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Abstract. We present empirical results for the Cluster Editing prob-
lem using exact methods from fixed-parameter algorithmics and linear
programming. We investigate parameter-independent data reduction
methods and find that effective preprocessing is possible if the number of
edge modifications k is smaller than some multiple of |V |. In particular,
combining parameter-dependent data reduction with lower and upper
bounds we can effectively reduce graphs satisfying k ≤ 25 |V |.

In addition to the fastest known fixed-parameter branching strategy
for the problem, we investigate an integer linear program (ILP)
formulation of the problem using a cutting plane approach. Our results
indicate that both approaches are capable of solving large graphs with
1000 vertices and several thousand edge modifications. For the first time,
complex and very large graphs such as biological instances allow for an
exact solution, using a combination of the above techniques.

1 Introduction

The Cluster Editing problem is defined as follows: Let G = (V, E) be an
undirected, loop-less graph. Our task is to find a set of edge modifications
(insertions and deletions) of minimum cardinality, such that the modified graph
consists of disjoint cliques.

The Cluster Editing problem has been considered frequently in the
literature since the 1980’s. In 1986, Křivánek and Morávek [11] showed that
the problem is NP-hard. The problem was rediscovered in the context of
computational biology [14]. Clustering algorithms for microarray data such as
CAST [1] and CLICK [15] rely on graph-theoretical intuition but solve the
problem only heuristically. Studies in computational biology indicate that exact
solutions of Cluster Editing instances can be highly application-relevant,
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see for instance [18]. This is even more the case for the weighted version of
the problem, Weighted Cluster Editing: Given an undirected graph with
modification costs for every vertex tuple, we ask for a set of edge modifications
with minimum total cost such that the modified graph consists of disjoint cliques.

The Cluster Editing problem is APX-hard [4] and has a constant-factor
approximation of 2.5 [17]. In this article, we empirically investigate the power of
methods that solve the problem to provable optimality. In 1989, Grötschel and
Wakabayashi [8] presented a formulation of the Cluster Editing problem as
an Integer Linear Program (ILP) and pointed out a cutting plane approach for
its solution. Recently, the parameterized complexity of unweighted and weighted
Cluster Editing, using the number (or total cost) of edge modifications as
parameter k, has gained much attention in the literature [2,6,7]. Dehne et al. [5]
present an empirical evaluation of parameterized algorithms from [7]. The fastest
fixed-parameter algorithm for unweighted Cluster Editing actually trans-
forms the problem into its weighted counterpart [3]. Guo [9] presents parameter-
independent data reduction rules for unweighted instances that reduce an
instance to a “hard” problem kernel of size 4kopt. A reduction from unweighted
to weighted instances of size at most 4kopt is presented in [3]. These reductions
allow us to shrink an instance even before any parameter k has been considered.

Our contributions. In the first part of our paper, we evaluate the performance of
two parameter-independent data reduction strategies for unweighted Cluster
Editing. We find that the efficiency of reduction is governed mostly by the
ratio k/ |V |. The unweighted kernel from [9] efficiently reduces nearly transitive
graphs, but fails to reduce graphs with k ≥ 1

2 |V |. We then present and
evaluate parameter-independent reduction rules data for weighted graphs and
find it to be even more effective in application. We combine the latter reduction
with parameter-dependent reduction rules plus upper and lower bounds. This
downsizes input graphs even more and fails to reduce graphs only when k >
25 |V | for large graphs.

To solve reduced instances, we implemented a branch-and-cut algorithm
for Weighted Cluster Editing based on the ILP formulation proposed
by Grötschel and Wakabayashi [8]. The ILP formulation of the problem has
frequently been reported in the literature as being too slow for application, see for
instance [10]. In contrast, we find that the cutting plane approach in [8] is capable
of optimally solving large instances reasonably fast. We compare the performance
of the fastest branching strategy in [3] and the cutting plane algorithm. We
apply these methods to weighted instances resulting from unweighted graphs
that have been fully reduced in advance using our data reduction. The FPT
algorithm solves instances with k = 5n in about an hour, where n, k are size
and parameter of the reduced instance. The ILP approach solves instances with
n = 1 000 in about an hour, almost independently of k. These approaches are
particularly important for weighted input data, because we find data reduction
to be less effective here.

Summarized, our experiments show that one can solve Cluster Editing
instances on large graphs with several thousands of edge modifications in
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reasonable running time to provable optimality. In particular, feasible parameters
k are orders of magnitude higher than what worst-case running times of the FPT
approach suggest.

2 Preliminaries

Throughout this paper, let n := |V |. We write uv as shorthand for an unordered
pair {u, v} ∈ (

V
2

)
. For weighted instances, let s :

(
V
2

) → R encode the input
graph: For s(uv) > 0 an edge uv is present in the graph and has deletion cost
s(uv), while for s(uv) ≤ 0 the edge uv is absent from the graph and has insertion
cost −s(uv). We call edges with s(uv) =∞ “permanent” and with s(uv) = −∞
“forbidden”. A graph G is a disjoint union of cliques if and only if there exist
no conflict triples in G: a conflict triple consists of three vertices vuw such that
uv and uw are edges of G but vw is not. Such graphs are also called transitive.

As a quality measure for data reduction we use the reduction ratio n−nred
n

where nred denotes the number of vertices after reduction. A reduction ratio
of close to 1 corresponds to a strong reduction whereas a reduction ratio of 0
corresponds to no reduction at all.

3 Data Reduction and Branching Algorithm

We now present methods for the parameter-independent data reduction of
(unweighted and weighted) Cluster Editing instances. We describe various
polynomial-time reduction rules and apply these rules over and over again until
no further rule will apply. Since the presented data reduction is parameter-
independent, we can apply it during preprocessing without considering any
particular parameter k. Afterwards, we can solve the reduced graph with any
algorithm for Weighted Cluster Editing.

Parameter-independent data reduction. A critical clique C in an unweighted
graph is an induced clique such that any two vertices u, v ∈ C share the same
neighborhood, N(u) ∪ {u} = N(v) ∪ {v}, and C is maximal. For unweighted
Cluster Editing one can easily see that all vertices of a critical clique of the
input graph end up in the same cluster of an optimal clustering [9]. Furthermore,
there are at most 4kopt critical cliques in a graph, where kopt is the cost
of an optimal solution. Guo [9] uses critical cliques to construct a kernel for
unweighted Cluster Editing of size 4kopt. For brevity, we omit the details of
this reduction, and only note that it is based on inspecting the neighborhood
(and second neighborhood) of large critical cliques. In the following, we call this
the unweighted kernel.

We can encode an unweighted Cluster Editing instance using a weighted
graph with edge weights±1. In a weighted graph we can merge vertices u, v into a
new vertex u′ when edge uv is set to “permanent”: For each vertex w ∈ V \{u, v}
we join uw, vw such that s(u′w)← s(uw)+s(vw). Moreover, in case w is a non-
common neighbor of u, v we can reduce k by min{|s(uw)| , |s(vw)|} [2].
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For unweighted instances, all vertices of a critical clique C must end up
in the same cluster: This implies that we can merge all vertices in C for the
corresponding weighted instance [3]. Doing so, we have reduced an unweighted
instance to a weighted one of size at most 4kopt. In addition, we may use the
following reduction rules for any weighted instance:

Rule 1 (heavy non-edge rule). If an edge uv with s(uv) < 0 satisfies
|s(uv)| ≥∑

w∈N(u) s(uw) then set uv to forbidden.
Rule 2 (heavy edge rule, single end). If an edge uv satisfies s(uv) ≥∑

w∈V \{u,v} |s(uw)| then merge vertices u, v.
Rule 3 (heavy edge rule, both ends). If an edge uv satisfies s(uv) ≥∑

w∈N(u)\{v} s(uw) +
∑

w∈N(v)\{u} s(vw), then merge u, v.
Rule 4 (almost clique rule). For C ⊆ V let kC denote the min-cut value of

the subgraph of G induced by vertex set C. If

kC ≥
∑

u,v∈C,s(uv)≤0

|s(uv)|+
∑

u∈C,v∈V \C,s(uv)>0

s(uv)

then merge C.
Rule 5 (similar neighborhood). For an edge uv we define Nu := N(u) \

(N(v) ∪ {v}), Nv := N(v) \ (N(u) ∪ {u}) as the exclusive neighborhoods,
and set W := V −(Nu∪Nv∪{u, v}). For U ⊆ V set s(v, U) :=

∑
u∈U s(v, u).

Let Δu := s(u, Nu)− s(u, Nv) and Δv := s(v, Nv)− s(v, Nu). If uv satisfies

s(uv) ≥ max
Cu,Cv

min
{
s(v, Cv)− s(v, Cu) + Δv, s(u, Cu)− s(u, Cv) + Δu

}
(1)

where the maximum runs over all subsets Cu, Cv ⊆ W with Cu ∩ Cv = ∅,
then merge uv.

Rule 4 cannot be applied to all subsets C ⊆ V so we greedily choose reasonable
subsets: We start with a vertex C := {u} maximizing

∑
v∈V \{u} |s(uv)|, and

successively add vertices such that in every step, vertex w ∈ V \C with maximal
connectivity

∑
v∈C s(vw) is added. In case the connectivity of the best vertex is

twice as large as that of the runner-up, we try to apply Rule 4 to the current
set C. We cancel this iteration if the newly added vertex u is connected to more
vertices in V \ C than to vertices in C.

Proving the correctness of Rule 5 is rather involved, we defer the details to
the full paper. This rule turns out to be highly efficient but its computation
is expensive: For integer-weighted graphs, we can find the maximum (1) using
dynamic programming in time O(|W |Z) where Z :=

∑
w∈W (s(uw)+s(vw)). For

real-valued edge weights we can only approximate the calculation by multiplying
with a blowup factor and rounding. In practice, we use Rule 5 only in case no
other rules can be applied.

Using parameter-dependent data reduction. We use the parameter-dependent
data reduction for Weighted Cluster Editing from [2]: We define induced
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costs icf (uv) and icp(uv) for setting uv to “forbidden” or “permanent” by

icf (uv) =
∑

w∈N(u)∩N(v)

min{s(uw), s(vw)}, icp(uv) =
∑

w∈N(u)�N(v)

min{|s(uw)| , |s(vw)|},

where A � B denotes the symmetric set difference of A and B. If icp(uv) or
icf (uv) exceed k, we can set uv to “forbidden” or “permanent”, respectively. In
the latter case, we merge u,v and reduce k by icp(uv) accordingly. We can also
remove isolated cliques.

As an algorithm-engineering technique, we now describe fast methods to
compute a lower bounds on the cost of a weighted instance. Clearly, such bounds
can be used to stop search tree recursion more efficiently. Assume that there exist
t conflict triples in our instance G, k. For every tuple uv let t(uv) denote the
number of conflict triples in G that contain uv, and let r(uv) := |s(uv)| /t(uv).
To resolve t conflicts in our graph we have to pay at least t · minuv{r(uv)}. A
more careful analysis shows that we can sort tuples uv according to the ratio
r(uv), then go through this sorted list from smallest to largest ratio. This leads
to a tighter lower bound but requires more computation time.

Our third lower bound proved to be most successful in applications: Let CT be
a set of edge-disjoint conflict triples. Then,

∑
vuw∈CT min{s(uv), s(uw),−s(vw)}

is a lower bound for solving all conflict triples. Since finding the set CT
maximizing this value is computationally expensive, we greedily construct a set
of edge-disjoint conflict triples CT and use the above sum as a lower bound.

We can use such lower bounds to make induced costs icf (uv) and icp(uv)
tighter: let b(G, uv) be a lower bound that ignores all edges uw and vw for
w ∈ V \ {u, v} in its computation. Then, we can set an edge to “forbidden” or
“permanent” if icp(uv) > k − b(G, uv) or icf (uv) > k − b(G, uv) holds, resp.

To use this powerful reduction during (parameter-independent) preprocessing,
we generate a problem instance (G, k) from G by using an upper bound for
the modification costs of G as our parameter k. There exist a multitude of
possibilities to compute such upper bounds, because we can use any heuristic
for the problem and compute the cost of its solution, see for instance [18]. For
this study, we calculate an upper bound using a greedy approach that iteratively
searches for edges where reduction rules almost apply. We find this reduction to
be extremely effective in applications.

Branching strategy. After parameter-independent data reduction, the remaining
instance can be solved using a branching tree strategy. In these algorithms, we
identify a conflict triple and then branch into sub-cases to repair this conflict.
In practice, branching strategies that do merge vertices clearly outperform
branching strategies that do not [2]. The fastest known branching strategy for
Cluster Editing, both in theory and in practice, is surprisingly simple [3]:
Let uv be an edge of a conflict triple vuw. Then, (a) set uv to forbidden, or
(b) merge uv. If we always choose the edge uv with minimal branching number,1

1 The branching number is the root of the characteristic polynomial and governs the
asymptotic size of the search tree, see e.g. [12] for details.
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then the resulting search tree has size O(2k). To find an optimal solution we
call the algorithm repeatedly, increasing k in an interval defined by lower and
upper bound for this problem instance. While traversing the search tree, we
apply reduction rules in every node of the search tree. The simple Rules 1–3 and
parameter-dependent rules are applied in every node of the search tree, whereas
the two more involved Rules 4 and 5 are applied only every sixth step. To find an
edge with minimal branching number, we approximate log branching numbers
using two rational functions.

4 Integer Linear Programming and Branch-and-Cut

In this section we describe an algorithm for Weighted Cluster Editing,
which is based on mathematical optimization. It relies on the following integer
linear programming (ILP) formulation due to Grötschel and Wakabayashi [8].

Let x be a binary decision vector with xe = 1 if edge e is part of the solution
and xe = 0 otherwise, for all e ∈ E. Then, an optimal solution to Weighted
Cluster Editing can be found by solving

minimize
∑

e∈E

s(e)−
∑

1≤i<j≤n

s(ij)xij (2)

subject to + xij + xjk − xik ≤ 1 for all 1 ≤ i < j < k ≤ n (3)
+ xij − xjk + xik ≤ 1 for all 1 ≤ i < j < k ≤ n (4)
− xij + xjk + xik ≤ 1 for all 1 ≤ i < j < k ≤ n (5)
xij ∈ {0, 1} for all 1 ≤ i < j ≤ n . (6)

The 3
(
n
3

)
triangle inequalities (3)–(5) of the ILP ensure that no conflict triple

occurs in the solution. The above ILP formulation can already be used to solve
instances of Weighted Cluster Editing to provable optimality.

A faster algorithm can be obtained by a mathematical analysis of the
corresponding problem polyhedron. Using methods from polyhedral combina-
torics, Grötschel and Wakabayashi have studied the facial structure of the
corresponding clique partitioning polytope. They have identified a number of
classes of facet-defining inequalities. As proposed by the authors, we concentrate
on the 2-partition inequalities

∑

i∈S,j∈T

xij −
∑

i∈S,j∈S

xij −
∑

i∈T,j∈T

xij ≤ min{|S|, |T |} ,

where S and T are disjoint and nonempty subsets of V .
There is an exponential number of 2-partition inequalities. We therefore do

not generate them at once but follow a cutting plane approach, adding 2-
partition inequalities only if they are violated by a current fractional solution. We
have implemented a variant of the iterative cutting plane method proposed by
Grötschel and Wakabayashi. We start optimizing the LP relaxation (2) with an
empty constraint set. Let x∗ denote the vector corresponding to an intermediate
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solution of the linear programming relaxation. We first check whether x∗ violates
any triangle inequalities. If this is the case, we add the violated inequalities,
resolve, and iterate. Otherwise, we check whether x∗ is integral. If so, we stop,
and x∗ is an optimal solution. If x∗ has fractional entries, we heuristically try to
find violated 2-separation inequalities in the following manner:

For every node i ∈ V we look at the nodes in W := {j ∈ V \ {i} | x∗
ij > 0}.

Then, we pick a node w ∈W and iteratively construct a subset T of W , setting
initially T = {w} and adding nodes k ∈ W to T if x∗

ik −
∑

j∈T x∗
jk > 0. Finally,

we check whether ∑

j∈T

x∗
ij −

∑

j∈T

∑

k∈T,k 	=j

x∗
jk > 1 .

If this is the case, we add the violated 2-partition inequality
∑

j∈T

xij −
∑

j∈T

∑

k∈T,k 	=j

xjk ≤ 1 .

If we find cutting planes in the separation procedure we iterate, otherwise we
branch.

5 Datasets

In the absence of publicly available datasets that meet our requirements (note
that the datasets used in [5] are far too small for our evaluations) we concentrate
on the following two datasets:

Random unweighted graphs. Given a number of nodes n and parameter k, we
uniformly select an integer i ∈ [1, n] and define i nodes to be a cluster. We
proceed in this way with the remaining n ← n − i nodes until n ≤ 5 holds:
In this case, we assign all remaining n nodes to the last cluster. Starting from
this transitive graph G = (V, E) we choose k′ distinct vertex tuples uv ∈ (

V
2

)

and delete or insert the edge uv in G. Let k denote the minimum number of
modifications to make G transitive, then k ≤ k′. For instances where we cannot
compute exact modification costs k, we estimate k using upper, lower bounds,
and general observations.

Protein similarity data. We also apply our algorithms to weighted instances
that stem from biological data. Rahmann et al. [13] present a set of graphs
derived from protein similarity data: The vertices of our graph are more than
192 000 protein sequences from the COG database [16]. The similarity S(u, v) of
two proteins u, v is calculated from log10 E-values of bidirectional BLAST hits.
We use an E-value of 10−10 as our threshold indicating that two proteins are
“sufficiently similar”, so s(uv) := S(u, v)− 10. See [13] for more details.

The graph encoded by s contains 50 600 connected components: 42 563
components are of size 1 or 2, and 4 073 components are cliques of size ≥ 3. The
remaining 3 964 components serve as our evaluation instances. Only 11 instances
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have more than 600 vertices. As a side comment, we mention that Wittkop
et al. [18] evaluate several clustering methods for this application, and find that
Weighted Cluster Editing methods show the best clustering quality.

Evaluation platform. All algorithms were implemented in C++, the branch-
and-cut algorithm (ILP) uses the Concert interface to the commercial CPLEX
solver 9.03. Running times were measured on an AMD Opteron-275 2.2 GHz
with 6+ GB of memory.

6 Data Reduction Results

We now compare the performance of the unweighted kernel [9] and the weighted
data reduction from Sec. 3 on the dataset of random unweighted graphs. To allow
for a fair comparison with the weighted data reduction, we merge all permanent
edges of the unweighted kernel, resulting in an integer-weighted graph with
even fewer vertices. This seems reasonable since both ILP and edge branching
can handle integer-weighted input graphs. For the weighted data reduction,
we first merge all critical cliques in the input graph. Next, we use weighted
reduction rules plus the parameter-dependent reduction rules as described in
Sec. 3. Despite the additional reduction steps, the reduced graph can have 4kopt

vertices for both approaches: A disjoint union of k paths of length 3 is not
reduced by any reduction rule.

For our first evaluation, we concentrate on the weighted reduction strategy.
For fixed k = 2 000 and varying n = 100, . . . , 5 000 we study reduction ratio and
absolute size of the resulting graph for 11 000 random instances. Results for n
up to 1 000 are shown in Fig. 1. Similar results were obtained for larger n and
other choices of k, data not shown. As one can see, the larger the graphs get, the
better the reduction ratio on average. Most graphs are either reduced down to a
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Fig. 1. Data reduction for fixed k = 2 000 and variable graph size n: Left plot shows
reduction ratio vs. n, right plot shows reduced graph size nred vs. n. Both plots show
11000 instances.
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Fig. 2. Average reduction ratio vs. ratio k/n for n = 100, 500, 1 500, 2 000. Note that
the unweighted kernel is practically independent from graph size n.

few vertices or stay unreduced. Only a few reduced graphs end up in a “twilight
zone” between these extremes. This effective reduction is not due to the upper
bound n ≤ 4k = 8 000: In fact, the absolute size of reduced graphs gets smaller
when input graphs get larger. This might seem counterintuitive at first glance,
but larger graphs show smaller relative defects, which allows weighted reduction
rules to more “aggressively” merge or delete edges.

The above evaluation indicates that reduction results do not only depend on
k and n directly, but even more so on the ratio k/n. In our second evaluation,
we choose n ∈ {100, 500, 1 500, 2 000} and set k := c · n, for varying factors
c ∈ {0.25, 0.5, . . . , 2.0}. For every combination of n and k we create 10 input
graphs and apply the unweighted kernel. See Fig. 2 for resulting reduction ratios.
We find reduction ratios of the unweighted kernel to be mostly independent of
the actual graph size. The unweighted kernel is very effective for graphs with
k ≤ 1

2n, and graphs are downsized to half of their original size on average. For
k ≥ 2n no reduction is observed. To evaluate the weighted data reduction we
again set k := c ·n, for factors c ∈ {1, 2, . . . , 25}. For every combination of k and
graphs size with n < 1 000 (n ≥ 1 000) we create 50 (20) input graphs. See again
Fig. 2 for reduction ratios. We observe that the weighted data reduction is much
more effective than the unweighted kernel. Here, the reduction ratio depends
strongly on the ratio k/n and, less pronounced, also on the graph size n. We
observed that large graphs of size n = 2 000 are reduced by 80% for k = 25 and
by more than 90% for k = 18n.

Figure 3 shows the ratio of input graphs being reduced by more than 90%. For
the weighted data reduction, we vary the number of vertices n and set k := cn
for c = 5, 10, 15, 20.2 For the unweighted kernel we observe significantly reduced
graphs only for c = 0.25. Most interestingly, for the weighted data reduction,
the ratio of significantly reduced graphs increases for larger graphs.

2 We also performed experiments for all c = 0.25, 0.5, 0.75, 1, 2, 3, . . . , 25 but find that
results follow the same trend, data not shown.
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Fig. 3. Percentage of instances which are reduced more than 90% for varying graph
size n and k = cn for c = 5, 10, 15, 20

In case we only use parameter-independent reduction rules from Sec. 3, the
weighted reduction is only slightly better than the unweighted kernel, data not
shown. We find the combination of parameter-dependent data reduction and
lower/upper bounds to be the reason for the effective reduction. To this end,
we estimate the accuracy of our lower and upper bound. We find that our lower
bound has a relative error of 1.7 % on average, and the upper bound had a
relative error of 17.9 % on average. Calculating tighter upper bounds by, say,
a heuristic such as FORCE [18] will further improve the performance of our
weighted data reduction.

Running times of data reduction. Using the unweighted kernel, most of the
instance were reduced in less than a minute, instances of size 2 000 in about one
hour computation time. Graphs with k around n need more computation time
than graphs with lower or greater k since reduction rules are checked very often
but rarely applied. Running times of the weighted data reduction are equally high
for k around 5n, whereas for k around 20n running times are slightly higher.
Making the data reduction run fast has not been the focus of our research,
because we assumed running times of data reduction to be negligible to the fol-
lowing (exponential-time) step of the analysis. We do not report details and just
note that reducing graphs of size 500 took 51.23 seconds on average but at most
9.09 minutes, whereas reducing graphs of size 2 000 took 1.61 hours on average
and at most 23.69 hours. Our experiments show that many graphs are reduced
to trivial or very small instances, so the exponential-time step of the algorithm
has very small running times. We believe that by optimizing our data reduction
algorithm we can achieve significantly reduced running times in the future.

Data reduction results for weighted instances. We also apply our weighted
data reduction strategy to the protein similarity data. In this case, however,
parameter k does not reflect the complexity of the instance: here, edges might
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have modification costs ≤ 1 and, hence, the total modification costs may equal
1 even if thousands of edge modifications are necessary. Instead, we use the
number of edge modifications as a complexity measure of an instance. Table 1
shows results of the weighted data reduction. We find that the data reduction
reduces weighted instances not as much as unweighted instances. This is mainly
caused by the fact that our lower and upper bounds are not as tight as for
the unweighted case. In detail, our lower bound has a relative error of 3.6 %
on average, and the upper bound had a relative error of 54.7 % on average.
In contrast to our findings for unweighted instances, we observe that larger
graphs are reduced less effectively than smaller graphs. This can be attributed
to the fact that the number of edge modifications is growing faster than linear.
Furthermore, parameter-independent reduction rules are less efficient on large
weighted graphs, since it gets less likely that an edge weight is greater than a
sum over O(n) other edge weights.

Table 1. Protein similarity data: Average reduction ratio for different graph size n

graph size n 3 - 49 50 - 99 100 - 149 150 - 199 200 - 249 250-299 300+

No. of instances 3453 341 78 22 24 20 25
av. reduction ratio 0.84 0.89 0.73 0.68 0.66 0.58 0.35

7 Integer Linear Programming and Search Tree Results

We want to compare the performance of the FPT branching algorithm approach
and the ILP-based branch-and-cut method. For this evaluation, we use random
unweighted graphs and reduce them by the weighted data reduction. Reduced
graphs are sorted into bins for sizes n ≈ 100, 200, . . . , 900 and costs k ≈
1n, 2n, . . . , 10n, and every bin contains 28 graphs on average. As described in
Sec. 6, most graphs are either reduced completely or not at all, so building
these reduced graphs is computationally expensive. For each reduced instance
we apply the FPT branching algorithm and ILP with an upper limit of 6 hours
of running time. For average running times, we count unfinished instances as 6
hours. Figure 4 shows the resulting running times.

Running times of the fixed-parameter algorithm most strongly depend on the
ratio k/n and, to a smaller extent, on the actual parameter k. Instances with
modification cost k ≈ 5n need about one hour of computation to be solved.
Note that running times for FPT branching are much better than worst-case
running time analysis suggests, and dependence on the actual parameter k is
much less pronounced than expected. We believe that this is mainly due to the
good lower bound estimation for the parameter-dependent data reduction used
in interleaving, and also the vertex merging operation.

The limiting factor for the ILP algorithm is the size of the input graph whereas
dependence on modification costs k is much less pronounced. Small instances
with only 100 vertices are solved within seconds, and medium graphs of size
500 are solved within minutes. We find that ILP is well-suited for medium-size
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Fig. 4. Running times of FPT branching and ILP branch-and-cut in seconds, for
varying ratio k/n and n = 100, 500, 900

Table 2. Running times on reduced protein similarity data for FPT branching and ILP.
Instances that did not finish after 24 hours of computation were ignored for average
running time computation.

Size red. instance 3–49 50–99 100–149 150–199 200–249 250–299 300–1400
No. red. instances 297 52 16 10 9 2 19

Unfinished FPT 0 0 1 1 2 2 15
time FPT 125 ms 23.9 s 44.1 min 4.52 min 47.3 min n/a 8.98 min

Unfinished ILP 0 0 0 0 1 1 10
time ILP 17 ms 6.97 s 5.30 min 18.20 min 76.2 min 6.85 min 1.67 h

Cluster Editing instances and clearly outperforms the fastest fixed-parameter
algorithm for these instances. We stress that ILP requires preprocessing by
parameter-independent data reduction since its performance is solely dependent
on the input graph size. Only for large graphs with very low modification costs
k ≤ 2n, the FPT algorithm may outperform the cutting plane algorithm. High
running times of the cutting plane approach for large instances are, however,
mostly not due to their structural complexity but to the large number of triangle
inequalities that have to be checked in the current implementation. Once a better
separation strategy has been found, we expect the branch-and-cut algorithm to
perform well even on larger instances.

Results for weighted instances. We now compare the performance of FPT
branching and ILP using protein similarity data. We reduced all instances in
the protein dataset using our weighted data reduction strategy, resulting in 365
non-trivial instances. In Tab. 2 we report running times of the two methods.
The FPT branching algorithm is usually fast enough for graphs with up to 200
vertices, but for most larger graphs, no solution can be computed within 24
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hours. In contrast, the ILP algorithm was able to solve most instances with less
than 500 vertices in only some minutes.

8 Conclusion

Our results demonstrate that computing exact solutions of Cluster Editing
instances is no longer limited to small or almost transitive graphs, thus
invalidating what has often been reported in previous work. Using data reduction
for Weighted Cluster Editing in combination with parameter-dependent
rules and lower/upper bounds strongly improves the ability to shrink down input
instances in polynomial running time. Even complex input graphs that are far
from transitive and that have modification costs much larger than the number
of vertices, can often be reduced very effectively.

We also compared the fastest known FPT branching algorithm for Cluster
Editing against a branch-and-cut approach for this problem, based on the ILP
formulation by Grötschel and Wakabayashi. Both algorithms perform well, and
reduced graphs with hundreds of vertices and thousands of edge modifications
are processed in acceptable running time. In particular, our results suggest that
ILP is suitable for solving large instances with many modifications.

We believe that better upper bounds will allow even larger instances of
(unweighted and weighted) Cluster Editing to be solved exactly in the future.
We will make the source code of our reduction and cluster editing tools, as
well as the data used in this article publicly available. Furthermore, we plan to
implement a web interface for our tools in order to give a large community access
to our exact clustering tools and to facilitate comparison and evaluation.
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