMP
construct.

3 Phase Partitioning

3.1 Phases in a Parallel Region

Barrier is the most frequently used synchronization method in OpenMP. Barriers
can be inserted by using the BARRIER directive, and are also implied at the
end of worksharing constructs or parallel constructs.
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In addition, OpenMP standard requires[1]

BARRIER directives must be encountered by all threads in a team
or by none at all, and they must be encountered in the same order by
all threads in a team.

The restriction the OpenMP standard imposes on the use of barriers essen-
tially partitions the execution of a parallel region into a set of distinct, non-
overlapping run-time phases. No two statement instances in two different run-
time phases will ever be executed concurrently by different threads in a team.
For example, the barriers in Fig. 2(a) (barrier nodes are marked with a super-
script b) put the non-barrier nodes into three phases - one phase with node
N2, another phase with node N4 and node N5, and yet another with node N7.
Statements in N2 and statements in N4 will not be executed concurrently by dif-
ferent threads in a team. We should also note that the restriction the OpenMP
language imposes on barriers does not apply to threads in different teams.

3.2 Static Phases

In this section, we give an algorithm that computes the static phases in an
OpenMP subroutine at compile-time. Our algorithm works on basic blocks in-
stead of statements. All construct edges in OMPCFG are ignored since they do
not represent any control flow. A special edge from the Exit node to the Entry
node is added to help analysis of subroutines that contain orphaned OpenMP
directives.

A static phase 〈N b
i , N b

j 〉 consists of a sequence of nodes along all barrier free
paths in the OMPCFG that start at one barrier node N b

i and end at another
(possibly the same) barrier node N b

j in the same parallel region. Table 2 lists
the phases for each OMPCFG in Fig. 2.

Note that in Fig. 2(e), node N2 and node N4 are in the same phase. Node
N b

3 is an orphaned barrier, and there is no lexically visible parallel region in
the subroutine. It is possible that the call-site of the subroutine is inside a loop,
therefore there might be a barrier free path from node N4 to node N2 at runtime.
Without interprocedural analysis, we have to assume such a loop exists. That’s
the reason why a special edge from the Exit node to the Entry node is inserted.

Also note that a node may belong to different static phases. For example, in
Fig. 2(b), node N5 belongs to two both phase 〈N b

3 , N b
10〉 and phase 〈N b

3 , N b
11〉.

Each static phase has its owner parallel region, which is its immediate enclos-
ing parallel region. A static phase is not considered as a static phase in a parallel
region that is not its owner parallel region. For example, in Fig. 2(d), the owner
parallel region of static phase 〈N b

5 , N b
7〉 is the inner parallel region, and it is not

a static phase in the outer parallel region. For a static phase that starts and
ends at orphaned barriers, its owner parallel region is root.

3.3 Algorithm to Compute Static Phases

The algorithm to partition an OMPCFG into phases is shown in Fig. 3. In the
following text, when we say ‘phase’, we mean ‘static phase’.
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Table 2. Phases and nodes in each phase for each OMPCFG in Fig. 2

OMPCFG Phase Nodes in Phase

(a) 〈Nb
1 , Nb

3 〉 N2

〈Nb
3 , Nb

6 〉 N4, N5

〈Nb
6 , Nb

8 〉 N7

(b) 〈Nb
1 , Nb

3 〉 N2

〈Nb
1 , Nb

4 〉 N2

〈Nb
3 , Nb

10〉 N5, N7, N8

〈Nb
3 , Nb

11〉 N5, N7, N9

〈Nb
4 , Nb

10〉 N6, N7, N8

〈Nb
4 , Nb

11〉 N6, N7, N9

〈Nb
10, N

b
13〉 N12

〈Nb
11, N

b
13〉 N12

(c) 〈Nb
1 , Nb

4 〉 N2, N3

〈Nb
4 , Nb

4 〉 N5, N3

〈Nb
4 , Nb

7 〉 N5, N6

(d) 〈Nb
1 , Nb

3 〉 N2

〈Nb
3 , Nb

10〉 N4, Nb
5 , N6, Nb

7 , N8, Nb
9

〈Nb
5 , Nb

7 〉 N6

〈Nb
7 , Nb

9 〉 N8

(e) 〈Nb
3 , Nb

3 〉 N1, N2, N4, N5

We use the following notations in the algorithm:

– phase(N b
i , N b

j )
the set of nodes that belong to phase 〈N b

i , N b
j 〉.

– in phase(N)
the set of phases that node N belongs to.

– p start(N)
the set of starting barriers of phases that node N belongs to, i.e. {N b

i |〈N b
i ,

N b
j 〉 ∈ in phase(N)}.

– p end(N)
the set of ending barriers of phases that node N belongs to, i.e. {N b

j |〈N b
i ,

N b
j 〉 ∈ in phase(N)}.

The algorithm does a forward depth-first-search, and a backward depth-first-
search from each barrier node (including pseudo barrier nodes, i.e. Entry, Exit,
parallel-begin, and parallel-end). During each search, if a barrier node in the
same parallel region is encountered, the search does not continue with successors
or predecessors of the barrier node. In a forward search from a barrier N b, we
put N b in p start(N) of each node N reached. In a backward search from a
barrier N b, we put N b in p end(N) of each node N reached. After all searches
finish, for each non-barrier node N , we compute in phase(N) as {〈N b

i , N b
j 〉 |

N b
i ∈ p start(N), N b

j ∈ p end(N), ORC(N b
i ).pregion = ORC(N b

j ).pregion}.
In general, the complexity of this algorithm is O(

∑K
i=1

∑Mi

j=1 node(i, j)
nbar(i, j)). Basically, if the OMPCFG for a parallel region is disconnected at
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each barrier node, then the OMPCFG is separated into several disconnected
sub-graphs. Here, K is the number of parallel regions; Mi is the number of the
disconnected sub-graphs for parallel region i; node(i, j) is the number of nodes in
sub-graph j of parallel region i; and nbar(i, j) is the number of barrier nodes that
separates sub-graph j from other sub-graphs in parallel region i. Nested-parallel
regions are rarely used and each sub-graph of a parallel region contains only two
barrier nodes (one starting barrier node and one ending barrier). Therefore, in
most cases, the complexity of the algorithm is O(n), where n is the number of
nodes in OMPCFG.

4 Nonconcurrency Analysis

In this section, we describe our static nonconcurrency analysis. Given two state-
ments in a subroutine and an OpenMP parallel region, the analysis detects at
compile time whether these two statements can be executed concurrently by
different threads in the team for the parallel region.

The algorithm in Section 3 partitions a subroutine into phases. Depending on
whether the two statements belong to the same phase or not, we use two different
methods to check the nonconcurrency. Because two statements are executed
concurrently if and only if their basic blocks are executed concurrently, we will
work on basic blocks instead of statements.

4.1 Two Nodes in Different Phases

If two nodes in a parallel region do not share any static phase, then the runtime
instances of these two nodes will be in different runtime phases. Therefore these
two nodes will not be executed concurrently by different threads in the team
that executes the parallel region.

For example, in Fig. 2(a), node N2 and node N4 will never be executed concur-
rently. However, node N4 and node N5 may be executed concurrently, because
N4 ∈ 〈N b

3 , N b
6〉, and N5 ∈ 〈N b

3 , N b
6〉.

In Fig. 2(b), node N5 and node N6 will never be executed concurrently. Node
N5 and node N9 may be executed concurrently.

In Fig. 2(c), node N2 and node N5 will never be executed concurrently. Node
N3 and node N5 may be executed concurrently.

In Fig. 2(d), node N6 and node N8 will never be executed concurrently by
different threads in the team that executes the inner parallel region. However,
these two nodes may be executed concurrently by different threads in the team
that executes the outer parallel region.

In Fig. 2(e), node N2 and node N4 may be executed concurrently.
In summary, given two nodes N1 and N2 whose immediate common enclos-

ing parallel region is PR (could be root), if there does not exist a phase in
in phase(N1) ∩ in phase(N2) whose owner parallel region is PR, then N1 and
N2 will not be executed concurrently by different threads in the team that exe-
cutes PR.
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foreach barrier Nb
i in OMPCFG

foreach successor Nj of Nb
i

forward mark(Nj , N
b
i ) ;

foreach predecessor Nk of Nb
i

backward mark(Nk, Nb
i ) ;

foreach non-barrier node N in OMPCFG
foreach Nb

i in p start(N)

foreach Nb
j in p end(N) that ORC(Nb

i ).pregion = ORC(Nb
j ).pregion

phase(Nb
i , Nb

j ) := phase(Nb
i , Nb

j ) ∪ {N} ;

in phase(N) := in phase(N) ∪ {〈Nb
i , Nb

j 〉} ;

forward mark(N,Nb)
{

if (N is a barrier node and ORC(N).pregion = ORC(Nb).pregion)
return ;

p start(N) := p start(N) ∪ {Nb} ;

foreach successor Nj of N

forward mark(Nj , N
b) ;

}

backward mark(N, Nb)
{

if (N is a barrier node and ORC(N).pregion = ORC(Nb).pregion)
return ;

p end(N) := p end(N) ∪ {Nb} ;

foreach predecessor Nk of N
backward mark(Nk, Nb) ;

}

Fig. 3. Algorithm: phase partitioning

4.2 Two Nodes in the Same Phase

The semantics of OpenMP constructs also prohibits some statements within the
same phase to be executed concurrently, e.g. statement 6 and statement 7 in the
example at the beginning of this paper.

Given two basic blocks N1 and N2 (possibly the same) that 〈N b
i , N b

j 〉 ∈
in phase(N1) ∩ in phase(N2), and the owner parallel region of 〈N b

i , N b
j 〉 is PR,

the two blocks N1 and N2 will not be executed concurrently by different threads
in a team that executes PR in the following situations.
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1. master
Both N1 and N2 are in master constructs that belong to PR.

ORC(N1).type = ORC(N2).type = master

ORC(N1).pregion = ORC(N2).pregion = PR

2. ordered
Both N1 and N2 are in ordered constructs in PR and are bound to the
same do construct.

ORC(N1).type = ordered , ORC(N2).type = ordered

ORC(N1).pregion = ORC(N2).pregion = PR

ORC(N1).ordered.bound = ORC(N2).ordered.bound

3. single
Both N1 and N2 are in the same single construct in PR

ORC(N1) = ORC(N2), ORC(N1).type = ORC(N2).pregion = single

ORC(N1).pregion = ORC(N2).pregion = PR

and one of the following is true.
– the single construct is not in any loop within the parallel region PR.
– the single construct is in a loop within the parallel region PR, and there

is no barrier-free path from the single end directive node to the header
of the immediately enclosing loop.

– the single construct is in a loop within the parallel region, and there is
no barrier-free path from the header of the immediately enclosing loop
to the single begin directive node.

OpenMP requires a single construct to be executed by only one thread in a
team. However, it does not specify which thread. If the single construct is inside
a loop, then two different threads may each execute one instance of the single
construct in different iterations. If there is no barrier, then the two threads may
execute the construct concurrently.

Also note that we do not check for critical sections. A critical section enforces
serial execution, but does not enforce synchronization. Different instances of
the statements in a critical section cannot be executed in parallel, but can be
executed concurrently.

5 Application: Static Race Detection

Static nonconcurrency analysis can help many useful analyses and optimizations,
such as race detection, lock/barrier removal, synchronization optimization, etc. A
static nonconcurrency analysis similar to the above has been implemented in Sun
Studio

TM
9 compilers. It serves as one of the analysis engines for the OpenMP

autoscoping feature, which automatically detects the data sharing attributes of
variables in an OpenMP application[6]. It also serves as an engine for the static
OpenMP error detection feature provided in Sun compilers. Here, we show how to
build a static race detection algorithm upon the static nonconcurrency analysis.
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5.1 The Method

There are two different types of races, synchronization races and data races,
which are collectively called general races [8]. A general race happens when
the order of two accesses (at least one is write) to the same memory location
is not enforced by synchronizations. A data race happens when a general race
happens and the access to the memory is not guarded by a critical section. A
general race that is not a data race is called synchronization race. A correct
OpenMP program may contain synchronization races, but is usually expected
to be free of data race. For example, in a producer/consumer code, the producer
and the consumer may execute asynchronously, but they should not corrupt the
shared data. Many OpenMP programs are parallelized from serial codes and
their behavior is usually deterministic. Such programs should be free of both
synchronization races and data races.

If any two accesses to the same memory location cannot be executed concur-
rently, then these two accesses must be ordered and a general race is impossible.
If the two accesses can be executed concurrently and the accesses are guarded
by critical sections, then a synchronization race may happen while a data race is
impossible. Based on the above logic and our nonconcurrency analysis, we can
develop a static race detection method for OpenMP programs.

Given two statements s1 and s2 that access the same shared memory location
(at least one of them writes to the location) and a parallel region PR, the
following steps detect whether the two statements may cause a race in PR.

1. Find the basic block N1 for s1 and the basic block N2 for s2.
2. Use the method in Section 4 to check the nonconcurrency relationship be-

tween N1 and N2 in parallel region PR.
3. If N1 and N2 will not be executed concurrently, then the two statements will

not cause a race in PR.
4. Otherwise, if both N1 and N2 are in critical constructs that have the same

name or both are unnamed.

ORC(N1).type = critical , ORC(N2).type = critical

ORC(N1).crit.name = ORC(N2).crit.name

then the two statement may cause a synchronization race, but will not cause
a data race in PR.

5. Otherwise, the two statements may cause a data race in PR.

5.2 Example

1. function foo (n, x, y)
2. integer n, i
3. real x(*), y(*)
4. real w, mm, m, foo
5.
6. w = 0.0
7.



Static Nonconcurrency Analysis of OpenMP Programs 47

8. c$omp parallel private(i,mm,t), firstprivate(n),
9. c$omp+ shared(m,x,y), reduction(+:w)
10.
11. c$omp single
12. m = 0.0
13. c$omp end single nowait
14.
15. mm = 0.0
16.
17. c$omp do
18. do i = 1, n
19. t = x(i)
20. y(i) = t
21. if (t .gt. mm) then
22. w = w + t
23. mm = t
24. end if
25. end do
26. c$omp end do nowait
27.
28. c$omp critical
29. if ( m .le. mm ) then
30. m = mm
31. end if
32. c$omp end critical
33.
34. c$omp end parallel
35.
36. foo = w - m
37.
38. return
39. end

Function foo contains a parallel region (line 8-34), whose purpose is to copy
array x() to array y(), set the maximum value of all positive elements of x()
to a scalar variable m, and compute the sum w of some elements of x(). Scalar m
is a shared variable. A single construct (line 11-13) is used to initialize m. Each
thread uses a private variable mm to store the maximum value the thread gets
in the worksharing do loop (line 17-26). At the end of the parallel region, the
shared variable m is updated by all threads in a critical section (line 28-32) which
is used to avoid data race.

In an attempt to speed up the execution of the parallel region, two nowait
clauses (line 13 and line 26) are inserted to remove the implicit barriers. Threads
not executing the single can go ahead to work on the worksharing do without
having to wait for the thread who is initializing m. And threads that have finished
their share of the work in the do can continue to update the shared variable m,
and don’t have to wait for other threads.

However, the program may not deliver the expected result because of the use of
these two nowait clauses. Our nonconcurrency analysis will find that statements



48 Y. Lin

11 through 32 are all in one static phase, and statements 12 and 29, as well as
statements 12 and 30 may be executed concurrently. Because statement 12 is
not guarded by a critical section, either case will cause a data race and lead to
a nondeterministic execution result.

Sun Studio 9 Fortran compiler will give the following warning when the above
code is compiled with the parallel error checking option -vpara.

>f90 -xopenmp -vpara -xO3 -c t.f
‘‘t.f’’, line 8: Warning: inappropriate scoping

variable ’m’ may be scoped inappropriately as ’SHARED’
. write at line 30 and write at line 12 may cause data race

If the single construct is changed to a critical construct, then our race de-
tection method will find that the code may cause a synchronization race and the
execution result may still be nondeterministic.

If either one of the two nowait clauses is not there, our nonconcurrency
analysis will find that the parallel region is partitioned into two nonconcurrent
phases - one contains statement 12 and the other contains statement 29 and
statement 30. Therefore statement 12 will never be executed concurrently with
either statement 29 or statement 30. According to the our race detection method,
the code has no race conditions now.

6 Related Work

Many researchers [4][3][2][7] have proposed different methods to detect race con-
ditions and non-determinacy in parallel programs that use low-level event vari-
able synchronization, such as post/wait and locks. Our technique is different from
theirs because ours uses high-level semantic information exposed by OpenMP
directives and constructs. Our method is simpler and more efficient for analyzing
OpenMP programs. It is not clear how to represent OpenMP semantics using
event variables. Nevertheless, since our method does not handle OpenMP lock
API calls, their techniques can be incorporated into our method to refine analysis
results.

Jeremisassen and Eggers [5] present a compile-time nonconcurrency analysis
using barriers. Their method assumes the SPMD model and is similar to our
method in Section 4.1 as it also divides the program into a set of phases separated
by barriers. They assume a general SPMD model that is not OpenMP specific.
Therefore they cannot take advantage of restrictions that OpenMP has on the
use of barriers. For example, their method will say node N5 and node N6 in
Fig. 2(b) may be executed concurrently while ours does not. Their method is
purely based on barriers and does not detect nonconcurrency within one phase.

In [9], Satoh et. al. describe a ‘parallel flow graph’ that is similar to our
OMPCFG. They connect flush operations with special edges that present the
ordering constraints between the flushes. They do not have construct edges as
they do not build a hierarchical structure like our OpenMP region tree. The
two representations are different because they serve different purposes. Theirs is
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more data flow oriented, while ours is more control flow oriented. It is possible
to combine these two graphs together.

7 Conclusion

We have presented a method for compile-time detection of nonconcurrency in-
formation in OpenMP programs. The analysis uses the semantics of OpenMP
directives and takes advantage of the fact that standard compliant OpenMP
programs are well-structured. The analysis has a complexity that is linear to
the size of the program in most applications, and can handle nested parallelism
and orphaned OpenMP constructs. The OpenMP control flow graph and the
OpenMP region tree developed in this work can be used for other compiler analy-
ses/optimizations of OpenMP programs as well. We have also demonstrated the
use of the nonconcurrency information by building a compile-time race detection
algorithm upon it.
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Duncan for reviewing the paper and providing insightful comments.
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Abstract. In this paper, we present the design and experiments of a
practical OpenMP compiler for SMP, called CCRG OpenMP Compiler,
with the focus on its performance comparison with commercial Intel
Fortran Compiler 8.0 using SPEC OMPM2001 benchmarks. The pre-
liminary experiments showed that CCRG OpenMP is a quite robust and
efficient compiler for most of the benchmarks except mgrid and wupwise.
Then, further performance analysis of mgrid and wupwise are provided
through gprof tool and Intel optimization report respectively. Based on
the performance analysis, we present the optimized static schedule im-
plementation and inter-procedural constant propagation techniques to
improve the performance of CCRG OpenMP Compiler. After optimiza-
tion, all of the SPEC OMPM2001 Fortran benchmarks can be executed
on SMP systems efficiently as expected.

1 Introduction

The OpenMP[1] has gained momentum in both industry and academy, and has
become the de-facto standard for parallel programming on shared memory mul-
tiprocessors. The open source compilers and runtime infrastructures promote
the development and acceptance of OpenMP effectively. There have been sev-
eral recent attempts, such as NanosCompiler[2] and PCOMP[3] for Fortran77,
Omni[4] and Intone[5] for Fortran77 and C, OdinMP[6] for C/C++, and Nanos
Mercurium[7] on top of Open64 compilers. All of them are source-to-source trans-
lators that transform the code into the equivalent version with calls to the asso-
ciated runtime libraries.

CCRG OpenMP Compiler1 (CCRG, for short) aims to create a freely avail-
able, fully functional and portable set of implementations of the
OpenMP Fortran specification for a variety of different platforms, such as Sym-
metric Multiprocessor (SMP) as well as Software Distributed Shared Memory
(SDSM) system. As the above compilers, CCRG also uses the approach of the
source-to-source translation and runtime support to implement OpenMP. CCRG
has the following features.

1 Both the compiler and runtime library will be available from the CCRG Fortran95
Compiler project web site at http://cf95.cosoft.org.cn

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 51–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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– Generate only one external subroutine for each subprogram which may spec-
ify one or several parallel regions, and the parallel regions in the subprogram
are implemented using ENTRY statements. Therefore, the size of code gen-
erated by the source-to-source translator has been reduced significantly.

– Fully support Fortran90/95 programming languages except the type decla-
ration statements whose kind-selector involves the intrinsic procedure.

– Be robust enough to enable testing with real benchmarks.
– Support multiple target processors and platforms, including Digital Alpha[9],

Intel Itanium and Pentium, SDSM - JIAJIA[10] and SMP.

In this paper, we present the design and experiments of CCRG for SMP, with
the focus on performance comparison with commercial Intel OpenMP Compiler
8.0[11] using SPEC OMPM2001 benchmarks[12]. The preliminary experiments
showed that most of the Fortran benchmarks with CCRG OpenMP are executed
as fast as with Intel OpenMP Compiler on SMP, except mgrid and wupwise.
Based on performance analysis for mgrid and wupwise, we present the optimized
static schedule implementation and inter-procedural optimization(IPO) which
improve the performance of mgrid and wupwise as desired.

In the next section we briefly outline the design of the CCRG OpenMP Com-
piler. Section 3 describes the experiments and performance analysis using SPEC
OMPM2001 in detail. Section 4 presents the optimization techniques based on
the result of section 3 and reports the performance improvements. Conclusion
and future work are given in section 5.

2 CCRG OpenMP Compiler

CCRG OpenMP Compiler has fully implemented OpenMP 1.0 and partial fea-
tures of OpenMP 2.0 Fortran API on the POSIX thread interface. As most of
the open source OpenMP compilers[2,3,4,5,6,7], it includes a source-to-source
translator to transform OpenMP applications into the equivalent Fortran pro-
grams with the runtime library calls. The source-to-source translator is based
on Sage++[14] and consists of two parts, a Fortran OpenMP syntax parser and
a translator which converts the internal representation into the parallel execu-
tion model of the underlying machine. Sage++ is an object-oriented compiler
preprocessor toolkit for building program transformation systems for Fortran
77, Fortran 90, C and C++ languages. Though many features of Fortran 90/95
are not supported in Sage++, it is not very difficult to add new elements to
the system because of its well-structured architecture. In the syntax parser, the
OpenMP syntax description is added for supporting OpenMP directives as well
as the new Fortran90/95 languages elements, as shown in Fig.1.

The parser recognizes the OpenMP directives and represents their semantics in
a machine independent binary internal form. A .dep file is produced to store the
internal representation for each OpenMP source file. The translator reads the .dep
file and exports the normal Fortran program with calls to the runtime library. In
[2,3,4,5,6,7], a subroutine is generated for each parallel region by the translators.
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omp directive:

omp parallel

| omp paralleldo

| omp parallelsections

| omp parallelworkshare

| omp single

| omp master

| ......;

omp parallel:

PARALLEL end spec needkeyword omp clause opt keywordoff

{
omp binding rules (OMP PARALLEL NODE);

$$ = get bfnd (fi, OMP PARALLEL NODE, SMNULL, $4, LLNULL, LLNULL);

}

Fig. 1. OpenMP Syntax Description

Twoseparate subroutines areneeded to implement the twoparallel regions inFig.2,
which means that many same declare statements are included. The internal sub-
routine can be used to reduce the size of code generated by the source-to-source
translator. Some commercial OpenMP compilers use this strategy to implement
OpenMP parallel region, such as IBM XLF compiler[13]. But the special support
of compilers is needed because the Fortran standard specifies some constraints on
using an internal subroutine. Therefore, we use an alternative approach by using
ENTRYstatement to eliminate these same statements inCCRGOpenMP. If a sub-
routine contains one or more ENTRY statements, it defines a procedure for each
ENTRY statement and permits this procedure reference to begin with a partic-
ular executable statement within the subroutine in which the ENTRY statement
appears. Therefore, ENTRY name can be used to guide all the threads to execute
parallel regions correctly, such as test $1 and test $2 shown in Fig.3.

The source-to-source translator encapsulates all parallel regions of a main
program or subprogram into one external subroutine. The ENTRY procedures
are generated to implement parallel regions, as shown in Fig.3. So, only one
external subroutine test $0 is generated for the OpenMP example in Fig.2,

SUBROUTINE test(a)

DIMENSION a(100)

!$OMP PARALLEL DO PRIVATE(K)

DO 100 k = 1, 100

100 a(k) = 0.9

.........

!$OMP PARALLEL NUM THREADS(4)

.........

!$OMP END PARALLEL

END

Fig. 2. An OpenMP Example
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SUBROUTINE test $0(a)

DIMENSION a(100)

INTEGER lc k

INTEGER omp dolo, omp dohi, comp static more

!The first parallel region

ENTRY test $1 ()

CALL comp static setdo (1, 100, 1, 0)

DO WHILE (comp static more( omp dolo, omp dohi, 1).eq.1)

DO 100 lc k = omp dolo, omp dohi, 1

100 a(lc k) = 0.9

END DO

CALL comp barrier()

RETURN

!The second parallel region

ENTRY test $2()

.........

CALL comp barrier()

RETURN

END

SUBROUTINE test(a)

DIMENSION a(100)

CALL comp runtime init ()

CALL comp parallel (test $1, 0, 1, a)

.........

CALL comp parallel (test $2, 4, 1, a)

CALL comp exit ()

END

Fig. 3. Fortran Program using ENTRY Statement after Transformation

which contains two ENTRY procedures test $1 and test $2. The procedures
defined by ENTRY statements share the specification parts. Therefore, the size
of code generated by the translator is reduced largely.

The CCRG OpenMP runtime library for SMP has been implemented based on
the standard POSIX thread interface. The library is platform-independent ex-
cept few functions, such as comp parallel, comp barrier and comp flush.
It focuses on three tasks: thread management, task schedule, and implementation
of OpenMP library routines and environment variables. The “comp ” functions
shown in Fig.3 are main functions for thread management and task schedule.
comp runtime init initializes the runtime system and reads the associated
environment variables. comp exit terminates all the slaves in the thread pool
and releases memory. Function comp static setdo and comp static more
implement the static schedule in OpenMP. comp barrier synchronizes all the
threads in the current thread team. comp parallel is the most complex func-
tion in the library, which creates slave threads when necessary and starts the
slave threads in the thread pool to execute the parallel region procedures. It has
following form.
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comp parallel (parallel region procedure name,

num threads, num parameter, param1, param2,...)

If there is no NUM THREADS clause in a OpenMP parallel region directive, the
value of num threads is 0, as shown in the first parallel region in Fig.3.
comp parallel decides the number of the threads in the team according to
the environment variable or library calls, or the default value which is equal to
the number of physical processors of the underlying target.

3 Experiments

To evaluate CCRG OpenMP Compiler, SPEC OMPM2001[12] Fortran bench-
marks are compiled and executed. The host platform for the experiments is a HP
server rx2600 with four Itanuim2 processors (1.5GHz) and Linux IA-1 2.4.18-
e.12smp.

3.1 Results

The backend compiler of CCRG can be any compilers executed over the target ma-
chines, including commercial compilers(Intel, PGI, etc.) and GNU compiler. To
compare CCRG with commercial Intel compiler exactly, Intel Fortran Compiler
8.0 is used as the backend compiler of CCRG. Fig.4 and Fig.5 show the Base Ratios
of SPEC OMPM2001 Fortran benchmarks of CCRG and Intel OpenMP Compiler
8.02 with four OpenMP threads . “-O3” and “-O3 -ipo” options are used respec-
tively. “-ipo” option enables inter-procedural optimization(IPO) across files.
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Fig. 4. Base Ratios of CCRG and Intel
without IPO
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Fig. 5. Base Ratios of CCRG and Intel
with IPO

The performance data in Fig.4 and Fig.5 suggest that CCRG indeed makes
good use of the multiprocessing capabilities offered by the underlying platform
as Intel OpenMP Compiler with two exceptions: mgrid and wupwise. The Base
Ratio of mgrid with CCRG is only half of that with Intel whether inter-procedure
optimization option is used or not. When “-ipo” option is used, the performance
of wupwise with Intel can be improved greatly, while CCRG seems to block some
further optimization.
2 318.galgel can not execute correctly using Intel OpenMP Compiler 8.0 on our server.
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3.2 Performance Analysis

For most of the SPEC OMPM2001 Fortran benchmarks, CCRG OpenMP Com-
piler results in almost exactly the same Base Ratios as Intel OpenMP Compiler.
But the performance of mgrid and wupwise with CCRG are much worse than
that with Intel OpenMP Compiler. In this section, we analyze and explain why
mgrid and wupwise perform poorly in detail. HP server rx2600 with 2 Itanuim2
processors (1.0GHz) is used for performance analysis here.

mgrid. Fig.6 shows the execution time of the top six pocedures3 in mgrid with
“TRAIN” input sets. “ p1” and “ p2” denote the procedures generated for the
first and second parallel regions in one procedure respectively. For example,
the column of resid p1 in Fig.6 denotes the execution time of the first parallel
region of resid. The procedures resid p1, psinv p1, rprj3 p1, interp p1
and interp p2 cause the different execution time between CCRG and Intel.
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Fig. 6. Execution Time of Top 6 Procedures in mgrid

resid p1, psinv p1, rprj3 p1, interp p1 and interp p2 are the pro-
cedures generated for the simple PARALLEL DO constructs. In CCRG, the struc-
ture of the procedure is same as that shown in Fig.3. Most of the execution time
of the procedures are spent to execute the nested DO-loop. Comparing with Intel
OpenMP Compiler, CCRG introduces an additional loop level to implement the
schedule types in OpenMP.

DO WHILE (comp static more( omp dolo, omp dohi, omp doin).eq.1)
.........

END DO

This additional loop is a while loop whose control condition is a logical expres-
sion containing a function call. It encloses the original loops and becomes the
most outer loop. Therefore, the performance of the whole procedure degrades
significantly.

3 In Intel OpenMP Compiler, the procedure should be the “T-region”.
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Table 1. Execution Time of Top 4 procedures in wupwise

CCRG Intel

Subroutine Execution time(sec) Subroutine Execution time(sec)

1 zgemm 82.10 dlaran 9.77

2 gammul 10.77 zaxpy 8.57

3 zaxpy 7.74 zgemm 7.91

4 dlaran 7.35 lsame 1.87

wupwise. Unlike mgrid, the performance of wupwise is affected by IPO largely.
Table 1 shows the execution time of the top four procedures in wupwise with
“TRAIN” input sets. The time of subroutine zgemm with CCRG is 82.10 seconds,
while the time with Intel is only 7.91 seconds.

The Intel compiler provides the extensive support for inter-procedural analysis
and optimization, such as points-to analysis and mod/ref analysis required by
many other optimizations. However, only the equivalent version transformed by
the source-to-source translator of CCRG can be seen by the backend compiler
Intel Fortran Compiler. Because the parallel region procedures are called by
function comp parallel as actual parameters, the source-to-source translator
dose not keep the information about the caller-callee relationship between the
original procedures. So, the backend compiler can not process the further inter-
procedural analysis and optimization.

Though zgemm is only called in su3mul with several constants which are
used to control the loops of zgemm, these constants have not been propagated
to zgemm in CCRG. From the above two optimization reports, it is obvious
that inter-procedural constant propagation has been applied to zgemm when

High Level Optimizer Report for: zgemm
Block, Unroll, Jam Report:
(loop line numbers, unroll factors and type of transformation)
Loop at line 2194 unrolled with remainder by 6
Loop at line 2177 unrolled with remainder by 6
Loop at line 2158 unrolled with remainder by 6
.........

(a) For Program Transformed by CCRG

High Level Optimizer Report for: zgemm
Block, Unroll, Jam Report:
(loop line numbers, unroll factors and type of transformation)
Loop at line 2377 completely unrolled by 3
Loop at line 2379 completely unrolled by 3
Loop at line 2360 completely unrolled by 3
.........

(b) For Source OpenMP Program

Fig. 7. Optimization Report Generated by Intel Fortran Compiler 8.0
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using Intel OpenMP Compiler. Many loops in zgemm are completely unrolled
according to the value of actual parameter.

4 Optimization

Section 3.1 describes the key factors which influence on the performance of mgrid
and wupwise programs. In this section, the optimized static schedule imple-
mentation and inter-procedural optimization are presented to CCRG OpenMP
Compiler for the improvement of performance of these programs.

4.1 Optimized Static Schedule

In the following three cases, function comp static more is .TRUE. only once
for each thread when executing a parallel region procedure in CCRG.

– Absence of the SCHEDULE clause.
– Static schedule without chunk, i,e. SCHEDULE(STATIC) is specified.
– Static schedule, and both chunk size and number of iteration are known

during compile time, and (chunk size × number of threads) ≤
number of iteration.

Therefore, the parallel region subroutine code in Fig.3 can be replaced with
the codes in Fig.8. comp static once is called only once to implement the
PARALLEL DO directive in Fig.2.

SUBROUTINE test $0(a)

DIMENSION a(100)

INTEGER lc k

ENTRY test $1 ()

CALL comp static setdo(1,100,1,0)

CALL comp static once( omp dolo, omp dohi,1)

DO 100 lc k= omp dolo, omp dohi,1

100 a(lc k)=0.9

CALL comp barrier()

RETURN

END

Fig. 8. Implementation of STATIC Schedule without Chunk Size

After optimization, the execution time of all procedures in Fig.6 has been
reduced significantly. The middle columns in Fig.9 are the execution time using
the optimized static schedule implementation. Obviously, the performance of
whole mgrid has been improved largely too.
SCHEDULE clause is not specified in most of OpenMP programs, we can just

use comp static once instead of comp static more with introducing an
additional outer loop.
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Fig. 9. Execution time of Main Procedures after Optimization

4.2 Inter-Procedural Constant Propagation

Because CCRG uses the source-to-source approach, some inter-procedural opti-
mizations may no longer be applicable for some OpenMP programs. For example,
in wupwise, subroutine zgemm is called only once in subroutine su3mul where
the third, fourth and fifth actual parameters are integer constants. But these
constants have not been propagated to zgemm.

This is a native problem of source-to-source OpenMP compilers. We present
an approach to solving it by adding inter-procedural optimization in source-to-
source translator. Inter-procedural optimization contains two-pass compilation,
as shown in Fig.10.

In the first pass, the parser scans all the project files to record the informa-
tion about procedure calls, such as procedure name, formal parameters, proce-
dure name and actual parameters called by the procedures in the files. Tempo-
rary file tmp filename.i is generated for each file in the project. For example,
tmp su3mul.i for su3mul.f in wupwise contains the information as follows.

{SUBROUTINE "SU3MUL"

(FORMAL ("U" COMPLEX*16 DIMENSION(2 3 *))

("TRANSU" CHARACTER*1 SCALAR)

("X" COMPLEX*16 DIMENSION(1 *))

("RESULT" COMPLEX*16 DIMENSION(1 *)))

(SUBROUTINE "ZGEMM"

(ACTUAL (TRANSU, ’NO TRANSPOSE’,3,4,3, ONE,U,3,X,3,ZERO,RESULT,3)

}

First Pass Parser : f2dep tmp_filename.i

Second Pass

Parser : f2dep
.dep

Translator:omp2f filename_omp.f

Inter-Procedural
Analysis

Fig. 10. Inter-Procedural Optimization
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In the second pass, the parser reads and analyzes all of the temporary files firstly.
If the callers always use the same integer constant as certain actual parameter
to call a procedure, the parser inserts an assignment statement before the first
executable statement in the callee. The constant is assigned to the parameter in
the assignment statement(see Fig.11).

SUBROUTINE ZGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC )

! Variables Declaration Statements.........

! Assignment to Formal parameters

M = 3

N = 4

K = 3

!Other Executable Statements

END

Fig. 11. Inserts the Assignment Statements in the Callee

Therefore, the constant propagation is implemented through assignments to for-
mal parameters. That is, the source-to-source translator only provides the initial
values of the formal parameters after inter-procedural analysis, the backend com-
piler utilizes the information to make further optimization. After optimization, the
execution time ofwupwise has been reduced significantly as shown in Fig.12, whose
middle columns are the execution time after inter-procedural optimization.
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Fig. 12. Execution Time of wupwise after Optimization

Complete inter-procedure constant propagation needs to be supported by
other optimizations, such as source-level data flow analysis and constant prop-
agation within a procedure. At present only integer constant actual parameters
can be propagated cross procedures.

5 Conclusion and Future Work

The CCRG OpenMP Compiler is a mature source-to-source compiler for
OpenMP. All SPEC OMPM2001 Fortran benchmarks have been compiled and
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executed on SMP system efficiently. CCRG supports OpenMP Fortran90/95
programming, and all of the Fortran benchmarks achieve the comparable Base
Ratios as Intel OpenMP Compiler.

In the paper, we show our experience for performance improvement of CCRG.
We analyze two benchmarks mgrid and wupwise whose execution time with
CCRG were much longer than that with Intel. Two optimization techniques,
namely, optimized static schedule and inter-procedural constant propagation,
are presented to resolve the performance problems in these two programs. After
optimization, the performances of mgrid and wupwise are improved significantly.

In the future, we plan to design and implement more source-to-source opti-
mization strategies and complete inter-procedural optimization framework. This
framework will be applicable for not only IPO but also for profile-guided op-
timization aimed at OpenMP. In addition, the performance of CCRG will be
evaluated on the large SMP systems.
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Abstract. Cluster systems interconnected via fast interconnection net-
works have been successfully applied to various research fields for parallel
execution of large applications. Next to MPI, the conventional program-
ming model, OpenMP is increasingly used for parallelizing sequential
codes. Due to its easy programming interface and similar semantics with
traditional programming languages, OpenMP is especially appropriate
for non-professional users.

For exploiting scalable parallel computation, we have established a
PC cluster using InfiniBand, a high-performance, de facto standard in-
terconnection technology. In order to support the users with a simple
parallel programming model, we have implemented an OpenMP execu-
tion environment on top of this cluster. As a global memory abstraction
is needed for shared data, we first built a software distributed shared
memory implementing a kind of Home-based Lazy Release Consistency
protocol. We then modified an existing OpenMP source-to-source com-
piler for mapping shared data on this DSM and for handling issues with
respect to process/thread activities and task distribution. Experimental
results based on a set of different OpenMP applications show a speedup
of up to 5.22 on systems with 6 processor nodes.

1 Motivation

Clusters are regarded as adequate platforms for exploring high performance com-
puting. In contrast to tightly-coupled multiprocessor systems, like SMPs, clusters
have the advantage of scalability and cost-effectiveness. Therefore, they are gen-
erally deployed in a variety of both research and commercial areas for performing
parallel computation.

As a consequence, we have also established a cluster system using modern
processors. More specifically, this cluster is connected via InfiniBand [7], a high-
performance interconnect technology. Besides its low latency and high band-
width, InfiniBand supports Remote Data Memory Access (RDMA), allowing

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 65–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



66 J. Tao, W. Karl, and C. Trinitis

access to remote memory locations via the network without any involvement
of the receiver. This feature allows InfiniBand to achieve higher bandwidth for
inter-node communication, in comparison with other interconnect technologies
such as Giga-Ethernet and Myrinet.

As the first step towards cluster computing, we have built an MPI environment
on top of this cluster. However, we note that increasingly, users have no special
knowledge about parallel computing and they usually bring OpenMP codes.
Since it offers an easier programming interface with semantics similar to that
of sequential codes, OpenMP is preferred by non-professional users to develop
parallel programs. In order to support these users, we established the OpenMP
execution environment on top of our InfiniBand clusters.

As a global memory abstraction is the basis for any shared memory program-
ming model, we first developed ViSMI (Virtual Shared Memory for InfiniBand
clusters), a software-based distributed shared memory. ViSMI implements a kind
of home-based lazy release consistency model and provides annotations for deal-
ing with issues with respect to parallel execution, such as process creation, data
allocation, and synchronization. We then developed Omni/Infini, a source-to-
source OpenMP compiler using ViSMI as the supporting interface. Omni/Infini
is actually an extended version of the Omni compiler. We have modified Omni
in order to replace the thread interface with ViSMI interface, to map shared
data on the distributed shared memory, and to coordinate the work of different
processes.

The established OpenMP execution environment has been verified using both
applications from standard benchmark suites, like NAS and SPLASH-II, and
several small kernels. Experimental results show different behavior with appli-
cations. However, for most applications, scalable speedup has been achieved.

The remainder of this paper is organized as follows. Section 2 gives an in-
troduction to the InfiniBand cluster and the established software DSM. This is
followed by a brief description of Omni/Infini in Section 3. In Section 4 first
experimental results are illustrated. The paper concludes with a short summary
and some future directions in Section 5.

2 The InfiniBand Cluster and the Software DSM

InfiniBand [7] is a point-to-point, switched I/O interconnect architecture with
low latency and high bandwidth. For communications, InfiniBand provides both
channel and memory semantics. While the former refers to traditional send/
receive operations, the latter allows the user to directly read or write data ele-
ments from or to the virtual memory space of a remote node without involving
the remote host processor. This scenario is referred to as Remote Direct Memory
Access (RDMA).

The original configuration of our InfiniBand cluster included 6 Xeon nodes and
4 Itanium 2 (Madison) nodes. Recently we have added 36 Opteron nodes into
the cluster. The Xeon nodes are used partly for interactive tasks and partly for
computation, while the others are purely used for computation. These processor
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nodes are connected through switches with a theoretical peak bandwidth of 10
Gbps.

As the first step towards an infrastructure for shared memory programming,
we implemented ViSMI [16], a software-based distributed shared memory system.

The basic idea behind software distributed shared memory is to provide the
programmers with a virtually global address space on cluster architectures. This
idea is first proposed by Kai Li [13] and implemented in IVY [14]. As the memo-
ries are actually distributed across the cluster, the required data could be located
on a remote node and also multiple copies of shared data could exist. The latter
leads to consistency issues, where a write operation on shared data has to be seen
by other processors. For tackling this problem, software DSMs usually rely on
the page fault handler of the operating system to implement invalidation-based
consistency models.

The concept of memory consistency models is to precisely characterize the
behavior of the respective memory system by clearly defining the order in which
memory operations are performed. Depending on the concrete requirement, this
order can be strict or less strict, hence leading to various consistency models.

The most strict one is sequential consistency [12], which forces a multiproces-
sor system to achieve the same result of any execution as if the operations of
all the processors were executed in some sequential order and the operations
of each individual processor appear in the order specified by its programmers.
This provides an intuitive and easy-to-follow memory behavior, however, the
strict ordering requires the memory system to propagate updates early and pro-
hibits optimizations in both hardware and compilers. Hence, other models have
been proposed to relax the constraints of sequential consistency with the goal of
improving the overall performance.

Relaxed consistency models [3,6,9,10] define a memory model for programmers
to use explicit synchronization. Synchronizing memory accesses are divided into
Acquires and Releases, where an Aquire allows the access to shared data and en-
sures that the data is up-to-date, while Release relinquishes this access right and
ensures that all memory updates have been properly propagated. By separating
the synchronization in this way invalidations are only performed by a synchro-
nization operation, therefore reducing the unnecessary invalidations caused by
an early coherence operation.

A well-known relaxed consistency model is Lazy Release Consistency (LRC)
[10]. Within this model, invalidations are propagated at the acquire time. This
allows the system to delay communication of write updates until the data is
actually needed. To reduce the communications caused by false sharing, where
multiple unrelated shared data locate on the same page, LRC protocols usually
support a multiple-writer scheme. Within this scheme, multiple writable copies
of the same page are allowed and a clean copy is generated after an invalidation.
Home-based Lazy Release Consistency (HLRC) [17], for example, implements
such a multiple-writer scheme by specifying a home for each page. All updates
to a page are propagated to the home node at synchronization points, such as
lock release and barrier. Hence the page copy on home is up-to-date.
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Table 1. ViSMI annotations for shared memory execution

Annotation Description

HLRC Malloc allocating memory in shared space
HLRC Myself querying the ID of the calling process
HLRC InitParallel initialization of the parallel phase
HLRC Barrier establishing synchronization over processes
HLRC Acquire acquiring the specified lock
HLRC Release releasing the specified lock
HLRC End releasing all resources and terminating

ViSMI implements such a Home-based Lazy Release Consistency protocol.
For each shared page a default home is specified during the initialization phase
and then the node first accessing the page becomes its home. Each processor
can maintain a copy of the shared page, but by a synchronization operation all
copies are invalidated. Also at this point, an up-to-date version of the page is
created on the home node. For this, the updates of all processors holding a copy
must be aggregated. ViSMI uses a diff-based mechanism, where the difference
(diffs) between each dirty copy and the clean copy is computed. This is similar
to that used by the Myrias parallel do mechanism [2]. To propagate the updates,
ViSMI takes advantage of the hardware-based multicast provided by InfiniBand
to minimize the overheads for interconnection traffic. The diffs are then applied
to the clean copy and the up-to-date version of the page is generated. For further
computation page fault signals are issued on other processors and the missing
page is fetched from the home node. To handle the incoming communication,
each node maintains an additional thread, besides the application thread. This
communication thread is only active when a communication request occurs. We
use the event notification scheme of InfiniBand to achieve this.

For parallel execution, ViSMI establishes a programming interface for develop-
ing shared memory applications. This interface is primarily composed of a set of
annotations that handle issues with respect to parallelism. The most important
annotations and a short description about them are listed in Table 1.

3 Omni/Infini: Towards OpenMP Execution on Clusters

OpenMP is actually initially introduced for parallel multiprocessor systems with
physically global shared memory. Recently, compiler developers have been ex-
tending the existing compilers to enable the OpenMP execution on cluster sys-
tems, often using a software distributed shared memory as the basis. Well-known
examples are the Nanos Compiler [5,15], the Polaris parallelizing compiler [1],
and the Omni/SCASH compiler [18].

Based on ViSMI and its programming interface, we similarly implemented an
OpenMP compiler for the InfiniBand cluster. This compiler, called Omni/Infini,
is actually a modification and extension of the original Omni compiler for SMPs
[11]. The major work has been done with coordination of processes, allocation
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of shared data, and a new runtime library for parallelization, synchronization,
and task scheduling.

Process structure vs. thread structure. The Omni compiler, like most oth-
ers, uses a thread structure for parallel execution. It maintains a master thread
and a number of slave threads. Slave threads are created at the initialization
phase, but they are idle until a parallel region is encountered. This indicates
that sequential regions are implicitly executed by the master thread, without
any special task assignment. The ViSMI interface, on the other hand, uses a
kind of process structure, where processes are forked at the initialization phase.
These processes execute the same code, including both sequential regions and
parallel parts. Clearly, this structure burdens processors with unnecessary work.
In order to maintain the conventional OpenMP semantics with parallelism and
also to save the CPU resources, we have designed special mechanisms to clearly
specify which process does what job. For code regions needed to be executed on
a single processor, for example, only the process on the host node is assigned
with tasks.

Shared data allocation and initialization. ViSMI maintains a shared virtual
space visible to all processor nodes. This space is reserved at the initialization
phase and consists of memory spaces from each processor’s physical main mem-
ory. Hence, all shared data in an OpenMP code must be allocated into this vir-
tual space in order to be globally accessible and consistent. This is an additional
work for a cluster-OpenMP compiler. We extended Omni for detecting shared
variables and further changing them to data objects which will be allocated to
the shared virtual space at runtime.

Another issue concerns the initialization of shared variables. Within a tradi-
tional OpenMP implementation, this is usually done by a single thread. Hence,
an OpenMP directive SINGLE is often applied in case that such initialization
occurs in a parallel region. This causes problems when running the applications
on top of ViSMI. ViSMI allocates memory spaces for shared data structures on
all processor nodes 1. These data structures must be initialized before further
use for parallel computation. Hence, the initialization has to be performed on all
nodes. Currently, we rely on an implicit barrier operation inserted to SINGLE
to tackle this problem. With this barrier, updates to shared data are forced to
aggregate on the host node and a clean copy is created. This causes performance
lost because a barrier operation is not essential for all SINGLE operations. For
the next version of Omni/Infini, we intend to enable compiler-level automatic
distinction between different SINGLE directives.

Runtime library. Omni contains a set of functions to deal with runtime is-
sues like task scheduling, lock and barrier, reduction operations, environment
variables, and specific code regions such as MASTER, CRITICAL, and SIN-
GLE. These functions require information, like thread ID number and number
of threads, to perform correct actions for different threads. This information
1 ViSMI allocates on each processor a memory space for shared variables. Each proces-

sor uses the local copy of shared data for computation.
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is stored within data structures for threads, which are not available in ViSMI.
Hence, we modified all related functions in order to remove the interface to
thread structure of Omni and to build the connection to the ViSMI program-
ming interface. In this way, we created a new OpenMP runtime library that is
linked to the applications for handling OpenMP runtime issues.

4 Initial Experimental Results

Based on the extension and modification with both sides, the Omni compiler and
ViSMI, we have developed this OpenMP execution environment for InfiniBand
clusters. In order to verify the established environment, various measurements
have been done using our InfiniBand cluster. Since ViSMI is currently based on a
32-bit address space and the Opteron nodes are available to users quite recently,
most of the experiments were carried out on the six Xeon nodes. Only the last
experiment for examining scalability was performed with Opteron processors.

We use a variety of applications for examining different behavior. Four of them
are chosen from the NAS parallel benchmark suite [4,8] and the OpenMP version
of the SPLASH-2 Benchmark suite [20]. Two Fortran programs are selected from
the benchmark suite developed for an SMP programming course [19]. In addition,
two self-coded small kernels are also examined. A short description, the working
set size, and the required shared memory size of these applications are shown in
Table 2.

Table 2. Description of benchmark applications

Application Description Working set size Shared memory size Benchmark
LU LU-decomposition for dense matrices 2048×2048 matrix 34MB SPLASH-2
Radix Integer radix sort 18.7M keys 67MB SPLASH-2
FT Fast Fourier Transformations 64×64×64 51MB NAS
CG Grid computation and communication 1400 3MB NAS
Matmul Dense matrix multiplication 2048×2048 34MB SMP course
Sparse Sparse matrix multiplication 1024×1024 8MB SMP course
SOR Successive Over Relaxation 2671×2671 34MB self-coded
Gauss Gaussian Elimination 200×200 1MB self-coded

First, we measured the speedup of the parallel execution using different num-
ber of processors. Figure 1 shows the experimental results. It can be seen that
applications behave quite differently. LU achieves the best performance with a
scalable speedup of as high as 5.52 on a 6-node cluster system. Similarly, Matmul
and SOR also show a scalable speedup with close parallel efficiency on differ-
ent systems (efficiency is calculated with the speedup divided by the number
of processors and reflects the scalability of a system). Sparse and Gauss be-
have poorly, with either no speedup or running even slower on multiprocessor
systems. This is caused by the smaller working set size of both codes. Actu-
ally, we selected this size in order to examine how system overhead influences
the parallel performance; and we see that due to the large percentage of overhead
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Fig. 1. Speedup on systems with different number of processors

in the overall execution time, applications with smaller data size can not gain
speedup on systems with software-based distributed shared memory.

CG behaves surprisingly with a decreasing speedup as the number of proces-
sors increases. For detecting the reasons, we measured the time needed for differ-
ent activities when running the applications on 6-node systems. Figure 2 shows
the experimental results.

In Figure 2, exec. denotes the overall execution time, while comput. specifies
the time for actually executing the application, page is the time for fetching
pages, barrier denotes the time for barrier operations 2, lock is the time for
performing locks, handler is the time needed by the communication thread, and
overhead is the time for other protocol activities. The sum of all partial times
equals to the total exec. time.

It can be seen that LU, Matmul, and SOR show a rather high proportion
in computation time, and hence achieve better speedup than other applica-
tions. Radix and FT behaves worse than them, but most of the time is used
for calculation. For Sparse and Gauss roughly only the half time is spent for
computation and hence nearly no speedup can be observed. The worst case is
with CG, where only 33% of the overall time is used for running the program
and more time is spent on other activities like inter-node communication and
synchronization. As it is a fact that each processor introduces such overhead,
slowdown can be caused with more processors running the code. CG has shown
this behavior.

In order to further verify this, we measured the time for different activities
with CG also on 2-node and 4-node systems. Figure 3 shows the experimental
results. It can be seen that while the time with handler and overhead is close on
different systems, page and barrier show a drastic increase with more processors
on the system. As a result, a decreasing speedup has been observed.

2 This includes the time for synchronization and that for transferring diffs.
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Fig. 2. Normalized execution time breakdown of tested applications

In addition, Figure 2 also shows a general case where page fetching and barrier
operations introduce the most overhead. In order to further examine these critical
issues, we measured the concrete number of page faults, barriers, and locks. Table
3 depicts the experimental results.
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This table shows the number of page fault, barrier operation, and locks. It
also gives the information about data and barrier traffic over processors. All
applications, except Gauss with smaller working set, show high number of page
fault, and hence the large amount of resulted data transfer. In contrast, only
fewer barriers have been measured, except the CG code. However, a barrier
operation could introduce significant overhead, since all processors have to send
updates to the home node, which introduces transfer overhead, and to wait for a
reply, which causes synchronization overhead. In addition, the computation can
continue only after a clean copy has been created. Therefore, even though only
a few of barriers are performed, still large proportion of the overall time is spent
on barrier operations, as having been illustrated in Figure 2. However, LU is an
exception, where few time is needed for barriers. This can be explained by the
fact that with LU rather small amount of diffs are created and hence overhead
for data transfer at barriers is small.

In order to reduce the overhead with page fault and barrier, we propose
adaptive approaches. Actually, page fault occurs when a page copy has to be

Table 3. Value of several performance metrics

page fault barriers lock acquired data traffic barrier traffic
LU 5512 257 0 14.4MB 0.015M
Radix 6084 10 18 13.9MB 0.12M
FT 3581 16 49 21MB 0.03M
CG 8385 2496 0 8.3MB 0.03M
Matmul 4106 0 0 17.4MB 0
Sparse 1033 0 0 1.4MB 0
SOR 2739 12 0 4.7MB 0.006M
Gauss 437 201 0 0.17MB 0.02M
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invalidated, while a clean copy of this shared page is created. The current HLRC
implementation uses an approach, where all processors send the diffs to the home
node. The home node then applies the diffs to the page and generates a clean
copy. After that, other processors can fetch this copy for further computation. A
possible improvement to this approach is to multicast the diffs to all processors
and apply them directly on all dirty copies. In this way, the number of page
fault and the resulted data transport could be significantly reduced, while at
the same time the overhead for multicasting is much smaller due to the special
hardware-level support of InfiniBand. This optimization can also reduce the over-
head for barriers, because in this case synchronization is not necessary; rather
a processor can go on with the computation, as soon as the page copy on it is
updated. We will implement such optimizations in the next step of this research
work.

The following experiment was done with the laplace code provided by the
Omni compiler. The goal is to compare the performance of OpenMP execution on
InfiniBand clusters with that of software DSM based OpenMP implementation
on clusters using other interconnection technologies. For the latter, we apply the
data measured by the Omni/SCASH researchers on both Ethernet and Myrinet
clusters. Figure 4 gives the speedup on 2, 4, and 6 node systems.

It can be seen that our system provides the best performance, with an average
improvement of 62% to Ethernet and 10% to Myrinet. This improvement shall
be contributed by the specific properties of InfiniBand.

With the last experiment we intended to examine the scalability of the es-
tablished OpenMP platform on top of a software DSM. For this, we ran the
LU, Matmul, and SOR codes, which achieved the best performance as shown
in Figure 1, on the Opteron processors and measured speedup on systems with
different number of nodes. Figure 5 illustrates the experimental results.
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As shown in this figure, the scalability with these codes is rather different.
While LU scales up to 12 processors and SOR up to 16, Matmul achieves only a
slight speedup increase on systems with more than 6 processor nodes. This also
indicates that larger applications and computation intensive codes benefit more
from the parallel execution on a system relying on software DSM. Other codes,
however, could not achieve expected performance on large systems due to the
high overhead for maintaining the shared space.

5 Conclusions

OpenMP is traditionally designed for shared memory multiprocessors with phys-
ically global shared memory. Due to the architectural restriction, however, such
machines suffer from scalability. On the other hand, cluster systems are widely
used for parallel computing, raising the need for establishing OpenMP environ-
ments on top of them.

In this paper, we introduce an approach for building such an environment
on InfiniBand clusters. First, a software DSM is developed, which creates a
shared virtual memory space visible to all processor nodes on the cluster. We
then modified and extended the Omni OpenMP compiler in order to deal with
issues like data mapping, task scheduling, and the runtime. Experimental results
based on a variety of applications show that the parallel performance depends
on applications and their working set size. Overall, a speedup of up to 5.22 on 6
nodes has been achieved.

Besides the optimization with page fault and barrier, we also intend to apply
more features of InfiniBand to further reduce the system overhead. In addition,
the software DSM will be extended to 64-bit address space, allowing a full use
of the whole cluster for OpenMP execution.
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Abstract. In this paper a run-time library, called Balder, for OpenMP
2.0 is presented. OpenMP 2.0 is an industry standard for programming
shared memory machines. The run-time library presented can be used
on SMPs and clusters of SMPs and it will provide a shared address space
on a cluster. The functionality and design of the library is discussed as
well as some features that are being worked on. The performance of the
library is evaluated and is shown to be competitive when compared to a
commercial compiler from Intel.

1 Introduction

OpenMP has during the last few years gained considerable acceptance as the
shared memory programming model of choice. OpenMP is an industry standard
and utilizes a fork-join programming model based on compiler directives [1,2].

The directives are used by the programmer to instruct an OpenMP aware
compiler to transform the program into a parallel program. In addition to the
directives, OpenMP also specifies a number of run-time library functions.

To use OpenMP, an OpenMP aware compilation system is thus needed. The
compilation system generally consists of a compiler and an OpenMP run-time
library. The library is not only used to handle the run-time library functions as
defined by the OpenMP specification but also to aid the compiler with a number
of functions that efficiently spawn threads, synchronize threads, and help share
work between threads.

In this paper, an open source OpenMP run-time library, called Balder, is pre-
sented which is capable of fully handling OpenMP 2.0 including nested paral-
lelism [2]. The library supports not only single SMPs efficiently but also clusters
of SMPs making it possible to do research on extensions to the OpenMP speci-
fication in the areas of SMP centric and cluster centric extensions. A compiler,
called OdinMP, targeting the library is already readily available [3,4]. A more
detailed description of the OpenMP transformations is available on OdinMPs
homepage [4]. I will not discuss the API of Balder in detail in this paper and
instead I refer the interested reader to the aforementioned website. The source
code of the library is also available from the same website.

The library is highly portable and there are currently ports available to several
processor architectures such as IA32 and ARM and to several different operating
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systems including Unix variants and Windows versions. Balder is currently at
version 1.0.1.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of the library while section 3 provides information of the sub-libraries
that Balder builds on. Section 4 describes the OpenMP run-time itself and
presents some details on the implementation of important primitives while sec-
tion 5 discusses work-in-progress and future features for the Balder run-time.
Experimental results are presented in section 6. The paper is summarized in
section 7.

2 Overview of the Run-Time Library

The run-time library is implemented in ANSI C [5] and provides the following
functionality:

– Full implementation of all OpenMP 2.0 intrinsic functions, i.e., the run-time
library functions described by the specification.

– Efficient handling of threads including thread creation, and thread synchro-
nization.

– Parallel for-loop primitives to aid the compiler when transforming work shar-
ing constructs.

– Support for OpenMPs threadprivate variables.
– Support for OpenMPs copyprivate clause.
– A built-in software distributed shared memory system, software DSM sys-

tem, to achieve a shared address space on a cluster.
– Memory management for the shared address space.
– Support for shared stack storage.

The library builds on previous experience [3,6]. It is designed to be highly
portable and to achieve portability it is designed as a layered system. Most of
the functionality outlined in a previous paper is implemented [7].

The library utilizes three sub libraries: Balder Threads, Balder Oslib, and
Balder Messages as can be seen in figure 1. These libraries provide thread ser-
vices, operating system services, and cluster messaging services respectively.

The software DSM system and OpenMP run-time library is then implemented
on top of the sub-libraries making it possible to implement the run-time in ordi-
nary ANSI C without any dependencies on processor architecture or operating
system features. In essence, this means that porting Balder is a matter of porting
the well-defined primitives in the three sub-libraries.

2.1 Related Work

Balder is complete re-write of the run-time described in a previous paper which
only supported uni-processor nodes [6]. No code has been borrowed or taken
from that prototype or other OpenMP run-time libraries. Balder differs from
previous efforts in that it is designed from the ground up to be both efficient
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Fig. 1. Overview of the design of the Balder library

and portable. In a previous paper, the Balder run-time was mentioned with the
OdinMP compiler [3]. In that paper the focus was on the compiler and the design
of Balder was not discussed.

In the next section, I will continue with a description of the run-time sub-
libraries.

3 The Balder Sub-libraries

The three sub-libraries are instrumental in achieving a high degree of function-
ality and portability. A layered design approach has, whenever possible, been
used even in the sub-libraries to aid porting efforts.

3.1 Balder Messages

Balder Messages is a packet-based, network technology independent messaging
library with support for prioritized communication. The library is described in
previous work [7,8] and I will here only provide a very brief introduction. The
transmission and reception primitives in the library use a data format based on
linked lists for the packets. This facilitates scatter-gather I/O. It is also possible
to allocate memory for packets in network hardware buffers so as to achieve
zero-copy communication. Finally, there exist primitives for both synchronous
and asynchronous communication as well as active message communication [9].

The library is divided into several parts. One part handles the construction
of packets as linked lists, another handles flow control and queuing of packets
and the last is the network back-end. There exist network back-ends for UDP
and MPI [10]. Back-ends with partial support for Myrinet, LAPI, and System
Vs shared memory primitives exist [11].

3.2 Balder Oslib

Balder relies heavily on the virtual memory management system of the operating
system. The virtual memory systems of operating systems differ from each other
in both APIs and provided services. The Balder Oslib sub-library acts as a
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virtualization layer and provides an operating system independent API. There
is support for:

– Creation of a virtual memory region which is guaranteed to be at the same
address range on all cluster nodes.

– Setting of access permissions on individual virtual memory pages.
– Catching of page-faults and similar exceptions.
– Timers and timing management.

In addition, Balder Oslib implements a registry under which arbitrary data
structures can be filed using strings as keys. This registry is used to store global
system options and data structures and is instrumental in making it possible to
modularize Balder properly without being hampered by artificial cross-module
dependencies.

The Oslib is the sub-library which is the least layered. This is largely due to
the virtual memory systems differing so much between operating systems. The
Windows port, for instance, requires a completely different implementation than
Unixes and cannot share any code with other ports.

3.3 Balder Threads

Balder Threads provides an efficient processor architecture independent multi-
threading API [12]. Balder Threads has primitives for:

– Thread creation and destruction.
– Thread synchronization using monitors, monitor signals, and barriers.
– Work queues.
– Stack frame creation so that arbitrary functions can be called.

Balder Threads uses a system of assembly macros that describes the processor
architecture. A port to a new processor architecture is in most cases a matter of
adapting the macros of an existing port.

The assembly macros describe how a function stack frame is organized, how
functions are called, e.g. which parameters are passed on the stack and which
are passed in registers, and provide implementations for important low-level
primitives. Balder Thread uses POSIX threads as underlying thread library but
implements efficient synchronization primitives using the mentioned low-level
primitives [13]. The primitives used by Balder Threads are test-and-set, fetch-
and-add, and a memory fence operation. Most modern processor architectures
require that memory fence operations are embedded into lock and barrier oper-
ations or they will otherwise not work. This is not the only reason for providing
memory fences as a low-level primitive. The memory fence operations are also
used to implement the support for the OpenMP flush directive. In the absence
of a required primitive, in the form of macros, Balder Threads will first revert
to an implementation which only uses test-and-set and then, if no test-and-set
primitive is provided, to POSIX threads. The memory fence operation is a no-
operation on processor architectures that do not require memory fences.
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Using this scheme of portable synchronization primitives based on low-level
assembly macros, Balder Threads is able to achieve a synchronization overhead
close to an order of magnitude less than POSIX threads. The synchronization
primitives are generally based on test-test-and-set with a time-out so as to avoid
excessive busy wait.

Balder Threads only provides primitives which can be used by threads running
on the same cluster node. The OpenMP run-time layer provides primitives which
can be used across cluster nodes.

4 Software DSM System and OpenMP Run-Time Library

The OpenMP run-time library is built on-top of the sub-libraries and can thus
be written completely architecture independent. It provides support for a shared
address space on clusters via a software DSM system, and it also provides support
for high-level OpenMP primitives as outlined in section 2.

The software DSM system uses the virtual memory management system to
provide, on a cluster, a shared address space which acts as a shared memory.
The system does not rely on any particular hardware except a decent virtual
memory system and a network interconnect system.

In Balder, the software DSM system is built on-top of Balder Oslib and Balder
Messages. The software DSM system uses home-based lazy release consistency,
HLRC [14]. The reason for using HLRC is HLRCs robustness and relative sim-
plicity. Some special features of the HLRC variant used in Balder will be men-
tioned when discussing the support functions for OpenMP.

As mentioned in section 2, the OpenMP run-time library provides a number of
primitives in different areas of functionality. I will now go through these areas and
provide an overview of the functionality provided and how the implementation
is done.

4.1 Parallel Regions

OpenMP is a fork-join programming model and the basis of parallelism are
parallel regions as defined by compiler directives. The compiler will transform
each parallel region into a function which is executed in parallel by a num-
ber of threads. The compiler then inserts a call to a run-time library function,
which handles creation of threads and execution of the function, into the pro-
gram. The run-time library function is the basis for parallelism and is called
in tone spawnparallel.

Balder uses a pool of threads to avoid excessive and time consuming thread
creation and destruction operations. Threads are never destroyed and are only
created when no threads are left in the pool. All threads in the thread pool wait
on a work queue as provided by Balder Threads.

Internally the implementation of in tone spawnparallel is straight-forward.
It merely performs book-keeping, adds work to the thread pools work queue,
the calling thread executes the parallel region, and then waits for any spawned
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threads to finish executing the parallel region. After finishing, the spawned
threads returns to the thread pool and can be reused in other parallel regions.

Each cluster node has its own thread pool and so message passing is used to
hand out work when running on a cluster. The cluster code also makes use of a
limitation to simplify the message passing and the memory coherence protocol.
Balder does not currently allow nested parallelism when running on a cluster
although different approaches to lift the limitation are being investigated. All
nested parallel regions are serialized yielding one level of parallelism. This is
allowed by the OpenMP specification and does not break OpenMP compliance.
Balder does, however, fully support nested parallelism when running on one
single SMP node.

4.2 Lock Functions

The OpenMP specification describes a number of lock functions as run-time
library functions. To handle these function, a set of distributed lock primitives
have been implemented on top of Balder Threads and Balder Messages. The lock
primitives are unfair in the sense that if a lock is held on a cluster node, the
threads on that node get precedence over other threads when setting the lock.
This reduces the network activity and the latency in case of lock contention [15].

Intra-node synchronization is performed with Balder Thread primitives while
inter-node synchronization is performed with message passing.

If the system is running on one single node, the lock primitives revert back
to the efficient primitives in the Balder Thread sub-library, thus avoiding the
overhead of the distributed lock algorithm.

4.3 Barriers

The threads executing a specific parallel region form a thread team. The threads
in a thread team can be synchronized with barriers and the OpenMP run-time
provides a function for barrier synchronization.

Inter-node barriers are performed in two phases. First there is an intra-node
barrier as provided by Balder Threads. Next, when all threads internal to a node
are synchronized, message passing takes place which synchronizes all the nodes
to each other using a centralized barrier algorithm. No threads are allowed to
proceed until the second phase is finished.

The barrier operation is an operation with particularly high overhead on clus-
ters. The overhead, is however, overlapped with memory coherence operations
so as to not waste CPU resources. No message passing or memory coherence
activities are performed when only one cluster node is used.

4.4 Worksharing Primitives

The worksharing constructs in OpenMP can all be mapped onto parallel for-loops
and so Balder only provides support for such loops. The primitives essentially
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split a range of iterations into smaller pieces which then are executed in parallel
by different threads.

It is, when running on one single cluster node, straight-forward to implement
such primitives and in Balder the fetch-and-add primitive as provided by the
Balder Thread assembly macros is used, if available, to minimize thread syn-
chronization.

A cluster implementation is, however, much more complicated and easily leads
to excessive message passing. A trick is used to reduce the message passing. The
entire iteration space is first divided statically among the cluster nodes so that
each cluster node receives a piece of the iteration space proportional to the
number of threads, taking part of the parallel for-loop, that are executing on the
node. These smaller pieces are then divided and handed out to the threads. This
way no message passing is needed to implement parallel for-loops at the expense
of potentially worse load imbalance. Load balancing algorithms, to reduce any
load imbalance, are planned but not implemented.

This trick is OpenMP compliant as the static assignment of iterations per-
formed follows all rules for the scheduling of for-loops stated in the OpenMP
specification.

4.5 Advanced Data Clauses

The OpenMP specification defines several data clauses which describe how differ-
ent variables are handled. One such data clause is the threadprivate data clause
which defines a variable to be private to a thread and to keep its value between
parallel regions. Such variables are called threadprivate variables. This essentially
means that the threadprivate variables cannot be stored on the stack but must
be associated with the threads themselves.

The run-time provides, for this, a thread-local storage space and two primi-
tives to access the storage space. One primitive is used to allocate and initialize
space and another is used to retrieve a pointer to the space.

The compiler generates code which at startup defines the thread-local storage.
The storage space is, however, not allocated or initialized until it is used.

All accesses to threadprivate variables are changed by the compiler so that
the pointer to the storage space is retrieved using the second primitive and all
accesses are performed relative to that pointer. Allocation and initialization of
the storage space will be performed in the primitive before the pointer is returned
if no space has been allocated for the thread.

Another data clause is the copyprivate data clause. It makes it possible to
broadcast the value of a variable private to a thread to the other threads in the
same thread team. The copyprivate clause has been added in the second revision
of the OpenMP specification to aid programming of applications utilizing nested
parallelism.

A set of primitives has been added to the run-time library to implement the
copyprivate data clause. These primitives make it possible for the broadcasting
thread to send a variable via the run-time library to receiving threads and then
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wait for the receiving threads to properly receive the variable. For efficiency, the
primitives are devised so that several variables can be sent and received after
each other.

Naturally, message passing is used for inter cluster node broadcasts.

4.6 Handling of Shared Memory

The software DSM system is providing a shared address space across the cluster
which can be accessed as a shared memory. To manage this address space, the
run-time library provides memory allocation and de-allocation functions similar
to ANSI Cs malloc and free [5]. These are used instead of malloc and free when
running on a cluster. The software DSM system is inactive when running on
a single node, i.e., a single SMP, and so the normal heap as provided by the
operation system is used.

A few advanced code transformations are required to run OpenMP appli-
cations on clusters. The transformations involve the handling of shared global
variables and shared stack variables. The OdinMP compiler has a command line
option which if enabled forces the compiler to perform these transformations.
The default is to not perform the transformations as they are not needed when
generating code for SMPs.

Shared global variables must be allocated in the shared address space when
running on a cluster. The OdinMP compiler can emit code to do the allocation
and it also transforms declarations of, and accesses to, shared variables so that
shared variables are accessed through pointers pointing to allocated memory
regions in the shared address space.

In OpenMP, variables located on a threads stack can also be shared. This can
occur if a parallel region is started. The thread that starts the parallel region,
i.e., executes the in tone spawnparallel primitive, is called the master thread.
Variables on the master threads stack can be shared among the threads in the
spawned thread team.

Balder handles this by implementing one single shared stack located in the
shared address space. One stack is enough as, on clusters, only one level of
parallelism is allowed which means that only the thread that executes the serial
portions of the OpenMP application can spawn parallelism.

The OdinMP compiler can transform the application code to make use of
the stack. It changes how variables are allocated so that the potentially shared
variables are allocated on the shared stack and it inserts code that builds stack
frames on, and removes them from, the shared stack upon entry and exit from
functions respectively.

One shared variable is in the example in figure 2. The transformed code is
presented in figure 3. The examples are simplified for brevity.

The code inserted by OdinMP is very much similar to what a compiler emits
at function entry and exit to build and remove stack frames. One thing differ-
ing is, however, the checks to see if the function is being called from a serial or
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void f(void) {
int shared_variable; /* The shared variable. */

shared_variable=5; /* The shared variable is accessed. */
}

Fig. 2. An example with a shared variable

parallel region of the code. This is necessary as the shared stack must only be
used from a serial portion of the code. A frame pointer is inserted as a local
variable and used for accessing the shared variable.

In OpenMP, the flush directive is used to enforce consistency. The flush di-
rective is a memory fence operation that controls when memory updates are
conveyed and when memory operations are performed.

The application programmer must, essentially, insert a flush directive before
an access or update of any shared variable that could have been updated by
another thread and a flush directive must be inserted after an update for the
update to be conveyed to other threads. Most OpenMP directives such as the
barrier directives have implied flush directives and this reduces the need to insert
extra flush directives. The OpenMP directives are defined so that extra flush
directives are only needed in some very special cases, e.g. when implementing
thread synchronization not using the OpenMP synchronization primitives.

The semantics of the flush directive is implemented in Balder just like in an
earlier prototype and a more in-depth description is available in [6]. A special
distributed lock is used to implement the flush directive. The lock is not acces-
sible from the OpenMP application but is internally handled by the run-time
library just like any other OpenMP lock. A flush directive consists of a set of
the lock followed by a release. Information on memory updates are piggy-backed
onto the lock. When setting the lock, the received information is used to invali-
date memory contents so as to drive coherency. The received update information
is merged with information on locally performed memory updates and then sent
with the lock when the lock is released to a remote node.

The implied flush directives can be and are in most cases optimized. The
barrier directive, as an example, has an implied flush directive but the coherency
information is piggy-backed on the barrier message passing, thus removing the
use of the special lock mentioned above.

4.7 OpenMP Intrinsic Functions

All the OpenMP 2.0 intrinsic functions are implemented in Balder. The imple-
mentation is rather straight-forward and mainly involves inquiring or updating
the internal state of the run-time library.
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void f(void ) {
struct in__tone_c_dt0
{
int shared_variable;
}; /* The declaration of the stack frame which is used on the

shared stack. */

/* The shared stack must only be used in the serial portions of
the code. The declaration below makes space on the threads
stack to be used in parallel regions. */

struct in__tone_c_dt0 in__tone_c_dt0;
/* The variable below is true when executing in a parallel

region. in__tone_in_parallel() is a run-time library call
that returns 1 iff the calling thread is executing in a
parallel region. */

const int in__tone_sdsm_in_parallel=in__tone_in_parallel();
/* The declaration below is for the frame pointer. The frame

pointer is set to either the shared stack or the stack frame
on the threads stack. */

struct in__tone_c_dt0 * const in__tone_sdsm_i_framep
=in__tone_sdsm_in_parallel ? &in__tone_c_dt0:

/* The shared stack pointer is called in__tone_sdsm_stackptr.
It is below subtracted to make space for a new frame. This
piece of code will only be executed if executing in a serial
portion of the code.*/

(struct in__tone_c_dt0 * const ) (in__tone_sdsm_stackptr=
in__tone_sdsm_stackptr-sizeof(struct in__tone_c_dt0 ));

/* Below is the access to the shared_variable. It is now done
through the frame pointer. */

in__tone_sdsm_i_framep->in__tone_c_dt0.shared_variable=5;
/* When leaving the function, either at the end of the function

or with return, the shared stack pointer must be updated so
as to remove the frame if executing in a serial portion of
the code. The code below does that. */

if (!in__tone_sdsm_in_parallel)
in__tone_sdsm_stackptr=in__tone_sdsm_stackptr+

sizeof(struct in__tone_c_dt0 );
}

Fig. 3. Transformed example with shared variable

5 Advanced Features

Balder has a few planned features currently under implementation. Apart from
prefetch and producer-push [16,17], support for a fine-grain Software DSM sys-
tem is under implementation as outlined in the next section.
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5.1 A Compiler Supported Hybrid Fine-Grain/Coarse-Grain
Software DSM System

The OdinMP compiler can gather information from the source code of OpenMP
applications which can be used to further optimize the performance of said appli-
cations on Balder. This can be used to insert coherency checks into the compiler
output so as to reduce the granularity of the coherency while still being able to
fall back on a page-based system.

In short this means that whenever a shared variable can potentially be ac-
cessed the compiler needs to make sure that there is code inserted, prior to the
access, which assures the shared variable is cached locally. The key point here
is that only the shared variable itself, and not the virtual memory pages on
which the variable is located, has to be locally cached. This reduces the latency
of remotely requesting shared data and also reduces the average memory access
latency of shared variables thus increasing the performance, i.e., reducing the
execution time, of applications running on the Software DSM system provided
the overhead of the inserted coherency checks is small enough.

OdinMP is being augmented to insert the mentioned coherency checks and
two primitives is being added to Balder. The coherency checks are based on a
check-in/check-out scheme where a piece of shared address space is requested
and then later returned. Prototypes for the two primitives are:

void* in__tone_sdsm_checkout_memory(
void* shared_address,
unsigned int length
int write_permissions);

void in__tone_sdsm_commit_memory(
void* shared_address,
void* local_address,
unsigned int length
int data_written);

The in__tone_sdsm_checkout_memory function is used to request an up-to-
date version of a memory region. The memory region is defined by the parameters
shared_address which is the shared address to the region and length which is
the length in bytes of the region. The write_permissions parameter is 1 if a
copy with write permissions is requested. The primitive returns a pointer to a
copy of the memory region.

The in__tone_sdsm_commit_memory primitive is used to hand a previously
requested copy back to the system and commit changes. It takes as parame-
ters the shared address in shared_address, the pointer to the copy of the re-
gion in local_address, and the length, in bytes, of the region in length. The
data_written parameter is 1 if the copy has been written to and has thus been
updated.
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6 Experimental Results

Some experiments have been conducted so as to evaluate the performance of
Balder. These experiments are not exhaustive but they do give an indication of
Balders performance. The cluster parts of Balder are not evaluated as they are
being tested and are not ready to be evaluated yet.

A dual Pentium-III workstation running Linux version 2.4.25 was used as
experimental platform. The processors were running at a clock rate of 1 GHz.

The EPCC micro-benchmark suite was used in the experiments [18]. The
EPCC micro-benchmark suite is a set of benchmarks which measure the over-
head of individual OpenMP constructs and thus also the run-time library. The
benchmarks were compiled with OdinMP version 0.284.1 and GCC 3.3.4. The
Balder library version 1.0.1 was used and was also compiled with GCC 3.3.4.

For comparison, the same set of benchmarks were compiled with the Intel
C/C++ compiler version 8.0 and run on the experimental platform. The Intel
compiler supports C/C++. The highest possible optimization level was used in
both compilation systems. The Balder library cannot currently be compiled with
the Intel compiler.

The overheads in microseconds for the most common OpenMP constructs
as reported by the EPCC micro-benchmarks are summarized in table 1. The
overheads are presented with their 95% confidence interval.

Table 1. Overheads in microseconds of common OpenMP constructs

OpenMP Construct Intel compiler Balder with OdinMP
Parallel construct 1.43 ± 0.11 2.91 ± 0.15
For construct 0.79 ± 0.17 2.93 ± 0.30
Barrier construct 0.48 ± 0.19 0.49 ± 0.12
Lock and unlock primitives 0.48 ± 0.33 0.47 ± 0.12

The overheads in the first three rows are for one single parallel region, parallel
for-loop, and barrier respectively. The lock and unlock primitives row is the
overhead of setting and then releasing a single lock once.

The overheads of the primitives in the Balder library are very competitive for
barrier and lock synchronization. The overhead of parallel for loops are much
higher for the Balder run-time. The reason for this is the fact that OdinMP is a
source-to-source compiler and cannot do aggressive optimizations of the parallel
for-loops as the Intel compiler can as it is compiling to object code.

The overhead of parallel regions are also higher for theBalder run-time.One con-
tributing factor is the transformation of parallel regions as outlined in section 4.1.
The functions created out of the parallel regions by the OdinMP compiler can take
arguments. These arguments are managed by the in tone spawnparallel run-time
primitive. The arguments are copied once more than actually needed on an SMP
during the handling of the arguments and the creation of stack frames performed
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in the run-time library. The extra copying performed is, however, necessary when
running on clusters. I’m investigating to see if this can be improved in future ver-
sions of Balder.

The differences in overheads between code generated by the Intel compiler
and the OdinMP/Balder combination are very small. The overheads are in the
same range as found in a previous study [3]. It was found in the same study
that small differences in overheads are unlikely to influence end performance of
OpenMP applications. The overheads measured thus suggests that Balder paired
with OdinMP should be very competitive to commercial compilation systems.

7 Summary

This paper provides an overview of the current status of Balder, an OpenMP
run-time library. The organization of the library is presented and the function-
ality and design of the different modules are described. Some selected parts of
the implementation are discussed. Planned future and work in progress for the
Balder library and the OdinMP compiler is presented. Some experimental data
is presented which shows the Balder library to be competitive when compared
to a commercial OpenMP compiler.
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Abstract. In order to speed-up the Navier-Stokes solver DROPS, which
is developed at the IGPM (Institut für Geometrie und Praktische Mathe-
matik) at the RWTH Aachen University, the most compute intense parts
have been tuned and parallelized using OpenMP. The combination of
the employed template programming techniques of the C++ program-
ming language and the OpenMP parallelization approach caused prob-
lems with many C++ compilers, and the performance of the parallel
version did not meet the expectations.

1 Introduction

The Navier-Stokes solver DROPS [2] is developed at the IGPM (Institut für
Geometrie und Praktische Mathematik) at the RWTH Aachen University, as
part of an interdisciplinary project (SFB 540: Model-based Experimental Analy-
sis of Kinetic Phenomena in Fluid Multi-phase Reactive Systems [1]) where com-
plicated flow phenomena are investigated.

The object-oriented programming paradigm offers a high flexibility and el-
egance of the program code facilitating development and investigation of nu-
merical algorithms. Template programming techniques and the C++ Standard
Template Library (STL) are heavily used.

In cooperation with the Center for Computing and Communication of the
RWTH Aachen University detailed runtime analysis of the code has been car-
ried out and the computationally dominant program parts have been tuned and
parallelized with OpenMP.

The UltraSPARC IV- and Opteron-based Sun Fire SMP-Clusters have been
the prime target platforms, but other architectures have been investigated, too.

It turned out that the sophisticated usage of template programming in combi-
nation with OpenMP is quite demanding for many C++ compilers. We observed
a high variation in performance and many compiler failures.

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 95–106, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In chapter 2 the DROPS package is described briefly. In chapter 3 we take
a look at the performance of the original and the tuned serial code versions.
In chapter 4 we describe the OpenMP parallelization. The performance of the
OpenMP version is discussed in chapter 5. Chapter 6 contains a summary of our
findings.

2 The DROPS Multi-phase Navier-Stokes Solver

The aim of the ongoing development of the DROPS software package is to build
an efficient software tool for the numerical simulation of three-dimensional in-
compressible multi-phase flows. More specifically, we want to support the mod-
eling of complex physical phenomena like the behavior of the phase interface of
liquid drops, mass transfer between drops and a surrounding fluid, or the cou-
pling of fluid dynamics with heat transport in a laminar falling film by numerical
simulation. Although quite a few packages in the field of CFD already exist, a
black-box solver for such complicated flow problems is not yet available.

From the scientific computing point of view it is of interest to develop a code
that combines the efficiency and robustness of modern numerical techniques,
such as adaptive grids and iterative solvers, with the flexibility required for the
modeling of complex physical phenomena.

For the simulation of two-phase flows we implemented a levelset technique for
capturing the phase interface. The advantage of this method is that it mainly
adds a scalar PDE to the Navier-Stokes system and therefore fits nicely into the
CFD framework. But still, the coupling of the phase interface with the Navier-
Stokes equations adds one layer of complexity.

The main building blocks of the solution method are the following:
Grid generation and grid refinement. Only tetrahedral grids without hanging

nodes are used. The grids form a hierarchy of stable triangulations to enable the
use of multi-grid solvers. The hierarchical approach also facilitates the coarsening
of the grids.

Time discretization. For the stable time discretization of the instationary
problems an implicit Fractional Step scheme is used.

Spatial discretization. The LBB-stable Taylor-Hood Finite Element pair (P2-
P1) is used for the spatial discretization of the Navier-Stokes equations. For the
level set equation the quadratic P2 element is used.

Iterative solution methods. We decouple the Navier-Stokes-Level-Set system
via a fixed point iteration which is also used to linearize the Navier-Stokes equa-
tions. The linearized equations which are of Stokes-type are treated by a Schur
complement (inexact Uzawa) technique. The resulting convection-diffusion prob-
lems are solved by Krylov-subspace or multi-grid methods.

The several layers of nesting in the solvers (from the outer fixed point iteration
down to the convection-diffusion-type solvers) induced by the structure of the
mathematical models require fast inner-most solvers as well as fast discretiza-
tion methods since many linear systems have to be regenerated in each time step.
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Apart from the numerical building blocks, software engineering aspects such as
the choice of suitable data structures in order to decouple the grid generation
and finite element discretization (using a grid based data handling) as much as
possible from the iterative solution methods (which use a sparse matrix format)
are of main importance for performance reasons.

The code is programmed in C++ and uses several attractive facilities offered
by this programming language.

3 Portability and Performance of the Serial Program
Version

3.1 Platforms

The main development platform of the IGPM is a standard PC running Linux
using the popular GNU C++ compiler [3]. Because this compiler does not sup-
port OpenMP, we had to look for adequate C++ compilers supporting OpenMP
on our target platforms.

Table 1 lists compilers and platforms which we considered for our tuning
and parallelization work. It also introduces abbreviations for each combination
of hardware, operating system and compiler, which will be referred to in the
remainder of the paper.

The programming techniques employed in the DROPS package (Templates,
STL) caused quite some portability problems due to lacking standard confor-
mance of the compilers (see table 3). The code had to be patched for most
compilers.

From the early experiences gathered by benchmarking the original serial pro-
gram and because of the good availability of the corresponding hardware we
concentrated on the OPT+icc and USIV+guide platforms for the development
of the OpenMP version. We used XEON+icc (running Windows) for verification
of the OpenMP codes using the Intel ThreadChecker.

3.2 Runtime Profile

The runtime analysis (USIV+guide platform) shows that assembling the stiffness
matrices (SETUP) costs about 52% of the total runtime, whereas the PCG-
method including the sparse-matrix-vector-multiplication costs about 21% and
the GMRES-method about 23%. Together with the utility routine LINCOMB
these parts of the code account for 99% of the total runtime. All these parts
have been considered for tuning and for parallelization with OpenMP.

It must be pointed out that the runtime profile heavily depends on the number
of mesh refinements and on the current timesteps. In the beginning of a program
run the PCG-algorithm and the matrix-vector-multiplication take about 65% of
the runtime, but because the number of iterations for the solution of the lin-
ear equation systems shrinks over time, the assembly of the stiffness matrices is
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Table 1. Compilers and platforms

code machine processor operating system compiler
XEON+gcc333 standard PC 2x Intel Xeon Fedora-Linux GNU C++ V3.3.3
XEON+gcc343 2.66 GHz GNU C++ V3.4.3

XEON+icc81 standard PC 2x Intel Xeon Fedora-Linux and Intel C++ V8.1
2.66 GHz Windows 2003

XEON+pgi60 standard PC 2x Intel Xeon Fedora-Linux PGI C++ V6.0-1
2.66 GHz

XEON+vs2005 standard PC 2x Intel Xeon Windows 2003 MS Visual Studio 2005
2.66 GHz beta 2

OPT+gcc333 Sun Fire V40z 4x AMD Opteron Fedora-Linux GNU C++ V3.3.3
OPT+gcc333X 2.2 GHz GNU C++ V3.3.3, 64bit

OPT+icc81 Sun Fire V40z 4x AMD Opteron Fedora-Linux Intel C++ V8.1
OPT+icc81X 2.2 GHz Intel C++ V8.1, 64bit

OPT+pgi60 Sun Fire V40z 4x AMD Opteron Fedora-Linux PGI C++ V6.0-1
OPT+pgi60X 2.2 GHz PGI C++ V6.0-1, 64bit

OPT+path20 Sun Fire V40z 4x AMD Opteron Fedora-Linux PathScale EKOpath 2.0
OPT+path20X 2.2 GHz PathScale EKOpath 64bit

OPT+ss10 Sun Fire V40z 4x AMD Opteron Solaris 10 SunStudio C++ V10
2.2 GHz

USIV+gcc331 Sun Fire E2900 12x UltraSPARC IV Solaris 9 GNU C++ V3.3.1
1.2 GHz, dual core

USIV+ss10 Sun Fire E2900 12x UltraSPARC IV Solaris 9 Sun Studio C++ V10
1.2 GHz, dual core

USIV+guide Sun Fire E2900 12x UltraSPARC IV Solaris 9 Intel-KSL Guidec++
1.2 GHz, dual core V4.0 + Sun Studio 9

POW4+guide IBM p690 16x Power4 AIX 5L V5.2 Intel-KSL Guidec++ V4.0
1.7 GHz, dual core

POW4+xlC60 IBM p690 16x Power4 AIX 5L V5.2 IBM Visual Age C++ V6.0
1.7 GHz, dual core

POW4+gcc343 IBM p690 16x Power4 AIX 5L V5.2 GNU C++ V3.3.3
1.7 GHz, dual core

IT2+icc81 SGI Altix 3700 128x Itanium 2 SGI ProPack Linux Intel C++ V8.1
1.3 GHz

getting more and more dominant. Therefore we restarted the program after
100 time steps and let it run for 10 time steps with 2 grid refinements for our
comparisons.

3.3 Data Structures

In the DROPS package the Finite Element Method is implemented. This includes
repeatedly setting up the stiffness matrices and then solving linear equation
systems with PCG- and GMRES-methods.

Since the matrices arising from the discretization are sparse, an appropriate
matrix storage format, the CRS (compressed row storage) format is used, in
which only nonzero entries are stored. It contains an array val - which will be
referred to later - for the values of the nonzero entries and two auxiliary integer
arrays that define the position of the entries within the matrix.
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The data structure is mainly a wrapper class around a valarray<double>
object, a container of the C++ Standard Template Library (STL).

Unfortunately, the nice computational and storage properties of the CRS
format are not for free. A disadvantage of this format is that insertion of a
non-zero element into the matrix is rather expensive. Since this is unacceptable
when building the matrix during the discretization step, a sparse matrix builder
class has been designed with an intermediate storage format based on STL’s
map container that offers write access in logarithmic time for each element. Af-
ter the assembly, the matrix is converted into the CRS format in the original
version.

3.4 Serial Tuning Measures

On the Opteron systems the PCG-algorithm including a sparse-matrix-vector-
multiplication and the preconditioner profits from manual prefetching. The per-
formance gain of the matrix-vector-multiplication is 44% in average, and the
speed-up of the preconditioner is 19% in average, depending on the addressing
mode (64bit mode profits slightly more than 32bit mode).

As the setup of the stiffness matrix turned out to be quite expensive we
reduced the usage of the map datatype. As long as the structure of the matrix
does not change, we reuse the index vectors and only fill the matrix with new data
values. This leads to a performance plus of 50% on the USIV+guide platform
and about 57% on the OPT+icc platform. All other platforms benefit from this
tuning measure as well.

Table 2 lists the results of performance measurements of the original serial
version and the tuned serial version. Note that on the Opteron the 64bit ad-
dressing mode typically outperforms the 32bit mode, because in 64bit mode the
Opteron offers more hardware registers and provides an ABI which allows for
passing function parameters using these hardware registers. This outweights the
fact that 64bit addresses take more cache space.

4 The OpenMP Approach

4.1 Assembly of the Stiffness Matrices

The matrix assembly could be completely parallelized, but it only scales well up
to about 8 threads, because the overhead increases with the number of threads
used (see table 4).

The routines for the assembly of the stiffness matrices typically contain loops
like the following:

for (MultiGridCL::const_TriangTetraIteratorCL
sit=_MG.GetTriangTetraBegin(lvl),
send=_MG.GetTriangTetraEnd(lvl);
sit != send; ++sit)
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Table 2. Platforms, compiler options and serial runtime of the original and the tuned
versions. Note that we didn’t have exclusive access to the Power4 and Itanium2 based
systems for timing measurements.

code compiler options runtime [s] runtime [s]
original version tuned version

XEON+gcc333 -O2 -march=pentium4 3694.9 1844.3
XEON+gcc343 -O2 -march=pentium4 2283.3 1780.7

XEON+icc81 -O3 -tpp7 -xN -ip 2643.3 1722.9

XEON+pgi60 -fast -tp piv 8680.1 5080.2

XEON+vs2005 compilation fails n.a. n.a.

OPT+gcc333 -O2 -march=opteron -m32 2923.3 1580.3
OPT+gcc333X -O2 -march=opteron -m64 3090.9 1519.5

OPT+icc81 -O3 -ip -g 2516.9 1760.7
OPT+icc81X -O3 -ip -g 2951.3 1521.2

OPT+pgi60 -fast -tp k8-32 -fastsse 6741.7 5372.9
OPT+pgi60X -fast -tp k8-64 -fastsse 4755.1 3688.4

OPT+path20 -O3 -march=opteron -m32 2819.3 1673.1
OPT+path20X -O3 -march=opteron -m64 2634.5 1512.3

OPT+ss10 -fast -features=no%except 3657.8 2158.9
-xtarget=opteron

USIV+gcc331 -O2 9782.4 7845.4

USIV+ss10 -fast -xtarget=ultra3cu 7749.9 5198.0
-xcache=64/32/4:8192/512/2

USIV+guide -fast +K3 -xipo=2 -xtarget=ultra4 7551.0 5335.0
-xcache=64/32/4:8192/128/2 -lmtmalloc

POW4+guide +K3 -backend -qhot -backend -O3 5251.9 2819.4
-backend -g [-bmaxdata:0x80000000]

POW4+xlC60 compilation fails n.a. n.a.

POW4+gcc343 -O2 -maix64 -mpowerpc64 3193.7 2326.0

IT2+icc81 -O3 -ip -g 9479.0 5182.8

Such a loop construct cannot be parallelized in OpenMP, because the loop it-
eration variable is not of type integer. Therefore the pointers of the iterators
are stored in an array in an additional loop, so that afterwards a simpler loop
running over the elements of this array can be parallelized.

Reducing the usage of the map STL datatype during the stiffness matrix setup
as described in chapter 3 turned out to cause additional complexity and memory
requirements in the parallel version. In the parallel version each thread fills a
private temporary container consisting of one map per matrix row. The structure
of the complete stiffness matrix has to be determined, which can be parallelized
over the matrix rows. The master thread then allocates the valarray STL ob-
jects. Finally, the matrix rows are summed up in parallel.

If the structure of the stiffness matrix does not change, each thread fills a
private temporary container consisting of one valarray of the same size as the
array val of the final matrix.
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This causes massive scalability problems for the guidec++-compiler. Its STL
library obviously uses critical regions to be threadsafe. Furthermore the guidec++
employs an additional allocator for small objects which adds more overhead.
Therefore we implemented a special allocator and linked to the Sun-specific mem-
ory allocation library mtmalloc which is tuned for multithreaded applications to
overcome this problem.

4.2 The Linear Equation Solvers

In order to parallelize the PCG- and GMRES-method, matrix and vector opera-
tions, which beforehand had been implemented using operator overloading, had
to be rewritten with C-style for loops with direct access to the structure ele-
ments. Thereby some synchronizations could be avoided and some parallelized
for-loops could be merged.

The parallelized linear equation solvers including the sparse-matrix-vector-
multiplication scale quite well, except for the intrinsic sequential structure of
the Gauss-Seidel preconditioner which can only be partially parallelized. Rear-
ranging the operations in a blocking scheme improves the scalability (omp block)
but still introduces additional organization and synchronization overhead.

A modified parallelizable preconditioner (jac0) was implemented which af-
fects the numerical behavior. It leads to an increase in iterations to fulfill the
convergence criterium. Nevertheless it leads to an overall improvement with four
or more threads.

The straight-forward parallelization of the sparse matrix vector multiplication
turned out to have a load imbalance. Obviously the nonzero elements are not
equally distributed over the rows. The load balancing could be easily improved
by setting the loop scheduling to SCHEDULE(STATIC,128).

4.3 Compilers

Unfortunately not all of the available OpenMP-aware compilers were able to
successfully compile the final OpenMP code version. Table 3 gives a survey of
how successful the compilers have been.

Only the GNU C++ and the Pathscale C++ compilers were able to compile
the DROPS code without any source modifications. Unfortunately the GNU
C++ compiler does not support OpenMP, and the Pathscale C++ compiler
currently does not support OpenMP in conjunction with some C++ constructs.

The Intel C++ compiler does not respect that a valarray is guaranteed
to be filled with zero after construction. This is necessary for DROPS work-
ing correctly, so we changed the declaration by explicitly forcing a zero-filled
construction.

In all cases marked with an (ok) modifications were necessary to get the serial
DROPS code to compile and run.
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Table 3. Compiler’s successes

code DROPS OpenMP DROPS
serial support parallel

XEON+gcc333 ok no n.a.
XEON+gcc343 ok no n.a.

XEON+icc81 (ok) yes ok

XEON+pgi60 (ok) yes compilation fails

XEON+vs2005 compilation fails yes compilation fails

OPT+gcc333 ok no n.a.
OPT+gcc333X ok no n.a.

OPT+icc81 (ok) yes ok
OPT+icc81X (ok) yes compilation fails

OPT+pgi60 (ok) yes compilation fails
OPT+pgi60X (ok) yes compilation fails

OPT+path20 ok no n.a.
OPT+path20X ok no n.a.

OPT+ss10 (ok) yes compilation fails

USIV+gcc331 ok no n.a.

USIV+ss10 (ok) yes ok

USIV+guide (ok) yes ok

POW4+guide (ok) yes ok

POW4+xlC60 compilation fails yes compilation fails

POW4+gcc343 ok no n.a.

IT2+icc81 (ok) yes 1 thread only

5 Performance of the OpenMP Version

OpenMP programs running on big server machines operating in multi-user mode
suffer from a high variation in runtime. Thus it is hard to see clear trends con-
cerning speed-up. This was particularly true for the SGI Altix. Exclusive access
to the 24 core Sun Fire E2900 system helped a lot.

On the 4-way Opteron systems the taskset Linux command was helpful to get
rid of negative process scheduling effects.

5.1 Assembly of the Stiffness Matrices

Setting up the stiffness matrices could be completely parallelized as described
in the previous chapter. Nevertheless the scalability of the chosen approach is
limited. The parallel algorithm executed with only one thread clearly performs
worse than the tuned serial version, because the parallel algorithm contains the
additional summation step as described above (see 4.1). It scales well up to
about 8 threads, but then the overhead which is caused by a growing number
of dynamic memory allocations and memory copy operations increases. On the
USIV+ss10 platform there is still some speedup with more threads, but on the
USIV+guide platform we had to limit the number of threads used for the SETUP
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routines to a maximum of eight in order to prevent a performance decrease for
a higher thread count (table 7 and 8). Table 4 shows the runtime of the matrix
setup routines on the USIV+guide platform.

Table 4. C++ + OpenMP: matrix setup

code serial serial parallel (jac0)
original tuned 1 2 4 8 16

XEON+icc81 1592 816 1106 733 577 n.a. n.a.

OPT+icc81 1368 778 1007 633 406 n.a. n.a.

USIV+guide 4512 2246 2389 1308 745 450 460

USIV+ss10 4604 2081 2658 1445 820 523 383

POW4+guide 4580 2119 2215 2285 3659 4726 5995

5.2 The Linear Equation Solvers

The linear equation solvers put quite some pressure on the memory system.
This clearly reveals the memory bandwidth bottleneck of the dual processor
Intel-based machines (XEON+icc).

The ccNUMA-architecture of the Opteron-based machines (OPT+icc) ex-
hibits a high memory bandwidth if the data is properly allocated. But it turns
out that the OpenMP version of DROPS suffers from the fact that most of the
data is allocated by the master thread because of the usage of the STL datatypes.

As an experiment we implemented a modification of the stream benchmark
using the STL datatype valarray on one hand and simple C-style arrays on the
other hand. These arrays are allocated with malloc and initialized in a parallel
region.

Table 5 lists the memory bandwidth in GB/s for the four stream kernel loops
and a varying number of threads. It is obvious that the memory bandwidth does
not scale when valarrays are used. The master thread allocates and initializes
(after construction a valarray has to be filled with zeros by default) a contiguous
memory range for the valarray and because of the first touch memory allocation
policy, all memory pages are put close to the master thread’s processor. Later on,
all other threads have to access the master thread’s memory in parallel regions
thus causing a severe bottleneck.

The Linux operating system currently does not allow an explicit or automatic
data migration. The Solaris operating system offers the Memory Placement Op-
timization feature (MPO), which can be used for an explicit data migration. In
our experiment we measured the Stream kernels using valarrays after the data
has been migrated by a ”next-touch” mechanism using the madvise runtime
function, which clearly improves parallel performance (see table 5).

This little test demonstrates how sensitive the Opteron architecture reacts to
disadvantageous memory allocation and how a ”next-touch” mechanism can be
employed beneficially.
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On the USIV+guide and USIV+ss10 platforms we were able to exploit the
MPO feature of Solaris to improve the performance of DROPS, but currently
there is no C++ compiler available for Solaris on Opteron capable of compiling
the parallel version of DROPS.

Table 5. Stream benchmark, C++ (valarray) vs. C, memory bandwidth in GB/s on
OPT+ss10

Stream Data Initialization 1 2 3 4
kernel structure method Thread Threads Threads Threads

assignment valarray implicit 1.60 1.84 1.94 1.79
valarray implicit+madvise 1.60 3.19 4.78 6.36
C-array explicit parallel 1.69 3.35 5.00 6.64

scaling valarray implicit 1.51 1.81 1.93 1.78
valarray implicit+madvise 1.50 2.98 4.47 5.94
C-array explicit parallel 1.62 3.22 4.81 6.38

summing valarray implicit 2.12 2.16 2.16 2.03
valarray implicit+madvise 2.12 4.20 6.22 8.22
C-array explicit parallel 2.19 4.34 6.42 8.49

saxpying valarray implicit 2.11 2.16 2.15 2.03
valarray implicit+madvise 2.10 4.18 6.20 8.20
C-array explicit parallel 2.15 4.26 6.30 8.34

On the whole the linear equation solvers scale reasonably well given that fre-
quent synchronizations in the CG-type linear equation solvers are inevitable.
The modified preconditioner takes more time than the original recursive algo-
rithm for few threads, but it pays off for at least four threads. Table 6 shows the
runtime of the solvers.

Table 6. C++ + OpenMP: linear equation solvers

code serial serial parallel (omp block) parallel (jac0)
original tuned 1 2 4 8 16 1 2 4 8 16

XEON+icc81 939 894 746 593 780 n.a. n.a. 837 750 975 n.a. n.a.

OPT+icc81 1007 839 823 590 496 n.a. n.a. 699 526 466 n.a. n.a.

USIV+guide 2682 2727 2702 1553 1091 957 878 1563 902 524 320 232

USIV+ss10 2741 2724 2968 1672 1162 964 898 2567 1411 759 435 281

POW4+guide 398 428 815 417 333 1171 18930 747 267 308 12268 37142

5.3 Total Performance

Table 7 shows the total runtime of the DROPS code on all platforms for which a
parallel OpenMP version could be built. Please note that we didn’t have exclusive
access to the POW4 platform. Table 8 shows the resulting total speedup.
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Table 7. C++ + OpenMP: total runtime

code serial serial parallel (omp block) parallel (jac0)
original tuned 1 2 4 8 16 1 2 4 8 16

XEON+icc81 2643 1723 2001 1374 1353 n.a. n.a. 2022 1511 1539 n.a. n.a.

OPT+icc81 2517 1761 2081 1431 1093 n.a. n.a. 1962 1382 1048 n.a. n.a.

USIV+guide 7551 5335 5598 3374 2319 1890 1796 4389 2659 1746 1229 1134

USIV+ss10 7750 5198 6177 3629 2488 2001 1782 5683 3324 2067 1457 1151

POW4+guide 5252 2819 3467 3310 4534 7073 26037 3290 2871 4338 17465 43745

Table 8. Speedup for the USIV+guide, USIV+ss10 and OPT+icc platforms

Version USIV+guide USIV+ss10 OPT+icc
omp block jac0 omp block jac0 omp block jac0

serial (original) 1.00 — 1.00 — 1.00 —

serial (tuned) 1.42 — 1.49 — 1.43 —

parallel (1 Thread) 1.35 1.72 1.26 1.36 1.21 1.28
parallel (2 Threads) 2.24 2.84 2.14 2.33 1.76 1.82
parallel (4 Threads) 3.26 4.32 3.11 3.75 2.30 2.40
parallel (8 Threads) 3.99 6.14 3.87 5.32 — —
parallel (16 Threads) 4.20 6.66 4.35 6.73 — —

6 Summary

The compute intense program parts of the DROPS Navier-Stokes solver have
been tuned and parallelized with OpenMP. The heavy usage of templates in
this C++ program package is a challenge for many compilers. As not all C++
compilers support OpenMP, and some of those which do fail for the parallel
version of DROPS, the number of suitable platforms turned out to be quite
limited.

We ended up with using the guidec++ compiler from KAI (which is now part
of Intel) and the Sun Studio 10 compilers on our UltraSPARC IV-based Sun
Fire servers (platform USIV+guide) and the Intel compiler in 32 bit mode on
our Opteron-based Linux cluster (OPT+icc).

The strategy which we used for the parallelization of the Finite Element
Method implemented in DROPS was straight forward. Nevertheless the obsta-
cles which we encountered were manifold, many of them are not new to OpenMP
programmers.

Finally the USIV+guide and USIV+ss10 versions exhibit some scalability.
The best effort OpenMP version runs 6.7 times faster with 16 threads than
the original serial version on the same platform. But as we improved the serial
version during the tuning and parallelization process the speed-up compared to
the tuned serial version is only 4.7.

As an Opteron processor outperforms a single UltraSPARC IV processor core
it only takes 3 threads on the Opteron-based machines to reach the same absolute
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speed. On the other hand Opteron processors are not available in large shared
memory machines. So shorter elapsed times are not attainable.

As tuning is a never ending process, there still is room for improvement.
Particularly the data locality has to be improved for the ccNUMA-architecture
of the 4-way Opteron machines.
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Abstract. This paper presents a new approach to parallelize spatially-
explicit structured ecological models. Previous investigations have mainly
focused on the use of spatial decomposition for parallelization of these
models. Here, we exploit the partitioning of species age structures (or lay-
ers) as part of an integrated ecosystem simulation on a high-end shared
memory computer using OpenMP. As an example, we use a parallel
spatially-explicit structured fish model (ALFISH) for regional ecosystem
restoration to demonstrate the parallelization procedure and associated
model performance evaluation. Identical simulation results, validated by
a comparison with a sequential implementation, and impressive parallel
model performance demonstrate that layer-wised partitioning offers ad-
vantages in parallelizing structured ecological models on high-end shared
memory computers. The average execution time of the parallel ALFISH
model, using 1 computational thread, is about 11 hours, while the exe-
cution of the parallel ALFISH model using 25 computational threads is
about 39 minutes (the speedup factor being about 16).

1 Introduction

Recently, emphasis on integrated multi-component ecosystem modeling, involv-
ing complex interactions between some or all of the trophic layers, has increased,
resulting in coupled ecosystem models with large numbers of state variables.
Current efforts in integrated ecosystem modeling have led to the realization that
model and software development utilizing only a single approach within a tradi-
tional computing framework can hinder innovation of complex highly-integrated
model simulation involving diverse spatial, temporal and organismal scales. The
Across Trophic Level System Simulation (ATLSS) [1] is an example of a new type
of spatially-explicit ecosystem modeling package that utilizes different modeling
approaches or ecological multimodeling [2]. In this paper, we focus on the paral-
lelization of an age-structured population model, within the context of ATLSS,
for freshwater fish functional groups (ALFISH) in South Florida.

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 107–118, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



108 D. Wang, M.W. Berry, and L.J. Gross

ALFISH is an Intermediate Trophic Level Functional Groups model which
includes two main subgroups (small planktivorous fish and large piscivirous fish),
structured by size. In the complex integrated system of ATLSS, ALFISH is an
important link to the higher-level landscape models, since it provides a food
base for several wading bird models [3]. An objective of the ALFISH model
is to compare, in a spatially explicit manner, the relative effects of alternative
hydrologic scenarios on fresh-water fish densities across South Florida. Another
objective is to provide a measure of dynamic, spatially-explicit food resources
available to wading birds.

The ALFISH model has been developed in part to integrate with two wad-
ing bird models: a proxy individual-based wading bird (WB) model [4], and a
Spatially-Explicit Species Index (SESI) wading bird model [5]. Major concerns
associated with integrating ALFISH into the ATLSS architecture include its long
runtime. The average runtime is 35 hours on a 400MHz (Ultra Sparc II-based)
Sun Enterprise 4500 for a typical 31-year simulation. One objective of this paral-
lelization is to speedup the ALFISH execution for its practical use within ATLSS
by allowing real-time data generation and information sharing between multiple
ATLSS models, including the individual-based wading bird model.

2 Parallelization Strategy

A successful approach to the parallelization of landscape based (spatially-explicit)
fish models is spatial decomposition [6,7]. For these cases, each processor only sim-
ulates the ecological behaviors of fish on a partial landscape. This approach is ef-
ficient in stand-alone fish simulations because the low movement capability of fish
does not force large data movement between processors [8]. However, in an inte-
grated simulation with an individual-based wading bird model, intensive data im-
migration across all processors is inevitable, since a bird’s flying distancemay cover
the whole landscape. In this paper,we present an age-structureddecomposition (or
layer-wisedpartition). As opposed to a spatial decomposition, this approach parti-
tions the computational domain along the fish age-structure, so that eachprocessor
computes the dynamics of fish at certain ages on the whole landscape. This par-
allel strategy is suitable for shared-memory computational platforms, where the
behind-the-scenes data exchanges between processors have been highly optimized
by the hardware and underlying operating system through related library routines
and directives.

3 Computational Platform and Parallel Programming
Model

The computational platform used in this research is a 256-processor SGI Altix
system (Ram) at the Center for Computational Sciences (CCS) of Oak Ridge
National Laboratory. Ram is unique in the CCS in that it has a very large,
shared memory. Ram is comprised of 256 Intel Itanium2 processors running at
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1.5 GHz, each with 6 MB of L3 cache, 256K of L2 cache, and 32K of L1 cache.
Ram also has 8 GB of memory per processor for a total of 2 Terabytes of total
system memory. This system has a theoretical total peak performance of 1.5
TeraFLOP/s. The operating system on Ram is a 64-bit version of Linux. The
parallel programming model in this research is supported by the multithreaded
application programming interface referred to as OpenMP [9].

4 Functionality and Parallel Implementation of ALFISH
Model

4.1 Model Structure

The study area for ALFISH modeling contains 26 regions as determined by the
South Florida Water Management Model [10]. A complete list of these regions
is provided in Fig. 1.

Fig. 1. Subregions used by the ALFISH model

The total area of Everglades modeled in ALFISH contains approximately
111,000 landscape cells, with each cell 500m on a side. Each landscape cell has
two basic types of area: marsh and pond. The difference between marsh and
pond areas is that the latter is always considered wet (contains standing water)
regardless of any available water data. In the marsh area of each cell, there is



110 D. Wang, M.W. Berry, and L.J. Gross

a distribution of elevations based upon a hypsograph [3]. This hypsograph is
used to determine the fraction of the marsh area that is still under water at a
given water depth. A pond refers to permanently wet areas of small size, such
as alligator holes, which are a maximum of 50 m2 or 0.02% of the cell.

The fish population simulated by ALFISH is size-structured and is divided
into two functional groups: small and large fishes. Both of these groups appear in
each of the marsh and pond areas. Each functional group in each area is further
divided into several fish categories according to age, referred to as ageClass, and
each age class has 6 size classes, referred to as sizeClass. The fish population
in each cell is summarized by the total fish density (biomass) within that cell.
Each cell, as an element of the landscape matrices, contains an array of floating-
point numbers representing individual fish density of various age classes. The
length of the array corresponds to the number of age classes for that functional
group. Normally, when a fish density is referenced, the value reflects the total
fish densities of all the fish age classes combined. Fig. 2 shows the simple age
and size categorization of the fish functional groups in four landscape matrices.

Fig. 2. Simple fish functional group categorization

In ALFISH, spatial and temporal fluctuations in fish populations are driven
by a number of factors, especially the water level. Fluctuations in water depth,
which affect all aspects of the trophic structure in the Everglades area, are
provided through an input hydrology data file for each timestep throughout the
execution of the model.

4.2 Layer-Wised Partition

To support the parallel computation of fish population dynamics in all age
classes, two data structures (groupInfo and layerInfo) are introduced to sup-
port layer-wised partitioning.
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Struct layerInfo // information on fish function groups
{ int Ngroup; // number of function group

int size[5]; // size of each function group
};

Struct groupInfo // information on layer-wised partition
{ int Ngroup; // number of fish function group on

this partition domain
int group[2]; // size of each fish function group

on this domain
int position[10] // start and end layer position of

fish function group
};

In our case, layerInfo.Ngroup is 2, and layerInfo.size is set as [25 40]. We
partition all 65 age classes (including 25 classes for small fish and 40 classes
for large fish) into all processors, and use the structure groupInfo to store ap-
propriate information. Fig. 4 illustrates the initial layer-wised partition across 3
processors.

Fig. 3. Layer-wise partition across 3 processors

Initially, the value of position in groupInfo is equivalent to the value of age
classes. However, every 30 days (6 timesteps of 5-days each), all of the fish
are moved to the next age class. Thus, we introduce an ageOffset variable to
eliminate the data movement involved in the sequential implementation (more
details are provided in Sect. 4.3.
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4.3 Fish Dynamics and Parallelization

The fish population model simulated by ALFISH is size-structured and is divided
into two functional groups: small fish and large fish. Both of these groups are
used in each of the marsh and pond areas. Each functional group in each area is
further divided into several fish categories according to size. The fish population
that occupies a cell area is represented as the fish density (biomass) within that
cell. Basic behaviors of fish, including escape, diffusive movement, mortality,
aging, reproduction and growth, are simulated in the model. Beside the fish
dynamics, the model has to update the lower trophic level (food resources for
the fish) data, hydrological data and execute a certain amount of I/O operations
at each timestep. The parallel ALFISH deploys a master-slave communication
model, which is illustrated in Fig. 4.

Fig. 4. Computational Model of Parallel ALFISH

There are some advantages associated with this implementation. From a per-
formance aspect, the time-consuming I/O operations are separated from the
much faster computational phases, which increase the efficiency of data access
during the simulation. More importantly, the master thread provides a uniform,
transparent interface for integration with other ATLSS ecological models. The
main task of the master thread is to collect the data from computational threads,
and write the results to the local disk. Therefore, the time-consuming output
operations on the master processor are no longer a key component of the total
execution time. All the computational threads are dedicated to simulate the fish
dynamics. Since it is a multithreaded code, no explicit data exchange is needed
during simulation. Data sharing in this implementation is supported by globally
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accessing the same memory location. The synchronizations required within each
computational step are guaranteed by either explicit OMP BARRIER or implicit
barriers associated with the OpenMP parallel code sections. In this model, all
the computational threads (OMP NUM THREADS-1) were used to simulate
computational intensive fish behaviors (i.e., Escape, Diffusive Movement and
Mortality), while only one thread was used to simulate other fish behaviors (i.e.,
Aging, Reproduction and Growth). Considering the efficiency of thread creation
and join, those operations are deployed within the computational loop. More
details on the nested OpenMP parallel region are provided in the Appendix.

Escape. This function is designed to simulate the fish movement between marsh
and pond areas within each cell caused by drying out or reflooding. At the current
timestep, if the water depth of the cell has increased, and the cell has a pond, an
appropriate fraction of fish (of the sizes previously too large) is moved from pond
areas into marsh areas. If the cell water has decreased, an appropriate fraction
of those fish are moved from the marsh area into pond area, another fraction of
those fish are moved to adjacent cells, and the remaining portion of those fish
are eliminated, referred as dying-out mortality [11]. Following this, one thread
collects the total fish density in both marsh and pond areas, which will be used
in the following diffusive movements.

Diffusive Movement. This function is designed to simulate the movement of
fish between adjacent cells mainly due to the relative differences in water depth
and fish densities. The mathematical formula used to determine the number
of fish to be moved is not presented here (see [3,11]). Since this kind of fish
movement is density dependent, the fish landscape matrix is only updated after
all movement calculations are complete, to remove any order-based bias. Af-
ter that, one computational thread summarizes the amount of biomass needed
(req biomass) for every fish to grow from its current size class to the next. At
this stage, different parameters were classified to describe the bio-consumption
related to fish function group (small and large fish) and the fish size. The
req biomass in each landscape will be used to calculate the fish mortality.

Mortality. Besides the mortality caused by the drying out of a landscape cell
(see Sect. 4.3), the ALFISH model also simulates background mortality (Age-
Mortality) and density-dependent mortality (FoodMortality) in both marsh and
pond areas in each landscape cell. AgeMortality is dependent on the individual
fish age class, but it is independent of population size. FoodMortality is due to
starvation. As this density of available prey decreases, the mortality rate of that
specific age class and functional group increases. It is assumed that the starva-
tion affects all age classes equally. In ALFISH, these two types of mortality are
compared and the greater one is applied to the population. The mathematical
formula to determine those fish mortalities are presented in [3,11].
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Aging. The age classes for the fish functional groups are defined by 30-day inter-
vals. Every 30 days (6 timesteps of 5-days each), all of the fish are moved to the
next age class. We do not use the mathematical formula defined in the sequen-
tial implementation, which would require extra date movement in parallelization.
Rather, an ageOffset variable affiliated with each partition was introduced. The
value ageOffset was initialized as 0, and every 30 days, ageOffset is increased by
1. Therefore, the value of the fish age can be derived using: age = (position +
ageOffset) % nAge, where age is the value of fish age classes, position refers to
the value of groupInfo.position and nAge is the total number of age classes of a
particular fish functional group. For small and large fish, the values of nAge are
25 and 40, respectively.

Reproduction. For each functional group, if it is the appropriate time of year,
the number of offspring is calculated. To prevent the population from producing
too many new fish in a reproductive event, a constant maximum reproduction
density is used. The new fish population from this stage is collected and used to
update the fish population at position (layer) p, where the value of [(p+ageOffset)
% nAge] equals 0.

Growth, Finally, fish that have survived are moved into the next size class since
the size classes are equivalent to the 5-day timestep. All fish with an age class
advance synchronously in size class, with the size class s incremented using s=(s
% 6)+1.

5 Selected Model Results and Performance

5.1 Scenarios

The ALFISH models are mainly used to determine the pattern of fish density
on the landscape for a variety of hydrology scenarios. The motivation for the
particular scenarios chosen was the Restudy process for the selection of a plan
for Everglades restoration [12]. In this paper, one scenario referred to as F2050
was applied. F2050 is a standard base scenario, which uses water data based on
a 31-year time series of historical rainfall from 1965 through 1995, as well as
sea level, population level and socioeconomic conditions projected for the year
2050. It also includes all of the previously legislated structural changes for the
water control measures. Therefore, the simulation time of both the sequential
and parallel ALFISH models is 31 years, from 1965 to 1995 using a timestep of
5 days.

5.2 Comparison of Selected Outputs

To verify parallel model correctness, that is, its ability to produce results similar
to those of the sequential model, we compared outputs of both the sequential
and parallel models. We analyzed several outputs and selected one set of data
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for comparison (the 31-year mean fish density and distribution on October 1).
Fig. 5 shows the mean fish density map comparison on October 1. The left graph
represents the output from the parallel ALFISH model, and the right graph is the
output from the sequential ALFISH model. There are no observable differences
between the outputs of these two models.

Fig. 5. Spatial 31-year average fish density map comparison in Everglades on Oct 1

5.3 Model Performance

In order to measure the scalability of the parallel ALFISH model, we deployed
a series of parallel simulations using different numbers of threads (processors)
(OMP NUM THREADS ranges from 2 to 66). Herein we define speedup (S) as

Speedup(S) =
Model Execution T ime(using 1 computational thread)

Model Execution T ime(using N computational threads)
(1)

Fig. 6 shows the speedup factor of the parallel ALFISH. Although static parti-
tioning is applied in the model, the parallel ALFISH demonstrates satisfactory
scalability when the number of computational threads is less than 25. The av-
erage execution time of the parallel ALFISH, using 1 computational thread,
is about 11 hours, while the execution of the parallel ALFISH using 25 com-
putational threads is about 39 minutes (the speedup factor being about 16).
The speedup factor decreases when more than 25 computational threads were
used, since (i) single thread execution portion within each computational loop is
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Fig. 6. Speedup factor of parallel ALFISH

constant, and (ii) the parallelism overhead associated with thread creations and
synchronizations increases when more threads are involved in the computation.

6 Discussion and Future Work

The nearly identical outputs and excellent speed improvement (especially when
the number of computational threads is less than 25) obtained from the paral-
lel ALFISH model provide strong evidence that layer-wised partitioning can be
highly effective for age- and size-structured spatially explicit landscape fish mod-
els on high-end shared memory computers using OpenMP. Our results indicate
that even with simple static partitioning, the parallel ALFISH model demon-
strates satisfactory scalability. In this paper, we adapted a one-dimensional layer-
wised partitioning, which minimized the potential data sharing between compu-
tational threads, and allowed simple parallel implementation using OpenMP
nested parallel sections. From the user’s perspective, more OpenMP features
related to thread management will be appreciated. We are now developing a hy-
brid, reconfigurable two-dimensional partitioning (using both landscape (spatial)
decomposition and age structure decomposition (layer-wised partition)) using a
hybrid MPI/OpenMP model. Further plans for ALFISH model development
include integration with other ATLSS models, (including an individual-based
wading bird model) for parallel multi-scale ecosystem simulation on high perfor-
mance computational platforms via grid computing [13,14].
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Appendix: Nested OpenMP Parallel Code Section

for (date=current_date; date<=end_date; date+=5) {
#pragma omp parallel private(rank, myInfo, group, start, end)
{ rank = omp_get_thread_num();
if (rank != 0) {

remapping(current_partition, layers, rank, myInfo);
#pragma omp parallel {

compute fish.escape functionality
#pragma omp barrier // synchronize computational threads
if (rank == 1) getfishTotaldensity
#pragma omp barrier // make sure to update shared data
compute fish.move functionality
#pragma omp barrier // synchronize computational threads
if (rank == 1) getfishConsumption
#pragma omp barrier // make sure to update shared data
compute fish.mortality functionality
#pragma omp barrier // synchronize computational threads
if (rank == 1) compute fish.aging functionality
#pragma omp barrier // make sure to update shared data
if (it is the right time))

compute fish.reproduction functionality
#pragma omp barrier // synchronize computational threads
if (rank == 1) {

if (it is the right time)
compute fish.reproduction functionality

compute fish.growth functionality
}

} // end of inner p-section (implicit synchronization)
}
#pragma omp barrier // block the master thread once
if (rank ==0 ) {

collect and save date at previous timestep
}

} // end of external parallel section (implicit synchronization)
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Abstract. A multi-cluster computational environment with mixed-mode (MPI +
OpenMP) parallelism for estimation of unknown regional electrical conductiv-
ities of the human head, based on realistic geometry from segmented MRI up
to 2563 voxels resolution, is described. A finite difference multi-component al-
ternating direction implicit (ADI) algorithm, parallelized using OpenMP, is used
to solve the forward problem calculation describing the electrical field distribu-
tion throughout the head given known electrical sources. A simplex search in the
multi-dimensional parameter space of tissue conductivities is conducted in par-
allel across a distributed system of heterogeneous computational resources. The
theoretical and computational formulation of the problem is presented. Results
from test studies based on the synthetic data are provided, comparing retrieved
conductivities to known solutions from simulation. Performance statistics are also
given showing both the scaling of the forward problem and the performance dy-
namics of the distributed search.

1 Introduction

The essence of most tomographic techniques is to determine unknown complex co-
efficients in PDEs governing the physics of the particular experimental modality. Such
problems are typically non-linear and ill-poised. The first step in solving such an inverse
problem is to find a numerical method to calculate the direct (forward) problem. When
the physical model is three-dimensional and geometrically complex, the forward solu-
tion can be difficult to construct and compute. However, this is only the first stage of the
tomographic solution. The second stage involves a search across a multi-dimensional
parameter space of unknown (to be found) model properties. The search employs the
forward problem with chosen parameter estimates and a function that determines the
error of the forward calculation with an empirically measured result. As the error resid-
uals of local inverse searches are minimized, the global search determines convergence
to final property estimates based on its knowledge of how well the parameter space has
been sampled.

Fundamental problems in neuroscience involving experimental modalities like elec-
troencephalography (EEG) and magnetoencephalograpy (MEG) are naturally expressed
as tomographic imaging problems. The difficult problems of source localization and
impedance imaging require modeling and simulating the associated bioelectric fields.

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 119–130, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Forward calculations are necessary in the computational formulation of these problems.
Until recently, most practical research in this field has opted for analytical or semi-
analytical models of a human head in the forward calculations [1,2]. This is in contrast
to approaches that use realistic 3D head geometry for purposes of significantly improv-
ing the accuracy of the forward and inverse solutions. To do so, however, requires that
the geometric information be available from MRI or CT scans. With such image data,
the tissues of the head can be better segmented and more accurately represented in the
computational model. Unfortunately, these realistic modeling techniques have intrin-
sic computational complexities that grow as the image resolution increases. This is the
primary reason such techniques have not be used in the past.

In source localization we are interested in finding the electrical source generators for
the potentials that might be measured by EEG electrodes on the scalp surface. Here, the
inverse search is looking for those sources (their position and amplitude) on the cor-
tex surface whose forward solution most accurately describes the electrical potentials
observed. The computational formulation of the source localization problem assumes
the forward calculation is without error. However, this assumption in turn assumes the
conductivity values of the modeled head tissues are known. In general, for any individ-
ual, they are not known. Thus, the impedance imaging problem is actually a predecessor
problem to source localization. In impedance imaging, the inverse search finds those tis-
sue impedance values whose forward solution best matches measured scalp potentials
when experimental stimuli are applied. In either problem, source localization or im-
pedance imaging, solving the inverse search usually involves the large number of runs
of the forward problem. Therefore, computational methods for the forward problem,
which are stable, fast and eligible for parallelization, as well as intelligent strategies
and techniques for multi-parameter search, are of paramount importance.

To deal with complex geometries, PDE solvers use finite element (FE) or finite dif-
ference (FD) methods [3,4]. The main computational idea behind these methods is to
reduce a continuous problem with infinitely many unknown field values to a finite num-
ber of unknowns by discretizing the solution region into elements. Application of each
of these approximation methods to the governing equations for the specific modality
yields eventually a system of linear equations of the form AX = b, which must be
solved to obtain the final solution. The solution techniques can be broadly categorized
as direct and iterative solvers. The choice of the particular solution method is highly de-
pendent upon the approximation technique employed to obtain the linear system, upon
the size of the resulting system, and upon accessible computational resources.

Usually, for the geometry with the given complexity level, the FE methods are more
economical in terms of the number of unknowns (the size of the stiffness matrix A, is
smaller, as homogeneous segments do not need a dense mesh) and resulting computa-
tional cost. However, the FE mesh generation for a 3D, highly heterogeneous subject
with irregular boundaries (e.g., the human brain) is a difficult task. The process involves
a significant degree of preprocessing and smoothing of the initial geometry through
manual means. A fully automated process of image segmentation and mesh generation
is unavailable at present.

At the same time, the FD method with a regular cubed grid is generally the easiest
method to code and implement. It is often chosen over FE methods for simplicity and



Multi-cluster, Mixed-Mode Computational Modeling 121

the fact that MRI/CT segmentation map is also based on a cubed lattice of nodes. There-
fore, meshes are relatively easy to construct (once segmentation is accomplished) as the
cubic/rectangular elements can be "mapped" directly from the voxels of the medical im-
ages (3D MRI scans). Many anatomical details (e.g., olfactory perforations and internal
auditory meatus) or structural defects in case of trauma (e.g., skull cracks and punc-
tures) can be included as the computational load is based on the number of elements
and not on the specifics of tissues differentiation. Thus, the model geometry accuracy
can be the same as the resolution of MRI scans (e.g., 1 × 1 × 1mm), while in the FEM
approach, simplification of the geometry is unavoidable as a result of mesh generation.
In addition, the multiscale (multigrid) strategy of calculations on a hierarchy of coarser
grids (starting with 64× 64× 44 and feeding the results into the next cycle of iterations
on the finer grid) can be easily implemented in a FD forward solver. The FD grid can be
made non-uniform and/or applied in the spherical coordinates to capture more details
in the regions of interest.

In the present work we adopt a model based on FD methods and construct a hetero-
geneous distributed and mixed-mode parallel simulation environment for conductivity
optimization through inverse simplex search. FE simulation [7] is used to solve for rela-
tively simple phantom geometries that we then apply as "gold standards" for validation.

2 Mathematical Description of the Problem

The relevant frequency spectrum in EEG and MEG is typically below 1kHz, and
most studies deal with frequencies between 0.1 and 100Hz. Therefore, the physics
of EEG/MEG can be well described by the quasi-static approximation of Maxwell’s
equations, the Poisson equation. The electrical forward problem can be stated as fol-
lows: given the positions, orientations and magnitudes of current sources, as well as
geometry and electrical conductivity of the head volume Ω calculate the distribution of
the electrical potential on the surface of the head (scalp) ΓΩ . Mathematically, it means
solving the linear Poisson equation:

∇ · σ(x, y, z)∇φ(x, y, z) = S, (1)

in Ω with no-flux Neumann boundary conditions on the scalp:

σ(∇φ) · n = 0, (2)

on ΓΩ . Here σ = σij(x, y, z) is an inhomogeneous tensor of the head tissues conduc-
tivity and S is the source current. Having computed potentials φ(x, y, z) and current
densities J = −σ(∇φ), the magnetic field B can be found through the Biot-Savart law.
In this paper, we do not consider anisotropy or capacitance effects (the latter because
the frequencies of interest are too small), but they can be included in a straightforward
manner. Eq. (1) becomes complex-valued, and complex admittivity should be used.

We have built a finite difference forward problem solver for Eq. (1) and (2) based
on the multi-component alternating directions implicit (ADI) algorithm [8,9]. It is a
generalization of the classic ADI algorithm as described by Hielscher et al [6], but
with improved stability in 3D (the multi-component FD ADI scheme is unconditionally
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Fig. 1. A visualization of a 3D human head CT scan with the measuring electrodes

stable in 3D for any value of the time step [8,9]). The algorithm has been extended to
accommodate anisotropic tissues parameters and sources. To describe the electrical con-
ductivity in the heterogeneous biological media within arbitrary geometry, the method
of the embedded boundaries has been used. Here an object of interest is embedded into
a cubic computational domain with extremely low conductivity values in the external
complimentary regions. This effectively guarantees there are no current flows out of the
physical area (the Neuman boundary conditions, Eq. (2), is naturally satisfied). The idea
of the iterative ADI method is to find the solution of Eq. (1) and (2) as a steady state
of the appropriate evolution problem. At every iteration step the spatial operator is split
into the sum of three 1D operators, which are evaluated alternatively at each sub-step.
For example, the difference equations in x direction is given as [9]

φn+1
i − 1

3 (φn
i + φn

j + φn
k )

τ
+ δxφn+1

i + δyφ
n
j + δzφ

n
k = S, (3)

where τ is a time step and δx,y,z is a notation for the appropriate 1D second order spatial
difference operator (for the problems with variable coefficients it is approximated on a
“staggered” mesh). Such a scheme is accurate to O(τ +Δx2 +Δy2 +Δz2). In contrast
with the classic ADI method, the multi-component ADI does not require the operators
to be commutative. In addition, it uses the regularization (averaging) for evaluation of
the variable at the previous instant of time.

It is worth noting, that the multi-component ADI algorithm can be also easily adapted
for solving PDEs describing other tomographic modalities. In particular, we have used
it in other related studies, for example, in simulation of photon migration (diffusion) in
a human head in near-infrared spectroscopy of brain injuries and hematomas.

The inverse problem for the electrical imaging modality has the general tomographic
structure. From the assumed distribution of the head tissue conductivities, σij , and the
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given injection current configuration, S, it is possible to predict the set of potential
measurement values, φp , given a forward model F (Eq. (1), (2)), as the nonlinear
functional [5,6]:

φp = F (σij(x, y, z)). (4)

Then an appropriate objective function is defined, which describes the difference be-
tween the measured, V , and predicted data, φp, and a search for the global minimum
is undertaken using advanced nonlinear optimization algorithms. In this paper, we used
the simple least square error norm:

E =

(
1
N

N∑

i=1

(φp
i − Vi)

2

)1/2

, (5)

where N is a total number of the measuring electrodes (cl. Fig. 1). To solve the non-
linear optimization problem in Eq.(5) , we employed the downhill simplex method of
Nelder and Mead as implemented by Press et al[3]. In the strictest sense, this means
finding the conductivity at each node of the discrete mesh. In simplified models with the
constraints imposed by the segmented MRI data, one needs to know only the average
regional conductivities of a few tissues, for example, scalp, skull, cerebrospinal fluid
(CSF) and brain, which significantly reduces the demensionality of the parameter space
in the inverse search, as well as the number of iterations in converging to a local mini-
mum. To avoid the local minima, we used a statistical approach. The inverse procedure
was repeated for hundreds sets of conductivity guesses from appropriate physiological
intervals, and then the solutions closest to the global minimum solutions were selected
using the simple critirea E < Ethreshold.

3 Parallel Computional Design

The solution approach maps naturally to a multi-level computational design that can
benefit from parallel execution both in the parametric search for conductivities and the
forward problem calculations. Fig. 2 gives a schematic view of the approach we ap-
plied in a heterogeneous environment of parallel computing clusters. The conductivity
optimizer (CO) is responsible for launching new inverse problems with guesses of con-
ductivity values. Upon completion, the inverse solvers return conductivity solutions and
error results to the master. Inverse solvers run on a separate computational server. The
system design allows for the servers to be added dynamically and the number of proces-
sors per inverse solve to be decided at execution time, thus trading off inverse search
parallelism versus forward problem speedup.

The CO interacts with each server using a TCP/IP-based interface. We use MPI to
parallelize the inverse solvers as a master-worker computation. The inverse master (IM)
manages multiple solvers at the same time. For each , the IM supplies new conductiv-
ity search values, lunches the simplex search and collects the results . The CO passes
the initial seed to the IM to start simplex refinement for each new inverse worker. The
IM sends a MPI message containing conductivity values to a free inverse worker (IW)
to use in the forward calculation. The IM then waits to receives a solution from any
IW, knowing which IW is working on what inverse solution. The forward solver (FS)
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Fig. 2. Schematic view of the parallel computational system

is parallelized using OpenMP. It has been chosen over MPI as in the shared memory
environment we avoid high data traffic naturally in solving PDE at 3D geometry. Paral-
lelization of the ADI algorithm is straightforward, as it consists of nests of independent
loops over “bars” of voxels for solving the effective 1D problem (Eq. (3)) at each it-
eration. These loops can be easily unrolled for efficient execution on a shared memory
multiprocessor system.

The inverser solver MPI program executes as a mixed-mode parallel computation.
Based on the number of cluster processors available and how the cluster is organized, we
decide at runtime how many inverse workers to create and how many threads to assign
to the forward calculation. In this manner, the program can be ported without change to
both distributed memory and shared memory parallel clusters, and can naturally scale
to meet available processing resources.

At the University of Oregon, we have access to a computational systems environment
consisting of seven multiprocessor clusters. Of the shared memory clusters, three are
8-processor IBM Power4+ p655 machines, one is a 16-processor IBM Power4 p690
machine, and two (Phoenix and Optix) are 16-processor SGI Itaninum-2 machines, an
Altix and Prism machine. The one distributed memory cluster is a Dell 16x2-processor
Pentium Xeon machine. All of the clusters run Linux and are connected by a high-
speed gigabit network. The conductivity optimizer can run on any machine, including
a workstation. In our experiments below, we show results only for the shared memory
clusters. Also, the mixed-mode inverse solve program allocated four threads for the
OpenMP forward calculation in each inverse worker.
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Fig. 3. Segmented MRI data (64x64x44 voxels resolution), top row, and calculated absolute value
of potential, bottom row, for two points current injection (top and back of the head)

4 Computational Results

The forward solver was tested and validated against a 4-shell spherical phantom, and
low (64×64×44) and high (256×256×176) voxels resolution human MRI data. For
comparison purposes, the initial MRI data segmentation into ten tissues types as it is
shown in the top row of Fig.3 was reduced to only four tissue types. Their values were
set to those in the spherical model (cl. Table 1). We computed potentials at standard
locations for the 129 electrodes configuration montage on the spherical phantom and
compared the results with the analytical solution [2] available for a 4-shell spherical
phantom in Fig. 4. One can we see very good agreement, save for some minor discrep-
ancies caused by the mesh orientation effects (the cubic versa spherical symmetry).

Similarly, we found the good agreement for spherical phantoms between our results
and the solution of the Poisson equation using the standard FEM packages such as
FEMLAB [7]. Also, we have performed a series of computations for electric potentials
and currents inside a human head with surgical or traumatic openings in the skull. We
found that generally low resolution (64 × 64 × 44 voxels)like the one which is shown
in the bottom row of Fig. 3 is not enough for accurate description of the current and
potentials distribution through the head, as the coarse discretization creates artificial
shunts for currents (mainly in the skull). With increased resolution (128 × 128 × 88 or
256 × 256 × 176 voxels) our model has been shown to be capable to capture the fine
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Fig. 4. Validation of the forward solver accuracy against analytics for a 4-shell spherical phantom

Table 1. Tissues parameters in 4-shell models[2]

Tissue type σ(Ω−1m−1) Radius(cm) Reference
Brain 0.25 8.0 Geddes(1967)
Csf 1.79 8.2 Daumann(1997)
Skull 0.018 8.7 Law(1993)
Scalp 0.44 9.2 Burger(1943)

details of current/potential redistribution caused by the structural perturbation. How-
ever, the computational requirements of the forward calculation increase significantly.

The forward solver was parallelized using OpenMP. The performance speedups (ex-
ecution times) for 256 × 256 × 176 sized problems on the IBM and SGI machines are
shown in Fig. 5. While the performance is reasonable at present, we believe there are
still optimizations that can be made, particularly on the SGI machines. The importance
of understanding the speedup performance on the cluster compute servers is to allow
flexible allocation of resources between inverse and forward processing.

To investigate the best balance of parallelism between inverse and forward process-
ing, we conducted an experiment to optimize the numbers of MPI tasks and openMP
threads at 12 processors of the 16-processors p690 machine. In this experiment we
considered the total number of forward solutions performed by the cluster for several
configurations in a fixed period of time. The number of iterations per a forward solution
was fixed. The total number of forward solutions performed by a given cluster con-
figuration was chosen as the figure of merit over the number of total inverse solutions
due to the variation of the required number of forward computations in different in-
verse searches. The results are presented at Fig. 6. It can be seen that allocation of four
threads per an inverse worker (3x4) gives the highest throughput for the total number of
forward solutions.

In the inverse search the initial simplex was constructed randomly based upon the
mean conductivity values (cl. Table 1) and their standard deviations as it is reported
in the related biomedical literature. In the present test study we did not use the real
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inverse problems. The total number of available processors is fixed to 12 in all configurations.

experimental human data, instead, we simulated the experimental set of the reference
potentials V in Eq. 5 using our forward solver with the mean conductivity values from
Table 1, which had been assumed to be true, but not known a priory for a user running
the inverse procedure. The search was stopped when one or two criteria were met. The
first is when the decrease in the error function is fractionally smaller than some toler-
ance parameter. The second is when the number of steps of the simplex exceeds some
maximum value. During the search, the conductivities were constrained to stay within
their pre-defined plausible ranges. If the simplex algorithm attempted to step outside of
the acceptable range, then the offending conductivity was reset to the nearest allowed
value. Our procedure had the desired effect of guiding the search based on prior knowl-
edge. Some number of solution sets included conductivities that were separated from
the bulk of the distribution. These were rejected as outliers, based on the significant
larger square error norm in Eq. (5) (i.e., the solution sets were filtered according to the
criteria E < Ethreshold). We have found empirically that setting Ethreshold = 1μV in
most of our runs produced a fair percentage of solutions close to the global minimum.
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The distribution of the retrieved conductivities is shown in Fig. 7 (right). The fact that
the retrieved conductivities for the intracranial tissues (CSF and brain) have wider dis-
tributions is consistent with the intuitive physical explanation that the skull, as having
the lowest conductivity, shields the currents injected by the scalp electrodes from the
deep penetration into the head. Thus, the deep intracranial tissues are interrogated less
in comparison with the skull and scalp. The dynamics of an individual inverse search
convergence for a random initial guesses is shown in Fig. 7 (left). In general, the con-
ductivities for the extra cranial tissue and skull converge somewhat faster than the brain
tissues, due to the better interrogation by the injected current.

After filtering data according to the error norm magnitude, we fitted the individual
conductivities to the normal distribution. The mean retrieved conductivities σ(Ω−1m−1)
and their standard deviations Δσ are: Brain (0.24 / .01), CSF (1.79 / .03), Skull (0.0180 /
.0002), and Scalp (0.4400 / .0002). It is interesting to compare these values to the "true"
conductivities from Table 1. We can see excellent estimates for the scalp and skull con-
ductivities and a little bit less accurate estimates for the intracranial tissues. We also have
done some preliminary runs with the realistic noise included. These runs and the similar
investigation in Ref. [2] for a spherical phantom suggest that noise leads to some deteri-
oration of the distributions and more uncertainty in the results. In general, it still allows
the retrieval of the unknown tissue parameters.

Finally, in Fig. 8 we present the dynamics of the performance of the inverse search
in our distributed multi-cluster computational environment. Six curves with different
markers show the dynamics of the inverse solution flux at the conductivity optimizer.
The markers correspond to the instances of inverse solutions arrival to CO from a spe-
cific inverse master (cluster). The inverse solution rate varies between the clusters based
on several factors: the number of processors available, the speed of the forward solve,
and inverse search convergence rate. The markers seated at the "zero" error function
line represent solutions that contribute to the final solution distribution, with the rest of
the solutions rejected as outliers. In average, the throughput was 15 minutes per one
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inverse solution for the 128 × 128 × 88 MRI resolution test case. The second graph
shows the number of inverse solutions completed by the different clusters. Since we
chose four threads to use in the OpenMP forward solve, the graph shows the number of
inverse solutions completed per inverse worker.

5 Conclusion

We have built an accurate and robust 3D Poisson solver based on a finite difference
multi-components ADI algorithm for modeling electrical and optical problems in het-
erogeneous biological tissues. We focus in particular on modeling the conductivity
properties of the human head. The computational formulation utilizes realistic head
geometry obtained from segmented MRI datasets. This is important to the effective use
of impedance imaging and source localization in clinical neuroimaging applications
where diagnostic accuracy depends significantly on the degree to which individual dif-
ferences in head structure can be represented. The computational formulation of the
problem is as a multi-cluster mixed-mode calculation suitable for parallel execution
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on a computational grid. Our results validate FDM approach for impedance imaging
and provide a performance assessment of parallel computation on six clusters of the
University of Oregon’s ICONIC grid.

In the future, we will enhance the computational framework in several ways. Addi-
tional cluster resources will be used to naturally scale the performance of the conduc-
tivity optimization. In particular, we will add the 16-node, 2-processor per node Dell
cluster to the mix. Consistent with the ICONIC grid, our intent is to evolve the present
interprocess communication (IPC) socket-based code to one that uses grid middleware
support, allowing the impedance imaging program to more easily access available re-
sources and integrate with neuroimaging workflows. Finally, intrinsically parallel multi-
component ADI algorithms [9] in a forward solver and more intelligent schemes of
conductivity search based on multi-resolution approaches could be tried. The idea here
is to first start with fast, low-resolution solutions which can then narrow the range of
and guide initial conductivity guesses for high-resolution, more accurate investigation.
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Abstract. Multiprocessors based on simultaneous multithreaded (SMT) or mul-
ticore (CMP) processors are continuing to gain a significant share in both high-
performance and mainstream computing markets. In this paper we evaluate the
performance of OpenMP applications on these two parallel architectures. We use
detailed hardware metrics to identify architectural bottlenecks. We find that the
high level of resource sharing in SMTs results in performance complications,
should more than 1 thread be assigned on a single physical processor. CMPs, on
the other hand, are an attractive alternative. Our results show that the exploitation
of the multiple processor cores on each chip results in significant performance
benefits. We evaluate an adaptive, run-time mechanism which provides limited
performance improvements on SMTs, however the inherent bottlenecks remain
difficult to overcome. We conclude that out-of-the-box OpenMP code scales bet-
ter on CMPs than SMTs. To maximize the efficiency of OpenMP on SMTs, new
capabilities are required by the runtime environment and/or the programming
interface.

1 Introduction

As a shared-memory programming paradigm, OpenMP is suitable for parallelizing ap-
plications on simultaneous multithreaded (SMT) [17] and multicore (CMP) [16] proces-
sors. These processors appear to dominate both the high-end and mainstream comput-
ing markets. Products such as Intel’s Hyperthreaded Pentium IV are already widely
used for desktop and server computing, with similar products being marketed or in
late stages of development by other vendors. At the same time, high-end, future micro-
processors encompass aggressive multithreading and multicore technologies to form
powerful computational building blocks for the next generation of supercomputers.
All three vendors selected by the DARPA HPCS program (IBM, Cray and Sun) have
adopted multithreaded and multicore processor designs, combined with different tech-
nological innovations such as streaming processor cores and proximity communication
[5, 6, 15].

With the advent of multithreaded and multicore multiprocessors, a thorough evalua-
tion of OpenMP on such architectures is a timely and necessary effort. In this paper we
evaluate a comprehensive set of OpenMP codes, including complete parallel bench-
marks and real-world applications, on both a real multi-SMT system, composed of
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Intel’s Hyperthreaded processors, and on a simulated multiprocessor with CMP proces-
sors. For the latter architectural class we use complete system simulation to factor in
any operating system effects. Our evaluation uses detailed performance measurements
and information from hardware performance counters to pinpoint architectural bottle-
necks of SMT/CMP processors that hinder the scalability of OpenMP, as well as areas
in which OpenMP implementations can be improved to better support execution on
SMT/CMP processors.

We observe that the extensive resource sharing in SMTs often hinders scalability,
should threads co-executing on the same physical processor have conflicting resource
requirements. The significantly lower degree of resource sharing in CMPs, on the other
hand, allows applications to effectively exploit the multiple execution cores of each
physical processor. We quantitatively evaluate the effects of resource sharing on the L2
miss rate, the number of stall cycles and the number of data TLB misses. We then eval-
uate the effectiveness of a run-time mechanism that transparently determines and uses
the optimal number of threads on each SMT processor. This technique yields measur-
able, though limited performance improvement. Despite its assistance, the architectural
bottlenecks of SMTs do not allow OpenMP applications to efficiently exploit the addi-
tional execution contexts of SMT processors.

The rest of the paper is organized as follows: In section 2 we outline related work.
In section 3 we evaluate the execution of OpenMP codes on SMT- and CMP-based
multiprocessors and pinpoint architectural bottlenecks using a variety of performance
metrics. Section 4 evaluates a simple, yet effective mechanism that automatically de-
termines and exploits the optimal number of execution contexts on SMT-based mul-
tiprocessors. In section 5 we outline some implications of the proliferation of hybrid,
SMT- and CMP-based multiprocessors for OpenMP. Finally, section 6 concludes the
paper.

2 Related Work

Earlier research efforts have ported and evaluated OpenMP on specific processor de-
signs, including heterogeneous chip multiprocessors [14], slipstream processors [9]
(a form of 2-way chip multiprocessors in which the second core is used for specula-
tive runahead execution) and Cyclops, a fine-grain multithreaded processor architecture
introduced by IBM [1]. Our evaluation focuses on commodity processors, with organi-
zations spanning the design space between simultaneous multithreading and chip mul-
tiprocessors and a few execution contexts. Although not at the high end of the design
space of supercomputing architectures, such processors are becoming commonplace
and are natural building blocks for larger multiprocessors. A recent study of OpenMP
loop scheduling policies on multiprocessors with Intel’s Hyperthreaded processors indi-
cated the need for adaptation of both the degree of concurrency and the loop scheduling
algorithms when OpenMP applications are executed on simultaneous multithreading
architectures, because of different forms of interferences between threads [18]. Our
evaluation corroborates these results and provides deeper insight on the architectural
reasons due to which adaptivity is an effective method for improving the performance
of OpenMP programs on SMT processors.
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3 Experimental Evaluation and Analysis

3.1 Hardware and Software Environment and Configuration

In order to ascertain the effects of the characteristics of modern processor architectures
on the execution of OpenMP applications, we have considered two types of multiproces-
sors which are becoming more and more popular in today’s computing environment,
namely multiprocessors based on either SMTs or CMPs. SMTs incorporate minimal ad-
ditional hardware in order to allow multiple co-executing threads to exploit potentially
idle processor resources. The threads usually share a single set of resources such as exe-
cution units, caches and the TLB. CMPs on the other hand integrate multiple independent
processor cores on a chip. The cores do, however, share one or more outer levels of the
cache hierarchy, as well as the interface to external devices.

We used a real, 4-way server based on Hyperthreaded (HT) Intel processors as a
representative SMT-based multiprocessor. Intel HT processors are a low-end / low-cost
implementation of simultaneous multithreading. Each processor offers 2 execution con-
texts which share execution units, all levels of the cache, and a common TLB. The ex-
periments targeted at the CMP-based multiprocessors have been carried out on a sim-
ulated 4-way system. The simulated CMP processors integrate 2 cores per processor.
They are configured almost identically to the real Intel HTs, apart from the L1 cache
and TLB which are private, per core on the CMP and shared between execution contexts
on the SMT. Note that using private L1 caches and TLBs favors CMPs by providing
more effective cache and TLB space to each thread and reducing contention. Therefore,
our experimental setup seems to favor CMPs. Note however, that we are evaluating a
CMP with in-order issue cores, which are much simpler than the out-of-order execu-
tion engines of our real SMT platform. Furthermore, the multicore organization of our
simulated CMP enables a chip layout with private L1 caches at a nominal increase in
die area [13]. For these reasons, the simulated CMP platform can still be considered
as roughly equivalent (in terms of resources) to our real SMT platform. We used the
Simics [7] simulation platform to conduct complete system simulations, including sys-
tem calls and operating system overhead. Table 1 describes the configuration of the two
systems in further detail.

Table 1. Configuration of the SMT- and CMP-based multiprocessors used throughout the exper-
imental evaluation

Processors L1 Cache L2 Cache L3 Cache TLB Main Mem.

SMT
4 x Intel P4 Xeon, 1.4 GHz 8K Data, 256K Unified, 512K Unified, 64 Entries Data, 1GB
Hyperthreaded x 2 Execution 12K Trace (Instr.), Shared Shared 128 Entries Instr.,
Contexts per Processor Shared Shared

CMP
4 Processors 2x8K Data, 256K Unified, 512K Unified, 2x64 Entries Data, 1GB
x 2 P4 Cores per Processor 2x12K Trace (Instr.) Shared Shared 2x64 Entries Instr.,

Private per Core Private per Core

We evaluated the relative performance of OpenMP workloads on the two target ar-
chitectures, using 7 OpenMP applications from the NAS Parallel Benchmarks suite
(version 3.1) [11]. We executed the class A problem size of the benchmarks, since it is
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a large enough size to yield realistic results. At the same time, it is the largest problem
class that allows the working sets of all applications to fit entirely in the available main
memory of 1GB.

We executed all the benchmarks on the SMT with 1, 2, 4, and 8 threads. The main
goal of this experiment set was to evaluate the effects of executing 1 or 2 threads on the
2 execution contexts of each processor. We thus ran our experiments under six different
thread placements: i) 1 thread, ii) 2 threads bound on 2 different physical processors, iii)
2 threads bound on the 2 contexts of 1 processor, iv) 4 threads bound on 4 processors, v)
4 threads paired on the execution contexts of 2 processors and vi) 8 threads paired on 4
processors. Each thread is pinned on a specific execution context of a specific processor
using the Linux sched setaffinity system call. The applications were executed
using Intel VTune [10] performance analyzer. We recorded both the execution time and
a multitude of additional performance metrics attained from the hardware performance
counters available in the processor. Such metrics provide insight into the interaction
of applications with the hardware, thus they are a valuable tool for understanding the
observed application performance.

The same experiments have been repeated on the simulated CMP-based multiproces-
sor. Full system simulation with Simics introduces an average 7000-fold slowdown in
the execution time of applications, compared with the execution on a real machine. We
simulated the same application binaries, using the same data sets, however we reduced
the number of iterations1 we ran on the simulator in order to limit the execution time
to reasonable levels. More specifically, we executed only 3 of the outermost iterations
of each benchmark, discarding the results from the first iteration in order to eliminate
transient effects due to cache warmup. The simulator directly provides similar, detailed
performance information as Vtune.

All experiments were performed on a dedicated machine in order to rule out data per-
turbations due to interactions with third-party applications and services. The operating
system on both the real and the simulated system was Linux 2.4.25.

3.2 Experimental Results

We evaluated the relative performance of the benchmarks on the real SMT-based and the
simulated CMP-based multiprocessors when 1 or 2 threads are activated per physical
processor, using the different binding schemes described in section 3.1. We monitored
a multitude of direct (wall clock time, number of instructions, number of L2 and L3
references and misses, number of stall cycles, number of data TLB misses, number of
bus transactions) and derived (CPI, L2 and L3 miss rates) performance metrics. Due to
space limitations we only present and discuss the results for L2 miss rates, stall cycles,
data TLB misses and execution time.

The results for the L2 miss rate evaluation are depicted in Figure 1. The reported
values are for 2 threads per processor and have been normalized with respect to the
single-thread per processor execution of each benchmark on the specific architecture
and number of processors. This way, the graphs emphasize the effects of using a second

1 All the NAS applications we used are iterative. The computational routines are enclosed in an
external, sequential loop.
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Fig. 1. Normalized L2 miss rates of the benchmarks on the SMT and CMP multiprocessor (left
and right diagrams respectively). The corresponding 1 thread/processor miss rates on each archi-
tecture and number of processors have been used as references for the normalization.

thread per processor. The relative L2 cache performance of applications when 1 and 2
threads are executed on each physical processor depends highly on the specific charac-
teristics of the application. If the working sets of both threads do not fit in the L2 cache,
there is an increase in the L2 miss rate, since cross-thread cache-line eviction results in
more misses. If, on the other hand, the 2 threads executing on the same processor share
data, then each of them will probably benefit from data already fetched to the cache by
the other thread.

In most cases, executing 2 threads per processor on the SMT system proved benefi-
cial for L2 cache performance. On average, thread pairing resulted in 1.05 times lower
miss rates in comparison with the single-thread per processor execution. An applica-
tion in which thread cross-eviction appears is FT. The FT threads have large working
sets that can not entirely fit into any level of the cache hierarchy. Moreover, the degree
of data sharing between threads co-executing on the same processor is low. As a re-
sult, miss rates increase significantly if both execution contexts of each processor are
activated. Another interesting pattern can be observed in CG. Although the exploita-
tion of the second hyperthread of each processor results in a significant reduction in
miss rate in the single processor experiments, as more physical processors are added
the trend is reversed. CG has a high degree of data sharing between the threads. If
few threads are active, the benefits of the shared cache are evident. However, as more
physical processors are added, inter-processor data sharing results in a large number of
cache-line invalidations, which eventually outweigh the benefit of intra-processor data
sharing.

On the CMP-based multiprocessor the L2 cache miss rate generally appears to be un-
correlated to the exploitation of 1 or 2 execution cores per physical processor. Although
the L2 is shared between both cores, the private, per core L1 caches function as a buffer
that prevents many memory accesses from reaching the second level of the cache. In
fact, the use of a second thread on SMTs results in an increase in the number of L2
cache accesses, due to the inter-thread interference in the L1 cache. More specifically,
the number of L2 accesses always increases, by 1.42 times on average, when the sec-
ond execution context is activated on each physical processor. The private L1 caches in
CMPs alleviate this problem. The number of L2 accesses is reduced by an average fac-
tor of 1.37 when the second core - and its private L1 cache - are activated on each CPU.
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Fig. 2. Normalized number of TLB misses (top diagrams) and stall cycles (bottom diagrams)
of the benchmarks on the SMT and CMP multiprocessor (left and right diagrams respectively).
The corresponding 1 thread/processor stalls and TLB misses on each architecture and number of
processors have been used as references for the normalization.

The behavioral patterns observed for CG and FT on the SMT-based multiprocessor are
repeated on the CMP as well.

Figure 2 depicts the normalized number of stall cycles and TLB misses. Once again,
the reported values have been normalized with respect to the corresponding single-
thread per processor execution of each benchmark on the specific architecture and num-
ber of processors. The results indicate that using the second execution context of the
SMT processors has a significant effect on the number of TLB misses. Their number
suffers an up to 27-fold increase when we move from binding schemes that assign 1
thread per processor to those that assign 1 thread per execution context. On average,
TLB misses increase by 10.78 times. The 2 threads on each processor often work on
different areas of the virtual address space, thus being unable to share TLB entries.
Furthermore, the Intel SMT processor has a surprisingly small data TLB (64 entries),
which can not achieve a good coverage of the virtual address space of the benchmarks
we executed. As a result, the effective per thread size of the shared TLB is reduced
drastically when both execution contexts of each processor are activated. The CMP
processor provides private TLBs for each core. As a consequence, the number of TLB
misses is much more stable than on the SMT system. In fact, the execution of 1 or 2
threads per processor has, on average, no effect on the number of TLB misses.

The behavior in terms of stall cycles also varied significantly between the two ar-
chitectures. On SMT processors the number of stall cycles represents the cumulative
effect of both cycles spent waiting for data to be fetched from any level of the memory
hierarchy and cycles during which execution was stalled because of conflicting resource
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requirements of the threads executing on the different execution contexts of the proces-
sor. On CMPs, co-executing threads share only the 2 outer levels of the cache and the
interface to external devices, thus the second factor does not contribute to the total num-
ber of stall cycles. For all benchmarks executed on the SMT, the number of stall cycles
increased – on average by 3.1 times – when the configuration was changed from 1 to
2 threads per processor. The corresponding average overhead on the CMP is a mere
1.03. This is a safe indication that the vast majority of stall cycles on the SMT can
be attributed to conflicting requirements of co-executing threads for internal processor
resources.

Fig. 3. Normalized execution time of the benchmarks on the SMT and CMP multiprocessor (left
and right diagram respectively). The single-threaded (sequential) execution time on each archi-
tecture is used as a reference for the normalization.

Finally, Figure 3 depicts the results from the execution time of applications on the
two target multiprocessor architectures. This time, the reported values have been nor-
malized with respect to the sequential (single-threaded, single-processor) execution
time of applications on each architecture. The different binding schemes are labeled
as (num processors, num threads), where num processors stands for the
number of physical processors onto which the threads are bound and num threads
for the number of threads used for the application execution.

All 7 benchmarks scale well on both the SMT and the CMP as more physical proces-
sors are made available to the application. This indicates that potential performance
problems under some binding schemes can not be attributed to the scalability character-
istics of the benchmarks. In fact for the 2-threaded BT and CG execution on the CMP
the speedups are superlinear, due to the availability of cumulatively larger L1 cache and
TLB when more than 1 threads are used.

Given a specific number of threads, execution times on the SMT multiprocessor are
always lower if the threads are spread across as many physical processors as possible,
instead of being placed on both execution contexts of each processor. Moreover, in 7
out of 21 experiments the activation of the second execution context, given a specific
number of physical SMT processors, resulted in a reduction of the observed application
performance. It should also be pointed out that, even for a given application, it is not
always clear whether the exploitation of all execution contexts of each processor is the
optimal strategy or not. In the case of SP, for example, exploiting 2 execution contexts
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per processor is optimal when 1 and 2 processors are available, however it results in
performance penalties when all 4 processors are used.

The results are totally different on the CMP-based multiprocessor. In 8 out of 14
cases placing a given number of threads on the cores of as few processors as possi-
ble yields higher performance than spreading them across processors. Moreover, the
activation of the second core always resulted in performance improvements. The repli-
cation of execution units, L1 caches and TLBs on the CMPs allows threads to execute
more effectively, without the limitations posed by resource sharing on SMTs. The re-
duction in resource conflicts due to hardware replication often allows the benefits of
inter-processor cache sharing to be reflected in a reduction in execution time.

4 Adaptive Selection of the Optimal Number of Execution
Contexts for OpenMP on SMTs

The selection of the optimal number of execution contexts for the execution of each
OpenMP application is not trivial on SMT-based SMPs. We thus experiment with a
performance-driven, adaptive mechanism which dynamically activates and deactivates
the additional execution contexts on SMT processors to automatically approximate the
execution time of the best static selection of execution contexts per processor. We used
a simpler mechanism than the exhaustive search proposed in [18], which avoids modi-
fications to the OpenMP compiler and runtime. Our mechanism identifies whether the
use of the second execution context of each processor is beneficial for performance and
adapts the number of threads used for the execution of each parallel region. The algo-
rithm introduced in [18] also targets identification of the best loop scheduling policy.

Our method is based on the annotation of the beginning and end of parallel regions
with calls to our runtime. The calls can be inserted automatically, by a simple pre-
processor. Alternatively, run-time linking techniques such as dynamic interposition can
be used to intercept the calls issued to the native OpenMP runtime at the boundaries of
parallel regions and apply dynamic adaptation even to unmodified application binaries.

We slightly modify the semantics of the OMP NUM THREADS environment variable,
using it as a suggestion for the number of processors to be used instead of the number
of threads. Moreover, we add a new environment variable (OMP SMT). If OMP SMT is
defined to be 1 or 2, the application always uses 1 and 2 execution contexts per physical
processor respectively. If its value is 0, or the variable is not defined, adaptive execu-
tion is activated. In this case, each kernel thread is first bound on a specific execution
context upon program startup. On the second and third time each parallel region is en-
countered, our runtime executes it using 1 and 2 execution contexts per processor and
monitors execution time. After the third execution of each region, a decision is made
using the timing results from the two test executions. Upon additional invocations of
the parallel region, the runtime automatically adjusts the number of threads according
to the decision. The first execution of each parallel region is not monitored, in order to
avoid any interference in the decision process due to cache warmup effects. The runtime
makes decisions independently for each parallel region. The execution of most appli-
cations proceeds in phases, with different execution characteristics for each phase. The
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boundaries of parallel regions often indicate phase changes. Thus, varying the number
of threads at the boundaries of parallel regions offers context sensitive adaptation2.

We evaluated the performance of our adaptive mechanism using the NAS Parallel
Benchmarks along with two other OpenMP codes: MM5 [8], a mesoscale weather pre-
diction model, and COBRA [4], a matrix pseudospectrum computation code. We ran
each of the benchmarks statically with 1 and 2 threads per processor on 1, 2, 3, and 4
processors. We then executed each benchmark using the adaptive strategy. Even in the
experiments using a static number of threads, threads are bound on specific execution
contexts in order to avoid unfairly penalizing performance due to suboptimal thread
placement decisions of the Linux scheduler. The results are depicted in Figure 4.

Fig. 4. Relative performance of adaptive, 1 and 2 threads per physical processor execution strate-
gies. The execution times have been normalized with respect to the execution time of the worst
strategy for each experiment.

Compared with the optimal static number of threads for each case, our approach was
only 3.0% slower on average. At the same time, it achieved a 10.7% average speedup
over the worse static number of threads for each (benchmark, number of processors)
combination. The average overall speedup observed over all static configurations was
3.9%. In 17 out of the total 36 experiments the adaptive mechanism even provided a
performance improvement over both static strategies for selecting the number threads.
This can be attributed to the flexibility of the adaptive mechanism and its ability to
decide the optimal number of threads independently for each parallel region.

2 In fact loop boundaries can offer a better approximation of application phases. OpenMP spec-
ifications however, prohibit varying the number of active threads inside a parallel region, thus
adaptive mechanisms like ours can not be used to make decisions at a loop-level resolution.
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The adaptive technique did not perform well for MG. MG performs only 4 outermost
iterations. Given that 3 iterations are needed for the initialization and decision phases,
MG executes in adaptive mode for only 1 iteration. However, it does not take many
iterations for the adaptive execution to compensate for the overhead of the monitoring
phase. CG, for example, performs just 15 iterations and the adaptive strategy is only
slightly inferior than the best static strategy.

The performance benefits attained by our simple mechanism are lower than those at-
tained by the combined adaptation of the number of threads and loop schedules in [18].
They indicate that dynamic adaptation can provide some speedup on SMT-based multi-
processors, however the inherent architectural bottlenecks of contemporary SMTs hin-
der the efficient exploitation of the additional execution contexts.

5 Implications for OpenMP

Our study indicates that although scaling OpenMP on CMPs can be effortless, scaling
on SMTs is hindered by the effects of extensive resource sharing. We argue that it is still
worthwhile to consider performance optimizations for OpenMP on SMTs. In addition to
the current Intel family of SMT processors, multicore architectures with SMT cores are
also gaining popularity, because such designs often achieve the best balance between
energy, die area and performance [12]. In our view, optimizing OpenMP for SMTs en-
tails both additional support from the runtime environment and possible extensions to
the programming interface. Clearly, the runtime environment should differentiate be-
tween threads running on the same SMT and threads running across SMTs. This can
be achieved in a number of ways: For example, a new SCHEDULE clause would allow
the loop scheduler to assign iterations between SMTs using a given policy and then
use an SMT-aware policy for splitting iterations between threads on the same SMT. Al-
ternatively, OpenMP extensions for thread groups [3] can be exploited, so that threads
within the same SMT processor belong to the same group and use their own schedul-
ing and local synchronization mechanisms. Note that using groups in this case does not
necessarily imply the use of nested parallelism. SMT-aware programs may utilize just a
single level of parallelism but use different policies for executing threads within SMTs.
In fact, current SMTs do not allow the exploitation of parallelism with granularity much
finer than what can be exploited by conventional multiprocessors [2]. If no extensions
to the OpenMP interface are desired, then more intelligence should be embedded in the
runtime environment, to dynamically identify threads sharing an SMT and differentiate
its internal thread management policies. Although such an expectation is not unreason-
able for regular iterative scientific applications, it is difficult to achieve the same level
of runtime sophistication for irregular applications.

Regarding portability (of both code and performance), one of the most important
problems for implementing an SMT-aware version of OpenMP is thread binding to
processors and execution contexts within processors. Clearly, if the programmer wishes
to exploit a single level of parallelism in a non-malleable program, the issue of bind-
ing is irrelevant. If however the programmer wishes for any reason to utilize SMTs for
an alternative multithreaded execution strategy (e.g. for nested parallelism, or for slip-
stream execution), then it is necessary to specify the placement of threads on processors.
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Although the OpenMP community has proposed extensions to handle similar cases (e.g.
via an ONTO clause), exposing architecture internals in the programming interface is un-
desirable in OpenMP. Therefore, new solutions for improving the execution of OpenMP
programs on SMTs in an autonomic manner are desirable.

6 Conclusions

In this paper we evaluated the performance of OpenMP applications on SMT- and CMP-
based multiprocessors. We found that the execution of multiple threads on each proces-
sor is more efficient and predictable on CMPs than it is on SMTs due to the higher de-
gree of resource isolation, which results in fewer conflicts between threads co-executing
on the same processor. Although adaptive run-time techniques can improve the perfor-
mance of OpenMP applications on SMTs, inherent architectural bottlenecks hinder the
efficient exploitation of these processors.

Our analysis indicated that the interference between co-executing threads in the
shared levels of the cache or the shared TLB may prove a determining factor for perfor-
mance. Driven by this observation, we intend to evaluate run- and compile-time tech-
niques for TLB partitioning on SMTs and cache partitioning on both SMT and CMP
architectures. The forthcoming proliferation of processors which combine simultaneous
multithreading and chip multiprocessing, such as the IBM Power5, and their use as ba-
sic building blocks of multiprocessors will certainly generate a multitude of challenging
software optimization problems for system software and application developers.
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Abstract. We describe the performance characteristics of the SPEC
OMP benchmarks on parallel vector supercomputers. Points of interest
are vectorization, scalability and the comparison between different gen-
erations of the same family of NEC SX vector supercomputers. We relate
the different performance development of the 11 different applications to
different hardware properties of the machine and also to results of the
EPCC microbenchmarks. Of special interest is the fact the the NEC SX
parallel architecture is not cache consistent.

1 Introduction

The SPEC OMP benchmarks[1] are a set of OpenMP parallel applications that
can be used to measure the performance of shared memory systems. Submitted
results exist for a variety of vendors. However, since the vendors typically try
to submit the best possible result the benchmarks are normally executed with
the number of threads that achieve the highest performance on a given system.
Therefore only a few scalability results exist. There have been research papers
on the performance characteristics on small shared memory machines[3,2], large
SMP systems [5,6] and on pseudo vector machines like the Hitachi SR8000 [7].
The goal of this paper was to gain insight into the behavior of this set of appli-
cations on parallel vector machines like the NEC SX-series.

2 System Description

The NEC SX series is a family of shared memory parallel vector supercomputers.
All members of the family have a crossbar that connects the CPUs to the shared
memory. An overview of the characteristics can be seen in Tab. 1. In addition,
the SX4 has a memory system consisting of SSRAM memory, whereas the SX-
5 and SX-6 use DRAM technology. The number of banks in the SX-4 is also
significantly higher. To achieve a balanced system with regard to the memory
performance the number of CPUs was reduced to 16 and 8 CPUs in the SX-5 and
SX-6 respectively. Unlike most SMPs the SX systems are not cache consistent,
therefore problems like false-sharing should not exist. The only cache consistency
is between the CPU caches and the vector units. The number of memory banks
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is the same for SX-6 and SX-8. To reach twice the memory bandwidth the
bank busy time should be reduced by a factor two. This is not exactly the case,
especially for the version with DDR2 RAM that was used here. There is a version
with FC-RAM that has better bank busy times. However, there are modifications
in the memory system like a bank cache and improved stride 2 memory access
that might compensate this effect.

Table 1. Basic performance characteristics of the NEC SX family

SX-4 SX-5e SX-6 SX-6+ SX-8

Peak Performance 2 GF 4 GF 8 GF 9 GF 16 GF
Memory Bandwidh/CPU 16 GB/s 32 GB/s 32 GB/s 36 GB/s 64 GB/s
Clock 125 MHz 250 MHz 500 MHz 563 MHz 1GHz
max Nr. of CPUs 32 16 8 8 8
total Memory Bandwidth 512 GB/s 512 GB/s 256 GB/s 288 GB/s 512 GB/s

3 Short Description of the SPEC OMP Benchmark Suite

The SPEC OMP benchmark suite consists of 11 applications. With the exception
of gafort they have their roots in the SPECfp 2000 benchmark suite. Just a short
description of the application is provided here, for a more detailed description
see [1]. Wupwise is a quantum chromodynamics code, it consists of 2400 lines
of Fortran code. Swim is a program for shallow water modeling. It is a small
program with 435 lines of F77 that is known to be memory intensive. Mgrid is
a simple Multigrid solver with 489 lines of F77 computing a three dimensional
potential field. It was adopted by SPEC from the NAS Parallel Benchmarks.
Applu is a parabolic/elliptic PDE solver consisting of 3980 lines of F77. Five
coupled nonlinear PDEs are solved on a 3 dimensional, structured grid. An
implicit pseudo-time marching schemed is used, based on two-factor approximate
factorization of the sparse Jacobian Matrix. This is functionally equivalent to
a nonlinear block SSOR iterative scheme with lexicographic ordering. Galgel
performs a fluid dynamics analysis of oscillatory instability. Equake calculates a
seismic wave propagation. Apsi is a meteorology code, which calculates pollutant
distribution. Gafort is a integer intensive genetic algorithm code. Fma3d is a
finite element crash code. Art performs an image recognition using a neural
network. It is written in C. Ammp is a molecular dynamics code in the field of
computational chemistry, it is also implemented in C.

4 Porting to NEC SX Systems

The most difficult part in porting the benchmarks was the compilation of the
SPEC tools on the target platform. This step was necessary because no binaries
are provided by SPEC. The tools are a collection of perl scripts and GNU utilities
like make and diff to control the build and run process. One problem in porting
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the tools was that the NEC systems only have very limited support of shared
libraries and dynamic linking, a feature used by the Perl tools.

The compilation of the 11 application codes was almost straightforward. The
only required modification was the replacement of the assignment OMP LOCK KIND
= selected int kind(18) with OMP LOCK KIND = 8 in gafort.f90, because
the selected integer kind of the first construct was not supported by the compiler.

It should be noted that our goal was not to reach the maximum performance,
but to understand the performance characteristics. Many of the benchmarks have
been performed on loaded machines, where only gang-scheduling and resource
management ensured that the benchmarks were not affected by other applica-
tions running on the machine. Nevertheless, resources like the memory crossbar
were shared.

All vectorization was done automatically by the compiler. No directives were in-
serted and no source code modifications were applied to improve the performance.

Table 2. Properties of the SPEC codes on the NEC SX

Name Lang. Vratio Vlen Memory (MB)

310.wupwise m F 87.34 58.74 1488
312.swim m F 99.75 253.48 1584
314.mgrid m F 99.14 211.04 480
316.applu m F 81.31 34.17 1520
318.galgel F 92.57 45.41 272
320.equake m C 0.06 9.6 464
324.apsi m F 76.70 23.02 1648
326.gafort m F 40.25 59.60 1680
328.fma3d m F 10.29 8.95 1040
330.art m C 32.06 242.14 272
332.ammp m C 76.67 102.79 176

Tab. 2 shows the reported performance characteristics on the NEC vector-
machines. Three codes (swim, mgrid and galgel) show a vectorization ratio of
more than 90%. Five codes have a ratio between 40% and 90% (wupwise, applu,
apsi, gafort, ammp). The remaining three codes (art,fma3d and equake) show a
vectorization below 40%.

The other important issue is the average vector length. Here, swim, mgrid, art
and ammp have a vector length above 100. Only equake and fma3d have a very
small vector length below 10. The maximum (and best) vector length would be
256.

Looking at the vectorization of the codes it is clear, that only swim, mgrid
and maybe galgel will show good performance on the NEC SX. Better results
can be achieved with source code modifications, but this was not the target of
this work. Instead of the absolute performance, the relative performance be-
tween different generations of SX hardware as well as scalability is the main
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focus. If the balance between different performance properties is constant, the
relative performance grow of all applications would be the same. Any difference
in performance grow points therefore to different hardware characteristics that
dominates the performance for this kind of applications.

5 Performance Measurements

For the scalability tests the number of threads were increased from 1 up to the
number of CPUs in the machine. The results can be seen in Fig. 1 and Fig. 2,
the results of a run with one thread on the SX-4 has been set to 1. Tab. 3 shows
the relative performance between the different SX generations for one and eight
threads. The efficiency of the parallel execution is shown in Fig. 4 and Fig. 3.

The following list summarizes the observations for the different applications:

wupwise: the code scales very well up to 32 threads. Due to the good scalability
the total node performance is the same for SX-4, SX-5 and SX-6, because
all three generations have the same node peak performance.

swim: This code is known to be very memory intensive. The scalability on SX-
8 is limited, reaching only a speed-up of 4.5 on 8 threads. This is due to
memory degradation on this platform. Tab. 3 shows that the single CPU of
SX-8 is 7.02 times faster than a SX-4 CPU, but the 8 thread result is only
4.31 times faster. As explained earlier this is an effect of the relatively long
bank busy time of the DDR2 version of SX-8.

mgrid: This code is also known to be quite memory intensive, with a slightly
more irregular access pattern than swim, due to the multigrid method. The
scalability is good on all platforms. There is an excellent performance im-
provement going from SX-6+ to SX-8. This is probably due to the improved
stride 2 memory access.

applu: The code has only limited scalability and relatively small performance
improvements on new platforms.

galgel: For galgel the hardware performance counters show a significant waiting
time due to cache misses. This waiting time increases with the number of
threads, resulting in poor scalability. For a vector computer cache misses are
normally not an issue, but galgel only has a moderate vectorization ratio
with a small vector length, thus scalar performance is important.For galgel
the efficiency is less for machines with large CPU numbers due to the poor
scalability.

equake: This code has limited scalability, especially on machines with fast
CPUs, indicating high synchronization overhead.

apsi: The code shows good scalability and efficiency on all platforms.
gafort: This code shows superlinear scaling on SX-6. Again, gafort is one of the

codes with small vectorization ration and vector length. Hardware perfor-
mance counters confirm that this behavior is due to data cache misses.

fma3d: The code shows good scalability and efficiency on all platforms. Only
on the SX-4 with up to 32 threads, the efficiency is lower.
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Fig. 1. Scalability of SPEC OMPM applications
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Fig. 2. The application art benefits from new architectural features, whereas ammp
shows almost the same performance on SX-6 and SX-8

art: It was not possible to achieve a successful run with more than 16 threads
on the SX-4. Comparing the different generations of SX systems, this code
improves better than the peak performance. It clearly benefits from new
architectural features introduced by the SX-6.

ammp: This is one of the codes that only show limited improvements between
different SX generations: only 3.4 out of 8 when moving from SX-4 to SX-8.
One reason is that this code applies a lot of OpenMP locks. On the SX6
the lock overhead is 4.3 microseconds, on SX-8 3.5 microseconds (measured
by EPCC microbenchmarks [4]). This ratio perfectly relates to the observed
ratio of ammp performance.
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Fig. 3. Efficiency of galgel and gafort depending on the fraction of used CPUs

6 Summary and Conclusion

With the exceptions of galgel and equake all codes show good scalability. This
shows that despite the fact that most current shared memory machines are cache
consistent this is not required to achieve good performance with OpenMP. The
single node efficiency is about the same for all generations of SX, showing that
the platforms are well balanced.
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Table 3. Relative Performance for 1 thread (left) and 8 threads (right) on different
SX models. Obviously different applications benefit to different extent from the faster
models.

Name SX4 SX5 SX6+ SX8

310.wupwise m 1 1.75 3.80 5.66
312.swim m 1 2.03 3.89 7.02
314.mgrid m 1 1.91 4.11 7.32
316.applu m 1 1.28 2.88 4.32
318.galgel 1 1.85 3.12 6.16
320.equake m 1 1.81 4.48 7.04
324.apsi m 1 1.33 2.79 4.39
326.gafort m 1 2.06 2.94 7.94
328.fma3d m 1 1.66 3.41 5.03
330.art m 1 2.15 5.50 9.01
332.ammp m 1 1.25 3.00 3.62

arith. mean 1 1.73 3.63 6.14

Name SX4 SX5 SX6+ SX8

310.wupwise m 1 1.68 3.66 5.56
312.swim m 1 1.74 2.61 4.31
314.mgrid m 1 1.87 3.19 6.32
316.applu m 1 1.25 2.76 4.11
318.galgel 1 1.52 2.70 4.21
320.equake m 1 1.60 2.17 3.16
324.apsi m 1 1.27 2.49 4.21
326.gafort m 1 1.95 2.40 4.01
328.fma3d m 1 1.65 3.22 4.92
330.art m 1 2.10 5.30 8.43
332.ammp m 1 1.12 2.81 3.40

arith. mean 1 1.62 3.03 4.78

The absolute application performance gain was also compared to the peak
performance improvement. This shows a lack of sustained performance also for
vector computers, although they are known to have relatively high sustained
performance. However, there is not much difference between vector and scalar
codes, showing again that the architectural improvements from one generation
to the next are well balanced.
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Abstract. The present paper discusses scalable implementations of
sparse matrix-vector products, which are crucial for high performance
solutions of large-scale linear equations, on a cc-NUMA machine SGI
Altix3700. Three storage formats for sparse matrices are evaluated, and
scalability is attained by implementations considering the page alloca-
tion mechanism of the NUMA machine. Influences of the cache/memory
bus architectures on the optimum choice of the storage format are exam-
ined, and scalable converters between storage formats shown to facilitate
exploitation of storage formats of higher performance.

1 Introduction

Fast solution of linear equations with large sparse coefficient matrices is an es-
sential requirement of advanced computations in science and engineering, and
considerable research has been performed on solvers and preconditioners, and
high performance implementations have been conducted to that end. We are
planning to develop a new library for large-scale sparse matrix solutions that
features a wide range of iterative solvers, preconditioners, and storage formats
for sequential, shared memory and distributed memory parallel architectures. In
the present paper, we discuss the performance of sparse matrix-vector products
on a cc-NUMA machine SGI Altix3700.

The matrix-vector product is the most important kernel operation for iterative
linear solvers, and its performance has a significant effect on the performance
of linear solvers. We will show that satisfactory scalability cannot be attained
unless the implementation is aware of the page allocation mechanism of the cc-
NUMA machine. In addition, we will show that the storage format of the highest
performance may be different for different matrices and on different architectures
(CPU and memory), which indicates the importance of the availability of various
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Fig. 1. Data structures of CRS, BSR and DIA. Example matrix A is stored in these
storage formats. The arrows in the figures of CRS and BSR designate that the elements
of (b)ptr are used as indices to (b)index. The BSR of the block size is r = 2 and
c = 2.

storage formats in a library. Since modifying their application programs for dif-
ferent storage formats is a burden on users, subroutines for conversions between
storage formats are necessary. We will show that scalable parallel implementa-
tions of storage conversion routines enable performance enhancements by use of
storage formats of higher performances.

2 Storage Formats and Their Implementations

A number of storage formats have been proposed for sparse matrices. They have
been proposed for various objectives, such as simplicity, generality, performance,
or convenience with respect to a specific algorithm. We implemented seven for-
mats: Compressed Row Storage (CRS), Compressed Column Storage (CCS),
Modified Compressed Sparse Row (MSR), Block Sparse Row (BSR), Diagonal
(DIA), Ellpack-Itpack generalized diagonal (ELL) and Jagged Diagonal (JDS).
In addition to CRS as the baseline format, only BSR and DIA are discussed in
the following experiments, because the performance of matrix–vector products in
the other formats was lower. In this section, the data structures and the parallel
implementations of the matrix–vector products of CRS, BSR and DIA formats
are discussed. The structures of the other formats can be found in [1,2,3,4,5].
Figure 1 shows an example matrix A and data structures of CRS, BSR and DIA
for A. In the following explanation, mathematically A is assumed to be a square
n × n matrix.

2.1 Compressed Row Storage (CRS)

The CRS format is shown by three arrays (ptr,index,value). Let nnz be the
number of the non-zero elements in matrix A. The double-precision array value
of length nnz stores the value of non-zero elements of matrix A as they are
traversed row-wise. The integer array index of length nnz stores the column
indices of the non-zero elements as stored in the array value. The integer array



Performance Evaluation of Parallel Sparse Matrix–Vector Products 155

ptr of length n + 1 stores pointers to the beginning of each row in the arrays
value and index.

The following code shows the implementation of the matrix–vector product
y = Ax in the CRS format. It is parallelized at the outer loop, and thus (the
computations related to) the rows of the matrix are distributed to the threads.

#pragma omp parallel for private(i,j,t)
for(i=0; i<n; i++) {

t = 0.0;
for(j=A.ptr[i];j<A.ptr[i+1];j++)
t += A.value[j] * x[A.index[j]];

y[i] = t;
}

2.2 Block Sparse Row (BSR)

For BSR, the matrix is split into r × c submatrices (called blocks), where r and
c are fixed integers. BSR stores the non-zero blocks (submatrices with at least
one non-zero element) in a manner similar to CRS. Let nr = n/r and nnzb
be the number of non-zero blocks in A. BSR is shown by three arrays (bptr,
bindex, value). The double precision array value of length nnzb× r× c stores
the elements of the non-zero blocks: the first r × c elements are of the first non-
zero block, and the next r × c elements are of the second non-zero block, etc.
The integer array bindex of length nnzb stores the block column indices of the
non-zero blocks. The integer array bptr of length nr + 1 stores pointers to the
beginning of each block row in the array bindex.

The code of the parallel matrix–vector product for BSR of the 2 × 2 block
(i.e. r = 2 and c = 2) is shown below. A larger r reduces the number of load
instructions for the elements of the vector x, and a larger c works as the unrolling
of the inner loop, but this wastes memory and CPU power because of the zero
elements in the non-zero blocks.

#pragma omp parallel for private(i,j,jj,t0,t1)
for(i=0; i<nr; i++) {

t0 = t1 = 0.0;
for(j=A.bptr[i];j<A.bptr[i+1];j++) {
jj = A.bindex[j];
t0 += A.value[j*4+0] * x[jj*2+0] + A.value[j*4+2] * x[jj*2+1];
t1 += A.value[j*4+1] * x[jj*2+0] + A.value[j*4+3] * x[jj*2+1];

}
y[2*i+0] = t0; y[2*i+1] = t1;

}

2.3 Diagonal (DIA)

DIA is shown by two arrays (index, value). The double precision array value
of length nnd × n stores the non-zero diagonals of the matrix A, where nnd is
the number of non-zero diagonals. The integer array index of length nnd stores
the offsets of each of the diagonals with respect to the main diagonal.
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16NODES

Fig. 2. System configuration of the SGI Altix3700. The left-hand side illustrates the
inside of each node, and the right-hand side depicts the interconnections among the 16
nodes.

The code of the parallel matrix–vector product for DIA is shown below. In
our implementation the storage scheme is modified so that the matrix elements
accessed by each thread is stored in a contiguous region of memory. The inner
loop is strip-mined with the number of threads, and interchanged with the outer
loop.

#pragma omp parallel for private(i)
for(i=0; i<n; i++)

y[i] = 0.0;
#pragma omp parallel for private(i,j,k,is,ie,n1,n2,jj,ii)
for(k=0;k<threads;k++) {

n1 = n/threads; n2 = n%threads;
is = k<n2 ? (n1+1)*k : n1*k+n2;
ie = k<n2 ? is+n1+1 : is+n1;
for(j=0;j<nnd;j++) {
jj = A.index[j]; ii = _max(is,-jj)-_min(ie,n-jj);
for(i=_max(is,-jj);i<_min(ie,n-jj);i++)

y[i] += A.value[nn*k*nnd + j*nn + ii++] * x[jj+i];
}

}

2.4 The NUMA Architecture and Data Allocation for NUMA

The experiments reported in Section 3 are carried out on a cc-NUMA machine
SGI Altix3700 that consists of 16 nodes, and as illustrated in the left-hand side
of Fig. 2, each node has one memory controller called SHUB, to which two
Itanium2 Madison 1.3-GHz processors with 16-KB L1 cache, 256-KB L2 cache,
and 3-MB L3 cache for each are connected with a 6.4-GB/s shared front-side bus
and four modules of 512-MB DDR333 SDRAM are connected with 10.8 GB/s.
Two nodes are linked by a 6.4-GB/s NUMAlink4 interconnect, and four nodes
are connected to one router through a 3.2-GB/s NUMAlink3, as shown in the
right-hand side of Fig. 2.

The data is distributed by the first-touch mechanism, i.e. each page is stored
in the memory of the node with a processor that accesses the page first. Because
data must be transferred via interconnects when it is accessed by a processor
out of the node that owns the data, each page should be assigned to the node
with the processor that most often accesses the page in order to attain good
performance.
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To control page allocation, the arrays for matrix storage are initialized with
zeros by the same threads as the matrix-vector products.

2.5 Conversion of Storage Format

Routines for the conversions from CRS to the other formats are based on those in
theSPARSKIT [3]. Severalmodificationswerenecessary to control page allocation.
For example, sequential implementation of the conversion from CRS to BSR fills
three arrays (bptr, bindex andvalue) at the same time, but parallel implementation
requires bptr to be filled first, because accesses to the arrays bindex and value are
distributed referring to bptr as shown in the code in Section 2.2.

3 Experimental Results

The experiments are carried out on a cc-NUMA machine SGI Altix3700. An
Intel C/C++ Compiler 8.1 is used with option -O3. In the experiments with 16
or fewer threads, the threads are allocated to different nodes using the dplace
command, so that the front-side bus is dedicated to a single thread. In the
experiments with 32 processors, the bus of each node is shared with the two
processors in the node, and the effective memory access performance can be
lowered.

Table 1 shows the dimensions, the number of non-zero elements, and the av-
erage number of non-zero elements per row for each test matrix used in the ex-
periments. Matrices (a)–(e) are matrices from the Matrix Market[6], and matrix
(f) is obtained by finite element discretization of the three–dimensional Poisson
equation on a cube.

3.1 Parallel Performance

Table 2 shows the execution time in seconds for 1,000 iterations of matrix–vector
products in various storage formats and numbers of threads. Other than CRS as
the baseline, the storage formats that give the highest performance, designated
in bold face digits, are presented.

First note the dependency of the performance on the matrix. For matrices (a),
(c), (d), and (e), the best performance is attained by the same BSR 41. However,
the relative performance of BSR 41 is less than twice that of CRS for most cases
of (c) and (d), but is more than double that of CRS for (a) and (e). For matrix
(b) BSR with another block size is the optimum, and for matrix (f) BSR with
yet another block size is the best for eight threads or less and DIA is the best for
16 and 32 threads. These results lead to observations that (1) the performance
is improved by optimizing the choice of the matrix storage format, and that (2)
the best storage format differs for different matrices and machines (here, the
number of processors used), and thus the availability of various storage formats
in a library package is important.
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Table 1. Test matrices for the experiments. Matrices (a) to (e) are from Matrix Market,
and (f) is obtained by finite element discretization of the three–dimensional Poisson
equation on a cube. The average number of the non-zero elements per row is shown in
the column ”Ave.”.

Name Application area Dimension Nonzeros Ave.

(a) af23560 flows over airfoils 23,560 484,256 20.55
(b) fidapm37 finite element modeling 9,152 765,944 83.69
(c) fidap011 finite element modeling 16,614 1,091,362 65.69
(d) bcsstk30 structural engineering 28,924 2,043,492 70.65
(e) s3dkq4m2 cylindrical shell 90,449 4,820,891 53.30
(f) Poisson Poisson eq. on a cube 1,000,000 26,463,592 26.46

Table 2. Execution times (in seconds) of 1000 iterations of matrix–vector products
(performance relative to CRS in parentheses). The block size for BSR is shown as
BSR rc for r × c blocks. The fastest implementation for each matrix and parallelism
are shown in bold.

# of threads 1 2 4 8 16 32
Matrix Format

(a) CRS 3.79 (1.00) 1.89 (1.00) 0.91 (1.00) 0.46 (1.00) 0.24 (1.00) 0.14 (1.00)

BSR 41 1.46 (2.59) 0.72 (2.64) 0.28 (3.22) 0.15 (3.04) 0.09 (2.64) 0.07 (2.07)

(b) CRS 2.53 (1.00) 1.33 (1.00) 0.63 (1.00) 0.32 (1.00) 0.18 (1.00) 0.10 (1.00)

BSR 22 2.24 (1.13) 1.19 (1.12) 0.57 (1.11) 0.24 (1.34) 0.14 (1.26) 0.09 (1.18)

(c) CRS 3.87 (1.00) 1.98 (1.00) 1.01 (1.00) 0.48 (1.00) 0.26 (1.00) 0.15 (1.00)

BSR 41 2.51 (1.54) 1.30 (1.52) 0.65 (1.55) 0.24 (2.04) 0.13 (1.91) 0.09 (1.63)

(d) CRS 6.81 (1.00) 3.53 (1.00) 1.88 (1.00) 0.97 (1.00) 0.46 (1.00) 0.24 (1.00)

BSR 41 4.48 (1.52) 2.34 (1.51) 1.30 (1.44) 0.61 (1.60) 0.23 (1.96) 0.14 (1.75)

(e) CRS 20.87 (1.00) 10.47 (1.00) 5.26 (1.00) 2.71 (1.00) 1.43 (1.00) 0.68 (1.00)

BSR 41 9.17 (2.28) 4.65 (2.25) 2.39 (2.20) 1.30 (2.08) 0.62 (2.29) 0.27 (2.49)

(f) CRS 149.50 (1.00) 74.96 (1.00) 37.43 (1.00) 18.76 (1.00) 9.51 (1.00) 4.97 (1.00)

BSR 31 85.60 (1.75) 43.25 (1.73) 21.53 (1.74) 10.92 (1.72) 5.63 (1.69) 4.87 (1.02)

DIA 178.50 (0.84) 89.19 (0.84) 44.34 (0.84) 16.40 (1.14) 4.72 (2.02) 2.81 (1.77)

The speed-up ratios for the parallel matrix–vector products are shown in
Table 3. The parallelization speed-ups are nearly ideal in most cases. Super linear
speed-ups (speed-up ratios larger than the number of threads) are sometimes
observed, possibly due to the improved cache hit rates because of much smaller
data size. The speed-ups for 32 threads are much less than twice those for 16
threads, which may be due to sharing the bus with the two processors on a node.
The lower speed-up ratios for 32 threads are most obvious for BSR formats,
perhaps because BSR requires a greater number of memory accesses.

DIA outperforms BSR only for matrix (f), which has a regular 27-diagonal
structure, and thus is stored very efficiently in the DIA format. However, DIA is
still slower than BSR for eight threads or less. For 16 threads, the parallelization
speed-up ratio of DIA is more than twice the number of threads, which may be
ascribed to the lower memory requirement of DIA, which is approximately half
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Table 3. Speed-up ratios for parallel matrix–vector products

# of threads 1 2 4 8 16 32
Matrix Format

(a) CRS 1.00 2.00 4.18 8.19 15.51 27.16
BSR 41 1.00 2.04 5.19 9.59 15.77 21.69

(b) CRS 1.00 1.90 3.99 7.93 14.23 24.14
BSR 22 1.00 1.88 3.91 9.42 15.90 25.18

(c) CRS 1.00 1.95 3.82 8.03 15.13 26.50
BSR 41 1.00 1.93 3.83 10.60 18.75 28.03

(d) CRS 1.00 1.93 3.63 7.00 14.91 28.07
BSR 41 1.00 1.91 3.45 7.34 19.22 32.21

(e) CRS 1.00 1.99 3.97 7.70 14.61 30.72
BSR 41 1.00 1.97 3.83 7.04 14.73 33.63

(f) CRS 1.00 1.99 3.99 7.97 15.72 30.07
BSR 31 1.00 1.98 3.97 7.84 15.20 17.58
DIA 1.00 2.00 4.03 10.88 37.84 63.51

Table 4. Execution times (in seconds) of 1000 iterations of matrix–vector products.
Results of another set of experiments for matrix (f) in BSR 31.

# of threads 1 2 4 8 16 32

One thread per node 85.60 43.25 21.53 10.92 5.63 —

Two threads per node — 73.07 36.58 18.48 9.33 4.87

All data on a single node 85.60 80.88 149.21 224.83 264.22 267.94

Table 5. Conversion times Tconv (in milliseconds with the threshold numbers of iter-
ations Nth in parentheses) for the same sets of experiments as in Table 2

# of threads 1 2 4 8 16 32
Matrix Format

(a) BSR 41 61.2 (27) 30.7 (27) 15.0 (24) 8.5 (28) 6.7 (45) 10.4 (144)

(b) BSR 22 96.9 (332) 50.8 (366) 24.9 (410) 12.4 (153) 7.7 (209) 8.5 (531)

(c) BSR 41 132.8 (98) 68.1 (100) 35.4 (99) 17.8 (73) 11.1 (92) 14.1 (251)

(d) BSR 41 247.6 (107) 132.3 (112) 69.8 (122) 35.9 (99) 20.2 (90) 22.2 (215)

(e) BSR 41 575.9 (50) 292.7 (51) 148.5 (52) 78.2 (56) 47.7 (60) 53.5 (132)

(f) BSR 31 3370.8 (53) 1720.3 (55) 1073.5 (68) 478.6 (61) 303.8 (79) 439.2 (4306)

DIA 907.4 (-31) 485.6 (-34) 270.3 (-39) 178.0 (76) 165.7 (35) 178.8 (83)

that of BSR. With 32 threads, the parallelization speed-up ratio of BSR drops,
which may be ascribed to the higher memory requirements of BSR. These results
exemplify the heavy influences of the memory architecture (cache and shared
bus) on the optimum choice of the storage format.

Table 4 shows the results of another set of experiments on the matrix (f)
in BSR 31. The first line reproduces the results in Table 2. The second line
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Table 6. Speed-up ratios for parallel conversion from CRS to target storage format

# of threads 1 2 4 8 16 32
Matrix Format

(a) BSR 41 1.00 1.99 4.07 7.21 9.11 5.90

(b) BSR 22 1.00 1.91 3.89 7.79 12.54 11.44

(c) BSR 41 1.00 1.95 3.75 7.47 11.92 9.38

(d) BSR 41 1.00 1.87 3.54 6.90 12.28 11.15

(e) BSR 41 1.00 1.97 3.88 7.37 12.08 10.76

(f) BSR 31 1.00 1.96 3.14 7.04 11.10 7.68
DIA 1.00 1.87 3.36 5.10 5.48 5.07

gives the execution times with two threads assigned to each node. Here, the
influences of the share of the front-side bus by the processors in a node on the
performance are observed, and the absolute performances are much lower than
in the previous experiments (expect for 32 threads). The speed-ups relative to
the performance with two threads are steady up to 32 threads, which confirms
that the shared bus is the reason for the lower speed-up ratio for 32 threads.
For the third line of Table 4, the data structure of BSR 31 is constructed by a
single thread, and thus all of the data are allocated to a single node. The data
for the computations on the other node are accessed via the interconnections,
and the resulting performances were poor. This confirms the importance of the
data distribution discussed in Section 2.4.

3.2 Performance of Storage Format Conversions

Assume that a matrix A is given in the CRS format (e.g. the user prefers the CRS
format for some reason) and is to be multiplied to many vectors (e.g. an iterative
linear solver is used). If a certain storage format (referred to hereinafter as the
target format) is known to attain a higher performance than CRS in matrix–
vector products for A, then it may be better to convert into the target format
before the matrix–vector multiplications.

Let Tcrs and Ttgt be the execution times of the matrix–vector product in the
CRS and target formats, respectively, and let Tconv be the execution time of
the conversion from the CRS format to the target format. Define the threshold
number of iterations Nth as Nth = �Tconv/(Tcrs−Ttgt)�. If the number of matrix–
vector multiplications is at least Nth, then it is better to use the target format;
otherwise, it is better to use CRS format without conversion.

Table 5 tabulates the conversion times Tconv (with the threshold numbers of
iterations Nth in parentheses) for the same set of matrices, storage formats, and
numbers of threads as Table 2. Note that the number of threads (if it is 16 or
less) has little effect on Nth in most cases of BSR. This is the case in which
the parallelization speed-up ratios for the matrix–vector products in CRS and in
BSR and for the conversion from CRS to BSR are similar. The speed-up ratios
of the conversion routines are shown in Table 6.
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With 32 threads, however, Tconv tends to be longer than that with 16 threads,
which can be ascribed to the share of the memory bus by the processors in a
node. In this case, a strange phenomenon occurs. For matrix (a), execution by
16 threads takes less time than execution by 32 threads if the number of matrix–
vector products is from 134 to 185, because the conversion time is shorter with
16 threads than with 32 threads. Accordingly, the threshold number of iterations
Nth for 32 threads is much larger than those for 16 threads or less. If the code
is added using 32 threads, but following the conversion routine for 16 threads,
then processors 2n and 2n + 1 (n = 0, ..., 15) become the same node. Therefore,
efficient execution is possible, because the data locality changes only slightly for
16 threads or 32 threads.

omp_set_num_threads(16);
#pragma omp parallel
cpubind(omp_get_thread_num()*2);
The Storage Format Conversion
omp_set_num_threads(32);
#pragma omp parallel
cpubind(omp_get_thread_num());

The Matrix-Vector Products

The conversion times Tconv for the DIA format are shorter than those for
BSR, perhaps because the amount of data to be stored for DIA is approximately
half that for BSR. Negative Nth means Tdia > Tcrs, thus it is better NOT to
convert the matrix into DIA format irrespective of the number of iterations.

4 Related Works

There are a variety of portable software packages that are applicable to the iter-
ative solver of sparse linear systems. SPARSKIT [3] is a toolkit for sparse matrix
computations written in Fortran. SPARSKIT provides a number of matrix stor-
age formats, each of which has a pair of converters to and from the CRS format.
Together with a rich set of matrix computation subroutines, the toolkit contains
several sequential iterative solvers implemented based on reverse communication
[7]. PETSc [8] is a C library for the numerical solution of partial differential equa-
tions and related problems, and can be used in application programs written in C,
C++, and Fortran. The library provides an extensible set of matrix storage for-
mats including various specialized formats that can be directly passed to external
libraries. PETSc includes parallel implementations of iterative solvers and precon-
ditioners based on MPI. Aztec [9] is another library of parallel iterative solvers and
preconditioners and is written in C. Aztec provides two matrix storage formats.
The library is fully parallelized using MPI and can be used in applications writ-
ten in C and Fortran. From the viewpoint of functionality, our library and all three
of the libraries mentioned above support different sets of matrix storage formats,
iterative solvers, and preconditioners. Moreover, our library is parallelized using
OpenMP and takes the cc-NUMA architecture into consideration.

The performance-enhancing techniques of sparse matrix–vector products are
reported in [10,11]. A related issue is the selection of the best storage format
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for a given matrix and machine. In order to address this problem, E. Im [12]
and Demmel et al. [13] proposed an automated empirical tuning mechanism for
sparse matrix computations that selects an appropriate matrix storage format
and solver implementation based on benchmarking data gathered in advance
and structural characteristics of non-zero elements in a sparse matrix in hand.

5 Conclusions

In the present paper, we have discussed the parallel performance of matrix-vector
product routines, which is crucial for high performance implementation of itera-
tive linear solvers, on a cc-NUMA machine SGI Altix3700. Implementations that
take into account the page allocation mechanism have attained satisfactory scal-
abilities. The memory architecture (specifically, the cache and the memory bus)
have been observed to greatly affect the performance of matrix-vector products,
and, consequently, storage formats that require more memory are influenced
more. The baseline format CRS has scaled well up to 32 threads, and the perfor-
mance of the BSR format that requires the most memory began to decrease at 32
threads, and the DIA format that requires the least memory has become faster
for 16 threads or more. In order to maximize the performance of a machine,
users must be able to choose an appropriate storage format for each matrix and
each machine, and our scalable implementations of matrix-vector products and
storage format conversions in a variety of storage formats enable such selection.

The target machine examined herein (SGI Altix3700) is a cc-NUMA machine.
We are planning to port and to evaluate our codes to other shared memory
parallel machines, including those having UMA (Uniform Memory Access) and
SDSM (Software Distributed Shared Memory) architectures. Parallelization for
distributed memory parallel machines through MPI and MPI-OpenMP hybrid
parallelization is our next goal. We will also work toward high-performance iter-
ative linear solvers using these kernel routines and effective preconditioners for
the solvers, with the goal of developing a complete sparse linear solver library
for sequential, shared memory and distributed memory parallel architectures.
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Abstract. The memory model of OpenMP has been widely misunderstood 
since the first OpenMP specification was published in 1997 (Fortran 1.0).  The 
proposed OpenMP specification (version 2.5) includes a memory model section 
to address this issue.  This section unifies and clarifies the text about the use of 
memory in all previous specifications, and relates the model to well-known 
memory consistency semantics.  In this paper, we discuss the memory model 
and show its implications for future distributed shared memory implementations 
of OpenMP. 

1   Introduction 

Prior to the OpenMP version 2.5 specification, no separate OpenMP Memory Model 
section existed in any OpenMP specification.  Previous specifications had scattered 
information about how memory behaves and how it is structured in an OpenMP pro-
gram in several sections: the parallel directive section, the flush directive section, and 
the data sharing attributes section, to name a few.  This has led to misunderstandings 
about how memory works in an OpenMP program, and how to use it. 

The most problematic directive for users is probably the flush directive.  New 
OpenMP users may wonder why it is needed, under what circumstances it must be 
used, and how to use it correctly.  Perhaps worse, the use of explicit flushes often 
confuses even experienced OpenMP programmers. 

Indeed, the SPEC OpenMP benchmark program ammp was recently found to be 
written with assumptions that violate the OpenMP version 2.0 (Fortran) [1] specifica-
tion.  The programmer apparently assumed that a full-memory flush was implied by 
acquiring and releasing an OpenMP lock.  The OpenMP Fortran 2.0 specification is 
largely silent on the issue of whether a flush is implied by a lock acquire, probably 
creating the confusion that led to the error.  One must go to the OpenMP C/C++ 2.0 
[2] specification to find language that addresses the flush operation in relation to 
OpenMP locks, and even that language is ambiguous. 
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University of California LLNL under contract W-7405-Eng-48. UCRL-ABS-210774. 
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The proposed OpenMP 2.5 specification unifies the OpenMP Fortran and C speci-
fications into a single document with a single set of rules, as much as possible.  The 
OpenMP language committee has tried to provide a coherent framework for the way 
OpenMP relates to the base languages.  One of the basic parts of this framework is the 
OpenMP memory model. 

Up to now, the lack of a clear memory model has not made much difference.  In 
general, compilers have not been very aggressive with code re-ordering optimizations 
and multiprocessors have been fairly simple in structure.  Programs that did not fol-
low the memory model would still usually work.  But optimizing compilers are get-
ting more sophisticated and aggressive.  OpenMP implementations and machine ar-
chitectures are getting more complicated all the time.  Multi-core processors, NUMA 
machines and clusters of both are becoming more prevalent, making it all the more 
important that the nature of the memory behavior of OpenMP programs be clearly 
established. 

In this paper, we describe the OpenMP memory model, how it relates to well-
known memory consistency models, and the implications the model has for writing 
parallel programs with OpenMP.  In section 2, we describe the OpenMP memory 
model, as it exists in the proposed OpenMP 2.5 specification.  In section 3, we briefly 
discuss how the memory usage was addressed in previous OpenMP specifications, 
and how this has led to programmer confusion.  In section 4, we show how the 
OpenMP memory model relates to existing memory consistency models.  Finally, 
section 5 discusses the implications of using the OpenMP memory model to address 
distributed shared memory systems for OpenMP. 

2   The OpenMP Memory Model 

OpenMP assumes that there is a place for storing and retrieving data that is available 
to all threads, called the memory.  Each thread may have a temporary view of memory 
that it can use instead of memory to store data temporarily when it need not be seen 
by other threads.  Data can move between memory and a thread's temporary view, but 
can never move between temporary views directly, without going through memory. 

Each variable used within a parallel region is either shared or private.  The variable 
names used within a parallel construct relate to the program variables visible at the 
point of the parallel directive, referred to as their "original variables".  Each shared 
variable reference inside the construct refers to the original variable of the same 
name.  For each private variable, a reference to the variable name inside the construct 
refers to a variable of the same type and size as the original variable, but private to the 
thread. That is, it is not accessible by other threads. 

There are two aspects of memory system behavior relating to shared memory par-
allel programs: coherence and consistency [3].  Coherence refers to the behavior of 
the memory system when a single memory location is accessed by multiple threads.  
Consistency refers to the ordering of accesses to different memory locations, observ-
able from various threads in the system. 
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OpenMP doesn't specify any coherence behavior of the memory system.  That is 
left to the underlying base language and computer system.  OpenMP does not guaran-
tee anything about the result of memory operations that constitute data races within a 
program.  A data race in this context is defined to be accesses to a single variable by 
at least two threads, at least one of which is a write, not separated by a synchroniza-
tion operation.  OpenMP does guarantee certain consistency behavior, however.  That 
behavior is based on the OpenMP flush operation. 

The OpenMP flush operation is applied to a set of variables called the flush set.  
Memory operations for variables in the flush set that precede the flush in program 
execution order must be firmly lodged in memory and available to all threads before 
the flush completes, and memory operations for variables in the flush set, that follow 
a flush in program order cannot start until the flush completes.  A flush also causes 
any values of the flush set variables that were captured in the temporary view, to be 
discarded, so that later reads for those variables will come directly from memory. 

A flush without a list of variable names flushes all variables visible at that point 
in the program.  A flush with a list flushes only the variables in the list.   

The OpenMP flush operation is the only way in an OpenMP program, to guarantee 
that a value will move between two threads.  In order to move a value from one thread 
to a second thread, OpenMP requires these four actions in exactly the following order: 

1. the first thread writes the value to the shared variable,  
2. the first thread flushes the variable.   
3. the second thread flushes the variable and  
4. the second thread reads the variable. 

 

 
1:   A = 1 
 
. . .  
 
2:   Flush(A) 

 

Fig. 1. A write to shared variable A may complete as soon as point 1, and as late as point 2 

The flush operation and the temporary view allow OpenMP implementations to op-
timize reads and writes of shared variables.  For example, consider the program frag-
ment in Figure 1.  The write to variable A may complete as soon as point 1 in the 
figure.  However, the OpenMP implementation is allowed to execute the computation 
denoted as “…” in the figure, before the write to A completes.  The write need not 
complete until point 2, when it must be firmly lodged in memory and available to all 
other threads.  If an OpenMP implementation uses a temporary view, then a read of A 
during the “…” computation in Figure 1 can be satisfied from the temporary view, 
instead of going all the way to memory for the value.  So, flush and the temporary 
view together allow an implementation to hide both write and read latency.   
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A flush of all visible variables is implied 1) in a barrier region, 2) at entry and exit 
from parallel, critical and ordered regions, 3) at entry and exit from combined parallel 
work-sharing regions, and 4) during lock API routines.  The flushes associated with 
the lock routines were specifically added in the OpenMP 2.5 specification, a distinct 
change to both 2.0 specifications, as discussed in the following section. A flush with a 
list is implied at entry to and exit from atomic regions, where the list contains the 
object being updated.   

The C and C++ languages include the volatile qualifier, which provides a con-
sistency mechanism for C and C++ that is related to the OpenMP consistency mecha-
nism.  When a variable is qualified with volatile, an OpenMP program must be-
have as if a flush operation with that variable as the flush set were inserted in the 
program.  When a read is done for the variable, the program must behave as if a flush 
were inserted in the program at the sequence point prior to the read.  When a write is 
done for the variable, the program must behave as if a flush were inserted in the pro-
gram at the sequence point after the write.   

Another aspect of the memory model is the accessibility of various memory loca-
tions.  OpenMP has three types of accessibility: shared, private and threadprivate.  
Shared variables are accessible by all threads of a thread team and any of their de-
scendant threads in nested parallel regions.   

Access to private variables is restricted.  If a private variable X is created for one 
thread upon entry to a parallel region, the sibling threads in the same team, and their 
descendant threads, must not access it.  However, if the thread for which X was cre-
ated encounters a new parallel directive (becoming the master thread for the inner 
team), it is permissible for the descendant threads in the inner team to access X, either 
directly as a shared variable, or through a pointer.  The difference between access by 
sibling threads and access by the descendant threads is that the variable X is guaran-
teed to be still available to descendant threads, while it might be popped off the stack 
before siblings can access it.  For a threadprivate variable, only the thread to which it 
is private may access it, regardless of nested parallelism. 

#pragma omp parallel private(x) shared(p0,p1) 
Thread 0                                                               Thread 1 

x = …;                                                                   x = …; 
p0 = &x;                                                                p1 = &x; 
/* references in the following line are not allowed: */ 
…*p1 …                                                               … *p0 … 

#pragma omp parallel shared(x) 
Thread 0                  Thread 1                        Thread 0                          Thread 1 
… x …                      … x …                             … x …                             … x … 
…*p0 …                   … *p0 …                         … *p1 …                         … *p1 … 

/* the following are not allowed:  */ 
… *p1 …                  … *p1 …                         … *p0 …                         … *p0 …  

Fig. 2. Access to a private variable by name or through a pointer is allowed only on the thread 
to which the variable is private, and its descendant threads   
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3   Memory Usage Descriptions in Previous Specifications 

OpenMP specifications prior to OpenMP 2.5 barely addressed the OpenMP memory 
model.  In the 2.0 C/C++ spec, the memory model was discussed in a paragraph in the 
execution model section, and in some text in the description of the flush directive.  
The 2.0 Fortran spec includes similar text in the description of the flush directive.  It 
has no equivalent paragraph in the execution model section, although a paragraph in 
the section on the shared clause serves this purpose.  The "data sharing attribute 
clauses" section in the C/C++ 2.0 spec and the "data scope attribute clauses" section 
of Fortran 2.0 describe the affects of the shared and private clauses. 

The scattered text of the 2.0 specifications collectively gives an impression of 
memory behavior without being comprehensive.  Nowhere in the 2.0 or earlier specs 
was there a mention of a temporary view of memory, but processor registers were 
mentioned.  The proposed 2.5 specification has made this temporary view more gen-
eral, which allows other forms of temporary memory. 

Another issue related to the memory model is whether flushes are implied by the 
OpenMP lock API routines.  The Fortran 2.0 spec is silent on the issue.  However, 
those routines are not mentioned in the list of places where a flush is implied, so it is 
clear that the intention was that the lock routines do not imply flushes.  The C/C++ 
2.0 spec is likewise silent, but says "There may be a need for flush directives to make 
the values of other variables consistent." 

The lack of a clear statement in previous specs with respect to flushes for the lock 
API routines has caused significant confusion.  A very common mistake made by 
programmers is to forget to insert appropriate flushes when locks are being used. 

  Thread 0                                              Thread 1 
omp_set_lock(lockvar);
count++;
omp_unset_lock(lockvar);
    omp_set_lock(lockvar); 
    count++; 
    omp_unset_lock(lockvar);

 

Fig. 3. Threads cooperating through locks to increment a shared variable count 

Consider the example in Figure 3.  Most programs are written in this fashion, but 
without an implied flush in the omp_set_lock or omp_unset_lock routines, 
this program may not work as expected.  This is because OpenMP semantics do not 
require a read of count from memory before the increment operation, or a flush of 
count to memory after it.  Both threads are allowed to operate only on their tempo-
rary view of count.  Even worse, the compiler might very well in-line the calls and 
reorder the update of count such that it is no longer in the locked region since there 
is no dependence between the calls and the variable count. 
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  Thread 0                                              Thread 1 
omp_set_lock(lockvar);
#pragma omp flush(count) 
count++;
#pragma omp flush(count) 
omp_unset_lock(lockvar)
    omp_set_lock(lockvar); 
                       #pragma omp flush(count) 
    count++; 
                       #pragma omp flush(count) 
    omp_unset_lock(lockvar);

 

Fig. 4. A failed attempt to correctly use variables inside a locked region 

  Thread 0                                              Thread 1 
omp_set_lock(lockvar);
#pragma omp flush(count,lockvar) 
count++;
#pragma omp flush(count,lockvar) 
omp_unset_lock(lockvar);

    omp_set_lock(lockvar); 
                       #pragma omp flush(count,lockvar) 
    count++; 
                       #pragma omp flush(count,lockvar) 
    omp_unset_lock(lockvar);

 

Fig. 5. A correct way to write a locked update according to OpenMP 2.0 

Including flushes of count inside the locked region, as in Figure 4, ensures that 
the most recent value for count is read, and that memory is updated with the write. 
However, it still does not address the compiler reordering problem.  Essentially, these 
flushes on count do not ensure any ordering with operations on lockvar. The 
compiler is still free to reorder the call to omp_set_lock with respect to the flushes 
and the increment of count because they don’t refer to the same variables. 

The programmer would need to write the code as in Figure 5 to both prevent reor-
dering with respect to the lock calls, and to keep the global value of count up to 
date. That is, the programmer must ensure ordering between the two variables by 
including both in the flush list. 

A no-list flush is implicit for the lock API routines in the proposed 2.5 spec. Thus, 
code written in the natural manner of Figure 3 will work as most programmers expect. 
As mentioned above, the SPEC OpenMP code ammp was written in this manner (see 
Figure 6). 
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#ifdef _OPENMP 
      omp_set_lock(&(a1->lock)); 
#endif
      a1fx = a1->fx; 
      a1fy = a1->fy; 
      a1fz = a1->fz; 
      a1->fx = 0; 
      a1->fy = 0; 
      a1->fz = 0; 
      xt = a1->dx*lambda +a1->x - a1->px; 
      yt = a1->dy*lambda +a1->y - a1->py; 
      zt = a1->dz*lambda +a1->z - a1->pz; 
#ifdef _OPENMP 
      omp_unset_lock(&(a1->lock)); 
#endif

 

Fig. 6. SPEC OpenMP benchmark ammp source code that demonstrates failure to use flush 
directives with OpenMP locks (incorrect prior to specification version 2.5) 

4   The OpenMP Memory Consistency Model 

OpenMP provides a relaxed consistency model that is similar to weak ordering [7][8].  
Strong consistency models enforce program order, an ordering constraint that requires 
memory operations to appear to execute in the sequential order specified by the pro-
gram. For example, a memory model is sequentially consistent if “the result of any 
execution is the same as if the operations of all the processors were executed in some 
sequential order, and the operations of each individual processor appear in this se-
quence in the order specified by its program” [3]. The OpenMP memory model spe-
cifically allows the reordering of accesses within a thread to different variables unless 
they are separated by a flush that includes the variables.  Intuitively, the temporary 
view is not always required to be consistent with memory.  In fact, the temporary 
views of the threads can diverge during the execution of a parallel region and flushes 
(both implicit and explicit) enforce consistency between temporary views. 

Memory consistency models for parallel machines are based on the ordering en-
forced for memory accesses to different locations by a single processor.  We denote 
memory access ordering constraints by using the “→” (ordering) notation applied to 
reads (R), writes (W), and synchronizations (S).  For instance, for reads preceding 
writes in program execution order, constraining them to maintain that order would be 
denoted R →W.  Sequential consistency requires all memory accesses to complete in 
the same order as they occur in program execution, meaning the orderings R→R, 
R→W, W→R, and W→W.  It also requires the effect of the accesses by all threads to 
be equivalent to performing them in some total (i.e., sequential) order. 

Sequential consistency is often considered difficult to maintain in modern multiproc-
essors. The program order restriction prevents many important compiler optimizations 
that reorder program statements [4].  Frequently, sequentially consistent multiprocessors 
do not complete a write until its effect is available to all other processors. 

Relaxed consistency models remove the ordering guarantees for certain reads and 
writes, but typically retain them around synchronizations [4][5][6].  There are many 
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types of relaxed consistency.  The OpenMP memory model is most closely related to 
weak ordering.  Weak ordering prohibits overlapping a synchronization operation 
with any other shared memory operations of the same thread, while synchronization 
operations must be sequentially consistent with other synchronization operations.  
Thus, the set of orderings guaranteed by weak ordering is the following:  {S→W, 
S→R, R→S, W→S, S→S}. 

Relaxed consistency models have been successful because most memory opera-
tions in real parallel programs can proceed correctly without waiting for previous 
operations to complete.  Successful parallel programs arrange for a huge percentage 
of the work to be done independently by the processors, with only a tiny fraction of 
the memory accesses being due to synchronization.  Thus, relaxed consistency seman-
tics allows the overlapping of computation with memory access time, effectively 
hiding memory latency during program execution. 

OpenMP makes no guarantees about the ordering of operations during a parallel 
region, except around flush operations.  Flush operations are implied by all synchro-
nization operations in OpenMP.  So, an optimizing compiler can reorder operations 
inside a parallel region, but cannot move them into or out of a parallel region, or 
around synchronization operations.  The flush operations implied by the synchroniza-
tion operations form memory fences.  Thus, the OpenMP memory model relaxes the 
order of memory accesses except around synchronization operations, which is essen-
tially the definition of weak ordering. 

The programmer can use explicit flushes to insert memory fences in the code that 
are not associated with synchronization operations.  Thus, the OpenMP memory con-
sistency model is a variant of weak ordering. 

The OpenMP memory model further alters weak ordering by allowing flushes to 
apply only to a subset of a program’s memory locations.  The atomic construct in-
cludes an implied flush with a flush set consisting of only the object being updated.  
An optimizing compiler can reorder accesses to items not in the flush set with respect 
to the flush.  Further, no ordering restrictions between flushes with empty flush set 
intersections are implied.  In general, using a flush set implies that memory access 
ordering is only required for that set.  The correct use of flush sets can be very com-
plicated and we urge OpenMP users to avoid them in general. 

The ordering constraint of OpenMP flushes is modeled on sequential consistency, 
similar to the restrictions on synchronization operations in weak ordering and lazy 
release consistency [7][8][9]. Specifically, the OpenMP memory model guarantees: 

1. If the intersection of the flush-sets of two flushes performed by two different 
threads is non-empty, then the two flushes must be completed as if in some 
sequential order, seen by all threads; 

2. If the intersection of the flush-sets of two flushes performed by one thread is 
non-empty, then the two flushes must appear to be completed in that thread’s 
program order; 

3. If the intersection of the flush-sets of two flushes is empty, then the threads 
can observe these flushes in any order. 

If an OpenMP program uses synchronization constructs and flushes to avoid data 
races, then it will execute as if the memory was sequentially consistent. 
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5   Future Implications of the OpenMP Memory Model 

Messaging latency to remote nodes in a modern computational cluster is hundreds or 
thousands of times higher than latency to memory for modern processors (see Figure 
7). This latency makes the traditional method of enforcing sequential consistency 
(requiring a thread that issues a write of a shared variable to wait for the value to be 
visible to all threads) prohibitively expensive for OpenMP clusters.  Fortunately, the 
OpenMP memory consistency model allows latency hiding of memory operations.  
This freedom is useful for a hardware shared memory (HSM) OpenMP implementa-
tion, but it is essential for a distributed shared memory (DSM) version of OpenMP, 
which simply has more memory latency to hide. 

latency to L1: 1-2 cycles 
latency to L2: 5 - 7 cycles 
latency to L3: 12 - 21 cycles 
latency to memory: 180 – 225 cycles 
Gigabit Ethernet - latency to remote 
node: ~28000 cycles 
Infiniband - latency to remote node: 
~23000 cycles 

Fig. 7. Itanium® latency to caches compared with latency to remote nodes 

So, we claim that the relaxed memory model of OpenMP, with its ability to do 
cheap reads and hide the latency of writes, enables DSM OpenMP implementations.  
Without the ability to hide a cluster’s enormous memory latency, DSM OpenMP 
implementations might only be useful for embarrassingly-parallel applications. 

Even taking advantage of latency hiding, a DSM OpenMP implementation may be 
useful for only certain types of applications.  In an Intel® prototype DSM OpenMP 
system, called Cluster OMP, we have found that codes in which certain characteristics 
dominate are very difficult to make perform well, while codes with other dominant 
characteristics can have good performance. 

Codes that use flushes frequently tend to perform poorly.  This means that codes 
that are dominated by fine-grained locking, or codes using a large number of parallel 
regions with small amounts of computation inside, typically have poor performance.  
Frequent flushes emphasize the huge latency between nodes on a cluster, since they 
reduce the frequency of operations that can be overlapped. 

Codes dominated by poor data locality are also unlikely to perform well with DSM 
OpenMP implementations.  Poor data locality for the Cluster OMP system means that 
memory pages are being touched by multiple threads.  This implies that more data will 
be moving between threads, over the cluster interconnect.  This data movement taxes 
the cluster interconnection network more than for a code with good data locality.  The 
more data being moved, the more messaging overheads will hurt performance. 

On the other hand, in experiments with the Cluster OMP system, we have observed 
that certain applications achieved speedups that approach the speedups obtained with 
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an HSM system (see Figure 8).  We have seen that computation with good data local-
ity and little synchronization dominates the highest performing codes. 

The applications we tested were gathered from Intel® customers who were partici-
pating in a technology preview of the prototype system.  We can’t reveal details of the 
codes, but the application types were: 

1. a particle simulation code 
2. a magneto-hydro-dynamics code 
3. a computational fluid dynamics code 
4. a structural simulation code 
5. a graph processing code 
6. a linear solver code 
7. an x-ray crystallography code 
Figure 8 shows the performance results we obtained for these codes.  The speedup 

is shown for both the OpenMP and Cluster OMP versions of each code.  In addition, 
the ratio of those speedups is shown, in the form of the Cluster OMP speedup as a 
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Fig. 8. Raw speedup of Cluster OMP on a cluster and OpenMP on a hardware shared memory 
machine, plus speedup percentage of Cluster OMP versus OpenMP for a set of codes 

percentage of the OpenMP speedup.  For these seven codes, five of them achieved a 
Cluster OMP speedup that was more than 70% of the performance of the OpenMP 
performance. 

We have found that the applications for which Cluster OMP works well are usually 
those that have a large amount of read-only shared data and a small amount of read-
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write shared data.  If, in addition, the data access patterns are irregular, then the appli-
cations would be more difficult to write using a direct messaging API, such as MPI. 

These characteristics are typical of an emerging class of applications, known as 
RMS workloads (Recognition, Mining, and Synthesis) [10].  These workloads involve 
applications that typically use massive amounts of input data, such as pattern recogni-
tion, parallel search, data mining, visualization, and synthesis.  We speculate that a 
DSM implementation of OpenMP may be useful for applications of this type. 

6   Conclusion 

The proposed OpenMP 2.5 spec unifies and clarifies the OpenMP memory model.  
The refined memory model description alleviates some of the confusion over the use 
of the flush directive and simplifies the correct use of OpenMP.  Further, the pro-
posed OpenMP 2.5 spec has added an implicit no-list flush to the lock API routines, 
making their use more intuitive. 

OpenMP enforces a variant of weak ordering, as clearly demonstrated in the mem-
ory model description.  This has performance implications for programs run on HSM 
systems, because it allows the compiler to apply optimizations and reorder code in a 
program.  It also has important implications for reasonable performance of OpenMP 
on future DSM systems. 
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Abstract. Recent computer architectures provide new kinds of on-chip parallel-
ism, including support for multithreading. This trend toward hardware support 
for multithreading is expected to continue for PC, workstation and high-end ar-
chitectures. Given the need to find sequences of independent instructions, and 
the difficulty of achieving this via compiler technology alone, OpenMP could 
become an excellent means for application developers to describe the parallel-
ism inherent in applications for such architectures. In this paper, we report on 
several experiments designed to increase our understanding of the behavior of 
current OpenMP on such architectures. We have tested two different systems: a 
Sun Fire V490 with Chip Multiprocessor technology and a Dell Precision 450 
workstation with Simultaneous MultiThreading technology. OpenMP perform-
ance is studied using the EPCC Microbenchmark suite, subsets of the bench-
marks in SPEC OMPM2001 and the NAS parallel benchmark 3.0 suites.  

1   Introduction 

OpenMP has been successfully deployed on small-to-medium shared memory sys-
tems and large-scale DSMs, and is evolving over time. The OpenMP specification 
version 2.5 public draft [18] was released by the Architecture Review Board (ARB) in 
November 2004. It merged C/C++ and FORTRAN and clarified some concepts, espe-
cially with regard to the memory model. OpenMP 3.0 is expected to follow, and to 
consider a variety of new features. Among the many open issues are some tough chal-
lenges including determining how best to extend OpenMP to SMP clusters, how best 
to support new architectures, making hierarchical parallelism more powerful, and 
making it easier to write scalable code. In this paper, we explore some aspects of 
current OpenMP performance on two recent platforms: a Sun Fire V490 [24] with 
Chip Multiprocessor capability and a Dell Precision 450 workstation with Simultane-
ous Multithreading technology. 

As computer components decrease in size, architects have begun to consider dif-
ferent strategies for exploiting the space on a chip. A recent trend is to implement 
Chip MultiThreading (CMT) in the hardware. This term refers to the simultaneous 
execution of two or more threads within one chip. It may be implemented through 
several physical processor cores in one chip (a Chip Multiprocessor, CMP) [17], a 
single core processor with replication of features to maintain the state of multiple 
threads simultaneously (Simultaneous multithreading, SMT) [26] or the combination 
of CMP and SMT [10]. OpenMP support for these new microarchitectures needs to be 
evaluated and possibly enhanced.   
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In this paper, we report on the behavior of some OpenMP benchmarks on each of 
the two systems mentioned above: the Sun Fire V490 exploiting CMP technology and 
the Dell Precision 450 workstation with SMT technology. The remainder of the paper 
is organized as follows. In Section 2, we discuss the architectures that are used in this 
experiment, and comment on their implications for OpenMP. In Section 3, we then 
describe the methodology of how to run the benchmarks, followed by our results and 
a discussion of them in Section 4 and 5. Finally, the paper presents related work and 
reaches some conclusions in Section 6 and 7. 

2    Chip MultiThreading and Its Implications for OpenMP 

CMT is emerging as the dominant trend in general-purpose processor design [23]. In 
a CMT processor, some chip-level resources are shared and further software ap-
proaches need to be explored to maximize overall performance. CMT may be imple-
mented through Chip Multiprocessor (CMP) [14], Simultaneous Multithreading 
(SMT) [11] or the combination of CMP and SMT [10]. In this section, we give a brief 
overview of CMP and SMT first, and discuss their implications for OpenMP. 

Chip Multiprocessing enables multiple threads to be executed on several physical 
cores within one chip. Each processor core has its own resources as well as shared 
ones. The extent of sharing varies from one implementation to another. For example, 
the UltraSPARC IV [27]’s two cores are almost completely independent except for 
the shared off-chip data paths while the Power4 [14] processor has two cores with 
shared L2 cache to facilitate fast inter-chip communication between threads.   

Simultaneous MultiThreading combines hardware multithreading with superscalar 
processor technology to allow several independent threads to issue instructions to a 
superscalar’s multiple function units each cycle [26]. SMT permits all thread contexts 
to simultaneously compete for and share processor resources; it uses multiple threads 
to compensate for low single-thread instruction-level parallelism.  

CMP and SMT are two closely related technologies. They can be simply seen as 
two different extents of sharing of on-chip resources among threads. However, they 
are also significantly different because the various types of resource sharing have 
different implications for application performance, especially when the shared pipe-
lines on SMT are compared with the private pipelines on CMP. Moreover, new multi-
threaded chips such as Power5 [10], tend to integrate both CMP and SMT into one 
processor. This kind of integration brings even deeper memory hierarchy and more 
complex relationship between threads. 

The CMP and SMT technology introduces new opportunities and challenges for 
OpenMP. The current flat view of OpenMP threads is not able to reflect these new 
features and thus may need to be revisited to ensure continuing applicability in the 
future. Previous research on SMT [21, 26, 28, 29] has developed some strategies for 
efficient sharing of key resources, especially caches. In OpenMP, we may need to 
identify sibling1 threads to perform the work cooperatively with proper scheduling 
and load balancing mechanisms. We need to perform research to explore optimiza-

                                                           
1 We use the term “sibling” to refer to cores in the same CMP, and to logical processors in the 

same physical processor for SMT. 
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tions to avoid inter-thread competition for shared resources, and to select the best 
number of cores from a group of multiple cores. A CMP system with only one multi-
core processor is really a slim implementation of SMP on a chip. While chip level 
integration has the benefits of fast synchronization and lower latency communication 
among threads, the shared resources may lead to conflicts between threads and unsat-
isfactory performance. Secondly, for SMPs composed of several multicore processor 
systems, the relationship between processing units is no longer strictly symmetric. For 
example, cores within one processor chip may have faster data exchange speed than 
cores crossing processor boundaries. Multithreading based on those cores has to take 
this asymmetry into account in order to achieve optimal performance. Altogether, the 
integration, resource sharing and hierarchical layout in SMP systems with CMT bring 
additional complexity to the tasks of data set partition, thread scheduling, work load 
distribution, and cache/memory locality maintenance. 

3   Methodology 

We have chosen a Sun Fire V490 with UltraSPARC IV [27] processors and a Dell 
Precision 450 workstation with Xeon [11] processors as test beds to explore the im-
pact of CMT technology. In this section, we describe these two machines, bench-
marks that we ran and how to execute the benchmarks. We attempt to understand the 
scalability of OpenMP applications on the new platforms, and the performance differ-
ence between SMPs with CMT and traditional SMPs via the designed experiments. 

3.1   Sun Fire V490 with UltraSPARC IV and Dell Precision 450 with Xeon 

Sun UltraSPARC IV was derived from earlier uniprocessor designs (UltraSPARC III) 
and the two cores do not share any resources, except for the off-chip data paths. The 
UltraSPARC IV processor is able to execute dual threads based on two 14-stage, 4-
way superscalar UltraSPARC III [8] pipelines of two individual cores. Each core has 
its own private L1 cache and exclusive access to half of an off-chip 16MB L2 cache. 
The L1 cache has 64KB for data and 32K for instructions. L2 cache tags and a mem-
ory controller are integrated into the chip for faster access.  

The Sun Fire V490 server for our experiments has four 1.05 GHz UltraSPARC IV 
processors and 32 GB main memory. The basic building block is a dual CPU/Memory 
module with two UltraSPARC IV cores, an external L2 cache and a 16 GB inter-
leaved main memory. The Sun FireplaneTM Interconnect is used to connect processors 
to Memory and I/O devices. It is based on a 4-port crossbar switch with a 288-bit 
(256-bit data, 32-bit Error-Correcting Code) bus and clock rate of 150 MHz. The 
maximum transfer rate is thus 4.8 GB/sec. The Sun Fire V490 is loaded with the So-
laris 10 operating system [22] and Sun Studio 10 [25] integrated development envi-
ronment which support OpenMP 2.0 APIs for C/C++ and FORTRAN 95 programs. 
Solaris 10 allows superusers to enable or disable individual processor cores via its 
processor administration tool. An environment variable SUNW_OMP_PROBIND is 
available that lets users bind OpenMP threads to processors. More CMP-specific 
features are described in [15].  
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Xeon processors have Simultaneous MultiThreading (SMT) technology, which is 
called HyperThreading [11]. HyperThreading makes a single physical processor ap-
pear as two logical processors; most physical execution resources including all 3 
levels of caches, execution units, branch predictors, control logic and buses are shared 
between the two logical processors, whereas state resources such as general-purpose 
registers are duplicated to permit concurrent execution of two threads of control. 
Since the vast majority of micro-architecture resources are shared, the additional 
hardware consumes less than 5% of the die area.  

The Dell Precision 450 workstation, on which we carry out the experiments, has 
dual Xeon 2.4 GHZ CPUs with 512K L2 cache, 1.0GB memory and HyperThreading 
technology. The system runs Linux with kernel 2.6.3 SMP. The Omni compiler [19] 
is installed to support OpenMP applications and GCC 3.3.4 acts as a backend com-
piler. Linux Kernel 2.6.3 SMP [30] in our 2-way Dell Precision workstation has a 
scheduler which is aware of HyperThreading. This scheduler can recognize that two 
logical processors belong to the same physical processor, thus maintaining the load 
balance per physical CPU, not per logical CPU. We confirmed this via simple ex-
periments that showed that two threads were mostly allocated to two different physi-
cal processors unless there was a third thread or process involved. 

3.2   Experiments 

Since it was not clear whether the Solaris 10 on our Sun Fire V490 with 4 dual-core 
processors is aware of the asymmetry among underlying logical processors, we used 
the Sun Performance Analyzer [25] to profile a simple OpenMP Jacobi code running 
with 2, 3, and 4 threads. We set the result timelines to display data per CPU instead of 
per thread in Analyzer, and found that Solaris 10 is indeed aware of the differences in 
processors of a multicore platform and tries to avoid scheduling threads to sibling 
cores. Therefore we can roughly assume the machine acts like a traditional SMP for 
OpenMP applications with only 4 or less active threads. For applications using 5 or 
more threads, there must be sibling cores working at the same time. As a result, any 
irregular performance change from 4 to 5 threads might be related to the deployment 
of sibling cores.  

The EPCC Microbenchmark [4] Suite, SPEC OMPM2001 [2], and NAS parallel 
benchmark (NPB) 3.0 [9] were chosen to discover the impact of CMT technology on 
OpenMP applications. The EPCC microbenchmark is a popular program to test the 
overhead of OpenMP directives on a specific machine while the SPEC OMPM2001 
and NAS OpenMP benchmarks are used as representative codes to help us understand 
the likely performance of real OpenMP applications on SMP systems with CMT. 

For experiments running on the Sun Fire V490 machine, we compiled all the se-
lected benchmarks using the Sun Studio 10 compiler suite with the generic compila-
tion option “-fast -xopenmp” and ran them from 1 to 8 threads in multi-user mode. 
This round of experiments gave us a first sense of the OpenMP behavior on the CMP 
platform and exposed problematic benchmarks. After that, we ran the problematic 
benchmarks using 2 threads when only 2 cores were enabled: the two cores were 
either from the same CMP or from different processors (an approximate traditional 
SMP). For both cases, Sun performance tools were used to collect basic performance 
metrics as well as related hardware counter information in order to find the reasons 
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for the performance difference between a CMP SMP and a traditional SMP. The ex-
periments on the Dell Precision workstation were designed in the same fashion when-
ever possible. For example, we measured the performance of the EPCC microbench-
marks using 2 logical processors of the same physical processor and on 2 physical 
processors with HyperThreading disabled. This way, we can understand the influence 
of HyperThreading better.  

4   Results and Analysis 

This section illustrates the results of the experiments on the two machines using the 
selected benchmarks, and our analysis. Some major performance problems are ex-
plained with the help of performance tools. We are especially interested in the effects 
of the sibling cores and sibling processors. In other words, particular attention is paid 
to performance gaps when the number of threads changes from 4 to 5 on the Sun Fire 
V490 and from 2 to 3 on the Dell Precision 450.  

4.1   The EPCC Microbenchmark Suite 

4.1.1   Sun Fire V490 
Fig. 1 and 22 shows the results of the EPCC microbenchmark on the Sun Fire V490. 
Most OpenMP directives have higher overhead than on the Sun HPC 3500 [4], a tradi-
tional SMP machine, since the default behavior of idle threads has changed from SPIN to 
SLEEP. PARALLEL, PARALLEL FOR and REDUCTION have similar overhead on 
the Sun Fire V490. For mutual exclusion synchronization results shown in Fig. 2, LOCK 
and CRITICAL show similar overhead and scale well. The ORDERED directive has a 
high cost when the full eight threads are used, although it scales as well as LOCK and 
CRITICAL when less than eight threads are involved. The exception of ORDERED may 
come from hardware, OpenMP compiler implementation, or scheduler in Solaris 10. The 
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Fig. 1. Synchronization overhead on Sun 
Fire V490 

Fig. 2. Mutual exclusion + ORDERED 
overhead on  Fire 490 

    

                                                           
2 We display the overhead of ORDERED and mutual exclusive directives in Fig. 2 as they have 

the same order of magnitude overhead. 



 Evaluating OpenMP on Chip MultiThreading Platforms 183 

ATOMIC directive is noticeably cheaper than LOCK and CRITICAL when the number 
of threads is up to five, however, it is more expensive than the other two if we use more 
than five threads. We checked the corresponding assembly code of an ATOMIC con-
struct (see Table 1), and found that the Sun Studio 10 compiler uses runtime library calls 
__mt_b_atomic_ and __mt_e_atomic_ to start and finish an ATOMIC operation, rather 
than a single hardware primitive. The Analyzer indicated that the execution time of those 
two calls is sensitive to the physical layout of processor cores: ATOMIC does not have 
good performance if both sibling cores are involved. 

Table 1. An OpenMP source and the corresponding assembly code segment for an ATOMIC 
construct 

An OpenMP code segment The corresponding assembly code for 
the ATOMIC construct 

… 
float aaaa=0; 
#pragma omp parallel private(j) 
    { 
      for (j=0; j<innerreps/nthreads; 
j++){ 
#pragma omp atomic 
        aaaa += 1; 
      } 
    }  …. 

call    __mt_b_atomic_  ! params = ! 
Result = 
nop 
ld      [%sp+92],%f2 
add     %l4,1,%l4    
ld      [%l5],%f0 
fadds   %f2,%f0,%f0 
call    __mt_e_atomic_  ! params 
=      ! Result = 
… 

  

We show OpenMP loop scheduling results on the Sun Fire V490 in Fig. 3. Block 
cyclic scheduling (STATIC, n) and block scheduling (STATIC) have similar per-
formance when the chunk size is not too small. The cost of GUIDED decreases no-
ticeably when the chunk size is incremented up to 1024.  

Altogether, the synchronization overhead for OpenMP directives does not show 
sensitivity to the change from 4 to 5 threads. We further designed some experiments 
to closely examine the effect of different combination of cores. We compare the 
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Fig. 3. Scheduling overhead on Sun Fire V490 Fig. 4. Synchronization overhead ratio: CMP/ 
traditional SMP   
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benchmark performance on two sibling cores and non-sibling cores (in fact, the for-
mer reflects the effects of CMP and the latter the effects of the traditional SMP), and 
on four cores from two processors and from four different processors, respectively. In 
order to ensure the desired core/processor layout, we take advantage of the prsadm 
utility from Sun Solaris 10 to turn off the cores that we will not use. Fig 4 shows the 
overhead ratio for OpenMP directives on cores belonging to the same processor(s) 
and different processor(s). OpenMP directives on CMP take slightly less time than on 
a traditional SMP except for three mutual exclusion directives: CRITICAL, LOCK 
and ATOMIC. The overall overhead difference tends to be smaller (close to ratio of 
1) when more threads are used, except for the ATOMIC directive.  

Therefore, we may conclude that sibling cores do not bring significantly faster 
synchronization or fewer overhead for OpenMP constructs on the Sun Fire V490 
machine. This is because the sibling cores in the UltraSPARC IV do not share L1 
and/or L2 cache to facilitate faster communications.  

 4.1.2   Dell Precision 450 
We depict the results obtained by using the EPCC microbenchmarks to measure 
OpenMP synchronization overhead on the Dell Precision 450 in Fig. 5 and Fig. 6, and 

 
 
 
 

 
 
 
 
 
 
 

Fig. 5. Synchronization overhead on Dell 
Precision 450 

Fig. 6. Mutual exclusion + ORDERED over-
head on Dell Precision 450 
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Fig. 7. Scheduling overhead on Dell Precision 
450 

Fig. 8. Synchronization overhead ratio: 
SMT vs. traditional SMP  
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the results for OpenMP scheduling overhead in Fig. 7. Overall, the results are similar 
to those on a traditional SMP system. In Fig. 8, we display the overhead ratio between 
the two sibling processors and two physical processors. Only the overhead of 
ATOMIC is smaller in the case of sibling processors. The OpenMP synchronization 
directives are mostly implemented using spin-wait, which leads to more competition 
for shared resources on Xeon systems. 

4.2   SPEC OMPM2001 and NAS NPB 3.0 

4.2.1   Sun Fire V490 
We show the speedup of a subset from SPEC OMPM2001 and NPB 3.0 with class B 
dataset on the Fire V490 machine in Fig. 9 and Fig. 10 separately. In Fig. 9, 
WUPWISE, EQUAKE, and APSI show good scalability on Sun Fire V490, with only 
slight changes after 4 threads. AMMP scales as poorly as described on traditional 
SMPs [20]. The APPLU demonstrates super-linear speedup for no less than 6 threads, 
which start to provide enough L2 caches to accommodate its critical dataset as men-
tioned in [20]. As can be seen in Fig. 10, most NAS OpenMP benchmarks show a 
more consistent behavior during the change from 4 to 5 threads than those from 
SPEC. Only EP achieves linear speedup because its dataset is much smaller than the 
size of L2 cache. 
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Fig. 9. Speedup of SPEC OMPM2001 on Sun 
Fire V490 

Fig. 10. Speed up of NAS NPB 3.0 on Sun 
Fire V490 

Several benchmarks do not scale very well on this platform, particularly SWIM 
from SPEC and FT from NPB 3.0. We profiled SWIM and FT using 2 threads on 
sibling and non-sibling cores, and the profiling results confirmed the negative impact 
of multicores, as sibling cores did cause longer L2 stalls in the major loops. Both 
SWIM and FT are memory-intensive so that they cannot benefit from the multicore 
architecture. For the medium dataset, the major loops of SWIM perform computations 
on fourteen arrays, each of which contains 3802 * 3802 double precision floating 
point numbers; hence the total memory requirement is 38022*8*14=1.51G bytes. 
Similarly, the FT benchmark with class B dataset also requires over 1 GB memory 
during its execution. Moreover, non-contiguous memory loads and stores of FT’s 
major function cause high cache miss rates and competition for the shared data path 
of the sibling cores. Therefore, performance degradation occurs when the number of 
involved threads is increased from 4 to 5.  
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4.2.2   Dell Precision 450 
We tested a subset of the SPEC OMPM2001 and NAS NPB 3.0 benchmarks on our 
dual-Xeon Linux workstation. Results are given in Fig. 11 and Fig. 12 respectively. 
EQUAKE from SPEC is a memory-intensive application in which more SMT threads 
lead to performance degradation due to the memory competition. The Xeon’s halved 
memory bandwidth does not fulfill the demands of more threads [6]. We also ob-
served that MGRID did not have a speedup with 2 threads. The reason is that the OS 
schedules the two threads onto a single physical processor and resource conflicts 
occur. From our experiments, it seems the HyperThreading-aware scheduler in Linux 
kernel 2.6.3 is not well implemented. We did not get good speedup for the NAS 
benchmarks except EP, which requires much less memory than others. 
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Fig. 11. Speedup of SPEC OMPM2001 on 
Dell Precision 450 

Fig. 12. Speed up of NAS NPB 3.0 on Dell 
Precision 450 

5   Discussion and Future Work 

The Sun Fire V490 is a successful platform for OpenMP as one of the first generation 
CMP (multicore) machines. We find its overall scalability to be comparable to a tradi-
tional SMP machine since each core has the similar capability as a regular uniproces-
sor. Most OpenMP applications from SPEC OMPM2001 and NPB 3.0 scale very 
well. For memory-intensive applications using 5 and more threads, scalability may be 
compromised to an acceptable degree due to the competition for the shared data path 
between sibling cores. There should be a threshold for the applications’ memory de-
mand to be intensive enough to cause performance degradation on a specific machine. 
Unfortunately, the EPCC microbenchmark’s results did not show profitable faster 
synchronization among sibling cores within one processor in this machine. We be-
lieve it is mostly due to the fact that the L2 cache is not really shared between sibling 
cores. Meanwhile, the Solaris operating system schedules OpenMP threads very well 
taking the asymmetry between cores into consideration. The Sun Studio Performance 
Analyzer is a very useful and handy tool to help us understand the underlying reasons 
for performance problems. However, the caller-callee tab leaves some room to be 
improved and we used our own tool [7] for better understanding the benchmarks. 
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Compiler optimizations are also key factors in OpenMP performance on the Sun 
platforms. For example, we observed a performance degradation from 4 to 5 threads 
for Jacobi code compiled with “–fast –xopenmp” even for a small data set (3 500*500 
arrays and 1000 iterations). The Analyzer showed that the Sun Studio 10 compiler 
performed loop unrolling on the major loops and inserted PREFETCH instructions 
into them. Data cache stall information collected from hardware counters hints that 
some PREFETCH operations initiated from two sibling cores stressed the shared data 
path connected to L2 cache and memory, thus incurred longer stall cycles than usual. 
But it is not always the case for all PREFETCH operations. Further work is needed to 
understand the exact conditions and effects of these traditional optimizations with 
regard to the OpenMP performance on machines with CMP capabilities.  

We observed that a straightforward OpenMP implementation for traditional SMP 
architecture may not achieve good scalability on the Xeon system. The main reasons 
are memory bandwidth bottleneck [6] and competition for the shared computing re-
sources, which degrade the overall SMT performance. More OpenMP scheduling 
policies [29] and precomputation and a prefetch approach via a helper thread [28] 
which utilize new SMT features are able to lead to a better performance. Our experi-
ments also showed that a HyperThreading-aware OS is important for maintaining load 
balance and efficiently utilizing the resources of an SMT system. The EPCC micro-
benchmarks results also indicated that the overhead of OpenMP synchronization im-
plementation in a SMT system is higher than that in an SMP system. The OpenMP 
implementation needs to take the SMT features into account. 

Our experiments for CMP and SMT were carried out separately to understand the 
implications of CMT. We plan to analyze those OpenMP benchmarks and consider 
the interaction between CMP and SMT when we have access to a machine with both 
technologies. The ultimate objective is to obtain a quantitative model, which is capa-
ble of predicting and explaining the OpenMP performance on CMT machines, con-
sidering machine parameters, application features and compiler optimizations.  

6   Related Work  

CMP technology exists in IBM Power4, Sun UltraSPARC IV, AMD Opteron [1], and 
some embedded systems [13]. The research on Power4 [5] showed that the improved 
data locality of the L2 cache made the SP program from NAS NPB scale from 16 to 
32; otherwise, the program runs on 32 processors are slower. [12] gives an overview 
of the Sun Fire E25K with UltraSPARC IV and its OpenMP support; in particular, the 
base and peak performance of SPEC OMPL benchmarks using almost maximum 
threads was demonstrated and compared with a traditional SMP. A system-on-chip 
(SOC) design from Cradle Technologies, Inc. integrates processors into one chip and 
OpenMP was selected in [13] to deal with the heterogeneity of CMP: OpenMP is 
extended to support Cradle’s Digital Signal Engine (DSE) and optimized via data 
prefetching and privatization. [3] explores the performance impact of asymmetric 
multicore architectures using a wide range of applications on a hardware prototype. 
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Simultaneous multithreading techniques can be dated back to 10 years ago as a 
means to improve the utilization of superscalar processors [26]. Work related to com-
piler support for SMT has focused on the problems of synchronization, memory  
allocation and program optimizations for shared caches. Researchers explored the 
performance of symbiosis [21], a group of two sequential programs, or a parallel 
program other than OpenMP running on SMT. In particular, hand-written program 
transformations, namely dynamic tiling, copying and blocking, were presented in [16] 
to partition the shared caches on SMT processors and the performance gain of a paral-
lel program other than OpenMP or multiple programs is 16-29%. For OpenMP pro-
grams, speculative precomputation and thread-level parallelism are used together [28] 
to achieve more efficient execution on real SMT processors using a runtime approach, 
however, it is hard to control the parameters (runahead distance and the span of the 
precomputation chunk) of speculative precomputation, and to transform OpenMP 
programs to include speculative precomputation. [29] presented an adaptive OpenMP 
loop scheduler on top of the Omni OpenMP compiler. Its runtime system adds affinity 
and trapezoidal scheduling, and enables the dynamic selection of the number of 
threads on each processor for each parallel region.  

7   Conclusions 

SMP technology is increasingly widely used. SMT and/or CMP technology are alter-
native strategies for increasing performance on a chip and exploiting space on the die 
to get better throughput. Applications need to be able to profit from the additional 
power by using multiple threads of execution and by adapting to best utilize the mem-
ory hierarchy. However, it will be hard for a compiler to automatically derive suitably 
large regions of code to obtain good performance. OpenMP is a relatively straight-
forward way to specify multithreading in a code and appears to be ideal for this pur-
pose. But OpenMP was not designed with this kind of system and memory hierarchy 
specifically in mind, and there are to date few reports on the performance of OpenMP 
codes on such platforms. More experience, an analysis of the architectures and recon-
sideration of compilation strategies, are needed to determine the amount of speedup 
that can be expected, to derive suitable approaches to parallelization for these archi-
tectures, and to decide whether there are any modifications to OpenMP itself that 
would facilitate the execution of OpenMP applications on this kind of hardware.  
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Abstract. Multi–threaded web servers are typically parallelized by hand
using the pthreads library. OpenMP has rarely been used to parallelize
such kind of applications, although we foresee that it can be a great tool
for network servers developers. In this paper we compare how easy is to
parallelize the Boa web server using OpenMP, compared to a pthreads
parallelization, and the performance achieved. We present the results of
a parallelization based on OpenMP 2.0, the dynamic sections model and
pthreads.

1 Introduction and Motivation

OpenMP [1] has successfully been used to parallelize a great number of applica-
tions in the scientific domain. Extensive work has been done to fulfill the needs
of scientific applications in shared memory environments. The parallelism that
appears in numerical applications has significantly influenced the definition of
the OpenMP API. Most work distribution schemes are specifically designed to
support the main source of parallelism of scientific applications: parallel loops.
For synchronization mechanisms programmers can use barrier synchronizations,
mutual exclusion and atomic synchronizations.

But scientific applications are not the only niche where parallelism can be
used to increase the performance of applications. In fact, with new generations
of architectures containing multiple cores, parallelism will be exploited in ap-
plications with characteristics and needs dramatically different from those of
the scientific world. We believe the OpenMP community should start studying
these characteristics. This study will either determine if the current OpenMP
API suites these new applications or whether it needs changes to support them
efficiently.

We have studied the feasibility of using OpenMP to parallelize a web server
to start exploring the characteristics that will be found in these new applica-
tions. Web servers are inherently parallel applications as the different requests
are unrelated and free of dependences between them. Thus, the requests can be
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handled in parallel. Web servers have been traditionally parallelized with thread-
ing techniques (mainly pthreads). Our objective is to specify useful extensions if
the OpenMP API does not easily support the parallelism found in web servers.

We have selected the Boa [2] web server as the platform to be parallelized.
Different parallel strategies have been developed. An OpenMP version allowed
us to evaluate the programming effort and the resulting performance using the
current OpenMP standard. Also, we developed a version that uses the proposed
dynamic sections [3] constructions to check their usefulness. Finally, a manual
pthread based version was developed to do a comprehensive comparison. All three
versions were evaluated against the original version which is single threaded.

The structure of the paper follows: section 2 describes the contributions of
this paper to the state of the art. Section 3 overviews the structure of the Boa
web server. In section 4 we describe our parallelized versions of Boa. Section 5
describes the experiments performed and the results obtained. Section 6 discusses
our experiences with the different parallel versions. And finally, in section 7 we
present the conclusions of this work and we describe some lines for future study.

2 Related Work

Several authors have compared OpenMP versus pthreads. These comparisons
have been in scientific applications or comparisons between basic language con-
structions. Kuhn et al. compared the primitives provided by both models con-
cluding that OpenMP was easier to use but they also pointed out some problems
with irregular applications [4]. Lee and Downar compared both languages for a
nuclear reactor transient code [5]. They obtained similar performance with both
OpenMP and pthreads but OpenMP was easier to use. Breshears and Luong
compared both models in the context of a Coastal Ocean Circulation Model [6].
Their conclusion was that OpenMP was easier to use yielding the same perfor-
mance than pthreads. Dedu et al. compared both models with some algorithms
from the artificial intelligence field [7]. They found that although for regular ap-
plications OpenMP was easier to use and obtained the same performance than
pthreads for irregular applications OpenMP was difficult to use.

Some other works have tried to extend OpenMP to be able to cope with irreg-
ular applications. Asenjo et al. explored some techniques to deal with pointers
and traversal of structures [8]. Shah et al. introduced the workqueueing model
[9]. This proposal extends the OpenMP programming model with an alternative
work distribution scheme based on the definition of queues of work from where
the executing threads extract work. The extension targets algorithms travers-
ing memory and linked data structures. The proposal has been successful but
introduces dramatic changes in the OpenMP execution model. We previously
proposed to use dynamic sections [3] to minimize the changes of the workqueue-
ing model, in which dynamic sections are based. We further extend the semantics
of the dynamic sections in this work.

Different works have evaluated the usefulness of threaded web servers. For ex-
ample, Roper et al. compared differentweb servers concluding thatmulti–threaded
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servers can outperform traditional event driven servers [10]which are not threaded.
Jeong et al. showed in their work [11] that the use of multiple CPUs with dynamic
content increases the throughput obtained and reduces the response time. Using
multiple CPUs with static content does not increase throughput but response time
still decreases. The benefits of using multiple CPUs in SSL enabled web servers
were shown by Guitart et al.[12]. Other successful multi–threaded servers include
Apache [13], SEDA [14] and Flash [15]. All these works used a system thread pack-
ages, mainly pthreads. This work, instead, explores the suitability of OpenMP as
a language for the development of a parallel web server.

3 The Boa Web Server

The Boa web server architecture is a single threaded event–driver HTTP server
architecture. This kind of architecture, unlike traditional web servers, does not
fork for each incoming connection. Instead, Boa comes with an integrated task
scheduler that handles multiple requests concurrently but not in parallel. Boa
multiplexes all ongoing requests, trying to maximize the throughput and mini-
mize the response time. The scheduler uses two request queues: the ready queue
keeps those requests available for further processing. The blocked queue keeps
those requests waiting for any data dependence to be satisfied. Iteratively, the
server traverses the ready queue and further processes each request. The server
uses a round–robin technique to avoid large requests starving other ready re-
quests. Boa logically divides each request in smaller chunks of work and each
time a request is processed a single chunk is consumed. Figure 1 shows a sim-
plified code that processes the requests from the ready queue. After a request is
processed

1. It is kept in the ready queue because it should be further processed ( i.e. it
has more chunks and all data are available ).

2. It is moved to the blocked queue because the server detected an unsatisfied
dependence ( e.g. it needs to read data from a socket ).

3. It is freed because the last chunk of the request was consumed.

1 for each request in the ready queue
2 {
3 update_time;
4 result = process_step(request);
5 accept new requests (if any);
6 if ( result == BLOCK ) block(request);
7 else if ( result == FINISHED ) free(request);
8 else keep it in the queue
9 }

Fig. 1. Request processing loop pseudo–code

The server traverses the blocked queue and for each request it checks if the
request dependences are satisfied using the information it collects with the select



194 J. Balart et al.

system call. When a request has no further dependences it is moved again to the
ready queue.

Figure 2 shows the structure of the main loop of the server. This loop is
infinite and in each iteration the server

1. processes any pending signal.
2. traverses the blocked queue to check the dependences of blocked requests.
3. establishes pending new connections using the accept system call.
4. traverses the ready queue to process more chunks of the unblocked requests.
5. calls select to obtain information about new connections and the status of

incoming and outgoing data.

1 while (1)
2 {
3 process signals (if any)
4 move requests from blocked to ready using select result
5 accept new connections (if any)
6 process requests in the ready queue
7 select system call
8 }

Fig. 2. Main loop pseudo–code

Boa tries to reduce the number of issued system calls by mmaping local files
into the server memory. A cache of open files (i.e active maps), which it is checked
each time a new file is requested, avoids mmaping twice the same file.

The server performs all input/output with non-blocking system calls to ensure
that no single request blocks the processing of others that are ready.

4 Parallelizing Boa

The main source of parallelism in the Boa web server is the possibility of over-
lapping the computations related to different requests. As explained in section 3
the requests are placed in the ready and blocked queues and the server iteratively
traverses these queues. Parallel processing is possible by processing each element
of the queues in parallel. The server can also do different tasks in parallel (e.g.
accepting new requests and processing new requests ). All the versions described
exploit these sources of parallelism.

Different points in the server require serialization. First, modification of global
variables (e.g. the number of active connections ). Second, manipulations of the
ready and blocked queues. Third, acceptance of new connections. Fourth, access
to the cache of open files. And last, write access to the server log files to avoid
mixing the output of different threads.

The original version uses a lot of static variables insides functions. These vari-
ables were converted to extra parameters of the function they were in. Another
possible option was to use per thread variables ( e.g. threadprivate in OpenMP ).

We have developed three parallel versions: a pthreads version, a pure OpenMP
version and a version using dynamic sections which are non–standard.
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4.1 Pthreads Parallel Version

The pthread parallel version exploits the possibility of processing different re-
quests in parallel, as they are unrelated. The parallelization uses a producer–
consumer approach. One thread executes all the tasks in the main Boa loop,
described in Figure 2, except requests processing. This thread is the producer
of new ready requests. The remaining threads consume the ready requests and
process them as explained in section 3. Figure 3 shows the code the consumer
threads execute. The pthread version uses the same round–robin mechanism of
the serial version. So, each time a thread extracts a request a single chunk is
consumed and the request may be queued again to the ready queue.

This version uses different mutex locks to protect accesses to the ready queue,
accesses to the blocked queue, accesses to global variables, and writing to the
server log files. The cache of open files is also protected by a mutex lock per entry,
to maximize concurrency, and a global mutex lock for global cache variables.

Fig. 3. Code for thread consumers in the pthread Boa version

4.2 OpenMP Standard Parallelization

For our OpenMP parallelization we targeted the request processing loop Figure
1. We wanted to distribute all the requests in the ready queue among the available
threads by using a workshare. The number of requests in the queue can vary
during its traversal (e.g. if a request is free ). Because in OpenMP all threads
must see the same iterations we splitted the loop in two new loops: one does
not remove requests the queue while the other does. In the first new loop, the
server processes each request in the ready queue. The result of each processing
is stored in a new field of the request structure. This loop was parallelized using
a parallel construct and we used a single workshare to distribute the different
iterations. Using the result from the first loop the server modifies the queues
in the second loop which must be done single-threaded. Figure 4 shows the
OpenMP parallelization of the new loops. When new requests are accepted they
are added to the beginning of the queue. Before the server accepts any request
all threads grab the head of the queue. This guarantees they will traverse the
same elements.

Access to the cache of open files was protected with a critical section for the
global cache variables and an OpenMP lock per cache entry. We used another
critical construction to guarantee correct access to the log files. Several critical
sections protect access to Boa global variables.
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Fig. 4. OpenMP request processing loop pseudo–code

4.3 Dynamic Sections Parallelization

The previous presented parallelizations were in previous section were mainly
possible because the serial version had already embedded a complex code that
dealt with request blocking and their scheduling ( i.e. the ready queue ). Our
question now is: could OpenMP make this work easy to the programmer?

The available parallelism can be seen as a collection of tasks. We have used
the dynamic sections proposed extension to express this parallelism easily. Under
this model a single thread is in charge of performing the serial work ( accept-
ing requests, extracting them from the blocked queue, . . . ) while the remaining
threads execute the parallel tasks that are created (i.e. a dynamic section).

In this version, we have removed part of the integrated schedule: the ready
queue has been removed. Instead of queueing requests in the ready queue now
the threads create new dynamic sections. A new dynamic section is created

– When a new request is accepted, a new section is created for the first chunk
of the request.

– When a request has completed a chunk, if it was not the last, a new sec-
tion is created for the next chunk. This dynamic section is created inside
another. We have extended the original model to allow nesting of SECTION
constructs.

– When a request is unblocked, because their dependences are fulfilled, a new
section is created for the next chunk.

Figure 5 shows our parallelization of the code of the main loop using the
dynamic sections.

As in the previous version, several critical constructions protect accesses to
the open files cache, access to the global variables and access to the server log
files.
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Fig. 5. Main loop pseudo–code with dynamic sections

5 Evaluation

5.1 Environment

For our experiments we used a 4-way Intel Xeon at 1.4GHz with 2GB of RAM
to run the web server and a 2-way Intel Xeon at 2.4 GHz with 2GB of RAM
to run the benchmark client. All the machines were running a 2.6 Linux kernel.
The network that connected the machines was a switched Gigabit network.

5.2 Workload Generator

We used Httperf[16] to generate the different workloads for the experiments.
This tool allows the creation of a continuous flow of HTTP requests to the
server machine. The tool accepts as one of its parameters the number of clients
per second. For each client, it opens a session with the server through a persistent
HTTP connection. Then a series of requests are issued by the client, some of
them pipelined, some spaced by a think time. Another parameter of Httperf
is the sessions database from where clients get the requests they ask for and
the think times to wait. We have used a database extracted from the Surge[17]
workload generator.

The scenario produced by Surge is a static content workload characterized by
short session lengths and low computational costs for each request serviced. The
Surge distribution is based on a model developed from the observation of real
web server logs.

5.3 Experiments

We evaluated all different versions of the Boa web server using the Surge work-
load with different loads of clients. These load configurations ranged from a low
load of clients (10 per second) to heavy load of clients (800 clients per second).
In the following plots, we labeled the different Boa versions as follows:
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– original boa refers to the unmodified single–thread Boa server.
– boa-pthreads refers to the parallel version that uses pthreads.
– boa-omp refers to the parallel version that uses standard OpenMP construc-

tions.
– boa-dsections refers to the parallel version that uses dynamic sections.

All parallel versions were run with 2 and 4 threads.
Figure 6 shows for each load of clients the throughput obtained by each Boa

version. All versions, except the boa-omp version, obtained a similar throughput
up to a workload of 700 clients per second. The boa-omp version was outper-
formed because the server did not run as much time in parallel as the other
versions do. Doubling the number of threads in the parallel versions did not re-
sult in a noticeable increase of throughput because Surge is not CPU–intensive
workload as it works with static content. With 700 clients per second the limit
of the Gigabit network was reached and all versions throughput deteriorated
as they were saturated. Saturation happens earlier using more threads because
contention in shared resources have a greater impact. The Boa server uses a
mechanism that minimizes the effect of saturation limiting the number of active
connections. We disabled this mechanism on purpose so we could find the point
at which each parallel version saturates.

Figure 7 shows the average response time for each load of clients and each Boa
version. All parallel versions achieved a lower response time than the original
Boa version. With a load of 800 clients per second response time was reduced
as much as by three. Doubling the number of threads in boa-dsections and boa-
pthreads was useful reducing the response time. With four threads boa-dsections
and boa-pthreads behaved so closely that their lines are overlapped. With two
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threads they behaved similarly except with a load of 700 clients per second where
boa-pthreads response time was lower. The average response time for the boa-omp
version was very low, near to zero. This result is misleading because the server
was rejecting more than 75% of the requests.

6 Comparison

In this section we compare the programming effort required by the three parallel
versions: pthreads, OpenMP and dynamic sections.

One of the most time consuming tasks in parallelizing all the versions, was
removing the static variables in local functions. Due to the large amount of static
variables that may appear in serial C codes,s compilers could provide a command
line option that transformed any variable with static storage to a variable with
thread private storage. This option would reduce the time spent in parallelizing
large C codes as a first step in the parallelization.

Another effort, common in all versions, was protecting shared data with crit-
ical sections and locks. This work in was quicker done with OpenMP than with
pthreads as you only need to add the appropriate directive instead of having to
declare a mutex variable and using lock and unlock calls. Nevertheless, when you
need a critical section for each element of a structure (e.g. the open files cache)
for improving performance, it is as difficult in OpenMP as it is in pthreads because
you need to use omp locks. We think a possible way to solve this problem would be
allowing dynamically named critical sections (e.g. cache lock[i]). With these kind
of critical sections the same code protecting a single entry of a complex structure
would work for all the entries while each one will still have its own lock.
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The pthread version required several modifications to the original source code.
Code for the consumer threads was developed. And, although it was not very
difficult because there was only one type of task to consume (i.e. requests) it
required some expertise to handle access to the queue correctly and efficiently.
Some other changes were required to the code of the producer thread including:
creating the consumers, initializing the locks, and removing the request process-
ing loop. Also, mutex locks were added to protect the access to the ready and
blocked queues. The overall effort was moderate.

The OpenMP version did not require as many changes in the source code
compare as the pthread version. But, it needed a great deal of attention to
maintain the correctness of the single workshare (i.e. that all threads executed
all the iterations). This restriction also caused the reduction in performance. In
the other versions, the threads could execute a task as soon as it was ready,
or even run in parallel request processing and accepting new connections. In
the OpenMP version all threads must wait until all the requests, that were
available when the traversal started, are processed even if there are new requests
to process. This suggests that current workshares are not well suited for handling
irregular parallelism.

But both the pthread version and the OpenMP version were easier to develop
because the original version had integrated a complex code that enabled request
concurrency. Otherwise, the programming effort would have been greater. On
the other hand, the dynamic sections version was simpler as the programmer
did not need to code the management of the ready tasks. Even from a simpler
version of the serial version the programming effort with dynamic sections would
have been minor.

Dynamic sections also allow to easily mix different kinds of parallel tasks.
While the pthreads code would became more and more complex if it had to
deal with different kinds of parallel tasks the dynamic section complexity would
remain constant.

7 Conclusions and Future Work

In this paper, we have explored the use of OpenMP to parallelize a web server. We
have shown how, adding a few directives, the request processing loop of the web
server can be parallelized. But this simple version did not perform efficiently.
We used the proposed dynamic sections to implement a simpler parallel web
server (i.e. without application level task management ). Evaluation showed
that this version had a performance, in throughput and average response time,
as good as the performance obtained by the server developed with pthreads.
But in the pthread version the programmer needed to develop a specific task
management for the application whereas the dynamic sections version simplified
the programming.

In the future, we will apply OpenMP to other web scenarios where studies
have pointed out that there can improvements in throughput by using multiple
processors: SSL enabled applications[12] and dynamic content applications [11].
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Abstract. This paper describes Extended Machine Descriptors (EMD) in the 
PROMIS multigrain compiler.  EMDs extend the concept of Machine Descriptors 
to encompass coarser granularities of parallelism, thereby enabling high-level 
transformations to be quickly retargeted.  Code generation for parallel runtime li-
braries like OpenMP benefit from the granularity control and automatic directive 
generation provided by EMDs. An overview of EMDs, their implementation in the 
PROMIS compiler, and a demonstration of their utility for portability and retarge-
tability are described in this paper. 

1   Introduction 

The recent emergence of dual and multi-core processors in mainstream computers 
marks the beginnings of the widespread availability of fine as well as coarse-grain 
parallelism in entry level system, and hence common applications. Dual core proces-
sors are only the start of a trend in processor design leading to multiple CPU cores on 
a chip such as the Sun Microsystems Niagara processor. As these resources provide 
greater functionality, chip multiprocessors with many heterogeneous, specialized 
cores are foreseeable with some already in use in networking and embedded applica-
tions. These systems provide the flexibility to utilize parallelism ranging from fine-
grain instructions up to coarse-grain loop-level and function level threads. 

As is common when new technologies move into the mainstream, there is a dis-
connect between the functionality of the hardware and the capabilities of the software 
tools available for them. As a result, applications may not fully benefit from the 
power of multicore systems. OpenMP is one solution for improving the programma-
bility of and enabling parallel execution on these systems. By allowing programmers 
to identify and exploit the parallelism in their programs, OpenMP provides the means 
to enable parallelism and maximize the use of these resources. However, even port-
able programming models like OpenMP can benefit from enhancements that enable 
them to be adaptive to different resources. Within the same family of architectures, 
there can be variations in the number of CPU cores and the functionality of resources. 

                                                           
* This research was supported in part by grants from the National Science Foundation under 

grant No. NSF CCR 00-85917 ITR and a research gift from Intel Corp. 



208 W. Ko and C.D. Polychronopoulos 

Differences in multicore versus multichip arrangements or the availability of SIMD 
parallelism within the processors of parallel computer systems are some of the impor-
tant considerations in parallelization. This is where a compiler solution for controlling 
and adapting the type and granularity of parallelization can improve support for these 
new architectural features. 

PROMIS [1] is a multilingual, retargetable compiler designed from its inception 
for multigrain parallelism. Because retargetable compilation is one of the primary 
objectives, Extended Machine Descriptors (EMD) are an important part of the frame-
work for selecting and controlling the granularity of parallelism. Granularity selection 
allows parallelization to be tailored to the needs of each architecture, going beyond 
instruction set retargeting to achieve resource-aware parallelization at coarser 
granularities. The EMD also provides the means to describe the directives of pro-
gramming models like OMP to allow automatic generation of code that exploits the 
resources of parallel programming libraries. 

This paper describes Extended Machine Descriptors in the PROMIS compiler and 
shows how EMDs are used to describe the resources in these heterogeneous systems. 
The paper also demonstrates the utility of an external description framework for rap-
idly retargeting a compiler to different systems and architectures. First, a brief over-
view of the PROMIS compiler is given in Section 2, followed by an introduction of 
the EMD and its use and implementation in the  PROMIS compiler in Section 3. Sec-
tion 4 describes the use of EMDs for pass control and resource aware parallelization. 
EMDs are the means by which the capabilities of the compiler are specialized for the 
systems targeted and how resource-aware compilation is achieved. 

2   Internal Representation and Organization 

The PROMIS internal representation (IR) is based on the Hierarchical Task Graphs 
(HTG) [2]. HTGs are designed to expose both structured (e.g. loop) and unstructured 
parallelism at multiple levels of granularity. The explicit hierarchy in the representa-
tion clearly delineates loops and other program structures, making it useful for expos-
ing and transforming parallelism. 

An example of an input program and its corresponding HTG is shown in Figure 1. 
The Hierarchical Task Graph (HTG) is a directed acyclic graph G = (V, E), where V 
is a set of nodes and E is a set of edges that represent control flow through the nodes. 
The set V contains five types of nodes: 

1. Start node: A node without incoming edges that dominates all other nodes in V. 
2. Stop nodes: A node without outgoing edges post-dominates all other nodes in V. 
3. Simple nodes: Tasks without subtasks. These are equivalent to program statements 

or instructions. 
4. Loop nodes: Represent loops whose bodies are themselves HTGs 
5. Compound nodes: Represent sub-HTG's other than loops. A compound node X 

represents the HTG, G(X) = (V(X), E(X)). These nodes are used for single-entry, 
single-exit constructs other than loops (e.g., basic blocks and subroutines). 
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Parallelism is represented independently at each level of the HTG. For example, 
LoopNode structures have a flag to indicate parallel loops. Vector types and opera-
tions are represented directly in the IR by extending the core IR types beyond basic 
integers and words for wide vector words and operations on multiword operands. 
Finally, instruction-level parallelism is represented by multiple operations bundled 
into a single compound operation node. 

PROGRAM MAIN

BB �

IF C� THEN

DO I���N

BB �
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Fig. 1. HTG graph 

Many of the classic loop transformations are available in PROMIS including un-
rolling, peeling, distribution, blocking, fusion, interchange, and normalization. To 
identify loop parallelism, a resource-independent DO-to-DOALL pass identifies loops 
that are free of cross-iteration dependences. Private and shared variables in the loop 
are marked during the detection phase for later use by the code generator. Finally, an 
OpenMP pass filters loops and automatically generates DOALL loops with OpenMP 
parallel for directives (Figure 2). 

An example of a loop conversion is illustrated in Figure 3. This is the second non-
trivial nested loop of the BESTAB function from su2cor in the SPEC95 Fortran bench-
mark suite. Both loops in the nests are found to be DOALL and converted in the C code 
output. As a result, omp parallel for directives are automatically generated in the output 
code before each loop. In addition, the inner iteration variable is explicitly declared pri-
vate in the outer loop as is necessary for OpenMP C scoping rules. 



210 W. Ko and C.D. Polychronopoulos 

Both C and Fortran input are converted to a single unified representation in the IR. 
When enabled, OpenMP directive generation occurs automatically for parallel re-
gions. These regions are tagged with the corresponding data for each directive. The 
information is then propagated through the IR and later emitted by the code generator. 
This process operates under the umbrella of the Machine Descriptions, which provide 
granularity information for selecting the parallelism to expose and syntax for 
OpenMP directives.  

In addition to loop parallelization, PROMIS supports autoscheduling [2], a method 
for utilizing the compiler’s static analysis capabilities to expose parallelism at all 
levels of granularity. Parallelism at any level (loop, task, instruction, etc.) is identified 
and partitioned into functions in preparation for runtime scheduling using task queues. 

 

DO-to-
DOALL

Auto-
scheduling

Parallelization

OpenMP Directive Insertion

Loop-
scheduling

C/C++

Source Code

Thread 
Model

Granularity
Description

Instruction/
Directive 

Syntax

EMD

 

Fig. 2. Transformation Ordering in PROMIS 

One of the features of autoscheduling is its ability to utilize unstructured or func-
tional parallelism in a program in addition to loop and instruction-level parallelism. 
The compiler is responsible for identifying the appropriate parallelism to expose 
(based on granularity requirements specified in the Machine Descriptor) and calculat-
ing necessary control and data dependence conditions necessary for each task to begin 
execution (called execution conditions). 

Individual function blocks are created for each task along with variables represent-
ing execution conditions for that task. The Intel workgroup extensions to OpenMP 
provide the task queues needed to schedule and execute the threads in the resulting 
code [3]. The intel omp task directive is used to specify individual tasks to be 
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inserted into task queues created with the intel omp taskq directives. The exe-
cution conditions are maintained with code that is generated as part of the static task 
creation phase during compilation. At runtime, counters are also initialized to track 
the total number of execution conditions for each task. Once this counter is null, a 
task is enqueued. Upon completion, execution conditions for any dependent tasks are 
cleared, the counter is decremented, and additional tasks may be ready for execution.   
Further details on the implementation are provided in [4]. 

  
DO 200 IBSQ=0,200 
      DO 200 ND=2,20 
      … 
200   CONTINUE 
 
#pragma omp parallel for private(su2cor_f__SL__NDX16)  
for /* DOALL*/ (su2cor_f__SL__IBSQX16 = 0; su2cor_f__SL__IBSQX16 <= 200;  

su2cor_f__SL__IBSQX16 += 1) { 
#pragma omp parallel for  
for /* DOALL */ (su2cor_f__SL__NDX16 = 2; su2cor_f__SL__NDX16 <= 20;  

su2cor_f__SL__NDX16 += 1) { 
…  

} 
} 

Fig. 3. Parallelized loop from su2cor. Fortran block above; tagged C output below 

3   Extended Machine Descriptions 

Extended Machine Descriptors (EMD) in PROMIS are motivated by the need to qualify 
the type and amount of parallelism that can be exploited on a given target architecture. 
High level information about the machine architecture can both drive source level paral-
lelization or qualify what type of parallelism is to be exploited and how, given an already 
parallelized source or binary and a target architecture. The EMD describes relevant char-
acteristics of the architecture, providing direction in adapting transformations to the tar-
geted system. The information goes beyond information on opcodes and functional unites 
found in typical machine descriptors [5] [6].  

The EMD contains an Instruction Description describing the mapping of opcodes 
and Hardware Description specifying resource parameters. However, the focus of this 
paper is the component relevant to parallelization, a description of resources called 
Node Mappings. Node Mappings are textual descriptions of HTG nodes that describe 
mappings of coarse-grain parallelism to resources. Each mapping specifies a particu-
lar HTG node structure that, if found in the IR and identified as parallel, can be 
mapped to the resource identified in the description. This is similar to the purpose of 
opcode mappings, but applied at a coarser granularity. These mappings control how 
transformations are activated and applied to the program being analyzed. 

The essential part of a Node Mapping is the textual specification of HTG nodes. 
Each type of HTG node has an equivalent text description with specific parameters 
and possible subnodes. Any configuration of nodes and subnodes that is possible in 
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the IR is allowed in a node specification, allowing a resource’s capabilities to be de-
scribed in the form of a particular HTG node. The mapping informs the compiler 
where a parallel node of that type can be mapped.  

The general form of a node description is shown in Figure 4. This description con-
sists of a name for the node type, a list of parameters, and a list of subnodes of that 
node. For example, a typical parameter for a loop node is a trip count (FixedItera-
tionLoop node). There are also keywords for instructions (OperationBlock), loops 
with indeterminate trip count (General Loop), basic blocks (HtgBBlock), and entire 
function bodies (PromisFunction) just as there are such nodes in the HTG. Subnode 
within blocks may be used to specify operations. An example is a list of operations 
within a loop.  

 
node_type { 

[parameterlist], 
include: 
[subnodelist] 

} 

Fig. 4. Form of a Node Description 

A Node Mapping consists of a node description enclosed in a block with additional 
parameters like the type of parallelism. The name for a mapping is used later to iden-
tify physical resources. In Figure 5, a FixedIterLoop is used to specify a resource for 
vector add operations. The loop must contain at least 4 iterations for the node to be 
vectorizable. 

 
Resource VectorUnit { 
  Type: SIMD, 
  Node:  
    FixedIterLoop { 
   length: 4,  

include: 
OperationBlock { 
include: 
op_add 

    } 
 } 

} 

Fig. 5. Node Mapping for a SIMD unit 

In addition to exact node matches, mappings may contain a modifier, minimum, to 
specify a minimum granularity requirement. A match is satisfied for this type of map-
ping if a node contains at least the specified operations. Nodes with additional opera-
tions will also match. For example, the Mapping in Figure 6 specifies that a LoopNode 
containing at least two add and two multiply operations is the minimum granularity 
needed for a loop node to be parallelized for OpenMP for this particular mapping. 
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A Node Mapping is a declaration of a type. The identifiers used for each descrip-
tion tie a resource to the mapping. As with opcode mappings, a node mapping name is 
like an identifier for a functional unit, which may support multiple types of opera-
tions. However, nodes—not individual operations—are being mapped in this case. 
Each of the mappings describes a node structure that, if found to be parallel, can be 
mapped to that resource. The mapping is then bound to a physical resource through a 
subsequent instantiation that describes how many of each unit exists and may partici-
pate in work sharing of parallelism. 

 
Resource Processor { 
  Type: OMP, 
  MINIMUM, 
  Node:  
    LoopNode{ 

include: 
OperationBlock { 
include: 
op_add,op_add,op_mul,op_mul 

} 
  } 

    } 
Processor P1, P2, P3, P4; 

Fig. 6. Node Mapping specifying a loop with a minimum granularity 

The declaration in Figure 6 binds the resources, P1-P4, to the Processor mapping. 
These same identifiers are then used in the Hardware Description to link these map-
pings to physical characteristics like cache sizes and memory bus latency and 
throughput values. The Hardware Description provides additional hardware parame-
ters (i.e., cache size, latencies, etc.) for each identified resource. 

Mappings are stored in a node mapping file in text form. The mappings are parsed 
at compile time and are accessible through methods calls to the MachineDescription 
module. Because the mappings correspond to resources and IR nodes, systems with 
similar resources may share similar same mappings. Their description files might 
differ only in the number of each type of resource and the instruction set description. 
This allows the mappings to be easily reused across systems. 

4   Pass Selection and Control 

Information provided by Node Mappings is used in selecting the transformations that 
are applied to nodes. Mappings allow the transformation search space to be pruned 
and limited only to those that are relevant to valid mappings. Pseudocode for this 
process is shown in Figure 7. First, all mappings are grouped by Node Type (e.g., 
FixedIterLoops, HtgNodes, etc.) in GenerateMappingGroups(). Matching nodes are 
then found for each type of group in the list. This is followed by mapping of the type 
of parallelism associated with a node. Finally, because autoscheduling is orthogonal 
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to parallelization of individual nodes, it is performed as the last step after paralleliza-
tion of nodes is complete. 

Transformation selection and granularity control occur during the matching within 
the function GetMatchingNodes(). Ideally, nodes satisfy a mapping precisely or re-
quire only minor modification to meet the minimum granularity specified by a map-
ping. These nodes can be directly mapped to system resources. However, mappings 
more often serve as templates describing the options that are available in the system. 
Matching is then the process of determining whether it is possible to transform and 
map a node.  

 
Function parallelize() { 
mappings := GenerateMappingGroups(); 

 
forall (m in mappings) { 

nodes := GetMatchingNodes(m); 
 
forall (n in nodes) { 

switch (m.type) { 
case SIMD: 

DoSIMD(m,n);  
break; 

case loop_par: 
DoLoopPar(m,n); 
break; 

 … 
} 

} 
} 
Autoschedule(); 

} 

Fig. 7. Parallelization algorithm 

One step in matching is the use of various patterns to improve the likelihood of 
successful matches. The loop from Figure 3 is shown again in Figure 8. The inner 
loop assigns values to 4 different members of a structure. If this is an insufficient 
number of operations to be parallelized, the match fails. However, the cumulative 
number of iterations in the inner loop does allow a match of the outer loop. In such a 
case, only the outer loop is parallelized (Figure 8). As the number of node variations 
and idioms for alternate patterns like these increases, the likelihood of a match im-
proves.  

The mappings also provide parameters needed by transformations after granularity 
selection. For example, the mapping from Figure 4 describes add operations on vec-
tors of size 4. If both the vectorization and parallelization mappings exist and a full 
set of vector operation mappings is available, mixed parallelism is feasible. To vector-
ize the inner DOALL loop of Figure 8 with this information, the operations are dis-
tributed from other statements in the loop. The length of the vector is then used as a 
parameter to strip mine the resulting single-operation loop and create vectors of the 
correct size (Figure 9).  
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This is also true of other transformations. Fusion merges loops and creates a single 
loop with a larger granularity. Interchange allows a DOALL to be shifted to outer 
loops of a nest for parallelization or the inner loop for vectorization. Heuristics for 
selecting these transformations are controlled with information provided in the EMD. 

 
#pragma omp parallel for private( j )  
for /* DOALL*/ (i = 0; i <= 200; i += 1) { 

#pragma omp parallel for  
for /* DOALL */ (j = 2; j <= 20; j += 1) { 

BESS1.BESS1_BESPOL.CD0[j-2][i] = CDX16[j-2][i+1]; 
BESS1.BESS1_BESPOL.CD1[j-2][i] = -CDX16[j-2][i]/3 -.5*CDX16[j-2][i+1] +  

CDX16[j-2][i+2] –CDX16[j-2][i+3]/6 
BESS1.BESS1_BESPOL.CD2[j-2][i] =  0.5*CDX16[j-2][I] + CDX16[j-2][i+2] –  

CDX16[j-2][i+1]; 
BESS1.BESS1_BESPOL.CD3[j-2][i] = CDX16[j-2][i+3] – CDX16[j-2][i]/6 +  

0.5*CDX16[j-2][i+1] – CDX16[j-2][i+2]; 
} 

} 

Fig. 8. Single loop parallelization 

#pragma omp parallel for private( j )  
for /* DOALL*/ (i = 0; i <= 200; i += 1) { 

for /* DOALL */ (j = 0; j <= 15; j += 4) { 
T1[j:j+3] = -CDX16[j:j+3][i] / 3; 
T2[j:j+3] = .5*CDX16[j:j+3][i+1]; 
T3[j:j+3] = CDX16[j-2][i+3] / 6; 
 
T5[j:j+3] = T1[j:j+3] – T2[j:j+3]; 
T6[j:j+3] = CDX16[j:j+3][i+2] – T3[j:j+3]; 
BESS1.BESS1_BESPOL.CD1[j:j+3][i] =  T5[j:j+3] + T6[j:j+3]; 

 
} 
for /* DOALL */ (j = 2; j <= 20; j += 1) { 

… 
} 

} 

Fig. 9. Loop distribution and vectorization of the second statement from Figure 8  

In most cases, additional transformations are required, for example, to satisfy 
alignment constraints and split complex operations. However, this is the basic process 
for matching IR nodes to parallelization heuristics. The benefit of this external con-
figurability is most apparent for systems with a myriad of resources and multiple 
granularities of parallelism [9] [10] [11]. A change in the EMD is all that is required 
to adapt the compiler to multiple heterogeneous processors, cores, and SIMD units. 
For systems with the same microarchitecture that differ only in the multiplicity of 
cores or processors, modification of the Instruction and Hardware descriptions are not 
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even necessary. A modification in the number Node Mapping types that are instanti-
ated is all that is needed to adapt the mapping heuristics to different resources. 

5   Summary 

Extended Machine Descriptors in the PROMIS compiler are designed to improve both 
the effectiveness of parallelization and the efficiency of parallel execution by enabling 
automatic multigrain program parallelization to be adaptive subject to the capabilities of 
the target architecture. Node Mappings are the means of describing the IR structures 
targeted.   They specify mappings of program parallelism to the resources in the system. 
The ability to control pass selection from an external description file allows a single 
compiler binary to be adapted and fine-tuned to the resources of each system, thereby 
improving its effectiveness. In this paper we showed how we use EMDs to guide pass 
selection to automatically parallelize code and generate OpenMP directives. 
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Nested Parallelization of the Flow Solver TFS
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Abstract. The Navier-Stokes Solver TFS developed by the Institute
of Aerodynamics of the RWTH Aachen University is currently used in
a multidisciplinary project to simulate the air flow through the human
nose. In order to reduce the runtime of the expensive computations the
ParaWise/CAPO automatic parallelization environment has been used
to assist in the nested OpenMP parallelization of the TFS multi-block
code targeted at Sun Microsystems shared memory parallel systems. Fur-
ther manual tuning improved the scalability of the OpenMP approach.

1 Introduction

The ParaWise/CAPO automatic parallelization environment [1,2] has been used
to assist in the OpenMP parallelization of the TFS multi-block code targeted at
Sun Microsystems shared memory parallel systems [6]. A series of parallel ver-
sions have been created based on differing sources of loop parallelism to evaluate
the performance. The aim was to assess the quality of the parallelization from
the environment, determine what interaction with the environment is needed
and also what manual code changes are necessary. A parallel version of TFS
that can scale to large numbers of processors is the ultimate goal of this work.
The parallel code versions produced and assessed were:-

1 The initial version produced by ParaWise/CAPO with no user interaction.
2 An improved version where the ParaWise and CAPO browsers were used

to investigate, add to and alter information to improve the parallelization.
3 An addition to the previous version where the outer loop of the ijk loop

nests within a block (typically the k loop) is chosen to exploit parallelism.
4 A version where parallelism is exploited at the loops that iterate over the

blocks in the multi-block code.
5 A nested version exploiting both inter-block and intra-block parallelism,

using nested OpenMP directives.

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 217–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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1.1 The TFS Flow Solver

The Navier-Stokes Solver TFS is a program library which has been developed
by the Institute of Aerodynamics of the RWTH Aachen University during the
last 10-15 years. It is well prepared for vectorization as it uses one-dimensional
arrays to store 3-dimensional geometries. The numerical method is second-order
accurate on a multi-block structured grid with general curvilinear coordinates.
The package is currently used in a multidisciplinary project to simulate the air
flow through the human nose [3,4]. The goal is to get a better understanding of
the functioning of the human nose and then to provide a work flow for computer
assisted surgery allowing the physician to first perform a virtual surgery in a
virtual reality environment. This would then give the opportunity to verify the
success of such an operation by another computer simulation before the actual
surgery on the patient. The nested version contains some 16,000 lines of Fortran
code including 534 OpenMP directives in 79 parallel regions.

1.2 The Machinery

The main target for the parallelization effort was the Sun Fire E25K SMP ma-
chine (SFE25K). For further performance comparisons and studies a few other
machines were used as well as listed in the following table. Whereas the Sun Fire

Table 1. List of the computer systems used for the performance studies

Machine model Processors Operating Compiler Remark
(abbreviated) system

Sun Fire E 25K 72 UltraSPARC IV Solaris 10 Sun Studio 11 ccNUMA, each
(SF25K) 1.05 GHz dual core processor board has

8 cores+local memory
Sun Fire E6900 24 UltraSPARC IV Solaris 9 Sun Studio 11 Flat memory
(SFE6900) 1.2 GHz dual core
Sun Fire E2900 12 UltraSPARC IV Solaris 10 Sun Studio 11 Flat memory
(SFE2900) 1.2 GHz dual core
Sun Fire V40z 4 Opteron 875 Solaris 10 Sun Studio 11 ccNUMA, each dual
(SFV40z) 2.2 GHz dual core core-processor has

a local memory
NEC SX-8 8 NEC SX-8 SX-OS NEC SMP vector system
(NECSX8) 2.0 GHz vector unit with flat memory

E6900 (SFE6900), the Sun Fire E2900 (SFE2900) and the NEC SX-8 (NECSX8)
have a rather flat memory system, the Sun Fire 25K (SFE25K) and even more
the Opteron-based Sun Fire V40z (SFV40z) have a ccNUMA architecture. On
the SFE25K the two stage cache coherence protocol and the limited bandwidth of
the backplane lead to a reduction of the global memory bandwidth and to an in-
creased latency when data is not local to the accessing process. On the 4-socket
Opteron-based SFV40z system data and cache coherence traffic is transferred
using the HyperTransport links, which connect the four processors in a ring.
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Whereas the local memory access is very fast, multiple simultaneous remote ac-
cesses can easily lead to grave congestions of the HyperTransport links. Since
version 9 update 1, the Solaris operating system provides the Memory Placement
Optimization Facility (MPO) which allows use of first-touch or random place-
ment strategies, and also provides a low-level API to explicitly migrate data to
where it is used next (next-touch strategy). As the TFS code is ideally suited
for vectorization we are also interested in combining vectorization and OpenMP
parallelization on the NEC SX-8 shared-memory parallel vector system. Unless
otherwise mentioned, all the results quoted in this paper were obtained on the
SFE25K. During the parallelization work the Sun Studio 9 Fortran compiler
was used and then for the performance improvement efforts the most recent Sun
Studio 11 Fortran compiler was employed.

2 Production and Performance of the Initial Parallel
Version

The initial version was produced without any user interaction, just using the
ParaWise interprocedural, value based dependency analysis and the ParaWise
OpenMP code generator [7,2]. The aim of ParaWise is to exploit as much appli-
cation code computation that can execute in parallel, so if all outer loops in a
loop nest have dependencies that inhibit parallelism, any parallelism from inner
loops in the loop nest is exploited. Parallelism exploited at an inner loop level can
have a detrimental effect on performance as the frequency of OpenMP runtime
overhead can become significant. Most automatic compilers employ machine de-
pendent metrics to determine at runtime if parallel execution is desirable, forcing
serial execution when the OpenMP overhead is deemed to exceed the benefit of
parallel computation within the loop. This is not at present used in ParaWise
so slowdown can be exhibited by some loops, but subsequent user interaction to
uncover parallelism in outer loops and other features in ParaWise can be used to
avoid such cases. The parallelism exploited in this parallelization (version 1) was
mainly from within a block from one of the i,j or k loops that operate over the
dimensions of a block (although not always the outermost of these loops) and
also from grid level loops. The code was produced automatically by analysing
the application code and generating the parallel OpenMP code all within the
ParaWise environment. This included addition of privatization and reduction
clauses, nowait clauses to avoid loop end synchronization when legal, generation
of parallel regions containing as many parallel loops as possible in an interpro-
cedural context. An example of the automatically generated OpenMP code with
no user interaction is shown in figure 1. It shows a chosen parallel loop in routine
AUSM and the lists of PRIVATE and SHARED variables determined by Para-
Wise. It also shows the associated parallel region which is in routine UPWIND
surrounding the call to AUSM. All loops in AUSM and another loop in UP-
WIND are contained within this parallel region to promote efficient execution.
This first version did exhibit some limited speed improvement on some dedicated
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parallel systems, however, on the heavily loaded SFE25K system at Aachen,
parallel executions were slower than the serial version for the medium size input
data.

2.1 Improving the Initial Parallel Version with User Interaction

ParaWise was specifically designed with the understanding that user interaction
is desirable and, often, essential for the production of effective parallel code. In
the TFS code, one of example is the nature of the arrays used to index a large
work array (DA) that is dynamically allocated in the beginning of the program
and then frequently passed to subroutines through parameter lists and used
throughout the program in the implementation of the multi-block mesh and the
mesh dimension strides within a block that are calculated for each block as it is
processed. It is obviously not possible for ParaWise to automatically determine
the nature of the pointer arrays, so the user must provide this information. For
the mesh dimension strides within a block, the way this is implemented in TFS is
beyond the current capabilities of ParaWise. The user can exploit their knowl-
edge of the nature of these variables to address the parallelization inhibitors
determined by ParaWise and displayed in its browsers. The user can examine
serial loops using ParaWise. These include Totally Serial loops (where a loop is
serial and is not nested within a parallel loop and also does not contain any paral-
lel loops) and Covered Serial loops (where a surrounding loop is parallel or some
contained loops are parallel). Parallelism may be prevented by several inhibitors,
these include (i) Loop carried True dependencies (where a value is assigned in
an iteration of the loop and used in a subsequent iteration); (ii) Loop carried
Anti dependencies (usage of a value in an iteration where the used memory lo-
cation is overwritten in a later iteration) but only if loop in/out dependencies
also exist; (iii) Loop carried Output dependencies (where the same memory lo-
cation is assigned in several iterations) but only if loop in/out dependencies also
exist; (iv) Loop in/out dependencies (where values assigned before the loop are
used by computations within the loop or where values assigned within the loop
are used after the loop) but only if loop carried Anti or Output dependencies
also exist and FIRSTPRIVATE or LASTPRIVATE clauses cannot satisfy the
code requirements. For the True dependence inhibitors, the user may be able to
determine that no values are passed between iterations of the loop from either
understanding of the implemented variable references or from knowledge of the
algorithm being followed in that loop. For Anti and Output dependencies, it
may be that those dependencies from one iteration of the loop to another do
not exist (allowing the associated variable to be shared) or it may be that the
uses after the loop actually receive their data from assignments after the loop
and not from inside the loop (allowing the associated variable to be privatized),
although it can also be the case that parallel execution is not legal as the in-
hibitors actually exist. For this improvement of the initial parallel version of the
TFS code, no information about the multi-block nature of the application was
exploited so only intra-block parallelism was investigated. Most of the interac-
tion related to the linearised one-dimensional loops within a block, particularly



Nested Parallelization of the Flow Solver TFS 221

due to the lack of information about the dimension stride variables in linearized
one-dimensional array references of the three-dimensional data. Typically, Anti
and/or Output dependencies between iterations of the loop were set along with
usages of the associated variable after the loop where it was the dependencies
between iterations of the loop that should not exist. These inhibitors can be
simply removed in the ParaWise Why Directive browser which details all in-
hibitors to parallelism for the selected loop. Details about the inhibitors can be
examined using the full range of ParaWise browsers where, in particular, the
Dependence Graph browser can be used to easily study in detail the interpro-
cedural dependencies where assignments and usages exist down deep call trees
from inside the loop. In Figure 2 the k loop is currently serial as a loop carried
output dependence for array DUMM1 (a temporary or workspace array) is set
along with uses of DUMM1 after the loop has completed. An investigation of the
indices of DUMM1 reveals that NI is computed in a call to SETNMX using the
function IPROD1 which prevented the ParaWise dependence analysis proving
the non-existence of the output dependence. With knowledge of the meaning of
the NI array and/or an understanding of what the loop is doing as its part of the
TFS algorithm, the user can remove the output dependence, allowing the loop
to execute in parallel. The ParaWise generated OpenMP code (version 2) did
exhibit some speedup on small numbers of processors, but very little scalability.

2.2 Exploiting Parallelism at the Outer Loop Relating to a Mesh
Dimension of a Block

It is often desirable to exploit parallelism in a mesh dimension as these can in-
volve a reasonably large number of iterations and therefore can be a profitable
source of parallelism. To implement this, the user can use the CAPO Why Di-
rective browser New Type option to force non-ijk loops that are currently in
the Chosen Parallel category to execute in serial, allowing contained parallel ijk
loops to be chosen (using the setting shown in Figure 3). This version exhibited
significant speedup on dedicated parallel systems (albeit on small numbers of
processors) indicating the potential to scale well on larger numbers of proces-
sors. When run on the SFE25K system at Aachen, however, although speedup
on 4, 8 and 16 processors was obtained, the performance was disappointing com-
pared to that seen on a dedicated parallel system. The timings were also very
erratic for repeated executions, indicating that the performance was very depen-
dent on the overall load on the system. Using the Sun Performance Analyzer
to determine the cause of this poor performance, the reasonably frequent inter-
processor synchronization was, we believe, being affected by the machine load.
An investigation revealed than the overhead was related to the block-block in-
teractions, where many block pairs have no connections but all were involved
end of loop and end of parallel region synchronizations. The code generated was
manually altered to move the parallel regions out of the loop over blocks with
only a few synchronizations required for those interacting block-block pairs. Al-
though some speedup is exhibited (4.19 on 8 threads), the scalability is severely
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Fig. 1. CAPO showing a parallel region in routine UPWIND and a parallel loop in
routine AUSM with the automatically determined PRIVATE and SHARED variables

restricted (4.86 on 16 threads). The most significant factor is still the block-block
interactions where the amount of computation involved is still relatively small
even when compared to the greatly reduced OpenMP runtime overheads.

2.3 Exploiting Parallelism from the Block Loops

Parallelism can also be exploited from the loops that operate over the blocks.
To create a version that exploits inter-block parallelism, the previous ijk-loop
parallel version was used as a starting point. The multi-block nature of the
code is implemented by integer arrays read into the application code at runtime,
preventing dependence analysis from determining independence between the it-
erations of the block loops. As a result, the CAPO browsers are again used to
produce most of the parallel version with manual code changes used to complete
the parallel version. Only block loops that did not contain I/O were considered.
All the relevant loops involved the DA array with dependencies as inhibitors to
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Fig. 2. Using ParaWise to investigate serial loops. Here the loop in JACGP is serial
due to the variable DUMM1 having both output and loop out dependencies.

parallelism and some loops also involved other variables as parallelism inhibitors.
For these other variables, many inhibitors were removed as either dependencies
between iterations are known not to exist or loop in/out dependencies are known
not to exist. A few variables were involved in reduction style operations and these
can be set in the CAPO Why Directive browser New Type option (Figure 3).

Some of the routines called in the block loops contained code controlled by
a condition to only execute for the first block. These mainly related to initial-
izing variables that are produced from summations of contributions from every
block. To facilitate parallel execution, these initializations were manually moved
to before the block loop. For the DA array inhibitors, although the dependencies
between iterations of the block loop for call arguments relating to field data of
the TFS multi-block mesh should not exist, some arguments using DA related
to workspace in the called routine which was re-used by every block. Those sec-
tions of DA used for mesh data must be SHARED as they are used throughout
the application code. However, the sections of DA used for workspace need to be
PRIVATE due to the re-use for every block and where they are not used after the
loop completes. The ParaWise Dependence Graph and Arguments browser were
used to determine which call arguments relate to workspace to assist the process,
but the code alterations required to handle the shared and private sections of
DA were implemented manually after generation of code from CAPO. Inside the
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Fig. 3. Using ParaWise to investigate serial loops. Here the loop in JACGP is serial
due to the variable DUMM1 having both output and loop out dependencies.

subroutines called within the block loops, the renaming of various sections of
DA allow simple expression of SHARED or PRIVATE variables. Outside of this,
in the loop containing the block loop, no renaming is available. One solution is
to introduce new arrays for the workspace and alter the call arguments so that
the DA array is not used. As the target for the parallel TFS code is for it to
execute efficiently on large numbers of processors, the extra memory with this
approach only relates to the master thread as all slave threads will allocate the
workspace for their private copies anyway. For block loops that contain I/O that
were not considered for parallelism, the ijk-loops within a block are considered
instead. Additionally, the block-block interaction loop in routine EXCHNG has
dependencies that force serial execution. Version 4 of the application does dis-
play some speedup on the SFE25K system at Aachen with 2.88 on 4 threads,
but only 3.1 on 8 threads. Obviously, as the size of blocks and the correspond-
ing workload for each block varies significantly (a 20+ times difference between
quickest and slowest blocks was measured), a static schedule for the block loops
was inefficient as compared to using a dynamic schedule. In this case, as the test
meshes provided contain only 32 blocks, scalability is restricted to 32 processors,
but for efficiency with the variations in block workload, around 8 processors (or
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a proportion of the number of blocks allowing a few blocks per processor) are
needed to allow reasonable load balance.

2.4 Nested Inter and Intra Block Parallel Version

Version 5 was created by merging the two previous inter-block and intra-block
parallel versions and using nested OpenMP parallelism to allow a more efficient
parallel execution, each level using a small number of processors. In this new
version the use of THREADPRIVATE directives for common blocks was not
possible. Instead, the affected variables were passed into the necessary routines
as additional arguments and then defined as PRIVATE for the outer (inter block)
parallel region, but shared by the subsequent inner (intra block) parallel region.
Another requirement was to turn nested OpenMP parallelism on and off as re-
quired by the parallelism in the code. For most of the application code, where
the outer block loop is parallel and inner mesh dimension loops are also parallel,
OpenMP nested parallelism is enabled and the number of threads set to the
square root of the total number of threads requested by the user (as both levels
are given the same number of threads). For the code sections containing only
a single level of parallelism, the number of threads is set to be the number re-
quested by the user. As expected, the results for the nested version were superior
to either of the previous parallel versions, with a speedup of 7.39 on 16 processors
and 8.71 on 25 processors. The overheads on larger numbers of processors re-
late to OpenMP runtime overheads and load imbalance between different blocks.
Contributions to this include the poorly performing block-interaction loop that
must execute in serial (so that all threads are employed for the contained ijk
loops), with the additional impact of one or two small code sections that were
left as serial because the OpenMP overheads led to slowdown when parallelism
was exploited. The code sections which exploit inter-block level parallelism, but
no intra-block level parallelism only represented a tiny proportion of runtime
in serial, but on larger numbers of processors their impact on speedup is more
significant (Amdahl’s law).

3 Improving Scalability of the Nested Parallel Program

Figures 4-6 depict the best effort speedup of the intra-block, the inter-block and
the nested parallel versions respectively on the machines listed in table 1. It can
clearly be seen that the nested approach leads to an increased speedup for all of
the larger SMP machines. The maximum is close to 20 when using 64 threads
on the SFE25K machine, whereas the speedup of both single-level approaches is
less than 10 in all cases. On the NECSX8 vector machine, vectorization replaces
the loop level OpenMP parallelization and the block-level parallelization deliv-
ers a speedup of 2.7 when using 8 threads. Nevertheless, the efficiency of the
nested version is not yet satisfying on the SFE25K. A speedup of 17.5 already
seems to be a reasonable result on the SFE6900 (48 threads) and the SFE25K
(32 threads), but we wanted to further improve the absolute speed of TFS for
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Fig. 4. Speedup of the intra-block version of TFS

up to 144 threads on the SFE25K. We also looked at the SFV40z because of the
interest in ccNUMA effects at a smaller scale.

Sorting blocks by size. Because of the complex geometry of the human nose,
the blocks of the computational grid are considerably varying in size: The largest
block has about 15 times more grid points than the smallest block and accounts
for about 10% out of the 2,200,000 grid points. This fact limits the attainable
speedup on the block level to 10. Splitting the larger blocks was not considered
at this point. The first approach of selecting a dynamic schedule for all of the
block-level loops in order to handle the resulting load imbalance already works
reasonably well. But if a relatively large block is scheduled to one thread at the
end of the loop, the other threads might finally be idle. Sorting the blocks in
decreasing order, such that the smallest block is scheduled last, leads to a first
slight improvement in runtime of 5 to 12 percent for 9 or more threads on the
SFE25K and 13.5 percent for 8 threads on the SFV40z.

Thread balancing. The idea of the dynamic thread balancing scheme has pre-
viously been used to solve load imbalance of hybrid (MPI + OpenMP) programs
[5], so the number of threads of the inner teams were adjusted to the size of the
corresponding blocks. This leads to an improvement of more than 10% on the
SFE25K when using 121 threads, as the scalability of the loop level paralleliza-
tion is limited and cannot overcome the difference in size of the blocks.
Grouping blocks. As the block sizes remain constant during the whole runtime
of the program, the blocks can be explicitly grouped and accordingly distributed
to a given number of threads on the outer parallel level in order to reduce the
overhead of the dynamic schedule and to avoid idle threads. Surprisingly this did
not lead to a measurable performance improvement on the SFE25K. Further in-
vestigations using hardware counters to measure the number of L2 cache misses
revealed that threads working on smaller blocks profit more from the large size
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Fig. 5. Speedup of the inter-block version of TFS

(8 MB) of the external L2 of the UltraSPARC IV-based machines than larger
blocks and therefore ran at a much higher speed. When employing a single thread
on the loop level, the thread working on the smallest block ran at 351 MFlop/s
and the one working on the largest block ran at 225 MFlop/s. This of course
aggravates the load imbalance. Grouping and distributing the blocks was prof-
itable on the SFV40z as the varying block size did not impact the MFlop/s rate,
because of the smaller L2 cache (1 MB) of the Opteron processor. The perfor-
mance improved by 6.7% when using 8 threads.
Memory locality. Further hardware counter measurements indicated that L2
cache misses lead to a high percentage of remote misses and that the global
memory bandwidth consumption of the code on the SFE25K was close to the
maximum value, which we observed when stressing the memory system with the
Stream benchmark [8] in earlier experiments with random memory placement
used by the Solaris 8 operating system. The first touch memory placement policy
provided by more recent versions of the Solaris operating system an improve-
ment by a factor of 5 can be achieved for this benchmark. We concluded that an
improvement in the memory locality would also have a positive impact on the
performance of TFS on the SFE25K. In order to improve memory locality we
bound threads to processors and also used the madvise Solaris system call after
a warm-up phase of the program in order to explicitly migrate data to where
it is used (next-touch mechanism). Surprisingly, this was only profitable when
applied to a single level of parallelism. It lead to an improvement of roughly 10%
on the SFE25K for higher thread counts, but was particularly beneficial on the
SFV40z - the improvement was up to a factor of 1.9 for loop level paralleliza-
tion. Unfortunately, applying these techniques to the nested version was not
profitable at all, because the current Sun implementation of nested paralleliza-
tion with OpenMP employs a pool of threads. These threads are dynamically
assigned whenever an inner team is forked. Therefore the threads of the inner
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Table 2. Run times in seconds for 3 iterations, best efforts

Machine Serial #threads #threads Parallel Remark
runtime block loop runtime

level level

SFE25K 341.51 8 4 19.76 Sorted blocks, first touch placement
8 8 17.76 Sorted blocks, random placement

SFE6900 312.17 8 6 18.92 Sorted blocks, first touch placement
SFV40z 147.61 8 1 26.19 Balanced blocks, binding, next touch
NECSX8 15.67 8 Vector 5.785 Dynamic schedule

teams frequently loose their data affinity. Table 2 contains the runtime of the
most successful combinations of thread numbers on both parallelization levels
and the strategy used.

4 Summary of Experience of Using the ParaWise
Environment for the Parallelization of the TFS Code

The ParaWise environment was used to perform most of the parallelization of
the TFS code, and greatly assisted in the subsequent manual tuning. Most of
the loops and routines in the code were automatically parallelized by ParaWise,
never requiring user attention. Most of the work in improving the parallelism
detected and in selecting the most profitable loops for parallel execution was
performed within the environment, allowing this to be achieved in a short time
period (a few hours) without any need for debugging the generated parallel code.
The Sun Performance Analyzer was used to determine which loops were perform-
ing poorly focusing the user’s effort in the CAPO browsers to the crucial code
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sections. For the mesh dimension intra-block parallel version, manual interven-
tion was only required in the final tuning phase where the amount of computation
in the parallel loops was small when compared to the related OpenMP overheads.
For the inter-block parallel version, most of the parallelization was performed
within the ParaWise environment. Additionally, the requirement of OpenMP
to define variables as PRIVATE or SHARED forces alteration to the calls us-
ing sections of the large work array (DA) as part of the mesh and workspace.
Currently, this needs to be performed manually, although an algorithmic ap-
proach that could be automated in CAPO may be possible in future versions.
By carefully choosing the number of threads on each parallelization level and
assigning blocks to the threads of the outer team the speed up of the nested ver-
sion of OpenMP could be improved. The inter-block parallelization also works
efficiently in combination with a vectorization on the loop level on the NEC SX8
parallel vector machine, which is particularly well suited for the TFS program.
Furthermore, thread binding and data migration, which is supposed to permit
higher performance on ccNUMA machines, was only profitable for a single level
of parallelization because of the way nested OpenMP parallelism is implemented
currently by the Sun Studio compilers. Thus we were not able to obtain a higher
speedup than 20 by using more than 64 threads on the Sun Fire E25K.
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Abstract. Recent emerging many-core-on-a-chip architectures present massive
on-chip parallelism through hardware support for multithreading. In order to
achieve fast development of parallel applications that exploit this massive intra-
chip parallelism to achieve highly sustainable performance, suitable program-
ming models are needed. OpenMP, the industry de facto standard for writing par-
allel programs on shared memory systems, could become a reasonable candidate.
To increase our understanding of the behavior and performance characteristics of
OpenMP programs on many-core-on-a-chip architectures, this paper presents a
performance study of basic OpenMP language constructs on the IBM Cyclops-
64 architecture, which consists of 160 hardware thread units in a single chip.
Compared with previous work on conventional SMP systems [1], the overhead of
OpenMP language constructs on C64 many-core architecture is at least one order
of magnitude lower.

1 Introduction

Although advances in IC processing technology have led to hundreds of millions (now
reaching 1 billion) of transistors to be fabricated on a single silicon die, the delivered
performance versus number of transistors integrated in a chip for conventional single-
thread wide-issue superscalar architectures keep declining over time. In order to utilize
the transistor budget and mitigate the effects of high interconnect delay, multi-core or
many-core-on-a-chip architectures are emerging. Instead of devoting the entire die to
a single and complex processor, this new generation of architectural technology pro-
poses to integrate a large number of tightly-coupled simple processor cores on a sin-
gle chip. The many-core-on-a-chip architecture naturally exploits the thread-level and
process-level parallelism, which are expected to be widespread in future applications
and multiprocessor-aware operating system and environments [2].

Cyclops-64 (C64) [3,4] is a petaflop supercomputer project under development at
IBM T.J. Watson Research Laboratory. The C64 chip architecture employs the many-
core-on-a-chip approach by integrating 160 processing cores on a single chip. To the
best of our knowledge, the C64 project is one of the most ambitious projects currently
under development. Unlike other academia projects, a Cyclops-64 system is planned to
be delivered in 2007.

Given the intra-chip parallelism presented by a many-core-on-a-chip architecture,
such as C64, it is important and challenging to provide high level parallel programming

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 230–241, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Performance Characteristics of OpenMP Language 231

models for application developers to efficiently map the inherent parallelism in appli-
cations to a large number of on-chip processing cores. As a de facto industry standard
for writing parallel programs on shared memory systems, OpenMP [5] is considered as
one of the possible candidates. Parallel application developers express parallelism, work
sharing, and synchronization through the OpenMP language constructs. For the purpose
of understanding the behavior and performance characteristics of OpenMP-based par-
allel programs on many-core architectures, it is important to evaluate the performance
of OpenMP basic language constructs, whose overhead accounts for up to 12% of the
total execution time in some instances [1].

To conduct a prototype study on high level parallel programming models, we ported
the Omni-1.6 OpenMP compiler [6] to C64, and optimized the Omni OpenMP runtime
system to adapt to the C64 hardware features [7]. In this paper, based on the number
reported by the EPCC microbenchmarks [8], we measure and evaluate the performance
characteristics of major OpenMP language constructs on a C64 many-core-on-a-chip
architecture with up to 160 cores. In addition, we compare our results to previous work
on conventional SMP systems and find remarkable differences. In some instances, the
overhead on C64 is one order of magnitude lower.

With our study we provide insight regarding the following aspects of software de-
velopment on many-core architectures: (1) we provide application developers a better
understanding of the behavior of OpenMP programs on a many-core architecture; (2)
we give library and compiler developers hints regarding possible optimizations and/or
language extensions specific to many-core architectures, specifically, to efficiently ex-
ploit multi-level memory hierarchies and fast intra-chip synchronization mechanisms;
(3) using the OpenMP runtime library optimization as an example to understand the
pros and cons of the C64 architecture, we provide software developers hints on how to
write and optimize programs for this type of architecture. To the best of our knowledge,
this paper is the first attempt that measures and evaluates the performance character-
istics of OpenMP language constructs on many-core-on-a-chip architecture with up to
160 cores.

2 Cyclops-64 Architecture

The Cyclops-64 (C64) [3,4] is designed to serve as a dedicated petaflop compute en-
gine for running high performance applications. A C64 system is built out of tens of
thousands of C64 chips connected through a 3D-mesh network. The C64 chip employs
the many-core-on-a-chip technology by integrating 160 hardware thread units, half as
many floating point units, the same number of embedded SRAM memory banks, and
the communication hardware in the same piece of silicon (see Figure 1).

A thread unit, the C64 computation cell, is a simple 64-bit, single issue, in-order
RISC processor operating at a moderate clock rate (500MHz). Efficient support for
thread level execution, such as thread sleep/wakeup, is incorporated in the thread unit.
Resource virtualization mechanisms are not provided by the hardware. For instance,
thread execution is non-preemptive, and there is no virtual memory manager.

The three-level (SP, on-chip SRAM, off-chip DRAM) memory hierarchy of the C64
chip is visible to the programmer. C64 does not employ data cache. Instead, a portion
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of each SRAM bank can be configured as scratch-pad memory, which provides a fast
temporary storage to exploit locality under software control. The integration of thread
units and memory banks on a single chip is further leveraged with a rich set of hardware
supported in-memory atomic instructions. Atomic instructions in C64 only block the
memory bank where they operate upon, while the remaining banks proceed servicing
other requests. This functionality facilitates the scalability of multithreading programs
with intensive synchronization operations.

C64 also employs the Network-on-Chip (NoC) concept, all on-chip resources are
connected to an on-chip crossbar network, which sustains a 4GB/s bandwidth per port
per direction, 384 GB/s per direction in total. Besides the crossbar network, all the
thread units within a chip connect to a 16-bit signal bus, which provides a means to
efficiently implement barriers.

3 Experimental Infrastructure

As shown in Figure 2, the C64 system software toolchain [9] is the infrastructure for
software and application prototype development on the incoming C64 system. The tool-
chain provides binary utilities (assembler, linker, etc.), GNU CC compilers (3.2.3 and
4.0.2), standard C and math libraries that are derived from those in newlib-1.10.0. A mi-
crokernel and the TiNy ThreadsTM(TNT) runtime system are customized for the unique
features of the C64 architecture [10]. The TNT library provides user and library devel-
opers an efficient Pthread-like API for thread level parallel programming purpose. The
OpenMP compiler and runtime environment is ported from Omni-1.6 [6]. We inves-
tigated and optimized the Omni OpenMP runtime library by exploring C64 hardware
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features, such as the explicitly visible and programmable memory hierarchy, the effi-
cient in-memory atomic instructions, the thread level execution support, and the fast
barrier synchronization through the on-chip signal bus [7].

All the experiments are conducted on a functionally accurate simulator (FAST) [11].
FAST is an execution-driven, binary-compatible simulator of a multi-chip C64 system.
It accurately reproduces the functional behavior and count of hardware components of
a C64 system. In addition, it generates timing information that accounts for the main
sources of pipeline delays and stalls such as contention in memory, the crossbar, and/or
other functional units. Although not cycle accurate, this information has proven to be
useful for performance estimation, characterization and application tuning as well [11].
FAST has been extensively used by the C64 architecture design team at IBM for the
purpose of chip design verification, and dozens of system software developer and ap-
plication scientists for early application development.

4 EPCC Microbenchmarks

In order to understand the performance behavior of an OpenMP application, we use
EPCC microbenchmarks [8] to measure the overheads of OpenMP language constructs.
The basic methodology employed by EPCC is as follows. First, a reference time is
obtained by executing a loop (or loop nests) sequentially without using any OpenMP
directive. Then, the overhead is calculated by comparing this reference time with the
execution time of the same code extended with OpenMP constructs.

There are three components of the EPCC microbenchmark. The synchronization
benchmark measures the overhead of OpenMP work-sharing and mutual exclusion
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directives, such as PARALLEL, PARALLEL FOR, BARRIER, CRITICAL, ATOMIC,
and REDUCTION etc.. The scheduling benchmark compares different scheduling poli-
cies – STATIC, DYNAMIC, and GUIDED. The array benchmark measures the over-
head of the PARALLEL directives with the PRIVATE, FIRSTPRIVATE, and COPYIN
clauses. We execute all three benchmarks on a single C64 chip with up to 128 threads
and report the experiment results in the next section.

5 Experimental Results

5.1 Synchronization Microbenchmark

Figure 3(a) compares the overhead of the PARALLEL , the loop, and the combined
parallel work-sharing PARALLEL FOR constructs. It shows that the PARALLEL FOR
construct has overhead similar to that of PARALLEL. This is because the overhead
of the FOR construct is much smaller than PARALLEL and remains almost constant.
From Figure 3(a) and (b), we can also see that the overhead of FOR is only slightly
higher than the overhead of BARRIER, which implies that the cost of FOR is mainly
due to the implicit BARRIER at the end of the loop.
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Note the high overhead of the SINGLE directive, especially when the number of
threads increases to 128. This is because the implementation of SINGLE is very expen-
sive in order to guarantee the semantics of SINGLE. The memory contention incurred
to complete the SINGLE operation rises dramatically when the number of threads in-
creases. SINGLE also suggests an implicit barrier.

Because the OpenMP runtime library is carefully designed and tuned to map to the
C64 hardware features, and the hardware components of C64 are tightly coupled in a
single chip, the PARALLEL and BARRIER constructs incur much lower overhead than
on conventional SMP systems. For example, a previous study [1] shows that the over-
head of the PARALLEL construct reaches 120 microseconds (108,000 cycles) when
running with 70 threads on a 72-node Sun Fire 15K system. Even while running with
128 threads, the same construct only presents a 63,020 cycles overhead. This observa-
tion implies that the thread management on a C64 like many-core architecture is much
more efficient than common SMP environments.

We customized the well-known linked-list-based MCS spin-lock algorithm [12] to
implement the low level lock acquisition and release primitives in the OpenMP runtime
library [7]. Unlike common SMP systems where the overhead of lock increases with the
number of threads, Figure 3(c) shows that the overhead of mutual exclusion constructs
in OpenMP remain within the same range without increasing dramatically. Even for
128 threads, the CRITICAL directive costs only 154 cycles.

The of overhead of the REDUCTION construct increases exponentially, as shown in
Figure 3(d). As future work, the reduction operation can be optimized in the runtime
library by taking advantage of the C64’s rich set of in-memory atomic instructions,
which can perform certain operations, such as addition, subtraction, and various logical
operations, atomically in memory. From our previous experiences with other bench-
marks, such as Table Toy [11], we expect to improve the performance of REDUCTION
dramatically.

5.2 Scheduling Microbenchmark

In OpenMP, there are three means for scheduling loop iterations among threads: STA-
TIC, DYNAMIC, and GUIDED [5]. Please note that EPCC only reports the overhead
of the GUIDED(n) scheduling policy for small values of n. Figure 4 compares different
loop scheduling policies when running on 1 to 128 threads. It is apparent that STATIC
and STATIC(128) always incur the lowest overhead in all cases. For the STATIC(n)
policy, STATIC(1) causes the largest overhead, and the overhead decreases to the over-
head of STATIC with increasing chunk size. Actually, the overhead of STATIC and
STATIC(n) increases slowly for runs from 2 threads to 64 threads. When 128 threads
are executed concurrently, the overhead is much larger than running with 64 threads
because of the high memory contention.

DYNAMIC(1), which is the most fine-grained scheduling policy, generates huge
overheads (3,621 microseconds) when running on 128 threads. This is because the small
chunk size causes frequent dynamic scheduling function calls, whose execution time is
counted as the overhead. As a result, the overhead of static scheduling is multiple orders
of magnitude smaller than dynamic scheduling.
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The overhead of the GUIDED(n) scheduling is always better than the DYNAMIC(n).
The GUIDED(n) policy starts with a large chunk size, then gradually decreases it to
n. Figure 4 also demonstrates that the STATIC policy always incurs lower overhead
than the GUIDED policy. The overheads measurement suggests that on C64 OpenMP
programmer should consider the STATIC scheduling policy as the first option for loop
scheduling, given the tasks can be statically balanced. Only if the benefit of dynamic
load balancing surpasses the scheduling overhead, the dynamic and guided scheduling
policy are worth being chosen.

In the OpenMP runtime library, the dynamic and guided scheduling functions are
implemented to frequently access the thread descriptor, and sometimes access the mas-
ter thread’s descriptor by acquiring a lock first. By taking advantage of the explicit
programmable multi-level memory hierarchy of C64, we place the thread descriptor
of each work thread into its own scratchpad memory, which guarantees very fast ac-
cesses, i.e., 1 cycle for a store, 2 cycles for a load. The master thread’s descriptor is
placed in on-chip global memory, whose access latency is longer than scratchpad but
smaller than off-chip memory. By leveraging the C64’s in-memory atomic instruction
and thread level execution support, the lock/unlock primitives used to guarantee the mu-
tual exclusion for accessing the master thread’s descriptor are efficiently implemented
as demonstrated in Figure 3(c) [7]. Therefore, compared with common SMP systems,
the overhead of loop scheduling is at least an order of magnitude lower on a C64-like
many-core-on-a-chip architecture. For example, as reported in [1], when running on
a 72-node Sun Fire 15K, the DYNAMIC(1) incurs an overhead of around 27M cy-
cles (30,000 microseconds) with 24 threads, while on C64 it costs 0.44M cycles with
32 threads, and 1.8M cycles with 128 threads. The overhead of STATIC scheduling is
9,000 cycles with 24 threads on a Sun Fire 15K [1], but only 743 cycles with 32 threads,
and 4,298 cycles with 128 threads on C64.

5.3 Array Microbenchmark

The array microbenchmark measures the overhead of the PARALLEL directive with
the PRIVATE, FIRSTPRIVATE, and COPYIN clauses. In the current design of C64
system software, the stack of a thread is placed in its own scratchpad memory and the
size of the stack is limited. As a result, in our experiments, we can only run the bench-
mark with an array size smaller than or equal to 729. As a work in progress, the C64
toolchain will provide support for automatic stack extension, a feature that allows ap-
plications that require more stack than available to continue running at the expense of
performance. When the stack area is exhausted, the runtime system automatically relo-
cates the stack into off-chip memory. Notice the relocation is performed very quickly,
as it requires setting a few registers and copying a few locations from the stack (but not
all). If at a later point, the stack shrinks, the runtime system undoes the changes and
sets the program stack back to scratchpad memory. However, in order to achieve good
performance, it is not recommended to declare large arrays on the stack (as automatic
variables), or make deep recursive function invocations in the program.

As shown in Figure 5, the PRIVATE and FIRSTPRIVATE clauses have similar over-
heads (the overhead of FIRSTPRIVATE is slightly higher). Compared with the PAR-
ALLEL constructs without any data-sharing attribute and data copying clauses, it is



238 W. Zhu, J. del Cuvillo, and G.R. Gao

 100

 1000

 10000

 100000

 1e+06

 128 64 32 16 8 4 2 1

Num of Threads

PRIVATE
FIRSTPRIVATE

COPYIN
PARALLEL

 100

 1000

 10000

 100000

 1e+06

 128 64 32 16 8 4 2 1

Num of Threads

PRIVATE
FIRSTPRIVATE

COPYIN
PARALLEL

(a) (b)

 100

 1000

 10000

 100000

 1e+06

 128 64 32 16 8 4 2 1

Num of Threads

PRIVATE
FIRSTPRIVATE

COPYIN
PARALLEL

 100

 1000

 10000

 100000

 1e+06

 128 64 32 16 8 4 2 1

Num of Threads

PRIVATE
FIRSTPRIVATE

COPYIN
PARALLEL

(c) (d)

 100

 1000

 10000

 100000

 1e+06

 128 64 32 16 8 4 2 1

Num of Threads

PRIVATE
FIRSTPRIVATE

COPYIN
PARALLEL

 100

 1000

 10000

 100000

 1e+06

 128 64 32 16 8 4 2 1

Num of Threads

PRIVATE
FIRSTPRIVATE

COPYIN
PARALLEL

(e) (f)

 100

 1000

 10000

 100000

 1e+06

 128 64 32 16 8 4 2 1

Num of Threads

PRIVATE
FIRSTPRIVATE

COPYIN
PARALLEL Overhead (cycles) of Data-Sharing At-

tribute and Data Copying Clauses (a)
array size = 1 (b) array size = 3 (c) array
size = 9 (d) array size = 27 (e) array size
= 81 (f) array size = 243 (g) array size
= 729

(g)

Fig. 5.



Performance Characteristics of OpenMP Language 239

also clear that the curves of PRIVATE and FIRSTPRIVATE almost match the curve of
PARALLEL constructs. This means attaching the PRIVATE or FIRSTPRIVATE clause
to the PARALLEL construct incurs negligible costs. In both cases, the compiler di-
rectly allocates the private array in the stack of each thread, which incurs no overhead
at runtime.

For FIRSTPRIVATE, the C library function bcopy is used to initialize the private
array by copying the contents of a global array. In the standard C library of C64, routines
like memcpy, and bcopy, are optimized and fine tuned. They are aware of the explicit
memory hierarchy. The C64 load and store multiple instructions are used to exploit the
memory bandwidth and save cycles from not issuing multiple instructions. In addition,
the instruction sequences are manually scheduled to hide memory accessing latencies.
Since the array size used in our experiments is small, the copying is performed very
efficiently. Therefore, no significant overhead is observed for FIRSTPRIVATE.

From Figure 5, the COPYIN clause generates one order of magnitude larger over-
head than the other two clauses. By attaching the COPYIN clause to the PARALLEL
directive, the Omni OpenMP compiler generates codes that dynamically allocate the
storage for thread private data. The heap manager allocates the thread private data in
the on-chip global memory. There are also overheads from lock/unlock operations for
using the memory allocator. Moreover, since the data is allocated in the global memory
at runtime, the latency of memory accesses in the loop body is much higher than ac-
cessing scratchpad memory. This is the reason why COPYIN has much larger overhead
than PRIVATE and FIRSTPRIVATE. This suggests a scope for possible optimizations
either in the compiler or the runtime system.

6 Related Work

Previous work [7] demonstrated a set of optimizations on the Omni OpenMP run-
time library by exploiting C64 hardware features. We introduced the optimization tech-
niques and demonstrated the effectiveness by showing the performance improvement
of OpenMP synchronization constructs compared to the unoptimized OpenMP runtime
library. This paper presents the measurement and evaluation of all major OpenMP lan-
guage constructs, including synchronization directives, scheduling policies, and array
clauses, with the optimized runtime library on C64. We also compare our results to those
previously reported on conventional SMPs. The purpose of this work is to provide the
application programmers, compiler and library developers a better understanding of the
behavior of OpenMP programs on a many-core architecture.

Most of the previous work on performance characterization of OpenMP were con-
ducted on the general purpose commercial shared memory SMP systems
[8,6,13,14,15,1]. Liao et. al. [16] evaluated OpenMP on chip multithreading platforms.
However, the chip multiprocessor (UltraSPARC III) evaluated in the paper only has two
cores. To the best of our knowledge, this paper is the first attempt to measure and evalu-
ate the performance characteristics of OpenMP language constructs on a C64-like (160
cores) like many-core-on-a-chip architecture.

In [17,18], the authors presented the experiment results of OpenMP NAS bench-
marks on an experimental Cyclops architecture. It is worth noting that this experimental
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architecture was a preliminary design of the Cyclops architecture and it is never to be
built, while the first C64 system is planned to be delivered in 2007. Also, this exper-
imental Cyclops architecture included data caches in the design, and the C64 system
employs scratchpad memory technology instead of data cache. Neither [17] nor [18]
conducted performance characterization of the OpenMP language constructs, since that
was not the purpose of those two papers.

7 Conclusion and Future Work

Multi-core or many-core-on-a-chip architecture tends to be widely accepted in the near
future. Given the massive intra-chip parallelism, a high level parallel programming
model is needed for fast and efficient application development. OpenMP is considered
as one reasonable candidate. In order to help the application developer and system soft-
ware designer to increase the understanding of the performance behavior of OpenMP
programs on many-core-on-a-chip architecture, this paper reports the performance char-
acteristics of OpenMP language constructs on the Cyclops-64 chip architecture, which
integrates 160 cores in a single chip. As for the future work, we would like to evaluate
the performance of OpenMP on C64 with application kernels and benchmarks, such as
NAS parallel benchmarks, and the SPEC OMP Benchmark suite.
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Abstract. Costly page migration is a major obstacle to integrating OpenMP and 
page-based software distributed shared memory (SDSM) to realize the easy-to-
use programming paradigm for SMP clusters. To reduce the impact of the page 
migration overhead on the execution time of an application, the previous re-
searches have mainly focused on reducing the number of page migrations and 
hiding the page migration overhead by overlapping computation and communi-
cation. We propose the ‘collective-prefetch’ technique, which overlaps page 
migrations themselves even when the prior approach cannot be effectively ap-
plied. Experiments with a communication-intensive application show that our 
technique reduces the page migration overhead significantly, and the overall 
execution time was reduced to 57%~79%. 

1   Introduction 

Since the OpenMP specification [1] was proposed as a standard shared-memory pro-
gramming model in 1998, there have been a variety of efforts to adopt OpenMP as an 
easy-to-use programming paradigm for parallel processing platforms, which range 
from small chip-level systems [2] to Grids. As commodity off-the-shelf symmetric 
multi-processors (SMPs) and high-speed network devices are widely deployed, SMP 
clusters have become an attractive platform for high performance computing. Accord-
ingly, there have been many studies [3][4][5][6][7][8][9][10] on applying the 
OpenMP programming model to cluster systems. An intuitive approach to realizing 
OpenMP for SMP clusters is to use an SDSM (Software Distributed Shared Memory) 
system, which transparently provides a single shared address space across distributed 
memory. Specifically, most of them utilize page-based SDSM systems, which keep 
memory consistency with a user-level page fault signal handler. 

The execution time of an application on a page-based SDSM system can be de-
composed into computation time, page migration overhead, synchronization over-
head, and signal handler overhead. We define a page migration as a procedure that 
sends a page request to the home node and receives the page reply for the request, and 
define the page migration overhead as the net time to complete all page migrations. It 
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is known that SDSM systems suffer from poor performance due to high synchroniza-
tion overhead and excessive accesses to the remote pages [11]. Therefore, the com-
mon challenge that the prior studies on OpenMP for SMP clusters confronted was 
how to overcome these intrinsic performance bottlenecks of the conventional SDSM 
systems. 

Their specific efforts were how to reduce page migration overhead and synchroni-
zation overhead. Specifically, their solution techniques can be categorized into five: 
implementing synchronization directives efficiently [5], reducing the shared address 
space [6][8], lessening the number of page migrations [4][5][6][8][9][10], reducing 
the page migration delay with fast communication HW and page update protocol [7], 
and hiding the page migration overhead by overlapping computation time and page 
migration overhead [6][10]. Some of these techniques are complementary, and conse-
quently can be applied independently to improve performance. 

In this paper, we assume that the number of page migrations is already minimized 
by other techniques. To lessen the page migration overhead for a given number of 
page migrations, previous studies have mainly focused on hiding the page migration 
overhead by overlapping the computation time and the page migration overhead. 
However, they are effective only if computation time is large enough to hide the page 
migration overhead. 

Specifically, this paper proposes a ‘collective-prefetch’ technique to lessen this 
page migration overhead. This technique analyzes the page access patterns and pre-
fetch remote pages by overlapping page migrations themselves. Note that our tech-
nique is different from the prior techniques in that it can be used even when computa-
tion cannot overlap communication. When this technique is applied to our target 
SDSM system, experiments with a communication-intensive application show that the 
page migration overhead was reduced to 30%~72% and overall execution time was 
reduced to 57%~79%. 

This paper is organized as follows. In Section 2, motivation of our research is pre-
sented with a communication-intensive application. Then, we explain the proposed 
technique in Section 3. We detail our implementation and present the experimental 
results using an OpenMP programming environment in Section 4. Finally, we draw a 
conclusion with some idea of future research direction. 

2   Motivational Example 

We used ParADE [5] as our target system. ParADE is an OpenMP-based parallel 
programming environment that consists of OpenMP translator, thread-safe SDSM 
based on HLRC (home-based lazy release consistency) protocol [11] with migratory 
home and multiple-writer protocol, and MPI library such as MPI/Pro. By executing 
the program in a hybrid model of software DSM and MPI, ParADE shows better 
performance than pure SDSM-based environment such as Omni/SCASH. 

Our motivational application is FT [12] that contains a computational kernel of a 3-
D Fast Fourier Transform (FFT)-based spectral method. Table 1 shows the number of 
page migrations and execution time breakdown of FT on ParADE for 2 ~ 8 nodes. To 
isolate the page migration overhead clearly, we use one computation thread for each  
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node to avoid overlapping computation and communication. The page migration 
overhead is over about 65% of the total execution time, much larger than the compu-
tation time. In consequence, overlapping computation time with page migration over-
head has little effect with this application. The possible improvement is no more than 
the computation time, about 13%~26%. Note that this poor performance is not due to 
any inefficiency of ParADE implementation. When we ran the same FT program on 
Omni/SCASH, the execution time was much longer than ParADE. 

Table 1. The number of page migrations and execution time breakdown of FT class A on  
ParADE 

Nodes Synchro-
nization 

Handler Compu-
tation 

Migration Execution 
Time(sec)

Page migrations of 
each node (times) 

2 1.54% 7.49% 26.18% 64.79% 116.29 115,968~116,399 
4 2.50% 6.52% 17.62% 73.36% 87.27 87,872 ~ 88,397 
8 5.62% 5.91% 12.87% 75.60% 59.16 51,648 ~ 52,187 

Like most page-based SDSM systems, ParADE uses a segmentation fault signal 
handler for page migrations [13]. Figure 1 demonstrates the memory consistency 
mechanism of a page-based SDSM. Any unprivileged access of a computation thread 
(at Node 0) to a page invokes the segmentation fault signal handler and then the han-
dler fetches the valid page negotiating with the owner (Node 1) of the page. The prob-
lem is that the handler is blocked for a long time, waiting for the reply. This makes 
the application experience long memory access latency during runtime. 
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Fig. 1. Page migration between nodes in the ParADE. Time runs down the page. 

The commonly used approaches to overcome such long latency problem are pipe-
lining and prefetching. Pipelining and prefetching have been proposed in different 
contexts such as Web [14], HPF [15], and SDSM without OpenMP [16]. These tech-
niques enable computation and communication to be overlapped. In contrast, we over-
lap page migrations themselves. Our technique does not reduce the latency of each 
page migration, but reduce the page migration overhead. Furthermore, it can be effec-
tive even when computation workload is small. 
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3   Overlapping Page Migrations 

In this section, we present the proposed technique with the inspector-executor model 
[17]. Our technique consists of two steps: generating the inspector-executor code and 
translating OpenMP code. Without any modification of an OpenMP source code, our 
OpenMP translator automatically generates the inspector-executor code from the source 
code. The inspector checks all references to the shared memory and collects page migra-
tions. The executor overlaps page migrations and executes the actual parallel loop. 

The OpenMP translator replaces the original parallel loop with the inspector-
executor code at the first step. Then, the OpenMP translator translates the inspector-
executor code at the second step. 

3.1   Inspector-Executor Code 

The OpenMP translator does a pre-processing step to generate the inspector-executor 
code before the OpenMP translates a parallel loop. For example, Figure 2 shows a 
simple OpenMP code segment where x and y are shared. 

 
#pragma omp parallel for default(shared) 
for(i=0;i<10000;i++) { 
  x[i] = y[i]; 
} 

Fig. 2. A target parallel loop in the original OpenMP code 

The OpenMP translator analyzes the parallel loop and generates the inspector-
executor code before the OpenMP translation. Figure 3 shows the inspector code for 
the parallel loop in Figure 2. The inspector collects page migration requests before the 
executor overlaps page migrations. The codes have the same parallel loop structure as 
the original loop except that they just identify the pages to be accessed without exe-
cuting the entire code block. A simple macro, CHECK_SHARED_ADDRESS, is 
used to inform the OpenMP runtime system of the pages that need to be fetched re-
motely. The inspector collects the information about the pages to be migrated before 
the real page migrations occur. 

 

#pragma omp parallel for default(shared) 
for(i=0;i<10000;i++) { 
  CHECK_SHARED_ADDRESS(&x[i]); 
  CHECK_SHARED_ADDRESS(&y[i]); 
} 

Fig. 3. Inspector code generated by OpenMP translator 

Figure 4 shows the executor code for the parallel loop in Figure 2. The executor 
code consists of a prefetch function call and the actual parallel loop. do_prefetch() 
function initiates the page migrations using the proposed page migration techniques 
discussed below. 
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do_prefetch(); 
#pragma omp parallel for default(shared) 
for(i=0;i<10000;i++) { 
  x[i] = y[i]; 
} 

Fig. 4. Executor code generated by OpenMP translator 

3.2   Multiple Prefetch Technique 

Figure 5(a) shows a simplified original page migration scenario between two nodes. 
The master thread creates a computation thread, which asks page requests one by one. 
The computation thread sequentially performs computation and page migrations, and 
joins the master thread after the parallel region ends. 
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Fig. 5. Original page migration and multiple prefetch technique 

The proposed technique reduces the page migration overhead by overlapping page 
migrations. An intuitive approach is to invoke multiple prefetch threads concurrently. 
We refer to this approach as multiple prefetch technique. The master thread creates 
prefetch threads in do_prefetch() function before creating the computation thread. 
Figure 5(b) shows that three prefetch threads overlap page migrations for a home 
node. While each prefetch thread completes page migrations one by one, a prefetch 
thread can send a page request to a home node even when other prefetch threads are 
waiting for page replies from the home node. Also, prefetch threads can concurrently 
send page requests to multiple nodes. Ideally prefetch threads may overlap page mi-
grations as many as the number of prefetch threads, which is not true in reality. All 
prefetch threads join the master thread after all page migrations end. Then, the master 
thread creates a computation thread, which does computation without page migrations 
and joins the master thread later. 

The drawback of this basic approach is difficult to decide the proper number of 
prefetch threads for the best performance. Though too many prefetch threads cause 
large context-switching overhead, very small number of threads cannot fully utilize 
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the overlapping effect. Moreover, the waiting time grows longer if multiple page 
requests arrive at one node simultaneously. Moreover, prefetch threads compete with 
the page server thread in each node so lengthen the delay of page server thread. 

3.3   Collective Prefetch Technique 

We propose the collective prefetch technique to overcome the problems of multiple 
prefetch technique. This technique is to send a list of page request once to a home 
node instead of sending page requests one by one. The master thread creates a collec-
tive prefetch thread that sends a page request list to the home node and receives pages 
from the home node continuously, as shown in Figure 6. The page server thread cre-
ates a collective page server thread. As all page requests initially arrive at a home 
node, the collective page server thread can send page replies continuously without 
idle time between page replies. This reduces waiting time for multiple page migra-
tions to waiting time for one page migration. Each thread joins its parent thread after 
all page migrations are completed. Then, the master thread creates a computation 
thread, which does computation without page migrations and joins the master thread 
later. 
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Fig. 6. Collective prefetch technique 

4   Experiments 

4.1   Experiment Environment 

The experiment platform is a Linux cluster consisting of 8 nodes interconnected by a 
Gigabit Ethernet switch. Each node has dual 2.4GHz Intel Pentium 4 Xeon processors 
and 1GB memory. We used Red Hat 8.0 Linux 2.4.18-14 SMP kernel for ParADE 
and Red Hat 7.3 Linux 2.4.18-3 SMP kernel for Omni/SCASH because the SCore 
5.6.1 package [18] installs Red Hat 7.3 and Omni/SCASH together. 
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We evaluated our technique with the FT kernel in the 3.0 NPB suite. We ported the 
original FORTRAN program to the C version for ParADE. We used the gcc compiler 
with the optimization level 3 (O3). 

4.2   Results 

We implemented the proposed technique into ParADE and analyzed the execution 
time of FT. Table 2 shows the page migration overhead of FT on ParADE with one 
computation thread per node, varying the number of prefetch threads for the multiple 
prefetch technique. The performance of the original ParADE without the proposed 
technique is used for the baseline performance. 

Table 2. Page migration overhead of FT on ParADE with one computation thread (seconds) 

Nodes Original Multiple-prefetch (# of prefetch threads) Collective 
  1 2 3 4 5 6 -prefetch 

2 75.34 68.84 43.56 33.59 29.49 24.93 23.18 21.94 
4 64.02 62.30 49.92 46.69 45.44 45.85 45.64 31.58 
8 44.72 58.79 51.23 47.44 46.57 46.84 47.22 24.45 

The table shows that the collective-prefetch technique reduces the page migration 
overhead to 30%~55% consistently as the number of nodes increases. As the number 
of prefetch threads increases, the multiple-prefetch technique reduces the page migra-
tion overhead more. But multiple-prefetch cannot reduce the page migration overhead 
additionally when the number of prefetch threads is over 6. Moreover, multiple-
prefetch shows performance degradation over 8 nodes. The main cause is that the 
page server thread competes with multiple prefetch threads to delay its responses. 
Though the multiple-prefetch technique reduces the page migration overhead to 
30%~70% on 2~4 nodes, the multiple-prefetch technique increases the page migration 
 

 

Fig. 7. Execution time breakdown of FT on ParADE with one computation thread (seconds) 
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overhead to 105% on 8 nodes. Note that the collective prefetch technique always 
outperforms the multiple-prefetch technique. 

The collective-prefetch technique reduces the execution time to 57%~66% for 2~8 
nodes.  Figure 7 shows the execution time breakdown of FT on ParADE for 2~8 
nodes. Original ParADE and collective-prefetch are represented as ‘org’ and ‘col’. 
‘inspector’ indicates the overhead of the inspector to check page requests and to make 
a list of page request for our technique. The overhead is less than 6% in all cases. 
Since the synchronization overhead, computation time, and the handler overhead are 
constant over the time, the change of the page migration overhead determines the 
change of the total execution time. 

Table 3 shows the page migration overhead of FT on ParADE with two computa-
tion threads per node. The performance of the original ParADE with two computation 
threads is used for the baseline performance. If we use more than one computation 
thread, computation and page migration are somewhat overlapped. The collective-
prefetch reduces the page migration overhead to 52%~72% consistently even when 
the number of nodes increases. However, multiple-prefetch shows the same character-
istics as when the number of computation threads is one. The difference between 
them is that the multiple-prefetch shows performance degradation over 4 nodes, ear-
lier than the case of one computation thread. Though the multiple-prefetch technique 
reduces the page migration overhead to 54% on 2 nodes, the multiple-prefetch tech-
nique increases the page migration overhead to 101% and 120% on 4~8 nodes. 

Table 3. Page migration overhead of FT on ParADE with two computation threads (seconds) 

Nodes Original Multiple-prefetch (# of prefetch threads) Collective 
  1 2 3 4 5 6 -prefetch 

2 44.81 70.18 45.20 34.60 29.63 26.98 24.25 23.22 
4 44.56 63.11 49.70 46.23 45.27 45.51 45.19 32.11 
8 39.60 59.95 50.39 47.40 47.85 45.86 47.79 24.41 

Though the number of computation threads varies from one to two, we expect that 
the page migration overhead is almost constant regardless of the number of computa-
tion threads because the number of page migrations is mainly dependent on the num-
ber of nodes of FT. The page migration overheads in table 2 and table 3 meet our 
expectation. However, the original ParADE shows reduced page migration overhead 
because two computation threads can hide page migrations. To evaluate the effect of 
overlapping computation and page migration, we increased the number of computa-
tion threads from 1 to 5 on a SMP node, as shown in Table 4. Though the execution 
time decreases as computation threads are created up to 4, the execution time starts 
increasing with more computation threads. In addition, FT shows non-deterministic 
behavior as more computation threads are used. FT often takes long execution time 
over 100 seconds. Such non-deterministic behavior is believed due to the fact that 
many computation threads affect thread scheduling and the page server thread is inter-
rupted by them. 
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Table 4. Execution time of FT on ParADE with varying computation threads (seconds) 

Nodes # of computation threads 
 1 2 3 4 5 

2 116.29 69.76 61.08 56.05 53.03
4 87.27 58.28 53.49 54.26 55.08
8 59.16 51.50 43.33 42.44 44.70

The collective-prefetch reduces the execution time to 65%~79%.  Figure 8 shows 
the execution time breakdown of FT on ParADE for 2~8 nodes. The change of the 
page migration overhead determines the change of the execution time. The difference 
of the execution times in Figure 7 and Figure 8 is the computation time reduced by 
two computation threads. 

 

Fig. 8. Execution time breakdown of FT on ParADE with two computation thread (seconds) 

In summary, the collective-prefetch reduces the page migration time of FT from 
45~75 seconds to 22 ~ 32 seconds consistently even when the number of nodes in-
creases. In percentage notation, the collective-prefetch technique reduces page migra-
tion overhead to 30%~72%, and reduces the execution time of FT to 57%~79%. 

5   Related Work 

In our experiments, we invoke multiple computation threads to overlap computation 
and page migration. There are other approaches to overlap overlapping computation 
and page migration overhead. Seung-Jai et al. [6] used dynamic scheduling to balance 
the execution time of nodes considering the page migration overhead. More computa-
tion is performed on a node experiencing less page migration. 

J.J. Costa et al. [10] presented ‘presend’ technique similar to our technique. ‘presend’ 
analyzes access patterns and prefetches necessary pages for the next parallel loop as 
soon as the current parallel loop ends. In other words, ‘presend’ learns the sequence of 
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loops and registers the memory regions that are accessed by the parallel loop. After a 
thread makes the page access list once, it sends the pages specified in the list whenever 
it finishes a loop. ‘presend’ overlaps the page migration overhead with the execution of 
“serial section” before the next parallel loop. So if the “serial section” is not large 
enough, the page migration overhead is not effectively hidden. And they only focused 
on overlapping the computation and the page migrations. Though they did not consider 
the effect of overlapping page migrations themselves, our experiments shows that over-
lapping page migrations themselves can improve the performance of an application. 
And ‘presend’ makes the page list once for a parallel loop. It can make the page predic-
tion difficult if a parallel loop accesses the shared array given as a parameter of a func-
tion. For example, in FT, as the argument of the function changes, a parallel loop ac-
cesses different memory region. In even that case, our approach can compute the correct 
page list because we newly make the page list every time. 

T. Mowry et al. [16] proposed another technique for an SDSM system, where pre-
fetch requests are invoked before the computation. Unless a requested page arrived 
earlier than the computation thread needs, it still experiences the page migration over-
head. In summary, the prior works to overlap computation and page migration are 
effective only when there is sufficient computation workload to hide the overhead. 

6   Conclusion 

Long latency of page migrations has been the major performance bottleneck of 
OpenMP on page-based SDSM for clusters. This paper shows that the proposed col-
lective-prefetch technique could reduce the page migration overhead effectively even 
when the computation can not hide the page migration overhead by the previous 
works. Experiments with a communication-intensive application show that our tech-
nique reduces the page migration overhead significantly, and the overall execution 
time was reduced to 57%~79%. 

The technique presented in this paper has been implemented manually. We are cur-
rently working on automating the translation in our OpenMP translator. Another re-
search issue is to develop a hybrid technique between the proposed one and the prior 
techniques considering computation-to-communication ratio of an application. 
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Abstract. Performance analysis of parallel applications requires a high degree 
of flexibility for the user to navigate through huge amounts of performance 
trace data. Many different statistics need to be calculated and compared in order 
to derive meaningful conclusions. In this paper we propose user-defined objects 
as a means to customize the analysis for different hardware platforms, pro-
gramming paradigms, or application areas. We describe how the concept is real-
ized in a development version of the SunTM Studio Performance Analyzer and 
demonstrate its usefulness for the analysis of a nested OpenMP application.  

1   Introduction 

Performance analysis of large-scale scientific applications poses the challenge of 
meaningful interpretation of a large amount of performance data.  A plethora of fac-
tors influence the performance of a parallel application, such as the hardware  
platform, the system software, and the programming model. Poor performance will 
usually be due to an intricate interaction of many components. This requires that 
many different metrics are calculated, attributed to different components and com-
pared to each other. The type of metrics and components will depend not only on the 
compute system, but also on the programming paradigm and even the type of applica-
tion. This requires a high degree of flexibility within a performance analysis system to 
collect performance data, calculate metrics, and allow for mapping of these metrics 
onto specific entities, such as subroutine calls or program counters. In an experimen-
tal version of the SunTM Studio Performance Analyzer we have introduced the concept 
of user-defined objects, which provide means for a user to introduce new entities to 
map performance metrics on. This way the analysis process can be tailored to specific 
needs arising from hardware, programming paradigm, and system and application 
software. The purpose of this paper is to describe how user-defined objects are sup-
ported by our analysis system and to demonstrate the usefulness of this feature when 
analyzing the performance of a nested OpenMP application on two different types of 
SMP (Symmetric Multiprocessor) systems. 

The rest of the paper is structured as follows: Section 2 gives an overview of the 
SunTM Performance Analyzer.  Section 3 describes the nested OpenMP application 



256 G. Jost, O. Mazurov, and D. an Mey 

used in our study. Timings and performance analysis are presented in Section 4. Re-
lated work is discussed in Section 5, where we also draw our conclusions.  

2   The SunTM Performance Analyzer 

The SunTM Performance Analyzer [5] is a general-purpose application level perform-
ance analysis tool. Performance data is collected during a program run and stored in 
an experiment data file. A GUI and a command line interface are available to navigate 
through the collected data.  Clock and hardware counter based profiling are provided 
on multiple platforms: SPARC, x86, x86-64, Solaris, Linux. 

The SunTM Performance Analyzer provides support for many parallel programming 
paradigms, such as OpenMP, MPI and hybrid MPI/OpenMP. Special efforts have 
been made to allow for the analysis of OpenMP programs. The concept of an 
OpenMP specific state of a thread was introduced. Examples for such states are 
Work, Reduction, Wait for work, or explicit/implicit barrier, depending on the 
OpenMP construct the thread is currently executing. At runtime, the performance data 
collection module communicates with the OpenMP runtime library in order to obtain 
specific information about the state of all OpenMP threads.  

Two special metrics are computed for OpenMP programs: Time spent in OMP-
work and time spent in OMP-wait. The sum of the two is always equal to the total 
time spent by a program across all parallel threads. The metrics are based on OpenMP 
thread states as reported by the OpenMP runtime library. For example: 

 
OpenMP thread state  Time attributed to 
Work OMP-work 
Reduction OMP-work 
Wait for work OMP-wait 
Implicit barrier OMP-wait 
Explicit barrier OMP-wait 

 
 

Other types of data recorded are hardware counter overflows, thread identifiers, 
CPU identifiers, a high-resolution timestamp, and a call stack. By default, the re-
corded data is attributed to functions, source lines, and disassembly instructions. The 
code generated by the SunTM Studio compilers for OpenMP constructs has the body of 
a parallel loop abstracted into a separate function, which may be called from either the 
master or the slave threads. A naming convention allows the tools to associate those 
functions with the original function from which the construct was extracted. There are 
two modes to examine the recorded trace data. In user mode the call stack is recon-
structed to reflect the users view by hiding internals of the OpenMP runtime library.  
All parallel instances of a function or a parallel loop have the same origin and can be 
traced back to the main program.  In machine mode, the call stack is presented as re-
corded, including details about the OpenMP runtime library. 

A typical task that the user conducts during performance analysis is the filtering of 
collected performance data. The analyzer provides support for the user to define fil-
ters. The user achieves this by specifying a filter expression, which is evaluated for 
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each data record to determine whether or not it is to be included. An example is a fil-
ter to calculate metrics only if the thread is in the OpenMP Work state mentioned 
above. 

In addition to filtering, the user will want to attribute the calculated metrics to cer-
tain entities. Most commonly, performance analysis systems provide means to map 
metrics onto function calls, source and assembly lines, and program counters.  

In an experimental version of the SunTM analyzer we have added a feature to allow 
for user-defined program objects. The objects are specified via a command language. 
A customized object can be constructed from basic data records such as thread identi-
fier (THRID), CPU identifier (CPUID), time stamp (TSTAMP), or virtual and physi-
cal memory addresses (VADDR, PADDR). The analyzer can compute any available 
metric for such objects and the object can be used to define data filters.  

For example, each thread within one process has a unique identifier THRID, which 
is recorded in the performance trace file. This identifier can be used to define a new 
object as follows: 

 
Thread: THRID 

 

An object Seconds is useful to see how performance metrics evolve over time. 
Such an object can be defined as follows: 
 
Seconds: (TSTAMP/1000000000), 
 

where TSTAMP is the time stamp recorded in the trace file.  

It is possible to define objects involving 2 or more basic record types. For example, 
time stamps and thread identifiers can be combined to provide for a linearized 2-
dimensional mapping of a metric for all threads at a certain time, such as: 
 
Thread_Second: THRID + 1000 * Seconds. 
 
The syntax also allows for the definition of hardware specific objects such as proces-
sor boards, memory boards, or cache lines. An object representing the processor board 
can be defined in terms of a CPUID, for example: 
 
Processor_Board: (CPUID&0x1fc)>>2 
 

An object representing a certain area of memory can be defined in terms of physical 
memory addresses, such as: 
 
Mem_Seg:(PADDR>=0x1C000000000)&&(PADDR<0x1C800000000). 
 

Last but not least, the program address space, which consists of the virtual memory 
allocations created by the operating system on behalf of the application, can be ex-
pressed in terms of virtual addresses, as in: 

 

Program_Seg:(VADDR>=0x7B000000)&& (VADDR<0x80000000) 
 

On the Solaris operating system the program address space can be displayed at run-
time using the pmap command. 
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3   The Flow Solver TFS  

The Navier-Stokes Solver TFS is a program library, which has been developed in the 
Institute of Aerodynamics of the RWTH Aachen University during the last 10-15 
years. It is well prepared for vectorization as it uses one-dimensional arrays to store 3-
dimensional geometries.  It uses block-structured grids with general curvilinear coor-
dinates and has also been parallelized on the block level using message passing such 
as supported by MPI [8] 

The package is currently used in a multidisciplinary project to simulate the airflow 
through the human nose [2], [3]. The goal is first to get a better understanding of the 
functioning of the human nose and then to provide a work flow for computer assisted 
surgery allowing the physician to first perform a virtual surgery in a virtual reality 
environment. This provides the opportunity to verify the success of such an operation 
by another computer simulation before the actual surgery on the patient. 

As the geometry of the human nose is quite complex, the simulation uses a mathe-
matical grid consisting of 32 blocks, which vary in size considerably. So far the block 
level has not been parallelized using MPI for this problem case. The program can also 
be parallelized on a loop level using OpenMP. Nested parallelization, employing 
OpenMP on loop and block levels has been accomplished using the ParaWise auto-
matic parallelization environment [7]. 

Selecting a dynamic schedule for the loop was the first approach to handle the re-
sulting load imbalance. It yielded a better workload distribution than static schedul-
ing. There were still situations, however, where a relatively large block was scheduled 
to one thread at the end of the loop, forcing all the other threads to be idle during this 
time. As the block sizes remain constant during the whole runtime of the program, the 
blocks can easily be sorted and optimally distributed to a given number of threads on 
the outer parallel level in order to reduce the overhead of the dynamic schedule and to 
avoid idle threads. This strategy was employed for nested OpenMP parallelism. More 
details are described in [6]. 

4   Performance Analysis Case Study 

For our study we used two UltraSPARC IV (US IV) based SunTM (SF) Fire systems 
located at the Sun Microsystems Benchmarking Center in Hillsboro, OR. The follow-
ing provides a brief description of the systems.  One system is a SF E6900 node with 
24 US IV processors and 100GB of shared memory. The other system is a SF 
E25K node with 72 US IV processors and 144GB of shared memory. The US IV 
consists of two superscalar 64-bit processor cores with 2 levels of separate cache 
each. The level 1 cache resides on chip and has 64 KB for data, the level 2 cache 
is off chip and has 8 MB for data and instructions. The processors have a 1350 
MHz clock rate. The SF Fire E6900 has an almost flat memory system, in other 
words about 235ns (local access) and 274ns (remote access). The SF 25K nodes 
provide a cc-NUMA memory system where data locality is important. The la-
tency for memory access within a board is about 248ns and remote access has a 
latency of approximately 500ns.  
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Two important performance issues, which arise in multilevel parallel programs, are 

• workload balancing and 
• remote memory access on cc-NUMA architectures.  

We will show how to address these issues during performance analysis using custom-
ized objects. 

4.1   Detecting Load Imbalance 

The timings for the TFS benchmark when employing single level OpenMP paralleli-
zation using 16 threads are shown in Fig 1. The timings were obtained with nested 
parallelism enabled, but employing all 16 threads on the outer parallel region. The 
figure shows that the timings are approximately the same on both systems under con-
sideration. The scalability is poor with a speed-up of about 5 for 16 threads. Table 1 
shows the performance metrics attributed to functions calls. 

The fact that about 584 seconds out of 1255 seconds are spent in barrier time hints 
at a load-balancing problem. In order to determine whether workload imbalance is a  
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Fig. 1. Timings in seconds for TFS employing single level parallelism 
 

Table 1. Performance metrics attributed to subroutine calls 
 

User CPU secs OMP-work OMP-wait Name 

1255.81 489.47 815.54  <Total> 

584.08 0 588.14  <OMP-implicit_barrier> 

207.35 0 209.41    <OMP-idle> 

124.03 130.52 0   $d1S1010.ausm_ 

60.8 61 0   $d1dK6930.mbcrct_ 

30.19 33.96 0   $d1dR7030.addblk_ 

23.48 24.73 0  $d1hH14108.visc_ 
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problem, we would like to see performance metrics attributed per thread. We use the 
Thread object discussed in Section 2 and choose as metric OMP-Work time and the 
number of executed instructions per thread. Further more, we employ the filtering 
capability to calculate the metric only when the thread performs work. The results are 
shown in Table 2 

 

Table 2. Performance metrics attributed to threads 
 

User CPU secs 
OMP-Work secs #Instructions

# Instructions 
 in OMP-work 

 

1255.81 489.47 1078610415814 211490226130 <Total> 

71.81 80.12 35590034473 34010034291 Thread_1 

79.86 36.57 62210026312 13530014562 Thread_2 

79.76 24.82 69520022695 10070010710 Thread_3 

80.09 12.1 76530018343 5470006118 Thread_4 

79.87 12.94 79480021875 5950006704 Thread_5 

79.68 18.5 73190020725 8180008633 Thread_6 

78.24 46.11 57760030882 18150019242 Thread_7 

79.64 12.65 76500018686 6180006560 Thread_8 

79.26 16.37 78120022989 6860007064 Thread_9 

77.55 47.55 60160036650 21810025045 Thread_10 

77.42 56.01 54850036724 24470025183 Thread_11 

78.2 35.42 64470027186 15100015265 Thread_12 

79.26 14.28 78950022738 6620007468 Thread_13 

79.31 12.77 76280018887 5810006739 Thread_14 

76.86 47.71 59790036156 21780024275 Thread_15 

79.11 15.55 75210020493 7500008271 Thread_16 

 
There is no imbalance in CPU time, but there is an imbalance in OMP-work time. 

The question arises whether this is due to the actual computational workload of the 
threads or whether it is due to increased memory access time by certain threads. The 
instructions per thread (column 3 in Table 2) do not indicate a noticeable imbalance. 
Threads do execute instructions while waiting for work. What we are really interested 
in are the instructions that are executed during OpenMP Work time. This metric can 
be calculated by specifying a filter as discussed in Section 2. As can be seen from 
column 4 in Table 2, the number of instructions during OpenMP Work time indicates 
an imbalance in the computational workload. Threads 1,2,3,7,10,11,12 and 15 execute 
many more instructions than threads 4,5,6,8,9,13, 14 and 16. The example shows that 
it is important to distinguish metrics between different thread states. 
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In order to determine where the imbalance occurs we use the Thread_Second view 
described restricted to OMP-wok, as described in Section 2. Fig 2 shows a graphical 
display of the view, with three charts displaying metrics User CPU Time, # Instructions, 
and Data Cache Stall Time from top to bottom. The view zooms in on a series of objects 
showing a representative pattern. For each metric, 16 consecutive bars show the metric 
for different threads accumulated during one second. The image shows areas where all 
threads execute few instructions and areas with high instruction counts. For the areas 
with high instruction counts, there are notable differences in the number of instructions 
between the threads. By selecting such an area (indicated by the vertical line in the im-
age), the user can navigate to the corresponding call-stack information that was col-
lected during the run and find that it occurred within a nested parallel region. OpenMP 
offers two approaches to improve the workload balance: dynamic work scheduling via 
the SCHEDULE clause or the use of nested OpenMP parallelism. We tried both tech-
niques. The timings for the different approaches are shown in Fig. 3. These timings 
were obtained employing 4 threads on the outer parallel region and using the load bal-
ancing algorithm of the application as described in Section 3 to set the number of 
threads on the inner level. The figure shows that nested OpenMP parallelism outper-
forms dynamic work scheduling on the E6900. The instructions during OpenMP Work 
 

 
 

Fig. 2. The image shows performance metrics displayed per thread and second. The upper chart 
displays User CPU Time, the middle chart displays the number of Instructions, and the lower 
chart displays Data Cache Stall Time. In each chart, 16 subsequent vertical bars show the met-
ric for each of the 16 threads for a particular second of execution time. The image shows that 
there are time intervals with high and low numbers of instructions. 
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TFS Timings on 24 US-IV E6900
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Fig. 3. Timings for TFS employing different work scheduling strategies. The timings for nested 
parallelization are reported for the best nesting combination. 
 

Table 3. Performance metrics after improving the workload balance using nested OpenMP 
 

User Time 
sec 

OMP Work 
sec 

# Instructions in OMP 
Work 

Name 

40.45 54.06 19590017616 Thread_1 

28.96 30.44 12490013246 Thread_2 

26.16 27.46 11480012732 Thread_3 

27.26 28.74 13700015667 Thread_4 

27.09 29.23 12670013394 Thread_5 

26.77 29.01 12600013109 Thread_6 

26.11 28.34 13110014213 Thread_7 

26.06 28.51 12910014123 Thread_8 

27.15 29.71 12830013552 Thread_9 

26.2 28.96 12820013572 Thread_10 

25.01 27.6 12850013872 Thread_11 

23.91 26.39 12380014310 Thread_12 

26.69 29.69 13180013639 Thread_13 

24.98 27.62 13040014575 Thread_14 

27.88 28.98 12750013506 Thread_15 

24.05 27.01 12910013664 Thread_16 

time show a much better distribution when employing nested OpenMP parallelism as 
can be seen in Table 3. The table also indicates a significant decrease in CPU time per 
thread. 
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5.3   Examination of Memory Access 

On cc-NUMA architectures such as the SF E25K the placement of memory and 
threads onto processor and memory boards has a great impact on the performance. 
While nested OpenMP yielded a performance increase on the SF E25K based system, 
it lacked the scalability observed on the E6900.  

Objects Processor_Board and Memory_Board can be defined using the 
CPUID and PADDR entries in the data records employing techniques as described in 
Section 2. Mapping data cache stall time onto these objects yields the information 
displayed in Table 4. The user can define a filter to count metrics only when memory 
is accessed, which is not local to a processor board by a logical expression of the 
form: 

 

Processor_Board (ID_list) && !Memory_Board (ID_list) 
 

Mapping Data Cache Stall Cycles and Remote Data Cache Stall Cycles onto 
threads yields the results shown in Table 5.  The table indicates that threads 1 to 8 
show stall time due to remote memory access. The same methods used to determine 
areas of workload imbalance can be employed to find out where the memory stall 
time occurs. 

One problem we encountered when trying to improve memory locality in our ap-
plication was, that the thread team composition for the execution of the inner parallel 
regions changes during the course of the execution. This is due to the implementation 
of nested OpenMP parallelism in the current SunTM compiler, which is based on re-
questing threads from an available pool at the entry to inner parallel regions. We are 
working on enhancements to thread runtime library to allow for the definition of fixed 
thread teams, working together on inner parallel regions during the program’s execu-
tion. At this time we do not yet have results available which demonstrate the impact 
on the performance.  

 

Table 4. Data cache stall cycles mapped onto memory and processor boards 
 

DC Stall Cycles Memory Board 

97.7 Memory_Board Memory Object 0 

87.5 Memory_Board Memory Object 1 

0.4 Memory_Board Memory Object 6 

0 Memory_Board Memory Object 10 

DC Stall Cycles Processor Board 

48.1 Processor_Board Memory Object 9 

47.1 Processor_Board Memory Object 8 

46.2 Processor_Board Memory Object 1 

44.3 Processor_Board Memory Object 0 
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Table 5. Data cache stall cycles mapped onto threads 
 

Total DC Stall Cyles Remote DC Stall  

13.21 3.02 Thread_1

11.48 4.89 Thread_2

11.11 5.58 Thread_3

12.71 9.1 Thread_4

12.91 7.09 Thread_5

12.44 5.85 Thread_6

12.28 5.34 Thread_7

11.93 6.28 Thread_8

12.31 0 Thread_9

12.55 0 Thread_10

12.11 0 Thread_11

12.59 0 Thread_12

12.81 0 Thread_13

12.37 0 Thread_14

12.62 0 Thread_15

12.79 0 Thread_16

6   Related Work  

There are a number of commercial and research performance analysis tools that have 
been developed over the years. We can only name a few of them and we will focus on 
research projects.  An example for a commercial product is the Intel® Trace Analyzer 
and Collector [4] which offers runtime event tracing and graphical analysis of 
OpenMP, MPI, and hybrid MPI/OpenMP applications. It displays metrics for an arbi-
trary time interval, subroutine execution metrics and call-tree statistics. An example 
of a research project is TAU (Tuning and Analysis Utilities) [12] which was devel-
oped at the University of Oregon.  It is a freely available set of tools for analyzing the 
performance of the C, C++, Fortran and Java programs. The current study distin-
guishes itself from previous work on TAU in that it describes how user-defined ob-
jects can be helpful to analyze real-world applications based on OpenMP. There are 
older systems such as SIMPLE [1] developed at the University of Erlangen, Germany. 
It consists of a performance analysis environment for parallel and distributed systems 
and is based on monitoring concurrent interdependent activities. SIMPLE provides a 
command language for filtering, statistics calculation, and visualization generation. It 
is, however, a research project and not integrated into a commercial software product. 
The Paraver visualization and analysis tool [11] was developed at CEPBA-UPC 
(European Center of Parallelism of Barcelona-Technical University of Catalonia). It 
has its own tracing module, OMPItrace [9], and provides very extensive analysis  



 Adding New Dimensions to Performance Analysis Through User-Defined Objects 265 

capabilities, including great flexibility in defining and mapping of performance met-
rics. While Paraver provides means for user-defined metrics, it does not, to our 
knowledge, allow user-defined objects. Another difference to the techniques de-
scribed in this paper is, that Paraver requires the specification of filters and mappings 
by designing configuration files via a graphical user interface. We feel that using a 
command language as described in this paper provides a more elegant and flexible 
approach. 

7   Conclusions  

In this paper we have described the concept of user-defined objects in performance 
analysis, which adds another degree of flexibility to analyze parallel programs. We 
have implemented the feature in an experimental version of the SunTM Studio Per-
formance Analyzer, by allowing the specification of objects and filters via a command 
language. The usefulness was demonstrated for the analysis of a nested OpenMP ap-
plication.  We found that by defining objects to be used for filtering and mapping of 
performance metrics, performance analysis can be customized to particular program-
ming paradigms, hardware platforms, and application areas. In addition, saving the 
definition of customized objects and filters provides means to transfer knowledge 
from an expert to the novice user, thereby bridging the gap between tool developer 
and casual user. 
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Abstract. This article describes how the integration of the OpenUH
OpenMP compiler with the KOJAK performance analysis tool can assist
developers of OpenMP and hybrid codes in optimizing their applications
with as little user intervention as possible. In particular, we (i) describe
how the compiler’s ability to automatically instrument user code down
to the flow-graph level can improve the location of performance problems
and (ii) outline how the performance feedback provided by KOJAK will
direct the compiler’s optimization decisions in the future. To demon-
strate our methodology, we present experimental results showing how
reasons for the performance slow down of the ASPCG benchmark could
be identified.

1 Introduction

Many tools have been created to help find performance bottlenecks and tune
parallel codes written using the hybrid MPI/OpenMP programming model. Yet
tool use remains labor-intensive and fragmentary. Our goal is to improve the ap-
plication development and tuning process by creating an integrated environment
for parallel program optimization that reduces the manual labor and guesswork
of existing approaches. We are developing strategies that enable the applica-
tion developer, compiler and performance tools to collaborate and that generate
code based upon a variety of sources of feedback. To demonstrate our ideas, in
this paper we describe the integration of existing, open source software - the
OpenUH compiler [10] and the automatic trace analysis tool KOJAK [19] – into
a single, coherent environment, called COPPER, for collaborative application
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tuning. The integrated application optimization environment permits a variety
of user and tool interactions to solve performance problems, such as compiler
assistance in the instrumentation of an application, and provision of high-level
feedback information by performance tools to direct the compiler in further
optimizations.

In Section 2 we present related work of tools that support different aspects
of performance feedback analysis and optimizations. In Section 3 we give an
overview of our system and describe its components. Section 4 describes how
OpenUH and KOJAK interact and APIs used to accomplish this interaction.
Section 5 describes the feedback optimization facility in OpenUH and how it can
be extended to support OpenMP optimizations. Section 6 describes the initial
evaluation of our system and experimental results using the ASPCG kernel. In
Section 7, we present our conclusions and plans for future work.

2 Related Work

Profile-guided optimization (PGO), where a program is compiled and executed
to collect execution profiling information that is later used to perform optimiza-
tion in a subsequent compilation step, has been exploited by modern static com-
pilers to achieve significant speedups [4]. On the other hand, dynamic feedback
optimizations have been mainly explored for runtime optimizations [2] [6] [5], dy-
namic compilation [3] and the Java environment [1], where profiling and sampling
information is collected to direct run time optimizations. Unfortunately most of
these systems do not support an integrated environment for MPI/OpenMP code
optimizations and do not take advantage of automatic performance analysis that
searches large amounts of performance data to locate inefficiencies on a higher
level of abstraction.

Existing state-of-the-art performance tools addressing the combined use of
MPI and OpenMP in a single application, such as TAU [11], VGV [7], and
VAMPIR [14] deliver valuable performance feedback, albeit on a relatively low
level of abstraction. Higher-level information obtained from an automatic analy-
sis of trace data is provided by KappaPi [8], but only for pure message passing
applications. Aksum [16], Paradyn [12], and Periscope [15] offer automatic per-
formance analysis features for both MPI and OpenMP applications, but make
certain assumptions about the deployment infrastructure that make them less
suitable candidates for integration with the OpenUH compiler.

3 Overview

Figure 1 depicts the overall architecture of the envisioned COPPER environment
and how it relates to the application optimization process. The process starts
with the instrumentation of OpenMP constructs on the source-code level using
a preprocessor called OPARI [13]. In the next step, the application is compiled
by OpenUH and, at the same time, the compiler inserts instrumentation into
the user code to generate traces for KOJAK. After application termination,
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KOJAK analyzes the resulting trace file and provides higher-level feedback that
is returned to OpenUH’s feedback optimization module. The initial version of
the COPPER environment, as described in this article, so far only integrates
OpenUH and KOJAK by using compiler-based instrumentation. The KOJAK
feedback is currently returned to the end user instead of the compiler. We hope
to close the automatic feedback loop in the near future. Also, in a later step we
plan to include the PerfSuite profiling tool [9] into the feedback loop for initial
performance assessment and analysis of the OpenMP runtime system.

Fig. 1. COPPER architecture

The following sections describe each of the components more in detail.

3.1 OpenUH

OpenUH [10] is a compiler suite that supports C/C++ and Fortran 90/95 with
OpenMP and/or MPI on the IA-64 running Linux. OpenUH is based on Open64,
originally developed by SGI, subsequently maintained by Intel and now sup-
ported commercially by Pathscale for Opteron architectures. OpenUH is avail-
able as an open source compiler. The major functional parts of the compiler
are the front ends, the inter-language interprocedural analyzer (IPA), and the
middle-end/back end, which is further subdivided into the loop nest optimizer,
auto-parallelizer (with an OpenMP optimization module), global optimizer (or
whole program optimizer), and code generator. OpenUH currently supports
OpenMP 2.0. OpenMP is lowered during different compilation phases. The out-
put code makes calls to a portable run-time library based on Pthreads. The
description of how OpenMP is translated in OpenUH can be found in [10].
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3.2 KOJAK

KOJAK is an automatic performance analysis system for MPI, OpenMP, and hy-
brid applications written in C/C++ or Fortran. It is based on automatic pattern
search in event traces and uses different interoperable components to support
the analysis cycle from trace generation to visualization of analysis results.

In the COPPER environment, user regions are automatically instrumented by
the OpenUH compiler. The OpenUH compiler supports the instrumentation of
function, loop, conditional branch, and compare and goto program units.
OPARI [13] performs automatic instrumentation of OpenMP constructs accord-
ing to the POMP profiling interface for OpenMP. Section 4.1 describes OPARI
and POMP in more detail. Instrumentation of MPI functions is fully automated
by interposing an MPI wrapper library based on the PMPI profiling interface.

At runtime, the instrumented executable generates a single trace file that
can be searched off-line for inefficiency patterns using the EXPERT analyzer
[19]. The patterns concentrate on wait states resulting from suboptimal parallel
interaction. Those can appear in MPI point-to-point or collective communication
when processes have to wait for data sent by other processes or in OpenMP when
threads reach a barrier at different points in time or when threads compete for
the ownerships of locks. Low CPU and memory performance can also be analyzed
by adding hardware counter information to event records.

The analysis process transforms the traces into a compact XML representation
that maps higher-level performance problems onto the call tree and the hierarchy
of system resources, such as nodes, processes, and threads. The XML file can
be viewed in the CUBE performance browser (see Figure 4) or, alternatively,
automatically processed by third-party tools using the CUBE API.

4 Tool Interactions

This section describes how KOJAK and the OpenUH compiler instrument
OpenMP constructs and user regions, respectively. The profiling interface and
advantages of using KOJAK high-level feedback are also presented.

4.1 OpenMP Instrumentation

Similar to the MPI profiling interface PMPI, Mohr et al. [13] defined a portable
API that exposes OpenMP parallel execution to performance tools. The perfor-
mance interface is called ”POMP”. The POMP API consists of callback functions
that are called before and after all OpenMP constructs and runtime routines.
The callbacks can be inserted into the program during OpenMP compilation,
through a source or binary instrumentation tool, or activated by an instrumented
OpenMP runtime system.

OPARI [13] is a source-to-source translation tool that can add POMP instru-
mentation to C, C++, and Fortran programs. When reading a parallel program
containing OpenMP directives, KOJAK automatically invokes OPARI to insert
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POMP performance calls where appropriate. As a final step of the instrumenta-
tion, KOJAK links the application with a library implementing the POMP API
to generate appropriate events and write them to the trace buffer. Thus, with
the help of the PMPI library and the OpenUH user-region instrumentation, our
approach provides a fully automatic solution to the instrumentation of OpenMP
and mixed-mode MPI/OpenMP applications.

4.2 OpenUH Instrumentation and Profiling Interface

Compile-time instrumentation has several advantages over source-level and
object-level instrumentation. We can use the compiler analysis to detect regions
of interest where we can measure and instrument certain events to support dif-
ferent performance metrics. Also, the instrumentation can be performed at dif-
ferent compilation phases, allowing certain optimizations to take place before
the instrumentation. These capabilities play a significant role in the reduction of
instrumentation points, improve our ability to deal with program optimizations,
and reduce the instrumentation overhead and size of performance trace files.

The instrumentation module can be invoked at six different phases during
compilation, which are before and after three major stages in the translation:
interprocedural analysis, loop nest optimizations, and SSA/DataFlow optimiza-
tions. For example, if the user decides to instrument the source code after the
interprocedural analysis phase, program transformations such as procedure in-
lining will reduce the instrumentation points for callsites and the compiler will
instrument the body of the procedure being inlined.

The OpenUH compiler provides an interface to enable the instrumentation
of three types of user regions: functions, conditional branches, and loops. The
instrumentation of other types of regions such as MPI operations and OpenMP
constructs are avoided so that they can be handled by the profiling libraries of
PMPI and POMP. Procedure and control flow instrumentation is essential to
relate the PMPI and POMP results to the execution path of the application.
We plan to integrate the POMP instrumentation in later versions of OpenUH.
For now we are using OPARI to do it. Additionally, the user has the option to
instrument his code after OpenMP gets translated to threading code (by setting
a special compiler flag). In this case the OpenMP runtime system specific calls
are additionally instrumented by the compiler.

Each user-region type is further divided into several sub-categories when-
ever possible. For instance, a loop type may be do loop, while do loop or
do while loop. Conditional branches may be of type if then, if then else,
true branch, false branch, or cselect. The name of the sub-category is com-
municated back to KOJAK through the profiling interface and later displayed
in the call-tree view of the KOJAK GUI. This detailed presentation provides
users with a fine-grained control flow graph in which taken branches, untaken
branches, and specific loops are all displayed.

The compiler instrumentation is done by first traversing an intermediate rep-
resentation of a program to locate different program constructs. The compiler
locates starting and exit points of constructs such as procedures, branches and
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loops to insert specific profiling calls at these points. The compiler profiling in-
terface API is defined as follows. Argument begn ln represents the beginning
line of the region, and end ln represents the end line of the region. type indi-
cates the specific subtype of the region. pu name is the name of a function or
subroutine.

– Functions to initialize and finalize the profiling library:
void profile_init(void)
void profile_finish(void)

– Subroutine entry and exit functions:
void profile_invoke(char *pu_name, INT32 begn_ln,

INT32 end_ln, char *file_name)

void profile_invoke_exit(void)

– Conditional branch entry and exit functions:
void profile_branch(BranchSubType type, INT32 begn_ln,

INT32 end_ln, char *file_name)

void profile_branch_exit(void)

– Loop entry and exit functions:
void profile_loop(LoopSubType type, INT32 begn_ln,

INT32 end_ln, char *file_name)

void profile_loop_exit(void)

The interface has been implemented in KOJAK as part of the trace library to
generate appropriate events upon region entry and exit.

4.3 KOJAK High-Level Feedback

To optimize a parallel application based on the MPI/OpenMP programming
model, developers usually want to see whether the application is load imbalanced,
where the synchronization overhead lies, and where there are opportunities to over-
lap computation and communication. For each parallel region, KOJAK is able
to display the execution time broken down by call path and thread or process.
The identification of wait states in combination with the distinction of differ-
ent OpenMP constructs and user-region types simplifies the comparison of loop
scheduling strategies and the validation of the program design. OpenMP parallel
for and parallel sections constructs are two common cases where KOJAK can be
used.

When the hardware counter feature is enabled, performance data supplied
by the PAPI library is also recorded in the trace file. The hardware counter
information will help us to correct CPU and memory anomalies such as unevenly
distributed L1/L2 cache miss rate, significantly high TLB misses, and long stalls
of the pipeline across a group of threads.

In a later stage of the integration project, the OpenUH compiler will read
the analysis results from the XML file and automatically perform optimizations.
The feedback mechanism to be used for this purpose is described below.
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5 Compiler Optimizations for OpenMP

OpenUH has a basic facility for performing feedback-directed optimizations,
which are accomplished via the automatic insertion of instrumentation and com-
piler annotation of the profiling results in the intermediate representation. It is
able to use this facility to improve procedure inlining and branch prediction and
to improve the cost modeling analysis for loop nests. The current feedback in-
frastructure supports profiling results at the procedure and control flow level of
the procedure. Our main focus has been to extend this infrastructure to sup-
port hybrid OpenMP/MPI code optimizations. Our initial focus explores loop
transformations to alleviate the problem of parallel loop load imbalances. Feed-
back information from KOJAK gives the compiler cost modeling information
related to the parallel overhead of a given transformation. For example, if KO-
JAK reports a synchronization problem (e.g. long waits at a barrier) because of
load imbalances, the compiler will assign a high cost for parallel synchroniza-
tion overhead. Based on dependence analysis and interprocedural array region
(array data-flow analysis) information, the compiler will try out a set of loop
permutations, including loop interchange, loop tiling and outer loop unrolling,
to alleviate the problem. The compiler also applies different strategies, including
attempting to determine which loop in the nest is most profitable to parallelize
and determining an appropriate scheduling strategy, and chunk size.

6 Experimental Results

To illustrate our approach, we performed an experimental analysis of the dif-
ferent process/thread allocation strategies for the ASPCG sparse linear algebra
kernel [18]. Large sparse linear systems that are used in simulation of turbulent
flow calculation in complex geometries typically have several million unknowns.
The ASPCG kernel from Virginia Tech solves such systems with a preconditioned
conjugate gradient(PCG) method. The iterative CG method uses a two-level ad-
ditive Schwarz preconditioner which adopts a domain decomposition approach to
compute solutions on subdomains. The code is available in serial, MPI, OpenMP,
and hybrid versions. For our experiments, we used the hybrid version and com-
piled ASPCG with the OpenUH compiler.

The experiments were performed on NCSA’s SGI Altix machine which consists
of two SMP systems running the Linux operating system. Each system has 512
Intel Itanium2 1.6 GHz processors. Figures 2, 3, and 4 show performance analysis
results for the PCG method preconditioned by the additive Schwarz method for
the problem size of 8194×8194. The GUI windows displayed include three trees.
The left tree represents performance properties, the middle tree represents call
paths of the source code, and the right tree represents system resources. The
numbers represent percentages of the overall execution time.

We conducted two experiments on 32 processors with 8 processes 4 threads
each and 4 processes 8 threads each respectively (i.e., 8 × 4 and 4 × 8 config-
urations). The walltime is about 35 minutes to execute the 8 × 4 experiment
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Fig. 2. Difference experiment of ASPCG between 8×4 run and 4×8 run. Unlike Figure
3, this figure focuses on the difference in the MPI communication.

and about 25 minutes for the 4 × 8 run. A virtual difference experiment was
computed by subtracting the 4 × 8 experiment from the 8 × 4 experiment using
our performance algebra tool [17]. Positive values represent performance losses
of the 8 × 4 experiment, and negative values represent gains of 8 × 4. By com-
paring the two experiments, we find the 8 × 4 run is slower than the 4 × 8 run
by 12.8% (4.9% lies in OpenMP constructs and 3.5% in MPI communication).
In order to show the difference experiment in more detail, we use two figures,
Figure 2 and Figure 3, to display the difference located in MPI communication
and OpenMP constructs, respectively. As shown in Figure 3, the 8 × 4 experi-
ment spent 3.5% more time in MPI communication than the 4 × 8 experiment
did. After expanding the tree node of ”MPI”, we can see detailed information in
Figure 2. The reason why the 8 × 4 experiment is slower is because the greater
number of processes induced bigger overhead in ”Wait at N × N” and longer
blocking time in ”Late Sender” and ”Messages in wrong order”. In addition, the
increased loss in the metric ”Idle Threads” (4.9%) is a consequence of the higher
MPI time when the MPI calls were made during sequential phases of execution.
Prolonged sequential executions cause slave threads to sit idle, which is a typical
problem of hybrid programs.
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Fig. 3. Difference experiment of ASPCG between 8×4 run and 4×8 run. Unlike Figure
2, this figure focuses on the difference in the OpenMP constructs.

To continue to investigate the reason for the greater cost in OpenMP (shown
in Figure 3), the selected property in the left tree reveals a performance problem:
4.9% of the total execution time was spent waiting in front of OpenMP barriers.
The waiting time is significant and it typically indicates the problem of load-
imbalance. The scheduling strategy we used was static. The 4 × 8 experiment
is more load-balanced than the 8 × 4 one since the workload of the former is
more evenly distributed among 8 threads than that of the latter which uses only
4 threads to compute the same amount of work.

Figure 4 displays the result for the 16×2 ASPCG experiment and demonstrates
that more fine-grained control flow information can help users distinguish differ-
ent instances of function calls within a region. As an example, the ”Late Sender”
property shown in Figure 4 takes 5.8% of the total execution time. In examining the
”Late Sender” problem, we hope to identify which MPI Wait in P2P communica-
tion spent most of the time blocking. With the help of conditional branch regions,
we are able to identify the locations of the most expensive calls. The four expanded
nodeswithblue boxes in themiddle tree account for 86%of the ”Late Sender” ineffi-
ciency. By clicking the right-button of the mouse, one can look at the corresponding
source code and modify it to eliminate the problem.
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Fig. 4. Tracking down locations of significant late senders for ASPCG with 8 × 2
processors by taking advantage of the detailed control flow information in the middle
tree

7 Conclusions and Future Work

Large-scale parallel applications on advanced architectures with deep memory
hierarchies rarely achieve a moderate fraction of the theoretical peak perfor-
mance. Our work provides a framework to automatically analyze and optimize
performance of hybrid MPI/OpenMP applications through integration of an op-
timizing compiler (OpenUH) with a performance analysis tool (KOJAK). While
KOJAK automates the process of instrumenting MPI functions and OpenMP
constructs, OpenUH automatically instruments user regions down to the flow-
graph level at different compilation stages. The compile-time instrumentation
allows a variety of optimizations before the instrumentation and using the re-
sults of static analysis will help reduce the instrumentation overhead and the
amount of trace data. KOJAK gives performance feedback at a significantly
higher level than traditional tools. Such high-level information will enable the
OpenUH compiler to adjust the performance model parameters and determine
the most effective optimizing strategies to optimize parallel loops.

So far we are able to instrument regions of conditional branches and loops.
The support for switch regions is under development. The instrumentation of
loops can produce a huge amount of event trace data when confronted with a
deep loop nest. An approach to turn the instrumentation of loops on and off or
use sampling mechanisms is being considered. The source-to-source translation
approach of OPARI has some limitations. We hope to integrate the POMP in-
strumentation in later versions of the OpenUH compiler. Our future research will
mainly focus on how to provide useful compiler-oriented feedback and how the
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compiler can adapt optimization strategies accordingly. In this context, we plan
to extend the current set of KOJAK performance properties to support advanced
loop optimizations and scheduling, which might also include the monitoring of
OpenMP runtime events beyond those specified in POMP.

Acknowledgments

We would like to thank Rick Kufrin at NCSA for giving us access to the SGI
test platform and the team of Danesh Tafti at Virginia Tech for providing the
ASPCG benchmark.

References

1. Adl-Tabatabai, A.-R.: The StarJIT Compiler: A Dynamic Compiler for Managed
Runtime Environments. Intel Technology Journal 7, 19–31 (2003)
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Abstract. Nested OpenMP parallelism allows an application to spawn
teams of nested threads. This hierarchical nature of thread creation and
usage poses problems for performance measurement tools that must de-
termine thread context to properly maintain per-thread performance
data. In this paper we describe the problem and a novel solution for
identifying threads uniquely. Our approach has been implemented in the
TAU performance system and has been successfully used in profiling
and tracing OpenMP applications with nested parallelism. We also de-
scribe how extensions to the OpenMP standard can help tool developers
uniquely identify threads.

Keywords: OpenMP, nested parallelism, TAU.

1 Introduction

OpenMP research systems have supported nested parallelism since its introduc-
tion in the OpenMP standard (e.g., [12,13]), and most commercial compilers
now support nested parallelism in their products. Although some commercial
packages provide tools for debugging and performance analysis in the presence
of nested parallelism (e.g., Sun Studio [18] and Intel [20]), the recent OpenMP
2.5 specification [21] does not provide sufficient support for developing portable
performance measurement and analysis tools with nested parallelism awareness.
This deficiency is being discussed in the OpenMP tools community [16] and
hopefully will be addressed in future OpenMP specifications.

In the meantime, there is interest in studying how performance measurement
systems can determine nesting context during execution in order to capture
performance data for threads and interpret the data vis à vis nesting level. In
this paper we present the current problem in Section §2 and discuss two possible
solutions in Section §3. Based on this approach, we developed an improved, novel
method for the TAU performance system [1]. This is described in Section §4. The
TFS application [14,15] from RWTH Aachen is used as a case study for the TAU
solution. Section §5 provides a detailed performance analysis of a nested parallel
execution of TFS. The TAU parallel profile displays clearly show the thread
nesting relationships.

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 279–288, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The present issues for portable performance measurement of OpenMP nested
parallel execution is, as remarked above, hopefully temporary. In Section §6
we outline discussions underway in the OpenMP tools community and what
might be expected in the future to address the problem. Conclusions are given
in Section §7.

2 Issues with Nested Parallelism in OpenMP

OpenMP allows for nested parallel regions during execution. Nested parallelism
can be enabled and disabled through the use of the OMP NESTED environment
variable or by calling the omp set nested() routine. A simple example is given
below:1

#include <omp.h>
#include <stdio.h>

void report_num_threads(int level) {
  printf("Level %d: omp_get_num_threads()=%d",
         level, omp_get_num_threads());
  printf(", omp_get_thread_num()=%d\n",
         omp_get_thread_num());
}

int main(int argc, char **argv) {                                                                                       
  #pragma omp parallel num_threads(2)
  {
    report_num_threads(1);
    #pragma omp parallel num_threads(2)
    {
      report_num_threads(2);
    }
  }
  return(0);
}

% OMP_NESTED=0 ./a.out
Level 1: omp_get_num_threads()=2, omp_get_thread_num()=0
Level 2: omp_get_num_threads()=1, omp_get_thread_num()=0
Level 1: omp_get_num_threads()=2, omp_get_thread_num()=1
Level 2: omp_get_num_threads()=1, omp_get_thread_num()=0

% OMP_NESTED=1 ./a.out
Level 1: omp_get_num_threads()=2, omp_get_thread_num()=0
Level 1: omp_get_num_threads()=2, omp_get_thread_num()=1
Level 2: omp_get_num_threads()=2, omp_get_thread_num()=0
Level 2: omp_get_num_threads()=2, omp_get_thread_num()=1
Level 2: omp_get_num_threads()=2, omp_get_thread_num()=0
Level 2: omp_get_num_threads()=2, omp_get_thread_num()=1

Fig. 1. An example illustrating nested OpenMP parallelism, the output (right) is ob-
tained by executing the program on the left

Figure 1 illustrates the effects of nested OpenMP parallelism. When nested
parallelism is enabled, both the inner and outer regions will have 2 threads in
each team, whereas without nested parallelism, only the outer region have 2
threads. Here, we also see that the omp get thread num() runtime call cannot be
used for unique thread identification.

Nested OpenMP parallelism poses a challenge to traditional performance
analysis tools. The above example is useful in pointing out the issues. Typically,
a performance tool will attempt to measure the performance for each thread
individually. To do so, there must be an agreement between the application and
performance tool for proper thread identification to occur and measured events

1 Adapted from http://docs.sun.com/source/819-0501/2 nested.html.
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appropriately assigned. Tools often require that the user configure them with
the application’s thread package, be it pthreads, sproc, or OpenMP. When the
tool and the application use the same underlying thread package, proper thread
identification can be done.

However, when nested parallelism is used in OpenMP, the nesting context is
not available to the performance interface. It may appear that nested parallelism
can be statically analyzed and a tool such as Opari [4,8] could insert additional
instrumentation providing nesting information. However, static analysis is insuf-
ficient to track threads as the varied interactions of execution paths at runtime
can create arbitrary nesting depths. A runtime solution for thread identification
is necessary.

Native thread libraries provide thread local storage (TLS) that performance
tools use to track thread identities. The OpenMP runtime library provides the
omp get thread num() API call that returns the thread number or identifier
within the active team of threads. Unfortunately, the value returned from this
call lies between 0 and omp get num threads()-1, which is not the total num-
ber of threads in the program, but the number of threads in the current active
team. TAU and other tools have traditionally used this call for thread identi-
fication. When an instrumented section of code is entered, the profiling library
identifies the calling thread and performs measurements associated with that
thread. We say unfortunately because this approach does not allow the perfor-
mance measurement system to uniquely identify threads when nested parallelism
is active. When using nested OpenMP parallelism, multiple teams may be ac-
tive at any one time and more than one thread will return the same index from
omp get thread num().

Nested parallelism in OpenMP offers the additional challenge of mapping
the per-thread performance data back to the nested parallelism abstractions
in the source code. To do so, it is necessary to distinguished the performance
measurements for each thread with the nesting context.

3 Solutions

The problem of thread identification in nested OpenMP programs is widespread
in the community, for purposes other than performance evaluation. As such,
several solutions have been proposed.

3.1 Extending the OpenMP API

A promising solution to this problem is to extend the OpenMP specification it-
self to allow for more in depth query and knowledge of nested parallelism. Dieter
an Mey, RWTH [9] proposed an extension to the OpenMP specification in the
form of a runtime library calls that return the current nesting level, the num-
ber of threads within that level, and the current thread identifier at that level.
This provides enough information to uniquely identify threads for performance
measurement purposes as well as information necessary for the proper mapping
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of the runtime execution to the application developer’s abstractions for nested
parallelism in the application.

Ultimately, we hope that the OpenMP specification will be extended in this
manner, and we will update TAU to use the new runtime calls when these become
widely available.

3.2 Native Thread Library Hooks

Another method of tracking threads in the face of nested OpenMP parallelism
involves bypassing the OpenMP runtime system entirely and instead tracking
the threads based on the underlying thread implementation. For example, if the
OpenMP thread package is implemented using the native pthread library, the
tool could use the pthreads API for thread identification, invoking functions such
as pthread self(). Regular thread local storage would be available as well.

A major drawback to this approach is the lack of portability. The underly-
ing thread library must be known and accessible to the performance tool. On
some systems, the underlying thread substrate may be inaccessible and such an
approach cannot be guaranteed to work universally. We favor approaches that
follow the higher-level abstract OpenMP API.

3.3 Additional OpenMP Instrumentation

Alexander Spiegel, RWTH [10] proposed another solution to this problem, in which
the master and worker threads of each parallel team exchange information through
a global shared space which is locked by the master. At the start of parallel regions,
code needs to be inserted such that the master stores the data, locks the shared
space, then after a barrier, the entire team of threads reads the shared data, and
after another barrier, the master unlocks it. In this way, each new parallel region
inherits data from the parent region, and a proper mapping can take place.

A tool such as Opari can be extended to support the additional instrumen-
tation required for this type of thread synchronization at the application-level.
This approach has the advantage that it tracks the full nesting information, so at
any given time, the performance tool can know which thread identifier from each
team and each level of nesting is executing. This allows for a better mapping of
thread level performance information back to the source code.

The drawback of this approach is of course the additional synchronization
and locking at parallel region boundaries. We have not performed studies to
measure the overhead involved, but we estimate that it might be significant in
some programs.

4 TAU’s Solution

The TAU performance system supports performance evaluation of OpenMP pro-
grams at the region, construct, and routine level. The Opari tool is used to insert-
ing instrumentation based on the POMP [4] interface at OpenMP regions and
for OpenMP constructs. PDT [3] is used to instrument OpenMP source at the
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routine level. During measurement, TAU uses the OpenMP thread synchroniza-
tion calls for updating the shared performance data structures. Construct-based
measurement uses globally accessible timers to aggregate construct-specific per-
formance costs over all OpenMP regions. For region-based measurement, the
region descriptor is used to select specific performance data for that context.

In our earlier work [4,5], TAU relied upon the omp get thread num() OpenMP
API call to distinguish threads for indexing into the runtime performance data
structures. Unfortunately, this method is inadequate for nested parallelism due
to the issues discussed above. Instead, we need a mechanism to uniquely identify
the current thread.

Our approach is to use #pragma threadprivate(). Though the values of a
threadprivate variable are not guaranteed to persist between parallel regions, we
are at least guaranteed that no two currently active threads will point to the
same address space for a given threadprivate variable. Using this scheme, TAU
can then uniquely identify threads even in the presence of nested parallelism.

The approach requires a single threadprivate variable that is initialized inside
the TAU library (when TAU is built using OpenMP threading). This variable
and/or its address can be used to distinguish it from other threads executing
concurrently. When the TAU runtime system encounters a thread that it has not
seen before, it registers the thread and assigns it an identifier on a first come,
first serve basis.

In contrast to the other proposed approaches, this method has the advantage
of faster speed, as no runtime API calls are made in identifying a thread. The
thread registration in the TAU runtime system is done only when a given thread
is seen for the first time, so there is no additional overhead at parallel region
boundaries. The main drawback with this method is that we are unable to iden-
tify the nesting depth or specify a team identifier for a given thread. A thread
is assigned a unique identifier, but not necessarily the same identifier between
subsequence invocations, and this typically does not map back to any explicit
parallelism in the source code. Nevertheless, as we see below, the method pro-
duces performance data that can be mapped back to the source code itself and
does expose nested parallelism where it occurs.

5 A Case Study

To demonstrate TAU’s support for nested parallelism, we conducted a case study
with TFS [14,15], a computational fluid dynamics code developed at Aerodynam-
ics Institute at RWTH Aachen. TFS was initially parallelized using ParaWise
[19] to generate an intra-block parallel version where the parallel loops operated
over a single dimension within a block. Then, a second version was developed
that used parallel loops to iterate over blocks. Finally, a hybrid, multi-level ver-
sion was developed which combined the intra and inter block version using nested
OpenMP parallelism. In recent performance testing, the developers reported a
speedup of 21 for TFS using nested OpenMP parallelism on a SunFire 25K
system [17].
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Metric: Time
Value: Exclusive

std. dev.
mean

n,c,t 0,0,0
n,c,t 0,0,1
n,c,t 0,0,2
n,c,t 0,0,3
n,c,t 0,0,4
n,c,t 0,0,5
n,c,t 0,0,6
n,c,t 0,0,7

Fig. 2. Flat Profile for TFS

Metric: Time

Value: Exclusive

Units: seconds

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <1010, 1225>]15.319

.TAU application12.653

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <6930, 6934>]  6.77

paralleldo  [OpenMP location: file:nose_omp_hybrid_003_mod.f <212, 239>] 4.268

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <7030, 7043>] 3.526

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <14108, 14363>]  2.86

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <6901, 6979>] 2.035

parallel  [OpenMP location: file:nose_omp_hybrid_003_mod.f <4316, 4346>] 1.763

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <979, 990>] 1.495

paralleldo  [OpenMP location: file:nose_omp_hybrid_003_mod.f <13725, 13730>] 1.383

PUTBLK 1.298

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <1232, 1237>] 1.287

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <995, 1003>] 1.284

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <9087, 9091>]  1.27

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <7143, 7155>] 1.249

GETBLK 1.234

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <7163, 7175>] 1.126

parallel  [OpenMP location: file:nose_omp_hybrid_003_mod.f <2648, 3304>] 1.048

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <7558, 7569>] 0.999

paralleldo  [OpenMP location: file:nose_omp_hybrid_003_mod.f <6180, 6203>] 0.992

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <4560, 4571>] 0.844

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <6848, 6852>] 0.838

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <4603, 4613>] 0.747

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <7583, 7595>] 0.703

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <3355, 3919>] 0.683

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <2835, 2841>] 0.645

barrier  [OpenMP location: file:nose_omp_hybrid_003_mod.f <4337, 0>]  0.61

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <14405, 14413>] 0.595

do  [OpenMP location: file:nose_omp_hybrid_003_mod.f <14062, 14072>] 0.567

paralleldo  [OpenMP location: file:nose_omp_hybrid_003_mod.f <13738, 13743>] 0.561

Fig. 3. Mean Profile for TFS

We integrated TAU in TFS and instrumented its source code using the TAU’s
compilation scripts [1]. This process required only a single modification to the TFS
build system where the name of the compiler used in the makefile was changed
from FC=f90 to FC=tau f90.sh. This script act as compiler wrapper, allowing for
automatic instrumentation of Fortran programs. In the case of OpenMP code, it
will automatically invoke the Opari tool to instrument OpenMP constructs and
regions by rewriting OpenMP directives using the POMP interface. The code is
then parsed by PDT to create files that contain source-level information about the
routine names, and their respective entry and exit locations. The script then in-
struments the entry and exit points using TAU’s tau instrumentor utility. Finally,
the instrumented code is linked with the TAU library.

We ran TFS on the Sun Fire machines at RWTH Aachen using 8 threads. With
TAU’s support for nested OpenMP parallelism, we can run the instrumented
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Fig. 4. 3D display of TFS performance data (inclusive time)

version of TFS without the thread identifier clash that occurred previously. The
flat profile for TFS is shown in Figure 2. Each thread is represented by a row in
the graph, and each timer/region is a column. The second column timer (red) is
.TAU application, which in this case represents the global time that a thread
spent idle (not doing useful work).

Figure 3 shows the mean data for all threads. Note that the timer names
for parallel regions and constructs contain the source filename and line number.
This data is provided by the Opari tool through the POMP interface.

There is a clear pattern in the data wherein threads 0, 1, 3, and 4 do similar
processing, and threads 2, 5, 6 and 7 are also very similar. This pattern is also
visible in the three dimensional display of ParaProf shown in Figure 4. The three
axes are the threads, the timers (functions), and the exclusive time spent in the
given timer.

TAU’s PerfExplorer [6] tool is able to automatically discover patterns such as
this. PerfExplorer is a performance data mining package that operates on a rela-
tional database using statistical packages such as Weka and R. Shown in Figure 5,
PerfExplorer performs a correlation analysis and splits the threads into clusters.
These are the same clusters that we observed from the flat profile bar graphs.

For a total runtime of 90 seconds, the second cluster which includes threads
2, 5, 6, and 7 are idle for about 22 seconds each, whereas the other slave threads,
numbers 1, 3, and 4 spend only about 3 seconds idle. Each cluster executes dif-
ferent functions that may be seen in ParaProf’s callgraph displays (not shown).
With this knowledge, the application developer can note the regions that each
thread executes and map the execution back to the source code.
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Fig. 5. Clustering of threads in TFS

Fig. 6. Nested Parallelism in TFS

Using TAU’s callpath profiling capability, the nested parallelism present in
TFS is easily decomposed. Figure 6 shows where time was spent at each level of
nesting. The function ALGO started a parallel region, and deeper in the callpath,
the function AUSM also started a parallel region.
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6 Future Work

As noted earlier, there is active discussion underway in the OpenMP tools forum
as to what the appropriate interface should be for execution time tools such as
for performance measurement. We hope that runtime system functions will be
made available for thread identification and nesting context to be queried.

For TAU’s application, we would like to support a higher level mapping of
thread identifiers back to the application developer’s model of nested parallelism.
In the case of non-nested parallelism, TAU provides a clear picture of the per-
formance of each thread in each team. This picture is currently not as clear in
the nested case because we have only a single number to identify a thread. We
anticipate adding support for thread naming in TAU wherein a thread is iden-
tified in the nested OpenMP case by its nesting depth and identifier, or by the
identifier in each team where it originated (such as “thread 0 → 3 → 2”). The
runtime, hopefully provided in a future OpenMP specification, will provide the
necessary information.

7 Conclusion

Performance tools that measure per-thread performance data must be able to
uniquely identify threads of execution at runtime. This is complicated in the
presence of nested parallelism when thread identities queried from the runtime
system are not unique and do not provide information about nesting context.
In this paper, we describe the nested parallelism problem currently faced by
tools for portable OpenMP performance analysis. Several possible solutions are
discussed. The approach we implemented in the TAU performance system uses
thread private storage to create a unique thread identifier. The approach is
portable and has been validated with both Sun and Intel’s OpenMP compilers.
We demonstrated its capabilities with the TFS application.
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Abstract. This paper presents a parallel implementation of CURE, an
efficient hierarchical data clustering algorithm, using the OpenMP pro-
gramming model. OpenMP provides a means of transparent management
of the asymmetry and non–determinism in CURE, while our OpenMP
runtime support enables the effective exploitation of the irregular nested
loop–level parallelism. Experimental results for various problem parame-
ters demonstrate the scalability of our implementation and the effective
utilization of parallel hardware, which enable the use of CURE for large
data sets.

1 Introduction

Data clustering is one of the fundamental techniques in scientific data analysis
and data mining. The problem of clustering is to partition the data set into
segments (called clusters) so that intra–cluster data are similar and inter–cluster
data are dissimilar. Clustering algorithms are very computation demanding and,
thus, require high–performance machines to get results in a reasonable amount
of time. In this paper, we present a parallel implementation of CURE (Clustering
Using REpresentatives) [4], a well–known hierarchical data clustering algorithm,
using OpenMP [2]. CURE is a very efficient clustering algorithm with respect to
the quality of clusters: it can identify arbitrary–shaped clusters and handle high–
dimensional data. However, its worst–case time complexity is O (n2logn), where
n is the number of points to be clustered. Although sampling and partitioning
can allow CURE to handle larger data sets, the algorithm is not applicable to
today’s huge data bases because of its quadratic time complexity.

Our general goal is the development of an efficient parallel data clustering
algorithm that targets shared memory multiprocessors, clusters of computers
and computational grids. This paper focuses only on the shared memory archi-
tecture. Although CURE provides high quality clustering, a parallel version was
not available due to the asymmetric and non–deterministic parallelism of the
clustering algorithm. OpenMP, however, manages to resolve successfully these
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issues due to the dynamic assignment of parallel tasks to processors. In addition,
our previous research work has already resulted in a portable OpenMP environ-
ment that supports multiple levels of parallelism very efficiently. Thus, we are
able to satisfy the need for nested parallelism exploitation in order to achieve
load balancing. Our experimental results demonstrate significant performance
gains in PCURE, the parallel version of CURE, and effective utilization of the
shared memory architecture both on small–scale SMPs and high performance
multiprocessors.

A first survey of parallel algorithms for hierarchical clustering using distance
based metrics is given in [9]. Most parallel data clustering approaches target
distributed memory multiprocessors and their implementation is based on mes-
sage passing [1,7,8,11,10]. None of them has been applied to a pure hierarchical
data clustering algorithm. As we will show experimentally, static parallelization
approaches are not applicable to CURE due to the non–deterministic behavior
of its algorithm. In addition, message passing would require significant program-
ming effort to handle the highly irregular and unpredictable data access patterns
in CURE.

The rest of this paper is organized as follows: Section 2 presents our modifi-
cations to the main clustering algorithm of CURE and its parallelization using
OpenMP directives. Experimental results are reported in Section 3. Finally, Sec-
tion 4 presents some conclusions and our ongoing work.

2 CURE Data Clustering Algorithm

2.1 Introduction

Cure is a bottom–up hierarchical clustering algorithm, but instead of using
a centroid–based approach it employs a method that is based on choosing a
well–formed group of points to identify the distance between clusters. For each
intermediately computed cluster, CURE chooses a constant number, r of well
scattered points. These points are used to identify the shape and size of the
cluster. The next step of the algorithm shrinks the selected points towards the
centroid of the cluster by a pre–determined fraction a. Varying this fraction be-
tween 0 and 1 can help CURE to identify different types of clusters. Using the
shrunken position of these points to identify the cluster, the algorithms then
finds the clusters with the closest pairs of identifying points. These clusters are
chosen to be merged as part of the hierarchical algorithm. Merging continues
until the desired by the user number of clusters, k, remain. A k–d tree is used
to store information about the clusters and the points that belong to them.

Figure 1 outlines the main clustering algorithm: since CURE is an hierarchical
agglomerative algorithm, initially every data point is considered as a separate
cluster with one representative, the point itself. The algorithm computes initially
the closest cluster for each cluster. Next, it starts the agglomerative clustering,
merging the closest pair of clusters until only k clusters remain. According to the
merge procedure, the centroid of the new cluster is the weighted mean of the two
merged clusters. Moreover, to reduce the time complexity of the algorithm, the
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1. Initialization: Compute distances and find nearest neighbors
pairs for all clusters

2. Clustering: Perform hierarchical clustering until the
predefined number of clusters k has been computed

While (number of remaining clusters > k) {
a. Find the pair of clusters with the minimum distance
b. Merge them:

i. new size = size1 + size2
ii. new centroid = a1*centroid1 + a2*centroid2,

where a1 = size1/new size and a2 = size2/new size
iii. find c new representative points

c. Update nearest neighbors pairs for the clusters
d. Reduce the number of remaining clusters
e. If conditions are satisfied, apply pruning of clusters

}

3. Output the representative points of each cluster

Fig. 1. Outline of CURE

authors propose an improved merge procedure where the new c representative
points are chosen between the 2c points of the two clusters merged.

The worst–case time complexity of CURE is O (n2logn), where n is the num-
ber of points to be clustered. In order to allow CURE to handle very large
data sets, CURE uses a random sample of the database. Sampling improves the
performance of the algorithm since the sample can be designed to fit in main
memory, eliminating thus significant I/O costs, and also contributes in the filter-
ing of outliers. To speed up the clustering process when the sample size increases,
CURE partitions and partially clusters the data points in the partitions of the
random sample. Instead of using a centroid to label the clusters, multiple repre-
sentative points are used, and each data point is assigned to the cluster with the
closest representative point. The use of multiple points enables the algorithm to
identify arbitrarily shaped clusters. Empirical work with CURE discovered that
the algorithm is insensitive to outliers and can identify clusters with interest-
ing shape. Moreover, sampling and partitioning speed up the clustering process
without sacrificing cluster quality.

2.2 Implementation

Our parallel implementation of CURE was inspired by the source code of Dr. Han
and has been enhanced to handle large data sets. The algorithm uses a linear array
of records that keeps information about the size, the centroid and the represen-
tative points of each cluster. Taking into consideration the improved procedure
for merging clusters and that the labeling of data is a separate process, we do not
construct a k–d tree. Instead, when two clusters (entries in the array) are merged,
we store the information for the resulted cluster in the entry of the first cluster
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1. init_nnbs () {
2. for (i=0; i<npat; i++) find_nnb(i, &nnb[i].index, &nnb[i].dist);
3. }
4.
5. update_nnbs(int pair_low, int pair_high) {
6. for (i=pair_low+1; i<npat; i++) {
7. if (entry i has been invalidated) continue;
8. if (entry i had neighbor pair_low or pair_high)
9. find_nnb (i, &nnb[i].index, &nnb[i].dist);
10. else if (pair_high < i)
11. if ((dist = compute_distance(pair_high, i))) < nnb_dist[i])
12. { nnb[i].index = pair_high; nnb[i].dist = dist; }
13. }
14. }
15.
16. find_nnb(int i, int *index, double *distance) {
17. min_dist = +inf, min_index = -1;
18. for (j=0; j<i; j++) {
19. if (entry j has been invalidated) continue;
20. if ((dist = compute_distance(i, j)) < min_dist)
21. { min_dist = dist; min_index = j };
22. }
23. *index = min_index; *distance = min_dist;
24. }

Fig. 2. Pseudocode of the most computation demanding routines in Cure

and simply invalidate the second one. This design decision not only speeds up the
sequential algorithm but also results in significantly less memory consumption.

The algorithm also maintains per–cluster information about the index of the
closest cluster and the minimum distance to it. To avoid duplication of this in-
formation, the algorithm searches for the closest neighbor of a given cluster only
in entries with a smaller index. Therefore, the maintenance of this information
for clusters with a larger index requires more computational time. In order to
optimize cache memory accesses, we store this information in a separate array.
The rationale of this decision is that many entries of this array are likely to be
updated in each step of the algorithm (2c), in contrast to the array of clusters,
for which only two entries are updated (2b).

Figure 2 presents the pseudocode of the most computation demanding rou-
tines in the clustering algorithm, which correspond to the initialization phase
(init nnbs, lines 1–3) and the update of the nearest neighbors (update nnbs,
lines 5–14). Special features of this algorithm are its asymmetry and non–
determinism, due to the way it finds closest clusters and the gradual decrease
of the number of valid entries (clusters). This asymmetry is reflected in the
find nnb routine, utilized by both the initialization and the update procedure.
In addition, non–determinism appears only in the update procedure, since during
the initialization phase of the algorithm all clusters are valid.
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2.3 Parallelization Using OpenMP

The several loops of its clustering algorithm constitute CURE a strong candidate
for parallelization using OpenMP, which can enable its use on large data sets.
Moreover, this parallelization is possible because there are not data dependencies
between the iterations of each loop. Moreover, a k–d tree is not maintained, the
construction of which would increase the sequential portion of the algorithm and
its traversal would complicate the parallelization.

To avoid false sharing between processors, data structures of the algorithm
are aligned on cache line boundaries. Thus, the efficiency of the parallel im-
plementation mainly depends on the even distribution of computations to the
processors. This, however, is a challenging task because the computational cost
of loop iterations cannot be pre–estimated due to the high irregularity of the
algorithm. To tackle the above problems, we parallelized the loops at lines 2 and
6 using the guided and dynamic scheduling policy respectively.

In addition, we parallelized the loop in the find nnb routine (line 18), using
again the guided schedule clause. This loop, which computes for a given cluster
the index of its closest neighbor and the distance to it, actually corresponds
to a reduction operation not supported directly by OpenMP. To optimize the
parallel implementation of this procedure, we fist spawn a team of threads and
then execute the loop in parallel, allowing each worker thread to keep the partial
results, i.e. minimum distance and index, in its local memory (stack). When the
iterations of the loop have been exhausted, the reduction operation takes place,
with each thread checking and updating the global result within a critical section.

The total execution time for searching the minimum distance pair is negligible
compared to the update phase but can become significant for large data sets.
However, instead of applying direct parallelization to the search procedure, we
integrated it into the update phase, following the same reduction–like approach
as for the search of the closest neighbor. This decision maintains data locality,
which would be destroyed by sequential execution, and avoids the overheads of
an additional spawning of parallelism for this non–scalable and memory–bound
section of code. Finally, pruning has many similarities with the update procedure
and has been parallelized accordingly.

3 Experimental Results

One of CURE’s strong advantages is that provides good quality of clustering.
Our parallel implementation of CURE has not altered the original algorithm,
which means that in all cases, it produces identical results. In this section, we
focus on the performance improvements in the data clustering algorithm with
respect to its execution time. Our goal is to exploit parallel processing in order to
tackle the quadratic time complexity of agglomerative data clustering (CURE)
rather than to alter the algorithm itself.

Table 1 outlines the three data sets that have been used for our experiments.
Data Set 1 (DS1) is the data set used in [4] and consists of two dimensional
records. Data Sets 2 and 3 (DS2, DS3) come from image recognition and have
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Table 1. Experimental data sets

Features: # Records Dimensionality # Clusters

Data Set 1 (DS1) 100K 2 100

Data Set 2 (DS2) 100K 24 Unknown

Data Set 3 (DS3) 100K 4875 Unknown

been extracted from large image databases, while their dimensionality is 24 and
4875 respectively.

We conducted our experiments on a dual–processor Hyper–Threading (HT)
enabled Intel Xeon system running at 2.4GHz with 1GB memory and 512K
secondary (L2) cache. The operating system is Debian Linux (2.4.12) and for
the OpenMP parallelization, we have used our custom OpenMP implementa-
tion that consists of the portable OMPi compiler [3] and the NANOS runtime
library, while the native compiler is GNU GCC (3.3.4). As we have shown in [5],
this configuration reduces significantly the runtime overheads and results in an
OpenMP execution environment with efficient support for nested parallelism.

3.1 Scale–Up Experiments

We studied the scalability of PCURE for three different input parameters: data
set size, number of representative points and dimensionality. We provide mea-
surements on the HT–enabled Xeon system running PCURE using 1 and 4
OpenMP threads.

– First Scale–Up Experiment: Figure 3 illustrates the execution time of
the clustering algorithm for various sizes of the three data sets, using the
default parameters of CURE (R = 10, a = 0.3). The clustering algorithm
stops when the number of clusters has been reduced to 1% of the initial
number of records. In all figures, we observe the quadratic complexity of the
algorithm and the high speedup that is achieved on the two hyper-threaded
processors due to the OpenMP parallelization.

– Second Scale–Up Experiment: Figure 4 depicts the execution times of
the clustering algorithm for various numbers of representative points (from
1 to 32). The shrinking factor has been set to its default value (a = 0.3),
while for DS1 and DS2 we have used 50K records and for DS3 5K records.
We observe an almost linear increase of the execution time with respect to
the number of representatives and, as before, the effective exploitation of the
underlying parallel hardware.

– Third Scale–Up Experiment: Figure 5 illustrates the linear increase
of execution time with respect to data dimensionality. We have used 5K
records from DS3, varying appropriately the number of features, from 2 to
1024. We also observe that performance speedup is improved drastically as
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dimensionality increases. This is due to to the negligible parallelization over-
heads, opposed to the total execution time, and the more effective utilization
of cache memory for higher dimensions.

Although PCURE is highly parallel, the obtained speedup varies significantly
according to the problem parameters. An important factor that affects per-
formance is the parallelization overheads, especially for spawning and joining
parallelism in every clustering step. These overheads, however, become negligi-
ble for large data sets or high dimensionality. Another factor is the bandwidth
of the memory subsystem, which is low in bus–based small–scale SMPs. This
limits the performance of data intensive applications, like PCURE, especially
for low dimensionality and consequently ineffective cache utilization. On the
other hand, for data sets with high dimensional vectors (e.g. DS3), the negli-
gible parallelization overheads and the effective cache utilization can result in
super–linear speedups (� 4.5x) even on a HT–enabled dual–processor Intel Xeon
system.

Apart from the performance speedup due to the OpenMP parallelization, our
measurements demonstrate the quadratic execution time of the CURE algorithm
with respect to the number of records and its linear execution time with respect
to the dimensionality and the number of representative points. PCURE exhibits
well defined and predictable runtime behavior, which allows us to adjust the
problem input parameters (e.g. appropriate data set size) or the parallel execu-
tion environment (e.g. number of threads) appropriately.
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3.2 Nested Parallelism

In this section, we experimentally justify the necessity to exploit nested paral-
lelism for achieving load balancing in the update phase of PCURE. Furthermore,
we study the scalability of our parallel implementation on a large multiprocessor
system. In both cases, we compute 1000 clusters for 50K records of our second
data set (DS2), using the default input parameters. Moreover, the results refer
only to the clustering phase of PCURE.

We evaluate every possible loop scheduling policy supported by OpenMP
(static, dynamic and guided), trying to achieve the best performance using 4
threads on the 2 hyper–threaded processors for the case of single–level paral-
lelism. Finally, we compare the measured speedups with those attained when
nested parallelism has been enabled. Figure 6 depicts these speedups for the
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update phase of the algorithm when a single level or two levels of parallelism
are exploited. For the first case, the maximum speedup is achieved when the
dynamic scheduling policy with chunk equal to 100 is used and it does not ex-
ceed 1.74x. On the contrary, when nested parallelism is enabled, the speedup
for the update phase is significantly higher. The same performance behavior is
observed regardless of the scheduling policies used for the two nested loops. The
sequential execution time of the update phase was 3688 seconds.

Finally, Figure 7 shows the performance speedups of PCURE on up to 12
processors of a 16–way Power3 IBM SP2 system. This particular experiment
provides also a demonstration of our portable and efficient support of nested
parallelism. We include additional measurements for the pure centroid based
version of PCURE (R=1, a=1.0). Furthermore, we run the same experiments
using the static, instead of the dynamic, scheduling policy for the outer loop
of the clustering phase. Our results show that PCURE scales efficiently, which
is attributed to the effective exploitation of nested parallelism and the high
performance memory subsystem of the underlying hardware. We also observe
that the algorithm scales better when more representatives per cluster are used.
When the number of processors increases, the static scheduling policy starts
to outperform the dynamic one because of its better data locality since each
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processor is always assigned the same portion of the array that holds nearest
neighbor information.

4 Conclusions and Future Work

In this paper, we have presented PCURE, a parallel implementation of the CURE
hierarchical data clustering algorithm using the OpenMP programming model.
The portable and efficient OpenMP runtime environment manages to handle
efficiently the asymmetric and non–deterministic loop–level nested parallelism in
PCURE, resulting in significant performance gains on both small scale SMPs and
large multiprocessor systems. The OpenMP parallelization tackles the quadratic
time complexity of the algorithm and thus high quality clustering can be applied
to large data sets.

Future work includes execution of PCURE on distributed memory environ-
ments based on our OpenMP implementation on clusters of multiprocessors [6].
To reduce problem size, we plan to exploit additional techniques like sampling
and partitioning, as proposed in the original algorithm, and fast grid or density
based pre–clustering of data by extending the algorithm itself. Finally, we plan
to further exploit data partitioning by running multiple independent instances
of PCURE on clusters of computers and computation grids.
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Abstract. In this paper we present our experiences parallelizing the
C++ programs DROPS and FIRE with OpenMP. Though the OpenMP
specification includes C++, several shortcomings and missing features
can be noticed in both the current OpenMP compilers and the speci-
fication. We propose solutions of how to overcome these problems and
formulate wishes for the future OpenMP specification 3.0.

1 Introduction

For the time being the FORTRAN programming language is still dominating
the field of high performance computing, but in recent years the usage of C++
is catching up in the HPC domain as well. We parallelized two sophisticated
C++ applications and experienced several shortcomings in current compilers
and some missing features in the current OpenMP specification. However, the
parallelization of the application codes was quite successful and we presented our
proposed solutions in [11], [12] and [13]. Here we concentrate on how the object-
oriented programming style can be used in the context of OpenMP and how to
exploit C++ language features to improve scalability on ccNUMA-architectures.

The Navier-Stokes solver DROPS [2] is developed at the IGPM (Institut für
Geometrie und Praktische Mathematik) at the RWTH Aachen University as part
of the interdisciplinary project SFB 540 [3], where complicated flow phenom-
ena are investigated. The object-oriented programming paradigm offers a high
flexibility and elegance of the program code, facilitating development and in-
vestigation of numerical algorithms. Template programming techniques and the
C++ Standard Template Library (STL) are heavily used. The DROPS code,
which contains over 21000 lines of C++ code, achieves a speedup of 8 on an
UltraSPARC-IV based system with 16 threads.

The Flexible Image Retrieval Engine (FIRE) has been developed at the Hu-
man Language Technology and Pattern Recognition Group of the RWTH Aachen
University [4]. It is designed as a research system with flexibility in mind. That
is, it is easily extensible and highly modular by using C++ language features,
which in addition turned out to be quite helpful for the OpenMP paralleliza-
tion. The FIRE system was successfully used in the ImageCLEF 2004 and 2005
content-based image retrieval evaluations [5], [6]. The FIRE code has been par-
allelized using nested OpenMP [1] and a nearly linear speedup can be achieved,
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thus reaching an efficiency of over 90% with 44 threads on an UltraSPARC-IV
based system.

We evaluated the performance of our experiments on two architectures with
different characteristics. The Sun Fire E6900 servers consist of 24 dual-core
UltraSPARC-IV processors running at 1.2 GHz clock speed with a total of 96
GB of memory offering a rather flat memory model. The dual-core processors
are treated as two independent processors by the Solaris 10 operating system.
In addition, two different types of Sun Fire V40z machines were used. They
have 4 AMD Opteron 875 dual-core processors and 16GB of RAM or 4 AMD
848 processors and 8GB of RAM, respectively. These processors have a clock
speed of 2.2GHz. The dual-core machines are running the Solaris 10 operating
system that treats the cores as individual processors and the single-core ma-
chines have Linux 2.6 as operating system. The Sun Fire V40z systems have
a ccNUMA-architecture where data locality is very important. On the Solaris
systems we used the Sun Studio 11 compiler suite, on the Linux systems the
Intel 9.0 compiler suite.

For the experiments in subsection 2.1 we also tested the IBM C++ 8.0 com-
piler on an Power4+ based system and the PGI 6.1 and Microsoft 8.0 compilers,
both on an AMD Opteron based system.

The remainder of this paper is organized as follows: in section 2 we present
our approaches of combining object-oriented programming and OpenMP. We
analyze current compilers with respect to their behavior with variables of class-
type in OpenMP clauses and present methods to parallelize non-conforming
loops and high-level codes. In section 3 we show how to improve the performance
of using STL containers and other data types on ccNUMA-architectures. Section
4 contains our conclusion.

2 Parallelization and Object-Oriented Programming

In some cases we encountered an unexpected behavior when variables of class-
type were used in OpenMP clauses. Therefore we created a set of small test cases
to evaluate implementations regarding their support for privatization of variables
of class-type. The results are presented in subsection 2.1. In C++ programs one
often finds loops which do not conform to the requirements for parallelization
using a loop-worksharing construct. We present four different approaches of par-
allelizing such loops in subsection 2.2 and compare the achieved performance.
When parallelizing high-level object-oriented codes the user has some choices of
where to put the parallelization constructs. For the PCG linear equation solver
of DROPS we compare different levels in subsection 2.3.

2.1 Variables of Class-Type in OpenMP Clauses

To evaluate an implementation’s behavior when privatizing variables of class-
type we used a simple experimental approach using the class Object1 as shown
in program 1. We created a test program that instantiates a class of type Object1
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Program 1. Test program to evaluate a compiler’s behavior.
1 class Object1 {
2 public:
3 Object1() {
4 cout << "Object1::constructor" << endl; }
5 ~Object1() {
6 cout << "Object1::destructor" << endl; }
7 Object1(const Object1& o) {
8 cout << "Object1::copy constructor" << endl; }
9 Object1 &operator=(Object1& o) {
10 cout << "Object1::assignment operator" << endl;
11 return *this; }
12 void dummyfunc() const {
13 cout << "Object1::dummyfunc" << endl; }
14 };
15
16 int main(int argc, char* argv[]) {
17 Object1 o1;
18
19 #pragma omp parallel scoping-attribute(o1)
20 {
21 o1.dummyfunc();
22 }
23 } // end of main

and contains a parallel region and then experimented with different data scoping
attributes for the instantiated variable.

We first looked at the shared scoping attribute. As the OpenMP specification
[7] states in section 2.8.3.2 ”All threads within a team access the same storage
area for each shared object” we did not expect any other function calls to appear
in the output than the calls to dummyfunc. This is true for all tested compilers.

Regarding the private scoping attribute the OpenMP specification states in
section 2.8.3.3 ”A new list item of the same type, with automatic storage dura-
tion, is allocated for the construct” and ”The new list item is initialized, or has
an undefined initial value, as if it had been locally declared without an initial-
izer”. As the C++ language is defined with a consistent memory model [8] the
word ’undefined’ is not related to to the state of the object but to the value, be-
cause when instantiating a variable of class-type a constructor has to be invoked.
For our experiment setup we expect each thread to instantiate a new variable
and therefore in addition to the calls to dummyfunc a pair of constructor and
destructor calls should appear in the output for each thread. This is true for all
tested compilers, except for the PGI compiler, where no constructor call appears.

For the firstprivate scoping attribute the OpenMP specification states in sec-
tion 2.8.3.4 that ”For class type, a copy constructor is invoked to perform the
initialization”. We therefore expect the constructor calls to be replaced by calls
to the copy constructor. This is true for all tested compilers, except for the IBM



OpenMP and C++ 303

and PGI compilers. For the IBM compiler we noticed an additional pair of copy
constructor and destructor, for the PGI compiler the construction is missing
again.

The lastprivate scoping attribute required a little modification, as it is only
available for the loop-worksharing construct. We therefore introduced a loop
over the number of threads with a static schedule and a chunksize of one. We
expect one additional call to the assignment operator. This is true for all tested
compilers, except the IBM and PGI compilers have the same discrepancy as
above.

We are aware of the fact that more complex data types might change a com-
piler’s behavior, but our application codes behave equal to our simplified test
cases. For the scenarios discussed above all compilers except the PGI compiler
can be used, but the following experiments will show severe problems in the
current implementations. The Microsoft compiler is unable to run the next two
experiments as it states that ”Dynamic initialization of threadprivate symbols is
currently not supported”, therefore we will only look at the Intel, Sun and IBM
compilers.

In section 2.8.2 the OpenMP specification states that ”... each copy of a
threadprivate object is initialized once, in the manner specified by the program,
but at an unspecified point in the program prior to first reference to that copy”.
We declared the variable o1 as threadprivate and removed the scoping attribute
from the parallel region. According to the OpenMP specification, we expect the
master’s instance of the variable to be constructed before the parallel region and
all other instances to be constructed just before the first parallel region. This
is true for the Intel C++ compiler, but not for the Sun and IBM compilers, as
shown in table 1.

For the copyin scoping attribute the OpenMP specification states in section
2.8.4.1 that ”The copy is done after the team is formed and prior to the start of

Table 1. Compiler output with two threads for test cases with threadprivate

Test case Intel Output Sun Output IBM Output
threadprivate 0: constructor 0: constructor 0: constructor

1: constructor 0: copy constructor 0: copy constructor
0: dummyfunc 1: copy constructor 1: copy constructor
1: dummyfunc 0: dummyfunc 0: dummyfunc
1: destructor 1: dummyfunc 1: dummyfunc
0: destructor 0: destructor 0: destructor

threadprivate 0: constructor 0: constructor 0: constructor
+ copyin 1: constructor 0: copy constructor 1: copy constructor

0: assignment operator 1: copy constructor 1: assignment operator
1: assignment operator 1: assignment operator 0: dummyfunc
0: dummyfunc 0: dummyfunc 1: dummyfunc
1: dummyfunc 1: dummyfunc 1: destructor
1: destructor 0: destructor 0: destructor
0: destructor
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execution of the parallel region”. We therefore expect a call to the assignment
operator for each slave thread, but not for the master thread. The Intel C++
compiler does not differ substantially from the behavior we expected as it in-
cludes just an additional call to the assignment operator. While this does not
change the expected result, it does not lead to optimal performance.

The obvious solution to overcome these problems is to use pointers as thread-
private variables which have to be set up manually prior to the first parallel
region of a program.

In addition to these difficulties it should be mentioned that the privatization of
class member variables is neither mentioned in the specification nor supported by
the tested compilers. Instead of a clear error message we experienced sometimes
confusing results like missing symbols during the linking stage, depending on the
compiler. Our proposed workaround is to use a variable with the same name in
the local scope which then can be privatized, though this might break the class
interface under some circumstances.

2.2 Parallelization of Non-conforming Loops

In C and C++ programs one often finds loops that cannot be parallelized using
the loop-worksharing construct because they do not conform to the OpenMP
specification. In section 2.5.1 the OpenMP specification defines the requirements
for the loop-worksharing construct.

The requirement ”... signed integer variable ...” prohibits the parallelization
of loops using size t data type as the loop index variable. Changing the variable
type to long allows the parallelization and should be feasable for most programs.

The restriction ”... the corresponding for-loop must have the following canon-
ical form: for(init-expr; var relational-op b; incr-expr) ...” prohibits the paral-
lelization of loops using pointer arithmetic or iterators, though the number of
loop iterations could be computed on entry to the loop. Examples of STL itera-
tor style loops are the setup-routines in DROPS, which use iterators to run over
custom data types building the stiffness matrices. We compare four approaches
to parallelize iterator loops using the test code shown in program 2.

Program 2. Loop using C++ STL iterators.
1 list<CComputeItem> list1;
2 list<CComputeItem>::iterator it;
3 for (it = list1.begin(); it != list1.end(); it++) {
4 it->compute();
5 }

The first approach follows the idea to create a parallelizable loop by adding an
additional loop in which the iterator pointers are stored in an array. Processing
this array can be parallelized using the loop-worksharing construct, as shown in
program 3.
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Program 3. Creation of a parallelizable loop.
1 valarray<CComputeItem*> items(list1.size());
2 for (it = list1.begin(); it != list1.end(); it++) {
3 items[l] = &(*it);
4 l++;
5 }
6 #pragma omp parallel for default(shared)
7 for (long l = 0; l < list1.size(); l++) {
8 items[l]->compute();
9 }

The second approach uses Intel’s Task-Queuing worksharing construct [9]
which is an extension to OpenMP. Currently it is only available in the Intel
compiler suite, but a proposal for the future OpenMP 3.0 specification is under
discussion. For each value of the loop index variable the loop body is enqueued
into a work queue, which is then processed in parallel by all threads, as shown
in program 4.

Program 4. Parallel loop using Intel’s Task-Queuing.
1 #pragma intel omp parallel taskq
2 {
3 for (it = list1.begin(); it != list1.end(); it++) {
4 #pragma intel omp task
5 {
6 it->compute();
7 }
8 } // end for
9 } // end omp parallel

The third approach places the loop into a parallel region, the loop body into
a single-worksharing construct and the implicit barrier is omitted by specifying
the nowait clause. This is shown in program 5.

The fourth approach is shown in program 6 and it has been proposed to us to
be included in this experiment as well. The value of the incremented iterator is
assigned in a critical region to a private iterator and the private iterator is then
used to call the compute function.

To evaluate the performance of the different approaches and to decide which
one to use in the parallelization of the application codes, we varied two para-
meters: DIM specifies the number of list entries and thereby the number of loop
iterations. ITS specifies the amount of work to be done inside the compute()
function and thereby the amount of work in the loop body. In figure 1 some
results are shown for variations of DIM and ITS. The Intel compiler supports all
four approaches and the performance is all the same for values of DIM and ITS
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Program 5. Single-Nowait loop parallelization.
1 #pragma omp parallel private(it)
2 {
3 for (it = list1.begin(); it != list1.end(); it++) {
4 #pragma omp single nowait
5 {
6 it->compute();
7 }
8 } // end for
9 } // end omp parallel

Program 6. Critical region loop parallelization.
1 list<CComputeItem>::iterator priv_it;
2 #pragma omp parallel private(priv_it)
3 {
4 for (long l = 0; l < list1.size(); l++) {
5 #pragma omp critical
6 {
7 priv_it = it++;
8 }
9 priv_it->compute();
10 } // end for
11 } // end omp parallel

reflecting typical scenarios of our application. The Sun compiler only supports
approaches one, three and four. For varying values of DIM and ITS the creation
of a parallelizable loop clearly outperforms the other techniques as shown in the
right part of figure 1. Therefore we preferred approach one in the parallel version
of DROPS.

It should be mentioned that while approach one delivers the best performance
in most cases, it also requires the most intrusive changes to the code. The Task-
Queuing worksharing construct would provide a more elegant parallelization and
could deliver the same performance as approach one, if it would provide a way to
control the scheduling. Approaches two and four are expensive because of their
synchronization overhead if the amount of work in the loop body is small and
the number of loop iterations is high.

2.3 Parallelization of High-Level Codes

In C++ programs making extensive use of object-oriented programming, a large
amount of computing time may be spent in member functions of variables of
class-type. An example is shown in program 7 where a part of the PCG-type
linear equation solver of DROPS is shown. The data types Vec and Mat represent
vector or matrix implementations, respectively, and hide the implementation



OpenMP and C++ 307

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 1
 2

 3
 4

Time (sec)

T
hr

ea
ds

In
te

l,A
1,

D
IM

=
40

,IT
S

=
10

00
In

te
l,A

2,
D

IM
=

40
,IT

S
=

10
00

In
te

l,A
3,

D
IM

=
40

,IT
S

=
10

00
In

te
l,A

4,
D

IM
=

40
,IT

S
=

10
00

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 1
 2

 3
 4

Time (sec)
T

hr
ea

ds

S
un

,A
1,

D
IM

=
25

60
,IT

S
=

10
S

un
,A

3,
D

IM
=

25
60

,IT
S

=
10

S
un

,A
4,

D
IM

=
25

60
,IT

S
=

10

Fig. 1. Performance of parallelized iterator loops

from the user by providing an abstract interface. For example the expression in
line 5 stores the result of the (sparse) matrix-vector-multiplication of matrix A
with vector p in vector q.

Program 7. Single-Nowait loop parallelization.
1 PCG(const Mat& A, Vec& x,const Vec& b, ...) {
2 Vec p(n), z(n), q(n), r(n); Mat A(n, n);
3 [...]
4 for (int i = 1; i <= max_iter; ++i) {
5 q = A * p;
6 double alpha = rho / (p * q);
7 x += alpha * p;
8 r -= alpha * q;
9 [...]

To parallelize such codes the programmer has in general two choices:

1. Internal parallelization: a complete parallel region is embedded in the mem-
ber function (e.g. operator∗). The advantage is that the parallelization is
completely hidden by the interface and the interface does not need to be
changed, though additional functionality to control the parallelization could
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Table 2. Execution time (secs) of different parallelization levels

Compiler Parallelization 1 2 4 8
Intel Internal 219 108 65.5 —

Intel External 216 107 65.0 —-

Sun Internal 375 185 112 42

Sun External 320 161 97 37

be provided. The disadvantage results from the embedding of the complete
parallel region. At the beginning of a parallel region a team of threads has
to be created, which at the end of the parallel region has to be dissolved,
both counting for some overhead. There is no chance to enlarge the parallel
region or to reduce barriers.

2. External parallelization: the parallel region starts and ends outside of mem-
ber functions (in the PCG code example it could span the whole loop body)
and inside member functions orphaned worksharing constructs are used. This
can reduce the overhead of thread creation and termination. The disadvan-
tage is that the interface is changed implicitly, because the parallelized mem-
ber functions may only be called by a serial program part or out of a parallel
region, but not out of another worksharing construct. In many cases the
compiler is unable to detect this calling situation and there is no way to find
out (e.g. by an OpenMP runtime function) whether the member function is
called in a worksharing construct.

We do not consider the absolute performance but only the scalability. In table
2 the runtime in seconds for the two approaches is shown. While the performance
of the Intel compiler is all the same, it differs for the Sun compiler.

For performance reasons and from a library writer’s point of view (e.g. C++
template) the external parallelization is in favour. The ability to check for calling
situations out of a worksharing construct would broaden the applicability of that
programming style.

3 ccNUMA-Architectures

C++ programs using STL data types like std::valarray to represent arrays for
numerical computation can profit from additional functionality. The develop-
ment might get simplified compared to native arrays on the one hand, but on
the other hand it might leads to problems when used on ccNUMA-architectures.
This is discussed in subsection 3.1. Subsection 3.2 illustrates how to affect mem-
ory locality for general data types.

3.1 STL Data Types

After instantiation all elements of a variable of type std::valarray are guar-
anteed to be initialized with zero. This leads to a disadvantage on ccNUMA-
architectures, because the initialization with zero touches the data and thereby
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leads to a physical data (page) placement by the operating system. On a
ccNUMA-architecture the data is placed in the memory of that CPU on which
the current thread is running. If in the parallel part of the program all threads
need to access one instance of the array, e.g. in a matrix-vector-multiplication,
the speedup is limited.

A typical solution to such a problem is a parallel initialization with the same
memory access pattern as in the computation, if the operating system supports
the fist-touch memory placement policy. The problem with std::valarray is that
the initialization is done inside the data type and a later parallel initialization
would not lead to page migration. The same is true for std::vector. We considered
several approaches to utilize ccNUMA-architectures with these data types.

A modification of std::valarray or std::vector is possible so that the initial-
ization is done in parallel with a given memory access pattern. After memory
allocation this memory is filled with zero in a loop which is parallelized using
OpenMP. The problem of this approach is that it is limited to a given compiler,
as typically every compiler provides its own STL implementation. Therefore this
approach is not portable. We implemented it using the Intel C++ 9.0 compiler
and it is shown in figure 2 as version myvalarray.

If std::vector is used instead of std::valarray a custom allocator can be speci-
fied. We implemented an allocator that uses malloc() and free() for memory allo-
cation and initializes the memory with zero in a loop parallelized with OpenMP,
whose schedule and chunksize parameters are specified as template parameters
and therefore known at compile time. For the translation from std::valarray to
std::vector one has to be careful to not experience a serial performance drop
down, nevertheless this approach is portable. From a C++ programmer’s per-
spective we found this approach the most elegant one. Its performance is shown
in figure 2 as version vector.

The third approach is to use page migration functionality provided by the
Solaris operating system. The madvise() function gives an advice to the virtual
memory system for a given memory range. Specifying MADV ACCESS LWP
advises to physically migrate the memory pages to the memory of that CPU
which is accessing next. Again this approach is not portable when the Solaris
operating system is not available. Its performance is shown in figure 2 as version
madvise. We proposed a ”next-touch” enhancement to the OpenMP specifica-
tion that would provide functionality similar to madvise() independent from the
programming language, compiler and operating system.

In figure 2 the speedup of the sparse matrix-vector-multiplication in DROPS
for the original implementation based on std::valarray and the implementation
using std::vector with a custom distributed allocator is shown.

3.2 Other Data Types

In many cases native pointers are used to dynamically manage data. We inves-
tigated a program, which uses pointers to dynamically address its main data
structure, a two-dimensional grid. The grid is initialized in the serial program
part and therefore the scalability on a ccNUMA-architecture is limited, because
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Fig. 2. Speedup of C++ STREAM-benchmark on SF V40z ccNUMA-architecture and
speedup of DROPS sparse matrix-vector-multiplication

all threads have to access the master thread’s memory where the data is al-
located. Again it is possible to use the madvise() functionality to improve the
situation on the cost of portability. To provide a portable solution based on C++
language features and OpenMP it is possible to initialize the pointer array using
a parallel loop. Both approaches deliver the same performance.

To control data placement of general classes in C++ a mixin [10] can be used.
Thereby it is possible to overwrite the new and delete operator for a given class
without modifying its code. By using additional template parameters the same
flexibility as with a custom allocator can be reached.

4 Conclusion

In this work we presented our experiences in parallelizing C++ applications with
OpenMP. Though the current OpenMP specification includes C and C++, it
does not address the special needs of a C++ programmer. The usage of OpenMP
in C++ programs is not yet very widespread, nevertheless we successfully par-
allelized the two software packages DROPS and FIRE.

The primary problems we encountered were caused by incomplete or non-
conforming implementations of the C++ compilers and the resulting errors may
be hard to find for novice users. Missing features of the specification could
be overcome in most cases using the presented approaches. Task-Queuing or
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additional runtime functions to inquire whether a code is called within a work-
sharing construct would make the C++ programmer’s life easier.

In order to achieve high scalability on an ccNUMA-architecture data locality
has to be considered. Since most operating systems except Solaris do not yet
provide page migration functionality, the user has to manually optimize data
distribution. The C++ programming language can address these issues elegantly
and with minimal programming efforts.
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Abstract. Few data are available on common mistakes made when us-
ing OpenMP. This paper presents a study on the programming errors
observed in our courses on parallel programming during the last two
years, along with numbers on which compilers and tools were able to
spot them. The mistakes are explained and best practices for program-
mers are suggested to avoid them in the future. The best practices are
presented in the form of an OpenMP checklist for novice programmers.

1 Introduction

One of the main design goals of OpenMP was to make parallel programming
easier. Yet, there are still fallacies and pitfalls to be observed when novice pro-
grammers are trying to use the system. We have therefore conducted a study on
a total of 85 students visiting our lecture on parallel programming, and observed
the mistakes they made when asked to prepare assignments in OpenMP. The
study is described in detail in Sect. 2.

We are concentrating on the most common mistakes from our study for the
rest of this paper. They are briefly introduced in Tab. 1, along with a count of
how many teams (consisting of two students each) have made the mistake each
year. We have chosen to divide the programming mistakes into two categories:

1. Correctness Mistakes: all errors impacting the correctness of the program.
2. Performance Mistakes: all errors impacting the speed of the program. These

lead to slower programs, but do not produce incorrect results.

Sect. 3 explains the mistakes in more detail. Also in this section, we propose
possible ways and best practices for novice programmers to avoid these errors in
the future. Sect. 4 reports on tests that we conducted on a variety of OpenMP-
compilers to figure out, if any of the programming mistakes are spotted and/or
possibly corrected by any of the available compilers. In Sect. 5, all suggestions
made this far are condensed into an OpenMP programming checklist, along with
others from our own programming experiences. Sect. 6 reviews related work,
while Sect. 7 sums up our results.
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c© Springer-Verlag Berlin Heidelberg 2008



Common Mistakes in OpenMP and How to Avoid Them 313

Table 1. The list of frequently made mistakes when programming in OpenMP

No. Problem 2004 2005 Sum

Correctness Mistakes
1. Access to shared variables not protected 8 10 18
2. Use of locks without flush 7 11 18
3. Read of shared variable without flush 5 10 15
4. Forget to mark private variables as such 6 5 11
5. Use of ordered clause without ordered construct 2 2 4
6. Declare loop variable in #pragma omp parallel for as shared 1 2 3
7. Forget to put down for in #pragma omp parallel for 2 0 2
8. Try to change num. of thr. in parallel reg. after start of reg. 0 2 2
9. omp_unset_lock() called from non-owner thread 2 0 2
10. Attempt to change loop variable while in #pragma omp for 0 2 2

Performance Mistakes
11. Use of critical when atomic would be sufficient 8 1 9
12. Put too much work inside critical region 2 4 6
13. Use of orphaned construct outside parallel region 2 2 4
14. Use of unnecessary flush 3 1 4
15. Use of unnecessary critical 2 0 2

Total Number of Groups 26 17 43

2 Survey Methodology

We have evaluated two courses for this study. Both consisted of students on an
undergraduate level. The first course took place in the winter term of 2004 /
2005, while the second one took place in the winter term of 2005 / 2006. The
first course had 51 participants (26 groups of mostly two students), the second
one had 33 participants (17 groups). The lecture consisted of an introduction
to parallel computing and parallel algorithms in general, followed by a short
introduction of about five hours on OpenMP. Afterwards, the students were
asked to prepare programming assignments in teams of two people, which had
to be defended before the authors. During these sessions (and afterwards in
preparation for this paper), we analyzed the assignments for mistakes, and the
ones having to do with OpenMP are presented in this paper.

The assignments consisted of small to medium-sized programs, among them:

– find the first N prime numbers
– simulate the dining philosophers problem using multiple threads
– count the number of connected components in a graph
– write test cases for OpenMP directives / clauses / functions

A total of 231 student programs in C or C++ using OpenMP were taken into
account and tested on a variety of compilers (e. g. from SUN, Intel, Portland
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Group, IBM, as well as on the free OMPi compiler). Before we begin to evaluate
the results, we want to add a word of warning: Of course, the programming
errors presented here have a direct connection to the way we taught the lecture.
Topics we talked about in detail will have led to fewer mistakes, while for other
topics, the students had to rely on the specification. Moreover, mistakes that
have been corrected by the students before submitting their solution are not
taken into account here. For these reasons, please take the numbers presented
in Tab. 1 as what they are - mere indications of programming errors that novice
programmer might make.

3 Common Mistakes in OpenMP and Best Practices to
Avoid Them

In this section, we will discuss the most frequently made mistakes observed dur-
ing our study, as well as suggest possible solutions to make them occur less likely.
There is one universal remark for instructors that we want to discuss beforehand:
We based our lecture on assignments and personal feedback, and found this ap-
proach to be quite effective: As soon as we pointed out a mistake in the students
programs during the exam, a group would rarely repeat it again. Only showing
example programs in the lecture and pointing out possible problems did not have
the same effect.

There are some mistakes, where we cannot think of any best practises to
avoid the error. Therefore, we will just shortly sketch these at this point, while
all other mistakes are discussed in their own section below (the number before
the mistake is the same as in Tab. 1):

2. Use of locks without flush: Before version 2.5 of the OpenMP specification,
lock operations did not include a flush. The compilers used by our students
were not OpenMP 2.5 compliant, and therefore we had to mark a missing
flush directive as a programming error.

5. Use of ordered clause without ordered construct : The mistake here is to put
an ordered clause into a for worksharing construct, without specifying with
a separate ordered clause inside the enclosed for loop, what is supposed to
be carried out in order.

8. Try to change number of threads in parallel region after start of region: The
number of threads carrying out a parallel region can only be changed before
the start of the region. It is therefore a mistake to attempt to change this
number from inside the region.

10. Attempt to change loop variable while in #pragma omp for : It is explicitly
forbidden in the specification to change the loop variable from inside the
loop.

11. Use of critical when atomic would be sufficient : There are special cases when
synchronisation can be achieved with a simple atomic construct. Not using
it in this case leads to potentially slower programs and is therefore a perfor-
mance mistake.
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13. Use of orphaned construct outside parallel region: When using a combined
worksharing construct, sometimes our students would forget to put down the
parallel, producing an orphaned construct. In other cases, the parallel re-
gion was forgotten altogether, leading e. g. to orphaned critical constructs.

14. Use of unnecessary flush: flush constructs are implicitly included in certain
positions of the code by the compiler. Explicitly specifying a flush imme-
diately before or after these positions is considered a performance mistake.

15. Use of unnecessary critical : The mistake here is to protect memory accesses
with a critical construct, although they need no protection (e.g. on private
variables or on other occasions, where only one thread is guaranteed to access
the location).

3.1 Access to Shared Variables Not Protected

The most frequently made and most severe mistake during our study was to
not avoid concurrent access to the same memory location. OpenMP provides
several constructs for protecting critical regions, such as the critical construct,
the atomic construct and locks. Although all three of these constructs were
introduced during the lecture, many groups did not use them at all, or forgot to
use them on occasions. When asked about it, most of them could explain what
a critical region was for and how to use the constructs, yet to spot these regions
in the code appears to be difficult for novice parallel programmers.

A way to make novice programmers aware of the issue is to use the avail-
able tools to diagnose OpenMP programs. For example, both the Intel Thread
Checker and the Assure tool find concurrent accesses to a memory location.

3.2 Read of Shared Variable without Flush

The OpenMP memory model is a complicated beast. Whole sections in the
OpenMP specification have been dedicated to it, as well as a whole paper written
about it [1]. One of its complications is the error described here. Simply put,
when reading a shared variable without flushing it first, it is not guaranteed
to be up to date. Actually, the problem is even more complicated, as not only
the reading thread has to flush the variable, but also any thread writing to it
beforehand. Many students did not realize this and just read shared variables
without any further consideration. On many common architectures this will not
be a problem, because flushes are carried out frequently there. Quite often, the
problem does not surface in real-world programs, because there are implicit
flushes contained in many OpenMP constructs, as well.

In other cases, students simply avoided the problem by declaring shared vari-
ables as volatile, which puts an implicit flush before every read and after
every write of any such variable. Of course, it also disables many compiler opti-
mizations for this variable and therefore is often the inferior solution.

The proper solution, of course, is to make every OpenMP programmer aware
of this problem, by clearly stating that every read to a shared variable must be
preceded by a flush, except in very rare edge-cases not discussed here. This
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flush can be explicitly written down by the programmer, or it can be implicit
in an OpenMP construct.

Version 2.5 of the OpenMP specification includes a new paragraph on the
memory model. Whether or not this is enough to make novice programmers
aware of this pitfall remains to be seen.

3.3 Forget to Mark Private Variables as Such

This programming error has come up surprisingly often in our study. It was
simply forgotten to declare certain variables as private, although they were used
in this way. The default sharing attribute rules will make the variable shared in
this case.

Our first advice to C and C++ programmers to avoid this error in the future
is to use the scoping rules of the language itself. C and C++ both allow variables
to be declared inside a parallel region. These variables will be private (except
in rare edge cases described in the specification, e. g. static variables), and it is
therefore not necessary to explicitly mark them as such, avoiding the mistake
altogether.

Our second advice to novice programmers is to use the default(none) clause.
It will force each variable to be explicitly declared in a data-sharing attribute
clause, or else the compiler will complain. We will not go as far as to suggest
to make this the default behaviour, because it certainly saves the experienced
programmer some time to not have to put down each and every shared vari-
able in a shared clause. But on the other hand, it would certainly help novice
programmers who probably do not even know about the default clause.

It might also help if the OpenMP compilers provided a switch for showing the
data-sharing attributes for each variable at the beginning of the parallel region.
This would enable programmers to check if all their variables are marked as
intended. An external tool for checking OpenMP programs would be sufficient
for this purpose as well.

Another solution to the problem is the use of autoscoping as proposed by Lin
et al. [2]. According to this proposal, all data-sharing attributes are determined
automatically, and therefore the compiler would correctly privatize the variables
in question. The proposed functionality is available in the Sun Compiler 9 and
newer.

Last but not least, the already mentioned tools can detect concurrent accesses
to a shared variable. Since the wrongly declared variables fall into this category,
these tools should throw a warning and alert the programmer that something is
wrong.

3.4 Declare Loop Variable in #pragma omp Parallel for as Shared

This mistake shows a clear misunderstanding of the way the for worksharing
construct works. The OpenMP specification states clearly that these variables are
implicitly converted to private, and all the compilers we tested this on performed
the conversion. The surprising fact here is that many compilers did the conversion
silently, ignoring the shared declaration and not even throwing a warning. More
warning messages from the compilers would certainly help here.
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3.5 Forget to Put Down for in #pragma omp Parallel for

The mistake here is, to attempt to use the combined worksharing construct
#pragma omp parallel for, but forget to put down the for in there. This
will lead to every thread executing the whole loop, and not only parts of it as
intended by the programmer.

In most cases, this mistake will lead to the mistake specified in Sect. 3.1, and
therefore can be detected and avoided by using the tools specified there.

One way to avoid the mistake altogether is to specify the desired schedule
clause, when using the for worksharing construct. This is a good idea for porta-
bility anyways, as the default schedule clause is implementation defined. It
will also lead to the compiler detecting the mistake we have outlined here, as
#pragma omp parallel schedule(static) is not allowed by the specification
and yields compiler errors.

3.6 omp unset lock() Called from Non-owner Thread

The OpenMP-specification clearly states:

The thread which sets the lock is then said to own the lock. A thread
which owns a lock may unset that lock, returning it to the unlocked state.
A thread may not set or unset a lock which is owned by another thread.

([3, p. 102])

Some of our students still made the mistake to try to unlock a lock from a
non-owner thread. This will even work on most of the compilers we tested, but
might lead to unspecified behaviour in the future.

To avoid this mistake, we have proposed to our students to use locks only
when absolutely necessary. There are cases when they are needed (for example
to lock parts of a variable-sized array), but most of the times, the critical
construct provided by OpenMP will be sufficient and easier to use.

3.7 Put Too Much Work Inside Critical Region

This programming error is probably due to the lack of sensitivity for the cost of
a critical region found in many novice programmers. The issue can be split into
two subissues:

1. Put more code inside a critical region than necessary, thereby potentially
blocking other threads longer than needed.

2. Go through the critical region more often than necessary, thereby paying the
maintenance costs associated with such a region more often than needed.

The solution to the first case is obvious: The programmer needs to check if
each and every line of code that is inside a critical region really needs to be
there. Complicated function calls, for example, have no business being in there
most of the time, and should be calculated beforehand if possible.

As an example for the second case, consider the following piece of code, which
some of our students used to find the maximum value in an array:
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1 #pragma omp paral le l for
2 for ( i = 0 ; i < N; ++i ) {
3 #pragma omp c r i t i c a l
4 {
5 i f ( a r r [ i ] > max) max = arr [ i ] ;
6 }
7 }

The critical region is clearly in the critical path in this version, and the cost
for it therefore has to be paid N times. Now consider this slightly improved
version:

1 #pragma omp paral le l for
2 for ( i = 0 ; i < N; ++i ) {
3 #pragma omp flush (max)
4 i f ( a r r [ i ] > max) {
5 #pragma omp c r i t i c a l
6 {
7 i f ( a r r [ i ] > max) max = arr [ i ] ;
8 }
9 }

10 }

This version will be faster (at least on architectures, where the flush oper-
ation is significantly faster than a critical region), because the critical region is
entered less often. Finally, consider this version:

1 #pragma omp paral le l
2 {
3 int priv max ;
4 #pragma omp for
5 for ( i = 0 ; i < N; ++i ) {
6 i f ( a r r [ i ] > priv max ) priv max = arr [ i ] ;
7 }
8 #pragma omp flush (max)
9 i f ( priv max > max) {

10 #pragma omp c r i t i c a l
11 {
12 i f ( priv max > max) max = priv max ;
13 }
14 }
15 }

This is essentially a reimplementation of a reduction using the max operator.
We have to resort to reimplementing this reduction from scratch here, because
reductions using the max operator are only defined in the Fortran version of
OpenMP (which in itself is a fact that many of our students reported to have
caused confusion). Nevertheless, it is possible to write programs this way, and
by showing novice programmers techniques like the ones sketched above, they
get more aware of performance issues.

4 Compilers and Tools

There are a multitude of different compilers for OpenMP available, and we
wanted to know, if any of them were able to detect the programming errors
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Table 2. How Compilers deal with the Problems

No. File icc pgcc sun guide xlc ompi assure itc

Correctness Mistakes
1. access shared - - - - - - eE eE
2. locks flush - - - - - - - -
3. read shared var - - - - - - - (eE)
4. forget private (=access shared) - - - - - - eE eE
5. ordered without ordered - - - - - - - eW
6. shared loop var cE cC cW+C cE cC cC cE cE
7. forget for - - - - - - (eE) (eE)
8. change num threads - - - - - - - -
9. unset lock diff thread - - - - - - - -
10. change loop var - - - - cW - - -

Performance Mistakes
11. crit when atomic - - - - - - - -
12. too much crit (no test!)
13. orphaned const - - rW - - - - -
14. unnec flush - - - - - - - -
15. unnec crit - - - - - - - -

sketched in Sect. 3. Therefore we have written a short testcase for each of the
programming mistakes. Tab. 2 describes the results of our tests on different
compilers.

The numbers in the first column are the same as in Tab. 1. The second column
contains the names of our test programs. We could not think of a sound test
for problem 12 (put too much work inside critical region), and therefore the
results for this problem are omitted. Test program four is the same as test
program one, and therefore the results are the same as well. The rest of the table
depicts results for the following compilers (this list is not sorted by importance,
nor in any way representative, but merely includes all the OpenMP-compilers
we had access to):

– Intel Compiler 9.0 (icc)
– Portland Group Compiler 6.0 (pgcc)
– Sun Compiler 5.7 (sun)
– Guide component of the KAP/Pro Toolset C/C++ 4.0 (guide)
– IBM XL C/C++ Enterprise Edition 7.0 (xlc)
– OMPi Compiler 0.8.2 (ompi)
– Assure component of the KAP/Pro Toolset C/C++ 4.0 (assure)
– Intel Thread Checker 2.2 (itc)

The last two entries (assure and itc) are not compilers, but tools to help the pro-
grammer find mistakes in their OpenMP programs. As far as we know, Assure
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was superseded by the Intel Thread Checker and is no longer available, never-
theless it is still installed in many computing centers. We were not able to find
any lint-like tools to check OpenMP programs in C, there are however solutions
for Fortran available commercially.

The alphabetic codes used in the table are to be read as follows: the first
(uncapitalized) letter is one of (c)ompiletime, (r)untime or (e)valuation time,
and describes, when the mistake was spotted by the compiler. Only Assure and
the Intel Thread Checker have an evaluation step after the actual program run.
The second (capitalized) letter describes, what kind of reaction was generated
by the compiler, and is one of the following: (W)arning, (E)rror or (C)onversion.
Conversion in this context means that the mistake was fixed by the compiler
without generating a warning. Conversion was done for problem six, where the
compilers privatized the shared loop variable. W+C means, that the compiler
generated a warning, but also fixed the problem at the same time. There is one
last convention to describe in the alphabetic codes: When there are braces around
the code, it means that a related problem was found by the program, which could
be traced back to the actual mistake. An example: When the programmer forgets
to put down for in a parallel worksharing construct (problem seven), it will lead
to a data race. This race is detected by the Intel Thread Checker, and therefore
the problem becomes obvious. All tests were performed with all warnings turned
to the highest level for all compilers.

It is obvious from these numbers that most of the compilers observed are
no big help in avoiding the problems described in this paper. Tools such as
the Intel Thread Checker are more successful, but still it is most important
that programmers avoid the mistakes in the first place. This paper and the
programmers checklist presented in the next section are a step in this direction.

5 OpenMP Programmers Checklist

In this section, we summarize the advice given to novice programmers of OpenMP
this far and rephrase it to fit into the easy to use format of a checklist. For this
reason, the form of address is changed and the novice programmer is addressed
directly. The checklist also contains other items, which we have accumulated
during our own use of and experiences with OpenMP.

General

– It is tempting to use fine grained parallelism with OpenMP (throwing in an
occasional #pragma omp parallel for before loops). Unfortunately, this
rarely leads to big performance gains, because of overhead such as thread cre-
ation and scheduling. You therefore have to search for potential for coarser-
grained parallelism.

– Related to the point above, when you have nested loops, try to parallelize
only the outer loop. Loop reordering techniques can sometimes help here.

– Use reduction where applicable. If the operation you need is not predefined,
implement it yourself as shown in Sect. 3.7.
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– Beware of nested parallelism, as many compilers still do not support it,
and even if it is supported, nested parallelism may not give you any speed
increases.

– When doing I/O (either to the screen or to a file), large time savings are
possible by writing the information to a buffer first (this can sometimes even
be done in parallel) and then pushing it to the device in one run.

– Test your programs with multiple compilers and all warnings turned on,
because different compilers will find different mistakes.

– Use tools such as the Intel Thread Checker or Assure, which help you to
detect programming errors and write better performing programs.

Parallel Regions

– If you want to specify the number of threads to carry out a parallel region,
you must invoke omp_set_num_threads() before the start of that region (or
use other means to specify the number of threads before entering the region).

– If you rely on the number of threads in a parallel region (e.g. for manual
work distribution), make sure you actually get this number (by checking
omp_get_num_threads() after entering the region). Sometimes, the runtime
system will give you less threads, even when the dynamic adjustment of
threads is off!

– Try to get rid of the private clause, and declare private variables at the
beginning of the parallel region instead. Among other reasons, this makes
your data-sharing attribute clauses more manageable.

– Use default(none), because it makes you think about your data-sharing
attribute clauses for all variables and avoids some errors.

Worksharing Constructs

– For each loop you parallelize, check whether or not every iteration of the
loop has to do the same amount of work. If this is not the case, the static
work schedule (which is often the default in compilers) might hurt your
performance and you should consider dynamic or guided scheduling.

– Whatever kind of schedule you choose, explicitly specify it in the worksharing
construct, as the default is implementation-defined!

– If you use ordered, remember that you always have to use both the ordered
clause and the ordered construct.

Synchronisation

– If more than one thread accesses a variable and one of the accesses is a write,
you must use synchronization, even if it is just a simple operation like i = 1.
There are no guarantees by OpenMP on the results otherwise!

– Use atomic instead of critical if possible, because the compiler might be
able to optimize out the atomic, while it can rarely do that for critical.

– Try to put as little code inside critical regions as possible. Complicated
function calls, for example, can often be carried out beforehand.



322 M. Süß and C. Leopold

– Try to avoid the costs associated with repeatedly calling critical regions, for
instance by checking for a condition before entering the critical region.

– Only use locks when necessary and resort to the critical clause in all other
cases. If you have to use locks, make sure to invoke omp_set_lock() and
omp_unset_lock() from the same thread.

– Avoid nesting of critical regions, and if needed, beware of deadlocks.
– A critical region is usually the most expensive synchronisation construct

(and takes about twice as much time to carry out as e. g. a barrier on many
architectures), therefore start optimizing your programs accordingly — but
keep in mind that these numbers only account for the time needed to actually
perform the synchronisation, and not the time a thread has to wait on a
barrier or before a critical region (which of course depends on various factors,
among them the structure of your program or the scheduler).

Memory Model

– Beware of the OpenMP memory model. Even if you only read a shared
variable, you have to flush it beforehand, except in very rare edge cases
described in the specification.

– Be sure to remember that locking operations do not imply an implicit flush
before OpenMP 2.5.

6 Related Work

We are not aware of any other studies regarding frequently made mistakes in
OpenMP. Of course, in textbooks [4] and presentations teaching OpenMP, some
warnings for mistakes are included along with techniques to increase perfor-
mance, but most of the time, these are more about general pitfalls regarding
parallel programming (like e. g. warnings to avoid deadlocks). There is one in-
teresting resource to mention though: the blog of Yuan Lin [5], where he has
started to describe frequently made errors with OpenMP. Interestingly, at the
time of this writing, he has not touched any errors that we have described as
well, which leads us to think that there are many more sources of errors hidden
inside the OpenMP specification and that our OpenMP checklist is by no means
all-embracing and complete.

7 Summary

In this paper, we have presented a study on frequently made mistakes with
OpenMP. Students visiting the authors’ courses on parallel programming have
been observed for two terms to find out, which were their most frequent sources
of errors. We presented 15 mistakes and recommendations for best practices to
avoid them in the future. These best practices have been put into a checklist for
novice programmers, along with some practices from the authors’ own experi-
ences. It has also been shown, that the OpenMP-compilers available today are
not able to protect the programmer from making these mistakes.
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Abstract. OpenMP [1] is an important API for shared memory pro-
gramming, combining shared memory’s potential for performance with
a simple programming interface. Unfortunately, OpenMP lacks a critical
tool for demonstrating whether programs are correct: a formal memory
model. Instead, the current official definition of the OpenMP memory
model (the OpenMP 2.5 specification [1]) is in terms of informal prose.
As a result, it is impossible to verify OpenMP applications formally since
the prose does not provide a formal consistency model that precisely de-
scribes how reads and writes on different threads interact.

This paper focuses on the formal verification of OpenMP programs
through a proposed formal memory model that is derived from the ex-
isting prose model [1]. Our formalization provides a two-step process to
verify whether an observed OpenMP execution is conformant. In ad-
dition to this formalization, our contributions include a discussion of
ambiguities in the current prose-based memory model description. Al-
though our formal model may not capture the current informal memory
model perfectly, in part due to these ambiguities, our model reflects our
understanding of the informal model’s intent. We conclude with several
examples that may indicate areas of the OpenMP memory model that
need further refinement however it is specified. Our goal is to motivate
the OpenMP community to adopt those refinements eventually, ideally
through a formal model, in later OpenMP specifications.

1 Introduction

Modern systems are being increasingly built using multi-threaded architectures.
These include systems with multiple processors on the same node and/or mul-
tiple cores on the same chip. Given the proximity of the processors/cores on
such machines, they typically feature a single memory accessible to any proces-
sor. As such, these machines are most easily and effectively programmed in a
multi-threaded shared memory style.
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OpenMP [1] has emerged as a popular shared memory API because it com-
bines the performance advantages of shared memory with an easy-to-use API.
However, despite the relative simplicity of the API, OpenMP applications re-
main difficult to write. The difficulty arises from several inherent complexities
of multi-threaded execution, including non-determinism, a large space of possi-
ble executions and a very relaxed memory consistency model. Thus, although
OpenMP allows programmers to improve application performance significantly,
this comes at a cost of significantly higher program complexity. This complex-
ity makes OpenMP programs much more vulnerable to bugs than sequential
programs and, thus, more expensive to debug. Ultimately, confidence in the cor-
rectness of the final application is reduced.

Formal verification is a family of techniques where a program or protocol is
formalized into a mathematically well-defined form. Correctness is verified using
a variety of techniques that range in their complexity and their correctness guar-
antees, from model checking to theorem proving [9]. While formal verification is
generally too complex to apply to real-world applications, it is feasible for the
basic algorithms on which real applications are based.

Existing work on formally verifying shared memory algorithms [8] requires
us to represent the entire computational content of the algorithm formally, in-
cluding algorithm logic and the details of the underlying system. In particular
the underlying memory model must be formalized. While some formal memory
models exist [7] [3], none exists for OpenMP. Instead, the official description of
OpenMP’s memory model (section 1.4 of version 2.5 of the OpenMP specifica-
tion [1]) is written in detailed English, which is generally clear but not nearly
precise enough for formal verification tasks. Similarly, while the OpenMP mem-
ory model was recently clarified further [6], this clarification is also informal.

This paper focuses on verification of OpenMP programs through a proposed
formal memory model that we derived from the existing prose model [1]. Our
formalization provides a two-step process to verify if an observed OpenMP exe-
cution is conformant. In addition to this formalization, our contributions include
a discussion of ambiguities in the current prose-based memory model description.
Although our formal model may not capture the current informal memory model
perfectly, in part due to these ambiguities, our model reflects our understanding
of the informal model’s intent. We present several examples that demonstrate a
need for further refinement of the OpenMP memory model however it is speci-
fied. Our goal is to motivate the OpenMP community eventually to adopt those
refinements, ideally through a formal model, in later OpenMP specifications.

This paper is divided as follows. Section 2 provides an overview of the OpenMP
memory model. Section 3 discusses aspects of that model that we find ambiguous
(despite one of the authors having significant input into it). Section 4 outlines the
formalization of this model. Section 5 defines the language of the operations used
in the formal model. Sections 6 and 7 provide the details of the two phases used
by the formal specification. Finally, section 8 provides several example programs
and their outcomes under the formal model specified in this paper.
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2 OpenMP Memory Model

The OpenMP memory model provides for two types of memory: shared and
threadprivate. There is a single shared memory that is visible to reads and writes
on all threads. Furthermore, each thread has its own threadprivate memory that
is accessible to only the reads and writes on that thread. OpenMP’s shared
memory semantics are akin to but a little weaker than weak ordering [4]. While
each thread may read from and write to data in shared memory, there is no
guarantee that one thread can immediately observe a write by another thread.
Thus, the value associated with a given read may not reflect all prior writes
from other threads. Instead, each thread conceptually has a temporary view of
shared memory and a flush operation limits the reordering of operations and
synchronizes a thread’s temporary view with shared memory.

Simple, intuitive concepts motivate the OpenMP memory model. In order to
ensure that a read by thread j returns the value of a write by thread i, the
program must provide synchronization that guarantees the following sequence
of events:

1. Thread i writes to the variable
2. Thread i flushes the variable
3. Thread j flushes the variable
4. Thread j reads the variable

and no other writes to the variable are happening at the same time. Any be-
havior outside the above sequence can produce undefined read results and/or
leave the variable’s value in shared memory undefined. However, the OpenMP
memory model is very complex with many potential pitfalls in practice despite
the simplicity of the underlying concepts, as we will discuss.

A thread’s temporary view can be its cache, registers or other devices that
speed up memory operations by not forcing the processor to go to main memory
for every shared access. Reads and writes to shared variables access the thread’s
temporary view of shared memory. If the thread reads a shared variable and
the temporary view doesn’t hold a value for this variable, the read goes directly
to shared memory. If a thread writes to a shared variable, it only updates the
thread’s temporary view of that variable. However, the system is then free to
non-deterministically push the value of the write from a thread’s temporary
view to shared memory at any time. Since there are no atomicity constraints
(e.g., a 64-bit write may not be executed as a single operation), if two writes
executed on two threads are not ordered via synchronization, the value of the
variable in shared memory may become garbage and is thus undefined (until it
is overwritten by some later write). Similarly, if a write to a variable and a read
from the same variable are executed on different threads and are not related via
appropriate flushes and synchronization, the value read is undefined.

In addition to uncertainty about when shared reads and writes will actually
access shared memory, OpenMP allows the compiler and the hardware to ex-
ecute application operations out of order relative to their order in the original
source code (called ”program order”). In particular, implementations are allowed
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to reorder shared operations that access different shared memory variables. It is
not specified whether it is legal to reorder operations that do have data depen-
dence (ex: A=B and B=1), although it is possible to imagine aggressive compiler
transformations that may do that.

OpenMP’s flush operation is the application’s primary means of limiting the
asynchrony of memory and the degree of out-of-order execution. A given flush
operation applies to a list of shared variables and has two major effects:

• it synchronizes the thread’s temporary view with shared memory for the vari-
ables in the list;

• it prevents reordering of the thread’s operations on variables in the list.

The first effect ensures that any preceding writes to the list variables by the
thread have completed in the shared memory before the flush completes. It
also ensures that the first read that follows the flush to each of the list vari-
ables must come directly from shared memory. The second effect ensures that
shared memory operations that accesses a variable in the flush’s variable list
are executed in program order relative to the flush. Furthermore, all flush
operations with overlapping variable lists must be executed in program order.

A program’s flush operations also restrict the interleaving of operations by
different threads. All threads must observe any two flush operations with over-
lapping variable lists in some sequential order. Thus, we can organize non-flush
operations on different threads into a partial temporal order that in turn deter-
mines which writes are visible to which reads.

OpenMP provides several synchronization operations in addition to reads,
writes and flushes. These include locks, barriers, critical sections, ordered
sections and atomic updates. All of these operations are preceded and/or fol-
lowed by implied flush operations that apply either to all variables or just the
variable involved in the operation.

3 Ambiguities in the OpenMP Memory Model

Despite the precise prose that defines the OpenMP memory model, we had sev-
eral questions as we formulated our formal memory model based on it. Some
of the questions indicate ambiguities that should be resolved in future speci-
fications. Other questions arise from discrepancies between the prose and our
understanding of the intent of the OpenMP language committee. We present
several of these questions in this section.

3.1 Dependence-Breaking Compilers

The OpenMP memory model clearly defines reordering restrictions with respect
to flush operations. However, reordering restrictions for non-flush operations
are much less clear. For example, most sequential compilers reorder operations
that access different variables; does the memory model allow these? The mem-
ory model is definitely intended to allow them but only supports them with this
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if(threadNum==0) {
Barrier
A=20;
Barrier

} else {
A=5;
Barrier
Barrier
B=5;
B=A;
print B;

}

Fig. 1.

sentence: “The flush operation restricts reorder-
ing of memory operations that an implementation
might otherwise do.” We read this to mean that the
memory model imposes no other reordering restric-
tions. This would mean that compilers may reorder
operations that access the same shared variable. In
particular, they can reorder not only reads but also
writes. In general, the compiler can reorder any ac-
cesses not separated by a flush, including conflict-
ing accesses to the same variable, provided that it
preserves the application’s sequential semantics.

For example, in the sample code shown in Figure
1 the application’s sequential semantics would be
preserved if the two writes to B were exchanged,
since in a single-threaded execution the write B = A
is guaranteed to assign 5 to B. However, if this code
were to be executed by two threads, the write B = A would assign B to 20, rather
than 5. As such, reordering these two writes, while apparently legal in OpenMP,
can produce unexpected results. Since there exist apparently legal dependence-
breaking compiler optimizations that violate the spirit of the OpenMP memory
model, the OpenMP specification should include a clear statement about the
validity of different types of variable access reordering.

3.2 Intra-thread Dependencies

The OpenMP memory model clearly states that a flush does not complete
until the values of all preceding writes have been completed in shared memory.
However, it is not clear if the OpenMP memory model enforces program order,
i.e., processor consistency [5].

In Section 2, we presented the events required for a read by thread j to return
the value written by thread i. If thread i writes another value between steps 1 and
2, what value should be read in step 4? The question is related to the reordering
questions in the preceding section, but it is also different. If the first value is
captured in the temporary view but not the second for some reason (for example,
the writes are executed out of order), is it legal not to propagate the captured
value? The memory model prose states otherwise: “the flush does not complete
until the value of the variable has been written to the variable in memory.”
Simply put, the memory model does not address multiple writes to the same
shared variable by the same thread between two flush operations. Ultimately,
the question is: does OpenMP guarantee that writes by a given thread must be
seen in program order by other threads as long as the appropriate flushes have
been issued (i.e. writes, flush, flush, read)?

We can also ask about the impact of reads by thread i: suppose that thread i
reads the variable between steps 1 and 2 and that value is different from what was
written by the write in step 1 due to a write by some other thread. This scenario
includes a race condition and the specification is clear that the variable’s value
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becomes undefined. However, completing the write would now be inconsistent
with program order. Does the race imply that the flush should not see the write
from step 1 and the read in step 4 will get some other value? The specification
provides little detail on how local state evolves so the issue is unclear.

3.3 Effect of Privatization

The memory model section, section 1.4, of the 2.5 specification [1] states that
OpenMP has two types of memory: shared and threadprivate. The bulk of the
section defines the semantics of the shared memory. It provides few details of
the second type, which corresponds to threadprivate variables and to variables
included in private clauses. The only issue discussed is the interaction with nested
parallelism.

The memory model does not address any interactions between the two types.
In particular, it does not discuss the impact on shared variables that are included
in private clauses. However, section 2.8.3.3, which discusses the private clause,
includes: ”The value of the original list item is not defined upon entry to the
region. The original list item must not be referenced within the region. The value
of the original list item is not defined upon exit from the region.” Including a
shared variable in a private clause essentially writes the shared variable with
an undefined value, an effect that is easily overlooked by someone trying to
understand the OpenMP memory model. We understand that this effect is being
reconsidered for the OpenMP 3.0 specification. However, our point here is that
any interactions between the two types of memory should be included in the
memory section. In the very least, a forward reference is needed.

3.4 Captured Writes

The OpenMP memory model states that ”If a thread has captured the value of a
write in its temporary view of a variable since its last flush of that variable, then
when it executes another flush of the variable, the flush does not complete
until the value of the variable has been written to the variable in memory.” We
find this ambiguous and believe others will also. What does it mean for a thread
to capture a value of a write? Does this only refer to a write by the thread that
executes the flush? We believe that to be the intent but the actual wording could
refer to writes on other threads that have been read by the given thread. Our
point is that English is a rich and complex language in general and the phrase
“precise English” is an oxymoron. For this reason, a formal, mathematical model
is needed.

4 Formal Specification

The following sections describe the OpenMP memory model in formal, mathe-
matical language. This specification takes as input an application and a trace
that shows how this application executed on top of some implementation of
OpenMP (a trace is a tuple of lists of executed shared memory operations, one
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appOps

Thread 1

smOps smOps. . . 

appOps

smOps smOps. . . 

Thread n

.  .  .  .  . 

Shared Memory

Output

Fig. 2.

list for each thread, with the
operations stored in the order
in which they were executed
on that thread, along with
their results, if any). It then
uses a set of rules to judge
if the application could have
generated the trace and if a
valid interleaving of thread
operations exists under the
OpenMP memory model that
results in the values read in
the trace.

Our OpenMP formalization is an operational model (outlined in Figure 2).
It defines a system state and valid transition rules for modifying the state. At
a high level, this model defines the state of one or more application threads
running on top of shared memory and transition rules for evaluating the next
application operation on some thread. Applications are specified as lists of high-
level operations such as (varA = varB⊗varC) and (While(var = val) bodyList),
called ”application operations” or ”appOps”. Each appOp is made up of one or
more simpler operations such as (Read varA) or (Write varB val), called ”shared
memory operations” or ”smOps”. Every thread’s state transition either:

• Evaluates the next smOp that makes up the thread’s currently-executing ap-
pOp; or

• Moves to evaluation of the thread’s next appOp in its remaining application
source code.

The first action can change the shared memory state. The second action typ-
ically removes an appOp from the remaining application source code but can
add appOps in the case of a while loop appOp that performs multiple loop itera-
tions. A trace records each thread’s view of a particular execution of the system.
As such, it is a tuple of lists of smOps, one for each thread, (each list is some
thread’s ”sub-trace”). Each sub-trace contains the smOps executed by its re-
spective thread and any values they returned (e.g., the entry (Read var �→ val)
corresponds to a read of variable var that returned the value val). Traces do not
specify the interleaving of smOps from different threads.

We break our operational model into two sub-models, the Compiler Phase and
the Runtime Phase, so that we can reason independently about different aspects
of the memory model. The compiler phase evaluates each thread’s source code
independently from any other thread to verify that the application could have
generated the list of smOps in each sub-trace. Its state consists of:
• a list of the current thread’s remaining appOps;
• a list of smOps generated by that thread so far;
• the suffix of the thread’s sub-trace that contains the yet unverified smOps.
During each state transition the compiler phase evaluates the next appOp, breaks
it up into its constituent smOps (ex: the appOp (varA = varB ⊗varC) breaks up
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into (Read varB), (Read varC) and (Write varA) smOps) and checks whether
these smOps are contained in the sub-trace. Whenever an appOp uses values
from shared memory (e.g., the value returned by a read), it looks them up in the
sub-trace. The trace corresponds to the application’s source code if the compiler
phase independently verifies this for each sub-trace.

The runtime phase determines if the smOps in the individual threads’ sub-
traces correspond to each other. More specifically, it evaluates the threads’ sub-
traces in parallel to determine whether a conformant interleaving exists that
results in the associated read values. It assumes that the smOps in the individual
threads’ sub-traces correspond to the application’s source code. Therefore, its
state consists of:
• the writes, atomic updates and flushes that each thread performed (one list

per thread);
• a partial order that relates those smOps in time (used for determining the

values that a read may return);
• the system’s synchronization state: currently held locks, critical and ordered

sections and the identities of threads that are currently blocked on a barrier;
• the smOps that remain to be evaluated for each thread (one list per thread).
During each state transition the runtime phase chooses a thread and evaluates
its pending smOp. It may evaluate smOps out of order if this does not break
their data dependences, (determined during the compiler phase). Evaluation of
the read and atomic update smOps examines the values available to be read
and verifies that the value returned by the read or atomic update in the trace
could actually have been read during this interleaving. Every state transition
also causes the state to change, including updating the synchronization state
and adding new operations to the above partial order. Since the runtime phase
is non-deterministic, the trace is self-consistent if the exists some interleaving of
the different threads’ smOps such that all reads and atomic updates performed
by the formal model match their return values recorded in the trace.

Section 5 details the full language of appOps and smOps. Sections 6 and 7
provide more details on the mechanics of the compiler phase and runtime phase,
respectively. Due to lack of space, we do not cover the full mathematical details
of the formalism, which are available elsewhere [2]. Instead, we express them in
a more verbal style here.

5 Language Specification

5.1 Application Operations

Our application language (specified in Table 1) models the major relevant fea-
tures of C/Fortran and OpenMP. It contains basic computational and control
flow operations as well as flushes and locks. Section number references refer to
the OpenMP 2.5 specification [1]. The while loop primitive makes the application
language Turing-complete in its use of shared memory operations. As mentioned,
these operations are sufficient for our examples; the complete language covers
the remaining OpenMP synchronization operations such as barriers and ordered
sections [2].
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Table 1.

varA = varB ⊗ varC

• Represents any local computation
performed by the application.

• ⊗ is a Turing-complete binary
operation that does not use shared memory.

• varA, varB and varC are shared variables.
• Corresponds to (Read varB), (Read varC)

and (Write varA val) smOps.
Flush varList
• Models explicit flushes [sections 1.4.2 and 2.7.5].
• varList is a list of shared variables.
• An explicit flush operation with a list maps to

Flush varList, where varList is its variable list.
• An explicit flush operation without a list maps

to Flush allV arList, where allV arList contains
all application shared variables.

• Corresponds to a single Flushmm smOp that applies
to the same varList.

Atomic var ⊕ = updV al
• Models the atomic update construct [section 2.7.4].
• ⊕ may be one of the following operations:

+, ∗, −, /, &, ˆ, |, <<, or >>
(++ and - - are modeled via +=1 and -=1).

• var is a shared variable.
• updV al is a constant.
• Corresponds to an Atomicmm smOp

surrounded by (Flushmm (var)) smOps.

Lock lockV ar
Unlock lockV ar
• Model the omp set lock and omp unset lock

function calls [section 3.3].
• lockV ar is a shared variable only accessed via

Lock and Unlock operations.
• Correspond to a BlockSynch smOp surrounded

by (Flushmm allV ars) smOps (Lock and Unlock
correspond to different BlockSynch smOps)

While(var = testV al) bodyList
• A while loop control flow primitive.
• var is a shared variable.
• testV al is a value.
• bodyList is a list of appOps.
• Corresponds to a single (Read var) smOp.

Print var
• Outputs the value of a given shared variable

to the user; primarily used in examples to
reason about outcomes of application executions.

• var is a shared variable.
• Corresponds to a single (Read var) smOp.

End
• The last operation in the application’s source

code.
• Ensures each thread’s sub-trace ends correctly.

5.2 Shared Memory Operations

We use a very simple shared memory operation language that is sufficient for the
functionality needs of the higher-level appOps. The smOps include reads, writes,
atomic updates, flushes and blocking synchronizations (from which higher-level
synchronizations are built) and are detailed in Table 2.

6 Compiler Phase

appOps

Thread i

smOps smOps. . . 

Trace

Output

i

The compiler phase, diagrammed here, inde-
pendently evaluates each thread of the appli-
cation. It relates the application’s source code
to the smOps recorded in the thread’s sub-
trace. The evaluation pass reads the appOps
of the application source code in program or-
der and unwraps its while loops as appropri-
ate. In the process, it translates each appOp
into its constituent smOp(s). These applica-
tion smOps are looked up in the thread’s sub-
trace during this evaluation process to verify that they actually do appear there.
The values of all shared reads and atomic writes are also looked up in the trace.
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Table 2. Types of shared memory operations

Write var val: writes val to variable var.

• var is a shared variable.
• val is a constant.

Read var �→ val: read of variable var returns val.

• var is a shared variable.
• val is a constant.

Atomicmm var ⊕ = updV al �→ finalV al:
atomically updates variable var to finalV al.

• var is a shared variable.
• updV al is a constant.
• Reads current value, val, of var.
• Computes finalV al = val ⊕ updV al.
• Writes finalV al to var.
• Actions are atomic: unsychronized atomic updates

do not make the value of var indeterminate.
• Does not have any flush semantics

(unlike the Atomic appOp).
• ⊕ may be: +, ∗, −, /, &, ˆ, |, <<, or >>.

Flushmm varList:
flushes this thread’s temporary view
of variables in varList.

• varList is a list of shared variables.
• Updates thread’s temporary view of those variables

with writes from other threads and vice versa.
• Provides flush semantics for explicit and

implicit flush operations.

BlockSynch blockF updF :
generic blocking synchronization operation.

• Used to implement synchronization semantics of
higher-level operations such as locks and
barriers.

• blockF is function.
◦ Result depends on the formal system synchronization

state.
◦ Returns False if the thread may continue executing

(i.e., is not blocked).
◦ Returns True if the thread is blocked.

• updF is a function.
◦ Result depends on the formal system

current synchronization state.
◦ Returns the next sychronization state.
◦ Applied only when blockF returns True.
◦ Ensures the synchronization state reflects that the

thread has become unblocked.
• blockF and updF vary with each high-level

synchronization construct.
• The compiler phase (Section 6) defines

blockF and updF .
• The runtime phase (Section 7), where synchronization

state is defined, applies blockF and updF .

This phase also defines a dependence order −−−→
DepO on each thread’s smOps, which

the evaluation in the runtime phase must not violate. The remainder of this sec-
tion defines the state and transition function of the compiler phase.

This phase’s operational model is applied to the sub-trace corresponding to
each thread. During each transition it evaluates the next appOp of the app list
and verifies that its smOps occur in the sub-trace and have the appropriate
step counter labels. The phase fails if it cannot verify those smOps. Whenever
an appOp’s evaluation depends on the outcome of a read, the read value is
looked up in the trace and used in the appOp. For example, the while loop
transition behaves differently depending on whether the value returned by its
read is testV al or not.

The full trace is valid only if the above transition system independently passes
each of its sub-traces.TheDependenceOrder−−−→

DepO is preserved after this compiler
pass for use in the runtime pass to ensure that whenever smOps are evaluated out
of order, this new ordering does not violate their read-write dependences.

6.1 Compiler State

[n, app, tracesub,
−−−→
DepO]

• n: the number of smOps evaluated by this thread thus far. Initially n = 0.
• app : The list containing the appOps that remain to be evaluated by the

thread. Initially, it is the original source code of the application.
• tracesub : The list containing the thread’s sub-trace that is to be validated

relative to application source code. The mth smOp generated on this thread
is listed as < smOp, m > (recall that the smOps in tracesub may have been
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executed out of order, meaning that they may be listed out of program order).
No two entries in tracesub have the same m field.

• −−−→
DepO: The dependence order established so far between thread’s smOps; ini-
tially the null relationship.

6.2 Compiler Transitions

The valid state transitions are shown in Table 3. One compiler transition exists for
each appOp type. While loops have two transitions, one for the while loop perform-
ing an extra iteration and another for the while loop’s termination. The transition
used depends on the associated value of the loop variable, as described following
the transitions. Whenever the partial order −−−→

DepO is updated with new ordering
relations, the new −−−→

DepO is the transitive closure of the old −−−→
DepO and the the new

relations.

7 Runtime Phase

Shared Memory

Trace :  ... smOps ...1 Trace :  ... smOps ...n
.  .  .  .  . 

Fig. 3.

The first pass verifies that the smOps from
each thread’s sub-trace could have come from
the given application. The second pass, the
runtime phase, verifies that the values re-
turned by reads and atomic updates would
occur with some OpenMP conformant inter-
leaving of the smOp traces. It evaluates the
traces from all the threads in parallel, interleaving operations from different
threads, as diagrammed in Figure 3. The transition system in Table 3 specifies
this evaluation procedure. During each transition we choose some thread and
evaluate the next smOp from this thread’s sub-trace. We then check that the
value returned for any Read or Atomic update could have been read under the
OpenMP memory model. Conceptually, our runtime phase does not have a single
shared memory. Instead, each write or atomic update simply becomes available
to reads on its own thread and other threads the moment it is evaluated. Over-
all, this phase determines the trace is valid if at least one interleaving of thread
operations agrees with the trace, since the procedure is non-deterministic. As
discussed in Section 7.3, we consider an interleaving of smOps to agree with the
trace if:
• it verifies the values returned by all reads and atomic updates; and
• either all smOps have been evaluated or the remaining smOps correspond to

a deadlock.

7.1 Runtime State

The state of an application with r threads is:
σ,

−−−−→
FlshO; < t1|subtrace1,

−−−→
LclO1 >, ...

..., < tr|subtracer,
−−−→
LclOr >
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Table 3. Valid application state transitions

Computation

Current State:

[n, (varA = varB ⊗ varC) :: app, tracesub,
−−−→
DepO]

Next State: [n + 3, app, tracesub,
−−−→
DepO

′

]
and the following are true:
• < Read varB �→ valB , n > ∈ tracesub

• < Read varC �→ valC , n + 1 > ∈ tracesub

• < Write varA (valB ⊗ valC), n + 2 > ∈ tracesub

• −−−→
DepO

′

extends
−−−→
DepO as follows:

◦ The write depends on the reads.
◦ The read from varB , the read from varC

and the write to varA, depend on the most
recently evaluated writes or atomic updates to
varA, varB or varC , respectively (if any).

◦ All three smOps depend on the most recent read
that was part of a while loop iteration test
(i.e., they depend on control flow).

While Loop

Current State:
[n, (While(var = testVal) bodyList) :: app,

tracesub,
−−−→
DepO]

Next State if readV al = testV al:
[n + 1, bodyList :: (While(var = testV al) bodyList) :: app,

tracesub,
−−−→
DepO

′

]
Next State if readV al 	= testV al:

[n + 1, app, tracesub,
−−−→
DepO

′

]
and the following are true:
• < Read var �→ readV al, n > ∈ tracesub

• −−−→
DepO

′

extends
−−−→
DepO as follows:

◦ The Read of var depends on the most recently
evaluated write or atomic update of var (if any).

◦ The read depends on the most recent read that was
part of a while loop iteration test.

Atomic Update

Current State:

[n, (Atomic var ⊕ = updVal) :: app, tracesub,
−−−→
DepO]

Next State: [n + 3, app, tracesub,
−−−→
DepO

′

]
and the following are true:
• < Flushmm (var), n > ∈ tracesub

• < (Atomicmm var ⊕ = updV al �→ finalV al), n + 1 >
∈ tracesub

• < Flushmm (var), n + 2 > ∈ tracesub

• −−−→
DepO

′

extends
−−−→
DepO as follows:

◦ The smOps are ordered to place the atomic update
between the two flushes.

◦ The Atomicmm smOp depends on the most recently
evaluated write to or atomic update of var.

◦ The Flushmm smOps depend on all prior writes
to or atomic updates of var.

◦ All three smOps depend on the most recent read that
was part of a while loop iteration test.

Print

Current State:

[n, (Print var) :: app, tracesub,
−−−→
DepO]

Next State: [n + 1, app, tracesub,
−−−→
DepO

′

]
and the following are true:
• < Read var �→ readV al, n > ∈ tracesub

• −−−→
DepO

′

extends
−−−→
DepO as follows:

◦ The read of var depends on the most recently
evaluated write or atomic update of var (if any).

◦ The read depends on the most recent read that
was part of a while loop iteration test.

Lock Acquire

Current State:

[n, (Lock lockVar) :: app, tracesub,
−−−→
DepO]

Next State: [n + 3, app, tracesub,
−−−→
DepO

′

]
and the following are true:
• < Flushmm allV ars, n > ∈ tracesub

• < BlockSynch lockBlock lockUpd, n + 1 >
∈ tracesub

• < Flushmm allV ars, n + 2 > ∈ tracesub

• −−−→
DepO

′

extends
−−−→
DepO as follows:

◦ The smOps are ordered to place the lock
acquisition between the two flushes.

◦ The Flushmm smOps depend on all prior
writes to or atomic updates of any variable
and the lock acquire (BlockSynch) depends
on the most recently evaluated acquire or
release of lockV ar.

◦ All three smOps depend on the most recent read
that was part of a while loop iteration test.

• lockBlock is a function that returns True
(blocked) if lockV ar is currently held by
some thread and False otherwise.

• lockUpd takes the current runtime state
and returns one where lockV ar is recorded
as being held.

Lock Release

Current State:

[n, (Unock lockVar) :: app, tracesub,
−−−→
DepO]

Next State: [n + 3, app, tracesub,
−−−→
DepO

′

]
and the following are true:
• < Flushmm allV ars, n > ∈ tracesub

• < BlockSynch unlockBlock unlockUpd, n + 1 >
∈ tracesub

• < Flushmm allV ars, n + 2 > ∈ tracesub

• −−−→
DepO

′

extends
−−−→
DepO as follows:

◦ The smOps are ordered to place the lock release
between the two flushes.

◦ The Flushmm smOps depend on all prior
writes to or atomic updates of any variable
and the lock release (BlockSynch) depends
on the most recently evaluated acquire or
release of lockV ar.

◦ All three smOps depend on the most recent read
that was part of a while loop iteration test.

• unlockBlock always returns False (not blocked)
• unlockUpd updates the current runtime state s.t.

lockV ar is recorded as being not held.

Flush

Current State:

[n, (Flush varList) :: app, tracesub,
−−−→
DepO]

Next State: [n + 1, app, tracesub,
−−−→
DepO

′

]
and the following are true:
• < Flushmm varList, n > ∈ tracesub

• −−−→
DepO

′

extends
−−−→
DepO as follows:

◦ The Flushmm smOp depends on all previously
evaluated writes to or atomic updates of variables
in varList.

◦ The Flushmm depends on the most recent read
that was part of a while loop iteration test.

End

Current State:

[n, (End) :: app, tracesub,
−−−→
DepO]

Next State: [n + 1, [], tracesub,
−−−→
DepO

′

]
and ∀ < smOp, m > ∈ tracesub, m ≤ n
(the sub-trace has no more smOps).

 T
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where:
• σ: The state of all synchronizations.

• Contains one component for each type of synchronization in full model.
• σ.HeldLocks: lock component (only component in abbreviated model)

• Set of pairs < lockV ar, ti >, corresponding to lock variables lockV ar
currently held by thread ti.

• Initially = ∅.
• −−−−→

FlshO: The flush order established so far; initially, the null relationship.
• subtracei: The suffix of thread ti’s sub-trace with its smOps yet to be evalu-

ated; initially ti’s full sub-trace.
• −−−→

LclOi: Thread ti’s local order established so far; initially, the null relationship.
The partial orders −−−−→

FlshO and −−−→
LclOi are defined on the events that happen

on different threads. −−−−→
FlshO applies to events on all threads. −−−→

LclOi applies to
events on thread ti. How these two orders relate events determines the values
returned by reads.−−−→

LclOi is the program order of thread ti in our runtime pass, the order in which
it evaluates tis operations. If event E1 is evaluated on thread ti before event E2
then we have E1

−−−→
LclOi E2. For any event E that happened on some thread ti,

we define ”−−−→
LclOi �i E” to be an order that is identical to −−−→

LclOi, except that
event E follows all events that have been completed on thread ti.−−−−→

FlshO is the global sequential flush order, defined by the relative times that
different threads evaluate flushes. Let E and F be two events such that F is a
flush of the form Flushmm varList. These two rules relate E and F :
• If the same thread evaluates E and F and E is a (Read var), (Write var) or

(Atomicmm var ⊕ = updV al) and var ∈ varList then if E was evaluated
before F then E

−−−−→
FlshO F , otherwise F

−−−−→
FlshO E.

• If E is a flush of the form Flushmm varList2 (on any thread) and varList ∩
varList2 
= ∅ then if E was evaluated before F then E

−−−−→
FlshO F , otherwise

F
−−−−→
FlshO E.

The transitive closure of these rules defines −−−−→
FlshO. For any event E that hap-

pened on some thread ti we define ”−−−−→
FlshO �j

var E” to be an order that is
identical to −−−−→

FlshO, except that event E follows any flush operation evaluated
on tj that has var in its variable list. (note that ti may or may not be the same
as tj)

We use these orders in two key concepts: operation races and eclipsing
operations. Two operations race if they are not related via −−−−→

FlshO. A write or
atomic update WAecl on thread ti eclipses a write or atomic update WA on
thread tj from view by read R on thread tk (all accessing the same variable)
if WAecl sits between WA and R under the order −−−−−−−−−−−−−−−−−−−−→

FlshO ∪ LclOi ∪ LclOk.
Similarly, a read Recl on thread ti eclipses a write or atomic update WA on
thread tj from view by read R on thread tk (all accessing the same variable)
if Recl sits between WA and R under the order −−−−−−−−−−−−−−−−−−−−→

FlshO ∪ LclOi ∪ LclOk and
Recl returns a value different from that written by WA.
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7.2 Transition System

The runtime phase transition system contains one rule for each smOp. Each
transition evaluates si, the first smOp in subtracei, provided that:
• No s′i previously evaluated on thread ti exists such that si

−−−→
DepO s′i;

• the return value in subtracei is available for reading as defined below, if si is
a read or an atomic update;

• its blockF function evaluates to false and its updF function would update the
synchronization state σ to reflect si’s evaluation, if si is a blocking synchro-
nization operation.

If these conditions are not satisfied for thread ti, its next smOp will not be
evaluated until they are. The phase succeeds once subtracei is empty on every
thread ti or there is a deadlock, as discussed in Section 7.3; otherwise the phase
backtracks to examine other interleavings. If no interleavings succeed, the phase
fails and the trace demonstrates non-conformance.

The values available for reading in subtracei depend on the established −−−−→
FlshO

and −−−→
LclO orders and the writes and atomic updates that the transition sys-

tem has previously evaluated. Specifically, let RA be a read or atomic update
of variable var on thread ti. Let pastWriteSet be the set of all un-eclipsed
writes and atomic updates that precede RA under −−−−−−−−−−−−→

FlshO ∪ LclOi and let
presentRemoteWriteSet be the set of writes and atomic updates that race RA.
Then a given value val is available for reading by RA if:
• presentRemoteWriteSet contains any writes; or
• presentRemoteWriteSet contains an atomic update the final value of which

is val; or
• pastWriteSet contains a pair of writes that race each other; or
• pastWriteSet contains a write that wrote val or an atomic update the final

value of which is val; or
• pastWriteSet is empty (i.e. RA is not preceded by any writes to var and thus

got its value from uninitialized memory).
In other words, val is available if it is the most recently written value to var or
if var is uninitialized or racing writes exist to it (so RA can return anything).

For any si, its transition rule:
• removes si so subtrace′i = tail(subtracei) (recall that si = head(subtracei));
• updates −−−−→

FlshO and −−−→
LclOi to include the ordering relationships between Esi ,

si’s evaluation event, and those of all previously evaluated smOps, as discussed
above;

• updates synchronization state to σ′ = updF (σ) if si is a BlockSynch smOp.
Additional actions depend on the type of smOp, as detailed in Table 4.

7.3 Fairness and Deadlocks

The transition rules verify that a trace conforms with the OpenMP memory
model if an interleaving of operations exists that agrees with the outcomes of
the trace’s smOps. An interleavings in which some smOp of some thread never
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executes is not sufficient since the phase will not validate that thread’s sub-trace.
Thus, our model has a basic fairness guarantee on valid traces that we now make
explicit.

A trace is Fair if an interleaving of thread transitions exists such that no
thread’s current smOp is enabled for evaluation an infinite number of times
without being evaluated. In particular, BlockSynch is only enabled in states
where its blockF returns false, reads and atomic updates are enabled when their
values are available for reading and writes and flushes are always enabled
for execution. For finite traces this fairness condition guarantees that every smOp
on every thread will eventually be evaluated unless there is a deadlock or the
ordering of smOps on a thread’s sub-trace violates the application’s dependence
order. For infinite traces it ensures no thread may be enabled for unblocking an
infinite number of times without actually unblocking. In particular, if a thread
is waiting to acquire a lock that periodically becomes available, it will eventually
acquire it.

However, OpenMP does not guarantee deadlock freedom. A poorly written
OpenMP program can contain a deadlock. Thus, our fairness guarantee also al-
lows applications that deadlock. If the application reaches a point where every
thread’s next smOp is a BlockSynch whose blockF returns true, then the pro-
posed interleaving deadlocks. Ordinarily, our transition system would reject the
interleaving since each thread’s last smOp (the BlockSynch) would not be val-
idated against the trace. In order to allow (poorly written) applications that
may deadlock, we explicitly accept deadlocked interleavings if every thread’s
last smOp is a BlockSynch for which blockF returns true.

A situation similar to deadlocks can occur when the sub-traces of one or more
threads violate the dependence order established during the compiler phase. The
problem is that the next smOp on such threads will never be evaluated since its
evaluation would follow the evaluation of an smOp that should have preceded it
according to the dependence order. Such traces are illegal and are rejected by
the above model.

8 Examples

In the examples below we use the following shorthand:
• varA = const corresponds to varA = varconst + varzero where varconst and

varzero are variables that are initialized to const and 0 and never modified.
• Barrier corresponds to a barrier synchronization (not explicitly defined due

to lack of space) and a Flushmm of all variables.

8.1 Uninitialized Read

Figure 4 contains an example code where the read on thread 0 may return any
value. The reason is that if the read executes before the write, its pastWriteSet
will be empty. Therefore, the read may return any value since the value would
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Table 4. Valid shared memory state transitions

Blocking synchronization

Current State:

σ,
−−−−→
FlshO; ..., < ti| < BlockSynch blockF updF, m >::

subtracei,
−−−→
LclOi >, ...

Next State:

σ′,
−−−−→
FlshO; ..., < ti|subtracei,

−−−→
LclOi

′

>, ...
and the following are true:
• The function blockF (σ) returns False, meaning that

this thread does not need to block.
• σ′ = updF (σ), meaning that that synchronization

state is transformed to reflect the fact that thread ti

is unblocked.

• −−−−→
FlshO

′

=
−−−−→
FlshO �i

var Esi
for all variables var.

• −−−→
LclOi

′

=
−−−→
LclOi �i Esi

.

Atomic Update

Current State:

σ,
−−−−→
FlshO; ...,

< ti| < Atomicmm var ⊕ = updVal �→ finalVal, m >::

subtracei,
−−−→
LclOi >, ...

Next State:

σ′,
−−−−→
FlshO; ..., < ti|subtracei,

−−−→
LclOi

′

>, ...
and the following are true:

• −−−−→
FlshO

′

=
−−−−→
FlshO �i

var Esi
.

• −−−→
LclOi

′

=
−−−→
LclOi �i Esi

.

Read

Current State:

σ,
−−−−→
FlshO; ..., < ti| < Read var �→ readVal, m >::

subtracei,
−−−→
LclOi >, ...

Next State:

σ′,
−−−−→
FlshO; ..., < ti|subtracei,

−−−→
LclOi

′

>, ...
and the following are true:
• The value readV alue is available for
reading.

• −−−−→
FlshO

′

=
−−−−→
FlshO �i

var Esi
.

• −−−→
LclOi

′

=
−−−→
LclOi �i Esi

.

Write

Current State:

σ,
−−−−→
FlshO; ...,

< ti| < Write var val, m >::

subtracei,
−−−→
LclOi >, ...

Next State:

σ′,
−−−−→
FlshO; ..., < ti|subtracei,

−−−→
LclOi

′

>, ...
and the following are true:

• −−−−→
FlshO

′

=
−−−−→
FlshO �i

var Esi
.

• −−−→
LclOi

′

=
−−−→
LclOi �i Esi

.

Flush

Current State:

σ,
−−−−→
FlshO; ...,

< ti| < Flushmm varList, m >::

subtracei,
−−−→
LclOi >, ...

Next State:

σ′,
−−−−→
FlshO

′

; ..., < ti|subtracei,
−−−→
LclOi

′

>, ...
and the following are true:

• −−−−→
FlshO

′

=
−−−−→
FlshO �j

var Esi
for all variables

var and threads tj .

• −−−→
LclOi

′

=
−−−→
LclOi �i Esi

.

Thread 0 Thread 1

Flush var=1
print var Flush

Fig. 4. Uninitialized read example

Thread 0 Thread 1

var=0 Barrier
Barrier var=1
Flush Flush
print var

Fig. 5. Initialized read example

come from uninitialized memory. In order to avoid such uninitialized reads we
can transform this program into the one in Figure 5.

In the modified program the barrier ensures that thread 0’s read must follow
some write to var, meaning that its pastWriteSet cannot be empty. In future
examples, whenever we make a statement about variables’ initial value, we mean
that the example’s operations were preceded by a barrier, which was itself pre-
ceded by writes that initialized those variables. Equivalently, we could assume
that the initialization occurs prior to the first parallel construct; we construct
our examples with existing threads for notational simplicity.
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8.2 Example A.2

The example in Figure 6 comes directly from example A.2 from the OpenMP
2.5 specification [1], converted from the original C/C++ and Fortran into our
simplified language. Figure 7 shows a typical operation interleaving of this code
(All other interleavings produce the same results).

Initially, x = 2

Thread 0 Thread 1

x=5 print(x)
Barrier Barrier
print(x) print(x)

Fig. 6. Example A.2

Thread 0 Thread 1

Write flag 2
Barrier Barrier
Write x 5

Read x �→??? (print x)
Barrier Barrier
Read x �→ 5 (print x)

Read x �→ 5 (print x)

Fig. 7. Sample execution

This interleaving features three reads. The first read is evaluated on thread 1
before the barriers. As such, in any possible interleaving it must race the write
to x on thread 0. Since the write is in the first read’s presentRemoteWriteSet,
the read may return any value, regardless of x’s initial value. The two other
reads are in a different situation. The barriers force them to follow the write in
any interleaving. Because of the Flushmm inside each barrier, both reads follow
the write on thread 0 in −−−−→

FlshO. As such, the write is in their pastWriteSet.
With no other available writes, this means that both reads must return 5, the
value written by thread 0. Our formalism is consistent with the explanation of
example A.2 [1].

8.3 Faulty Spinlock

Figure 8 shows a basic spinlock. At first it appears that this program will print a
finite sequence of 0’s, followed by a 1. However, despite the abundance of flushes
there is a race between the write on thread 0 and the reads on thread 1. The
smOp interleaving that reveals this race is shown in Figure 9.

The problem here is that the reads on thread 1 may happen before the flush on
thread 0. Thus, the values read by these reads are unspecified, meaning that the
values printed may be garbage. Fortunately, our fairness assumption guarantees
the flush on thread 0 will eventually be evaluated. Another iteration of the while
loop on thread 1 will produce a flush call, which will cause thread 0’s write
to precede subsequent reads on thread 1 under −−−−−−−−−−−−→

FlshO � LclO1. This in turn
causes them to read 1, terminating the while loop.

While this seems to be a contrived example, suppose that we have a shared
memory implementation where 64-bit writes are broken up into multiple 16-bit
messages and the write on thread 0 actually writes some large 64-bit value. In
this case the reads on thread 1 may read flag while it is only partially updated
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Initially, flag = 0

Thread 0 Thread 1

flag=1 Flush
Flush while(flag=0){

print(flag)
Flush

}
print(flag)

Fig. 8. Example of a
faulty spinlock

Thread 0 Thread 1

Write flag 0
Barrier Barrier
Write flag 1

F lushmm allV ars
Read flag �→??? (while)
Read flag �→??? (print)
...

F lushmm allV ars
F lushmm allV ars
Read flag �→ 1 (while)
Read flag �→ 1 (print)

Fig. 9. Sample faulty spinlock inter-
leaving

Initially, flag = 1

Thread 0 Thread 1

Atomic flag+=1 Flush
while(flag=0){

print(flag)
Flush

}
print(flag)

Fig. 10. Correct Spinlock

with only some of the 16-bit messages, causing the prints to output garbage.
Indeed, the only way to prevent this situation is to ensure that the write to the
flag is atomic, something that only the atomic construct can provide.

Given this new knowledge we can augment the program above to use an atomic
update, as shown in Figure 10. In this case the above interleaving produces the
expected behavior since even when the reads on thread 1 race with the atomic
update on thread 0 (i.e. the atomic update is in their presentRemoteWriteSet),
they do not get garbage values but rather either 0 or 1. (atomic update appOps
contain their own Flushmm smOps)

8.4 Flush-Free Spinlock

The example in Figure 11 is the same as the one above except that the flushes
have been removed. This program must either print a sequence of zero of more
0’s, followed by a 1 or an infinite sequence of 0’s. To understand why this is, lets
examine the smOp interleaving shown in Figure 12.

Before thread 0 executes the atomic update, the fact that reads on thread
1 have empty presentRemoteWriteSets and pastWriteSets that contain only
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Initially, flag = 0

Thread 0 Thread 1

Atomic flag+=1 while(flag=0){
print(flag)

}
print(flag)

Fig. 11. Flush-free spinlock exam-
ple

Fig. 12. Sample flush-free spinlock inter-
leaving

the initialization write [*], causes them to return 0. When thread 0’s atomic
update does occur, thread 1 may not update its temporary view - ever. The
atomic update is in the presentRemoteWriteSet of its reads. Thus, the value
may never be observed by thread 0, which can iterate its loop forever, printing
out 0’s. In the trace above, the view is eventually updated and some read [**]
returns 1. Therefore, all subsequent reads of flag on thread 1 must also read 1
because read [**] eclipses write [*] under order −−−−−−−−−−−−−−−−−−−−→

FlshO ∪ LclO0 ∪ LclO1.
This example portrays an important lesson. Although fairness is an impor-

tant condition and critical for avoiding infinite loops, it does not prevent them.
Programs without appropriate flushes may still loop infinitely because a thread’s
temporary view may not be updated.

8.5 Multi-thread Writer Race

The example in Figure 13 shows the effect of a race between writes. Suppose that
the above application has smOp interleaving as in Figure 14. Before threads 0
and 1 do their flushes, the reads on thread 2 are racing with the writes on
threads 0 and 1 under the order −−−−−−−−−−−−→

FlshO ∪ LclO2. This is still true after thread
0 performs its flush since the reads on thread 2 are still racing with thread 1’s
write. The problem persists even after thread 1’s flush. At this point both writes
are in the past of all subsequent reads on thread 2 according to −−−−−−−−−−−−→

FlshO ∪ LclO2.
However, the two writes are not related to each other under −−−−−−−−−−−−→

FlshO ∪ LclO2,
meaning that they race. This means that the third read on thread 2 may also
return an unspecified value.

In reality, this example can happen in the aforementioned implementation
where 64-bit writes are broken up into 16-bit messages and no filtering is done

Thread 0 Thread 1

Write flag 0 [*]
Barrier Barrier

Read flag �→ 0 (while)
Read flag �→ 0 (print)
...

F lushmm (flag)
Atomicmm flag+ = 1 �→ 1
F lushmm (flag)

...
Read flag �→ 0 (while)
Read flag �→ 0 (print)
...
Read flag �→ 1 (print) [**]
Read flag �→ 1 (while)
Read flag �→ 1 (print)
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Initially, flag = 0

Thread 0 Thread 1 Thread 2

flag=1 flag=42 Flush
Flush Flush print(flag)

Flush
print(flag)
Flush
print(flag)

Fig. 13. Multi-thread writer race
example

Fig. 14. Sample multi-thread writer race inter-
leaving

to tell which 16-bit message comes from which 64-bit write. Since the writes on
threads 0 and 1 are unrelated by any synchronization, their individual messages
may arrive in memory in arbitrary order, causing the resulting stored value to
contain pieces from both writes.

8.6 Writes from Same Thread

The example in Figure 15 shows how writes on one thread that were placed in
a given order by the program’s source code will be seen to occur in this order
by any reads on other threads that have ordered themselves correctly relative
to the writes (via flushes). However, in the absence of proper ordering, anything
can happen.

Initially, flag = 0

Thread 0 Thread 1

flag=1 Flush
flag=2 print(flag)
Flush

Fig. 15. Example of a writes
from the same thread

Thread 0 Thread 1

Write flag 0
Barrier Barrier
Write flag 1 [*]
Write flag 2 [**]
F lushmm allV ars

F lushmm allV ars
Read flag �→ 2 (print)

Fig. 16. Properly ordered interleaving

Figure 16 shows a properly ordered trace. Thread 0 goes first, issues both
writes and performs a flush. Note that since both writes were to flag, they were
related via −−−→

DepO and had to be evaluated in that order. Furthermore, when

Thread 0 Thread 1 Thread 2

Write flag 0
Barrier Barrier Barrier
Write flag 1

Write flag 42
F lushmm allV ars
Read flag �→??? (print)

F lushmm allV ars
F lushmm allV ars
Read flag �→??? (print)

F lushmm allV ars
F lushmm allV ars
Read flag �→??? (print)
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Thread 0 Thread 1

Write flag 0
Barrier Barrier

Flushmm allV ars
Write flag 1 [*]
Write flag 2 [**]
Flushmm allV ars

Read flag �→??? (print)

Fig. 17. Uordered interleaving

the read on thread 1 was evaluated, both writes precede it according to order−−−−−−−−−−−−−−−−−−−−→
FlshO ∪ LclO1 ∪ LclO2 and write [**] follows write [*] under to the same
ordering. As a result, the write [*] is eclipsed by write [**] under the definition
of WriteEclipse(flag, R, Write [∗], W [∗∗], −−−−−−−−−−−−−−−−−−−−→

FlshO ∪ LclO1 ∪ LclO2). Thus,
the read only has write [**] in its past, no writes in its present and therefore
returns 2.

Figure 17 shows what happens when the read is not properly ordered relative
to the writes. In this case both writes are in the read’s present since they are
not ordered relative to the read via −−−−→

FlshO. Thus, the read may return any
value. Indeed, any later read is also free to return any value until thread 1
calls a Flushmm, placing the two writes on thread 0 into the past under order−−−−−−−−−−−−−−−−−−−−→
FlshO ∪ LclO0 ∪ LclO1).

8.7 Atomic Updates Racing with Reads

Figure 18 shows a code example where atomic updates to a given variable may
not be seen in a linear order to a reader thread that has not performed the ap-
propriate flushes. This behavior is shown in Figure 19. In this trace the reads on
thread 1 are preceded by the initialization write on thread 0 and two atomic
updates on thread 1. Thus, the first read [*] has the initialization write in
its pastWriteSet and the two atomic updates in its presentRemoteWriteSet.
Therefore, the read is free to return any of the three available values: 0, 1 or 2.
In this trace it returns 2.

Now examine the other reads. Although they do follow read [*], the absence
of flushes on thread 1 means that under the ordering −−−−−−−−−−−−−−−−−−−−→

FlshO ∪ LclO0 ∪ LclO1
read [*] does not eclipse any of the writes or atomic updates on thread 0. As
such, their pastWriteSets and presentRemoteWriteSets are identical to those
of read [*] and so they are free to return any of the same values: 0, 1 or 2.

9 Conclusion

The OpenMP 2.5 specification includes a section that details the OpenMP mem-
ory model [1]. This section significantly improves previous specifications – the
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Initially, flag = 0

Thread 0 Thread 1

Atomic flag+=1 print flag
Atomic flag+=2 print flag

print flag

Fig. 18. Atomic values rac-
ing with reads example

Fig. 19. Sample interleaving for the Atomic Updates
Racing with Reads example

previous C/C++ specifications did not address the issue directly at all. Instead,
users and implementers had to synthesize a model as best they could from sev-
eral disparate sections. However, the memory model is still described in informal
prose, which lacks precision by definition.

This paper presents a formal OpenMP memory model, derived from the model
in the current specification. We tried to faithfully adhere to that prose descrip-
tion. However, as we have discussed, it has several ambiguities, which we resolve
in our formal model by relying on our understanding of the intent of the language
committee. Our operational model supports the verification of the conformance
of OpenMP implementations. It consists of two phases: a compiler phase that
extracts the constituent operations of the application and a runtime phase that
verifies that a compliant execution could produce the values that appear in the
trace. We have applied this model to several examples. Overall, our work demon-
strates the need for the OpenMP community to adopt further refinements of the
OpenMP memory model. Ideally those changes will lead to a formal model in
later OpenMP specifications.
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Abstract. Important components of molecular modeling applications
are estimation and minimization of the internal energy of a molecule.
For macromolecules such as proteins and amino acids, energy estimation
is performed using empirical equations known as force fields. Over the
past several decades, much effort has been directed towards improving
the accuracy of these equations, and the resulting increased accuracy has
come at the expense of greater computational complexity. For example,
the interactions between a protein and surrounding water molecules have
been modeled with improved accuracy using the generalized Born solva-
tion model, which increases the computational complexity to O

�
n3�.

Fortunately, many force-field calculations are amenable to parallel ex-
ecution. This paper describes the steps that were required to transform
the Born calculation from a serial program into a parallel program suit-
able for parallel execution in both the OpenMP and MPI environments.
Measurements of the parallel performance on a symmetric multiproces-
sor reveal that the Born calculation scales well for up to 144 processors,
and that programmability and performance are better for the OpenMP
implementation than for the MPI implementation.

1 Introduction

Molecular modeling is one of the most demanding areas of scientific computing
today. Although the high computational requirements of molecular simulation
can produce long computation times, parallel execution may used to increase
the size of molecules that can be analyzed in manageable time. Several software
applications exist for molecular modeling and estimation of the internal energy
of molecules using classical equations known as force fields [4]. An open-source
application related to the well-known AMBER [18] software is Nucleic Acid
Builder or NAB1 [15], which we use as the basis for our analysis in this work.

� This material is based upon work supported by DARPA under Contract No.
NBCH3039002.

1 http://www.scripps.edu/case
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A typical force field includes several energy terms, one of which models the
interactions between a biomolecule and the solvent, or surrounding water mole-
cules. This energy is known as the Born free energy of solvation. Using a method
known as the generalized Born [3,8,17] approximation, the electrostatic contri-
bution to this energy is computed as the sum of pairwise interactions:

EBorn = −1
2

∑

i

∑

j>i

qiqj

⎡

⎢
⎢
⎢
⎣
1 − e−κ

�
d2

ij+RiRje

−d2
ij

4RiRj

εw

⎤

⎥
⎥
⎥
⎦

(1)

In this equation, dij represents the distance between atoms i and j, εw repre-
sents the dielectric constant of water, and κ represents a Debye-Huckel screening
constant [16]. Ri represents the effective Born radius that is a measure of the
amount by which the atom i is screened from the solvent by all of the surrounding
atoms k. The effective Born radius is calculated as:

R−1
i =

1
ρi

+
∑

k �=i

f (dik, ρi, ρk) (2)

In this equation, ρi and ρk represent the intrinsic radii of atoms i and k, and
f () is a smooth function of the interatomic distance and the intrinsic radii [11].

Because of the presence of Ri and Rj in equation (1), computation of the
Born free energy and its first and second derivatives can involve considerable
complexity. However, it is possible to reduce this computational complexity via
precomputation, the details of which are beyond the scope of this paper and
are reported elsewhere [6]. This precomputation produces two vectors, R and A,
each of length n (where n is the number of atoms). These vectors are used to
produce four matrices: N (of size n by n) and F, G and D (each of size 3n by
n). Products of these matrices are used to form the Hessian matrix H (of size
3n by 3n) that contains the second derivatives. This precomputation reduces
the computational complexity of the Born free energy and its first derivatives to
O

(
n2

)
, as well as reducing the complexity of the second derivatives to O

(
n3

)
.

For molecular modeling applications, it is desirable to estimate the internal
energy of a molecule and to minimize that energy. Minimization may be per-
formed using the iterative Newton-Raphson method [4] that is calculated as:

x1 = x0 − H−1 (x0)∇E (x0) (3)

In the above equation, x0 represents the initial Cartesian coordinates of the
atomic nuclei prior to a step of Newton-Raphson iteration, x1 represents the
Cartesian coordinates after the step of Newton-Raphson iteration, ∇E (x0) rep-
resents the gradient vector of first derivatives that are calculated from the initial
Cartesian coordinates, and H−1 (x0) represents the inverse of the Hessian matrix
of second derivatives that are calculated from the initial Cartesian coordinates.
In practice, inversion of the Hessian matrix is avoided by solving the linear sys-
tem via techniques such as Cholesky factorization.
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2 Implementation

As shown in Figure 1, each iteration of Newton-Raphson minimization is sub-
divided into four phases of computation: (1) calculation of the non-Born energy
terms and their derivatives; (2) calculation of the Born free energy, its first deriv-
atives, and the matrices N, F, G and D; (3) matrix multiplication to produce
the Hessian matrix H of second derivatives; and (4) solution of the linear system
via Cholesky factorization.

Computation of the
non-Born energy terms

Precompute effective radii R

Generate A (ij part)
Generate A (ji part)

Generate N, F, G and D (ij part)

Generate N, F, G and D (ji part)

B
or
n
en
er
gy

co
m
pu
ta
tio
n

Hessian update

Cholesky factorization
of the Hessian

Fig. 1. Phases 1-4 of Newton-Raphson. The ij and ji parts are computed separately.

We can visualize the phases of an iteration by monitoring the changes in low-
level activity in the system. Figure 2 gives an example of the low-level activity
that illustrates the change in the cycle per instruction (CPI) measurements for
different phases of execution of the MPI version of NAB. The CPI measures the
efficiency of the CPU; low CPI values indicate good performance. Superscalar
processors are capable of executing multiple instructions in one cycle and there-
fore CPI values can be less than one for carefully tuned sections of code. In our
experiments we measured the CPI and other low-level statistics, such as cache
miss rates, using UltraSPARC R© processor on-chip hardware counters [9].

In Phase 1 we observe fairly poor processor efficiency, which can be explained
by non-contiguous memory references that occur in the computation of the non-
Born energy terms. Relatively little computation is performed during this phase,
which doesn’t significantly impact the overall performance. In Phase 2 we can
see five distinct regions corresponding to the five Born energy computations
outlined in Figure 1. Phase 3 updates the Hessian matrix via three matrix-matrix
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Fig. 2. CPI for Phases 1-4 of Newton-Raphson minimization, using 5-way parallelism
for Phase 2 and 25-way parallelism for Phases 3 and 4

multiplications. Phase 4 performs Cholesky factorization. Phases 3 and 4 are
executed using subroutines from the ScaLAPACK2 scientific library [5].

The computation in Phase 1 has O (n) complexity and contributes only mini-
mally to the total computation. The computational in Phases 3 and 4 has O

(
n3

)

complexity and is performed by parallelized subroutines from a scientific library.
The computation in Phase 2 exhibits O

(
n2

)
complexity and must be parallelized

in order that the total computation achieve reasonable scalability [1]. We have
parallelized the Phase 2 computation via an OpenMP3 [7] implementation, as
well as via an MPI4 [10] implementation. Prior studies have reported compar-
isons between OpenMP and MPI versions of applications software [2,12,13,14].

2.1 OpenMP

The computation of Phase 2 of Newton-Raphson minimization involves several
summations such as

∑

i

∑

j>i

or
∑

i

∑

j �=i

, each of which implies a loop nest having i

as the outer loop index, and j as the inner loop index. Each loop nest updates
a vector and a matrix, as shown for the shared vector A and the shared matrix
N in C code fragment (4) that is parallelized via OpenMP by adding a #pragma
omp parallel for directive to the serial code.

Code fragment (4) exhibits a race condition for the update of A[j] and N[j][j].
Because the j loop index is not partitioned amongst the OpenMP threads, all of
the threads can potentially update A[j] and N[j][j]. There is no guarantee that
these updates will occur atomically, and therefore the threads may overwrite one
another’s updates. This race condition is removed by splitting the loop nest to
create two loop nests. The first loop nest uses i as the outer index, and j as the
inner index. It updates A[i], N[i][i] and N[i][j] as shown in code fragment (5).

2 http://www.netlib.org/scalapack
3 http://www.openmp.org
4 http://www.mpi-forum.org
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#pragma omp parallel for private(j)
for (i = 0; i < n; i++) {
for (j = i+1; j < n; j++) {

A[i] += f1(i, j);
A[j] += f2(i, j); // Incorrect!
N[i][i] += f3(i, j);
N[i][j] += f4(i, j);
N[j][j] += f5(i, j); // Incorrect!
N[j][i] += f6(i, j);

}
}

(4)

#pragma omp parallel for private(j)
for (i = 0; i < n; i++) {
for (j = i+1; j < n; j++) {

A[i] += f1(i, j);
N[i][i] += f3(i, j);
N[i][j] += f4(i, j);

}
}

(5)

The second loop nest uses j as the outer index, and i as the inner index. It
updates A[j], N[j][j] and N[j][i] as shown in code fragment (6).

#pragma omp parallel for private(i)
for (j = 0; j < n; j++) {
for (i = 0; i < j; i++) {

A[j] += f2(i, j);
N[j][j] += f5(i, j);
N[j][i] += f6(i, j);

}
}

(6)

For either loop nest, a given value of i is combined with the same values of
j. However, a race condition will exist unless A[i] and N[i][i] are updated in
the first loop nest, and unless A[j] and N[j][j] are updated in the second loop
nest. In contrast, N[i][j] and N[j][i] may be updated in either loop nest. No race
condition can exist for these updates because each update involves both i and j
indices that guarantee partitioning of the matrix elements amongst the threads.

However, by updating N[i][i] and N[i][j] in the first loop nest, and by updating
N[j][j] and N[j][i] in the second loop nest, the matrix elements are partitioned
amongst the OpenMP threads by matrix row. Groups of r contiguous rows may
be partitioned amongst the threads by adding a schedule(static, r) clause
to the #pragma omp parallel for directive. This partitioning is known as row
cyclic partitioning, and promotes locality of memory access by each OpenMP
thread for a matrix that is allocated in row-major order.
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Instead of using the schedule(static, r) clause, we map the OpenMP
threads to matrix rows explicitly, as shown for MPI in code fragment (7), in or-
der to maintain compatibility between the OpenMP and MPI implementations
of NAB. This approach is an example of the SPMD OpenMP programming style
that can improve the performance of OpenMP applications when used in con-
junction with code tuning techniques [13]. A performance analysis tool such as
the Sun

TM
Performance Analyzer5 is essential to the code tuning process.

2.2 MPI

The parallelization of Phases 2 to 4 of Newton-Raphson minimization is more
complex for MPI than for OpenMP. The increased complexity is due principally
to the ScaLAPACK library that is used with the MPI implementation of NAB.
The ScaLAPACK library does not support global, shared vectors and matrices;
instead, it supports vectors and matrices that are distributed across all of the
MPI processes. Under this distributed paradigm, each process has exclusive ac-
cess to a unique subset of the global vector or matrix elements, which we will
call the sub-vector or sub-matrix. Each process initializes its sub-vector or sub-
matrix, and then the ScaLAPACK subroutines distribute computation such as
matrix multiplication and Cholesky factorization across all of the processes.

Before a vector or matrix can be processed by a ScaLAPACK subroutine,
it must be distributed onto a process grid. The process grid is a group of MPI
processes that are placed on a rectangular grid of nprow rows by npcol columns.
Each process has unique row and column coordinates myrow and mycol that
indicate the location of the process on the grid. The matrix elements are mapped
onto the process grid in a block cyclic manner [5] wherein a matrix of m rows
by n columns is subdivided into blocks of mb rows by nb columns of contiguous
matrix elements. Block cyclic mapping is the two-dimensional analog of the one-
dimensional row cyclic mapping that was described for OpenMP, and is used by
ScaLAPACK to achieve reasonable load balancing across the MPI processes.

Each MPI process has exclusive access to a unique sub-vector or sub-matrix.
Thus, the i and j loop indices of a loop nest must be restricted to only those
values that are required to update the accessible sub-vector or sub-matrix el-
ements. The loop nest must be split because a process that can access N[i][j]
cannot necessarily access N[j][i]. Code fragment (7) satisfies these constraints
and accomplishes block cyclic partitioning of the matrix elements amongst the
MPI processes. Each process asserts a unique subset of the matrix i and j indices,
which is selected by the myrow and mycol coordinates of the process.

Code fragment (7) is incorrect for several reasons. First, although the first loop
nest can access N[i][j], it cannot necessarily access N[i][i]. Similarly, although
the second loop nest can access N[j][i], it cannot necessarily access N[j][j]. These
access restrictions arise because the diagonal elements of the matrix N are not
guaranteed to belong to the process that calculates updates to those elements.
A solution to this problem is for each process to maintain a private copy of

5 http://developers.sun.com/sunstudio
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for (i = 0; i < n; i++) {
if ( (i/mb)%nprow != myrow ) continue;
for (j = i+1; j < n; j++) {

if ( (j/nb)%npcol != mycol ) continue;
A[i] += f1(i, j); // Incorrect!
N[i][i] += f3(i, j); // Incorrect!
N[i][j] += f4(i, j);

}
}

for (j = 0; j < n; j++) {
if ( (j/mb)%nprow != myrow ) continue;
for (i = 0; i < j; i++) {

if ( (i/nb)%npcol != mycol ) continue;
A[j] += f2(i, j); // Incorrect!
N[j][j] += f5(i, j); // Incorrect!
N[j][i] += f6(i, j);

}
}

(7)

the diagonal elements. When all of the processes have finished updating their
private copies of the diagonal elements, these private copies are combined and
the result is rebroadcast to each process. The MPI Allreduce function is used
for this combine and rebroadcast operation.

The second problem with code fragment (7) arises due to a ScaLAPACK
convention that requires that a distributed vector such as the vector A exist only
in column zero of the process grid. Hence, only a process that exists in column
zero of the grid possesses a sub-vector of the vector A. A particular process that
calculates updates to the vector A may not lie in column zero of the grid and
therefore may not be able to access the elements of the sub-vector that it needs
to update. This problem is very similar to the first problem discussed above, and
it has a similar solution. Each process must maintain a private copy of the entire
vector A. When all of the processes have finished updating their private copies
of the vector A, these private copies are combined and the result is rebroadcast
to each process via the MPI Allreduce function.

The third problem with code fragment (7) is that the matrix elements N[i][j]
and N[j][i] are not accessed as elements of the global matrix N, but rather as
elements of a sub-matrix that is owned by a particular process. The sub-matrix
is not addressed using the global [i][j] or [j][i] address directly. Instead, the
global address is converted to an offset into the sub-matrix. This global-to-local
address mapping involves four integer divisions and four modulus operations for
access to each element of the matrix. Fortunately, the divisors are mb, nb, nprow
and npcol, which are constants for a given matrix, and the dividends are i and
j whose values lie in the range 0 ≤ i < n. These features of the divisors and
dividends permit precomputation of all of the division and modulus operations.
The results of the precomputation are stored in eight lookup tables, each of
length n. Because a matrix requires O

(
n2

)
memory, these tables represent only
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a small fraction of the size of a typical matrix, and hence offer the possibility of
accelerated computation at the expense of minimal additional storage.

3 Programmability

Creating OpenMP and MPI versions of the same application using different
approaches to parallelization allowed us to compare the effort required to imple-
ment both versions. Parallelization of Phase 2 required the splitting of nested
loops for both versions. Once this splitting was completed, the OpenMP version
was straightforward. However, creating the MPI version required substantial
additional effort (required by ScaLAPACK) to map global matrices onto a two-
dimensional process grid and to modify one-dimensional row cyclic partitioning
to obtain two-dimensional block cyclic partitioning of the matrix elements.

We have estimated the relative complexity of the two versions of NAB by
counting the non-comment source code lines that are related to the Newton-
Raphson minimization and to the calculation of the Born energy and its deriv-
atives. Three categories of source code lines were counted: (1) source code lines
that are required for serial execution, (2) source code lines that are required to
modify the serial code for parallel execution by OpenMP, and (3) source code
lines that are required to modify the serial code for parallel execution by MPI.
The serial line count is 1643. The OpenMP line count is 180. The MPI line
count is 962. These line counts reveal that adaptation of the serial code for MPI
produced significantly (i.e., a factor of five) more source code than adaptation
of the serial code for OpenMP. This finding suggests that the programmer’s
productivity may be higher when an application that relies on linear algebra is
parallelized using OpenMP instead of MPI.

4 Performance and Scalability

In order to obtain an accurate comparison between the OpenMP and MPI im-
plementations of the code, we performed all of the measurements using the same
server: a Sun Fire

TM
E25K server with 72 dual-core UltraSPARC IV processors.

We have compared the performance of the two implementations for up to 144
OpenMP threads and MPI processes using the 1AKD, 1AFS and 1AMO mole-
cular models from the RCSB Protein Data Bank6 that comprise 6,370, 10,350
and 19,030 atoms (including hydrogen atoms), respectively.

We start by comparing different versions of the MPI implementation of NAB.
Figure 2 (see the Implementation section) shows the profile of our baseline MPI
implementation which does not use the table lookup optimization for address
mapping. The division and modulus operations that are used in address mapping
between the global matrix and sub-matrices are relatively inefficient and inhibit
pipelined execution, thereby prolonging Phase 2. Moreover, for this version the
parallelization of Phase 2 is implemented in a row cyclic manner similar to
6 http://www.rcsb.org/pdb
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Fig. 4. CPI for the MPI implementation using 25-way parallelism for Phases 2-4

the approach that was discussed for OpenMP. For a given row of the process
grid, all of the columns perform redundant computation. Therefore, when this
baseline implementation executes using 25 processes on a 5 by 5 process grid,
the degree of parallelization is limited to 5. The Phase 2 execution time is 269
seconds.

Figure 3 shows the execution profile for the improved version of the code in
which the address mapping is implemented with lookup tables. Because these
tables are small they are stored entirely within the processor caches, which fa-
cilitate table lookup and reduce the Phase 2 execution time to 105 seconds.

Figure 4 shows the execution profile for full parallelization of Phase 2. Full
parallelization is achieved by having all process columns of a particular process
row perform unique (instead of redundant) computation, thus increasing the
degree of parallelization from 5 to 25 for a 5 by 5 process grid. The execution
time for Phase 2 is 20 seconds, and thus this phase is no longer a barrier to the
scalabiliity of the overall computation, as required by Amdahl’s law [1].
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Figure 5 shows the execution profile for the OpenMP implementation of NAB
that fully parallelizes Phase 2 of the Newton-Raphson minimization. The exe-
cution time for Phase 2 is 10 seconds, compared to 20 seconds for the fastest
MPI implementation. This improvement can be attributed to the direct access to
global matrix elements by OpenMP, which avoids the address mapping required
by ScaLAPACK for distributed sub-matrix access in the MPI implementation.

In addition to measuring the relative speeds of the OpenMP and MPI imple-
mentations of NAB, we have examined the relative scalabilities of these imple-
mentations. Figure 6 shows that Phase 2 scales better for MPI than for OpenMP.
This observation has been reported for other parallel applications [12]. In an
attempt to understand the disparity between the scalabilities of the OpenMP
and MPI implementations of NAB, we used the Sun Performance Analyzer to
measure the level 2 cache miss rates during Phase 2 of the computation. We
obtained these measurements for the 1AMO model and 4, 9, 16, 25 and 36
OpenMP threads or MPI processes executed on a Sun Fire E6900 server with



Performance and Programmability Comparison Between OpenMP 359

24 dual-core UltraSPARC IV processors. The cache miss rates per instruction
were 0.0034 for OpenMP and 0.0012 for MPI, measured for between 4 and 36
OpenMP threads or MPI processes. Hence, relative to MPI we observed a nearly
three-fold increase in the cache miss rate for OpenMP.

5 Conclusions

This article is a case study of parallelizing a molecular modeling application. We
have demonstrated that energy minimization computations can be implemented
in a highly-scalable way and can utilize up to 144 processors efficiently. In our
experiments, the programmability and performance of the OpenMP version were
superior to those of the MPI version, but the scalability of the MPI version was
superior to that of the OpenMP version. Two other studies [2,14] have found the
performance of OpenMP to be inferior to, or at best equal to that of MPI. One
other study has found that the SPMD OpenMP programming style combined
with careful code tuning can result in better performance for OpenMP [13]. In
our experiments, it is likely that OpenMP performs better than MPI not only
due to our use of the SPMD OpenMP programming style, but also due to the
array indexing overhead imposed by ScaLAPACK in the MPI version.

We observe that the MPI version can execute on clusters of processors, in
addition to symmetric multiprocessors. Clusters may have better nominal price/
performance characteristics than large symmetric multiprocessors, although typ-
ically clusters have slower interconnects. A performance comparison between
symmetric multiprocessors and clusters is beyond the scope of this work.
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Abstract. In this paper, we describe our experience of creating an OpenMP im-
plementation of the SPICE3 circuit simulator program.  The aim of this work is 
to present a case study showing the development of a shared memory parallel 
code with minimum effort and minimal code modification.  We present our im-
plementation and discuss the results of the case study in terms of what future 
compiler tools may be needed to help OpenMP application developers with 
similar porting goals.  Our experiments, based on SRAM model simulation run-
ning on a SunFire V880 UltraSPARC-III 750 MHz with 4 CPUs, are promising.  

1   Introduction 

SPICE3 is a general purpose circuit simulation program for DC, transient, linear AC, 
pole-zero, sensitivity, and noise analyses developed by UC Berkeley [1][2] and writ-
ten in C. Several commercial codes are based on SPICE. It is used to simulate circuits 
for various applications from switching power supplies to SRAM cells and sense 
amplifiers. Doing so requires the simultaneous solution of a number of equations that 
capture the behavior of electrical/electronic circuits. The number of equations can be 
quite large for a modern electronic circuit with transistor counts from several hundred 
thousands to millions, and thus the simulation of circuits has become complex and 
quite time-consuming. Thus, a shared memory parallel program version is needed to 
achieve cost-effective performance. 

Circuit simulator programs have been parallelized using Pthreads [3].  Although 
good performance has been achieved, Pthreads provides a low-level and cumbersome 
programming model that is particularly useful for task parallelism. It requires major 
code rewriting and thus a major porting effort. Moreover, the resulting code is diffi-
cult to maintain in view of the many calls to Pthreads library routines and explicit 
coding of parallelism.   

OpenMP [4] is an industry standard for shared memory parallel programming 
agreed on by a consortium of software and hardware vendors. It consists of a collec-
tion of compiler directives, library routines, and environment variables that can be 
easily inserted into a sequential program to create a portable program that will run in 
parallel on shared-memory architectures.  It is considerably easier for a non-expert 
programmer to develop a parallel application under OpenMP than under either 
Pthreads or the de facto message passing standard MPI.  OpenMP also permits the 
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incremental development of parallel code.  Thus it is not surprising that OpenMP has 
quickly become widely accepted for shared-memory parallel programming. 

For many scientific applications, especially numerical codes written in Fortran, 
parallelization is chiefly a matter of distributing the computation in loops that modify 
large arrays.  Thus parallelization via OpenMP is simply a matter of inserting direc-
tives to indicate parallel regions and loops, and specifying which variables are shared 
or private with few modifications of the original source code needed.  Unfortunately, 
this is not the case for other applications, particularly if they are written in C/C++.  
Challenges arise in the OpenMP implementation of C codes with dynamic linked-list 
data structures such as  the SPICE3 circuit simulator, but also encountered in agent-
based model simulations [5], such as simulation of the immune response to a patho-
gen, financial markets applications, and more.  In [5], Massaioli at. al. discuss three 
techniques for realizing pointer-chasing loops in OpenMP: 1) By explicit decomposi-
tion of the lists into approximately equal-sized chunks, storing pointers to these 
chunks in an array, and then adding omp for worksharing directives.  With this ap-
proach, the list decomposition is difficult to parallelize.  2) By adding the omp taskq 
directive, which is available only in the Intel KSR KAP/Pro compiler, but which is 
not (yet) part of the official standard and thus introduces a portability problem.  3) By 
adding an omp single nowait clause to independently parallelizable linked-list loops. 
If the size of the system being simulated is sufficiently large, this may scale well.  

Our aim in this work was to realize an OpenMP implementation of the SPICE3 cir-
cuit simulator with as few modifications to the sequential program as possible. Our 
approach relies on performing loop transformations and then adding OpenMP direc-
tives to the resulting loops.  We discuss both possibilities for improving the OpenMP 
SPICE3 parallel program and developing it with minimum efforts using task queue 
without modification of the original program. Then, we present the result of our 
evaluation of this parallel version of SPICE3 on SunFire SPARC-III platforms and 
give our conclusions and future plans.   

2   OpenMP Implementation 

In this section, we give an overview of the original sequential SPICE3 program simu-
lator.  Next, in Section 2.2 we present our OpenMP implementation of SPICE3.  We 
describe the steps taken to create the OpenMP program.  In section 2.3, we discuss the 
possibilities for and challenges of further improvement of the parallel program.  We 
also discuss our development of parallel SPICE3 implementation with minimum 
efforts and without modification to the original program using Intel omp taskq in 
Section 2.4. 

2.1   Brief Overview of Sequential SPICE3 

For modern electronic circuit design, the transient circuit simulation is the most fre-
quently used simulation in SPICE3. Figure 1 shows the basic configuration of the 
SPICE3 transient simulation algorithm. There is a pre-processing portion which parses  
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the circuit netlist and generates the appropriate data structures. Then, the matrix repre-
senting the circuit is created and the data structures related to the matrix are set up.  
Actual transient analysis occurs next.  For each time point in the transient analysis, the 
model calculations for each device, such as MOSFET, resistor, or capacitor device, are 
performed.  The electrical parameters such as conductance and current for each instance 
instantiated from the corresponding device are computed and put into the matrix ele-
ments.  After the device and instance calculations, all elements in the matrix for the 
linear system in transient analysis are ready for the sparse matrix solver in SPICE3.  
Then the matrix calculations for the linear system, such as the LU decomposition and 
forward/backward elimination in each iteration, are carried out. This process will con-
tinue until the final transient time is reached.  Finally, the simulation results are output. 

yesno

no

yes

Circuit netlist parsing

Circuit matrix setup

Converge ?

Increment time

Solve the linear system

. . .

End of time interval ?

Device model
and instance
calculation

Output
 

Fig. 1. Basic configuration of SPICE3 Simulator 

2.2   Transforming Sequential Application to OpenMP 

In order to reduce the effort in developing parallel code, we first try to compile the 
original code with the auto-parallelization option of the Sun compiler switched on to 
find loops that may be a good candidate for potential parallelization.  Unfortunately, 
few loops are parallelizable, and their computational workload is very light.  The most 



364 T.-H. Weng, R.-K. Perng, and B. Chapman 

time consuming workload loops are the matrix calculation and model and instance 
calculation and these are not recognized as being parallelizable. 

In this work, we focus exclusively on parallelizing this model and instance calcula-
tion part, shown in Figure 1. We refer to it as the device loading routine, because all 
the model parameters related to the device, and the parameters for the instantiations of 
the device are computed and loaded into the corresponding matrix elements. There are 
many devices, such as MOSFET, resistor, capacitor, diode, and bipolar transistor, 
supported by SPICE3. For each device, SPICE3 provides at least one model for the 
instances corresponding to this device used in the circuit simulated. For example 
MOS3 is one of the models for the instances of MOSFET device. The parameters 
such as the conductance and current are calculated according to the model equations 
built into the device loading routines. The conductance calculated will contribute to 
the elements of the matrix used in the linear system for simulation, while the calcu-
lated current will be entered into the right-hand-side of the linear system. 

int MOS3load(inModel,ckt) 
    GENmodel *inModel;
    register CKTcircuit *ckt; 
{  register MOS3model *model = (MOS3model *) inModel;
    register MOS3instance *here; 
    ........ 
   for( ; model != NULL; model = model->MOS3nextModel ) { 
        /* loop through all the instances of the model */ 
        for (here = model->MOS3instances; here != NULL; here=here->MOS3nextInstance) { 
            ......... 
            if ( ckt->CKTmode & MODETRAN ) { 
                error = NIintegrate(ckt,&geq,&ceq,here->MOS3capbd, here->MOS3qbd);
                if(error) return(error);
            } 
          ........ 
        // Right hand side of Ax = b 
         *(ckt->CKTrhs + here->MOS3gNode) -=   (model->MOS3type * (ceqgs + ceqgb + ceqgd));
           .... 
        //   Sum of contributions for the element of matrix A 
         *(here->MOS3DdPtr) += (here->MOS3drainConductance);
           ........ 
    }}  /* end of for loop */ 
    return(OK);
}

 

Fig. 2. Compact Sequential code of MOS3load of SPICE3 

In this paper, we use a SRAM circuit as an example to demonstrate the SPICE3 
simulation in its OpenMP implementation. The SRAM circuit consists of many in-
stances of the MOSFET device with MOS3 model. Therefore the time-consuming 
part of the original sequential routine was the MOS3load function, which is the de-
vice-loading routine in SPICE3. It contains a nested pointer loop traversing an or-
thogonal linked-list.  The actual size of the source code of the loop is approximately 
1.3K LOC (Line of Code) and Figure 2 reproduces the compact example code.  The 



 OpenMP Implementation of SPICE3 Circuit Simulator 365 

size of iteration is depending on the size of the circuit, the number of devices such as 
transistor, capacitor, etc. simulated may vary widely.  Currently, it is not possible to 
parallelize a pointer-chasing loop by just directly adding an OpenMP directive in a 
portable manner: the omp taskq directive available in the Intel compiler is not a stan-
dard feature.  Since there is a return statement within this loop, it has multiple exits, 
and cannot be parallelized without modification in any case. Likewise, we cannot 
employ an omp parallel for reduction to obtain the sum of the values for each element 
of the linked list.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There is a straightforward way to parallelize the sequential nested loop shown in 
Figure 2.  First, at the level of the circuit matrix setup of Figure 1, we introduce a data 
structure to store the address of each linked-list element of an instance in an array of 
pointers, MOS3instanceArray[i], as well as to keep track of the total number of ele-
ments in the lists in a variable model->MOS3instanceCount. Second, we perform loop 
coalescing to reduce the number and nesting level of loops, as well as to generate 
loops with larger loop iteration count.  The result is shown in Figure 3.   

int MOS3load(inModel,ckt) 
     GENmodel *inModel; 
     register CKTcircuit *ckt; 
{   ...... 
    register MOS3model *model = (MOS3model *) inModel; 
    register MOS3instance *here; 
    ...... 
    MOS3instance **MOS3instanceArray; 
    MOS3instanceCount = model->MOS3instanceCount; 
    MOS3instanceArray = model->MOS3instanceArray; 
#pragma omp parallel default(none) shared(ckt, CONSTKoverQ,MOS3instanceCount,MOS3instanceArray) 
  #pragma omp for private(vt,Check, SenCond,EffectiveLength,DrainSatCur, SourceSatCur, \ 

GateSourceOverlapCap,GateDrainOverlapCap,GateBulkOverlapCap,Beta,OxideCap,vgs,vds,vbs, \ 
vbd,vgb,vgd,xfact,vgdo,delvbs,delvbd,delvgs,delvds,delvgd,cbhat,cdhat,tempv, \ 
cdrain,capgs,capgd,capgb,von,evbs,evbd,vdsat,cdreq,xrev,xnrm, ceqbd,ceqbs,ceqgb, \ 
ceq,geq,vgs1,vgd1,vgb1,arg,sarg,sargsw,error,gcgs,ceqgs,gcgd,ceqgd,gcgb,model,here)  

     for( i = 0; i < MOS3instanceCount; i++) { 
           here = MOS3instanceArray[i]; 
           model = here->MOS3modPtr; 
           ...... 
         #pragma omp critical(lockA)   

{  // Right hand side of Ax = b 
              *(ckt->CKTrhs + here->MOS3gNode) -=   (model->MOS3type * (ceqgs + ceqgb + ceqgd)); 
               ...... 
             //   Sum of contributions for the element of matrix A 
              *(here->MOS3DdPtr) += (here->MOS3drainConductance); 
              *(here->MOS3GgPtr) += ((gcgd+gcgs+gcgb)); 
              ...... 

}  /* end critical  */ 
}  /* end of for loop */    
    return(OK); 
} /* end of MOS3load() */ 
 

Fig. 3. OpenMP implementation of MOS3load in SPICE3 
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This loop now involves an array of pointers and integer index instead of pointers.  
Finally, we may now directly add a parallel omp for directive to the loop since the 
loop iterations are independent except for first, shared pointers that point to the vari-
ables that are used to update the right hand side of the linear system, Ax = b, and 
second, shared pointers that point to the elements of matrix A, which is used to sum 
the contributions for those elements. The omp critical synchronization directive is 
used to resolve this conflict, as shown in Figure 3.  We have chosen to present the 
large number of private variables required, given the lack of a default(private) clause; 
we believe that such a clause would be beneficial for such codes. In our case, there 
are 56 private variables to be declared manually and given the presence of pointer 
variables and aliasing, automatic scoping of variables in parallel regions (as proposed 
in [6]) would be highly desirable but may be difficult for the compiler to perform.  

Other model device-loading functions such as CAPload (capacitor load), DIOload 
(diode load), VSRCload (voltage-source load), and many more as shown in Figure 4, 
have a very similar program structure as MOS3load, so they can be parallelized the 
same way.   

CAPload

CKTload

NIiter

DCtran

MOS1load … MOS3load DiOload INDload
 

Fig. 4. Structure of a partial callgraph for a transient simulation of SPICE3 simulator program 

The shortcoming of parallelizing this code by creating the parallel region within 
the MOS3load routine is that the routine is called many times, thereby involving con-
siderable fork-join overheads in addition to the cost of the synchronization.  Barrier 
and critical section overheads are, however, unavoidable. 

2.3   Possible Improvements 

The most important issue is to reduce the significant fork-join overhead incurred, since 
MOS3load is invoked several hundreds to thousands of times by other functions.  The 
total number of calls to MOS3load depends on the number of time points and the 
nonlinear iteration counts at each time in the simulation. As the number of threads in-
creases, fork-join overheads increase significantly. To improve this situation, we need to 
move the parallel region to include the calling functions.  Unfortunately, it is non-trivial 
to do so. To explain the difficulties, we first manually created an incomplete or partial  
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callgraph for a transient simulation of SPICE3 simulator program that shows invoca-
tions of our MOS3load function in Figure 4.  This callgraph is built from dynamically 
bound calls resulting from variable pointer assignment mechanism.  It is a quite time 
consuming task and it would be preferable to have a tool to assist in doing this, in par-
ticular to help a novice developer gain an understanding of the code. 

 
 
 
 
 
 
 
 
 
 
 

Suppose we are able to move the omp parallel from the MOS3load function to 
CKTload.  There will be no improvement because there is only one dynamically 
bound call from the CKTload routine; as shown in Figure 5, this is realized by the 
value of the pointer (*((*DEVices[i]).DEVload))(ckt->CKThead[i],ckt), which can 
point to CAPload(), MOS2load(), MOS3load(), INDload(), and/or many other device 
loading functions corresponding to calling relationships shown in Figure 4. It can be 
improved by moving it to the function NIiter.  From inside for(;;) loop in NIiter func-
tion, there is call to the CKTload function; this loop iterates until the convergence 
criterion is met.  Further, there is a call to NIiter from inside the while(1) loop of the 
DCtran function of Figure 4; these calls continue until the final transient time is 
reached.  In other words, the call from DCtran to NIiter represents the outer loop and 
the call from NIiter to CTKload represents the inner loop of Figure 1.  The paralleliza-
tion of the code becomes more tedious, however.   

2.4   Implementing Parallel SPICE3 without Modification  

In this section, we discuss the OpenMP implementation of SPICE3 using Intel omp 
taskq without any modification made to the original program.   Our implementation 
with few modifications discuss in Section 2.2 has been parallelized to perform device 
instances calculation per thread.  To parallelize using Intel omp taskq at this level is 
not possible without more modifications efforts, because there are several branch 
statements such as return and especially the continue at the inner loop of MOS3load 
function as shown Figure 6, which is not allowed by the compiler.   

In order to parallelize it without any modification, we have to parallelize at a 
coarser grain that is at the level of device instances of a model (each model consists of 
many device instances) per task.  This is shown in Figure 7.  With this level of granu-
larity (model per thread), the load imbalance problem can occur, since each model 
may consists of different number of device instances, but then the OpenMP directives 
can be inserted directly to original program. 

 

…….. 
for (i=0;i<DEVmaxnum;i++) { 
        if ( ((*DEVices[i]).DEVload != NULL) && (ckt->CKThead[i] != NULL) ){ 
            error = (*((*DEVices[i]).DEVload))(ckt->CKThead[i],ckt); 
            if (ckt->CKTnoncon)    
}} 
….. 

Fig. 5. Dynamically bound call from CKTload routine 
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The above source code of Figure 7 has been successfully compiled by Intel 
OpenMP compiler on Linux Itanium of 4-CPUs machine.  We include this experi-
mental result in the next section.  

3   Experiments  

Our experimental results are based on an 8K SRAM model simulation compiled with 
SUN compiler and run on a SunFire V880 Ultra SPARC-III 750 MHz with 4 CPUs 
and 4G memory. In this simulation, MOS3load is invoked 780 times; this numbers 
depends on the number of time points simulated and the nonlinear iteration counts of  
 

int MOS3load(inModel,ckt) 
{  ................. 
    #pragma omp parallel shared(ckt, CONSTKoverQ,inModel) 
     for( ; model != NULL; model = model->MOS3nextModel ) { 
    #pragma intel omp taskq private(.....) 
        for (here = model->MOS3instances; here != NULL; here=here->MOS3nextInstance) { 
           #pragma intel omp task  
            {   ..... 
                 if (SendCond) continue;   
                 ..... 
                 if (here->MOS3senPertFlag == OFF) continue; 
                  ..... 
             } /* end of omp task */ 

}}  /* end of for loop */ 
    return(OK); 
} 

Fig. 6. Device instance level of granularity

int MOS3load(inModel,ckt) 
{ 
#pragma omp parallel default(none) shared(ckt, CONSTKoverQ,inModel) 
 #pragma intel omp taskq private(vt,Check, SenCond,EffectiveLength, \ 

DrainSatCur,SourceSatCur, ........... ,model,here)  
    for(model=inModel; model!=NULL;model=model->MOS3nextModel) { 

#pragma intel omp task 
         for(here=model->MOS3instances; here!=NULL; here=here->MOS3nextInstance){ 
           ... 
         #pragma omp critical(lockA)   

{     // Right hand side of Ax = b 
                 //   Sum of contributions for the element of matrix A 
           }  /* end critical  */ 

}}  
    return(OK); 
} 

Fig. 7. All instances of a model level of granularity 
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each time. The increase of this number does not affect the scalability of the perform-
ance.  On the other hand, there are 61,584 total instances, which represent the size 
(number of iterations) of the coalesced loop iterations in MOS3load.  This in turn 
depends on the number of device instances involved in the circuit simulation.  Figures 
8 and 9 show that it performs well up to three processors for entire SPICE3 program 
(note that the rest of SPICE3 is not parallelized here).   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Other than the device model and instance calculation, the sparse matrix computa-
tion in SPICE3 is fairly time consuming.  We are currently studying the paralleliza-
tion of a public domain linear algebra sparse matrix package implemented in SPICE3 
by Kundert [7].  It is not part of this paper.  The code uses an orthogonal linked list 
data structure to store the sparse matrix.  The matrix computation technique is based 
on the direct method with LU decomposition.  With four processors, the fork-join 
overhead costs more than the execution time of each call to MOS3load, since its aver-
age execution time is only about 0.2 seconds.  To scale well, we would need to simu-
late a larger number of device instances.   

Fig. 8. The performance of OpenMP MOS3load function 

Fig. 9. The performance of OpenMP SPICE3
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We further perform the experiment with Intel taskq as shown in Figure 7 and compare 
it with our approach as in Figure 3.   They both were compiled with Intel icc compiler 
version 9.0 under the option –O2 –openmp and run on a 4-processors IBM eServer xSer-
ies 380 Itanium 733 MHz with 16GB memory. Again, we only parallelize the MOS3load 
part and not the rest of SPICE3, but this time we simulate based on a 16K SRAM model 
simulation, which has a larger number of device instances.  The result in Figure 10 shows 
that both perform well for entire SPICE3 program if matrix calculation part is also paral-
lelized. But, with the taskq, it incurs significant runtime overheads compare to the origi-
nal sequential code without –open mp compilation option label as ‘seq’. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4   Conclusions and Future Work 

We have developed an OpenMP SPICE3 circuit simulator program.  The matrix and 
model device calculations are the two most time-consuming parts of the computation.  
We present our implementation of the device model and instance calculation part of 
SPICE3. Our goals were to minimize the effort required and the amount of modifica-
tion of the original program.  Our experimental results are promising in this respect, 
despite the data structures used.  We discussed possible improvements; however, they 
do require more programming effort.  We also explained the need for a compiler tool 
that provides the novice user with a precise callgraph, even in the presence of dy-
namically bound calls (in section 2.3). We are continuing our work by creating an 
OpenMP version of the sparse matrix calculation (Sparse matrix package in SPICE3) 
that is also a time-consuming part of SPICE3.   
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Fig. 10. The performance of OpenMP SPICE3 using  Intel taskq runing on Itanium 
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Abstract. Given a program to compute some function, automatic dif-
ferentiation can be used to mechanically generate another program ca-
pable of evaluating first- and higher-order derivatives of that function.
A new strategy for the computation of Hessians by automatic differenti-
ation is proposed where the generated code is automatically parallelized
using OpenMP. The approach is applied to compute second-order deriv-
atives of an atmospheric reference model and performance results on a
Sun Fire E6900 system are reported.

1 Introduction

First- and second-order derivatives are required in various areas of scientific
computing, for instance in algorithms for nonlinear optimization and nonlinear
equations [21,17,20,28,27] or optimal experimental design [2]. Sometimes these
derivatives are easy to calculate by hand. However, in a growing number of
cases arising from real-world applications in science and engineering, the under-
lying functions are represented by large programs written in C, C++, Fortran
or MATLAB and are too complicated. That is, it is no longer reasonable to
expect the user to provide code to compute the corresponding Jacobians or Hes-
sians by hand. Instead, one is often relying on numerical approximations by
divided differences. While this approach based on numerical differentiation is
easy to implement by calling the program multiple times with perturbed input
values, its significant drawback is the presence of truncation errors. Fortunately,
automatic differentiation remedies this issue by transforming a given computer
program to a new program capable of evaluating (higher-order) derivatives with-
out truncation error. Compared to the original program, the number of floating
point operations of the corresponding program generated by this technique is
increased, sometimes significantly for higher-order derivatives. Therefore, there
is a need for parallelism in derivative computations [13,3,6,7,9,14,15,25,26,19,29].

In this article, we propose a novel strategy for automatically parallelizing
Hessian computations using OpenMP which is implemented in ADIFOR [5,18], a
software tool for automatic differentiation of Fortran 77 programs. The feasibility
of this approach is demonstrated by an application to the atmospheric reference
model MSIS–86 [24] predicting temperature and concentration profiles of species
in the Earth’s atmosphere above 120 km.
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The structure of this note is as follows. In Sect. 2, the technology of automatic
differentiation is briefly sketched. The new strategy to automatically parallelize
the computation of Hessians is introduced in Sect. 3. This strategy is applied to
the atmospheric reference model MSIS–86 in Sect. 4 where the parallel perfor-
mance of the approach is reported.

2 Automatic Differentiation

Automatic Differentiation (AD) is a technology for automatically augmenting
computer programs with statements for the computation of derivatives. The
basic idea behind AD is that any computer program P performs a—potentially
very long—sequence of elementary mathematical operations like binary addition
or multiplication, or intrinsic functions, of which the derivatives are known. For
each elementary mathematical operation occurring in P , the AD technology
generates a corresponding derivative computation. Combining the elementary
derivative operations according to the chain rule yields a new program PAD

that is capable of not only computing the original function implemented by P ,
but also derivatives of selected outputs, called dependent variables, with respect
to certain input parameters, referred to as independent variables.

In the so-called forward mode of automatic differentiation the derivatives are
computed along with the original function. For example, for a statement c =
f(a, b), where f denotes an elementary binary operation, the derivative of c can
be computed by

∇c =
∂c

∂a
∇a +

∂c

∂b
∇b . (1)

It is assumed that the derivatives of the elementary operation f are known, and
the gradients ∇a and ∇b are computed along with the values a and b. The size
of the gradients corresponds to the number of directional derivatives propagated
through the code and may in general be greater than one, say n. Therefore the
computation in (1) may actually involve a loop iterating over the n entries of
the gradients. Thus, the AD-generated program PAD needs O(n) times more
operations than the original program P .

There is a number of software tools available, implementing the AD technology
for various languages such as Fortran, C, C++, or MATLAB. For a detailed list
of tools visit the web portal of automatic differentiation, www.autodiff.org. A
thorough introduction into the theory of AD is given in [30,22]; applications of
AD in different numerous areas are contained in [23,4,16,10].

AD can also be employed to compute higher-order derivatives. For the state-
ment c = f(a, b), the Hessian of c can be computed by

∇2c =
∂c

∂a
∇2a +

∂c

∂b
∇2b +

∂2c

∂a2 (∇a · ∇aT ) +
∂2c

∂b2 (∇b · ∇bT )

+
∂2c

∂a∂b
(∇a · ∇bT + ∇b · ∇aT ) . (2)

This way, the computation of the Hessian ∇2c can be performed by O(n2) times
the number of operations of the original program P , where n is the number of
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independent variables. In practice, however, one would save half of the operations
and storage by exploiting the symmetry of the Hessians. For example, in [1], the
Hessians are stored in the LAPACK packed symmetric scheme.

3 Automatically Parallelizing Hessian Computations

The execution time and memory requirement of the differentiated program com-
puting first- and second-order derivatives along with the original function values
increases by an order of n2, relative to the original program. Especially for large n
the execution time of the differentiated program dramatically increases, and, if
the program is executed multiple times, e.g., within an optimization framework
requiring Hessian evaluations at different points, this overhead in CPU time is
even multiplied. To overcome this situation we suggest the parallel execution of
the differentiated code.

The idea is based on the fact that, for large n, almost all the computational
work is derivative computation, and the type of the operations for the derivative
computations are always similar, e.g., vector linear combinations for first-order
derivatives, which can be easily parallelized using appropriate OpenMP direc-
tives. In [11,12] two strategies for parallelizing the computation of first-order
derivatives with OpenMP have been proposed. Both strategies can be imple-
mented in software tools for AD, making such an AD tool capable of generating
parallel differentiated code.

In this work, we specificly extend the strategy presented in [12] to the parallel
computation of Hessians, and report on a recent implementation using the AD-
IFOR 3.0 [18] automatic differentiation software and the language-independent
Hessian module presented in [1] which is interfacing with ADIFOR and ADIC [8].

Recognizing that the loops iterating over the Hessians have always the same
length, namely n(n + 1)/2, if symmetry is exploited, and that each entry in the
Hessian can be computed independently, we suggest the following strategy for
automatically parallelizing AD-generated code with OpenMP:

1. The whole differentiated code is executed in parallel, i.e., the call to the
differentiated subroutine is performed within a parallel region. In case a
driver routine for the differentiated subroutine is generated, as provided by
ADIFOR 3.0, the corresponding OpenMP directives can be automatically
inserted in this driver without changing the calling sequence of the driver
routine. This way, the user can call the driver just like in the serial case.

2. All program variables holding second-order derivatives are shared. For the
second-order derivatives occurring in the lexical extent of the parallel region
that has been created in the previous step, this could be achieved by us-
ing the OpenMP shared clause. All remaining variables holding second-order
derivatives, i.e., Hessian variables occurring outside the lexical extent of the
parallel region, need to be static in order to make them shared. In Fortran,
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this is achieved by explicitly adding the save attribute to these Hessian
variables.
In the present implementation, all second-order derivatives are stored in one-
dimensional arrays of length n(n + 1)/2, representing Hessians in LAPACK
packed symmetric storage format. When a Hessian array is updated, like,
e.g., ∇2c in (2), the work is shared by the available threads. Since the total
size of the Hessian arrays is known in advance, the portion of work delegated
to each thread can be determined in advance and kept fixed for all the
loops involving Hessian computations. When entering the parallel region,
we divide the work on the Hessian arrays such that p threads are assigned
disjoint portions of size approximately n(n+1)/(2p). More precisely, for each
thread, we compute a pair of indices (LB,UB) specifying the lower and upper
bound of the chunk of the Hessian assigned to this thread. These indices
are private to each thread. In the current implementation, we also store a
pair of indices (my i,my j) indicating the row and column of the Hessian
entry that corresponds to the element number LB in the one-dimensional
array representation in LAPACK packed symmetric storage scheme. These
indices are used to pick the correct values from the gradient vectors when
computing the outer products element-wise for the elements LB to UB in the
one-dimensional array representation of the Hessian.

3. The computations related to the original function are performed redundantly
by each thread. Hence, all variables from the original code must be private.
If the variables are in the scope of the parallel region generated in the first
step, additional private or firstprivate clauses for these variables need to be
inserted. Intermediate variables occurring outside the lexical scope are pri-
vate by default, except for static variables. These need to be made private
by using the threadprivate directive. In the present implementation, inactive
static variables, those static variables that do not require derivative informa-
tion, are not recognized and need a threadprivate directive explicitly added
by the user.

4. Computations of the first-order derivatives are also performed redundantly.
The rules for the variables containing gradients are the same as for the vari-
ables related to the original function, described in the previous step. The
reason for redundant computation of the first-order derivatives is that, for
nonlinear operations, the computation of the Hessian requires the full gra-
dients of the arguments for each entry of the Hessian. Hence, additional
barriers would be needed before every nonlinear operation when paralleliz-
ing the first-order derivative computation. However, we suggest redundant
evaluation of gradients in order to save those barriers. In fact, the method
presented in this note has the clear advantage that it does not create any
barriers within the differentiated code.

As an example, we demonstrate the computation of first- and second-order deriv-
atives of a binary multiplication using the parallelization strategy described
above. For a binary multiplication c = a · b, the terms of (2) involving ∂2c/∂a2
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SUBROUTINE ad_fh_fmulad(nmax,qmax,n,q,c,g_c,h_c,a,g_a,h_a,b,g_b,
+ h_b)

INTEGER i, j, k, n, q, nmax, qmax
DOUBLE PRECISION c, a, b, g_c(nmax), g_a(nmax), g_b(nmax),
+ h_c(qmax), h_a(qmax), h_b(qmax)

INTEGER LB, UB, my_i, my_j
COMMON /adomp/ LB, UB, my_i, my_j

c$omp threadprivate (/adomp/)
i = my_i
j = my_j

c-- Hessian computation
DO k = LB, UB

h_c(k) = b*h_a(k) + a*h_b(k) + g_a(i)*g_b(j) + g_a(j)*g_b(i)
IF (i.eq.j) then
i = i+1
j = 1

ELSE
j = j+1

ENDIF
ENDDO

c-- gradient computation
DO i = 1, n

g_c(i) = b*g_a(i) + a*g_b(i)
ENDDO
END

Fig. 1. Fortran code for a parallel update of the Hessian h c for a binary multiplication
with scalar arguments a and b. The Hessians of a and b are denoted by h a and h b,
respectively. The corresponding gradients are denoted by g a and g b. The gradient of
c is updated in a redundant fashion.

and ∂2c/∂b2 vanish. So, the gradient ∇c and Hessian ∇2c can be computed by

∇c = b · ∇a + a · ∇b and
∇2c = b · ∇2a + a · ∇2b + ∇a · ∇bT + ∇b · ∇aT .

The corresponding Fortran code with OpenMP directives is given in Figure 1.
The example presented in this figure performs a parallel update of the Hessian

(returned in the one-dimensional array h c) for a binary multiplication with
scalar arguments a and b. The Hessians of a and b are denoted by h a and
h b, respectively. The corresponding gradients are denoted by g a and g b. The
gradient vector of c is also updated, but in a redundant fashion. Practically,
the code for the derivative computations is encapsulated in subroutines which
are provided in a library. As described before, each thread has a private pair of
integers, (LB,UB), specifying lower and upper bounds of the chunk it is assigned
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to. The parallel computation of the outer products is performed using temporary
integer variables (i,j) selecting the correct elements from the gradient vectors.
Another private pair of integers, (my i,my j), is needed to initialize the temporary
variables (i,j). The values for LB, UB, my i, and my j are computed once, and
passed to the library routines via a threadprivate common block. Alternatively,
these values could be passed via the argument list.

4 Parallel Second-Order Derivatives for MSIS–86

Atmospheric reference models predicting temperature and concentration profiles
of species in the upper atmosphere were first developed in the early sixties based
on theoretical considerations and satellite drag data. A prominent example of an
atmospheric reference model is a suite of models known as the Mass Spectrometer
Incoherent Scatter (MSIS) models [24] developed at NASA’s Goddard Space
Flight Center.

In a preparatory step, the MSIS–86 code was slightly modified to strictly con-
form to the Fortran 77 standard. All variables are initialized before their first
use. In addition, all single precision variables and constants are promoted to
double-precision in order to avoid under- or overflow in the derivative compu-
tations which tend to have a larger dynamic range of values than computations
occurring in the original function.
In the following experiments, we consider the function

� = f(δ, λ,p)
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Fig. 2. The sparsity pattern of the Hessian ∂2�/∂p2
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Fig. 3. Speedup of the parallel Hessian computation for the MSIS–86 model

Table 1. Approximate memory bandwidth consumed by the application running with
various numbers of threads, and achieved Mflops rate per thread

memory
# threads bandwidth [GB/s] Mflops/thread

1 0.5944 129.7795
2 0.9678 131.3873
3 1.3082 134.1513
4 1.5915 133.5491
5 1.8365 132.3858
6 2.0469 131.0441
8 2.4253 129.3738
12 2.8741 119.2794
16 3.2792 110.7988
24 3.6324 88.6993
32 3.8884 75.9986

computing the total mass density � for a given geodetic latitude δ, longitude λ,
and 300 scalar parameters p representing measurements from several rockets,
satellites and incoherent scatter radars. Note that the altitude and local apparent
solar time are kept constant. The function f is evaluated on an equidistant 10×10
grid varying δ and λ. Selecting � and p as dependent and independent variable,
respectively, we automatically generate OpenMP-parallelized derivative code for
computing ∂�/∂p and ∂2�/∂p2, in addition to �. The sparsity pattern of the
Hessian ∂2�/∂p2 for fixed parameters δ and λ is displayed in Figure 2.
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Performance experiments have been conducted on a Sun Fire E6900 system,
equipped with 24 UltraSparc IV dual core processors running at 1.2 GHz clock
speed, and 96 GByte of main memory. The speedup for 1 to 32 threads is given
in Figure 3 where the speedup is related to the parallel version with a single
thread.

For a small number of threads, the speedup is almost linear. For larger num-
bers of threads, only a moderate increase of the speedup can be observed. This
is likely caused by the dramatic increase of memory traffic generated by large
numbers of threads. In the Sun Fire E6900 system, there are 6 CPU boards con-
taining 4 processors each. Since the majority of the data is located on one board,
the limiting resource is the memory bandwidth between board and backplane,
which is 4.8 GB/s on the Sun Fire E6900. The approximate memory bandwidth
consumed by the application and the Mflops rate per thread is summarized
in Table 1. In particular, for large number of threads, the memory bandwidth
consumed by the application is quite close to the theoretical maximum of 4.8
GB/s. Nevertheless, the result is remarkable since speedup is achieved in a fully
automatic way that requires no interaction with the user.

5 Concluding Remarks

Given a serial source code, a set of techniques referred to as automatic dif-
ferentiation can be used to generate code for computing gradients and Hes-
sians. Depending on the size of the Hessians, this code may consume consid-
erably more execution time and memory, compared to the original program.
Therefore, we suggest to use OpenMP to automatically parallelize the compu-
tation of the Hessians, which is by far the most expensive task. The key idea
of our new approach is the fact that the computation of each element of a
Hessian can be performed independently by relatively simple loops which are
easy to parallelize. The total size of the Hessian is typically large leading to
large data structures and loops involving many iterations. Hence, the shared-
memory model is particularly well-suited for this parallelization approach. Since
the evaluation of the function computed by the original code is tightly inter-
leaved with the first- and second-order derivative computation, we perform a
redundant evaluation of the original function and its gradients, enabling paral-
lel processing without synchronization. The new implementation of the paral-
lelization strategy using ADIFOR 3.0 [18] and the Hessian module [1] is able
to generate ready-to-use parallel code for computing first- and second-order
derivatives.

Finally, we report on an application of the proposed strategy to the MSIS–86
atmospheric model leading to an augmented model capable of evaluating second-
order derivatives in parallel. Performance results have shown the feasibility of the
new approach. We stress that this approach is fully automatic, which, integrated
in automatic differentiation tools, allows the user to accurately compute large
Hessians in an efficient way.
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Abstract. On cc-NUMA multi-processors, the non-uniformity of main
memory latencies motivates the need for co-location of threads and data.
We call this special form of data locality, geographical locality. In this ar-
ticle, we study the performance of a parallel PDE solver with adaptive
mesh refinement. The solver is parallelized using OpenMP and the adap-
tive mesh refinement makes dynamic load balancing necessary. Due to
the dynamically changing memory access pattern caused by the runtime
adaption, it is a challenging task to achieve a high degree of geographical
locality.

The main conclusions of the study are: (1) that geographical locality
is very important for the performance of the solver, (2) that the per-
formance can be improved significantly using dynamic page migration
of misplaced data, (3) that a migrate-on-next-touch directive works well
whereas the first-touch strategy is less advantageous for programs ex-
hibiting a dynamically changing memory access patterns, and (4) that
the overhead for such migration is low compared to the total execution
time.

1 Introduction

Today, most parallel solvers for large-scale PDE applications are implemented
using a local address space programming model such as MPI. During the last
decade there has also been an intensified interest in using shared address space
programming models like OpenMP for these type of applications. A main reason
is that an increasing number of applications require the use of adaptive mesh
refinement (AMR), and in this case the work and data need to be dynamically
repartitioned at runtime to get good parallel performance. Using a local address
space model, an extensive programming effort is needed to develop parallel PDE
solver implementations that include such mechanisms. Using a shared address
space model, the programming effort for producing a working parallel code can
be reduced significantly. Another driving force for the use of shared address space
models is the recent development in computer architecture; Emerging computer
systems are built using multi-threaded and/or multi-core processors, future stan-
dard computational nodes will comprise an increasing number of threads that
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share a single address space. Codes using a programming model like OpenMP
can then be transparently and easily used on different size systems, ranging from
laptops with a single multi-threaded CPU to large shared memory systems with
many such CPUs.

Most larger shared memory computers are built from nodes (chips) with one
or several processors (cores), forming a cache-coherent non-uniform memory ar-
chitecture (cc-NUMA). In a NUMA system, the latency for a main memory
access depends on whether data is accessed at a local memory location or at a
remote location. One characteristic property of this type of computer system is
the NUMA-ratio, which is defined as the quotient of the remote and local ac-
cess times. The non-uniform memory access time leads to that the geographical
locality of data potentially affects the application performance. Here, optimal
geographical locality corresponds to that the data is distributed over the nodes
in a way that matches with the thread accesses in the best possible way. Good
geographical locality can be achieved by carefully selecting the node where data
is allocated at initiation, and/or by introducing some form of dynamic migration
of data between the nodes during execution [1,2,3,4].

A main reason for the complexity of local address space implementations of
AMR PDE solvers is that the programmer must explicitly control and modify
the partitioning of work and data during execution. If suitable algorithms for
partitioning and load balancing are used and the migration of data is efficiently
implemented, a local address space implementation will regularly exhibit good
parallel performance. In a shared address space model, the native work sharing
constructs and transparent communication result in that it is much less demand-
ing to develop a working parallel code. However, the aspects of work partitioning
and load balancing must normally still be considered to obtain robust and com-
petitive parallel performance. In programming models like OpenMP, the work
partitioning and load balancing can easily be performed using the same well-
developed and efficient algorithms as for local address space models, resulting
in that the potential for good parallel efficiency is retained. Data distribution is
not considered in OpenMP, and poor geographical locality could possibly lead to
deteriorated performance. In this paper, we study the implementation of a struc-
tured adaptive mesh refinement (SAMR) PDE solver and attempt to answer the
following questions:

– How large is the impact of geographical locality on the performance?
– Can the performance be improved through dynamic migration of misplaced

data?
– How large is the migration overhead?

The rest of the paper is organized as follows: In Section 2 we describe existing
parallel SAMR solvers and techniques used for distribution of work and data.
In Section 3 we consider the model PDE application that is solved, in Section
4 we introduce the NUMA computer system used, and in Section 5 we give
some details about the implementation and experimental setup. In Section 6 we
present performance results, and in Section 7 we conclude.



384 M. Nordén et al.

2 Parallel SAMR Solvers

Most existing parallel implementations of large-scale SAMR PDE solvers [5],
e.g., AMROC [6], PARAMESH [7], GrACE [8], and SAMRAI [9] exploit a local
address space model implemented using MPI. The parallelization is based on grid
blocks and each MPI process is responsible for the computations corresponding
to one or more blocks or parts of blocks. For easier balancing of the computa-
tional work, large blocks are often first split into smaller blocks. All blocks are
then assigned to the processors with a load balancing algorithm. In the com-
putations, a small amount of communication is always needed for interpolating
grid function values between some blocks in different processes.

Both patch-based and domain-based approaches for dynamic work partition-
ing and load balancing in local address space SAMR solvers have been developed.
In patch-based methods the blocks at one level are partitioned over all processes
while in the domain-based the computational domain is partitioned and the
partitions are projected to the different grid levels. Hybrid versions combining
patch-based and domain based methods have also been considered [10]. Further-
more, the algorithms can be categorized into scratch-remap and diffusion type.
Using a scratch-remap strategy, a new partitioning is computed without consid-
ering previous partitionings, but the new partitioning is re-mapped according to
previous data distribution in order to minimize data migration. In diffusion al-
gorithms the partitioning is computed with a previous partitioning as a starting
point. Scratch-remap strategies tries to optimize load balance and communica-
tion while the main objective in diffusion algorithms is to minimize data migra-
tion with load balance and communication as secondary objectives [11]. So far,
there is no single algorithm that performs best for all types of applications or
not even for all states of a particular application, see e.g. [10]. General dynamic
load balancing algorithms for SAMR solvers remains an open field of research.
In hierarchical AMR methods a common choice is to use space filling curves for
clustering blocks into partitions [6,12,7,8,9], using Morton or Hilbert ordering.
Space filling curves are fast and offer both locality within and between levels
in the grid hierarchy. For flat unstructured AMR methods, graph partitioning
methods are more common [13,11,14] and have better locality properties than
the space filling curves. For flat, SAMR applications and multi-block grids the
graph partitioning algorithms are also preferable [15,16]. For the experiments
performed in this paper, it is important to minimize the data migration in ad-
dition to achieve a good load balance and minimize communication. A diffusion
partitioning algorithm then becomes the natural choice, and we have chosen to
us an algorithm of this type from the Jostle package [14].

In [17], a shared memory parallelization of a SAMR solver is presented. The
code is parallelized using OpenMP and the experiments are performed on an SGI
Origin system. A reasonable amount of geographical data locality is achieved by
using SGI Origin’s first touch data placement policy, i.e., data is allocated in the
local memory of the thread first touching a grid block. In [12] a shared address
space parallelization using POSIX-multi-threading is discussed. Here, explicit
localization of data is implemented by using private memory in the threads for
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storing the blocks, i.e., each thread has access to the grid hierarchy but stores
only its blocks in private data structures in local memory. Moreover, to guarantee
geographical locality the threads are explicitly bind to single CPU’s.

In [18] different programming models using MPI, OpenMP and hybrid MPI-
OpenMP for parallelizing a SAMR solver are compared on a Sun Fire 15K,
which is also a NUMA system. Parallelization is performed both at block level
and at loop level. It is shown that the coarse grain block level parallelization
with MPI gives the best performance as long as the number of blocks is large
enough for a good load balance, otherwise a mixed MPI-OpenMP model is better
due to better distribution of the work. The standard OpenMP implementation
suffers from poor geographical data locality and does not perform as well as the
corresponding MPI implementations.

3 The PDE Solver

As a representative model problem we solve the advection equation

ut = ux + uy

with periodic boundary conditions on a square. The initial solution is a Gaussian
pulse. As time evolves the pulse moves diagonally out through one of the cor-
ners of the domain and comes back in from the opposite corner without chang-
ing shape. The PDE is discretized by a second-order accurate finite difference
method in space and the classical fourth order Runge-Kutta method in time. We
use a structured cartesian grid and divide the domain into a fixed user-defined
number of blocks. As a simple error estimate in the adaption criterion we use
the maximum value of the solution in a block. In a real-life application, a more
sophisticated error estimate e.g. based on applying the spatial difference opera-
tor on a coarse and a fine block discretization would be used [19]. However, this
would not affect the parallel performance much, and the conclusions drawn from
the experiments presented later will not change. If the error estimate of a block
exceeds a threshold, the resolution of the grid is refined with a factor two in the
entire block. On the contrary, if the error is small enough, the grid in the block
is coarsened with a factor two.

The code is written in Fortran 90 and parallelized using OpenMP. The paral-
lelization is coarse grained over entire blocks, i.e. each thread is responsible for
a set of blocks. The blocks have two layers of ghost cells which are updated by
reading data from the neighboring blocks. When the grid resolution changes in
any of the blocks, the entire grid block structure is repartitioned using the Jostle
diffusion algorithm and the work partitioning between the threads is changed
accordingly.

Before the main time-evolution loop starts, the solution is initialized. This
is done in parallel, according to an initial partitioning that was defined when
the grid was created. After this the error is estimated and the grid adapted if
necessary. This procedure, initialization and adaption, is repeated until the error
estimates are satisfied in all blocks. Thereafter, the grid is repartitioned and the
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main computations starts. The computational kernel of our SAMR application is
presented in pseudocode in Figure 1. In the code, the procedure Diff() performs
the necessary interpolation between grid blocks and applies the spatial difference
operator for all blocks in the grid. In the experiments presented later, we perform

1 do t=1,Nt
2 if (t mod adaptInterval=0) then
3 Estimate error per block.
4 Adapt blocks with inappropriate resolution.
5 Repartition the grid.
6 Migrate blocks (if migration is activated).
7 end if
8 F1=Diff(u);
9 F2=Diff(u+k/2*F1)

10 F3=Diff(u+k/2*F2)
11 F4=Diff(u+k*F3)
12 u=u+k/6*F1+k/3*F2+k/3*F3+k/6*F4
13 end do

Fig. 1. Pseudocode for the computational kernel of our SAMR application

a total of 20000 time steps. Adaption, partitioning and migration (if active) is
performed every AdaptInterval time step, where we use AdaptInterval=20.
We use a discretization with 16x16 blocks, and the adaption criterion results
in three different block sizes: 100x100, 200x200 and 400x400. When a block is
refined or coarsened new memory is allocated and the old block is discarded. At
a typical iteration the resident working set was about 350 MB. We define the
load balance γ by

γ =
maxi pi

1
n

∑n
i=0 pi

, (1)

where pi is the amount of work in partition i and n the number of partitions.
Using n = 4 and sampling the load balance γj after each partitioning, we got an
arithmetical mean of 1.09 with a standard deviation 0.12. Hence, the diffusion
type partitioner used gives a reasonably good load balance.

4 The NUMA System

All experiments presented below were performed on a Sun Fire 15000 system,
where a dedicated domain consisting of four nodes was used. Each node contains
four 900 MHz UltraSPARC-IIICu CPUs and 4 GByte of local memory, and each
CPU has an off-chip 8MB L2 cache. Within a node, the access time to local
main memory is uniform. The nodes are connected via a crossbar interconnect,
forming a cc-NUMA system with NUMA-ratio approximately 2.0.
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The codes was compiled with the Sun STUDIO 11 compiler using the
flags -fast -xarch=v8plusa -xchip=ultra3cu, and the experiments were per-
formed using the 4/04 release of Solaris 9. When an application starts the Solaris
scheduler assigns each thread a home node (called locality group or lgroup in So-
laris terminology). Although threads are allowed to execute on any node the
scheduler tries to keep the threads to their home node. By default, memory is
allocated according to a first-touch strategy which, in an ideal case, means that
memory will be allocated to the home node to create good geographical locality.

In Solaris, dynamic migration of pages between nodes can be performed using
a directive with a migrate-on-next-touch semantic using the madvise(3C) library
call [20]. The directive tags pages for migration and the kernel resets the address
translation for these pages. Since the TLB is handled by software in Solaris,
dirty translations needs to be invalidated by a TLB shoot down procedure for
all CPUs that have executed the address space. After the shot down the pages
have no physical address associated with them. When a thread accesses one of
these pages a minor page fault occurs and the contents of the page is migrated,
i.e. physically copied, to a new page allocated in the node where the faulting
thread executes. If the new page is physically allocated to the node where the
contents resides, there is a fast-path, no data is actually copied. The overhead of
the migration can be divided into two parts: the overhead from TLB shoot down
and the cost of copying data. The shoot down overhead is dependent on how
many pages are shot down and for how many CPU:s. Due to kernel consistency
issues this procedure needs to be serialized using global locking, see Teller [21].

A migrate-on-next-touch directive is also available on the Compaq Alpha
Server GS-series [22]. On SGI Origin-systems [23], dynamic page migration is
also available. However, it is implemented using access counters, and no migrate-
on-next-touch feature is available. Instead, HPF-style explicit directives for data
distribution can be inserted in the code. Tikir et al [24] showed that a migrate-
on-next-touch directive can be used to create a transparent data distribution
engine based on hardware access counts. Also, Spiegel et. al [25] showed how to
use the migrate-on-next-touch call to speed up an hybrid CFD solver.

5 Experimental Methodology and Setup

In the SAMR application studied here, the data distribution corresponding to
the initial first-touch allocation will not be optimal since we need to maintain a
good load balance. The partitioner will in many cases assign blocks where some
or all of them were initially allocated on a node different from the home node
of a given thread. Also, in our implementation, when a block is refined or coars-
ened, new memory is allocated and the old block is discarded. As the adaption
phase precedes the partitioner, new blocks might be allocated by the first-touch
strategy to a remote node depending on the outcome of the partitioner.

To increase geographical locality we can use page migration to migrate the
data of each partition to the home locality group (node) of the corresponding
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thread. The simplest strategy would be to migrate all blocks after each parti-
tioning. However, if the partitioner has a notion of locality, such as a diffusion
partitioner, the number of blocks that change partition will be lower than the
total amount of blocks in each partition. As a consequence we keep track of
inter-partition block movements and only migrate the blocks that change parti-
tion after each partitioning step. Since the migration is driven by page faults we
need to be careful how we touch the data. Each block has a layer of ghost cells
to simplify the interpolation between blocks of different levels of refinement. The
ghost cells are normally accessed first in a communication step which means that
these pages will be migrated to a neighboring thread if a migrate-on-next-touch
directive is used. To avoid this behavior we added a sequence of code where
the thread touches the entire block, including the ghost cells directly after the
migrate-on-next-touch call.

5.1 Experimental Setups

To investigate the performance impact of geographical locality we have per-
formed experiments where the application was executed on using four threads
on the following four configurations

UMA All threads confined to the same node. Migration not active.
NUMA One thread per node. Migration not active.
NUMA-MIG One thread per node. Migrate data belonging to blocks that are

transfered to another node. Force immediate migration by touching pages.

To make sure that threads stay in their home nodes we used the
SUNW MP PROCBIND environment variable to bind each thread to a specific CPU.
We also kept the system unloaded apart from the application studied. In the
UMA case, all accesses will be local. However, there is a risk that the perfor-
mance of the code will be inhibited by the limited bandwidth provided by a
single node. In the NUMA cases the aggregate bandwidth to main memory is
four times higher. We align data to page boundaries by interposing the Fortran
90/95 allocate() routine. Since the SAMR application allocates new blocks in
parallel we used the mtmalloc allocator. This allocator is part of Solaris and it
is much more scalable than the standard allocator. We mapped all allocations to
the valloc() routine of mtmalloc. This will result in that the smallest possible
block of data is a memory page. The memory waste was found to be very low.
In total, the application allocated 241540 8kB pages which is close to 2 GB of
data in 7636 calls to allocate. The waste due to alignment was about 40 MB.

To quantify the effect of geographical locality we measure the number of re-
mote accesses generating from the CPUs using the UltraSPARC-IIICu hardware
counters. We define the number of remote accesses as the difference between the
total amount of local L2-cache accesses (EC miss local) and the total amount
of L2-cache misses (EC misses). The hardware counter data was sampled using
the Sun Performance Analyzer. To reduce the file size of the hardware counter
sampling only 4000 times steps of the 20000 were executed. We believe that
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the basic miss ratio characteristics can still be observed using only a subset of
the iterations. Furthermore, the Solaris kernel (kstat) provides counters for the
amount of pages migrated to and from a node and the Solaris tool trapstat was
used to sample the amount of time spent handling address translations.

6 Results

Table 1 shows both total execution time and hardware counter data from the
three setups. We can see from Table 1 that the NUMA case runs slower than

Table 1. Execution time measurements and hardware counter data from the three
different experimental setups

UMA NUMA NUMA-MIG

Total Execution Time 4.09 h 6.64 h 3.99 h
L2 Miss Ratio 4.3% 3.9% 4.2%
L2 Remote Ratio 0.2% 62.9% 8.1%

the UMA case and the NUMA-MIG case. The number of remote accesses is also
much higher for this case compared to the UMA and NUMA-MIG cases which
shows that the NUMA case exhibits a low degree of geographical locality. It is
also clear that the effect of page migration is large since the amount of remote
accesses for the NUMA-MIG case is much lower compared to the NUMA case.
Remember that we can not completely remove all remote accesses since the usage
of ghost cells will result in a small amount of communication.

Figure 2 shows the entire execution for the UMA, NUMA and NUMA-MIG
cases. To be able to compare performance we have aligned the graphs vertically
and all three graphs have the same scale. It is clear that the impact of geo-
graphical locality is significant even though the NUMA-ratio of the SF15K is
only about two. By comparing the execution time of UMA and NUMA-MIG we
see that we can increase the geographical locality using a migrate-on-next-touch
directive. Surprisingly, the execution time for the NUMA-MIG case is lower than
the UMA case. This can be explained by the fact that in the UMA case all CPU:s
of the node will be used resulting in a very high memory pressure on that node.
In the NUMA cases each thread will have the entire node for itself resulting in
a higher aggregate bandwidth for the application to use.

Table 2 shows migration statistics for the application in the NUMA-MIG
case. At a typical iteration the resident working set was about 350 MB which
corresponds to 44800 8kB pages. Migration was triggered every 20:th time steps
which gives a total of 1000 times. If all the data migrate at each migration this
would correspond to a total traffic of 44.8 million pages. Comparing this figure to
the total amount of pages migrated (2.21 million) we can conclude that a small
fraction (5%) of all the pages are migrated. Assuming that the migrations are
evenly distributed over time, only 2213 pages (18.1 MB) are migrated at each
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Fig. 2. The impact of geographical locality on performance. Migration, adaption and
partitioning is triggered every 20:th time step.
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Table 2. Migration statistics for the NUMA-MIG case collected using Solaris kernel
statistics (kstat). Column 4 shows the net data flow from a node where the thread
executed. A negative value indicates that more pages were migrated from the node.
Column 5 shows the sum of columns 2 and 3 ie the total amount of migrations for one
node. The total amount of migrated pages for all nodes was 2212844 (16.88 GB).

Migrated To Migrated From Total Net Flow Total Traffic

Thread 0 346479 356903 -10424 703382 (2.9 GB)
Thread 1 318407 319417 -1010 637824 (5.4 GB)
Thread 2 249414 243203 6211 492617 (3.8 GB)
Thread 3 192122 186899 5223 379021 (3.4 GB)

migration. Hence, we conclude that the amount of data migrated is fairly low.
This together with the fact that the NUMA-MIG case executes faster than the
UMA case indicates that the overheads of migration are low for the experiments
performed. Using the trapstat tool we found that the solver (all cases) spends
at most 1.0% of its time (2.4 mins) in the Solaris page fault trap handler. This
fact further supports the conclusion that the overheads from migration are low.

7 Conclusions

In this paper we have investigated the impact of geographical locality for an
adaptive PDE solver. This application has a dynamic access pattern which im-
plies that a system needs to support some kind of runtime data distribution to
minimize the effects of geographical locality. Our results show that the impact
of geographical locality is large even though the NUMA-ratio of the system used
is only two. We also show that we can significantly improve geographical local-
ity and overall performance using a library call with a migrate-on-next-touch
semantic.

The overheads of migration was found to be low which can be attributed to
two facts. First, our experiments were performed using only four threads. The
overheads from page migration will probably increase with the number of nodes
and CPUs. Second, for SAMR to be efficient the refined area of the mesh needs
to be rather small. This indicates that the amount of data that needs to be
migrated will be low. The refinement patterns of AMR solvers often vary a lot
depending on the physics of the problem studied. If data migration is to be used
in a more general setting the frequency of invoking a migrate-on-next-touch call
must be tuned to match the refinement patterns of the studied problem. If large
amounts of data needs to be migrated we may have to reduce the number of
migrate calls to amortize the overhead over several time steps. However, for the
model problem studied in this article, using a diffusion type partitioner resulted
in fairly low amounts of data migrations.

We believe that a call or directive with a migrate-on-next-touch semantic can
be a useful addition to an architecture-independent language like OpenMP. Since
such a directive is invoked by the programmer we do not have to spend system
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resources monitoring geographical locality were thread-data affinity is not critical
for performance. Furthermore if a system support a transparent mechanism for
increasing geographical locality, a migrate-on-next-touch directive could serve as
a useful hint to the system.
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Abstract. Irregular algorithms are difficult to parallelize using existing
OpenMP constructs. This paper concentrates on algorithms that deploy
task pools, i.e., data structures for dynamic load balancing. We present
several task pool variants that we have implemented in OpenMP, and
compare their performance. Due to the lack of a mechanism in OpenMP
to put a thread to sleep, we had to use busy waiting in our implementa-
tions. To eliminate this need, we suggest an extension to OpenMP that
allows to put a thread to sleep on demand.

1 Introduction

OpenMP [1] provides powerful constructs to parallelize regular programs, i.e.,
programs that execute a similar set of operations on different elements of a
regular data structure such as an array. Irregular applications, in contrast, are
difficult to parallelize using the existing OpenMP constructs. For irregular ap-
plications, the units of work can usually not be distributed statically among a
fixed number of threads, because they are created dynamically at runtime and
their number depends on the given input. Moreover, it is often not possible to
predict the amount of work to be done in a unit for any particular input data.

One approach to achieve dynamic load balancing is the use of task pools.
A task pool is a data structure that stores dynamically created work units
(tasks) to support distribution to a certain number of threads. Section 2 gives an
overview about some task pool variants that we have implemented in OpenMP,
and presents the results of our runtime experiments with three irregular ap-
plications using task pools: Quicksort, Labyrinth-Search and Sparse Cholesky
Factorization. Performance numbers gathered with the workqueuing model pro-
posed by Shah et al. [2] are included for comparison in this section as well.

One problem we have been confronted with during the implementation of our
task pools is the lack of a suitable mechanism in OpenMP to put a thread to
sleep while waiting for a condition to become true. The programmer therefore
has to resort to busy waiting, which may be wasteful on the available computing
resources. Fig. 1 sketches a solution to this problem by proposing an extension
to OpenMP, which is spelled out in Sect. 3. Sect. 4 surveys related work, and
Sect. 5 summarizes our results.
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– # pragma omp yield:
release the processor so that another thread can run on it

– #pragma omp sleepuntil (scalar expression):
sleep until scalar expression becomes true

Fig. 1. Scheduling in a nutshell

2 Task Pools

Task pools are used to achieve dynamic load balancing in irregular applications.
A task pool stores tasks that are created dynamically at runtime. It also provides
a set of operations that allow threads to insert and extract tasks concurrently in a
threadsafe manner. The remainder of this section is organized as follows: Sect. 2.1
introduces the high level interface for the programmer used by all our task pool
variants. In Sect. 2.2, the different task pool variants are described, while Sect. 2.3
highlights the most severe implementation problem we had with all variants: lack
of a suitable mechanism to put threads to sleep while waiting for a condition to
become true. Finally, in Sect. 2.4, we introduce three example applications that
are used in Sect. 2.5 to assess the performance of the different task pool variants:
Quicksort, Labyrinth-Search and Sparse Cholesky Factorization.

2.1 Application Programming Interface

All implemented task pools use the same application programming interface.
This API provides functions to initialize and destroy the task pool structure, as
well as to insert and extract tasks concurrently. Listing 1.1 shows an example of
the relevant part of an OpenMP program that uses our API.

1 t a s k d a t a t ∗ task data ;
2 t po o l t ∗pool = t p o o l i n i t ( num threads , s izeof ( t a s k d a t a t ) ) ;
3 task data = g e n e r a t e i n i t i a l t a s k ( ) ;
4 tpoo l pu t ( pool , 0 , task data ) ;
5 #pragma omp paral lel shared ( pool )
6 {
7 t a s k d a t a t ∗my task data ;
8 int me = omp get thread num ( ) ;
9 while (TPOOL EMPTY != tp oo l g e t ( pool , me, &my task data ) ;

10 do work ( my task data ) ;
11 }
12 tpoo l d e s t r oy ( pool ) ;

Listing 1.1. OpenMP program using task pools

First, a task pool must be initialized by using the tpool init() function. This
function must only be called once, and only by a single thread. Afterwards, the
task pool can be used to store (tpool put()) and extract (tpool get()) tasks. The
latter function blocks until it either successfully extracts a task from the pool,
or discovers that the task pool is empty and all threads using the pool are idle.
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Finally, function tpool destroy() frees the memory used by the task pool. All task
pool variants and test applications were implemented in C.

2.2 Variants of Task Pools

We implemented several variants of task pools. Some of them (sq1, sdq1 and dq8 )
were ported to OpenMP from existing POSIX threads and Java implementations
described by Korch and Rauber [3]. Others (dq9 and dq9-1 ) have been developed
by the authors as enhancements of the dq8 variant. The remainder of this section
explains the variants.

Central Task Queue: The simplest way to design a task pool, called sq1, is
to use a single shared task queue. Each thread is allowed to access this queue
with functions tpool put() and tpool get(). We used OpenMP lock variables to
ensure that only one thread can access the task queue at a time. The variant
has the drawback that when two or more threads are trying to access the task
pool simultaneously, they have to wait for each other. Therefore, the task pool
can become a bottleneck for applications that use a large number of threads or
access the pool frequently. Nevertheless, this variant offers good load balancing
capabilities and performs well for applications that create only few tasks or
access the task pool rarely.

Combined Central and Distributed Task Queues: To reduce waiting
times caused by access conflicts, the task pool variant sdq1 uses distributed
task queues. It manages a private task queue for each thread and permits only
the owner thread to access the queue. Therefore no synchronization operations
are needed for the private queues. An extra central queue is maintained for load
balancing. Whenever a private queue is empty, the owner thread tries to fetch a
task from the central queue. To ensure the exchange of tasks among the threads,
the size of the private queues is limited. If a thread tries to enqueue a new task
and discovers that its private queue is full, it will move the new task to the
central queue.

Distributed Queues with Dynamic Task Stealing: In contrast to sdq1,
the task pool variants dq8, dq9 and dq9-1 use multiple shared queues to reduce
the possibility of access conflicts: each thread has its own private and its own
shared queue. If a thread runs out of tasks in its private queue, it will take a
task from its shared queue. If the shared queue is also empty, the thread will try
to steal a task from the shared queue of another thread, and then return it from
tpool get().

Although the task pool variants dq8, dq9 and dq9-1 are conceptually similar,
they use different strategies for filling the shared queues. Like sdq1, dq8 uses
private queues with a limited size. If a private task queue is full, the new tasks
are moved to the shared queue.
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Unlike dq8, variants dq9 and dq9-1 adjust the size of the private queues dy-
namically, based on the state of the shared queue. The size of a private queue in
dq9 and dq9-1 is not limited to a certain value. The private queues of these task
pool variants can contain an arbitrary number of tasks. The reason is that dq9
and dq9-1 try to keep most tasks in the private queues to reduce the number
of operations on shared queues. A thread will move a task into its shared queue
in tpool put() only if the shared queue is running empty. If both the private and
the shared queue are empty, a new task will be inserted into the shared queue
in dq9, but into the private queue in dq9-1.

Another difference between dq9-1 and dq9 is the point in time, when task
stealing is started. While dq8 and dq9 do not attempt to steal tasks before a
private queue is empty, dq9-1 initiates task stealing as soon as the number of
tasks in the private queue drops below a predefined threshold value. This is done
to prevent the private queue from running empty.

All of these different variants are summarized in Tab. 1.

Table 1. Comparison of implemented task pool variants (Q. stands for Queue, the
number in braces stands for the actual number of tasks used in our tests)

Name Num. Q. Num. Shared Q. Size of Priv. Q. Task-stealing Time
sq1 1 1 - -

sdq1 num threads + 1 1 limited (2) -

dq8 num threads ∗ 2 num threads limited (2) priv. queue empty

dq9 num threads ∗ 2 num threads unlimited priv. queue empty

dq9-1 num threads ∗ 2 num threads unlimited priv. queue low (2)

2.3 Implementation Problem: Busy Waiting

The implementation of the task pools sketched in the previous section was rel-
atively straightforward with OpenMP, but we encountered a problem for which
OpenMP does not provide an adequate solution: Each time a thread tries to
extract a task but detects an empty task pool, it has to wait until another
thread inserts a new task. Korch and Rauber [3] solved the problem for their
implementations with condition variables in POSIX threads, and the wait()-
notify() mechanism in Java, respectively. Unfortunately, there is no mechanism
in OpenMP to put a thread to sleep until an event occurs or a condition becomes
true. In our task pool implementations, we therefore had to fall back on busy
waiting, which results in unnecessary idle cycles. For this reason, Sect. 3 suggests
OpenMP extensions to solve the problem. These simple extensions can be used
to avoid busy waiting in a task pool, and are also helpful in other contexts.

2.4 Benchmarks

To compare the performance of our task pool variants, we have implemented
three irregular applications: Quicksort, Labyrinth-Search and Sparse Cholesky
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Factorization. Quicksort is a popular sorting algorithm, initially invented and
described by Hoare [4]. The Labyrinth-Search application finds the shortest path
through a labyrinth using the breadth-first search algorithm. To ensure that all
labyrinth cells with the same distance from the entry cell are visited before any
other cells are processed, we use two task pools. The tasks in the first pool
correspond to cells with distance d from the entry cell. The second task pool is
used to collect tasks (cells) with distance d + 1.

Cholesky Factorization is an algorithm to solve systems of linear equations
Ax = b. It exploits the fact that a symmetric positive definite matrix A can
be decomposed into A = LLT , where L is a lower triangular matrix with pos-
itive diagonal elements. Using this decomposition, the original equation can be
solved more efficiently. Information on Cholesky Factorization can be found, for
instance, in the book by George and Liu [5]. To test our task pool variants, we
have implemented only the most expensive part of Cholesky Factorization: nu-
merical factorization. Numerical factorization computes the nonzero elements of
the result matrix L. We have implemented a so-called right-looking factorization
scheme. Each task computes one column of the result matrix, dividing all ele-
ments of this column by the square root of its diagonal. Then, all columns which
depend on the recently computed column are updated by adding a multiple of
the computed column to them.

2.5 Results

Performance measurements were carried out on an AMD Opteron 848 class com-
puter with four processors at 2.2 GHz, and on a Sun Fire E6900 with 24 dual-core
Ultra Sparc IV processors at 1.2 GHz. On the AMD system, a maximum of four
threads was used, while on the Sun system, a maximum of eight threads was
used. Although more threads would have been possible on the latter machine,
eight processors is the maximum number that this machine supports without en-
countering NUMA-effects (as it consists of multiple mainboards with 4 dual-core
processors each). On the AMD system, the benchmarks were compiled with the
Intel C++ Compiler 9.0 using options -O2 and -openmp. On the Sun Fire E6900,
the Guide compiler with options -fast --backend -xchip=ultra3cu --backend
-xcache=64/32/4:8192/512/2 --backend -xarch=v8plusb was used. We have
not used the native SUN compiler, because it does not support the workqueuing
extension (see next paragraph).

For comparison, we implemented Quicksort and the Cholesky factorization
using Intel’s proposed workqueuing model. It was first introduced by Shah et al.
[2], as an integrated approach to achieve dynamic load balancing for irregular
applications. Those authors suggest an OpenMP extension which allows to split
the work into units (tasks) that are distributed dynamically to the threads of a
program using a task queue. Since both the Intel C++ and the Guide compilers
already support the workqueueing model, we implemented two benchmarks using
this proposed OpenMP extension on the same set of machines. Unfortunately, we
could not implement the Labyrinth-Search algorithm with this model, because
we did not find a way to use two different queues and ensure that all tasks from
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Fig. 2. Wall–clock times for Quicksort in seconds. Each time shown is the average of
three runs.

Fig. 3. Wall–clock times for the Cholesky factorization. Each time shown is the average
of three runs.

one queue are executed before the program starts to execute tasks from the
second queue.

Fig. 2 shows the wall-clock times in seconds for the Quicksort benchmark
application with different task pool variants and the Intel taskq implementation.
We used an array with 100.000.000 elements as input data on the AMD Opteron
system and an array with 10.000.000 elements on the Sun Fire E6900. The
results for the Cholesky factorization are shown in Fig. 3. For the Cholesky
factorization, a 500x500 matrix was used as input. Fig. 4 shows the results for
the Labyrinth-Search benchmark application with different task pool variants.

Our experiments indicate that the performance of different task pool variants
depends on the type of application. Quicksort and Labyrinth-Search, which cre-
ate a large number of tasks, achieve better performance using task pools with
distributed task queues. Cholesky factorization, in contrast, generates only a few
tasks, and therefore good load balancing is crucial. The use of private queues
turns out to be a drawback in this case, because all tasks remain in the private
queues and the idle threads have no chance to fetch them. The performance of
dq9 is good, though, because this variant makes the distribution of tasks among
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Fig. 4. Wall–clock times for Labyrinth-Search. Each time shown is the average of three
runs.

the queues dependent on the number of tasks in the pool. If there are only a
few tasks in the pool (shared queues are empty and at least one thread is idle),
a new task will be inserted into a shared queue (and not, like e. g. for dq9-1
into a private queue). If there are enough tasks in the pool, however, dq9 will
insert a new task into a private queue to avoid synchronization operations. Using
this technique, dq9 achieves much better performance than the other task pool
variants with distributed queues.

Fig. 3 shows that the only task pool variant that uses one central queue
(sq1 ) achieves the best performance for Cholesky Factorization. The reason is
the good load balancing offered by sq1 : all tasks are kept in one central queue,
where all threads can access them. Due to the small number of tasks generated
by the algorithm, a central queue does not slow down the program because the
application accesses the task pool only rarely.

The bottom line from our experiments is that there is no clear winning
taskpool implementation. It depends on the application, which task pool variant
is suited best.

As can be seen, the performance of the task pools implemented inside the
two compilers using Intels taskq is comparable to (and in some cases even better
than) our implementations for the Cholesky example. When many tasks are
generated and stored in the pools (as is the case for Quicksort), our optimized
task pools are able to outperform the Intel implementations, though.

3 Solving the Problem of Busy Waiting

As has already been stated in Sect. 2.3, there is a problem regarding busy waiting
and OpenMP. The problem is shortly rehashed on a broader scale in Sect. 3.1. Af-
terwards, Sect. 3.2 specifies our proposed solution, and Sect. 3.3 gives our reasons
for the design. Finally, in Sect. 3.4, the specification is applied to our examples, and
some ways to use the new functionality are shown. A reference implementation of
the suggested changes to the OpenMP functionality can be found in a special re-
lease of the OMPi Compiler [6] that is available from the authors on request.
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3.1 Problem Description

The problem of busy waiting has already been discussed by the same authors [7].
It manifests if a thread has to wait for a condition to become true before it can
continue. In the case of our task pools, for instance, function tpool get() is sup-
posed to return an element from the pool, but if there is no element left, it has
to wait for work to become available. The most sparing way for the computing
resources to implement this waiting is to put the thread to sleep until the condi-
tion becomes true. Unfortunately, there is no functionality available in OpenMP
to support the waiting, though.

As a valid workaround, the programmer may poll a condition repeatedly,
thereby wasting processor time. This approach is known as busy waiting. To give
another example, busy waiting is also required for pipelined algorithms, where
a stage has to wait until a previous stage has completed its work. Busy waiting
is best avoided, especially when other threads are waiting for the processor to
become available, or when power consumption is an issue, e.g. in embedded
systems.

Novice OpenMP programmers may resort to using locks to solve the problem.
In their approach, the waiting thread tries to set an already set lock, and is put
on hold as a result. As soon as work is available, a different thread will unset the
lock, thereby enabling the waiting thread to continue. Although this approach
often works, it is not compliant with the OpenMP specification, because the lock
is unset by a different thread than the owner thread, which leads to unspecified
behaviour. Furthermore, there is no guarantee that a thread waiting on a lock
is put to sleep at all (busy waiting is also allowed), and therefore this approach
is even more flawed.

The problem described above cannot be solved in OpenMP satisfactory as of
now, since there are no directives for scheduling available. Therefore, Sect. 3.2
suggests a possible addition to the OpenMP specification that makes the sug-
gested workarounds (busy waiting or non-compliant use of locks) obsolete. The
problem has already been noticed by Lu et al. [8], who suggested the introduction
of condition variables (as found in POSIX threads) in 1998. Our solution tries
to combine the power of condition variables with the ease of use of OpenMP.

Let us make one more fact perfectly clear: The newly proposed functionality is
not useful for the common case in computing centers today, where one processor
is exclusivly available for each thread. It is intended for the more general case
that multiple threads are competing for the available processors. With the advent
of multi-core CPUs in common desktop systems and the expected shift to multi-
threaded applications, we soon expect this case to be the dominant one.

3.2 Specification

We suggest two new directives:

#pragma omp yield
Similar to the POSIX function sched yield (), this function tells the scheduler to
pick a new thread to run on the current processor. If no new thread is available,
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it returns immediately. The directive provides a simple way to pass on knowledge
on what is important and what not from the programmer to the runtime system
and operating system scheduler. As a second new directive, we propose:

#pragma omp sleepuntil (scalar expression)
This directive puts the current thread to sleep until the specified scalar ex-
pression becomes true (non-zero). The expression is occasionally tested by the
runtime system in the background. Before each test, a flush is carried out auto-
matically, to keep the temporary view of memory consistent with memory. An
implementation of the directive is not required to wake up the sleeping thread
immediately after the expression becomes true, nor does it have to wake it up
if the expression becomes true and becomes false again shortly afterwards. Not
all threads waiting on the same expression have to wake up at the same time
either. It is unspecified, how many times any side-effects in the evaluation of the
scalar expression occur.

3.3 Rationale

The yield directive is inspired by its POSIX counterpart, sched yield(). It offers
an easy to use way to influence the scheduling policies of the operating system.
This can be important when computing resources are sparse and the programmer
wants to optimize program throughput. An example of this would be calling the
yield directive at the end of every pipeline step in a pipelined application, to get
values through the pipeline as fast as possible.

We know of no scheduling primitive in any other parallel programming sys-
tem that is as powerful and easy to use as the proposed sleepuntil. Thanks to
the OpenMP memory model (and its ability to read variables without locking
them using only flush, as compared to e. g. POSIX Threads), this directive is as
powerful as condition variables, yet it lacks their difficult usage. The directive
can be emulated by wasting time in a loop, but this would be busy waiting and
wasteful to the available computing resources, as outlined in Sect. 3.1.

The proposed changes are fully backwards compatible to the existing OpenMP
specification, since no behaviour of existing OpenMP functionality is altered in
any way.

3.4 Application

We have emphasized in Sect. 3.1 that there is no opportunity for a parallel al-
gorithm using taskpools to wait for a new element out of an otherwise empty
pool, without constantly polling the pool. There are two approaches to solve this
problem with our newly proposed directives. The first one calls the yield direc-
tive whenever there is no work in the pool, which will put the thread to sleep
if another thread is waiting for a processor to become available. Chances are,
that a different thread will produce work for the taskpool. If there is no other
thread from the same application, a context switch may occur and a different
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application will run on the processor, allowing for a higher throughput on the
machine. Finally, if there is no other thread waiting for the processor, the call
to the yield directive will just return and no harm is done. A second possible
solution is the following:

1 #pragma omp s l e e p u n t i l ( ! tpoo l i s empty ( pool ) )

This solution offers a more fine-grained control over when the thread is sup-
posed to wake up again, as the thread will sleep until something has been put
into the taskpool and not just an unspecified amount of time as with the yield
solution. After wake-up, it is still necessary to check if the taskpool is not empty
again, as no locking of any sort is involved here. The thread might have been
woken up at a time when the pool was not empty, but when it tries to actually
get a task from the pool, a different thread might have already popped the task.

It is difficult to measure the impact of the proposed directives, as they are
most useful on fully loaded systems. We have therefore overloaded a system
by starting our benchmark applications with 32 threads using the most simple
taskpool sq1. The results are shown in Fig. 5.

Fig. 5. The impact of the proposed directives on a fully loaded system (Sun Fire E6900
with 32 Threads running on 8 processors), measured wall-clock times in seconds over
multiple runs with sq1

A different use case for both new directives is testing. When testing OpenMP
compilers or performing tests for OpenMP programs, it is often useful to force the
scheduler into certain timing behaviours that could not be tested otherwise (e. g.
stalling one thread, while all other members of the team go ahead and run into a
barrier). This is not possible with the present OpenMP specification (except with
busy waiting again), and can be very useful to test for hard to catch errors. An
example to stall execution of one thread for 100 milliseconds is shown below:

1 double now = omp get wtime ( ) ; /∗ save current time into now ∗/
2 #pragma omp s l e e p u n t i l ( omp get wtime ( ) >= now + 0 . 1 )
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4 Related Work

This paper is an indirect follow-up paper to our own work on task-pools [7]. Some
less advanced task pool variants were presented there, along with a first mention
of the problem of busy waiting. The present paper includes more advanced task
pool variants, two new example algorithms, and a proposal to solve the problem
of busy waiting.

A detailed analysis of several task pool implementations with pthreads and
Java threads can be found in the article of Korch and Rauber [3]. They conclude,
that a combination of private and a public queues for each thread works best for
their three benchmark applications.

An OpenMP extension that could help to deal with irregular problems, the
workqueuing model, has been suggested by Shah et al. [2], and performance
measurements for this extension have already been discussed in Sect. 2.5.

Another approach was proposed by Balart et al. [9]. They suggest to relax
the specifications of the sections directive allowing a section to be instantiated
multiple times. Additionaly they suggest to execute code outside of any section
by a single thread. Each time this thread detects a section instance, it will insert
this section into an internal queue. The section instances inserted into the queue
are executed by a team of threads.

5 Concluding Remarks and Perspectives

Efficient parallelization of irregular algorithms is an ambitious goal that often
can be tackled with task pools. We have presented several variants of task pools
along with their implementation in OpenMP. To assess the performance of the
variants, we have implemented three irregular algorithms: Quicksort, Labyrinth-
Search and Cholesky Factorization. Results show that the correct selection of a
task pool variant has a significant impact on the performance of an application.
There is no universally best variant, but the suitability depends on the pattern
of accesses to the task pool. Applications that generate many tasks and access
the task pool frequently benefit from the usage of distributed private queues.
Applications that access the task pool infrequently, in contrast, need good load
balancing, and therefore gain more profit from a central shared task queue.

The second contribution of this paper has been a proposal to the OpenMP
language committee. We suggested two directives: yield and sleepuntil. Both
enable the programmer to influence the scheduling process, and to put threads
to sleep on demand. By using these directives, the need for busy waiting is
eliminated.

A reference implementation of the extended OpenMP functionality can be
found in a special release of the OMPi Compiler [6] that is available from the
authors on request. In the future, we plan to explore more applications with
OpenMP, trying to find ways to improve the specification in the process. Our
progress will be visible in the UKOMP project [10]. The project will serve as our
testing ground for new functionality we discover to be useful, and also enables
other developers to give feedback on how they like our changes.
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Abstract. The current OpenMP 2.5 specification does not include a binding for
Java. However, Java is a wide-spread programming language that is even used for
HPC programming. We propose an adaptation of OpenMP to Java by retrofitting
the basic OpenMP directives to Java and further propose some new concepts to
make OpenMP fit into Java’s language philosophy.

We discuss how Java’s memory model matches OpenMP’s memory model
and how the OpenMP bindings for Java and C++ differ. We also suggest how to
achieve flexibility of an OpenMP implementation by allowing both Java threads
(java.lang.Thread) and Java tasks (java.util.concurrent.FutureTask) as an under-
lying means of parallelization.

Support for object-orientation is added to allow OpenMP to better suit the
Java programming model. For example, we suggest a parallel for-each loop over
Java collections, OO-based reductions, and object-cloning semantics to adapt
data-sharing clauses to Java. Also, we suggest a minimal runtime library to al-
low object-pooling to circumvent any implicit synchronization involved in object
allocations.

Finally, we present some performance numbers for a reference implementa-
tion in a research compiler.

1 Introduction

Java becomes more and more pervasive in the programming landscape with numer-
ous high-performance (and free) implementations (Sun’s and IBM’s JVMs, Jackal [21],
etc.). For many applications Java’s performance is on-par with other programming lan-
guages (including C++ and Fortran) [3,12].1 Hence, Java becomes suitable for high-
performance computing as well. Some advantages of Java over, for example, C/C++
and Fortran are its higher productivity, its safety features, and its large standard library.
Finally, because of its high level of pervasiveness, many prospective HPC programmers
are already experienced in Java but have no thorough knowledge of C/C++ or Fortran.

Java currently has two ways to allow parallel execution of programs. First, the Re-
mote Method Invocation (RMI) facility allows distributed execution of a program that
spans several nodes. Second, shared-memory parallelism is achieved by means of the
Java Threading API. We argue that using Java’s threading model directly results in
two unforeseen problems. First, it is a cumbersome and error-prone task to transform a

1 Java performance often depends on the programming style used.

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 409–421, 2008.
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sequential program into a parallel one by manually creating threads and implementing
explicit data exchange by hand. Second, compiler analysis is made exponentially harder
as the parallelism is hidden from it. For example, static data-race detection tools (for
Java) such as ESC/Java [8] currently have to resort to complex model checking tech-
niques to search for all possible interleavings of object usages (and thread creations).
An OpenMP-style programming allows for easier static data-race detection.

With Java 1.5, the java.util.concurrent package provides more support for multi-
threaded programming, i. e. it contains a large set of thread-aware collections and
threading support mechanisms. For example, it contains code for forms of light-weight
threads (tasks) as well as scalable thread-safe blocking queues and concurrent hashta-
bles. The collections from java.util.concurrent are universally useful and applicable to
both standard Java and the proposal of this paper, Java-OpenMP. However, the new task
subsystem enlarges the landscape of expressible parallelism. With Java-OpenMP it is
easier to choose, even automatically, from the available types of parallelisms.

Finally, because Java has no support for fast thread-local storage, OpenMP’s data-
sharing clauses (shared, private, etc.) fulfill a need in the Java environment. Java only
allows one to simulate true thread-local storage by putting variables into the thread
class, a reference to which can be acquired by calling the currentThread() method at
any time.

Combining the above observations we propose to adapt the C++ OpenMP specifi-
cation to fit Java and to retrofit any Java features onto it. We present the basic set of
OpenMP directives and their suggested semantics under the proposed Java-OpenMP
model. We further propose a series of extensions to the basic model so that OpenMP is
a better match to Java’s object-oriented programming model.

2 Related Work

Various commercial and production quality compilers for C/C++ and Fortran, e. g. the
Intel compiler suite [14] or the compilers of the Portland Group [15], can compile
OpenMP programs to native code.

With OdinMP/CCp [5] for C/C++ and Omni OpenMP [20] as well as OpenUH [16]
for both C/C++ and Fortran there also are open-source implementations of the OpenMP
specification. These are source-to-source compilers that transform OpenMP programs
to equivalent programs that make use of a native threading API. Source-to-source com-
pilers rely on another compiler to generate the executable code. Only for the Itanium
architecture, OpenUH uses the Open64 [13] compiler back-end to directly emit a native
executable.

At present, we are not aware of any standardized Java binding of the OpenMP
specification. An earlier paper on the JOMP project [6] dealt with a subset of OpenMP
for Java. The JOMP compiler follows the source-to-source approach and transforms a
JOMP program into an equivalent Java program, which uses the Java Threading API
for parallelism. In JOMP (as in our proposal), special Java line comments are treated as
OpenMP directives. The proposal we present here follows the OpenMP specification



A Proposal for OpenMP for Java 411

as closely and as completely as possible and suggests new features that allow a tight
integration of OpenMP into the Java language.

3 Differences to the C++ OpenMP Specification

The semantics of most of the OpenMP features can be applied from the C/C++ OpenMP
standard without any changes. This includes: //#omp for, //#omp section, //#omp sec-
tions, //#omp single, //#omp master, //#omp barrier, //#omp flush, and others. Whereas
we discuss only the necessary differences between Java-OpenMP and C++-OpenMP,
we reason where we feel that Java’s design philosophy is better served by adapting the
C++-OpenMP definitions.

3.1 Pragmas and Conditional Compilation

Although pragmas and conditional compilation are essential elements of the OpenMP
standard, Java’s language specification does neither provide the pragma concept nor
conditional compilation. Although one might use a C-style pre-processor on Java source
code, such scenarios are discouraged as the mapping between the unprocessed code and
the pre-processed code is potentially lost.

With Java 1.5 the concept of annotations was added as an alternative. Annotations are
type-safe meta-statements that the Java compiler, the JVM, and other tools are able to
recognize. For example, annotations can be used to describe RMI stubs and skeletons
so that they can be automatically created. Unfortunately, annotations cannot be used
for Java-OpenMP for several reasons. First, they cannot be used at the level of Java
statements or blocks, but only at the level of declarations (e. g. at class level, method
level, etc.). Second, an annotation must always have a well-defined annotation type that
in turn must be defined in some Java package visible to the Java compiler. Thus, a non-
OpenMP compiler would have to provide dummy annotations of the same annotation
types as an OpenMP-compliant compiler does. This is clearly not acceptable.

The only reasonable way to implement pragmas in an OpenMP binding for Java is
not to modify the language itself but instead to add a special kind of Java line comment
for OpenMP directives:

/ / # omp <d i r e c t i v e −name> <c l a u s e s > n e w l i n e
A non-OpenMP compiler treats such a directive as a regular Java comment and ignores
it. The OpenMP-compliant compiler recognizes the line comment as an OpenMP direc-
tive. This approach has also been used by the JOMP compiler [6].

Similarly, we propose an adoption of the conditional compilation sentinels that are
introduced by the OpenMP specification for Fortran. A Java line comment starting with
//# is recognized as a conditional compilation sentinel. Again, the non-OpenMP com-
piler safely ignores the rest of the line while the Java-OpenMP compiler parses and
compiles the statement as desired.

3.2 Extensions

This section proposes how OpenMP’s constructs can be applied or extended to an
object-oriented context.
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package omp ;
i n t e r f a c e CustomCloner <T> {

T c l o n e (T o t h e r ) ;
}

Fig. 1. Interface for creating custom copies

O b j e c t a = . . . ; i n t b = . . . ; CustomCloner c l o n e r = . . . ;
/ / #omp . . . f i r s t p r i v a t e ( a : c l o n e r , b )

Fig. 2. Example for custom object copying

Data-sharing Attributes
The argument passing semantics used in the C++ binding for the data-sharing clauses
are inappropriate for a Java binding. In the C++ binding the behavior depends on the
data type. For example, if a shared x is a pointer to an object, the pointer is manipulated.
But if x is of an object type, the copy constructor of the object is invoked. Hence, the
C++ semantics of a firstprivate pointer would imply that only the reference is privatized
whereas the object is still shared among the individual threads. A firstprivate object
would result in a private copy.

Since Java does not have the concept of a copy constructor as C++ does and since it
only has references to objects2, a programmer cannot choose whether an object is to be
copied upon privatization or not.

The semantics of OpenMP’s data-sharing clauses have to be adapted to overcome
this limitation of Java. We propose the following solution: in case of a shared object
reference, the reference is copied, whereas firstprivate and lastprivate always create
copies of the object by means of Java’s Object.clone() method.

Moreover, an additional parameter may be added to the firstprivate and lastprivate
clauses to be able to specify a custom behavior for copying objects. That way, one
can for example specify a deep clone instead of a shallow one or use objects of classes
which do not implement the Cloneable interface. We introduce a special interface (Cus-
tomCloner, see Fig. 1) which offers a method clone to clone an object in a customized
manner. Objects of this type can be placed right after each variable in the firstprivate
and lastprivate clauses, separated by a colon (see Fig. 2).

Parallelization of Iterations over Collections
Most Java programs make heavy use of Java’s collection API and for-each loops. For ex-
ample, a molecular dynamics application written in Java will probably be programmed
with collections of molecule objects rather than flat arrays of doubles. Without any ex-
tensions of OpenMP such Java programs cannot be parallelized by means of OpenMP’s
work-sharing clauses.

We therefore propose the constructs //#omp iterator and //#omp parallel iterator
(similar to //#omp for and #omp parallel for) to allow iterations over container objects
to be parallelized (see Fig. 3). When these constructs are used, the iterator which is

2 A Java reference is similar to a C++ pointer but pointer arithmetic is not allowed.
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L i n k e d L i s t c = new L i n k e d L i s t ( ) ;
c . add ( ” t h i s ” ) ;
c . add ( ” i s ” ) ;
c . add ( ” a ” ) ;
c . add ( ”demo” ) ;

/ / #omp p a r a l l e l i t e r a t o r
f o r ( S t r i n g s : c )

System . o u t . p r i n t l n ( ” s ” ) ;

Fig. 3. Parallel iteration over a Java collection

package omp ;
i n t e r f a c e Reducer<T> {

T r e d u c e ( T a , T b ) ;
T i n i t ( ) ;

}

Fig. 4. Interface for object-oriented reductions

purely sequential in regular Java is replaced by a parallel execution of the loop. Concep-
tually, during compilation, the code of Fig. 3 is transformed by first calling c.toArray(),
which flattens the collection into an array. The loop itself is then rewritten into a tra-
ditional for loop with an ordinary loop counter instead of the iterator. The resulting
loop is then parallelized by the for work-sharing construct. The same clauses as for
the for construct are allowed. Like ’for’, ’iterator’ has an additional convenience form
called ’parallel iterator’, which is then transformed into a parallel region containing an
’iterator’ region.

In the proposed form, the iterator construct is a specialization of the more generic
taskq construct that the Intel OpenMP compiler already provides [1]. With taskq the pro-
grammer introduces a program region that encloses a set of task environments. Upon en-
trance into the taskq region, the encountering thread appends each task region to a work
queue while it executes the enclosing structured block. All other worker threads then de-
queue tasks one by one and process the code contained in the task region. If the enclosing
taskq contains a loop, the loop is executed sequentially by the encountering thread.

Because C and C++ lack a standardized iterator interface, a C/C++ binding has to
provide such a generic construct to allow to parallelize iterator loops over collections.
For example, in C++ iterators are mostly expressed by classes that overload the ’++’ and
’==’ operators. In contrast, Java provides for-each loops and the standardized Iterator
interface. Hence, the proposed iterator construct offers sufficient expressiveness and is
a straightforward extension of concepts known to Java programmers.

Object-Oriented Reductions
Currently, OpenMP only defines reductions for primitive data types and for certain op-
erators. However, in Java’s object-oriented design philosophy most data is expressed as
objects for which no reduction is allowed. Current practice forces the programmer to
explicitly implement reduction algorithms.
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c l a s s B i g I n t e g e r R e d u c e r implements omp . Reducer<B i g I n t e g e r > {
p u b l i c B i g I n t e g e r r e d u c e ( B i g I n t e g e r a , B i g I n t e g e r b ) {

re tu rn a . add ( b ) ;
}
p u b l i c B i g I n t e g e r i n i t ( ) { re tu rn new B i g I n t e g e r ( ” 0 ” ) ; }

}

B i g I n t e g e r v a l u e = . . . ; B i g I n t e g e r R e d u c e r r e d u c e r = new
B i g I n t e g e r R e d u c e r ( ) ;
/ / #omp p a r a l l e l f o r r e d u c t i o n ( r e d u c e r : v a l u e )
{

. . .
}

Fig. 5. Example of object-oriented reductions

We therefore propose an interface (see Fig. 4) that lets the programmer use objects
in a reduction clause. The interface Reducer offers a method reduce, which reduces
two objects, and a method init, which is used to initialize the values inside the region.
That way, the class definition of the objects, which should be reduced, does not need
to be changed or enhanced and existing classes can be used by creating a new Reducer
implementation. Different kinds of reductions can be implemented for every class by
creating different classes implementing the Reducer interface. Fig. 5 shows an example
of an object-oriented reduction, which defines a custom reduction for the BigInteger
class from the java.math package.

4 Specific Aspects of a Java Binding

This section discusses the most important aspects of a Java-OpenMP binding. A po-
tential OpenMP Java binding needs to respect the semantics and restrictions that are
imposed by the Java Language Specification [10].

4.1 Java-OpenMP Memory Model

Java’s memory model [17] and OpenMP’s memory model [18,11] are conceptually very
close. Both Java’s and OpenMP’s memory models propose a relaxed-consistency model
that supports the idea of a global memory where individual threads can temporarily
fetch data from and then place it into a thread-local cache. At specific points in a thread’s
life-time, the thread flushes its cache by copying modified data back into the global
memory.

OpenMP specifies that this ’flush’ operation occurs when a flush or barrier construct
is reached. Roughly, Java’s memory model specifies that the same occurs when a
synchronization statement is entered or left. It is therefore only natural to reuse
Java’s flushing behavior to implement the Java-OpenMP’s flush construct. For a naive
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implementation it would be sufficient to use an empty synchronized block—such as
synchronized(this) {}—for any flush operation.

4.2 Interaction Between Parallel Regions and Java Threads

Whereas C and C++ do not offer language constructs for multi-threading, Java’s lan-
guage specification provides explicit threading support. Thus, a Java-OpenMP speci-
fication needs to take the coexistence of its parallel regions and the standard system
thread package into account. It needs to state what Java-thread functionality is avail-
able to the programmer and what is disallowed. Limitations to the programmer need
to be independent of the way parallel regions are mapped by the compiler. For exam-
ple, it is possible to map a Java-OpenMP parallel region either to a Java-thread or to
a ’task’ from the java.util.concurrent package (from here on called Java-task). Java-
threads are fully preemptive threads which are scheduled by the JVM while Java-tasks
can be used as user-level cooperative threads. Java-tasks are then multiplexed upon a
number of Java threads. The Java-OpenMP specification must therefore define suffi-
cient (but not too severe) restrictions on the usage of Java’s threading features so that
no harmful interactions with the transformation of parallel regions may result. The fol-
lowing list of restrictions serves this purpose. Please note that these restrictions also
hold when java.util.concurrent is used for manual parallelization of a Java program.
Thus, the restrictions are no artifical limitations that stem solely from the OpenMP Java
binding. However, for Java-OpenMP the restrictions only apply within parallel regions.
Outside, i. e. in regular Java code, all of Java’s features may of course still be used as
usual.

• The programmer cannot use Thread.currentThread() to differentiate between reg-
ular Java threads and the threads that execute a parallel region. For a Java light-
weight task Thread.currentThread() will report incorrect values as the light-weight
tasks are multiplexed over a set of regular Java threads.
Thread.currentThread() is mostly used to implement some form of thread-local stor-
age. This is no longer necessary when OpenMP’s data-sharing primitives are avail-
able.

• The programmer may not use synchronized() for synchronization in parallel regions.
Instead the various OpenMP thread synchronization constructs must be used. The
reason for this is again the flexibility of the Java-OpenMP mapping to different
threading models. If a parallel region is executed by tasks that are multiplexed onto
several Java threads, synchronized() will not behave as desired.

• The programmer may not use Object.wait() because it may cause deadlocks of the
threads and tasks used internally to implement parallel regions. For example, con-
sider the case where two Java-tasks are multiplexed upon one Java-thread. A wait()
inside one Java-task will block the entire Java-thread and therefore also the co-
scheduled other Java-task(s).

• However, Object.notify() may be used as it is guaranteed to not block. This allows a
parallel region to notify threads spawned by non-OpenMP parts of the application.
For example, in an application where data is visualized by means of the Java Swing
toolkit, even from within a Java-OpenMP parallel section, the application may need
to notify the GUI threads that new data is ready for visualization.



416 M. Klemm et al.

4.3 Exception Management

The OpenMP specification disallows to prematurely leave a parallel region. This in-
cludes jumping out of a region using break statements or the like. The same applies to
exceptions thrown inside a parallel region. For the C++ specification exception handling
is not an issue because exceptions rarely occur in most C++ programs.

In contrast, Java makes heavy use of exceptions. Exceptions are not only visible at the
programming level, but are also used for handling system events and errors (e. g. Null-
PointerException, ArrayIndexOutOfBoundsException, etc.). These system-level events
may be thrown by many of the byte-code instructions of a JVM. Hence, every OpenMP-
conforming implementation for Java needs to take special care when dealing with ex-
ceptions that are thrown inside parallel regions.

Unfortunately, it is not obvious how to appropriately react to an exceptional event.
First, it is not an option to terminate the exception-throwing thread as it will no longer
reach subsequent barriers, thus resulting in a deadlock of other threads in the team.
Second, it is not permitted to prematurely proceed to the next barrier as the reason of
the exception might still be affecting the program, again resulting in undefined behavior.

The desired behavior is that other threads of a team should abort as soon as possible if
one thread has encountered an exception. For performance reasons, it is not acceptable
that threads continuously actively poll for exceptions that might have occurred on other
threads. For this purpose we propose the following semantics:

– If one thread throws an exception, it sets a cancellation flag for all other threads,
registers its exception at the thread team, and then proceeds to terminate.

– All (other) threads check for the occurrence of an exception at cancellation points.
Cancellation points are the start and the end of #omp barrier, #omp critical, #omp
parallel, and work-sharing clauses.

– When a thread reaches a cancellation point and finds that another thread has re-
quested cancellation, the thread itself is interrupted by an exception. This ensures
that the thread’s stack frames are unwound and execution of the thread is termi-
nated.

– The exception is re-thrown by the master thread after all threads have terminated
execution of the parallel region. If more than one exception was thrown, the master
thread randomly selects an exception and re-throws it.

Similar semantics have also been proposed for the JCilk [7] parallel programming lan-
guage. Although JCilk does not define cancellation points, it allows to terminate asyn-
chronous computations. Such computations are aborted as soon as possible whenever
a exception occurs therein. If multiple exceptions are thrown in asynchronous compu-
tations, then JCilk randomly selects one to be handled by the corresponding catch
block.

5 Runtime Environment

5.1 Runtime Support Library

The runtime library functions as proposed by the OpenMP specification can directly be
adopted to Java-OpenMP. Java, however, does not support globally scoped functions as
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package omp ;
p u b l i c c l a s s Omp {

/ / r u n t i m e s u p p o r t f u n c t i o n s
p u b l i c s t a t i c i n t getThreadNum ( ) { . . . }
p u b l i c s t a t i c i n t getNumThreads ( ) { . . . }
. . .
/ / o b j e c t p o o l i n g f u n c t i o n s
p u b l i c s t a t i c O b j e c t o b j e c t P o o l G e t ( C l a s s c l s ) { . . . }
p u b l i c s t a t i c O b j e c t o b j e c t P o o l G e t ( C l a s s c l s ,

i n t e l t s ) { . . . }
p u b l i c s t a t i c void o b j e c t P o o l P u t ( O b j e c t o b j ) { . . . }

}

Fig. 6. Java runtime support functions and additional functions for object pooling

C++ does. Hence, the runtime library is to be implemented as a set of static methods in a
class called omp.Omp (see Fig. 6). With Java 1.5, the qualified class name can be omit-
ted as the Java-OpenMP compiler should automatically add a static import statement
during compilation.

5.2 Object-Pooling Support

Because of Java’s highly object-oriented programming style, most Java programs allo-
cate lots of objects. To create arrays and objects, the new operator accesses the global
heap. Many JVM implementations are synchronizing this access to guarantee that only
one thread can perform a new operation or can garbage collect at the same time. Hence,
Java programs that allocate lots of objects are less parallel than desired. An obvious
solution to this JVM limitation is the usage of a per-thread object-pool.

This proposal does not restrict OpenMP’s implementation to Java threads but also,
for example, allows Java tasks for implementing parallel regions (see Section 4.2).
However, to create an efficient thread-pool, and to use the correct and most efficient
form of thread-local data, the thread-pool implementation needs to know if a given Java-
OpenMP implementation is based on Java-threads or Java-tasks. Hence, Java-OpenMP
must provide an API (see Fig. 6) that supplies the programmer with an efficient object-
pool abstraction.

The objectPoolPut method allows a programmer to store an object into the pool
for later retrieval. If objectPoolGet is invoked and no object of the specified type is
available, a new object is allocated from the global heap. The objectPoolGet method
with two parameters is used to create array objects of a specific size.

5.3 Environment Variables

OpenMP 2.5 specifies a set of shell-level environment variables that can be used to
control program behavior at runtime. We propose that these variables should be made
available to an application by means of Java’s properties mechanism since this is the
preferred way of passing environment settings to a Java application.
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Fig. 7. Speed-up and parallel efficiency of the Lattice-Boltzmann Method on upto 8 CPUs of the
AMD cluster using the DSM of Jackal

6 A Reference Implementation of Java-OpenMP in Jackal

Jackal [21] is a high-performance implementation of Java that provides a Distributed
Shared Memory (DSM) both on Shared-Memory Processor (SMP) machines and clus-
ters with fast interconnects.

Our Java-OpenMP implementation in Jackal is in part compiler-based and in part
Java-based. The compiler detects the directives and transforms them into an inter-
nal representation. This representation is carried right into the backend for optimiza-
tion purposes so that Java-OpenMP-level analyses and optimizations can be performed
there. The reference implementation is thus not implemented as a pre-processor but
rather as part of the compiler. A compiler-based implementation has a number of ad-
vantages over a pre-processor. First, the code generated by a pre-processor needs to
obey the rules of the target language which restricts the possible transformations that
can be applied. Second, code reuse is increased as other compiler front-ends can share
the same compiler intermediate code level infrastructure.

The Java-part of the reference implementation contains the runtime support func-
tions specified by Java-OpenMP. It also contains additional support for data-sharing,
management of the thread teams, and exception handling.

Our current Java-OpenMP infrastructure implements the basic OpenMP directives
as discussed in Section 3 except for the potential extensions to the data-sharing and
reduction clauses as outlined in Section 3.2.

6.1 Performance of a Java-OpenMP Version of the Lattice-Boltzmann Method

The Lattice-Boltzmann Method (LBM) [22] is used to simulate fluids using cellular
automata. Space and time are discretized and normalized. In our case, LBM operates
on a 2D domain divided into cells. Each cell holds a finite number of states called
distribution functions. In one time step the whole set of states is updated synchronously
by deterministic, uniform update rules. The evolution of the state of a given cell depends
only on its neighboring cells.
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The kernel was parallelized in a straightforward manner by placing Java OpenMP
comments in the Java source code. The domain is decomposed along the y-axis, that
is, the outermost loop is distributed over the worker threads. A similar scheme is used
for the MPI parallelized version in [19]. Fig. 7 shows the speed-up and the parallel effi-
ciency achieved by both the Java-OpenMP parallelized LBM and the MPI parallelized
LBM.

For 8 nodes, Java-OpenMP achieves a speed-up of about 6.1. This is about 83 %
of the speed-up achieved by the manually optimized LBM kernel that is written in C
using MPI for communication. The lower scalability is due to the DSM environment
that strongly depends on the communication layer (in our case Ethernet). Jackal cur-
rently does not include message aggregation. Instead it transfers each cell individually
whereas the MPI version transfers whole partitions, i. e. each process requests all the
cells from neighboring processes with one MPI request.

7 Summary

In this paper, we have sketched a number of extensions and adaptations to the OpenMP
C++ specification that are necessary to adapt it to Java’s object-oriented programming
model. A syntax for OpenMP directives was proposed that allows a non-OpenMP com-
piler to safely ignore OpenMP directives. We have shown differences of Java and C++
that require changes to the OpenMP specification. For example, OpenMP’s data-sharing
clauses need to be adapted to Java’s notion of object references. Parallel iteration over
the items of a Java collection requires a different syntax and semantics. We discussed
the Java and OpenMP memory model and described how OpenMP parallel regions can
interact with regular Java threads. We further proposed semantics for managing excep-
tions in the context of parallel regions. Runtime support is provided by means of a
class that not only contains the functions that are specified by the OpenMP standard,
but in addition offers object pooling. A reference implementation of the Java-OpenMP
support in the Jackal DSM system demonstrates Java-OpenMP’s viability.

Future Work

First, the performance evaluation of the Java-OpenMP prototype should be based upon
standardized and well-known benchmarks. A Java-OpenMP version of the NAS Parallel
Benchmarks (NPB) [4,9] is in the works. The benchmark suite has to be backported
from multi-threaded Java to sequential Java. Then, the OpenMP pragmas have to be
inserted to re-parallelize the individual NPB benchmarks. Afterwards, the benchmarks
suite is to be evaluated with large-scale clusters and SMPs.

Second, as soon as the upcoming OpenMP 3.0 draft is committed as a standard,
the current prototype implementation has to be extended to follow the OpenMP 3.0
standard. If the upcoming standard also contains specifications of exception handling,
user-level threads, and parallel execution of iterator loops, the new semantics have to
be retrofitted onto the Java programming language as well.
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Finally, we plan to port the Java-OpenMP binding into the Jikes RVM [2]. With the
port to the Jikes RVM, we will show that a Java-OpenMP binding is not only feasible
for our DSM environment but also usable on an SMP architecture.
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Abstract. OpenMP has been focused in performance applied to numer-
ical applications, but when we try to move this focus to other kind of
applications, like Web servers, we detect one important lack. In these
applications, performance is important, but reliability is even more im-
portant, and OpenMP does not have any recovery mechanism. In this
paper we present a novel proposal to address this lack.

In order to add error handling to OpenMP we propose some exten-
sions to the current OpenMP specification. A directive and a clause are
proposed, defining an scope for the error handling (where the error can
occur) and specifying a behaviour for handling the specific errors.

Some examples of use are presented, and we present also an evaluation
showing the impact of this proposal in OpenMP applications. We show
that this impact is low enough to consider the proposal worthwhile for
OpenMP.

1 Introduction and Motivation

OpenMP has become one of the most widespread programming models within
the scientific domain for SMP machines. The language has proved to be a reliable
paradigm throughout a great variety of numerical codes, and its success can be
explained by two main reasons: the language simplicity and the fact that the
model is under a continuous revision by both the industry and the academia.
After the first OpenMP specification, there have been many proposals for the
improvement of the language. All of them well based on experimental works that
have led to changes in the language. Some have been included in the language
specification (e.g the nested parallelism support or the definition of the workshare
construct) and some others are currently under consideration (e.g. task queues
or autoscoping of variables).

Currently, the OpenMP community is engaged in an open discussion; whether
the OpenMP programming can be moved to the non numerical domain. There
have been experimental works where OpenMP has been adopted for the par-
allelization of applications like Web servers [1] or even in games [2]. Tradi-
tionally, these applications have been parallelized using threading techniques,
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through hand coded transformations that degrade the programming style. Be-
sides, it is quite common that these applications are originally provided with
recovery mechanisms for specific runtime events. For instance, Web servers are
programmed to have particular responses when connection descriptors are ex-
hausted, a timeout expires, or, when in a critical situation, a memory allocation
operation fails. Clearly, each case is not having the same consequences, so the
error management should be different depending on the situation.

For these and other environments, performance is not always the main issue,
while reliability is. An application crash might not be acceptable to happen, or
at least, when a fall down is about to happen, the application is provided with
escape mechanisms allowing safety actions to be taken always under a controlled
behaviour.

It is pointless to run in parallel an application that has been specifically
shielded to particular events, while the runtime implementation is open to sit-
uations that may crash the execution of the application. Numerical codes with
considerable execution times are equally sensible to internal runtime fails. After
days of execution, an application crash is not acceptable without any chance to
react to it.

Currently, the OpenMP specification lacks any support to report an error in
its code to the application. So, an application has no chance to react to errors
that happen inside the OpenMP transformations and not in the application
itself. This paper presents a set of new OpenMP directives and clauses with the
aim of decoupling the specification and execution of the parallelism from the
handling of OpenMP errors. The proposal defines a set of mechanisms to specify
explicit error handling in the application, as well as runtime error recovery. The
structure of this paper is as follows: Section 3 describes our proposed extensions
to OpenMP. Section 4 discusses some implementation details of our prototype
of the proposal. In section 5 we evaluated which is the overhead of the error
handling code. Section 2 presents other works related to ours. And finally, in
section 6 we discuss the conclusions of our work.

2 Related Work

Gatlin[3] pointed out one of the lacks of OpenMP that restrict its application
fields. As long as OpenMP does not include explicit support for error recovery
or even detection, it is going to be limited to the scientific domain. Although
an explicit proposal is not presented, Gatlin explore three main lines for error
detection and recovery: exception based mechanisms, call-back mechanisms and
explicit error code mechanisms. Exception based mechanisms are inspired in the
try/catch constructs in C++. Call-back mechanisms are introduced through the
definition of a new clause to directives where to indicate the function containing
the call-back code. Call-back mechanisms offer the advantage of keeping away
from the site of the computation the code responsible for the error recovery.
Finally, error based code introduces a new variable type (e.g: OMPerror) and
a new clause where to supply an error variable (similar in use to the posix
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ERRNO variable). This approach is quite general, but forces the programmer to
add the error handling code to the computational parallel code. The proposal
in this paper introduces similar mechanism to the error based and the call-back
approaches.

Callback mechanisms have been applied in a wide range of different domains,
but always under a common aim, that is, a proper response to particular run-
time events. It is quite easy to find different applications for these mechanisms.
From operating system implementation [4,5], to error reporting within a parser
implementation [6], callback mechanisms are not a novelty. The proposal in this
paper introduces the callback mechanisms in the OpenMP programming model.

Error recovery mechanisms have been extensively studied, especially for dis-
tributed memory systems [7]. Checkpointing has been the main strategy for
recovering an application from a fail-stop fault. For message-passing-based ap-
plications, the most common technique is based on hand coded barrier instru-
mentation. The barrier synchronization mechanism is modified and checkpoint
code is introduced [8]. The case for shared memory systems has not been studied
as extensively, but again, checkpointing has been the principal approach. Within
threading environments, Dieter et al. [9] have proposed the implementation of
the checkpoint support inside the thread library internals.

Although not specifically related to checkpoint recovery, the proposal in this
paper allows for decoupling such mechanisms from the parallelization process. In
front of classical approaches based on hand coded and/or runtime mechanisms,
the proposal in this paper provides the programmer with specific constructs to
embed recovery mechanisms. Beyond checkpointing strategies, the proposal is
generic enough to consider any kind of recovery mechanism.

3 Proposed Extension

3.1 Basic Concepts

Sources of Error. OpenMP errors can come from two sources. First, errors that
come from the code that the compiler inserts to transform the serial application
following the user directives. As this code is transparent to the user, there is no
way for the user to code a response to anomalous situations in the execution of
this inserted code.

The second source of error comes from the use of OpenMP intrinsics. Cur-
rently, although an error can occur when the user specifies an intrinsic there is
no way to know whether the operation failed or not. This is different from the
previous case in that the code is explicitly inserted by the programmer.

Our proposal covers both cases to provide a complete error management for
OpenMP.

Error Classification. From the perspective of the application it would be in-
teresting to be able to identify which kind of error has occurred when an anom-
alous situation arises. We propose two orthogonal classifications. First, it would
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be interesting to know the kind of the error that has occurred (e.g. memory ex-
haustion, invalid argument, . . . ). Second, it would be interesting to classify errors
based on the predicted impact they will have on the execution of the application
(i.e. what chances the application has to finish being a valid execution).

For that, two new types would be introduced: omp error type and
omp error severity. Table 1 shows a possible list of proposed error types. This
list does not intend to be complete but just serve as an example. Table 2 lists a
possible range for the severity of the errors. The decision on which level of sever-
ity corresponds to an error is left to each implementation. Table 2 gives a few
examples from our implementation. Note that both, the type and the severity
of the error, have no relationship at all between them (i.e. two errors may have
the same type and have a different severity).

Table 1. omp error type possible values

Constant Meaning
OMP ERR INV ARGUMENT One or more arguments to a directive or intrinsic are in-

valid.
OMP ERR OP NOT IMPLEMENTED The requested operation is not supported by the imple-

mentation.
OMP ERR NOT ENOUGH MEMORY Memory could not be allocated to complete an operation.
OMP ERR NOT ENOUGH THREADS Not all requested threads could be created.
OMP ERR UNKNOWN None of the previous errors

Table 2. omp error severity possible values

Constant Meaning Examples
OMP ERR MILD The error will not hinder a correct exe-

cution
Invalid number of threads speci-
fied

OMP ERR MEDIUM The error may potentially alter the spec-
ified behavior but it will probably still be
a correct execution

Nested parallelism not supported

OMP ERR SEVERE Unless corrected the error will result in
undefined behavior

Not all threads could start a
workshare

OMP ERR FATAL If the application continues it will either
have incorrect results or none at all (i.e.
crash)

A barrier synchronization failed

Error Handling. When an error occurs some action needs to be executed. We
suggest to define a set of available actions and a way for the user to specify more
complex actions using callbacks. Table 3 summarizes the different proposed set
of available actions to execute when an error occurs.

As shown in table 3 the user is given the option to specify its own function
which will be invoked on an error condition. The user can specify as well a list
of expressions. These expressions will be evaluated just before the callback is
executed and passed to it as parameters of the callback function. We propose
to additionally have an implicit argument to the callback that will be a pointer
to a structure containing information about the anomalous situation. The exact
content of this structure would be implementation dependent. This additional
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Table 3. Possible responses to an error

Type Meaning Comments
OMP ABORT The execution is aborted
OMP IGNORE The failed operation is ignored Execution is continued on best

effort.
OMP RETRY The failed operation is retried Has an optional argument spec-

ifying the maximum number of
retries.

OMP SKIP Skip if possible the offending code Execution is continued on best
effort.

OMP SERIALIZE Execute if possible the offending code
with just one thread

User callback An user function is called to decide what
to do

The callback may have argu-
ments specified by the user

argument could later be used to query about the nature of the error using a new
set of intrinsics (see section 3.4). Figure 1 shows the proposed prototypes for the
callback functions for both C/C++ and Fortran.

C/C++ prototype:
omp_action_t callback ( omp_err_info_t *info, ... );

Fortran prototype:
integer callback ( ctx )
type(omp_err_info)::ctx

Fig. 1. User callbacks prototypes

3.2 The ONERROR Clause

Our proposal introduces a new clause to all OpenMP directives, the ONERROR
clause. This clause specifies how a given error (or set of errors) needs to be
handled in the dynamic extent of the directive where the clause is specified.

onerror([err_list:]action[, arg_list])

Fig. 2. ONERROR clause syntax

C/C++ Syntax:
#pragma omp context [onerror(...)]

statement

Fortran Syntax:
c$omp context [onerror(...)]

statements
c$omp end context

Fig. 3. CONTEXT directive syntax

Figure 2 shows the proposed syntax for the ONERROR clause. Action speci-
fies what action to perform when an error covered by the clause arises. Its value
must be one from Table 3. Err list is an optional comma separated list of error
severities. It specifies to which errors (i.e. only those of a severity listed in the
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clause) the given action applies. If no error severity is specified the clause is
applied to any error. The optional arg list can be used when the specified action
is a user callback. Then it can be comma separated list of expressions that will
be passed to the callback function on its invocation. Additionally, some other
actions can also have optional arguments (e.g. in OMP RETRY the maximum
number of retries can be specified).

When no ONERROR directive has been specified the implementation will
decide how to handle errors.

3.3 The CONTEXT Directive

The use of the ONERROR clause can not handle intrinsics outside the scope of
a directive and it can not specify the same error handling properties for multiple
directives. To solve that, our proposal introduces a new OpenMP directive, called
CONTEXT.

The CONTEXT directive allows to define an execution context to which dif-
ferent properties could be attached. This proposal only defines the error handling
property but others could be defined (e.g. scheduling, number of threads, . . . ).
The properties of the CONTEXT directive are activated when entering the dy-
namic extent of the directive and they are deactivated upon exit. Inside the
dynamic extent this properties are applied to all the code (including subfunc-
tions) unless they are overridden by a nested CONTEXT directive or an specific
clause in another directive (e.g. ONERROR).

Figure 3 shows the proposed syntax for this directive. The CONTEXT direc-
tive can be followed by one or more ONERROR clauses.

We would like to note that a non-CONTEXT directive with an ONERROR
clause can be also be seen as a compound of that directive nested inside a
CONTEXT directive with the ONERROR clause.

Another possible idea would be to have the CONTEXT directive applied to a
?le. This way component wise policies could be de?ned without having to modify
each function. It could be particularly useful for encapsulated components such
as libraries.

3.4 Error Support Intrinsics

Additionally, our proposal defines a number of intrinsics that the programmer
can use in the callback function to inquire about the different aspects of the
risen error. These are:

omp error severity t omp error get severity(omp err info t *) -
Returns the severity assigned by the runtime to the error.

omp error type t omp error get type (omp err inf t *) -
Returns the type of the error.

int omp error get str (omp err info t *, char *buf, int n) -
Returns a human readable description of the severity and type of the error.
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int omp error get source file (omp err info t *, char *buffer, int n) -
Returns the filename where the code that arose error is.

int omp error get source line (omp err info t *) -
Returns the line in the code where the error has arisen.

3.5 Examples

In this section we show a few examples using the proposed constructions.
Figure 4 shows a simple code that defines in the top level function that all

errors that occur must be ignored. Note that in this simple way it can be defined
a default error handling policy for all the application.

Figure 5 shows how the CONTEXT directive may include OpenMP intrinsics
and directives that will share the error handling properties. Also, it shows how
multiple ONERROR clauses can be used to specify different behaviors depending
on the error severity.

1 int main ()
2 {
3 #pragma omp context\
4 onerror(OMP_IGNORE)
5 my_code();
6 }

Fig. 4. Example defining an error
policy for the application

1 void f(int num_threads) {
2 #pragma omp context onerror(OMP_ERR_MILD:OMP_IGNORE)\
3 onerror(OMP_ERR_SEVERE,OMP_ERR_FATAL:OMP_ABORT)
4 {
5 omp_set_num_threads(num_threads);
6 #pragma omp parallel
7 {
8 /* parallel code */
9 }

10 }
11 }

Fig. 5. Example with multiple ON-
ERROR clauses

Figure 6 shows a possible use of the ONERROR clause to save all computed
data when a serious error occurs. The savedata callback will be called before
the application aborts its execution allowing the application to save the data
computed so far.

Figure 7 shows a more complex example of a server-like application. In this
case if there is any error when starting the processing of requests the PARALLEL
directive is aborted and it will be tried again in the next iteration of the server.
If while processing a request there is any error (e.g. memory exhaustion ) the
process error callback will be called. The callback will close the related request
and abort the SINGLE execution. In this way, while some requests may get lost
when errors arise the server will be able to continue processing new requests.

4 Implementation

We have implemented partially the error support described in the previous sec-
tion. The modifications have been developed in the NANOS environment[10]:
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1 omp_error_action_t savedata (error)
2 omp_err_info_t *error;
3 {
4 /* save computed data */
5 return OMP_ABORT;
6 }
7

8 void f ( )
9 {

10 #pragma parallel do \
11 onerror(OMP_ERR_SEVERE,\
12 OMP_ERR_FATAL: savedata)
13 {
14 /* parallel code */
15 }
16 }

Fig. 6. Example where data is
saved before abortion

1 omp_error_action_t process_error (error,request)
2 omp_err_info_t *error;
3 Request *request;
4 {
5 close_connection(request);
6 dequeue(request);
7 return OMP_SKIP;
8 }
9

10 void process_requests()
11 {
12 #pragma omp parallel onerror(OMP_SKIP)
13 while (request=next_in_queue(&ready_queue)){
14 #pragma omp single nowait \
15 onerror(process_error,request)
16 process_request(request);
17 }
18 }

Fig. 7. Example a server-like re-
quest processing aware of OpenMP
errors

in its runtime and in the code generated by the Mercurium compiler[11]. The
runtime has been extended to add several services for error handling. The com-
piler has been modified so the generated code makes use of this services. So far,
only the PARALLEL, PARALLEL DO and DO constructions are supported in
our prototype. But adding support for most of the other constructions should
be straightforward.

This section considers some non obvious issues of the implementation that
has to support error handling.

4.1 Dynamic Extent of the Error Policies

Since ONERROR prolongs its semantics along the dynamic extent of the appli-
cation, error handling code is always needed, even if no ONERROR clauses were
specified for an OpenMP construct. Additionally, the runtime has to be able to
get the current error handling procedure despite the exact routine that triggers
the error.

This issue has been solved saving the error context in the thread descriptor.
It will be updated every time a new ONERROR clause is specified. To imple-
ment the dynamic extend semantics we store the previous error context in the
thread stack so it can be restored later upon exit of the dynamic extent of the
ONERROR clause.

4.2 Callback Argument Evaluation

When a callback is specified for an error severity level it can be given several
arguments. These arguments must be evaluated when the error is detected and
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passed to the callback when it is invoked. The problem here is how to evaluate
these arguments, since they may belong to a lexical scope not accessible in the
point where the error is triggered.

In order to be able to evaluate the expressions involved in the arguments, the
compiler stores in the thread stack a callback descriptor that saves references
to all the variables appearing in the callback arguments. A reference to this
descriptor is saved in the error context (already saved in the thread descriptor).

When an error is detected, and before the callback is invoked, an evaluation
function is called. This evaluation function is generated by the compiler and it
uses the callback descriptor to evaluate the argument expressions. These evalu-
ated expressions are then passed to the user specified callback when it is called.

4.3 Additional Barriers

Some of the error actions require that the threads do not continue until all of
them have accomplished correctly some step (e.g. for the PARALLEL construct
under OMP SKIP all threads must be created correctly before the work can
start). This means that some additional barriers are needed, even if no error
happens, to comply with the user specified behavior in those cases.

In our prototype we protect these barriers with a condition that ensures that
each barrier is really necessary for the current error handling semantics. These
avoids unnecessary overhead under most situations.

5 Evaluation

To evaluate the runtime error recovery support proposal for OpenMP we have
used two approaches. The first one has consisted on testing a slightly modified
version of the 2.0 EPCC OpenMP Microbenchmarks [12]. The second one has
been running NAS 3.0 benchmarks [13].

5.1 Evaluation Purpose

The purpose of this evaluation is to see how the error recovery support impacts
the performance of the application. Run applications did not have any error
along its execution. We were only measuring the overhead of their ability to deal
with possible runtime errors (even if they do not happen).

5.2 Common Environment

The evaluation was run in a dedicated machine with 16-way 375Mhz Power3 and
4 Gb of memory running AIX 5.2. The native compiler in this environment has
been XL Fortran 95 8.1.1. The OpenMP runtime has been the modified NANOS
with error recovery support described in section 4.



A Proposal for Error Handling in OpenMP 431

5.3 Tested Scenarios

As seen in implementation section, barriers may be required for proper imple-
mentation of the ONERROR semantic specified by the programmer. Since they
are not always needed, for the purpose of the evaluation, two scenarios have
been considered. The first one assumes no additional barriers will be needed
while the other assumes that barriers are always needed. In this way, we will see
the overhead for the best and the worst case scenario of the error support.

In order to observe the overhead, the execution time of error recovery enabled
applications has been compared against a runtime implementation without this
support.

5.4 EPCC Microbenchmarks

EPCC Microbenchmarks provide a set of several microbenchmarks intended
to evaluate performance of OpenMP implementations. In this evaluation, only
syncbench has been considered. It measures how long takes the runtime when
entering and then leaving a PARALLEL, PARALLEL DO or DO constructions.
This measure is performed several times in an outer loop.

Initial experimentation showed that difference between the two scenarios was
not appreciable. To magnify the overhead we modified the microbenchmark outer
loop to perform 100 iterations instead of 20. This fact already gives us an idea
on how low is the impact of the added code (including additional barriers).

(a) for the PARALLEL di-
rective

(b) for the DO workshare (c) for the PARALLEL DO
directive

Fig. 8. Execution times of the EPCC microbencnmarks

Results are depicted in figure 8. For every construction (PARALLEL, DO
and PARALLEL DO) they show the execution time in the two aforementioned
error semantics (i.e. that need a barrier and that they don’t). As a reference,
execution time for a runtime with no error recovery support is also showed.

As can be seen in the figure, in any of the two error semantics there is a
significative increase in the execution time for the tested OpenMP constructions.
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5.5 NAS Benchmarks

NAS 3.0 benchmark is a suite of numeric applications available in Fortran in-
tended to test OpenMP implementations. In this analysis we have considered
only the class A data set.

(a) with ONERROR not
needing barriers

(b) with ONERROR need-
ing barriers

Fig. 9. Overhead of the ONERROR support on the NAS benchmarks (class A)

Like in the EPCC microbenchmarks, the two different semantics described
previously have been evaluated. Figure 9 shows the overhead of these scenarios.
The overhead has been computed against an execution that had no error support.
We can see that the average overhead is around 0.5% which is not a significant
value. Even in the worst case (for the SP benchmark) the overhead is never
greater than 1.8%. There are some cases where the overhead is negative meaning
the unmodified runtime performed slower. These cases are not indicative of any
unsual situation since their value is never greater than 1% which means they are
due to small variations in the execution times.

So overall, we can conclude that the additional code for handling errors has
no noticeable impact.

6 Conclusions

In this paper, we proposed an extension to the current OpenMP standard. This
extension would allow applications to specify an error handling policy for the
OpenMP constructions. Thus applications could increase its reliability by not
only being able to react to errors in the user code but also being able to take
actions when an error occurs in an OpenMP construct.

The proposal presents a new ONERROR clause for all OpenMP directives
that allows to define such a policy. It also presents a new directive called CON-
TEXT that defines an stackable context of properties for each thread. Error
policies can be attached to this context as well, allowing the definition of a
common policy for multiple directives and even OpenMp intrinsics.

Because of the CONTEXT directive all OpenMP code inserted by the com-
piler must be able to detect an error and support any of the different error
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policies (including some additional barriers under some error semantics). Dif-
ferent experiments have been presented that show this extra code represents a
negligible overhead when no error occurs in an application. This means that the
inclusion of this support would be worthwhile as it can help increase the reliabil-
ity of the applications. While at the same time, it will not hurt the performance
of those that choose not to use it.

While this proposal may not fully cover all aspects of error handling in
OpenMP we think it is a good start for its discussion.
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Extending the OpenMP Standard for
Thread Mapping and Grouping

Guansong Zhang

Abstract. In this paper, we are exploring the idea of improving the OpenMP
2.5 standard to facilitate parallel programming on emerging architectures. This
includes mapping threads to particular processors, improving the load balance
among processors by work distribution, and supporting nested parallelism in-
herited from applications. We will demonstrate the performance gains of thread
mapping with our experimental implementation, and propose new concepts in the
standard to try addressing the issue in a broader sense.

Keywords: OpenMP, thread mapping, thread grouping, nested parallelism,
SPMD programming.

1 Introduction

As several research papers pointed out, OpenMP [1] is due to an update [2], [3]. The
set of features in the existing specification of the API provides essential functionality
that were mostly selected from previous shared memory parallel APIs. Recently, the
shared memory architectures have interesting developments, from multi-core proces-
sors to hyperthread and SMT, from accelerate boards to CELL broadband Engine[4].
The emerging architectures force us to explore new features for the OpenMP standard.

a

b

CPU

MEM

Fig. 1. Emerging architectures

Figure 1 is an example of an extreme case of the latest development of shared mem-
ory architectures. The picture includes dual core CPUs, hyperthreads or SMT proces-
sors. Although the system is not modeled on any real machine 1, it can illustrate the
potential problems a programmer may face in the real world.

1 Circle a and b may represent two different computers, or they are combined together to cre-
ate an even more complicated structure. This is purely imaginary. We used the figure just to
illustrate the complexity of the problem.
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Programming on such complicated systems is going to require difficult compromise.
The following items are elements that an ideal solution framework should address,
quoted directly from OpenMP language committee discussion:

– Modularity: Modern software engineering makes heavy use of modular software.
OpenMP’s existing model, however, does not support compartmentalization of par-
allelism. For example, MPI defines a communicator. This can be passed to a library
and the library is then restricted to the constraints defined by that communicator.
Furthermore, the library developer can rename the communicator so the interac-
tions between components of the library are not exposed outside the library.

– Multi-level machines: Shared memory machines will become increasingly hierarchi-
cal. The combination of SMT and NUMA all come together to create a nightmare for
the existing “flat earth” model of OpenMP. The scalar OMP NUM THREADS has to
expand to encompass a multi-level abstraction of some kind.

– Mapping OpenMP threads onto processors: Different machines will have different
hierarchies of processors. A program must be able to query the system about the
processor hierarchy and then adapt to it by controlling how the OpenMP threads
map onto processors.

– Worksharing between subteams: To broaden the range of applications appropriate
for OpenMP, we need to extend OpenMP so programmers can specify worksharing
restricted to subteams.

This is a very ambitious goal. We are not sure if such a solution exist to fit all the
requirements. Even if it does exist, the impact could be so large as to make all the
previous OpenMP programs obsolete; or make the implementation of the standard so
difficult that the drawbacks outweight the advantage it brings to the standard.

In this paper we will describe our attempt to solve this problem. It may not be the
answer we are looking for, a lot of things need to be further improved.

To avoid a dramatic change in the OpenMP standard, we propose an incremental
approach, to consider thread mapping as the first step and address the bigger issue in
the second step. We will discuss these topics in the following sections.

2 Thread Mapping

The objective of thread mapping or thread binding is to define a way to associate threads
to physical processors. Once mapped, the thread will stay on the processor during the
execution without being moved from one processor to another by the operating system.
This is also referred to as thread affinity.

A typical situation that needs thread mapping is shown in Figure 2, we have two
dual core processors, each core is capable of running two threads simultaneously. So
the system can provide up to eight physical threads to an OpenMP application.

In this system, suppose each processor core has its own L2 cache, and each CPU
core has its own L1 cache.

If an OpenMP application running on such system decides to use only four OpenMP
threads, then there are at least two mapping options one may choose from,
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3210CPU id:

L1L1 L1 L1

L2 L2

0 1 2 3 4 6 75Logical Processor id:

OpenMP Thread id: 0 1 2 3

Fig. 2. Thread mapping

– let each CPU core have one OpenMP thread, so every processor core is fully uti-
lized. Or

– let each CPU core have two OpenMP threads, leaving two CPUs idle. In this way
threads can share more data in cache among the adjacent ones.

It is hard to predict which mapping option can achieve better performance at an
abstract level. Depending on the hardware implementation and the program itself, the
answer may be different. So it will be desirable to let users define the mapping to get
better performance.

2.1 Logical Processors

Before we define the actual mapping, it is important to think from an application pro-
grammer’s point of view, what kind of abstract view the hardware system should look
like.

A parallel program itself may be complicated enough that a regular user may not
want to know anything more than the number of processors offered in a system. This is
partially reflected in the current OpenMP standard. In [1], an API function omp get
num procs returns the number of the processors available to the program at the time
the routine is called. Most of the cases, it will be used to define the initial value for the
internal control variable nthreads-var, which controls how many threads are going to
be created when a parallel region is encountered later on.

The environment variable OMP NUM THREADS and the API function omp
set num threads provide ways to change this control variable. Yet in the current
standard, there is no clear relationship between entities represented by this control
variable and the number returned from the function omp get num procs, especially
when the two values are different.

The thread binding proposal we present here is to establish the affinity relations be-
tween the OpenMP threads controlled by the nthreads-var variable and the number of
processors queried by omp get num procs. In our proposal, we consider that the
number returned in the function omp get num procs is only for a group of logical
processors. In Figure 2, this number can either be 4 or 8 depending whether the operat-
ing system made the extra threads available. It is in contrast to the physical processors,
which may be only 4 traditionally.
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As an initial step, we will organize the logical processor group as a linear array,
giving each of them an id number, starting from 0, 1, and up to the total number of the
processors minus one.

Then the thread binding problem becomes the problem of having m OpenMP threads,
and n logical processor, how to assign those threads to the processors, especially when
m �= n.

2.2 The Mapping Definition and Its Effect

As explained above, we define the logical processors as a linear array.
We use two environment variables to specify the first processor number that the

master thread binds to; and we specify the next processor number the second thread
will bind on with a ”stride” on the processor array.

For example, the following pair of environment variables

OMP_PROC_START=1; OMP_PROC_STRIDE=2

will give us the mapping drawn in Figure 2, where thread 0 is on logical processor 1,
thread 1 is on logical processor 3, and so on. We will use a round-robin fashion to assign
the other threads.
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Fig. 3. SPEC OMP performance

We used SPEC OpenMP benchmark to demonstrate the performance impact of thr-
ead mapping. In Figure 3, a 64 processor core POWER5 machine is used to measure the
OpenMP suite. The SMT option of POWER5 was on. So each processor is capable of
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running two threads. We set OMP NUM THREADS to be 64, and compared the following
situations

– No processor mapping specification.
– Stride as one by OMP PROC START=0; OMP PROC STRIDE=1, and
– Stride as two by OMP PROC START=0; OMP PROC STRIDE=2

The rest of the execution environment, including compilation flags, are all the same.
From the figure, one can see that stride two setting has the best overall performance
numbers; Stride one setting is the worst: No stride setting is in between. And some of
the difference can be as big as 40%, such as in equak, apsi and wupwise.

2.3 More About the Mapping

In the mapping scheme above, all the processors and threads are kept in a simple lin-
ear relation. More complicated mapping may be achieved though other structures. For
example, we can define a arbitrary mapping as an integer array. We are not sure that
such level of complexity is useful. We will see that more complicated mapping actually
can be achieved in the next section when we extend the logical processor array to a
processor group.

We also need to point out that the mapping we defined here is only the one from the
OpenMP threads to the logical processors. We did not define how logical processors
mapped to physical threads. It is left as an implementation defined issue.

3 Processor Group

In the previous section, all the logical processors are considered as a linear array. This
is a simplification which will hide all the architecture structure of a real machine. In this
section, we will extend the view to represent more complex architectures. To support
this, we need to introduce the following concepts in the OpenMP APIs.

– Hierarchical level: This represents a programmer’s view of the hierarchy level that
the hardware support. For example, a 4-way Pentium processor with hyper thread
enabled can be viewed as either one group of eight processors on the same level,
an 8 element linear array; Or two levels of processor groups, with four processor
groups at the top level and two processors in each group at the second level.

– Processor group: A handle to an opaque data structure which represents a group
of processors. It will be a new internal type in the language extension. We will use
a temporary name omp procs to represent this type. (A previous example in the
language is a variable of omp lock type.) As in HPF[5], a variable of this type
can be used with Fortran array syntax.

– omp run on construct: This will specify on which processor group OpenMP
threads will continue to execute and form a new group. When a program is run-
ning, the sequential part will be executed on a master thread in the master group.
When a parallel region is encountered, the group members will execute in parallel
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and share the workshares bound to the region2. The mapping method introduced
in the previous section will still work here for distributing the threads among the
processors3.

To express the three concepts in the OpenMP API, the following extensions are
suggested4

const omp_procs * omp_get_procs(void);

This function will return a runtime variable, which has the data type as a pointer
to omp procs. This is the address of our special handle pointing to the underlining
machine where the program will run. By default, all the program was executed as if it
was run on this processor group. The const modifier indicating that a user can not
change this variable.

The processor group provides a way to encapsulate detailed system informations for
an application. We will use some annotated pseudo code as examples to further illustrate
these ideas.

3.1 Group Operation

Suppose we have a machine setup as Figure 1 a, and we assume for certain reasons the
single core chips are faster.

These functions

const omp_procs & processor = * omp_get_procs();
const omp_procs & processor = * omp_get_running_procs();

at the beginning of the program will both give us a variable named processor to
represent the logical view of a processor group. We can define a member function to
get the number of members of the group

const int omp_procs::get_num_members(void) const;

We use the [] operator to overload the function to get member element

const omp_procs::get_member(int index) const;

Then we may have,

const omp_procs g0=processor[0];
const omp_procs g1=processor[1];
const omp_procs g2=processor[2];
const omp_procs g3=processor[3];

2 More discussion is needed for the situation that another group is specified on the second level
of parallel region. Possible issues may include thread migrating and thread stealing.

3 We may decide later whether to allow different mapping for different processor groups through
multiple internal control variables

4 The function names are all tentative, and can be all different in different language bindings.
And they may not be limited to these.
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Suppose the processors were organized as two levels of hierarchy. So,

// g0 and g2 have two processors each
Assert(g0.get_num_members()==2 && g2.get_num_members()==2);
// g1 and g3 only have one processor each
Assert(g1.get_num_members()==1 && g3.get_num_members()==1);

// omp_procs is a hierarchy,
// it won’t be 6 if queried at this level
Assert(get_omp_procs()->get_num_members()==4);

Again, we get members as,

const omp_procs g4=g1[0]; const omp_procs g5=g1[1];
const omp_procs g6=g3[0]; const omp_procs g7=g3[1];

We like to let the two faster processors each having two logical processors,

// Create new threads on g1 and g3
omp_procs * gptr0=new(g1) omp_procs[2];
omp_procs * gptr1=new(g3) omp_procs[2];

// Let operator [] work with a processor group address,
// same as ptr->get_member(int index)
const omp_procs g8=gptr0[0];
const omp_procs g9=gptr0[1];

const omp_procs g10=gptr1[0];
const omp_procs g11=gptr1[1];

We organize them as a new flat array of processors.

// This uses c++ array constructor
const omp_procs g12[]={g8,g9,g4,g5,g10,g11,g6,g7};

Now we can write code like this,

// On all the processors we grouped previously
#pragma omp parallel on g12[:]
{

// all the old omp code should be here
...

}

A triplet [::] with optional start:end:stride is used here to get a “section” of the
array as a group, the same as used in a Fortran array.
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We can also write,

#pragma omp parallel on g12
{

// On all the odd numbered processor
#pragma omp run on g12[1::2]
{

...
}

}

For C++ completeness, we should do the following at the end of the program,

delete[] gptr0; delete[] gptr1;

In Fortran and C, we do not have objects, we can only access an address of an object.
Besides, we do not have the operator overloading, the corresponding concepts have to
be implemented through functions5. Suppose we have a user defined function can get
the address of g12[:] defined in the previous code. And we want to start a new parallel
region on all the odd numbered processors in Fortran,

USE OMP_LIB ! or INCLUDE "omp_lib.h"
PARAMETER (N=10)
INTEGER (OMP_PROCS_KIND) :: GROUP, NEWGROUP
INTEGER (OMP_PROCS_KIND), DIMENSION(N) :: GROUPARRAY

! User defined function, which calls a C routine.
INTEGER (OMP_PROCS_KIND) GET_THE_C_GROUP_HANDLE
EXTERNAL GET_THE_C_GROUP_HANDLE

CALL OMP_INIT_PROCS(GROUP)
! Call the user defined function,
! to get the group handle in the previous C code.

GROUP = GET_THE_C_GROUP_HANDLE()

! In F77, there is no allocatable array.
IF (OMP_PROCS_GET_NUM_MEMBERS(GROUP) .GT. N) STOP

! Use DO loop if we don’t like an extra function name
CALL OMP_INIT_PROCS_ARRAY(GROUPARRAY)

! We know the group is g12, it is a flat 8 element array
! Get the immediate members of the top level.

CALL OMP_PROCS_GET_MEMBERS(GROUP, GROUPARRAY)

CALL OMP_INIT_PROCS(NEWGROUP)
! Lets use F90 array syntax,

CALL

5 To make it clear, OMP PROCS is used as the prefix for all these type of functions. In addition,
like omp lock, we may need omp init procs and omp destroy procs.
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OMP_PROCS_SET_MEMBERS(NEWGROUP,GROUPARRAY(1::2))\\

!OMP$ PARALLEL ON NEWGROUP
...

!OMP$ END PARALLEL

CALL OMP_DESTROY_PROCS(GROUP)
CALL OMP_DESTROY_PROCS_ARRAY(GROUPARRAY)
CALL OMP_DESTROY_PROCS(NEWGROUP)

We need to use explicit functions to group an array of processors as a simple handle
and convert it back. (This is done through the [] operator in the previous C++ coding.)
In fact, in C/C++ and Fortran, if we define the on clause working on both scalar and
array type of omp procs variables, the previous snips can be further simplified, as
some of the conversions are not needed.

3.2 Programming Examples

We use a simple task to show a “real” program. Suppose we will calculate the sum of 100
numbers held in array a[] as a reduction. (This is not for performance, just to illustrate
ideas.) And we assume that the machine is configured as two levels of hierarchy.

We can use the processor group denoted by the previous array g12 to compute this
with 8 threads,

#pragma omp parallel on g12
{

#pragma omp for reduction(+:s)
for (int i = 0; i < 100; i++) s+=a[i];

}

Alternatively, we can do

// get a flat processor array
#pragma omp parallel on (* processor.all())
{

#pragma omp for reduction(+:s)
for (int i = 0; i < 100; i++) s+=a[i];

}

Here omp procs * omp procs::all(void) const is a member function
of the processor group, which returns an address of a processor group consist of all the
lowest level processors available.

The differences of the two snips is that the first one will use the same number of
threads as the available processors in group g12, i.e., 8 threads; While the second seg-
ment only uses 6 threads, since we did not create new processors explicitly, the function
will return all the 6 physical processors available.

If we reconfigure the system, and let the two faster CPUs each offering two logical
processors, as we specified that how to map local processors to physical processors is
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still an implementation defined issue, then the second writing of the program should
have the same effects as the first one before the reconfiguration6.

Even though the processor group given by the system is hierarchical, all the previous
examples are organizing processors as a flat array, now we will check ways to use nested
levels explicitly. If a user want to take advantage of the architecture levels directly, (or
organize a processor array as a hierarchy suitable to his nested parallel application) he
may write the following code in Fortran,

INTEGER (OMP_PROCS_KIND) :: GROUP

! Get the processor hierarchy
CALL OMP_INIT_PROCS(GROUP)
GROUP = OMP_GET_PROCS()

!OMP$ PARALLEL ON (GROUP) REDUCTION(+:S)
ID = OMP_GET_THREAD_NUM()
MYSTART = 1 + 25*ID ! 25 should be calculated
MYEND = MYSTART + 25 - 1

!This is a real hardware, mapping rules are needed
IF ((ID .EQ. 1) .OR. (ID .EQ 3)) THEN
! We are on the two faster single core CPUs

!OMP$ PARALLEL DO NUM_THREADS(2) REDUCTION(+:S)
DO I = MYSTART, MYEND

S = S + A(I)
ENDDO

!OMP$ END PARALLEL DO
ELSE
! We are on the two processors with 2 CPU cores

!OMP$ PARALLEL DO REDUCTION(+:S)
DO I = MYSTART, MYEND

S = S + A(I)
ENDDO

!OMP$ END PARALLEL DO
ENDIF

!OMP$ END PARALLEL

CALL OMP_DESTROY_PROCS(GROUP)
If more member functions as query function are defined for the processor group,

a user may get complete information from the handle. For example, communication
routines can be customized directly by a user.

void my_function(omp_procs * g) {
// more query functions on *g
...
#pragma omp parallel on *g
...

}

6 So with the concept of the processor group, a well configured system hierarchy can hide all
the machine details from regular users. The rather confusing new operator in the previous
example should be regarded only as an advanced feature.
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4 Summary

In this paper, we first gave out an simple mapping mechanism for binding threads to
particular processors. We showed that even with this simple scheme we can improve
performance numbers for real benchmark suites.

We further extended the concept of logical processors to a processor group, which
addressed the OpenMP programming issues raised earlier. The concepts we presented
here are still in draft. A lot of issues, including syntax definition, still need to be refined.

We can summarize the main features of the framework as following,

– Structured SPMD programming: SPMD programming is the most common tech-
niques used in parallel programming, especially for data parallel programming. As
more processors are available in a real parallel system, and more applications begin
to looking for speed up exploiting parallel processing, the traditional way of parti-
tion computation with data distribution alone can not fulfill users’ need. Specifically
work distribution or task distribution is needed among processors. Instead of just
using the processor ID number as a conditional guard to distribute work, our pro-
gramming model is based on a well designed structure — processor group. We call
this programming style structured SPMD programming.

– Backward compatibility: When we introduce the concept of the processing group,
we try to consider the backward compatibility. All the previous OpenMP codes will
still be legal with out any change. They are running on the default processor group
provided by the system.

– Information encapsulation: We hide most of the detailed information of a physical
machine by the logical processor group. We believe this will help user to write
portable code without too much machine specific information. In fact, we think
most of the time the flat array machine configuration plus thread mapping are good
enough for regular users to write efficient code.

– System configurations: Although we did not specify the details of system configura-
tion here, it is possible to develop a resource manager that allows a physical system to
be configured differently for different applications or partially available to particular
applications. It is also possible to configure a system to have multiple groups with
different attributes, so an application may target to a heterogeneous architecture.

– Integrated solution: The proposal we presented here actually addressed all the is-
sues listed by the OpenMP language committee discussion group as in section 1.
Currently we are not sure whether subgrouping threads will be merged in the future
OpenMP programming, but we believe that providing a parallel context for sub-
routines and library functions with the concept of processor group is useful for the
OpenMP programming model.

– Incremental implementation: There is no real runtime implementation to support
the proposal in this paper yet. Some of the earlier work on distributed memory
system can be traced through [6]. We think the framework can be implemented
with incremental steps. In the first step, the main structure omp procs and its
supporting functions will be added as C++ library functions. Most of the concepts in
the proposal will be expressed as function calls. In the second step, we can improve
the language syntax, to bind the programming model to Fortran and C/C++. In
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the third step, more compiler analysis will be used to improve the efficiency of the
code. We hope that most of the operation overhead inside the runtime system can be
optimized away or moved out of the hot spot with code motion. As those functions
should not have any side effects on user variables.

Parallel programming was never an easy task, and new machine architectures posed
even more challenges in it. Unfortunately the extra concepts in the language we present
here do not make any of this simpler. Yet they provide a set of tools for users to have
more controls over the system.

As we implemented the full features of the OpenMP 2.5 APIs, We are well aware of the
possible overhead these extra concepts may bring to the standard. It is not the intention
of this paper to discuss whether these kinds of complications are necessary. Rather we
hope the paper can serve as a discussion base to see if this is the direction of the future
OpenMP. It will be up to the users to decide which way OpenMP development should go.
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