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Abstract. Burstsort is a trie-based string sorting algorithm that dis-
tributes strings into small buckets whose contents are then sorted in
cache. This approach has earlier been demonstrated to be efficient on
modern cache-based processors [Sinha & Zobel, JEA 2004]. In this pa-
per, we introduce improvements that reduce by a significant margin the
memory requirements of burstsort. Excess memory has been reduced by
an order of magnitude so that it is now less than 1% greater than an
in-place algorithm. These techniques can be applied to existing variants
of burstsort, as well as other string algorithms.

We redesigned the buckets, introducing sub-buckets and an index
structure for them, which resulted in an order-of-magnitude space reduc-
tion. We also show the practicality of moving some fields from the trie
nodes to the insertion point (for the next string pointer) in the bucket;
this technique reduces memory usage of the trie nodes by one-third. Sig-
nificantly, the overall impact on the speed of burstsort by combining these
memory usage improvements is not unfavourable on real-world string col-
lections. In addition, during the bucket-sorting phase, the string suffixes
are copied to a small buffer to improve their spatial locality, lowering the
running time of burstsort by up to 30%.

1 Introduction

This paper revisits the issue of sorting strings efficiently. String sorting remains
a key step in solving contemporary data management problems. Arge et al. [3]
note that “string sorting is the most general formulation of sorting because it
comprises integer sorting (i.e., strings of length one), multikey sorting (i.e., equal-
length strings) and variable-length key sorting (i.e., arbitrarily long strings)”.
Compared to sorting fixed-length keys (such as integers), efficient sorting of
variable-length string keys is more challenging. First, string lengths are variable,
and swapping strings is not as simple as swapping integers. Second, strings are
compared one character at a time, instead of the entire key being compared, and
thus require more instructions. Third, strings are traditionally accessed using
pointers; the strings are not moved from their original locations due to string
copying costs.
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1.1 Traditional Approaches to String Sorting

Standard string sorting algorithms, as taught in a typical undergraduate educa-
tion, start by creating an array of pointers to strings; they then permute these
pointers so that their order reflects the lexicographic order of the strings. Al-
though comparison of long string keys may be time-consuming, with this method
at least the cost of moving the keys is avoided. The best existing algorithms for
string sorting that honour this rule include multikey quicksort [6] and variants
of radix sort [2], including the so-called MBM algorithm [16].

Traditionally, we are taught to measure algorithm speed by the number of
instructions, such as comparisons or moves. However, in recent years the cost of
retrieving items from main memory (when they are not in cache), or of translat-
ing virtual addresses that are not in the translation lookaside buffer (TLB) have
come to dominate algorithm running times. The principal principle is locality
of reference: if data is physically near data that was recently processed, or was
itself processed not long ago, then it is likely to be in the cache and may be
accessed quickly. We leave further details to Section 1.3. Note that stability is
ignored in this paper as any sorting algorithm can be made stable by appending
the rank of each key in the input [11,20].

1.2 Burstsort

Burstsort is a technique that combines the burst trie [13] with standard (string)
sorting algorithms [6,16]. It was introduced by the first author, and its variants
are amongst the fastest algorithms for sorting strings on current hardware [21].
The standard burstsort algorithm is known as P-burstsort, P referring to pointer.
In P-burstsort, sorting takes place in two stages: (i) the strings are inserted into
the trie structure, effectively partitioned by their prefixes into buckets, (ii) the
trie is traversed in-order and the contents of each bucket (strings with a common
prefix) are sorted and pointers to the strings are output in lexicographic order.

The trie. As shown in Figure 1, each trie node contains a collection of pointers to
other nodes or to buckets. There is one pointer for each symbol in the alphabet
so a node effectively represents a string prefix. Note that each node contains an
additional pointer (labelled ⊥) to a special bucket for strings that are identical
to the prefix that the node represents.

The trie starts off with one node, but grows when the distribution of strings
causes a bucket to become too large. Whenever a bucket does become too large, it
is burst: the trie expands in depth at that point so that there is now a child node
for each symbol of the alphabet, each node having a full collection of pointers
to buckets.

Cache efficiency. Although the use of a trie is reminiscent of radixsort, in burst-
sort each string is only accessed a small number of times: when inserted (cache-
efficient), whenever its bucket is burst, or when its bucket is sorted. In practice
this low dereferencing overhead makes the algorithm faster than radixsort or
quicksort.
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Fig. 1. Index structure of P-Burstsort. Strings inserted into the burst trie are “bat”,
“barn”, “bark”, “by”, “by”, “by”, “by”, “byte”, “bytes”, “wane”, “way”, and “west”.
The figure has been adapted from [21].

Sorting of buckets. The standard P-burstsort [21] uses a fast multikey quicksort
for sorting the buckets, and on real-world collections has been observed to be
almost twice as fast as previous algorithms. The original burstsort paper also
proposes that buckets be grown exponentially, starting with a small bucket, then
growing by a certain factor whenever the bucket is full, until a maximum size,
when the bucket is burst. This wastes less memory than using a fixed size for
the bucket, but increases the memory management load.

Figure 2 reminds the reader of the significant gains in running time of P-
burstsort compared to three of the best string sorting algorithms: adaptive radix-
sort, multikey quicksort and MBM radixsort.
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Fig. 2. Time (in seconds) to sort with adaptive radixsort, multikey quicksort, MBM
radixsort, and P-Burstsort for all five collections (see Section 4) on a Pentium IV
machine with a small 512 KB L2 cache. The bucket threshold used for P-burstsort is
32768.
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Previous improvements. A reduction in the number of bursts results in a reduc-
tion in string accesses. To that end, in the sampling-based burstsort variants we
used a small sample of strings (selected uniformly at random) to create an initial
approximate trie, prior to inserting all the strings in the trie [22]. Although this
approach reduced the number of cache misses, we believe there remains scope
for investigation into more sophisticated schemes.

In P-burstsort, strings are accessed by pointers to them; only the pointers
are moved, as is the case in traditional string sorting methods. It is vital that
the locality of string accesses is improved, especially during bursts and when
the buckets are being sorted. Hence, in the copy-based approach [20], strings
were actually copied into the buckets from the start to improve string locality,
admittedly at the cost of higher instruction counts. However, we found that the
performance improves significantly, largely due to reduced cache and TLB misses.

Memory use. The priority in the earlier versions of burstsort was to increase the
speed of sorting. Analysing the memory demand has so far been largely ignored,
but is a major focus in this paper; we outline the contributions below.

1.3 Related Work

String sorting. There have been several advances in fast sorting techniques de-
signed for strings. These have primarily focused on reducing instruction count,
assuming a unit-cost RAM model [1,14]. For example, three-way partitioning is
an important quicksort innovation [7]. Splaysort, an adaptive sorting algorithm,
introduced by Moffat et al [17], is a combination of the splaytree data struc-
ture and insertionsort. Improvements to radixsort for strings were proposed by
McIlroy et al [16], and by Andersson and Nilsson [2]. Bentley and Sedgewick [6]
introduced a hybrid of quicksort and radixsort named three-way radix quick-
sort [18]; they then extended this to produce multikey quicksort [6].

In this paper, we compare our algorithms with adaptive radixsort [2], multikey
quicksort [6] and MBM radixsort [16], as they have been observed to be amongst
the fastest [21]. The performance of other algorithms can be obtained from the
first author’s earlier papers [20,21].

Cache-aware algorithms. While the radix sorts have a low instruction count—the
traditional measure of computation speed—they do not necessarily use the cache
efficiently for sorting variable-length strings. In earlier experiments [21], on the
larger datasets there were typically 5 to 10 cache misses per string during radix-
based sorting on a machine with 1 MB L2 cache. Accesses to the strings account
for a large proportion of cache misses. Approaches that can make string sorting
algorithms more cache-friendly include: (a) using data structures that reduce
the number of string accesses; (b) improving the spatial locality of strings, so
that strings that are likely to be compared are kept nearer each other; and (c)
reducing or eliminating inefficient pointer-based string references.

Cache-oblivious algorithms. Frigo et al. [10] introduced cache-oblivious algo-
rithms, a novel design approach that respects memory hierarchies. While
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(previously-mentioned) cache-aware algorithms need to be aware of machine pa-
rameters and may extract the best performance from a particular machine, they
may not be portable. In contrast, the notion of cache-oblivious design suggests
a highly portable algorithm. Though the cache-oblivious model makes several
simplifying assumptions [9], it is nevertheless an attractive and simple model for
analyzing data structures in hierarchical memory. Recent results [8,4] indicate
that algorithms developed in this model can be competitive with cache-aware im-
plementations. Finally, while there has been related work in the external memory
domain, the techniques do not necessarily transfer well to in-memory algorithms.

1.4 Our Contributions

The goal of practical string sorting is to produce a fast and, ideally, an in-place
algorithm that is efficient on real-world collections and on real-world machines.
In this paper, we investigate the memory usage of burstsort and improve the
cache efficiency of the bucket sorting phase.

First, we redesign the buckets of P-burstsort so that the memory requirement
of the index structure is drastically reduced. Second, we also introduce a moving
field approach whereby a field from the trie node is moved to the point in the
bucket where a string is about to be inserted—and is thus shifted with each
string insertion—resulting in a further reduction in memory use. These memory
reduction techniques show negligible adverse impact on speed and are also ap-
plicable to the copy-based [20] variants of burstsort, though we do not evaluate
the effects here. As a consequence, memory usage is just 1% greater than an
in-place algorithm.

Third, the cache efficiency of bucket sorting is further improved by first copy-
ing the string suffixes to a small string buffer before they are sorted. This ensures
spatial locality for a process that may well access strings frequently.

1.5 Paper Organization

The remainder of the paper is organized as follows. In Section 2 we show how
a substantial redesign of the buckets results in significant reduction in memory
waste, so that the algorithm is barely more expensive than an in-place approach.
This work is enhanced in Section 2 with a brief discussion of the benefits of
moving various bookkeeping fields from the trie nodes to the buckets. In Section 3
we show how buffering a bucket’s strings, before sorting them, can lower the
running time by a further 30%. In Section 4 we outline the experiments that
we performed, and then analyze the results in Section 5. We conclude the paper
and set out future tasks in Section 6.

2 Bucket Redesign

The primary aim in this paper is to reduce the memory used by P-burstsort,
especially by the buckets. The bucket design used in the original P-burstsort [21],
is an array that grows dynamically, by a factor of 2, from a minimum size of
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2 up to a maximum size of 8192. While this design proved to be fast, it may
lead to significant amounts of unused memory. For example, theoretically, if the
number of pointers in the buckets were distributed uniformly in the range 1 to
L, on average about L/6 spaces in each bucket would be unused. Of course, on
most collections the distribution of the number of string pointers in a bucket
would not be uniform, but there is still waste incurred by barely-filled buckets.

In the BR variant of P-burstsort, we replace each bucket with an array of
pointers to sub-buckets. Each sub-bucket is allocated as needed: starting at size
2, it grows exponentially, on demand, until it reached size L/k, at which point
the next sub-bucket is allocated. When the total amount of sub-bucket space
exceeds L, the node and buckets are burst (as in P -burstsort). Naturally, there
is a trade-off between the time spent (re)allocating memory, and the space wasted
by the buckets.
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Fig. 3. P+BR+MF -Burstsort: This figure shows the index structure of P-burstsort after
incorporating the bucket redesign (BR) and moving field (MF) optimizations

In addition, an index structure is created to manage the sub-buckets; this
auxiliary structure must be small so its own creation does not outweigh the
benefit of smaller (sub-)buckets. The first component of the index structure, the
bucket index (BIND), is the dynamically-growing array of pointers to the sub-
buckets. It has some auxiliary fields that maintain information about the current
state of the sub-bucket structure. The BIND array grows cell-by-cell, only on
demand, therefore not wasting space. The other component is at the bucket
insertion point (BIP), where the next string suffix pointer would be inserted,
and therefore moves ahead one word with each insertion (see Figure 3).

In this P+BR-Burstsort variant, only pointers to the strings are copied to the
buckets, and the trie node contains two fields: a pointer to the BIND and a
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pointer to the BIP. The only bucket that does not grow in this BR manner is
the special bucket (⊥) for short (consumed) strings, whose BIND index can grow
arbitrarily large.

Note that the BIND structure is only accessed during the creation of the
bucket, adding a new sub-bucket, and during bursting. These occurrences are
relatively rare, compared with the number of times strings are accessed.

O(
√

L) bucket growth. From a theoretical point of view, exponentially-growing
buckets make sense principally when the maximum bucket size is unknown.
Given that we have a bound on the bucket size, from a worst-case, or uniform dis-
tribution, point of view, buckets that grow following the sequence

√
L, 2

√
L, . . . , L

seem to make more sense (see for example Exercise 3.2.3 in Levitin’s text [15]).
With typical values of L and k being 8192 and 32, our sub-bucket data struc-
ture does not quite match this, but it is close to a practical application of this
principle.

Moving fields from trie nodes to bucket. It is advantageous to keep the trie nodes
as compact as possible so that they are mostly cache-resident. In the Moving
Field (MF) approach, we copy the latter field fields to the unused space in the
bucket, just at the bucket insertion point (BIP). This approach makes burstsort
more scalable (due to compact nodes), while simultaneously saving memory.

3 Buffer-Based String Sorting

In P-burstsort, string suffixes are not moved from their original locations: the
aim is to sort the pointers to the strings, rather than the strings themselves. Nev-
ertheless, a significant proportion of the cache misses of burstsort occur when
the contents of the buckets are sorted. To be compared, the string suffixes must
be fetched into cache as required: on average each string must be compared
Θ(log(L/k)) times. In practice, the fetching of string suffixes observes poor spa-
tial locality, especially for strings that have large prefixes in common. Moreover,
with large lines in cache, those imported may not contain only bucket-string
content, but other data that is not useful.

It was observed, by Sinha et al. [20], that actually copying the strings into
buckets improves spatial locality, and cache efficiency. In that spirit, we introduce
a small buffer to copy the string suffixes into during the bucket-sorting phase to
improve their spatial locality and effectively use the cache lines. In a single pass
of the bucket of pointers, we fetch all the string suffixes. We then create pointers
to the new locations of the string suffixes, while keeping track of the pointers
to the actual strings. The extra buffer storage is reused for each bucket and
thus its effect on total memory used is negligible. Once the strings are sorted,
a sequential traversal of the pointer buffer copies the original pointers to the
source array in sorted order.

In Section 5 we show that this String Buffer (SB) modification increases the
sort speed, especially for collections with large distinguishing prefixes, such as
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URLs. Such collections require the most accesses to the strings and thus stand
to benefit most.

The only disadvantage is the amount of work involved in copying suffixes and
pointers to these buffers and then back to their source arrays. The SB approach
may perform poorly for collections with small distinguishing prefix, such as the
random collection, in which the strings may only be accessed once during bucket
sorting anyway. But even for such collections, this approach is expected to scale
better and be less dependent on the cache line size.

4 Experimental Design

Our experiments measure the time and memory usage of string sorting. In addi-
tion, we use cache simulators such as cachegrind [19] to measure the instruction
count and L2 cache misses.

Data Collections. We use four real-world text collections: duplicates, no dupli-
cates, genome, and URL. In addition, we also create a random collection in which
the characters are generateduniformly at random. These collections, whose details
are provided in Table 1, are similar to those used in previous works [21,22,20].

Table 1. Statistics of the data collections used in the experiments

Size Distinct Word
Words Occurrences

(Mbytes) (×105) (×105)

Duplicates 304 70 316
No duplicates 382 316 316
Genome 302 2.6 316
Random 317 260 316
URL 304 13 100

The duplicates and no duplicates collections were obtained from the Wall
Street Journal subcollection of TREC web data [12]. The duplicates collection
contains words in occurrence order and includes duplicates, while the no dupli-
cates collection contains only unique strings that are word pairs in occurrence
order. The genome collection consists of fixed-length strings (of length 9 char-
acters), extracted from nucleotide strings from the Genbank collection [5]. The
URL collection is obtained in order of occurrence from the TREC web data.

Algorithms compared with. The performance of the new burstsort enhancements
is compared to the original P-burstsort [21], adaptive radixsort [2], a fast multi-
key quicksort [6], and MBM radixsort [16].

Algorithm parameters. The buckets in burstsort are grown exponentially by a
factor-of-2 starting from a size of 2 to L, where L is the bucket threshold. In our
experiments we varied L from a minimum of 8192 to a maximum of 131, 072.
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Note that for each individual sub-bucket, L/k is 256, where k is the number of
sub-buckets. The alphabet size was restricted to 128 symbols with the random
collection having 95 symbols.

Table 2. Architectural parameters of the machine used for experiments

Workstation Pentium Pentium PowerPC

Processor type Pentium IV Core 2 PowerPC 970
Clock rate 2800 MHz 2400 MHz 1800 MHz

L1 data cache (KB) 8 32 32
L1 line size (bytes) 64 64 128

L2 cache (KB) 512 4096 512
L2 block size (bytes) 64 64 128

Memory size (MB) 2048 2048 512

Machines. The experiments were conducted on a 2800 MHz Pentium IV Machine
with a relatively small 512 KB L2 cache and 2048 MB memory. The operating
system was Linux with kernel 2.6.7 under light load. The highest compiler opti-
mization O3 has been used in all the experiments. We also used a more recent
dual-core machine with relatively large 4096 KB L2 cache as well as a PowerPC
970 architecture. Further details of the machines are shown in Table 2.

All reported times are measured using the clock function, and are the average
of 10 runs. As these runs were performed on a machine under light load and on
300 megabyte data sets, the standard deviation is small. On the PowerPC, owing
to the smaller memory, we used a smaller data set with 10 million strings [21].

5 Discussion

Bucket redesign and moving fields. All pointer-based string sorting algorithms
must create space for the pointer array. The key memory overhead of P-Burstsort
is its burst trie-style index structure. Table 3 shows this extra memory usage,
including unused space in buckets, memory allocation bytes and associated index
structures of the previous algorithm, and the variants introduced here.

The BR and MF modifications cause a large reduction in memory use. For the
three real-world collections (Duplicates, No Duplicates, and Genome) there is at
least a factor 35 reduction. Table 3 also confirms that increasing bucket sizes
result in smaller indexes in P+BR+MF -Burstsort, unlike in P-Burstsort (except
for the Random collection).

The BIND and BIP structures require additional maintenance and dynamic
memory allocation. Table 4 shows that the number of dynamic memory alloca-
tions, in the new variants, increased by over an order-of-magnitude. The good
news is that although the memory demand drops significantly, running times
increase by only 10% (see Table 5).

We also observe that the MF technique speeds up the sorting of the URL
collection in Table 5, due to the relatively large number of trie nodes in that
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Table 3. Memory use (in megabytes) incurred by the index structure of P-Burstsort
and (the new) P+BR+MF -Burstsort for different bucket thresholds and collections

Collections
Threshold P-Burstsort Duplicates No duplicates Genome Random URL

8192 None 94.37 109.37 53.37 47.37 23.85
+BR+MF 10.37 12.37 4.37 3.37 3.85

16384 None 94.37 100.37 57.37 50.37 24.85
+BR+MF 5.37 6.37 2.37 3.37 1.85

32768 None 94.37 95.37 48.37 50.37 24.85
+BR+MF 3.37 3.37 1.37 3.37 0.85

65536 None 90.37 92.37 55.37 61.37 25.85
+BR+MF 2.37 2.37 1.37 3.37 0.85

Table 4. Number of dynamic memory allocations of P-burstsort and P+BR+MF -
Burstsort. The bucket threshold is 32768.

Algorithm Duplicates No duplicates Genome Random URL

P-Burstsort 271,281 307,572 76,625 109,922 79,451
P+BR+MF -Burstsort 1,936,175 1,828,805 1,948,281 1,205,117 1,293,854

Factor increase 7.13 5.94 25.42 10.96 16.28

collection. Making these trie nodes compact with the MF enhancement makes up
for the cost of shifting the fields. Thus, these enhancements not only significantly
reduce the memory usage but also aids in speeding up sorting.

String buffer. The SB modifications, described in Section 3, are a successful
enhancement overall. Table 5 shows that for all real-world collections, which have
reasonable distinguishing prefix, this approach is beneficial. Only for the Random
collection, whose strings may need be fetched only once during bucket sorting,
does the string buffer approach result in a slight slowdown. The average number
of strings (for the Random collection) in each bucket is less than half the number
of cache lines, thus the strings are mostly cache-resident as they are sorted.

Table 5. Sorting time (in seconds) as a function of algorithm modification for all five
collections on the Pentium IV

Collections
P-Burstsort Duplicates No duplicates Genome Random URL

None 20.76 23.64 27.92 16.98 20.36
+SB 18.44 21.16 20.25 18.31 13.33
+BR 22.59 25.25 29.88 20.80 21.03
+BR+MF 23.11 26.02 30.00 22.40 20.65
+SB+BR+MF 22.04 24.71 23.08 29.39 13.87
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Fig. 4. Sorting time (in seconds) and L2 cache misses per string incurred by P-Burstsort
and P+SB-Burstsort as a function of bucket thresholds on the Pentium IV

Figure 4 and Table 5 confirms that for collections with larger distinguishing
prefix, such as genome and URL, the approach is indeed the most successful and
reduces running time by about 30%.

The increase in instruction count (using cachegrind), by up to 80% is more
than compensated for by small reductions in the number of L2 cache misses,
shown in Figure 4 (b). Moreover, on machines such as PowerPC (discussed be-
low), where the TLB misses are expensive, such an approach is beneficial. The
SB approach adapts better to the cache capacity and enhances scalability.

We observe that the BR and MF modifications lead to lower instruction
counts (by 7%) due to the reduced copying costs from using small sub-buckets
(even for the Random collection). The small increase in cache misses (of 8%)
by P+SB+BR+MF -Burstsort over P+SB-Burstsort for the real-world collections
are due to BIND accesses and moving fields during string insertion and bursts.
Combining all three modifications results in a lowering of running time in the
Genome and URL collections, a small increase in the Duplicates and No Dupli-
cates collections (of 6% and 4.5% respectively), but a poor performance in the
(unrealistic) Random collection. Below, we show that the performance of these
approaches on other machine architectures can simultaneously reduce memory
usage and indeed improve performance.

Other machine architectures. On the Pentium Core 2 machine, the running time
of P+BR-burstsort is faster than that of P-burstsort for all real-world collections
(shown in Table 6). Similarly, on the PowerPC, P+BR-burstsort was up to 10%
faster than that of P-burstsort (shown in Table 7). On another small cache
machine (PowerPC), the SB modification reduced the running time by up to 40%
(see Table 7). Thus, using a small buffer to copy string suffixes prior to bucket
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Table 6. Sorting time (in seconds) for all five collections on the Pentium Core 2
machine. The bucket threshold is 32768.

Algorithm Duplicates No duplicates Genome Random URL

Adaptive radixsort 13.63 15.04 17.75 9.72 9.01
MBM radixsort 15.57 16.01 22.38 10.61 13.53
Multikey 12.19 14.04 13.09 12.95 6.39
P-Burstsort 7.45 8.81 8.63 5.80 4.92

P+BR-Burstsort 7.25 8.64 8.31 6.10 4.60
P+BR+MF -Burstsort 7.26 8.75 8.23 6.28 4.54

Table 7. Sorting time (in seconds) for all five collections on the PowerPC 970 machine.
The collections contain 10 million strings. The bucket threshold is 32768.

Algorithm Duplicates No duplicates Genome Random URL

Adaptive radixsort 15.48 17.74 23.43 13.64 55.33
MBM radixsort 15.24 16.20 24.59 9.05 74.33
Multikey 14.91 17.16 21.94 18.68 58.75
P-Burstsort 10.22 11.71 16.69 7.19 48.26

P+SB-Burstsort 8.24 9.24 10.48 8.35 23.53
P+BR-Burstsort 9.26 10.79 14.90 7.66 45.60
P+BR+SB-Burstsort 7.68 8.74 9.25 9.50 22.61

sorting is beneficial to using the cache capacity productively while reducing the
TLB misses. The BR and SB techniques combine to produce the fastest times
while simultaneously reducing the memory usage significantly.

These results demonstrate that the modifications work well across different
machine architectures and aids in improving the speed while simultaneously
enhancing scalability.

6 Conclusions and Further Work

String sorting remains a fundamental problem in computer science. It needs to be
revisited because changes in computer architecture have not so much changed the
objective functions, but have changed the estimates we have of them. Burstsort
was already known to be fast: in this paper, its demands on main memory have
been significantly reduced, without running time being compromised.

The BR enhancement enables large reductions in the bucket size, with negligi-
ble impact on sorting time, even though it requires an order-of-magnitude more
dynamic allocations. The MF technique reduces the trie node memory usage by
moving fields to the unused space in the bucket and shifting them with each
string insertion. The success of the SB enhancement is further evidence that
accessing strings in arbitrary locations (using pointers) is inefficient and there
are benefits in improved spatial locality.
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Now that the index structure can be reduced to around 1% of the size of
the input arrays, we have produced an almost in-place string sorting algorithm
that is fast in practice. Briefly, burstsort with these optimizations, is a fast and
an almost in-place string sorting algorithm that is demonstrably efficient on
real-world string collections, including those with large distinguishing prefixes.

Further work. With large caches now available in multicore processors, it would
be interesting to see if our sampling approaches [22] can be developed further:
larger caches are expected to be more tolerant of sampling errors. Can burstsort
make significant speed increases by using multiple cores for sorting the buckets?
In future implementations, we intend to explore the effect of trie layouts such as
using an approximate van Emde Boas layout in a dynamic environment.
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