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Abstract. In many practical applications, the task is to optimize a non-
linear function over a well-studied polytope P as, e.g., the matching poly-
tope or the travelling salesman polytope (TSP). In this paper, we focus
on quadratic objective functions. Prominent examples are the quadratic
assignment and the quadratic knapsack problem; further applications
occur in various areas such as production planning or automatic graph
drawing. In order to apply branch-and-cut methods for the exact solu-
tion of such problems, they have to be linearized. However, the standard
linearization usually leads to very weak relaxations. On the other hand,
problem-specific polyhedral studies are often time-consuming. Our goal
is the design of general separation routines that can replace detailed
polyhedral studies of the resulting polytope and that can be used as a
black box. As unconstrained binary quadratic optimization is equivalent
to the maximum cut problem, knowledge about cut polytopes can be
used in our setting. Other separation routines are inspired by the local
cuts that have been developed by Applegate, Bixby, Chvátal and Cook
for faster solution of large-scale traveling salesman instances. By exten-
sive experiments, we show that both methods can drastically accelerate
the solution of constrained quadratic 0/1 problems.

Keywords: quadratic programming, maximum cut problem, local cuts,
crossing minimization, similar subgraphs.

1 Introduction

Optimizing a linear objective function over binary variables under additional lin-
ear constraints is NP-hard in general. One of the most successful frameworks for
solving such problems is branch-and-cut. In order to develop fast branch-and-cut
algorithms, it is crucial to determine good outer descriptions of the polytope P
consisting of the convex hull of all feasible solutions of the problem at hand. The
branch-and-cut approach is well developed, and the facial description of many
polytopes corresponding to classical combinatorial optimization problems is well
understood. For several problems practically efficient implementations exist.
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Instead of a linear objective function, we often desire to optimize a non-
linear objective function over P . We consider problems where the non-linearities
are locally defined, i.e., where every non-linear term in the objective function
depends on few variables. In this paper, we focus on binary quadratic functions,
however some of the proposed methods can easily be adapted to general non-
linear functions.

The easiest example of a binary quadratic optimization problem is the max-
imum cut problem, which is equivalent to optimizing a degree-two polynomial
over the hyper cube [4]. Many practical applications lead to non-linear objective
functions in a natural way. Several crossing minimization problems in automatic
graph drawing can be modeled as quadratic optimization problems over linear
ordering type polytopes. To give another example, the tool switching problem
arising in production planning can be solved by minimizing a polynomial of
degree three over a polytope that is closely related to the TSP.

In any integer programming based approach to such non-linear 0/1 problems,
the first step is to linearize the problem by introducing artificial variables that
model the non-linearities. We thus need to optimize the linearized objective
function over a polytope Q defined in a higher-dimensional space instead of
optimizing a non-linear objective function over the original polytope P .

It is easy to see that all facets of P yield valid inequalities for Q. A naive
branch-and-cut approach for the optimization over Q would use the separation
routines known for P , in combination with the constraints modeling the connec-
tion between original and new variables, and resort to branching if no violated
inequality can be detected any more. According to our experience, the perfor-
mance of such an approach is very weak. Often, facet-inducing inequalities for P
do not induce facets of Q, and the variables modeling non-linear terms change
the polyhedral structure significantly. This can even happen if only one product
is introduced and linearized.

In view of this, one could decide to undertake a polyhedral investigation of Q
and try to develop specialized separation routines. Doing this will – very probably
– be time consuming. Instead, much (human and computer) time could be saved
by having some effective black-box routines at hand that speed up the solution
algorithms but need only very limited knowledge about the problem structure.
For quadratic problems, we provide such black-box routines and show that they
drastically improve the running time of the solution algorithms.

Assuming that P is well understood, we ask the following question: How can
we exploit the knowledge of P for optimizing over Q, without detailed polyhedral
studies of Q? Even if the user is willing to invest some specific knowledge of Q,
he/she can still combine her own separation strategies with our general methods
outlined below. Moreover, the constraints produced by our methods might give
some insight into the polyhedral structure of Q and point at important classes
of cutting planes, which could be separated right from the start, using tailored
separation algorithms.

We address the general separation problem from two complementary direc-
tions. First assume that the objective function is quadratic. In case the problem
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is unconstrained, one can formulate it as a maximum cut problem on an associ-
ated graph [4]. Even in the presence of constraints, valid inequalities for the cut
polytope remain valid for Q after transformation, and can be separated using the
same transformation. In several applications, the transformed constraints of P
induce a face of the corresponding cut polytope, which gives some theoretical
evidence that the inequalities derived from the cut polytope can be helpful.

On the other hand, we want to exploit the knowledge of the structure of
the feasible solutions in P . Our proposed separation routine is inspired by
the local cuts that have been developed by Applegate, Bixby, Chvátal and
Cook (ABC2) [1]. With the help of local cuts, they could solve big TSP in-
stances being unsolved before. Recently, we proposed a variant of the local cut
generation procedure that has some advantageous features [3]. We call our cut-
ting planes target cuts. The main difference to the local cuts lies in a modified
LP formulation that makes it possible to avoid the time-consuming tilting steps,
as always a facet of the projected polytope is determined that can immediately
be lifted to a valid inequality for Q.

For non-linear problems, the local or target cut approach is well-suited, as
every non-linear term is determined by the original variables, so that the number
of vertices does not change from P to Q. In particular, going from linear to non-
linear objective functions does not slow down the cut generation significantly.
Another advantage of this approach is that the separation can be implemented as
a general framework that applies to all problems in this class. The user only needs
to input some information about the structure of the feasible solutions, which
is much easier than understanding the structure of the corresponding polytope.
This approach can be applied to arbitrary non-linear problems in which the
non-linearities are locally defined.

Our main contribution is to show that these approaches are very easy to use
and lead to much better performance of general branch-and-cut approaches. By
extensive computational experiments we show that not only the number of nodes
in the enumeration tree but also the running time decreases dramatically, when
compared to an algorithm that only uses the standard separation routines for
the well-studied polytope P .

For some classical quadratic 0/1 problems, such as the quadratic knapsack
problem or the quadratic assignment problem, special-purpose algorithms and
implementations exist that exploit the problem structure and lead to effective
algorithms. Clearly, we cannot compete with such problem-specific approaches.
In this work, we aim at designing general-purpose methods that help improve
the solution algorithms for quadratic problems for which not much is known
about their structure. In particular, the reference point for our evaluation is the
basic approach using standard linearization and separation for P .

The outline of this paper is as follows. We fix notation in Section 2. In Sec-
tion 3, we discuss cutting planes derived from the cut polytope. In Section 4,
we introduce target cuts and their usage in the context of quadratic prob-
lems. In Section 5, we explain the studied applications: the quadratic matching
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problem in Section 5.1 and the quadratic linear ordering and the linear ar-
rangement problem in Section 5.2 and 5.3. In Section 6 we present experimental
results.

2 Definitions

Consider a combinatorial optimization problem on a finite set E with feasible
solutions I ⊆ 2E and with a linear objective function c(I) =

∑
e∈I ce, where ce ∈

� for all e ∈ E. Without loss of generality, we desire to minimize c(I) over
all I ∈ I. Let the polytope P ⊆ �

E denote the convex hull of all incidence
vectors of feasible solutions. The corresponding integer linear program reads

min
∑

e∈E cexe

(P) s.t. x ∈ P
x ∈ {0; 1}E

In the following, we focus on objective functions that are quadratic in the vari-
ables x, i.e., we consider problems of the form

min
∑

e∈E cexe +
∑

e,f∈E;e�=f cefxexf

(QP) s.t. x ∈ P
x ∈ {0; 1}E,

For problems defined on a graph G = (V, E) with variables corresponding to
edges, and for two edges e = (i, j) and f = (k, l), we will use the notations cef ,
c(i,j)(k,l), and cijkl interchangeably. In order to address (QP) by integer pro-
gramming techniques, we apply the standard linearization: for each pair {e, f}
with cef �= 0, we introduce a binary variable yef modeling xexf , along with the
constraints yef ≤ xe, yef ≤ xf , and yef ≥ xe + xf − 1. The linearized problem
then reads

min
∑

e∈E cexe +
∑

e,f∈E;e�=f cefyef

(LQP) s.t. x ∈ P
yef ≤ xe, xf for all {e, f} with cef �= 0
yef ≥ xe + xf − 1 for all {e, f} with cef �= 0
yef ∈ {0; 1} for all {e, f} with cef �= 0

x ∈ {0; 1}E .

We are interested in the polytope Q spanned by all feasible solutions of (LQP).
Note that other methods for linearizing (QP) have been proposed in the lit-

erature. Nevertheless, we focus on the standard linearization, as it is the most
natural and popular way to linearize (QP) and as it can easily be implemented.

3 Cutting Planes from Maxcut

Consider a graph G = (V, E) with edge weights we. For W ⊆ V , the cut δ(W )
is defined as

δ(W ) = {(u, v) ∈ E | u ∈ W, v �∈ W} .
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Its weight is
∑

e∈δ(W ) we. The maximum cut problem asks for a cut of maximum
weight and is NP-hard for general graphs. The corresponding cut polytope, i.e.,
the convex hull of incidence vectors of cuts, is well studied [2,5], and practically
effective branch-and-cut implementations exist for its solution [6,7].

It is a well-known result that the problem of optimizing a binary quadratic
function without further constraints is equivalent to determining a maximum
cut in an auxiliary graph Glin = (Vlin, Elin) [4]. The latter contains a node for
each variable xe. For each quadratic term xexf occuring in the objective function
with cef �= 0, the edge set Elin contains an edge between the nodes corresponding
to xe and xf . Furthermore, an additional root node and edges from this node to
all nodes in Vlin are introduced. Now there exists a simple linear transformation
between the edge variables in the maximum cut setting and the linear variables
or products in the unconstrained quadratic optimization setting under which P
is isomorphic to the cut polytope of Glin [4].

If P is the unit hypercube, solving (LQP) thus amounts to determining a
maximum cut in Glin, i.e., to optimizing over a cut polytope defined in the Elin-
dimensional space. If P is a strict subset of the unit hypercube, i.e., if additional
constraints are present, these constraints can be transformed as well and we
derive that P is isomorphic to a cut polytope with further linear constraints. In
particular, all inequalities valid for the cut polytope still yield inequalities valid
for (LQP) and can be used in a cutting plane approach.

Clearly, intersecting the cut polytope with arbitrary hyperplanes in general
yields a non-integer polytope. The structure of the resulting polytope can be very
different from a cut polytope. In this case it is not clear whether the knowledge
about the cut polytope can help solving the constrained optimization problem.
However, several relevant applications exist in which the intersection of the cut
polytope with a set of hyperplanes cuts out a face of a cut polytope, at least if cer-
tain product variables are present, e.g., for quadratic assignment and quadratic
matching. The proof for the quadratic matching is a slight modification of the
proof for the quadratic assignment polytope.

In any case, we obtain a correct separation algorithm for (LQP) based on
cut separation. Within a branch-and-cut framework, we can always work in
the original model and apply other separation algorithms as desired. When it
comes to the cut separation, we build the graph Glin = (Vlin, Elin), transform
the fractional point, and separate the inequalities known for the cut polytope.
Found cutting planes are transformed back to yield cutting planes for (LQP).

4 Target Cuts for Quadratic 0/1 Problems

Usually, separation routines aim at generating faces or facets of some polytope
in question that share similar structure. They are said to follow the template
paradigm. Recently, ABC2 proposed some general separation routine yielding so-
called local cuts that are inequalities outside the template paradigm for which the
structure is not known [1]. The size of the problem is first reduced by projecting
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the incidence vectors of feasible solutions onto a small-dimensional space (ABC2

do this by shrinking nodes into supernodes).
For r ≤ m, let π denote a projection �m → �

r and let Q = π(Q) ⊆ �
r

denote the convex hull of the projected feasible solutions. Let x∗ ∈ �
m be

the point to be separated and x∗ = π(x∗) be its projection to �r. A face-
inducing inequality that separates some projected fractional point from Q can be
obtained by solving an appropriately chosen linear program. Its size is basically
determined by the number of its vertices. Thus, if the dimension of Q is not
too big, this is fast in practice. Furthermore, the size of the linear program can
be reduced by several considerations, and by delayed column generation only
necessary feasible solutions are enumerated. A found local cut is then sequentially
lifted and tilted until it becomes a facet for Q and then lifted to become feasible
for the original TSP polytope.

Recently, we proposed a variant of the local cuts that we call target cuts [3].
The local cut framework can easily be adapted to target cuts, however the time-
consuming tilting steps can be omitted. The reason for this is that we propose
a different cut-generating linear program that generates a facet of Q right away.
Furthermore, the volume of the generated facet is expected to be big. In the
following, we briefly explain the target cuts separation. Details can be found
in [3]. Subsequently, we will show that their use is favorable in the context of
quadratic problems.

Assuming for now that Q is full-dimensional, we choose a point q in the interior
of Q. In case the projected non-feasible point x∗ is not contained in Q, we want
to return a cutting plane that separates x∗ from Q. We argue in [3] that a facet
from Q can be obtained by solving the following linear program:

max a�(x∗ − q)
s.t. a�(xi − q) ≤ 1 for all i = 1, . . . , s

a ∈ �r

(1)

Here, x1, . . . , xs are the vertices of Q. A facet for Q violated by x∗ can be read
off the optimum solution of (1) as follows. If the optimum value of (1) is greater
than 1, the corresponding inequality a�(x− q) ≤ 1 is violated by x∗. Otherwise,
x∗ is contained in Q.

In case the dimension of Q is smaller than r, the linear program (1) can be
unbounded. In this case, a�(x− q) = 0 is a valid equation for Q violated by x∗,
if a is an unbounded ray in (1).

In order to reduce the size of LP (1), we adapted the delayed column gener-
ation procedure proposed for local cuts to the target cut case. The procedure
requires an oracle for maximizing any linear function over Q. Having this at
hand, one starts with a small, possibly empty, set of vertices x1, . . . , xh. Then a
target cut a�(x−q) ≤ 1 is produced for the polytope Qh = conv{x1, . . . , xh}, by
solving the corresponding linear program. Then, the oracle is called to maximize
the left-hand side of the inequality. In case the maximum is bigger than 1, we
add the maximal solution as a new xh+1 to (1). Otherwise we stop the proce-
dure, having found a valid target cut. This process is iterated until the generated
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inequality is found to be valid. The number of columns added in this procedure
is usually much smaller than the number of vertices of Q.

In order to use target cuts for quadratic problems, we need to specify which
projection to choose. In general, there is no easy answer to this question, and
the user might have to test the performance of different projections in order to
find which one gives best results. The projection needs to allow fast recognition
or determination of the points in �r that can be extended to feasible solutions
in the original space. For several applications this is possible with the trivial,
i.e., orthogonal, projection onto some sub-graph or sub-space, or the projection
through shrinking of nodes into supernodes. For a given (linear) projection,
lifting of a found inequality is trivial.

For some problems, certain projections seem to be favorable to others. For
example, in a problem in which the global structure is important, as is the case
for the TSP, a projection through shrinking should be prefered in case it allows
to characterize the points in �r having a preimage in �m under π. On the other
hand, there are problems in which the local structure seems to be characteristic of
the problem, as, e.g., for the matching problem. In the latter, trivial projections
can be used.

The usage of target cuts allows the implementation of a general framework in
which only the projection and the oracle need to be specified for the particular
application; everything else is problem-independent. Moreover, target cuts are
well-suited for quadratic 0/1 problems: the size of the cut generating program (1)
remains moderate, as there is a 1-1 correspondence between the vertices of the
polytope P and the polytope Q. Therefore, the projected linearized polytope Q
has the same number of vertices as π(P ), so that the number of rows of (1)
does not grow with the introduction of product variables. In other words, the
additional product variables do not affect the performance considerably, which
allows to deal with non-trivial chunk sizes.

5 Applications

Applications of constraint quadratic binary optimization problems abound. One
of the more traditional examples is the quadratic assignment problem; more
recently also the quadratic knapsack problem has attracted some interest. In
the following, we consider two other problems: the quadratic matching and the
quadratic linear ordering problem. More precisely, we consider applications that
are naturally modeled as such problems. In Section 5.1, we look at the problem
of finding highly similar subgraphs, which can be modeled as a quadratic (bipar-
tite) matching problem. In Section 5.2 and 5.3, we discuss two applications of
quadratic linear ordering: the bipartite crossing minimization problem and the
linear arrangement problem.

5.1 Finding Highly Similar Subgraphs – Quadratic Matching

Assume we are given two graphs G1 = (V1, E1) and G2 = (V2, E2), and we want
to get insight into how similar the two graphs are. This problem occurs in several
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practical applications, e.g., in automatic graph drawing and computational biol-
ogy. The task is to determine a matching of a subset or all nodes of G1 to those
of G2 such that as many edges as possible in the two graphs are mapped onto
each other. Obviously, this problem is a generalization of the graph isomorphism
problem in which we decide whether there exists a matching of the nodes in V1

to those in V2 such that all edges in E1 are mapped onto edges in E2, and vice
versa.

In the generalization we are concerned with, we also allow but penalize the
case in which u1 ∈ V1 is matched on u2 ∈ V2 and v1 ∈ V1 on v2 ∈ V2, but
exactly one of the edges (u1, v1) or (u2, v2) exists. A straight-forward model for
this problem is the following quadratic matching formulation

max
∑

i∈V1,j∈V2
xij +

∑
i,k∈V1,j,l∈V2

cijklxijxkl

(QMP) s.t.
∑

i∈V1
xij ≤ 1 ∀j ∈ V2∑

j∈V2
xij ≤ 1 ∀i ∈ V1

xij ∈ {0; 1} ∀i ∈ V1, j ∈ V2

with costs cijkl < 0 if either (i, k) ∈ E1 or (j, l) ∈ E2, but not both. Other-
wise cijkl ≥ 0. In this model, xij = 1 means that node i ∈ V1 is matched with
node j ∈ V2.

5.2 Bipartite Crossing Minimization – Quadratic Linear Ordering I

Consider a bipartite graph G = (V1 ∪V2, E). We want to draw G in the plane so
that the nodes of V1 and V2 are placed on two parallel horizontal lines. The task
is to minimize the number of crossings between edges, assuming that all edges
are drawn as straight lines. Several applications exist in the area of automatic
graph drawing. Clearly, the number of crossings only depends on the orders of
vertices on the two lines.

First, we assume that the nodes V1 on the upper level are layouted in some
fixed order, whereas the nodes on the lower level are allowed to permute within
the layer. The permutation of the nodes in V2 has to be chosen such that the
number of edge crossings is minimal. Let i, j ∈ V1, k, l ∈ V2 and edges (i, k), (j, l)
be present. Assume i is before j in the fixed order. No crossing exists in case k
is before l on the second level, otherwise there is a crossing.

Hence the bipartite crossing minimization problem with one fixed layer can
easily be formulated as a linear ordering problem. Now let us formulate the
problem with two free layers as a quadratic optimization problem over the linear
ordering polytope. For i, j, k, l chosen as above, there is no crossing in case i is
before j and k is before l, or j is before i and l is before k. Let us introduce
variables xuv that take value 1 if u is drawn before v, and 0 otherwise. Then we
have to solve the problem

max
∑

(i,k),(j,l)∈E xijxkl

(QLO1) s.t. x ∈ PLO

xij ∈ {0; 1} ∀i, j ∈ V1 or i, j ∈ V2 ,

where PLO is the linear ordering polytope.
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5.3 Linear Arrangement – Quadratic Linear Ordering II

The linear arrangement problems is given as follows. We are looking for a per-
mutation of n objects in such a way that a linear function c on the differences
of positions of the objects is minimized. More precisely, we desire to determine
a permutation π of {1, . . . , n} minimizing

∑

1≤i,j≤n

cij |π(i) − π(j)| .

To this end we use the fact that the distances of the positions of two elements i
and j with respect to a permutation π can be expressed in terms of betweenness
variables. This distance equals 1 plus the number of elements lying between i
and j, i.e., |π(i) − π(j)| = 1 +

∑
k xikxkj where xij is the usual linear odering

variable modeling whether π(i) < π(j) or not. Therefore, up to a constant, the
linear arrangement problem can be rewritten as

max
∑

i�=j �=k �=i cijxikxkj

(QLO2) s.t. x ∈ PLO

xij ∈ {0; 1} ∀i, j ∈ {1 . . . n}, i �= j.

Note that for this application only products of linear ordering variables are
required that are of the type xikxkj , which are only O(n3) many.

6 Experiments

We implemented the two separation approaches discussed in Section 3 and 4
within the branch-and-cut framework ABACUS, using CPLEX 11. All test runs
were performed on Xeon machines with 2.66 GHz.

For each application we addressed, we start a branch-and-cut algorithm with
the linear programming relaxation of the linearized problem (LQP). Separation
routines for the polytopes P are assumed to be readily available. We compare
the performance of this basic approach with the same approach extended by
appropriately used maximum cut separation as described in Section 3 and the
target cut separation as introduced in Section 4. For the tested applications, we
used trivial projections onto subsets of variables, called chunks.

The chunks were chosen randomly in the sense that we first generate a sub-
graph randomly and then project onto all those linear and product variables
that are completely determined by the subgraph. For the maximum cut separa-
tion, we separate the cycle inequalities [2]. We aimed at developing one relatively
abstract implementation that can easily be used for all quadratic problems of
type (QP) without having to incorporate many changes. Only the target-cut or-
acle and the test whether some vector represents a feasible solution are specific
to the problem and have to be implemented separately for each application. We
tested our approaches on randomly generated instances.
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6.1 The Quadratic Matching Problem

For the quadratic matching problem, we studied instances defined on complete
graphs. Note that a product xijxkl is necessarily zero if i, j, k, l are not pairwise
distinct. We create random instances where for given pairwise distinct i, j, k, l
the weight cijkl is non-zero with a given probability p. In this case, the weight is
randomly chosen from {−1000, . . . , 1000}. All linear weights cij are also chosen
randomly from {−1000, . . . , 1000}. An instance is thus defined by the number of
nodes n, the percentage p of products with non-zero coefficient, and a random
seed r for the weights.

Our implementations either determine a maximum quadratic matching or a
minimum perfect quadratic matching. In the basic branch-and-bound approach,
we separate the blossom inequalities that are known to be the only non-trivial
facets of the matching polytope. We compare this basic approach with a branch-
and-cut algorithm that uses separation of cutting planes derived from the cut
polytope and of target cuts on varying chunk sizes, as explained in Section 3
and 4. We also test an implementation with both separation routines.

It turns out that better performance can be achieved if the maximum-cut
separation procedure is only called in the root node of the branch-and-bound
tree, and not after branching has been done. For the target cuts, the extendable
solutions under a trivial projection are the incidence vectors of (not necessarily
perfect) quadratic matchings. For their generation, two oracles are implemented:
First, a heuristic greedy oracle tries to identify fast necessary incidence vectors
of quadratic matchings. In case it is successful, the delayed column generation
procedure continues. In case it is not successful, we test whether a violating
vector exists by calling an exact oracle. In the latter, the integer programming
formulation for the quadratic matching problem on the small chunk is solved
exactly. The column generation procedure is iterated until no more violating
vector is found by the exact oracle.

We show some running times in Table 1. We report the cpu time in seconds
and the number of subproblems needed to solve the instance to optimality. IP
refers to the basic algorithm, MxTy means that we apply cut generation if x = 1,
and target cut separation with chunk size y.

As can be expected, in practice the number of found blossom inequalities is
very small, often none of them is violated, and so the basic implementation solves
the problem basically via branching. Only very small instances can be solved to
optimality. It is obvious that the separation of inequalities from the cut polytope
considerably improves the running times. Also the target cut separation strongly
reduces the number of subproblems, the number of linear problems and the
running time. The best improvement is achieved when both separation routines
are included.

The optimal size of the chunks depends on the size of the instances. Clearly,
using too large chunks can increase the total runtime, since the effect of having
to solve less subproblems is foiled by the long running time needed to compute
the target cuts; the latter increases exponentially in the size of the chunk. For
the larger instances we considered, the best results where obtained with chunks
of 5 to 7 nodes.
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6.2 The Quadratic Linear Ordering Problem

According to our experience, separating inequalities known to be valid for the
polytope P does not speed up the optimization over Q considerably, and so
our basic branch-and-cut algorithm for the solution of (QLO1) and (QLO2)
only separates the 3-dicycle inequalities. The latter are known to be facets for
the linear ordering polytope. In contrast to the quadratic matching case, max-
cut separation turns out to be very effective for the quadratic linear ordering
problem, and so it is called in every node of the branch-and-bound tree. The
target cut separation is again performed on randomly chosen chunks that are
generated via trivial projection. The vectors that are extendable under the trivial
projection are again linear orderings on the chunks.

We studied instances defined on complete graphs. Again, weights of linear
and product variables are chosen randomly in {−1000, . . . , 1000}. All products
are generated. An instance is defined by the number of nodes n of the complete
graph and a random seed r for the randomly chosen weights. Moreover, we
created linear arrangement instances defined by random graphs, see Section 5.3.

In Table 2 we show some running times for both types of instances. As above,
we report the cpu time in seconds and the number of subproblems needed to
solve the instance to optimality.

The results are similar to the quadratic matching case: the basic implementa-
tion solves the problem essentially via branching, only very small instances can
be solved. Again it is obvious that the separation of inequalities from the cut
polytope considerably improves the running time. Also the target cut separation
strongly reduces the number of subproblems, the number of linear problems and
the running time. The best chunk sizes are 5 to 6.

In summary, our results show that both presented separation methods improve
the performance of the basic branch-and-cut approach significantly.

7 Conclusion

We present and evaluate two methods for improving the performance of branch-
and-cut approaches to general quadratic 0/1 optimization problems, address-
ing the problem from two different directions. The first method addresses the
quadratic structure, exploiting separation routines for cut polytopes, while the
second implicitly takes into account the specific structure of the underlying poly-
tope, applying a technique similar to local cut generation. Our results show that
the total running time can be decreased significantly by both techniques.
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