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Abstract. In this paper we consider parallel algorithms to partition
an array with respect to a pivot. We focus on implementations for cur-
rent widely available multi-core architectures. After reviewing existing
algorithms, we propose a modification to obtain the minimal number
of comparisons. We have implemented these algorithms and drawn an
experimental comparison.

1 Introduction

The partitioning of an array is a basic building block of many key algorithms,
as quicksort and quickselect. Partitioning an array with respect to a pivot x
consists of rearranging its elements such that, for some splitting position s, all
elements at the left of s are smaller than x, and all other elements are greater
or equal than x. It is well known that an array of n elements can be partitioned
sequentially and in-place using exactly n comparisons and m swaps, where m is
the number of greater elements than x whose original position is smaller than s.

In this paper we consider the problem of partitioning an array in parallel,
focusing on current widely available multi-core architectures.

Several algorithms have been proposed to partitioning in parallel [1,2,3,4,5].
In this paper, we consider a simple algorithm by Francis and Pannan [2], a fetch-
and-add based algorithm by Tsigas and Zhang [3] and a variation of the former
in the MCSTL library [5]. These algorithms, which we survey in Sect. 2, seem
suitable for a practical multi-core implementation. However, in order to avoid
too much synchronization, they perform more than n comparisons and m swaps.
Though very different in nature, they can be divided into three main phases: a) A
sequential setup of each processor’s work, b) a parallel main phase in which most
of the partitioning is done, and c) a cleanup phase, which is usually sequential.

In this paper we show that these algorithms disregard part of the work done in
the main parallel phase when cleaning up. In order to overcome this drawback,
we propose an alternative parallel cleanup phase that uses the whole comparison
information of the parallel phase. A small static order-statistics tree is used to
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efficiently locate the elements to be swapped and to swap them in parallel. With
this new method, we obtain scalable parallel partitioning algorithms that achieve
an optimal number of comparisons. We provide a detailed analysis.

We have implemented and evaluated all these algorithms, both with their
original cleanup and with our cleanup. Besides, the implementation is provided
according to the specification of the partition function of the Standard Template
Library (STL) of the C++ programming language [6]. Previously, only F&A
implementation was available in the MCSTL library [5]. Our goal is to get a
comparison of their behavior when executed on a currently inexpensive widely
available parallel machine, namely a machine with two quad-core processors.

The paper is organized as follows. In Sect. 2, we present the considered al-
gorithms. Then, in Sect. 3, we present our cleanup algorithm. Then, we present
our implementation of the previous algorithms and the experimental results in
Sect. 4 and 5 respectively. We sum up the conclusions of this work in Sect. 6.

2 Previous Work and a Variant

In this section, we present an overview of the partitioning algorithms we consider
in this paper. In the following, the input consist of an array of n elements and
a pivot. p processors are available and we assume p � n. Besides, we disregard
some details as rounding issues for the sake of simplicity.

Strided Algorithm. The Strided algorithm by Francis and Pannan [2] works
as follows:

1. Setup: The input is (conceptually) divided into p pieces of size n/p. The
pieces are not made of consecutive elements, but one of every p elements
instead. That is, the i-th piece is made up of elements i, i + p, i + 2p, . . . .

2. Main phase: Each processor i, in parallel, gets a piece, applies sequential
partitioning on it, and returns its splitting position vi.

3. Cleanup: Let vmin = min{vi : 1 ≤ i ≤ p} and vmax = max{vi : 1 ≤ i ≤ p}.
It holds that all the elements at the left of vmin and at the right of vmax

are already well placed with respect to the pivot. In order to complete the
partition, sequential partition is applied to the range (vmin, vmax).

The main phase takes Θ(n/p) parallel time. For random inputs, the cleanup
phase is expected to take constant time. However, [2] did not state that in the
worst-case it takes Θ(n) time and thus, there is no speedup. E.g. If the pieces are
made exclusively of either smaller or greater elements than the pivot and these
are alternated, then, vmin ≤ p and vmax ≥ n − p, and |(vmin, vmax)| = Θ(n).

Blocked Algorithm. Accessing elements with stride p as in Strided, can
provoke a high cache miss ratio. We propose Blocked to overcome this problem.
It uses blocks of b elements instead of individual elements. Each block in the piece
is separated by stride p blocks. If b = 1, Blocked is equal to Strided.



144 L. Frias and J. Petit

F&A Algorithms. Heidelberger et al. [1] proposed a parallel partitioning al-
gorithm in the PRAM model in which elements from both ends of the array are
taken using fetch-and-add instructions. Fetch-and-add instructions (atomically
increment a variable and return its original value) were introduced in [7] and are
useful, for instance, to implement synchronization and mutual exclusion.

In a first approach, exactly one element is taken at a time and so, at the end
of the parallel phase, the array is already partitioned. In this case, n fetch-and-
add operations are used. In a second approach, the algorithm is generalized to
blocks: a block of b elements is acquired at each fetch-and-add instruction. So,
the number of fetch-and-add instructions is n/b. However, in this case, some
sequential cleanup remains to be applied after the parallel phase.

Later, Tsigas and Zhang [3] presented a variant of the second approach for
multiprocessors. More recently, a further variant has been included in the MC-
STL library [5]. In the latter, the cleanup phase is partially done in parallel.

Let us now briefly describe these F&A algorithms:

1. Setup: Each processor takes two blocks, one from each end of the array.
Namely, one left block and one right block.

2. Main phase: While there are blocks, each processor applies the so-called
neutralize method to its two blocks. The neutralize method consists on ap-
plying the sequential partitioning algorithm to the array made by (concep-
tually) concatenating the right block to the left. However, the left and right
pointers to the current elements cannot cross the borders of a block. When a
left (right) block is completely processed (i.e. neutralized), a fresh left (right)
block is acquired and processed.

3. Cleanup: At this point, at most p blocks remain unneutralized. Each author
presents a different cleanup algorithm:
— In [3], while unneutralized blocks remain, one block is taken from each
end and neutralization is applied to them. Then, the unneutralized blocks are
placed between the neutralized blocks. At most p blocks need to be swapped
and this is done sequentially. Finally, sequential partition is applied to the
range of blocks with unprocessed elements.
— In [5], all unneutralized blocks are placed between the neutralized blocks.
Then, the parallel partitioning algorithm is applied recursively to this range.
The number of processors is divided by two in each call until there is only one
processor or block. Finally, the remaining range is partitioned sequentially.

The main parallel phase takes Θ(n/p) parallel time. The cleanup phase takes
Θ(bp) sequential time in [3]. Rather, in [5], it takes Θ(b log p) parallel time.

3 The New Parallel Cleanup Phase

In this section, we present our cleanup algorithm. It avoids extra comparisons
and swaps the elements fully in parallel. We have applied it on the top of
Strided, Blocked and F&A. First, we introduce the terminology. Then, we
present the data structure on which the algorithm relies. It follows the cleanup
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algorithm itself. Finally, we analyze the resulting Strided, Blocked and F&A
algorithms.

Terminology. In the following, we shall use the following terms to describe our
algorithm. A subarray is the basic unit of our algorithm and data structure. The
splitting position v of an array is the position that would occupy the pivot after
partitioning. A frontier separates a subarray in two consecutive parts that have
different properties. A misplaced element is an element that must be moved by
our algorithm. We denote by m the total number of misplaced elements and by
M the total number of subarrays that may have misplaced elements.

The Case of Blocked. In this case, subarrays correspond with exactly one
of the p pieces. Moreover, v can be easily known after the parallel phase. The
frontier of a subarray corresponds with the position that would occupy the pivot
after partitioning this subarray. Thus, a frontier defines a left and a right part.
A misplaced element corresponds either to an element smaller than the pivot
that is on the right of v (misplaced on the right) or to an element greater than
the pivot that is on the left of v (misplaced on the left). The total number of
subarrays that may have misplaced elements (M) is at most p.

The Case of F&A. In this case, a subarray corresponds to one block. The
frontier separates a processed part from an unprocessed part. The processed
part of left blocks is the left part and the processed part of right blocks is the
right part. Though v is unknown after the parallel phase, it holds that v is in
some range V = [vbeg, vend]. A misplaced element corresponds either with a
processed element that is in V or with an unprocessed element that is not in V .

We consider now the array of elements made by left blocks and the array of
elements made by right blocks. We denote by β the global border that separates
the left and right blocks (i.e. the point where no more blocks could be obtained).

In left blocks, a misplaced element on the left is an unprocessed element in
a position smaller than vbeg and a misplaced element on the right is a smaller
element than the pivot in a position greater or equal than vbeg. Let μl be the
total number of misplaced elements in left blocks and rank those misplaced
elements starting to count from the leftmost towards the right. In right blocks, a
misplaced element on the left is an element greater than the pivot in a position
smaller or equal than vend and a misplaced element on the right is an unprocessed
element in a position greater than vbeg. Let μr be the total number of misplaced
elements in right blocks and rank those misplaced elements starting to count
from the rightmost towards the left. Note that m = μl + μr and that the total
number of subarrays that may have misplaced elements M is at most 2p, because
there at most p blocks that may contain unprocessed elements and there at most
p blocks that may contain misplaced processed elements.

3.1 The Data Structure

We use a complete binary tree with M leaves (or the next power of two if M is
not a power of two) to know which pairs of elements must be swapped. This tree
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Fig. 1. Example of our data structure

is shared by all processors and is stored in an array (like a heap, which provides
easy and efficient access to the nodes).

Each leaf stores information of the i-th subarray. Specifically, how many ele-
ments are misplaced to the left and to the right of its frontier (mi

l and mi
r) and

how many elements are in the left and in the right to its frontier (ni
l and ni

r).
The internal nodes accumulate the information of their children but do not add
any new information. In particular, the root stores the information of the array
made of all the subarrays in the leaves.

So, our tree data structure can be considered as a special kind of order-
statistics tree in which the internal nodes have no information by themselves.
An order-statistics tree (see e.g. [8, Sect. 14]) perform rank operations efficiently
using the information of the size of the subtrees.

Figure 1 shows two instances of our tree data structure.
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3.2 The Algorithm

Tree Initialization Phase. In this phase the tree is initialized. Specifically, two
bottom-up traversals of the tree are needed. Only the first initialization of the
leaves depends on the partition algorithm used in the main parallel phase.

1. First initialization of the leaves. In the case of Blocked, the leaves val-
ues ni

l and ni
r for each subarray i can be trivially computed during the parallel

phase. In the case of F&A, the left (right) blocks that contain unprocessed
elements can be easily known after the parallel phase. The left (right) blocks
that contain misplaced elements but have already been processed can only
be located between the left (right) unprocessed blocks. In order to locate the
latter efficiently, we sort the unneutralized blocks with respect to the block
position in the array. Then, we iterate on left (right) blocks (sequentially) to
the left (right) of the border β until p neutralized blocks have been found or
the leftmost (rightmost) unneutralized block has been reached.

2. First initialization of the non-leaves. Using a parallel reduce operation,
each internal node computes its nj

l and nj
r values from its children. As a

result, the root stores the number of left and right elements in the whole
array. Thus, the splitting point v can be directly deduced.

3. Second initialization of the leaves. The leaves get the values mi
l and mi

r

using ni
l, ni

r and v. At this point, it may turn out that some subarrays have no
misplaced elements. This does not disturb the correctness of our algorithm.

4. Second initialization of the non-leaves. The number of misplaced ele-
ments for the internal nodes are computed using a second parallel reduction
operation on mj

l and mj
r fields.

Parallel Swapping Phase. In this phase, our tree data structure is queried so
that the misplaced elements can be swapped in parallel and no comparisons are
needed. This phase is independent of the specific partitioning algorithm.

The total number of misplaced elements is used to distribute the work equally
among the processors. A range of ranks [ri, si) of misplaced elements to swap
is assigned to each processor. The elements are swapped in ascending rank.
Specifically, the j-th misplaced left element is swapped with the j-th misplaced
right element. To locate the first pair of elements to swap, respective rank queries
are made to the tree. That is, a query is made for the ri left misplaced element
and another for the ri right misplaced element. Misplaced elements are swapped
as long as the rank si is not reached. If the rank si has not yet been reached
but the current subarray has no more misplaced elements, the next subarray is
fetched. Let ci be the position in the tree corresponding to the current subarray.
Then, the next subarray of left misplaced elements is in ci + 1 and the next
subarray of right misplaced elements is in ci − 1.

Completion Phase. This phase depends on the specific partitioning algorithm. In
the case of Blocked, the whole array has already been partitioned and we are
done. In the case of F&A, some unprocessed elements may remain. When this
happens, V is not empty and includes exclusively all the unprocessed elements.
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In order to obtain a valid partition, we apply log p times our parallel partitioning
algorithm recursively in V using blocks of half their original size until b elements
or less remain. Sequential partition is applied to those remaining elements. Note
that in each recursive call, the size of the problem is at most half the previous
because at least p blocks have been fully processed.

3.3 Cost Analysis

Theorem 1. Blocked and F&A perform exactly n comparisons when using
our cleanup algorithm.

Proof. The tree initialization and the parallel swapping phases perform no com-
parisons for both Blocked and F&A.

In the case of Blocked, the completion phase is empty. Therefore, no com-
parisons are performed during cleanup for Blocked and thus, comparisons are
only performed during the main parallel phase, which are exactly n.

In the case of F&A, after the first main parallel phase n− |V | elements have
been compared and |V | have remained unprocessed. In the next recursive step,
V is the input. Besides, elements can only be compared during a certain parallel
phase and at most once. All the elements must be eventually compared because
our algorithm produces a valid partition. Thus, our cleanup algorithm makes
exactly |V | comparisons, and n comparisons are needed as a whole.

Lemma 1. The tree initialization phase takes Θ(log p) parallel time for
Blocked and F&A.

Proof. The algorithm-independent part takes Θ(log p) parallel time because all
the work is done in parallel, and is dominated by the two parallel reductions,
which can be performed in logarithmic parallel time [9].

In the case of Blocked, the algorithm-dependent part takes constant parallel
time because each leaf can be initialized trivially and in parallel.

In the case of F&A, the algorithm-dependent part takes Θ(log p) parallel
time, because 2p elements are sorted and this takes Θ(log p) parallel time using
p processors [10].

Thus, in both cases, the total cost is Θ(log p) parallel time.

Lemma 2. The parallel swapping phase performs exactly m/2 swaps and re-
quires Θ(m/p) parallel time. In the case of F&A, this parallel time is O(b).

Proof. There are m misplaced elements after the main parallel phase. The paral-
lel swapping phase swaps pairs of misplaced elements so that their final position
is not misplaced. Therefore, m/2 swap operations are needed. Besides, the pairs
are evenly divided among the p processors. Thus swapping all of them takes
Θ(m/p) parallel time. In the case of F&A, m ≤ 2bp, thus parallel swapping
takes O(b) parallel time.

Theorem 2. The cleanup phase takes Θ(m/p + log p) parallel time for
Blocked and the whole partition takes Θ(n/p + log p) parallel time.
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Table 1. Summary of costs for Blocked and F&A algorithms

Blocked

total comparisons total swaps parallel time

original tree original tree original tree

main n ≤ n/2 Θ(n/p)

cleanup vmax − vmin 0 m/2 m/2 Θ(vmax − vmin) Θ(m/p + log p)

total n + vmax − vmin n ≤ n+m
2

≤ n+m
2

O(n) Θ(n/p + log p)

F&A

comparisons swaps parallel time

original tree original tree original tree

main n − |V | ≤ n−|V |
2

Θ(n/p)

cleanup ≤ 2bp |V | ≤ 2bp ≤ m/2 + |V | Θ(b log p) Θ(log2 p + b)

total ≤ n + 2bp n ≤ n−|V |
2

+ 2bp ≤ n+m
2

+ |V | Θ(n/p + b log p) Θ(n/p + log2 p)

Proof. From Lemmas 1 and 2 follows that the cleanup phase takes Θ(m/p+log p)
parallel time for Blocked. Given that m = O(n), the whole Blocked algorithm
takes Θ(n/p + log p) parallel time in the average and in the worst-case.

Theorem 3. Consider p ≤ b. The cleanup phase takes Θ(log2 p + b) parallel
time for F&A and the whole partition takes Θ(n/p + log2 p + b) parallel time.

Proof. F&A takes T (n, p) = Θ(n/p) + C(b, p), where C(b, p) is the cost of our
cleanup algorithm. C(b, p) = b + log p + T ′(b/2, log p) parallel time, and T ′ is
defined by the following recurrence:

T ′(b, i) =

{
O(3b + log p) + T ′(b/2, i − 1) if i > 1,

O(2b/p) otherwise.

There are 2βp blocks at the beginning of each recursive step and log p − 1
recursive steps are needed. Thus, C(b, p) = O(log2 p + b) parallel time.

Theorem 3 improves previous bounds for F&A (provided log p ≤ b, which is of
practical relevance).

Table 1 summarizes worst-case results for Blocked and F&A algorithms.

4 Implementation

Since implementations of Strided were not available, we have resorted to im-
plement it ourselves. We have also implemented our Blocked variant, which
improves Strided cache performance. As for F&A, we have taken its imple-
mentation from MCSTL 0.7.3-beta and we have implemented it ourselves.

Our implementation of F&A and the one in MCSTL differ in the following:
a) ours statically assigns the initial work and, so, avoids mutual exclusion here;
b) ours does not use volatile variables and critical regions are slightly simpler;
and c) ours avoids redundant comparisons using a better book-keeping.
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On the other hand, we have implemented our cleanup algorithm on the top
of the previous four algorithms.

The implementation is available at http://www.lsi.upc.edu/∼lfrias. It uses C++

and OpenMP. Besides, it follows the specification of the partition function of
the STL, so that it can be used instead of the sequential implementation.

5 Experimental Analysis

We have analyzed Strided, Blocked, and F&A with and without our cleanup
algorithm.

The tests have been run on a machine with 4GB of main memory and two
sockets, each one with an Intel Xeon quad-core processor at 1.66GHz with a
shared L2 cache of 4MB shared among two cores. Thus, there are 8 cores in
total. We have used the GCC 4.2.0 compiler with the -O3 optimization flag.

All tests have been repeated 100 times; figures show averages.

Basic Evaluation. We have first analyzed the speedup of partitioning in parallel
a large number of random integers. The speedup is always measured with respect
to the sequential partition algorithm of the STL. The block size b has been set
to 104 (see the reason below).

Figure 2 shows the results. In this figure, Strided refers to our implemen-
tation of Strided, BlockedStrided refers to our implementation of Blocked,
F&A MCSTL refers to the MCSTL implementation of F&A, F&A refers to our
own implementation of F&A. We add the suffix tree to the previous labels to
refer to the algorithm with our modified parallel cleanup phase.

These results show that F&A is better than Blocked, which is better than
Strided. Whereas the speedup of Strided is nonexistent for more than two
threads, Blocked performs reasonably well and our F&A implementation
achieves some better results than the MCSTL F&A. Besides, using our cleanup
phase maintains the same speedups for Strided and Blocked and improves
slightly the speedup of F&A, making it almost perfect for up to 4 threads.

The awful performance of Strided is due to its high cache miss ratio; its
behavior clearly contrasts with Blocked (which uses blocks of elements rather
than individual elements).

In order to understand the loss of performance when using more than 5 threads
we have devised two new experiments. The first one reproduces the previous
experiment but uses a slower comparison function. Its results are shown in Fig. 3.
In this case, all algorithms show similar behavior and excellent speedups with up
to 8 threads. Specifically, there is not much of a difference whether our cleanup
phase is used or not. Our second experiment has consisted in measuring the
speedup of a trivial parallel program to compute the sum of two arrays. The
resulting speedups (not shown) are also not optimal for the biggest number of
threads. So, we can conclude that memory bandwidth is limiting the efficiency
of the partitioning algorithms, which are demanding with regard to I/O.
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Fig. 5. Parallel quickselect speedup, n =
108 and b = 104

Influence of Block Size. Several algorithms rely on a block size parameter b. In
order to determine its optimal value, we have run various tests, with 8 threads
and different values of b. The results in Fig. 4 show that, except for very small
block sizes, the performance is not much affected. Besides, given that for smaller
input sizes, big block sizes are not convenient, our selection has been b = 104.

Operations Count. In order to analyze the behavior of the cleanup phase in
more detail, we have counted swap and comparison operations. Figures 6 and 7
show respectively the number of extra comparisons and swaps with respect to
the sequential implementation. They are depicted divided by the block size.

Figure 6 gives an experimental proof of Theorem 1. Combining our cleanup
algorithm with the original MCSTL algorithm does not achieve the optimality in
the number of comparisons, because this implementation makes extra compar-
isons whenever a new block is fetched in the main parallel phase. Specifically, our
experiments show that two comparisons are repeated per block in the average.

Figure 7 shows that our cleanup algorithm does not need more swaps than
the original cleanup algorithms. Essentially, the same number of extra swaps are
needed. In the case of F&A, we could not give such an equality analytically.
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As a by product, these results show that the number of misplaced elements
resulting from the parallel phase is really small, no matter the partitioning al-
gorithm. In particular, Strided is the algorithm that performs less extra oper-
ations (for a random input of integers). However, its performance is the worst
because of its bad cache usage.

Application: Quickselect. Quicksort and quickselect are typical applications of
partitioning. As quicksort offers two (not exclusive) ways to be parallelized —
parallelizing the partitioning and parallelizing the independent work by divide
and conquer—, we found more interesting analysing quickselect. For this test,
we have made that the STL nth_element function calls the parallel partitioning
algorithms in this paper instead of the sequential (unless the array is small).

The results are shown in Fig. 5. These are coherent with those of partition but
different given that the relative behavior between the algorithms changes slightly
with the size of the input. First, our F&A implementation advantage increases.
Second, our cleanup algorithm harms a little F&A based quickselect. Indeed,
in our experiments we have observed that for a big number of threads and as
input gets smaller, using our cleanup algorithm with F&A is counterproductive.
Finally, Fig. 5 shows that the simple Blocked algorithm performs quite well.

6 Conclusions

In this paper we have presented, implemented and evaluated several parallel
partitioning algorithms suitable for multi-core architectures.

From an algorithmic point of view, we have described a novel cleanup par-
allel algorithm that does not disregard comparisons made during the parallel
phase. This cleanup has successfully been applied to three partitioning algo-
rithms: Strided, Blocked (a cache-aware implementation of the former) and
F&A. In the case of Strided and Blocked, a benefit of our cleanup is re-
ducing its parallel time in the worst case from Θ(n) to Θ(n/p + log p). In the
case of F&A, we have shown how to modify it to reduce its parallel time from
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Θ(n/p+b log p) to Θ(n/p+log2 p). Unlike their original versions, these algorithms
perform the minimal number of comparisons when using our cleanup phase.

As automatic parallelization is still limited, and as parallel programming is
hard and expensive, the use of parallel libraries is a simple way to benefit from
multi-core processors. From this engineering perspective, we have contributed
carefully designed implementations of the afore mentioned algorithms that are
compliant with the specification of STL partition.

Finally, and from an experimental point of view, we have conducted an eval-
uation to compare those algorithms and implementations. According to our ex-
periments, the partitioning algorithm of choice is F&A, because it scales nicely.
Moreover, our implementation performs slightly better than the one in MCSTL.
However, the results also show that, in practice, the benefits of our cleanup al-
gorithm are limited. This happens because the number of misplaced elements
after the parallel phase is very small.

Our experiments also show that I/O between the memory and the processor
limits the performance achieved by parallel implementations as the number of
threads increases. It remains to be further investigated how these results change
for a bigger number of available cores or/and memory bandwidth.
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