
Comparing Integer Data Structures for 32 and

64 Bit Keys

Nicholas Nash� and David Gregg

Dept. of Computer Science, Trinity College Dublin, Ireland
{nashn, dgregg}@cs.tcd.ie

Abstract. In this paper we experimentally compare a number of data
structures operating over keys that are 32 and 64-bit integers. We exam-
ine traditional comparison-based search trees as well as data structures
that take advantage of the fact that the keys are integers, such as van
Emde Boas trees and various trie-based data structures. We propose
a variant of a burst trie that performs better in both time and space
than all the alternative data structures. Burst tries have previously been
shown to provide a very efficient base for implementing cache efficient
string sorting algorithms. We find that with suitable engineering they
also perform excellently as a dynamic ordered data structure operating
over integer keys. We provide experimental results when the data struc-
tures operate over uniform random data. We also provide a motivating
example for our study in Valgrind, a widely used suite of tools for the
dynamic binary instrumentation of programs, and present experimental
results over data sets derived from Valgrind.

1 Introduction

1.1 Background and Motivation

Maintaining a dynamic ordered data structure over a set of ordered keys is a
classic problem, and a variety of data structures can be used to achieve O(log n)
worst-case time for insert, delete, successor, predecessor and search operations,
when maintaining a set of n keys. Examples of such data structures include AVL
trees [10], B-trees [2,10] and red-black trees [4]. Red-black trees in particular see
widespread use via their GNU C++ STL implementation [19].

Where the keys are known to be integers, better asymptotic results can be
obtained by data structures that do not rely solely on pair-wise key comparisons.
For example, the stratified trees of van Emde Boas [21] support all operations in
O(log w) worst-case time, when operating on w-bit keys, while Willard’s q-fast
tries [22] support all operations in O(

√
w) worst-case time.

Such data structures are attractive because of their superior worst-case
times compared to comparison-based data structures. However, it is a signifi-
cant challenge to construct implementations that reveal their better asymptotic
� Work supported by the Irish Research Council for Science, Engineering and Tech-

nology (IRCSET).

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 28–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Comparing Integer Data Structures for 32 and 64 Bit Keys 29

performance, especially without occupying a large amount of extra space com-
pared to comparison-based data structures.

In this paper we experimentally evaluate the performance of a variety of data
structures when their keys are either 32 or 64-bit integers. In particular we
find that a carefully engineered variant of a burst trie [7] provides the best
performance in time, and for moderate to large numbers of keys it requires less
space than even a well implemented comparison-based search tree.

A noteworthy application of our data structure occurs in the dynamic bi-
nary instrumentation tool Valgrind [12]. Valgrind comprises a widely used suite
of tools for debugging and profiling programs. Internally, Valgrind frequently
queries a dynamic ordered data structure that maps machine words to machine
words. On current platforms, these machine words are either 32 or 64 bits in
length. At present, Valgrind uses an AVL tree to perform these mappings. A
significant performance improvement could be obtained by replacing the AVL
tree with a more efficient data structure. We present experimental results for a
number of data structures when used to track every data memory access done
by a program, as for example some Valgrind-based tools do.

1.2 Related Work and Contributions

In this paper we compare the performance of a carefully engineered variant of a
burst trie in both time and space to AVL trees, red-black trees and B-trees. Aside
from these commonplace general purpose data structures, we also experimentally
examine the performance of two slightly more ad-hoc data structures [5,11] which
are tailored for the case of integers keys, and have been shown to perform well
in practice. We briefly describe these data structures in the remainder of this
section.

Dementiev et al. [5] describe the engineering of a data structure based on
stratified trees [21] and demonstrate experimentally that it achieves superior
performance to comparison-based data structures. We refer to their engineered
data structure as an S-tree. Although highly efficient in time, the S-tree is tai-
lored around keys of 32-bits in length and generalizing the data structure to 64-
bit keys would not be feasible in practice because of the large amount of space
required to maintain efficiency. Indeed, even for 32-bit keys the data structure
requires more than twice as much space as a typical balanced search tree.

Korda and Raman [11] describe a data structure similar to a q-fast trie [22]
and experimentally show that it offers performance superior to comparison-based
data structures. Unlike the S-tree data structure engineered by Dementiev et
al. this data structure is not restricted to 32-bit keys and requires less space
in practice. We now briefly describe the features of Korda and Raman’s data
structure relevant to our discussion. We refer to their data structure as a KR-trie.
A KR-trie consists of a path compressed trie containing a set of representative
keys, K1 < K2 < · · · < Km. Associated with each representative key Ki is a
bucket data structure Bi containing the set of keys {k ∈ S : Ki ≤ k < Ki+1} for
i < m, and {k ∈ S : k ≥ Km} for i = m, where S is the entire set of keys in the
data structure.

30 N. Nash and D. Gregg

Each bucket contains between 1 and b−1 keys. When a new key is inserted into
the data structure the compressed trie is first searched for its predecessor key,
giving a representative key Ki. If the associated bucket Bi already contains b−1
keys, a new representative key is added to the compressed trie that partitions
the bucket into two new buckets containing b/2 keys each. Deletions operate in a
similar manner to insertions, except that when two adjacent buckets Bi and Bi+1

contain fewer than b/2 keys in total the keys of Bi+1 are inserted into Bi and
Ki+1 is deleted from the trie. A search in the data structure is accomplished by
a predecessor query in the compressed trie, followed by a search in the relevant
bucket data structure.

There are many other non-comparison-based data structures in addition to
the two just mentioned, both practical and theoretical. Two practical examples
are LPC-tries [13] and the cache-friendly tries of Achyra et al. [1], however, we
believe these data structures are less efficient or less general than the two data
structures described above. For example, LPC-tries offer search operations more
efficiently than binary search trees, but insertions are slower. In contrast, the
data structures described above perform better than binary search trees for all
operations. The tries of Achyra et al. appear efficient, but require knowledge of
cache parameters and focus only on trie search. It is not clear how operations
like predecessor and successor could be efficiently implemented, since hash tables
are used inside the trie nodes.

The contribution of our experimental study is to show that a carefully en-
gineered data structure based on the burst trie described by Heinz et al. [7]
performs better than both the S-tree and KR-trie data structures described
above, as well as the traditional comparison-based data structures.

The work of Heinz et al. focuses on the problem of vocabulary accumulation,
where the keys are variable length strings. The only operations performed are
insert and search, with a final in-order traversal of the burst trie. In contrast, we
consider the case of integer keys with all the operations usually associated with
a dynamic ordered data structure.

The contributions of our work are as follows:

– We provide a thorough experimental comparison of dynamic data structures
over 32 and 64-bit integer keys. We provide time and space measurements
over random data as well over data sets that occur in Valgrind, a notable
application of such data structures.

– We show that burst tries extend efficiently to a dynamic ordered data struc-
ture, showing how the operations usually associated with such data struc-
tures can be implemented efficiently through careful engineering.

– We show that the data structure is more efficient in time than the best
previous data structures that have been engineered for the case of integer
keys. We also show that for large numbers of keys, the data structure requires
less space than even space efficient implementations of comparison-based
search trees.

Comparing Integer Data Structures for 32 and 64 Bit Keys 31

(a) (b)

Fig. 1. (a) Shows a trie holding the keys 1200, 1600, 7012 and 7567. The leaves of the
trie (black squares) hold the satellite data associated with the keys. A corresponding
burst trie is shown in (b).

2 Background

In this section we provide the definition of a burst trie and some basic background
information regarding the data structure.

We assume the burst trie contains fixed length keys, each of length l. A key
is a sequence k1 · · · kl where each ki, 1 ≤ i ≤ l is drawn from a set of digits
{0, . . . , U − 1}. In practice, our keys are 32 and 64-bit integers and we often
choose U = 256, for implementation reasons. Given a trie T over a set of keys,
we call a node small only if its parent has more than c descendant leaves, but
the node itself has at most c descendant leaves. A burst trie with bucket size c is
obtained from a trie T by replacing every small node x in T with a bucket data
structure containing the keys corresponding to the leaves descendant from x and
discarding all descendants of small nodes. It follows that if two keys k1 · · ·km

and k′
1 · · ·k′

m reside in the same bucket of a burst trie at depth d, then ki = k′
i for

1 ≤ i < d, and only their suffixes need be stored in the bucket data structure.
Figure 1(a) shows an example of a trie while Figure 1(b) shows a burst trie
corresponding to it.

Although we refer to what has just been described as a burst trie, using some
kind of bucketing in a trie is an old technique. Sussenguth [20] provides an
early suggestion of the technique, while Knuth analyses bucketed tries [10]. In
addition, Knessl and Szpankowski [8,9] analyse what they refer to as b-tries —
tries in which leaf nodes hold up to b keys.

We use the term burst trie of Heinz et al. [7] because their work was the first
to provide a large scale investigation of alternative bucket data structures, the
time and space trade-offs in practice resulting from bucketing, and the bursting
of bucket data structures during insertions, which we describe below.

Searching in a burst trie is similar to searching in a conventional trie. The
digits of the key are used to determine a path in the trie that either terminates
with a nil pointer, in which case the search terminates unsuccessfully, or a
bucket is found. In the latter case, the search finishes by searching the bucket
data structure for the key suffix.

32 N. Nash and D. Gregg

(a) (b)

Fig. 2. (a) Shows the burst trie of Figure 1(b) after inserting the key 1601. Assuming
the buckets can hold at most two key suffixes, inserting the key 1601 causes the left
bucket shown in Figure 1(b) to burst. In (b) an OR-tree is shown, a possible in-node
data structure for implementing a burst trie.

Insertion of a key into a burst trie is also straightforward. The digits of the
key are used to locate a bucket where the key suffix should be stored. If no
such bucket exists, one is created. On the other hand, if a bucket is found and it
contains fewer than c keys it need not be burst and the key suffix is simply added
to that bucket. Otherwise, if the bucket already contains c keys, it is burst. This
involves replacing the bucket with a trie node and distributing the keys suffixes
of this bucket into new buckets descending from this new trie node. Figure 2(a)
shows an example of a burst operation occuring on the burst trie of Figure 1(b).
It is possible that all keys from the burst bucket belong in the same bucket in
the newly created node. In this case, the bursting process is repeated.

Deleting a key k from a burst trie is performed by first searching for the bucket
where k is stored, as described above. If there is no such bucket, no deletion need
occur. Otherwise, k is deleted from some bucket b at a node x. If b is then empty,
it is deleted from x. If x then has only nil child and bucket pointers x is deleted
from the trie. This step is repeated, traversing the path from x to the root of the
trie deleting ancestors encountered with only nil child or bucket pointers. The
traversal terminates when either a node with a non-nil pointer is encountered,
or the root of the trie is reached.

3 Engineering Burst Tries

Although the burst trie data structure described in the preceding section leads
to a highly efficient data structure, especially for strings, as shown by Heinz et
al. [7], a little care must be taken when engineering it for the case of an ordered
data structure for integer keys. Our variant of a burst trie makes use of two data
structures that have a significant influence on its performance: (1) The bucket
data structures at the leaves of the trie, and (2) the data structures inside the
nodes of the burst trie. We describe the alternatives for this latter data structure
in the next section.

Comparing Integer Data Structures for 32 and 64 Bit Keys 33

3.1 In-Node Data Structures

Given a node x in a trie-based data structure with branching factor b, and an
index i, 0 ≤ i < b, it is often necessary to find Succ(i), that is, the smallest
j > i such that x [j] �= nil. This is the bucket or child node pointer directly
following x [i]. It is also often required to find Pred(i), the largest j < i such
that x [j] �= nil. These operations upon nodes are required, for example to
support queries on the trie for the smallest key greater than or equal to some
given key. We elaborate on the precise use of these operations in Section 3.3.

The simplest data structure supporting these predecessor and successor op-
erations is just a linear search over a bit-vector. This data structure requires
only O(1) time when a new bucket or child is added or removed from the node,
however, Pred and Succ are inefficient, requiring O(b) time.

An alternative in-node data structure is an OR-tree. Figure 2(b) shows an
example of this data structure. A breadth-first traversal of an OR-tree can be laid
out in an array inside each node, requiring an additional O(b) space compared
to a simple bit-vector approach. However, an OR-tree offers all operations in
O(lg b) time.

As a compromise between these two data structures, Pred and Succ can be
implemented using �√b� counters. Where the ith counter, 0 ≤ i < �√b� holds a
count of the non-zero bits in the range [i�√b�, i�√b�+�√b�−1] (except perhaps
for the last counter, which covers the range [b−�√b�, b−1]). This data structure
allows insertions and deletions in O(1) time and supports Pred and Succ in
O(

√
b) time, requiring at most �√b� counters to be examined followed by at

most �√b� bits.
To determine the most efficient in-node data structure we conducted a number

of experiments, randomly populating a bit-vector and then performing a large
number of successor queries. Figure 3(a) shows that the OR-tree is much less ef-
ficient than either performing a simple linear scan, or using counters to guide the
search. Figures 3(b) and (c) reveal why this is so. Firstly, as Figure 3(b) shows
the OR-tree causes by the far most branch mispredictions. Intuitively, one ex-
pects that an algorithm with a better time complexity increases the information
it extracts from each branch instruction — thus making each branch instruction
less predictable. Secondly, as Figure 3(c) shows, the OR-tree has very bad cache
performance compared to the linear scan or counter based search. This is to be
expected since the the OR-tree’s breadth-first layout is cache unfriendly, while
the other two algorithms perform linear searches, which make full use of every
cache line. Note that the bad performance of the OR-tree is despite the fact that
it executes the fewest instructions of any of the algorithms.

We selected the counter based search for our burst trie implementation be-
cause it has very similar performance to the linear scan in practice and better
performance in the worst-case (i.e. when a trie node is very sparse). Other in-
node data structures could be used. For example, recursively applying the O(

√
b)

approach essentially leads to a stratified tree which would provide all operations
in O(lg lg b) time. However, since the branching factors of our trie nodes are
never greater than 216 this approach is unlikely to yield a performance benefit.

34 N. Nash and D. Gregg

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.2 0.4 0.6 0.8 1

C
yc

le
s

pe
r

se
ar

ch

Fullness

OR-tree
Counter search

Linear search

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.2 0.4 0.6 0.8 1

B
ra

nc
h

m
is

pr
ed

ic
tio

ns
 p

er
 s

ea
rc

h

Fullness

OR-tree
Counter search

Linear search

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

L1
 m

is
se

s
pe

r
se

ar
ch

Fullness

Linear search
OR-tree

Counter search

(a) (b) (c)

Fig. 3. (a) Shows the cycles per successor operation (i.e. time) on randomly populated
214 entry bit vector. “Fullness” denotes the number of randomly inserted bits as a
fraction of the total size of the bit vector. The OR-tree performs much worse than
either a simple linear scan or counter based search. This is due to the large number of
branch mispredictions, shown in (b) and cache misses, shown in (c), incurred by the
OR-tree compared to the other data structures. The cache misses shown are level 1
data cache misses, since the entire bit-vector fits in the level 2 cache. These results are
averaged over several thousand repetitions, and were gathered using PAPI [6].

In the next section we describe the second important data structure used by
burst tries — the bucket data structure.

3.2 Bucket Data Structures

The choice of data structure used for the buckets of a burst trie is critical in
achieving good performance. Heinz et al. [7] concluded that unbalanced binary
search trees holding at most 35 strings offered the best performance as a bucket
data structure. They also experimented with linked lists and splay trees [18].
Since the maximum number of keys stored in each bucket is modest (at most
35), a simple bucket data structure, even with bad asymptotic behaviour, may
perform well. We experimented with balanced binary trees as well as with sorted
arrays as bucket data structures, and found that sorted arrays are far more
efficient in practice than the search trees. We also found that a bucket size of
about 256 keys gave best performance. It is likely that the sorted arrays incur far
fewer cache misses than the search trees. In fact, unsorted arrays of strings have
been used as bucket data structures for burst tries as a basis for the burstsort
algorithm [14,15,16,17], a cache-efficient radix sorting algorithm.

In contrast to the array buckets of the burstsort algorithm, our buckets are
sorted and much smaller (in burstsort the buckets are allowed to grow until they
reach the size of the processor’s 2nd level cache, which can be several megabytes
in size) holding at most 256 keys. The buckets are implemented as growable
sorted arrays, and an insertion involves possibly doubling the size of the bucket
followed by a linear scan to find the correct position for the key to be inserted.

Often the most frequent operation executed on a data structure is a search,
and so searching buckets in particular should be efficient. We use a binary search
that switches to a linear search when the number of keys which remain to be
searched falls below a certain threshold. We found a threshold of between 16 and

Comparing Integer Data Structures for 32 and 64 Bit Keys 35

32 keys gave a performance improvement over a simple binary search. Our burst
trie implementation is designed to provide a mapping from a key to the satellite
data associated with that key, which we refer to as the value for the key. To
improve the spatial locality of searches the keys and values of a bucket should
not be interleaved. Rather, all the keys should be stored sequentially, followed
by all the values of that bucket. This ensures searching for a key makes better
utilization of the processor’s cache lines.

If the maximum bucket capacity is c, it takes O(c) time to insert into a
bucket and O(lg c) time to search in a bucket. Finally, since bursting a bucket
just involves splitting the sorted sequence of keys it contains into a number of
other sorted sequences, bursting a bucket also takes O(c) time.

3.3 Operations

The preceding two sections have described the two main data structures required
for extending burst tries to an ordered data structure. We now show how these
data structures can be used efficiently to provide a burst trie with all the usual
operations associated with a dynamic ordered data structure. Note that in order
that predecessor and successor operations are supported efficiently, it is wise to
maintain the leaves of the burst trie (i.e. the buckets) in order in a doubly linked
list.

Locate. We first describe the locate operation, which finds the value associ-
ated with the smallest key greater than or equal to a supplied key k (or nil if
there is no such key). Assuming the path in the burst trie determined by k leads
to a bucket, then that bucket is searched for the smallest key suffix greater than
or equal to k’s suffix, and its corresponding value is returned. In this case, the
locate operation takes O(h + lg c) time, where h is the maximum height of the
trie, and each bucket holds at most c keys. In the case where k does not lead to
a bucket, the in-node data structure is queried to find a bucket requiring O(

√
b)

time, thus locate requires O(h + max(lg c,
√

b)) time.
Insert. If inserting a new key k requires the creation of a new bucket the

in-node data structure and doubly linked list of buckets must be updated. This
requires finding the two buckets whose keys are the immediate predecessors and
successors of k, and can be accomplished in time O(h +

√
b) time. Note that the

in-node data structures should be augmented with indices storing the minimum
and maximum non-nil pointer at each node, which we refer to as the node’s low
and high fields respectively. The low and high fields are used to avoid avoid
the process of locating the predecessor and successor buckets requiring O(h

√
b)

time. In the case where an existing non-full bucket is found for k, the insertion
takes time O(h+c) (recall that the buckets are simply sorted arrays). Finally, in
the case where bursting must occur, the insertion can take time O(hc) at worst,
since an insertion to a full bucket may repeatedly cause all key suffixes to enter
the same new bucket deeper in the trie. A straightforward argument can be used
to show insertion requires O(h + max(c,

√
b)) amortized time.

Other Operations. Deletion is carried out as was described in Section 2,
except that when an empty bucket is deleted from a node, the in-node data

36 N. Nash and D. Gregg

structure and linked list of buckets should also be updated. Detecting whether
a node should be removed from the trie following a deletion is accomplished by
examining its low and high fields. Note that when a node x is to be removed
from the trie, its parent’s in-node data structure should only be updated if the
parent itself is not also to be removed as a result of the removal of x. This
ensures that O(

√
b) time is spent updating in-node data structures, rather than

O(h
√

b) time. Since it takes O(c) time to delete a key from a bucket, deletion
takes O(h + max(

√
b, c)) time in total.

Predecessor and successor operations can be implemented with minor modifi-
cations to the locate operation described above. Often, predecessor and successor
operations on a data structure are supported via iterators. In this case, by using
the linked list of buckets, predecessor and successor both operate in constant
time.

4 Results

4.1 Experimental Setup

We now describe the experimental comparison of our burst trie variant with a
number of other data structures. For our experiments over 32-bit keys we used
an Intel Core 2 processor with a clock-speed of 2.13GHz, a second level cache size
of 2MB and 4 GB of main memory. For our experiments over 64-bit keys we used
an Intel Core 2 processor with a clock speed of 2.0GHz, a second level cache size
of 4MB and 4GB of main memory. Note that our experiments investigate the
case where the entire data structure fits in main memory. All results we present
below are averaged over several thousand runs. Although not presented below,
to verify the robustness of our results we have also conducted experiments on
Sun SPARC as well as PowerPC architectures, and observed results very similar
to the ones we describe below.

We compare our implementation to the C++ STL map implementation [19],
which uses a red-black tree. We also compare to the AVL tree implementation
used internally in Valgrind [12], except that we have implemented a custom
memory allocator to reduce memory usage and improve performance. We also
include a comparison with an optimized B-tree implementation, as well as with
the stratified tree based data structure of Dementiev et al. [5], which we refer to
below as an S-tree. Finally, we include a comparison with a KR-trie (described
in Section 1.2). For the KR-trie we use the same in-node data structures and
bucket data structures as we used for the burst trie1.

We used uniform random data as well as data generated internally by Val-
grind to assess the relative performance of the data structures. We used Brent’s

1 This differs slightly from the implementation of the KR-trie described by Korda
and Raman [11], since they use fixed size rather than growable arrays as buckets.
However, using growable arrays improves performance and reduces memory con-
sumption. Moreover, Korda and Raman do not precisely specify the in-node data
structure they use.

Comparing Integer Data Structures for 32 and 64 Bit Keys 37

[3] pseudorandom number generator implementation for generating both 32 and
64-bit random numbers. The data sets generated using Valgrind consist of the
memory addresses of all the data memory accesses performed during the exe-
cution of a program. This reflects the use of the data structure to track every
memory access performed by a program, as is done by some Valgrind-based tools.
We generated data sets for the Linux program Top (a task viewer) as well as
three applications from the K Desktop Environment: Amarok (a music player),
Konqueror (a web browser and file manager) and KPDF (a PDF viewer). Each
of these data sets contain between 107 and 109 operations in total, and 70-80% of
the operations are loads. A load generates a search operation on the appropriate
data structure while a store generates an insert operation. Currently, Valgrind
uses an AVL tree to perform these operations. Note that iteration over the data
structure is also required at certain times, removing the possibility of using a
hash table.

4.2 Random Data

Figure 4(a) shows the time per insertion for the data structures for uniform
random 32-bit keys. Note that the S-tree and red-black tree use all available
memory at 225 and 226 keys respectively. The burst trie performs best of all
the data structures, although the S-tree and KR-trie are also competitive. The
comparison-based data structures are not as competitive, although the B-tree
performs quite well.

Figure 4(b) shows the time per search operation, the vast majority of the
searches are for keys that are not in the data structure. Before it runs out of
memory, the S-tree data structure performs slightly better than the burst trie.
Note that this is the only operation for which the S-tree out-performs the burst
trie. The KR-trie performs worse than the burst trie and S-tree, followed by the
B-tree. The binary search trees perform quite badly in comparison to these data
structures.

Figure 4(c) shows the memory consumption of the data structures. The S-
tree is clearly a very memory hungry data structure. The comparison-based
data structures are attractive because of their uniform memory overhead. It is
noteworthy that the use of a custom memory allocator for the AVL tree allows it
to occupy significantly less memory than the red-black tree. The B-tree, which
uses nodes consisting of growable arrays of keys of up to 4KB in size, uses
the least memory of any of the comparison-based data structures. The KR-trie
and burst trie are highly inefficient in their memory usage until the number of
keys becomes large. However, when the number of keys becomes large, beyond
about 218 (262,144) keys the burst trie in particular has a very modest memory
overhead. The rapid increase and then decrease in memory consumption of the
KR-trie beginning at 220 keys is a result of the fact that the KR-trie uses a
compressed trie to control access to its buckets. Beginning at 220 keys, many
compressed branches of the trie are expanded, resulting in poor space utilization
of their links and buckets. Subsequently, the buckets and links become filled and
used, and space utilization improves again.

38 N. Nash and D. Gregg

 0

 0.5

 1

 1.5

 2

 2.5

2726252423222120191817161514

M
ic

ro
se

co
nd

s
pe

r
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
S-tree
KR-trie
Burst trie

 0

 0.5

 1

 1.5

 2

 2.5

2726252423222120191817161514

M
ic

ro
se

co
nd

s
pe

r
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
S-tree
KR-trie
Burst trie

(a) (b)

 0

 10

 20

 30

 40

 50

 60

 70

2726252423222120191817161514

B
yt

es
 p

er
 k

ey

Log2(Number of keys)

AVL tree
Red-black tree

B-tree
S-tree

KR-trie
Burst trie

 0

 0.5

 1

 1.5

 2

 2.5

2726252423222120191817161514

M
ic

ro
se

co
nd

s
pe

r
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
S-tree
KR-trie
Burst trie

(c) (d)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 KPDF Konqueror Amarok Top

S
ec

on
ds

AVL tree
Red-black tree
B-tree
S-tree
KR-trie
Burst trie

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 KPDF Konqueror Amarok Top

M
eg

ab
yt

es

AVL tree
Red-black tree
B-tree
S-tree
KR-trie
Burst trie

(e) (f)

Fig. 4. These figures show a comparison of the data structures when operating on 32-
bit keys. (a) Shows the time per insertion operation for the data structures. (b) Shows
the time per locate operation for the data structures, a locate operation returns the
smallest key greater than or equal to a given key. (c) Shows the number of bytes per
key of memory consumed by the data structures following a sequence of insertions. (d)
Shows the time for a mixed sequence of equiprobable insertion and deletion operations.
The results of (a)—(d) are over uniform random keys. The charts in (e) and (f) show,
respectively, the time and space required by the data structures required to process
various Valgrind data sets. The results are discussed in Section 4.

Figure 4(d) shows the time per operation required for a mixed sequence of
insertions and deletions, which occur randomly and are equiprobable. The burst

Comparing Integer Data Structures for 32 and 64 Bit Keys 39

 0

 0.5

 1

 1.5

 2

 2.5

 3

26252423222120191817161514

M
ic

ro
se

co
nd

s
pe

r
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
KR-trie
Burst trie

 0

 0.5

 1

 1.5

 2

 2.5

 3

26252423222120191817161514

M
ic

ro
se

co
nd

s
pe

r
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
KR-trie
Burst trie

(a) (b)

 0

 20

 40

 60

 80

 100

 120

26252423222120191817161514

B
yt

es
 p

er
 k

ey

Log2(Number of keys)

AVL tree
Red-black tree

B-tree
KR-trie

Burst trie

 0

 0.5

 1

 1.5

 2

 2.5

26252423222120191817161514

M
ic

ro
se

co
nd

s
pe

r
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
KR-trie
Burst trie

(c) (d)

 0

 5

 10

 15

 20

 25

 KPDF Konqueror Amarok Top

S
ec

on
ds

AVL tree
Red-black tree
B-tree
KR-trie
Burst trie

 0

 10

 20

 30

 40

 50

 60

 KPDF Konqueror Amarok Top

M
eg

ab
yt

es

AVL tree
Red-black tree
B-tree
KR-trie
Burst trie

(e) (f)

Fig. 5. These figures show a comparison of the data structures when operating on 64-
bit keys, and are broadly similar to the results in the 32-bit case, shown in Figure 4.
The S-tree is absent because it is restricted to 32-bit keys. (a) Shows the time per
insertion operation for the data structures. (b) Shows the time per locate operation
for the data structures, a locate operation returns the smallest key greater than or
equal to a given key. (c) Shows the number of bytes per key of memory consumed by
the data structures following a sequence of insertions. (d) Shows the time for a mixed
sequence of equiprobable insertion and deletion operations. The results of (a)—(d) are
over uniform random keys. The charts in (e) and (f) show, respectively, the time and
space required by the data structures required to process various Valgrind data sets.
The results are discussed in Section 4.

40 N. Nash and D. Gregg

trie is also the best performing data structure in this case, although the KR-trie
and B-tree also perform quite well. Unfortunately the only S-tree implementation
available to us2 had bugs in its delete operation causing it to fail on inputs larger
than 220 keys.

Over the full range of operations, on random 32-bit keys the burst trie’s per-
formance is competitive with or superior to that of all the other data structures
in time. In addition, when the number of keys is large it also uses the least
memory of any of the data structures.

The results for random 64-bit keys are shown in Figure 5(a)—(d). The S-
tree is excluded from these results because it is tailored specifically for 32-bit
keys, and extending it efficiently to 64-bit keys requires an enormous amount
of extra space. For the remaining data structures the results for the 64-bit case
are broadly similar to those observed in the 32-bit case. The burst trie and KR-
trie perform better than the comparison-based data structures, with the B-tree
performing the best of the comparison-based data structures. In addition, it
appears the burst trie has the edge over the KR-trie in both time and space.

It is noteworthy that the burst trie achieves its space efficiency in part because
it stores a trie over the common prefixes of keys (described fully in Section 2)
and as a result only stores key suffixes in buckets. This also improves the cache
performance of searches in the buckets. However, the trie of representative keys
(described in Section 1.2) stored by the KR-trie does not guarantee that the
keys in the same bucket of a KR-trie share a common prefix.

In addition, the space occupied by the burst trie could perhaps be further
reduced by ensuring its trie is compressed. However, at least over uniform random
data chains of single-children nodes are less probable than in a traditional trie,
and so the space saved by compression may be modest. In addition, maintaining
a compressed trie can be quite expensive in time.

4.3 Valgrind Workloads

Figure 4(e) shows the time for processing 32-bit Valgrind data sets of various
programs (these data sets are described in Section 4.1). The S-tree is the most
efficient data structure in time, followed by the burst trie. It is notable that the
KR-trie performs the worst on these Valgrind data sets. Figure 4(f) shows the
memory consumed by the data structures in processing the data sets. Except
for on the smallest trace, the burst trie requires the least memory of any of the
data structures. Both the S-tree and KR-trie require much more space than the
comparison-based data structures and the burst trie.

Figure 5(e) shows the time for processing the Valgrind data sets in the 64-
bit case. The S-tree is excluded because it cannot operate on 64-bit keys. The
burst trie is the most efficient data structure, with the KR-trie and B-tree also
performing quite well. As Figure 5(f) shows, the burst trie is by far the most
space efficient data structure on the data sets.

On the 32-bit data sets, the S-tree performs better than the burst trie, how-
ever, it requires almost twice as much memory. On the 64-bit data sets, the burst
2 Obtained from http://www.mpi-inf.mpg.de/∼kettner/proj/veb/index.html

Comparing Integer Data Structures for 32 and 64 Bit Keys 41

trie is the best performing data structure, as well as requiring the least space of
any data structure.

5 Conclusion

This paper has provided an experimental comparison of efficient data structures
operating over 32 and 64-bit integer keys. In particular we have shown that
extending burst tries to an ordered data structure for integer keys provides a
data structure that is very efficient in both time and space.

In comparisons using uniform random data with AVL trees, red-black trees
and B-trees we have shown that for moderate to large sized inputs, burst tries
provide all operations more efficiently in both time and space. We have also
compared our extended version of burst tries to Dementiev et al.’s S-tree data
structure based on stratified trees, and found that while Dementiev et al.’s data
structure is competitive in time, it requires far more memory than a burst trie
and is less general, being restricted to 32-bit keys. We have also compared burst
tries to KR-tries, a data structure based on Willard’s q-fast tries. We carefully
engineered an implementation of KR-tries, using the same bucket and node data
structures as our burst trie, and found that they are generally slightly less effi-
cient than burst tries. One significant advantage of a burst trie over a KR-trie
is that because of a burst trie’s organisation, it need only store key suffixes in
buckets, improving space usage as well as cache performance.

The data structure presented in this paper has wide applicability, and fur-
thermore our results are robust, having been verified on several different archi-
tectures. We have presented results for an application of our data structure in
Valgrind where the keys are 32 and 64-bit integers. Our results show that in
the 32-bit case only the S-tree data structure operates faster, but the S-tree re-
quires almost twice as much space as the burst trie. In the 64-bit case, the burst
trie requires less space and operates more rapidly than any of the alternative
data structures. This paper demonstrates, through the application of our data
structure in Valgrind together with the results presented over random data, that
burst tries should be considered as one of the many alternative data structures
for applications requiring a general purpose dynamic ordered data structure over
keys such as integers or floating point numbers.

Acknowledgements. The authors are grateful to Julian Seward for all his
patient assistance with Valgrind. We also thank the anonymous reviewers for
their helpful comments.

References

1. Acharya, A., Zhu, H., Shen, K.: Adaptive algorithms for cache-efficient trie search.
In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp.
296–311. Springer, Heidelberg (1999)

2. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dices. Acta Inf. 1, 173–189 (1972)

42 N. Nash and D. Gregg

3. Brent, R.P.: Note on marsaglia’s xorshift random number generators. Journal of
Statistical Software 11(5), 1–4 (2004)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn., pp. 273–301. MIT Press, Cambridge, MA, USA (2001)

5. Dementiev, R., Kettner, L., Mehnert, J., Sanders, P.: Engineering a sorted list data
structure for 32 bit keys. In: Proc. of the Sixth SIAM Workshop on Algorithm
Engineering and Experiments, New Orleans, LA, USA, pp. 142–151 (2004)

6. Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D., You, H., Zhou, M.:
Experiences and lessons learned with a portable interface to hardware performance
counters. In: IPDPS 2003: Proc. of the 17th International Symposium on Paral-
lel and Distributed Processing, Washington, DC, USA, p. 289.2. IEEE Computer
Society, Los Alamitos (2003)

7. Heinz, S., Zobel, J., Williams, H.E.: Burst tries: a fast, efficient data structure for
string keys. ACM Trans. Inf. Syst. 20(2), 192–223 (2002)

8. Knessl, C., Szpankowski, W.: Heights in generalized tries and patricia tries. In:
Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 298–307.
Springer, Heidelberg (2000)

9. Knessl, C., Szpankowski, W.: A note on the asymptotic behavior of the heights in
b-tries for b large. Electr. J. Comb. 7 (2000)

10. Knuth, D.E.: The Art Of Computer Programming. Sorting And Searching, 2nd
edn., vol. 3, pp. 458–478, 482–491, 506. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA (1998)

11. Korda, M., Raman, R.: An experimental evaluation of hybrid data structures for
searching. In: Proc. of the 3rd International Workshop on Algorithm Engineering
(WAE), London, UK, pp. 213–227 (1999)

12. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6), 89–100 (2007)

13. Nilsson, S., Tikkanen, M.: An experimental study of compression methods for dy-
namic tries. Algorithmica 33(1), 19–33 (2002)

14. Sinha, R.: Using compact tries for cache-efficient sorting of integers. In: Ribeiro,
C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 513–528. Springer,
Heidelberg (2004)

15. Sinha, R., Ring, D., Zobel, J.: Cache-efficient string sorting using copying. J. Exp.
Algorithmics 11, 1.2 (2006)

16. Sinha, R., Zobel, J.: Cache-conscious sorting of large sets of strings with dynamic
tries. J. Exp. Algorithmics 9, 1.5 (2004)

17. Sinha, R., Zobel, J.: Using random sampling to build approximate tries for efficient
string sorting. J. Exp. Algorithmics 10, 2.10 (2005)

18. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

19. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (1997)

20. Sussenguth, E.H.: Use of tree structures for processing files. Commun. ACM 6(5),
272–279 (1963)

21. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Inf. Process. Lett. 6(3), 80–82 (1977)

22. Willard, D.E.: New trie data structures which support very fast search operations.
J. Comput. Syst. Sci. 28(3), 379–394 (1984)

	Comparing Integer Data Structures for 32 and 64 Bit Keys
	Introduction
	Background and Motivation
	Related Work and Contributions

	Background
	Engineering Burst Tries
	In-Node Data Structures
	Bucket Data Structures
	Operations

	Results
	Experimental Setup
	Random Data
	Valgrind Workloads

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

