


Lecture Notes in Computer Science 5038
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Catherine C. McGeoch (Ed.)

Experimental
Algorithms

7th International Workshop, WEA 2008
Provincetown, MA, USA, May 30–June 1, 2008
Proceedings

13



Volume Editor

Catherine C. McGeoch
Department of Mathematics
and Computer Science
Amherst College
Amherst, MA, USA
E-mail: ccm@cs.amherst.edu

Library of Congress Control Number: 2008927191

CR Subject Classification (1998): F.2.1-2, E.1, G.1-2, I.3.5, I.2.8

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-68548-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68548-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12275052 06/3180 5 4 3 2 1 0



Preface

The Workshop on Experimental Algorithms, WEA, is intended to be an inter-
national forum for research on the experimental evaluation and engineering of
algorithms, as well as in various aspects of computational optimization and its
applications. The emphasis of the workshop is the use of experimental meth-
ods to guide the design, analysis, implementation, and evaluation of algorithms,
heuristics, and optimization programs.

WEA 2008 was held at the Provincetown Inn, Provincetown, MA, USA, on
May 30 – June 1, 2008. This was the seventh workshop of the series, after Rome
(2007), Menorca (2006), Santorini (2005), Rio de Janiero (2004), Asconia (2003),
and Riga (2001).

This volume contains all contributed papers accepted for presentation at the
workshop. The 26 contributed papers were selected by the Program Committee
on the basis of at least three referee reports, some contributed by trusted external
referees.

In addition to the 26 contributed papers, the program contained two invited
talks. Camil Demetrescu, of the University of Rome “La Sapienza,” spoke on
“Visualization in Algorithm Engineering.” David S. Johnson of AT & T Labs –
Research, gave a talk on “Bin Packing: From Theory to Experiment and Back
Again.”

We would like to thank the authors who responded to the call for papers, our
invited speakers, the members of the Program Committee, the external referees,
and the Organizing Committee members for making this workshop possible.

March 2008 Catherine C. McGeoch



Organization

Program Committee

Catherine C. McGeoch (Chair) Amherst College (USA)
Lars Arge University of Aarhus (Denmark)
Jon Bentley Avaya Laboratories (USA)
Gerth Stolting Brodal University of Aarhus, BRICS (Denmark)
Adam Buchsbaum AT & T Labs (USA)
Camil Demetrescu University of Rome “La Sapienza” (Italy)
Thomas Erlebach University of Leicester (UK)
Irene Finocchi University of Rome “La Sapienza” (Italy)
Andrew Goldberg Microsoft (USA)
Mark Goldberg Rensselaer Polytechnic Institute (USA)
Michael Goodrich University of California, Irvine (USA)
Richard Ladner University of Washington (USA)
Ian Munro University of Waterloo (Canada)
Stefan Naeher University of Trier (Germany)
Sotiris Nikoletseas University of Patras and CTI (Greece)
Luis Paquete University of Algarve (Portugal)
Mike Preuss University of Dortmund (Germany)
Mauricio G.C. Resende AT & T Labs (USA)
Celso Ribeiro Universidade Federal Fluminense (Brazil)
Steve Skiena Stony Brook University (USA)
Matt Stallmann North Carolina State University (USA)
Cliff Stein Columbia University (USA)
Thomas Steutzle IRIDIA, Université Libre de Bruxelles

(Belgium)
Roberto Tamassia Brown University (USA)
Stefan Voss University of Hamburg (Germany)
Dorothea Wagner Universität Karlsruhe (Germany)

Referees

Mohammad Abam Daniel Delling Allan Jorgensen
Reinhard Bauer Paola Festa Alexis Kaporis
Vincenzo Bonifaci Bob Fraser Marcus Krug
Saverio Caminiti Marco Gaertler Veli Makinen
Ioannis Caragiannis Mark Goldberg Caserta Marco
Marco Chiarandini Robert Görke Sascha Meinert
Albert Choi Michael Hirsch Thomas Moelhave
Razaul Alam Chowdhury David Johnson Alberto Moraglio



VIII Organization

Gabriel Moruz Franz Rendl Renato Werneck
Pat Nicholson Peter Sanders Ke Yi
Richard Peng Srinivasa Rao Satti Martin Zachariasen
Giuseppe Persiano Frank Schwartz Christos Zaroliagis
Rajeev Raman Silvia Schwarze
Christoforos Raptopoulos Matthew Skala

WEA Steering Committee

Edoardo Amaldi Politecnico di Milano (Italy)
David A. Bader Georgia Institute of Technology (USA)
Josep Diaz T.U. of Catalonia (Spain)
Guiseppe F. Italiano University of Rome “Tor Vergata” (Italy)
David Johnson AT & T Labs (USA)
Klaus Jansen Universität Kiel (Germany)
Kurt Mehlhorn Max-Plank-Institut für Informatik (Germany)
Ian Munro University of Waterloo (Canada)
Sotiris Nikoletseas University of Patras and CTI (Greece)
Jose Rolim (Chair) University of Geneva (Switzerland)
Pablos Spirakis University of Patras and CTI (Greece)



Table of Contents

Reducing Splaying by Taking Advantage of Working Sets . . . . . . . . . . . . . 1
Timo Aho, Tapio Elomaa, and Jussi Kujala

Engineering Burstsort: Towards Fast In-Place String Sorting . . . . . . . . . . 14
Ranjan Sinha and Anthony Wirth

Comparing Integer Data Structures for 32 and 64 Bit Keys . . . . . . . . . . . . 28
Nicholas Nash and David Gregg

A New Graph-Theoretical Model for k-Dimensional Guillotine-Cutting
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

François Clautiaux, Antoine Jouglet, and Aziz Moukrim

Layer-Free Upward Crossing Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Markus Chimani, Carsten Gutwenger, Petra Mutzel, and
Hoi-Ming Wong

On the Efficiency of a Local Iterative Algorithm to Compute Delaunay
Realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Kevin M. Lillis and Sriram V. Pemmaraju

Computing Branch Decomposition of Large Planar Graphs . . . . . . . . . . . . 87
Zhengbing Bian and Qian-Ping Gu

Experimental Evaluation of an Exact Algorithm for the Orthogonal
Art Gallery Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Marcelo C. Couto, Cid C. de Souza, and Pedro J. de Rezende

Computing Multiple Watchman Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Eli Packer

Engineering Parallel In-Place Random Generation of Integer
Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Jens Gustedt

Parallel Partition Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Leonor Frias and Jordi Petit

Broadword Implementation of Rank/Select Queries . . . . . . . . . . . . . . . . . . . 154
Sebastiano Vigna

Efficient Implementations of Heuristics for Routing and Wavelength
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Thiago F. Noronha, Mauricio G.C. Resende, and Celso C. Ribeiro



X Table of Contents

Myopic Distributed Protocols for Singleton and Independent-Resource
Congestion Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Dimitris Kalles, Alexis C. Kaporis, and Paul G. Spirakis

When to Reap and When to Sow – Lowering Peak Usage with Realistic
Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Amotz Bar-Noy, Yi Feng, Matthew P. Johnson, and Ou Liu

Characterizing the Performance of Flash Memory Storage Devices and
Its Impact on Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Deepak Ajwani, Itay Malinger, Ulrich Meyer, and Sivan Toledo

Fast Local Search for the Maximum Independent Set Problem . . . . . . . . . 220
Diogo V. Andrade, Mauricio G.C. Resende, and Renato F. Werneck

Optimal University Course Timetables and the Partial Transversal
Polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Gerald Lach and Marco E. Lübbecke

A Basic Toolbox for Constrained Quadratic 0/1 Optimization . . . . . . . . . 249
Christoph Buchheim, Frauke Liers, and Marcus Oswald

Empirical Investigation of Simplified Step-Size Control in Metaheuristics
with a View to Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Jens Jägersküpper and Mike Preuss

Reconstructing Phylogenetic Networks with One Recombination . . . . . . . 275
Ernst Althaus and Rouven Naujoks

Exact Algorithms for Cluster Editing: Evaluation and Experiments . . . . . 289
Sebastian Böcker, Sebastian Briesemeister, and Gunnar W. Klau

Combining Hierarchical and Goal-Directed Speed-Up Techniques for
Dijkstra’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Reinhard Bauer, Daniel Delling, Peter Sanders,
Dennis Schieferdecker, Dominik Schultes, and Dorothea Wagner

Contraction Hierarchies: Faster and Simpler Hierarchical Routing in
Road Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Robert Geisberger, Peter Sanders, Dominik Schultes, and
Daniel Delling

Bidirectional A∗ Search for Time-Dependent Fast Paths . . . . . . . . . . . . . . 334
Giacomo Nannicini, Daniel Delling, Leo Liberti, and
Dominik Schultes

Multi-criteria Shortest Paths in Time-Dependent Train Networks . . . . . . 347
Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363



Reducing Splaying by Taking

Advantage of Working Sets

Timo Aho, Tapio Elomaa, and Jussi Kujala

Department of Software Systems, Tampere University of Technology
P.O. Box 553 (Korkeakoulunkatu 1), FI-33101 Tampere, Finland

{timo.aho,tapio.elomaa,jussi.kujala}@tut.fi

Abstract. Access requests to keys stored into a data structure often
exhibit locality of reference in practice. Such a regularity can be mod-
eled, e.g., by working sets. In this paper we study to what extent can
the existence of working sets be taken advantage of in splay trees. In
order to reduce the number of costly splay operations we monitor for
information on the current working set and its change. We introduce a
simple algorithm which attempts to splay only when necessary. Under
worst-case analysis the algorithm guarantees an amortized logarithmic
bound. In empirical experiments it is 5% more efficient than random-
ized splay trees and at most 10% more efficient than the original splay
tree. We also briefly analyze the usefulness of the commonly-used Zipf’s
distribution as a general model of locality of reference.

1 Introduction

Many search trees facilitate efficient access to the stored items by keeping the tree
in balance using rotations [1]. The balance invariant is maintained independent
of the sequence of access requests observed. Splay trees [2], on the other hand,
manage to do without any invariant, but need to splay in connection of each
access and update. Splay trees lose the provably logarithmic worst-case bounds
of individual operations, but still behave well under amortized analysis. The need
for (expensive) splaying can be reduced by randomizing the decision of whether
to splay or not in connection of an operation [3,4] as well as by heuristic limit-
splaying algorithms [2,5,6].

Several theoretical results indicate that splay trees should work particularly
well when there is locality of reference in the request sequence [2]. However,
some empirical studies [6,7,8] have indicated that they could be actually at
their best in highly dynamic environments, where the focus of locality drifts
over time. Moreover, despite careful implementation basic splay tree variations
have empirically been observed to be less efficient than red-black trees (RBTs),
standard binary search trees (BSTs), and hashing at least in some situations
[6,7]. Randomized adaptive data structures can do better [4,6], but only heuristic
limit-splaying has been competitive in practice [6]. However, some recent studies
[9,10] have demonstrated that in some settings splay trees may be more efficient

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 T. Aho, T. Elomaa, and J. Kujala

than other BSTs. We hope that paying better attention to the properties of the
input— splaying only when necessary and useful —would lead to more efficient
performance.

Randomized splay trees achieve some practical savings without giving in on
asymptotic efficiency. Nevertheless, they still do not pay any attention to the
properties of the request sequence. The best advantage of randomization has
been shown for fixed probability distributions, while request sequences with high
dynamic locality of reference benefit from randomization only slightly [4]. Our
aim in this paper is to study whether the amount of splay operations could be
reduced more efficiently. In other words, we investigate how large savings (if any)
can be achieved by monitoring the actual input that is seen.

In particular, we examine access request sequences that exhibit locality of
reference in the form of working sets [11]. This means that, at any time interval,
most accesses refer only to a small portion of all keys— the current working set.
Real-world situations often conform with this assumption. Of course, we cannot
afford to implement a too complicated request sequence monitoring method,
because then we would be destined to lose in time consumption to the in-practice
efficient (randomized) splay trees.

We will introduce and analyze a quite straightforward version of the splay tree
which takes the existence of working sets in the request sequence into account.
The algorithm maintains a (discounted) counter to monitor the (average) depths
of recent searches in the tree. Low average search depth indicates that a working
set exists near the root of the tree and is being actively used. Occasional deep
searches do not change the situation. Only when the searches are constantly
deep, is there need to update the splay tree.

The remainder of this paper is organized as follows. In Section 2 we briefly
recapitulate splay trees and their relation to working sets. Section 3 presents
the main idea of conditional adaptation of a binary search tree studied in this
paper. The splay tree algorithm based on this idea is introduced in Section 4.
An empirical evaluation of the algorithm is reported and analyzed in Sections 5
and 6. Finally, Section 7 gives the concluding remarks of the paper.

2 Adaptive Data Structures and Working Sets

A splay tree is a BST with the keys in symmetric order. In it the accessed item
is elevated to the root of the tree using splay rotations [2]. These operations keep
the tree pretty well in balance. Because no other balancing is enforced, a splay
tree does not contain any additional information and, thus, does not require extra
storage space. Because of its strategy, a splay tree also keeps recently accessed
items very near the root. Thus, it automatically handles also working sets quite
efficiently. On the downside, the accessed key is splayed to the root even if it is
accessed only once during the whole access sequence. Also unnecessary splaying
is executed even if the current working set is near the root and, thus, already
efficiently accessible.



Reducing Splaying by Taking Advantage of Working Sets 3

Sleator and Tarjan [2] proved many interesting bounds and properties for the
time consumption of splay trees. In this paper we need only one of these results.
The formulation of the following theorem comes from Albers and Karpinski [4].
Throughout this paper we denote by m the number of access requests in the
operation sequence and by n the number of keys mentioned (all of them stored
in the tree).

Theorem 1 (Balance Theorem). The total access time incurred by an access
sequence is at most 3m log2 n + m + C, where C = n log2 n.

There are two basic implementations for splay trees: top-down and bottom-
up splaying. Asymptotically their access times are the same, but the practical
efficiency of these implementations has been under some controversy [6]. In our
experiments top-down splaying was always more efficient than the bottom-up
version. Therefore, we report our results using top-down splaying with all the
algorithms.

An interesting theoretical examination of splay trees has been presented by
Subramanian [12]. He proposed a more general group of trees possessing simi-
lar properties as splay trees. The splay heuristic has additionally been applied
in other tree structures [13]. Iacono [14] has also discussed the topic of splay
trees and working sets. He presented new distribution sensitive data structures
consisting of multiple trees and proved very interesting features for them.

After the submission of this paper we learned that independent of us Lee and
Martel [10] have proposed an algorithm very similar to ours for cache efficient
splaying. Their algorithm uses a sliding window of accesses. The algorithm exe-
cutes splaying if a too large portion of the accesses is deeper than a predefined
limit depth. They also present experiments somewhat similar to ours. However,
their test setting is more static.

For self-organizing lists a heuristic with some reminiscence with the splaying
operation is the move-to-front rule [15]. Amer and Oommen [16] have recently
examined the effect of locality of reference in self-organizing lists.

3 Conditional Adaptation of a Binary Search Tree

Before introducing the BST algorithm intended to cope with working sets, we
give the basic philosophy of the algorithm: how to identify a working set and its
change.

We execute splay operations only when the active working set is not near
the root or when the whole tree is unbalanced. Thus, unnecessary splaying is
avoided in accessing a single item outside the working set as well as an item
of the working set already near the root. The latter is useful especially when
the access operations are approximately uniformly distributed among the items
in a working set; in other words, there are not several layers of working sets.
However, assuming this would be very restrictive and, thus, we do not use it in
the paper.



4 T. Aho, T. Elomaa, and J. Kujala

In order to gain knowledge of the input we simply maintain a discounted
depth counter, which gives us information about the relation between on-going
access operations and the current working set. If the last few access operations
are deep, we can conclude that the working set has changed or the tree is not in
balance. Thus, there is need to splay to correct the situation.

For our counter we need an approximate value for the size of working sets
w. See e.g. [11,17] for techniques on approximating w. With this value we can
calculate the limit depth limitw, which represents the acceptable average depth
for access operations in working sets. We set limitw = a log2(w + 1), where the
multiplier a is a constant chosen suitably for the current environment.

The value of the condition counter is updated in connection of an access
operation to depth as follows:

counter ← d · counter + depth − limitw,

where the discounting factor d, 0 ≤ d < 1, is a constant regulating the impact
of the history of access operations on the current value. The difference depth −
limitw tells us how much (if at all) below the limit depth we have reached. If the
value of counter is non-positive we may assume that splaying is not required.
On the other hand, a positive value suggests that the operation is needed.

Taking discounted history into account ensures that isolated accesses outside
the working set do not restructure the tree needlessly. On the other hand, giving
too much weight to earlier accesses makes the data structure slow to react to
changes in the working set.

We could as well let the value of limitw change during the execution of algo-
rithm. In fact, in our empirical evaluation we use a dynamically changing limitw.
However, for a more straightforward analysis we assume for the time being that
the value is constant. We also assume that the accessed item can be found in
the tree; if not, the value of counter should be left unchanged.

There are alternatives for our approach. We could, for example, get rid of the
whole discounting philosophy and use individual access counters for the keys [5].
These counters should be included either in the nodes of the tree or kept in a
separate data structure. However, e.g., Lai and Wood [5] have already inspected
the first approach with splay tree. Also Seidel and Aragon [18] introduced ran-
domized search trees and Cheetham et al. [19] conditional rotating based on
this approach. Because keeping the nodes free from additional information is an
essential part of splay trees, we would nevertheless like to find another way.

On the other hand, if the counters were kept in a separate data structure,
updating this information would be problematic. We are, anyway, mostly inter-
ested in only the last access operations. Thus, too static counters would not react
quickly enough to the altering working set. Hence, we should have a technique to
decrease the significance of old access operations. We are not aware of a solution
that would not raise the running time too much. Lee and Martel [10] solve the
problem by counting only the amount of deep accesses. Thus their solution loses
information about the access depths.



Reducing Splaying by Taking Advantage of Working Sets 5

procedure Wsplay(x)

(1) if counter > 0 then
(2) depth ← Splay(x)
(3) counter ← depth − limitw

else
(4) depth ← BSTaccess(x)
(5) counter ← counter · d + depth − limitw

(6) if counter > 0 then
(7) Splay(x)
(8) counter ← depth − limitw

4 The Algorithm Detecting Working Sets: Wsplay

Let us now introduce an algorithm based on the information collecting approach
described above. Wsplay (Algorithm 1) simply splays whenever the condition
counter implies that the working set is changing.

Function BSTaccess implements the standard BST access and returns the
depth of accessed item. As we want to execute the more efficient top-down version
of splaying, we splay if counter indicates the need of splaying in the beginning of
access. This is the case when the previous access operation— which necessarily
included splaying— was deep. Thus we avoid doing unnecessary BST access
before every top-down splay. Otherwise we access the item, update the condition
counter, and splay if the updated counter value indicates a need for it. Observe
that after each execution of the Splay function, the history of access depths is
erased.

We assume that the function Splay also returns the original depth of the ac-
cessed item. Note that setting d = 0 makes Wsplay very similar to the algorithm
introduced by Sleator and Tarjan in the Long Splay Theorem [2, Theorem 7].

We now prove a logarithmic bound for the running time of Wsplay. Recall
that m is the length of the access sequence and n the number of nodes in the splay
tree. The sequence of access operations H is divided in two disjoint categories.
Let Hs consist of access operations including splaying and Hn of those without
a splay operation. Because the tree structure does not change as a result of the
accesses in Hn, the time consumption of these two sequences can be analyzed
separately.

The sequence Hs essentially consists of splay operations. Only constant time
overhead is caused by counter updating. Thus, the time consumption on Hs is
bounded by Theorem 1.

To derive a bound for the time consumption on the sequence Hn, we analyze
the values of variable counter during the access operations of a single continuous
sequence Hc ⊆ Hn, Hc = 〈h1, h2, . . . , hc〉. Either the first access operation h1

is the first access in the whole sequence H or its predecessor includes splaying.
During Hc splay operations are not executed. Let us denote the values of the

Algorithm 1. The Wsplay algorithm



6 T. Aho, T. Elomaa, and J. Kujala

variable counter right after the first update in the algorithm on line 5 with
subindices, respectively. Note that the updates on lines 3 and 8 are not executed
because no splay operations are executed in Hn. In particular, counter0 is the
value of the variable in the beginning of the access h1. By the definition of Hc

counter0 ≤ 0. Let depth(hi) be the depth of access operation hi.
With these definitions we give a bound for the average access depth in the

sequence Hc. To achieve this, we need to prove that if splay operations are
not done the value of counter i gives a sort of a bound for the depth of access
operation hi. Intuitively the idea is to show that if the counter is never above 0,
the average depth of accesses cannot be too much larger than limitw.

Lemma 1. If for all l, 0 ≤ l < c, counterl ≤ 0, then for all i, 1 ≤ i ≤ c,
i∑

j=1

(depth(hj)− limitw) + counter0 ≤ counteri.

Proof. During the access operations hi, 1 ≤ i ≤ c, no splay operation is executed
and, thus, it holds that

counter i =
i∑

j=1

(depth(hj)− limitw) di−j + dicounter0.

We prove the claim by induction over the index i.
Let i = 1. Because 0 ≤ d < 1, it is clear that depth(h1)− limitw + counter0 ≤

depth(h1)− limitw +d ·counter0 = counter1. Hence, the claim holds in this case.
Let us then assume that the claim holds when 1 ≤ i = k < c. We focus on

the situation i = k + 1. By assumption we know that counterk ≤ 0. Thus,

counterk+1 = counterk · d + depth(hk+1)− limitw

≥ counterk + depth(hk+1)− limitw

≥
k+1∑

j=1

(depth(hj)− limitw) + counter0.

Hence, the lemma is valid.

Because the value of counter0 is assigned during the last splayed access, we know
that counter0 ≥ −limitw. We also know that counter c ≤ 0 and, thus, by Lemma
1 we have that

c∑

i=1

depth(hi)− limitw · (c + 1)

≤
c∑

i=1

depth(hi)− limitw · c + counter0 ≤ counter c ≤ 0

⇔ 1
c

c∑

i=1

depth(hi) ≤
(

1 +
1
c

)
limitw ≤ 2 limitw.

The bound is strict: it happens, e.g., when counter0 = −limitw, depth(h1) =
(1 + d)limitw, and c = 1.



Reducing Splaying by Taking Advantage of Working Sets 7

The above bound for average depth holds for all of Hc ⊆ Hn. Thus writing
|Hn| = mn and |Hs| = ms, we have the following theorem:

Theorem 2. Let C = n log2 n and mn+ms = m. The total access time incurred
by Wsplay is at most 2mnlimitw + ms(3 log2 n + 1) + C.

5 Test Setting

As reference algorithms in our empirical evaluation we use splay trees, RBT,
and a randomized version of splay trees. All splaying is implemented in a simple
top-down fashion. The programming environment is Microsoft Visual C++ 2005
and we use full optimization for speed. The test environment is a PC with a 3.00
GHz Intel Pentium 4 CPU and 1 GB RAM. The cache sizes are 16 kB for L1
and 2 MB for L2.

5.1 The Evaluated Version of Wsplay

The problem in evaluating Wsplay is to control its two parameters d and limitw.
Examining all value combinations would be a massive task. However, moderate
changes in the value of parameter d do not affect the results much in practice.
Hence, we use a constant value d = 0.9.

The parameter limitw is more problematic because with different values the
results vary. However, we are mostly interested in how efficient is splay reduction
by monitoring. Thus, a very natural way is to compare its efficiency against data
structures that reduce splaying without such monitoring. Randomized splay trees
[3,4] do it at random. The data structure of Albers and Karpinski [4], referred
here as Rsplay, matches Wsplay perfectly in the sense that it contains no
other modifications to basic splay trees than reduced splaying.

Rsplay needs as a parameter the probability p. With the probability 1 − p
standard BST access is executed instead of splaying. We modify Wsplay to
execute the same amount of splaying by including simple adaptation for the
variable limitw. We adjust it in the beginning of every access by adding a value
proportional to difference between p and amount of executed splay operations.
To prevent algorithm from executing all the available splaying in the beginning,
we start the sequence with a 1/p length margin where no splaying is allowed.
Values of 0, 1, 1/2, 1/4, . . . , 1/512 for p are examined. This works well in prac-
tice: the difference between p and amount of Wsplay splaying was at most
min(0.1%, 0.05p). Note that this modification does not affect the bound of The-
orem 2. We can easily keep everything in O(log2 n) time given a maximum value
for limitw. With this modification it is possible to relate Rsplay and Wsplay
with different values of p.

5.2 Description of the Data

The keys are inserted in trees in random order. For BSTs this usually leads to a
well-balanced tree [20]. We examine only accesses with integer keys in nodes.



8 T. Aho, T. Elomaa, and J. Kujala

The locality of reference is often modeled with Zipf’s distribution (ZD) [21, p.
400]. In it the ith most commonly accessed item is accessed with a probability pi

inversely proportional to i. We want to experiment with different kinds of ratios
of locality or skewness. Therefore, we use the modification in which we have an
additional parameter α ≥ 0 [21] so that the ith item has access probability

pi =
1

iαC
,

where C =
∑n

j=1(1/jα) and n is the number of nodes in tree. This distribution
is uniform when α = 0 and the pure ZD when α = 1. The parameter α alone
does not give very good control over the skewness of the data. Therefore, Bell
and Gupta [7] defined another parameter, the skew factor :

β =
n/100∑

j=1

pj .

Hence, β is the probability of accessing the 1% of items that is most frequently
accessed. With β = 0.01 the distribution, obviously, is uniform.

To achieve dynamic locality we change the access distribution after every
t = 128 accesses. When the value of t was very low the results were more like
with uniform distribution, but otherwise changing t moderately did not affect
the results substantially.

We report the evaluation for tree size n = 217 and m = 220 accesses. We
also evaluated the tests at least partially for tree sizes ranging up to 225. The
results were similar with different sizes of trees. However, splay tree benefited
from larger tree sizes compared to Wsplay and Rsplay. For n = 225 splay tree
was at least as efficient as the other two with all the skewness values. For the
parameter β we used values 0.01, 0.1, 0.2, . . . , 0.9. The values of α in the same
order are 0, 0.504, 0.664, 0.764, 0.844, 0.914, 0.981, 1.052, 1.135, and 1.258.

6 Empirical Evaluation

6.1 Average Depth of an Access

The average access depths for the data structures are depicted in Fig. 1. For
Wsplay and Rsplay the averages over all values of the parameter p are shown.
An interesting observation is that the average access depth for RBT is essentially
optimal (recall that n = 217). This may be a reason for the practical efficiency
of RBT. Our results resemble those of Bell and Gupta [7]: RBT is superior with
low skewness values and with high ones splay trees excel. With low values of
β there is no real locality in referencing and, thus, distribution sensitivity is of
little use. On the other hand, with high values of β it is useful to raise all the
items near the root as soon as possible.

Detailed results for Wsplay and Rsplay are presented in Fig. 2. Only results
for the best values of p are reported. As expected, Wsplay was better than R-
splay with all value combinations of β and p. For both algorithms the same



Reducing Splaying by Taking Advantage of Working Sets 9

Fig. 1. The average access depths for all data structures

trend for changing the value of p occurs. The best performance for Wsplay is
obtained with p = 1/16 and for Rsplay the best value is p = 1/4. The difference
between the performance of the algorithms increases with low values of p: With
p = 1/2 the difference is only 0–2% depending on skewness, with p = 1/4 it is
already 4–5%, and raises to 7–10% when p = 1/16.

The difference of the algorithms on uniform data is probably due to balancing.
While Rsplay does the balances at random, limitw of Wsplay settles to a depth
in which the amount p of splaying is executed. Thus, the whole tree is treated
as a working set. Only roughly the deepest portion p of all accesses are splayed.
Splaying the deepest node in a tree tends to halve the depth of a very unbalanced
tree [2]. Hence, splaying the deepest nodes in all situations seems to be a better
strategy than random splaying. The greater difference in performance between
the algorithms for low values of p could also be based on the same reason. For
low values of p the only reason to splay is to keep tree balanced and Wsplay
does this better.

As expected, it seems that with high skewness factor values higher values of p
were more suitable. It is clearly useful to splay the new working set near the root
as soon as possible. Also splaying items near the root does not seem to make
the tree more unbalanced. E.g., splaying two different items to the root in turns
does not affect the overall balance at all.

6.2 Access Times

The access times for the data structures shown in Fig. 3 are all averages over five
evaluations. On the whole the results resemble those of average access depths.
RBT is even more superior in these results and splay trees take the most benefit
from locality of reference. The overall decrease in access time for splay tree from
β = 0.01 to β = 0.9 is nearly 50%. An unexpected result is that also RBT
decreases its access time by 35% without restructuring the tree.



10 T. Aho, T. Elomaa, and J. Kujala

Fig. 2. The average access depths of Wsplay and Rsplay with different values of p.
The curve for splay tree is marked with the dashed line.

Also the most efficient Wsplay and Rsplay are presented in Fig. 3. Under-
standably the running times decrease as the skewness increases. Also the relative
success of the algorithms with different values of p and β is similar to average
depths. However, the costly monitoring in Wsplay reduces its absolute perfor-
mance. Nevertheless, the most efficient Wsplay (p = 1/32) is usually 5% faster
than the most efficient Rsplay (p = 1/16). With β = 0.9 the difference is only
2%. With low values of β Wsplay is 7–12% faster than the original splay tree.

With values p < 1/4 Wsplay is 3–5% more efficient than Rsplay, but with
values 0, 1, 1/2, and 1/4 of p the latter prevails. This seems to indicate that in
Wsplay the cost of monitoring the input is compensated only when the amount
of splay operations is small. With larger values of p Rsplay reacts to the change
of distribution soon enough. Also Rsplay seems to need a little more splaying
for similar effect, because random splay operations are often not useful. However,
absolutely both data structures are most efficient with values 1/4 ≥ p ≥ 1/64.

Also with uniform distribution large values of p do not have as good balancing
effect as with lower values. In other words, also Wsplay does too much splaying
on accesses that are not very deep in the tree. Thus, restructuring may set the
tree out of balance. However with lower values of p Wsplay is able to splay only
the deepest accesses and thus keep the tree balanced.

However, an interesting discovery raises if we examine the efficiency of W-
splay and Rsplay for parameter value p = 1 (always splay). By comparing
these to the original splay tree we get a picture of the implementation spe-
cific overhead for the monitoring in Wsplay and decision-making in Rsplay.
Wsplay uses 4–7% and Rsplay 1–3% more time than a splay tree. The ac-
cess times for Rsplay do not include the generation of random numbers. This
raises the question whether to compare Wsplay to splay or Wsplay with p = 1.



Reducing Splaying by Taking Advantage of Working Sets 11

Fig. 3. The average access times for all data structures. For Wsplay and Rsplay the
best values of p are shown. The curve for splay tree is marked with the dashed line.

Wsplay increases its efficiency at most more than 15% when compared to the
version where Wsplay always splays. Similar value for Rsplay is 10%.

6.3 On the Suitability of Zipf’s Distribution

Let us briefly analyze the observation that also RBTs seem to be more efficient
with higher locality of reference when ZD is used as input (Fig. 3). To the best
of our knowledge this has not been reported before.

In Fig. 1 the average depth of RBT does not change. Hence, that is not the
reason for the observation. We made sure that setting off compiler optimizations
and altering the interval of changing the distribution (value t) did not matter.
However, decreasing the size of tree n reduced the advantage of locality of refer-
ence down to 25%, but even with very small trees (e.g., n = 8) the phenomenon
occurred. This contradicts the observation of Bell and Gupta [7] who had a
tree of size 4 095. A natural explanation for this is that both operating system
and hardware efficiency have progressed significantly since their evaluation. In
particular, cache management has progressed in recent years.

In fact, caching could be the reason for this phenomenon. ZD weights the
most accessed items very much and thus, with a high probability, only few items
are accessed. Let us assume a cache so small that only one path to a node in
the whole tree fits it. With high locality even this is useful because a single item
is accessed most of the time and, thus, very often the access path is already in
cache. Modern memory hierarchy generally consists of many cache layers and
for every one of them there is an amount of nodes or paths that fit in. Thus,
ZD makes static BSTs use caching very efficiently [22]. Paging complicates the
analysis in practice, but the basic idea is the same. A splay tree does not gain as
much benefit from caching. In it the access times are more related to the average



12 T. Aho, T. Elomaa, and J. Kujala

depth of an accesses in the tree. A natural cause for this could be the amount
of restructuring and memory writing the splay tree does.

We also tried the same evaluation with high skewness but with only one level
of working sets. The items in the working set were accessed multiple times uni-
formly. With a changing probability items were also accessed uniformly outside
the working set. The same phenomenon did present itself only slightly. In this
case fitting only some of the items in the cache is not at all as useful as it is for
ZD. This issue, of course, ought to be studied more thoroughly. Nevertheless, it
raises the question of how cautious we should be when generalizing the results
with ZD. However, there are studies with real-life data that rank splay tree very
efficient in certain situations [9]. Maybe other alternatives (e.g. Lévy distribu-
tion [23] or actual web page requests) for modeling locality of reference should
be used.

7 Conclusion

This work studied whether it is possible to gain advantage for splay trees by
taking the properties of the access sequence into account. On one hand, both
the average access depth and time were reduced when compared to randomized
splay. This was also the case when compared to splay with high skewness. On the
other hand, splay trees excelled with high locality of reference. Also red-black
trees were still usually more efficient in these experiments.

Further variations for our algorithms can easily be designed. For example the
method can be applied to most of the splay tree versions introduced in [2]. These
versions include bottom-up splaying and semi-splaying. Also executing a window
of splay operations during change of working set is possible.

Acknowledgments

We would like to thank the anonymous reviewers for insightful and helpful com-
ments. This work was supported by Academy of Finland projects Intents
(206280), Alea (210795), and “Machine learning and online data structures”
(119699). Moreover, the work of T. Aho and J. Kujala is financially supported
by Tampere Graduate School in Information Science and Engineering.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press, Cambridge, MA (2001)

2. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the
ACM 32(3), 652–686 (1985)

3. Fürer, M.: Randomized splay trees. In: Proceedings of the Tenth Annual ACM-
SIAM Symposium on Discrete Algorithms, Baltimore, MD, pp. 903–904. SIAM,
Philadelphia, PA (1999)



Reducing Splaying by Taking Advantage of Working Sets 13

4. Albers, S., Karpinski, M.: Randomized splay trees: Theoretical and experimental
results. Information Processing Letters 81(4), 213–221 (2002)

5. Lai, T.W., Wood, D.: Adaptive heuristics for binary search trees and constant
linkage cost. In: Proceedings of the Second Annual ACM-SIAM Symposium on
Discrete Algorithms, San Francisco, CA, pp. 72–77. SIAM, Philadelphia (1991)

6. Williams, H.E., Zobel, J., Heinz, S.: Self-adjusting trees in practice for large text
collections. Software: Practice and Experience 31(10), 925–939 (2001)

7. Bell, J., Gupta, G.: An evaluation of self-adjusting binary search tree techniques.
Software: Practice and Experience 23(4), 369–382 (1993)

8. Heinz, S., Zobel, J.: Performance of data structures for small sets of strings. Aus-
tralian Computer Science Communications 24(1), 87–94 (2002)

9. Pfaff, B.: Performance analysis of BSTs in system software. ACM SIGMETRICS
Performance Evaluation Review 32(1), 410–411 (2004)

10. Lee, E.K., Martel, C.U.: When to use splay trees. Software: Practice and Experi-
ence 37(15), 1559–1575 (2007)

11. Denning, P.J.: Working sets past and present. IEEE Transactions on Software
Engineering 6(1), 64–84 (1980)

12. Subramanian, A.: An explanation of splaying. Journal of Algorithms 20(3), 512–525
(1996)

13. Badr, G.H., Oommen, B.J.: Self-adjusting of ternary search tries using conditional
rotations and randomized heuristics. The Computer Journal 48(2), 200–219 (2005)

14. Iacono, J.: Alternatives to splay trees with O(log n) worst-case access times. In:
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, Washington, DC, pp. 516–522. SIAM, Philadelphia (2001)

15. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

16. Amer, A., Oommen, B.J.: Lists on lists: A framework for self-organizing lists in
environments with locality of reference. In: Àlvarez, C., Serna, M.J. (eds.) WEA
2006. LNCS, vol. 4007, pp. 109–120. Springer, Heidelberg (2006)

17. Dhodapkar, A.S., Smith, J.E.: Managing multi-configuration hardware via dynamic
working set analysis. In: Proceedings of the 29th Annual International Symposium
on Computer Architecture, Anchorage, AK, pp. 233–244. IEEE Computer Society,
Los Alamitos (2002)

18. Seidel, R., Aragon, C.: Randomized search trees. Algorithmica 16(4), 464–497
(1996)

19. Cheetham, R.P., Oommen, B.J., Ng, D.T.: Adaptive structuring of binary search
trees using conditional rotations. IEEE Transactions on Knowledge and Data En-
gineering 5(4), 695–704 (1993)

20. Mart́ınez, C., Roura, S.: Randomized binary search trees. Journal of the
ACM 45(2), 288–323 (1998)

21. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, 2nd edn.,
vol. 3. Addison-Wesley, Boston (1998)

22. Brodal, G.S., Fagerberg, R., Jacob, R.: Cache oblivious search trees via binary trees
of small height. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, San Francisco, CA, pp. 39–48. SIAM, Philadelphia, PA
(2002)

23. Applebaum, D.: Lévy processes — from probability to finance and quantum groups.
Notices of the American Mathematical Society 51(11), 1336–1347 (2004)



Engineering Burstsort: Towards Fast In-Place

String Sorting

Ranjan Sinha and Anthony Wirth

Department of Computer Science and Software Engineering,
The University of Melbourne, Australia

rsinha@csse.unimelb.edu.au, awirth@csse.unimelb.edu.au

Abstract. Burstsort is a trie-based string sorting algorithm that dis-
tributes strings into small buckets whose contents are then sorted in
cache. This approach has earlier been demonstrated to be efficient on
modern cache-based processors [Sinha & Zobel, JEA 2004]. In this pa-
per, we introduce improvements that reduce by a significant margin the
memory requirements of burstsort. Excess memory has been reduced by
an order of magnitude so that it is now less than 1% greater than an
in-place algorithm. These techniques can be applied to existing variants
of burstsort, as well as other string algorithms.

We redesigned the buckets, introducing sub-buckets and an index
structure for them, which resulted in an order-of-magnitude space reduc-
tion. We also show the practicality of moving some fields from the trie
nodes to the insertion point (for the next string pointer) in the bucket;
this technique reduces memory usage of the trie nodes by one-third. Sig-
nificantly, the overall impact on the speed of burstsort by combining these
memory usage improvements is not unfavourable on real-world string col-
lections. In addition, during the bucket-sorting phase, the string suffixes
are copied to a small buffer to improve their spatial locality, lowering the
running time of burstsort by up to 30%.

1 Introduction

This paper revisits the issue of sorting strings efficiently. String sorting remains
a key step in solving contemporary data management problems. Arge et al. [3]
note that “string sorting is the most general formulation of sorting because it
comprises integer sorting (i.e., strings of length one), multikey sorting (i.e., equal-
length strings) and variable-length key sorting (i.e., arbitrarily long strings)”.
Compared to sorting fixed-length keys (such as integers), efficient sorting of
variable-length string keys is more challenging. First, string lengths are variable,
and swapping strings is not as simple as swapping integers. Second, strings are
compared one character at a time, instead of the entire key being compared, and
thus require more instructions. Third, strings are traditionally accessed using
pointers; the strings are not moved from their original locations due to string
copying costs.

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 14–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Engineering Burstsort: Towards Fast In-Place String Sorting 15

1.1 Traditional Approaches to String Sorting

Standard string sorting algorithms, as taught in a typical undergraduate educa-
tion, start by creating an array of pointers to strings; they then permute these
pointers so that their order reflects the lexicographic order of the strings. Al-
though comparison of long string keys may be time-consuming, with this method
at least the cost of moving the keys is avoided. The best existing algorithms for
string sorting that honour this rule include multikey quicksort [6] and variants
of radix sort [2], including the so-called MBM algorithm [16].

Traditionally, we are taught to measure algorithm speed by the number of
instructions, such as comparisons or moves. However, in recent years the cost of
retrieving items from main memory (when they are not in cache), or of translat-
ing virtual addresses that are not in the translation lookaside buffer (TLB) have
come to dominate algorithm running times. The principal principle is locality
of reference: if data is physically near data that was recently processed, or was
itself processed not long ago, then it is likely to be in the cache and may be
accessed quickly. We leave further details to Section 1.3. Note that stability is
ignored in this paper as any sorting algorithm can be made stable by appending
the rank of each key in the input [11,20].

1.2 Burstsort

Burstsort is a technique that combines the burst trie [13] with standard (string)
sorting algorithms [6,16]. It was introduced by the first author, and its variants
are amongst the fastest algorithms for sorting strings on current hardware [21].
The standard burstsort algorithm is known as P-burstsort, P referring to pointer.
In P-burstsort, sorting takes place in two stages: (i) the strings are inserted into
the trie structure, effectively partitioned by their prefixes into buckets, (ii) the
trie is traversed in-order and the contents of each bucket (strings with a common
prefix) are sorted and pointers to the strings are output in lexicographic order.

The trie. As shown in Figure 1, each trie node contains a collection of pointers to
other nodes or to buckets. There is one pointer for each symbol in the alphabet
so a node effectively represents a string prefix. Note that each node contains an
additional pointer (labelled ⊥) to a special bucket for strings that are identical
to the prefix that the node represents.

The trie starts off with one node, but grows when the distribution of strings
causes a bucket to become too large. Whenever a bucket does become too large, it
is burst: the trie expands in depth at that point so that there is now a child node
for each symbol of the alphabet, each node having a full collection of pointers
to buckets.

Cache efficiency. Although the use of a trie is reminiscent of radixsort, in burst-
sort each string is only accessed a small number of times: when inserted (cache-
efficient), whenever its bucket is burst, or when its bucket is sorted. In practice
this low dereferencing overhead makes the algorithm faster than radixsort or
quicksort.



16 R. Sinha and A. Wirth

Z

A B C D EB C W X Y Z

A B C TS W X Y Z

ZY

W X YA B C

A

T

RN

RK

NE

ST

E

ES

Y

Fig. 1. Index structure of P-Burstsort. Strings inserted into the burst trie are “bat”,
“barn”, “bark”, “by”, “by”, “by”, “by”, “byte”, “bytes”, “wane”, “way”, and “west”.
The figure has been adapted from [21].

Sorting of buckets. The standard P-burstsort [21] uses a fast multikey quicksort
for sorting the buckets, and on real-world collections has been observed to be
almost twice as fast as previous algorithms. The original burstsort paper also
proposes that buckets be grown exponentially, starting with a small bucket, then
growing by a certain factor whenever the bucket is full, until a maximum size,
when the bucket is burst. This wastes less memory than using a fixed size for
the bucket, but increases the memory management load.

Figure 2 reminds the reader of the significant gains in running time of P-
burstsort compared to three of the best string sorting algorithms: adaptive radix-
sort, multikey quicksort and MBM radixsort.

DUPLICATES NO DUPLICATES GENOME URL RANDOM
0

20

40

60

80

T
im

e 
(i

n 
se

co
nd

s)

MBM radixsort

Adaptive radixsort

Multikey Quicksort

P-burstsort

Fig. 2. Time (in seconds) to sort with adaptive radixsort, multikey quicksort, MBM
radixsort, and P-Burstsort for all five collections (see Section 4) on a Pentium IV
machine with a small 512 KB L2 cache. The bucket threshold used for P-burstsort is
32768.



Engineering Burstsort: Towards Fast In-Place String Sorting 17

Previous improvements. A reduction in the number of bursts results in a reduc-
tion in string accesses. To that end, in the sampling-based burstsort variants we
used a small sample of strings (selected uniformly at random) to create an initial
approximate trie, prior to inserting all the strings in the trie [22]. Although this
approach reduced the number of cache misses, we believe there remains scope
for investigation into more sophisticated schemes.

In P-burstsort, strings are accessed by pointers to them; only the pointers
are moved, as is the case in traditional string sorting methods. It is vital that
the locality of string accesses is improved, especially during bursts and when
the buckets are being sorted. Hence, in the copy-based approach [20], strings
were actually copied into the buckets from the start to improve string locality,
admittedly at the cost of higher instruction counts. However, we found that the
performance improves significantly, largely due to reduced cache and TLB misses.

Memory use. The priority in the earlier versions of burstsort was to increase the
speed of sorting. Analysing the memory demand has so far been largely ignored,
but is a major focus in this paper; we outline the contributions below.

1.3 Related Work

String sorting. There have been several advances in fast sorting techniques de-
signed for strings. These have primarily focused on reducing instruction count,
assuming a unit-cost RAM model [1,14]. For example, three-way partitioning is
an important quicksort innovation [7]. Splaysort, an adaptive sorting algorithm,
introduced by Moffat et al [17], is a combination of the splaytree data struc-
ture and insertionsort. Improvements to radixsort for strings were proposed by
McIlroy et al [16], and by Andersson and Nilsson [2]. Bentley and Sedgewick [6]
introduced a hybrid of quicksort and radixsort named three-way radix quick-
sort [18]; they then extended this to produce multikey quicksort [6].

In this paper, we compare our algorithms with adaptive radixsort [2], multikey
quicksort [6] and MBM radixsort [16], as they have been observed to be amongst
the fastest [21]. The performance of other algorithms can be obtained from the
first author’s earlier papers [20,21].

Cache-aware algorithms. While the radix sorts have a low instruction count—the
traditional measure of computation speed—they do not necessarily use the cache
efficiently for sorting variable-length strings. In earlier experiments [21], on the
larger datasets there were typically 5 to 10 cache misses per string during radix-
based sorting on a machine with 1 MB L2 cache. Accesses to the strings account
for a large proportion of cache misses. Approaches that can make string sorting
algorithms more cache-friendly include: (a) using data structures that reduce
the number of string accesses; (b) improving the spatial locality of strings, so
that strings that are likely to be compared are kept nearer each other; and (c)
reducing or eliminating inefficient pointer-based string references.

Cache-oblivious algorithms. Frigo et al. [10] introduced cache-oblivious algo-
rithms, a novel design approach that respects memory hierarchies. While



18 R. Sinha and A. Wirth

(previously-mentioned) cache-aware algorithms need to be aware of machine pa-
rameters and may extract the best performance from a particular machine, they
may not be portable. In contrast, the notion of cache-oblivious design suggests
a highly portable algorithm. Though the cache-oblivious model makes several
simplifying assumptions [9], it is nevertheless an attractive and simple model for
analyzing data structures in hierarchical memory. Recent results [8,4] indicate
that algorithms developed in this model can be competitive with cache-aware im-
plementations. Finally, while there has been related work in the external memory
domain, the techniques do not necessarily transfer well to in-memory algorithms.

1.4 Our Contributions

The goal of practical string sorting is to produce a fast and, ideally, an in-place
algorithm that is efficient on real-world collections and on real-world machines.
In this paper, we investigate the memory usage of burstsort and improve the
cache efficiency of the bucket sorting phase.

First, we redesign the buckets of P-burstsort so that the memory requirement
of the index structure is drastically reduced. Second, we also introduce a moving
field approach whereby a field from the trie node is moved to the point in the
bucket where a string is about to be inserted—and is thus shifted with each
string insertion—resulting in a further reduction in memory use. These memory
reduction techniques show negligible adverse impact on speed and are also ap-
plicable to the copy-based [20] variants of burstsort, though we do not evaluate
the effects here. As a consequence, memory usage is just 1% greater than an
in-place algorithm.

Third, the cache efficiency of bucket sorting is further improved by first copy-
ing the string suffixes to a small string buffer before they are sorted. This ensures
spatial locality for a process that may well access strings frequently.

1.5 Paper Organization

The remainder of the paper is organized as follows. In Section 2 we show how
a substantial redesign of the buckets results in significant reduction in memory
waste, so that the algorithm is barely more expensive than an in-place approach.
This work is enhanced in Section 2 with a brief discussion of the benefits of
moving various bookkeeping fields from the trie nodes to the buckets. In Section 3
we show how buffering a bucket’s strings, before sorting them, can lower the
running time by a further 30%. In Section 4 we outline the experiments that
we performed, and then analyze the results in Section 5. We conclude the paper
and set out future tasks in Section 6.

2 Bucket Redesign

The primary aim in this paper is to reduce the memory used by P-burstsort,
especially by the buckets. The bucket design used in the original P-burstsort [21],
is an array that grows dynamically, by a factor of 2, from a minimum size of



Engineering Burstsort: Towards Fast In-Place String Sorting 19

2 up to a maximum size of 8192. While this design proved to be fast, it may
lead to significant amounts of unused memory. For example, theoretically, if the
number of pointers in the buckets were distributed uniformly in the range 1 to
L, on average about L/6 spaces in each bucket would be unused. Of course, on
most collections the distribution of the number of string pointers in a bucket
would not be uniform, but there is still waste incurred by barely-filled buckets.

In the BR variant of P-burstsort, we replace each bucket with an array of
pointers to sub-buckets. Each sub-bucket is allocated as needed: starting at size
2, it grows exponentially, on demand, until it reached size L/k, at which point
the next sub-bucket is allocated. When the total amount of sub-bucket space
exceeds L, the node and buckets are burst (as in P -burstsort). Naturally, there
is a trade-off between the time spent (re)allocating memory, and the space wasted
by the buckets.

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

NODE

BIND

A B C D E F

Unused space

Bucket insertion point (BIP)

\0

Growth

Growth

Used space

Fig. 3. P+BR+MF -Burstsort: This figure shows the index structure of P-burstsort after
incorporating the bucket redesign (BR) and moving field (MF) optimizations

In addition, an index structure is created to manage the sub-buckets; this
auxiliary structure must be small so its own creation does not outweigh the
benefit of smaller (sub-)buckets. The first component of the index structure, the
bucket index (BIND), is the dynamically-growing array of pointers to the sub-
buckets. It has some auxiliary fields that maintain information about the current
state of the sub-bucket structure. The BIND array grows cell-by-cell, only on
demand, therefore not wasting space. The other component is at the bucket
insertion point (BIP), where the next string suffix pointer would be inserted,
and therefore moves ahead one word with each insertion (see Figure 3).

In this P+BR-Burstsort variant, only pointers to the strings are copied to the
buckets, and the trie node contains two fields: a pointer to the BIND and a



20 R. Sinha and A. Wirth

pointer to the BIP. The only bucket that does not grow in this BR manner is
the special bucket (⊥) for short (consumed) strings, whose BIND index can grow
arbitrarily large.

Note that the BIND structure is only accessed during the creation of the
bucket, adding a new sub-bucket, and during bursting. These occurrences are
relatively rare, compared with the number of times strings are accessed.

O(
√

L) bucket growth. From a theoretical point of view, exponentially-growing
buckets make sense principally when the maximum bucket size is unknown.
Given that we have a bound on the bucket size, from a worst-case, or uniform dis-
tribution, point of view, buckets that grow following the sequence

√
L, 2
√

L, . . . , L
seem to make more sense (see for example Exercise 3.2.3 in Levitin’s text [15]).
With typical values of L and k being 8192 and 32, our sub-bucket data struc-
ture does not quite match this, but it is close to a practical application of this
principle.

Moving fields from trie nodes to bucket. It is advantageous to keep the trie nodes
as compact as possible so that they are mostly cache-resident. In the Moving
Field (MF) approach, we copy the latter field fields to the unused space in the
bucket, just at the bucket insertion point (BIP). This approach makes burstsort
more scalable (due to compact nodes), while simultaneously saving memory.

3 Buffer-Based String Sorting

In P-burstsort, string suffixes are not moved from their original locations: the
aim is to sort the pointers to the strings, rather than the strings themselves. Nev-
ertheless, a significant proportion of the cache misses of burstsort occur when
the contents of the buckets are sorted. To be compared, the string suffixes must
be fetched into cache as required: on average each string must be compared
Θ(log(L/k)) times. In practice, the fetching of string suffixes observes poor spa-
tial locality, especially for strings that have large prefixes in common. Moreover,
with large lines in cache, those imported may not contain only bucket-string
content, but other data that is not useful.

It was observed, by Sinha et al. [20], that actually copying the strings into
buckets improves spatial locality, and cache efficiency. In that spirit, we introduce
a small buffer to copy the string suffixes into during the bucket-sorting phase to
improve their spatial locality and effectively use the cache lines. In a single pass
of the bucket of pointers, we fetch all the string suffixes. We then create pointers
to the new locations of the string suffixes, while keeping track of the pointers
to the actual strings. The extra buffer storage is reused for each bucket and
thus its effect on total memory used is negligible. Once the strings are sorted,
a sequential traversal of the pointer buffer copies the original pointers to the
source array in sorted order.

In Section 5 we show that this String Buffer (SB) modification increases the
sort speed, especially for collections with large distinguishing prefixes, such as



Engineering Burstsort: Towards Fast In-Place String Sorting 21

URLs. Such collections require the most accesses to the strings and thus stand
to benefit most.

The only disadvantage is the amount of work involved in copying suffixes and
pointers to these buffers and then back to their source arrays. The SB approach
may perform poorly for collections with small distinguishing prefix, such as the
random collection, in which the strings may only be accessed once during bucket
sorting anyway. But even for such collections, this approach is expected to scale
better and be less dependent on the cache line size.

4 Experimental Design

Our experiments measure the time and memory usage of string sorting. In addi-
tion, we use cache simulators such as cachegrind [19] to measure the instruction
count and L2 cache misses.

Data Collections. We use four real-world text collections: duplicates, no dupli-
cates, genome, and URL. In addition, we also create a random collection in which
the characters are generateduniformly at random. These collections, whose details
are provided in Table 1, are similar to those used in previous works [21,22,20].

Table 1. Statistics of the data collections used in the experiments

Size Distinct Word
Words Occurrences

(Mbytes) (×105) (×105)

Duplicates 304 70 316
No duplicates 382 316 316
Genome 302 2.6 316
Random 317 260 316
URL 304 13 100

The duplicates and no duplicates collections were obtained from the Wall
Street Journal subcollection of TREC web data [12]. The duplicates collection
contains words in occurrence order and includes duplicates, while the no dupli-
cates collection contains only unique strings that are word pairs in occurrence
order. The genome collection consists of fixed-length strings (of length 9 char-
acters), extracted from nucleotide strings from the Genbank collection [5]. The
URL collection is obtained in order of occurrence from the TREC web data.

Algorithms compared with. The performance of the new burstsort enhancements
is compared to the original P-burstsort [21], adaptive radixsort [2], a fast multi-
key quicksort [6], and MBM radixsort [16].

Algorithm parameters. The buckets in burstsort are grown exponentially by a
factor-of-2 starting from a size of 2 to L, where L is the bucket threshold. In our
experiments we varied L from a minimum of 8192 to a maximum of 131, 072.



22 R. Sinha and A. Wirth

Note that for each individual sub-bucket, L/k is 256, where k is the number of
sub-buckets. The alphabet size was restricted to 128 symbols with the random
collection having 95 symbols.

Table 2. Architectural parameters of the machine used for experiments

Workstation Pentium Pentium PowerPC

Processor type Pentium IV Core 2 PowerPC 970
Clock rate 2800 MHz 2400 MHz 1800 MHz

L1 data cache (KB) 8 32 32
L1 line size (bytes) 64 64 128

L2 cache (KB) 512 4096 512
L2 block size (bytes) 64 64 128

Memory size (MB) 2048 2048 512

Machines. The experiments were conducted on a 2800 MHz Pentium IV Machine
with a relatively small 512 KB L2 cache and 2048 MB memory. The operating
system was Linux with kernel 2.6.7 under light load. The highest compiler opti-
mization O3 has been used in all the experiments. We also used a more recent
dual-core machine with relatively large 4096 KB L2 cache as well as a PowerPC
970 architecture. Further details of the machines are shown in Table 2.

All reported times are measured using the clock function, and are the average
of 10 runs. As these runs were performed on a machine under light load and on
300 megabyte data sets, the standard deviation is small. On the PowerPC, owing
to the smaller memory, we used a smaller data set with 10 million strings [21].

5 Discussion

Bucket redesign and moving fields. All pointer-based string sorting algorithms
must create space for the pointer array. The key memory overhead of P-Burstsort
is its burst trie-style index structure. Table 3 shows this extra memory usage,
including unused space in buckets, memory allocation bytes and associated index
structures of the previous algorithm, and the variants introduced here.

The BR and MF modifications cause a large reduction in memory use. For the
three real-world collections (Duplicates, No Duplicates, and Genome) there is at
least a factor 35 reduction. Table 3 also confirms that increasing bucket sizes
result in smaller indexes in P+BR+MF -Burstsort, unlike in P-Burstsort (except
for the Random collection).

The BIND and BIP structures require additional maintenance and dynamic
memory allocation. Table 4 shows that the number of dynamic memory alloca-
tions, in the new variants, increased by over an order-of-magnitude. The good
news is that although the memory demand drops significantly, running times
increase by only 10% (see Table 5).

We also observe that the MF technique speeds up the sorting of the URL
collection in Table 5, due to the relatively large number of trie nodes in that



Engineering Burstsort: Towards Fast In-Place String Sorting 23

Table 3. Memory use (in megabytes) incurred by the index structure of P-Burstsort
and (the new) P+BR+MF -Burstsort for different bucket thresholds and collections

Collections
Threshold P-Burstsort Duplicates No duplicates Genome Random URL

8192 None 94.37 109.37 53.37 47.37 23.85
+BR+MF 10.37 12.37 4.37 3.37 3.85

16384 None 94.37 100.37 57.37 50.37 24.85
+BR+MF 5.37 6.37 2.37 3.37 1.85

32768 None 94.37 95.37 48.37 50.37 24.85
+BR+MF 3.37 3.37 1.37 3.37 0.85

65536 None 90.37 92.37 55.37 61.37 25.85
+BR+MF 2.37 2.37 1.37 3.37 0.85

Table 4. Number of dynamic memory allocations of P-burstsort and P+BR+MF -
Burstsort. The bucket threshold is 32768.

Algorithm Duplicates No duplicates Genome Random URL

P-Burstsort 271,281 307,572 76,625 109,922 79,451
P+BR+MF -Burstsort 1,936,175 1,828,805 1,948,281 1,205,117 1,293,854

Factor increase 7.13 5.94 25.42 10.96 16.28

collection. Making these trie nodes compact with the MF enhancement makes up
for the cost of shifting the fields. Thus, these enhancements not only significantly
reduce the memory usage but also aids in speeding up sorting.

String buffer. The SB modifications, described in Section 3, are a successful
enhancement overall. Table 5 shows that for all real-world collections, which have
reasonable distinguishing prefix, this approach is beneficial. Only for the Random
collection, whose strings may need be fetched only once during bucket sorting,
does the string buffer approach result in a slight slowdown. The average number
of strings (for the Random collection) in each bucket is less than half the number
of cache lines, thus the strings are mostly cache-resident as they are sorted.

Table 5. Sorting time (in seconds) as a function of algorithm modification for all five
collections on the Pentium IV

Collections
P-Burstsort Duplicates No duplicates Genome Random URL

None 20.76 23.64 27.92 16.98 20.36
+SB 18.44 21.16 20.25 18.31 13.33
+BR 22.59 25.25 29.88 20.80 21.03
+BR+MF 23.11 26.02 30.00 22.40 20.65
+SB+BR+MF 22.04 24.71 23.08 29.39 13.87



24 R. Sinha and A. Wirth

8192 16384 32768 65536 131072
Bucket thresholds

0

10

20

30

T
im

e 
(i

n 
se

co
nd

s)

None (Duplicate)
None (Genome)
None (URL)
+SB (Duplicate)
+SB (Genome)
+SB (URL)

8192 16384 32768 65536
Bucket thresholds

0

1

2

3

4

L
2 

C
ac

he
 m

is
se

s/
St

ri
ng

None (Duplicate)
None (Genome)
None (Random)
+SB (Duplicate)
+SB (Genome)
+SB (Random)

(a) Time (in seconds) (b) L2 cache misses

Fig. 4. Sorting time (in seconds) and L2 cache misses per string incurred by P-Burstsort
and P+SB-Burstsort as a function of bucket thresholds on the Pentium IV

Figure 4 and Table 5 confirms that for collections with larger distinguishing
prefix, such as genome and URL, the approach is indeed the most successful and
reduces running time by about 30%.

The increase in instruction count (using cachegrind), by up to 80% is more
than compensated for by small reductions in the number of L2 cache misses,
shown in Figure 4 (b). Moreover, on machines such as PowerPC (discussed be-
low), where the TLB misses are expensive, such an approach is beneficial. The
SB approach adapts better to the cache capacity and enhances scalability.

We observe that the BR and MF modifications lead to lower instruction
counts (by 7%) due to the reduced copying costs from using small sub-buckets
(even for the Random collection). The small increase in cache misses (of 8%)
by P+SB+BR+MF -Burstsort over P+SB-Burstsort for the real-world collections
are due to BIND accesses and moving fields during string insertion and bursts.
Combining all three modifications results in a lowering of running time in the
Genome and URL collections, a small increase in the Duplicates and No Dupli-
cates collections (of 6% and 4.5% respectively), but a poor performance in the
(unrealistic) Random collection. Below, we show that the performance of these
approaches on other machine architectures can simultaneously reduce memory
usage and indeed improve performance.

Other machine architectures. On the Pentium Core 2 machine, the running time
of P+BR-burstsort is faster than that of P-burstsort for all real-world collections
(shown in Table 6). Similarly, on the PowerPC, P+BR-burstsort was up to 10%
faster than that of P-burstsort (shown in Table 7). On another small cache
machine (PowerPC), the SB modification reduced the running time by up to 40%
(see Table 7). Thus, using a small buffer to copy string suffixes prior to bucket



Engineering Burstsort: Towards Fast In-Place String Sorting 25

Table 6. Sorting time (in seconds) for all five collections on the Pentium Core 2
machine. The bucket threshold is 32768.

Algorithm Duplicates No duplicates Genome Random URL

Adaptive radixsort 13.63 15.04 17.75 9.72 9.01
MBM radixsort 15.57 16.01 22.38 10.61 13.53
Multikey 12.19 14.04 13.09 12.95 6.39
P-Burstsort 7.45 8.81 8.63 5.80 4.92

P+BR-Burstsort 7.25 8.64 8.31 6.10 4.60
P+BR+MF -Burstsort 7.26 8.75 8.23 6.28 4.54

Table 7. Sorting time (in seconds) for all five collections on the PowerPC 970 machine.
The collections contain 10 million strings. The bucket threshold is 32768.

Algorithm Duplicates No duplicates Genome Random URL

Adaptive radixsort 15.48 17.74 23.43 13.64 55.33
MBM radixsort 15.24 16.20 24.59 9.05 74.33
Multikey 14.91 17.16 21.94 18.68 58.75
P-Burstsort 10.22 11.71 16.69 7.19 48.26

P+SB-Burstsort 8.24 9.24 10.48 8.35 23.53
P+BR-Burstsort 9.26 10.79 14.90 7.66 45.60
P+BR+SB-Burstsort 7.68 8.74 9.25 9.50 22.61

sorting is beneficial to using the cache capacity productively while reducing the
TLB misses. The BR and SB techniques combine to produce the fastest times
while simultaneously reducing the memory usage significantly.

These results demonstrate that the modifications work well across different
machine architectures and aids in improving the speed while simultaneously
enhancing scalability.

6 Conclusions and Further Work

String sorting remains a fundamental problem in computer science. It needs to be
revisited because changes in computer architecture have not so much changed the
objective functions, but have changed the estimates we have of them. Burstsort
was already known to be fast: in this paper, its demands on main memory have
been significantly reduced, without running time being compromised.

The BR enhancement enables large reductions in the bucket size, with negligi-
ble impact on sorting time, even though it requires an order-of-magnitude more
dynamic allocations. The MF technique reduces the trie node memory usage by
moving fields to the unused space in the bucket and shifting them with each
string insertion. The success of the SB enhancement is further evidence that
accessing strings in arbitrary locations (using pointers) is inefficient and there
are benefits in improved spatial locality.



26 R. Sinha and A. Wirth

Now that the index structure can be reduced to around 1% of the size of
the input arrays, we have produced an almost in-place string sorting algorithm
that is fast in practice. Briefly, burstsort with these optimizations, is a fast and
an almost in-place string sorting algorithm that is demonstrably efficient on
real-world string collections, including those with large distinguishing prefixes.

Further work. With large caches now available in multicore processors, it would
be interesting to see if our sampling approaches [22] can be developed further:
larger caches are expected to be more tolerant of sampling errors. Can burstsort
make significant speed increases by using multiple cores for sorting the buckets?
In future implementations, we intend to explore the effect of trie layouts such as
using an approximate van Emde Boas layout in a dynamic environment.

Acknowledgments

This work was supported by the Australian Research Council.

References

1. Aho, A., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Andersson, A., Nilsson, S.: Implementing radixsort. ACM Jour. of Experimental
Algorithmics 3(7) (1998)

3. Arge, L., Ferragina, P., Grossi, R., Vitter, J.S.: On sorting strings in external
memory. In: Leighton, F.T., Shor, P. (eds.) Proc. ACM Symp. on Theory of Com-
putation, El Paso, pp. 540–548. ACM Press, New York (1997)

4. Bender, M.A., Colton, M.F., Kuszmaul, B.C.: Cache-oblivious string b-trees. In:
PODS 2006: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, New York, NY, USA, pp. 233–242.
ACM Press, New York (2006)

5. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: Gen-
bank. Nucleic Acids Research 31(1), 23–27 (2003)

6. Bentley, J., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
Saks, M. (ed.) Proc. Annual ACM-SIAM Symp. on Discrete Algorithms, New Or-
leans, LA, USA. Society for Industrial and Applied Mathematics, pp. 360–369
(1997)

7. Bentley, J.L., McIlroy, M.D.: Engineering a sort function. Software—Practice and
Experience 23(11), 1249–1265 (1993)

8. Brodal, G.S., Fagerberg, R., Vinther, K.: Engineering a cache-oblivious sorting
algorithm. ACM Jour. of Experimental Algorithmics 12(2.2), 23 (2007)

9. Demaine, E.D.: Cache-oblivious algorithms and data structures. In: Lecture Notes
from the EEF Summer School on Massive Data Sets, BRICS, University of Aarhus,
Denmark, June 2002. LNCS (2002)

10. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Beame, P. (ed.) FOCS 1999: Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, Washington, DC, USA, pp. 285–298. IEEE
Computer Society Press, Los Alamitos (1999)



Engineering Burstsort: Towards Fast In-Place String Sorting 27

11. Graefe, G.: Implementing sorting in database systems. Computing Surveys 38(3),
1–37 (2006)

12. Harman, D.: Overview of the second text retrieval conference (TREC-2). Informa-
tion Processing and Management 31(3), 271–289 (1995)

13. Heinz, S., Zobel, J., Williams, H.E.: Burst tries: A fast, efficient data structure for
string keys. ACM Transactions on Information Systems 20(2), 192–223 (2002)

14. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, 2nd edn.,
vol. 3. Addison-Wesley, Reading (1998)

15. Levitin, A.V.: Introduction to the Design and Analysis of Algorithms, 2nd edn.
Pearson, London (2007)

16. McIlroy, P.M., Bostic, K., McIlroy, M.D.: Engineering radix sort. Computing Sys-
tems 6(1), 5–27 (1993)

17. Moffat, A., Eddy, G., Petersson, O.: Splaysort: Fast, versatile, practical. Software—
Practice and Experience 26(7), 781–797 (1996)

18. Sedgewick, R.: Algorithms in C, 3rd edn. Addison-Wesley Longman Publishing
Co., Inc., Boston (1998)

19. Seward, J.: Valgrind—memory and cache profiler (2001),
http://developer.kde.org/∼sewardj/docs-1.9.5/cg techdocs.html

20. Sinha, R., Ring, D., Zobel, J.: Cache-efficient string sorting using copying. ACM
Jour. of Experimental Algorithmics 11(1.2) (2006)

21. Sinha, R., Zobel, J.: Cache-conscious sorting of large sets of strings with dynamic
tries. ACM Jour. of Experimental Algorithmics 9(1.5) (2004)

22. Sinha, R., Zobel, J.: Using random sampling to build approximate tries for efficient
string sorting. ACM Jour. of Experimental Algorithmics 10 (2005)

http://developer.kde.org/~sewardj/docs-1.9.5/cg_techdocs.html


Comparing Integer Data Structures for 32 and

64 Bit Keys

Nicholas Nash� and David Gregg

Dept. of Computer Science, Trinity College Dublin, Ireland
{nashn, dgregg}@cs.tcd.ie

Abstract. In this paper we experimentally compare a number of data
structures operating over keys that are 32 and 64-bit integers. We exam-
ine traditional comparison-based search trees as well as data structures
that take advantage of the fact that the keys are integers, such as van
Emde Boas trees and various trie-based data structures. We propose
a variant of a burst trie that performs better in both time and space
than all the alternative data structures. Burst tries have previously been
shown to provide a very efficient base for implementing cache efficient
string sorting algorithms. We find that with suitable engineering they
also perform excellently as a dynamic ordered data structure operating
over integer keys. We provide experimental results when the data struc-
tures operate over uniform random data. We also provide a motivating
example for our study in Valgrind, a widely used suite of tools for the
dynamic binary instrumentation of programs, and present experimental
results over data sets derived from Valgrind.

1 Introduction

1.1 Background and Motivation

Maintaining a dynamic ordered data structure over a set of ordered keys is a
classic problem, and a variety of data structures can be used to achieve O(log n)
worst-case time for insert, delete, successor, predecessor and search operations,
when maintaining a set of n keys. Examples of such data structures include AVL
trees [10], B-trees [2,10] and red-black trees [4]. Red-black trees in particular see
widespread use via their GNU C++ STL implementation [19].

Where the keys are known to be integers, better asymptotic results can be
obtained by data structures that do not rely solely on pair-wise key comparisons.
For example, the stratified trees of van Emde Boas [21] support all operations in
O(log w) worst-case time, when operating on w-bit keys, while Willard’s q-fast
tries [22] support all operations in O(

√
w) worst-case time.

Such data structures are attractive because of their superior worst-case
times compared to comparison-based data structures. However, it is a signifi-
cant challenge to construct implementations that reveal their better asymptotic
� Work supported by the Irish Research Council for Science, Engineering and Tech-

nology (IRCSET).

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 28–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Comparing Integer Data Structures for 32 and 64 Bit Keys 29

performance, especially without occupying a large amount of extra space com-
pared to comparison-based data structures.

In this paper we experimentally evaluate the performance of a variety of data
structures when their keys are either 32 or 64-bit integers. In particular we
find that a carefully engineered variant of a burst trie [7] provides the best
performance in time, and for moderate to large numbers of keys it requires less
space than even a well implemented comparison-based search tree.

A noteworthy application of our data structure occurs in the dynamic bi-
nary instrumentation tool Valgrind [12]. Valgrind comprises a widely used suite
of tools for debugging and profiling programs. Internally, Valgrind frequently
queries a dynamic ordered data structure that maps machine words to machine
words. On current platforms, these machine words are either 32 or 64 bits in
length. At present, Valgrind uses an AVL tree to perform these mappings. A
significant performance improvement could be obtained by replacing the AVL
tree with a more efficient data structure. We present experimental results for a
number of data structures when used to track every data memory access done
by a program, as for example some Valgrind-based tools do.

1.2 Related Work and Contributions

In this paper we compare the performance of a carefully engineered variant of a
burst trie in both time and space to AVL trees, red-black trees and B-trees. Aside
from these commonplace general purpose data structures, we also experimentally
examine the performance of two slightly more ad-hoc data structures [5,11] which
are tailored for the case of integers keys, and have been shown to perform well
in practice. We briefly describe these data structures in the remainder of this
section.

Dementiev et al. [5] describe the engineering of a data structure based on
stratified trees [21] and demonstrate experimentally that it achieves superior
performance to comparison-based data structures. We refer to their engineered
data structure as an S-tree. Although highly efficient in time, the S-tree is tai-
lored around keys of 32-bits in length and generalizing the data structure to 64-
bit keys would not be feasible in practice because of the large amount of space
required to maintain efficiency. Indeed, even for 32-bit keys the data structure
requires more than twice as much space as a typical balanced search tree.

Korda and Raman [11] describe a data structure similar to a q-fast trie [22]
and experimentally show that it offers performance superior to comparison-based
data structures. Unlike the S-tree data structure engineered by Dementiev et
al. this data structure is not restricted to 32-bit keys and requires less space
in practice. We now briefly describe the features of Korda and Raman’s data
structure relevant to our discussion. We refer to their data structure as a KR-trie.
A KR-trie consists of a path compressed trie containing a set of representative
keys, K1 < K2 < · · · < Km. Associated with each representative key Ki is a
bucket data structure Bi containing the set of keys {k ∈ S : Ki ≤ k < Ki+1} for
i < m, and {k ∈ S : k ≥ Km} for i = m, where S is the entire set of keys in the
data structure.



30 N. Nash and D. Gregg

Each bucket contains between 1 and b−1 keys. When a new key is inserted into
the data structure the compressed trie is first searched for its predecessor key,
giving a representative key Ki. If the associated bucket Bi already contains b−1
keys, a new representative key is added to the compressed trie that partitions
the bucket into two new buckets containing b/2 keys each. Deletions operate in a
similar manner to insertions, except that when two adjacent buckets Bi and Bi+1

contain fewer than b/2 keys in total the keys of Bi+1 are inserted into Bi and
Ki+1 is deleted from the trie. A search in the data structure is accomplished by
a predecessor query in the compressed trie, followed by a search in the relevant
bucket data structure.

There are many other non-comparison-based data structures in addition to
the two just mentioned, both practical and theoretical. Two practical examples
are LPC-tries [13] and the cache-friendly tries of Achyra et al. [1], however, we
believe these data structures are less efficient or less general than the two data
structures described above. For example, LPC-tries offer search operations more
efficiently than binary search trees, but insertions are slower. In contrast, the
data structures described above perform better than binary search trees for all
operations. The tries of Achyra et al. appear efficient, but require knowledge of
cache parameters and focus only on trie search. It is not clear how operations
like predecessor and successor could be efficiently implemented, since hash tables
are used inside the trie nodes.

The contribution of our experimental study is to show that a carefully en-
gineered data structure based on the burst trie described by Heinz et al. [7]
performs better than both the S-tree and KR-trie data structures described
above, as well as the traditional comparison-based data structures.

The work of Heinz et al. focuses on the problem of vocabulary accumulation,
where the keys are variable length strings. The only operations performed are
insert and search, with a final in-order traversal of the burst trie. In contrast, we
consider the case of integer keys with all the operations usually associated with
a dynamic ordered data structure.

The contributions of our work are as follows:

– We provide a thorough experimental comparison of dynamic data structures
over 32 and 64-bit integer keys. We provide time and space measurements
over random data as well over data sets that occur in Valgrind, a notable
application of such data structures.

– We show that burst tries extend efficiently to a dynamic ordered data struc-
ture, showing how the operations usually associated with such data struc-
tures can be implemented efficiently through careful engineering.

– We show that the data structure is more efficient in time than the best
previous data structures that have been engineered for the case of integer
keys. We also show that for large numbers of keys, the data structure requires
less space than even space efficient implementations of comparison-based
search trees.



Comparing Integer Data Structures for 32 and 64 Bit Keys 31

(a) (b)

Fig. 1. (a) Shows a trie holding the keys 1200, 1600, 7012 and 7567. The leaves of the
trie (black squares) hold the satellite data associated with the keys. A corresponding
burst trie is shown in (b).

2 Background

In this section we provide the definition of a burst trie and some basic background
information regarding the data structure.

We assume the burst trie contains fixed length keys, each of length l. A key
is a sequence k1 · · · kl where each ki, 1 ≤ i ≤ l is drawn from a set of digits
{0, . . . , U − 1}. In practice, our keys are 32 and 64-bit integers and we often
choose U = 256, for implementation reasons. Given a trie T over a set of keys,
we call a node small only if its parent has more than c descendant leaves, but
the node itself has at most c descendant leaves. A burst trie with bucket size c is
obtained from a trie T by replacing every small node x in T with a bucket data
structure containing the keys corresponding to the leaves descendant from x and
discarding all descendants of small nodes. It follows that if two keys k1 · · ·km

and k′1 · · ·k′m reside in the same bucket of a burst trie at depth d, then ki = k′i for
1 ≤ i < d, and only their suffixes need be stored in the bucket data structure.
Figure 1(a) shows an example of a trie while Figure 1(b) shows a burst trie
corresponding to it.

Although we refer to what has just been described as a burst trie, using some
kind of bucketing in a trie is an old technique. Sussenguth [20] provides an
early suggestion of the technique, while Knuth analyses bucketed tries [10]. In
addition, Knessl and Szpankowski [8,9] analyse what they refer to as b-tries —
tries in which leaf nodes hold up to b keys.

We use the term burst trie of Heinz et al. [7] because their work was the first
to provide a large scale investigation of alternative bucket data structures, the
time and space trade-offs in practice resulting from bucketing, and the bursting
of bucket data structures during insertions, which we describe below.

Searching in a burst trie is similar to searching in a conventional trie. The
digits of the key are used to determine a path in the trie that either terminates
with a nil pointer, in which case the search terminates unsuccessfully, or a
bucket is found. In the latter case, the search finishes by searching the bucket
data structure for the key suffix.



32 N. Nash and D. Gregg

(a) (b)

Fig. 2. (a) Shows the burst trie of Figure 1(b) after inserting the key 1601. Assuming
the buckets can hold at most two key suffixes, inserting the key 1601 causes the left
bucket shown in Figure 1(b) to burst. In (b) an OR-tree is shown, a possible in-node
data structure for implementing a burst trie.

Insertion of a key into a burst trie is also straightforward. The digits of the
key are used to locate a bucket where the key suffix should be stored. If no
such bucket exists, one is created. On the other hand, if a bucket is found and it
contains fewer than c keys it need not be burst and the key suffix is simply added
to that bucket. Otherwise, if the bucket already contains c keys, it is burst. This
involves replacing the bucket with a trie node and distributing the keys suffixes
of this bucket into new buckets descending from this new trie node. Figure 2(a)
shows an example of a burst operation occuring on the burst trie of Figure 1(b).
It is possible that all keys from the burst bucket belong in the same bucket in
the newly created node. In this case, the bursting process is repeated.

Deleting a key k from a burst trie is performed by first searching for the bucket
where k is stored, as described above. If there is no such bucket, no deletion need
occur. Otherwise, k is deleted from some bucket b at a node x. If b is then empty,
it is deleted from x. If x then has only nil child and bucket pointers x is deleted
from the trie. This step is repeated, traversing the path from x to the root of the
trie deleting ancestors encountered with only nil child or bucket pointers. The
traversal terminates when either a node with a non-nil pointer is encountered,
or the root of the trie is reached.

3 Engineering Burst Tries

Although the burst trie data structure described in the preceding section leads
to a highly efficient data structure, especially for strings, as shown by Heinz et
al. [7], a little care must be taken when engineering it for the case of an ordered
data structure for integer keys. Our variant of a burst trie makes use of two data
structures that have a significant influence on its performance: (1) The bucket
data structures at the leaves of the trie, and (2) the data structures inside the
nodes of the burst trie. We describe the alternatives for this latter data structure
in the next section.



Comparing Integer Data Structures for 32 and 64 Bit Keys 33

3.1 In-Node Data Structures

Given a node x in a trie-based data structure with branching factor b, and an
index i, 0 ≤ i < b, it is often necessary to find Succ(i), that is, the smallest
j > i such that x [j] �= nil. This is the bucket or child node pointer directly
following x [i]. It is also often required to find Pred(i), the largest j < i such
that x [j] �= nil. These operations upon nodes are required, for example to
support queries on the trie for the smallest key greater than or equal to some
given key. We elaborate on the precise use of these operations in Section 3.3.

The simplest data structure supporting these predecessor and successor op-
erations is just a linear search over a bit-vector. This data structure requires
only O(1) time when a new bucket or child is added or removed from the node,
however, Pred and Succ are inefficient, requiring O(b) time.

An alternative in-node data structure is an OR-tree. Figure 2(b) shows an
example of this data structure. A breadth-first traversal of an OR-tree can be laid
out in an array inside each node, requiring an additional O(b) space compared
to a simple bit-vector approach. However, an OR-tree offers all operations in
O(lg b) time.

As a compromise between these two data structures, Pred and Succ can be
implemented using �√b� counters. Where the ith counter, 0 ≤ i < �√b� holds a
count of the non-zero bits in the range [i�√b�, i�√b�+�√b�−1] (except perhaps
for the last counter, which covers the range [b−�√b�, b−1]). This data structure
allows insertions and deletions in O(1) time and supports Pred and Succ in
O(
√

b) time, requiring at most �√b� counters to be examined followed by at
most �√b� bits.

To determine the most efficient in-node data structure we conducted a number
of experiments, randomly populating a bit-vector and then performing a large
number of successor queries. Figure 3(a) shows that the OR-tree is much less ef-
ficient than either performing a simple linear scan, or using counters to guide the
search. Figures 3(b) and (c) reveal why this is so. Firstly, as Figure 3(b) shows
the OR-tree causes by the far most branch mispredictions. Intuitively, one ex-
pects that an algorithm with a better time complexity increases the information
it extracts from each branch instruction — thus making each branch instruction
less predictable. Secondly, as Figure 3(c) shows, the OR-tree has very bad cache
performance compared to the linear scan or counter based search. This is to be
expected since the the OR-tree’s breadth-first layout is cache unfriendly, while
the other two algorithms perform linear searches, which make full use of every
cache line. Note that the bad performance of the OR-tree is despite the fact that
it executes the fewest instructions of any of the algorithms.

We selected the counter based search for our burst trie implementation be-
cause it has very similar performance to the linear scan in practice and better
performance in the worst-case (i.e. when a trie node is very sparse). Other in-
node data structures could be used. For example, recursively applying the O(

√
b)

approach essentially leads to a stratified tree which would provide all operations
in O(lg lg b) time. However, since the branching factors of our trie nodes are
never greater than 216 this approach is unlikely to yield a performance benefit.



34 N. Nash and D. Gregg

 0

 50

 100

 150

 200

 250

 300

 350

 0  0.2  0.4  0.6  0.8  1

C
yc

le
s 

pe
r 

se
ar

ch

Fullness

OR-tree
Counter search

Linear search

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.2  0.4  0.6  0.8  1

B
ra

nc
h 

m
is

pr
ed

ic
tio

ns
 p

er
 s

ea
rc

h

Fullness

OR-tree
Counter search

Linear search

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

L1
 m

is
se

s 
pe

r 
se

ar
ch

Fullness

Linear search
OR-tree

Counter search

(a) (b) (c)

Fig. 3. (a) Shows the cycles per successor operation (i.e. time) on randomly populated
214 entry bit vector. “Fullness” denotes the number of randomly inserted bits as a
fraction of the total size of the bit vector. The OR-tree performs much worse than
either a simple linear scan or counter based search. This is due to the large number of
branch mispredictions, shown in (b) and cache misses, shown in (c), incurred by the
OR-tree compared to the other data structures. The cache misses shown are level 1
data cache misses, since the entire bit-vector fits in the level 2 cache. These results are
averaged over several thousand repetitions, and were gathered using PAPI [6].

In the next section we describe the second important data structure used by
burst tries — the bucket data structure.

3.2 Bucket Data Structures

The choice of data structure used for the buckets of a burst trie is critical in
achieving good performance. Heinz et al. [7] concluded that unbalanced binary
search trees holding at most 35 strings offered the best performance as a bucket
data structure. They also experimented with linked lists and splay trees [18].
Since the maximum number of keys stored in each bucket is modest (at most
35), a simple bucket data structure, even with bad asymptotic behaviour, may
perform well. We experimented with balanced binary trees as well as with sorted
arrays as bucket data structures, and found that sorted arrays are far more
efficient in practice than the search trees. We also found that a bucket size of
about 256 keys gave best performance. It is likely that the sorted arrays incur far
fewer cache misses than the search trees. In fact, unsorted arrays of strings have
been used as bucket data structures for burst tries as a basis for the burstsort
algorithm [14,15,16,17], a cache-efficient radix sorting algorithm.

In contrast to the array buckets of the burstsort algorithm, our buckets are
sorted and much smaller (in burstsort the buckets are allowed to grow until they
reach the size of the processor’s 2nd level cache, which can be several megabytes
in size) holding at most 256 keys. The buckets are implemented as growable
sorted arrays, and an insertion involves possibly doubling the size of the bucket
followed by a linear scan to find the correct position for the key to be inserted.

Often the most frequent operation executed on a data structure is a search,
and so searching buckets in particular should be efficient. We use a binary search
that switches to a linear search when the number of keys which remain to be
searched falls below a certain threshold. We found a threshold of between 16 and



Comparing Integer Data Structures for 32 and 64 Bit Keys 35

32 keys gave a performance improvement over a simple binary search. Our burst
trie implementation is designed to provide a mapping from a key to the satellite
data associated with that key, which we refer to as the value for the key. To
improve the spatial locality of searches the keys and values of a bucket should
not be interleaved. Rather, all the keys should be stored sequentially, followed
by all the values of that bucket. This ensures searching for a key makes better
utilization of the processor’s cache lines.

If the maximum bucket capacity is c, it takes O(c) time to insert into a
bucket and O(lg c) time to search in a bucket. Finally, since bursting a bucket
just involves splitting the sorted sequence of keys it contains into a number of
other sorted sequences, bursting a bucket also takes O(c) time.

3.3 Operations

The preceding two sections have described the two main data structures required
for extending burst tries to an ordered data structure. We now show how these
data structures can be used efficiently to provide a burst trie with all the usual
operations associated with a dynamic ordered data structure. Note that in order
that predecessor and successor operations are supported efficiently, it is wise to
maintain the leaves of the burst trie (i.e. the buckets) in order in a doubly linked
list.

Locate. We first describe the locate operation, which finds the value associ-
ated with the smallest key greater than or equal to a supplied key k (or nil if
there is no such key). Assuming the path in the burst trie determined by k leads
to a bucket, then that bucket is searched for the smallest key suffix greater than
or equal to k’s suffix, and its corresponding value is returned. In this case, the
locate operation takes O(h + lg c) time, where h is the maximum height of the
trie, and each bucket holds at most c keys. In the case where k does not lead to
a bucket, the in-node data structure is queried to find a bucket requiring O(

√
b)

time, thus locate requires O(h + max(lg c,
√

b)) time.
Insert. If inserting a new key k requires the creation of a new bucket the

in-node data structure and doubly linked list of buckets must be updated. This
requires finding the two buckets whose keys are the immediate predecessors and
successors of k, and can be accomplished in time O(h +

√
b) time. Note that the

in-node data structures should be augmented with indices storing the minimum
and maximum non-nil pointer at each node, which we refer to as the node’s low
and high fields respectively. The low and high fields are used to avoid avoid
the process of locating the predecessor and successor buckets requiring O(h

√
b)

time. In the case where an existing non-full bucket is found for k, the insertion
takes time O(h+c) (recall that the buckets are simply sorted arrays). Finally, in
the case where bursting must occur, the insertion can take time O(hc) at worst,
since an insertion to a full bucket may repeatedly cause all key suffixes to enter
the same new bucket deeper in the trie. A straightforward argument can be used
to show insertion requires O(h + max(c,

√
b)) amortized time.

Other Operations. Deletion is carried out as was described in Section 2,
except that when an empty bucket is deleted from a node, the in-node data



36 N. Nash and D. Gregg

structure and linked list of buckets should also be updated. Detecting whether
a node should be removed from the trie following a deletion is accomplished by
examining its low and high fields. Note that when a node x is to be removed
from the trie, its parent’s in-node data structure should only be updated if the
parent itself is not also to be removed as a result of the removal of x. This
ensures that O(

√
b) time is spent updating in-node data structures, rather than

O(h
√

b) time. Since it takes O(c) time to delete a key from a bucket, deletion
takes O(h + max(

√
b, c)) time in total.

Predecessor and successor operations can be implemented with minor modifi-
cations to the locate operation described above. Often, predecessor and successor
operations on a data structure are supported via iterators. In this case, by using
the linked list of buckets, predecessor and successor both operate in constant
time.

4 Results

4.1 Experimental Setup

We now describe the experimental comparison of our burst trie variant with a
number of other data structures. For our experiments over 32-bit keys we used
an Intel Core 2 processor with a clock-speed of 2.13GHz, a second level cache size
of 2MB and 4 GB of main memory. For our experiments over 64-bit keys we used
an Intel Core 2 processor with a clock speed of 2.0GHz, a second level cache size
of 4MB and 4GB of main memory. Note that our experiments investigate the
case where the entire data structure fits in main memory. All results we present
below are averaged over several thousand runs. Although not presented below,
to verify the robustness of our results we have also conducted experiments on
Sun SPARC as well as PowerPC architectures, and observed results very similar
to the ones we describe below.

We compare our implementation to the C++ STL map implementation [19],
which uses a red-black tree. We also compare to the AVL tree implementation
used internally in Valgrind [12], except that we have implemented a custom
memory allocator to reduce memory usage and improve performance. We also
include a comparison with an optimized B-tree implementation, as well as with
the stratified tree based data structure of Dementiev et al. [5], which we refer to
below as an S-tree. Finally, we include a comparison with a KR-trie (described
in Section 1.2). For the KR-trie we use the same in-node data structures and
bucket data structures as we used for the burst trie1.

We used uniform random data as well as data generated internally by Val-
grind to assess the relative performance of the data structures. We used Brent’s

1 This differs slightly from the implementation of the KR-trie described by Korda
and Raman [11], since they use fixed size rather than growable arrays as buckets.
However, using growable arrays improves performance and reduces memory con-
sumption. Moreover, Korda and Raman do not precisely specify the in-node data
structure they use.



Comparing Integer Data Structures for 32 and 64 Bit Keys 37

[3] pseudorandom number generator implementation for generating both 32 and
64-bit random numbers. The data sets generated using Valgrind consist of the
memory addresses of all the data memory accesses performed during the exe-
cution of a program. This reflects the use of the data structure to track every
memory access performed by a program, as is done by some Valgrind-based tools.
We generated data sets for the Linux program Top (a task viewer) as well as
three applications from the K Desktop Environment: Amarok (a music player),
Konqueror (a web browser and file manager) and KPDF (a PDF viewer). Each
of these data sets contain between 107 and 109 operations in total, and 70-80% of
the operations are loads. A load generates a search operation on the appropriate
data structure while a store generates an insert operation. Currently, Valgrind
uses an AVL tree to perform these operations. Note that iteration over the data
structure is also required at certain times, removing the possibility of using a
hash table.

4.2 Random Data

Figure 4(a) shows the time per insertion for the data structures for uniform
random 32-bit keys. Note that the S-tree and red-black tree use all available
memory at 225 and 226 keys respectively. The burst trie performs best of all
the data structures, although the S-tree and KR-trie are also competitive. The
comparison-based data structures are not as competitive, although the B-tree
performs quite well.

Figure 4(b) shows the time per search operation, the vast majority of the
searches are for keys that are not in the data structure. Before it runs out of
memory, the S-tree data structure performs slightly better than the burst trie.
Note that this is the only operation for which the S-tree out-performs the burst
trie. The KR-trie performs worse than the burst trie and S-tree, followed by the
B-tree. The binary search trees perform quite badly in comparison to these data
structures.

Figure 4(c) shows the memory consumption of the data structures. The S-
tree is clearly a very memory hungry data structure. The comparison-based
data structures are attractive because of their uniform memory overhead. It is
noteworthy that the use of a custom memory allocator for the AVL tree allows it
to occupy significantly less memory than the red-black tree. The B-tree, which
uses nodes consisting of growable arrays of keys of up to 4KB in size, uses
the least memory of any of the comparison-based data structures. The KR-trie
and burst trie are highly inefficient in their memory usage until the number of
keys becomes large. However, when the number of keys becomes large, beyond
about 218 (262,144) keys the burst trie in particular has a very modest memory
overhead. The rapid increase and then decrease in memory consumption of the
KR-trie beginning at 220 keys is a result of the fact that the KR-trie uses a
compressed trie to control access to its buckets. Beginning at 220 keys, many
compressed branches of the trie are expanded, resulting in poor space utilization
of their links and buckets. Subsequently, the buckets and links become filled and
used, and space utilization improves again.



38 N. Nash and D. Gregg

 0

 0.5

 1

 1.5

 2

 2.5

2726252423222120191817161514

M
ic

ro
se

co
nd

s 
pe

r 
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
S-tree
KR-trie
Burst trie

 0

 0.5

 1

 1.5

 2

 2.5

2726252423222120191817161514

M
ic

ro
se

co
nd

s 
pe

r 
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
S-tree
KR-trie
Burst trie

(a) (b)

 0

 10

 20

 30

 40

 50

 60

 70

2726252423222120191817161514

B
yt

es
 p

er
 k

ey

Log2(Number of keys)

AVL tree
Red-black tree

B-tree
S-tree

KR-trie
Burst trie

 0

 0.5

 1

 1.5

 2

 2.5

2726252423222120191817161514

M
ic

ro
se

co
nd

s 
pe

r 
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
S-tree
KR-trie
Burst trie

(c) (d)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

                   KPDF                   Konqueror                 Amarok                    Top

S
ec

on
ds

AVL tree
Red-black tree
B-tree
S-tree
KR-trie
Burst trie

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

                   KPDF                   Konqueror                 Amarok                    Top

M
eg

ab
yt

es

AVL tree
Red-black tree
B-tree
S-tree
KR-trie
Burst trie

(e) (f)

Fig. 4. These figures show a comparison of the data structures when operating on 32-
bit keys. (a) Shows the time per insertion operation for the data structures. (b) Shows
the time per locate operation for the data structures, a locate operation returns the
smallest key greater than or equal to a given key. (c) Shows the number of bytes per
key of memory consumed by the data structures following a sequence of insertions. (d)
Shows the time for a mixed sequence of equiprobable insertion and deletion operations.
The results of (a)—(d) are over uniform random keys. The charts in (e) and (f) show,
respectively, the time and space required by the data structures required to process
various Valgrind data sets. The results are discussed in Section 4.

Figure 4(d) shows the time per operation required for a mixed sequence of
insertions and deletions, which occur randomly and are equiprobable. The burst



Comparing Integer Data Structures for 32 and 64 Bit Keys 39

 0

 0.5

 1

 1.5

 2

 2.5

 3

26252423222120191817161514

M
ic

ro
se

co
nd

s 
pe

r 
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
KR-trie
Burst trie

 0

 0.5

 1

 1.5

 2

 2.5

 3

26252423222120191817161514

M
ic

ro
se

co
nd

s 
pe

r 
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
KR-trie
Burst trie

(a) (b)

 0

 20

 40

 60

 80

 100

 120

26252423222120191817161514

B
yt

es
 p

er
 k

ey

Log2(Number of keys)

AVL tree
Red-black tree

B-tree
KR-trie

Burst trie

 0

 0.5

 1

 1.5

 2

 2.5

26252423222120191817161514

M
ic

ro
se

co
nd

s 
pe

r 
ke

y

Log2(Number of keys)

AVL tree
Red-black tree
B-tree
KR-trie
Burst trie

(c) (d)

 0

 5

 10

 15

 20

 25

                 KPDF            Konqueror               Amarok                  Top

S
ec

on
ds

AVL tree
Red-black tree
B-tree
KR-trie
Burst trie

 0

 10

 20

 30

 40

 50

 60

                 KPDF            Konqueror               Amarok                  Top

M
eg

ab
yt

es

AVL tree
Red-black tree
B-tree
KR-trie
Burst trie

(e) (f)

Fig. 5. These figures show a comparison of the data structures when operating on 64-
bit keys, and are broadly similar to the results in the 32-bit case, shown in Figure 4.
The S-tree is absent because it is restricted to 32-bit keys. (a) Shows the time per
insertion operation for the data structures. (b) Shows the time per locate operation
for the data structures, a locate operation returns the smallest key greater than or
equal to a given key. (c) Shows the number of bytes per key of memory consumed by
the data structures following a sequence of insertions. (d) Shows the time for a mixed
sequence of equiprobable insertion and deletion operations. The results of (a)—(d) are
over uniform random keys. The charts in (e) and (f) show, respectively, the time and
space required by the data structures required to process various Valgrind data sets.
The results are discussed in Section 4.



40 N. Nash and D. Gregg

trie is also the best performing data structure in this case, although the KR-trie
and B-tree also perform quite well. Unfortunately the only S-tree implementation
available to us2 had bugs in its delete operation causing it to fail on inputs larger
than 220 keys.

Over the full range of operations, on random 32-bit keys the burst trie’s per-
formance is competitive with or superior to that of all the other data structures
in time. In addition, when the number of keys is large it also uses the least
memory of any of the data structures.

The results for random 64-bit keys are shown in Figure 5(a)—(d). The S-
tree is excluded from these results because it is tailored specifically for 32-bit
keys, and extending it efficiently to 64-bit keys requires an enormous amount
of extra space. For the remaining data structures the results for the 64-bit case
are broadly similar to those observed in the 32-bit case. The burst trie and KR-
trie perform better than the comparison-based data structures, with the B-tree
performing the best of the comparison-based data structures. In addition, it
appears the burst trie has the edge over the KR-trie in both time and space.

It is noteworthy that the burst trie achieves its space efficiency in part because
it stores a trie over the common prefixes of keys (described fully in Section 2)
and as a result only stores key suffixes in buckets. This also improves the cache
performance of searches in the buckets. However, the trie of representative keys
(described in Section 1.2) stored by the KR-trie does not guarantee that the
keys in the same bucket of a KR-trie share a common prefix.

In addition, the space occupied by the burst trie could perhaps be further
reduced by ensuring its trie is compressed. However, at least over uniform random
data chains of single-children nodes are less probable than in a traditional trie,
and so the space saved by compression may be modest. In addition, maintaining
a compressed trie can be quite expensive in time.

4.3 Valgrind Workloads

Figure 4(e) shows the time for processing 32-bit Valgrind data sets of various
programs (these data sets are described in Section 4.1). The S-tree is the most
efficient data structure in time, followed by the burst trie. It is notable that the
KR-trie performs the worst on these Valgrind data sets. Figure 4(f) shows the
memory consumed by the data structures in processing the data sets. Except
for on the smallest trace, the burst trie requires the least memory of any of the
data structures. Both the S-tree and KR-trie require much more space than the
comparison-based data structures and the burst trie.

Figure 5(e) shows the time for processing the Valgrind data sets in the 64-
bit case. The S-tree is excluded because it cannot operate on 64-bit keys. The
burst trie is the most efficient data structure, with the KR-trie and B-tree also
performing quite well. As Figure 5(f) shows, the burst trie is by far the most
space efficient data structure on the data sets.

On the 32-bit data sets, the S-tree performs better than the burst trie, how-
ever, it requires almost twice as much memory. On the 64-bit data sets, the burst
2 Obtained from http://www.mpi-inf.mpg.de/∼kettner/proj/veb/index.html



Comparing Integer Data Structures for 32 and 64 Bit Keys 41

trie is the best performing data structure, as well as requiring the least space of
any data structure.

5 Conclusion

This paper has provided an experimental comparison of efficient data structures
operating over 32 and 64-bit integer keys. In particular we have shown that
extending burst tries to an ordered data structure for integer keys provides a
data structure that is very efficient in both time and space.

In comparisons using uniform random data with AVL trees, red-black trees
and B-trees we have shown that for moderate to large sized inputs, burst tries
provide all operations more efficiently in both time and space. We have also
compared our extended version of burst tries to Dementiev et al.’s S-tree data
structure based on stratified trees, and found that while Dementiev et al.’s data
structure is competitive in time, it requires far more memory than a burst trie
and is less general, being restricted to 32-bit keys. We have also compared burst
tries to KR-tries, a data structure based on Willard’s q-fast tries. We carefully
engineered an implementation of KR-tries, using the same bucket and node data
structures as our burst trie, and found that they are generally slightly less effi-
cient than burst tries. One significant advantage of a burst trie over a KR-trie
is that because of a burst trie’s organisation, it need only store key suffixes in
buckets, improving space usage as well as cache performance.

The data structure presented in this paper has wide applicability, and fur-
thermore our results are robust, having been verified on several different archi-
tectures. We have presented results for an application of our data structure in
Valgrind where the keys are 32 and 64-bit integers. Our results show that in
the 32-bit case only the S-tree data structure operates faster, but the S-tree re-
quires almost twice as much space as the burst trie. In the 64-bit case, the burst
trie requires less space and operates more rapidly than any of the alternative
data structures. This paper demonstrates, through the application of our data
structure in Valgrind together with the results presented over random data, that
burst tries should be considered as one of the many alternative data structures
for applications requiring a general purpose dynamic ordered data structure over
keys such as integers or floating point numbers.

Acknowledgements. The authors are grateful to Julian Seward for all his
patient assistance with Valgrind. We also thank the anonymous reviewers for
their helpful comments.

References

1. Acharya, A., Zhu, H., Shen, K.: Adaptive algorithms for cache-efficient trie search.
In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp.
296–311. Springer, Heidelberg (1999)

2. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dices. Acta Inf. 1, 173–189 (1972)



42 N. Nash and D. Gregg

3. Brent, R.P.: Note on marsaglia’s xorshift random number generators. Journal of
Statistical Software 11(5), 1–4 (2004)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn., pp. 273–301. MIT Press, Cambridge, MA, USA (2001)

5. Dementiev, R., Kettner, L., Mehnert, J., Sanders, P.: Engineering a sorted list data
structure for 32 bit keys. In: Proc. of the Sixth SIAM Workshop on Algorithm
Engineering and Experiments, New Orleans, LA, USA, pp. 142–151 (2004)

6. Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D., You, H., Zhou, M.:
Experiences and lessons learned with a portable interface to hardware performance
counters. In: IPDPS 2003: Proc. of the 17th International Symposium on Paral-
lel and Distributed Processing, Washington, DC, USA, p. 289.2. IEEE Computer
Society, Los Alamitos (2003)

7. Heinz, S., Zobel, J., Williams, H.E.: Burst tries: a fast, efficient data structure for
string keys. ACM Trans. Inf. Syst. 20(2), 192–223 (2002)

8. Knessl, C., Szpankowski, W.: Heights in generalized tries and patricia tries. In:
Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 298–307.
Springer, Heidelberg (2000)

9. Knessl, C., Szpankowski, W.: A note on the asymptotic behavior of the heights in
b-tries for b large. Electr. J. Comb. 7 (2000)

10. Knuth, D.E.: The Art Of Computer Programming. Sorting And Searching, 2nd
edn., vol. 3, pp. 458–478, 482–491, 506. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA (1998)

11. Korda, M., Raman, R.: An experimental evaluation of hybrid data structures for
searching. In: Proc. of the 3rd International Workshop on Algorithm Engineering
(WAE), London, UK, pp. 213–227 (1999)

12. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6), 89–100 (2007)

13. Nilsson, S., Tikkanen, M.: An experimental study of compression methods for dy-
namic tries. Algorithmica 33(1), 19–33 (2002)

14. Sinha, R.: Using compact tries for cache-efficient sorting of integers. In: Ribeiro,
C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 513–528. Springer,
Heidelberg (2004)

15. Sinha, R., Ring, D., Zobel, J.: Cache-efficient string sorting using copying. J. Exp.
Algorithmics 11, 1.2 (2006)

16. Sinha, R., Zobel, J.: Cache-conscious sorting of large sets of strings with dynamic
tries. J. Exp. Algorithmics 9, 1.5 (2004)

17. Sinha, R., Zobel, J.: Using random sampling to build approximate tries for efficient
string sorting. J. Exp. Algorithmics 10, 2.10 (2005)

18. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

19. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (1997)

20. Sussenguth, E.H.: Use of tree structures for processing files. Commun. ACM 6(5),
272–279 (1963)

21. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Inf. Process. Lett. 6(3), 80–82 (1977)

22. Willard, D.E.: New trie data structures which support very fast search operations.
J. Comput. Syst. Sci. 28(3), 379–394 (1984)



A New Graph-Theoretical Model for

k-Dimensional Guillotine-Cutting Problems

François Clautiaux1, Antoine Jouglet2, and Aziz Moukrim2

1 Université des Sciences et Technologies de Lille, LIFL UMR CNRS 8022, Parc de la
Haute Borne, Bâtiment INRIA, 59655 Villeneuve d’Ascq

francois.clautiaux@univ-lille1.fr
2 HeuDiaSyC UMR CNRS 6599 UTC, BP 20529 60205, Compiègne

{antoine.jouglet, aziz.moukrim}@hds.utc.fr

Abstract. We consider the problem of determining if a given set of
rectangular items can be cut in a large rectangle, using guillotine cuts
only. We introduce a new class of arc-colored and oriented graphs, named
guillotine graphs, which model guillotine patterns. Then we show that
an uncolored and non-oriented multigraph is sufficient to obtain any
guillotine pattern. We propose linear algorithms for recognizing these
graphs, and computing the corresponding patterns. Finally we explain
how the model can be used in a constraint programming approach.

1 Introduction

The two-dimensional orthogonal guillotine-cutting problem consists in determin-
ing if a given set of small rectangles (items) can be cut from a larger rectangle
(bin), using guillotine cuts only. A guillotine cut is straight and has to be per-
formed from one edge to the opposite edge of a current available rectangle. As it
is a decision problem, it can be seen either as an open-dimension packing prob-
lem, or as a knapsack problem [12]. It occurs in industry if pieces of steel, wood,
or paper have to be cut from larger pieces.

Two ways are used in the literature for seeking an exact solution for this
problem (see [8]). The first method [3] consists in iteratively cutting the bin into
two rectangles, following an horizontal or a vertical cut, until all rectangles are
obtained. The second method [10] recursively fusions items into larger rectangles,
using so-called horizontal or vertical builds [11].

In this paper we propose a new graph-theoreticalmodel for the two-dimensional
guillotine-cutting problem. For this purpose, we introduce the notion of guillotine-
cutting class, which is similar to the concept of packing class [6,7], but leads to less
redundancies for the guillotine-case.

First we describe a model that is based on a unique oriented arc-colored graph,
where circuits are related to horizontal or vertical builds. Then we show that
a unique undirected uncolored multigraph is sufficient to represent exactly two
guillotine-cutting classes. We describe several algorithms of linear complexity for
recognizing these graphs and for constructing the guillotine pattern related to a
given graph. All proofs can be found in [5].

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 43–54, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



44 F. Clautiaux, A. Jouglet, and A. Moukrim

3

2

1

4 5

6 7 8

9
10

11

Fig. 1. A guillotine pattern

In Section 2, we describe our notation. Section 3 is devoted to our new model,
based on colored and oriented graphs. In Section 4, we deal with the undirected
uncolored multigraph model. In Section 5 we propose an algorithm to recover
a guillotine pattern from such a graph. In Section 6, we describe a constraint
programming approach to solve the decision problem using the model proposed.

2 Notation and Graph-Theoretical Concepts

2.1 Problem Formulation and Notation

A guillotine-cutting instance D is a pair (I, B). I is the set of n items i to cut.
An item i has a width wi and an height hi (wi, hi ∈ N). The bin B is of width
W and height H . All items have to be cut, items cannot be rotated, all sizes are
discrete, and only guillotine cuts are allowed (see Figure 1). A cutting pattern
is a set of coordinates for the items to cut. A pattern is guillotine if it can be
obtained using guillotine cuts only. It can be checked in O(n2) time [2].

A build [11] consists in creating a new item by combining two items. The
result of an horizontal build of two items i and j, denoted build(i, j, horizontal),
is an item of label min{i, j}, of width wi + wj , and of height max{hi, hj}. A
vertical build can be defined similarly. A valid sequence of builds is an ordered
list b1, b2, . . . , bn−1, such that for k = 1 . . . , n − 1, bk = build(ik, jk, ok), ik and
jk two valid labels for step k, and ok an orientation (horizontal or vertical). A
valid sequence of builds is said to be normal if for any bk, ik < jk. Any guillotine
pattern can be obtained by a normal sequence of builds.

2.2 Graph-Theoretical Concepts

An undirected graph G is a pair (V, E), and a directed graph G is a pair (X, A).
The notation [u, v] is used for an edge in an undirected graph, and (u, v) for an
arc in a directed graph. For a given vertex v, its neighborhood N(v) is the set of
vertices u such that [v, u] ∈ E. When an edge may appear more than once, we
have a multigraph. An Hamiltonian chain (resp. cycle) μ is a chain (resp. cycle)
that visits each vertex exactly once.

We give the definition of the classical concept of edge-contraction that plays
an important role in this paper. Contracting an edge e = (u, v) in the graph
G = (V, E) consists in deleting u, v and all edges incident to u or incident to v



A New Graph-Theoretical Model 45

and introducing a new vertex ve and new edges, such that ve is incident to all
vertices that were incident to u or incident to v.

3 A New Graph-Theoretical Model for the
Guillotine-Cutting Problem

In this section, we propose a new graph-theoretical model for the guillotine-
cutting problem. For this purpose, we introduce the concept of guillotine-cutting
classes, which are similar to the packing classes of [6]. We study a new class of
oriented and arc-colored graphs, and show that such graphs can be associated
with a guillotine-cutting class. We name these graphs guillotine graphs.

3.1 Guillotine-Cutting Classes

In order to avoid equivalent patterns in the non-guillotine orthogonal-packing
problem (2OPP ), Fekete and Schepers [6] proposed the concept of packing class.
Packing classes are general and model any pattern, guillotine or not. When only
guillotine patterns are sought, packing classes may not be suited to the problem,
as two different packing classes may lead to patterns with the same combinatorial
structure. In order to gather such guillotine patterns, we introduce the concept
of guillotine-cutting class. It takes into account the fact that exchanging the
positions of two rectangular blocks of items does not change the combinatorial
structure of the solution. The definition uses the notion of builds reminded in
Section 2. Note that from a given normal sequence of builds, one may obtain
several patterns: for each vertical build, one may choose to cut the first item
above the second, or the opposite (the same applies to horizontal cuts).

Definition 1. Two solutions belong to the same guillotine-cutting class if they
can be obtained from the same normal sequence of horizontal and vertical builds.

Clearly if a member of a guillotine-cutting class is feasible, also are the other
members. In this case, we say that the guillotine-cutting class is feasible. This
concept takes into account the specificity of the guillotine cuts and reduces dra-
matically the number of equivalent patterns compared to a direct application of
the model of [6]. This is not surprising, since the concept of packing classes is
not designed for this specific problem. On the contrary, the model of guillotine-
cutting class cannot model any non-guillotine orthogonal-packing patterns.

3.2 A New Graph-Theoretical Model

In the sequel we propose a new class of graphs that represent guillotine-cutting
classes. In order to give a definition of this new class, we introduce the concept
of circuit contraction, similarly to the classical concept of arc contraction used
in graph theory (see Section 2).

Definition 2. Let G = (V, E) be a graph, and μ = [vi1 , vi2 , . . . , vik
, vi1 ] a cycle

of G. Contracting μ is equivalent to iteratively contracting each edge of μ.



46 F. Clautiaux, A. Jouglet, and A. Moukrim

1

2 3

4 5 1

2 3

5 4

3

4 5 1

2 3

45 1

2

1

2

3

4 5

1

2

3

5 4

3

4 5

1

2

3

45

1

2

1

2

3

4 5

1

2

3

5 4

3

4 5

1

2

3

45

1

2

1

2 3

4 5 1

2 3

5 4

3

4 5 1

2 3

45 1

2

Fig. 2. A guillotine-cutting class

(a) initial graph (b) after cycle-
contraction

Fig. 3. Cycle-contraction

For undirected graphs, we use the term cycle contraction. The same concept
can be applied to directed graphs, in which case we will use the term circuit
contraction. In Figure 3, contracting the black cycle of the left-hand graph leads
to the right-hand graph. Note that the order in which the arcs/edges are con-
tracted does not change the resulting graph. The index of the vertex obtained
by contracting a circuit μ is the smallest index of an item in μ.

In our new model, a vertex xi is associated with each item i, and a circuit
is associated with a list of horizontal or vertical builds. Let G = (X, A) be a
directed graph. In order to make a difference between horizontal and vertical
builds, we associate the color red to horizontal builds and the color green to
vertical builds. Let ξ : A → {red, green} be a coloration of the arcs of G. We
say that a circuit is monochromatic if all arcs of the circuit have the same color.
In the graph, circuit-contracting a red (resp. green) circuit corresponds with a
list of horizontal (resp. vertical) builds. When a circuit μ is contracted, the size
associated with the residual vertex is the size of the item built, and its label is



A New Graph-Theoretical Model 47

Fig. 4. Modeling the pattern of Figure 1 with a guillotine graph

the smallest label of a vertex of μ. We now give a definition of guillotine graphs,
which model guillotine patterns.

Definition 3. Let G be an arc-colored oriented graph. G is a guillotine graph
if the two following conditions hold:

1. G can be reduced to a single vertex by iterative contractions of monochromatic
circuits

2. no steps are encountered where a vertex belongs to two different monochro-
matic circuits

In Figure 4, we depict the dominant graph that models the configuration of
Figure 1. Many equivalent graphs can be associated with a given guillotine-
cutting class, depending on the order of the vertices in the circuits. To avoid
equivalent graphs, we only consider dominant guillotine graphs.

Definition 4. Let G be a valid guillotine graph. G is a dominant guillotine
graph if in all graphs obtained by applying circuit-contractions to G, vertices in
a monochromatic circuit are ordered by increasing index and when a circuit is
contracted, only two vertices are of degree greater than two.

Theorem 1. If G is a dominant guillotine graph, G can be associated with a
unique guillotine-cutting class. Moreover for each normal sequence of builds,
there is exactly one dominant guillotine graph.

If several normal sequences of builds lead to the same guillotine pattern there will
be several graphs associated with the same pattern. This may occur when items
of the same size are cut such that the order of a vertical and an horizontal cut
can be exchanged. Handling these symmetries remains an issue for our model.

4 Cycle-Contractable Graphs

Now we show that colors and orientations are not mandatory in our model. For
this purpose, we introduce a new class of undirected multi-graphs, which are



48 F. Clautiaux, A. Jouglet, and A. Moukrim

Fig. 5. A cycle-contractable graph

named cycle-contractable graphs and we show that these graphs are undirected
and uncolored guillotine graphs.

A cycle-contractable graph is associated with two guillotine patterns, depend-
ing on the chosen coloring. These graphs have many interesting properties, which
are taken into account to design algorithms of linear complexity for recognizing
them and computing the corresponding guillotine patterns.

4.1 Cycle-Contractable Graphs and Guillotine Graphs

Let G = (V, E) be an undirected multigraph. If there is an Hamiltonian cycle
μ = [vi1 , vi2 , . . . , vin , vi1 ], a corresponding ordering σ can be associated with the
vertices of V : σ(i1) = 1, and σ(ij+1) = σ(ij) + 1 for j = 1, . . . , n − 1. In the
sequel, when a graph G has an Hamiltonian cycle, any edge that is not included
in the cycle is named a backward edge.

Definition 5. Let G = (V, E) be an undirected multigraph. G is a cycle-
contractable graph if G contains an Hamiltonian cycle μ with a corresponding
ordering σ such that

1. G does not include two backward edges [vi, vj ] and [vi, vj ] connecting the
same pair of vertices

2. G does not include two backward edges [vi, vj ] and [vk, vl] such that σ(i) <
σ(k) ≤ σ(j) < σ(l)

The graph of Figure 5 is a cycle-contractable graph. It can be pictured as a circle
of vertices and non-crossing chords.

We now show that dominant guillotine graphs have the structure of cycle-
contractable graphs. For this purpose we consider the graph obtained by remov-
ing the color and the orientation of the considered guillotine graph.

Theorem 2. An uncolored non-oriented dominant guillotine graph is a cycle-
contractable multigraph.

The next proposition states that the number of edges in a cycle-contractable
graph is in O(n). This result allows us to propose O(n) algorithms in the sequel.



A New Graph-Theoretical Model 49

Algorithm 1: Finding the Hamiltonian cycle in a cycle-contractable graph
Data: G = (V, E): multigraph;
μ← ∅;
L← ∅;
forall edge that appears twice in E do delete one of the two edges [vi, vj ];
forall i such that |N(vi)| = 2 do L← L ∪ {vi};
repeat

Let vi be a vertex in L and let vj and vk be its two neighbors;
L← L \ {vi};
if [vi, vj ] is not backward then μ← μ ∪ {[vi, vj ]};
if [vi, vk] is not backward then μ← μ ∪ {[vi, vk]};
G← G \ {vi};
if [vj , vk] �∈ G then G← G ∪ {[vj , vk]};
mark [vj , vk] as backward ;
if |N(vj)| = 2 then L← L ∪ {vj};
if |N(vk)| = 2 then L← L ∪ {vk};

until n = 3 or L is empty ;
if n > 3 then exit with the FAIL status;
add each remaining edge in μ if it is not backward;
return μ;

Proposition 1. In a guillotine graph G with at least two vertices, the number
m of arcs in G is in [n, 2n− 2], and the bounds are tight.

In the remainder, any graph will be connected and with at most 2n− 2 edges.

4.2 Finding the Hamiltonian Cycle in a Cycle-Contractable Graph

Cycle-contractable graphs can be recognized in linear time. When such a graph
is considered, the first step for computing the corresponding guillotine graphs is
to determine which edges belong to the Hamiltonian cycle μ, and which edges
are backward. Algorithm 1 finds the cycle μ in linear time, by using the fact
that: if there are two edges [vi, vj ] then one of them is in μ; if a vertex vi has
two neighbors, the two edges incident to vi belong to μ. We also use the fact
that removing these edges leads to a graph that is still cycle contractable.

Proposition 2. If G is cycle-contractable, Algorithm 1 finds the Hamiltonian
cycle of G.

5 From Cycle-Contractable Graphs to Guillotine
Patterns

We have shown that a given dominant guillotine graph leads to a unique cycle-
contractable graph. In this section we show that a given cycle-contractable graph
leads to at most two guillotine-cutting classes. The first step consists in deduc-
ing the unique suitable orientation of the edges. Then a choice remains for the
coloring of the arcs. The two possible colorings lead to two possible guillotine
graphs.



50 F. Clautiaux, A. Jouglet, and A. Moukrim

5.1 Finding Suitable Orientation and Coloring for the Edges

Not all cycle-contractable graphs lead to dominant guillotine graphs, depending
on the possible ordering of the vertices in the cycles. In order to avoid non-
dominant solutions, we introduce the dominant cycle-contractable graphs, which
lead to dominant guillotine graphs.

Proposition 3. A cycle-contractable graph leads to a dominant guillotine-graph
if and only if, for one of the two possible orientations, for all obtained arcs
(xi, xj) of the main circuit (j �= 1), either i < j, or there is a backward arc
(xl, xi) such that l < j.

We say that such a graph is a dominant cycle-contractable graph.

Algorithm 2 returns true if and only if the input cycle-contractable graph is
dominant. This property is checked using the result of Proposition 3. In this case,
the algorithm finds a suitable orientation (i.e. an orientation of the arcs such that
the obtained graph is a dominant circuit-contractable graph) and coloring for
determining the corresponding guillotine graph. The algorithm visits the vertices
v of the obtained directed graph following the Hamiltonian circuit. Each time a
backward arc has v as final extremity, it means that a new circuit is included
in the current circuit, so the current color is changed. This color is changed as
many times as there are such backward edges. Similarly, when backward edges
have v as initial extremity, each backward edge is considered by decreasing value
of index and is colored with the current color, and then the color is changed.

Proposition 4. Algorithm 2 colors the arcs of a dominant cycle-contractable
graph in such a way that this graph is a dominant guillotine graph.

Corollary 1. Given the color of one arc, there is only one valid coloring for a
cycle-contractable graph.

The results above can be summarized by Theorem 3, which is the main result
of this section. As we have shown that each guillotine pattern can be obtained
from a cycle-contractable graph, we can state the guillotine-cutting problem in
a new way: finding a dominant cycle-contractable graph leading to a guillotine
pattern fitting the input bin.

Theorem 3. Each dominant cycle-contractable graph is related to two guillotine-
cutting classes and every dominant sequence of builds is related to one dominant
cycle-contractable graph.

5.2 Computing the Size of the Guillotine Pattern

Algorithm 3 computes the width and the height of the guillotine pattern as-
sociated with the guillotine graph G. First the ordering σ is computed using
Algorithm 1. Then the vertices are considered following σ. Initially, a dummy
build b is created, with the current item only. When there is a backward arc, the
new build associated with the corresponding circuit is computed and stored in
b, and then pushed on the top of S. At the end of the algorithm, S only contains
one element, which corresponds with the guillotine pattern.



A New Graph-Theoretical Model 51

Algorithm 2: Orienting and coloring a cycle-contractable graph
Data: G = (V, E): a cycle-contractable graph;
Use Algorithm 1 to determine the backward edges;
Choose an orientation for the edges, which is consistent with the hamiltonian
cycle ;
test← true;
forall arc (vi, vj) of the Hamiltonian circuit do

if j < i and �k < j s.t. (vk, vi) is a backward edge then test← fail;

if test = fail then
choose the other orientation for the edges;
forall arc (vi, vj) of the Hamiltonian circuit do

if j < i and �k < j s.t. (vk, vi) is a backward edge then return false;

compute the corresponding ordering σ;
choose a color;
for i : 1→ n do

v ← σ(i);
Let S+ be the set of backward arcs a such that a = (u, v);
forall a ∈ S+ do change the current color;
Let S− be the set of backward arcs a such that a = (v, u);
foreach backward arc a of S− by decreasing value of label do

color a with the current color;
change the current color;

u = σ(i + 1);
color the arc (v, u) with the current color;

return true;

Theorem 4. Recognizing a cycle-contractable graph, and computing the two
guillotine-cutting classes related to this graph takes O(n) time and space.

6 A Constraint-Programming Approach

In this section, we explain briefly how our new graph-theoretical model can be
used in a constraint programming approach. We chose this approach since it was
shown to be efficient for the non-guillotine rectangle packing problem (see [1, 4]
for example).

Constraint programming is a programming paradigm aimed at solving com-
binatorial optimization problems that can be described by a set of variables,
a set of possible values for each variable, and a set of constraints between the
variables. The set of possible values of a variable is called the variable domain.
A constraint between variables expresses which combination of values for the
variables are allowed. The question to be answered is whether there exists an as-
signment of values to variables, such that all constraints are satisfied. The power
of constraint programming method lies mainly in the fact that constraints can
be used in an active process termed “constraint propagation” where certain
deductions are performed, in order to reduce computational effort. Constraint
propagation removes values from the domains, deduces new constraints, and
detects inconsistencies.



52 F. Clautiaux, A. Jouglet, and A. Moukrim

Algorithm 3: Computing the size of the guillotine pattern related to a
guillotine graph
Data: G: a valid guillotine graph;
σ: the corresponding ordering on the items (σ(1) = 1);
Let S be an initially empty stack of builds bk;
for i : 1→ n do

vj ← σ(i);
Let bj be a new build of size wj × hj and of label j;
foreach backward arc (vj , vk) of color c by decreasing value of σ−1(vk) do

repeat
remove from S its top element bt;
bj ← build(bj , bt, c);

until bj has for label vk;

push bj on the top of S;

return the unique element of S;

The problem is modeled using two sets of variables and constraints. The first
set of variables is used to model a graph with adjacency matrices that specify
which arcs belong to the guillotine-graph and what are their state. The state of
an arc determines its orientation and if it is a backward arc or not. A state is also
associated with each vertex, specifying if it is contracted in another vertex, its
position in the Hamiltonian circuit, and its current dimensions. Its dimensions
are the results of the contractions that have been performed from this vertex.
Constraints and propagation techniques are used to ensure that a (partial) graph
can always lead to a dominant guillotine graph.

A valid dominant guillotine graph may lead to a guillotine-cutting class that
does not fit the bin. Consequently we use a second set of variables, which repre-
sent the coordinates of a member of the guillotine-cutting class in construction.
Constraints and propagation techniques are then used to ensure that this solu-
tion is valid according to the dimensions of the bin.

All along the search, constraint-propagation techniques are used to reduce the
search space by eliminating non relevant values from the domain of the variables.
These techniques perform different deductions:

– they eliminate potential arcs that cannot lead to a dominant guillotine graph
or to a valid solution;

– they eliminate potential coordinates that cannot lead to a valid solution;
– they add some arcs that are mandatory to obtain a dominant guillotine

graph and a valid solution;
– they update the possible orientations or the backward status of arcs.

Note that these techniques are used to adjust the domains of variables of the
graph according to the domains of coordinate variables and vice-versa.

This approach has been implemented in C++ using ILOG Solver [9] and run
on a Genuine Intel CPU T2600 2,16 GHz. We used instances [8] derived from



A New Graph-Theoretical Model 53

Table 1. Experimental results

IMVB IGG
instance nodes cpu (s) cpu x MIPS nodes cpu (s) cpu x MIPS

SCP1 69 0.1 25 17 0.1 1651
SCP2 1797 3.4 857 80 0.2 2683
SCP3 3427 6.8 1714 61 0.3 3714
SCP4 6356 78.6 19807 759 0.7 9699
SCP5 5 0.1 25 16 0.1 1032
SCP6 8012 54.6 13759 22 0.1 1651
SCP7 1195 1.8 454 46 0.2 2683
SCP8 484 0.4 101 54 0.3 3302
SCP9 60 0.7 176 37 0.2 2270

SCP10 4 0.1 25 12 0.2 2270
SCP11 11036 221.5 55818 25 0.2 2889
SCP12 908 1.3 328 65 1.0 13001
SCP13 4359 39.5 9954 73 0.1 1651
SCP14 4782 41.7 10508 63 0.4 4746
SCP15 673 0.7 176 110 0.7 9080
SCP16 85627 654.8 165010 2253 2.7 35081
SCP17 13668 227.3 57280 1361 1.7 22493
SCP18 22087 321.5 81018 3419 4.2 54892
SCP19 39550 1794.3 452164 2733 2.3 30954
SCP20 36577 874.3 220324 1909 1.7 22493
SCP21 26748 1757.6 442915 8624 8.0 105450
SCP22 40909 606.0 152712 640 2.6 34875
SCP23 29512 691.9 174359 1754 1.4 18779
SCP24 117013 6265.0 1578780 12402 10.7 140738
SCP25 69434 3735.8 941422 6485 10.7 141563

Average 20972 695.2 175188 1721 2.0 26786

strip cutting-packing problems. In strip cutting problem, the width of the bin
is fixed and the minimal feasible height for the bin is sought. Consequently this
problem leads to several decision problems.

In Table 1, we compare the incremental modified version of Viswanathan and
Bagchi’s algorithm (IMVB) of [8] with our incremental guillotine-graph based
algorithm (IGG). Let [Hmin, Hmax] respectively be the lower and upper bounds
of the height of the bin provided by [8]. Both algorithms solve several decision
problems beginning with H = Hmin and by incrementing H by one until there
is a solution for the problem. For each method we provide the number of nodes
(“nodes”) and the computing time in seconds (“cpu(s)”).

It is tricky to compare the computing times between the methods since the
results of the IMVB method are the ones provided by [8] and run in 1998 on
a Sparc-Server 20/712. In order to obtain a fair comparison, we also provide
a third column (“cpu x MIPS”) for both methods, which represents the CPU
time multiplied by the number of Million Instructions per Seconds (MIPS) of
the machine (252 MIPS for the Sparc-Server 20/712 and 13207 MIPS for our
machine). This indicator can be used as an approximated comparison.

Note that these are preliminary results, which will be improved in the fu-
ture. However, these results hints that our model is able to lead to interesting
results, since our method is able to solve decision problems in reasonable time
and search space specially for hard instances such as SCP24 and SCP25 (see [8]
for example).



54 F. Clautiaux, A. Jouglet, and A. Moukrim

7 Conclusion

We have proposed a new graph-theoretical model for the two-dimensional
guillotine-cutting problem. It uses an arc-colored directed graph, which can be
replaced by an uncolored undirected multigraph. We show that such a graph is
related to two classes of guillotine patterns. We also propose linear algorithms for
recognizing these graphs and for computing the guillotine patterns. Our model
can be used to design heuristic and exact methods for any k−dimensional case.

References

1. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geomet-
rical constraint kernel in space and time for handling polymorphic k -dimensional
objects. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer,
Heidelberg (2007)

2. Messaoud, S.B.: Caractérisation, modélisation et algorithmes pour des problèmes
de découpe guillotine. PhD thesis, Université de Technologie de Troyes (2004)

3. Christofides, N., Hadjiconstantinou, E.: An exact algorithm for orthogonal 2-d cut-
ting problems using guillotine cuts. European Journal of Operational Research 83,
21–38 (1995)

4. Clautiaux, F., Jouglet, A., Carlier, J., Moukrim, A.: A new constraint program-
ming approach for the orthogonal packing problem. Computers and Operations
Research 35(3), 944–959 (2008)

5. Clautiaux, F., Jouglet, A., Moukrim, A.: A new graph-theoretical model for k-
dimensional guillotine-cutting problems. Technical report, Université des Sciences
et Technologies de Lille (2008),
http://www.iut-info.univ-lille1.fr/∼clautiau/graph.pdf

6. Fekete, S., Schepers, J.: A combinatorial characterization of higher-dimensional
orthogonal packing. Mathematics of Operations Research 29, 353–368 (2004)

7. Fekete, S., Schepers, J., Van Der Ween, J.: An exact algorithm for higher-
dimensional orthogonal packing. Operations Research 55(3), 569–587 (2007)

8. Hifi, M.: Exact algorithms for the guillotine strip cutting/packing problem. Com-
puters and Operations Research 25(11), 925–940 (1998)

9. Ilog: Ilog Solver Reference Manual, Gentilly, France (2004)
10. Viswanathan, K.V., Bagchi, A.: Best-first search methods for constrained two-

dimensional cutting stock problem. Operations Research 41, 768–776 (1993)
11. Wang, P.Y.: Two algorithms for constrained two-dimensional cutting stock prob-

lems. Operations Research 31, 573–586 (1983)
12. Wäscher, G., Haussner, H., Schumann, H.: An improved typology of cutting and

packing problems. European Journal of Operational Research 183, 1109–1130
(2007)

http://www.iut-info.univ-lille1.fr/~clautiau/graph.pdf


Layer-Free Upward Crossing Minimization

Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Hoi-Ming Wong

Department of Computer Science, Technical University of Dortmund, Germany
{markus.chimani,carsten.gutwenger,petra.mutzel,

hoi-ming.wong}@cs.uni-dortmund.de

Abstract. An upward drawing of a DAG G is a drawing of G in which
all edges are drawn as curves increasing monotonically in the vertical
direction. In this paper, we present a new approach for upward cross-
ing minimization, i.e., finding an upward drawing of a DAG G with as
few crossings as possible. Our algorithm is based on a two-stage upward
planarization approach, which computes a feasible upward planar sub-
graph in the first step, and re-inserts the remaining edges by comput-
ing constraint-feasible upward insertion paths. An experimental study
shows that the new algorithm leads to much better results than exist-
ing algorithms for upward crossing minimization, including the classical
Sugiyama approach.

1 Introduction

Drawing hierarchical graphs is one of the fundamental issues in graph drawing,
having received a lot of attention in the past. Given a directed acyclic graph
(DAG) G, we are interested in an upward drawing of G, i.e., a drawing of G in
which all edges are drawn as curves, monotonically increasing in the vertical di-
rection. This problem has numerous applications and occurs whenever a natural
flow of information shall be visualized.

Surprisingly, the state-of-the-art in drawing DAGs still facilitates the general
framework by Sugiyama et al. in 1981 [12], which consists of three steps:

1. Layer Assignment: Assign the nodes to layers such that edges point from
lower to higher layers. Split long edges spanning several layers such that
edges connect only nodes on neighboring layers.

2. Crossing Reduction: Reorder the nodes on each layer with the objective
to reduce the number of edge crossings.

3. Coordinate Assignment: Assign final node (and bend-point) coordinates.

The individual steps are usually solved heuristically. Several refinements and
improvements to this approach have been published; most notable are the work
by Gansner et al. [8] and the fast Sugiyama implementation by Eiglsperger et
al. [7]. Nevertheless, one inherent drawback of the framework is not overcome
by any of these modifications: assigning nodes to fixed layers in the first step
can severely affect the subsequent crossing minimization step, requiring edge
crossings that would be unnecessary if a “better” layer assignment had been
chosen, cf. Figure 1.

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 55–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



56 M. Chimani et al.

Fig. 1. An unfortunate layering (left) can force unnecessary crossings. In this example
the graph is even upward planar (right).

In this paper, we propose a replacement for the first two steps of the Sugiyama
framework, thus combining layer assignment and crossing minimization in order
to obtain drawings with fewer crossings. We borrow ideas from the planarization
approach [1,10], which is the most successful heuristic for minimizing crossings
in undirected graphs. This approach computes a large planar subgraph in the
first step, and then tries to re-insert the remaining edges one-by-one, each time
replacing the required crossings with dummy vertices, so that the graph remains
planar. The sequence of edges crossed while inserting an edge is also called an
insertion path. The final outcome is a planarized representation of the input
graph in which edge crossings are represented as dummy vertices of degree four.

However, adapting this approach to upward drawings is by far not straight-
forward. First of all—while planarity can be tested efficiently—testing upward
planarity is NP-complete [9]; on the other hand, upward planarity can efficiently
be tested for graphs with a single source [2], so-called sT -graphs. Secondly, while
any planar subgraph is suitable as a starting point in the undirected case, further
constraints are necessary for upward drawings. And finally, it is not sufficient to
find an upward insertion path for an edge independent of the remaining edges.
Details and examples on these challenges are given in Section 2.

First successful results on applying the idea of upward planarization are given
by Eiglsperger et al. [6] in the context of mixed-upward graphs (graphs in which
only a subset of the edges needs to be drawn upward). However, their proposed
heuristic for upward edge insertion still needs to layer the graph. Our aim is to
completely forgo layering the graph in the crossing minimization step.

The paper is organized as follows. In Sections 2–4, we describe our new ap-
proach to upward planarization, where Section 2 gives an informal overview
on the algorithm. Section 3 provides necessary formal definitions and describes
our basic tool for modeling the dependencies between the edges to be inserted.
Section 4 details the upward edge insertion procedure. Finally, an experimental
study in Section 6 proves the superiority of the new approach with respect to
solution quality compared to existing algorithms.

2 Upward Planarization Approach

In the following, we are given an sT -graph G = (V, A) that we want to planarize
with as few crossings as possible. If G would have multiple sources, we can add



Layer-Free Upward Crossing Minimization 57

0

3

4

12

5

(a) Not every upward
planar subgraph is fea-
sible: the edge (5, 4)
cannot be inserted.

0

12

5

6

7

4

3

0

12

5

6

7

4

3

0

12

5

7

3
D

4

6

(b) Problem of computing an insertion path: The given
graph (left) and a FUPS (middle) obtained by removing the
edges (4, 3) and (6, 5). A crossing minimal insertion path for
(4, 3) is infeasible as (6, 5) can no longer be inserted (right).

Fig. 2. Problems with simple edge insertion approaches

a super source node ŝ, connect it to all original sources, and set the costs for
crossing these additional edges to 0. Like the traditional planarization approach
for undirected graphs, our algorithm consists of two stages: in the first we will
construct a feasible upward planar subgraph U = (V, A′), formally defined in
Section 3. In the second step, we will iteratively insert the edges not yet in U so
that few crossings arise; these crossings are replaced by dummy nodes so that
the graph in which edges are inserted can always be considered planar. Inserting
an edge e into a planar graph thereby means that all arising crossings will lie on
e; we do not introduce additional crossings purely on the planar graph itself.

The main challenge with this approach is that—in contrast to the approach for
undirected graphs—the edge insertion steps are not independent of each other.
In particular:

– Assume we construct the upward planar subgraph straight-forwardly by
adding edges to an initially empty subgraph; after each edge we test for
upward planarity. The process stops when no more edges can be inserted
without loosing upward planarity. As shown in Figure 2(a), we may not be
able to insert the remaining edges at all, no matter how many crossings we
may use and which upward embedding we choose for the subgraph. Hence
we need to identify a feasible upward planar subgraph (FUPS).

– Similarly, even if we have a FUPS, we cannot easily insert edges iteratively
into it in a crossing minimal fashion, without taking the not-yet inserted
edges into account. Figure 2(b) shows that, even though it is possible to insert
both edges into U , inserting one edge inconsiderately may make inserting the
other one impossible.

We resolve these problems by introducing a merge graph M, i.e., a graph
representing not only the current (probably planarized) subgraph U , but also
modeling all edges that are yet to be inserted. The special properties of M, cf.
Section 3, allow us to use a simple acyclicity test on it to determine whether all



58 M. Chimani et al.

Algorithm 1. Upward planarization algorithm
Require: sT -Graph G = (V, A)
Ensure: Upward-planar planarized representation of G = (V, A)

1: Identify spanning tree U = (V, A′) of G, directed from s outwards

2: � Compute feasible upward planar subgraph (FUPS)
3: B := ∅
4: for each e ∈ A \A′ do
5: U ′ := U + e
6: if ∃ upward planar embedding Γ ′ of U ′ then
7: if M(Γ ′) is acyclic then
8: U := U ′, Γ := Γ ′

9: continue
10: B := B ∪ {e}
11: � Non-planar edge insertion
12: for each e ∈ B do
13: Compute insertion path p for e into Γ that will ensure property (M)
14: Insert e along p, replacing crossings by dummy nodes → new U , Γ .
15: Property (M):M(Γ ) is acyclic

remaining edges will be insertable. Algorithm 1 gives an overview on our upward
planarization algorithm. The next section will investigate the merge graph, its
applicability and its computation further; Section 4 will center on the crossing-
minimal edge insertion (lines 15–19 in Algorithm 1).

3 Feasible Graphs and Paths

Let G = (V, A) be an sT -graph and U = (V, A′) an upward planar subgraph of
G. We define:

Definition 1 (Upward Insertion Path). An insertion path p1 w.r.t. some
edge e1 = (x1, y1) ∈ A \ A′ is an ordered list of edges a1, . . . , aκ ∈ U such that
the graph U1 obtained from realizing p is upward planar. The realization works
as follows: we split the edges a1, . . . , aκ obtaining the dummy nodes d1, . . . , dκ,
and add the edges (x1, d1), (d1, d2), . . . , (dκ, y1) representing e1.

Let Γ1 be an upward planar embedding of U1. We say Γ1 induces an upward
planar embedding Γ of U , which is obtained by reversing the realization procedure
while maintaining the embedding.

Definition 2 (Upward Insertion Sequence). An upward insertion sequence
is a sequence of k upward insertion paths for all edges A \ A′. Thereby the first
edge in the sequence is inserted into U—introducing dummy nodes—which results
in an upward-planar graph U1. The second edge is then inserted into U1, etc.
After realizing all insertion paths, we hence obtain a final upward planar graph
Uk, which is a planarized representation of G.



Layer-Free Upward Crossing Minimization 59

In the following, let Γ be a fixed upward planar embedding of U .

Definition 3 ((Constraint) Feasible Upward Insertion Path). The up-
ward insertion path p1 is feasible w.r.t. Γ , if there exists an upward planar
embedding Γ1 of the realizing graph U1 which induces Γ . It is constraint feasi-
ble w.r.t. Γ , if it furthermore allows an upward insertion sequence for the edges
A \ {A′ ∪{e1}} into U1 such that there exists an upward planar embedding Γk of
the final graph Uk which induces Γ . We say the path p1 is (constraint) minimal
if it requires the fewest crossings over all (constraint) feasible insertion paths.

Definition 4 (Feasible Upward-Planar Subgraph (FUPS) and Embed-
ding). An upward planar subgraph U = (V, A′) of G = (V, A) is feasible if there
exists an insertion sequence. An upward planar embedding Γ of a FUPS U is
feasible if there exists an insertion sequence such that Γk induces Γ .

In an upward planar embedding Γ we can define a sink-switch [3] w.r.t. some
face f , as a node v incident to f for which there exists no edge incident to f and
starting at v. Among all sink-switches of an inner face f , we can identify exactly
one top sink-switch, i.e., the sink-switch which has to be drawn above all other
sink-switches. Analogously we can define a source-switch as a node v incident to
f for which there exists no edge incident to f and ending at v.

Definition 5 (Merge Graph). The Merge Graph M(Γ ) of U with respect to
Γ is constructed as follows:

1. We start with M(Γ ) being a copy of G.
2. For each internal face f of Γ , we add an arc from each non-top sink-switch

of f to the top sink-switch of f . We call these edges sink arcs.

Let v1 and v2 be two nodes of G. If there exists a non-empty path from v1 to
v2, we say v1 dominates v2 and denote this by v1 � v2. If there does not exist
such a path we write v1 �� v2. Considering some specific upward drawing of G,
we denote by v1 ≺ v2 that v1 is drawn lower than v2. An upward planar drawing
clearly requires v1 ≺ v2 if v1 � v2. On the other hand, even for any fixed upward
planar embedding Γ , there always exists an upward planar drawing with respect
to Γ with v1 ≺ v2 if v2 �� v1.

Lemma 1 (Feasibility Lemma). The merge graph M(Γ ) is acyclic if and
only if there exists an insertion sequence such that the resulting graph is upward
planar.

Proof. ∃ Seq. =⇒M(Γ ) acyclic: Consider an upward planar drawing Dk of Uk

with respect to Γk. We replace all dummy nodes with crossings and delete the
edges A\A′ in Dk. The graph associated with the new drawing D is the upward
planar subgraph U and the embedding induced by it is Γ . For each face f , we
draw an edge from each non-top sink-switch to its according top sink-switch. As
Γ is upward planar, these edges are clearly oriented upwards in the drawing.
Finally, we reintroduce the edges A \A′ into D, drawing them exactly as in Dk.



60 M. Chimani et al.

By these operations we obtained a drawing of the merge graph, and as all edges
in the resulting drawing are oriented upwards, the merge graph is acyclic.

M(Γ ) acyclic =⇒ ∃ Seq.: Let N be the graphM(Γ ) without the edges A \ A′.
N can be embedded like Γ , embedding the sink arcs planarly within their corre-
sponding faces. Let ΓN be the resulting embedding. Let ei = (xi, yi), 1 ≤ i ≤ k,
be the edges not in U . SinceM(Γ ) contains these edges and is acyclic we know
that yi �� xi in N , for all 1 ≤ i ≤ k. Hence, considering any edge ei individually,
we can find a drawing with respect to Γ where xi ≺ yi.

We show that this holds for all edges together by induction over the number of
edges to be inserted. We start with any upward drawing of N which is stepwise
modified. Consider the drawing Dj of N in step j where we have xi ≺ yi for all
1 ≤ i < j. If xj ≺ yj there is nothing to do in this step, so assume yj ≺ xj . Since
M(Γ ) is acyclic we know that yj �� xj and hence there exists a drawing with
xj ≺ yj . We show that we can realize the latter condition without violating the
respective order for e1, . . . , ej−1.

ConsideringM(Γ ), let Yj be the nodes dominated by yj , i.e., yj � z inM(Γ )
for all z ∈ Yj . Clearly, xj �∈ Yj as M(Γ ) is acyclic. In Dj , we will move yj and
all nodes Yj such that yj is above xj . Due to the sink arcs, N does not have any
maximal two-connected component C that is within another such component.
Hence the upward shift will not result in any crossings.

Assume that the shift would invalidate xi ≺ yi for some i. This would mean
that xi would be in Yj but yi would not. But since (xi, yi) is an edge in the
merge graph this cannot be the case. Therefore the shift in step j ensures an
upward planar drawing of N where all edges e1, . . . , ej can be drawn into in an
upward fashion using straight lines. We can simply extract insertion paths from
the final drawing Dk to generate a valid insertion sequence. 	

Corollary 1. An upward planar embedding Γ of a FUPS U is feasible if and
only if the corresponding merge graph M(Γ ) is acyclic.

4 Upward Edge Insertion

We now consider the problem of inserting edges into a FUPS with few crossings,
by iteratively adding the edges not in the FUPS. In the following we are again
given an sT -graph G = (V, A), a FUPS U = (V, A′) and an embedding Γ of U .
Let ei = (xi, yi), for 1 ≤ i ≤ k = |A \ A′| be the edges not in U , and let p1

be a feasible upward insertion path for e1 into U with respect to Γ . Realizing
p1 results in a graph U1 with embedding Γ1. Formally we can define the arising
problem per edge:

Definition 6 (Constraint Upward Edge Insertion Problem with Fixed
Embedding). Given an sT -graph G = (V, A), a FUPS U = (V, A′), a feasible
upward embedding Γ of U and an edge e1 ∈ A \A′. The constraint upward edge



Layer-Free Upward Crossing Minimization 61

s

t

(a) Routing sub-network
of a single internal face.
The dotted lines are the
edges of the underlying
graph Û . The bold edges
are crossing arcs.

y

x

(b) Routing in Û without locking can result in infeasi-
ble insertion paths. The thick gray edges denote sub-
structures which are expensive to cross. The dashed
line denotes the shortest path in the underlying rout-
ing network which makes loops and is thus infeasible as
an upward insertion path.

Fig. 3. Finding feasible upward insertion paths using the routing network

insertion problem with fixed embedding is to find a constraint minimal upward
insertion path p1 for e1 into U with respect to Γ and the edges A \ {A′ ∪ {e1}}.

4.1 Routing Network

In order to compute an upward insertion path for e1 = (x1, y1) we use a routing
network R. For the traditional edge insertion problem, i.e., without considering
upward planarity, we simply use the bidirected dual graph of U with respect to
Γ , augmented with the start and end nodes of e1. Due to the required upward
planarity we have to use a more heavily augmented routing network.

Firstly, we augment U and Γ with the sink arcs as we did for the merge graph.
Furthermore, we add a super sink node t̂ and super sink arcs (t, t̂), for each sink
on the outerface of Γ . We call the resulting graph Û with its upward planar
embedding Γ̂ (inducing Γ ). The augmentation guarantees that all faces in Γ̂ are
simple, i.e., they have exactly one source- and one sink-switch.

We do not represent single faces as single nodes in R but as well-structured
sub-networks, as shown in Figure 3(a) for an internal face; the sub-network for
the external face is analogous. Such a sub-network guarantees that when we
enter a face f over some edge, we can only leave f either above that edge or on
the other side of f . We call the edges that are the dual of some edge of Û the
crossing arcs, as a path over these arcs crosses an edge of Û .



62 M. Chimani et al.

Finally, we add nodes x∗ and y∗ to R which will be the start and end node of
the insertion path, corresponding to x1 and y1, respectively. Let Ax and Ay be the
crossing arcs corresponding to edges starting at x1 or ending at y1, respectively.
We add edges from x∗ to each target node of the arcs Ax, and edges from each
source node of the arcs Ay to y∗. We have:

Lemma 2. The routing network R has O(|V |) nodes and edges.

To use R as a routing network, we assign a cost of 1 to each crossing arc which
corresponds to an edge in U , i.e., not to sink arcs in Û . All other edges in R
have cost 0.

4.2 Locking Edges

The routing network by itself is not strong enough to guarantee that the shortest
path between x∗ and y∗ corresponds to a feasible upward insertion path, cf.
Figure 3(b): the shortest path may contain “loops” which clearly violate the
upward property of our drawing.

Therefore we will introduce static and dynamic locks, i.e., we prohibit edges
to be considered during the shortest path computation. While the static locking
by itself does not directly ensures feasibility for the upward insertion paths, it is
necessary to make the dynamic locking strategy valid. The next lemma follows
immediately:

Lemma 3 (Static Locking). Considering the merge graph M(Γ ), let Y1 be
the nodes that are dominated by y1, including y1 itself; let X1 be the nodes that
dominate x1, including x1 itself. A constraint feasible upward insertion path will
not cross edges of Û that connect two nodes of X1 or two nodes of Y1.

Proof. Assume a constraint feasible upward insertion path p′ would cross an
edge that connects two nodes n1, n2 ∈ Y1. Let d be the dummy node created by
this crossing; it is dominated by either n1 or n2. Then the merge graphM(Γ1)
would have a cycle as y1 � d and d � y1 through the inserted edge e1. This
contradicts the constraint feasibility of p′. The analogous holds if n1, n2 ∈ X1.

	

For any face f in Γ̂ let a(f) be an edge corresponding to a crossing arc in R with
shortest distance δ(f) to x∗. By construction, each face f consists of two directed
paths—one on the left- and one on the right-hand side—from the source-switch
to the sink-switch of f . We denote all edges of f between the source-switch and
a(f) as the face-lock F (f).

Lemma 4 (Dynamic Locking). For each a(f), there exists a path q in R from
x∗ to a crossing arc corresponding to a(f), where q has length δ(f) and uses no
edge of F (f ′) for all faces f ′.

Proof. Let f be a face with minimal δ(f) for which each (x∗ → a(f))-path in
R of length δ(f) contains at least one face-lock edge. Among all those shortest
paths for this f , let q be the path which uses the fewest face-lock edges.



Layer-Free Upward Crossing Minimization 63

Traversing q from x∗, let f ′ be the first face for which q uses the first face-lock
edge b ∈ F (f ′). Let q′ be q’s segment from x∗ to b. By definition, we know that
there exists a path q′′ := x∗ � a(f ′) which is as long as q′. Since q′ is shorter
than q, we know that q′′ does not use any face-lock edges. Hence we can create
a path q∗ from q by replacing q′ with q′′: this replacement is straight-forwardly
possible as q leaves f ′ over a non-face-lock edge. Note that q cannot leave f ′

over another face-lock edge, as this would contradict the minimality of q.
The existence of q∗ —which is as long as q, but crosses less face-lock edges—

constitutes a contradiction and thus the lemma holds. 	


4.3 Upward Edge Insertion Algorithm

Based on the above routing graph R and Lemmata 3 and 4 we can compute a
feasible upward insertion path using a BFS algorithm adapted for 0/1 weights.

We start at x∗ but instead of generating the whole routing graph we generate
the successor nodes dynamically on the fly. Thereby we ignore all crossing arcs
corresponding to the edges specified by static locking (Lemma 3). Furthermore
we use Lemma 4 to forbid additional edges: whenever we visit a crossing arc for
the first time leading into a face f , the corresponding edge in Û can be seen as
a(f), and hence we will block all face-lock edges F (f) induced by this a(f).

We call this algorithm MinimalFeasibleInsertionPath.

Lemma 5. The algorithm MinimalFeasibleInsertionPath computes a min-
imal feasible upward insertion path p1 for x1 and y1.

Proof. Assume p1 would be infeasible. There would be a face f which cannot
be drawn in an upward fashion. The routing network guarantees that a single
segment of p1 crossing through f cannot lead to such a situation. Hence there
have to be at least two segments of p1 going through f , which together contradict
the upwardness of the drawing and therefore cross each other. W.l.o.g. assume
that the first segment s1 goes from some point zl on the left of f to some point
zr on the right-hand side of f . In order to conflict with the direction of s1, the
second crossing segment s2 can be only one of the following:

– It starts on the left-hand side above zl and ends on the right side below zr.
But then we could find a shorter path which goes directly from zl to the exit
point of s2, removing the part of p1 between s1 and s2 and all the crossings
induced by it.

– It starts on the right-hand side above zr and ends on the left side below zl.
Due to our dynamic locking, we forbade all crossings over edges below zl,
hence s2 cannot exit the face there.

The minimality of p1 follows from the validity of the 0/1-BFS algorithm and
Lemmata 3 and 4. 	

Corollary 2. Let p1 be a minimal feasible upward insertion path obtained by
MinimalFeasibleInsertionPath, and Γ1 the upward planar embedding aris-
ing from realizing p1. If the merge graph M(Γ1) is acyclic, p1 is a constraint
minimal upward insertion path.



64 M. Chimani et al.

There may be the situation that the computed minimal insertion path is not
constraint feasible, i.e., the resulting merge graph contains a cycle. In such cases
we have to resort to a heuristic for finding a constraint feasible upward insertion
path which though may not be minimal:

The algorithm ConstraintFeasibleInsertionPath works similar to Min-
imalFeasibleInsertionPath but uses no dynamic locking and instead com-
putes an intermediate merge graph I whenever the BFS algorithm relaxes some
crossing arc r: we insert “part of” e1 along the shortest path up to r, ending
at some new dummy node ξ. We then build the merge graph for this graph,
adding the edge (ξ, y1) instead of (x1, y1) to I. If I contains a cycle we know
that selecting r in our current path would lead to an infeasible path, and we
can forbid to use it in the BFS enumeration. Clearly, this algorithm—though
always terminating—will in general not give the optimal solution, as an alterna-
tive path up to the rejected edge r might have allowed us to use r and find an
overall shorter path:

Lemma 6. The algorithm ConstraintFeasibleInsertionPath computes a
constraint feasible upward insertion path p1 for x1 and y1.

Algorithm 2 gives an overview on the overall edge insertion strategy: we try
to add all edges using the optimal path of MinimalFeasibleInsertionPath
strategy. Only if there is no more edge insertable by it, we insert a not-yet in-
serted edge using ConstraintFeasibleInsertionPath. Afterwards we again
try to use the former algorithm for the remaining edges. We iterate that process
unless all edges are inserted. — As we will see in the next section, the heuris-
tic procedure ConstraintFeasibleInsertionPath is only used very rarely;
hence in most cases all edges are inserted optimally.

Algorithm 2. Reinsert all edges
Require: sT -graph G = (V, E), FUPS U = (V, A′) with feas. upward embedding Γ
Ensure: upward planarized graph U∗ of G with embedding Γ ∗, inducing Γ
1: List L := A \ A′

2: U∗ := U , Γ ∗ := Γ
3: while L not empty do
4: boolean success := false
5: for each e ∈ L do
6: p :=MinimalFeasibleInsertionPath(e,U∗, Γ ∗)
7: U◦, Γ ◦ := realizePath(p, U∗, Γ ∗)
8: if M(Γ ◦) acyclic then � p was constraint feasible
9: U∗ := U◦, Γ ∗ := Γ ◦

10: success := true
11: L.remove(e)

12: if not success then
13: e := L.extractRandomElement()
14: p :=ConstraintFeasibleInsertionPath(e, U∗, Γ ∗)
15: U∗, Γ ∗ := realizePath(p, U∗, Γ ∗)



Layer-Free Upward Crossing Minimization 65

5 Runtime Analysis

We conclude the theoretic description by analyzing the algorithms’ runtimes.

Lemma 7. Let G = (V, A) be an sT -graph. Algorithm 1 computes a FUPS U
with a feasible embedding Γ in O(|A|2) time.

Proof. The algorithm 1 performs |A \ A′| = O(|A|) upward planarity and cycle
tests. Since upward planarity testing of sT -graphs requires O(|V |) time [2] and
cycle testing can be done in O(|A|), we have the above lemma. 	


Lemma 8. Let Ū = (V̄ , Ā)—with embedding Γ̄—be the planarization obtained
after inserting some arcs into the original FUPS U of G. Let (x, y) be the next
edge to insert, and let r be the number of edges to insert afterwards.

(a) Computing a minimal feasible upward insertion path for (x, y) via Mini-
malFeasibleInsertionPath and checking its constraint feasibility requires
O(|V̄ |+ r) time.

(b) ConstraintFeasibleInsertionPath computes a constraint feasible up-
ward insertion path for (x, y) in O(|V̄ |2 + r|V̄ |) time.

Proof. By Lemma 2, the routing network for Ū with respect to Γ̄ can be con-
structed in O(|V̄ |) time. To compute the static locks we have to construct the
merge graph M(Γ̄ ) which requires O(|V̄ | + r) time. The runtime of the 0/1-
BFS algorithm, including the computation of the dynamic locks, is bounded by
O(|V̄ |). For the constraint feasibility checking, we have to (temporarily) insert
the insertion path into Ū , construct the corresponding merge graph and test
for acyclicity. This can be done in O(|V̄ | + r). Thus the total runtime of (a) is
dominated by O(|Vj |+ r).

The runtime analysis of ConstraintFeasibleInsertionPath is similar. In-
stead of computing the dynamic locks, we temporarily insert the current insertion
path into Ū after each edge relaxation, and check for acyclicity of the correspond-
ing merge graph. Hence the runtime is O (|V̄ | · (|V̄ |+ r)

)
. 	


6 Experiments

We implemented the new level-free upward planarization approach using the
open-source C++-library OGDF [11] and compared its performance with pub-
lished results of state-of-the-art algorithms [4,6].

In our implementation we randomize the order of the edges considered in the
for-each loop (line 4 of Alg. 1) of the FUPS computation, and the order in which
edges are re-inserted (for-each loop in line 5 of Alg. 2). We denote by LFUPi
the best result obtained by after i independent calls of the algorithm. Besides
comparing with published results, we also applied OGDF’s Sugiyama implemen-
tation with optimal node ranking, Barycenter heuristic, and 50 randomized runs.
We used two public benchmark sets of graphs, described in the following.



66 M. Chimani et al.

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100
nodes (Rome graphs)

c
r
o

s
s
in

g
s

Sugiyama

MUP

LFUP1

LFUP20

Fig. 4. Rome graphs: average crossings vs. number of nodes

Rome Graphs. The Rome graphs [5] are a widely used benchmark set in graph
drawing, obtained from a basic set of 112 real-world graphs. The benchmark con-
tains 11528 instances with 10–100 nodes and 9–158 edges. Although the graphs
are originally undirected, they have been used as directed graphs—by artificially
directing the edges according to the node order given in the input files—for
showing the performance of the mixed-upward planarization (MUP) approach
by Eiglsperger et al. [6]. In this case, all edges are directed and the graphs are
acyclic; hence their approach turns into an upward planarization method.

Figure 4 shows the results for MUP, OGDF’s Sugiyama algorithm, and our
new approach for 1 and 20 random calls. Each data point refers to the average
number of crossings of all the graphs with the same number of nodes. The new
algorithm clearly outperforms the other two approaches. Though MUP is already
considerably better than the Sugiyama algorithm, LFUP1 obtains solutions with
only half as many crossings as MUP. It can also be seen that the randomization
of LFUP can further reduce the number of crossings significantly.

North DAGs. The North DAGs have been introduced in an experimental
comparison of algorithms for drawing DAGs [4]. They are 1158 DAGs collected
by Stephen North and slightly modified by Di Battista et al. The graphs are
grouped into 9 sets, where set i contains graphs with 10i to 10i + 9 edges
for i = 1, . . . , 9. From this experimental study, we used the results of the two
best algorithms: Layers is an implementation of Sugiyama’s algorithm accord-
ing to the original paper and Dot is a highly-optimized version of this algorithm



Layer-Free Upward Crossing Minimization 67

0

20

40

60

80

100

10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90–99
edges (North DAGs)

c
r
o

s
s
in

g
s

Layers

Dot

Sugiyama

LFUP1

LFUP20

Fig. 5. North DAGs: average crossings vs. number of edges

developed by Koutsofios and North. In our diagrams, we omitted the two al-
gorithms that use a simple method based on planarization of st-graphs as they
perform very poorly, achieving roughly 300 crossings on average for the largest
graphs.

The results are shown in Figure 5. Again, the new algorithm outperforms the
three layer-based algorithms by far. While OGDF’s Sugiyama achieves almost
the same results as Dot, LFUP1 obtains solutions with roughly half as many
crossings; the multi-run version again yields significant improvements, especially
for larger graphs.

Constraint feasibility. A very interesting outcome of our studies is that the
minimal feasible path obtained by MinimalFeasibleInsertionPath is already
constraint feasible in most of the cases and therefore allows us to insert the edge
provably optimally.

From the 2,708,474 edge insertion calls performed by FLUP20 in total over all
Rome graphs, only 114 (0.004%) require to call the ConstraintFeasibleIn-
sertionPath heuristic; this corresponds to 0.87% of the instances requiring this
heuristic at all. Furthermore, the heuristic was never used for any North DAG.

Runtime. The experiments were conducted on an Intel Core-2 Duo 3.0GHz
with 2GB RAM per process under Windows Vista. The maximum computation
time of FLUP1 over all instances was 0.19 seconds. The large Rome graphs (90–
100 nodes) take under 0.1 second on average, the large North DAGs (90-99 edges)



68 M. Chimani et al.

require 60ms on average. For comparison, the runtimes of OGDF’s Sugiyama
implementation were at most 15ms.

Based on our experimental comparison, we conclude that the layer-free ap-
proach achieves large improvements compared to state-of-the-art layer-based
methods.

References

1. Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship
diagrams. J. Syst. Software 4, 163–173 (1984)

2. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward pla-
narity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)

3. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of tri-
connected digraphs. Algorithmica 12(6), 476–497 (1994)

4. Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu,
F., Vismara, L.: Drawing directed acyclic graphs: An experimental study. Int. J.
Comput. Geom. Appl. 10(6), 623–648 (2000)

5. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An ex-
perimental comparison of four graph drawing algorithms. Comput. Geom. Theory
Appl. 7(5–6), 303–325 (1997)

6. Eiglsperger, M., Kaufmann, M., Eppinger, F.: An approach for mixed upward
planarization. J. Graph Algorithms Appl. 7(2), 203–220 (2003)

7. Eiglsperger, M., Siebenhaller, M., Kaufmann, M.: An efficient implementation of
Sugiyama’s algorithm for layered graph drawing. In: Pach, J. (ed.) GD 2004. LNCS,
vol. 3383, pp. 155–166. Springer, Heidelberg (2005)

8. Gansner, E., Koutsofios, E., North, S., Vo, K.-P.: A technique for drawing directed
graphs. Software Pract. Exper. 19(3), 214–229 (1993)

9. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

10. Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuris-
tics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg
(2004)

11. OGDF – the Open Graph Drawing Framework. Technical University of Dortmund,
Chair of Algorithm Engineering, http://www.ogdf.net

12. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Sys. Man. Cyb. 11(2), 109–125 (1981)

http://www.ogdf.net


On the Efficiency of a Local Iterative Algorithm

to Compute Delaunay Realizations

Kevin M. Lillis1,2 and Sriram V. Pemmaraju1

1 Department of Computer Science,
University of Iowa, Iowa City, IA 52242-1419, U.S.A.

{lillis,sriram}@cs.uiowa.edu
2 Computer and Information Science,

St. Ambrose University, Davenport, IA 52803, U.S.A.
LillisKevinM@sau.edu

Abstract. Greedy routing protocols for wireless sensor networks (WSNs)
are fast and efficient but in general cannot guarantee message delivery.
Hence researchers are interested in the problem of embedding WSNs in
low dimensional space (e.g., R

2) in a way that guarantees message deliv-
ery with greedy routing. It is well known that Delaunay triangulations are
such embeddings. We present the algorithm FindAngles, which is a fast,
simple, local distributed algorithm that computes a Delaunay triangula-
tion from any given combinatorial graph that is Delaunay realizable. Our
algorithm is based on a characterization of Delaunay realizability due to
Hiroshima et al. (IEICE 2000). When compared to the PowerDiagram

algorithm of Chen et al. (SoCG 2007), our algorithm requires on av-
erage 1/7th the number of iterations, scales better to larger networks,
and has a much faster distributed implementation. The PowerDiagram

algorithm was proposed as an improvement on another algorithm due to
Thurston (unpublished, 1988). Our experiments show that on average
the PowerDiagram algorithm uses about 18% fewer iterations than the
Thurston algorithm, whereas our algorithm uses about 88% fewer iter-
ations. Experimentally, FindAngles exhibits well behaved convergence.
Theoretically, we prove that with certain initial conditions the error term
decreases monotonically. Taken together, these suggest our algorithm
may have polynomial time convergence for certain classes of graphs. We
note that our algorithm runs only on Delaunay realizable triangulations.
This is not a significant concern because Hiroshima et al. (IEICE 2000)
indicate that most combinatorial triangulations are indeed Delaunay re-
alizable, which we have also observed experimentally.

1 Introduction

A wireless sensor network (WSN) consists of battery-powered nodes that can
communicate with one another when within radio broadcast range and can per-
form local computations. Because there is no centralized control and because
each node has only a small amount of memory, WSNs often employ memoryless

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 69–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



70 K.M. Lillis and S.V. Pemmaraju

routing, in which each node decides to whom a message should be forwarded
based solely on the source of the message, its destination, and information gath-
ered from nearby nodes. Geographic routing protocols are memoryless routing
protocols that use geographic information such as the coordinates of the source,
the destination, and nearby nodes. In the geographic routing protocol known
as greedy routing each node forwards a message by choosing a neighbor that
is closest to the destination. While this scheme is simple and efficient, it does
not guarantee message delivery. This is because a routed message may become
trapped in a cycle [5] or it may reach a local minimum; this is a node that is
closer to the destination than any of its neighbors [10].

Given a point set P ⊆ R
2, a Delaunay triangulation of P is commonly defined

as a triangulation of P satisfying the property that the circumcircle of each inner
face (triangle) contains no point of P in its interior. This is known as the empty
circle property. A Delaunay triangulation of P is also well known as the planar
dual of the Voronoi diagram of P . It is this characterization that has been
used to show that greedy geographic routing will always succeed on a Delaunay
triangulation [5].

The fact that greedy geographic routing is always successful on a Delaunay
triangulation motivates the question of whether a given WSN can be embed-
ded in the plane as a Delaunay triangulation. In cases where the WSN is not
a triangulation to start with, standard topology control protocols [16] can be
employed to extract a planar spanning subgraph of the WSN which can then
easily be converted into a triangulation. Define a combinatorial triangulation as
a planar graph in which all faces are 3-cycles. Suppose that we are given a WSN
G = (V, E) that is a combinatorial triangulation. We seek a one-one mapping
Φ : V → R

2 such that if each vertex v ∈ V is placed on the plane at Φ(v) and
each edge {u, v} ∈ E is represented by a straight line segment with endpoints
Φ(u) and Φ(v), then the set of points Φ(V ) = {Φ(v) | v ∈ V } and the set of line
segments Φ(E) = {{Φ(u), Φ(v)} | {u, v} ∈ E} defines a Delaunay triangulation.
The problem of finding the mapping Φ is called the Delaunay realization problem,
the mapping Φ, if it exists, is called a Delaunay realization, and combinatorial
triangulations G for which a Delaunay realization exists are called Delaunay
realizable graphs. The problem of determining whether or not a combinatorial
triangulation is Delaunay realizable can be solved in polynomial time; for exam-
ple by checking if a certain linear system of inequalities defined by Hiroshima
et al. [9] has a feasible solution. However, as far as we know, the problem of ac-
tually finding a Delaunay realization does not have a polynomial time solution
and seems rather difficult. In this paper we present a simple iterative algorithm,
called FindAngles, that finds a Delaunay realization of a Delaunay realizable
graph. We do not prove polynomial time convergence, but we do present sub-
stantial experimental evidence indicating that FindAngles converges rapidly.
The algorithm is inherently local and has an obvious, distributed implementa-
tion in which each node updates some local geometric information based on such
information at neighboring nodes.



On the Efficiency of a Local Iterative Algorithm 71

Recently two other approaches have been considered for the problem of find-
ing embeddings that permit successful greedy geographic routing. The first
approach, due to Papadimitriou and Ratajczak [15], seeks greedy embeddings.
Let a distance decreasing path in an embedding of a graph be a path s =
v1, v2, . . . , vk = t such that ‖vi − t‖ < ‖vi−1 − t‖, 2 ≤ i ≤ k. Here ‖ . . . ‖ denotes
Euclidean distance. A greedy embedding of a graph is an embedding into the
Euclidean plane such that there exists a distance decreasing path between every
pair of vertices. Papadimitriou and Ratajczak [15] conjecture that every com-
binatorial triangulation (indeed every 3-connected planar graph) has a greedy
embedding. This conjecture was very recently proved by Dhandapani [7]. The
proof depends on the Knaster-Kuratowski-Mazurkiewicz Theorem [11] that is
known to be equivalent to the Brouwer Fixed Point Theorem, and hence does
not seem to immediately lead to a polynomial time algorithm. He does men-
tion an iterative algorithm at the end of his paper, but without any theoretical
bounds or experimental results.

A second approach due to Chen at al. [4] uses power diagrams. Let P ⊆ R
2

be a planar set of points, with each point p ∈ P having an associated disk
D(p) with center p and radius r(p) ≥ 0. The power distance from any point
q ∈ R

2 to p, denoted power(q, p) is ‖p − q‖2 − r(p)2. The power diagram of
P is the cell complex in R

2 that associates to each p ∈ P , the convex domain
cell(p) = {q ∈ R

2 | power(q, p) < power(q, p′) for all p′ ∈ P −{p}}. The Voronoi
diagram is a special case of a power diagram, obtained by setting r(p) = 0 for
all p ∈ P . Just as Delaunay triangulations are duals of Voronoi diagrams, a
more general class of triangulations are the planar duals of power diagrams [8].
This motivates the question of whether for a given combinatorial triangulation
G = (V, E), we can find an embedding Φ : V → R

2 and a radius assignment
r : V → R

+, whose power diagram has, as its planar dual, the graph G. If
we can find such an embedding, then greedy geographic routing can be used
with power distance in lieu of Euclidean distance. For any combinatorial trian-
gulation G (and in fact for any planar graph), it is known that there exists an
embedding Φ : V → R

2 and a radius assignment r : V → R
+ that yields a

power diagram whose dual is G. This follows from the celebrated Koebe Rep-
resentation Theorem [1,2,12,18]. None of the known proofs of Koebe’s theorem
lead to efficient algorithms [14,18]. Again, we have a situation in which the exis-
tence of appropriate embeddings are well known, but the proof of existence does
not give a clear indication of how to efficiently compute these embeddings. It
should be noted that there are polynomial time algorithms to compute a Koebe
representation [13,17], but these use the ellipsoid method and are therefore not
practical for obtaining a fast, distributed algorithm. Given this situation, Chen
et al. [4] use a simple iterative algorithm to produce a Koebe representation.
This algorithm is not guaranteed to run in polynomial time and is obtained in a
straightforward way from Thurston’s proof of Koebe’s theorem. We will call this
the Thurston algorithm. Chen et al. [4] also present an algorithm that improves
on the performance of the Thurston algorithm by using fewer iterations to ter-
minate with a power diagram. We call this the PowerDiagram algorithm. Both



72 K.M. Lillis and S.V. Pemmaraju

of these algorithms are described in some detail in Section 2.2. In Section 4, we
present strong experimental evidence indicating that our FindAngles algorithm
is orders of magnitude faster than the PowerDiagram algorithm, which in turn
is a bit faster than the Thurston algorithm.

Main results. We present a simple, iterative, local distributed algorithm, called
FindAngles, for computing a Delaunay realization of any given combinatorial
triangulation that is Delaunay realizable. Our algorithm is based on a character-
ization of Delaunay realizability due to Hiroshima et al. [9]. Our algorithm uses
far fewer iterations as compared to the PowerDiagram algorithm of Chen et al.
[4]. In experiments we ran, on average, the number of iterations of our algorithm
was about 1/7th of the number of iterations of the PowerDiagram algorithm (see
Table 1). Using the PowerDiagram algorithm in a distributed setting is prob-
lematic because in each iteration, it requires a sweep of the entire graph in
order to update coordinates. In a distributed setting, such operations are costly
and each iteration of the PowerDiagram essentially corresponds to n communi-
cation rounds, where n is the size of the graph. In contrast, each iteration of
FindAngles corresponds to exactly one round of communication. In addition,
the number of iterations required by our algorithm scales linearly with n. The
PowerDiagram algorithm was proposed as an improvement on the Thurston algo-
rithm and in our experimental results, on average, the PowerDiagram algorithm
uses about 18% fewer iterations than the Thurston algorithm, whereas our al-
gorithm uses about 88% fewer iterations. Experimentally, FindAngles exhibits
very well-behaved convergence; the error term falls rapidly in the beginning and
then falls more slowly as the algorithm gets close to a valid Delaunay realiza-
tion. The error term rarely increases and we are able to prove that it strictly
decreases under certain initial conditions. This experimentally observed behav-
ior, along with our analysis, provides some hope that our algorithm may have
polynomial time convergence, at least for special classes of combinatorial trian-
gulations. It should be noted that whereas the PowerDiagram algorithm runs on
all combinatorial triangulations, FindAngles runs only on Delaunay realizable
triangulations. This may not be much of a problem because Hiroshima et al. [9]
indicate that most combinatorial triangulations are Delaunay realizable and our
experiments strongly support this. We randomly generated 5000 combinatorial
triangulations on 100 vertices; of these only one was not Delaunay realizable.

2 Technical Background

Our algorithm is based on a characterization of Delaunay realizable graphs due to
Hiroshima, Miyamoto, and Sugihara [9]. We call this the HMS test and describe it
in Section 2.1. In our experiments, we compare FindAngles with the Thurston
algorithm and the PowerDiagram algorithm. Both of these are based on the
Koebe Representation Theorem and we describe that and sketch the Thurston
algorithm and the PowerDiagram algorithm in Section 2.2.



On the Efficiency of a Local Iterative Algorithm 73

2.1 The HMS Test for Delaunay Realizability

We describe the HMS test in some detail here because our algorithm (described
in Section 3) is based on the proof of correctness of the HMS test.

(a) 

x���

x��

x���

x��� x��� x���

x�	�x�
�

x���
30 30 

30 30 

30 30 

120120

120

30 

27 

30 30 

30 33 

120120

120

(b) (c) 

v��

v��

v�� v��

Fig. 1. (a) The connectivity for a complete graph on 4 vertices. (b) A solution to (C1)-
(C5) that yields a Delaunay triangulation. (c) A solution to (C1)-(C5) of that does not
yield a Delaunay triangulation [9].

Let G = (V, E) be a combinatorial triangulation. For each inner face fi, three
angle variables x3i+1, x3i+2 and x3i+3 are defined, respectively corresponding to
the three vertices that bound fi (see Figure 1(a)). A vertex of G is called an
outer vertex (edge) if it is on the boundary of the outer face of G; otherwise it is
called an inner vertex (edge). Let {u, v} be an inner edge and let (u, v, w1) and
(w2, v, u) be the two faces containing edge {u, v}. Then the angle variables at
w1 associated with face (u, v, w1) and the angle variable at w2 associated with
face (w2, v, u) are the two facing angle variables associated with edge {u, v}. For
example, in Figure 1(a) the facing angle variables of edge {v1, v3} are x2 and
x6. Hiroshima et al. [9] state 5 simple linear constraints that the angle variables
must satisfy in any Delaunay realization:

(C1) The sum of the three angle variables associated with each inner face equals
180.

(C2) The sum of the angle variables associated with each inner vertex equals
360.

(C3) The sum of the angle variables associated with each outer vertex is less
than or equal to 180.

(C4) The sum of the facing angle variables associated with each inner edge is
less than or equal to 180.

(C5) Each angle variable is positive.

In the above list (C4) is particular to Delaunay triangulations and follows
easily from the empty circle property. Hiroshima et al. [9] point out that even
though every Delaunay realization satisfies conditions (C1)-(C5), these condi-
tions are not sufficient because they do not guarantee that the triangles incident
on a vertex v can be consistently “glued” together around v (see Figure 1(c)).
Interestingly, Hiroshima et al. [9] were able to show that for any solution that



74 K.M. Lillis and S.V. Pemmaraju

does satisfy (C1)-(C5), there exists a transformation that modifies this solution
into one that additionally satisfies a “consistent gluing” condition around each
vertex. Thus Hiroshima et al. [9] were able to reduce the problem of testing if
a combinatorial triangulation is Delaunay realizable into a problem of testing
the feasibility of a linear system of equations and inequalities. Note that the size
of this system (i.e., number of variables, number of constraints) is linear in the
number of vertices in G. The result of Hiroshima et al. [9] can be summarized
as follows.

Theorem 1. (Hiroshima et al. [9]) Whether a given combinatorial triangu-
lation is Delaunay realizable can be tested in polynomial time.

The transformation mentioned above is only shown existentially by Hiroshima
et al. [9]. As a result the above theorem does not lead to a polynomial time
algorithm for constructing a Delaunay realization. We now review the proof of
Hiroshima et al. [9] which prompted our algorithm, presented in Section 3.

Let v be an inner vertex of G and let w0, w1, . . . , ws−1 be its neighbors in
counter clockwise order. Then the angles (v, w0, w1), (v, w1, w2), . . . ,(v, ws−1, w0)
are called cc-facing angles about v denoted φ0, φ1, . . . , φs−1. The angles
(v, w1, w0), (v, w2, w1), . . . , (v, w0, ws−1) are called c-facing angles about v, de-
note θ0, θ1, . . . , θs−1 (see Figure 2). Define

F (v) =
sin(φ0) sin(φ1) · · · sin(φs−1)
sin(θ0) sin(θ1) · · · sin(θs−1)

It is shown in Lemma 3.1 of Hiroshima et al. [9] that in order to “glue” the
triangles incident on v consistently around v, F (v) must equal 1. Note that since
all φi’s and θi’s are strictly between 0 and 180, we have F (v) > 0. Hiroshima et
al. define a condition (C6) as follows:

(C6) F (v) = 1 for each inner vertex v.

Conditions (C1)-(C6) exactly capture Delaunay realizability; these conditions
are both necessary and sufficient. Unfortunately, (C6) is not “well behaved” like
conditions (C1)-(C5) and no efficient algorithm is known for solving the system
of equations and inequalities implied by conditions (C1)-(C6).

Consider any real α. Let change(v, α) denote the operation in which each cc-
facing angle φi around v is changed to φi + α and each c-facing angle θi around
v is changed to θi−α. Let φmin denote mini φi and let θmin denote mini θi. For
any α, −1 × φmin < α < θmin, applying the operation change(v, α) keeps all
the angles positive. The operation change(v, α), for α, −1 × φmin < α < θmin,
has the very useful property that if conditions (C1)-(C5) are satisfied before
the operation, they will continue to be satisfied after the operation. Hiroshima
et al. [9] show that given an assignment of values to the angle variables satis-
fying (C1)-(C5), there exists a set {(v1, α1), (v2, α2), . . .}, such that performing
change(v1, α1), change(v2, α2), . . . leads to condition (C6) also being satisfied.
While the existence of {(v1, α1), (v2, α2), . . .} is shown, there is no known poly-
nomial time algorithm to find it.



On the Efficiency of a Local Iterative Algorithm 75

��� w
0
�

w
1
�

w
2
�

w
3
�

w
4
� w

5
�

�
1
�

�
2
�

�
3
�

�
4
� �

5
�

�
0
�

�
1
�

�
2
�

�
3
� �

4
�

�
5
�

v 

Fig. 2. cc-facing angles about v are φ0, φ1, . . . , φ5. c-facing angles are θ0, θ1, . . . , θ5

2.2 The Koebe Representation Theorem

Koebe [12] in 1936 proved the following remarkable theorem.

Theorem 2. (Koebe [12]) Given any planar graph G = (V, E) with V =
{v1, v2, . . . , vn}, we can find a packing of n (not necessarily congruent) disks
C = {C1, C2, . . . , Cn} in the plane with the property that Ci and Cj touch iff
{vi, vj} ∈ E for 1 ≤ i, j ≤ n.

The fact that the set C is a circle packing implies that the interiors of the circles
are pairwise mutually disjoint.

From Thurston’s proof of Koebe’s theorem [18] one can extract an iterative
algorithm for (approximately) computing a Koebe representation (i.e., a circle
packing promised by Koebe’s theorem) for a given planar graph. In the following
description we assume, for simplicity, that G is a combinatorial triangulation. Let
r = (r1, r2, . . . , rn) be arbitrary initial radii assigned to the vertices v1, v2, . . . , vn

respectively. Then r uniquely defines the three angles in each inner face of G.
Let σr(vi) denote the sum of the angles at vi in all of the inner faces to which
vi belongs. The subscript “r” here denotes the fact that the angles depend on
the radii assignment r. If σr(vi) = 360 for all inner vertices vi, we are done
because we can consistently “glue” the triangular faces together. If σr(vi) �= 360
for some inner vertex vi, then we can find a new radius r′i for vi such that with
respect to r′ = (r1, r2, . . . , r

′
i, . . . , rn), the angle sum σr′(vi) = 360. Of course this

update affects the angle sums at neighbors of vi. However, it is possible to show
that this iterative process converges. Collins and Stephenson [6] suggest several
improvements to this basic algorithm that reduce the number of iterations needed
for convergence. This algorithm has an obvious distributed implementation in
which, in each round, each node vi for which σr(vi) �= 360 updates its radius ri.
New radius values are then exchanged with neighboring nodes in one round of
local communication, and the algorithm proceeds to the next round. It is this
entire class of algorithms that we refer to as the Thurston algorithm.

A Koebe representation C = {C1, C2, . . . , Cn} of a combinatorial triangula-
tion G = (V, E) can also be viewed as a power diagram whose planar dual is G.
This is the starting point of the work of Chen et al. [3,4], who go on to point
out that Koebe representations are special power diagrams in which disks corre-
sponding to adjacent cells are mutually tangent. With this motivation, Chen et
al. [3,4] develop a local power diagram (LPD) test that takes as input a mapping



76 K.M. Lillis and S.V. Pemmaraju

Φ : V → R
2 and an assignment of disks D(v) to vertices v ∈ V and determines if

{Φ, D} is a power diagram. It is this algorithm that we call PowerDiagram. This
is called a “local” test because it involves checking a condition at each vertex v
that is a function of Φ and D at v and its neighbors only. Thus this test can be
implemented in a distributed fashion. One problem with LPD is the fact that
it depends not just on the radii of the disks, but also on the coordinates of the
vertices specified by Φ. This is a problem because after each radii update (as in
the description of Thurston’s algorithm) we have to recompute the coordinates
of all the vertices by using some kind of a global sweep of the graph. Thus, after
each round in which all nodes update their radii, we need Ω(diameter) rounds
of communication to update the coordinates. In our view, this problem largely
offsets the gains obtained by using LPD.

3 The FindAngles Algorithm

The FindAngles algorithm first obtains an initial angle assignment by finding
a feasible solution of the linear program defined by constraints (C1)-(C5). The
algorithm terminates if no feasible solution it found. Once an initial angle assign-
ment is found, the algorithm repeatedly adjusts the angle values. It is this angle
adjustment process that is the focus of our work. Angles are adjusted through an
iterative process that repeatedly applies the change(v, α) operation introduced
in Section 2.1. This process consists of a sequence of rounds. In each round, we
scan through all the inner vertices in an arbitrary order. At each inner vertex
v we check if F (v) = 1. If this is not the case, we solve for an α∗ such that
after applying change(v, α∗), F (v) equal 1. We then apply change(v, α∗). To see
that it is possible to efficiently solve for such an α∗, define the following function
g : R→ R:

g(α) =
sin(φ0 + α) sin(φ1 + α) · · · sin(φs−1 + α)
sin(θ0 − α) sin(θ1 − α) · · · sin(θs−1 − α)

. (1)

Now suppose that F (v) < 1. Then g(0) = F (v) < 1 and limα→θmin g(α) = +∞
(recall that θmin = mini θi). Since g(α) is a continuous function, it is guaran-
teed that for some α∗ ∈ (0, θmin), g(α∗) = 1. In fact g(α) is monotonically
increasing as α increases from 0 to θmin. To see this observe that the ratio
sin(φi + α)/sin(θi − α) is monotonically increasing for 0 < α < θi provided
φi + θi ≤ 180. This is clearly so since φi and θi are required to be positive (con-
dition (C5)) and the sum of φi, θi, and a third angle equals 180 (condition (C1)).
Thus the equation g(α) = 1 can be easily solved using a standard numerical root
finding technique such as Newton’s method. We have a symmetric situation if
F (v) > 1. After each iteration, we check if a global termination condition is
satisfied. This termination condition depends on a fixed parameter ε > 0 and is
defined as either:

Max-termination condition: |1− F (v)| < ε for all inner vertices v
or

Sum-termination condition:
∑

v |1− F (v)| < ε over all inner vertices v



On the Efficiency of a Local Iterative Algorithm 77

We have separately implemented both termination conditions and report results
for both, however we focus on the first termination condition since it is local, i.e.,
each node can decide for itself, based on local information, if it needs to partici-
pate in the current iteration. Once the iterations terminate we perform a global
BFS sweep of the graph to fix planar coordinates of all vertices in G. We Start
with an arbitrary pair of adjacent vertices u and v and place them arbitrarily,
at distinct points on the plane. The sweep guarantees that for every subsequent
vertex w that is processed, there is a triangle of G, (a, b, w) such that a and b are
vertices that have already been placed in R

2. Given the fact that the three angles
of the triangle (a, b, w) are known, there is a unique location in R

2 for w. Upon
termination of our algorithm, each F (v) may differ from 1 by ε. Hence the angle
variables themselves yield an approximate Delaunay realization (see Figure 3).
We therefore geometrically evaluate each approximate Delaunay realization to
see if it is indeed a Delaunay triangulation. As expected, as ε becomes smaller,
the fraction of approximate Delaunay realizations that are actually Delaunay
triangulations, increases and reaches 1 (see Table 3). While FindAngles may
not run in polynomial time, experimental evidence suggests that it is very fast
(see Section 4), leading us to believe that some variant of this algorithm may
indeed be shown to have polynomial time convergence. The FindAngles algo-
rithm is summarized in the below pseudocode. The algorithm was implemented
in Mathematica 6.0, using in-built functions for linear programming and root
finding.

(a) (b) (c) (d) 

Fig. 3. (a) and (b) were produced from a single input with ε = 10−2 and ε = 10−6

respectively. (a) is not a Delaunay triangulation (the highlighted triangle violates the
empty circle property) while (b) is Delaunay. For illustrative purpose only, (c) and (d)
were produced from a single input with ε = 20 and ε = 12 respectively. (c) is not
Delaunay while (d) is.

Algorithm FindAngles
Input: G: A combinatorial triangulation, ε ∈ R

+

Output: Embedding of G that is a Delaunay triangulation, or report none exists.

1. Find initial angle assignment: a feasible solution to (C1) - (C5).
2. if (no feasible solution exists)
3. Report that G is not Delaunay realizable
4. Stop
5. end if



78 K.M. Lillis and S.V. Pemmaraju

6. while (∃ inner vertex v : | 1− F (v) | ≥ ε)
7. for(each inner vertex u)
8. if (| 1− F (u) | ≥ ε)
9. Compute α∗ such that F (u) = 1 following change(u, α∗)

10. Apply change(u, α∗)
11. end if
12. end for
13. end while
14. Arbitrarily select edge {u, v} and embed u and v at distinct points in R

2

15. Perform a BFS traversal starting with u or v. At each vertex w:
16. Pick a triangle (a, b, w) such that a and b have been embedded
17. Embed w in R

2 using the angles of triangle (a, b, w)

4 Experimental Results

The basic experiments described in this section were run on a total of 65 input
graphs, 13 each of order n ∈ {23, 43, 63, 83, 103}. To construct each input graph,
n − 3 random points were first placed inside 3 boundary vertices. A Delaunay
triangulation T on this set of n points was then constructed. Each edge e of T
was next inspected in an arbitrary order. If e was found to be the diagonal of
a convex quadrilateral, then e was removed from T and the opposite diagonal
added. By doing this we have a triangulation that is clearly not a Delaunay
triangulation, even though it might be Delaunay realizable via some alternate
realization. We then extracted a combinatorial representation of the adjacencies
of this triangulation. To determine how well our algorithm scales we used 50
larger graphs up to order n = 1003. For a given input graph, we are interested
in finding a realization that is the combinatorial dual of a power diagram. For
simplicity, when we succeed in finding such a realization, we say we have found
a “Power Diagram”.

4.1 Relative Performance of Algorithm FindAngles

In this subsection we compare the performance of the FindAngles algorithm
with that of algorithms Thurston and PowerDiagram. The comparison is along
three dimensions: number of iterations, fraction of realizations that are power di-
agrams, and running time. Along all three dimensions, FindAngles outperforms
both of the other algorithms.

We start by looking at the number of iterations and the processing time re-
quired by each algorithm to produce 100% power diagrams (see Table 1 and
Figure 4). Recall that the PowerDiagram algorithm always terminates with a
valid power diagram. So to perform a meaningful comparison, for each n we
pick a largest ε for which all realizations generated by FindAngles are De-
launay triangulations and report the average number of iterations and time
required using this ε. Note different ε may be selected for different n. The
results for the Thurston algorithm are similarly selected and reported. Chen et
al. [4] have proposed the PowerDiagram algorithm as an improvement over the



On the Efficiency of a Local Iterative Algorithm 79

Thurston algorithm. However, it is clear from Table 1 that the improvement of
the PowerDiagram algorithm is marginal, relative to the improvement obtained
by using our algorithm. For example, for n = 103, the Thurston algorithm needs
1664 iterations, the PowerDiagram algorithm needs 1330 iterations, whereas Al-
gorithm FindAngles needs only 122 iterations! The last three columns of the
table show the times (in seconds) for the three algorithms. Again, our algorithm
is significantly faster than both the Thurston algorithm and the PowerDiagram
algorithm. In our implementation, the PowerDiagram algorithm takes signifi-
cantly more time than the Thurston algorithm, despite using fewer iterations.
This is due to fact that we implemented the local power diagram test by solving
a non-linear system of equations using the Mathematica function FindInstance.
It is possible that an alternate, purely geometric, implementation of the local
power diagram test would speed up the PowerDiagram algorithm.

Table 1. For each n, we report the average number of iterations and time (in seconds)
for the PowerDiagram algorithm to terminate. For each of the other two algorithms, for
each n, we find the largest ε, for which all realizations produced by the algorithm are
power diagrams.

Average Iterations for 100% Power Diagrams Average Time (in sec.) for 100% Power Diagrams

n Thurston PowerDiagram FindAngles Thurston PowerDiagram FindAngles

23 256 175 60 9 66 2
43 536 442 49 71 389 4
63 879 758 165 256 1115 23
83 1137 961 134 583 2123 24
103 1664 1330 122 1321 3922 27

�

���

���

���

	��

����

����

����

����

�	��

�� �� �� 	� ���

*
+
�
��
�
�
�,
-
�
�
�
��
�
.�
/	
�
��
	

�
�
�

/�-	������0�����1�2

/	���	
����.������3�4�5���6
������

������&�����

7�������

&�����'�

�

���

����

����

����

����

����

����

����

����

�� �� �� 	� ���

*
+
�
��
�
�
�4
��
��
��

�
�
��

�

�
�1
��
�2

/�-	������0�����1�2

�
���.������3�4�5���6
������

������&�����

7�������

&�����'�

Fig. 4. These charts represent the data from Table 1

Next we compare FindAngles with the Thurston algorithm (see Table 2 and
Figure 5). The reported results are for ε = 10−5. Again, the comparison is along
three dimensions and again, FindAngles significantly outperforms the Thurston
algorithm.

As mentioned in Section 3, our algorithm produces an approximate Delaunay
realization, where the approximation depends on ε: as ε → 0, the realization
produced gets “closer” to a Delaunay triangulation. Table 3 shows the increase



80 K.M. Lillis and S.V. Pemmaraju

Table 2. This summarizes the results of the execution of the Thurston algorithm and
Algorithm FindAngles. The results are for runs with ε = 10−5. Each row represents
the average results for 13 different input graphs of the order shown.

Input Graph Thurston FindAngles

Order Average Average Percent Average Average Percent
n Iterations Time (sec) Power Diag Iterations Time (sec) Power Diag

23 309 11 100 83 3 100
43 591 78 100 104 9 100
63 879 256 100 165 23 100
83 1101 565 92 171 32 100
103 1341 1063 54 170 40 100

�

���

���

���

	��

����

����

����

����

�� �� �� 	� ���

*
+
�
��
�
�
�,
-
�
�
�
��
�
.�
/	
�
��
	

�
�
�

/�-	������0�����1�2

�����
�����.�/	���	
���

7�������

&�����'�

�

���

���

���

	��

����

����

�� �� �� �� �� 
� 	� �� ���

*
+
�
��
�
�
�4
��
��
��

�
�
��

�

�
�1
��
�2

/�-	������0�����1�2

�����
�����.�4������
����
��

7�������

&�����'�

Fig. 5. These charts show the data form Table 2

Table 3. This table shows the increase in the fraction of actual Delaunay triangulations
produced FindAngles and the Thurston algorithm as ε→ 0

×10−3 ×10−4 ×10−5 ×10−6

ε 8 6 4 2 1 8 6 4 2 1 8 6 4 2 1 8 6 4 2 1

Thurston 0 0 0 0 2 3 6 9 17 25 26 32 40 69 89 95 97 97 100 100

FindAngles 11 12 14 20 34 40 45 55 74 86 92 95 98 98 100 100 100 100 100 100

in the fraction of actual Delaunay triangulations produced by FindAngles and
the Thurston algorithm as ε→ 0.

As mentioned in Section 3, we have also used sum-termination condition as an
alternate termination condition for FindAngles. Being a bit more flexible than
the max-termination condition, we expect termination to be reached in fewer
iterations using sum-termination. This is confirmed in Table 4. For example, for
n = 103 and ε = 10−4, it takes on average, 200 iterations for FindAngles to
terminate with the sum-termination condition. The sum-termination condition
requires the sum of the “errors” at all inner vertices to be at most 10−4. We
interpret this constraint as being roughly equivalent to the “error” at each vertex
being bounded by 10−4/n = 10−6. We can then compare the 200 iterations
needed to terminate with ε = 10−4 with the sum-termination condition with the
243 iterations it takes to terminate with ε = 10−6 under the max-termination



On the Efficiency of a Local Iterative Algorithm 81

condition. Similar comparisons can be made for each of the other values of n
and we see that one can ensure roughly similar average error using slightly
fewer iterations with the sum-termination condition. The salient point of this
comparison is to show that convergence of our algorithm seems fairly robust and
is not greatly affected by using alternate termination conditions.

Table 4. The last three entries of each row respectively represent the average number
of iterations for ε = 10−4 under sum-termination, ε = 10−5 under max-termination,
and ε = 10−6 under max-termination

Average Number of Iterations

Sum-termination Max-termination Max-termination
n ε = 10−4 ε = 10−5 ε = 10−6

23 73 83 106
43 103 104 138
63 176 165 220
83 191 171 232
103 200 170 243

4.2 Scaling to Graphs of Order n = 1000

Our simulations demonstrate that FindAngles is efficient for input graphs with
up to 103 vertices. To determine whether it scales to larger graphs, FindAngles
was run on graphs up to order n = 1003 (see Table 5 and in Figure 6). We see
that the number of iterations grows linearly with the input size. The processing
time grows a bit more rapidly and consists mainly of time spent adjusting angles.
The time needed to solve the linear program is just a small fraction of the overall
processing time.

Table 5. This table shows how our algorithm scales to inputs of size 1003. These
average are taken over five inputs of each size shown.

Scaling to Large Inputs (ε = 10−5)

n 103 203 303 403 503 603 703 803 903 1003

Average Iterations 157 273 399 340 505 579 637 786 834 951

Average Time to Solve LP 0.02 0.05 0.08 0.11 0.14 0.17 0.20 0.23 0.26 0.28

Average Time to Adjust Angles 38 139 341 396 836 1171 1588 2426 3285 3711

4.3 Most Triangulations Are Delaunay Realizable

One of the main motivations of our work is the observation by Hiroshima et al.
[9] that most triangulations are Delaunay realizable. In that work the authors
experimentally verified their observation for small size triangulations (with up to
12 vertices). In an effort to corroborate those findings, we randomly constructed
5000 pairwise non-isomorphic combinatorial triangulations of order n = 103 and



82 K.M. Lillis and S.V. Pemmaraju

�

���

���

���

���

���

���


��

	��

���

����

��� ��� ��� ��� ��� ��� 
�� 	�� ��� ����

*
+
�
��
�
�
�,
-
�
�
�
��
�
.�
/	
�
��
	

�
�
�

/�-	������0�����1�2

����
���	��:�����/�-	�

,-������.�/	���	
���

�

���

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� 
�� 	�� ��� ����

*
+
�
��
�
�
�4
��
��
��

�
�
��

�

�
�1
��
�2

/�-	������0�����1�2

����
���	��:�����/�-	�

4������
����
��

7&�����;����'��

7&�����

Fig. 6. These charts represent the data from Table 5

used the linear program corresponding to constraints (C1)-(C5) to see how many
were Delaunay realizable. The triangulations were generated by first dropping
points randomly in the plane, constructing a Delaunay triangulation, “flipping”
randomly chosen diagonals repeatedly, and finally extracting a combinatorial
representation of the resulting triangulation. The number of diagonals flipped is
determined by the parameter m. If the Markov Chain defined by this process is
rapidly mixing, then for m not too large, the 5000 combinatorial triangulations
would form a sample picked uniformly at random from the set of all combinatorial
triangulations on n points. The result was quite satisfying and lends support to
the observation of Hiroshima et al. [9]: of the 5000 combinatorial triangulations
generated, only 1 is not Delaunay realizable.

5 Understanding the Convergence

The angle adjustment process of the FindAngles algorithm starts with an ini-
tial angle assignment (a feasible solution to (C1)-(C5)) and modifies the angles
iteratively in an effort to satisfy constraint (C6) as well. This process can can be
viewed as moving from an inconsistent angle assignment in which the triangles
cannot be “glued” together, toward a valid Delaunay triangulation. As a mea-
sure of how close to a valid Delaunay triangulation the current angle assignment
is after an iteration, we define error as

∑
v∈I |1 − F (v)|, where I is the set of

all inner vertices and F (v) is as defined in Section 2.1. We are interested in
the behavior of this error term as the iterations progress. The faster the error
term converges to zero, the sooner the iterative process terminates. Figure 7
shows that the error falls rapidly initially and then converges more slowly as the
algorithm gets closer to a valid Delaunay triangulation. While the decrease in
error is largely monotonic, for a small percentage of iterations the error increases
slightly. In Theorem 3 we prove that under certain initial conditions the error
term strictly decreases. For any inner vertex v and real α, let change(v, α) be
as described in Section 2.1.

Theorem 3. Let v be an inner vertex of degree s and suppose that F (v) �= 1.
Further suppose that F (v) is not smaller than the F -values of neighbors of v.
Let α∗ be such that performing change(v, α∗) makes F (v) = 1. Then performing
change(v, α∗) decreases the error.



On the Efficiency of a Local Iterative Algorithm 83

�

��� 

���

��� 

��

�� 

��!

��! 

� �� � !� ��  � "� #�

�
��
�
��
$
�
��

�%������&�'	��
	���

���������������

��(�����)�(��� * �

�

���

��

��!

���

�� 

��"

��#

���

��+

�

�  � ��� � � ��

�
��
�
��
$
�
��

�%������&�'	��
	���

���������������

��(������)�(��� * �

Fig. 7. This figure shows how the error term falls rapidly when the FindAngles algo-
rithm is run with ε = 10−5 on two separate input graphs, one of order n = 23 and one
of order n = 103

Proof. There are two cases, depending on whether or not F (v) < 1. We first
assume that F (v) < 1. Let φi (θi), 0 ≤ i ≤ s − 1, be the cc-Facing (c-facing)
angles about v (recall Figure 2). Group the terms in F (v) as follows

F (v) =
(

sin(φ0)
sin(θ1)

)
·
(

sin(φ1)
sin(θ2)

)
· · ·

(
sin(φs−2)
sin(θs−1)

)
·
(

sin(φs−1)
sin(θ0)

)
,

calling them t0, t1, . . . , ts−1 respectively. Note that the two angles involved in
term tj , namely φj and θj+1, are “facing” angles and therefore according to
condition (C4) satisfy φj +θj+1 < 180. Here (and in the remainder of the proof)
we use modulo s arithmetic, so if j = s − 1, then j + 1 ≡ 0 and if j = 0, then
j − 1 ≡ s− 1. Now let us view the quantity

(
sin(φj + α)

sin(θj+1 − α)

)

as a function of α and denote it by tj(α). So tj(0) is just tj . Since φj+θj+1 < 180,
using Lemma 4.2 from Hiroshima et al. [9] we see that tj(α) is monotonically
increasing in the range α ∈ [0, θj+1). Therefore the product

∏s−1
j=0 tj(α) is also

monotonically increasing starting at
s−1∏

j=0

tj(0) =
s−1∏

j=1

tj = F (v) < 1

and increasing to +∞ as α → min{θ0, θ1, . . . , θs−1}. Therefore there is some
0 < α∗ < min{θ0, θ1, . . . , θs−1} such that

∏s−1
j=0 tj(α∗) = 1. In other words,

performing the operation change(v, α∗) makes F (v) = 1.
Now fix an α, 0 < α ≤ α∗. Since tj(·) is a monotonically increasing function

in the range [0, α∗], each tj(α) can be expressed as tj + Δj for some Δj > 0.
Performing the operation change(v, α) results in F (v) increasing from

∏s−1
j=0 tj to

∏s−1
j=0(tj+Δj). As F (v) increases towards 1, we see a decrease in the contribution

of v to the error by
s−1∏

j=0

(tj + Δj)−
s−1∏

j=0

tj



84 K.M. Lillis and S.V. Pemmaraju

We can lower bound this quantity as follows:

s−1∏

j=0

(tj +Δj)−
s−1∏

j=0

tj > Δ0 ·
∏

j �=0

tj +Δ1

∏

j �=1

tj + · · ·+Δs−1

∏

j �=s−1

tj =
s−1∑

j=0

Δj

tj
F (v)

Thus the decrease in the error term due to v is greater than

s−1∑

j=0

Δj

tj
F (v). (2)

The operation change(v, α) also affects F (wj) for each neighbor wj , 0 ≤ j ≤
s− 1 of v. To understand the precise effect, note that each F (wj) contains the
term sin(θj)

sin(φj−1) times other terms that do not involve any of the changed angles.
Note that φj−1, which is a cc-facing angle about v, is a c-facing angle around
wj and similarly, θj , which is a c-facing angle about v, is a cc-facing angle round
wj . So F (wj) can be written as 1

tj−1
× restj , where restj denotes the product

of the other terms in F (wj). Performing the operation change(v, α) decreases
F (wj) to

1
(tj−1 + Δj−1)

· restj

Therefore the change in F (wj) is

1

tj−1
·restj− 1

(tj−1 + Δj−1)
·restj =

Δj−1

tj−1(tj−1 + Δj−1)
·restj =

Δj−1

(tj−1 + Δj−1)
·F (wj)

The above change is an increase in the contribution of F (wj) to the error.
Now for each j, 0 ≤ j ≤ s−1, we can “charge” the increase in the contribution

to the error by F (wj) to the term Δj−1
tj−1

F (v) in Equation (2). This is because
F (v) ≥ F (wj), since v was chosen to maximize F (v) and so we get:

Δj−1

tj−1
· F (v) ≥ Δj−1

tj−1
· F (wj) ≥ Δj−1

(tj−1 + Δj−1)
· F (wj)

Thus the increase in the error due to wj is less than the decrease in the error
due to the term Δj−1

tj−1
F (v) in Equation (2). Summing this over all j, we obtain

that the total increase in error due to the neighbors of v is less than the decrease
in the error due to v. All of this is true for any α ∈ (0, α∗] and in particular for
α = α∗ as well.

The case in which F (v) > 1 is quite similar. Here we need to decrease F (v)
so we pick a negative α and perform a change(v, α). This results in an increase
in F (wj)-values, but as in the above proof the decrease in F (v) decreases the
error by more than total increase due to all of the F (wj)’s.



On the Efficiency of a Local Iterative Algorithm 85

6 Future Work

As an initial preprocessing step FindAngles looks for a feasible solution to (C1)-
(C5). We currently use the built in Mathematica function LinearProgramming
to solve this LP. We would like to replace this with a strictly local test for
feasibility. Currently vertices whose angles are adjusted are selected arbitrarily.
We may be able to improve convergence by selectively picking vertices based
on some threshold of their F -values. We would like to extend our algorithm to
run on all 3-connected planar graphs. Motivated by the desire to find a general
polynomial time algorithm for Delaunay realizability, we would like to study
more closely the behavior of the error term and identify an alternate definition
of error that decreases monotonically for all inputs.

References

1. Andreev, E.M.: On convex polyhedra in Lobacevskii space. Math. USSR
Sbornik 10(3), 413–440 (1970)

2. Andreev, E.M.: On convex polyhedra of finite volume in Lobachevskii space. Math.
USSR Sbornik 12(2), 255–259 (1970)

3. Ben-Chen, M., Gotsman, C., Gortler, S.: Routing with guaranteed delivery on
virtual coordinates. In: Proceedings of the 18th Canadian Conference on Compu-
tational Geometry (CCCG 2006), pp. 117–120 (2006)

4. Ben-Chen, M., Gotsman, C., Wormser, C.: Distributed computation of virtual coor-
dinates. In: Proceedings of the 23rd annual symposium on Computational geometry
(SoCG 2007), pp. 210–219. ACM Press, New York, NY, USA (2007)

5. Bose, P., Morin, P.: Online routing in triangulations. In: Aggarwal, A.K., Pandu
Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 113–122. Springer, Heidelberg
(1999)

6. Collins, C.R., Stephenson, K.: A circle packing algorithm. Computational Geome-
try: Theory and Applications 25(3), 233–256 (2003)

7. Dhandapani, R.: Greedy drawings of triangulations. In: Proceedings of the 19th an-
nual ACM-SIAM symposium on discrete algorithms (SODA 2008), SIAM, Philadel-
phia (2008)

8. Edelsbrunner, H., Shah, N.R.: Incremental topological flipping works for regular
triangulations. In: Proceedings of the eighth annual symposium on Computational
geometry (SoCG 1992), pp. 43–52. ACM, New York, NY, USA (1992)

9. Hiroshima, T., Miyamoto, Y., Sugihara, K.: Another proof of polynomial-time
recognizability of Delaunay graphs. In: IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences (IEICE 2000), April 2000,
vol. 83(4), pp. 627–638 (2000)

10. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless net-
works. In: Proceedings of the 6th Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom 2000), pp. 243–254 (2000)

11. Knaster, B., Kuratowski, C., Mazurkiewicz, S.: Ein beweis des fixpunktsatzes für
n-dimensionale simplexe. Fundamenta Mathematicae 14, 132–137 (1929)

12. Koebe, P.: Kontatkprobleme der konformen abbildung. Berichte über die Verhand-
lungen d. Sächs. Akademie der Wissenschaften Leipzia 88, 141–164 (1936)

13. Mohar, B.: A polynomial time circle packing algorithm. Discrete Mathemat-
ics 117(1–3), 257–263 (1993)



86 K.M. Lillis and S.V. Pemmaraju

14. Pach, J., Agarwal, P.K.: Combinatorial Geometry. John Wiles & Sons, New York,
NY, USA (1995)

15. Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing.
Theoretical Computer Science 344(1), 3–14 (2005)

16. Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM Comput-
ing Surveys 37(2), 164–194 (2005)

17. Smith, W.D.: Accurate circle configurations and numerical conformal mapping
in polynomial time. NEC Research Institute, unpublished technical memorandum
(December 1991)

18. Thurston, W.P.: The geometry and topology of 3-manifolds. Princeton University
Notes, Princeton (1988)



Computing Branch Decomposition of Large

Planar Graphs

Zhengbing Bian and Qian-Ping Gu

School of Computing Science, Simon Fraser University
Burnaby BC Canada, V5A 1S6

{zbian,qgu}@cs.sfu.ca

Abstract. A graph of small branchwidth admits efficient dynamic pro-
gramming algorithms for many NP-hard problems on the graph. A key
step in these algorithms is to find a branch decomposition of small width
for the graph. Given a planar graph G of n vertices, an optimal branch
decomposition of G can be computed in polynomial time, e.g., by the
edge-contraction method in O(n3) time. All known algorithms for the
planar branch decomposition use Seymour and Thomas procedure which,
given an integer β, decides whether G has the branchwidth at least β
or not in O(n2) time. Recent studies report efficient implementations of
Seymour and Thomas procedure that compute the branchwidth of planar
graphs of size up to one hundred thousand edges in a practical time and
memory space. Using the efficient implementations as a subroutine, it is
reported that the edge-contraction method computes an optimal branch
decomposition for planar graphs of size up to several thousands edges in
a practical time but it is still time consuming for graphs with larger size.
In this paper, we propose divide-and-conquer based algorithms of using
Seymour and Thomas procedure to compute optimal branch decompo-
sitions of planar graphs. Our algorithms have time complexity O(n3).
Computational studies show that our algorithms are much faster than
the edge-contraction algorithms and can compute an optimal branch
decomposition of some planar graphs of size up to 50,000 edges in a
practical time.

Keywords: Graph algorithms, branch-decomposition, planar graphs, al-
gorithm engineering, computational study.

1 Introduction

The notions of branchwidth and branch decompositions are introduced by
Robertson and Seymour [20] in relation to the more celebrated notions of
treewidth and tree decompositions [18,19]. Branch/tree-decomposition based al-
gorithms have been considered as efficient approaches for solving NP-hard prob-
lems on graphs of small branchwidth (or treewidth) [4,6,15]. To solve a problem,
a branch/tree-decomposition based algorithm first computes a branch/tree de-
composition with a small width and then applies a dynamic programming algo-
rithm based on the decomposition. The second step usually runs exponentially

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 87–100, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



88 Z. Bian and Q.-P. Gu

in the width of the decomposition computed in the first step. So it is extremely
important to decide the branch/tree-width and compute the optimal decompo-
sitions. It is NP-complete to decide whether the width of a given general graph
is at least an integer β if β is part of the input, both for branchwidth [22] and
treewidth [3]. When the branchwidth (treewidth) is bounded by a constant, both
the branchwidth and the optimal branch decomposition (treewidth and optimal
tree decomposition) can be computed in linear time [7,9]. However, the linear
time algorithms are not practical due to the huge constants behind the Big-
Oh. The difficulty of computing a good branch/tree decomposition has been
considered a hurdle for applying branch/tree-decomposition based algorithms in
practice.

Recently, the branch-decomposition based algorithms have been receiving in-
creasing attention for problems in planar graphs [10,11] because an optimal
branch decomposition of a planar graph can be computed in polynomial time
by Seymour and Thomas algorithm [22] and there is no huge hidden constant
in the algorithm. Notice that it is open whether computing the treewidth of a
planar graph is NP-hard or not. The result of the branchwidth implies a 1.5-
approximation algorithm for the treewidth of planar graphs. Readers may refer
to the recent papers by Bodlaender [8] and Hicks et al. [15] for extensive litera-
ture in the theory and application of branch/tree-decompositions.

Given a planar graph G of n vertices and an integer β, Seymour and Thomas
give an algorithm (called ST Procedure for short in what follows) which decides
if G has a branchwidth at least β in O(n2) time [22]. Using ST Procedure as
a subroutine, they also give an edge-contraction algorithm which constructs an
optimal branch decomposition of G. The edge-contraction algorithm calls ST
Procedure O(n2) times and runs in O(n4) time. Gu and Tamaki [12] give an
improved edge-contraction algorithm which calls ST Procedure O(n) times and
runs in O(n3) time to construct an optimal branch decomposition. Hicks pro-
poses a divide-and-conquer algorithm called the cycle method to reduce the calls
of ST Procedure for computing planar branch decompositions [13,14]. Since all
known algorithms for branch decompositions use ST Procedure as a subroutine,
the time and memory space required by ST Procedure limit the size of planar
graphs for which the optimal branch decompositions can be computed in prac-
tice. Hicks reports that the edge-contraction algorithm of [22] can solve some
instances of about 2,000 edges and the cycle method can solve some instances of
about 7,000 edges in a practical time [13,14]. Very recently, there is a significant
progress in the efficient implementation of ST Procedure [5]. Bian et al. show
by computational study that the branchwidth of planar graphs of size up to one
hundred thousand edges can be computed by ST Procedure in a practical time
and memory space [5]. This result provides a powerful tool for computing branch
decompositions for large planar graphs. It is reported that using the efficient im-
plementations of ST Procedure, the edge-contraction algorithms of [12,22] can
compute optimal branch decompositions for graphs of size up to 7,000 edges
within 20 hours by a computer with a CPU speed of about 3GHz and a memory



Computing Branch Decomposition of Large Planar Graphs 89

space of 2GByte [5]. However, it is still time consuming to use edge-contraction
method to compute branch decompositions for larger instances.

Hicks reports that the divide-and-conquer approach is more practical to com-
pute the branch decomposition of planar graphs [13,14]. In this approach, first
the branchwidth β of a graph G is computed. Let S be a set of vertices that
separates G into two subgraphs. Roughly speaking, a partition by S is valid if
|S| ≤ β, and each subgraph has branchwidth at most β (a formal definition on
the valid partition will be given later). Next a valid partition of G is found. In
this step, ST Procedure is used to test if each subgraph has branchwidth at most
β. If a valid partition is found, then the branch decomposition of each subgraph
is computed recursively. The branch decomposition of G is constructed from the
decompositions of the subgraphs. How to find a valid partition efficiently is a
key for this approach. Hicks proposes the cycle method for computing a valid
partition [13,14]. Notice that there is no guarantee on the existence of a valid
partition in a recursive step. The edge-contraction method is used to make a
progress in the cycle method when a valid partition can not be found. In the
worst case, the cycle method has time complexity O(n4). Computational results
show that the cycle method is faster than the edge-contraction method by a
factor of about 10 ∼ 30 in average for the Delaunay triangulation instances [14].

In this paper, we propose divide-and-conquer based algorithms for computing
planar branch decompositions. Our algorithms are similar to the cycle method
in finding a valid partition but make effort to balance the sizes of subgraphs.
Our algorithms also use the edge-contraction method to make a progress when a
valid partition can not be found. In the worst case, our algorithms run in O(n3)
time. We tested our algorithms and the O(n3) time edge-contraction algorithm
[12] on several classes of planar graphs. Computational results show that our al-
gorithms are faster than the edge-contraction algorithm by a factor of 200 ∼ 300
for Delaunay triangulation instances of more than 5,000 edges. Using the more
efficient implementations of ST Procedure of [5], our algorithms can compute
optimal decompositions for some instances of size up to 50,000 edges in a prac-
tical time. Previous results of the cycle method [13,14] are obtained by a slower
computer and a less efficient implementation of ST Procedure than those in this
study. To compare our algorithms with the cycle method on a same platform,
we implemented the unaltered cycle method [14] using the more efficient imple-
mentation of ST Procedure. Computational results show that our algorithms are
faster than the unaltered cycle method by a factor of more than 10 for the De-
launay triangulation instances. Notice that our implementation of the unaltered
cycle method is a straightforward one based on the information available in the
published literature [13,14].

The results of this paper suggest that the optimal branch decompositions of
large planar graphs can be computed in practice. Our divide-and-conquer algo-
rithms are efficient tools for finding such branch decompositions. This may make
the branch-decomposition based algorithms more attractive for many problems
in planar graphs.



90 Z. Bian and Q.-P. Gu

The rest of the paper is organized as follows. In Section 2, we give the prelim-
inaries of the paper. Section 3 describes our algorithms. Computational results
are presented in Section 4. The final section concludes the paper.

2 Preliminaries

Readers may refer to a textbook on graph theory (e.g., the one by West [23]) for
basic definitions and terminology on graphs. In this paper, graphs are unweighted
undirected graphs (i.e., each edge has a unit length) unless otherwise stated. Let
G be a graph. We use V (G) for the vertex set of G and E(G) for the edge set
of G. A branch decomposition of G is a tree TB such that the set of leaves of
TB is E(G) and each internal node of TB has node degree 3. For each link e of
TB, removing e separates TB into two sub-trees. Let E′ and E′′ be the sets of
leaves of the subtrees. The width of e is the number of vertices of G incident
to both an edge in E′ and an edge in E′′. The width of TB is the maximum
width of all links of TB. The branchwidth bw(G) of G is the minimum width of
all branch-decompositions of G.

The algorithms of Seymour and Thomas [22] for branchwidth and branch
decomposition are based on another type of decompositions called carving de-
compositions.

A carving decomposition of G is a tree TC such that the set of leaves of TC

is V (G) and each internal node of TC has node degree 3. For each link e of TC ,
removing e separates TC into two sub-trees and the two sets of the leaves of the
sub-trees are denoted by V ′ and V ′′. The width of e is the number of edges of G
with both an end vertex in V ′ and an end vertex in V ′′. The width of TC is the
maximum width of all links of TC . The carvingwidth cw(G) of G is the minimum
width of all carving decompositions of G. Notice that the carving decomposition
is defined for more general graphs in [22]. The definition allows positive integer
lengths on edges of the graphs. The width of e in TC for the weighted graph
is defined as the sum of lengths of edges with an end vertex in V ′ and an end
vertex in V ′′.

Let G be a planar graph with a fixed embedding. Let R(G) be the set of faces
of G. The medial graph [22] M(G) of G is a planar graph with an embedding such
that V (M(G)) = {ue|e ∈ E(G)}, R(M(G)) = {rs|s ∈ R(G)} ∪ {rv|v ∈ V (G)},
and there is an edge {ue, ue′} in E(M(G)) if the edges e and e′ of G are incident
to a same vertex v of G and they are consecutive in the clockwise (or counter
clockwise) order around v. M(G) in general is a multigraph but has O(|V (G)|)
edges.

Proposition 1. (Seymour and Thomas [22]) Given a planar graph G of n ver-
tices and an integer β, bw(G) = cw(M(G))/2, ST Procedure decides if bw(G) ≥
β by computing if cw(M(G)) ≥ 2β in O(n2) time, and an optimal carving de-
composition of M(G) can be translated into an optimal branch decomposition of
G in O(n) time.

Seymour and Thomas give an edge-contraction method to compute an optimal
carving decomposition of M(G) [22]. The contraction of an edge e in M(G) is



Computing Branch Decomposition of Large Planar Graphs 91

to remove e from M(G), identify the two end vertices of e by a new vertex, and
make all edges incident to e incident to the new vertex. We denote by M(G)/e
the graph obtained by contracting e in M(G). Given a 2-connected M(G), the
edge-contraction method computes an optimal carving decomposition of M(G)
by a sequence of edge contractions of M(G) as follows: First the carvingwidth
k of M(G) is computed by ST Procedure. An edge e of M(G) is contractible if
the carvingwidth of M(G)/e is at most k and M(G)/e is 2-connected. Next, a
contractible edge e of M(G) is found by ST Procedure and M(G) is contracted
to graph M(G)/e. The contraction is repeated on M(G)/e until the graph be-
comes one with three vertices. An optimal carving decomposition of M(G) is
constructed based on the sequence of edge contractions.

Proposition 2. (Seymour and Thomas [22]) Let e = {x, y} be a contractible
edge of M(G), xe be the new vertex identifying {x, y} in M(G)/e, and T ′C be
an optimal carving decomposition of M(G)/e. Then the carving decomposition
TC obtained by adding links {xe, x} and {xe, y} to T ′C is an optimal carving
decomposition of M(G).

A face r ∈ R(G) and an edge e ∈ E(G) are incident to each other if e is a
boundary of r in the embedding. Notice that an edge e is incident to exactly two
faces. For a face r ∈ R(G), a vertex v is incident to r if v is an end vertex of an
edge incident to r.

The planar dual G∗ of G is defined as that for each vertex v ∈ V (G), there
is a unique face r∗v ∈ R(G∗); for each face r ∈ R(G), there is a unique vertex
v∗r ∈ V (G∗); and for each edge e ∈ E(G) incident to r and r′, there is a unique
edge e∗ = {v∗r , v∗r′} ∈ E(G∗) which crosses e.

A walk in a graph G is a sequence of edges e1, e2, ..., ek of G, where ei =
{vi−1, vi} for 1 ≤ i ≤ k. A walk is closed if v0 = vk. The length of a walk is
the number of edges in the walk. For two vertices u and v in a graph G, the
distance d(u, v) is the minimum length of all walks between u and v. The walk
with distance d(u, v) is a shortest path between u and v.

3 Divide-and-Conquer Based Algorithms

Following the divide-and-conquer approach used in the cycle method [13,14],
we first describe a framework for our algorithms. Given a planar graph H with
carvingwidth k, let C be a set of edges (cut set) that partitions H into subgraphs
H1 and H2. For each Hi (i = 1, 2), define H ′i to be the graph obtained by adding
a new vertex v′i and the edge set {{u, v′i}|u ∈ V (Hi)∩ V (C)} to Hi (see Fig. 1).
Intuitively, H ′i is the graph of Hi and a vertex v′i representing the part of H other
than Hi. The partition by C is valid if |C| ≤ k, and each of H ′i has carvingwidth
at most k. Below is the framework for our algorithms.

1. Given a planar graph G, compute the medial graph M(G) and the carving-
width k of M(G) by ST Procedure and let H = M(G).

2. If |E(H)| > c (c is a constant)



92 Z. Bian and Q.-P. Gu

– then try to find a valid partition of H :
Partition H into subgraphs Hi (i = 1, 2) by a set C of edges with |C| ≤ k.
If every H ′i has carvingwidth at most k for i = 1, 2, then a valid partition
is found.

– else compute the carving decomposition of H by enumeration.
3. If a valid partition is found

– then goto Step 2 to compute the carving decomposition of every subgraph
H ′i recursively; and construct the carving decomposition of H from the
carving decompositions of the subgraphs.

– else call an edge-contraction algorithm to contract an edge e of H such
that the contracted graph H/e has carvingwidth at most k; goto Step 2
to compute the carving decomposition of H/e; and construct the carving
decomposition of H by Proposition 2.

4. Construct the branch decomposition of G from the carving decomposition
of M(G) (Proposition 1).

Lemma 1. An optimal branch decomposition of G can be computed by the
framework.

Proof. By Proposition 2, if an optimal carving decomposition of H/e has been
found then an optimal carving decomposition of H can be constructed. Assume
that a valid partition of H is found and optimal carving decompositions T1 and
T2 have been constructed for subgraphs H ′1 and H ′2 in the valid partition. We
assume that T1 has a leaf node u1 corresponding to v′1 and T2 has a leaf node
u2 corresponding to v′2, added in Step 2. Let e1 = {u1, w1} be the link of T1 and
e2 = {u2, w2} be the link of T2. We get a carving decomposition TC of H by
first connecting T1 and T2 using a new link {w1, w2} and then discarding links
{u1, w1} and {u2, w2}. Obviously, each internal node of TC has degree three.
Each link of E(TC) \ {w1, w2} has the same width as that of the corresponding
link in T1 or T2. The width of link {w1, w2} is |C|. Thus, TC has width at most
k and is an optimal carving decomposition of H = M(G). By Proposition 1, TC

can be converted to an optimal branch decomposition of G. �

How to find a valid partition is a key on the efficiency of the divide-and-conquer
algorithms. An obvious approach for finding such a partition is to compute a
closed walk (cycle) W ∗ of length at most k in the planar dual M(G)∗ of M(G).
Let E∗(W ∗) be the set of edges in W ∗. Let R∗W∗ and V ∗W∗ be the sets of faces
and vertices of M(G)∗ enclosed by W ∗, respectively (see Fig. 1). Then the set of
edges of M(G) corresponding to the edges of E∗(W ∗) is a cut set between the
subgraph of M(G) with the vertex set and face set corresponding to R∗W∗ and
V ∗W∗ , respectively, and the rest part of M(G).

In the cycle method [13,14], a closed walk is computed as follows. First, a
face r∗ of M(G)∗ is selected. Let E∗r∗ be the set of edges incident to r∗. Next, a
pair of vertices s∗ and t∗ incident to r∗ is selected and a shortest path P ∗ that
does not contain any edge of E∗r∗ between s∗ and t∗ in M(G)∗ is computed. A
path Q∗ between s∗ and t∗ formed by edges of E∗r∗ and path P ∗ give a closed
walk W ∗ of M(G)∗. For a selected face r∗, the cycle method tries every pair of



Computing Branch Decomposition of Large Planar Graphs 93

s∗ t∗
r∗

vertices of M(G)

vertex of M(G)∗

vertices enclosed by W ∗
closed walk W ∗

v′1

H H1 and H2 H ′1 and H ′2

v′2

Fig. 1. Partition graph H into subgraphs by a cycle in H∗

vertices s∗ and t∗ incident to r∗. If a valid partition is found, then the method
is applied recursively, otherwise the edge-contraction method is called.

Similar to the cycle method, our algorithms compute a closed walk W ∗ formed
by paths Q∗ and P ∗ between s∗ and t∗. Our algorithms select the vertices s∗

and t∗ with the consideration on the sizes of subgraphs. Notice that the edges
of E∗r∗ is a closed walk. For vertices s∗ and t∗ incident to r∗, there are two paths
Q∗1 and Q∗2 formed by the edges of E∗r∗ between s∗ and t∗. The partition may
be balanced if there is a small difference between the lengths of Q∗1 and Q∗2. Our
first algorithm chooses the vertices s∗ and t∗ in an order that a smaller difference
between the lengths of Q∗1 and Q∗2 is selected with a higher priority. We call this
procedure the length-priority algorithm.

The cut set corresponding to a closed walk W ∗ partitions the input graph in
a recursive step into two subgraphs. The size of a subgraph is the number of
vertices in the subgraph. The partition is balanced if there is a small difference
between the sizes of the two subgraphs. Our second algorithm chooses s∗ and t∗

in an order that a smaller difference between the sizes of the two subgraphs is
selected with a higher priority. We call this procedure the size-priority algorithm.

In both algorithms, we try a constant number of pairs of vertices s∗ and
t∗ incident to r∗ in the order defined above. If a valid partition is found then
the algorithms are applied recursively, otherwise an edge-contraction method is
called. In both algorithms, the constant c in the framework is set to 3 and a
subgraph in each partition has at least two vertices.

In the divide-and-conquer algorithms, we partition H into Hi (i = 1, 2) and
test if H ′i has carvingwidth at most k by ST Procedure. A test is called positive
if H ′i has carvingwidth at most k, otherwise negative. Similarly, in the edge
contraction method, we contract an edge e and test if H/e has carvingwidth at
most k by ST Procedure. A test is called positive if H/e has carvingwidth at
most k, otherwise negative.

Theorem 1. Both the length-priority and size-priority algorithms compute an
optimal branch decomposition of a planar graph G of n vertices in O(n3) time.



94 Z. Bian and Q.-P. Gu

Proof. By Lemma 1, the algorithms compute an optimal branch decomposition
of G. The medial graph H = M(G) has |E(G)| = O(n) vertices. The carv-
ingwidth of H can be computed in O(n2 log n) time by ST Procedure (using a
binary search). Because the branchwidth of G is β = O(

√
n) [11], the carving-

width of H is k = 2β = O(
√

n). Since the carvingwidth of a graph is at least the
maximum node degree of the graph, H and the subgraphs in each recursive step
have node degree O(

√
n). Therefore, there are O(n) pairs of s∗ and t∗ incident

to a face r∗ when we try to find a valid partition. It takes O(n) time to compute
a partition for each pair of s∗ and t∗. Ordering O(n) partitions takes O(n log n)
time. Thus, both algorithms take O(n2) time to find and order the partitions for
the O(n) pairs of s∗ and t∗. ST Procedure takes O(n2) time to test if a graph of
n vertices has carvingwidth at least k. Since a constant number of partitions are
tested by ST Procedure, the total time for deciding whether a valid partition can
be found is O(n2). If a valid partition is not found, the edge contraction method
is used to make a progress. This takes O(n2) time [12]. Let T (n) be the time for
computing an optimal carving decomposition of H with n vertices. Then

T (n) = max{T (n1) + T (n2) + O(n2), T (n− 1) + O(n2)},
where T (ni) (i = 1, 2) and T (n− 1) are the time for computing optimal carving
decompositions of H ′i and H/e, respectively. Since n1 ≤ n− 1, n2 ≤ n− 1, and
n1+n2 = n+2, T (n) = O(n3). It takes O(n) time to get a branch decomposition
of G from the carving decomposition of H . �

The bound of Theorem 1 is the worst case time complexity of the divide-and-
conquer algorithms. If a valid partition is always found and sizes of the two
subgraphs differ only in a constant factor in every recursive step, then the divide-
and-conquer algorithms run in O(n2 log n) time which is faster than the O(n3)
time edge-contraction algorithm.

We call the length-priority and size-priority algorithms the 2-component
method because, the input graph in each recursive step is partitioned into two
subgraphs and ST Procedure is used to test the carvingwidth of each sub-
graph. The 2-component method can be generalized to the 2i-component method
(i ≥ 1). Given an input graph, we first choose one pair of s∗ and t∗ to parti-
tion the graph into two subgraphs. We call the subgraphs level-1 subgraphs. A
subgraph is called a level-(j + 1) subgraph if it is obtained from a partition of
a level-j (j ≥ 1) subgraph. In the 2i-component method, we compute the level-i
subgraphs (there are 2i such graphs) by a sequence of partitions of the input
graph. During the sequence of partitions, only one pair of s∗ and t∗ is used for
each subgraph. We only check the sizes of the cut sets but do not check the
carvingwidth for the level-j subgraphs for j < i. We use ST Procedure to check
the carvingwidth for every level-i subgraph. If all level-i subgraphs have carving-
width at most k, then the method is recursively applied to each level-i subgraph.
If one level-j (1 < j ≤ i) subgraph H ′ has carvingwidth greater than k then
we test the level-(j − 1) subgraph from which H ′ is obtained. If all level-(j − 1)
subgraphs have carvingwidth at most k then the method is applied recursively
(notice that a level-(j − 1) subgraph H has carvingwidth at most k if all level-j



Computing Branch Decomposition of Large Planar Graphs 95

subgraphs obtained from H have carvingwidth at most k). If a level-1 subgraph
has carvingwidth greater than k, then we give up the current pair of s∗ and t∗

and apply the method to the input graph on a different pair of s∗ and t∗.
This generalization is motivated by the fact that testing the carvingwidth of

large graphs by ST Procedure is the most time consuming part in finding the
branch decompositions and some observations from the computational study: in
most cases, a valid partition can be found in the first try and partitioning the
input graph into smaller subgraphs can save the time used by ST Procedure.
For constant i, the 2i-component algorithms have time complexity O(n3).

The branch decomposition of a graph G which is not 2-connected can be easily
constructed from the branch decompositions of its 2-connected components. So,
the study of branch decomposition may be concentrated on 2-connected graphs.

4 Computational Results

We implemented our algorithms and the unaltered cycle method [13,14]. A num-
ber of efficient implementations of ST Procedure are reported in [5]. The imple-
mentations of ST Procedure with the best practical performances are used in
our algorithms and the cycle method. The implementation of the cycle method
is a straightforward one: The pair of vertices s∗ and t∗ is selected in an arbitrary
order. If there are multiple shortest paths P ∗’s between s∗ and t∗ in M(G)∗,
an arbitrary one is used. Similarly, an arbitrary shortest path P ∗ is used for
the length-priority and size-priority algorithms. We test our implementations on
three classes of instances. Class (1) instances include Delaunay triangulations
of point sets taken from TSPLIB [17]. The instances are provided by Hicks and
are used as test instances in the previous studies [13,14]. The instances in Class
(2) are generated by the LEDA library [2,16]. LEDA generates two types of pla-
nar graphs. One type of the graphs are the randomly generated maximal planar
graphs and their subgraphs obtained from deleting some edges. Since the maxi-
mal planar graphs generated by LEDA always have branchwidth four, the sub-
graphs obtained by deleting edges from the maximal graphs have branchwidth
at most four. The graphs of this type are not interesting for the study of branch
decompositions. The other type of planar graphs are those generated based on
some geometric properties, including Delaunay triangulations and triangulations
of points uniformly distributed in a two-dimensional plane, and the intersection
graphs of segments uniformly distributed in a two-dimensional plane. We report
the results on the 2-connected intersection graphs. The instances in Class (3) are
generated by the PIGALE library [1]. PIGALE randomly generates one of all
possible planar graphs with a given number of edges based on the algorithms of
[21]. We report the results on the 2-connected graphs generated by the PIGALE
library.

We run the implementations on a computer with Intel(R) Xeon(TM) 3.06GHz
CPU, 2GB physical memory and 4GB swap memory. The operating system is
SUSE LINUX 10.0, and the programming language we used is C++.



96 Z. Bian and Q.-P. Gu

Table 1. Computation time (in seconds) of several decomposition algorithms for Class
(1) instances

Graphs |E(G)| bw EC GT Cycle L P S P S4
G time NT time NT time NT time NT time NT

pr1002 2972 21 2667 102 369 37 155 34 150 63 271 129

rl1323 3950 22 6879 136 441 0 63 5 189 97 336 200

d1655 4890 29 13529 171 5958 806 295 34 218 28 402 59

rl1889 5631 22 29096 178 1896 527 130 0 115 1 90 2

u2152 6312 31 26092 192 2394 92 156 0 140 0 119 0

pr2392 7125 29 45728 271 5595 210 173 0 153 0 118 0

pcb3038 9101 40 6265 53 490 8 998 17 1899 36

fl3795 11326 25 8954 52 863 3 902 11 1190 22

fnl4461 13359 48 X X 3795 31 2479 16 2441 16

rl5934 17770 41 2348 2 2585 6 3296 12

pla7397 21865 33 10291 88 3026 10 3376 21

usa13509 40503 63 25956 29 29539 79 50376 160

brd14051 42128 68 10536 19 31554 129 64802 263

d18512 55510 88 22378 44 X X X X

4.1 Results for Instances in Class (1)

The computational results for Class (1) instances are reported in Table 1. In
the table, |E(G)| is the number of edges in the instance and thus the number
of vertices in the medial graph M(G) which is the input to the algorithms, bw
is the branchwidth of the graph G, NT is the number of negative tests, Cycle
is the unaltered cycle method, L P is the length-priority algorithm, S P is the
size-priority algorithm, and S4 is the 4-component algorithm with size-priority.
For comparison, we include the running time of the O(n3) time edge-contraction
method in column EC GT (the data is taken from [5] which uses a computer of
similar performance to the one we use in this paper, and the O(n3) algorithm
itself is given in [12]). In the table, an ”X” indicates that it requires more than
70,000 seconds to solve the instance and a blank indicates that we did not test
the algorithms for that instance.

The data show that all divide-and-conquer algorithms (Cycle, L P , S P , and
S4) are much faster than the edge-contraction algorithm. The length-priority and
size-priority algorithms are faster than the edge-contraction method by a factor
of 200 ∼ 300 for instances of more than 5,000 edges in this class. It is difficult
to compare the data of our algorithms with those of the cycle method reported
in previous studies [13,14], because computers of different speeds and different
implementations of ST Procedure are used. To compare our algorithms with the
cycle method on a same platform, we give a straightforward implementation of
the unaltered cycle method using the same efficient ST Procedure used in our
algorithms. Our algorithms are faster than the cycle method by a factor of at
least 10 for instances of more than 5,000 edges. Notice that in average the cycle
method is faster than the edge-contraction method by a factor of about 10 which



Computing Branch Decomposition of Large Planar Graphs 97

is slightly smaller than that (10 ∼ 30 in average) reported in previous studies
[14]. Considering the fact that a more efficient edge-contraction algorithm is used
in this study, our implementation of the cycle method has a similar performance
as that used in the previous studies and our new algorithms are faster than
the cycle method. For all instances which are solved within the 70,000 seconds
time limit, the edge-contraction method is never used by any divide-and-conquer
algorithm to make a progress, that is, a valid partition is always found in every
recursive step.

There are two factors improving the running time of our algorithms. Both
the length-priority and size-priority algorithms find more balanced partitions
than the cycle method. This reduces the total running time in the divide-and-
conquer approach. The other factor is that our algorithms have a smaller number
of negative tests. In finding a valid partition, once a negative test happens, all
divide-and-conquer algorithms try a different pair of s∗ and t∗ and the running
time is increased. Also it takes more time for a negative test than a positive one.
For Class (1) instances, the length-priority algorithm runs faster than the size-
priority algorithm for large graphs while the size-priority algorithm does a better
job for smaller graphs. Because the running time of the algorithms depends on
both the size of the graphs and the number of negative tests, it may take a longer
time to solve some instances than that for a larger graph. For example, Instance
usa13509 requires a longer time than Instance brd14051 by the length-priority
algorithm.

For Class (1) instances, the number of negative tests is non-trivial, especially
for large graphs. This makes the 2i-component (i > 1) algorithms less efficient,
because using more than two components generally increases the number of nega-
tive tests and thus the total running time. As shown in Table 1, the 4-component
algorithm is slower than the 2-component algorithms for most instances in this
class.

4.2 Results for Instances in Classes (2) and (3)

Computational results for Classes (2) and (3) instances are given in Tables 2
and 3, respectively. In the tables, S8 is the 8-component algorithm with the
size-priority. An ”X” in the tables indicates that it takes more than 150,000
seconds to solve that instance. Similar to results for Class (1) instances, the
edge-contraction method is never used by any divide-and-conquer algorithm to
make a progress for Classes (2) and (3) instances.

It takes more time to find the branch-decomposition of a Class (2) instance
than a Class (1) instance with a similar size by divide-and-conquer algorithms.
This may be caused by the fact that Class (2) instances have smaller branchwidth
than that of Class (1) instances. A larger branchwidth implies that a longer cycle
is used in a valid partition and a longer cycle usually gives a more balanced
partition. For Class (2) instances, the size-priority algorithm runs faster than the
length-priority algorithm and is faster than the edge-contraction algorithm by a
factor of about 50 ∼ 150. Both the length-priority and size-priority algorithms
are faster than the cycle method. Since the number of negative tests in the



98 Z. Bian and Q.-P. Gu

Table 2. Computation time (in seconds) of several decomposition algorithms for Class
(2) instances

Graphs |E(G)| bw EC GT Cycle L P S P S4 S8
G time NT time NT time NT time NT time NT time NT

rand1160 2081 8 1749 34 53.2 0 46.3 0 29.9 0 23.1 0 18.4 0

rand1672 3047 10 4695 103 137 2 54.6 0 39.7 0 29.7 0 25.7 0

rand2780 5024 10 29073 147 2059 0 727 0 471 0 312 0 249 0

rand3857 7032 11 82409 281 1503 0 810 6 493 6 351 13 292 20

rand5446 10093 11 11474 17 3283 3 2361 3 1532 6 1205 9

rand8098 15031 13 12022 76 2783 1 1864 0 1465 0 1159 0

rand10701 20044 13 11782 9 4368 0 3699 0 2884 0 2475 0

rand15902 30010 14 68809 125 32409 0 19127 14 13240 29 11744 42

rand21178 40190 17 X X 93897 0 54557 2 33429 4 26910 7

rand26304 50032 19 149570 0 85207 0 59907 0 47039 0

Table 3. Computation time (in seconds) of several decomposition algorithms for Class
(3) instances

Graphs |E(G)| bw EC GT Cycle L P S P S4 S8
G time NT time NT time NT time NT time NT time NT

PI855 1434 6 565 61 22.7 0 14.3 0 11.8 0 7.75 0 6.41 0

PI1277 2128 9 1563 101 107 1 47.5 1 25.9 0 17.5 0 14.6 0

PI1467 2511 6 3135 74 304 1 183 0 120 0 72 0 56.7 0

PI2009 3369 7 8127 90 253 0 142 0 115 0 64.8 0 55.7 0

PI2518 4266 8 17807 105 663 0 369 0 206 0 135 0 112 0

PI2968 5031 6 26230 162 2244 9 1235 6 773 3 488 7 423 11

PI3586 6080 8 49108 176 2340 1 1182 0 699 0 443 0 334 0

PI4112 6922 7 70220 132 10808 1 10817 0 5663 0 2973 0 2150 0

PI5940 10016 7 X X 19770 0 18807 0 9517 0 5205 0 3782 0

PI8950 15097 10 X X 33862 13 19216 1 11171 0 6871 0 4993 0

PI11974 20071 9 X X X X X X 111747 0 61641 0 44479 0

divide-and-conquer algorithms for Class (2) instances is small, the 2i-component
(i > 1) algorithms are more efficient than the 2-component ones. Especially, the
8-component algorithm is faster than the edge-contraction, the cycle, and the
2-component size-priority algorithms by factors of about 100 ∼ 200, 5 ∼ 8, and
2, respectively.

It takes more time to find the branch-decomposition of a Class (3) instance
than a Class (1) or Class (2) instance with a similar size by the divide-and-
conquer algorithms, because Class (3) instances have a smaller branchwidth. As
shown in the table, the branchwidth of the instances is small constants and does
not increase in the size of the instances. In each valid partition of the divide-
and-conquer algorithms, we get a small subgraph of a constant size and a large
subgraph for most instances. This limits the speed-up by the 2-component divide-
and-conquer algorithms to a constant factor. Similar to the results for Class (2)



Computing Branch Decomposition of Large Planar Graphs 99

instances, the number of negative tests in the divide-and-conquer algorithms is
small and the 2i-component algorithms are faster than the 2-component ones.
The 8-component algorithm is faster than the edge-contraction, the cycle, and
the 2-component size-priority algorithms by factors of about 30 ∼ 150, 5 ∼ 8,
and 2, respectively.

5 Concluding Remarks

Our divide-and-conquer algorithms can compute the optimal branch decompo-
sitions for Classes (1) and (2) instances of about 50,000 edges, and Class (3)
instances of abut 20,000 edges in a practical time. This provides useful tools for
applying the branch decomposition based algorithms to practical problems. It is
still time consuming to compute optimal branch decompositions for very large
planar graphs, especially for the graphs with small branchwidth by the current
divide-and-conquer algorithms. On the other hand, the planar graphs with small
branchwidth are more interesting for the branch-decomposition based algorithms
because those algorithms usually run exponentially in the branchwidth of the
graphs. An interesting future work is to design more efficient algorithms for very
large planar graphs of small branchwidth. Using a better approach to make a
valid partition balanced is one possible direction to get such algorithms.

All divide-and-conquer algorithms use the edge-contraction method to guar-
antee the branch decomposition can be found. However, the edge-contraction
method has never been called in our computational study. It is interesting to
prove that a valid partition can always be found in those algorithms efficiently.

Acknowledgment

The authors thank Dr. I.V. Hicks for providing the test instances of Class (1).
The work was partially supported by the NSERC Research Grant of Canada.

References

1. Public Implementation of a Graph Algorithm Library and Editor (2008),
http://pigale.sourceforge.net/

2. The LEDA User Manual, Algorithmic Solutions, Version 4.2.1 (2008),
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html

3. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embedding in
a k-tree. SIAM J. on Discrete Mathematics 8, 277–284 (1987)

4. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
Journal of Algorithms 12, 308–340 (1991)

5. Bian, Z., Gu, Q., Marzban, M., Tamaki, H., Yoshitake, Y.: Empirical study on
branchwidth and branch decomposition of planar graphs. In: Proc. of the 9th SIAM
Workshop on Algorithm Engineering and Experiments (ALENEX 2008), pp. 152–
165 (2008)

6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–21
(1993)

http://pigale.sourceforge.net/
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html


100 Z. Bian and Q.-P. Gu

7. Bodlaender, H.L.: A linear time algorithm for finding tree-decomposition of small
treewidth. SIAM J. on Computing 25, 1305–1317 (1996)

8. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations.
In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg
(2006)

9. Bodlaender, H.L., Thilikos, D.: Constructive linear time algorithm for branchwidth.
In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS,
vol. 1256, pp. 627–637. Springer, Heidelberg (1997)

10. Dorn, F., Penninkx, E., Bodlaender, H., Fomin, F.V.: Efficient exact algorithms
for planar graphs: Exploiting sphere cut branch decompositions. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg
(2005)

11. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and
exponential speed-up. SIAM Journal on Computing 36(2), 281–309 (2006)

12. Gu, Q.P., Tamaki, H.: Optimal branch decomposition of planar graphs in O(n3)
time. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 373–384. Springer, Heidelberg (2005)

13. Hicks, I.V.: Branch decompositions and their applications. PhD Thesis, Rice Uni-
versity (2000)

14. Hicks, I.V.: Planar branch decompositions II: The cycle method. INFORMS Jour-
nal on Computing 17(4), 413–421 (2005)

15. Hicks, I.V., Koster, A.M.C.A., Kolotoğlu, E.: Branch and tree decomposition tech-
niques for discrete optimization. In: TutORials in Operation Research: INFORMS–
New Orleans 2005, pp. 1–29 (2005)

16. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, New York (1999)

17. Reinelt, G.: TSPLIB-A traveling salesman library. ORSA J. on Computing 3, 376–
384 (1991)

18. Robertson, N., Seymour, P.D.: Graph minors I. Excluding a forest. Journal of
Combinatorial Theory, Series B 35, 39–61 (1983)

19. Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree-width.
Journal of Algorithms 7, 309–322 (1986)

20. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree decomposi-
tion. J. of Combinatorial Theory, Series B 52, 153–190 (1991)

21. Schaeffer, G.: Random sampling of large planar maps and convex polyhedra. In:
Proc. of the 31st Annual ACM Symposium on the Theory of Computing (STOC
1999), pp. 760–769 (1999)

22. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

23. West, D.B.: Introduction to Graph Theory. Prentice Hall Inc., Upper Saddle River,
NJ (1996)



Experimental Evaluation of an Exact Algorithm

for the Orthogonal Art Gallery Problem

Marcelo C. Couto, Cid C. de Souza�, and Pedro J. de Rezende��

Instituto de Computação
Universidade Estadual de Campinas — Campinas, Brazil

couto.marcelo@gmail.com, {cid,rezende}@ic.unicamp.br

Abstract. We consider the Orthogonal Art Gallery problem (oagp)
whose goal is to minimize the number of vertex guards required to watch
an art gallery whose boundary is an n-vertex orthogonal polygon P .
Here, we explore an exact algorithm for oagp, which we proposed in [1],
that iteratively computes optimal solutions to Set Cover problems (scps)
corresponding to discretizations of P . While it is known [1] that this pro-
cedure converges to an exact solution of the original continuous problem,
the number of iterations executed is highly dependent on the way we dis-
cretize P . Although the best theoretical bound for convergence is Θ(n3)
iterations, we show that, in practice, it is achieved after only a few of
them, even for random polygons of hundreds of vertices. As each itera-
tion involves the solution of an scp, the strategy for discretizing P is of
paramount importance. In this paper, we carry out an extensive empirical
investigation with five alternative discretization strategies to implement
the algorithm. A broad range of polygon classes is tested. As a result, we
are able to significantly improve the performance of the algorithm, while
maintaining low execution times, to the point that we achieve a fivefold
increase in polygon size, compared to the literature.

1 Introduction

The classical Art Gallery Problem originally posed by Victor Klee in 1973 con-
sists in determining the minimum number of guards sufficient to cover the interior
of an n-wall art gallery [2]. Chvátal showed, in what became known as Chvátal’s
Art Gallery Theorem, that �n/3� guards are occasionally necessary and always
sufficient to cover a simple polygon with n vertices [3].

Many variants of the art gallery problem have been studied in the literature.
In this paper, we study the variation of the classical art gallery problem that
deals specifically with orthogonal polygons (edges parallel to the x or y axis)
where guards can only be placed on vertices that define the outer boundary
of the gallery. This is called the Orthogonal Art Gallery Problem (oagp) and
� Partially supported by CNPq – Conselho Nacional de Desenvolvimento Cient́ıfico e

Tecnológico – Grants # 307773/2004-3, 472504/2007-0 and FAPESP – Fundação de
Amparo à Pesquisa do Estado de São Paulo – Grant # 107/97.

�� Partially supported by CNPq – Grant # 201205/2005-0, 472504/2007-0.

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 101–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



102 M.C. Couto, C.C. de Souza, and P.J. de Rezende

is an important subclass, due to most real life buildings and galleries being
orthogonally shaped [4].

The earliest major result concerning this problem, due to Kahn et al. [5],
states that �n

4 � guards are occasionally necessary and always sufficient to cover
an orthogonal polygon with n vertices. Later, Schuchardt and Hecker proved that
minimizing the number of guards in this variation is also NP-hard [6], settling a
question that remained open for almost a decade [7].

Several placement algorithms have been proposed in the past, such as Edels-
brunner et al. [8] and Sack and Toussaint [7], which deal with the problem of
efficiently placing exactly �n/4� guards covering a given orthogonal gallery.

On the other hand, in a recently revised manuscript, based on [9], Ghosh
presents an O(n4) time approximation algorithm for simple polygons yielding
solutions within a log n factor of the optimal. Further approximation results
include Eidenbenz [10] who designed algorithms for several variations of terrain
guarding problems and Amit et al. [11] who analyze heuristics with experimental
evidence of good performance in covered area and in the number of guards.

Another approach tackled by Erdem and Sclaroff [12] and Tomás et al. in [13]
consists of modeling the problem as a discrete combinatorial problem and then
solving the corresponding optimization problem. The former discretize the inte-
rior of the polygon with a fixed grid, yielding an approximation algorithm and
the latter gives empirical analysis of an exact method of successive approxima-
tions based on dominance of visibility regions.

Finally, in [1], we presented an exact algorithm to optimally solve the oagp.
In this algorithm, we iteratively discretize and model the problem as a classical
Set Cover problem (scp). Besides demonstrating the feasibility of this approach,
we showed that, in practice, the number of iterations required to solve instances
of up to 200 vertices was very small and that the resulting algorithm turned out
to be quite efficient.

Our contribution. Though the number of iterations executed by the exact
algorithm we proposed in [1] was shown to be polynomially bounded, its practical
performance is much better depending on how the polygon is discretized. This
becomes clearer when we notice that at each iteration an instance of scp, a
NP-hard problem, has to be solved at optimality, in our case, by an Integer
Programming (IP) solver.

In this paper, we conduct a thorough experimental investigation concern-
ing the trade-off between the number and nature of discretizing points and the
number of iterations, analyzing the practical viability of each approach. Our test
data, available in [14], includes multiple instances for each size of the vertex set,
for various classes of orthogonal polygons with up to a thousand vertices.

The new experimental results significantly surpassed those we reported in [1].
This is due to the exploration of alternative discretization strategies, which allow
us to address difficult instances as well as to handle a fivefold increase in the
polygon size compared to the literature, while attaining low execution times.

Organization of the text. In the next section, we explain the basic ideas that
support the algorithm. Section 3 is devoted to the description of the algorithm



Exact Algorithm for the Orthogonal Art Gallery Problem 103

and the alternative strategies to discretize the polygon. Next, in Section 4 we
give an account of the set up of the testing environment and present the different
classes of instances used. Besides, following the recommendations of Johnson [15],
McGeoch and Moret [16], Sanders [17] and Moret [18], we show an extensive ex-
perimental analysis of the algorithm implemented with multiple discretization
strategies, including the evaluation of multiple measurements. Concluding re-
marks are drawn in the last section.

2 Basics

In an instance of the oagp we are given an orthogonal simple polygon P that
bounds an art gallery and we are asked to determine the minimum number and
an optimal placement of vertex guards in order to keep the whole gallery under
surveillance. Vertex guards are assumed to have a range of vision of 360 ◦.

The approach used by the algorithm described in Section 3 transforms the
continuous oagp into a discrete problem which, in turn, can be easily modeled
as an instance of the scp. In fact, for the last two decades, this has been the
only known technique for transforming art gallery problems leading to efficient
approximation algorithms. Below, we describe in detail the approach used by
the algorithm, starting with some basic definitions.

An n-wall orthogonal art gallery can be viewed as a planar region whose
boundary consists of an orthogonal simple polygon (without holes) P , i.e., one
whose n edges are parallel to the x or y axis. The set or vertices of P are denoted
by V and a vertex v ∈ V is called a reflex vertex if the internal angle at v is
greater then 180 ◦. Whenever no confusion arises, a point in P will mean a point
either in the interior or on the boundary of P .

Any point y is said to be visible from any other point x if and only if the
closed segment joining x and y does not intersect the exterior of P . The set
V (v) of all points visible from a vertex v ∈ V is called the visibility region of v.
In order to determine V (v), we employ the linear time algorithm proposed by
Lee [19] and extended by Joe and Simpson [20,21].

A set of points S is a guard set for P if for every point p ∈ P there exists
a point s ∈ S such that p is visible from s. Hence, a vertex guard set G is any
subset of vertices such that

⋃
g∈G V (g) = P . In other words, a vertex guard

set for P gives the positions of stationary guards who can oversee an entire art
gallery of boundary P . Thus, the oagp amounts to finding the smallest subset
G ⊂ V that is a vertex guard set for P .

From the above discussion one can see that the problem of finding the smallest
vertex guard set for P can be seen as a continuous minimum set cover problem,
where every visibility region V (v), v ∈ V is a set and points p ∈ P are elements
of the set.

Notice that the term continuous is used here to denote the fact that there is
an infinite number of elements to be covered in the scp instance, as the points
of P in the above definition comprise an infinite set. To cope with this, one
can discretize the problem, generating a representative finite number of points
in P so that the formulation becomes manageable. We now describe how the



104 M.C. Couto, C.C. de Souza, and P.J. de Rezende

solutions to successively refined discrete instances are guaranteed to converge to
an optimal solution to the original continuous problem. To this end, consider an
arbitrary discretization of P into a finite set of points D(P ). An IP formulation
of the corresponding scp instance is shown below.

z = min
∑

j∈V

xj

s.t.
∑

j∈V

aijxj ≥ 1, for all pi ∈ D(P ) (1)

xj ∈ {0, 1}, for all j ∈ V

where the binary variable xj is set to 1 if and only if vertex j from P is chosen
to be in the guard set. Moreover, given a point pi in D(P ) and a vertex j of P ,
aij is a binary value which is 1 if and only if pi ∈ V (j).

Given a feasible solution x for the IP above, let Z(x) = {j ∈ V | xj = 1}.
Constraint (1) states that each point pi ∈ D(P ) is visible from at least one
selected guard position in the solution and the objective function minimizes the
cardinality z of Z(x). Clearly, as the set D(P ) is finite, it may happen that
Z(x) does not form a vertex guard set for P . In this case, we must add a new
point inside each uncovered region and include these points in D(P ). A new scp
instance is then created and the IP is solved again.

We are now able to describe the algorithm proposed in [1]. In the preprocess-
ing phase, three procedures are executed. The first one computes the visibility
polygons for the points in V . The second one computes the initial discretiza-
tion D(P ) and the third one builds the corresponding IP model. In the solution
phase, the algorithm iterates as described above, solving scp instances for the
current discretization, until no regions remain uncovered.

We had shown in [1] that an upper bound on the number of iterations is
O(n4). This result was derived from the fact that the edges of the visibility
regions induce a subdivision of P which is comprised of O(n4) faces or Atomic
Visibility Polygons (AVPs). One point inside an AVP is enough to guarantee
that this entire AVP will be covered by the solution to the discretized problem.
Whence follows the upper bound on the number of iterations. However, it can
be derived from a result by Bose et al. [22] that Θ(n3) is a tight bound on the
number of AVPs, improving the aforementioned worst case convergence result.

Moreover, the actual number of iterations that is required depends on how
many uncovered regions can be successively generated. As the cost of each it-
eration is related to the number of constraints in (1), an interesting trade-off
naturally sprouts and leads one to attempt multiple choices of discretization
schemes. On the other hand, any method of cleverly choosing the initial points
of the discretization will have a corresponding cost in preprocessing time, open-
ing another intriguing time exchange consideration. These questions are precisely
what we address next.

In Section 3 we consider several possible discretization schemes which lead to
the various performance analysis discussed in Section 4.



Exact Algorithm for the Orthogonal Art Gallery Problem 105

3 Discretization Strategies

The key point in the IP approach is to set up instances of the set cover problem
that can rapidly be solved while minimizing the number of iterations required
to attain an optimal solution to the original art gallery problem, within the
least amount of time. However, one must take into account that sophisticated
geometric properties used to build more efficient discretizations will generate a
corresponding cost in preprocessing, possibly outweighing the benefits. Below,
we discuss alternatives for the discretization of P .

Regular Grid. The first discretization strategy considered is to generate a
dense grid inside the polygon in the assumption that few iterations might be
required. This was the main venue for the experimentations described in [1].
Such grid is built with a step of size equal to the smallest gap in the x- and
y-coordinates of the vertices of P . We also include all the vertices in this initial
discretization.

As it turns out, for some polygons the number of grid points grows quadrat-
ically with the number of vertices, inflating the number of constraints in the
formulation of the scp which increases the time needed to solve each instance.

A summary of the outcome of the use of regular grids for two classes of
polygons can be seen in Figure 3 and Table 1.

Induced Grid. Given the perception that reflex vertices are responsible for part
of the difficulty of the problem, a natural discretization strategy to be considered
is the grid induced by the edge extensions that intersect in the polygon. In
this case, we generate fewer constraints than in the previous strategy while
attempting to capture more of the intrinsic visibility information of the polygon.
One might expect that this could lead to faster to solve instances of set cover
while keeping the number of iterations low.

Just Vertices. In one extreme, given that all vertices of the polygon will have
to be covered, we consider the rather sparse case where the starting discretization
contains just the vertices of the polygon. Initially, this leads to quicker solutions
to the set cover problem than the two previous approaches and has the benefit
that each additional constraint comes really from “hard to see” regions. Since in
this way we avoid any spurious grid points, one might envision that the poten-
tially higher number of iterations could still be compensated by the smaller size
of the scp instances.

Complete Atomic Visibility Polygons. Recall that an AVP of a polygon P
is any (convex) face of the subdivision of P induced by the visibility polygons
of all its vertices. It then follows that if a guard set G covers the centroid of an
AVP, then it must cover the entire AVP. Therefore, if G covers the centroids of
every AVP of P , then G must be a guard set for P .

This suggests that we could solve the problem in a single iteration of the
algorithm by building an instance of scp from all these centroids. However, for



106 M.C. Couto, C.C. de Souza, and P.J. de Rezende

sizeable instances, this approach would lead to an impractically large instance
of up to O(|V |3) constraints, where V is the set of vertices of P (see [22]).

Nonetheless, as we will see, not all AVPs need to be represented in the set of
constraints in order to guarantee a single iteration. Therefore, we do not need
to consider this more costly discretization strategy.

Reduced Atomic Visibility Polygons. Following the previous discussion, we
now show that we can significantly reduce the number of constraints required to
guarantee that the algorithm will find the minimum number of guards necessary
to cover P by solving a single instance of the set cover problem.

Firstly, given a vertex v ∈ V , an edge of the visibility polygon V (v) is called
a visibility edge of v. Furthermore, if it is not an edge of P , then it is called a
proper visibility edge of v. It follows that an AVP is a face in the arrangement
of visibility edges, interior to P . Hence, the edges of an AVP are either portions
of edges of P or portions of proper visibility edges of vertices of P . An AVP V
is called a shadow AVP if it is not visible from any of the vertices whose proper
visibility edges spawn V .

Let G ⊂ V be a partial guard set for P and let U be a maximal connected
region not covered by G. Note that U can be partitioned into a collection of
AVPs. To see that at least one of these must be a shadow AVP, notice that if
one side of a proper visibility edge of, say, vertex vi that intersects U , is visible
from vi then the opposite side must not be. Hence, by successive partitioning U ,
at least one shadow AVP is bound to remain.

The Reduced AVP discretization strategy consists of taking all vertices of P
plus the centroids of every shadow AVP. Since any guard set that covers all the
points of this discretization cannot leave an uncovered region, it follows that no
iterations will be required.

It remains to be experimentally analyzed which of these discretizing strategies
will bring about the most benefit, timewise. This is done in the next section.

4 Computational Experiments

We now present an experimental evaluation of the several discretization strate-
gies discussed in the previous section. We coded all variants of the algorithm
described in earlier sections along with a visibility algorithm from [20]. The
implementation was done in C++, compiled with GNU g++ 4.1, on top of CGAL
3.2.1, and used the IP solver Xpress v17.01.02. As for hardware, we used
a desktop PC featuring a Pentium IV at 3.4 GHz and 1 GB of RAM running
GNU/Linux 2.6.17.

4.1 Instances

We conducted the tests on a large number of instances downloadable from [14]
and grouped into four different classes (see Figure 1). The first two of these
classes are composed of n-vertex orthogonal polygons placed on an n/2 × n/2
unit square grid and devoid of collinear edges, as suggested in [23] and the last
two are based on a modified version of the von Koch curve (see [24]).



Exact Algorithm for the Orthogonal Art Gallery Problem 107

Fig. 1. Sample polygons with 100 vertices: FAT, Random, Complete von Koch and
Random von Koch

(1) FAT: This class was introduced in [13] as an extreme scenario for the IP
approach and also used in [1], where instances with up to 200 vertices were solved
to optimality.
(2) Random: These are n-vertex randomly generated orthogonal polygons cre-
ated using the algorithm proposed in [23].
(3) Complete von Koch (CvK): These polygons were generated based on a
modified version of the von Koch curve. The fractal has a Hausdorff dimension
of 1.34 and is generated, starting with a square, by recursively replacing each
edge as shown in Figure 2, where ar = st = ub and sr = tu = 3

4ar.

Fig. 2. Levels of modified von Koch polygons

(4) Random von Koch (RvK): This class consists of randomized von Koch
instances of up to level 4. Starting from a square, each of these instances is
generated iteratively until the desired number of vertices is reached. In each
iteration, we randomly choose an edge of the current polygon, with level smaller
than 4, and decide in a random fashion whether we expand it or not.

The FAT and Random instances were generated for the number of vertices n
in the ranges: [20, 200] with step 20, (200, 500] with step 50 and (500, 1000] with
step 100. Similar sizes were chosen for the RvK class. The CvK class contains
by construction only 3 instances with n ∈ {20, 100, 500}.

For our conclusions to be endowed with statistical significance, we had to
decide on the sample size (number of instances generated), for each value of n,
in the classes Random and RvK. To this end, we ran our algorithm on random
instances, while varying the sample size s. We concluded that the variance of the
results remains practically unchanged after s ≥ 30 and, therefore, we decided to
generate 30 instances for each value of n. It is worth noting that, up to scaling,
only one instance is defined for a given n in the FAT class, hence no decision on
sample size is needed in this case.



108 M.C. Couto, C.C. de Souza, and P.J. de Rezende

Thus, in total, our data set is composed of 1833 oagp instances, having be-
tween 20 and 1000 vertices, i.e., our largest instances are five times the largest
ones whose optimal solutions are reported in the literature.

4.2 Results

We now discuss the experimental evaluation of the different strategies described
in Section 3. All values reported here are average results for 30 instances of each
size, or 30 runs of the same instance, for FAT and CvK classes.

The FAT instances were introduced in [13] as an extremal scenario for the
IP approach because of the larger number of constraints resulting from regular
discretizations of P . Figure 3 displays the amount of time spent by the exact
algorithm on the FAT class with each discretization strategy. It can be seen that
there is a huge difference between the strategies, though all the discretizations
lead to a solution in only one iteration. Notice that, in this case, the Regular
and Induced Grids coincide, leading to the same running times. On the other
hand, the Reduced AVP and Just Vertices discretizations are both composed of
only the vertices of P , since FAT polygons have no shadow AVPs. Of course,
the Reduced AVP strategy spent more time on the preprocessing phase, which
causes the difference seen in the chart. However, the two strategies can deal with
FAT polygons with up to 1000 vertices in reasonable time, going far beyond the
results reported earlier for this class which are limited to 200-vertex polygons.

Number of Vertices

T
ot

al
 T

im
e 

(s
)

0 100 200 300 400 500 600 700 800 900 1000

0
20

0
40

0
60

0
80

0 Regular Grid/
Induced Grid
Reduced AVPs

Just Vertices

Fig. 3. Total time: FAT polygons

Table 1. Complete von Koch polygons

Final |D(P )| Total Time (s)
# vertices 20 100 500 20 100 500
Reg. Grid 45 500 6905 0.05 1.57 92.37
Ind. Grid 24 205 1665 0.03 1.41 70.94

Red. AVPs 28 324 5437 0.07 3.14 143.93
Just Vert. 20 107 564 0.04 0.97 29.35

The usage of discretization strategies based on dense grids becomes more
discouraging when we analyze the results in Table 1. This table displays the
execution time and the size of the discretization of the strategies proposed in
Section 3 for the CvK polygons. One can see that for these instances, the Induced
Grid strategy has a better performance than the Regular Grid strategy. The size
of the discretization produced by Regular Grid grows quadratically in the number
of vertices, and thus inflates the number of constraints in the IP formulation
increasing considerably the time necessary to optimally solve the scp instances.



Exact Algorithm for the Orthogonal Art Gallery Problem 109

Number of Vertices

F
in

al
 N

um
be

r 
of

 D
is

cr
et

iz
ed

 P
oi

nt
s

0 100 200 300 400 500 600 700 800 900 1000

0
50

00
10

00
0

15
00

0
20

00
0

Regular Grid
Induced Grid
Reduced AVPs
Just Vertices

Number of Vertices

F
in

al
 N

um
be

r 
of

 D
is

cr
et

iz
ed

 P
oi

nt
s

0 100 200 300 400 500 600 700 800 900 1000

0
50

00
10

00
0

15
00

0
20

00
0

Induced Grid
Reduced AVPs
Just Vertices

Fig. 4. Final discretization size: (a) Random polygons; (b) Random von Koch polygons

The Reduced AVP strategy has a poor behavior for CvK polygons since the
number of shadow AVPs increases fast in this case. The Just vertices strategy is
again the one that spends less time.

Figure 4 shows the amount of discretized points necessary for each strategy
to achieve the optimal solution of oagp for Random (in (a)) and RvK (in (b))
polygons. Especially from the Random case, one can see that the Regular Grid
strategy rapidly becomes impractical due to the huge size of the discretization
and, therefore, will no longer be analyzed for other classes of polygons. On the
other hand, one can see that the Reduced AVP strategy still follows the same
behavior of the CvK case for RvK instances, with the discretization size growing
fast as the number of vertices of P increases. Nevertheless, this approach is very
well-suited for random polygons. The curves corresponding to the Just Vertices
strategy suggest that the set of vertices of the polygon is a good guess for the
initial discretization since few new points are added to it to achieve the optimal
solution of an oagp instance for both classes of instances.

Figure 5 shows the number of iterations each strategy needs to achieve the
optimal solution for both classes of random polygons. The chart in (a) displays

Number of Vertices

N
um

be
r 

of
 It

er
at

io
ns

0 100 200 300 400 500 600 700 800 900 1000

0
2

4
6

8
10

12
14

Regular Grid
Induced Grid
Reduced AVPs
Just Vertices

Number of Vertices

N
um

be
r 

of
 It

er
at

io
ns

0 100 200 300 400 500 600 700 800 900 1000

0
2

4
6

8
10

12
14

Induced Grid
Reduced AVPs
Just Vertices

Fig. 5. Number of iterations: (a) Random polygons; (b) Random von Koch polygons



110 M.C. Couto, C.C. de Souza, and P.J. de Rezende

the expected behavior with the number of iterations increasing as the size of the
discretizations decrease. Now, relative to the size of the input polygon, the num-
ber of iterations remains negligible when compared to the theoretical bound of
Θ(n3). In chart (b) relative to RvK polygons, the number of iterations increases
a bit faster with the instance size but is still small. Somewhat surprisingly, in
this case Induced Grid iterates slightly more than the Just vertices strategy.

Number of Vertices

T
ot

al
 T

im
e 

(s
)

0 100 200 300 400 500 600 700 800 900 1000

0.
1

1
10

10
0

10
00

Regular Grid
Induced Grid
Reduced AVPs
Just Vertices

Number of Vertices

T
ot

al
 T

im
e 

(s
)

0 100 200 300 400 500 600 700 800 900 1000

0.
1

1
10

10
0

10
00

Induced Grid
Reduced AVPs
Just Vertices

Fig. 6. Total time: (a) Random polygons; (b) Random von Koch polygons

Figure 6 shows the total amount of time, including the preprocessing and
processing phases, to solve instances from the random classes. Notice that the
curves are plotted in log×linear format and both charts are in the same scale.
One can see that for Random polygons, all the strategies behave similarly except,
as expected and explained before, the Regular Grid. The tendency of Just vertices
strategy is very similar in both classes of polygons. This shows that, though we
are solving harder instances in the RvK case, the strategy is robust.

We now turn our attention to the time spent by the algorithm in each phase
for the discretization strategies. Recall that the preprocessing phase is composed
of three procedures. The first one is common to all strategies and computes the
visibility polygons. The second one computes the initial discretization and its
cost is highly affected by the choice of the strategy to be implemented. The worst
case corresponds to the Reduced AVP strategy since it requires the computation
of all AVPs and the determination of the shadow AVPs and of their centroids.
On the other extreme, we have the Just vertices strategy where no computation
is needed. Finally, in the third procedure of the preprocessing phase one has to
build the starting IP model and the time spent in doing so depends on the size
of the discretization, which again benefits the Just vertices strategy.

In Figure 7 one can see that the time spent in the preprocessing phase is
in accordance with the discussion above, the Reduced AVP strategy being the
most time consuming for RvK. What is somehow surprising is that, though we
are solving NP-hard problems in the solution phase, the majority of the time
consumption refers to the preprocessing phase, which is entirely polynomial.
The extraordinary developments in IP solvers together with the fact the scp



Exact Algorithm for the Orthogonal Art Gallery Problem 111

instances arising from oagp are among the easy ones can explain this apparently
counter intuitive behavior of the algorithm. Thus, for the Reduced AVP strategy
to become competitive, a cleverer and faster procedure has to be developed to
discard not only shadow AVPs but other ones. Comparing the size of the final
discretizations of the different strategies shown earlier there seems to be room
for such improvements.

Regular Grid Reduced AVPs Induced Grid Just Vertices

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Visibility Pols.

T
im

e 
(s

)

Strategies

Processing
Preprocessing

 Reduced AVPs Induced Grid Just Vertices

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Visibility Pols.

T
im

e 
(s

)

Strategies

Processing
Preprocessing

Fig. 7. Execution time for polygons of 1000 vertices: (a) Random polygons; (b) Ran-
dom von Koch polygons. The lower part of the preprocessing time corresponds to the
construction of the visibility polygons.

5 Conclusions and Remarks

In this paper, we conducted an experimental investigation of an exact algorithm
for the Orthogonal Art Gallery problem (oagp) proposed in [1] which relies on
the discretization of the interior of the input polygon P and on the modeling
of this simplified discrete problem as a Set Cover problem (scp). The resulting
scp instance is solved to optimality by an IP solver and, if uncovered regions
remain, additional constraints are included and the process is repeated. Clearly,
the performance of the algorithm depends on the number of such iterations.

This work focused on different strategies to implement the discretization of
P . Thorough experimentation was carried out to assess the trade-off between
the number of iterations and time spent by the many variants of the algorithm
that arise from the alternative discretization methods.

Our conclusion is that this exact algorithm is a viable choice to tackle instances
of the oagp, in light of the fact that the largest ones we solved were five times
larger than those reported earlier in the literature.

The apparent advantage of a discretization which ensures an exact solution
after a single iteration of the algorithm (like the Reduced AVP strategy) did not
prove to be effective in practice. This became even clearer when we compared
its results with those of the Just Vertices strategy which, represents the opposite
extreme situation, as, in principle, it starts with the smallest “natural” scp
instance. However, as one can see from Table 2 this strategy leads to a very fast



112 M.C. Couto, C.C. de Souza, and P.J. de Rezende

Table 2. Total Time (seconds): Just Vertices strategy

Polygons Classes

n Random FAT RvK CvK

100 0.65 0.58 0.73 0.97
500 15.21 18.47 22.73 29.35
1000 64.13 92.41 111.55 �

implementation that takes only few seconds of CPU time to solve oagp instances
with up to 1000 vertices.

The success of this exact algorithm clearly benefits from the extraordinary
developments in IP solvers in recent years, which lead to the solution of large
instances of scp in a very small amount of time. Therefore, we believe that the
Reduced AVP strategy can only become competitive with the Just Vertices strat-
egy when the preprocessing time required by the former is significantly reduced.
Though we used powerful data structures and packages to perform the neces-
sary geometrical operations, we could not significantly lessen the preprocessing
time which, for the largest instances tested here, correspond roughly to the time
required by the IP solver to resolve ten instances of scp.

A promising venue of further investigation lies in trying to identify inexpensive
geometric properties that might lead to a set of constraints that capture the
essence of the hardness of the problem, such as a significant reduction on the
number of AVPs.

References

1. Couto, M.C., de Souza, C.C., de Rezende, P.J.: An exact and efficient algorithm
for the orthogonal art gallery problem. In: Proc. of the XX Brazilian Symp. on
Comp. Graphics and Image Processing, pp. 87–94. IEEE Computer Society, Los
Alamitos (2007)

2. Honsberger, R.: Mathematical Gems II. Number 2 in The Dolciani Mathematical
Expositions. Mathematical Association of America (1976)

3. Chvátal, V.: A combinatorial theorem in plane geometry. Journal of Combinatorial
Theory Series B 18, 39–41 (1975)

4. Urrutia, J.: Art gallery and illumination problems. In: Sack, J.R., Urrutia, J. (eds.)
Handbook of Computational Geometry, pp. 973–1027. North-Holland, Amsterdam
(2000)

5. Kahn, J., Klawe, M.M., Kleitman, D.: Traditional galleries require fewer watchmen.
SIAM J. Algebraic Discrete Methods 4, 194–206 (1983)

6. Schuchardt, D., Hecker, H.D.: Two NP-hard art-gallery problems for ortho-
polygons. Mathematical Logic Quarterly 41, 261–267 (1995)

7. Sack, J.R., Toussaint, G.T.: Guard placement in rectilinear polygons. In: Toussaint,
G.T. (ed.) Computational Morphology, pp. 153–175. North-Holland, Amsterdam
(1988)

8. Edelsbrunner, H., O’Rourke, J., Welzl, E.: Stationing guards in rectilinear art gal-
leries. Comput. Vision Graph. Image Process. 27, 167–176 (1984)



Exact Algorithm for the Orthogonal Art Gallery Problem 113

9. Ghosh, S.K.: Approximation algorithms for art gallery problems. In: Proc. Cana-
dian Inform. Process. Soc. Congress (1987)

10. Eidenbenz, S.: Approximation algorithms for terrain guarding. Inf. Process.
Lett. 82(2), 99–105 (2002)

11. Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility coverage of
polygons. In: Proc. Workshop on Algorithm Eng. and Experiments, pp. 1–15 (2007)

12. Erdem, U.M., Sclaroff, S.: Automated camera layout to satisfy task-specific and
floor plan-specific coverage requirements. Comput. Vis. Image Underst. 103(3),
156–169 (2006)

13. Tomás, A.P., Bajuelos, A.L., Marques, F.: On visibility problems in the plane -
solving minimum vertex guard problems by successive approximations. In: Proc.
of the 9th Int. Symp. on Artificial Intelligence and Mathematics (2006)

14. Couto, M.C., de Souza, C.C., de Rezende, P.J.: OAGPLIB - Orthogonal art gallery
problem library, www.ic.unicamp.br/∼cid/Problem-instances/Art-Gallery/

15. Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms.
In: M.H.G., et al. (eds.) Data Structures, Near Neighbor Searches, and Methodol-
ogy: Fifth and Sixth DIMACS Implem. Challenges, AMS, Providence, pp. 215–250
(2002)

16. McGeoch, C.C., Moret, B.M.E.: How to present a paper on experimental work with
algorithms. SIGACT News 30 (1999)

17. Sanders, P.: Presenting data from experiments in algorithmics, pp. 181–196.
Springer, New York (2002)

18. Moret, B.: Towards a discipline of experimental algorithmics. In: Proc. 5th DI-
MACS Challenge

19. Lee, D.T.: Visibility of a simple polygon. Comput. Vision, Graphics, and Image
Process 22, 207–221 (1983)

20. Joe, B., Simpson, R.B.: Visibility of a simple polygon from a point. Report CS-85-
38, Dept. Math. Comput. Sci., Drexel Univ., Philadelphia, PA (1985)

21. Joe, B., Simpson, R.B.: Correction to Lee’s visibility polygon algorithm. BIT 27,
458–473 (1987)

22. Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons.
Computational Geometry 23(3), 313–335 (2002)

23. Tomás, A.P., Bajuelos, A.L.: Generating random orthogonal polygons. In: Conejo,
R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS
(LNAI), vol. 3040, pp. 364–373. Springer, Heidelberg (2004)

24. Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications, pp.
120–121. John Wiley & Sons, Chichester (1990)

www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery/


Computing Multiple Watchman Routes�

Eli Packer

State University of New York at Stony Brook

Abstract. We present heuristics for computing multiple watchman
routes. Given a polygon (with or without holes) and a parameter k,
we compute a set of k routes inside the polygon such that any point
inside the polygon is visible from at least one point along one route. We
measure the quality of our solutions by either the length of the longest
route or the sum of the route lengths, where the goal is to minimize
each. We start by computing a set of static guards [2], construct k routes
that visit all the static guards and try to shorten the routes while main-
taining full coverage of the polygon. We implemented the algorithm and
present extensive results to evaluate our methods, including a compari-
son with lower bound routes based on the idea of visiting large number
of visibility-independent “witness points”. Our experiments showed that
for a large suite of input data our heuristics give efficient routes that are
comparable with the optimal solutions.

Keywords: Watchman routes, Art gallery, Polygons, Arrangements.

1 Introduction

The Art Gallery problem is a famous computational geometry problem that has
been extensively studied in the previous three decades. Presented in 1973 by
Klee, the idea is to place a minimum number of point guards that collectively
cover the interior of a given simple polygon1. Since then, numerous variants
have been proposed and studied. Some of the most important results were the
hardness proofs of the classic variant (point guards inside a simple polygon) [14]
and others. These motivated the studying of approximations and heuristics.

As opposed to the classic variant which deals with static guards, the watch-
man route variant is concerned with guards that can translate along routes. The
goal is similar: make any point inside the polygon visible by at least one point
along one of the routes. This problem is motivated by many applications that
involve security, surveillance, imaging, simulations and more. In this problem, as
the number of guards is usually predetermined, the measure of the result is often
the route lengths (the Euclidian metric is usually used here, but other metrics,

� This research has been supported by grants from the National Science Foundation
(CCF-0528209, CCF-0729019).

1 In the terminology of the art gallery study, point guards can see in any direction
with no distance limit. A guard is said to cover a point inside the polygon if the line
segment connecting them does not intersect any edge of the polygon.

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 114–128, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Computing Multiple Watchman Routes 115

such as the number of links in the routes, have been used too). Interestingly,
the minimum watchman route (one guard) inside a simple polygon has an exact
polynomial time solution [20]. Unfortunately, extending the problem to support
holes inside the polygon or allowing more than one guard (when minimizing
the longest route) make the corresponding decision problems hard (the hard-
ness proofs use simple reductions from the TSP [8] and partition [15] problems
respectively).

We study the k-watchman routes, k ≥ 1, where multiple watchmen are allowed
to translate inside a polygon (possibly with holes). Two natural goals in this case
are to minimize the maximum length of any route and to minimize the sum of the
route lengths. We denote the corresponding problems by KWRPm and KWRPs

respectively (KWRP stands for k-watchman routes inside a polygon). We note
that these problems are well motivated: one motivation behind KWRPm is to
minimize the time it takes to cover the polygon while the motivation of KWRPs

could be to save the total energy or frames taken by the entire system. We show
later that it is even hard to give any meaningful proven approximation to both
measures (Theorem 1).

Our Contribution. We propose heuristics for computing watchman routes that
cover polygons (with or without holes), for both KWRPm and KWRPs. While
it is impossible to develop exact or even approximate polynomial time algorithms
for both problems unless P = NP , we conduct an extensive experimental anal-
ysis of their performance. We show that our heuristics work well in practice for
many kinds of polygons, and in some cases compare to lower bounds obtained
by the idea of independent witness point set. As far as we know, our work is
the first attempt to conduct a systematic experimentation with watchman route
heuristics.

As we mentioned above, the 1-watchman route problem has been optimally
solved with a polynomial time algorithm. However, to the best of our knowledge,
neither implementation nor experiments have ever been reported. Perhaps the
reason is that the algorithm is not easy to implement. Further, it is not clear
if this algorithm will suffer from robustness problems. Hence, our work is also
targeted for this specific and important variant, as when we set k = 1 we compute
the 1-watchman route.

Related Work. Good references for the various art gallery problems are [17,19,22].
Two detailed reports that provide valuable information about the watchman
route problem and present algorithms for restricted versions are [16,17]. The 1-
watchman route problem has been extensively studied. After a few publications
that were found to have flaws, Tan et al. [21] gave an O(n4) time algorithm where
the starting point is given and finally Tan [20] presented an O(n5) algorithm for
the general case, which followed [5]. Other interesting variants that have been
studied are the minimum-link watchman route [1,3] and Pursuit-Evasion [18]
and others [6,11,13].

The rest of this paper is organized as follows. In the next section we provide
background information. In Section 3, we present our algorithm and discuss its



116 E. Packer

implementation and performance. In Section 4 we present our experiments with
the software we have implemented. We conclude and propose ideas for future
research in Section 5.

2 Preliminaries

Given a polygon P (possibly with holes)2 and a point p ∈ P , we denote by V(p)
(P is omitted for simplicity) the set of points inside P that are visible from p.3

It is easy to observe that V(p) is a star-shaped polygon and it is termed the
visibility polygon of p. A set of points S ⊂ P is said to cover P if

⋃
p∈S V(p) = P .

The classic art gallery problem is to find a smallest such set.
Over the years numerous variations of this problem have been proposed and

studied. One of these variations allows guards to translate inside the polygon
along predefined routes. In this case, the guards are often termed watchmen
or mobile guards and their routes are termed watchman routes. Let w be a
watchman with route Rw inside a polygon P (P is omitted for simplicity). Let
V(w) =

⋃
p∈Rw

V(p) be defined similarly to the visibility polygons of the static
guards. The goal here is to cover P as well, namely to find a set of watchmen
S such that

⋃
w∈S V(w) = P . In this context, the size of S is usually given (we

denote it by k) and the measure (or quality) of the solution involves the length
of the routes. Two popular measures are the length of the longest route (corre-
sponds to KWRPm) and the sum of route lengths (corresponds to KWRPs).
More formally, the measure of KWRPm and KWRPs are maxw∈SL(w) and
Σw∈SL(w) where L(w) is the length of route Rw. Table 1 summarizes the com-
plexity of computing watchman routes for simple polygons. Table 2 summarizes
results for constrained polygons that were established in [16]4. In these tables
MinSum and MinMax refer to the problems of minimizing the sum and min-
imizing the maximum, respectively. Both tables are borrowed from [16], while
we updated the the complexity of the MinSum problem in Table 1 for two or
more guards. We note that when the polygon may have holes, both MinSum and
MinMax problems become NP-hard for any number of watchmen.

Next we show that the related decision problems of KWRPm and KWRPs

cannot have any k-approximation for any k < n (unless P = NP ).

Theorem 1. KWRPm and KWRPs can have no polynomial approximation
algorithms unless P = NP .

Proof. Suppose there is such a polynomial algorithm A (for either KWRPm or
KWRPs) with running time O(Γ ). We show how to solve the classic art gallery
2 From now on, by P we refer to any polygon.
3 Two points are visible to each other if the line segment that connects them does not

intersect any edge of the polygon.
4 In this table two kinds of polygons are defined as follows: (1) A polygon is an alp if

it is monotone and one of the chains in the partition is a line segment parallel to the
x-axis. (2) A polygon is a street if its boundary can be partitioned into two chains,
each of which are guard sets for the polygon.



Computing Multiple Watchman Routes 117

Table 1. Complexity of computing sets of watchman routes of various sizes inside a
simple polygon

Optimization criterion Number of watchman routes
1 2 ... arbitrary

MinSum P NP-hard NP-hard NP-hard
MinMax P unknown unknown NP-hard

Table 2. Complexity of computing sets of watchman routes of any size, for some classes
of polygons

Optimization criterion Polygon classes
Spiral Histogram Alp Street Simple

MinSum P P P NP-hard NP-hard
MinMax P P unknown NP-hard NP-hard

problem (denoted by AG) optimally in polynomial time using A, thus contra-
dicting the above assumption, unless P = NP . It can be easily verified that any
polygon P can be guarded by k static guards if and only if A returns routes of
zero length, given k as a parameter. Given a polygon P with n vertices, the art
gallery theorem states that �n

3 � guards are always sufficient to guard P . It follows
that the solution to AG can be found by searching the minimum k for which the
solution of A contains only routes of zero length. It would require O(log(n)Γ )
time. It follows that unless P = NP , such a polynomial approximation algorithm
cannot exist.

Given two points p1, p2 ∈ P , we say that p1 and p2 are independent if there is no
point g ∈ P such that both p1 ∈ V(g) and p2 ∈ V(g). Let S be a set of pairwise
independent points in P of size m. It follows that m static guards are necessary
(but may not be sufficient) to guard P . Hence, computing independent sets is
a convenient tool to find lower bounds for the art gallery problem and used in
[2] for that purpose. We use an analogous idea in our work to compute lower
bounds. Recall that k is the number of watchmen. By considering all partitions
of S into k groups, and then computing the routes that cover all of the points in
each group while optimizing the given problem (either KWRPm or KWRPs),
we find lower bounds. Although we did not design or implement any polynomial
heuristic to carry out this task in this work, we use this idea to find lower bounds,
and use them in our experimental evaluation.

3 Algorithm

The following is a high-level description of our heuristics.
We continue with a detailed description of the steps. We also describe the

data structures that we use and analyze the complexity of the heuristics.



118 E. Packer

Compute Watchman Routes
Input: A polygon P (possibly with holes), k (number of watchmen) and an
indication whether to perform KWRPm or KWRPs

Output: A set of k watchman routes inside P that cover its interior
Measure: The length of the longest route (for KWRPm) or the sum of lengths
of the routes (for KWRPs)
(a) Compute a static guard set S with heuristic A1 of [2]. (A1 is one of the three

proposed heuristics. It was found efficient in time and produced good results.)
(b) Construct the visibility graph U of S ∪ V , where V is the set of vertices of P .
(c) Using U , compute the pairwise shortest paths between any s1, s2 ∈ S inside P

(denoted by Z).
(d) Construct the minimum spanning tree of S inside P (denoted by T ) where

the distance between any pair of points is computed from Z.
(e) Split T into k subtrees, T1-Tk.
From step (f) and on, we work on each subtree independently.
(f) Construct a Hamiltonian route (let R denote an arbitrary one).
(g) Substitute vertices along R with others that shorten the length of R and

maintain full coverage.
(h) Remove redundant vertices of R by connecting their adjacent vertices (we

say that a vertex is redundant if when we connect its two adjacent vertices
with their shortest path, the polygon remains fully covered).

3.1 Computing a Static Guard Set (Step a)

We start by computing a static guard set S [2]. The idea is that routes cover
the polygon if they visit the static guards. The time to find the static guard set
using heuristic A1 is O(n3) where n denotes the size of the input [2].

3.2 Constructing the Visibility Graph (Step b)

We construct the visibility graph in O(n2) time, or in O(n log n + b) time where
b is the number of arcs of the visibility graph [12].

3.3 Computing the Pairwise Shortest Paths (Step c)

We use the Floyd-Warshall algorithm to compute all pairs of the shortest paths
in O(n3) time [10].

3.4 Constructing the Minimum Spanning Tree (Step d)

Using Prim’s algorithm, we compute the minimum spanning tree in O(n2)
time [10].

3.5 Splitting the Minimum Spanning Tree into k Subtrees (Step e)

We split T into k subtrees, T1-Tk. If the problem is KWRPs we do it by sim-
ply removing the longest k − 1 edges of T . The heuristic is more involved if
the problem is KWRPm. By a reduction from the partition problem [15], the
corresponding optimization problem is hard. We partition T by removing edges.
The goal is to minimize the weight of the heaviest subtree. We remove edges by
using ideas from parametric search (see below).



Computing Multiple Watchman Routes 119

Implementation Details. If the problem is KWRPs, we need to remove the
longest k−1 edges. Finding them takes O(n log n) time by sorting. If the problem
is KWRPm, we use parametric search for finding the subtrees. We perform a
binary search on the values 0 to the weight of the tree (denoted by W ; Note that
W = O(2n)) and stop when the interval on which we search becomes very small
(smaller than a predefined constant). Thus, we perform O(log W ) iterations. For
each iteration, we do the following. Suppose the current weight we test is W ′.
We visit the tree in a bottom-up fashion and remove edges once the tree below
them has weight larger than W ′. It is optimal for the current iteration because
if the edge that we remove is below, then its removal creates a smaller subtree
and is clearly wasteful. Each iteration traverses the tree in O(n) time. Together,
this step takes O(n log W ) = O(n2) time.

3.6 Constructing Hamiltonian Routes (Step f)

We use the ideas from the algorithm of Christofides in order to approximate the
optimal route in O(n2.5 log4 n) time [9].

3.7 Substituting Vertices (Step g)

We try to substitute some of the vertices along each route R with others that
shorten its length. The vertices of R can be partitioned into two groups: the first
(denoted by Rg) contains vertices that belong to the static guard set and the
second (denoted Ra) contains the rest, namely the vertices of P along the paths
that connect two vertices of Rg. The idea here is to replace vertices of Rg by
others in order to shorten the length of R. For any p1, p2 ∈ P , let α(p1, p2) be
the shortest path from p1 to p2 inside P . Let v ∈ Rg and let u, w ∈ Rg be the
two vertices before and after v along R (excluding the vertices of Ra; Note that
if |Rg| = 2 then u = w). Let z ∈ P be some point. The replacement of v by z
(denoted by R(v, z)) is defined as modifying R by removing α(u, v) and α(v, w)
from R and inserting α(u, z) and α(z, v) instead. Note that R remains closed
after performing this operation.

Let H be the set of reflex vertices of P . We extend the edges that are adjacent
to the vertices of H into the interior of P , until they hit the boundary of P
(denoted by @P ). See an example in Figure 1(g). We denote these extensions by
Q. Let G be the arrangement of (@P )∩Q. We call G the extension arrangement
of P . For each vertex v ∈ R, let f(v) be the face of G that contains it (if v is
a vertex of G, f(v) will be the set of adjacent faces). Based on the properties
of the cells in extension arrangements, any vertex w ∈ @f(v) (@f(v) is the
boundary of f(v)) has a good chance to maintain full coverage while replacing v
(by performing R(v, w)). In case we find vertices on @f(v) that both maintain
full coverage when they replace v and shorten R, we modify R by replacing v
with the one that minimizes the length of R. We then replace v by the new
vertex in Rg. We iterate this process and work on more cells of G, as long as any
improvement is achieved.



120 E. Packer

Implementation Details. We maintain an arrangement B for a union of visibility
polygons and P . Note that in such an arrangement we can easily mark faces as
covered or not by the visibility polygons. We initialize B with the set of visibility
polygons of the vertices of Rg. Then for each v ∈ Rg we find the face F (v) that
contains it in the extension arrangement G (using point location). We then test
whether we can replace v by any vertex of v′ ∈ F (v) in the following way. We
remove V(v) from B and insert V(v′), while maintaining the information whether
a face is covered by the visibility polygons of v′ or any other vertex of Rg −{v}.
We then check whether P is fully covered. If so and the corresponding route is
shorter, we perform a replacement and update B accordingly. We iterate this
process until no improvement is detected. Since there are O(n) vertices on the
routes, together they are tested for replacement with O(n2) vertices of B. Since
each test takes O(n2) time, the total time is O(n4).

3.8 Removing Vertices (Step h)

Let u, v, w ∈ Rg be defined as in step g above. The removal of v is defined as
removing α(u, v) and α(v, w) from R, and inserting α(u, w) instead. The idea
of this step is to perform removal of vertices if this operation maintains full
coverage (note that it necessarily shortens R). Let T be the vertices obtained
when intersecting α(u, w) and G. We check whether

⋃
p∈T V(p) contains V(v).

If so, we perform the removal of v and maintain full coverage. We iterate this
process until no vertices can be removed.

Implementation Details. The routes contain O(n) vertices. Each vertex can be
removed at most once and each removal check requires a test with O(n) visibil-
ity polygons for coverage. To carry out this test, we use an arrangement data
structure similarly to step g, and use similar ideas. The induced arrangement
for each vertex is thus of complexity O(n2). Hence, the total time is O(n3).

Figure 1 illustrates the execution of all the steps of heuristic KWRPm.5

3.9 Total Complexity

Combining all steps, we get that the time of our heuristic is O(n4). The space
requirement is dominated by the resources required to maintain the various
arrangements, which results in an O(n2) space.

We note that by analyzing the performance of our experiments, we observed
that the asymptotic time was always much smaller (bounded by O(n3) or less).
5 Static guards from step (a) are marked as red discs. Note that some of the routes

are not simple close chains. Some routes or parts of them sometime degenerate to
polygonal chain or contain chains that connect two parts of the routes. The idea is
that the watchman walks on them in both directions. It follows that some of the
vertices along the routes may be of degree d > 2. In order to remove any possible
ambiguity, we use arrows to clarify. In some cases some of the watchman routes
degenerate to points (the watchmen essentially become static). We represent them
with a disc around the points. Note that the above elements appear in most of the
figures of this report.



Computing Multiple Watchman Routes 121

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Illustration of all the steps of KWRPm. For clarity, the data in subfigures (b)
and (c) are partially presented. The blue segments in Figure (g) are some of the ex-
tension edges that affected the output (see Section 3). In Figure (h), the green and the
brown routes represent the situation before and after performing step (h), respectively
(so the final route consists of the top segment).



122 E. Packer

4 Experiments

We have implemented our heuristics on a PC with Microsoft Visual C++ .NET
(version 7.1). We used the libraries openGL and CGAL [7]. The tests were per-
formed on a Microsoft Windows XP workstation on an Intel Pentium 4 3.2 GHz
CPU with 2GB of RAM. We have performed extensive experiments with our
heuristics. In this section we report our results and conclusions from our exper-
iments. Our tests include user-generated polygons and polygons generated by a
random polygon generator [4].

Figure 2 shows the routes obtained by our software for different kinds of
polygons with different values of k. Figure 3 compares the results of different
number of watchmen on two polygons.

Since the k-watchman route problem is hard even to approximate, it is fre-
quently difficult to evaluate the results by comparing it to optimal solutions
or even solutions that approximate the optimum. Instead, we use the idea of
independent witnesses (see Section 2). However, both finding the maximum in-
dependent set and finding the shortest routes that visit a set of points (for k > 1)
are hard (the second by a simple reduction from the partition problem). Given a
set of independent points, we need to find an optimal solution for routes that see
all the independent points (by either minimizing the longest route or minimiz-
ing the sum or route length). We made this task easier by constructing polygons
manually such that the partition of independent points to watchmen was evi-
dent. Of course, this restricts the shape of the available polygons. We note that
in many cases the lower bound measure was smaller than the optimum. Figure 4
depicts two instances, each with lower and upper bounds.

We note that our heuristics were always within a factor of 5 from the lower
bound. Most were even within a factor of 2 and many were within a factor of
1.5. We emphasis that in many cases the lower bound routes did not cover the
polygons, thus were not tight.

Even in cases where we could not find lower bounds easily, we were usually
satisfied with the results obtained with our software on many types of polygons.
In many cases our results looked optimal or very close to be optimal.

There are many parameters that affect the time taken to run our software.
The main ones that can be quantified are the size of the polygons, the number of
watchmen, the number of static guards and the size of the extension arrangement
G. As for the latter, in polygons with wide areas (such as the polygon in Figure 1
(a)-(g)) G is large because many extension edges intersect. On the other hand,
polygons with narrow passages (as the common randomly-generated polygon)
result in smaller sizes of G. We note that our experiments showed that the
selection of k (number of mobile watchmen) did not have any significant effect
on the time: running times were always very close, and moreover, they had no
correlation with k. Thus, we ignore this parameter here. In our results the time
refers to an average of four runs, with k = {1, 2, 3, 4}. In Figures 5, 6 and 7
we plot the time as a function of several parameters. In each figure there are
two graphs, for KWRPm and KWRPs. Figure 5 shows the results of many
kinds of polygons. We devote separate graphs for random polygons in Figure 6



Computing Multiple Watchman Routes 123

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

(p)

Fig. 2. Experiment snapshots obtained with our software on different kinds of poly-
gons. Subfigures (a) and (b) show results for k = 1. Subfigures (c)-(l) shows results of
KWRPm while subfigures (m)-(p) shows results of KWRPs.



124 E. Packer

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Results for different number of watchmen

(a) (b) (c)

(d)

Fig. 4. Comparing the results with lower bounds. Subfigures (a) and (c) depict upper
bounds obtained with our software, while Subfigures (b) and (d) depicts corresponding
lower bounds where the small squares represent independent witness points.



Computing Multiple Watchman Routes 125

20 40 60 80 100 120 140
0

50

100

150

200

250

300

Polygon size

T
im

e(
se

c.
)

 

 
minmax
minsum

(a)

4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

Number of static guards

T
im

e(
se

c.
)

 

 
minmax
minsum

(b)

0 200 400 600 800 1000 1200 1400 1600 1800
0

50

100

150

200

250

300

Extension arrangement size

T
im

e(
se

c.
)

 

 
minmax
minsum

(c)

500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

150

200

250

300

#static guards*100 + polygon size*10 + arrangement size

T
im

e(
se

c.
)

 

 
minmax
minsum

(d)

Fig. 5. Time as a function of different parameters for different polygons

(a) (b)

(c) (d)

Fig. 6. Time as a function of different parameters for randomly generated polygons



126 E. Packer

(a) (b)

(c) (d)

Fig. 7. Time as a function of different parameters for spike box polygons

(Figure 2(i) is a snapshot of a random polygon) and spike box polygons in
Figure 7 (Figure 2(b) is a snapshot of a spike box polygon). These two classes of
polygons are different in the following aspects. First, spike box polygons usually
results in large G while random polygons usually results in small G. Second, the
size of independent sets in spike box polygons is usually much smaller than this
size in random polygons. The graphs show that there is a correlation between the
time and both the polygon’s size and the number of static guards (although there
are exceptions). On the other hand, we could not find any correlation between
the size of G and the time. Note that spikes in one one graph are usually a result
of stronger dependency on another parameter. Finally, we note that the times
for KWRPm and KWRPs were usually very similar and there is no evidence
for either one to be faster than the other in any set of polygons.

5 Conclusions and Future Work

We presented heuristics for constructing k-watchman routes inside polygons, pos-
sibly with holes. As far as we know, this is the first attempt to develop heuristics
for this problem. We implemented these heuristics and conducted experiments.
We tested our software with many polygons and presented our results in detail.
In limited cases we were even able to evaluate our results by comparing with
lower bounds, and obtained a bound of factor-5 approximation. Moreover, many
other results in many kinds of polygons look efficient and not far from optimal.



Computing Multiple Watchman Routes 127

We are currently investigating possible directions to improve our heuristics. Next
we briefly summarize some. We note that these ideas seem to require solutions
that are NP-hard, very challenging, do not have clear heuristics, and seem to
take much processing time.

– Possibly start with a different set of static guards that cover the polygon
(even if it is not optimal for the static problem). The idea is that if the
radius of this set is small, it may lead to shorter routes.

– Locally change the minimum spanning tree such that the Hamiltonian routes
become shorter.

– Try also different kinds of splits to the minimum spanning tree. We observed
that multiple subtrees that share a vertex can improve the results in spe-
cific cases. Sometimes combining this idea with adding Steiner vertices can
improve the results further.

Finally, we propose the following directions for future research.

– Find ways to improve the time bounds of the different steps of our heuristics.
– Explore ideas for practical implementations of lower bounds.
– Develop heuristics for other kinds of watchman route problems.
– Find a way to prove efficient lower bounds.
– Develop approximation algorithms for restricted versions.

Acknowledgments. The author thanks Esther Arkin, Alon Efrat, Joseph
Mitchell, Girishkumar Sabhani and Valentin Polishchuk for interesting and help-
ful discussions on related problems.

References

1. Alsuwaiyel, M.H., Lee, D.T.: Finding an approximate minimum-link visibility path
inside a simple polygon. Inf. Proc. Lett. 55(2), 59–79 (1995)

2. Amit, Y., Mitchell, J., Packer, E.: Locating guards for visibility coverage of poly-
gons. In: Workshop on Algorithm Engineering and Experiments, ALENEX (2007)

3. Arkin, E., Mitchell, J., Piatko, C.: Minimum-link watchman tours. Technical Re-
port, University at Stony Brook (1994)

4. Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Proc. 8th
Canad. Conf. Computat. Geometry (1996)

5. Carlsson, S., Jonsson, H., Nilsson, B.J.: Finding the shortest watchman route in a
simple polygon. In: ISAAC: 4th International Symposium on Algorithms and Com-
putation (formerly SIGAL International Symposium on Algorithms), Organized by
Special Interest Group on Algorithms (SIGAL) of the Information Processing So-
ciety of Japan (IPSJ) and the Technical Group on Theoretical Foundation of Com-
puting of the Institute of Electronics, Information and Communication Engineers
(IEICE)) (1993)

6. Carlsson, S., Nilsson, B.J., Ntafos, S.C.: Optimum guard covers and m-watchmen
routes for restricted polygons. In: Workshop on Algorithms and Data Structures,
pp. 367–378 (1991)



128 E. Packer

7. The CGAL User Manual, Version 3.1 (2004), www.cgal.org
8. Chin, W., Ntafos, S.: Optimum watchman routes. Inform. Process. Lett. (1988)
9. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman

problem. Report 388, Graduate School of Industrial Administration, CMU (1976)
10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

2nd edn. The MIT Press, Cambridge (2001)
11. Gewali, L., Ntafos, S.C.: Watchman routes in the presence of a pair of convex

polygons. Information Sciences 105(1-4), 123–149 (1998)
12. Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility

graphs. SIAM J. computing, 888–910 (1991)
13. Icking, C., Klein, R.: The two guards problem. International Journal of Computa-

tional Geometry and Applications 2(3), 257–285 (1992)
14. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE

Trans. Info. Th IT-32, 276–282 (1986)
15. Mitchell, J., Wynters, E.: Watchman routes for multiple guards. In: Proc. 3th

Canad. Conf. Computat. Geometry, pp. 126–129 (1991)
16. Nilsson, B.: Guarding art galleries - methods for mobile guards. PhD thesis, Lund

University (1995)
17. O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, Ox-

ford (1987)
18. Park, S.-M., Lee, J.-H., Chwa, K.-Y.: Visibility-based pursuit-evasion in a polyg-

onal region by a searcher. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)
ICALP 2001. LNCS, vol. 2076, Springer, Heidelberg (2001)

19. Shermer, T.: Recent results in art galleries. In: Proc. of the IEEE, pp. 1384–1399
(1992)

20. Tan, X.: Fast computation of shortest watchman routes in simple polygons. Inf.
Proc. Lett. 77, 27–33 (2001)

21. Tan, X., Hirata, T., Inagaki, Y.: An incremental algorithm for constructing shortest
watchman routes. Int. J. Comput. Geometry Appl (IJCGA) 3(4), 351–365 (1993)

22. Urrutia, J.: Art gallery and illumination problems. In: Sac, J., Urrutia, J. (eds.)
Handbook of Computational Geometry, pp. 973–1027. Elsevier Science Publishers,
Amsterdam (2000)

www.cgal.org


Engineering Parallel In-Place Random Generation of
Integer Permutations

Jens Gustedt

INRIA Nancy – Grand Est, France
Jens.Gustedt@loria.fr

Abstract. We tackle the feasibility and efficiency of two new parallel algorithms
that sample random permutations of the integers [M ] = {1, . . . , M}. The first re-
duces the communication for p processors from O(M) words (O(M log M) bits,
the coding size of the permutation) to O(M log p/ log M) words (O(M log p)
bits, the coding size of a partition of [M ] into M/p sized subsets). The second
exploits the common case of using pseudo-random numbers instead of real ran-
domness. It reduces the communication even further to a use of bandwidth that
is proportional to the used real randomness. Careful engineering of the required
subroutines is necessary to obtain a competitive implementation. Especially the
second approach shows very good results which are demonstrated by large scale
experiments. It shows high scalability and outperforms the previously known ap-
proaches by far. First, we compare our algorithm to the classical sequential data
shuffle algorithm, where we get a speedup of about 1.5. Then, we show how
the algorithm parallelizes well on a multicore system and scales to a cluster of
440 cores.

1 Introduction and Overview

Generating random permutations is costly. One issue that causes this high cost is the use
of (pseudo-)random number generators (PRG), but it is not the only one: the random (!)
memory read pattern of the classical shuffling algorithm, see Moses and Oakford [15],
Durstenfeld [6] and also Knuth [13, Sec. 3.4.2], implies cache misses for almost all
memory accesses. Thus the performance is in general dominated by the CPU to memory
latency. Neither augmenting the speed of the CPU nor the memory bandwidth would
improve the performance, only augmenting the frequency of the interconnection bus
would do.

On a modern architecture our implementation of that shuffling algorithm achieves
an amortized run time of roughly 250 cycles per shuffled 64 bit integer. We think that
this is not improvable by much, because of the difficulties mentioned above. In addi-
tion, for commodity architectures the performance growth is nowadays only assured
by augmenting the parallelism of the CPUs, via multiple processors, cores or pipelines
or via hyperthreading. In such parallel settings the random shuffle algorithm doesn’t
scale, it is inherently sequential. Anderson [2] gave a parallelization of the classical
shuffling but which has to schedule conflicting swap operations, a strategy that turns
out to be only efficient for few processors, see Cong and Bader [4]. Several subsequent
attempts have been made to tackle and experiment this problem differently in parallel

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 129–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



130 J. Gustedt

and/or distributed settings, see e.g the work of Cong and Bader [4] Czumaj et al. [5],
Goodrich [8], Guérin Lassous and Thierry [9], Gustedt [12], Sanders [17].

The most important use of random permutations of data are probably simulations and
statistical measurements where they make the simulation (respectively measurement)
independent from a particular ordering data may have been generated (or appeared). In
many cases it is in fact not necessary to effectively permute the data by itself but it is
sufficient to compute a random integer permutation. These usually have more compact
encoding than the data and may directly serve as ranks of the individual data items.
Thereby an implementation may avoid the costly repetitive shuffling of application data.

Suchastrategyhasalreadybeenusedordescribedinvariouscontexts,ase.g inVLSIde-
sign by Alpert et al. [1], for combinatorial algorithms by Cohen[3], or for non-parametric
Monte Carlo testing of time series, see Dwass [7] and Nichols and Holmes [16]. In view
of the results of the present paper such a strategy might in particular bring important gains
when applied to a distributed setting. Here it can entirely avoid the re-distribution of data
between different processors.

In Gustedt [10] and [12] we have shown that random shuffling of data can be real-
ized with linear resource usage, CPU time as well as bandwidth, and this for a large
variety of paradigms, in particular parallel, distributed and out-of-core computation.
For permutations of just the integers {1, . . . , M}, we give two new algorithms that
take advantage of the restriction to that specific problem in [11]. Here in this paper we
tackle the engineering aspects of the two later algorithms and report on benchmarks.
These show that the second of these algorithms is able to simultaneously take advan-
tage of two types of parallelism, SMP (provided by multicore processors) and cluster
parallelism.

The first approach tackles bandwidth requirements (as opposed to latency). An infor-
mation theoretic lower bound which is sublinear in the number of bits of the input size
for the communication can given by a counting argument. In fact entropy compression
can be used that asymptotically realises this bound. This can be done when assuming
full randomness, i.e when all random decisions that we make are given by an abundant
sequence of random bits.

For the second algorithm, we place ourselves in the common case that we use
pseudo-random numbers (instead of real randomness). The lower bound doesn’t hold
any more: the amount of solutions is limited by the state space of the PRG. Therefore
the minimum information that has to be transferred is just that, the state space of the
PRG.

Sec. 2 introduces the general framework, wherein 2.1 and 2.2 briefly explain the two
new algorithms that are the subject of this paper. Sec. 3 introduces the engineering part
of the present work, namely the basis of the implementation, parXXL, the explicit use of
integer types of different widths, and special floating point capacities. Then it focuses on
the implementation of a range coder, Sec. 3.1, and universal hash functions, Sec. 3.2,
that are needed as subroutines to implement the algorithms effectively. In Sec. 4, we
then report on large scale experiments that prove the efficiency and practicability of our
approach in different settings: sequential execution, for parallel execution with multi-
processor multi-core machines and for the distributed setting of clusters.



Engineering Parallel In-Place Random Generation of Integer Permutations 131

Procedure. ParIntPerm(m, p, ν): Parallel Random Integer Permutation

Input: Non-negative integers m (local size), p (amount of processors) and ν the id of the
processor

Output: Table V = V [1], . . . , V [m] such that the sets of all V [i] on all processors
represent a permutation of the integers 1, . . . , p ·m.

matrix All processors collectively choose A = (ai,j), the communication matrix
partition begin

Create a table V ′ with V ′[1] = (ν − 1) ·m + 1, ..., V ′[m] = ν ·m
Randomly partition the elements of V ′ into blocks B′

ν,1, . . . , B
′
ν,p of size

aν,1, . . . , aν,p

starting at V [1], for j = 1, . . . , p do set Bj,ν to the next block of size aj,ν in V
end

exchange for j = 1, . . . , p do copy the block B′
ν,j to the block Bj,ν of processor j

local mix Permute V

2 Randomized Distributed Shuffling and the Generation of
Integer Permutations

Procedure ParIntPerm gives an algorithm that on each processor first partitions a
source table V ′ according to a communication matrix A. Our contribution in [10] was
to show that it is possible to sample such a matrix separately and still obtain a uni-
formly distributed random permutation of the items with a resource usage that is linear
and equally shared between the processors. Procedure ParIntPerm then exchanges
these blocks between all processors, and locally permutes the parts that were received
at the end.

2.1 Reducing Communication under Full Randomness Assumptions

One main bottleneck for implementing this algorithm are the bandwidth requirements
for exchange. In [11] we show that the information theoretic lower bound for this is
O(M log p) bits and this bound can be achieved asymptotically by using range encod-
ing. This is done by separating out the ‘bits’ that are to be send to each individual
other processor Q. We do that by taking all elements that go to Q in ascending order
(using table T ) and by encoding this sequence by the difference between successive
elements. Procedure CompressPartition summarizes such a procedure that does
this encoding ‘on the fly’ for all target processors.

Each individual difference d that we compute in differ can be large. But if we look at
the total sequence of such differences that a target processor will receive from all others
we see that their average is M/m = p.

In cram we encode a segment between two occurring elements with an alphabet of
two symbols (‘0’ and ‘1’), namely by inserting d ‘0’s followed by a ‘1’. Because we
know that ‘1’s only occur with a probability of 1/p we can use range encoding, see e.g
Martin [14], to encode the overall sequence for any source or target processor Q with
O(m · log p) bits. For the linearity of the algorithm we have to adapt the range coding
in cram such that it encodes several ‘0’s at once, resulting in amortized constant time
per execution of cram. The details of this will be presented in Sec. 3.1.



132 J. Gustedt

Procedure. CompressPartition(o, m, p, a, P)
Input: Non-negative integers o (start offset), m (local size) and p (amount of processor)
a = (a[1], . . . , a[p]) with m =

∑
i a[i], the row of the communication matrix

P = (P [1], . . . , P [m]) with {x | x = P [i] for some i} = {y | o < y ≤ o + m};
Output: compressed streams (C[1], . . . , C[p]), C[i] representing a part of P of size a[i].
Use o to compute T = (T [1], . . . , T [m]) such that T [i] is the target processor for P [i]
Initialize C = C[1], . . . , C[p] to all empty
Initialize V = V [1], . . . , V [p] to all 0
foreach i = 1, . . . , m do

Set t = T [i] the target processor of element i
differ Set d = i− V [t], the difference of i to the previous element for processor t
cram Append d ‘0’s and a ‘1’ to C[t]

Set V [t] = i

2.2 Generating Permutations in Place

Procedure GenPermBlock presents a new algorithm that replaces large parts of the
communication in ParIntPerm. The main idea is that instead of communicating an
already partitioned (or permuted) integer table, this first phase is “emulated” directly
on each of the target processors. Supposing that block i of the source data would have
been permuted by permutation πi, we communicate the inverse μi = π−1

i such that
each target processor is able to compute the elements that it would have received from
block i. Then a locally computed permutation γj is used to write the generated elements
for block j of the target data in random order.
GenPermBlock uses universal hash functions as a tool for the local permutations.

Besides that, the other source of randomness is the communication matrix. As a con-
sequence the amount of randomness that is used by the algorithm is related to the
number of blocks into which the problem is subdivided. If we want this to be tun-
able, the dependency from an architectural parameter such as p alone is not desirable.
GenPermBlock avoids this by dividing the problem into more blocks, b per processor.

3 Engineering

The implementation of the algorithms was undertaken with parXXL1, a C++-library
that allows experimenting and benchmarking of unmodified code on different types of
architectures, parallel machines or clusters.

To give an idea of what we are heading for, let us look at the performance of the
sequential shuffling algorithm that is implemented in parXXL. This implementation is
already quite efficient, since it uses some prefetching techniques to circumvent the la-
tency problems that were mentioned in the introduction.

That implementation needs about 140 ns per item for a 64bit integer permutation
on a 1.8 GHz PC (i86 64 architecture). This corresponds to roughly 250 clock cycles.

1 http://parxxl.gforge.inria.fr/

http://parxxl.gforge.inria.fr/


Engineering Parallel In-Place Random Generation of Integer Permutations 133

Procedure. GenPermBlock(m, p, b, ν, U, ā, Ō) Generate a random integer
permutation in place

Input: Non-negative integers m (block size), p (amount of processors), b (blocks per
processor) and ν the id of the processor.

Input: U = U [1], . . . , U [p · b] states of universal hash functions μi on 1, . . . , m
foreach j = 1, . . . , b

Input: aj = aj [1], . . . , aj [p · b] a column of the p · b× p · b-communication matrix.
Input: Oj = Oj [1], . . . , Oj [p · b] the offset of the part of block i going to block j.
Output: Vj = Vj [1], . . . , Vj [m], the local part of the target permutation.

foreach i = 1, . . . , p · b do Initialize μi from U [i]
foreach j = 1, . . . , b do

Set t = 0, this will step through elements in block j
Sample a new universal hash function γj

foreach i = 1, . . . , p · b do
Set o = (m(i− 1)) + 1 the overall offset of block i
foreach k = Oj [i], . . . , Oj [i] + aj [i]− 1 do

preimage Set k−1 = μi(k), the pre-image of k under πi = μ−1
i

generate Set K = o + μi(k
−1), the element that would have been sent

permute Set t′ = γj(t), the final position of K
store Vj [t

′] = K
t = t + 1

These numbers are basically against what we have to compete with an alternative im-
plementation and which should also enable us to judge the parallel efficiency: the time
processor product per item should not exceed these 140 ns by much.

We also will have to take the time for the sampling of the communication matrix A
into account. The computing time for that is dominated by draws of a hypergeometric
distribution which takes about 1 μs in the same setting, based on the standardized PRG
jrand482. Since the size of that matrix grows quadratic in the number of buckets in
which we split the problem, we will have to be careful not to subdivide the problem too
much. The implementations that are described here are based on the matrix generation
that is already found in parXXL. Unfortunately it is not yet completely parallelized,
which we will see to be an issue for the benchmarks, see Sec. 4.

Since we will implement algorithms that go down to the bit level of the represented
data another issue that has to be handled carefully is the wordsize of the target archi-
tecture. Even talking about “the” wordsize is generally not possible. Modern hybrid
architectures may use different constants for different types of addressing, e.g 36 bits
for physical addressing, 48 bits for virtual addressing, and 64 bits to represent point-
ers. Arithmetic can be performed with varying efficiency if the data are 32 bit integers
(uint32 t), 64 bit integers (uint64 t), floating point numbers (double), or of
some platform specific register vectors, such as the i386’s SSE registers.

To be able to realistically represent large integer permutations we will assume that
the final output will be a table of uint64 t. But arithmetic on this type may be slow
(in particular division and modulo) and storage (and bandwidth) might be wasted if we

2 http://opengroup.org/onlinepubs/007908799/xsh/drand48.html

http://opengroup.org/onlinepubs/007908799/xsh/drand48.html


134 J. Gustedt

represent small numbers with it. For the implementation we therefore distinguish the
target data type from intermediate ones that are used during the computation, in par-
ticular double for range encoding and uint32 t for universal hash functions. We
provide a generic C++ templates implementation that depends on two type parame-
ters, one for the target type and one for the intermediate type. This enabled us to chose
them easily in function of the target architecture.

3.1 Range Encoding

Range encoding (Martin [14]) is a particular case of entropy encoding that is asymptoti-
cally optimal. That is, it encodes a string over an alphabet Σ according to the probability
P (σ) of the occurrence of the individual symbols σ ∈ Σ. Under the assumption of in-
dependence of the occurrence of the symbols, the length of the encoding tends towards
the information theoretic optimum.

It views the encoded string (the code) as a big binary number C. Its name comes
from the fact that during the encoding phase it works with a lower and upper bound
C− and C+ that define a range within the final code will be found. Each occurrence
of a new symbol σ ∈ Σ restricts the actual range to a new range with a size that is
proportional to P (σ).

The particularity in our context for the range encoding needed for
CompressPartition is that we need to encode long runs of ‘0’s efficiently. A com-
monly used trick to cope with that is to add artificial symbols to Σ that represent long
runs. Whereas such an approach is fast on the coding side, it requires a binary search
for the encoded artificial symbol on the decoding side. Thus it has some overhead that
is proportional to the logarithm of the length of the run.

To avoid such a logarithmic factor, we use doubles to represent the ‘interesting’
part of the bounds, i.e that part of the bounds that are yet subject to change during
encoding or decoding. IEEE doubles3 are normalized to have 52 bits in the mantissa,
from which we use 48 for our implementation. They have the advantage that their order
of magnitude is automatically maintained in the exponent and that is accessible through
cheap bit operations. By that an estimation of the length of the next run can easily be
obtained by an integer logarithm operation, on the decoding site.

3.2 Families of Universal Hash Functions

Since the goal of our implementation is first of all to show the potential of the approach
we chose some relatively simply universal hash functions:

– The universal hash functions must be fast.
– They must be independent for all processors.
– They must allow for a controlled trade-off between their state-size and their effi-

ciency.

A simple well-known such family is given by an arithmetic progression:

Πρ
α,β(x) := α · x + β (mod ρ) (1)

3 http://grouper.ieee.org/groups/754/

http://grouper.ieee.org/groups/754/


Engineering Parallel In-Place Random Generation of Integer Permutations 135

Procedure. uhashρ,m
α,β (x) universal hash function with twist 1.

Input: Non-negative integers x (input), ρ (prime), m (domain), such that x < m ≤ ρ
α (factor) and β (additive shift), with 0 < α < m and β < m
Output: Non-negative integer y < m, such that for all x1 �= x2 < m,

uhashρ,m
α,β (x1) �= uhashρ,m

α,β (x2)
repeat x = Πρ

α,β(x) until x < m
return x

Where ρ is a prime number and 0 < α < ρ, 0 ≤ β < ρ are some fixed parameters.
Since by definition α and ρ are mutually prime, it is easy to see that for any such choices
Πρ

α,β is a permutation on {0, . . . , ρ − 1}. In addition, if we fix ρ, the choice of α and β

gives us ρ · (ρ − 1) distinct functions Πρ
α,β : for two distinct choices of β the images of

x = 0 are distinct, and for two distinct choices of α1 and α2 the image y = α1α2 + β
(mod ρ) has different pre-images, namely α2 and α1.

We need universal hash functions that operate on any interval [0, . . . , m−1], not only
for prime numbers. Procedure uhashρ,m

α,β generalizes the family Πρ
α,β to general m by

simply following a cycle of the permutation Πρ
α,β that might lead outside of the range

[0, . . . , m − 1] until it leads back into it. Again, it is easy to see that uhashρ,m
α,β defines

a permutation and that for fixed m and ρ these permutations are all pairwise distinct.
In our implementation we chose the prime number ρ deterministically based on m

and on the ID of the processor. This ensures that all these prime numbers are different
for all processors, and that all processors may compute them without the need to ex-
change them. Only the constants α and β are chosen randomly for each processor and
are then exchanged.

Choosing p prime numbers can be done efficiently if we restrict ourselves to the case
where p � m/ lnm. We just test the values of m, m + 1, . . . for primality. Because of
the known density of prime numbers of about 1/lnx we are sure to find enough prime
numbers in the range [m, 2m) with an amortized computational overhead that does not
exceed O(m) on all processors.

The computational cost of uhashρ,m
α,β in our context is dominated by the number

of evaluations of Πρ
α,β . Since as a whole we could have to run through all cycles of

the permutation this number may be ρ. So, uhashρ,m
α,β could be very expensive in our

setting, if the range m and the prime number ρ were of different orders of magnitudes.
But fortunately, as seen above, we may restrict ourselves to the case that ρ < 2m and
thus the total number of calls to uhashρ,m

α,β per source processor4 is O(m).
Another important issue is to obtain a competitive implementation of Πρ

α,β . Here the
non-trivial operation is taking the modulus. Platforms differ greatly on the efficiency
of that operation not only between different CPUs but also on the same CPU for data

4 This amortization only holds per source processor, an individual target processor could be
overcharged when he would have to run through a lot of cycles. It is possible to avoid such
a potential imbalance by computing and communicating these cycles of the permutations in
advance. We will see below this was not relevant for the experiments, so such a strategy was
not implemented.



136 J. Gustedt

Table 1. Platform summary

platform type compiler nodes per node
version processor cores speed cache RAM

damogran laptop gcc 4.1.3 1 Intel x86 64 2 1.80 GHz 2 MiB 3.86 GiB
grelon cluster gcc 4.1 120 Intel x86 64 4 1.60 GHz 4 MiB 1.97 GiB

types of different width. In particular on the target platforms, all equipped with i86
processors, modulus for 32bit integers is quite efficiently done by a single instruction
in some clock cycles. For 64bit integers this might be synthesized in software and take
much longer. Therefore it was crucial for the success of the implementation to eventu-
ally split the problem in more than p sub-ranges, as was presented in GenPermBlock.
Hereby we ensure that the local indices for each block do not exceed 32 bit, i.e that the
blocks have less than 232 elements.

4 Experiments

We present experiments on two different platforms, one a laptop computer ”damogran”
and the other a compute cluster ”grelon”, part of Grid50005. The algorithms that were
implemented are a variant of the classical shuffling algorithm, our parallel data per-
mutation algorithm of [10], and the in place generation algorithm of this paper with
different strategies for the block sizes but with fixed hash strategy uhashρ,m

α,β .
The programs were benched in a “reasonable” range of problem sizes: the maximal

value M+ is generally the size that still fits into the platform’s RAM. From there other
smaller values corresponding to M+/2i/2 for some values of i were also tested. Each
data point in the graphs corresponds to the average over 20 runs. In addition, some
figures show error bars for the computed variance of the results, but in most cases the
variance is so small that this is not noticeable.

To emphasize on the scaling properties and proportions, the results are represented in
doubly-logarithmic scale. Data points are chosen such that every second point roughly
corresponds to a doubling in size (or processors), i.e each step is about

√
2 from the

previous.

4.1 Compression by Range Encoding

Before we come to parallel run times, Fig. 1 shows the computing time of an entropy
encoding. Here the measurement is quite involved since we first have to benchmark the
encoding algorithm together with the random process that generates the data, then we
have to benchmark the process without the encoding and the difference is then taken as
the time for encoding. As we see the sum of encoding and decoding is between 180 and
200 ns, much slower than the random shuffling itself. If used as a compression technique
for communication, this corresponds to a throughput of 35 to 40 MB/s on the network
link, too restrictive in most of today’s computing environments to pay off. Therefore

5 http:://www.grid5000.fr

http:://www.grid5000.fr


Engineering Parallel In-Place Random Generation of Integer Permutations 137

 5e-08

 5e-07

 1e-07

 10  1e+02  1e+03

 3

 1

 10

se
co

nd
s

bi
ts

number of subsets

Range encoding on Damogran, per item

code size

coding time

decoding time

total time

Fig. 1. Compression by range encoding,
sequential

we did not push the implementation of
that setting further and did not integrate
this encoding scheme into the parallel
setting.

4.2 In Place Generation

Sequential and SMP performance. Fig. 2
shows a comparison of the different per-
mutation programs on damogran. We see
that shuffling takes about 110 to 140 ns
per item. The parallel data permutation
algorithm for two processors slows down
to about 170 ns. In fact the break even
point for this parallel algorithm lays be-
tween 3 and 4 processors, so the parallelization for this restricted parallelism of only
two cores is not yet worth it, see also Gustedt [10].

 2

 3

 4
 5
 6

 20

 30

 40
 50
 60

 10

 5e+07  2e+08  3e+08  4e+08 1e+08

se
co

nd
s

items

Permutation generation on Damogran, walltime

cores
data permutation 1 core

data permutation 2 cores
in place generation 1 core

in place generation 2 cores

(a) total time (with error bars)

 1e-08

 1e-07

 1e+08

se
co

nd
s

items

Permutation generation on Damogran, walltime per item

data permutation 1 core
data permutation 2 cores

in place generation 1 core
in place generation 2 cores

(b) time per item (with error bars)

Fig. 2. Run time comparison on bi-core

 0.6

 2

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 6.7e+07  1.3e+08  2.7e+08

Speedup/Slowdown on Damogran

in place 1 proc vs 2 proc
in place vs shuffle

shuffle 1 proc vs 2 proc

Fig. 3. Speedup or slowdown on bi-core

Compared to that, the new genera-
tion algorithm with 310 to 590 blocks
already shows a speedup when only ex-
ecuted on 1 core (80 to 90 ns) and im-
proves to 50 ns when run on 2 cores.
Fig. 3 plots the speedup and slowdown
values for the possible comparisons. Ob-
serve also that already for the smallest
value of 226 items the total amount of
permutations in the sample space is about
e26·3.258 ≈ e84.7 ≈ 2122.2. So a pseudo-
random generator with a state of at least



138 J. Gustedt

123 bits would be required to cover the whole sample space. The rand48 routines that
are used for the implementation have the advantage that they are quite fast but only hold
a state of 48 bits. Without additional cost, our in place generation here would be able to
take advantage of some thousand real random bits (a hash function state per block) as
obtained from devices like Linux’ /dev/random.

Cluster performance. The cluster experiments on “grelon” follow two different strate-
gies to determine the number b of blocks per processor of GenPermBlock. The first
strategy uses a heuristic value of about

√
M

log2 M that is meant to warrant that the compu-
tation of matrix doesn’t dominate the problem. The other strategy is to fix b to 1024.

 1

 10

 1e+08  1e+09  1e+10

se
co

nd
s

items

Permutation generation on Grelon, walltime

cores
4
8

12
16
24
32
44
64
92

128
180
256
364
440

(a) ≈
√

M
log2 M

blocks, variable

 2

 3

 4

 5

 6

 1e+09  1e+10

se
co

nd
s

items

Permutation generation on Grelon, walltime

cores
64
92

128
180
256
364
440

(b) 1024 blocks, fixed

Fig. 4. Cluster experiments with two different strategies for the block sizes, total times with error
bars

 1e-10

 1e-09

 1e-08

 1e-07

 1e+07  1e+08  1e+09  1e+10  1e+1

se
co

nd
s

items

Permutation generation on Grelon, walltime per item

cores
4
8

12
16
24
32
44
64
92

128
180
256
364
440

(a) ≈
√

M
log2 M

blocks, variable

 1e-10

 1e-09

 1e-08

 1e+09  1e+10  1e+1

se
co

nd
s

items

Permutation generation on Grelon, walltime per item

cores
64
92

128
180
256
364
440

(b) 1024 blocks, fixed

Fig. 5. Cluster experiments with two different strategies for the block sizes, amortized times per
item

Fig. 4 gives the average running times for experiments within two orders of magni-
tude for the problem size and for the number of processors. The plots show very good



Engineering Parallel In-Place Random Generation of Integer Permutations 139

 1
 1e+08  1e+09  1e+10

se
co

nd
s

items

Permutation generation on Grelon, walltime without matrix

cores
4
8

12
16
24
32
44
64
92

128
180
256
364
440

(a) total time

 2e-10

 3e-08

 3.1e-10

 6.2e-10

 1.24e-09

 2.48e-09

 4.96e-09

 9.92e-09

 1.98e-08

 5e+07  5e+1 1e+08  1e+09  1e+10

se
co

nd
s

items

Permutation generation on Grelon, walltime per item without matrix

cores
4
8
12
16
24
32
44
64
92
128
180
256
364
440

(b) time per item

Fig. 6. Cluster experiments with variable block size, times without matrix generation

scaling of the programs, the progression of the time with the data size are straight lines
and the error ranges are invisible.

As the problem sizes concern different orders of magnitude a direct comparison by
means of “speedup” plots as given above is not possible. Instead, Fig. 5 shows the same
data as before but now the computing times are given as seconds per data item. The
plots are mainly horizontal lines, meaning that in fact the total running times are linear
in the number of items. This holds up to 440 processor cores, where the limit of the
scalability seems to be attained. In fact for such large problems the running time for the
matrix generation starts to dominate the execution time of the current implementation,
in [11] we give some plots for the matrix generation. The in place generation itself
(Fig. 6) without the matrix generation behaves very regular.

5 Conclusion and Outlook

With the present work we show that for the generation of integer permutations there
are alternatives to the classical data shuffling algorithm and to other more sophisticated
redistribution algorithms. The shuffling algorithm doesn’t scale in the first place; it is
inherently sequential and is not suited to a computing world that consists of distributed
multicore machines. Redistribution of (generated) data on the other hand doesn’t use
the information-theoretical potential. Both share the problem that they generally use
PRGs to draw random positions of items. The state space of these PRGs is easily un-
derspecified and does not allow to cover the whole sample space.

Our first approach of using range encoding to limit communication to the information-
theoretic bound shows to be as compute consuming as the shuffling algorithm itself. So it
can only be competitive in a restrictive setting where bandwidth is very limited compared
to computing power, probably less then 10 MB/s for today’s platforms.

The second approach avoids the initial (and artificial) generation of the identity per-
mutation and generates the target permutation in place. The only data that is commu-
nicated between the processors are parts of a communication matrix and state vectors
of universal hash functions. This approach improves over the previously know ones, in



140 J. Gustedt

sequential and in parallel. The parallel implementation shows real and effective
speedups and sizeups, for clusters and multi-cores as they become more and more dom-
inant today.

The experiments also showed some problem of the current implementation, namely
the generation of the communication matrix. Here, in a future work the parallelization
will be driven further to be able to tackle multi-cluster environments of perhaps several
thousands of nodes or cores. At the other end of available architectures it could also be
possible to use instruction level parallelism to speed up the evaluations of uhashρ,m

α,β

by regrouping several such operations into one parallel instruction.
Another limitation that showed up during this work is the lack of accepted quality

measures for random permutations. What would be a good statistical test that a fam-
ily of generated random permutations would have to pass? The lack of such a quality
measure also made it pointless for the time being to try other hash functions, such as
an iterated version of uhashρ,m

α,β . An interesting future study could be to compare the
gains of randomness that are obtained by more complicated hash functions and/or by
augmenting the amount of blocks into which the problem is subdivided.

Acknowledgement

The experimental part of this research has been undertaken on the Nancy site of the
Grid5000 project which has partially been financed by the Lorraine Region.

References

[1] Alpert, C.J., Huang, J.H., Kahng, A.B.: Multilevel circuit partitioning. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 17(8), 655–667 (1998),
http://vlsicad.ucsd.edu/Publications/Journals/j34.pdf

[2] Anderson, R.J.: Parallel algorithms for generating random permutations on a shared mem-
ory machine. In: Proceedings of the second annual ACM symposium on Parallel algorithms
and architectures (SPAA 1990), pp. 95–102. ACM, New York (1990)

[3] Cohen, E.: Estimating the size of the transitive closure in linear time. In: Goldwasser,
S. (ed.) 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20-22 November 1994, pp. 190–200. IEEE, Los Alamitos (1994),
http://csdl2.computer.org/comp/proceedings/sfcs/1994/6580/
00/0365694.pdf

[4] Cong, G., Bader, D.A.: An empirical analysis of parallel random permutation algorithms on
SMPs. In: Proc. 18th ISCA International Conference on Parallel and Distributed Computing
Systems (PDCS 2005) (2005)

[5] Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Fast generation of random permuta-
tions via networks simulation. Algorithmica 21(1), 2–20 (1998)

[6] Durstenfeld, R.: Algorithm 235: Random permutation. Commun. ACM, 420 (1964)
[7] Dwass, M.: Modified randomization tests for nonparametric hypotheses. Annals of Mathe-

matical Statistics 28, 181–187 (1957)
[8] Goodrich, M.T.: Randomized fully-scalable BSP techniques for multi-searching and convex

hull construction. In: Saks, M., et al. (eds.) Proceedings of the eighth annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 767–776. SIAM, Society of Industrial and Applied
Mathematics, Philadelphia (1997)

http://vlsicad.ucsd.edu/Publications/Journals/j34.pdf
http://csdl2.computer.org/comp/proceedings/sfcs/1994/6580/00/0365694.pdf
http://csdl2.computer.org/comp/proceedings/sfcs/1994/6580/00/0365694.pdf


Engineering Parallel In-Place Random Generation of Integer Permutations 141

[9] Guérin Lassous, I., Thierry, É.: Generating random permutations in the framework of par-
allel coarse grained models. In: Proceedings of OPODIS 2000. Studia Informatica Univer-
salis, vol. 2, pp. 1–16 (2000)

[10] Gustedt, J.: Efficient Sampling of Random Permutations. Journal of Discrete Algo-
rithms 6(1), 125–139 (2008), http://hal.inria.fr/inria-00000900/en/

[11] Gustedt, J.: Sublinear Communication for Integer Permutations. Technical Report RR-6403,
INRIA (December 2007), http://hal.inria.fr/inria-00201503/en/

[12] Gustedt, J.: Randomized Permutations in a Coarse Grained Parallel Environment [extended
abstract]. In: auf der Heide, F.M. (ed.) Fifteenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA 2003), San Diego, CA, June 2003, pp. 248–249.
ACM Press, New York (2003)

[13] Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, 1st edn.,
vol. 2. Addison-Wesley, Reading (1981)

[14] Martin, G.N.N.: Range encoding: an algorithm for removing redundancy from a digitised
message. In: The Video & Data Recording Conference, Southampton, UK (March 1979),
http://www.compressconsult.com/rangecoder/rngcod.pdf.gz

[15] Moses, L.E., Oakford, R.V.: Tables of Random Permutations. Stanford University Press
(1963)

[16] Nichols, T.E., Holmes, A.P.: Nonparametric permutation tests for functional neuroimaging:
A primer with examples. Human Brain Mapping 15, 1–25 (2001), http://www.fil.
ion.ucl.ac.uk/spm/doc/papers/NicholsHolmes.pdf

[17] Sanders, P.: Random permutations on distributed, external and hierarchical memory. Inf.
Process. Lett. 67(6), 305–309 (1998)

http://hal.inria.fr/inria-00000900/en/
http://hal.inria.fr/inria-00201503/en/
http://www.compressconsult.com/rangecoder/rngcod.pdf.gz
http://www.fil.ion.ucl.ac.uk/spm/doc/papers/NicholsHolmes.pdf
http://www.fil.ion.ucl.ac.uk/spm/doc/papers/NicholsHolmes.pdf


Parallel Partition Revisited

Leonor Frias�,�� and Jordi Petit� � �

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

lfrias@lsi.upc.edu

Abstract. In this paper we consider parallel algorithms to partition
an array with respect to a pivot. We focus on implementations for cur-
rent widely available multi-core architectures. After reviewing existing
algorithms, we propose a modification to obtain the minimal number
of comparisons. We have implemented these algorithms and drawn an
experimental comparison.

1 Introduction

The partitioning of an array is a basic building block of many key algorithms,
as quicksort and quickselect. Partitioning an array with respect to a pivot x
consists of rearranging its elements such that, for some splitting position s, all
elements at the left of s are smaller than x, and all other elements are greater
or equal than x. It is well known that an array of n elements can be partitioned
sequentially and in-place using exactly n comparisons and m swaps, where m is
the number of greater elements than x whose original position is smaller than s.

In this paper we consider the problem of partitioning an array in parallel,
focusing on current widely available multi-core architectures.

Several algorithms have been proposed to partitioning in parallel [1,2,3,4,5].
In this paper, we consider a simple algorithm by Francis and Pannan [2], a fetch-
and-add based algorithm by Tsigas and Zhang [3] and a variation of the former
in the MCSTL library [5]. These algorithms, which we survey in Sect. 2, seem
suitable for a practical multi-core implementation. However, in order to avoid
too much synchronization, they perform more than n comparisons and m swaps.
Though very different in nature, they can be divided into three main phases: a) A
sequential setup of each processor’s work, b) a parallel main phase in which most
of the partitioning is done, and c) a cleanup phase, which is usually sequential.

In this paper we show that these algorithms disregard part of the work done in
the main parallel phase when cleaning up. In order to overcome this drawback,
we propose an alternative parallel cleanup phase that uses the whole comparison
information of the parallel phase. A small static order-statistics tree is used to

� Supported by grant number 2005FI 00856 of the Agència de Gestió d’Ajuts Uni-
versitaris i de Recerca with funds of the European Social Fund.

�� Partially supported by Spanish project ALINEX (ref. TIN2005-05446).
� � � Partially supported by FET proactive integrated project 15964 (AEOLUS) and

by Spanish project FORMALISM (ref. TIN2007-66523).

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 142–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Parallel Partition Revisited 143

efficiently locate the elements to be swapped and to swap them in parallel. With
this new method, we obtain scalable parallel partitioning algorithms that achieve
an optimal number of comparisons. We provide a detailed analysis.

We have implemented and evaluated all these algorithms, both with their
original cleanup and with our cleanup. Besides, the implementation is provided
according to the specification of the partition function of the Standard Template
Library (STL) of the C++ programming language [6]. Previously, only F&A
implementation was available in the MCSTL library [5]. Our goal is to get a
comparison of their behavior when executed on a currently inexpensive widely
available parallel machine, namely a machine with two quad-core processors.

The paper is organized as follows. In Sect. 2, we present the considered al-
gorithms. Then, in Sect. 3, we present our cleanup algorithm. Then, we present
our implementation of the previous algorithms and the experimental results in
Sect. 4 and 5 respectively. We sum up the conclusions of this work in Sect. 6.

2 Previous Work and a Variant

In this section, we present an overview of the partitioning algorithms we consider
in this paper. In the following, the input consist of an array of n elements and
a pivot. p processors are available and we assume p � n. Besides, we disregard
some details as rounding issues for the sake of simplicity.

Strided Algorithm. The Strided algorithm by Francis and Pannan [2] works
as follows:

1. Setup: The input is (conceptually) divided into p pieces of size n/p. The
pieces are not made of consecutive elements, but one of every p elements
instead. That is, the i-th piece is made up of elements i, i + p, i + 2p, . . . .

2. Main phase: Each processor i, in parallel, gets a piece, applies sequential
partitioning on it, and returns its splitting position vi.

3. Cleanup: Let vmin = min{vi : 1 ≤ i ≤ p} and vmax = max{vi : 1 ≤ i ≤ p}.
It holds that all the elements at the left of vmin and at the right of vmax

are already well placed with respect to the pivot. In order to complete the
partition, sequential partition is applied to the range (vmin, vmax).

The main phase takes Θ(n/p) parallel time. For random inputs, the cleanup
phase is expected to take constant time. However, [2] did not state that in the
worst-case it takes Θ(n) time and thus, there is no speedup. E.g. If the pieces are
made exclusively of either smaller or greater elements than the pivot and these
are alternated, then, vmin ≤ p and vmax ≥ n − p, and |(vmin, vmax)| = Θ(n).

Blocked Algorithm. Accessing elements with stride p as in Strided, can
provoke a high cache miss ratio. We propose Blocked to overcome this problem.
It uses blocks of b elements instead of individual elements. Each block in the piece
is separated by stride p blocks. If b = 1, Blocked is equal to Strided.



144 L. Frias and J. Petit

F&A Algorithms. Heidelberger et al. [1] proposed a parallel partitioning al-
gorithm in the PRAM model in which elements from both ends of the array are
taken using fetch-and-add instructions. Fetch-and-add instructions (atomically
increment a variable and return its original value) were introduced in [7] and are
useful, for instance, to implement synchronization and mutual exclusion.

In a first approach, exactly one element is taken at a time and so, at the end
of the parallel phase, the array is already partitioned. In this case, n fetch-and-
add operations are used. In a second approach, the algorithm is generalized to
blocks: a block of b elements is acquired at each fetch-and-add instruction. So,
the number of fetch-and-add instructions is n/b. However, in this case, some
sequential cleanup remains to be applied after the parallel phase.

Later, Tsigas and Zhang [3] presented a variant of the second approach for
multiprocessors. More recently, a further variant has been included in the MC-
STL library [5]. In the latter, the cleanup phase is partially done in parallel.

Let us now briefly describe these F&A algorithms:

1. Setup: Each processor takes two blocks, one from each end of the array.
Namely, one left block and one right block.

2. Main phase: While there are blocks, each processor applies the so-called
neutralize method to its two blocks. The neutralize method consists on ap-
plying the sequential partitioning algorithm to the array made by (concep-
tually) concatenating the right block to the left. However, the left and right
pointers to the current elements cannot cross the borders of a block. When a
left (right) block is completely processed (i.e. neutralized), a fresh left (right)
block is acquired and processed.

3. Cleanup: At this point, at most p blocks remain unneutralized. Each author
presents a different cleanup algorithm:
— In [3], while unneutralized blocks remain, one block is taken from each
end and neutralization is applied to them. Then, the unneutralized blocks are
placed between the neutralized blocks. At most p blocks need to be swapped
and this is done sequentially. Finally, sequential partition is applied to the
range of blocks with unprocessed elements.
— In [5], all unneutralized blocks are placed between the neutralized blocks.
Then, the parallel partitioning algorithm is applied recursively to this range.
The number of processors is divided by two in each call until there is only one
processor or block. Finally, the remaining range is partitioned sequentially.

The main parallel phase takes Θ(n/p) parallel time. The cleanup phase takes
Θ(bp) sequential time in [3]. Rather, in [5], it takes Θ(b log p) parallel time.

3 The New Parallel Cleanup Phase

In this section, we present our cleanup algorithm. It avoids extra comparisons
and swaps the elements fully in parallel. We have applied it on the top of
Strided, Blocked and F&A. First, we introduce the terminology. Then, we
present the data structure on which the algorithm relies. It follows the cleanup



Parallel Partition Revisited 145

algorithm itself. Finally, we analyze the resulting Strided, Blocked and F&A
algorithms.

Terminology. In the following, we shall use the following terms to describe our
algorithm. A subarray is the basic unit of our algorithm and data structure. The
splitting position v of an array is the position that would occupy the pivot after
partitioning. A frontier separates a subarray in two consecutive parts that have
different properties. A misplaced element is an element that must be moved by
our algorithm. We denote by m the total number of misplaced elements and by
M the total number of subarrays that may have misplaced elements.

The Case of Blocked. In this case, subarrays correspond with exactly one
of the p pieces. Moreover, v can be easily known after the parallel phase. The
frontier of a subarray corresponds with the position that would occupy the pivot
after partitioning this subarray. Thus, a frontier defines a left and a right part.
A misplaced element corresponds either to an element smaller than the pivot
that is on the right of v (misplaced on the right) or to an element greater than
the pivot that is on the left of v (misplaced on the left). The total number of
subarrays that may have misplaced elements (M) is at most p.

The Case of F&A. In this case, a subarray corresponds to one block. The
frontier separates a processed part from an unprocessed part. The processed
part of left blocks is the left part and the processed part of right blocks is the
right part. Though v is unknown after the parallel phase, it holds that v is in
some range V = [vbeg, vend]. A misplaced element corresponds either with a
processed element that is in V or with an unprocessed element that is not in V .

We consider now the array of elements made by left blocks and the array of
elements made by right blocks. We denote by β the global border that separates
the left and right blocks (i.e. the point where no more blocks could be obtained).

In left blocks, a misplaced element on the left is an unprocessed element in
a position smaller than vbeg and a misplaced element on the right is a smaller
element than the pivot in a position greater or equal than vbeg. Let μl be the
total number of misplaced elements in left blocks and rank those misplaced
elements starting to count from the leftmost towards the right. In right blocks, a
misplaced element on the left is an element greater than the pivot in a position
smaller or equal than vend and a misplaced element on the right is an unprocessed
element in a position greater than vbeg. Let μr be the total number of misplaced
elements in right blocks and rank those misplaced elements starting to count
from the rightmost towards the left. Note that m = μl + μr and that the total
number of subarrays that may have misplaced elements M is at most 2p, because
there at most p blocks that may contain unprocessed elements and there at most
p blocks that may contain misplaced processed elements.

3.1 The Data Structure

We use a complete binary tree with M leaves (or the next power of two if M is
not a power of two) to know which pairs of elements must be swapped. This tree



146 L. Frias and J. Petit

Fig. 1. Example of our data structure

is shared by all processors and is stored in an array (like a heap, which provides
easy and efficient access to the nodes).

Each leaf stores information of the i-th subarray. Specifically, how many ele-
ments are misplaced to the left and to the right of its frontier (mi

l and mi
r) and

how many elements are in the left and in the right to its frontier (ni
l and ni

r).
The internal nodes accumulate the information of their children but do not add
any new information. In particular, the root stores the information of the array
made of all the subarrays in the leaves.

So, our tree data structure can be considered as a special kind of order-
statistics tree in which the internal nodes have no information by themselves.
An order-statistics tree (see e.g. [8, Sect. 14]) perform rank operations efficiently
using the information of the size of the subtrees.

Figure 1 shows two instances of our tree data structure.



Parallel Partition Revisited 147

3.2 The Algorithm

Tree Initialization Phase. In this phase the tree is initialized. Specifically, two
bottom-up traversals of the tree are needed. Only the first initialization of the
leaves depends on the partition algorithm used in the main parallel phase.

1. First initialization of the leaves. In the case of Blocked, the leaves val-
ues ni

l and ni
r for each subarray i can be trivially computed during the parallel

phase. In the case of F&A, the left (right) blocks that contain unprocessed
elements can be easily known after the parallel phase. The left (right) blocks
that contain misplaced elements but have already been processed can only
be located between the left (right) unprocessed blocks. In order to locate the
latter efficiently, we sort the unneutralized blocks with respect to the block
position in the array. Then, we iterate on left (right) blocks (sequentially) to
the left (right) of the border β until p neutralized blocks have been found or
the leftmost (rightmost) unneutralized block has been reached.

2. First initialization of the non-leaves. Using a parallel reduce operation,
each internal node computes its nj

l and nj
r values from its children. As a

result, the root stores the number of left and right elements in the whole
array. Thus, the splitting point v can be directly deduced.

3. Second initialization of the leaves. The leaves get the values mi
l and mi

r

using ni
l, ni

r and v. At this point, it may turn out that some subarrays have no
misplaced elements. This does not disturb the correctness of our algorithm.

4. Second initialization of the non-leaves. The number of misplaced ele-
ments for the internal nodes are computed using a second parallel reduction
operation on mj

l and mj
r fields.

Parallel Swapping Phase. In this phase, our tree data structure is queried so
that the misplaced elements can be swapped in parallel and no comparisons are
needed. This phase is independent of the specific partitioning algorithm.

The total number of misplaced elements is used to distribute the work equally
among the processors. A range of ranks [ri, si) of misplaced elements to swap
is assigned to each processor. The elements are swapped in ascending rank.
Specifically, the j-th misplaced left element is swapped with the j-th misplaced
right element. To locate the first pair of elements to swap, respective rank queries
are made to the tree. That is, a query is made for the ri left misplaced element
and another for the ri right misplaced element. Misplaced elements are swapped
as long as the rank si is not reached. If the rank si has not yet been reached
but the current subarray has no more misplaced elements, the next subarray is
fetched. Let ci be the position in the tree corresponding to the current subarray.
Then, the next subarray of left misplaced elements is in ci + 1 and the next
subarray of right misplaced elements is in ci − 1.

Completion Phase. This phase depends on the specific partitioning algorithm. In
the case of Blocked, the whole array has already been partitioned and we are
done. In the case of F&A, some unprocessed elements may remain. When this
happens, V is not empty and includes exclusively all the unprocessed elements.



148 L. Frias and J. Petit

In order to obtain a valid partition, we apply log p times our parallel partitioning
algorithm recursively in V using blocks of half their original size until b elements
or less remain. Sequential partition is applied to those remaining elements. Note
that in each recursive call, the size of the problem is at most half the previous
because at least p blocks have been fully processed.

3.3 Cost Analysis

Theorem 1. Blocked and F&A perform exactly n comparisons when using
our cleanup algorithm.

Proof. The tree initialization and the parallel swapping phases perform no com-
parisons for both Blocked and F&A.

In the case of Blocked, the completion phase is empty. Therefore, no com-
parisons are performed during cleanup for Blocked and thus, comparisons are
only performed during the main parallel phase, which are exactly n.

In the case of F&A, after the first main parallel phase n − |V | elements have
been compared and |V | have remained unprocessed. In the next recursive step,
V is the input. Besides, elements can only be compared during a certain parallel
phase and at most once. All the elements must be eventually compared because
our algorithm produces a valid partition. Thus, our cleanup algorithm makes
exactly |V | comparisons, and n comparisons are needed as a whole.

Lemma 1. The tree initialization phase takes Θ(log p) parallel time for
Blocked and F&A.

Proof. The algorithm-independent part takes Θ(log p) parallel time because all
the work is done in parallel, and is dominated by the two parallel reductions,
which can be performed in logarithmic parallel time [9].

In the case of Blocked, the algorithm-dependent part takes constant parallel
time because each leaf can be initialized trivially and in parallel.

In the case of F&A, the algorithm-dependent part takes Θ(log p) parallel
time, because 2p elements are sorted and this takes Θ(log p) parallel time using
p processors [10].

Thus, in both cases, the total cost is Θ(log p) parallel time.

Lemma 2. The parallel swapping phase performs exactly m/2 swaps and re-
quires Θ(m/p) parallel time. In the case of F&A, this parallel time is O(b).

Proof. There are m misplaced elements after the main parallel phase. The paral-
lel swapping phase swaps pairs of misplaced elements so that their final position
is not misplaced. Therefore, m/2 swap operations are needed. Besides, the pairs
are evenly divided among the p processors. Thus swapping all of them takes
Θ(m/p) parallel time. In the case of F&A, m ≤ 2bp, thus parallel swapping
takes O(b) parallel time.

Theorem 2. The cleanup phase takes Θ(m/p + log p) parallel time for
Blocked and the whole partition takes Θ(n/p + log p) parallel time.



Parallel Partition Revisited 149

Table 1. Summary of costs for Blocked and F&A algorithms

Blocked

total comparisons total swaps parallel time

original tree original tree original tree

main n ≤ n/2 Θ(n/p)

cleanup vmax − vmin 0 m/2 m/2 Θ(vmax − vmin) Θ(m/p + log p)

total n + vmax − vmin n ≤ n+m
2
≤ n+m

2
O(n) Θ(n/p + log p)

F&A

comparisons swaps parallel time

original tree original tree original tree

main n− |V | ≤ n−|V |
2

Θ(n/p)

cleanup ≤ 2bp |V | ≤ 2bp ≤ m/2 + |V | Θ(b log p) Θ(log2 p + b)

total ≤ n + 2bp n ≤ n−|V |
2

+ 2bp ≤ n+m
2

+ |V | Θ(n/p + b log p) Θ(n/p + log2 p)

Proof. From Lemmas 1 and 2 follows that the cleanup phase takes Θ(m/p+log p)
parallel time for Blocked. Given that m = O(n), the whole Blocked algorithm
takes Θ(n/p + log p) parallel time in the average and in the worst-case.

Theorem 3. Consider p ≤ b. The cleanup phase takes Θ(log2 p + b) parallel
time for F&A and the whole partition takes Θ(n/p + log2 p + b) parallel time.

Proof. F&A takes T (n, p) = Θ(n/p) + C(b, p), where C(b, p) is the cost of our
cleanup algorithm. C(b, p) = b + log p + T ′(b/2, log p) parallel time, and T ′ is
defined by the following recurrence:

T ′(b, i) =

{
O(3b + log p) + T ′(b/2, i − 1) if i > 1,

O(2b/p) otherwise.

There are 2βp blocks at the beginning of each recursive step and log p − 1
recursive steps are needed. Thus, C(b, p) = O(log2 p + b) parallel time.

Theorem 3 improves previous bounds for F&A (provided log p ≤ b, which is of
practical relevance).

Table 1 summarizes worst-case results for Blocked and F&A algorithms.

4 Implementation

Since implementations of Strided were not available, we have resorted to im-
plement it ourselves. We have also implemented our Blocked variant, which
improves Strided cache performance. As for F&A, we have taken its imple-
mentation from MCSTL 0.7.3-beta and we have implemented it ourselves.

Our implementation of F&A and the one in MCSTL differ in the following:
a) ours statically assigns the initial work and, so, avoids mutual exclusion here;
b) ours does not use volatile variables and critical regions are slightly simpler;
and c) ours avoids redundant comparisons using a better book-keeping.



150 L. Frias and J. Petit

On the other hand, we have implemented our cleanup algorithm on the top
of the previous four algorithms.

The implementation is available at http://www.lsi.upc.edu/∼lfrias. It uses C++

and OpenMP. Besides, it follows the specification of the partition function of
the STL, so that it can be used instead of the sequential implementation.

5 Experimental Analysis

We have analyzed Strided, Blocked, and F&A with and without our cleanup
algorithm.

The tests have been run on a machine with 4GB of main memory and two
sockets, each one with an Intel Xeon quad-core processor at 1.66GHz with a
shared L2 cache of 4MB shared among two cores. Thus, there are 8 cores in
total. We have used the GCC 4.2.0 compiler with the -O3 optimization flag.

All tests have been repeated 100 times; figures show averages.

Basic Evaluation. We have first analyzed the speedup of partitioning in parallel
a large number of random integers. The speedup is always measured with respect
to the sequential partition algorithm of the STL. The block size b has been set
to 104 (see the reason below).

Figure 2 shows the results. In this figure, Strided refers to our implemen-
tation of Strided, BlockedStrided refers to our implementation of Blocked,
F&A MCSTL refers to the MCSTL implementation of F&A, F&A refers to our
own implementation of F&A. We add the suffix tree to the previous labels to
refer to the algorithm with our modified parallel cleanup phase.

These results show that F&A is better than Blocked, which is better than
Strided. Whereas the speedup of Strided is nonexistent for more than two
threads, Blocked performs reasonably well and our F&A implementation
achieves some better results than the MCSTL F&A. Besides, using our cleanup
phase maintains the same speedups for Strided and Blocked and improves
slightly the speedup of F&A, making it almost perfect for up to 4 threads.

The awful performance of Strided is due to its high cache miss ratio; its
behavior clearly contrasts with Blocked (which uses blocks of elements rather
than individual elements).

In order to understand the loss of performance when using more than 5 threads
we have devised two new experiments. The first one reproduces the previous
experiment but uses a slower comparison function. Its results are shown in Fig. 3.
In this case, all algorithms show similar behavior and excellent speedups with up
to 8 threads. Specifically, there is not much of a difference whether our cleanup
phase is used or not. Our second experiment has consisted in measuring the
speedup of a trivial parallel program to compute the sum of two arrays. The
resulting speedups (not shown) are also not optimal for the biggest number of
threads. So, we can conclude that memory bandwidth is limiting the efficiency
of the partitioning algorithms, which are demanding with regard to I/O.



Parallel Partition Revisited 151

 0

 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5  6  7  8

sp
ee

du
p

thr

input(int, rand) n(100000000) block(10000)

Strided_tree
Strided

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

Fig. 2. Parallel partition speedup, n =
108 and b = 104

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8

sp
ee

du
p

thr

input(hcomp, rand) n(100000000) block(10000)

Strided_tree
Strided

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

Fig. 3. Parallel partition speedup for
costly <, n = 108 and b = 104

 0

 1

 2

 3

 4

 5

 6

 7

 100  1000  10000  100000  1e+06

sp
ee

du
p

block

input(int, rand) n(100000000) thr(8)

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

Fig. 4. Parallel partition with varying
block size, n = 108 and num threads = 8

 0

 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5  6  7  8

sp
ee

du
p

thr

input(int, rand) n(100000000) block(10000)

Strided_tree
Strided

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

Fig. 5. Parallel quickselect speedup, n =
108 and b = 104

Influence of Block Size. Several algorithms rely on a block size parameter b. In
order to determine its optimal value, we have run various tests, with 8 threads
and different values of b. The results in Fig. 4 show that, except for very small
block sizes, the performance is not much affected. Besides, given that for smaller
input sizes, big block sizes are not convenient, our selection has been b = 104.

Operations Count. In order to analyze the behavior of the cleanup phase in
more detail, we have counted swap and comparison operations. Figures 6 and 7
show respectively the number of extra comparisons and swaps with respect to
the sequential implementation. They are depicted divided by the block size.

Figure 6 gives an experimental proof of Theorem 1. Combining our cleanup
algorithm with the original MCSTL algorithm does not achieve the optimality in
the number of comparisons, because this implementation makes extra compar-
isons whenever a new block is fetched in the main parallel phase. Specifically, our
experiments show that two comparisons are repeated per block in the average.

Figure 7 shows that our cleanup algorithm does not need more swaps than
the original cleanup algorithms. Essentially, the same number of extra swaps are
needed. In the case of F&A, we could not give such an equality analytically.



152 L. Frias and J. Petit

 0

 2

 4

 6

 8

 10

 12

 1  2  3  4  5  6  7  8

ex
tr

a 
co

m
pa

ris
on

 o
pe

ra
tio

ns
 (

/b
lo

ck
 s

iz
e)

thr

input(int, rand) n(100000000) block(10000)

Strided_tree
Strided

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

Fig. 6. Number of extra comparisons, n =
108 and b = 104

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1  2  3  4  5  6  7  8

ex
tr

a 
sw

ap
 o

pe
ra

tio
ns

 (
/b

lo
ck

 s
iz

e)

thr

input(int, rand) n(100000000) block(10000)

Strided_tree
Strided

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

Fig. 7. Number of extra swaps, n = 108

and b = 104

As a by product, these results show that the number of misplaced elements
resulting from the parallel phase is really small, no matter the partitioning al-
gorithm. In particular, Strided is the algorithm that performs less extra oper-
ations (for a random input of integers). However, its performance is the worst
because of its bad cache usage.

Application: Quickselect. Quicksort and quickselect are typical applications of
partitioning. As quicksort offers two (not exclusive) ways to be parallelized —
parallelizing the partitioning and parallelizing the independent work by divide
and conquer—, we found more interesting analysing quickselect. For this test,
we have made that the STL nth_element function calls the parallel partitioning
algorithms in this paper instead of the sequential (unless the array is small).

The results are shown in Fig. 5. These are coherent with those of partition but
different given that the relative behavior between the algorithms changes slightly
with the size of the input. First, our F&A implementation advantage increases.
Second, our cleanup algorithm harms a little F&A based quickselect. Indeed,
in our experiments we have observed that for a big number of threads and as
input gets smaller, using our cleanup algorithm with F&A is counterproductive.
Finally, Fig. 5 shows that the simple Blocked algorithm performs quite well.

6 Conclusions

In this paper we have presented, implemented and evaluated several parallel
partitioning algorithms suitable for multi-core architectures.

From an algorithmic point of view, we have described a novel cleanup par-
allel algorithm that does not disregard comparisons made during the parallel
phase. This cleanup has successfully been applied to three partitioning algo-
rithms: Strided, Blocked (a cache-aware implementation of the former) and
F&A. In the case of Strided and Blocked, a benefit of our cleanup is re-
ducing its parallel time in the worst case from Θ(n) to Θ(n/p + log p). In the
case of F&A, we have shown how to modify it to reduce its parallel time from



Parallel Partition Revisited 153

Θ(n/p+b log p) to Θ(n/p+log2 p). Unlike their original versions, these algorithms
perform the minimal number of comparisons when using our cleanup phase.

As automatic parallelization is still limited, and as parallel programming is
hard and expensive, the use of parallel libraries is a simple way to benefit from
multi-core processors. From this engineering perspective, we have contributed
carefully designed implementations of the afore mentioned algorithms that are
compliant with the specification of STL partition.

Finally, and from an experimental point of view, we have conducted an eval-
uation to compare those algorithms and implementations. According to our ex-
periments, the partitioning algorithm of choice is F&A, because it scales nicely.
Moreover, our implementation performs slightly better than the one in MCSTL.
However, the results also show that, in practice, the benefits of our cleanup al-
gorithm are limited. This happens because the number of misplaced elements
after the parallel phase is very small.

Our experiments also show that I/O between the memory and the processor
limits the performance achieved by parallel implementations as the number of
threads increases. It remains to be further investigated how these results change
for a bigger number of available cores or/and memory bandwidth.

References

1. Heidelberger, P., Norton, A., Robinson, J.T.: Parallel quicksort using fetch-and-
add. IEEE Trans. Comput. 39(1), 133–138 (1990)

2. Francis, R.S., Pannan, L.J.H.: A parallel partition for enhanced parallel quicksort.
Parallel Computing 18(5), 543–550 (1992)

3. Tsigas, P., Zhang, Y.: A simple, fast parallel implementation of quicksort and its
performance evaluation on SUN enterprise 10000. In: 11th Euromicro Workshop
on Parallel, Distributed and Network-Based Processing (PDP 2003), pp. 372–381
(2003)

4. Liu, J., Knowles, C., Davis, A.: A cost optimal parallel quicksorting and its imple-
mentation on a shared memory parallel computer. In: Pan, Y., Chen, D.-x., Guo,
M., Cao, J., Dongarra, J. (eds.) ISPA 2005. LNCS, vol. 3758, pp. 491–502. Springer,
Heidelberg (2005)

5. Singler, J., Sanders, P., Putze, F.: The Multi-Core Standard Template Library. In:
Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp.
682–694. Springer, Heidelberg (2007)

6. International Standard ISO/IEC 14882: Programming languages — C++. 1st edn.
American National Standard Institute (1998)

7. Gottlieb, A., Grishman, R., Kruskal, C.P., McAuliffe, K.P., Rudolph, L., Snir, M.:
The NYU ultracomputer - designing a MIMD, shared-memory parallel machine.
In: ISCA 1998: 25 years of the international symposia on Computer architecture
(selected papers), pp. 239–254. ACM Press, New York, NY, USA (1998)

8. Cormen, T.H., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms, 2nd
edn. The MIT Press, Cambridge (2001)

9. Kumar, V.: Introduction to Parallel Computing. Addison-Wesley, Boston, MA,
USA (2002)

10. JáJá, J.: An introduction to parallel algorithms. Addison-Wesley, Redwood City,
CA, USA (1992)



Broadword Implementation of Rank/Select Queries

Sebastiano Vigna

Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy

Abstract. Research on succinct data structures (data structures occupying space
close to the information-theoretical lower bound, but achieving speed similar to
their standard counterparts) has steadily increased in the last few years. However,
many theoretical constructions providing asymptotically optimal bounds are un-
usable in practise because of the very large constants involved. The study of prac-
tical implementations of the basic building blocks of such data structures is thus
fundamental to obtain practical applications. In this paper we argue that 64-bit
and wider architectures are particularly suited to very efficient implementations
of rank (counting the number of ones up to a given position) and select (finding
the position of the i-th bit set), two essential building blocks of all succinct data
structures. Contrarily to typical 32-bit approaches, involving precomputed tables,
we use pervasively broadword (a.k.a. SWAR—“SIMD in A Register”) program-
ming, which compensates the constant burden associated to succinct structures by
solving problems in parallel in a register. We provide an implementation named
rank9 that addresses 264 bits, consumes less space and is significantly faster
then current state-of-the-art 32-bit implementations, and a companion select9
structure that selects in nearly constant time using only access to aligned data.
For sparsely populated arrays, we provide a simple broadword implementation of
the Elias–Fano representation of monotone sequences. In doing so, we develop
broadword algorithms for performing selection in a word or in a sequence of
words that are of independent interest.

1 Introduction

A succinct data structure (e.g., a succinct tree) provides the same (or a subset of the)
operations of its standard counterpart, but occupies space that is asymptotically near
to the information-theoretical lower bound. A classical example is the (2n + 1)-bit
representation of a binary tree with n internal nodes proposed by Jacobson [1]. Recent
years have witnessed a growing interest in succinct data structures, mainly because of
the explosive growth of information in various types of text indexes (e.g., large XML
trees).

In this paper we discuss practical implementations of two basic building blocks—
rank and select. Given an array B of n bits, we are interesting in ranking the i -th position
(computing the number of ones up to that position) and selecting the i -th bit set to one.

It is known that with an auxiliary data structure occupying o(n) bits it is possible
to answer both rank and select queries in constant time (see, e.g., [2] and references
therein for an up-to-date overview). A complementary approach discards the bit vector
altogether, and stores explicitly the positions of all ones in a fully indexable dictionary,
which represents a set of integers making it possible to access the k-th element of the

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 154–168, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Broadword Implementation of Rank/Select Queries 155

set in increasing order, and to compute the number of elements of the set smaller than a
given integer. These two operations correspond to selection and ranking over the orig-
inal bit vector: by using succinct dictionaries, it is possible to reduce significantly the
space occupancy with respect to an explicit bit vector in the sparse case.

We start from concerns similar to those of González, Grabowski, Mäkinen and
Navarro [3]: it is unclear whether these solutions are usable in practise. The asymp-
totic notation is often hiding constants so large that before the asymptotic advantage
actually kicks in, the data structure is too large. In this case, it is rather fair to say that
the result is interesting mathematically, but has little value as a data structure.

This problem is made even worse by the fact that succinct data structure are exactly
designed for very large data sets, which are useless if the access to the data is slow.
For instance, the authors of [3] argue that word-aligned, O(n) solutions are extremely
more efficient than the optimal counterparts, and that for perfectly reasonable data sizes
they actually occupy less space. To solve locally (wordwise) rank and select the author
use population counting techniques—precomputed tables containing, say, the number
of bits set to one in each possible byte.

In this paper we depart from this approach, arguing that on modern 64-bit architec-
ture a much more efficient approach uses broadword programming. The term “broad-
word” has been introduced by Don Knuth in the fascicle on bitwise manipulation
techniques of the fourth volume of The Art of Computer Programming [4]. Broadword
programming uses large (say, more than 64-bit wide) registers as small parallel comput-
ers, processing several pieces of information at a time. An alternative, more traditional
name for similar techniques is SWAR (“SIMD Within A Register”), a term coined by
Fisher and Dietz [5]. One of the first techniques for manipulating several bytes in par-
allel were actually proposed by Lamport [6].

For instance, a broadword algorithm for sideways addition (counting the number of
ones in a register—of course, part of computing ranks) was presented in the second
edition of the textbook “Preparation of Programs for an Electronic Digital Computer”,
by Wilkes, Wheeler, and Gill, in 1957. One of the contributions of this paper is a broad-
word counterpart to select bits in a word.

The main advantage of broadword programming is that we gain more speed as word
width increases, with almost no effort, because we can process more data in parallel.
Note that, in fact, broadword programming can even be used to obtain better asymp-
totic results: it was a basic ingredient for the success of fusion trees in breaking the
information-theoretical lower bound for integer sorting [7].

Using broadword programming, we are able to fulfil at the same time the following
apparently contradictory goals:

– address 264 bits1

– use less space;
– obtain faster implementations.

A second concern we share with the authors of [3] is that of minimising cache misses,
as memory access and addressing is the major real bottleneck in the implementation
of rank/select queries on large-size arrays. To that purpose, we interleave data from

1 All published practical implementations we are aware of address 232 bits; this is a serious
limitation, in particular for compressed structures.



156 S. Vigna

different tables so that usually a single cache miss is sufficient to find all information
related to a portion of the bit array (we wish to thank one of the anonymous referees for
pointing out that the idea already appeared in [8]).

We are also very careful of avoiding tests whenever possible. Branching is a very
expensive operation that disrupts speculative execution, and should be avoided when
possible. All the broadword algorithms we discuss contain no test and no branching.

We concentrate on 64-bit and wider architecture, but we cast all our algorithms in a
64-bit framework to avoid excessive notation: the modification for wider registers are
trivial. We have in mind modern processors (in particular, the very common Opteron
processor) in which multiplications are extremely fast (actually, because the clock is
slowed down in favour of multicores), so we try to use them sparingly, but we allow
them as constant-time operations. While this assumption is debatable on a theoretical
ground, it is certainly justified in practise, as experiments show that on the Opteron
replacing multiplications by shifts and additions, even in very small number, is not
competitive.

The C++/Java code implementing all data structures in this paper is available under
the terms of the GNU Lesser General Public License at http://sux.dsi.umimi.it/.

2 Notation

Consider an array b of n bits numbered from 0. We write bi for the bit of index i , and
define

rankb(p) =
∑

0≤i<p

bi 0 ≤ p ≤ n,

that is, as the number of ones up to position p, excluded, and

selectb(r) = max{ p < n | rankb(p) ≤ r }, 0 ≤ r < rankb(n),

that is, as the position of the one of index r , where ones are numbered starting from 0.
When b is clear from the context, we shall omit it.

Note that in the literature there is some variation in the choice of indexing (starting
from one or zero) and in the exact definition of these two primitives (including or not
the one at position p in rank(p)).

To be true, we couldn’t find the 0-based definitions given above in the literature, but
they are extremely natural for several reasons:

– As it always happen with modular arithmetic, starting with 0 avoids falling into
“off-by-one hells”. This consideration is of course irrelevant for a theoretical paper,
but we are in a different mindset.

– In this way, rank(p) can be interpreted as rank[0 . . p)—counting the ones in the
semiopen interval [0 . . p). Counting from zero and semiopen intervals are extremely
natural in programming (actually, Dijkstra felt the need to write a note on the
subject [9]).

– We can define easily, and without off-by-ones, operators such as countb[p . . q) =
rank(q) − rank(p).



Broadword Implementation of Rank/Select Queries 157

In any case, it is trivial to compute other variations of rank and select by suitably off-
seting the arguments and the results.

We use a \ b to denote integer division of a by b, � and � to denote right and left
(zero-filled) shifting, &, | and ⊕ to denote bit-by-bit not, and, or, and xor; x denotes the
bit-by-bit complement of x . We pervasively use precedence to avoid excessive paren-
theses, and we use the same precedence conventions of the C programming language:
arithmetic operators come first, ordered in the standard way, followed by shifts, fol-
lowed by logical operators; ⊕ sits between | and &.

We use Lk to denote the constant whose ones are in position 0, k, 2k, . . . that is, the
constant with the lowest bit of each k-bit subword set (e.g, L8 =
0x01010101010101010101). This constant is very useful both to spread values (e.g.,
12 ∗ L8 = 0x1212121212121212) and to sum them up, as it generates cumulative sums
of k-bit subwords if the values contained in each k-bit subword, when added, do not
exceed k bits. We use Hk to denote Lk � k − 1, that is, the constant with the highest bit
of each k-bit subword set (e.g, L8 = 0x8080808080808080).

Our model is a RAM machine with d-bit words that performs logic operations, addi-
tions, subtractions and multiplications in unit time using 2-complement arithmetic. We
note that albeit multiplication can be proven to require O(log d) basic operations, mod-
ern processors have very fast multiplication (close to one cycle), so designing broad-
word algorithms without multiplications turns out to generate slower code.

3 rank9

We now introduce the layout of our data structure for ranking, which follows a tra-
ditional two-level approach but uses broadword sideways addition (Algorithm 1) for
counting inside a word and interleaving to reduce cache misses. We assume the bit ar-
ray b is represented as an array of words of 64 bits. The bit of position p is located in
the word of index p \ 64 at position p mod 64, and we number bits inside each word in
little-endian style.

To each subsequence of eight words starting at bit position p, called a basic block,
we associate two words:

– the first word (first-level count) contains rank(p);
– the second contains the seven 9-bit values (second-level counts) rank(p + 64k) −

rank(p), for 1 ≤ k ≤ 7, each shifted left by 9(k − 1) bits.

First and second level counts are stored in interleaved form—each first-level count is
followed by its second-level counts. When we have to rank a position p living in the
word w = p \ 64, we have just to sum the first-level count of the sequence starting
at w \ 8, possibly a second-level count (if w mod 8 �= 0) and finally invoke sideways
addition on the word containing p, suitably masked. Note that this apparently involves
a test, but we can get around the problem as follow:

s � (t + (t � 60 & 8)) ∗ 9 & 0x1FF,

where s is the second-level count and t = w mod 8 − 1. When w mod 8 = 0, the
expression t � 60 & 8 has value 8, which implies that s is shifted by 63, obtaining zero
(we are not using the most significant bit of s).



158 S. Vigna

We call the resulting structure rank9 (the name, of course, is inspired by the fact
that it stores 9-bit second-level counts). It requires just 25% additional space, and ranks
are evaluated with at most two cache misses, as when the first-level count is loaded
by the L1 cache, the second-level count is, too. No tests or precomputed tables are
involved.2

The only dependence on the word length d is in the first cumulative phase of side-
ways addition. We need to cumulate at least b bits, where b is a power of two enough
large to express d , that is, b = 	log d
. Thus, this phase requires O(log log d) step.
However, since Algorithm 1, with suitable constants, works up to d = 256, it can be
considered constant time to all practical purposes (as we will never have 2256 bits).

Algorithm 1. The classical broadword algorithm for computing the sideways addition
of x in O(log log d) steps. The first step leaves in each pair of bits the number of ones
originally contained in that pair. The following steps gather partial summations and,
finally, the multiplication sums up them all.

0 x = x − (x & 0xAAAAAAAAAAAAAAAA) � 1
1 x = (x & 0x3333333333333333) + ((x � 2) & 0x3333333333333333)

2 x = (x + (x � 4)) & 0x0F0F0F0F0F0F0F0F0
3 x ∗ L8 � 56

4 k-Bit Comparisons

Given x and y, consider them as sequences of 64 \ k (un)signed k-bit values. We would
like to operate on them so that, in the end, each k-bit block contains 1 in the leftmost
position iff the corresponding pair of k-bit values is ordered. At that point, it is easy to
count how many ones are present using a multiplication. Knuth describes a broadword
expression to this purpose, using the properties of the median (a.k.a. majority) ternary
operator [4]. We just recall the operators we will be using in what follows (the subscript
denotes the block size, while a superscript “u” denotes unsigned comparison):

x ≤u
k y :=

((
((y | Hk) − (x & Hk)) | x ⊕ y

) ⊕ (x & y)
)

& Hk

x ≤k y := (
((y | Hk) − (x & Hk)) ⊕ x ⊕ y

)
& Hk

x >u
k 0 :=

((
((x | Hk) − Lk) | x

))
& Hk

5 select9

We would like to build upon rank9 selection capabilities. To this purpose, we work
backwards, starting from selection in a word, moving to selection in a sequence of

2 Of course, if more than 64 bits per word are available, more savings are possible: for instance,
for 128-bit processors rank16, which uses 16-bit second-level counts, requires just 12.6%
additional space.



Broadword Implementation of Rank/Select Queries 159

words, and finally getting to selection over the bit array. In rank9we conceded a shift-
based access to non-aligned subwords, but in the case of select several accesses are
needed (even in the optimal, non-aligned data structures), so we will limit ourselves
to access only correctly aligned subwords of size d/2i (except, of course, for rank9
access).

The starting consideration for our select-in-a-word broadword algorithm is the ob-
servation that at the end of Algorithm 1 we use just the most significant byte of a mul-
tiplication that provides much more information—namely, the cumulative sums of the
number of ones contained in each byte. If we compare each of these numbers with the
desired index r , we can easily locate the byte containing the r -th one. With a typical
broadword approach, we then solve the problem in the relevant byte in a similar manner.

We are now ready to introduce Algorithm 2. In the first lines we follow exactly
Algorithm 1, building the bytewise cumulative sums s. Then, we compare in parallel
each cumulative sum with r : the number of positive results is exactly the index of the
byte containing the bit of rank r , so we extract it in b already multiplied by eight. To
obtain the bytewise rank �, we subtract from r the value found in the byte starting at bit
b − 8 (if b = 0, � = r ).

We now compute a word z that contains eight copies of the byte starting at position
b (the one containing the bit of rank r ); however, from the j -th copy we just keep bit j .
We now compare each byte in parallel with zero, which make it possible to compute,
with a multiplication by L8, the rank of each bit. We compare the cumulative sums
with eight copies of �; again, the number of positive results is the index of the �-th one,
which we return, summed with b.

We note that, similarly to sideways addition, we need to compute the number of
ones in subwords of size 	log d
. Now, however, we have another constraint: 	log d

copies of each sum must fit into a word, that is, 	log d
2 ≤ d . This constraint cannot be
satisfied with d a power of two unless d ≥ 64.

Again, Algorithm 2 requires O(log log d) operations in the initial phase, and up to
d = 256 the only modifications required are suitable changes to the constants. More-
over, the constant operations significantly outnumber those of the initial phase. Finally,
the algorithm contain several multiplications by L8: they can be replaced by less than
log d shifts and adds, as the number of ones in L8 is very low.

Algorithm 2. Computes the index of the r -th one in x (r < 22	log log d

). If no such bit

exists, computes 72.

0 s = x − ((x & 0xAAAAAAAAAAAAAAAA) � 1)

1 s = (s & 0x3333333333333333) + ((x � 2) & 0x3333333333333333)

2 s = ((s + (s � 4)) & 0x0F0F0F0F0F0F0F0F0) ∗ L8
3 b = ((s ≤8 r ∗ L8) � 7) ∗ L8 � 53 & 7
4 � = r − (((s � 8) � b) & 0xFF)

5 s = (((x � b & 0xFF) ∗ L8 & 0x8040201008040201 >8 0) � 7) ∗ L8
6 b + (((s ≤8 � ∗ L8) � 7) ∗ L8 � 56)



160 S. Vigna

We now approach the problem of constant-time selection inside a block of rank9.
The idea, by now familiar to the reader, is to locate the right word using parallel com-
parisons. More precisely, if s contains the subcount word and we have to locate the bit
of rank r we can just compute

o = ((s ≤u
9 r ∗ L9) � 8) ∗ L9 � 54 & 7

to know the offset in the block of the word containing the bit, and

r − (s � (o − 1 & 7) ∗ 9 & 0x1FF)

to know the rank inside the word. Note that o − 1 & 7 is 63 when o = 0, which implies
that no correction is performed if the bit belongs to the first word in the block.

Binary-search selection. At this point, we could follow the steps of [3] and just per-
form a binary search over blocks, followed by the broadword block search we just
described. Moreover, we could add a simple, one-level inventory that would help locat-
ing more quickly the region in which perform a binary search: we call this approach a
hinted bsearch. In the experimental part, however, we will see that while (hinted) bi-
nary searches have excellent performances on evenly distributed arrays, they give worst
results on uneven distributions.

Selecting in d
√

d words. In general, the approach we described provides selection in√
d words. We are now going to use the broadword approach to provide selection in

practical constant time inside d
√

d words.
The idea is very simple: since by broadword comparison we can quickly locate, in a

list of increasing integers, the first integer larger than a given integer x , given a sequence
of

√
d basic blocks, that we shall call an intermediate block, we can list the

√
d first-

level count of each block and perform selection by first locating the correct basic block,
and then operating as we previously described. Note that since we need just to store the
difference of each first-level count from the first one, we need very few bits (2 log d),
so a constant number of words will suffice. In our main example, we use two words to
store eight 16-bit values containing the first-level counts.

To get to d
√

d words (512, in our example) we repeat again the same trick, but now
we consider a sequence of

√
d intermediate blocks, called an upper block, and record

the
√

d first-level counts of the first basic block of each intermediate block. Using the
parallel comparison operator as we did in the first part of this section, and using suitable
constants (e.g., L16) we can find in constant time the intermediate block and, again in
constant time, the basic block containing the bit we are interested in.

We note that the cost of recording this information is very low: when d = 64 we
need 16 bits for each basic block, which contains 512 bits.

Selecting over the whole bit array. Our interest in selecting over d
√

d words stems
from the fact that, by keeping track of the position of one each d

√
d bits in a primary

inventory space and allocating with care some secondary inventory, we can reduce in
constant time our problem to selection in d

√
d words.

More precisely, we record the position of each d
√

d-th bit. In our example, in the
worst case (density close to 1) this information requires 12.5% additional space. Then,



Broadword Implementation of Rank/Select Queries 161

we allocate one word each α words for a secondary inventory. Consider two bits that ap-
pear consecutively in the primary inventory (in particular, their indices differ by d

√
d),

and let p and q be their positions. For the d
√

d bits inbetween we have at our disposal

q\(αd) − p\(αd)

words. If this number is at least d
√

d, we can record the position of each bit. Otherwise,
we can describe the position of each bit in this range using

log(αd2
√

d) = log α + 5

2
log d

bits, so as long as

log(αd2
√

d) = log α + 5

2
log d ≤ d

2

we can still describe the position of each bit using the upper and lower half of each
word (note that, as we discussed, we are purposely avoiding to manipulate non-aligned
subwords). The process can continue if there is enough space to describe the position
of all d

√
d bits: depending on α, more or less subword sizes can be used.

For the case d = 64, α = 4 is a particularly good value because it generates an
equality in the inequality

log a + 5

2
log d − 1 ≤ d

4
,

which means that we can get to the point where we are recording the positions of all
d
√

d = 512 bits using 128 words of secondary storage. Since these 128 words corre-
spond to 512 = d

√
d words in our bit array, below this size we can use the broadword

techniques described in the previous paragraph.
All in all, select9 uses an underlying rank9 structure, plus additional data oc-

cupying at most 37.5% of the original bit array. To rank a bit r , we first compute the
positions p and q of the bit r ′ = r −(r mod d

√
d) and of the bit r ′+d

√
d , respectively,

using the primary inventory. Then, we compute the span associated to r ′

s = (q\d)\α − (p\d)\α,

which represent the number of words from the secondary inventory we can use for the
d
√

d bits after r ′. Finally, to locate the position of the bit of position r , we proceed as
follows:

1. if s < 2, the bit can be located inside the basic block to which r ′ belongs;
2. if s < 16, the bit can be located using a two-word index collecting the first-level

counts of an intermediate block;
3. if s < 128, the bit can be located using an eighteen-word two-level index collect-

ing the first-level counts of an upper block, organised as we described above; note
that by storing the two indices consecutively, we effectively interleave the data,
generating a single cache miss for both reads;

4. if s < 256, we store explicitly the offset of each bit from r ′ (whose rank is known
by first-level counting) in 16 bits;



162 S. Vigna

5. if s < 512, we store explicitly the offset of each bit in 32 bits;
6. otherwise, we have enough space to store explicitly all bit positions.

It is easy to check that the choice α = 4 makes it possible to store any of the alternative
information required by the data structure.

In the worst case, select9 will generate four cache misses: one to access the pri-
mary inventory, one to access the secondary inventory, one to locate the correct basic
block, and one to select inside a basic block. The only test required when performing
selection is comparing the value of s with the constants above.3

6 simple

The idea of broadword selection can be easily extended to a bit search algorithm that
quickly locates a bit in a bit array. Assuming we want to locate the bit of rank r in a
sequence of words, we simply have to load the first word into x and loop around the
first three lines of Algorithm 2: if r < s � 56, we exit the loop and proceed as usual.
Otherwise, we load x with the content of the next word, decrease r by s �56 and iterate
again.

Armed with this tool, we implement simple, an almost naive but surprisingly ef-
ficient select structure that does not depend on rank9. The structure is a two-level
inventory similar to the darray dense select structure described in [10], but it has
been suitably modified to have reduced access time an halved space occupancy in spite
of 64-bit addressing.

We keep an inventory of ones at position multiples of 	Lm/n
, where L is a constant
limiting the size of the inventory (L = 8192 in our implementation). For each bit in the
inventory, we allocate a number of words (again, upper bounded by a constant M)
depending on the density. Inside, we record a 16-bit subinventory (if 16 bits are not
enough, we use the space to point at a spill buffer where we record each bit position
individually). We use the inventory and the subinventory to locate a position that is near
the bit we intend to select, and then we perform a linear broadword bit search. The
experimental results about this algorithm show that, in fact, it is the fastest, even in the
presence of uneven bit distribution. It also has the advantage of providing just selection
with a very limited space usage.

The memory occupancy depend mainly by the bound M . Due to the speed of broad-
word bit search, we have been able to halve it with respect to the value used in [10],
without a noticeable effect on performance. As a result, we have almost halved the
space occupancy.

7 Elias–Fano Representation of Monotone Sequences

For sparse arrays, we provide a 64-bit implementation of the Elias–Fano representation
of monotone sequences [11,12], which is one of the earliest examples of a fully index-
able dictionary. We briefly recall the main idea, translated into the bit array scenario: we

3 We remark that we claimed in the introduction that our broadword algorithms contain no
branching; but there is no contradiction, as this part of select9 is not broadword.



Broadword Implementation of Rank/Select Queries 163

record all bits positions, but while the lower � = �log(n/m)� bits are recorded explic-
itly, the u = 	log n
 − �log(n/m)� upper bits are recorded in an array U of m + u \ 2�

bits as follows: if the value of the upper u bits of the position of the i -th one is k, we
set the bit in position i + k. It is easy to recover the original value by selecting the
i -th bit in U and subtracting i . The space occupancy is bounded by 2m + m log(n/m)

bits [11], which is almost optimal as specifying a set of m elements out of n requires
≈ m log(n/m) bits when m � n.

The only component we can improve is actually selection in U , which however is a
very well-behaved dense array, so we use a version of simple that is wired to density
1/2.

8 Experiments

We performed a number of experiments on a Linux-based system sporting a 64-bit
Opteron processor running at 2814.501 MHz with 1 MiB of first-level cache. The tests
show that on 64-bit architectures broadword programming provides significant perfor-
mance improvements. We compiled using gcc 4.1.2 and options -O9.

Table 1. Percentage of space occupied by various select structures in a densely (50%) populated
bit array. Note that the percentage shown for select9 and hinted bsearch includes 25% for
rank9. The preposterous values shown for Clark’s structure are due to the very large lookup
table.

Size select9 Hinted bsearch simple darray Kim Clark
1 Ki 62.50% 37.50% 25.00% 67.19% 86.72% 544073.24%
16 Ki 56.25% 37.50% 14.45% 28.81% 72.80% 34074.85%
256 Ki 56.13% 37.23% 13.79% 27.73% 71.57% 2184.99%
4 Mi 56.12% 37.25% 13.78% 27.56% 71.67% 192.81%
64 Mi 56.12% 37.25% 13.78% 27.56% 71.67% 68.30%
1 Gi 56.13% 37.25% 13.78% 27.56% 71.67% 60.52%

The experimental setting for benchmarking operations that require few nanoseconds
must be set up carefully. We generate random bit arrays and store a million test posi-
tions. During the tests, the positions are read with a linear scan, producing a minimal
interference; generating random positions during the tests causes instead a significant
perturbation of the results, mainly due to the slowness of the modulo operator. The tests
are repeated ten times and averaged. We measure user time using the system function
getrusage().

We provide results for dense (50%) and sparse (1%) arrays of different sizes4. In
the first case, however, we take care of experimenting over a highly uneven bit array
(almost empty in the first half, almost full in the second half). Test positions are gener-
ated so to fall approximately half of the time in the dense part, and half of the time in
the sparse part. The results obtained using this method highlight serious limitations of
some approaches (e.g., binary search) which are not evident in experiments involving

4 Note that we use the NIST-endorsed prefixes: Ki=210, Mi=220, etc.



164 S. Vigna

Table 2. Nanoseconds per rank and select operations in densely populated (50%) bit arrays of
increasing size. The space usage of rank structures is shown on their label; the space shown for
Jacobson’s structure is for the 1 Gi array (for smaller sizes, it grows significantly, as it happens
for Clark’s structure in Table 1: at size 264, it is still 37.5%; it becomes space-competitive with
rank9 beyond 2100 bits). As noted in [3], once out of the cache access time increase linearly
due to the memory-address resolution process.

 1

 10

 100

 1000

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09  1e+10

ra
nk

 ti
m

e 
(n

s)

bits

rank9
rank9 pc
BitRankF
darray

Kim
Jacobson

 10

 100

 1000

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09  1e+10

se
le

ct
 ti

m
e 

(n
s)

bits

select9
select9 pc
Hinted search

simple
BitRankF
darray

Kim
Clark

Size rank9 (25%) rank9 pc BitRankF (37.5%) Kim (37.5%) darray (25%) Jac. (> 66.85%)
1 Ki 8.2 9.7 10.3 14.0 13.1 97.8
16 Ki 8.1 9.8 10.3 14.0 13.0 97.6
256 Ki 8.3 9.9 10.6 14.0 13.3 98.5
4 Mi 16.5 19.4 25.7 25.0 24.3 123.5
64 Mi 81.9 103.7 110.3 115.0 112.8 245.1
1 Gi 121.1 141.1 165.4 166.0 164.6 393.3

Size select9 select9 pc Hinted bsearch simple BitRankF darray Kim Clark
1 Ki 45.0 60.0 34.5 41.3 82.3 44.0 47.5 166.4
16 Ki 45.3 63.2 37.8 35.8 103.4 44.0 48.2 179.8
256 Ki 45.3 63.8 38.2 36.1 121.4 44.0 50.0 195.7
4 Mi 58.8 76.6 49.6 42.6 144.4 56.0 98.4 223.0
64 Mi 245.7 263.7 213.6 145.0 344.6 185.0 320.2 485.1
1 Gi 367.5 383.1 316.5 230.2 978.2 323.0 557.5 599.1



Broadword Implementation of Rank/Select Queries 165

Table 3. Nanoseconds per select operation in a densely (50%) populated bit array of increasing
size with uneven bit distribution: almost all bits in the first half are zeroes, and almost all bits
in the second half are ones. The “switch” effect typical of structures that change their strategy
depending on the density is very visible. Note the poor performance on large arrays of methods
based on binary search.

 10

 100

 1000

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09  1e+10

se
le

ct
 ti

m
e 

(n
s)

bits

select9
Hinted search

simple
BitRankF
darray

Kim
Clark

Size select9 Hinted bsearch simple BitRankF darray Kim Clark
1 Ki 45.2 36.2 38.2 71.0 44.0 47.4 247.6
16 Ki 51.3 45.5 120.5 102.0 148.0 47.9 122.4
256 Ki 33.8 51.6 20.7 121.0 52.0 48.0 158.9
4 Mi 35.0 62.6 28.1 143.9 34.0 73.9 341.1
64 Mi 161.3 224.3 101.7 343.9 119.0 295.1 301.8
1 Gi 209.7 366.5 144.8 988.4 195.0 510.9 434.9

Table 4. Percentage of space occupied by various select structures in a densely (50%) populated
uneven bit array (see Table 3)

Size select9 Hinted bsearch simple darray Kim Clark
1 Ki 56.25% 37.50% 25.00% 67.19% 94.53% 544073.24%
16 Ki 56.25% 37.50% 14.45% 28.81% 83.06% 34074.85%
256 Ki 56.20% 37.38% 63.96% 40.25% 80.93% 2184.99%
4 Mi 56.19% 37.37% 45.17% 43.23% 80.80% 192.81%
64 Mi 56.19% 37.38% 45.95% 43.61% 80.76% 68.30%
1 Gi 56.19% 37.38% 45.94% 43.60% 80.77% 60.52%

uniform bit arrays. Our results suggest that practical implementations of rank/select
queries should be always tested against uneven bit arrays (and possibly even more ad-
versarial settings).

We chose to compare our structures against practical ones: the code for the Bi-
tRankF structure proposed in [3] was provided by the authors. The authors of [10]



166 S. Vigna

Table 5. Nanoseconds per select operation in bit arrays of increasing size with sparse (1%) bit
population

 10

 100

 1000

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09  1e+10

se
le

ct
 ti

m
e 

(n
s)

bits

Elias-Fano
select9
simple

BitRankF
sarray

Kim
Clark

Size Elias–Fano select9 simple BitRankF sarray Kim Clark
1 Ki 33.6 45.1 24.5 61.3 25.9 47.8 432.1
16 Ki 44.2 56.8 26.7 98.8 45.9 48.0 92.7
256 Ki 45.6 11.8 27.4 120.3 47.8 48.0 138.8
4 Mi 45.6 10.3 30.7 143.7 47.9 74.3 487.4
64 Mi 52.5 17.0 79.4 346.1 55.2 258.4 180.2
1 Gi 157.7 52.9 160.2 969.7 199.2 554.9 322.6

provided code for their implementation of the Elias–Fano5 representation (darray6

and sarray), and for the byte-oriented select structure described by Kim et al. in [13].7

All these structures exploit byte or word alignment to increase speed, as previous ex-
periments have made clear [3] that non-aligned structures are extremely slow. Nonethe-
less, to let the reader have a feeling about what happens using o(n)-space constant-time
structures we also provide results about Jacobson’s [1] classic rank implementation and
Clark’s [14] select implementation.8,9

5 It should be noted that in [10] no mention is made of the work of Elias and Fano. Moreover,
their bit subdivision (using 	log(n/m)
 lower bits) causes a larger space occupation.

6 We have decreased the bound M in darray to reduce further space occupancy; we can do so
with an almost immaterial impact on performance due to the speed of broadword bit search.

7 The authors of the latter paper, in spite of several communication attempts, did not provide
code for their structures.

8 The code for the latter was kindly provided by the authors of [3].
9 We wish to thank one of the anonymous referees for pointing us at a series of papers about

practical rank/select structures [8,15]. Unfortunately, at the time of this writing the authors
distribute publicly just a few header files and two binary libraries for an unspecified operating
system, without any source code or documentation.



Broadword Implementation of Rank/Select Queries 167

Table 6. Percentage of space occupied by various select structures in bit arrays of increasing size
with sparse (1%) bit population. Note that the percentage shown for select9 includes 25%
for rank9. Elias–Fano and sarray do not require the original bit array (which contributes an
additional 100% to the other structures).

Select Elias–Fano select9 simple sarray Kim Clark
1 Ki 84.77% 56.25% 25.00% 98.44% 45.31% 544073.24%
16 Ki 13.94% 50.39% 10.55% 15.33% 26.12% 34074.85%
256 Ki 9.45% 50.15% 9.01% 9.81% 22.65% 2184.99%
4 Mi 9.37% 50.13% 9.01% 9.64% 22.55% 192.81%
64 Mi 9.38% 50.13% 9.01% 9.64% 22.52% 68.30%
1 Gi 9.37% 50.13% 9.01% 9.63% 22.50% 60.52%

Looking at Table 2, rank9 is the clear winner among ranking methods. For com-
pleteness, we provide results for a variant that trades broadword programming for pop-
ulation counting (“pc”), a standard table-based technique used in [3] that turns out to
be slower.10 The situation for select is more varied, and also Table 3 and 4 should be
taken into account. Essentially, simple turns out to be the fastest and more space effi-
cient data structure on evenly distributed arrays. If constant time is required in spite of
adversarial distribution, select9 is highly competitive if paired with rank9.

The results for selection on sparse arrays are reported in Table 5 and 6. Our im-
plementation of the Elias–Fano representation provides support for very large (64-bit)
arrays while keeping the excellent space occupancy of sarray (for lack of space we
cannot report results on ranking, which are however in the same line). Among imple-
mentations requiring the original bit array, select9 has excellent performance even
on very large arrays. Its space occupancy is also very competitive if it used in con-
junction with rank9, albeit simple has also very good timings, and the lowest space
occupancy.

9 Conclusions

We have introduced some new ideas about the application of broadword program-
ming [4] to bit-level manipulations typical of succinct static data structures. For densely
populated arrays, rank9 and simple are generally the best structures, both in term
of time, space, and addressability. If a more robust performance guarantee is required,
select9 provide the fastest practical constant-time operations. For sparsely popu-
lated arrays, the Elias–Fano representation of monotone sequences, supported by dense
broadword selection, provides good speed and nearly optimal space occupancy.

We wish to thank one of the anonymous referees for pointing us to Elias’s paper [11],
which in turn led us to Fano’s memorandum [12].

10 It is interesting to remark that testing in isolation broadword programming vs. popcounting for
ranking or selecting in a word we obtained opposite results. This happens because when testing
popcounting in isolation the whole processor cache and branch-prediction unit are servicing a
single, small loop.



168 S. Vigna

References

1. Jacobson, G.: Space-efficient static trees and graphs. In: 30th Annual Symposium on Foun-
dations of Computer Science, Research Triangle Park, North Carolina, pp. 549–554. IEEE,
Los Alamitos (1989)

2. Golynski, A.: Optimal lower bounds for rank and select indexes. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 370–381. Springer,
Heidelberg (2006)

3. Gonzàlez, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation of rank and
select queries. In: Poster Proceedings Volume of 4th Workshop on Efficient and Experimental
Algorithms (WEA 2005), pp. 27–38. CTI Press, Ellinika Grammata (2005)

4. Knuth, D.E.: The Art of Computer Programming. Pre-Fascicle 1A. Draft of Section 7.1.3:
Bitwise Tricks and Techniques (2007)

5. Fisher, R.J., Dietz, H.G.: Compiling for SIMD within a register. In: Carter, L., Ferrante, J.,
Sehr, D., Chatterjee, S., Prins, J.F., Li, Z., Yew, P.-C. (eds.) LCPC 1998. LNCS, vol. 1656,
pp. 290–304. Springer, Heidelberg (1999)

6. Lamport, L.: Multiple byte processing with full-word instructions. Comm. ACM 18(8), 471–
475 (1975)

7. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with fusion trees.
J. Comput. System Sci. 47(3), 424–436 (1993)

8. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation for bal-
anced parentheses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 159–172. Springer, Heidelberg (2004)

9. Dijkstra, E.W.: Why numbering should start at zero. EWD, p. 831 (1982)
10. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary. In: Proc.

of the Workshop on Algorithm Engineering and Experiments, ALENEX 2007, SIAM,
Philadelphia (2007)

11. Elias, P.: Efficient storage and retrieval by content and address of static files. J. Assoc. Com-
put. Mach. 21(2), 246–260 (1974)

12. Fano, R.M.: On the number of bits required to implement an associative memory. In: Mem-
orandum 61, Computer Structures Group, Project MAC, MIT, Cambridge, Mass., n.d (1971)

13. Kim, D.K., Na, J.C., Kim, J.E., Park, K.: Efficient implementation of rank and select func-
tions for succinct representation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503,
pp. 315–327. Springer, Heidelberg (2005)

14. Clark, D.R.: Compact Pat Trees. PhD thesis, University of Waterloo, Waterloo, Ont., Canada
(1998)

15. Delpratt, O., Rahman, N., Raman, R.: Compressed prefix sums. In: van Leeuwen, J., Ital-
iano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS,
vol. 4362, pp. 235–247. Springer, Heidelberg (2007)



Efficient Implementations of Heuristics for

Routing and Wavelength Assignment

Thiago F. Noronha1, Mauricio G.C. Resende2, and Celso C. Ribeiro3

1 Department of Computer Science, Catholic University of Rio de Janeiro
Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ 22453-900, Brazil

tfn@inf.puc-rio.br
2 Algorithms and Optimization Research Department, AT&T Labs Research

Florham Park, NJ 07932-0971, United States
mgcr@research.att.com

3 Department of Computer Science, Universidade Federal Fluminense
Rua Passo da Pátria, 156, Bloco E, Niterói, RJ 24210-240, Brazil

celso@ic.uff.br

Abstract. The problem of Routing and Wavelength Assignment in
Wavelength Division Multiplexing (WDM) optical networks consists in
routing a set of lightpaths and assigning a wavelength to each of them,
such that lightpaths whose routes share a common fiber are assigned to
different wavelengths. When the objective is to minimize the total num-
ber of wavelengths used, this problem is NP-hard. The current state-of-
the-art heuristics were proposed in 2007 by Skorin-Kapov. The solutions
provided by these heuristics were near-optimal. However, the associated
running times reported were high. In this paper, we propose efficient im-
plementations of these heuristics and reevaluate them on a broader set
of testbed instances.

1 Introduction

Information in optical networks is transmitted through optical fibers as optical
signals. Each link operates at a speed of the order of terabits per second, which
is much faster than the currently available electronic devices for signal reception
and transmission. Wavelength Division Multiplexing (WDM) technology allows
more efficient use of the huge capacity of optical fibers, as far as it permits
the simultaneous transmission of different channels along the same fiber, each
of them using a different wavelength. An all-optical point-to-point connection
between two nodes is called a lightpath. It is characterized by its route and
the wavelength in which it is multiplexed. Two lightpaths may use the same
wavelength, provided they do not share any common fiber. Such networks require
a large number of available wavelengths, especially when wavelength conversion
is not available.

Given an optical network and a set of lightpath requests, the problem of
Routing and Wavelength Assignment (RWA) in WDM optical networks consists

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 169–180, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



170 T.F. Noronha, M.G.C. Resende, and C.C. Ribeiro

in routing the set of lightpaths and assigning a wavelength to each of them,
such that lightpaths whose routes share a common fiber are assigned to different
wavelengths. Variants of RWA are characterized by different optimization criteria
and traffic patterns, see e.g. [3,13]. We consider the min-RWA offline variant, in
which all lightpath requests are known beforehand. No wavelength conversion is
available, i.e. a lightpath must be assigned the same wavelength on all fibers in its
route. The objective is to minimize the total number of wavelengths used. This
problem is also known as the Path Coloring Problem. Erlebach and Jansen [4]
showed that min-RWA is NP-hard.

State-of-the-art heuristics for min-RWA are discussed in the next section. Im-
plementation issues are discussed and new heuristics are proposed in Section 3.
Computational experiments illustrating the efficiency of the new implementa-
tions on a broad set of test instances are reported in Section 4. Concluding
remarks are drawn in the last section.

2 Related Work

Different heuristics have been proposed for solving min-RWA. Some approaches
decompose the problem into two subproblems: the routing subproblem and the
wavelength assignment subproblem [2,5,7,9], while others tackle the two sub-
problems simultaneously [8,12]. A functional classification of RWA heuristics
can be found in [3].

The current state-of-art heuristics for min-RWA were proposed by Skorin-
Kapov [12]. Each wavelength is represented by a different copy of a bidirected
graph G = (V, A) that represents the physical topology of the optical network.
Vertices in V and arcs in A represent network nodes and fibers, respectively.
Lightpaths arc-disjointly routed in the same copy of G are assigned the same
wavelength. The copies of G are associated with the bins and the lightpaths with
the items of a bin packing problem [1]. Problem min-RWA is reformulated as
that of packing the lightpaths using a minimum number of bins.

The size of a lightpath is defined as the hop-count shortest path between its
endnodes in G. We notice that lightpaths are not necessarily routed on shortest
paths. Whenever a lightpath is placed in a bin (i.e., a copy of G), all arcs in its
route are deleted from the corresponding copy of G to avoid that other lightpaths
use them. Therefore, the next lightpaths packed in that bin might not be able
to be routed on a shortest path.

Four min-RWA heuristics were developed based on classical bin packing
heuristics: (i) FF-RWA, based on the First Fit heuristic, (ii) BF-RWA, based
on the Best Fit heuristic, (iii) FFD-RWA, based on the First Fit Decreasing
heuristic, and (iv) BFD-RWA, based on the Best Fit Decreasing heuristic. The
first is equivalent to the Greedy-EDP-RWA [8] heuristic, except for the order in
which some steps are executed [12].

The pseudo-codes of FF-RWA, BF-RWA, FFD-RWA, BFD-RWA are simi-
lar. They are summarized in Figure 1. The inputs are the graph G, the set τ of



Efficient Implementations of Heuristics for RWA 171

begin heuristic(G, τ, d)
1. Let t be a permutation of the lightpaths in τ ;
2. Set Ω ← ∅ and S ← ∅;
3. for i = 1, . . . , |t| do
4. Find the bin ω ∈ Ω where the shortest path of ti in ω has less than d arcs;
5. if no such a bin exists then do
7. ω ← new copy of G;
8. Ω ← Ω ∪ {ω};
9. end if
10. Let pi be the shortest path between the endnodes of ti in ω;
11. S ← S ∪ (pi, ω);
12. Delete edges in path pi from ω;
13. end-for;
14. return S;
end

Fig. 1. Pseudo-code of heuristics FF-RWA, BF-RWA, FFD-RWA, and BFD-RWA

lightpath requests, and the value d of the maximum number of links in each
route. As suggested in [12], d is set to be the maximum of the square root of the
number of links in the network and the diameter of G (i.e., the maximum value of
a shortest path between two nodes in the network). The output is a set S of tuples
(pi, ωi), for i = 1, . . . , |τ |, where pi is the route followed by lightpath ti and ωi is
the wavelength with which it is multiplexed. A permutation t of lightpaths in τ
is built in line 1. In FF-RWA and BF-RWA, lightpaths are randomly distributed
in t, while in FFD-RWA and BFD-RWA, they are sorted in non-increasing order
of their sizes. In line 2, the set S and the set Ω of copies of G are initialized.
The lightpaths are routed and assigned a wavelength in lines 3 to 13, one at a
time, according to their order in t. A bin ω ∈ Ω in which lightpath ti can be
routed with less than d arcs is sought in line 4. FF-RWA and FFD-RWA stop at
the first bin found, while BF-RWA and BFD-RWA scan all bins in Ω and select
that in which ti fits with the smallest number of arcs (since the arcs in each
copy of G are not necessarily the same). Let pi be the shortest path between the
endnodes of ti in ω. If there is no bin in Ω where pi fits with less than d arcs,
then ti is routed on a new copy of G that is created in line 7 and added to set Ω
in line 8. The tuple (pi, ω) is added to the solution in line 11, and all arcs in pi

are deleted from ω in line 12 to avoid that other lightpaths are routed on those
arcs in this copy of G.

Numerical results in [12] showed that FFD-RWA and BFD-RWA outper-
formed Greedy-EDP-RWA [8], one of the best heuristic in the literature for
min-RWA. However, the running times reported in [12] were very high. On the
largest instances, running times of up to 8 minutes (Pentium IV 2.8 GHz) were
reported. In the next section, we propose five different implementation strate-
gies for FF-RWA, BF-RWA, FFD-RWA, and BFD-RWA and evaluate them in a
broad set of test instances in Section 4.



172 T.F. Noronha, M.G.C. Resende, and C.C. Ribeiro

3 Implementation Issues

Let n = |V |, m = |A|, and l = |τ |. Furthermore, let csp(m, n) be the compu-
tational complexity of a one-to-all shortest path algorithm applied to G, and
cdel(m, n) be the complexity of deleting an arc from G. The worst case complex-
ity T (n, m, l) of FF-RWA, BF-RWA, FFD-RWA, and BFD-RWA is calculated as
follows. For sake of simplicity, we assume that n < l, which holds for all real and
artificial networks in the literature. First, all-to-all shortest paths are calculated
in time O(n·csp(m, n)) in line 1, and sets Ω and S are initialized in constant time
in line 2. Next, lines 3 to 13 are repeated for each lightpath ti, with i = 1, . . . , l.
In line 4, a bin where ti fits with less than d arcs is found in time O(l ·csp(m, n)).
A new copy of G is created in time O(m) in line 7 and added to set Ω in constant
time in line 8. Finally, the set S is updated in constant time in line 11, while the
arcs in pi are deleted from w in time O(d · cdel) in line 12. Therefore, the worst
case complexity of these heuristics is

T (n, m, l) =O(n · csp(m, n))+O(1)+O(l·(l · csp(m, n)+m+1+d · cdel(m, n)))
= O(n · csp(m, n) + l2 · csp(m, n) + l · m + l · d · cdel(m, n)).

The efficiency of the heuristics depends on how fast a shortest path (SP, for
short) query is performed and how fast an arc is removed from G. The traditional
implementations using Dijkstra’s algorithm and single linked lists to represent
the adjacency matrix of G lead to csp(m, n) = O(n · log n + m) and cdel(m, n) =
O(n). Therefore,

T (n, m, l) = O(n · (n · log n + m) + l2 · (n · log n + m) + l · m + l · d · n)
= O(l2 · (n · log n + m)).

However, the hop-count shortest paths can be calculated using Breadth First
Search (BFS) in time O(m). In addition, any arc can be deleted in time O(1)
using the representation of G by adjacency lists M as follows. For each node
i ∈ V , we keep a doubly linked list whose cells correspond to the arcs having
i as their origin. Furthermore, we keep an array P pointing to the address of
each cell in M . Whenever an arc (i, j) is to be removed, we use P to obtain
the address of its corresponding cell in constant time. Since the adjacency list
of node i is doubly linked, the cell corresponding to arc (i, j) can be deleted in
time O(1). This data structure and the BFS algorithm were used in our standard
implementation STD of the four heuristics. Therefore, the complexity of the min-
RWA heuristics using STD is

T (n, m, l) = O(n · m + l2 · m + l · m + l · d) = O(l2 · m).

The most expensive operation of the min-RWA heuristics appears in line 4
of Figure 1, where a SP query is performed in at most l bins for each of the l
lightpaths in τ . At this point, only the value of the shortest path is required.
Therefore, we propose another implementation based on an n×n distance matrix
in which each entry is the value of the shortest path between the two correspond-
ing nodes in G. It is initialized in O(n · m) in line 1 and instantiated for each



Efficient Implementations of Heuristics for RWA 173

new bin created in O(n2) in line 7. As long as arcs are deleted from a bin, the
shortest paths on that bin may change and the corresponding distance matrix
must be updated.

The new data structure allows SP queries to be performed in constant time.
However, the efficiency of the heuristics depends on how fast the updates are
performed. Given the graph G = (V, A) and a node v ∈ V , the shortest path
(SP, for short) graph of v is a subgraph Gv = (V, Av) of G, with Av ⊆ A,
such that the path from any vertex i to v in Gv corresponds to the shortest
path from i to v in G. If the graph is acyclic, it is called a shortest path tree.
We experimented with four algorithms for updating the distance matrix: RRg,
RRt, NRRg, and NRRt. The first two are based on the work of Ramalingam and
Reps [10] for dynamically updating SP graphs and SP trees, respectively, while
the last two are adaptations of the former two algorithms.

Given a node v ∈ V and the SP graph Gv, the algorithm of Ramalingam and
Reps [10] for dynamically updating SP graphs is based on the observation that
when the weight of an arc a ∈ A increases, the shortest paths from v to many
vertices in V might not change and do not need to be recalculated. Arcs are
deleted by increasing their weights to infinity. If a /∈ Av, no update is necessary;
otherwise a is removed from Gv. Next, if Gv remains connected, the algorithm
stops. Otherwise, the set U of vertices whose shortest paths to v have changed
is identified and removed from Gv. Then, each vertex u ∈ U is inserted into a
priority queue Q with a key equal to the weight of the least cost arc from u to
one of the vertices that remained in Gv. Finally, the algorithm proceeds in a
Dijkstra-like fashion.

A variant of this algorithm is that of Ramalingam and Reps [10] for dynam-
ically updating SP trees. The algorithm is similar to the one described above.
However, the identification of the vertices in U and the shortest path updates are
performed more efficiently in SP trees. Every time an arc a ∈ Av is deleted, the
data structure has to be updated. Using a Fibonacci heap to implement Q, the
worst case time complexity of both algorithms is O(n · log n+m). However, since
only deletions are performed and the arcs have unit cost, it can be implemented
in time O(m) by using a bucket to implement Q.

Algorithm RRg keeps one SP graph for each vertex in V . The SP graphs are
initialized in O(n · m) in line 1 of Figure 1 and instantiated for each new bin
created in O(n ·m) in line 7. After each arc in pi is deleted from ω in line 12, RRg
checks if any SP graph of ω must be updated. If so, the algorithm of Ramalingam
and Reps [10] for SP graphs is used, and the distance matrix is updated. In
the worst case scenario, n SP graphs are updated in O(n · m). Therefore, the
complexity of the min-RWA heuristics using RRg is

T (n, m, l) = O(n · m + l2 + l · n · m + l · d · (n · m)) = O(l2 + l · d · n · m).

Algorithm RRt keeps one SP tree for each vertex in V . The SP trees are
initialized in O(n · m) in line 1 of Figure 1 and instantiated for each new bin
created in time O(n2) in line 7. As before, after each arc deletion, RRt checks
if any SP tree of ω must be updated. If so, the algorithm of Ramalingam and



174 T.F. Noronha, M.G.C. Resende, and C.C. Ribeiro

Reps [10] for trees of shortest paths is used, and the distance matrix is updated.
Therefore, the complexity of the min-RWA heuristics using RRt is

T (n, m, l) = O(n · m + l2 + l · n2 + l · d · (n · m)) = O(l2 + l · d · n · m).

Algorithm RRg (resp. RRt) might not be efficient, since the number of SP
graphs (resp. SP trees) to be updated after each lightpath is assigned a bin
may be very high. To remedy this, we propose a compromise implementation.
Algorithm NRRg (resp. NRRt) uses the same data structure as algorithm RRg (resp.
NRRt), but without updating the latter as soon as an arc is deleted. Therefore, the
distance matrix gives a lower bound to the shortest path between any two nodes
in time O(1), since the shortest paths can only increase after an arc deletion. If
the lower bound is larger than d, the correct distance is not needed. Otherwise,
it can be calculated in time O(d) by retrieving the shortest path in the SP graph
(resp. SP tree) of the sink node of the lightpath. If no arc along the shortest path
has been deleted, the value stored in the distance matrix is exact. Otherwise,
algorithm NRRg (resp. NRRt) updates only the corresponding SP graph (resp.
SP tree) from scratch and the entries of the distance matrix that have changed.
Therefore, the worst case complexity of an SP query is O(m). However, no SP
graph (resp. SP tree) update is necessary in line 12 of Figure 1 and the arc
deletion can be done in O(d) for each lightpath. Therefore, the complexity of
the min-RWA heuristics using algorithm NRRg is

T (n, m, l) = O(n · m + l2 · m + l · n · m + l · d) = O(l2 · m),

while using algorithm NRRt it is

T (n, m, l) = O(n · m + l2 · m + l · n2 + l · d) = O(l2 · m).

4 Computational Experiments

Four sets of testbed instances were used in the computational experiments. Set
X was randomly generated as in [12]. Sets Y and Z are proposed in this paper.
Finally, set W is a collection of the most studied realistic instances in the lit-
erature, together with two new instances introduced in this paper. All network
topologies are connected and each link corresponds to a pair of bidirected fibers.
The traffic matrices are asymmetric, i.e. there might be a lightpath request from
a node i to a node j and not from j to i. A description of each set is presented
below.

The set X of instances was randomly generated exactly as in [12]. The in-
stances have 100 nodes, the probability Pe that there is a link between a pair
of nodes is equal to 0.03, 0.04, and 0.05, and the probability Pl that there is a
connection between a pair of nodes is equal to 0.2, 0.4, 0.6, 0.8, and 1.0. The net-
works were randomly generated and only connected networks were considered.
Fifteen groups of five instances each were created, combining each possible pair
of values for Pe and Pl.



Efficient Implementations of Heuristics for RWA 175

We observed that set X is mostly made up of easy instances. This is due to two
structural characteristics that are present in most of its instances. First, there
are nodes incident to only one link whose connections are all routed through the
same link. Second, there are weakly connected components, i.e. disjoint subsets
of nodes that are connected by only one link. Therefore, all connections whose
endnodes are in different weakly connected components must be routed through
the same link. These characteristics may imply high lower bounds on the number
of wavelengths necessary to establish the set of lightpath requests. For most of
the instances in set X , a solution with this number of wavelengths can be easily
found.

Fig. 2. Example of a 3× 4 grid topology

Table 1. Description of test set W

Instance Nodes Links Lightpaths Maximum

Finland 31 51 930 1
EON 20 39 374 2
ATT 90 137 359 5
ATT2 71 175 4456 34
NSF.1 14 21 284 3
NSF.3 14 21 258 3
NSF.12 14 21 551 6
NSF.48 14 21 547 6
NSF2.1 14 22 284 3
NSF2.3 14 22 258 3
NSF2.12 14 22 551 6
NSF2.48 14 22 547 6

As an attempt to generate harder random instances, we propose the set Y .
Networks in this set were randomly generated with the same number of nodes
and the same values of Pe and Pl used for the instances in set X . However, we
considered only networks whose node degrees are greater than or equal to 2 when
Pe is equal to 0.04 and 0.05, and we restricted the diameter of the networks to
5, 6, and 7 for instances with Pe equal to 0.05, 0.04, and 0.03, respectively. As
before, fifteen groups of five instances each were randomly generated, combining



176 T.F. Noronha, M.G.C. Resende, and C.C. Ribeiro

Table 2. Average gaps and CPU times for implementations FF-RWASTD, BF-RWASTD,
FFD-RWASTD, and BFD-RWASTD for sets X, Y , Z, and W

FF-RWA FFD-RWA BF-RWA BFD-RWA
Set Gap T(s) Gap T(s) Gap T(s) Gap T(s)

X 4.7% 0.60 1.9% 0.71 3.0% 1.33 1.2% 2.10
Y 23.1% 0.52 17.0% 0.58 13.9% 0.76 8.4% 1.07
Z 13.3% 0.89 9.7% 1.12 10.8% 1.10 7.0% 1.41
W 7.3% 0.10 6.3% 0.10 7.5% 0.11 7.1% 0.12

 12

 9

 6

 3

 0
BFD-RWABF-RWAFFD-RWAFF-RWA

G
ap

 (
%

)

(a)

Average solution gap

12.1%

8.7% 8.8%

6.0%

 1.2

 0.9

 0.6

 0.3

0.0
BFD-RWABF-RWAFFD-RWAFF-RWA

T
im

e 
(s

ec
on

ds
)

(b)

Average CPU times

0.53
0.63

0.83

1.16

Fig. 3. (a) Average gaps and (b) CPU times for implementations FF-RWASTD, BF-
RWASTD, FFD-RWASTD, and BFD-RWASTD over all the 187 instances

each possible pair of values for Pe and Pl. The traffic matrices are the same used
for the instances in set X .

Instances in test set Z are built on n × m grids embedded on the torus. Each
node is connected only to its nearest four nodes. Figure 2 gives an example of a
3 × 4 grid. Five grid networks with approximately 100 nodes (10 × 10, 8 × 13,
6× 17, 5× 20, 4× 25) were generated. For each of them, five traffic matrices are
randomly generated with the probability Pl that there is a connection between
a pair of nodes being equal to 0.2, 0.4, 0.6, 0.8, and 1.0.

Finally, set W is a collection of the most studied realistic instances in the
literature, together with two new instances ATT and ATT2 whose topologies
and traffic matrices resemble those of real telecommunication networks. The
topology of the Finland network was obtained from [5] and its traffic matrix was
the same used in [9]. Networks EON, NSF, and NSF2 and their respective traffic
matrices were downloaded from [6]. The first three columns of Table 1 display
the name, the number of nodes, and the number of links in each instance of set
W , respectively. The total number of lightpaths and the maximum number of
lightpaths starting from the same node are given in the fourth and fifth columns,
respectively.

We denote by FF-RWASTD, FF-RWARRg, FF-RWARRt, FF-RWANRRg, and FF-
RWANRRt the implementations of the heuristic FF-RWA using algorithms STD,
RRg, RRt, NRRg, and NRRt, respectively. The same notation is extended to the



Efficient Implementations of Heuristics for RWA 177

Table 3. Average CPU times for each heuristic using NRRt, NRRg, RRt, and RRg. Times
are displayed as a percent deviation of the times using STD.

Heuristic Set NRRt (%) NRRg (%) RRt (%) RRg (%)

FF-RWA X 88.3 115.6 671.8 817.4
Y 83.9 107.6 699.9 824.9
Z 73.4 95.8 745.7 884.4
W 98.4 119.0 423.8 497.6

FFD-RWA X 84.8 112.4 562.2 690.1
Y 81.1 103.9 626.0 739.1
Z 62.0 79.7 595.2 699.1
W 93.4 111.8 406.6 471.3

BF-RWA X 50.3 67.5 254.2 333.2
Y 67.8 88.1 400.7 496.2
Z 63.4 83.4 568.1 685.7
W 91.8 114.4 363.7 431.5

BFD-RWA X 37.1 50.0 163.8 209.2
Y 52.8 70.4 277.3 349.0
Z 53.2 67.9 440.4 528.8
W 88.7 107.5 344.0 407.5

other heuristics. The algorithms were coded in C++ and compiled with the GNU
GCC version 4.0.3 with no compiler code optimization. The experiments were
performed on a 2.8 GHz Pentium IV with 1 Gb of RAM memory using Linux
Ubuntu 6.10. CPU times are reported in seconds. The quality of the heuristics
is displayed as the gap (ub-lb)/lb between the cost ub of the solution provided
by the heuristic and a lower bound lb for the cost of the optimal solution, which
is calculated as suggested in [2].

The first experiments evaluate and compare the performance of FF-RWASTD,
FFD-RWASTD, BF-RWASTD, and BFD-RWASTD for the 187 instances in sets X ,
Y , Z, and W . Each heuristic was run five times with different seeds for the
random number generator algorithm [11]. For each instance set, Table 2 displays
the average gaps and CPU times for implementations FF-RWASTD, FFD-RWASTD,
BF-RWASTD, and BFD-RWASTD, respectively. The average gaps for each heuristic
over all instances are plotted in Figure 3a, while the average CPU times are
plotted in Figure 3b.

The best of the five runs of BFD-RWASTD was optimal for 62 out of the 75
instances in set X and the average gap was 1.2%, which confirms the hypothesis
that this set is mostly made up of easy instances. The average solution gaps for
the instances in sets Y and Z proposed in this paper were greater than or equal
to those in the other sets for all the heuristics, which indicates that the instances
in sets Y and Z are harder than those in the literature.

Algorithm BFD-RWASTD found on average better results than the other heuris-
tics for most of the instances tested. We notice in Figure 3a that the average
gap observed for FFD-RWA (8.7%) is almost 50% larger than that correspond-
ing to BFD-RWA (6.0%). The average gap observed for algorithm FFD-RWASTD

was smaller than that for BFD-RWASTD exclusively for set W . However, this



178 T.F. Noronha, M.G.C. Resende, and C.C. Ribeiro

100

80

60

40

20

0
 Set W Set Z Set YSet X

A
ve

ra
ge

 C
P

U
 ti

m
e 

(%
)

(a)

FF-RWA

88.3% 83.9%
73.4%

98.4% 100

80

60

40

20

0
 Set W Set Z Set YSet X

A
ve

ra
ge

 C
P

U
 ti

m
e 

(%
)

(b)

FFD-RWA

84.8% 81.1%

62.0%

93.4%

100

80

60

40

20

0
 Set W Set Z Set YSet X

A
ve

ra
ge

 C
P

U
 ti

m
e 

(%
)

(c)

BF-RWA

50.3%

67.8% 63.4%

91.8% 100

80

60

40

20

0
 Set W Set Z Set YSet X

A
ve

ra
ge

 C
P

U
 ti

m
e 

(%
)

(d)

BFD-RWA

37.1%

52.8% 53.2%

88.7%

Fig. 4. Average CPU times of (a) FF-RWANRRt, (b) FFD-RWANRRt, (c) BF-RWANRRt,
and (d) BFD-RWANRRt for instance sets X, Y , Z, and W . Times are displayed as a
percent deviation of the times using STD.

occurs because of the huge difference observed for instance ATT, where the
FFD-RWASTD gap was 20.0% and the BFD-RWASTD gap was 32.0%. If we ex-
clude this instance from set W , the average gap of FF-RWASTD would be 5.0%
and that of BFD-RWASTD would be 4.9%.

As expected, CPU times of the best fit heuristics were greater than those of
the first fit heuristics, because each iteration of FF-RWASTD and FFD-RWASTD

stops at the first bin in which the lightpath can be routed with less than d arcs,
while each iteration of BF-RWASTD and BFD-RWASTD scans all the bins looking
for bins where the lightpath fits with the smallest number of arcs. Although
solution gaps of BFD-RWASTD were on average smaller than those of the other
heuristics, its running times were the longest. However, the maximum CPU times
of BFD-RWASTD in set X was 10 seconds, which is much less than the 8 minutes
reported for the implementation of [12] in the same set of instances and the same
machine. The CPU times of BFD-RWASTD were always less than five seconds for
instances in sets Y and Z and never greater than one second for those in set W .

The next experiments evaluate the performance of the heuristics FF-RWA,
FFD-RWA, BF-RWA, and BFD-RWA using NRRt, NRRg, RRt, and RRg. The run-
ning times are compared with those using the respective standard implemen-
tation (STD). For each heuristic and each set of instances, Table 3 displays the
average CPU times using NRRt, NRRg, RRt, and RRg as a percent deviation of the



Efficient Implementations of Heuristics for RWA 179

times using STD (i.e. the times of NRRt, NRRg, RRt, and RRg are divided by the
times of STD). Each version of each heuristic was run five times with different
seeds for the random number generator algorithm [11]. For all heuristics and
instance sets, the implementations using RRt and NRRt were faster than those
using RRg and NRRg, respectively. This is due to the fact that updating of SP
graphs is more expensive than updating SP trees, and the SP graphs were not
dense enough to compensate the trade off. Due to the number of SP graphs
that must be updated after an arc deletion, the implementations of FF-RWA,
FFD-RWA, BF-RWA, and BFD-RWA using RRt and RRg were slower than their
respective implementations using STD.

NRRt was the best algorithm for updating the distance matrix. The numeri-
cal results for heuristics FF-RWANRRt, FFD-RWANRRt, BF-RWANRRt, and BFD-
RWANRRt displayed in the third column of Table 3 are also plotted in Figure 4.
The improvements observed in BF-RWANRRt and BFD-RWANRRt are greater than
those observed in FF-RWANRRt and FFD-RWANRRt, when compared with their
respective standard implementations. This is due to the fact that the number of
SP queries in BF-RWA and BFD-RWA is greater than in FF-RWA and FFD-
RWA, while the number of updates is approximately the same. The heuristic
that took more advantage of NRRt was BFD-RWA, whose times were shortened,
on average, to almost one half of those of BFD-RWASTD. The maximum running
time of the BFD-RWANRRt over all the 187 instances tested (including set X)
was only 2.2 seconds, which is one quarter of the maximum running time of
BFD-RWASTD.

5 Concluding Remarks

This paper tackled the problem of routing and wavelength assignment in WDM
optical networks. We proposed five different implementations of the best heuris-
tics in the literature, as well as new testbed instances that allowed a precise
comparison of the heuristics.

Computational experiments showed that BFD-RWA was the best heuristic
for the instances tested. The new algorithms proposed in this paper shortened
the average and maximum running times of BFD-RWA by 57% and 25%, re-
spectively, with respect to those of the standard implementation. The maximum
computation times of the best implementation of BFD-RWA was less than three
seconds, while the times reported for the same heuristic in [12] were up to eight
minutes on the same instances and the same Pentium IV 2.8 GHz computer.

References

1. Alvim, A.C.F., Ribeiro, C.C., Glover, F., Aloise, D.J.: A hybrid improvement
heuristic for the one-dimensional bin packing problem. Journal of Heuristics 10,
205–229 (2004)

2. Bannerjee, D., Mukherjee, B.: Practical approach for routing and wavelength as-
signment in large wavelength routed optical networks. IEEE Journal on Selected
Areas in Communications 14, 903–908 (1995)



180 T.F. Noronha, M.G.C. Resende, and C.C. Ribeiro

3. Choi, J.S., Golmie, N., Lapeyrere, F., Mouveaux, F., Su, D.: A functional classifi-
cation of routing and wavelength assignment schemes in DWDM networks: Static
case. In: Proceedings of the 7th International Conference on Optical Communica-
tion and Networks, Paris, pp. 1109–1115 (2000)

4. Erlebach, T., Jansen, K.: The complexity of path coloring and call scheduling.
Theoretical Computer Science 255, 33–50 (2001)

5. Hyytiä, E., Virtamo, J.: Wavelength assignment and routing in WDM networks.
In: Fourteenth Nordic Teletraffic Seminar, Copenhagen, pp. 31–40 (1998)

6. Jaumard, B.: Network and traffic data sets for optical network optimization (last
visited on January 3th, 2008), http://users.encs.concordia.ca/∼bjaumard

7. Li, G., Simha, R.: The partition coloring problem and its application to wave-
length routing and assignment. In: Proceedings of the First Workshop on Optical
Networks, Dallas (2000)

8. Manohar, P., Manjunath, D., Shevgaonkar, R.K.: Routing and wavelength assign-
ment in optical networks from edge disjoint path algorithms. IEEE Communica-
tions Letters 5, 211–213 (2002)

9. Noronha, T.F., Ribeiro, C.C.: Routing and wavelength assignment by partition
coloring. European Journal of Operational Research 171, 797–810 (2006)

10. Ramalingam, G., Reps, T.W.: An incremental algorithm for a generalization of the
shortest-path problem. Journal of Algorithms 21, 267–305 (1996)

11. Schrage, L.: A more portable Fortran random number generator. ACM Transac-
tions on Mathematical Software 5, 132–138 (1979)

12. Skorin-Kapov, N.: Routing and wavelength assignment in optical networks us-
ing bin packing based algorithms. European Journal of Operational Research 177,
1167–1179 (2007)

13. Zang, H., Jue, J.P., Mukherjee, B.: A review of routing and wavelength assign-
ment approaches for wavelength-routed optical WDM networks. Optical Networks
Magazine 1, 47–60 (2000)

http://users.encs.concordia.ca/~bjaumard


Myopic Distributed Protocols for Singleton and
Independent-Resource Congestion Games�

D. Kalles1, A.C. Kaporis2, and P.G. Spirakis2,3

1 Hellenic Open University, Patras, Greece & Open University of Cyprus
2 Department of Computer Engineering and Informatics, University of Patras, Greece

3 Research Academic Computer Technology Institute, University of Patras Campus, Greece

Abstract. Let n atomic players be routing their unsplitable flow on m resources.
When each player has the option to drop her current resource and select a better
one, and this option is exercised sequentially and unilaterally, then a Nash Equi-
librium (NE) will be eventually reached. Acting sequentially, however, is unre-
alistic in large systems. But, allowing concurrency, with an arbitrary number of
players updating their resources at each time point, leads to an oscillation away
from NE, due to big groups of players moving simultaneously and due to non-
smooth resource cost functions. In this work, we validate experimentally simple
concurrent protocols that are realistic, distributed and myopic yet are scalable, re-
quire only information local at each resource and, still, are experimentally shown
to quickly reach a NE for a range of arbitrary cost functions.

1 Introductory Motivation

Alice enters a large University library at the evening determined to copy some pages
from a friend’s notes. Miraculously, she finds a quite peaceful environment where no
student opts to shift from her copier at hand. All students know that no copier will de-
crease their waiting time. This operating point is a Nash equilibrium (NE) over copiers
and it is quite straightforward to think of other library’s facilities also being operated at
a NE. Suppose, however, that Alice observes groups of students rushing to copiers when
she enters the library in the early morning. She observes student S, currently pending
on copier C, contemplating to move to copier C′ which seems more appealing, either
because it is faster, or less crowded or both. At this critical decision-making point, there
are two issues for S. The first issue is that, if a group of students shift to C′ alongside S,
then S’s waiting time is likely to increase. The second issue is that, if printer C′’s speed
decreases abruptly even due to the slightest increase in demand, then it is even more
likely that S’s waiting time will increase, and it may do so beyond any anticipation on
the part of S. These obstacles naturally give rise to oscillations. No oscillations occur
if all students shift to copiers sequentially, one at a time. But, Alice is old enough to
know that only Wonderland’s disciplined students are determined to shift sequentially.
Of course, even in Wonderland, certain side effects do persist: acting sequentially may
last long until a NE is reached.

� The 2nd and 3rd author were partially supported by the IST Program of the European Union
under contract number IST-015964 (AEOLUS).

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 181–193, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



182 D. Kalles, A.C. Kaporis, and P.G. Spirakis

Back in the real world, however, imposing global synchronization is unrealistic. On
the other hand, it seems realistic that students pending on copier C will briefly discuss
their options before deciding how some of them might wisely move to C′. Their on-
the-fly discussions are independent and not affected by decisions taken within any other
group of students currently pending on any other copier. Moreover, it is also unrealistic
that their local speculations will improve by any global (thus, expensive) information
supplied (such information might consist of all copier’s congestion and average waiting
time). It is also realistic to assume that a group of students migrating from one copier to
another will most likely not collide with some other group (also) on a migrating path.

The central question is thus framed as:

Question: Can we model such concurrent migrations as a simple distributed
protocol within available resources, based on local speculations and greedy de-
cisions taken on the fly? Can we show that such a distributed protocol, despite
its simplicity, is powerful enough so as to quickly reach a NE?

Apparently, as soon as all massive and concurrent migrations to copiers have taken
place, it may turn out that many students feel tempted to subsequently shift to newly
appealing copiers. This may lead to an endless copier-oriented migration process, os-
cillating eternally away from a NE, and presenting formidable obstacles in our attempt
at analyzing concurrent selfish play. Note that our example is modeled as a singleton
congestion game, where each player selects one resource over the available ones. It can
also be generalized (and become more severe) if not all players’ tasks are of the same
value, i.e. if weights are introduced. The general problem identified in the above exam-
ple regards all situations where selfish actors must compete for a set of resources and
can make decisions based only on information about where they are and where they
might want to go (i.e. they do not have access to what other distant actors do). Not
surprisingly, there are numerous other fields of computer science that deal with similar
situations, most notably in load balancing, scheduling and (most generally) distributed
computing.

In this paper we focus on the development of decision making protocols to be used
by actors who want to decide to which resource they should migrate. We want these
protocols to withstand selfish behaviour and only use information that is available to
actors in their current resource (and the one they want to move to). We experimentally
show that the protocols we develop lead towards a Nash Equilibrium for a wide range of
resource cost functions, including pessimistic mixtures of such cost functions, allowing
both weighted and unweighted versions. Moreover, they do so in a number of steps that
scales similarly with a baseline protocol that makes quite strong assumptions on the
type of actors and the resources.

The rest of this paper is structured as follows: we first review the work on sequential
and concurrent congestion games, as well as work on realistic assumptions for exper-
imental settings. We then move on to describe in detail the (widely used) congestion
game model we employ and, based on that, we describe two selfish protocols for mak-
ing migration decisions. Then, we validate the protocols and finally we discuss the
implications of our findings.



Myopic Distributed Protocols for Singleton and Independent-Resource CG 183

2 Related Work

2.1 Sequential and Concurrent Congestion Games

Congestion games (CG) provide a natural model for non-cooperative resource allo-
cation and have been the subject of intensive research in algorithmic game theory. A
congestion game is a non-cooperative game where selfish players compete over a set of
resources. The players’ strategies are subsets of resources. The cost of each player for
selecting a particular resource is given by a non-negative and non-decreasing latency
function of the load (or congestion) of the resource. The individual cost of a player is
equal to the total cost for the resources in her strategy. A natural solution concept is that
of a pure Nash equilibrium (NE), a state where no player can decrease her individual
cost by unilaterally changing her strategy. On a singleton CG each player can select
only one amongst m resources [16].

In a classical paper, Rosenthal [20] showed that pure Nash equilibria on atomic con-
gestion games correspond to local minima of a natural potential function, which de-
creases every time a single player changes her strategy and improves her individual
cost. Hence every sequence of improving moves will eventually converge to a pure
Nash equilibrium. However, this may require an exponential number of steps, since
computing a pure Nash equilibrium of a congestion game is PLS-complete [10].

There are strong reasons why sequential protocols are subject to critique. Using the
Elementary Step System hypothesis, under which at most one user performs an improv-
ing move in each round, greatly facilitates the analysis [6,8,13,14,17,18,19], but is quite
unrealistic.

Unlike sequential play, concurrent play may eternally oscillate away from NE, due
mainly to two reasons: first, players have limited global info on making decisions and,
second, the cost of resources may increase unboundedly on new demand. Exceedingly
big group of players can cause bottleneck phenomena on their destination resources.
This can be avoided by allowing each user to sample uniformly and independently, with
appropriately small probability, for a new resource. If the resources have (nearly) iden-
tical cost functions, this migration probability usually depends only on the departure-
destination pair of resources, eliminating any requirement for global information [3].
However, if cost functions are arbitrary, we need more information to better tune this
migration probability. Concerning the second obstacle, suppose that user i finds appeal-
ing to migrate to resource e and that e is associated with a smooth cost function. Then,
moving to e will likely not substantially affect i’s a priori estimated migration profit,
even if many other users opt for e. However, that anticipated profit may deteriorate
abysmally if e’s cost function is not smooth. A common way out is to consider cost
functions that satisfy an α-bounded jump condition [5].

A typical approach [9] considers n players concurrently probing for a better link
amongst m parallel links per round (singleton CG). However, this migration proto-
col, though concurrent, is not completely decentralized, since it uses global informa-
tion in order to allow only appropriate groups of users to migrate. More precisely,
only users with latency exceeding the overall average link latency are allowed to sam-
ple (on parallel) for a new link j. This boosts convergence time, requiring expectedly
O(log log n + log m) rounds.



184 D. Kalles, A.C. Kaporis, and P.G. Spirakis

The analysis of a concurrent protocol on identical links and players was presented
in [3]. Therein, the important aspect of the analysis is that no global information was
given to the migrants. On parallel during round t, each user b on resource ib with load
Xib

(t) selects a random resource jb and if Xib
(t) > Xjb

(t) then b migrates to jb

with probability 1 −Xjb
(t)/Xib

(t). Despite users performing only uniform sampling,
this protocol reaches an ε-NE in O(log log n), or an exact NE in O(log log n + m4)
rounds, in expectation. The reason that proportional sampling turns out to not be so
crucial here, is the fact that all links are identical, so there is no need to reroute many
users to any particular speedy link. Thus, an important question is to what extent such
myopic distributed protocols can cope with links that have large differences amongst
their latency functions.

2.2 Insights from Distributed Computing and Traffic Distributions

In our work, there are quite a few points where our research draws from advances in
other fields of computing, beyond that of algorithmic game theory.

A key such point is the distribution of weights of players in the weighted version of a
CG. Therein, the problem of estimating the typical workload distribution over servers of
the Web has attracted a lot of research. Knowledge of this distribution helps evaluate the
performance of proxies, servers, virtual networks and other Web related applications.
The work in [2] has influenced a lot of subsequent research. It presents experimental
evidence that up to a critical file size (the cutoff value) the distribution behaves as Log-
normal, while for larger sizes as Power Law. The second such key point concerns the
nature of protocols that decide who migrates between resources and how, as well as the
extent to which such migrations effectively and efficiently achieve some notion of opti-
mality. The field that has been most influential in that respect is that of load balancing.
Drawing from [4] we note that key results from that field recommend that migration
protocols are realistic when they assume that (now, we switch to the game nomencla-
ture) a number of players moving from one resource at a given time point actually
move to the same target, and are not distributed amongst more than one target [7]. This
differentiation is described as the contrast between diffusion and dimension exchange
methods, where the latter impose that a resource will only communicate (sample) with
one potential target resource, to determine where to allow some of its migrants to move
to (if at all). It is important to note that this assumption improves the robustness of the
migration protocol since, when considering which players to move out of a resource, we
do not need to collect expensive information (as is the case, for example, in [9]) from
all available resources but we just focus on sampling one potential target. To appreciate
the robustness potential consider what would happen in a network where we might need
to sample many resources, yet find that many of the links seem to be broken, as is quite
likely of course.

The justification for our protocols can be further seen in [12], where load balancing
between processors is examined and the recommendations therein suggest that it is rea-
sonable to expect more than one migrant per time slot from the same resource, though
all migrants from that source resource move to the same target resource. Indeed, therein
it is argued that the standard way of moving one migrant per time is an unwarranted



Myopic Distributed Protocols for Singleton and Independent-Resource CG 185

pessimism and that it is more realistic to assume that more than one player may move
at a time out of source resource and towards the (same) destination one. Therein, it is
also argued why a resource cannot be expected to communicate in parallel with other
resources, leading to the observation that sequential communication means that all mi-
grants from a source will all go to the same target. Note that the above points have been
also stressed in [7].

Morever, also according to [12], we note that our protocols indeed realistically as-
sume that only local information is made available to the migrating candidates; note
that, in stark contrast to this recommendation, [9] assume that players have access to
accurate global statistics (like average load) to compute their next move.

A further justification for our protocols is the design pattern discussion in [1], where
analogues are drawn to several biological processes that have influenced the design of
distributed computing protocols and algorithms, and where a central recurring theme is
the identification of processes that rely on strictly local information yet achieve some
notion of effective global behavior.

3 An Efficient Selfish Distributed Protocol

The basic idea of our protocol is that, per round, each player independently and con-
currently can selfishly move on the basis of her corresponding costs, as measured for
the current and destination resources. In essence, a player could decide to migrate if
the anticipated cost, after moving to a target resource, is favourably compared to her
current cost.

There are finite sets of n players N ={1, . . . , n} and m resources E={e1, . . . , em},
respectively. The strategy space of player i is Si = {X ⊆ E : |X | = 1}; player i
selects as her strategy si(t) a single edge at round t. The game consists of a sequence of
rounds t = 0, . . . , t∗. Initially player i selects a random recourse si(0) ∈ Si. Next, per
round t = 1, . . . , t∗, each player i updates concurrently and independently his current
strategy si(t) to si(t + 1) according to an appropriate protocol. The number fe(t) of
players on resource e is fe(t) = |{j : e ∈ sj(t)}|. On an unweighted CG, resource
e has a cost �e(fe(t)), which is a function of the number of players on e, fe(t). On a
weighted CG, each player j has weight wj and the weight we(t) of players on resource
e is we(t) =

∑
{j:e∈sj (t)} wj , which is the corresponding sum-weight of the players

on e. On an weighted CG, that cost is �e(we(t)), a function of the sum of weights
of the players on e. The cost ci(t) of player i is the cost of the resource where this
player resides, le. A given state is a NE, if it is not beneficial for any player to change
unilaterally her strategy at hand.

The above description is, actually, a protocol that has been shown to possess an
interesting property of converging to an almost-NE in a logarithmic number of steps
[11]. In this paper, drawing on the understanding that it is realistic to assume group
migrations, we extend the above protocol to allow exactly that and then proceed to
experimentally show that an exact NE can be efficiently reached, for a variety of cost
functions.

First, we present our protocol for the unweighted case.



186 D. Kalles, A.C. Kaporis, and P.G. Spirakis

B2B: During round t, do in parallel on each resource e ∈ E:

1. ∀ player i on e, sample a random resource e′i.
/* Each player samples myopically a new destination resource. This requires no global in-
formation. */

2. ∀ player i on e, let OUTe′
i

= max{0, . . . , fe(t)} sufficient to hold �e′
i
(fe′

i
(t)+OUTe′

i
) <

�e(fe(t)−OUTe′i + 1).
/* Each player on a given resource estimates the maximum number of her binmates that can
follow her to her new sample destination, in a way that the destination will remain appealing
after migration. Again, no global information is required. */

3. Select at RANDOM a LEADER player i, amongst those that have sampled appealing
resources (OUTe′

i
> 0) and allow her with all her estimated binmates to migrate to e′i.

Note that all players selfishly sample for a potential target resource. Of those play-
ers who have found such a resource, our protocol selectes one at random and drags a
number of mates along. That selection is inexpensive. Moreover, since dragged mates
expect a better cost compared to what they now have, one may realistically assume that
there is no considerable ”negotiation” (communication) cost between the migrants.

We now present the weighted case.

W-B2B: During round t, do in parallel on each resource e ∈ E:

1. ∀ player i on e, sample a random resource e′i.
2. ∀ player i on e, select an arbitrary subset Si of i’s mates, with their maximum correspond-

ing weight sum WOUTe′i , sufficient to hold: �e′i(we′i(t) + WOUTe′i) < �e(we(t) −
WOUTe′

i
+ wi).

3. Select a random LEADER player i, amongst those that have sampled appealing resources
(WOUTe′

i
> 0) and allow her with all her estimated binmates to migrate to e′i.

The above descriptions can be easily extended to consider more than one leader per
resource and to more sophisticated techniques for selecting leaders; hereafter, we shall
be using the notations B2B and B2B(1) interchangeably.

4 Experimental Validation of Singleton Congestion Games

At the initialization of an unweighted CG instance I , each one of n players randomly
selects one of m resources. For each resource e ∈ I , a random cost is assigned. Fol-
lowing that, we experiment with PURE and MIX classes of cost functions as detailed
below.

The m resources of each random CG instance I are associated with one of the follow-
ing PURE classes of cost functions: LIN: �e(x) = aex+ be, LOG: �e(x) = be logae

x,
EXP: �e(x) = bea

x
e , MM1: �e(x) = be

ae−x , where x is load and ae, be coefficients char-
acterizing resource e. Within a given PURE cost class, coefficients are independently
drawn per cost function, with each coefficient drawn uniformly from [0 + ε, A], ε =
1.05, with parameter A = 10, in order to minimize concentration of coefficients’s
around any point y∗ ∈ [0 + ε, A], and to avoid similarity amongst the m resource’s



Myopic Distributed Protocols for Singleton and Independent-Resource CG 187

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

1 2 4 8 16 32 64 128 256 512 1024

r

T
N
E
(
r
)

LB

EXP

LIN

LOG

MM1

1.0

10.0

100.0

1000.0

1 2 4 8 16 32

r

T
N
E
(
r
)

LB

EXP

LIN

LOG

MM1

Fig. 1. Unweighted CGs and PURE cost classes. Top: B2B(1)’s speed scaling with n players.
Resources are fixed at m0 = 26. Players are n = n(r) = rm0 with r increasing exponentially
as r = 2t, t = 0, 1, . . . , 10. Bottom: B2B(1)’s speed scaling with m resources. Players are fixed
at n0 = 28 with m = n0/r decreasing exponentially as m = n0/2

y when y = 0, 1, . . . , 5.

functions [21]. Additionally, to avoid similar random costs within a game instance,
we introduce MIX classes (see details below) containing mixtures of the above PURE
classes.

In Figure 1 (Top) we plot our protocols’ speed scaling with n players, when the cost
functions are drawn from one of the above PURE classes of cost functions. The density
r is the ratio of n players to m resources. TNE(r) is the number of rounds until a NE
for a given protocol (averaged over 10 random instances). As the x-axis suggests, we
examine the state of things in increasingly sparse intervals (the numbers of rounds as
powers of 2) and declare a NE whenever no player can select a better resource. Deciding
whether a NE is reached is Θ(m2) and is carried out in two passes. In the first pass, for



188 D. Kalles, A.C. Kaporis, and P.G. Spirakis

0.0

100.0

200.0

300.0

400.0

1 2 4 8 16 32 64 128 256 512 1024

r

T
N
E
(
r
)

LB

MIX

MIX(EXP)

MIX(LIN)

MIX(MM1*)

Fig. 2. Unweighted CGs & MIX cost classes: B2B(1)’s speed scaling with n players

each resource we compute its ”future” cost, should only one newcomer arrive. In the
second pass, for each resource, we examine whether its ”future” cost is less than the
current cost of some other resource; if the answer is yes, then a move is possible and
we are not at a NE.

The lower LB-plot serves for comparison and shows the running time of the protocol
in [3, Fig. 2] (see last paragraph of section 2.1), on an input of m0 identical resources
and n = rm0 identical players. Each plot labeled “C” shows the running time TNE(r)
of our protocol B2B(1) on an input of m0 resources, each drawn from a fixed PURE
class C ∈ {LIN, LOG, EXP, MM1} and on n = rm0 identical players. Since each C
plot (with m0 fixed) is almost parallel to the LB-plot, B2B(1) scales similarly to the
protocol in [3, Fig. 2] with respect to n. The rather erratic behaviour of MM1 instances
is due to the overall capacity

∑
e ae being exactly equal to m + n (with all resources

having integer costs), which means that there is only one solution that allows non-
congested links (in that solution, each resource is populated by its capacity minus 1).
This means that costs increases are not α-bounded (so, they will peak abruptly) on
almost all resources and for almost all rounds except the final one. Larger densities
magnify this problem. If we relax the above very strong constraint and allow the overall
capacity

∑
e ae to be at least 10% more than the number of balls, we have found out

that theMM∞ plot reverts back to being parallel to the baseline LB plot throughout.
Again, we remind the reader that we compare our protocols to LB not because we
have found a deficiency but, simply, because it is so straighforward and powerful on
identical resources and, so, serves as a good baseline. In Figure 1 (Bottom) we illustrate
how B2B(1) scales with m resources. Again, all plots are almost parallel to the LB-plot
of the protocol in [3, Fig. 2].

A main concern of ours was to use a quite wide window of rate of cost growth
with respect to the cost classes within instance I , ranging from DLOG (�e(x) =
be logae

ln x), with a very smooth rate, to EXP and MM1 classes, the most peaky ones.
Towards this, we tried to illustrate more accurately the ability of our protocols to handle
resources with fierce behavior on the slightest change of load, by considering classes
MIX, MIX(C). A random CG instance I belongs to class MIX, if each resource e ∈ I
has a cost function formed randomly according to a random PURE class. On such in-
stances, see how B2B(1) scales with n in Figure 2. A CG instance I belongs to class



Myopic Distributed Protocols for Singleton and Independent-Resource CG 189

MIX(C)1 if exactly 1 resource belongs to DLOG, while the remaining m−1 resources
belong to a fixed PURE class C. In doing so, we essentially tried to mislead our proto-
cols, by hiding 1 precious resource amongst m−1 costly ones. The corresponding scal-
ing, as regards m, of B2B(1) is omitted due to space limitations. Note that MIX(EXP)
instances seem to be the most difficult for protocol B2B(1).

As far as weighted singleton CGs are concerned, we assign a random weight X
to each player, according to the distribution in Section 2.2. So, for x < 133000 (cutoff
value) a random weight X has Lognormal density f(x)=(

√
2πσx)−1e−(lnx−μ)2/(2σ2)

with parameters μ = 9.357, σ = 1.318. If x ≥ 133000 a random weight X obeys
Pareto g(x) = akax−a−1 with parameters k = 133000 and a = 1.1.

Detecting a NE for the weighted case is somewhat subtler. In the first pass, we cal-
culate the lightest player (feather) per resource in Θ(n). In the second pass, we try to
see whether there exists any feather that can move to a less expensive resource; that
costs Θ(m2); if the answer is yes, we are not at a NE. The results for fixed resources
are shown in Figure 3 and in Figure 4.

5 On the Validity and the Implications of the Results

Besides being competitive, our protocols avoid oscillations for α-bounded jump cost
functions, with experimentally tested α ≤ 10. Such cost functions include polynomials
of bounded degree and exponentials that scale up to 10x. Remarkably, our protocols
remain fast for MM1 cost functions (widely met in real word applications) that do not
satisfy any α-bounded condition.

Our protocols’s speed is compared to O(log log n + m4) achieved in [3] and to
O(log log n+logm) in [9]. Both protocols [3,9] scale (as log log n) with n players. Us-
ing global information one may scale as log m, by performing proportional sampling
amongst m resources, guiding the migration of players towards appealing resources
[9]. When just uniform sampling amongst m resources is employed, however, scaling
deteriorates to m4 [3].

Briefly reviewing the properties of our protocols, we note that:

– Our protocols are as simple and myopic as in [3], requiring no tuning of migration
probability and exhibiting a similar speed scaling with n players as in [3,9]. They,
also, scale with m resources as in [3], but they are not as fast as O(log m) in [9]
(therein, proportional sampling amplifies fast resources).

– Our protocols employ a realistic amount of parallelism. Specifically, they assume
that during a migration step, players moving out of one resource may only go to the
same target resource [12,7].

– On any symmetric CG with α-bounded latencies the sequential protocol in [5,
Th. 1.3] reaches an2 ε-NE in �nαε−1 log(nC)	 rounds, which is ≥ poly(n) on

1 In class MIX(MM1*) 1 precious resource has an MM1 cost function of high capacity and
m− 1 resources belong to MM1. In very dense settings, this lead to game instances where, at
the outset, all links were congested (infinite latency cost); this is also a NE state since no one
wants to move to a congested state.

2 At an ε-NE bicriteria state, no player unilaterally changing her strategy can decrease the cost
at hand by more than an ε-portion.



190 D. Kalles, A.C. Kaporis, and P.G. Spirakis

the number of players. Our concurrent protocols reach a NE in O(log Φ(0)), with
Φ(0) being Rosenthal’s potential value at round t = 0, where it is well known that
Φ(0) ≤ nC (see the open problem in [5, Sec 7: Case 4]).

– Our protocols apply to a wide class of costs. The protocol in [3] balances load
(number of players) over identical resources, with each cost being equal to load.
The protocol in [9] is limited to linear cost functions with no constant term.

– Our protocols can be extended to apply to independent-resource CGs.
– Our protocols can also handle weighted players, unlike [3]. This property is also

shared by [9], however, therein this is done with the use of global information and
just for linear costs with no constant terms. Note that, with weighted players, an ar-
bitrary weight assignment requires Ω(

√
n) rounds till a NE [9]. We experimentally

improve this lower bound using a realistic weight distribution (see Section 2.2).

We now summarize some experiments to estimate the sensitivity of our protocols to
some experimentation parameters (figures were omitted due to space limitations).

First, we experimented with the running time of B2B within a particular cost class
with coefficients ae, be ∈ [1.05, A] for A = 10, 100, 1000, 10000. These experiments
were carried out with m0 = 64 resources and density r0 = 32. We observed that the
corresponding average running time of B2B was almost the same or even better for
values A > 10, which suggests that all our previous results are pessimistic and even
better speed-ups should be expected.

For the second type of experiments, we have developed the Hint variant, where each
leader player j migrating out of e additionally transmits her OUTe′

j
-value as a token

to exactly 1 other random player amongst all available players. Essentially, this is as
if she drops a hint and the first passer-by picks it up. Then, the LEADER player takes
the best choice amongst her own-sampled one and the most recent OUT-token she may
have received. So, motivated by the hardness of class MIX(EXP) for protocol B2B, as
illustrated in Figure 2 (Top), we compared B2B(1) and Hint on this class. Hint was just
slightly better throughout, suggesting that this problem class is tough indeed.

Generalizing the introductory example, suppose our student also has to consider her
best choice amongst many groups of University resources (for example, the fasted pub-
lic bus from town to campus, the most efficient pc in the lab, the least crowded studying
room) and that the University has k such groups of resources. Then, this amounts to a
concurrent congestion game, where the strategy of player i is a ki-tuple of resources,
each drawn from a group of similar resources. Such CGs are Independent Resource
ones. We now note (using the nomenclature introduced in Section 3) that the strategy
space of player i is Si = {X ⊆ E : |X | = ki, 1 ≤ ki ≤ m}; player i selects as her
strategy si(t), a ki-tuple of edges at round t. Essentially, the set E of all resources is
partitioned into k parts (or colors) E1, . . . , Ek, each part Ej containing all resources of
the same kind (color). The cost of player i is the sum of the corresponding costs of the
resources in her strategy.

There is a convenient transparency amongst independent-resource and singleton con-
gestion games [15], with each player i competing over ki kinds of resources interpreted
as ki clones, each acting independently and selfishly in her corresponding group of re-
sources. Now, let nj the number of clones in the subset Ej , containing all resources
of a given kind. Then, it is convenient to view the overall game G as k independent



Myopic Distributed Protocols for Singleton and Independent-Resource CG 191

0.0

50.0

100.0

150.0

200.0

250.0

300.0

1 2 4 8 16 32 64

r

 
T N
E
(
r
)

LB

EXP

LIN

LOG

MM1

Fig. 3. Weighted CGs & PURE cost classes, as scaling for various densities, for fixed resources

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

1 2 4 8 16 32 64

r

T
N
E
(
r
)

LB

MIX

MIX(EXP)

MIX(LIN)

MIX(MM1*)

Fig. 4. Weighted CGs & MIX cost classes, as scaling for various densities, for fixed resources

congestion sub-games G1, . . . , Gk, with sub-game Gj is a singleton CG on nj players
over |Ej | resources, j = 1, . . . , k. This method will raise up to at most k times the
corresponding singleton protocol’s running time (actually, the experimental results for
the independent-resource CGs are even better than k times the corresponding ones for
singleton CGs, as shown in Section 4, but we omit them due to space limitations.)



192 D. Kalles, A.C. Kaporis, and P.G. Spirakis

6 Conclusions

We have presented a protocol for leading concurrent congestion games to Nash Equi-
librium in a number of steps that is competitive to a baseline protocol [3]. We stress that
the competitive quality of our protocol follows the ”realistic assumption” recommenda-
tion of [7] and is underlined by the unrealistic assumption of the baseline protocol [12]
[7], namely that players currently at one resource may arbitrarily migrate to more than
one target resource.

So, we have modeled concurrent migrations using a simple distributed protocol that
only uses local information and can contain greedy decisions on the part of all involved
players. Moreover, such a simple protocol still quickly reaches a NE.

We stress that allowing multiple migrants out of resource per time step is a straight-
forward extension of a protocol developed in [11], which was theoretically shown to
possess efficient (logarithmic) interesting NE approximation properties. Our experi-
mental demonstration that the extended protocol can efficiently reach an exact NE nat-
urally raises the question whether a relevant result could also be theoretically obtained.

References

1. Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G.A., Ducatelle, F., Gambardella, L.M.,
Ganguly, N., Jelasity, M., Montemani, R., Urnes, T.: Design Patterns from Biology for Dis-
tributed Computing. ACM Transactions on Autonomous and Adaptive Systems 1(1), 26–66
(2006)

2. Barford, P., Crovella, M.: Generating representative web workloads for network and server
performance evaluation. In: SIGMETRICS, pp. 151–160 (1998)

3. Berenbrink, P., Friedetzky, T., Goldberg, L.A., Goldberg, P., Hu, Z., Martin, R.: Distributed
selfish load balancing. In: SODA 2006: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pp. 354–363. ACM Press, New York, NY, USA (2006)

4. Berenbrink, P., Friedetzky, T., Hu, Z.: A new analytical method for parallel, diffusion-type
load balancing. In: Proc. of the 20th International Parallel and Distributed Processing Sym-
posium (IPDPS) (2006)

5. Chien, S., Sinclair, A.: Convergece to Approximate Nash Equilibria in Congestion Games.
In: Proc. of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA 2007) (to
appear, 2007)

6. Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and approximation in po-
tential games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 349–
360. Springer, Heidelberg (2006)

7. Cybenko, G.: Dynamic Load Balancing for Distributed Memory Multiprocessors. Journal of
Parallel Distributed Computing 7(2), 279–301 (1989)

8. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence Time to Nash Equilibria. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp.
502–513. Springer, Heidelberg (2003)

9. Even-Dar, E., Mansour, Y.: Fast convergence of selfish rerouting. In: Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 772–
781 (2005)

10. Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equilibria. In:
Proc. of the 36th ACM Symp. on Theory of Computing (STOC 2004), pp. 604–612 (2004)



Myopic Distributed Protocols for Singleton and Independent-Resource CG 193

11. Fotakis, D., Kaporis, A.C., Spirakis, P.G.: Atomic congestion games: Fast, myopic and con-
current. In: Proceedings of the 1st International Symposium on Algorithmic Game Theory
(SAGT) (to appear, 2008)

12. Ghosh, B., Muthukrishnan, S.: Dynamic load balancing in parallel and distributed networks
by random matchings. In: Proc. of the 6th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pp. 220–225 (1994)

13. Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink equilibria and convergence. In: FOCS, pp.
142–154 (2005)

14. Goldberg, P.W.: Bounds for the convergence rate of randomized local search in a multiplayer
load-balancing game. In: Proc. of the twenty-third annual ACM symposium on Principles of
distributed computing (PODC 2004), pp. 131–140. ACM Press, New York, NY, USA (2004)

15. Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: A simple
class of congestion games. In: AAAI, pp. 489–494 (2005)

16. Koutsoupias, E., Papadimitriou, C.: Worst-case Equilibria. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

17. Libman, L., Orda, A.: Atomic resource sharing in noncooperative networks. Telecommuni-
cation Systems 17(4), 385–409 (2001)

18. Mirrokni, V.S., Vetta, A.: Convergence issues in competitive games. In: APPROX-
RANDOM, pp. 183–194 (2004)

19. Orda, A., Rom, R., Shimkin, N.: Competitive routing in multiuser communication networks.
IEEE/ACM Transactions on Networking 1(5), 510–521 (1993)

20. Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International
Journal of Game Theory 2, 65–67 (1973)

21. Valiant, G., Roughgarden, T.: Braess’s paradox in large random graphs. In: EC 2006: Pro-
ceedings of the 7th ACM conference on Electronic commerce, pp. 296–305. ACM Press,
New York, NY, USA (2006)



When to Reap and When to Sow –

Lowering Peak Usage with Realistic Batteries

Amotz Bar-Noy, Yi Feng, Matthew P. Johnson, and Ou Liu

Department of Computer Science
The Graduate Center of the City University of New York

Abstract. In some energy markets, large clients are charged for both to-
tal energy usage and peak energy usage, which is based on the maximum
single energy request over the billing period. The problem of minimiz-
ing peak charges was recently introduced as an online problem in [4],
which gave optimally competitive algorithms. In this problem, a battery
(previously assumed to be perfectly efficient) is used to store energy for
later use. In this paper, we extend the problem to the more realistic set-
ting of lossy batteries, which lose to conversion inefficiency a constant
fraction of any amount charged (e.g. 33%). For this setting, we provide
efficient and optimal offline algorithms as well as possibly competitive
online algorithms. Second, we give factor-revealing LPs, which provide
some quasi-empirical evidence for competitiveness. Finally, we evaluate
these and other, heuristic algorithms on real and synthetic data.

1 Introduction

Power companies charge some high-consumption clients not just for the total
amount of power consumed, but also for how quickly they consume it. Within
the billing period (typically a month), the client is charged for the amount of
energy used (usage charge, in kWh) and for the maximum request (peak charge,
in kW). If demands are given as a sequence (d1, d2, . . . , dn), then the total bill is
of the form c1

∑
i di+c2 maxi{di}, i.e., a weighted sum of the total usage and the

maximum usage. This means a client who powers a 100kW piece of machinery
for one hour and then uses no more energy for the rest of the month would be
charged more than a client who uses a total of 100kWh spread evenly over the
course of the month. Since the per-unit cost for peak charge may be on the order
of 100 times the per-unit cost for total usage1, this difference can be significant.
Indeed, this is borne out in our experiments.

At least one start-up company [1] is currently marketing battery-based sys-
tems intended to reduce peak energy charges. In such a system, a battery is
placed between the power company and a high-consumption client site, in or-
der to smooth power requests and shave the peak. The client site will charge
to the battery when demand is low and discharge when demand is high. Spikes
1 The Orlando Utilities Commission website [3], e.g. quotes rates of 6.388¢/kWh (“en-

ergy charge”) and $6.50/kW (“demand charge”).

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 194–207, 2008.
© Springer-Verlag Berlin Heidelberg 2008



Lowering Peak Usage with Realistic Batteries 195

in the demand curve can thus be made consistent with a relatively flat level of
supplied power, yielding lower cost for the client and more tractable requests
for the provider. It is interesting to note that a battery system may actually
raise energy usage, since there may be energy loss due to inefficiency in AC/DC
conversion. This loss may be as much as 33% of the amount charged. Serving
peak requests during periods of high demand is a difficult and expensive task for
the power company, however, and the event of a black-out inflicts high societal
costs. While a battery system may involve higher total energy requests, it may
still benefit the system as a whole by easing the strain of peak demands.

In the online setting, the essential choice faced at each time is whether (and
by how much) to invest in the future or to cash in on a prior investment. The
investment in our setting is a request for more energy than is needed at the
time. If the algorithm only asks for the minimum needed, then it is vulnerable
to spikes in demand; if it asks for much more energy than it needs, then this
request could itself become a new, higher peak. The strictness of the problem
lies in the fact that we want every request to be low, not just to minimize a
total.

In [4], we gave Hn-competitive algorithms for the online lossless setting and
matching lower bounds on competitiveness. (These algorithms are in fact only
partially online since they depend on having the maximum demand D revealed in
advance. Lacking this information, no non-trivial competitiveness is possible.)
Those algorithms assume perfectly efficient batteries, however, and will fail if
run on realistic, lossy batteries. In the present paper, we adapt these algorithms
to the lossy setting, testing them on both synthetic and actual customer usage
data. Moreover, we test more aggressive, heuristic algorithms, as well as algo-
rithms that accept predictions, with error, of future demands. We also consider
new settings and objective functions, such as total cost. Finally, we provide
factor-revealing LPs, which we use to provide quasi-empirical evidence of the
competitiveness of the lossy algorithms.

Background. As noted above, the problem we study was introduced in [4].
There are many related problems in commodity production, storage, warehous-
ing, etc. More specifically, there are many inventory problems based on the
Economic Lot Sizing model [6], in which demand levels for a product vary over a
discrete finite time-horizon and are known in advance. See [4] for a full discussion.

The goal in the minimax work-scheduling problem [7] is to minimize the max-
imum amount of work done in any timeslot over a finite time-horizon. Our online
problem is related to a previously studied special case of this in which jobs with
deadlines are assigned online. In that problem, all work must be done by dead-
line but cannot be begun until assigned. While the problems differ in important
respects (see [4]), the objectives are similar. Indeed, while the α-policy of [7] per-
forms α times the maximum per-unit-timeslot amount of work that OPT would
have done, when running on the partial input received so far, many of our algo-
rithms ensure that the savings at each point is a multiple of the optimal savings
so far.



196 A. Bar-Noy et al.

2 Model and Algorithms

Definition 1. The demand curve is the timeslot-indexed sequence of energy de-
mands (d1, ..., dn). The request curve is the timeslot-indexed sequence of energy
requests ri. Battery charge level bi indicates the (non-negative) amount of en-
ergy present in the battery at the start of timeslot i. D is the revealed maximum
demand maxi{di}, and R is the maximum request maxi{ri}.

The demand curve (combined with battery information) is the problem instance;
the request curve is the problem solution. In the absence of battery loss and
overflow/underflow, the battery level at timeslot i is simply bi = bi−1 + ri−1 −
di−1. It is forbidden for bi to ever fall below 0 (underflow). That is, the request
ri and the battery level bi must sum to at least the demand di at each time i.

By discretizing we assume wlog that battery level, demand, and request values
are all expressed in the same units (“kWh”). Peak charges are based linearly on
the max request. We optimize for the peak charge, not for total energy usage,
since the bulk of this is a fixed cost. There are several independent optional
extensions, leading to many problem variants. The battery can have maximum
capacity B or be unbounded; with some batteries, there is as already noted
an automatic percentage loss 0 ≤ � ≤ 1 in all charged energy, due to AC/DC
conversion; the problem may be online, offline, or in between; we consider the
settings in which the peak demand D is revealed in advance, or estimates of
the individual demands are known, perhaps based on historical data. The loss
model works as follows. For each unit of energy charged, only r = 1 − � units
will be available for discharge, due to the combined inefficiencies of charging and
discharging. This loss could be broken into separate components �1, �2 for charge
and discharge, but since the loss does not depend on time, doing so would have
essentially no effect. For simplicity, we merge these losses into a single loss that
occurs instantly at the time of charging.

Threshold algorithms. For a particular snapshot (di, ri, bi), demand di must
be supplied through a combination of the request ri and a change in battery
bi −bi−1. This means that there are only three possible modes for each timestep:
request exactly the demand, request more than the demand and charge the
difference, or request less than the demand and discharge the difference. Our
online and offline algorithms are threshold algorithms. If (T1, T2, ..., Tn) are the
chosen thresholds, then the algorithms behave as follows:

for each timeslot i
if di < Ti

charge min(B − bi, Ti − di)
else

discharge min(di − Ti, bi)
if di − Ti < bi

Ti ← Ti + (di − Ti − bi)

The algorithm schema amounts to the rule: at each timeslot i, request an
amount as near to Ti as the battery constraints will allow. Our offline algorithms



Lowering Peak Usage with Realistic Batteries 197

use a constant T (though in practice an offline algorithm could naturally lower
its requests to avoid overflow); our online algorithms compute Ti dynamically
for each timeslot i.

Definition 2. Let overflow be the situation in which Ti − di > B − bi, i.e.,
there is not enough room in the battery for the amount we want to charge. Let
underflow be the situation in which di − Ti > bi, i.e., there is not enough energy
in the battery for the amount we want to discharge. Call a threshold algorithm
feasible if underflow never occurs (overflow merely indicates a lower effective
request).

The second if statement of the algorithm schemas is executed only if underflow
occurs. The competitiveness guarantee of Algorithm 2.b for the lossless setting
was achieved in [4] by showing that such underflow would never occur. The
factor-revealing LP below provides evidence that such underflow also never oc-
curs in the lossy setting. Our heuristic algorithms choose lower, more aggressive
thresholds, with the result that such underflow does (or rather would) occur.
Since meeting demand is a strict requirement, in the event of underflow, the
request rises accordingly to keep the battery level non-negative, which is what
the if statement does.

Although there is no constant-ratio competitive algorithm for unbounded n,
our intended application in fact presumes a fixed time-horizon. If the billing
period is one month, and peak charges are computed as 30-minute averages,
then for this setting Hn is approximately 7.84. If we assume that the battery
can fully recharge at night, so that each day can be treated as a separate time
period, then for a 12-hour daytime time-horizon Hn is approximately 3.76.

3 GA and Lossy Battery Algorithms

The algorithms for lossy batteries are structurally similar to those for lossless,
except that computations of average are replaced with generalized average (GA).
In all cases, the average computed over an interval will correspond to the best
possible maximum request over that interval, which can be found by examining
all subintervals. The algorithms used are shown below:

Alg. online threshold Ti running-time

1 no µ̂(1, n) O(n2 log n)

2.a yes D − D−µ̂(1,i)
Hn

O(n2 log n)

2.b yes D − D−µ(si,i)
H(n−si+1)

O(n log n)

Definition 3. Given n real values (y1, y2, . . . , yn) and constants 0 < r ≤ 1 and
B ≥ 0, let the generalized average GA(y1, y2, . . . , yn) be the value μ satis-
fying U(a) = B + r · L(a), where: U(a) =

∑n
i=1 max(yi − a, 0) and L(a) =∑n

i=1 max(a − yi, 0). We call U(a) and L(a) μ’s L/U values or μ’s upper and



198 A. Bar-Noy et al.

Fig. 1. Generalized Average, with U shaded darker and L shaded lighter

lower. Treating the input values y1, ..., yn as a step function y = y(x), they
correspond to the area above μ and below y (upper) and the area below μ and
above y (lower).

Some intuition may be provided by considering what is likely the simplest way,
in terms of coding, of computing a GA: binary search in the range
[−B, maxi{di}]. For each candidate value μ, if B + r · L(μ) > U(μ) then shift
downward and otherwise shift upward, until the two values are sufficiently close.

Note that μ need not be one of the yi values. When B = 0 and r = 1, the
generalized average is simply the mean of the values yi; when B = 0 and r
approaches 0, the generalized average approaches the maximum.

Computing a GA in O(n log n) is not difficult. First sort the values yi, and
let the values’ subscripts now reflect their new positions. Next, set L(y1) = 0,
since y1 is the smallest yi. For each subsequent i up to n, L(yi) can be computed
in constant time (we omit details due to space constraints). Similarly, compute
each U(yi), starting with U(yn). Once all the U/Ls are computed, μ’s neighbors
(yi, yi+1), i.e., the two nearest input values that μ lies between, can be found
by inspection, and given these μ can be computed in constant time. Unlike the
ordinary arithmetic mean, however, computing a GA in O(n) requires more
effort.

Our recursive algorithm, whose behavior we sketch in words, both is inspired
by the well-known linear-time deterministic Selection Algorithm [5], and calls it
as a subroutine. The bulk of the work is in finding μ’s neighbors. Given these data
points (and their L/U values), we can solve for the correct value μ in constant
time. (The cases–not shown in the pseudocode–when the solution μ is among the
data points, and when μ is less than all the points can be checked as special
cases.) The algorithm for finding the neighboring data points to μ takes the set
of points yi as input. Let 0 ≤ r < 1 and B be the parameters to the GA. The
first parameter to the algorithm is the set of values to be averaged; all other
parameters to the first (non-recursive) call are set to 0.



Lowering Peak Usage with Realistic Batteries 199

GenAvgNbrs(A[], XU , XL, WU , WL) :
if length(A) == 2

return A;
else p = Select-Median(A); (a)

(AL, AU ) = Pivot(A,p); (b)
Up = Upper(A,p); Lp = Lower(A,p); (c)
U = Up + XU + WU · (max(A)− p); L = Lp + XL + WL · (p−min(A));
if U < r · L + B

return GenAvgNbrs(AU ∪ p, L, XU , WL + |AL|, WU );
else if U > r · L + B

return GenAvgNbrs(AL ∪ p, XL, U, WL, WU + |AU |);
else

return p;

Theorem 1. GA(y1, ..., yn) can be computed in O(n) time.

Proof. (sketch) With |A| = n, lines a,b,c each take time O(n) since Select-Median
uses the Selection Algorithm, Pivot is the usual Quicksort pivoting algorithm,
and Upper and Lower are computed directly. (Min and max can be passed in
separately, but we omit them for simplicity.) The function makes one recursive
call, whose input size is by construction half the original input size. Hence the
total running time is O(n).

The bulk of the work done by our algorithms for lossy batteries is to compute
the GA for a series of ranges [i, j], as i stays fixed (as e.g. 1) and j increases
iteratively (e.g. from 1 to n). It is straightforward to do this in O(n2) time, by
maintaining a sorted sublist of the previous elements, inserting each new yj and
computing the new GA in linear time. Unlike ordinary averages, GA[i, j] and
the value yj+1 do not together determine GA[i, j + 1].2 (The GA could also be
computed separately for each region [1, j].) This yields offline algorithms for the
lossy unbounded and bounded settings, with running times O(n2) and O(n3).
Through careful use of data structures, we obtain faster algorithms, with running
times O(n log n) and O(n2 log n), respectively.

Theorem 2. The values GA[1, j], as j ranges from 1 to n can be computed in
O(n log n).

Proof. (sketch) A balanced BST is used to store previous work so that going from
GA[i, j] to GA[i, j + 1] is done in O(log n). Each tree node stores a yi value plus
other data (its L/U, etc.) used by GenAvgNbrs to run in O(log n). Each time
a new data point yi is inserted into the tree, its data must be computed (and the
tree must be rebalanced). Unfortunately, each insertion partly corrupts all other
nodes’ data. Using a lazy evaluation strategy, we initially update only O(log n)
values. After the insert, GenAvgNbrs is run on the tree’s current set of data

2 For example, when B = 10 and r = .5, GA(5, 10, 15) = GA(3, 21, 3) = 7, but
GA(5, 10, 15, 20) = 10.83 �= GA(3, 21, 3, 20) = 11.33.



200 A. Bar-Noy et al.

points, in O(log n) time, relying only on the nodes’ data that is guaranteed to
be correct. Running on the BST, GenAvgNbrs’s subroutines (Select-Median,
Pivot, and selection of the subset to recurse on) now complete in O(log n), for a
total of O(n log n).

Definition 4. Let μ(i, j) be the GA of the demands over region [i, j]. Let
μ̂(h, k) = maxh≤i≤j≤k μ(i, j). At time i, let si be the most recent time when
the battery was full.

Theorem 3. For the offline/lossy setting, Algorithm 1 (Ti = μ̂(1, n)) is opti-
mal, feasible, and runs in time O(n2 log n).

Proof. Within any region [i, j], the battery may help in two ways. First, the
battery may be able to lower the local peak by sometimes charging and some-
times discharging. Second, the battery in the best case would start with charge
B at timestep i. With battery loss percentage �, the total amount discharged
from the battery over this period can be at most B plus (1 − �) times the to-
tal amount charged. The optimal threshold over this region cannot be less than
GA(di, ..., dj) with (1 − �, B) chosen as its parameters (r, B).

The threshold used is T = μ̂(1, n). It suffices to show that the battery will
be nonnegative after each time j. Suppose j is the first time underflow occurs.
Let i − 1 be the last timestep prior j with a full battery (or 0 if this has never
occurred). Then there is no underflow or overflow in [i, j), so the total charged in
region [i, j] is exactly U(T ) =

∑j
t=i max(T − dt, 0) and the total discharged will

be L(T ) =
∑j

t=i max(dt − T, 0). The amount of energy available for discharge
over the entire period is B+r·L(T ). Overflow at time j means U(T ) > B+r·L(T ),
but this contradicts the definition of T .

To compute the thresholds, compute GA[i, j] iteratively (varying j from i to
n) for each value i. Each i value takes O(n log n), for a total of O(n2 log n).

Corollary 1. If the battery is effectively unbounded, then a similar optimal al-
gorithm can be obtained, which runs in time O(n log n).

4 Factor-Revealing LPs

If no underflow occurs, then algorithms 2.a and 2.b are Hn-competitive by con-
struction. (Recall that the objective function is the peak reduction amount.) In
this section, we use the factor-revealing LP technique of Jain et al. [8] to provide
some quasi-empirical evidence that no such underflow can ever occur.

A factor-revealing LP is defined based on a particular algorithm for a prob-
lem. The LP variables correspond to possible instances, of a certain size n, of the
optimization problem. (We therefore have an indexed family of linear programs.)
The optimal solution value of the linear program reveals something about the
algorithm it is based on. In the original Facility Location application, the objec-
tive function was the ratio of the cost incurred by the approximation algorithm
in covering the facility and the optimal cost (assumed wlog to be 1) of doing so,



Lowering Peak Usage with Realistic Batteries 201

min: bn+1

s.t.: bi+1 = bi + Ti − di, for all i
bi ≤ B
Ti = D − (D − opti)/Hn, for all i

opti ≥ (1/i)(−B +
∑i

j=1 dj), for all i

b1 = B
di ≤ D, for all i
D ≥ 0, B = 1

Fig. 2. Factor-revealing linear program for lossless batteries (LP1)

so the maximum possible value of this ratio provided an upper bound on the
algorithm’s approximation guarantee.

The size index of our LPs is the number of timesteps n. The objective function
is the final battery level bn+1. The constraints are properties describing the be-
havior of the algorithm; some of the constraints perform book-keeping, including
keeping track of the battery level over time. We first provide the factor-revealing
LP for the lossless setting (Fig. 2), which is simpler than the lossy.

We now explain this program. The battery is initialized to B and can never
supersede this level. As we argue below, we can limit ourselves without loss of
generality to demand sequences in which the algorithm never wishes to charge
to a level greater than B, i.e. no overflow occurs. For such inputs, the threshold
scheme’s first min has no effect and we always have that bi+1 = bi + Ti − di.
Threshold Ti is constrained in the LP to equal the expression for Algorithm 2.b’s
threshold, with opti lower-bounded by the closed-form expression for the analog
of GA for lossless batteries [4]. Moreover, this value is less than or equal to the
corresponding value used in Algorithm 2.a, with the effect that Ti is less than
or equal to the corresponding threshold of Algorithm 2.a at every time i. This
in turn means that feasibility of Algorithm 2.b implies feasibility of Algorithm
2.a. D is included in the program for clarity.

We solved this LP, written in AMLP, with LP solvers on the NEOS server [2],
for several values n ≤ 100. The solution value found was 0, consistent with the
known result [4]. We now state the following lemma, which allows us to limit
our attention to a certain family of demand sequences.

Lemma 1 ([4]). If there is a demand sequence d1, d2, ..., dn in which under-
flow occurs for Algorithm 2.a, then there is also a demand sequence in which
underflow continues to the end (i.e., bn < 0) and no overflow ever occurs.

Theorem 4. If the optimal solution value LP1, for parameter size n, is at least 0,
then Algorithms 2.a is Hn-competitive in the lossless setting, for problem size n.

Proof. Suppose underflow were to occur at some time t, and let s be the most
recent time prior to t when the battery was full. Then by the lemma, [s, t] can be
assumed wlog to be [1, n]. The assumptions that the battery starts at level B and



202 A. Bar-Noy et al.

never reaches this level again (though it may rise and fall non-monotonically)
are implemented by the constraints stating that b1 = B and bi ≥ B. Since no
overflow occurs, the first min in the threshold algorithm definition has no effect,
and the battery level changes based only on Ti and di, i.e., it rises by amount Ti−
di (which may be negative), which is stated in constraints. Since opti = μ̂(1, i) is
the max of expressions for all sequences of [1, i], in particular we have that opti ≥
(−B +

∑i
j=1 di)/i. The optimal solution value to such an LP equals the lowest

possible battery level which can occur, given any possible problem instance of size
n, when using any algorithm consistent the these constraints. Since in particular
the behavior of Algorithms 2.a is consistent with these constraints, the result
follows.

Corollary 2. If the optimal solution value LP1, for all parameter sizes ≤ n,
is at least 0, then Algorithm 2.b is Hn-competitive in the lossless setting, for
problem sizes ≤ n.

Proof. In Algorithm 2.b, threshold Ti is defined based on the region beginning
after the last overflow at position s = si, shifting [s, t] to [1, t′] = [1, t−s+1] has
no effect. If 2.b instead always used Hn, then the lemma above would directly
apply, since the algorithm would then perform identically on [s, t] to [1, t′], and
then the underflow could again be extended to the end. The result that LP1’s
optimal solution value is ≥ 0 would then imply that this modified Algorithm 2.b
is feasible for inputs of size n.

In fact, the actual Algorithm 2.b uses Hn−s+1, with s = si, at time i. In
effect, Algorithm 2.b treats the demand suffix ds+1, ..., dn as an independent
problem instance of size n−s+1. Each time the battery overflows, the harmonic
number subscript is modified, and there is a new subregion and a new possibility
for underflow. If all sizes of overflow-free subregions are underflow-free, then
the algorithm is feasible. Therefore, if LP1’s optimal solution is non-negative,
Algorithm 2.b is feasible.

The more complicated Factor-revealing program for the lossy setting is shown
in Fig. 3. The additional difficulty here is that the program has quadratic con-
straints.

We omit a full description of this program and only remark that the two main
difficulties are 1) that there is an essential asymmetry in the battery behavior,
which complicates the first constraints; and 2) that since we have no closed
formula for GA, (a lower bound on) the optimal threshold must be described
rather than computed.

There are three sets of quadratic constraints, indicated by stars. In fact, it
is possible to remove these and convert LP2 to a linearly-constrained quadratic
program, defined for a fixed constant efficiency L. Unfortunately, the resulting
QP is not convex.

We then have the following results.

Theorem 5. If the optimal solution value LP2, for parameter size n, is at least
0, then Algorithms 2.a is Hn-competitive in the lossy setting, for problem size n.



Lowering Peak Usage with Realistic Batteries 203

min: bn+1

s.t.: bi+1 = bi + L · chi − disi, for all i
chi · disi = 0 (*)
bi ≤ B, for all i
chi, disi ≥ 0, for all i

b1 = B
D ≥ di, for all i
B = 1, D ≥ 0

Ti = D − (D − opti)/Hn

Ti = di − disi + chi

opti ≥ gai, for all i

B + L · (∑i
j=1 choi,j) =

∑i
j=1 disoi,j , for all i (*)

choi,j · disoi,j = 0, for all (j, i) : j ≤ i (*)
gai = dj − disoi,j + choi,j , for all (j, i) : j ≤ i
choi,j , disoi,j ≥ 0, for all (j, i) : j ≤ i

Fig. 3. Factor-revealing quadratically-constrained LP for lossy batteries (LP2)

Corollary 3. If the optimal solution value LP2, for all parameter sizes ≤ n, is
at least 0, then Algorithm 2.b is Hn-competitive in the lossy setting, for problem
sizes ≤ n.

We solved the second program, implemented in AMLP, using several solvers
(MINLP, MINOS, SNOPT) on the NEOS server [2], for several values n ≤ 100.
(The number of variables is quadratic in n, and there are limits to the amount
of memory NEOS provides.) In all case, we found the solution value found was
(within a negligible distance of) non-negative. Although these solvers do not
guarantee a globally optimal solution (at least not for non-convex quadratically-
constrained LPs), we believe this performance provides some “quasi-empirical”
evidence for the correctness of Algorithms 2.a and 2.b.

5 Performance Evaluation

5.1 Experiment Setup

We performed experiments on three datasets: a regular business day’s demand
from an actual Starbucks store, a simulated weekday demand of a residential
user, and a randomly generated demand sequence. Each dataset is of length n =
200. The demand curves are shown in Fig. 4. The parameters in our simulation 1)
battery size B (typically B = 500K), 2) battery charging loss factor L (typically
L = 0.33), 3) aggressiveness c (with c = 0 for 2.b and c = 1 for 2.b-opt).

Since the objective is peak minimization, we modify the algorithms so that
the requests are monotonically increasing (except when prevented by overflow).



204 A. Bar-Noy et al.

0 20 40 60 80 100 120 140 160 180 200
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

6

time i

de
m

an
d 

d i in
 K

W
s

Starbucks Demand

(a) Starbucks

0 50 100 150 200
1

2

3

4

5

6

7

8

9

10
x 10

4

(b) Resident

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8
x 10

4

time i

de
m

an
d 

d i in
 K

W
s

Random Demand

(c) Random

Fig. 4. Input data: demand versus time

Since the peak must be at least D − B, we similarly force this to be the mini-
mum request (again barring overflow). Although the underlying offline algorithm
assumes that b1 = B, other lower initial battery levels can be simulated by ar-
tificially increasing the initial demand(s). In the next subsection, we discuss a
sample of the experiments performed.

5.2 Simulation Results

We know that in the lossless setting, our algorithms are Hn-competitive in terms
of peak reduction, since no underflow occurs. We first wish to test the performance
of the corresponding lossy algorithms, as well as other, heuristic algorithms.

Test 1 - battery size. In this test, we measured the peaks produced by the
different algorithms running with various battery sizes, for settings including
lossy and lossless and initial battery levels of b1 = 0 and b1 = B. We observe the
same general patterns throughout. For random input, performance is averaged
over 50 runs. We observe (Fig. 5) that increasing the battery size reduces the peak
in our optimal algorithm; we also see that Algorithm 2.b constantly outperforms
Algorithm 2.a, and that they both are within Hn of opt, as expected. We include
the heuristic Algorithm 2.b-opt, for comparison, which at each point attempts
threshold opti = μ̂(1, i), i.e., to have, at all times, the same peak as opt would
have had so far. This is a very bold algorithm. We see that it can perform badly
with too large a battery since its aggressiveness can then have greater effect,
increasing the likelihood of underflow.

In our next test, we seek a middle-ground between the conservativeness of 2.b
and the boldness of 2.b-opt.

Test 2 - aggressiveness. We vary the boldness in an algorithm based on 2.b
by using a threshold Ti = D− D−µ̂(1,i)

1+(Hn−s+1−1)c , with parameter c. When c = 1, the
algorithm is 2.b (most conservative); when c = 1, it is 2.b-opt (most aggressive).
In this test, we measure the performance as c varies from 0 to 1 with increment
of 0.1. We compare the performance of Algorithm 2.b as a reference. We used
two battery sizes on the scale of battery size in the Starbucks installation. We
observe (Fig. 5) that increased aggressiveness improves performance, but only
up to a point, for reasons indicated above. We note that the best aggressive
factor c can depend on both battery size B and the input data.



Lowering Peak Usage with Realistic Batteries 205

0 2 4 6 8 10

x 10
5

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

6

Battery size B (in KWs)

P
ea

k 
(in

 K
W

s)
b

0
=0, L=0.33, Starbucks

 

 

OPT
2a
2b
2b − opt

(a) Starbucks

0 2 4 6 8 10

x 10
5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
x 10

4

Battery size B (in KWs)

P
ea

k 
(in

 K
W

s)

b
0
=0, L=0.33, residential user

 

 

OPT
2a
2b
2b − opt
2b − c=0.6

(b) Resident

0 2 4 6 8 10

x 10
5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
x 10

4

Battery size B (in KWs)

P
ea

k 
(in

 K
W

s)

b
0
=0, L=0.33, random user

 

 

OPT
2a
2b
2b − opt
2b − c=0.8

(c) Random, 50 average

0 0.2 0.4 0.6 0.8 1
1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 10

6

agressiveness c

P
ea

k 
(in

 K
W

s)

b
0
=0, L=0.33, Starbucks

 

 

B=0.5M, 2b aggr
B=0.5M, 2b
B=1M, 2b aggr
B=1M, 2b

(d) Starbucks

0 0.2 0.4 0.6 0.8 1
6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8
x 10

4

agressiveness c

P
ea

k 
(in

 K
W

s)

b
0
=0, L=0.33, residential user

 

 

B=0.5M, 2b aggr
B=0.5M, 2b
B=1M, 2b aggr
B=1M, 2b

(e) Resident

0 0.2 0.4 0.6 0.8 1
7.4

7.6

7.8

8

8.2

8.4

8.6
x 10

4

agressiveness c

P
ea

k 
(in

 K
W

s)

b
0
=0, L=0.33, random user 50 average

 

 

B=0.5M, 2b aggr
B=0.5M, 2b
B=1M, 2b aggr
B=1M, 2b

(f) Random, 50 average

Fig. 5. Test 1: Peak versus B, b1 = 0, L = 0.33 (a) (b) (c); Test 2: Peak versus
aggressiveness c, b1 = 0, L = 0.33 (d) (e) (f)

Although we naturally find that too much unmotivated boldness can be dam-
aging, there are potential situations in which significant boldness can be justified.



206 A. Bar-Noy et al.

−1 −0.5 0 0.5 1
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 10

6

Error factor e

P
ea

k 
(in

 K
W

s)

b
0
=B, L=0.33, Starbucks

 

 

predict oblivious
predict update
OPT
2b
2b − OPT

(a) Starbucks

−1 −0.5 0 0.5 1
2

3

4

5

6

7

8

x 10
4

Error factor e

P
ea

k 
(in

 K
W

s)

b
0
=B, L=0.33, residential user 50 averge

 

 
predict oblivious
predict update
OPT
2b
2b − OPT

(b) Resident, 50 average

Fig. 6. Test 3: Peak versus prediction error e, b1 = B = 500k, L = 0.33

0 0.1 0.2 0.3 0.4 0.5
0

0.001

0.002

0.003

0.004

0.005

Battery loss factor L

R
at

io
 (

lo
st

 e
ne

rg
y)

/(
to

ta
l e

ne
rg

y)

b
0
=B, starbucks, B=500k

 

 

OPT
2b

(a) vary L

0 2 4 6 8 10

x 10
5

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Battery size B

R
at

io
 (

lo
st

 e
ne

rg
y)

/(
to

ta
l e

ne
rg

y)

b
0
=0, starbucks, L=0.33

 

 

OPT
2b

(b) vary B

Fig. 7. Test 4: Ratio of energy loss and energy demand, b1 = 0, Starbucks

Test 3 - predictions. Suppose we are give error-prone but reasonably accu-
rate predictions of future demands, based e.g. on historical data. In this test, we
test two prediction-based algorithms. Let pi be the predicted demand sequence.
Let error e ∈ [−1, 1] be the prediction error level, with pi is uniformly distributed
in [di, di(1 + e)] or [di(1 + e), di] if e < 0. First, the oblivious algorithm simply
runs the optimal offline algorithm on the pi values. The update version runs the
offline algorithm on demand sequence < d1, . . . , di, pi+1, pn >, in which the di

are the actual past demands and the pi are the future predictions. We compare
the performances of prediction algorithms with optimal offline algorithm, Algo-
rithms 2.b and 2.b-opt as references. We vary the prediction values from most
optimistic e = −1 to most conservative e = 1.

We see (Fig. 6) that the performance of the prediction algorithm varies in
roughly inversely proportion to the error level. If the prediction error is less
than 20%, both prediction algorithms outperform the two online algorithms. As
e approaches zero, the performance naturally converges to the optimal.



Lowering Peak Usage with Realistic Batteries 207

Test 4 - lost energy. As noted in the introduction, the use of lossy batteries
increases the total energy used. In this test, we compare the lost energy during
charging process with the total energy demand (Fig. 7). We verify that the
amount of lost energy is negligible compared with the total energy demand. We
naturally find, however, that larger B and larger loss factor L increase energy
loss. We believe that the facts that the fraction of lost energy is small and that
the per-unit energy charge is significantly lower than the per-unit peak charge
vindicate our choice to focus on peak charge.

6 Conclusion

In this paper, we presented optimal offline algorithms and both heuristic and pos-
sibly competitive online algorithms for the peak reduction problem with lossy
batteries. The factor-revealing LPs for the lossy setting presently provide only
quasi-empirical evidence for competitiveness. The potential future availability of
global quadratically-constrained LP solvers, however, could provide computer-
aided proof of such competitiveness, at least for instances of bounded size. Sev-
eral additional future extensions suggest themselves:

– additional free but unreliable energy sources (e.g. solar power)
– limited battery charging/discharging speed
– battery loss over time (“self-discharge’)
– multi-dimensional demands and resulting complex objective functions.

Acknowledgements. This work was supported by grants from the NSF (grant
number 0332596) and the New York State Office of Science, Technology and
Academic Research. We thank Deniz Sariöz and Ted Brown for useful discus-
sions. We also thank Ib Olsen of Gaia for posing the problem and for providing
the Starbucks dataset.

References

1. Gaia Power Technologies, gaiapowertech.com
2. NEOS server, Argonne National Lab, www-neos.mcs.anl.gov/neos/solvers/
3. Orlando Utilities Commission, www.ouc.com/account/rates/electric-comm.htm
4. Bar-Noy, A., Johnson, M., Liu, O.: Peak shaving through resource buffering. Tech-

nical Report TR-2007018, CUNY Graduate Center, Dept. of Computer Science
(November 2007)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, McGraw-Hill (2001)

6. Florian, M., Lenstra, J., Kan, A.R.: Deterministic production planning: algorithms
and complexity. Management Science 26 (1980)

7. Hunsaker, B., Kleywegt, A.J., Savelsbergh, M.W.P., Tovey, C.A.: Optimal online
algorithms for minimax resource scheduling. SIAM J. Discrete Math. (2003)

8. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility lo-
cation algorithms analyzed using dual fitting with factor-revealing lp. J. ACM 50(6),
795–824 (2003)



Characterizing the Performance of Flash

Memory Storage Devices and Its Impact on
Algorithm Design�

Deepak Ajwani1, Itay Malinger2, Ulrich Meyer3, and Sivan Toledo4

1 Max Planck Institut für Informatik, Saarbrücken, Germany
2 Tel Aviv University, Tel Aviv, Israel

3 Johann Wolfgang Goethe Universität, Frankfurt a.M., Germany
4 Massachusetts Institute of Technology, Massachusetts, USA

Abstract. Initially used in digital audio players, digital cameras, mobile
phones, and USB memory sticks, flash memory may become the dom-
inant form of end-user storage in mobile computing, either completely
replacing the magnetic hard disks or being an additional secondary stor-
age. We study the design of algorithms and data structures that can
exploit the flash memory devices better. For this, we characterize the
performance of NAND flash based storage devices, including many solid
state disks. We show that these devices have better random read per-
formance than hard disks, but much worse random write performance.
We also analyze the effect of misalignments, aging and past I/O patterns
etc. on the performance obtained on these devices. We show that despite
the similarities between flash memory and RAM (fast random reads)
and between flash disk and hard disk (both are block based devices), the
algorithms designed in the RAM model or the external memory model
do not realize the full potential of the flash memory devices. We later
give some broad guidelines for designing algorithms which can exploit
the comparative advantages of both a flash memory device and a hard
disk, when used together.

1 Introduction

Flash memory is a form of non-volatile computer memory that can be electri-
cally erased and reprogrammed. Flash memory devices are lighter, more shock
resistant, consume less power and hence are particularly suited for mobile com-
puting. Initially used in digital audio players, digital cameras, mobile phones,
and USB memory sticks, flash memory may become the dominant form of end-
user storage in mobile computing: Some producers of notebook computers have
already launched models (Apple MacBook Air, Sony Vaio UX90, Samsung Q1-
SSD and Q30-SSD) that completely abandon traditional hard disks in favor of
flash memory (also called solid state disks). Market research company In-Stat

� Supported in part by the DFG grant ME 3250/1-1, and by MADALGO - Center for
Massive Data Algorithmics, a Center of the Danish National Research Foundation.

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 208–219, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Characterizing the Performance of Flash Memory Storage Devices 209

predicted in July 2006 that 50% of all mobile computers would use flash (instead
of hard disks) by 2013.

Frequently, the storage devices (be it hard disks or flash) are not only used
to store data but also to actually compute on it if the problem at hand does not
completely fit into main memory (RAM); this happens on both very small de-
vices (like PDAs used for online route planning) and high-performance compute
servers (for example when dealing with huge graphs like the web). Thus, it is
important to understand the characteristics of the underlying storage devices in
order to predict the real running time of algorithms, even if these devices are used
as an external memory. Traditionally, algorithm designers have been assuming
a uniform cost access to any location in the storage devices. Unfortunately, real
architectures are becoming more and more sophisticated, and will become even
more so with the advent of flash devices. In case of hard disks, the access cost
depends on the current position of the disk-head and the location that needs to
be read/written. This has been well researched; and there are good computation
models such as the external memory model [1] or the cache-oblivious model [6]
that can help in realistic analysis of algorithms that run on hard disks. This pa-
per attempts to characterize the performance (read/writes; sequential/random)
of flash memory devices; to see the effects of random writes, misalignment and
aging etc. on the access cost and its implications on the real running time of
basic algorithms.

External memory model. The external memory model (or the I/O model)
proposed by Aggarwal and Vitter [1] is one of the most commonly used model
when analyzing the performance of algorithms that do not fit in the main memory
and have to use the hard disk. It assumes a single central processing unit and two
levels of memory hierarchy. The internal memory is fast, but has a limited size of
M words. In addition, we have an external memory which can only be accessed
using I/Os that move B contiguous words between internal and external memory.
At any particular time stamp, the computation can only use the data already
present in the internal memory. The measure of performance of an algorithm is
the number of I/Os it performs.

State of the art for flash memories. Recently, there has been growing
interest in using flash memories to improve the performance of computer sys-
tems [4,9,11]. This trend includes the experimental use of flash memories in
database systems [9,11], in Windows Vista’s use of usb flash memories as a
cache (a feature called ReadyBoost), in the use of flash memory caches in hard
disks (e.g., Seagate’s Momentus 5400 PSD hybrid drives, which include 256 MB
on the drive’s controller), and in proposals to integrate flash memories into moth-
erboards or i/o busses (e.g., Intel’s Turbo Memory technology).

Most previous algorithmic work on flash memory concerns operating system
algorithms and data structures that were designed to efficiently deal with flash
memory cells wearing out, e.g., block-mapping techniques and flash-specific file
systems. A comprehensive overview on these topics was recently published by
Gal and Toledo [7]. The development of application algorithms tuned to flash



210 D. Ajwani et al.

memory is in its absolute infancy. We are only aware of very few published results
beyond file systems and wear leveling:

Wu et al. [12,13] proposed flash-aware implementations of B-trees and R-
trees without file system support by explicitly handling block-mapping within
the application data structures.

Goldberg and Werneck [8] considered point-to-point shortest-path computa-
tions on pocket PCs where preprocessed input graphs (road networks) are stored
on flash-memory; due to space-efficient internal-memory data-structures and lo-
cality in the inputs, data manipulation remains restricted to internal memory,
thus avoiding difficulties with unstructured flash memory write accesses.

Goals. Our first goal is to see how standard algorithms and data structures
for basic algorithms like scanning, sorting and searching designed in the RAM
model or the external memory model perform on flash storage devices. An im-
portant question here is whether these algorithms can effectively use the advan-
tages of the flash devices (such as faster random read accesses) or there is a
need for a fundamentally different model for realizing the full potential of these
devices.

Our next goal is to investigate why these algorithms behave the way they
behave by characterizing the performance of more than 20 different low-end and
high-end flash devices under typical access patterns presented by basic algo-
rithms. Such a characterization can also be looked upon as a first step towards
obtaining a model for designing and analyzing algorithms and data structures
that can best exploit flash memory. Previous attempts [9,11] at characterizing
the performance of these devices reported measurements on a small number of
devices (1 and 2, respectively), so it is not yet clear whether the observed behav-
ior reflects the flash devices, in general. Also, these papers didn’t study if these
devices exhibit any second-order effects that may be relevant.

Our next goal is to produce a benchmarking tool that would allow its users
to measure and compare the relative performance of flash devices. Such a tool
should not only allow users to estimate the performance of a device under a given
workload in order to find a device with an appropriate cost-effectiveness for a
particular application, but also allow quick measurements of relevant parameters
of a device that can affect the performance of algorithms running on it.

These goals may seem easy to achieve, but they are not. These devices employ
complex logical-to-physical mapping algorithms and complex mechanisms to de-
cide which blocks to erase. The complexity of these mechanisms and the fact that
they are proprietary mean that it is impossible to tell exactly what factors affect
the performance of a device. A flash device can be used by an algorithm designer
like a hard disk (under the external memory or the cache-oblivious model), but
its performance may be far more complex.

It is also possible that the flash memory becomes an additional secondary
storage device, rather than replacing the hard disk. Our last, but not least, goal
is to find out how one can exploit the comparative advantages of both in the
design of application algorithms, when they are used together.



Characterizing the Performance of Flash Memory Storage Devices 211

Outline. The rest of the paper is organized as follows. In Section 2, we show
how the basic algorithms perform on flash memory devices and how appropriate
the standard computation models are in predicting these performances. In
Section 3, we present our experimental methodology, and our benchmarking
program, which we use to measure and characterize the performance of many
different flash devices. We also show the effect of random writes, misalignment
and aging on the performance of these devices. In Section 4, we provide an algo-
rithm design framework for the case when flash devices are used together with a
hard disk.

2 Implications of Flash Devices for Algorithm Design

In this section, we look at how the RAM model and external memory model
algorithms behave when running on flash memory devices. In the process, we
try to ascertain whether the analysis of algorithms in either of the two models
also carry over to the performance of these algorithms obtained on flash devices.

In order to compare the flash memory with DRAM memory (used as main
memory), we ran a basic RAM model list ranking algorithm on two architectures
- one with 4GB RAM memory and the other with 2GB RAM, but 32 GB flash
memory. The list ranking problem is that given a list with individual elements
randomly stored on disk, find the distance of each element from the head of
the list. The sequential RAM model algorithm consists of just hoping from one
element to its next, and thereby keeping track of the distances of node from the
head of the list. Here, we do not consider the cost of writing the distance labels
of each node.

We stored a 230-element list of long integers (8 Bytes) in a random order,
i.e. the elements were kept in the order of a random permutation generated
beforehand. While ranking such a list took minutes in RAM, it took days with
flash. This is because even though the random reads are faster on flash disks
than the hard disk, they are still much slower than RAM. Thus, we conclude
that RAM model is not useful for predicting the performance (or even relative
performance) of algorithms running on flash memory devices and that standard
RAM model algorithms leave a lot to be desired if they are to be used on flash
devices.

Table 1. Runtime of basic algorithms when running on Seagate Barracuda 7200.11
hard disk as compared to 32 GB Hama Solid State disk

Algorithm Hard Disk Flash

Generating a random double and writing it 0.2 µs 0.37 µs
Scanning (per double) 0.3 µs 0.28 µs
External memory Merge-Sort (per double) 1.06 µs 1.5 µs
Random read 11.3 ms 0.56 ms
Binary Search 25.5 ms 3.36 ms



212 D. Ajwani et al.

As Table 1 shows, the performance of basic algorithms when running on hard
disks and when running on flash disks can be quite different, particularly when
it comes to algorithms involving random read I/Os such as binary search on a
sorted array. While such algorithms are extremely slow on hard disks necessitat-
ing B-trees and other I/O-efficient data structures, they are acceptably fast on
flash devices. On the other hand, algorithms involving write I/Os such as merge
sort (with two read and write passes over the entire data) run much faster on
hard disk than on flash.

It seems that the algorithms that run on flash have to achieve a different
tradeoff between reads and writes and between sequential and random accesses
than hard disks. Since the cost of accesses don’t drop or rise proportionally
over the entire spectrum, the algorithms running on flash devices need to be
qualitatively different from the one on hard disk. In particular, they should be
able to tradeoff write I/Os at the cost of extra read I/Os. Standard external
memory algorithms that assume same cost for reading and writing fail to take
advantage of fast random reads offered by flash devices. Thus, there is a need
for a fundamentally different model for realistically predicting the performance
of algorithms running on flash devices.

3 Characterization of Flash Memory Devices

In order to see why the standard algorithms behave as mentioned before, we
characterize more than 20 flash storage devices. This characterization can also be
looked at as a first step towards a model for designing and analyzing algorithms
and data structures running on flash memory.

3.1 Flash Memory

Large-capacity flash memory devices use nand flash chips. All nand flash chips
have common characteristics, although different chips differ in performance and
in some minor details. The memory space of the chip is partitioned into blocks
called erase blocks. The only way to change a bit from 0 to 1 is to erase the
entire unit containing the bit. Each block is further partitioned into pages, which
usually store 2048 bytes of data and 64 bytes of meta-data (smaller chips have
pages containing only 512+16 bytes). Erase blocks typically contain 32 or 64
pages. Bits are changed from 1 (the erased state) to 0 by programming (writing)
data onto a page. An erased page can be programmed only a small number of
times (one to three) before it must be erased again. Reading data takes tens
of microseconds for the first access to a page, plus tens of nanoseconds per
byte. Writing a page takes hundreds of microseconds, plus tens of nanoseconds
per byte. Erasing a block takes several milliseconds. Finally, erased blocks wear
out; each block can sustain only a limited number of erasures. The guaranteed
numbers of erasures range from 10,000 to 1,000,000. To extend the life of the
chip as much as possible, erasures should therefore be spread out roughly evenly
over the entire chip; this is called wear leveling.



Characterizing the Performance of Flash Memory Storage Devices 213

Because of the inability to overwrite data in a page without first erasing the
entire block containing the page, and because erasures should be spread out over
the chip, flash memory subsystems map logical block addresses (lba) to physical
addresses in complex ways [7]. This allows them to accept new data for a given
logical address without necessarily erasing an entire block, and it allows them to
avoid early wear even if some logical addresses are written to more often than
others. This mapping is usually a non-trivial algorithm that uses complex data
structures, some of which are stored in ram (usually inside the memory device)
and some on the flash itself.

The use of a mapping algorithm within lba flash devices means that their per-
formance characteristics can be worse and more complex than the performance
of the raw flash chips. In particular, the state of the on-flash mapping and the
volatile state of the mapping algorithm can influence the performance of reads
and writes. Also, the small amount of ram can cause the mapping mechanism to
perform more physical i/o operations than would be necessary with more ram.

3.2 Configuration

The tests were performed on many different machines – a 1.5GHz Celeron-M
with 512m ram, a 3.0GHz Pentium 4 with 2GB of ram, a 2.0Ghz Intel dual
core T7200 with 2GB of ram, and a 2 x Dual-core 2.6 GHz AMD Opteron with
2.5 GB of ram. All of these machines were running a 2.6 Linux kernel.

The devices include USB sticks, compact-flash and sd memory cards and
solid state disks (of capacities 16GB and 32GB). They include both high-end
and low-end devices. The USB sticks were connected via a USB 2.0 interface,
memory cards were connected through a USB 2.0 card reader (made by Hama)
or PCMCIA interface, and solid state disks with IDE interface were installed in
the machines using a 2.5 inch to 3.5 inch IDE adapter and a PATA serial bus.

Our benchmarking tool and methodology. Standard disk benchmarking
tools like zcav fail to measure things that are important in flash devices (e.g.,
write speeds, since they are similar to read speeds on hard disks, or sequential-
after-random writes); and commercial benchmarks tend to focus on end-to-end
file-system performance, which does not characterize the performance of the flash
device in a way that is useful to algorithm designers. Therefore, we decided to
implement our own benchmarking program that is specialized (designed mainly
for LBA flash devices), but highly flexible and can easily measure the perfor-
mance of a variety of access patterns, including random and sequential reads
and writes, with given block sizes and alignments, and with operation counts or
time limits.

3.3 Result and Analysis

Performance of steady, aligned access patterns. Figure 1 shows the per-
formance of two typical devices under the aligned access patterns. The other
devices that we tested varied greatly in the absolute performance that they



214 D. Ajwani et al.

(a) (b)

Fig. 1. Performance (in logarithmic scale) of the (a) 1 GB Toshiba TransMemory usb
flash drive and the (b) 1 GB Kingston compact-flash card

Table 2. The tested devices and their performance (in MBps) under sequential and
random reads and writes with block size of 512 Bytes and 2 MB

Device Buffer size 512 Bytes Buffer size 2 MB

Name size sr rr sw rw sr rr sw rw

kingston dt secure 512m 0.97 0.97 0.64 0.012 33.14 33.12 14.72 9.85

memorex mini traveldrive 512m 0.79 0.79 0.37 0.002 13.15 13.15 5.0 5.0

toshiba transmemory 512m 0.78 0.78 0.075 0.003 12.69 12.69 4.19 4.14

sandisk u3 cruzer micro 512m 0.55 0.45 0.32 0.013 12.8 12.8 5.2 4.8

m-systems mdrive 1g 0.8 0.8 0.24 0.005 26.4 26.4 15.97 15.97

m-systems mdrive 100 1g 0.78 0.78 0.075 0.002 12.4 12.4 3.7 3.7

toshiba transmemory 1g 0.8 0.8 0.27 0.002 12.38 12.38 4.54 4.54

smi flash device 1g 0.97 0.54 0.65 0.01 13.34 13.28 9.18 7.82

kingston cf card 1g 0.60 0.60 0.25 0.066 3.55 3.55 4.42 3.67

kingston dt elite hs 2.0 2g 0.8 0.8 0.22 0.004 24.9 24.8 12.79 6.2

kingston dt elite hs 2.0 4g 0.8 0.8 0.22 0.003 25.14 25.14 12.79 6.2

memorex td classic 003c 4g 0.79 0.17 0.12 0.002 12.32 12.15 5.15 5.15

120x cf card 8g 0.68 0.44 0.96 0.004 19.7 19.5 18.16 16.15

supertalent solid state flash drive 16g 1.4 0.45 0.82 0.028 12.65 12.60 9.84 9.61

hama solid state disk 2.5” ide 32g 2.9 2.18 4.89 0.012 28.03 28.02 24.5 12.6

ibm deskstar hard drive 60g 5.9 0.03 4.1 0.03 29.2 22.0 24.2 16.2

seagate barracuda 7200.11 hard disk 500g 6.2 0.063 5.1 0.12 87.5 69.6 88.1 71.7

achieved, but not in the general patterns; all followed the patterns shown in
Figures 1a and 1b.

In all the devices that we tested, small random writes were slower than all
the other access patterns. The difference between random writes and other ac-
cess patterns is particularly large at small buffer sizes, but it is usually still
evident even on fairly large block sizes (e.g., 256KB in Figure 1a and 128KB in
Figure 1b). In most devices, small-buffer random writes were at least 10 times
slower than sequential writes with the same buffer size, and at least 100 times
slower than sequential writes with large buffers. Table 2 shows the read/write



Characterizing the Performance of Flash Memory Storage Devices 215

access time with two different block sizes (512 Bytes and 2 MB) for sequential
and random accesses on some of the devices that we tested.

We believe that the high cost for random writes of small blocks is because of
the LBA mapping algorithm in these devices. These devices partition the virtual
and physical address spaces into chunks larger than an erase block; in many cases
512KB. The LBA mapping maps areas of 512KB logical addresses to physical
ranges of the same size. On encountering a write request, the system writes the
new data into a new physical chunk and keeps on writing contiguously in this
physical chunk till it switches to another logical chunk. The logical chunk is now
mapped twice. Afterwards, when the writing switches to another logical chunk,
the system copies over all the remaining pages in the old chunk and erases it. This
way every chunk is mapped once, except for the active chunk, which is mapped
twice. On devices that behave like this, the best random-write performance (in
seconds) is on blocks of 512KB (or whatever is the chunk size). At that size,
the new chunk is written without even reading the old chunk. At smaller sizes,
the system still ends up writing 512KB, but it also needs to read stuff from the
old location of this chunk, so it is slower. We even found that on some devices,
writing randomly 256 or 128KB is slower than writing 512KB, in absolute time.

In most devices, reads were faster than writes in all block sizes. This typical
behavior is shown in Figure 1a.

Another nearly-universal characteristic of the devices is the fact that sequen-
tial reads are not faster than random reads. The read performance does de-
pend on block size, but usually not on whether the access pattern is random or
sequential.

The performance in each access pattern usually increases monotonically with
the block size, up to a certain saturation point. Reading and writing small blocks
is always much slower than the same operation on large blocks.

The exceptions to these general rules are discussed in detail in [2].
Comparison to hard disks. Quantitatively, the only operation in which

lba flash devices are faster than hard disks is random reads of small buffers.
Many of these devices can read a random page in less than a millisecond, some-
times less than 0.5ms. This is at least 10 times faster than current high-end
hard disks, whose random-access time is 5-15ms. Even though the random-read
performance of lba flash devices varies, all the devices that we tested exhibited
better random-read times than those of hard disks.

In all other aspects, most of the flash devices tested by us are inferior to hard
disks. The random-write performance of lba flash devices is particularly bad
and particularly variable. A few devices performed random writes about as fast
as hard disks, e.g., 6.2ms and 9.1ms. But many devices were more than 10 times
slower, taking more than 100ms per random write, and some took more than
300ms.

Even under ideal access patterns, the flash devices we have tested provide
smaller I/O bandwidths than hard disks. One flash device reached read through-
put approaching 30MB/s and write throughput approaching 25MB/s. Hard disks
can achieve well over 100MB/s for both reads and writes. Even disks designed



216 D. Ajwani et al.

(a) (b)

Fig. 2. (a) Effect of misalignment on the performance of flash devices (b) Total time
taken by large number of random writes on a 32 GB Hama Solid state disk

for laptops can achieve throughput approaching 60MB/s. Flash devices would
need to improve significantly before they outperform hard disks in this metric.
The possible exception to this conclusion is large-capacity flash devices utilizing
multiple flash chips, which should be able to achieve high throughput by writing
in parallel to multiple chips.

Performance of large number of random writes. We observed an in-
teresting phenomenon (Figure 2b) while performing large number of random
writes on a 32 GB Hama (2.5” IDE) solid state disk. After the first 3000 random
writes (where one random write is writing a 8-byte real number at a random
location in a 8 GB file on flash), we see some spikes in the total running time.
Afterwards, these spikes are repeated regularly after every 2000 random writes.
This behavior is not restricted to Hama solid state disk and is observed in many
other flash devices.

We believe that it is because the random writes make the page table more
complex. After a while, the controller rearranges the pages in the blocks to
simplify the LBA mapping. This process takes 5-8 seconds while really writing
the data on the disk takes less than 0.8 seconds for 2000 random writes, causing
the spikes in the total time.

Effects of misalignment. On many devices, misaligned random writes
achieve much lower performance than aligned writes. In this setting, alignment
means that the starting address of the write is a multiple of the block size. We
have not observed similar issues with sequential access and with random reads.

Figure 2a shows the ratio between misaligned and aligned random writes. The
misalignment is by 2KB, 16KB and 32KB. All of these sizes are at most as large
as a single flash page. Many of the devices that we have tested showed some
performance drop on misaligned addresses, but the precise effect varied from
device to device. For example, the 128MB SuperTalent usb device is affected by
misalignment by 2KB but not by misalignments of 16KB or 32KB.

Effect of random writes on subsequent operations. On some devices, a
burst of random writes slows down subsequent sequential writes. The effect can



Characterizing the Performance of Flash Memory Storage Devices 217

last a minute or more, and in rare cases hours (of sustained writing). No such
effect was observed on subsequent reads.

In these experiments, we performed t seconds of random writing, for t = 5, 30
and 60. We then measured the performance of sequential writes during each
4 second period for the next 120 seconds. For very small blocks, the median
performance in the two minutes that follow the random writes can drop by
more than a factor of two. Even on larger blocks, performance drops by more
than 10%.

Effects of Aging. We were not able to detect a significant performance degra-
dation as devices get older (in terms of the number of writes and erasures). On
a (512mb Kingston DataTraveler II+) device, we observed that the per-
formance of each access pattern remains essentially constant, even after 320,000
sequential writes on the entire device. The number of writes exceeded the rated
endurance of the device by at least a factor of 3.

4 Designing Algorithms to Exploit Flash When Used
Together with a Hard Disk

Till now, we discussed the characteristics of the flash memory devices and the
performance of algorithms running on architectures where the flash disks replace
the hard disks. Another likely scenario is that rather than replacing hard disk,
flash disk may become an additional secondary storage, used together with hard
disk. From the algorithm design point of view, it leads to many interesting ques-
tions. A fundamental question here is how can we best exploit the comparative
advantages of the two devices while running an application algorithm.

The simple idea of directly using external memory algorithms with input and
intermediate data randomly striped on the two disks treats both the disks as
equal. Since the sequential throughput and the latency for random I/Os of the
two devices is likely to be very different, the I/Os of the slower disk can easily
become a bottleneck, even with asynchronous I/Os.

The key idea in designing efficient algorithms in such a setting is to restrict
the random accesses to a static data-structure. This static data-structure is then
kept on the flash disk, thereby exploiting the fast random reads of these devices
and avoiding unnecessary writing. The sequential read and write I/Os are all
limited to the hard disk.

We illustrate this basic framework with the help of external memory BFS
algorithm of Mehlhorn and Meyer [10].

The BFS algorithm of Mehlhorn and Meyer [10] involves a preprocessing phase
to restructure the adjacency lists of the graph representation. It groups the
nodes of the input graph into disjoint clusters of small diameter and stores the
adjacency lists of the nodes in a cluster contiguously on the disk. The key idea is
that by spending only one random access (and possibly some sequential accesses
depending on cluster size) in order to load the whole cluster and then keeping
the cluster data in some efficiently accessible data structure (hot pool) until it is
all used up, the total amount of I/Os can be reduced by a factor of up to

√
B on



218 D. Ajwani et al.

sparse graphs. The neighboring nodes of a BFS level can be computed simply by
scanning the hot pool and not the whole graph. Removing the nodes visited in
previous two levels by parallel scanning gives the nodes in the next BFS level (a
property true only for undirected graphs). Though some edges may be scanned
more often in the pool, random I/Os to fetch adjacency lists is considerably
reduced.

This algorithm is well suited for our framework as random I/Os are mostly
restricted to the data structure keeping the graph clustering, while the hot pool
accesses are mostly sequential. Also, the graph clustering is only stored once
while the hot pool is modified (read and written) in every iteration. Thus, we
keep the graph clustering data structure in the flash disk and the hot pool on
the hard disk.

We ran a fast implementation [3] of this algorithm on a graph class that is
considered difficult for the above mentioned algorithm. This graph class is a tree
with

√
B+1 BFS levels. Level 0 contains only the source node which has an edge

to all nodes in level 1. Levels 1 . . .
√

B have n√
B

nodes each and the ith node in

jth level (1 < j <
√

B) has an edge to the ith node in levels j − 1 and j + 1.
As compared to striping the graph as well as pool randomly between the

hard disk and the flash disk, the strategy of keeping the graph clustering data
structure in flash disk and hot pool in hard disk performs around 25% better.
Table 3 shows the running time for the second phase of the algorithm for a 228-
node graph. Although the number of I/Os in the two cases are nearly the same,
the time spent waiting for I/Os is much smaller for our disk allocation strategy,
leading to better overall runtime.

The cluster size in the BFS algorithm was chosen in a way so as to balance
the random reads and sequential I/Os on the hard disks, but now in this new
setting, we can reduce the cluster size as the random I/Os are being done much
faster by the flash memory. Our experiments suggest that this leads to even
further improvements in the runtime of the BFS algorithm.

Table 3. Timing (in hours) for the second phase of Mehlhorn/Meyer’s BFS algorithm
on 228-node graph

Operation Random striping Our strategy

1 Flash + 1 Hard disk 2 Hard disks Same cluster size Smaller cluster size

I/O wait time 10.5 6.3 7.1 5.8
Total time 11.7 7.5 8.1 6.3

5 Discussion

Our results indicate that there is a need for more experimental analysis to find
out how the existing external memory and cache-oblivious data structures like
priority queues and search trees perform, when running on flash devices. Such
experimental studies should eventually lead to a model for predicting realistic
performance of algorithms and data structures running on flash devices, as well



Characterizing the Performance of Flash Memory Storage Devices 219

as on combinations of hard disks and flash devices. Coming up with a model
that can capture the essence of flash devices and yet is simple enough to design
and analyze algorithms and data structures, remains an important challenge.

As a first model, we may consider a natural extension of the standard external-
memory model that will distinguish between block accesses for reading and writ-
ing. The I/O cost measure for an algorithm incurring x read I/Os and y write
I/Os could be x + cW · y, where the parameter cW > 1 is a penalty factor for
write accesses.

An alternative approach might be to assume different block transfer sizes, BR

for reading and BW for writing, where BR < BW and cR · x + cW · y (with
cR, cW > 1) would be the modified cost measure.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116–1127 (1988)

2. Ajwani, D., Malinger, I., Meyer, U., Toledo, S.: Characterizing the performance
of flash memory storage devices and its impact on algorithm design. Max Planck
Institut für Informatik, Research report no. MPI-I-2008-1-001

3. Ajwani, D., Meyer, U., Osipov, V.: Improved external memory BFS implementa-
tions. In: ALENEX 2007, pp. 3–12 (2007)

4. Birrell, A., Isard, M., Thacker, C., Wobber, T.: A design for high-performance flash
disks. SIGOPS Oper. Syst. Rev. 41(2), 88–93 (2007)

5. Chen, P.M., Patterson, D.A.: A new approach to I/O performance evaluation—
self-scaling I/O benchmarks, predicted I/O performance. In: ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, pp. 1–12, 10–14
(1993)

6. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: FOCS, pp. 285–297. IEEE Computer Society Press, Los Alamitos (1999)

7. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Com-
puting Surveys 37, 138–163 (2005)

8. Goldberg, A., Werneck, R.: Computing point-to-point shortest paths from external
memory. In: ALENEX 2005, SIAM, Philadelphia (2005)

9. Lee, S.-W., Moon, B.: Design of flash-based DBMS: An in-page logging approach.
In: Chan, C.Y., Ooi, B.C., Zhou, A. (eds.) SIGMOD Conference, pp. 55–66. ACM,
New York (2007)

10. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear
I/O. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 723–
735. Springer, Heidelberg (2002)

11. Myers, D., Madden, S.: On the use of NAND flash disks in high-performance rela-
tional databases. Manuscript (2007)

12. Wu, C.-H., Chang, L.-P., Kuo, T.-W.: An efficient B-tree layer for flash-memory
storage systems. In: Chen, J., Hong, S. (eds.) RTCSA 2003. LNCS, vol. 2968,
Springer, Heidelberg (2004)

13. Wu, C.-H., Chang, L.-P., Kuo, T.-W.: An efficient R-tree implementation over
flash-memory storage systems. In: Proceedings of the eleventh ACM international
symposium on Advances in geographic information systems, pp. 17–24. ACM Press,
New York (2003)



Fast Local Search for the Maximum

Independent Set Problem�

Diogo V. Andrade1, Mauricio G.C. Resende2, and Renato F. Werneck3

1 Google Inc., 76 Ninth Avenue, New York, NY 10011, USA
diogo@google.com

2 AT&T Labs Research, 180 Park Ave, Florham Park, NJ 07932, USA
mgcr@research.att.com

3 Microsoft Research Silicon Valley, 1065 La Avenida, Mtn. View, CA 94043, USA
renatow@microsoft.com

Abstract. Given a graph G = (V, E), the independent set problem is
that of finding a maximum-cardinality subset S of V such that no two
vertices in S are adjacent. We present a fast local search routine for this
problem. Our algorithm can determine in linear time whether a maximal
solution can be improved by replacing a single vertex with two others.
We also show that an incremental version of this method can be useful
within more elaborate heuristics. We test our algorithms on instances
from the literature as well as on new ones proposed in this paper.

1 Introduction

The maximum independent set problem (MIS) takes a connected, undirected
graph G = (V, E) as input, and tries to find the largest subset S of V such that
no two vertices in S have an edge between them. Besides having several direct
applications [2], MIS is closely related to two other well-known optimization
problems. To find the maximum clique (the largest complete subgraph) of a
graph G, it suffices to find the maximum independent set of the complement
of G. Similarly, to find the minimum vertex cover of G = (V, E) (the smallest
subset of vertices that contains at least one endpoint of each edge in the graph),
one can find the maximum independent set S of V and return V \ S. Because
these problems are NP-hard [11], for most instances one must resort to heuristics
to obtain good solutions within reasonable time.

Most successful heuristics [1,7,8,9,12,14,15] maintain a single current solution
that is slowly modified by very simple operations, such as individual insertions
or deletions and swaps (replacing a vertex by one of its neighbors). In particular,
many algorithms use the notion of plateau search, which consists in performing
a randomized sequence of swaps. A swap does not improve the solution value by
itself, but with luck it may cause a non-solution vertex to become free, at which
point a simple insertion can be performed. Grosso et al. [8] have recently obtained
� Part of this work was done while the first author was at Rutgers University and the

third author at Princeton University.

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 220–234, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Fast Local Search for the Maximum Independent Set Problem 221

exceptional results in practice by performing plateau search almost exclusively.
Their method (as well as several others) occasionally applies a more elaborate
operation for diversification purposes, but spends most of its time performing
basic operations (insertions, deletions, and swaps), often chosen at random.

This paper expands the set of tools that can be used effectively within meta-
heuristics. We present a fast (in theory and practice) implementation of a natural
local search algorithm. It is based on (1,2)-swaps, in which a single vertex is re-
moved from the solution and replaced by two others. We show that one can find
such a move (or prove that none exists) in linear time. In practice, an incremen-
tal version runs in sublinear time. The local search is more powerful than simple
swaps, but still cheap enough for effective use within more elaborate heuristics.
We also briefly discuss a generalization of this method to deal with (2,3)-swaps,
i.e., two removals followed by three insertions.

Another contribution is a more elaborate heuristic that illustrates the effec-
tiveness of our local search. Although the algorithm is particularly well-suited
for large, sparse instances, it is competitive with previous algorithms on a wide
range of instances from the literature. As an added contribution, we augmented
the standard set of instances from the literature with new (and fundamentally
different) instances, never previously studied in the context of the MIS problem.

This paper is organized as follows. Section 2 establishes the notation and
terminology we use. Our local search algorithm is described in Section 3. Sec-
tion 4 illustrates how it can be applied within a more elaborate heuristic. Ex-
perimental results are presented in Section 5, and final remarks are made in
Section 6.

2 Basics

The input to the MIS problem is a graph G = (V, E), with |V | = n and |E| = m.
We assume that vertices are labeled from 1 to n. We use the adjacency list
representation: each vertex keeps a list of all adjacent vertices, sorted by label.
One can enforce the ordering in linear time by applying radix sort to all edges.

A solution S is simply a subset of V in which no two vertices are adjacent.
The tightness of a vertex v �∈ S, denoted by τ(v), is the number of neighbors
of v that belong to S. We say that a vertex is k-tight if it has tightness k. The
tightnesses of all vertices can be computed in O(m) time: initialize all values to
zero, then traverse the adjacency list of each solution vertex v and increment
τ(w) for every arc (v, w). Vertices that are 0-tight are called free. A solution is
maximal if it has no free vertices.

Our algorithms represent a solution S as a permutation of all vertices, par-
titioned into three blocks: first the |S| vertices in the solution, then the free
vertices, and finally the nonfree vertices. The order among vertices within a
block is irrelevant. The sizes of the first two blocks are stored explicitly. In ad-
dition, the data structure maintains, for each vertex, its tightness (which allows
us to determine if the vertex is free) and its position in the permutation (which
allows the vertex to be moved between blocks in constant time).



222 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

This structure must be updated whenever a vertex v is inserted into or re-
moved from S. The only vertices that change are v itself and its neighbors,
so each such operation takes time proportional to the degree of v, denoted by
deg(v). This is more expensive than in simpler solution representations (such as
lists or incidence vectors), but the following operations can be easily performed
in constant time: (1) check if the solution is maximal (i.e., if the second block
is empty); (2) check if a vertex is in the solution (i.e., if it belongs to the first
block); (3) determine the tightness of a non-solution vertex; and (4) pick a vertex
within any of the three blocks uniformly at random.

3 Local Search

A (j, k)-swap consists of removing j vertices from a solution and inserting k
vertices into it. For simplicity, we refer to a (k, k)-swap as a k-swap (or simply
a swap when k = 1), and to a (k − 1, k)-swap as a k-improvement. We use the
term move to refer to a generic (j, k)-swap.

Our main local search algorithm is based on 2-improvements. These natural
operations have been studied before (see e.g. [6]); our contribution is a faster
implementation. Given a maximal solution S, we would like to replace some
vertex x ∈ S with two vertices, v and w (both originally outside the solution),
thus increasing the total number of vertices in the solution by one. We test
each solution vertex x ∈ S in turn. In any 2-improvement that removes x, both
vertices inserted must be neighbors of x (by maximality) that are 1-tight (or the
new solution would not be valid) and not adjacent to each other.

To process x efficiently, we first build a list L(x) consisting of the 1-tight
neighbors of x, sorted by vertex identifier. If L(x) has fewer than two elements,
we are done with x: it is not involved in any 2-improvement. Otherwise, we
must find, among all candidates in L(x), a pair {v, w} such that there is no
edge between v and w. We do this by processing each element v ∈ L(x) in turn.
For a fixed candidate v, we check if there is a vertex w ∈ L(x) (besides v) that
does not belong to A(v), the adjacency list of v. Since both L(x) and A(v) are
sorted by vertex identifier, this can be done by traversing both lists in tandem.
All elements of L(x) should appear in the same order within A(v); if there is a
mismatch, the missing element is the vertex w we are looking for.

We claim that this algorithm finds a valid 2-improvement (or determines that
none exists) in O(m) time. This is clearly a valid bound on the time spent
scanning all vertices (i.e., traversing their adjacency lists), since each vertex is
scanned at most once. Each solution vertex x is scanned to build L(x) (the list
of 1-tight neighbors), and each 1-tight non-solution vertex v is scanned when its
only solution neighbor is processed. (Non-solution vertices that are not 1-tight
are not scanned at all.) We still need to bound the time spent traversing the
L(x) lists. Each list L(x) may be traversed several times, but each occurs in tan-
dem with the traversal of the adjacency list A(v) of a distinct 1-tight neighbor
v of x. Unless the traversal finds a valid swap (which occurs only once), traversing



Fast Local Search for the Maximum Independent Set Problem 223

L(x) costs no more than O(deg(v)), since each element of L(x) (except v) also
occurs in A(v). This bounds the total cost of such traversals to O(m).

An alternative linear-time implementation is as follows. As before, process
each solution vertex x in turn. First, temporarily remove x from S. Then, for
each newly-free neighbor v of x, insert v into S and check if the solution becomes
maximal. If it does, simply remove v and process the next neighbor of x; if it
does not, inserting any free vertex will yield a valid 2-improvement.

We have also considered more powerful local search algorithms. In particular,
using generalized (and more complicated) versions of the techniques above, one
can detect a 3-improvement (of prove that none exists) in O(mΔ) time, where Δ
is the maximum vertex degree. Similarly, 2-swaps can be implemented in linear
time. Due to space constraints, we omit a full description of these algorithms.

3.1 Incremental Version

A typical local search procedure does not restrict itself to a single iteration.
If a valid 2-improvement is found, the algorithm will try to find another in the
improved solution. This can of course be accomplished in linear time, but we can
do better with an incremental version of the local search, which uses information
gathered in one iteration to speed up later ones.

The algorithm maintains a set of candidates, which are solution vertices that
might be involved in a 2-improvement. So far, we have assumed that all solution
vertices are valid candidates, and we test them one by one. After a move, we
would test all vertices again. Clearly, if we establish that a candidate x cannot
be involved in a 2-improvement, we should not reexamine it unless we have good
reason to do so. More precisely, when we “discard” a candidate vertex x, it is
because it does not have two independent 1-tight neighbors. Unless at least one
other neighbor of x becomes 1-tight, there is no reason to look at x again.

To accomplish this, we maintain a list of candidates that is updated whenever
the solution changes. Any move (including a 2-improvement) can be expressed in
terms of insertions and deletions of individual vertices. When we insert a vertex
v into the solution, its neighbors are the only vertices that can become 1-tight,
so we simply (and conservatively) add v to the list of candidates. When a vertex
x is removed from the solution, the update is slightly more complicated. We
must traverse the adjacency list of x and look for vertices that became 1-tight
due to its removal. By definition, each such vertex v will have a single neighbor
y in the solution; y must be inserted into the candidate list. We can find the
solution vertex adjacent to each 1-tight neighbor v in constant time, as long
as we maintain with each non-solution vertex the list of its solution neighbors.1

Therefore, we could still update the candidate list after removing x in O(deg(x))
time. For simplicity, however, we do not maintain the auxiliary data structures
in our implementation, and explicitly scan each 1-tight neighbor of x.
1 Standard doubly-linked lists will do, but updating them is nontrivial. In particular,

when removing a vertex x from the solution, we must be able to remove in constant
time the entry representing x in the list of each neighbor v. This can be accomplished
by storing a pointer to that entry together with the arc (x, v) in x’s adjacency list.



224 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

Although we have framed our discussion in terms of 2-improvements, these
updates can of course be performed for any sequence of removals and/or in-
sertions. As we will see, this means we can easily embed the incremental local
search algorithm into more elaborate heuristics. Once invoked, the local search
itself is quite simple: it processes the available candidates in random order, and
stops when the list of candidates is empty.

3.2 Maximum Clique

Although our experiments focus mainly on the MIS problem, it is worth men-
tioning that one can also implement a linear-time 2-improvement algorithm for
the maximum clique problem. Simply running the algorithm above on the com-
plement of the input is not enough, since the complement may be much denser.

Given a maximal clique C, we must determine if there is a vertex x ∈ C and
two vertices v, w �∈ C such that the removal of x and the insertion of v and w
would lead to a larger clique. Such a move only exists if the following holds: (1)
v and w are neighbors; (2) both v and w are adjacent to all vertices in C \ {x};
and (3) at least one of v or w is not a neighbor of x (by maximality). For a vertex
v with tightness |C| − 1, define its missing neighbor μ(v) as the only solution
vertex to which v is not adjacent. There is a 2-improvement involving v if it
has a neighbor w such that either (1) τ(w) = |C| or (2) τ(w) = |C| − 1 and
μ(w) = μ(v). Knowing this, the local search procedure can be implemented in
O(m) time as follows. First, determine the tightness of all vertices, as well as the
missing neighbors of those that are (|C|−1)-tight. Then, for each (|C|−1)-tight
vertex v, determine in O(deg(v)) time if it has a valid neighbor w.

4 Metaheuristics

4.1 Iterated Local Search

To test our local search, we use it within a heuristic based on the iterated local
search (ILS) metaheuristic [13]. We start from a random solution S, apply local
search to it, then repeatedly execute the following steps: (1) S′ ← perturb(S);
(2) S′ ← localsearch(S′); (3) set S ← S′ if certain conditions are met. Any
reasonable stopping criterion can be used, and the algorithm returns the best
solution found. The remainder of this section details our implementation of each
step of this generic algorithm.

Perturbations are performed with the force(k) routine, which sequentially
inserts k vertices into the solution (the choice of which ones will be explained
shortly) and removes the neighboring vertices as necessary. (We call these forced
insertions.) It then adds free vertices at random until the solution is maximal.
We set k = 1 in most iterations, which means a single vertex will be inserted.
With small probability (1/(2 · |S|)), however, we pick a higher value: k is set
to i + 1 with probability proportional to 1/2i, for i ≥ 1. We must then choose
which k vertices to insert. If k = 1, we pick a random non-solution vertex. If k



Fast Local Search for the Maximum Independent Set Problem 225

is larger, we start with a random vertex, but pick the j-th vertex (for j > 1)
among the non-solution vertices within distance exactly two from the first j − 1
vertices. (If there is no such vertex, we simply stop inserting.)

We use two techniques for diversification. The first is soft tabu. We keep track
of the last iteration in which each non-solution vertex was part of the solution.
Whenever the force routine has a choice of multiple vertices to insert, it looks
at κ (an input parameter) candidates uniformly at random (with replacement)
and picks the “oldest” one, i.e., the one which has been outside the solution for
the longest time. We set κ = 4 in our experiments. The second diversification
technique is employed during local search. If v was the only vertex inserted by
the force routine, the subsequent local search will only allow v to be removed
from the solution after all other possibilities have been tried.

Regarding the third step of the main loop, if the solution S′ obtained after
the local search is at least as good as S, S′ becomes the new current solution. If
|S′| < |S|, we have observed that always going to S′ may cause the algorithm to
stray from the best known solution too fast. To avoid this, we use a technique akin
to plateau search. If ILS arrives at the current solution S from a solution that
was better, it is not allowed to go to a worse solution for at least |S| iterations.
If the current solution does not improve in this time, the algorithm is again
allowed to go to a worse solution S′. It does so with probability 1/(1 + δ · δ∗),
where δ = |S| − |S′|, δ∗ = |S∗| − |S′|, and S∗ is the best solution found so far.
Intuitively, the farther S′ is from S and S∗, the least likely the algorithm is to set
S ← S′. If the algorithm does not go to S′ (including during plateau search), we
undo the insertions and deletions that led to S′, then add a small perturbation
by performing a 1-swap in S (if possible).

Finally, we consider the stopping criterion. We stop the algorithm when the
average number of scans per arc exceeds a predetermined limit (which is the
same for every instance within each family we tested). An arc scan is the most
basic operation performed by our algorithm: in fact, the total running time is
proportional to the number of such scans. By fixing the number of scans per arc
(instead of the total number of scans) in each family, we make the algorithm
spend more time on larger instances, which is a sensible approach in practice.
To minimize the overhead of counting arc scans individually, our code converts
the bound on arc scans into a corresponding bound on vertex scans (using the
average vertex degree), and only keeps track of vertex scans during execution.

4.2 The GLP Algorithm

We now discuss the algorithm of Grosso, Locatelli, and Pullan [8], which we call
GLP. Although it was originally formulated for the maximum clique problem,
our description (as well as our implementation) refers to the MIS problem. We
implemented “Algorithm 1 with restart rule 2,” which seems to give the best
results overall among the several variants proposed in [8]. What follows is a
rough sketch of the algorithm. See the original paper for details.

The algorithm keeps a current solution S (initially empty), and spends most
of its time performing plateau search (simple swaps). A simple tabu mechanism



226 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

ensures that vertices that leave the solution during plateau search do not return
during the same iteration, unless they become free and there are no alterna-
tive moves. A successful iteration ends when a non-tabu vertex becomes free:
we simply insert it into the solution and start a new iteration. An iteration is
considered unsuccessful if this does not happen after roughly |S| moves: in this
case, the solution is perturbed with the forced insertion of a single non-solution
vertex (with at least four solution neighbors, if possible), and a new iteration
starts. GLP does not use local search.

Unlike Grosso et al.’s implementation of GLP, ours does not stop as soon
as it reaches the best solution reported in the literature. Instead, we use the
same stopping criterion as the ILS algorithm, based on the number of arc scans.
Although different, both ILS and GLP have scans as their main basic operation.
By using the number of arc scans as the stopping criterion, we ensure that both
algorithms have similar running times for all instances.

5 Experimental Results

All algorithms were implemented by the authors in C++ and compiled with gcc
v. 3.4.4 with the full optimization (-O4) flag. All runs were made on a 3 GHz
Pentium IV with 2 GB of RAM running Windows XP Professional. CPU times
were measured with the getrusage function, which has precision of 1/60 second.
Times do not include reading the graph and building the adjacency lists, since
these are common to all algorithms. But they do include the time to allocate,
initialize and destroy the data structures specific to each algorithm.

5.1 Instances

The DIMACS family contains maximum clique instances from the 2nd DIMACS
Implementation Challenge [10], which have been frequently tested in the lit-
erature. It includes a wide variety of instances, with multiple topologies and
densities. Since we deal with the MIS problem, we use the complements of the
original graphs. For instances with no known optimum, we report the best results
available at the time of writing (as listed in [8,15]).

The SAT family contains transformed satisfiability instances from the SAT’04
competition, available at [18] and tested in [8,15]. All optima are known.

The CODE family, made available by N. Sloane [17], consists of challenging
graphs arising from coding theory. Each subfamily refers to a different error-
correcting code, with vertices representing code words and edges indicating con-
flicts between them. The best known results for the hardest instances were found
by the specialized algorithms of Butenko et al. [3,4].

The last two families, MESH and ROAD, are novel in the context of the inde-
pendent set problem. MESH is motivated by an application in Computer Graph-
ics recently described by Sander et al. [16]. To process a triangulation efficiently
in graphics hardware, their algorithm finds a small subset of triangles that cov-
ers all the edges in the mesh. This is the same as finding a small set cover on



Fast Local Search for the Maximum Independent Set Problem 227

the corresponding dual graph (adjacent faces in the original mesh become adja-
cent vertices in the dual). The MESH family contains the duals of well-known
triangular meshes. While converting the original primal meshes, we repeatedly
eliminated vertices of degree one and zero from the dual, since there is always a
maximum independent set that contains them. (Degree-one vertices arise when
the original mesh is open, i.e., when it has edges that are adjacent to a sin-
gle triangle instead of the usual two.) Almost all vertices in the resulting MIS
instances (which are available upon request) have degree three.

The ROAD family contains planar graphs representing parts of the road net-
work of the United States, originally made available for the 9th DIMACS Imple-
mentation Challenge, on shortest paths [5]. Vertices represent intersections, and
arcs represent the road segments connecting them. As in the previous family,
these graphs have numerous vertices of degree one. We chose not to eliminate
them explicitly, since these instances are already available in full form.

Due to space limitations, we only report results on a few representatives of
each family, leaving out easy instances and those that behave similarly to others.

5.2 Local Search

We first evaluate the local search algorithm by itself, in terms of both solution
quality and running time. We tested it with three different constructive algo-
rithms. The random algorithm (R) inserts free vertices uniformly at random
until the solution is maximal. The greedy algorithm (G) assigns a cost to each
free vertex equal to the number of free neighbors it has, and in each iteration
picks a free vertex with lowest cost. The randomized greedy algorithm (RG)
is a variant of G that picks the vertex to insert uniformly at random among
all minimum-cost free vertices. Both G and RG can be implemented in linear
time, but there is some data structure overhead associated with RG. While G
keeps the free vertices in buckets (one for each possible cost), RG maintains the
vertices sorted by cost, which is more complicated.

For a representative sample of instances, we ran the constructive algorithms
by themselves (R, G, and RG) and followed by local search (RL, GL, and RGL).
Table 1 shows the average solutions obtained for 999 random seeds, and Table 2
the average running times. Also shown are the number of vertices (n), the average
degree (deg), and the best known solution (best) for each graph. Given the
somewhat low precision of our timing routine (and how fast the algorithms are
in this experiment), we did not measure running times directly. Instead, we ran
each subsequence of 111 seeds repeatedly until the total running time was at
least 5 seconds, then took the average time per run. Before each timed run,
we ran the whole subsequence of 111 once to warm up the cache and minimize
fluctuations. (Single runs would be slightly slower, but would have little effect
on the relative performance of the algorithms.)

The greedy algorithms (G and RG) find solutions of similar quality, and are
usually much better than random (R). Random is consistently faster, however,
especially for very dense instances such as p hat1500-1. While the greedy algo-
rithm must visit every edge in the graph, the random algorithm only traverses



228 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

Table 1. Average solutions found by the random, greedy, and randomized greedy
constructive algorithms, without (R, G, RG) or with (RL, GL, RGL) local search. The
best results among these algorithms are marked in bold. The horizontal lines separate
different families, in order: DIMACS, SAT, CODE, MESH, and ROAD.

graph n deg best R RL G GL RG RGL
C2000.9 2000 199.5 80 51.2 59.5 66.0 68.0 66.5 67.4
MANN a81 3321 3.9 1100 1082.1 1082.1 1096.0 1096.0 1095.5 1095.6
brock400 2 400 100.1 29 16.7 19.4 22.0 23.0 22.0 22.4
brock400 4 400 100.2 33 16.7 19.2 22.0 22.0 21.7 22.0
c-fat500-10 500 312.5 126 125.0 125.0 126.0 126.0 126.0 126.0
hamming10-2 1024 10.0 512 242.3 412.8 512.0 512.0 512.0 512.0
johnson32-2-4 496 60.0 16 16.0 16.0 16.0 16.0 16.0 16.0
keller6 3361 610.9 59 34.4 43.1 48.2 48.9 48.5 49.6
p hat1500-1 1500 1119.1 12 6.8 8.1 10.0 10.0 9.9 10.4
p hat1500-3 1500 369.3 94 42.6 77.7 86.0 91.0 85.9 88.3
san1000 1000 498.0 15 7.7 7.7 10.0 10.0 9.5 9.5
san400 0.7 1 400 119.7 40 19.7 20.6 21.0 21.0 21.4 21.4
san400 0.9 1 400 39.9 100 44.2 54.0 92.0 100.0 81.3 100.0
frb59-26-1 1534 165.0 59 39.4 45.8 48.0 48.0 47.6 48.3
1et.2048 2048 22.0 316 232.9 268.6 292.2 295.0 292.9 295.8
1zc.4096 4096 45.0 379 254.2 293.5 328.5 329.5 327.3 328.6
2dc.2048 2048 492.6 24 15.6 18.7 21.0 22.0 21.0 21.3
dragon 150000 3.0 66430 56332 61486 64176 64176 64024 64247
dragonsub 600000 3.0 282192 227004 256502 277252 277252 275611 276451
buddha 1087716 3.0 480664 408215 445100 463914 463914 463303 464878
fla 1070376 2.5 549535 476243 523237 545961 545972 545507 546150

the adjacency lists of the vertices that end up in the solution. Even after lo-
cal search, RL is often faster than G or RG, but still finds worse solutions. On
sparser instances, RL can be slower than GL or RGL, since the local search has
a much worse starting point.

The local search is remarkably fast when applied to the greedy solutions. For
large, sparse instances (such as fla and buddha) the local search is much more
effective on RG than on G. In fact, G tends to find better solutions than RG,
but after local search the opposite is true. We conjecture that the stack-like
nature of buckets in G causes it to generate more “packed” solutions than RG.
The higher variance of RG helps after local search: over all 999 runs, the best
solution found by RGL (not shown in the table) was in most cases at least as
good as the best found by any of the other algorithms. (The exceptions were
san400 0.7 1, for which RL was superior, and dragonsub, for which G and GL
were the best.) This suggests that RGL (or a variant) would be well-suited to
multistart-based metaheuristics, such as GRASP [6].

For completeness, we briefly discuss the 3-improvement algorithm (not shown
in the tables). Applied to the solutions obtained by RGL, it improved the aver-
age solutions of only six instances: 1et.2048 (296.4), 2dc.2048 (21.6), frb59-26-1
(48.6), keller6 (50.2), p hat1500-1 (10.5) and san1000 (9.7). It also improved RL



Fast Local Search for the Maximum Independent Set Problem 229

Table 2. Constructive algorithms and local search: running times in milliseconds

graph n deg R RL G GL RG RGL
C2000.9 2000 199.5 0.08 0.47 8.15 8.57 16.62 16.96
MANN a81 3321 3.9 0.18 0.60 0.53 0.97 0.70 1.13
brock400 2 400 100.1 0.03 0.11 0.77 0.85 1.49 1.56
brock400 4 400 100.2 0.03 0.11 0.77 0.85 1.48 1.56
c-fat500-10 500 312.5 0.09 0.52 2.28 2.71 5.19 5.60
hamming10-2 1024 10.0 0.07 0.40 0.29 0.49 0.46 0.66
johnson32-2-4 496 60.0 0.02 0.10 0.45 0.52 1.01 1.08
keller6 3361 610.9 0.11 0.88 35.32 35.96 71.73 72.43
p hat1500-1 1500 1119.1 0.04 0.31 31.66 31.94 58.66 58.71
p hat1500-3 1500 369.3 0.07 0.61 11.35 11.73 21.26 21.64
san1000 1000 498.0 0.03 1.48 8.73 8.87 16.81 17.02
san400 0.7 1 400 119.7 0.03 0.18 0.88 1.00 1.69 1.80
san400 0.9 1 400 39.9 0.03 0.14 0.35 0.46 0.67 0.79
frb59-26-1 1534 165.0 0.06 0.33 4.86 5.10 10.00 10.25
1et.2048 2048 22.0 0.10 0.46 1.17 1.46 1.97 2.26
1zc.4096 4096 45.0 0.17 0.85 4.06 4.63 7.86 8.44
2dc.2048 2048 492.6 0.06 0.45 21.25 21.59 36.15 36.41
dragon 150000 3.0 17.80 64.22 33.95 69.28 42.09 77.53
dragonsub 600000 3.0 123.95 390.90 193.38 400.14 169.59 377.23
buddha 1087716 3.0 281.65 795.98 448.92 854.27 447.78 859.55
fla 1070376 2.5 299.70 867.04 521.01 969.91 741.88 1193.48

on these instances, as well as 1et.2048 and brock400 4, but still not enough to
make the random algorithm competitive with their greedy counterparts. It only
improved the results obtained by GL in one case (1et.2048). On the positive side,
the 3-improvement algorithm is reasonably fast. In most cases, it adds less than
20% to the time of RGL, and at most 80% (on johnson-32-2-4). Still, the minor
gains and added complexity do not justify using 3-improvement within ILS.

5.3 Metaheuristics

Although local search can improve the results found by constructive heuristics,
the local optima it finds are usually far from the best known bounds. For near-
optimal solutions, we turn to metaheuristics. We compare our iterated local
search (ILS) with our implementation of Grosso et al.’s GLP algorithm. Our
version of GLP deals with the maximum independent set problem directly, and
its time per operation is comparable to the original implementation.

Tables 3, 4, and 5 present results for DIMACS, CODE, and SAT, respectively.
For each instance, we first show its number of vertices, its density, and the best
known solution. We then report the minimum, average, and maximum solutions
found over nine runs of each algorithm (the numbers in parentheses indicate how
many of these runs found the maximum). Finally, we give the average running
time in seconds. Both algorithms were run until the average number of scans per
arc reached 217. The best averages are highlighted in bold.



230 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

Table 3. DIMACS family. For each algorithm, we show the minimum, average, and
maximum solutions found over 9 runs, as well as the average running time in seconds.
Both algorithms were run until the average arc was scanned 217 times.

graph ils glp
name n dens best min avg max time min avg max time
C2000.9 2000 0.100 80 77 77.2 78(2) 277 77 77.9 79(2) 246
MANN a45 1035 0.004 345 344 344.7 345(6) 8 343 343.6 344(5) 8
MANN a81 3321 0.001 1100 1100 1100.0 1100(9) 20 1097 1097.7 1098(6) 27
brock400 1 400 0.252 27 25 25.0 25(9) 26 25 25.9 27(4) 27
brock400 2 400 0.251 29 25 25.4 29(1) 26 25 26.8 29(4) 26
brock400 3 400 0.252 31 25 30.3 31(8) 27 31 31.0 31(9) 23
brock400 4 400 0.251 33 25 31.2 33(7) 27 33 33.0 33(9) 20
hamming10-2 1024 0.010 512 512 512.0 512(9) 24 512 512.0 512(9) 13
keller6 3361 0.182 59 59 59.0 59(9) 1385 59 59.0 59(9) 1026
p hat1500-1 1500 0.747 12 11 11.8 12(7) 345 12 12.0 12(9) 1207
san1000 1000 0.498 15 15 15.0 15(9) 185 15 15.0 15(9) 426

Table 4. Results for the CODE family with 217 scans per arc

graph ils glp
name n dens best min avg max time min avg max time
1dc.1024 1024 0.046 94 93 93.2 94(2) 31 93 93.1 94(1) 42
1dc.2048 2048 0.028 172 170 171.3 172(6) 76 170 171.3 172(6) 95
1et.2048 2048 0.011 316 316 316.0 316(9) 38 316 316.0 316(9) 57
1tc.2048 2048 0.009 352 352 352.0 352(9) 35 352 352.0 352(9) 52
1zc.1024 1024 0.064 112 111 111.3 112(3) 23 112 112.0 112(9) 40
1zc.2048 2048 0.038 198 196 197.4 198(6) 53 197 197.7 198(6) 92
1zc.4096 4096 0.022 379 364 370.7 379(1) 127 367 373.0 379(1) 224
2dc.1024 1024 0.323 16 16 16.0 16(9) 105 16 16.0 16(9) 322
2dc.2048 2048 0.241 24 24 24.0 24(9) 388 23 23.8 24(7) 851

Together, the algorithms do rather well on these families. For almost all in-
stances, the best known bound was found at least once. For all four exceptions
(C2000.9 and the three largest frb instances) the best solution shown in the tables
is within one unit of the best known [8].

The average solutions found by ILS and GLP are usually within 0.1 unit
from one another. Among the exceptions, GLP found better solutions on nine
(C2000.9, brock*, p hat1500-1, and 1zc.*) and ILS on four (MANN*, 2dc.2048,
and frb53-24-1). The brock instances are dense random graphs with a “hidden”
larger clique. C2000.9 is also random, with larger cliques naturally hidden by
the large value of n. GLP is clearly better at finding these cliques, probably
because of its stronger tabu mechanism. In contrast, GLP does poorly on the
MANN instances (sparse graphs with large independent sets), while ILS finds
the optimal solution MANN a81 in only 0.9 seconds on average.

Running times in the tables refer to full executions. When both algorithms
found the same solution in every run, it makes sense to compare the average time



Fast Local Search for the Maximum Independent Set Problem 231

Table 5. Results for the SAT family with 217 scans per arc

graph ils glp
name n dens best min avg max time min avg max time
frb30-15-1 450 0.176 30 30 30.0 30(9) 20 30 30.0 30(9) 28
frb35-17-1 595 0.158 35 35 35.0 35(9) 30 35 35.0 35(9) 41
frb40-19-1 760 0.143 40 40 40.0 40(9) 42 40 40.0 40(9) 57
frb45-21-1 945 0.133 45 44 44.6 45(5) 65 44 44.6 45(5) 79
frb50-23-1 1150 0.121 50 49 49.1 50(1) 86 48 49.0 50(1) 106
frb53-24-1 1272 0.117 53 51 51.6 52(5) 98 51 51.1 52(1) 121
frb56-25-1 1400 0.112 56 54 54.1 55(1) 118 54 54.0 54(9) 139
frb59-26-1 1534 0.108 59 57 57.2 58(2) 137 57 57.1 58(1) 161

to reach it (not shown in the tables). ILS is faster on 2dc.1024 (by a factor of 2),
frb40-19-1 (3), and keller6 (13). The algorithms are essentially tied for 1tc.2048.
GLP is faster for the remaining instances, usually by a factor of less than four.
On san1000 and hamming10 2, GLP was at least 6 times faster.

Although our algorithm does well on these families, GLP is somewhat more
robust on DIMACS and CODE. This is not the case for large, sparse graphs, to
which we now turn our attention. Table 6 presents results for the MESH family.
Because its graphs are much larger, we limit average number of arc scans to 214.

Table 6. Results for the MESH family with 214 scans per arc

graph ils glp
name n min avg max time min avg max time
dolphin 554 249 249 249(9) 1 249 249 249(9) 1
mannequin 1309 583 583 583(9) 3 583 583 583(9) 1
beethoven 4419 2000 2002 2004(3) 9 1999 2001 2004(1) 5
cow 5036 2333 2339 2346(2) 11 2335 2343 2346(6) 5
venus 5672 2668 2676 2680(2) 11 2680 2682 2684(4) 6
fandisk 8634 4057 4068 4072(2) 18 4063 4069 4073(1) 11
blob 16068 7232 7236 7239(1) 36 7234 7239 7242(1) 21
gargoyle 20000 8843 8846 8849(1) 50 8841 8844 8847(1) 32
face 22871 10203 10206 10211(1) 51 10203 10205 10207(1) 31
feline 41262 18791 18803 18810(1) 105 18806 18813 18822(1) 74
gameguy 42623 20625 20639 20664(1) 104 20635 20657 20676(1) 61
bunny 68790 32211 32228 32260(1) 208 32221 32246 32263(1) 184
dragon 150000 66399 66417 66430(1) 506 66318 66331 66343(1) 507
turtle 267534 122262 122298 122354(1) 1001 122133 122195 122294(1) 1185
dragonsub 600000 281942 281972 282002(1) 2006 282100 282149 282192(1) 2340
ecat 684496 321881 321981 322040(1) 3191 321689 321742 321906(1) 4757
buddha 1087716 480604 480630 480664(1) 4773 478691 478722 478757(1) 6795

Even though all instances come from the same application, results are remark-
ably diverse. The relative performance of the algorithms appears to be correlated
with the regularity of the meshes: GLP is better for regular meshes, whereas ILS



232 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

is superior for more irregular ones. We verified this by visual inspection, but
the standard deviation of the vertex degrees in the original (primal) mesh is a
rough proxy for irregularity. It is relatively smaller for bunny (0.58) and dragon-
sub (0.63), on which GLP is the best algorithm, and bigger for buddha (1.28) and
dragon (1.26), on which ILS is superior.2 Note that dragonsub is a subdivision of
dragon: a new vertex is inserted in the middle of each edge, and each triangle is
divided in four. Both meshes represent the same model, but because every new
vertex has degree exactly six, dragonsub is much more regular.

Although optimal solutions for the MESH family are not known, Sander et
al. [16] computed lower bounds on the cover solutions for eleven of their original
meshes (the ten largest in Table 6 plus fandisk). These can be easily translated
into upper bounds for our (MIS) instances. On average, ILS is within 2.44% of
these bounds (and hence of the optimum). The highest gap (3.32%) was observed
for face, and the lowest for gameguy (1.22%). The gaps for GLP range from 1.13%
(on gameguy) to 3.45% (on buddha), with an average of 2.48%.

Finally, Table 7 presents the results for ROAD, with the average number of
scans per arc limited to 212. Here ILS has clear advantage.

Table 7. Results for the ROAD family with 212 scans per arc

graph ils glp
name n deg min avg max time min avg max time
ny 264346 2.8 131421 131440 131454(1) 248 131144 131178 131213(1) 293
bay 321270 2.5 166349 166355 166360(1) 287 166215 166226 166250(1) 372
col 435666 2.4 225741 225747 225754(1) 395 225569 225586 225614(1) 568
fla 1070376 2.5 549508 549523 549535(1) 1046 548592 548637 548669(1) 1505

We note that MESH and ROAD are fundamentally different from the previous
families. These are large graphs with linear-sized maximum independent sets.
Both ILS and GLP start from relatively bad solutions, which are then steadily
improved, one vertex at a time. To illustrate this, Figure 1 shows the average
solutions found for the two largest instances (buddha and fla) as the algorithms
progress. GLP initially finds better solutions, but is soon overtaken by ILS.
The third curve in the plots (ILS+plateau) refers to a version of our algorithm
that also performs plateau search when the current solution improves (recall
that ILS only performs plateau search when the solution worsens). Although
faster at first, ILS+plateau is eventually surpassed by ILS. The average solu-
tions it found (after all 212 scans per arc) were 480285 for buddha and 549422
for fla.

For comparison, we also show results for longer runs (220 scans per arc, with
nine different seeds) on C2000.9 (from the DIMACS family) and 1zc.4096 (from
the CODE family). As before, GLP starts much better. On 1zc.4096, ILS slowly
2 The standard deviation is not always a good measure of regularity. Despite being

highly regular, gameguy has a triangulation pattern in which roughly half the vertices
have degree 4 and half have degree 8, leading to a standard deviation higher than 2.



Fast Local Search for the Maximum Independent Set Problem 233

 455000

 460000

 465000

 470000

 475000

 480000

 485000

231229227225223221

so
lu

tio
n

vertex scans

ILS
ILS+plateau

GLP
 534000

 536000

 538000

 540000

 542000

 544000

 546000

 548000

 550000

231229227225223221

so
lu

tio
n

vertex scans

ILS
ILS+plateau

GLP

 72

 73

 74

 75

 76

 77

 78

 79

230228226224222220218216

so
lu

tio
n

vertex scans

ILS
ILS+plateau

GLP
 330

 335

 340

 345

 350

 355

 360

 365

 370

 375

231229227225223221219217215

so
lu

tio
n

vertex scans

ILS
ILS+plateau

GLP

Fig. 1. Average solutions found as the number of scans per vertex increases. Results for
buddha (top left), fla (top right), C2000.9 (bottom left), and 1zc.4096 (bottom right).

reduces the gap, but does not quite close it. On C2000.9, GLP is consistently
better, even as the number of scans increases.

6 Final Remarks

We have proposed a fast implementation of a natural local search procedure for
the independent set problem. Within an iterated local search (a metaheuristic),
it provided results competitive with the best methods previously proposed, often
matching the best known solutions (including optima) on the DIMACS, CODE,
and SAT families. On large, sparse instances (meshes and road networks), its per-
formance is consistently superior to that of GLP, particularly when the graph is
irregular. For these large instances, however, we do not know exactly how far our
method is from the optimal solution: there may be much room for improvement.
It seems reasonable, for example, to deal with these problems more locally. In-
stead of looking at the entire graph at once, we conjecture that one could do
better by focusing at individual regions at a time.

Acknowledgements. We thank D. Nehab and P. Sander for sharing their paper
and providing us with the MESH instances, and three anonymous referees for
their helpful comments.



234 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

References

1. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem.
Algorithmica 29(4), 610–637 (2001)

2. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique prob-
lem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization
(Sup. Vol. A), pp. 1–74. Kluwer, Dordrecht (1999)

3. Butenko, S., Pardalos, P.M., Sergienko, I., Shylo, V., Stetsyuk, P.: Finding maxi-
mum independent sets in graphs arising from coding theory. In: Proceedings of the
2002 ACM Symposium on Applied Computing, pp. 542–546 (2002)

4. Butenko, S., Pardalos, P.M., Sergienko, I., Shylo, V., Stetsyuk, P.: Estimating
the size of correcting codes using extremal graph problems. In: Pearce, C. (ed.)
Optimization: Structure and Applications, Springer, Heidelberg (2008)

5. Demetrescu, C., Goldberg, A.V., Johnson, D.S.: 9th DIMACS Implemen-
tation Challenge: Shortest Paths (2006) (last visited on March 15, 2008),
http://www.dis.uniroma1.it/∼challenge9

6. Feo, T., Resende, M.G.C., Smith, S.: A greedy randomized adaptive search proce-
dure for maximum independent set. Operations Research 42, 860–878 (1994)

7. Grosso, A., Locatelli, M., Della Croce, F.: Combining swaps and node weights in
an adaptive greedy approach for the maximum clique problem. J. Heuristics 10,
135–152 (2004)

8. Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very effi-
cient heuristics for the maximum clique problem. J. Heuristics (30 October, 2007),
doi:10.1007/s10732-007-9055-x

9. Hansen, P., Mladenović, N., Urošević, D.: Variable neighborhood search for the
maximum clique. Discrete Applied Mathematics 145(1), 117–125 (2004)

10. Johnson, D.S., Trick, M.: Cliques, Coloring and Satisfiability. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, vol. 26. AMS (1996)

11. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New
York (1972)

12. Katayama, K., Hamamoto, A., Narihisa, H.: An effective local search for the max-
imum clique problem. Information Processing Letters 95, 503–511 (2005)

13. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer, Dor-
drecht (2003)

14. Pullan, W.J., Hoos, H.H.: Dynamic local search for the maximum clique problem.
J. Artificial Intelligence Research 25, 159–185 (2006)

15. Richter, S., Helmert, M., Gretton, C.: A stochastic local search approach to vertex
cover. In: Proceedings of the 30th German Conference on Artificial Intelligence
(KI), pp. 412–426 (2007)

16. Sander, P.V., Nehab, D., Chlamtac, E., Hoppe, H.: Efficient traversal of mesh edges
(submitted, 2008)

17. Sloane, N.J.A.: Challenge problems: Independent sets in graphs (2000) (last visited
on March 15, 2008), http://www.research.att.com/∼njas/doc/graphs.html

18. Xu, K.: BHOSLIB: Benchmarks with hidden optimum solutions for graph problems
(2004) (last visited on March 15, 2008),
http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm

http://www.dis.uniroma1.it/~challenge9
http://www.research.att.com/~njas/doc/graphs.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm


Optimal University Course Timetables and the

Partial Transversal Polytope

Gerald Lach and Marco E. Lübbecke

Technische Universität Berlin, Institut für Mathematik, MA 5-1,
Straße des 17. Juni 136, 10623 Berlin, Germany

{lach, m.luebbecke}@math.tu-berlin.de

Abstract. University course timetabling is the conflict-free assignment
of courses to weekly time slots and rooms subject to various hard and
soft constraints. One goal is to meet as closely as possible professors’
preferences. Building on an intuitive integer program (IP), we develop an
exact decomposition approach which schedules courses first, and matches
courses/times to rooms in a second stage. The subset of constraints
which ensures a feasible room assignment defines the well-known par-
tial transversal polytope. We describe it as a polymatroid, and thereby
obtain a complete characterization of its facets. This enables us to add
only strong valid inequalities to the first stage IP. In fact, for all practical
purposes the number of facets is small. We present encouraging compu-
tational results on real-world and simulated timetabling data. The sizes
of our optimally solvable instances (respecting all hard constraints) are
the largest reported in the literature by far.

Keywords: integer programming, partial transversal polytope, univer-
sity course timetabling.

1 Introduction

Timetabling comes in many flavors, in education and sports, in industry and
public transport. This diversity and its relevance in practice made timetabling
an active research area in operations research; a series of conferences (Practice
and Theory of Automated Timetabling, PATAT) is devoted to the topic [1]. In
this paper, we aim for optimal solutions to one of the core problems of the field,
the NP-complete university course timetabling problem.

A university timetable is an assignment of an appropriate number of time
slots, or periods, and rooms to each weekly occurrence of each course. It is usu-
ally valid for one term. Customarily, one distinguishes between hard and soft
constraints which have to be respected [2]. Typical hard constraints are: A pro-
fessor cannot teach two classes at the same time; lectures belonging to the same
curriculum must not be scheduled simultaneously; a room cannot be assigned to
different courses in the same period; etc. A timetable is infeasible if one of these
requirements is violated (which frequently occurs in practice). Soft constraints

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 235–248, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



236 G. Lach and M.E. Lübbecke

e.g., call for not exceeding a room’s capacity; to provide the necessary equip-
ment like beamer/PC; to spread the lectures of one course over the week; etc. A
violation of these constraints is tolerated but penalized. Professors express pref-
erences as to when to teach; an optimal timetable minimizes the total deviation
from these preferences.

1.1 Our Contribution

This paper makes a contribution to practical problem solving via integer pro-
gramming, as well as it adds to the theory of combinatorial optimization.

On the practical side, we give a proof-of-concept that optimal timetables
can be computed for larger universities in acceptable time. Our focus in on
meeting all hard constraints, where we take some of the constraints traditionally
considered soft (like room capacity) as hard ones.

In the integer program we propose, instead of simultaneously assigning courses
to time slots and rooms, we only schedule rooms, providing for a later feasible
room assignment. This is done by interpreting feasible course/room pairs on a
bipartite graph, and enforcing the classical Hall’s conditions [3], a.k.a. “marriage
theorem,” on the existence of perfectly matchable sets (or transversals). This
allows a simpler formulation and results in much improved solution times.

Hall’s conditions directly lead us to an investigation of the partial transversal
polytope [4]. We obtain a complete description of its facets by stating it as a
polymatroid. Thereby, on the theoretical side, we obtain an interesting strength-
ening of Hall’s Theorem. Finally, we are interested in the number of facets of
the partial transversal polytope, and obtain a generating set of facets, of linear
size. All facets can be obtained from this set by an intuitive operation.

We tested our approach on instances from the second international timetabling
competition [5]. It turns out that we are able to compute optimal solutions
within negligible running times. We therefore used simulated data which are
almost identical to real data from Technical University of Berlin. To the best of
our knowledge, we are the first to obtain optimal solutions to university course
timetabling instances of this size.

It is our impression that integer programming has been used for timetabling
only because of its modeling power. It was not realized that a deeper under-
standing of combinatorial properties of the problem may be the key to actually
solving large instances to proven optimality. In this sense, we consider our work
a significant step forward in this field of research.

1.2 Related Work

University course timetabling problems are well studied, see e.g., the surveys [6,
7]. Much has been written about practical details [8], and the non-negligible
human factor of timetabling [9].

Meta heuristics clearly constitute the main solution approach, see [2, 10, 11],
and the references therein. Several integer programs were suggested as well [8,
9, 12, 13, 14], however, optimally solvable problem instances are (i) smaller than



Optimal University Course Timetables and the Partial Transversal Polytope 237

ours by at least an order of magnitude, or (ii) are much simpler (and thus less
realistic) than ours.

Interestingly, complete polyhedral descriptions of problems closely related to
finding transversals are well known. We have Edmonds’ seminal work on the
matching polytope [15]. Also, the perfectly matchable subgraph polytope for
bipartite graphs is fully characterized [16]. Yet, we are not aware of any previous
attempts to give a strong formulation of the partial transversal polytope.

2 Integer Programs and Decomposition

2.1 An Intuitive Integer Program

We give a generic integer program (IP) for the university course timetabling
problem which concentrates on hard constraints (time conflicts and room con-
flicts). However, it is easy to enhance this IP by soft constraints.

Denote by C the set of courses, by R the set of rooms, and by T the set of
time slots. For each course c ∈ C we know its eligible time slots T (c) ⊆ T , and
eligible rooms R(c) ⊆ R. Further, R−1(r) ⊆ C is the set of all courses which may
take place in room r ∈ R. Each course c ∈ C consists of �(c) lectures, that is,
we have to provide �(c) different time slots for course c. The instructor of course
c ∈ C assigns a preference prio(c, t) to all eligible time slots t ∈ T (c); the smaller
it is, the better.

Time conflicts are represented via a conflict graph Gconf = (Vconf , Econf): A
vertex (c, t) represents an eligible combination of a course c and a timeslot t.
Two nodes (c1, t1) and (c2, t2) are adjacent iff it is forbidden that c1 is scheduled
at t1 and c2 at t2 (typically, t1 = t2). We see that time conflicts introduce a
stable set flavor into our problem.

A binary variable xc,t,r represents whether course c is scheduled at time t in
room r, or not. The following IP for the generic university course timetabling
problem guarantees a sufficient number of time slots per course (2), avoids room
conflicts (3), and time conflicts (4).

min
∑

c,t,r

prio(c, t) · xc,t,r (1)

s.t.
∑

t∈T (c),r∈R(c)

xc,t,r = �(c) ∀c ∈ C (2)

∑

c∈R−1(r)

xc,t,r ≤ 1 ∀t ∈ T , r ∈ R (3)

∑

r∈R(c1)

xc1,t1,r +
∑

r∈R(c2)

xc2,t2,r ≤ 1 ∀((c1, t1), (c2, t2)) ∈ Econf (4)

xc,t,r ∈ {0, 1} ∀(c, t) ∈ Vconf , r ∈ R (5)

This integer program will be infeasible for any reasonable practical data since
usually some courses cannot be scheduled without conflicts. Thus, one tries to



238 G. Lach and M.E. Lübbecke

schedule as many courses as possible; a modification to accomplish this is straight
forward. However, the computation times and solution qualities (cf. Table 3) do
not advise to actually work with this formulation.

2.2 Decomposition into Time and Room Assignment

Instead, we reduce the problem in three dimensions to a problem in two di-
mensions, implicitly taking care of room conflicts. To this end, we represent
eligible combinations of courses and rooms as undirected bipartite graphs Gt =
(Ct ∪Rt, Et), one for every time slot t ∈ T . Courses which may be scheduled at
t are given in set Ct; and Rt denotes the set of all eligible rooms for all courses
in Ct. A course c and a room r are adjacent iff r is eligible for c. For ease of
exposition let G = (C ∪ R, E) be the graph consisting of all components Gt,
t ∈ T .

For any subset U of vertices, denote by Γ (U) := {i ∈ C∪R | j ∈ U, (i, j) ∈ E}
the neighborhood of U ; in particular, Γ (U) ⊆ R for any U ⊆ C. The set of all
vertices which are adjacent only to vertices in U is denoted by Γ−1(U) := {i ∈
U ∪R | Γ ({i}) ⊆ U}. In particular, Γ−1(U) ⊆ C for any U ⊆ R.

Hall’s Theorem [3] states that a bipartite graph G = (C∪R, E) has a matching
of all vertices in C into R if and only if |Γ (U)| ≥ |U | for all U ⊂ C. This enables
us to state a simpler integer program which schedules courses in such a way that
a later assignment of rooms is possible. It is thus based on binary variables xc,t,
but obviously has an exponential number of constraints.

min
∑

(c,t)∈Vconf

prio(c, t) · xc,t (6)

s.t.
∑

t∈T (c)

xc,t = �(c) ∀c ∈ C (7)

∑

c∈U

xc,t ≤ |Γ (U)| ∀U ⊆ C, t ∈ T (8)

xc1,t1 + xc2,t2 ≤ 1 ∀((c1, t1), (c2, t2)) ∈ Econf (9)
xc,t ∈ {0, 1} ∀(c, t) ∈ Vconf (10)

Once this IP is solved, the second stage merely consists of solving a sequence
of minimum weight bipartite matching problems; clearly, this decomposition
approach is exact.

Even though Hall’s inequalities (8) can be separated in polynomial time via
a maximum flow computation, we would like to work with a strongest possible
formulation: We are interested in the facets of the polytope defined by (8) (and
non-negativity).

3 The Partial Transversal Polytope

In the context of Hall’s Theorem, C is known as system of distinct representatives
or transversal. A partial transversal is a subset of C which can be perfectly



Optimal University Course Timetables and the Partial Transversal Polytope 239

matched (we may assume that all r ∈ R will be matched). The partial transversal
polytope P (C) is the convex hull of all incidence vectors of partial transversals
of C. It is full dimensional in �|C|.

The deficiency of a vertex set U ⊆ C is defined as defG(U) := |U |−|Γ (U)|. The
deficiency of a graph G is def(G) := maxU⊆C defG(U). We will often consider
the deficiency of induced subgraphs (U ∪ Γ (U), E), and denote it by def(U),
slightly abusing notation. Graph deficiency is known to be supermodular [3],
that is, def(U ∪V )+def(U ∩V ) ≥ def(U)+def(V ) for U, V ⊆ C. Finally, denote
by ν(G) the cardinality of a maximum matching in G.

We consider two equivalent descriptions of the partial transversal polytope
P (C). We use the common shorthand notation x(U) :=

∑
i∈U xi.

Lemma 1 (The Partial Transversal Polytope). Given a bipartite graph
G = (C ∪ R, E), the partial transversal polytope P (C) ⊆ �|C| is defined by

x(U) ≤ |Γ (U)| ∀U ⊆ C (11)
0 ≤ x ≤ 1 (12)

or equivalently by

x(U) ≤ |U | − def(U) ∀U ⊆ C (13)
x ≥ 0 . (14)

The advantage of the latter description is that x ≤ 1 is not explicitly required.
This will facilitate characterizing facets.

3.1 Facets

A theorem by Edmonds on the facets of polymatroids [4, Thm. 44.4] allows us to
easily give a complete and non-redundant description of the partial transversal
polytope. For a consistent presentation we define the set function

f : 2C → �, U �→ f(U) := |U | − def(U) , (15)

which is submodular by supermodularity of the deficiency. Note also that f is
nondecreasing, that is, f(U) ≤ f(T ) for U ⊆ T . Further, f(∅) = 0 and f({i}) > 0
for i ∈ C.

A subset U ⊆ C is called an f -flat if f(U ∪ {i}) > f(U) for all i ∈ C \ U ; and
U is f -inseparable if there are no U1, U2 = ∅ with U1 ∩U2 = ∅ and U1 ∪U2 = U
such that f(U) = f(U1) + f(U2).

Edmonds has the following theorem: With the properties of a set function f
as given in (15), the facets of {x ∈ �|C| | x ≥ 0, x(U) ≤ f(U) for U ⊆ C} are
given by (i) x ≥ 0, and (ii) x(U) ≤ f(U) for each nonempty f -inseparable f -flat
U ⊆ C.
Definition (Defining C-set). Given a bipartite graph G = (C ∪ R, E), and f
as defined in (15). A set ∅ = U ⊆ C is called defining C-set, iff U is an f -flat,



240 G. Lach and M.E. Lübbecke

and
def(U) > max

U1,U2⊆U
U1∩U2=∅

{def(U1) + def(U2)} . (16)

This definition reflects the intuition that a C-set is important, if it bears
more information than the union of its parts. Inequality (16) will guarantee
f -inseparability.

Theorem 2. Given a bipartite graph G = (C ∪R, E), then a set U ⊆ C is facet
inducing for the partial transversal polytope P (C), if and only if U is a defining
C-set.
Proof. To prove necessity, let V ⊆ C be facet inducing. V is an f -inseparable
f -flat by definition. Hence there are no disjoint V1, V2 = ∅ with V = V1∪V2 with

|V1| − def(V1) + |V2| − def(V2) = |V | − def(V ) .

Equivalently, for all disjoint ∅ = V1, V2 ⊆ V :

|V | − def(V ) < |V1| − def(V1) + |V2| − def(V2)
def(V ) > def(V1) + def(V2) ,

so V is a defining C-set. For sufficiency, let V be a defining C-set. V is an f -flat
by definition. Further it holds that

def(V ) > max
U1,U2⊆U
U1∩U2=∅

{def(U1) + def(U2)} .

That is, for arbitrary disjoint ∅ = V1, V2 ⊆ V with V1 ∪ V2 = V we have

def(V ) > def(V1) + def(V2)
|V | − def(V ) < |V1| − def(V1) + |V2| − def(V2)

f(V ) < f(V1) + f(V2) .

So V is facet inducing for the partial transversal polytope. �

Corollary 3 (Strengthening of Hall’s Conditions). Let G = (C ∪R, E) be
a bipartite graph, and D1, .., Dn ⊆ C the collection of all defining C-sets. There
exists a matching covering all elements of A ⊆ C, if and only if for all Di and
for all X ⊆ A

|Di ∩X | ≤ |Γ (Di)| . (17)

3.2 Generating All Facets, and a Generating Subset

Now that we know how to strengthen constraints (8), we would like to make
algorithmic use of this knowledge. We will first see that taking unions of defining
C-sets again yields a defining C-set, if we preserve the f -flat property.



Optimal University Course Timetables and the Partial Transversal Polytope 241

Definition (The flat-union �). Given a bipartite graph G = (C ∪ R, E) and
two sets U1, U2 ⊆ C, then the flat-union � is defined as follows:

U1 � U2 := U1 ∪ U2 ∪ {c ∈ C : Γ ({c}) ∈ Γ (U1) ∪ Γ (U2)} .

Lemma 4 (The flat-union of defining C-sets). Given a bipartite graph G =
(C ∪R, E), a set function f as in (15), and two defining C-sets U1, U2 ⊆ C such
that

f(U1) + f(U2) > f(U1 ∪ U2) .

Then U = U1 � U2 is a defining C-set.
Proof. By definition, U is an f -flat. We assume for contradiction that there are
disjoint V1, V2 = ∅ with

U = V1 ∪ V2 (18)
f(U) = f(V1) + f(V2) . (19)

U1, U2 and V1, V2 both partition U . Thus, U1 or U2 cannot be completly contained
in V1 or V2, so at least one of U1, U2 has to have a non trivial intersection with
V1 and V2. W.l.o.g., U1 ∩ V1 = ∅ and U1 ∩ V2 = ∅. A consequence of (19) is

ν((U1∪Γ (U1))) = ν(((U1∩V1)∪Γ (U1∩V1)))+ν(((U1∩V2)∪Γ (U1∩V2))) (20)

which is equivalent to

|U1 ∪ Γ (U1)| − def((U1 ∪ Γ (U1), E))
= |U1 ∩ V1| − def(((U1 ∩ V1) ∪ Γ (U1 ∩ V1), E)) +
|U1 ∩ V2| − def(((U1 ∩ V2) ∪ Γ (U1 ∩ V2), E)) .

That is, U1 is not f -inseparable, hence it is not facet inducing, and thus no
defining C-set. �
The number of defining C-sets can be as large as 2|R|−1. Consider G = (C∪R, E)
described by the incidence matrix

A =

⎛

⎜⎜⎝

1 1 1 0 0 0 1 0 0 0 0 1 0 0
0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1

⎞

⎟⎟⎠ .

One can see, that for all R ⊆ R, with |R| ≤ 2, Γ−1(R) is a defining C-set. It is
a consequence of Lemma 4 that Γ−1(R) is a defining C-set for all R ⊆ R.

Even though the number of facets can be large, we will show we can obtain
all facets from a (practically small) subset via Lemma 4.

Definition (Atomic defining C-set). Given a bipartite graph G = (C∪R, E).
A defining C-set A is called atomic, if |A| > 1, and no two defining C-sets
U1, U2 ⊆ A exist, such that

Γ (U1) ∪ Γ (U2) = Γ (A)
Γ (U1) ∩ Γ (U2) = ∅ .

All other defining C-sets are called non-atomic.



242 G. Lach and M.E. Lübbecke

Theorem 5 (Number of atomic defining C-sets). Given a bipartite Graph
G = (C∪R, E). The number of atomic defining C-sets is at most def(C) = def(G).

Proof. Proof by induction on r = |R|:
The assertion is easily verified for r = 1 and r = 2. For the induction step, let A
be the set of all atomic defining C-set and h : 2C → �, U �→ |{C ∈ A : C ⊆ U}|.
Case I: C is an atomic defining C-set. Let A1, . . . , Ak ⊂ C be all inclusion maximal
subsets of C, from Lemma 4 we know that

∀A ∈ A ∃Di : A ⊂ Di . (21)

Now the assertion is easy to show.

def(C) Lemma 12≥
k∑

i=1

def(Di) + 1

by ind. hyp.

≥
k∑

i=1

h(Di) + 1

(21)
= |A|

Case II: C is not a defining C-set or a non-atomic defining C-set.
Let Ci = C\{c ∈ C : i ∈ Γ ({c})}. Clearly, we have

C ≥
r+1⋃

i=1

Ci . (22)

Further, one can conclude from Lemma 10 and the f -flat condition of a defining
C-set

∀D ∈ A ∃R ⊂ R : D = Γ−1(R) . (23)

By supermodularity of def(·) we can proof the assertion.

def(C)
(22)

≥ def(
r+1⋃

i=1

Ci)

Lemma 8≥
r+1∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤r+1

def(Ci1 ∩ . . . ∩ Cik
)

by ind. hyp.

≥
r+1∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤r+1

h(Ci1 ∩ . . . ∩ Cik
)

(23)
=

∑

C∈A
(
r+1−|Γ (C)|∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤r+1

1)

Lemma 9=
∑

C∈A
1

= |A| �



Optimal University Course Timetables and the Partial Transversal Polytope 243

3.3 Facet Enumeration

In our present implementation we enumerate all defining C-sets, basically using
Lemmas 4 and 11. If the number of defining C-sets is polynomially bounded,
the running time of the algorithm is polynomial. As pointed out below, for
real-world instances this is a reasonable assumption. Theorem 5 suggests an
algorithm which first constructs all atomic C-sets, and repeatedly takes all non
disjoint flat-unions. We postpone a detailed description of such an algorithm to
the full paper.

4 Consequences

In real-world instances of the university course timetabling problem a room can
be described by various attributes (or features). These may be capacity, location,
seating, beamer, blackboard, etc. We distinguish between two types of features,
exclusive and inclusive. Exclusive features cannot be requested at the same time
(e.g., different room capacities). It is characteristic to exclusive features that
the graph Gt = (Ct ∪Rt, Et) decomposes into independent components. We will
show that for each component of Gt the maximum number of defining C-sets
only depends on the number of different (inclusive) features.

Lemma 6 (Number of defining C-sets). If the number of different features
in a connected bipartite graph G = (C ∪ R, E) is φ, then the number of defining
C-sets in G is at most 2φ − 1.

Proof. Let F be the set of features and F ⊆ F . We then denote with CF all
the courses, that apply for a room, which has to be provided with all features
f ∈ F . Let

D = {CF : F ⊆ F} .

We show that if A ⊆ C is a defining C-set and |A| > 1, then A ∈ D. We assume
that A ⊆ C is a defining C-set and A /∈ D. Then there exists a c ∈ C\A, such
that Γ (c) ⊆ Γ (A).

Case I: ν((A∪Γ (A), E)) = |Γ (A)|. Then, |A∪ c| − def(A∪ c) = |A| − def(A),
so A is not an f -flat and hence no defining C-set.

Case II: ν((A ∪ Γ (A), E)) < |Γ (A)|. Then, A cannot be a defining C-set
(Lemma 10). �

This has important consequences for the applicability of our apporach to real-
world instances.

Corollary 7. For a fixed number of features, the number of defining C-sets is
O(1).

Practical evidence shows that the number of defining C-sets is in fact small.
For example, we added a total of about 6400 non-trivial facets to our largest
instance, cf. Table 2.



244 G. Lach and M.E. Lübbecke

5 Computational Results

All our results were obtained on a 3.2GHz Pentium 4 Linux PC with 1GB mem-
ory. Integer programs are solved using CPLEX 10.1. We separately list running
times for three steps: (i) facet generation, (ii) solution of the integer program
(6)–(10), and (iii) allocating rooms to all assigned periods of all courses via a
sequence of perfect matching calculations.

5.1 The Second International Timetabling Competition

Accompanying the PATAT08 conference, the second international timetabling
competition, ITC2007, is held. The data of seven problems were published [5].
We present the statistics of our approach for these instances in Table 1. Note
that we only report computation times for respecting all given hard constraints.
Almost all soft constraints can be easily included in our IP without significantly
worsen the running time.

Table 1. Statistics and results for ITC2007 instances

Name Courses Course-Slots Rooms Violations Step1 Step2 Step3

comp01 30 160 6 0 < 0.01 sec. 0.05 sec. 0.02 sec.
comp02 82 283 16 0 < 0.01 sec. 0.19 sec. 0.02 sec.
comp03 72 251 16 0 < 0.01 sec. 0.17 sec. 0.02 sec.
comp04 79 286 18 0 < 0.01 sec. 0.24 sec. 0.03 sec.
comp05 54 152 9 0 < 0.01 sec. 0.56 sec. 0.02 sec.
comp06 108 361 18 0 < 0.01 sec. 0.43 sec. 0.04 sec.
comp07 131 434 20 0 < 0.01 sec. 0.57 sec. 0.04 sec.

5.2 Statistics and Results on Simulated Data

As we can see, the ITC2007 instances are no challenge to our approach. To obtain
a better idea of its potential performance, we developed a simulation tool which is
able to create large problem instances with near real-world character. We present
statistics of three representative instances of different sizes, cf. Table 2. The key
data (not listed here) of the large instance is almost identical to that of Technical
University of Berlin (which is a rather large university). Computation times
are acceptable, even though for an interactive timetable design, some tuning is
necessary. Almost 80% of instructors teach at their first choice time slots.

Table 2. Statistics and results for simulated instances

Name Courses Course-Slots Rooms Violations Step1 Step2 Step3

small 180 420 35 0 45 sec. 9 sec. 3 sec.
medium 950 2100 165 0 307 sec. 52 sec. 6 sec.
large 2100 4640 345 0 1235 sec. 5106 sec. 5 sec.



Optimal University Course Timetables and the Partial Transversal Polytope 245

For comparison, we list in Table 3 the results for the same instances when
using the intuitive integer program (1)–(5).

Table 3. Sizes, solution times, and quality for the intuitive integer program (1)–(5)

Name # Variables # Constraints Runtime Gap

small 13 000 7000 30 sec. < 2%
medium 100 000 31 000 510 sec. 7 %
large 240 000 80 000 1 day no solution

6 Discussion

We did not discuss several extensions, which are (or can easily be) incorporated in
our practical implementation, most notably practical soft constraints. However,
our generic model (in particular using the concept of a conflict graph) is well
suited for this purpose. One can model e.g., that two courses have to be scheduled
on consecutive time slots, or that no two lectures of the same course are given
on the same day, etc. We report experiences with a soft constraint solver in a
companion paper [17].

One could think of solving the integer program (6)–(10) via branch-and-cut.
However, even for our largest instances, the number of facet inducing Hall in-
equalities (8) was rather small. This is why we simply added all facet inducing
inequalities up-front.

We have access to the courses database at Technical University of Berlin. It
comprises 2100 courses (to be scheduled to about 4500 time slots), 345 rooms
of about 50 types, and 1550 instructors; there are seven time periods each day.
The only reason for using simulated data instead of the real instance, is that
the database is severely inconsistent and incomplete [18]. It is planned to man-
ually repair and complete the necessary data in the near future, and to test our
implementation for the construction of timetables for the whole university.

References

1. Burke, E., Rudová, H. (eds.): PATAT 2006: Proceedings of the 6th International
Conference on the Practice and Theory of Automated Timetabling, Berlin. Lect.
Notes Comp. Science. Springer, Heidelberg (2007),
http://patat06.muni.cz/proceedings.html

2. Burke, E., Jackson, K., Kingston, J.H., Weare, R.: Automated university
timetabling: The state of the art. Comput. J. 40(9), 565–571 (1997)

3. Lovász, L., Plummer, M.D.: Matching Theory, p. 544. North-Holland, Amsterdam
(1986)

4. Schrijver, A.: Combinatorial Optimization Polyhedra and Efficiency. Springer,
Berlin (2003)

5. ITC2007: 2nd International Timetabling Competition,
http://www.cs.qub.ac.uk/itc2007/

http://patat06.muni.cz/proceedings.html
http://www.cs.qub.ac.uk/itc2007/


246 G. Lach and M.E. Lübbecke

6. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling.
European J. Oper. Res. 140(2), 266–280 (2002)

7. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Re-
view 13(2), 87–127 (1999)

8. Daskalaki, S., Birbas, T., Housos, E.: An integer programming formulation for a
case study in university timetabling. European J. Oper. Res. 153, 117–135 (2004)

9. Schimmelpfeng, K., Helber, S.: Application of a real-world university-course
timetabling model solved by integer programming. OR Spectrum 29, 783–803
(2007)

10. Lewis, R.: A survey of metaheuristic-based techniques for university timetabling
problems. OR Spectrum (in press, 2007)

11. Meyers, C., Orlin, J.B.: Very large-scale neighborhood search techniques in
timetabling problems. In: PATAT 2006: Proceedings of the 6th International Con-
ference on the Practice and Theory of Automated Timetabling, Berlin, pp. 36–52.
springer, Heidelberg (2007)

12. Carter, M.: A comprehensive course timetabling and student scheduling system at
the university of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS,
vol. 2079, pp. 64–82. Springer, Heidelberg (2001)

13. Daskalaki, S., Birbas, T.: Efficient solutions for a university timetabling problem
through integer programming. European J. Oper. Res. 127(1), 106–120 (2005)

14. Qualizza, A., Serafini, P.: A column generation scheme for faculty timetabling.
In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 161–173.
Springer, Heidelberg (2005)

15. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat.
Bur. Standards 69B, 125–130 (1965)

16. Balas, E., Pulleyblank, W.: The perfectly matchable subgraph polytope of a bi-
partite graph. Networks 13, 495–516 (1983)

17. Lach, G., Lübbecke, M.: Curriculum based course timetabling: Optimal solutions
to the Udine benchmark instances. Preprint 2008/9, Technische Universität Berlin,
Institut für Mathematik (2008)

18. Lach, G.: Modelle und Algorithmen zur Optimierung der Raumvergabe der TU
Berlin. Master’s thesis, Technische Universität Berlin, Institut für Mathematik (in
German, 2007)

19. Grinstead, C., Snell, J.: Introduction to Probability, 2nd edn. American Mathe-
matical Society, Providence, RI (2003),
http://math.dartmouth.edu/∼prob/prob/prob.pdf

A Auxiliary Results

The first two lemmas follow directly from the inclusion-exclusion principle in
probability theory [19].

Lemma 8. Given a set V and a supermodular function f : 2V → �, then for
arbitrary A1, . . . , An ⊆ V the following inequality holds:

f(
n⋃

i=1

Ai) ≥
n∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤n

f(Ai1 ∩ . . . ∩Aik
) (24)

http://math.dartmouth.edu/~prob/prob/prob.pdf


Optimal University Course Timetables and the Partial Transversal Polytope 247

Lemma 9. For each n ∈ � the following equation holds:

n∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤n

1 = 1 (25)

Lemma 10. Given a bipartite graph G = (C ∪R, E) and a defining C-set U ⊆ C
with cardinality larger one, then we have

ν((U ∪ Γ (U), E)) = |Γ (U)| .

Proof. Assume for contradiction that ν((U ∪ Γ (U), E)) < |Γ (U)|. Then there
exists at least one unmatched r ∈ R for all maximal matchings. So we choose
c ∈ Γ ({r}) and define:

U1 = c

U2 = U\{c}

Clearly, U1 and U2 are disjoint. Furthermore,

f(U1) + f(U2) = |U1| − def(U1) + |U2| − def(U2)
= |U | − def(U1)
= f(U) .

Thus, U does not induce a facet of P (C). This is a contradiction to Lemma 2. �

Lemma 11. Given a bipartite graph G = (C∪R, E) and an atomic C-set U ⊆ C,
then all inclusion maximal defining subsets D1, . . . , Dk ⊆ U are disjoint, and
furthermore their neighbourhoods Γ (D1), . . . , Γ (Dk) are disjoint.

Proof. Assume for contradiction that there exist two inclusion maximal defining
disjoint subsets D1, D2 with Γ (D1) ∩ Γ (D2) = ∅.
Case I: Γ (D1) ∪ Γ (D2) = Γ (U)
Then U is not atomic.
Case II: Γ (D1) ∪ Γ (D2) � Γ (U)
Then D1 �D2 is defining and D1 is not an inclusion maximal defining subset of
U . �

Lemma 12. Given a bipartite graph G = (C∪R, E), an atomic C-set U ⊆ C and
all inclusion maximal defining subsets D1, . . . , Dk � U of U , then the following
inequality holds:

def(U) ≥
k∑

i=1

def(Di) + 1 .



248 G. Lach and M.E. Lübbecke

Proof. For all defining C-sets D we have

def(U) = |U | − |Γ (U)|

=
k∑

i=1

|Di| − |Γ (Di)|+ |U\
k⋃

i=1

Di| − |Γ (U)\
k⋃

i=1

Γ (Di)|

≥
k∑

i=1

def(Di) + 1

�



A Basic Toolbox for Constrained

Quadratic 0/1 Optimization�

Christoph Buchheim1, Frauke Liers1, and Marcus Oswald2

1 Universität zu Köln, Institut für Informatik, Pohligstraße 1, 50969 Köln, Germany
2 Universität Heidelberg, Institut für Informatik, INF 368, 69120 Heidelberg, Germany

Abstract. In many practical applications, the task is to optimize a non-
linear function over a well-studied polytope P as, e.g., the matching poly-
tope or the travelling salesman polytope (TSP). In this paper, we focus
on quadratic objective functions. Prominent examples are the quadratic
assignment and the quadratic knapsack problem; further applications
occur in various areas such as production planning or automatic graph
drawing. In order to apply branch-and-cut methods for the exact solu-
tion of such problems, they have to be linearized. However, the standard
linearization usually leads to very weak relaxations. On the other hand,
problem-specific polyhedral studies are often time-consuming. Our goal
is the design of general separation routines that can replace detailed
polyhedral studies of the resulting polytope and that can be used as a
black box. As unconstrained binary quadratic optimization is equivalent
to the maximum cut problem, knowledge about cut polytopes can be
used in our setting. Other separation routines are inspired by the local
cuts that have been developed by Applegate, Bixby, Chvátal and Cook
for faster solution of large-scale traveling salesman instances. By exten-
sive experiments, we show that both methods can drastically accelerate
the solution of constrained quadratic 0/1 problems.

Keywords: quadratic programming, maximum cut problem, local cuts,
crossing minimization, similar subgraphs.

1 Introduction

Optimizing a linear objective function over binary variables under additional lin-
ear constraints is NP-hard in general. One of the most successful frameworks for
solving such problems is branch-and-cut. In order to develop fast branch-and-cut
algorithms, it is crucial to determine good outer descriptions of the polytope P
consisting of the convex hull of all feasible solutions of the problem at hand. The
branch-and-cut approach is well developed, and the facial description of many
polytopes corresponding to classical combinatorial optimization problems is well
understood. For several problems practically efficient implementations exist.
� Financial support from the German Science Foundation is acknowledged under con-

tracts Bu 2313/1-1 and Li 1675/1-1. Partially supported by the Marie Curie RTN
Adonet 504438 funded by the EU.

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 249–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



250 C. Buchheim, F. Liers, and M. Oswald

Instead of a linear objective function, we often desire to optimize a non-
linear objective function over P . We consider problems where the non-linearities
are locally defined, i.e., where every non-linear term in the objective function
depends on few variables. In this paper, we focus on binary quadratic functions,
however some of the proposed methods can easily be adapted to general non-
linear functions.

The easiest example of a binary quadratic optimization problem is the max-
imum cut problem, which is equivalent to optimizing a degree-two polynomial
over the hyper cube [4]. Many practical applications lead to non-linear objective
functions in a natural way. Several crossing minimization problems in automatic
graph drawing can be modeled as quadratic optimization problems over linear
ordering type polytopes. To give another example, the tool switching problem
arising in production planning can be solved by minimizing a polynomial of
degree three over a polytope that is closely related to the TSP.

In any integer programming based approach to such non-linear 0/1 problems,
the first step is to linearize the problem by introducing artificial variables that
model the non-linearities. We thus need to optimize the linearized objective
function over a polytope Q defined in a higher-dimensional space instead of
optimizing a non-linear objective function over the original polytope P .

It is easy to see that all facets of P yield valid inequalities for Q. A naive
branch-and-cut approach for the optimization over Q would use the separation
routines known for P , in combination with the constraints modeling the connec-
tion between original and new variables, and resort to branching if no violated
inequality can be detected any more. According to our experience, the perfor-
mance of such an approach is very weak. Often, facet-inducing inequalities for P
do not induce facets of Q, and the variables modeling non-linear terms change
the polyhedral structure significantly. This can even happen if only one product
is introduced and linearized.

In view of this, one could decide to undertake a polyhedral investigation of Q
and try to develop specialized separation routines. Doing this will – very probably
– be time consuming. Instead, much (human and computer) time could be saved
by having some effective black-box routines at hand that speed up the solution
algorithms but need only very limited knowledge about the problem structure.
For quadratic problems, we provide such black-box routines and show that they
drastically improve the running time of the solution algorithms.

Assuming that P is well understood, we ask the following question: How can
we exploit the knowledge of P for optimizing over Q, without detailed polyhedral
studies of Q? Even if the user is willing to invest some specific knowledge of Q,
he/she can still combine her own separation strategies with our general methods
outlined below. Moreover, the constraints produced by our methods might give
some insight into the polyhedral structure of Q and point at important classes
of cutting planes, which could be separated right from the start, using tailored
separation algorithms.

We address the general separation problem from two complementary direc-
tions. First assume that the objective function is quadratic. In case the problem



A Basic Toolbox for Constrained Quadratic 0/1 Optimization 251

is unconstrained, one can formulate it as a maximum cut problem on an associ-
ated graph [4]. Even in the presence of constraints, valid inequalities for the cut
polytope remain valid for Q after transformation, and can be separated using the
same transformation. In several applications, the transformed constraints of P
induce a face of the corresponding cut polytope, which gives some theoretical
evidence that the inequalities derived from the cut polytope can be helpful.

On the other hand, we want to exploit the knowledge of the structure of
the feasible solutions in P . Our proposed separation routine is inspired by
the local cuts that have been developed by Applegate, Bixby, Chvátal and
Cook (ABC2) [1]. With the help of local cuts, they could solve big TSP in-
stances being unsolved before. Recently, we proposed a variant of the local cut
generation procedure that has some advantageous features [3]. We call our cut-
ting planes target cuts. The main difference to the local cuts lies in a modified
LP formulation that makes it possible to avoid the time-consuming tilting steps,
as always a facet of the projected polytope is determined that can immediately
be lifted to a valid inequality for Q.

For non-linear problems, the local or target cut approach is well-suited, as
every non-linear term is determined by the original variables, so that the number
of vertices does not change from P to Q. In particular, going from linear to non-
linear objective functions does not slow down the cut generation significantly.
Another advantage of this approach is that the separation can be implemented as
a general framework that applies to all problems in this class. The user only needs
to input some information about the structure of the feasible solutions, which
is much easier than understanding the structure of the corresponding polytope.
This approach can be applied to arbitrary non-linear problems in which the
non-linearities are locally defined.

Our main contribution is to show that these approaches are very easy to use
and lead to much better performance of general branch-and-cut approaches. By
extensive computational experiments we show that not only the number of nodes
in the enumeration tree but also the running time decreases dramatically, when
compared to an algorithm that only uses the standard separation routines for
the well-studied polytope P .

For some classical quadratic 0/1 problems, such as the quadratic knapsack
problem or the quadratic assignment problem, special-purpose algorithms and
implementations exist that exploit the problem structure and lead to effective
algorithms. Clearly, we cannot compete with such problem-specific approaches.
In this work, we aim at designing general-purpose methods that help improve
the solution algorithms for quadratic problems for which not much is known
about their structure. In particular, the reference point for our evaluation is the
basic approach using standard linearization and separation for P .

The outline of this paper is as follows. We fix notation in Section 2. In Sec-
tion 3, we discuss cutting planes derived from the cut polytope. In Section 4,
we introduce target cuts and their usage in the context of quadratic prob-
lems. In Section 5, we explain the studied applications: the quadratic matching



252 C. Buchheim, F. Liers, and M. Oswald

problem in Section 5.1 and the quadratic linear ordering and the linear ar-
rangement problem in Section 5.2 and 5.3. In Section 6 we present experimental
results.

2 Definitions

Consider a combinatorial optimization problem on a finite set E with feasible
solutions I ⊆ 2E and with a linear objective function c(I) =

∑
e∈I ce, where ce ∈

� for all e ∈ E. Without loss of generality, we desire to minimize c(I) over
all I ∈ I. Let the polytope P ⊆ �E denote the convex hull of all incidence
vectors of feasible solutions. The corresponding integer linear program reads

min
∑

e∈E cexe

(P) s.t. x ∈ P
x ∈ {0; 1}E

In the following, we focus on objective functions that are quadratic in the vari-
ables x, i.e., we consider problems of the form

min
∑

e∈E cexe +
∑

e,f∈E;e�=f cefxexf

(QP) s.t. x ∈ P
x ∈ {0; 1}E,

For problems defined on a graph G = (V, E) with variables corresponding to
edges, and for two edges e = (i, j) and f = (k, l), we will use the notations cef ,
c(i,j)(k,l), and cijkl interchangeably. In order to address (QP) by integer pro-
gramming techniques, we apply the standard linearization: for each pair {e, f}
with cef �= 0, we introduce a binary variable yef modeling xexf , along with the
constraints yef ≤ xe, yef ≤ xf , and yef ≥ xe + xf − 1. The linearized problem
then reads

min
∑

e∈E cexe +
∑

e,f∈E;e�=f cefyef

(LQP) s.t. x ∈ P
yef ≤ xe, xf for all {e, f} with cef �= 0
yef ≥ xe + xf − 1 for all {e, f} with cef �= 0
yef ∈ {0; 1} for all {e, f} with cef �= 0

x ∈ {0; 1}E .

We are interested in the polytope Q spanned by all feasible solutions of (LQP).
Note that other methods for linearizing (QP) have been proposed in the lit-

erature. Nevertheless, we focus on the standard linearization, as it is the most
natural and popular way to linearize (QP) and as it can easily be implemented.

3 Cutting Planes from Maxcut

Consider a graph G = (V, E) with edge weights we. For W ⊆ V , the cut δ(W )
is defined as

δ(W ) = {(u, v) ∈ E | u ∈ W, v �∈W} .



A Basic Toolbox for Constrained Quadratic 0/1 Optimization 253

Its weight is
∑

e∈δ(W ) we. The maximum cut problem asks for a cut of maximum
weight and is NP-hard for general graphs. The corresponding cut polytope, i.e.,
the convex hull of incidence vectors of cuts, is well studied [2,5], and practically
effective branch-and-cut implementations exist for its solution [6,7].

It is a well-known result that the problem of optimizing a binary quadratic
function without further constraints is equivalent to determining a maximum
cut in an auxiliary graph Glin = (Vlin, Elin) [4]. The latter contains a node for
each variable xe. For each quadratic term xexf occuring in the objective function
with cef �= 0, the edge set Elin contains an edge between the nodes corresponding
to xe and xf . Furthermore, an additional root node and edges from this node to
all nodes in Vlin are introduced. Now there exists a simple linear transformation
between the edge variables in the maximum cut setting and the linear variables
or products in the unconstrained quadratic optimization setting under which P
is isomorphic to the cut polytope of Glin [4].

If P is the unit hypercube, solving (LQP) thus amounts to determining a
maximum cut in Glin, i.e., to optimizing over a cut polytope defined in the Elin-
dimensional space. If P is a strict subset of the unit hypercube, i.e., if additional
constraints are present, these constraints can be transformed as well and we
derive that P is isomorphic to a cut polytope with further linear constraints. In
particular, all inequalities valid for the cut polytope still yield inequalities valid
for (LQP) and can be used in a cutting plane approach.

Clearly, intersecting the cut polytope with arbitrary hyperplanes in general
yields a non-integer polytope. The structure of the resulting polytope can be very
different from a cut polytope. In this case it is not clear whether the knowledge
about the cut polytope can help solving the constrained optimization problem.
However, several relevant applications exist in which the intersection of the cut
polytope with a set of hyperplanes cuts out a face of a cut polytope, at least if cer-
tain product variables are present, e.g., for quadratic assignment and quadratic
matching. The proof for the quadratic matching is a slight modification of the
proof for the quadratic assignment polytope.

In any case, we obtain a correct separation algorithm for (LQP) based on
cut separation. Within a branch-and-cut framework, we can always work in
the original model and apply other separation algorithms as desired. When it
comes to the cut separation, we build the graph Glin = (Vlin, Elin), transform
the fractional point, and separate the inequalities known for the cut polytope.
Found cutting planes are transformed back to yield cutting planes for (LQP).

4 Target Cuts for Quadratic 0/1 Problems

Usually, separation routines aim at generating faces or facets of some polytope
in question that share similar structure. They are said to follow the template
paradigm. Recently, ABC2 proposed some general separation routine yielding so-
called local cuts that are inequalities outside the template paradigm for which the
structure is not known [1]. The size of the problem is first reduced by projecting



254 C. Buchheim, F. Liers, and M. Oswald

the incidence vectors of feasible solutions onto a small-dimensional space (ABC2

do this by shrinking nodes into supernodes).
For r ≤ m, let π denote a projection �m → �

r and let Q = π(Q) ⊆ �r

denote the convex hull of the projected feasible solutions. Let x∗ ∈ �m be
the point to be separated and x∗ = π(x∗) be its projection to �r. A face-
inducing inequality that separates some projected fractional point from Q can be
obtained by solving an appropriately chosen linear program. Its size is basically
determined by the number of its vertices. Thus, if the dimension of Q is not
too big, this is fast in practice. Furthermore, the size of the linear program can
be reduced by several considerations, and by delayed column generation only
necessary feasible solutions are enumerated. A found local cut is then sequentially
lifted and tilted until it becomes a facet for Q and then lifted to become feasible
for the original TSP polytope.

Recently, we proposed a variant of the local cuts that we call target cuts [3].
The local cut framework can easily be adapted to target cuts, however the time-
consuming tilting steps can be omitted. The reason for this is that we propose
a different cut-generating linear program that generates a facet of Q right away.
Furthermore, the volume of the generated facet is expected to be big. In the
following, we briefly explain the target cuts separation. Details can be found
in [3]. Subsequently, we will show that their use is favorable in the context of
quadratic problems.

Assuming for now that Q is full-dimensional, we choose a point q in the interior
of Q. In case the projected non-feasible point x∗ is not contained in Q, we want
to return a cutting plane that separates x∗ from Q. We argue in [3] that a facet
from Q can be obtained by solving the following linear program:

max a�(x∗ − q)
s.t. a�(xi − q) ≤ 1 for all i = 1, . . . , s

a ∈ �r

(1)

Here, x1, . . . , xs are the vertices of Q. A facet for Q violated by x∗ can be read
off the optimum solution of (1) as follows. If the optimum value of (1) is greater
than 1, the corresponding inequality a�(x− q) ≤ 1 is violated by x∗. Otherwise,
x∗ is contained in Q.

In case the dimension of Q is smaller than r, the linear program (1) can be
unbounded. In this case, a�(x− q) = 0 is a valid equation for Q violated by x∗,
if a is an unbounded ray in (1).

In order to reduce the size of LP (1), we adapted the delayed column gener-
ation procedure proposed for local cuts to the target cut case. The procedure
requires an oracle for maximizing any linear function over Q. Having this at
hand, one starts with a small, possibly empty, set of vertices x1, . . . , xh. Then a
target cut a�(x−q) ≤ 1 is produced for the polytope Qh = conv{x1, . . . , xh}, by
solving the corresponding linear program. Then, the oracle is called to maximize
the left-hand side of the inequality. In case the maximum is bigger than 1, we
add the maximal solution as a new xh+1 to (1). Otherwise we stop the proce-
dure, having found a valid target cut. This process is iterated until the generated



A Basic Toolbox for Constrained Quadratic 0/1 Optimization 255

inequality is found to be valid. The number of columns added in this procedure
is usually much smaller than the number of vertices of Q.

In order to use target cuts for quadratic problems, we need to specify which
projection to choose. In general, there is no easy answer to this question, and
the user might have to test the performance of different projections in order to
find which one gives best results. The projection needs to allow fast recognition
or determination of the points in �r that can be extended to feasible solutions
in the original space. For several applications this is possible with the trivial,
i.e., orthogonal, projection onto some sub-graph or sub-space, or the projection
through shrinking of nodes into supernodes. For a given (linear) projection,
lifting of a found inequality is trivial.

For some problems, certain projections seem to be favorable to others. For
example, in a problem in which the global structure is important, as is the case
for the TSP, a projection through shrinking should be prefered in case it allows
to characterize the points in �r having a preimage in �m under π. On the other
hand, there are problems in which the local structure seems to be characteristic of
the problem, as, e.g., for the matching problem. In the latter, trivial projections
can be used.

The usage of target cuts allows the implementation of a general framework in
which only the projection and the oracle need to be specified for the particular
application; everything else is problem-independent. Moreover, target cuts are
well-suited for quadratic 0/1 problems: the size of the cut generating program (1)
remains moderate, as there is a 1-1 correspondence between the vertices of the
polytope P and the polytope Q. Therefore, the projected linearized polytope Q
has the same number of vertices as π(P ), so that the number of rows of (1)
does not grow with the introduction of product variables. In other words, the
additional product variables do not affect the performance considerably, which
allows to deal with non-trivial chunk sizes.

5 Applications

Applications of constraint quadratic binary optimization problems abound. One
of the more traditional examples is the quadratic assignment problem; more
recently also the quadratic knapsack problem has attracted some interest. In
the following, we consider two other problems: the quadratic matching and the
quadratic linear ordering problem. More precisely, we consider applications that
are naturally modeled as such problems. In Section 5.1, we look at the problem
of finding highly similar subgraphs, which can be modeled as a quadratic (bipar-
tite) matching problem. In Section 5.2 and 5.3, we discuss two applications of
quadratic linear ordering: the bipartite crossing minimization problem and the
linear arrangement problem.

5.1 Finding Highly Similar Subgraphs – Quadratic Matching

Assume we are given two graphs G1 = (V1, E1) and G2 = (V2, E2), and we want
to get insight into how similar the two graphs are. This problem occurs in several



256 C. Buchheim, F. Liers, and M. Oswald

practical applications, e.g., in automatic graph drawing and computational biol-
ogy. The task is to determine a matching of a subset or all nodes of G1 to those
of G2 such that as many edges as possible in the two graphs are mapped onto
each other. Obviously, this problem is a generalization of the graph isomorphism
problem in which we decide whether there exists a matching of the nodes in V1

to those in V2 such that all edges in E1 are mapped onto edges in E2, and vice
versa.

In the generalization we are concerned with, we also allow but penalize the
case in which u1 ∈ V1 is matched on u2 ∈ V2 and v1 ∈ V1 on v2 ∈ V2, but
exactly one of the edges (u1, v1) or (u2, v2) exists. A straight-forward model for
this problem is the following quadratic matching formulation

max
∑

i∈V1,j∈V2
xij +

∑
i,k∈V1,j,l∈V2

cijklxijxkl

(QMP) s.t.
∑

i∈V1
xij ≤ 1 ∀j ∈ V2∑

j∈V2
xij ≤ 1 ∀i ∈ V1

xij ∈ {0; 1} ∀i ∈ V1, j ∈ V2

with costs cijkl < 0 if either (i, k) ∈ E1 or (j, l) ∈ E2, but not both. Other-
wise cijkl ≥ 0. In this model, xij = 1 means that node i ∈ V1 is matched with
node j ∈ V2.

5.2 Bipartite Crossing Minimization – Quadratic Linear Ordering I

Consider a bipartite graph G = (V1 ∪V2, E). We want to draw G in the plane so
that the nodes of V1 and V2 are placed on two parallel horizontal lines. The task
is to minimize the number of crossings between edges, assuming that all edges
are drawn as straight lines. Several applications exist in the area of automatic
graph drawing. Clearly, the number of crossings only depends on the orders of
vertices on the two lines.

First, we assume that the nodes V1 on the upper level are layouted in some
fixed order, whereas the nodes on the lower level are allowed to permute within
the layer. The permutation of the nodes in V2 has to be chosen such that the
number of edge crossings is minimal. Let i, j ∈ V1, k, l ∈ V2 and edges (i, k), (j, l)
be present. Assume i is before j in the fixed order. No crossing exists in case k
is before l on the second level, otherwise there is a crossing.

Hence the bipartite crossing minimization problem with one fixed layer can
easily be formulated as a linear ordering problem. Now let us formulate the
problem with two free layers as a quadratic optimization problem over the linear
ordering polytope. For i, j, k, l chosen as above, there is no crossing in case i is
before j and k is before l, or j is before i and l is before k. Let us introduce
variables xuv that take value 1 if u is drawn before v, and 0 otherwise. Then we
have to solve the problem

max
∑

(i,k),(j,l)∈E xijxkl

(QLO1) s.t. x ∈ PLO

xij ∈ {0; 1} ∀i, j ∈ V1 or i, j ∈ V2 ,

where PLO is the linear ordering polytope.



A Basic Toolbox for Constrained Quadratic 0/1 Optimization 257

5.3 Linear Arrangement – Quadratic Linear Ordering II

The linear arrangement problems is given as follows. We are looking for a per-
mutation of n objects in such a way that a linear function c on the differences
of positions of the objects is minimized. More precisely, we desire to determine
a permutation π of {1, . . . , n} minimizing

∑

1≤i,j≤n

cij |π(i)− π(j)| .

To this end we use the fact that the distances of the positions of two elements i
and j with respect to a permutation π can be expressed in terms of betweenness
variables. This distance equals 1 plus the number of elements lying between i
and j, i.e., |π(i) − π(j)| = 1 +

∑
k xikxkj where xij is the usual linear odering

variable modeling whether π(i) < π(j) or not. Therefore, up to a constant, the
linear arrangement problem can be rewritten as

max
∑

i�=j �=k �=i cijxikxkj

(QLO2) s.t. x ∈ PLO

xij ∈ {0; 1} ∀i, j ∈ {1 . . . n}, i �= j.

Note that for this application only products of linear ordering variables are
required that are of the type xikxkj , which are only O(n3) many.

6 Experiments

We implemented the two separation approaches discussed in Section 3 and 4
within the branch-and-cut framework ABACUS, using CPLEX 11. All test runs
were performed on Xeon machines with 2.66 GHz.

For each application we addressed, we start a branch-and-cut algorithm with
the linear programming relaxation of the linearized problem (LQP). Separation
routines for the polytopes P are assumed to be readily available. We compare
the performance of this basic approach with the same approach extended by
appropriately used maximum cut separation as described in Section 3 and the
target cut separation as introduced in Section 4. For the tested applications, we
used trivial projections onto subsets of variables, called chunks.

The chunks were chosen randomly in the sense that we first generate a sub-
graph randomly and then project onto all those linear and product variables
that are completely determined by the subgraph. For the maximum cut separa-
tion, we separate the cycle inequalities [2]. We aimed at developing one relatively
abstract implementation that can easily be used for all quadratic problems of
type (QP) without having to incorporate many changes. Only the target-cut or-
acle and the test whether some vector represents a feasible solution are specific
to the problem and have to be implemented separately for each application. We
tested our approaches on randomly generated instances.



258 C. Buchheim, F. Liers, and M. Oswald

6.1 The Quadratic Matching Problem

For the quadratic matching problem, we studied instances defined on complete
graphs. Note that a product xijxkl is necessarily zero if i, j, k, l are not pairwise
distinct. We create random instances where for given pairwise distinct i, j, k, l
the weight cijkl is non-zero with a given probability p. In this case, the weight is
randomly chosen from {−1000, . . . , 1000}. All linear weights cij are also chosen
randomly from {−1000, . . . , 1000}. An instance is thus defined by the number of
nodes n, the percentage p of products with non-zero coefficient, and a random
seed r for the weights.

Our implementations either determine a maximum quadratic matching or a
minimum perfect quadratic matching. In the basic branch-and-bound approach,
we separate the blossom inequalities that are known to be the only non-trivial
facets of the matching polytope. We compare this basic approach with a branch-
and-cut algorithm that uses separation of cutting planes derived from the cut
polytope and of target cuts on varying chunk sizes, as explained in Section 3
and 4. We also test an implementation with both separation routines.

It turns out that better performance can be achieved if the maximum-cut
separation procedure is only called in the root node of the branch-and-bound
tree, and not after branching has been done. For the target cuts, the extendable
solutions under a trivial projection are the incidence vectors of (not necessarily
perfect) quadratic matchings. For their generation, two oracles are implemented:
First, a heuristic greedy oracle tries to identify fast necessary incidence vectors
of quadratic matchings. In case it is successful, the delayed column generation
procedure continues. In case it is not successful, we test whether a violating
vector exists by calling an exact oracle. In the latter, the integer programming
formulation for the quadratic matching problem on the small chunk is solved
exactly. The column generation procedure is iterated until no more violating
vector is found by the exact oracle.

We show some running times in Table 1. We report the cpu time in seconds
and the number of subproblems needed to solve the instance to optimality. IP
refers to the basic algorithm, MxTy means that we apply cut generation if x = 1,
and target cut separation with chunk size y.

As can be expected, in practice the number of found blossom inequalities is
very small, often none of them is violated, and so the basic implementation solves
the problem basically via branching. Only very small instances can be solved to
optimality. It is obvious that the separation of inequalities from the cut polytope
considerably improves the running times. Also the target cut separation strongly
reduces the number of subproblems, the number of linear problems and the
running time. The best improvement is achieved when both separation routines
are included.

The optimal size of the chunks depends on the size of the instances. Clearly,
using too large chunks can increase the total runtime, since the effect of having
to solve less subproblems is foiled by the long running time needed to compute
the target cuts; the latter increases exponentially in the size of the chunk. For
the larger instances we considered, the best results where obtained with chunks
of 5 to 7 nodes.



A Basic Toolbox for Constrained Quadratic 0/1 Optimization 259

T
a
b
le

1
.
R

es
u
lt
s

fo
r

th
e

q
u
a
d
ra

ti
c

m
a
tc

h
in

g
p
ro

b
le

m
,
p
er

fe
ct

m
a
tc

h
in

g
s

(t
o
p
)

a
n
d

g
en

er
a
l
m

a
tc

h
in

g
s

(b
o
tt

o
m

)

|V
|

p
IP

M
C

0
T

5
M

C
0

T
6

M
C

0
T

7
M

C
1

T
0

M
C

1
T

5
M

C
1

T
6

M
C

1
T

7

1
4

0
.4

1
:0

6
5
0
5

0
:4

8
2
6
7

0
:4

7
4
9

7
:4

2
1
3

1
:2

3
2
9
7

0
:5

5
9
1

2
:0

1
3
3

9
:2

3
1
1

1
6

0
.4

2
9
:2

5
5
1
4
5

1
3
:4

2
2
0
2
1

6
:2

9
3
7
7

2
3
:3

0
6
9

2
1
:2

1
2
1
8
7

9
:0

6
7
0
3

7
:1

2
2
2
1

2
1
:5

7
6
5

1
8

0
.1

0
:2

7
3
3
1

0
:2

7
2
8
1

0
:2

7
1
9
5

0
:1

7
7
3

0
:2

2
1
5
9

0
:2

6
1
2
3

0
:2

2
8
3

0
:2

0
5
9

2
0

0
.1

2
:4

7
1
0
2
1

2
:3

0
8
0
7

1
:4

9
5
2
5

1
:0

4
2
0
3

1
:4

2
4
2
5

1
:4

2
2
1
1

1
:0

4
1
5
3

1
:0

1
8
1

1
6

0
.2

0
:2

2
2
5
5

0
:1

6
1
1
9

0
:2

3
6
9

0
:2

0
1

0
:1

1
3
3

0
:4

6
5

0
:2

2
3
9

0
:5

1
1

1
6

0
.2

1
:3

3
8
7
7

1
:1

5
5
9
1

0
:4

8
2
5
7

0
:4

7
9
9

1
:5

0
6
5

1
:1

6
3
6
3

0
:5

7
2
0
3

2
:3

6
4
7

1
6

0
.2

0
:4

1
4
7
3

0
:3

7
3
7
9

0
:1

9
7
1

0
:2

8
4
3

1
:2

5
2
3

0
:4

4
3
9
1

0
:3

5
8
3

1
:3

8
2
1

1
6

0
.2

1
:0

8
7
5
1

1
:0

6
6
6
7

0
:3

7
2
3
1

0
:4

2
8
7

1
:3

3
4
5

0
:5

4
3
3
5

0
:4

5
1
9
7

2
:1

8
3
9

1
8

0
.1

0
:2

1
2
6
7

0
:2

7
2
8
1

0
:2

7
1
9
5

0
:2

2
8
3

0
:2

6
7
9

0
:2

2
1
5
9

0
:2

5
1
2
3

0
:4

5
4
9

1
8

0
.1

0
:2

0
2
6
1

0
:1

9
2
2
5

0
:1

5
1
2
5

0
:1

8
1
0
3

0
:2

2
9
1

0
:1

6
1
4
9

0
:2

0
1
4
7

0
:3

3
6
5

1
8

0
.1

0
:1

7
2
1
1

0
:1

8
1
8
5

0
:1

3
1
0
7

0
:1

4
4
5

0
:1

7
5
1

0
:1

2
6
9

0
:1

6
6
3

0
:2

5
3
5

1
8

0
.1

0
:2

0
2
2
5

0
:1

9
1
9
7

0
:1

8
1
5
5

0
:1

4
4
5

0
:3

1
1
1
1

0
:2

0
1
6
9

0
:2

3
1
3
1

0
:3

3
7
3

1
8

0
.2

1
6
:1

6
3
5
0
1

1
2
:4

2
2
4
6
3

4
:0

6
5
2
7

3
:5

3
3
2
7

5
:1

1
2
5
9

1
0
:2

9
1
5
8
3

1
2
:4

2
2
6
2
3

7
:0

8
2
0
5

1
8

0
.2

1
2
:3

9
3
0
4
3

1
0
:2

8
2
3
8
7

2
:0

9
2
4
5

2
:2

7
1
7
5

3
:3

5
2
0
5

7
:5

8
1
3
3
7

4
:2

4
3
7
3

4
:2

4
1
2
3

1
8

0
.2

1
0
:1

0
2
3
5
9

8
:2

9
1
7
4
9

3
:3

3
5
1
3

3
:0

3
1
4
7

5
:1

3
2
7
7

8
:4

1
1
2
5
1

5
:0

1
4
1
5

5
:1

9
1
2
3

1
8

0
.2

2
0
:1

3
4
4
9
7

1
7
:2

3
3
3
4
3

6
:5

6
1
1
9
3

5
:1

5
4
8
5

8
:1

4
5
8
3

1
6
:2

8
2
6
6
3

8
:5

7
1
2
5
7

8
:1

8
3
3
9

2
0

0
.1

2
:3

8
1
0
6
3

2
:2

9
8
0
7

1
:4

8
5
2
5

1
:0

4
1
5
3

1
:1

9
1
9
9

1
:4

2
4
2
5

1
:4

1
2
1
1

1
:1

6
7
1

2
0

0
.1

3
:4

9
1
1
2
9

4
:0

5
1
1
1
7

2
:2

1
6
1
5

1
:3

2
1
4
1

2
:1

6
5
0
7

2
:4

4
5
4
3

2
:4

5
5
2
1

1
:4

4
1
7
1

2
0

0
.1

3
:5

4
1
2
5
9

4
:0

4
1
0
8
9

2
:4

7
7
6
7

1
:4

0
2
3
5

2
:1

1
4
5
3

2
:5

5
6
7
9

2
:3

7
5
4
1

1
:4

0
2
1
5

2
0

0
.1

2
:4

0
9
1
5

2
:3

9
8
0
7

1
:5

4
4
1
9

1
:2

8
1
2
1

1
:2

8
2
5
5

2
:0

9
4
7
7

2
:0

2
2
6
9

1
:3

5
8
1



260 C. Buchheim, F. Liers, and M. Oswald

T
a
b
le

2
.
R

es
u
lt
s
fo

r
th

e
q
u
a
d
ra

ti
c

li
n
ea

r
o
rd

er
in

g
p
ro

b
le

m
,
ra

n
d
o
m

in
st

a
n
ce

s
(t

o
p
)
a
n
d

li
n
ea

r
a
rr

a
n
g
em

en
t
in

st
a
n
ce

s
(b

o
tt

o
m

).
In

st
a
n
ce

s
m

a
rk

ed
w

it
h

−−
co

u
ld

n
o
t

b
e

so
lv

ed
w

it
h
in

2
G

B
o
f
R

A
M

.

|V
|

|E
|

IP
M

C
0

T
5

M
C

0
T

6
M

C
1

T
0

M
C

1
T

5
M

C
1

T
6

1
0

4
5

0
:1

3
:4

5
1
0
9
9
5

0
:0

0
:4

3
1

0
:1

3
:5

5
1

0
:2

3
:1

8
3
4
1

0
:0

0
:3

4
1

0
:1

0
:4

0
1

1
0

4
5

0
:1

5
:5

0
1
2
3
4
9

0
:0

0
:5

8
1

0
:2

1
:1

5
1

0
:1

6
:0

6
3
0
1

0
:0

0
:3

9
2
1

0
:1

2
:5

5
1

1
0

4
5

0
:1

4
:3

9
1
3
3
1
9

0
:0

0
:4

1
1

0
:1

4
:0

1
1

0
:2

3
:5

2
5
2
7

0
:0

0
:2

9
1

0
:0

9
:1

4
1

1
0

4
5

0
:1

1
:1

8
8
8
7
1

0
:0

0
:5

5
1

0
:1

9
:2

7
1

0
:3

1
:4

7
4
9
1

0
:0

0
:4

0
1

0
:1

3
:3

4
1

1
1

5
5

>
3
:0

0
:0

0
−−

0
:0

2
:3

1
1

0
:3

7
:1

5
1

2
:5

0
:3

4
9
6
5

0
:0

1
:5

1
1

0
:2

1
:5

9
1

1
1

5
5

>
0
:3

0
:0

0
−−

0
:0

2
:5

5
1

0
:4

4
:2

5
1

6
:0

6
:0

2
1
9
5
5

0
:0

2
:0

5
1

0
:2

4
:5

7
1

1
1

5
5

>
0
:3

2
:0

0
−−

0
:0

2
:0

0
1

0
:2

5
:2

7
1

3
:1

5
:1

8
1
0
0
3

0
:0

1
:3

4
1

0
:1

8
:2

5
1

1
1

5
5

>
0
:2

9
:0

0
−−

0
:0

2
:1

5
1

0
:3

0
:1

5
1

2
:2

3
:3

4
8
6
7

0
:0

1
:3

7
1

0
:2

0
:5

1
1

1
4

2
9

0
:0

0
:1

6
1
0
4
9

0
:0

0
:0

7
1
8
9

0
:0

0
:2

3
2
5

0
:0

0
:0

2
1
5

0
:0

0
:0

2
5

0
:0

0
:1

0
1

1
4

3
8

>
0
:0

6
:2

3
−−

0
:0

2
:0

3
2
3
4
7

0
:0

2
:2

7
3

0
:0

0
:5

5
1
5

0
:0

0
:3

0
3

0
:0

1
:3

8
1

1
4

4
7

>
0
:0

9
:0

8
−−

0
:0

0
:1

3
3

0
:0

1
:5

4
1

0
:0

0
:3

4
1
7

0
:0

0
:1

0
1

0
:0

0
:5

8
1

1
4

5
6

>
0
:1

1
:4

0
−−

0
:0

0
:2

2
3

0
:0

2
:3

0
1

0
:0

1
:4

9
2
9

0
:0

0
:1

8
1

0
:0

2
:1

2
1

1
4

6
5

>
0
:1

4
:3

0
−−

0
:0

1
:5

4
2
7

0
:1

5
:0

4
1
1

0
:0

3
:1

9
2
1

0
:0

2
:0

6
3

0
:1

3
:4

8
3

1
4

7
4

>
0
:1

7
:2

7
−−

0
:0

0
:0

9
3

0
:0

2
:0

8
1

0
:0

1
:3

8
4
1

0
:0

0
:1

5
1

0
:0

2
:1

0
1

1
4

8
3

>
0
:2

0
:1

9
−−

0
:0

0
:1

9
3

0
:0

6
:5

6
3

0
:1

4
:4

8
3
2
9

0
:0

0
:2

9
3

0
:0

5
:4

3
1

1
6

3
7

>
0
:0

9
:3

3
−−

0
:0

3
:1

1
2
4
4
7

0
:0

7
:4

4
3
8
1

0
:0

1
:0

4
3
3

0
:0

0
:2

3
1

0
:0

1
:0

7
1

1
6

4
6

>
0
:1

3
:1

1
−−

0
:0

0
:3

8
5
5

0
:0

1
:5

8
3

0
:0

0
:3

9
1

0
:0

0
:1

4
1

0
:0

1
:0

3
1

1
6

5
5

>
0
:1

6
:4

8
−−

0
:0

1
:1

0
3

0
:0

4
:2

9
1

0
:0

3
:4

9
2
7

0
:0

0
:5

3
3

0
:0

2
:3

9
1

1
6

6
4

>
0
:2

0
:3

6
−−

0
:0

1
:0

4
3

0
:0

5
:0

7
3

0
:0

4
:5

1
9

0
:0

0
:5

6
1

0
:0

3
:4

4
1

1
6

7
3

>
0
:2

4
:1

9
−−

0
:0

2
:2

4
3

0
:1

4
:5

8
1

0
:0

7
:0

6
3

0
:0

2
:4

8
1

0
:1

2
:0

4
1

1
6

8
2

>
0
:2

8
:5

2
−−

0
:0

2
:0

9
9

0
:1

5
:2

1
1

0
:1

1
:2

7
1
1

0
:0

2
:1

7
3

0
:1

4
:4

3
3

1
6

9
1

>
0
:3

3
:4

3
−−

0
:0

2
:2

3
3

0
:2

8
:0

2
5

0
:4

3
:0

5
7
1

0
:0

3
:0

3
3

0
:1

4
:5

9
1

1
6

1
0
0

>
0
:4

0
:0

5
−−

0
:0

0
:3

3
1

0
:0

7
:4

0
1

0
:1

8
:4

0
1
7

0
:0

0
:5

7
1

0
:0

9
:0

5
1

1
6

1
0
3

>
0
:4

2
:1

0
−−

0
:0

1
:4

3
1

0
:2

3
:0

0
3

0
:3

6
:1

9
6
1

0
:0

2
:2

3
3

0
:1

8
:3

2
1

2
0

3
8

0
:0

3
:2

9
3
0
4
9

0
:0

2
:1

2
1
5
9
7

0
:0

2
:5

8
1
0
1
9

0
:0

0
:1

5
1

0
:0

0
:1

3
1

0
:0

0
:2

6
1

2
0

4
1

>
0
:2

2
:2

4
−−

>
0
:2

6
:1

0
−−

0
:3

0
:1

3
6
9
1
7

0
:0

2
:0

4
1
5

0
:0

0
:5

7
3

0
:0

1
:1

6
3

2
0

4
4

>
0
:2

4
:4

9
−−

>
0
:3

1
:1

9
−−

1
:0

0
:0

8
8
9
6
1

0
:0

4
:3

6
7

0
:0

3
:1

0
1

0
:0

3
:0

9
1



A Basic Toolbox for Constrained Quadratic 0/1 Optimization 261

6.2 The Quadratic Linear Ordering Problem

According to our experience, separating inequalities known to be valid for the
polytope P does not speed up the optimization over Q considerably, and so
our basic branch-and-cut algorithm for the solution of (QLO1) and (QLO2)
only separates the 3-dicycle inequalities. The latter are known to be facets for
the linear ordering polytope. In contrast to the quadratic matching case, max-
cut separation turns out to be very effective for the quadratic linear ordering
problem, and so it is called in every node of the branch-and-bound tree. The
target cut separation is again performed on randomly chosen chunks that are
generated via trivial projection. The vectors that are extendable under the trivial
projection are again linear orderings on the chunks.

We studied instances defined on complete graphs. Again, weights of linear
and product variables are chosen randomly in {−1000, . . . , 1000}. All products
are generated. An instance is defined by the number of nodes n of the complete
graph and a random seed r for the randomly chosen weights. Moreover, we
created linear arrangement instances defined by random graphs, see Section 5.3.

In Table 2 we show some running times for both types of instances. As above,
we report the cpu time in seconds and the number of subproblems needed to
solve the instance to optimality.

The results are similar to the quadratic matching case: the basic implementa-
tion solves the problem essentially via branching, only very small instances can
be solved. Again it is obvious that the separation of inequalities from the cut
polytope considerably improves the running time. Also the target cut separation
strongly reduces the number of subproblems, the number of linear problems and
the running time. The best chunk sizes are 5 to 6.

In summary, our results show that both presented separation methods improve
the performance of the basic branch-and-cut approach significantly.

7 Conclusion

We present and evaluate two methods for improving the performance of branch-
and-cut approaches to general quadratic 0/1 optimization problems, address-
ing the problem from two different directions. The first method addresses the
quadratic structure, exploiting separation routines for cut polytopes, while the
second implicitly takes into account the specific structure of the underlying poly-
tope, applying a technique similar to local cut generation. Our results show that
the total running time can be decreased significantly by both techniques.

References

1. Applegate, A., Bixby, R., Chvátal, V., Cook, W.: TSP cuts which do not conform
to the template paradigm. In: Jünger, M., Naddef, D. (eds.) Computational Combi-
natorial Optimization. LNCS, vol. 2241, pp. 261–304. Springer, Heidelberg (2001)

2. Barahona, F., Mahjoub, A.R.: On the cut polytope. Mathematical Programming 36,
157–173 (1986)



262 C. Buchheim, F. Liers, and M. Oswald

3. Buchheim, C., Liers, F., Oswald, M.: Local cuts revisited. Operations Research
Letters (2008), doi:10.1016/j.orl.2008.01.004

4. De Simone, C.: The cut polytope and the Boolean quadric polytope. Discrete Math-
ematics 79, 71–75 (1990)

5. Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Algorithms and Combina-
torics, vol. 15. Springer, Heidelberg (1997)

6. Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing Exact Ground States of
Hard Ising Spin Glass Problems by Branch-and-Cut. New Optimization Algorithms
in Physics, pp. 47–68. Wiley-VCH, Chichester (2004)

7. Rendl, F., Rinaldi, G., Wiegele, A.: A branch and bound algorithm for Max-
Cut based on combining semidefinite and polyhedral relaxations. In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 295–309. Springer, Hei-
delberg (2007)



Empirical Investigation of Simplified Step-Size
Control in Metaheuristics with a View to Theory

Jens Jägersküpper� and Mike Preuss

Technische Universität Dortmund, Fakultät für Informatik,
44221 Dortmund, Germany

Abstract. Randomized direct-search methods for the optimization of a
function f : Rn → R given by a black box for f -evaluations are inves-
tigated. We consider the cumulative step-size adaptation (CSA) for the
variance of multivariate zero-mean normal distributions. Those are com-
monly used to sample new candidate solutions within metaheuristics,
in particular within the CMA Evolution Strategy (CMA-ES), a state-
of-the-art direct-search method. Though the CMA-ES is very successful
in practical optimization, its theoretical foundations are very limited be-
cause of the complex stochastic process it induces. To forward the theory
on this successful method, we propose two simplifications of the CSA
used within CMA-ES for step-size control. We show by experimental
and statistical evaluation that they perform sufficiently similarly to the
original CSA (in the considered scenario), so that a further theoretical
analysis is in fact reasonable. Furthermore, we outline in detail a proba-
bilistic/theoretical runtime analysis for one of the two CSA-derivatives.

1 Introduction

The driving force of this paper is the desire for a theoretical runtime analy-
sis of a sophisticated stochastic optimization algorithm, namely the covariance
matrix adaptation evolution strategy (CMA-ES). As this algorithm is very hard
to analyze theoretically because of the complex stochastic process it induces,
we follow an unorthodox approach: We decompose it into its main algorithmic
components: the covariance matrix adaptation (CMA), and the cumulative step-
size adaptation (CSA). While the CMA is, in some sense, supposed to handle
ill-conditionedness in the optimization problems, it is the duty of the CSA to
cope with a challenge that every algorithm for real-valued black-box optimiza-
tion faces: step-size control, i.e. the adaptation of step-sizes when approaching
an optimum. The idea behind this decomposition is to substitute one of the
components by an alternative mechanism that is more amenable to a theoret-
ical analysis. While doing so, we rely on experimentation to assess how far we
depart from the original algorithm. Here simpler mechanisms for step-size con-
trol are substituted for CSA. The desired outcome of this process is a modified
� Supported by the German Research Foundation (DFG) through the collaborative

research center “Computational Intelligence” (SFB 531).

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 263–274, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



264 J. Jägersküpper and M. Preuss

algorithm that is both: tractable by theoretical analysis techniques, and, tested
empirically, still working reasonably similar to the original one. At the same time
we aim at better understanding the core-mechanisms of the original algorithm.
(A simplified algorithm may also be interesting for practitioners, as simple meth-
ods often spread much faster than their complicated counterparts, even if the
latter have slight performance advantages.) The full theoretical analysis itself,
however, is not part of this work, but is still pending. Rather we discuss why
a theoretical analysis seems feasible and outline in detail how it could be ac-
complished. Note that proving (global) convergence is not the subject of the
theoretical investigations. The subject is a probabilistic analysis of the random
variable corresponding to the number of steps necessary to obtain a predefined
reduction of the approximation error. For such an analysis to make sense, the
class of objective functions covered by the analysis must necessarily be rather
restricted and simple. This paper provides evidence by experimental and statis-
tical evaluation that a theoretical analysis for the simplified algorithm does make
sense to yield more insight into CSA, the step-size control within the CMA-ES.

In a sense, our approach can be seen as algorithm re-engineering, a viewpoint
which is to our knowledge uncommon in the field of metaheuristics. Therefore,
we also strive for making a methodological contribution that will hopefully in-
spires other researchers to follow a similar path. To this end, it is not necessary
to be familiar with the latest scientific work on metaheuristics to understand
the concepts applied herein. It is one of the intrinsic properties of stochastic
algorithms in general that even simple methods may display surprising behav-
iors that are not at all easy to understand and analyze. We explicitly focus on
practically relevant dimensions. As it may be debatable what relevant is, we give
a 3-fold categorization used in the following: Problems with up to 7 dimensions
are seen as small, whereas medium sized ones from 8 to 63 dimensions are to
our knowledge of the highest practical importance. Problems with 64 dimensions
and beyond are termed large.

In the following section the original CSA is described in detail. The two new
simplified CSA-derivatives are presented in Section 3, and their technical details
and differences as well as some related work are discussed in Section 4. Further-
more, a detailed outline of a theoretical runtime analysis is given. The experi-
mental comparison (including statistical evaluation) of the three CSA-variants
is presented in Section 5. Finally, we conclude in Section 6.

2 Cumulative Step-Size Adaptation (CSA)

The CMA-ES of Hansen and Ostermeier [1] is regarded as one of the most effi-
cient modern stochastic direct-search methods for numerical black-box optimiza-
tion, cf. the list of over 100 references to applications of CMA-ES compiled by
Hansen [2]. Originally, CSA was designed for so-called (1,λ) Evolution Strate-
gies, in which 1 candidate solution is iteratively evolved. In each iteration, λ
new search points are sampled, each independently in the same way, namely by
adding a zero-mean multivariate normal distribution to the current candidate



Empirical Investigation of Simplified Step-Size Control 265

solution. When CMA is not used, like here, each of the λ samples is generated
by independently adding a zero-mean normal distribution with variance σ2 to
each of its n components. The best of the λ samples becomes the next candidate
solution—irrespective of whether this best of λ amounts to an improvement or
not (so-called comma selection; CSA does not work well for so-called elitist se-
lection where the best sample becomes the next candidate solution only if it is at
least as good as the current one). The idea behind CSA is as follows: Consecutive
steps of an iterative direct-search method should be orthogonal. Therefore, one
may recall that steps of steepest descent (a gradient method) with perfect line
search (i.e., the truly best point on the line in gradient direction is chosen) are
indeed orthogonal when a positive definite quadratic form is minimized. Within
CSA the observation of mainly positively [negatively] correlated steps is taken as
an indicator that the step-size is too small [resp. too large]. As a consequence, the
standard deviation σ of the multivariate normal distribution is increased [resp.
decreased]. Since the steps’ directions are random, considering just the last two
steps does not enable a smooth σ-adaptation because of the large variation of the
random angle between two steps. Thus, in each iteration the so-called evolution
path is considered, namely its length is compared with the length that would
be expected when the steps were orthogonal. Essentially, the evolution path is
a recent part of the trajectory of candidate solutions. Considering the complete
trajectory is not the most appropriate choice, though. Rather, a certain amount
of the recent history of the search is considered. In the original CSA as proposed
by Hansen and Ostermeier, σ is adapted continuously, i.e. after each iteration.
The deterministic update of the evolution path p ∈ Rn after the ith iteration
works as follows:

p[i+1] := (1 − cσ) · p[i] +
√

cσ · (2− cσ) ·m[i]/σ[i] (1)

where m[i] ∈ Rn denotes the displacement (vector) of the ith step, and the fixed
parameter cσ ∈ (0, 1) determines the weighting between the recent history of
the optimization and its past within the evolution path. We use cσ := 1/

√
n

as suggested by Hansen and Ostermeier [1]. Note that m[i] is one of λ vectors
each of which was independently chosen according to a zero-mean multivariate
normal distribution with standard deviation σ[i]. The length of such a vector
follows a scaled (by σ[i]) χ-distribution. Initially, p[0] is chosen as the all-zero
vector. The σ-update is done deterministically as follows:

σ[i+1] := σ[i] · exp
(

cσ

dσ
·
( |p[i+1]|

χ̄
− 1

))
(2)

where the fixed parameter dσ is called damping factor, and χ̄ denotes the ex-
pectation of the χ-distribution. Note that σ is kept unchanged if the length of
the evolution path equals χ̄. We used dσ := 0.5 because this leads to a better
performance than dσ ∈ {0.25, 1} for the considered function scenario. Naturally,
there is interdependence between dσ and cσ, and moreover, an optimal choice
depends (among others) on the function to be optimized, of course.



266 J. Jägersküpper and M. Preuss

3 Two Simplified CSA-Derivatives

In this section we introduce two simplifications of the original CSA, created by
subsequently departing further from the defining Equations (1) and (2). The first
simplification (common to both CSA-derivatives) will be to partition the course
of the optimization into phases of a fixed length in which σ is not changed. Such
a partitioning of the process has turned out useful in former theoretical analyses,
cf. [3,4] for instance. Thus, both variants use phases of a fixed length, after each
of which σ is adapted—solely depending on what happened during that phase,
respectively. Therefore, recall that cσ = 1/

√
n in the path update, cf. Eqn. (1).

Since (1 − 1/
√

n)i = 0.5 for i � √n · ln 2 (as n grows), the half-live of a step
within the evolution path is roughly 0.5

√
n iterations for small dimensions and

roughly 0.7
√

n for large n. For this reason we choose the phase length k as �√n �
a priori for the simplified versions to be described in the following. The second
simplification to be introduced is as follows: Rather than comparing the length of
the displacement of a phase with the expected length that would be observed if
the steps in the phase were completely orthogonal, the actual correlations of the
steps of a phase in terms of orthogonality are considered directly and aggregated
into a criterion that we call correlation balance.

pCSA. The “p” stands for phased. The run of the ES is partitioned into phases
lasting k := �√n� steps, respectively. After each phase, the vector correspond-
ing to the total movement (in the search space) in this phase is considered. The
length of this displacement is compared to � :=

√
k · σ · χ̄, where χ̄ is the expec-

tation of the χ-distribution with n degrees of freedom. Note that � equals the
length of the diagonal of a k-dimensional cube with edges of length σ · χ̄, and
that σ · χ̄ equals the expected step-length in the phase. Thus, if all k steps of a
phase had the expected length, and if they were completely orthogonal, then the
length of the displacement vector in such a phase would just equal �. Depending
on whether the displacement’s actual length is larger [or smaller] than �, σ is
considered as too small (because of positive correlation) [resp. as too large (be-
cause of negative correlation)]. Then σ is scaled up [resp. down] by a predefined
scaling factor larger than one [resp. by the reciprocal of this factor].

CBA. “CBA” stands for correlation-balance adaptation. The optimization is
again partitioned into phases each of which lasts k := �√n� steps. After each
phase, the k vectors that correspond to the k movements in the phase are con-
sidered. For each pair of these k vectors the correlation is calculated, so that we
obtain

(
k
2

)
= k(k − 1)/2 correlation values. If the majority of these values are

positive [negative], then the σ used in the respective phase is considered as too
small [resp. as too large]. Hence, σ is scaled up [resp. down] after the phase by
some predefined factor larger than one [resp. by the reciprocal of this factor].

4 Related Work, Discussion, and a View to Theory

Evolutionary algorithms for numerical optimization usually try to learn good
step-sizes, which may be implemented by self-adaptation or success-based rules,



Empirical Investigation of Simplified Step-Size Control 267

the most prominent of which may be the 1/5-rule to increase [decrease] step sizes
if more [less] than 1/5 of the samples result in an improvement. This simple deter-
ministic adaptation mechanism, which is due to Rechenberg [5] and Schwefel [6],
has already been the subject of a probabilistic analysis of the (random) number
of steps necessary to reduce the approximation error in the search space. The first
results from this viewpoint of analyzing ES like “usual” randomized algorithms
were obtained in [7] for the simplest quadratic function, namely x �→ ∑n

i=1 x2
i ,

which is commonly called Sphere. This analysis has been extended in [8] to
quadratic forms with bounded condition number as well as to a certain class
of ill-conditioned quadratic forms (parameterized in the dimensionality of the
search space) for which the condition number grows as the dimensionality of the
search space increases. The main result of the latter work is that the runtime
(to halve the approximation error) increases proportionally with the condition
number. This drawback has already been noticed before in practice, of course. As
a remedy, the CMA was proposed which, in some sense, learns and continuously
adjusts a preconditioner by adapting the covariance matrix of the multivariate
normal distribution used to sample new candidate solutions. As noted above,
within the CMA-ES the CSA is applied for step-size control, which is neither
a self-adaptive mechanism nor based on a success rule. In the present work, we
exclusively deal with this CSA mechanism. Therefore, we consider a spherically
symmetric problem, so that the CMA mechanism is dispensable. We demand
that the simplified CSA-derivatives perform sufficiently well on this elementary
type of problem at least. If they did not, they would be unable to ensure local
convergence at a reasonable speed, so that efforts on a theoretical analysis would
seem questionable.

CSA, pCSA, and CBA are basically (1, λ) ES, and results obtained following a
dynamical-system approach indicate that the expected spatial gain towards the
optimum in an iteration is bounded above by O(ln(λ) ·d/n), where d denotes the
distance from the optimum, cf. [9, Sec. 3.2.3, Eqn. (3.115)]. As this result was
obtained using simplifying equations to describe the dynamical system induced
by the ES, however, it cannot be used as a basis for proving theorems on the
runtime of (1, λ)ES. Nevertheless, this is a strong indicator that a (1, λ) ES con-
verges, if at all, at best linearly at an expected rate 1− O(ln(λ)/n). From this,
we can conjecture that the expected number of iterations necessary to halve the
approximation error is bounded below by Ω(n/ ln λ). This lower bound has in
fact been rigorously proved in [10, Thm. 1] for a framework of iterative methods
that covers pCSA as well as CBA. (Unfortunately, CSA is not covered since the
factor for the σ-update in Eqn. (2) depends on the course of the optimization,
namely on the length of the evolution path.) Actually, it is proved that less than
0.64n/ ln(1+3λ) iterations suffice to halve the approximation error only with an
exponentially small probability e−Ω(n) (implying the Ω(n/ ln λ)-bound on the
expected number of steps). Moreover, [10, Thm. 4] provides a rigorous proof
that a (1, λ) ES using a simple σ-adaptation mechanism (based on the relative
frequency of improving steps) to minimize Sphere needs with very high prob-
ability at most O(n/

√
ln λ) iterations to halve the approximation error. This



268 J. Jägersküpper and M. Preuss

upper bound is larger than the lower bound by a factor of order
√

ln λ, which
is actually due to the σ-adaptation: It adapts σ such that it is of order Θ(d/n),
whereas σ = Θ(

√
ln λ · d/n) seems necessary. For the original CSA minimizing

Sphere, a result obtained in [11, Eqn. (20)] (using the dynamical-system ap-
proach again) indicates that the expected spatial gain in an iteration tends to
(
√

2− 1) · (c1,λ)2 · d/n = Θ(ln(λ) · d/n) as the dimensionality n goes to infinity,
where c1,λ = Θ(

√
ln λ) is the so-called (1,λ)-progress coefficient (obtained for

optimal σ, cf. [9, Eqn. (3.114)]); σ is reported to tend to
√

2 · c1,λ · d/n as the
dimensionality n goes to infinity, which is indeed Θ(

√
ln λ · d/n) [11, Eqn. (19)].

So, the long-term objective is a probabilistic analysis which rigorously proves
that the (1, λ) ES using CSA needs only O(n/ ln λ) iterations to halve the ap-
proximation error (for Sphere) with very high probability, which is optimal
w.r.t. the asymptotic in n and λ. As this seems intractable at present because of
the involved stochastic dependencies due to the evolution path, the intermediate
objective may be to prove the O(n/ ln λ)-bound for CBA. This makes (the most)
sense if CBA behaves sufficiently similarly to the original CSA, of course. And
this is what we investigate in the present paper. (If CBA performed much worse
than CSA, however, we would have to reconsider whether it makes sense to try
to prove the O(n/ ln λ)-bound for CBA as it might just not adapt σ such that it
is Θ(

√
ln λ · d/n).) The partition of the optimization process into phases in each

of which σ is not changed, and after each of which σ is deterministically updated
solely depending on what happened in that phase, enables the following line of
reasoning in a formal proof:

If σ is too small at the beginning of a phase, i.e., σ < c1 ·
√

ln λ · d/n for an
appropriately chosen constant c1 > 0, then it is up-scaled after the phase with
very high probability (w.v.h.p.). If, however, σ is too large at the beginning of a
phase, i.e., σ > c2 ·

√
ln λ ·d/n for another appropriately chosen constant c2 > c1,

then it is down-scaled after the phase w.v.h.p. With these two lemmas, we can
obtain that σ = Θ(

√
ln λ ·d/n) for any polynomial number of steps w.v.h.p. once

σ is of that order. Subsequently, we show that, if σ = Θ(
√

ln λ · d/n) in a step,
then the actual spatial gain towards the optimum in this step is Ω(ln λ · d/n)
with probability Ω(1); this can be proved analogously to [10, Sec. 5]. Thus,
given that at the beginning of a phase (with

√
n steps) σ = Θ(

√
ln λ · d/n),

the expected number of steps in the phase each of which actually reduces the
approximation error by at least an Ω(ln λ/n)-fraction is Ω(

√
n). Using Chernoff’s

bound, in a phase there are Ω(
√

n) such steps w.v.h.p., so that a phase reduces
the approximation error at least by an Ω(ln λ/

√
n)-fraction w.v.h.p. Finally,

this implies that O(
√

n/ ln λ) phases, i.e. O(n/ ln λ) steps, suffice to reduce the
approximation error by a constant fraction w.v.h.p. This directly implies the
O(n/ ln λ)-bound on the number of iterations to halve the approximation error.

The proof of that CBA ensures σ = Θ(
√

ln λ·d/n) (w.v.h.p. for any polynomial
number of steps) remains. Therefore, note that the probability that two steps
are exactly orthogonal is zero (because of the random directions). Thus, in a
phase of k steps the number of positively correlated pairs of steps equals (with
probability one)

(
k
2

)
minus the number of negatively correlated pairs. For a



Empirical Investigation of Simplified Step-Size Control 269

theoretical analysis of CBA, for each phase
(
k
2

)
0-1-variables can be defined.

Each of these indicator variables tells us whether the respective pair of steps is
positively correlated (“1”) or not (“0”). (Recall that in CBA the decision whether
to up- or down-scale σ is based on whether the sum of these indicator variables
is larger than

(
k
2

)
/2 or smaller.) There are strong bounds on the deviation of

the actual sum of 0-1-variables from the expected sum, in particular when the
variables are independent—which is not the case for CBA. This can be overcome
by stochastic dominance arguments, so that we deal with independent Bernoulli
trials, rather than with dependent Poisson trials. We merely need to know how
the success probability of a Bernoulli trial depends on σ.

All in all, CBA is a candidate for a theoretical runtime analysis of an ES
using this simplified CSA-variant. It was an open question, whether CBA works
at all and, if so, how well it performs compared to the original CSA (and pCSA).
Thus, we decided for an experimental comparison with statistical evaluation.

5 Experimental Investigation of the CSA-Variants

Since the underlying assumption in theory on black-box optimization is that
the evaluation of the function f to be optimized is by far the most expensive
operation, the number of f -evaluations (λ times the iterations) is the sole per-
formance measure in the following comparison of the three CSA-variants. To
find out the potentials of the σ-adaptation mechanisms described above, we fo-
cus on the simplest unimodal function scenario, namely the minimization of the
distance from a fixed point. This is equivalent (here) to the minimization of a
perfectly (pre)conditioned positive definite quadratic form. One of these func-
tions, namely x �→∑n

i=1 xi
2, is the commonly investigated Sphere (level sets of

such functions form hyper-spheres). We decided for a (1,5) Evolution Strategy,
i.e. λ := 5. The reason for this choice is that, according to Beyer [9, p. 73], five
samples are most “effective” for comma selection, i.e. allow maximum progress
per function evaluation. Thus, differences in the adaptations’ abilities (to choose
σ as close to optimal as possible) should be most noticeable for this choice.

Experiment: Do the CSA-derivatives perform similar to the original CSA?

Pre-experimental planning. In addition to the adaptation rule and the phase
length, the scaling factor by which σ is increased or decreased after a phase had
to be fixed for pCSA and CBA. For both CSA-derivatives, the σ-scaling factor
was determined by parameter scans, cf. Figure 1, whereas the phase length k
was chosen a priori as �√n � (for the reason given above). Interestingly, the
parameter scans show that the σ-scaling factor should be chosen identically as
1 + 1/n1/4 for pCSA as well as for CBA.

Task. The hypothesis is that the three CSA-variants perform equally well in
terms of number of iterations. As the data can not be supposed to be normally
distributed, we compare two variants, namely their runtimes (i.e. number of
iterations), by the Wilcoxon rank-sum test (as implemented by “wilcox.test” in
“R”), where a p-value of 0.05 or less indicates a significant difference.



270 J. Jägersküpper and M. Preuss

log(dim, 2)

si
gm

a_
up

1.5

2.0

2.5

2 4 6 8 10

25

27

30
31

33

33

33

405060
80 30

40

50

60

70

80

90

100

log(dim, 2)

si
gm

a_
up

1.5

2.0

2.5

2 4 6 8 10

27

30

33
35

38

45

60

80100
30

40

50

60

70

80

90

100

Fig. 1. Parameter scan of σ-scaling factors for pCSA (left) and CBA (right) over 2
to 1024 dimensions. The shading corresponds to the median number of steps divided
by dimensionality; 101 runs in the same setting as the final experiment. The solid line
represents 1 + 1/n1/4, whereas the thin lines show the contour.

Setup. The initial distance from the optimum is 220 and the stopping criterion
is a distance of less than 1 from the optimum, i.e., we measure the number of
iterations to halve the approximation error in the search space 20 times. The
initial σ is set to 220 · 1.225/n in each case. We investigate ten search-space
dimensions, namely n = 2i for i ∈ {1, 2, . . . , 10}. Each of the three algorithms is
run 1001 times.

Results. Figure 2 shows median runtimes and hinges for the three algorithms.
Additionally, the σ-adaptation within typical runs (i.e. median runtime) is shown
in Figure 3. Note that σ is considered well-chosen (after normalization w.r.t. di-
mension and distance from the optimum) when it lies between the two horizontal
lines, which correspond to a normalized σ of 1.0 (blue) resp. 2.0 (red).

Observations. Independently of the search-space dimension, i.e. for all ten
dimensions investigated, namely dimension n = 2i for i ∈ {1, . . . , 10}, we find:

1. The original CSA performs significantly better than pCSA and CBA.
2. Moreover, CBA performs significantly worse than pCSA.

As can be seen in Figure 2, transferring the continuous CSA-mechanism to a
phased one, namely to pCSA, leads to an increase in the runtimes by clearly
less than 50% in all ten dimensions. Concerning the runtimes at least, pCSA is
closer to the original CSA than CBA.

Discussion. Despite the reported findings, we attest that CBA does not fail,
it ensures a reliable σ-adaptation—it is merely worse. It particular, we are in-
terested in how much worse CBA is compared to the original CSA. Actually,
in 2-dimensional search space, the ratio between the medians of the runtimes of



Empirical Investigation of Simplified Step-Size Control 271

1 1 1 1 1 1 1 1 1 1

2 4 6 8 10

20
40

60
80

10
0

log2(dim)

up
pe

r/l
ow

er
 h

in
ge

s,
 m

ed
ia

n=
2

2 2 2 2 2 2 2 2 2 2

3
3

3 3 3 3 3 3 3 31 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3
3

3 3 3 3 3 3 3 3

1

1

1
1 1

1
1 1 1 1

2

2

2
2 2

2
2 2 2 2

3

3

3
3

3
3

3 3 3
3

1
1 1 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 2 2

3
3 3 3

3 3
3 3 3 3

csa
cba2
pcsa

1

1

1
1 1

1
1 1 1 1

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

3.
0

log2(dim)

sp
ee

du
p 

cb
a2

/p
cs

a 
vs

. c
sa

2

2

2
2 2

2
2 2 2 2

3

3

3
3 3

3
3 3 3 3

1

1

1
1 1

1
1 1 1 1

2

2

2
2 2

2
2 2 2 2

3

3

3
3 3

3
3 3 3 3

1
1 1 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 2 2

3 3
3 3 3 3 3 3 3 3

cba2 vs. csa
pcsa vs. csa

Fig. 2. Left: Number of steps divided by dimensionality for CBA, pCSA, CSA, where
(1) lower hinge, (2) median, (3) upper hinge of 1001 runs, respectively. Right: Ratio
between (1) lower hinge, (2) median, (3) upper hinge of the 1001 runtimes of CBA vs.
CSA and pCSA vs. CSA.

CBA to CSA equals 3. And in fact, when we multiply each of the 1001 runtimes
of CSA by 3, then the Wilcoxon test does not tell us a significant difference
between CSA and CBA (p-value 0.85). Thus, we may conclude that CBA is
slower than CSA by roughly a factor of 3. However, “roughly” may be consid-
ered too vague. Rather, a confidence interval should be given: For the factor
2.91 as well as for the factor 3.1, the p-value drops below 2.5%, respectively.
Thus, the 95%-confidence interval for the factor by which CBA is slower than
CSA for the 2-dimensional problem is (at most) [2.91, 3.1], which has a spread of
only 3.1/2.91 < 1.066. The respective confidence intervals for all ten dimensions
investigated are given in Table 1. As one might expect, they are pretty much
concentrated around the ratio of the median runtimes, respectively.

Concerning the performance differences observed, we think that CBA—as
the only variant for which a theoretical analysis seems feasible at present—still
works sufficiently similar to CSA to legitimate such analysis, at least for the
practically relevant and large dimensions: For eight and more dimensions the
number of function evaluations (five times the iterations) that CBA spends is
larger than for CSA by (at most) 67%, decreasing for larger dimensions down to
(at most) 13.4% in 1024 dimensions.

Clearly, the differences in the runtimes are due to differences in the ability to
adapt σ. Therefore, let σ̂ := σ · n/d denote the normalized σ (w.r.t. dimension-
ality and distance from the optimum point). Note that, for the simple function

Table 1. Confidence intervals for the ratios between the runtimes of CBA and CSA

CBA vs. CSA 2D 4D 8D 16D 32D 64D 128D 256D 512D 1024D
conf. interval 2.91– 2.25– 1.61– 1.49– 1.46– 1.33– 1.25– 1.219– 1.171– 1.127–
runtime ratio 3.10 2.37 1.67 1.54 1.50 1.36 1.27 1.226 1.182 1.134

spread <6.6% <5.4% <3.8% <3.4% <2.8% <2.2% 1.6% <0.6% <1% <0.7%



272 J. Jägersküpper and M. Preuss

steps

ld
(s

ig
m

a*
di

m
en

si
on

/d
is

ta
nc

e)

−2
0
2
4

0 50 100 150

2
CBA2

−2
0
2
4

2
PCSA

−2
0
2
4

2
CSA

steps

ld
(s

ig
m

a*
di

m
en

si
on

/d
is

ta
nc

e)

−1
0
1
2

0 100 200 300 400 500

16
CBA2

−1
0
1
2

16
PCSA

−1
0
1
2

16
CSA

steps

ld
(s

ig
m

a*
di

m
en

si
on

/d
is

ta
nc

e)

−1
0
1

0 5000 10000 15000 20000 25000

1024
CBA2

−1
0
1

1024
PCSA

−1
0
1

1024
CSA

Fig. 3. Normalized σ (w.r.t. dimensionality and distance from optimum) in a typical
run (i.e. median runtime) of each variant on 2-/16-/1024-dimensional Sphere

scenario considered, for each dimension there is a unique value of σ̂ resulting in
maximum expected reduction of the approximation error per iteration (which is
not known exactly, unfortunately). Figure 3 shows the course of σ̂ in log2-scale
for each of the three CSA-variants for typical runs in 2-/16-/1024-dimensional
space, respectively, where “typical” means median runtime. In Table 2 the mean



Empirical Investigation of Simplified Step-Size Control 273

Table 2. Means and standard deviations of log2(σ̂) in the typical runs shown in Fig-
ure 3. Additionally, the log-mean σ̂, namely 2^mean(log2 σ̂), is given.

mean±std of log2(σ̂) 2D 16D 1024D
CSA 0.914 ± 1.183, 1.884 0.615 ± 0.454, 1.370 0.492 ± 0.171, 1.406
pCSA 2.012 ± 0.947, 4.033 0.642 ± 0.617, 1.560 0.408 ± 0.417, 1.327
CBA 1.699 ± 0.923, 3.247 0.734 ± 0.649, 1.663 0.236 ± 0.549, 1.178

and the standard deviation of log2(σ
∗) for these runs are given, as well as the

log-mean of σ̂, which we refer to as the average σ̂.
For the 16- and 1024-dimensional problems, the original CSA adapts σ much

more smoothly than its two derivatives, which is apparently due to its continuous
σ-adaptation (most obvious in 1024 dimensions). For the 2-dimensional problem,
however, CSA shows a larger standard deviation from the average σ̂. Taking CSA
as a reference, pCSA as well as CBA adapt σ such that it is too large on average
in 16 dimensions, whereas in 1024 dimensions they adapt σ such that it is too
small on average—besides the larger fluctuations. For 16 dimensions, which we
consider practically relevant, as well as for 1024 dimensions, the average σ̂ of
pCSA lies right between the ones of CSA and CBA, respectively, which fits well
with the differences in the runtimes. For the 2-dimensional problem, however,
correlations between the average σ̂ and the runtimes can hardly be found, which
becomes especially clear for pCSA. In two dimensions the runs are actually quite
short and, in addition, the step-lengths can deviate strongly from the expectation
σ · χ̄, so that the data might just be too noisy. Alternatively, there might be a
completely different reason for the good performance of pCSA in 2-dimensional
space, which would be very interesting to reveal.

6 Conclusions and Outlook

The main aim of this work has been to develop an algorithm for step-size control
in black-box optimization which closely resembles the original CSA mechanism,
but which is sufficiently simple to enable a theoretical/probabilistic analysis.
From the experimental results obtained and from the construction details of the
two proposed CSA-variants we conclude that CBA does fulfill both criteria.

Additionally, some interesting facts have been unveiled. One of these affects
the change from continuous σ-update to phases in which σ is kept constant.
Contrary to what we expected, this modification does not explain the large
runtime differences in small dimensions. Those may rather be due to the large
fluctuations observed in the step-sizes adjusted by the two CSA-derivatives; CSA
step-size curves are obviously much smoother in higher dimensions. Furthermore,
it has been found that an appropriate σ-scaling factor for both CSA-derivatives
seems to follow a double square root (namely 1 + 1/n1/4) rather than a single
square root function (like 1 + 1/

√
n) as one might expect.

Currently, we work on the details of a theoretical/probabilistic analysis of
CBA following the approach outlined in Section 4. Furthermore, we are going



274 J. Jägersküpper and M. Preuss

to experimentally review the performance of the two CSA-derivatives on more
complex—actually, less trivial—functions in comparison to the original CSA
(also and in a particular in combination with CMA), but also to classical direct-
search methods like the ones reviewed in [12].

Acknowledgment. We thank Thomas Stützle for helping us improve the paper.

References

1. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in
evolution strategies: The covariance matrix adaptation. In: Proc. IEEE Int’l Con-
ference on Evolutionary Computation (ICEC), pp. 312–317 (1996)

2. Hansen, N.: List of references to various applications of CMA-ES (2008),
http://www.bionik.tu-berlin.de/user/niko/cmaapplications.pdf

3. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) Evolutionary
Algorithm. Theoretical Computer Science 276, 51–82 (2002)

4. Jägersküpper, J.: Algorithmic analysis of a basic evolutionary algorithm for con-
tinuous optimization. Theoretical Computer Science 379, 329–347 (2007)

5. Rechenberg, I.: Cybernetic solution path of an experimental problem. Royal Air-
craft Establishment (1965)

6. Schwefel, H.-P.: Numerical Optimization of Computer Models. Wiley, New York
(1981)

7. Jägersküpper, J.: Analysis of a simple evolutionary algorithm for minimization in
Euclidean spaces. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) ICALP 2003. LNCS, vol. 2719, pp. 1068–1079. Springer, Heidelberg (2003)

8. Jägersküpper, J.: How the (1+1) ES using isotropic mutations minimizes positive
definite quadratic forms. Theoretical Computer Science 361, 38–56 (2005)

9. Beyer, H.-G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001)
10. Jägersküpper, J.: Probabilistic runtime analysis of (1+, λ) ES using isotropic muta-

tions. In: Proc. 2006 Genetic and Evolutionary Computation Conference (GECCo),
pp. 461–468. ACM Press, New York (2006)

11. Beyer, H.-G., Arnold, D.V.: Performance analysis of evolutionary optimization
with cumulative step-length adaptation. IEEE Transactions on Automatic Control,
617–622 (2004)

12. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: New per-
spectives on some classical and modern methods. SIAM Review 45, 385–482 (2004)

http://www.bionik.tu-berlin.de/user/niko/cmaapplications.pdf


Reconstructing Phylogenetic Networks with One

Recombination

Ernst Althaus and Rouven Naujoks

Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

{althaus, naujoks}@mpi-inf.mpg.de

Abstract. In this paper we propose a new method for reconstructing
phylogenetic networks under the assumption that recombination events
have occurred rarely. For a fixed number of recombinations, we give a
generalization of the maximum parsimony criterion. Furthermore, we
describe an exact algorithm for one recombination event and show that in
this case our method is not only able to identify the recombined sequence
but also to reliably reconstruct the complete evolutionary history.

1 Introduction

A fundamental class of problems in Computational Biology is the reconstruction
of phylogenetic trees which reads as follows: Given a set of species one wants
to determine their ancestral relationship along a tree. In order to build such a
tree we compare specific features of the species under the natural assumption
that species with similar features are closely related. In modern phylogeny these
features are defined by DNA or protein sequences.

In the presence of recombination events, trees are not sufficient to describe
the ancestral relationship. In our setting, recombinations are evolutionary
events that cause horizontal transfer of genetic data. There has been active
research to automatically compute phylogenetic networks from sequence data,
see e.g. [8,7,13,5,4,6,18,9]. In Section 3, we discuss in detail existing approaches
and relate our work to them. For more information on the reconstruction of phy-
logenetic networks, we refer to [10,15]. For a list of available tools see [19] or [20].

We assume that we are given a set N of aligned sequences, i.e. a set of se-
quences with equal number of characters in each of them. Our aim is to con-
struct an optimal ancestral relationship for a given number of recombination
events under a generalization of the maximum parsimony criterion based on
Ockham’s razor principle. It slightly differs from those in [8,7,13,5,4]. We denote
by phylogenetic network with k recombinations an ancestral relationship with k
recombination events. Following Ockham’s razor principle a phylogenetic net-
work for small k with minimal cost should be a correct reconstruction of the
original phylogenetic network. We propose to use our method when recombina-
tion events are assumed to happen only occasionally.

In Section 2, we describe an exact algorithm that computes the optimal
phylogenetic network with one recombination and show in Section 5 that the

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 275–288, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



276 E. Althaus and R. Naujoks

algorithm computes the correct phylogenetic network even for sequences with
(still reasonable) long evolutionary distances. Our experiments show that we
can compute the correct phylogenetic network for almost the same data sets
where the maximum parsimony criterion is able to reconstruct the correct phy-
logenetic tree when it is given the subsequences that correspond to a specific
tree in the evolution.

2 Model

A phylogenetic tree for a given set of species N is a binary tree whose leaves are
the set N . In the literature rooted and unrooted trees are considered. Because
we consider in the following rooted trees we have a single node with no incoming
edges and all other nodes having exactly one incoming edge. Every inner node,
i.e. a node that is not contained in N , has exactly two outgoing edges.

In a phylogenetic network, we allow nodes to have indegree two. A node with
indegree two has two ancestors and we refer to these nodes as recombination
nodes. In order to have a valid ancestral relationship, we require the network to
be acyclic. Note that this definition is equivalent to those in [8,5,4]. We denote
by k-recombination topology for N a phylogenetic network for N with exactly k
recombination nodes.

We propose to compute all optimal k-recombination topologies for N and to
predict the phylogenetic network by (either manually or automatically) inspect-
ing these topologies. In order to be able to speak of an optimal topology, we
introduce a method for evaluating a given topology.

In the case of phylogenetic trees, the two probably most favorite and promi-
nent versions are the maximum likelihood and the maximum parsimony methods.
In the maximum parsimony problem we find sequences for the inner nodes of
the tree such that the number of changes along the edges of the tree are min-
imized. These sequences can be computed with Fitch’s algorithm [3] which we
will discuss in more detail later. We extend the parsimony criterion by defining
a cost for recombination events, referred to as the parsimony score.

Again, we have to find sequences for the inner nodes that minimize the cost
of the k-recombination topology. Assume, the sequences for the inner nodes are
fixed. Our cost function is easiest described by charging the cost to the nodes.
The cost of the root is 0. The cost of a non-recombination node u is the number
of changes between the label of u and the label of the ancestor of u. This is
the same cost as it was assigned to the edge from the ancestor of u to u in
the maximum parsimony model and is also referred to as the Hamming distance
between the two sequences. The cost of a recombination node u is defined as
follows. Roughly speaking, the recombinant sequence can have the genetic code
of either of its ancestors, paying a certain cost for changing the ancestor. This
cost reflects the fact that recombination does not happen by randomly choosing
genetic code from the sequences, but it is assumed that there are only a few
jumps, where the source for the recombinant sequence changes. Formally the
cost of a node u is defined as follows: Let s be the sequence assigned to u, and



Reconstructing Phylogenetic Networks with One Recombination 277

let t1 and t2 be the sequences of the two ancestors of u and let n be number of
characters in the sequences. The cost of u is then

min
d∈{0,1}n

(
n∑

i=1

(di‖si, t
1
i ‖+ (1− di)‖si, t

2
i ‖) + α|{1 ≤ i < n | di �= di+1}|

)

where ‖ · ‖ denotes the Hamming distance. The same definition of the cost for a
recombination was used by Maydt and Lengauer [11], where the authors try to
explain a given sequence by recombinations of other input sequences. Note that
the cost of a non-recombination node is exactly the cost of the in-going edge in
the maximum parsimony model. Thus we will sometimes refer to the cost of an
edge if it is clear that the corresponding node is a non-recombination node. The
cost of a k-recombination network is then just the sum of the costs of its nodes.

Although maximum likelihood methods are sometimes assumed to perform
better than parsimony methods, the parsimony method is often used in practice
as the optimal phylogenetic tree can be computed much more efficiently. Our
generalization of the method to phylogenetic networks is a straight forward gen-
eralization to the case of phylogenetic networks. The reconstructed network is
exactly the network that explains the data with the smallest possible number
of mutations and jumps, where the cost of a jump is scaled by α. To the best
of our knowledge, our algorithm is the first that optimizes over all phylogenetic
networks to make its prediction.

In Section 4, we show that the cost of a 1-recombination topology as well
as sequences for the inner nodes can be computed efficiently. As computing the
tree with maximum parsimony is already NP-hard, computing the optimal k-
recombination topology is NP-hard for all k, as setting α to infinity will lead
to the fact that the cost of the recombination node will become the Hamming
distance to one of its ancestors. Nevertheless, our algorithm optimizes over all
1-recombination topologies and all sequences of the inner nodes to find our re-
construction (see Section 4).

3 Related Work

There are many tools for detecting recombination events in sequence data.
Posada et al. [15] divide these tools into 5 classes: similarity methods, distance
methods, phylogenetic methods, compatibility methods, substitution distribu-
tion methods. Most methods only try to detect the existence of a recombination
event. Moreover it is frequently required that the recombinant sequence is con-
tained in the data set. The only exception are phylogenetic methods. Most of
these methods detect a recombination by inferring different phylogenetic trees
in different parts of the data, i.e. they analyze the data by a sliding window
approach obtaining different trees and by trying to combine these trees to a
prediction. The main drawback is that it is not possible to restrict the different
trees such that the trees differ only by a small number of recombination events.
A list of available tools can be found at [19].



278 E. Althaus and R. Naujoks

Posada et al. [15] conclude that most methods have trouble detecting rare
recombinational events, especially when sequence divergence is low, i.e. exactly
the case where our algorithm is aimed for.

Huson and Kloepper [6], Wang et al. [18], Gusfield et al. [4] and Kececioglu
and Gusfield [9] use an extension of the maximum parsimony criterion origi-
nally proposed by Hein [5]. The essential difference is that they allow only one
jump when constructing a sequence from its two ancestors. If there are several
splits, one has to assign several recombination events to a node. Our algorithm
can easily be adopted to find the optimal phylogenetic network in this model.
Their algorithm does not compute an optimal phylogenetic network in our sense,
but it explains the data under a minimal number of recombinations under the
infinite state assumption, i.e. there is no back-exchange of a genetic code. As
back-exchange is assumed to happen in real evolution, their algorithm typically
overestimates the number of recombination events.

The extension of the maximum parsimony criterion proposed Jin et al. [8,7,13]
is basically our model with α = 0. As shown in our experiments in Section 5,
the prediction of the topology is much less accurate for this model. Furthermore,
their algorithm does not compute an optimal phylogenetic network, but it starts
with a tree, only adding edges to a tree. Hence this approach can only work if
the starting tree is contained in the phylogenetic network. As observed by Ruths
and Nakhleh [17], phylogenetic tree algorithms fail to reconstruct data when
recombination has occurred. Thus it is unclear how to obtain a phylogenetic
tree to start with.

Note that the maximum parsimony problem is equivalent to the Steiner min-
imum tree problem in Hamming metric. The most successful algorithm for solv-
ing the Steiner minimum tree (SMT ) problem in graphs is based (among other
techniques) on successfully pruning parts of the graph. All known techniques are
described in the PhD thesis of Polzin [14]. We will adopt some of these pruning
techniques for our algorithm.

4 The Algorithm

As noted before the k-Recombination Phylogeny Network (k-RPN) problem is
NP-hard. Thus, unless P = NP , there is no polynomial time algorithm for
solving it exactly. As in the case of the SMT-problem the k-RPN problem can be
solved for small input instances by enumerating the set of possible solutions and
by determining among them the one which minimizes the total network length. In
our algorithm we focus on the case where k = 1. We call the phylogeny network
spanning all sequences that are offsprings from the sequence that emerged from
this recombination event the recombinant. In the following we write N to denote
the set of terminals, i.e. the set of input sequences.

4.1 Preliminaries

Before we discuss the algorithm it is necessary to recall several things. For k = 0
the k-RPN problem becomes the so called parsimony problem in which one



Reconstructing Phylogenetic Networks with One Recombination 279

tries to seek the shortest (shortest in the sense of the Hamming metric) tree
connecting the input sequences N by allowing for an augmentation with addi-
tional sequences. That is the 0-RPN problem is exactly the so called Steiner
minimum tree problem in Hamming metric where the additional sequences are
called Steiner points. Without loss of generality one can assume that an optimal
SMT always corresponds to a binary tree T where the leaves are exactly the
terminals of the input set N and where the inner nodes are exactly the Steiner
points. We denote by span(T ) the set of terminals spanned by a topology T .
When we talk about the size of a topology we mean |span(T )|. In most cases T
is considered to be rooted by inserting an additional Steiner point r along some
edge in T and by choosing r to be the root of T . When we are not interested in
the labels of the inner nodes of a binary tree but only in its connectivity struc-
ture we talk about a topology T . A very important ingredient in this context
is Fitch’s algorithm (see [3]). It computes for a given topology T labels for all
inner nodes of T , such that the resulting tree has minimal length. When we talk
about the cost or length |T | of a topology T we mean the length of the resulting
tree after calling Fitch’s algorithm for T . The algorithm consists of two phases.
To discuss these phases we have to introduce the notion of a range sequence.
A range sequence is a sequence not consisting only of single characters but of
sets of characters from the input alphabet. For sake of simplicity we also call
the input sequences range sequences by considering a single character to be a
set of cardinality 1. Given a node n in a tree we write sn for the range sequence
associated with n. With “choosing a sequence from a range sequence” we mean
to extract a sequence such that each character is taken from a corresponding set
of the range sequence. In the first phase of Fitch’s algorithm ranges are assigned
in a bottom up manner to the inner nodes i of T . In the second phase it chooses
ranges from the sequences in the nodes of T in a top down fashion starting from
the root node r(T ) such that the length of the tree with this labeling is minimal.
The choice for the root range in the second phase does not change the length
of the resulting tree. Furthermore the range sequence of r(T ) is maximal that
is there is no other range that would minimize the tree length than the ones
extracted from this range sequence. Note that each inner node of T is the root
node of its subtree and thus the second phase could also be applied to any inner
node of T to determine the optimal length of its subtree. Fitch’s algorithm takes
O(|span(T )| · d) set operations where d is the length of an input sequence (all
of them are considered to be equally long). Since the alphabet size of the input
is usually a constant (for example in the case of DNA data this is 4) these set
operations take only O(1) time.

4.2 Evaluation of a Recombination Network

First we describe how we can compute the parsimony score of a recombination
network T . Recall that the cost ce of an edge e = (u, v) in the parsimony model
is the Hamming distance of the two sequences su, sv, i.e. ce =

∑dim
i=1 ‖si

u, si
v‖

where ‖si
u, si

v‖ is the cost considering only the i-th character in su and sv. That



280 E. Althaus and R. Naujoks

is, the cost function has the nice property that the cost of the characters in all
occurring sequences in the network can be considered independently.

Thus any recombination network T can be seen as an overlay of two trees T ′

and T ′′ that differ only in the Steiner points c′, c′′ over which the recombinant
TR is connected to rest of these trees (see Figure 1 for an example). Because
T ′ and T ′′ can be considered independently we can determine for c′ and c′′

range sequences with maximal Fitch-ranges i.e. we consider the trees T ′ and T ′′

as rooted at c′ respectively c′′. Connecting the recombinant TR with c′ and c′′

optimally can be done in O(d) time by the following simple dynamic program.
We call this operation the �-operator and denote by |�(su, sv, sr)| the cost of the
recombination event in which sequence sr was recombined out of the sequences
su and sv.

Here sr is the range sequence of r(R) after applying the first phase of
Fitch’s algorithm and let α be the cost of switching from one sequence to
other. Altogether the cost of the recombination network T and is then given
by |SMT(R)|+ |SMT(R)|+ |�(sc′ , sc′′ , sr)|.

Algorithm 1. �-operator: �(sc′ , sc′′ , sr)

OPT ′ := 0; OPT ′′ := 0
for d = 1 . . . dimension do

tent′ := 0; tent′′ := 0
if sd

c′ ∩ sd
r �= ∅ then

tent′ = min(OPT ′, OPT ′′ + α)
else

tent′ = min(OPT ′, OPT ′′ + α) + 1
end if
if sd

c′′ ∩ sd
r �= ∅ then

tent′′ = min(OPT ′ + α, OPT ′′)
else

tent′′ = min(OPT ′ + α, OPT ′′) + 1
end if
OPT ′ = tent′; OPT ′′ = tent′′

end for
return min(OPT ′, OPT ′′)

4.3 Enumeration Process

Before we discuss the enumeration process itself we observe that any recombi-
nation network RT is composed of two binary trees: TR corresponding to the
recombinant and T spanning all the leaves that are not spanned by TR. RT can
be seen as constructed from T and TR by connecting TR via the �-operator with
two splitted edges in T . Hence one can reduce the enumeration of recombination
networks to the enumeration of binary trees.

Enumerating all binary trees can be accomplished in several ways. For the
practical performance of the algorithm it is important to do this in such a way



Reconstructing Phylogenetic Networks with One Recombination 281

T ′′

TR

T ′

TR

T

⇔
c′′ c′

Fig. 1. A recombination network as an overlay of two binary trees

that the search space can strongly be cut. In Algorithm 2 we start with the set
X consisting only of the topologies of size 1 namely the terminals itself. We then
inductively construct all topologies of size k by combining the ones out of X
of size less than k. We do this until all topologies of size |N | − 1 are built. In
section 4.5 we will see why it is sufficient to enumerate only topologies up to a
size of |N | − 1.

Cutting down the search space works now as follows: In each step when a
topology T was built we run several pruning tests to decide whether an optimal
solution for the RPN-problem can contain T as a sub-topology without violating
optimality. In the following subsection we will discuss briefly some of these tests.
In the following Ti · Tj describes the topology that emerges when we connect
the trees Ti and Tj over their root nodes over a newly inserted root node. In
pseudo-code the enumeration part now reads as follows:

Algorithm 2. enumeration process

X := N
for i = 2 . . . |N | − 1 do

for all Tk, Tj ∈ X do
if span(Tk) ∩ span(Tl) = ∅ and
|span(Tk)|+ |span(Tl)| = i then
if ¬ prunable( Tk · Tl ) then

X = X ∪ {Tk · Tl}
end if

end if
end for

end for

4.4 Pruning the Search Space

Before we describe the pruning tests we have to recall several things. We denote
by bnsd(S) the so called bottleneck Steiner distance of a set S ⊆ N which is
defined to be the length of the longest edge in a minimum spanning tree of
S (short: MST(S)). It is a well known fact that no edge in SMT(S) can be
longer than bnsd(S). We call lbSMT(S) a lower bound on the length of SMT(S)



282 E. Althaus and R. Naujoks

and lbRPN(S) a lower bound on the length of RPN(S). Equivalently we write
ubSMT(S) and ubRPN(S) for upper bounds on these problems.

Due to space limitations we can only discuss a one of the pruning tests
mentioned in the previous section that we use in our implementation of the
algorithm:

S = RS ⊆ R

S

R

S \R

S

�

1. case 3. case2. case

� �R

S
S

Fig. 2. The three different cases occurring in the lower bound pruning step. The dotted
edges represent the incoming edges of the �-operator.

lower bound test: You are given a topology TS spanning a terminal set S �= N .
Consider now an optimal solution for the RPN-problem with recombinant TR.
We have to discuss several cases (see Figure 2):

1. S ∩R = ∅: We can prune TS if |TS|+ lbSMT(S)− bnsd(S) > ubRPN(N).
Proof: any solution with TS as a subtree where S∩R = ∅ clearly has a cost of
at least |TS |+lbSMT(R)+lbSMT(S\R). Since we do not know what R will be in
an optimal solution we have to lower bound the term lbSMT(R)+lbSMT(S\R).
It is easy to see that lbSMT(R)+lbSMT(S\R) ≥ lbSMT(S)−bnsd(S) following
from the property of the bottleneck Steiner distance.

2. S � R: TS can be pruned if |TS |+ lbSMT(S)− bnsd(S) > ubRPN(N).
3. S = R: T can be pruned if |TS |+ lbSMT(S) > ubRPN(N).

Note that the last cases follow the same arguments as the first case does.
Since we do not know in advance which case occurs in an optimal solution we
have to take the weakest condition |TS | + lbSMT(S) − bnsd(S) > ubRPN(N).
The key idea why pruning topologies in such a way leads to a fast enumeration
algorithm is that once a topology is pruned it cannot be part of any of the
topologies that are constructed in one of the following steps. Thus pruning a
topology in an early step cuts off an exponential big part of the search space.
We have shown in [1] in detail how tight lower bounds for the SMT-problem can
be computed efficiently.

Experiments conducted on real life data sets from [2] have shown that the
search space can be cut down very efficiently by factors of about 10−6 and more.



Reconstructing Phylogenetic Networks with One Recombination 283

4.5 Recombination Phase

The last part of our algorithm is the recombination phase in which we construct
the recombination networks by combining the enumerated topologies:

Algorithm 3. recombination process

for all T ∈ X with: |span(T )| ∈ [3, .., |N | − 1] do
for all TR ∈ X with:
|span(T )

⊎
span(TR)| = N do

for all edge pairs e1, e2 ∈ T do
combine T and TR along e1 and e2 using the �-operator

end for
end for

end for

For each edge e in T we have to compute the maximal Fitch-ranges as noted
already in the network evaluation section. That is we have to insert a new Steiner
point c in e, to re-root the tree T such that c becomes the new root and to apply
Fitch’s algorithm. Since we have to do this for all edges in T we end up with a
total running time of O(d·span(T )2). This turns out to become the bottleneck of
this procedure in practice. Instead of computing these root-ranges one after the
other we propose an algorithm which computes for a given topology T the root-
ranges for all edges in time proportional to one single call of Fitch’s algorithm:

Let us consider T to be unrooted. We associate with each node n in T three
range sequences rsi associated with the three adjacent nodes vi for i ∈ {0, .., 2}.
For all j ∈ {0, .., 2} do the following: consider T to be a rooted version such that
vj lies on the path going from n to the root (let j = 0 w.l.o.g.). Now perform
the first phase of Fitch’s algorithm computing range sequences for the subtrees
rooted at v1 and v2 and store these sequences in v1 and v2 in the variables
corresponding to node n. Repeat this procedure now for all nodes n in T . The
amortized cost of this procedure will be O(d · |span(T )|) since each variable is
computed only once and and the computational cost for computing a variable
is O(d). To compute the now the range sequence of a root we consider the edge
e = (u, v) in which the root would be inserted and compute out of the variables
associated with the endpoints u and v the sequence for the root at an additional
cost of O(d).

As it turns out that in practice the most time consuming part in the algorithm
is this recombination phase we have derived a second pruning step to speed
up this part significantly. The goal is to reduce the number of �-operator calls
since they are the most costly operations in this phase - recall that usually the
dimension is quite large and the running time of this function grows linearly
in the dimension. Because of the space limitations we again discuss only two
examples of such a pruning:

Lower bound test: Reconsider the lower bound tests for the previous subsec-
tion. In the last case, i.e. S = R. We have seen that in such a case the tree TS can



284 E. Althaus and R. Naujoks

be pruned if |TS|+ lbSMT(S) > ubRPN(N). Note that this condition can be much
stronger than the more general condition which involves the subtraction of the
bnsd(·) term which can be as big as the dimension of the problem. If a topology
TR satisfies now this condition we know that TR cannot be the recombinant part
of an optimal solution, i.e. we can skip this call of the for-loop without calling
the �-operator.

S

R

S \R

S

�

Fig. 3. Pruning by minors

Minor test: Assume you know that the �-operator will not connect TR to any
edge in TS in an optimal solution. Then for any topology T in the recombination
process (see Algorithm 3) which contains TS as a sub-topology the edges in this
sub-topology can be neglected (see Figure 3). But when does TS has such a
property? Clearly TS cannot be part of an optimal solution if |TS |+ lbRPN(TS) >
ubRPN(N). To derive lower bounds for lbRPN(TS) we compute in a preprocessing
step RPN(X) for small instances X - which can be done by brute force or by
calling our algorithm recursively - and store this information in a set M . Then
we check for TS if there is a X ∈ M such that span(X) ⊆ span(TS). It is easy
to see that RPN(X) is a lower bound for lbRPN(TS).

5 Experiments

Performing experiments in the context of reconstructing phylogenetic networks
with recombination events is a difficult task since there is always some uncer-
tainty about whether recombination events actually took place, see [11] for ref-
erences. On the other hand synthetically created data sets have the advantage
that we know exactly in advance what we expect from our method to return as
a phylogenetic network. Furthermore it is easy to create instances of arbitrary
size and complexity.

In order to obtain data with a known topology, we use NETGEN [12] to sim-
ulate an evolution with exactly one recombination event. NETGEN is an event-
driven simulator that creates phylogenetic networks by extending the birth-death
model to include diploid hybridizations.



Reconstructing Phylogenetic Networks with One Recombination 285

Recall that a recombination network with exactly one recombination event can
be interpreted as two phylogenetic trees in different parts of the sequence. We use
Seq-Gen [16] to simulate the evolution of gene sequences along the trees of the
recombination networks. Seq-Gen is a program that simulates the evolution of
nucleotide or protein sequences along a phylogeny, using common models of the
substitution process. A range of models of molecular evolution are implemented,
including the general reversible model.

The data for the two trees is then merged by randomly choosing a jump point
in the data for either tree and using the data alternating from the two trees.
Note that one jump point for each of the trees will lead to three jump points in
our data.

5.1 Fixed Recombination Scenarios

To validate our model we generate in each of the discussed cases 40 phylogenetic
networks with exactly one recombination. For each network N we simulate with
Seq-Gen gene sequences of length 1000 along N partitioning the root sequence
of the recombinant randomly such that the expected size of a consecutive block
of characters from one tree sequence is 250. As the substitution model we choose
the “general reversible process” model (Yang, 1994) for the nucleotide sequences
since it is the most general model that is still consistent with the requirement of
being reversible.

To show that our method is capable of handling strongly correlated as well as
highly uncorrelated input data with high accuracy we scale the branch lengths
of the tree obtained by the NETGEN program using the “-s” parameter of Seq-
Gen before the sequences are computed. We show that our model can handle a
wide range for this scaling parameter.

Note that we make no limiting assumptions. All sequences involved in the
recombination event can be still part of our input but they do not have to be
there. Furthermore the size of the recombinant is not limited as well. This is
in stark contrast to recombination detection methods like [11] where all fixed
recombination scenarios contain recent recombinations.

To evaluate our approach we reconstruct the phylogenetic network for the
input sequences and compare the resulting network with the original one using
the program Treedist which is part of the phylip program package (see [21]).
Treedist implements the symmetric difference method (Robinson and Foulds,
1981) to measure tree distances. Notice that as discussed before we can compare
the networks by just comparing the two trees that build the network.

Note that this is a much stronger condition than just identifying the recombi-
nant since it involves the proper reconstruction of the non-recombinant part of
the network. As far as we know there are no tools available that would handle
the general case. Therefor we compare the reliability of our method with the
reliability of the parsimony method for trees. The goal is to show that on data
sets on which our method fails, the parsimony method for trees would also re-
turn false results. To do so we take the data constructed by Seq-Gen and split
it along the two trees T1 and T2 out of which we have constructed the network.



286 E. Althaus and R. Naujoks

Then we compute for these sets of sequences the maximum parsimony trees and
test via treedist if they represent the topologies T1 and T2.

For instances that still contain the recombinant in and for which the size of
the recombinant is exactly one, we compare our method with the state-of-the-
art recombination detection method of Maydt and Lengauer [11] Recco that is
specialized for these scenarios. One has to point out that this test is not perfectly
fair for any of the two methods, since both programs are not really optimized
to output the correct recombinant. It is possible that the correct network is
constructed internally but the wrong recombinant is reported. Since we cannot
access the internal data structures of Recco we just compare the answers to
the question: is the right recombinant sequence reported by the program. Since
both implementations suffer from this fact, the experiments are not biased in
the direction of any of these approaches.

5.2 Results

Even if it is only a special case in our model our experiments clearly show the
superiority of our approach to the method of Maydt and Lengauer when the
sequence divergence is low (see table 1). For small branch lengths we report the
correct recombinant more often than the algorithm of Maydt and Lengauer does.
So our method seems to work very good in the cases that Posada et al. reported
to be hard to detect [15], i.e. in cases where the divergence is low. Note that for
these experiments we have chosen a rather dull parameter value of 2 for α in the
�-operator. We are sure that the results can be better when α is chosen more
carefully.

Table 1. comparison of Recco and Recomb: the table gives the number of correctly
reported recombinants depending on the branch length scaling factor s. Note that for
each choice of s 40 tests have been conducted.

s= 0.005 0.01 0.05 0.1 0.5 1.0 1.5

Recomb 31 24 30 31 33 20 15
Recco 18 17 25 26 30 32 21

Table 2. Reliability of Recomb and maximum parsimony in test data: the
small tables in the big one represent the relation between correct reconstruction of the
parsimony trees and the correct reconstruction of the recombination network depend-
ing of branch length scaling factor s. Here R∧P means the correct reconstruction of
both structures, ¬ (R∧P) denotes that both reconstructions failed and ¬R respectively
¬P means that only the reconstruction of the recombination network respectively the
reconstruction of the parsimony trees failed. Note that for each choice of s 40 tests
have been conducted.

s= 0.1 0.25 0.5 0.75 1.0 1.25

R∧P ¬P
¬R ¬ (R∧P)

40 0

0 0

37 0

1 2

18 4

11 7

12 1

11 16

5 1

9 25

1 0

5 34



Reconstructing Phylogenetic Networks with One Recombination 287

Table 3. Reliability of Recomb and maximum parsimony in test data: the
table show how often the given implication holds. Note that for each choice of s 40
tests have been conducted.

s= 0.1 0.25 0.5 0.75 1.0 1.25

¬R ⇒ ¬P 40 39 29 29 31 35
¬P ⇒ ¬R 40 40 36 39 39 40

If we consider table 2 we can see that the reliability of our method is strongly
connected to the reliability of parsimony reconstructions. On one hand if you con-
sider the resulting implications of non-reliability you can see in table 3 that almost
independently of the branch length scaling factor the unreliability of our method
is induced by the unreliability of the parsimony method. On the other hand if
the parsimony method fails our method almost always fails as well. Thus one can
conclude that the reliability of our reconstruction method almost corresponds to
the reliability of the parsimony method for reconstructing evolutionary trees.

6 Conclusion and Future Work

We have presented a new model to compute phylogenetic networks for data,
where only a small number of recombination events are assumed to have taken
place. Furthermore, we have given an exact algorithm for the case of non or
exactly one recombination event. We have shown in our experimental study the
high accuracy of our model.

Currently our tool can only deal with a single recombination event. In future
work we want to extend our algorithm to more than one recombination event and
we want to improve its speed so that we can handle larger instances (for example
by implementing a heuristic instead of an exact algorithm). Additionally we want
to extend it from the unit cost model for a mutation to an arbitrary cost matrix
and to work on more sophisticated methods for the choice of our cost parameter
α to make it data dependent. Finally, we plan to develop automated methods for
detecting the correct number of recombination events. Preliminary experiments
have shown that the decrease in the cost of an optimal 0-recombination network
(i.e. the phylogenetic tree) to the cost of an optimal 1-recombination network
is more significant if there was indeed a recombination event. This observation
could be a good starting point for deriving such a method. Overall we think that
this can lead to an extremely helpful tool for the computation of phylogenetic
networks with a small number of recombination events.

References

1. Althaus, E., Naujoks, R.: Computing steiner minimum trees in hamming metric.
In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 172–181 (2006)

2. Chare, E., Gould, E., Holmes, E.: Phylogenetic analysis reveals a low rate of ho-
mologous recombination in negative-sense rna viruses. J. Gen. Virol. 84 (2003)



288 E. Althaus and R. Naujoks

3. Fitch, W.M.: Toward defining the course of evolution: minimum change for a spec-
ified tree topology. Systematic Zoology 20 (1971)

4. Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic net-
works with constrained recombination. In: Proceedings of the IEEE Computer
Society Conference on Bioinformatics (2003)

5. Hein, J.: A heuristic method to reconstruct the history of sequences subject to
recombination. J. Mol. Evol. 36 (1993)

6. Huson, D.H., Kloepper, T.H.: Computing recombination networks from binary
sequences. Bioinformatics 21(2), 159–165 (2005)

7. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Inferring phylogenetic networks by
the maximum parsimony criterion: A case study. Molecular Biology and Evolu-
tion 24(1) (2005)

8. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for
phylogenetic network reconstruction. Bioinformatics 23(2) (2007)

9. Kececioglu, J., Gusfield, D.: Reconstructing a history of recombinations from a set
of sequences. Discrete Appl. Math. 88(1-3), 239–260 (1998)

10. Makarenkov, V., Kevorkov, D., Legendre, P.: Phylogenetic network reconstruction
approaches. Bioinformatics 6 (2006)

11. Maydt, J., Lengauer, T.: Recco: recombination analysis using cost optimization.
Bioinformatics 22(9), 1064–1071 (2006)

12. Morin, M.M., Moret, B.M.E.: Netgen: generating phylogenetic networks with
diploid hybrids. Bioinformatics 22(15) (2006)

13. Nakhleh, L., Jin, G., Zhao, F., Mellor-Crummey, J.: Reconstructing phylogenetic
networks using maximum parsimony. In: Proceedings of the 2005 IEEE Computa-
tional Systems Bioinformatics Conference, Stanford (2005)

14. Polzin, T.: Algorithms for the Steiner Problem in Networks. PhD thesis, Universität
des Saarlandes (2003)

15. Posada, D., Crandall, K.A., Holmes, E.C.: Recombination in evolutionary ge-
nomics. Annu. Rev. Genet. 36 (2002)

16. Rambaut, A., Grassly, N.C.: Seq-gen: an application for the monte carlo simulation
of dna sequence evolution along phylogenetic trees. Computer Applications in the
Biosciences 13(3), 235–238 (1997)

17. Ruths, D., Nakhleh, L.: Recombination and phylogeny: Effects and detection. In-
ternational Journal on Bioinformatics Research and Applications 1(2) (2005)

18. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination.
Journal of Computational Biology 8 (2001)

19. http://www.bioinf.manchester.ac.uk/recombination/programs.shtml

20. http://evolution.genetics.washington.edu/phylip/

software.html#Recombinant

21. http://evolution.genetics.washington.edu/phylip/software.html

http://www.bioinf.manchester.ac.uk/recombination/programs.shtml
http://evolution.genetics.washington.edu/phylip/software.html#Recombinant
http://evolution.genetics.washington.edu/phylip/software.html#Recombinant
http://evolution.genetics.washington.edu/phylip/software.html


Exact Algorithms for Cluster Editing:

Evaluation and Experiments

Sebastian Böcker1,2, Sebastian Briesemeister3, and Gunnar W. Klau4,5

1 Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany
boecker@minet.uni-jena.de

2 Jena Centre for Bioinformatics, Jena, Germany
3 Div. for Simulation of Biological Systems, ZBIT/WSI, Eberhard Karls Universität

Tübingen, Germany
briese@informatik.uni-tuebingen.de

4 Department of Mathematics and Computer Science, Freie Universität Berlin,
Germany

gunnar@math.fu-berlin.de
5 DFG Research Center Matheon, Berlin, Germany

Abstract. We present empirical results for the Cluster Editing prob-
lem using exact methods from fixed-parameter algorithmics and linear
programming. We investigate parameter-independent data reduction
methods and find that effective preprocessing is possible if the number of
edge modifications k is smaller than some multiple of |V |. In particular,
combining parameter-dependent data reduction with lower and upper
bounds we can effectively reduce graphs satisfying k ≤ 25 |V |.

In addition to the fastest known fixed-parameter branching strategy
for the problem, we investigate an integer linear program (ILP)
formulation of the problem using a cutting plane approach. Our results
indicate that both approaches are capable of solving large graphs with
1000 vertices and several thousand edge modifications. For the first time,
complex and very large graphs such as biological instances allow for an
exact solution, using a combination of the above techniques.

1 Introduction

The Cluster Editing problem is defined as follows: Let G = (V, E) be an
undirected, loop-less graph. Our task is to find a set of edge modifications
(insertions and deletions) of minimum cardinality, such that the modified graph
consists of disjoint cliques.

The Cluster Editing problem has been considered frequently in the
literature since the 1980’s. In 1986, Křivánek and Morávek [11] showed that
the problem is NP-hard. The problem was rediscovered in the context of
computational biology [14]. Clustering algorithms for microarray data such as
CAST [1] and CLICK [15] rely on graph-theoretical intuition but solve the
problem only heuristically. Studies in computational biology indicate that exact
solutions of Cluster Editing instances can be highly application-relevant,

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 289–302, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



290 S. Böcker, S. Briesemeister, and G.W. Klau

see for instance [18]. This is even more the case for the weighted version of
the problem, Weighted Cluster Editing: Given an undirected graph with
modification costs for every vertex tuple, we ask for a set of edge modifications
with minimum total cost such that the modified graph consists of disjoint cliques.

The Cluster Editing problem is APX-hard [4] and has a constant-factor
approximation of 2.5 [17]. In this article, we empirically investigate the power of
methods that solve the problem to provable optimality. In 1989, Grötschel and
Wakabayashi [8] presented a formulation of the Cluster Editing problem as
an Integer Linear Program (ILP) and pointed out a cutting plane approach for
its solution. Recently, the parameterized complexity of unweighted and weighted
Cluster Editing, using the number (or total cost) of edge modifications as
parameter k, has gained much attention in the literature [2,6,7]. Dehne et al. [5]
present an empirical evaluation of parameterized algorithms from [7]. The fastest
fixed-parameter algorithm for unweighted Cluster Editing actually trans-
forms the problem into its weighted counterpart [3]. Guo [9] presents parameter-
independent data reduction rules for unweighted instances that reduce an
instance to a “hard” problem kernel of size 4kopt. A reduction from unweighted
to weighted instances of size at most 4kopt is presented in [3]. These reductions
allow us to shrink an instance even before any parameter k has been considered.

Our contributions. In the first part of our paper, we evaluate the performance of
two parameter-independent data reduction strategies for unweighted Cluster
Editing. We find that the efficiency of reduction is governed mostly by the
ratio k/ |V |. The unweighted kernel from [9] efficiently reduces nearly transitive
graphs, but fails to reduce graphs with k ≥ 1

2 |V |. We then present and
evaluate parameter-independent reduction rules data for weighted graphs and
find it to be even more effective in application. We combine the latter reduction
with parameter-dependent reduction rules plus upper and lower bounds. This
downsizes input graphs even more and fails to reduce graphs only when k >
25 |V | for large graphs.

To solve reduced instances, we implemented a branch-and-cut algorithm
for Weighted Cluster Editing based on the ILP formulation proposed
by Grötschel and Wakabayashi [8]. The ILP formulation of the problem has
frequently been reported in the literature as being too slow for application, see for
instance [10]. In contrast, we find that the cutting plane approach in [8] is capable
of optimally solving large instances reasonably fast. We compare the performance
of the fastest branching strategy in [3] and the cutting plane algorithm. We
apply these methods to weighted instances resulting from unweighted graphs
that have been fully reduced in advance using our data reduction. The FPT
algorithm solves instances with k = 5n in about an hour, where n, k are size
and parameter of the reduced instance. The ILP approach solves instances with
n = 1 000 in about an hour, almost independently of k. These approaches are
particularly important for weighted input data, because we find data reduction
to be less effective here.

Summarized, our experiments show that one can solve Cluster Editing
instances on large graphs with several thousands of edge modifications in



Exact Algorithms for Cluster Editing: Evaluation and Experiments 291

reasonable running time to provable optimality. In particular, feasible parameters
k are orders of magnitude higher than what worst-case running times of the FPT
approach suggest.

2 Preliminaries

Throughout this paper, let n := |V |. We write uv as shorthand for an unordered
pair {u, v} ∈ (

V
2

)
. For weighted instances, let s :

(
V
2

) → R encode the input
graph: For s(uv) > 0 an edge uv is present in the graph and has deletion cost
s(uv), while for s(uv) ≤ 0 the edge uv is absent from the graph and has insertion
cost −s(uv). We call edges with s(uv) =∞ “permanent” and with s(uv) = −∞
“forbidden”. A graph G is a disjoint union of cliques if and only if there exist
no conflict triples in G: a conflict triple consists of three vertices vuw such that
uv and uw are edges of G but vw is not. Such graphs are also called transitive.

As a quality measure for data reduction we use the reduction ratio n−nred
n

where nred denotes the number of vertices after reduction. A reduction ratio
of close to 1 corresponds to a strong reduction whereas a reduction ratio of 0
corresponds to no reduction at all.

3 Data Reduction and Branching Algorithm

We now present methods for the parameter-independent data reduction of
(unweighted and weighted) Cluster Editing instances. We describe various
polynomial-time reduction rules and apply these rules over and over again until
no further rule will apply. Since the presented data reduction is parameter-
independent, we can apply it during preprocessing without considering any
particular parameter k. Afterwards, we can solve the reduced graph with any
algorithm for Weighted Cluster Editing.

Parameter-independent data reduction. A critical clique C in an unweighted
graph is an induced clique such that any two vertices u, v ∈ C share the same
neighborhood, N(u) ∪ {u} = N(v) ∪ {v}, and C is maximal. For unweighted
Cluster Editing one can easily see that all vertices of a critical clique of the
input graph end up in the same cluster of an optimal clustering [9]. Furthermore,
there are at most 4kopt critical cliques in a graph, where kopt is the cost
of an optimal solution. Guo [9] uses critical cliques to construct a kernel for
unweighted Cluster Editing of size 4kopt. For brevity, we omit the details of
this reduction, and only note that it is based on inspecting the neighborhood
(and second neighborhood) of large critical cliques. In the following, we call this
the unweighted kernel.

We can encode an unweighted Cluster Editing instance using a weighted
graph with edge weights±1. In a weighted graph we can merge vertices u, v into a
new vertex u′ when edge uv is set to “permanent”: For each vertex w ∈ V \{u, v}
we join uw, vw such that s(u′w)← s(uw)+s(vw). Moreover, in case w is a non-
common neighbor of u, v we can reduce k by min{|s(uw)| , |s(vw)|} [2].



292 S. Böcker, S. Briesemeister, and G.W. Klau

For unweighted instances, all vertices of a critical clique C must end up
in the same cluster: This implies that we can merge all vertices in C for the
corresponding weighted instance [3]. Doing so, we have reduced an unweighted
instance to a weighted one of size at most 4kopt. In addition, we may use the
following reduction rules for any weighted instance:

Rule 1 (heavy non-edge rule). If an edge uv with s(uv) < 0 satisfies
|s(uv)| ≥∑

w∈N(u) s(uw) then set uv to forbidden.
Rule 2 (heavy edge rule, single end). If an edge uv satisfies s(uv) ≥∑

w∈V \{u,v} |s(uw)| then merge vertices u, v.
Rule 3 (heavy edge rule, both ends). If an edge uv satisfies s(uv) ≥∑

w∈N(u)\{v} s(uw) +
∑

w∈N(v)\{u} s(vw), then merge u, v.
Rule 4 (almost clique rule). For C ⊆ V let kC denote the min-cut value of

the subgraph of G induced by vertex set C. If

kC ≥
∑

u,v∈C,s(uv)≤0

|s(uv)|+
∑

u∈C,v∈V \C,s(uv)>0

s(uv)

then merge C.
Rule 5 (similar neighborhood). For an edge uv we define Nu := N(u) \

(N(v) ∪ {v}), Nv := N(v) \ (N(u) ∪ {u}) as the exclusive neighborhoods,
and set W := V −(Nu∪Nv∪{u, v}). For U ⊆ V set s(v, U) :=

∑
u∈U s(v, u).

Let Δu := s(u, Nu)− s(u, Nv) and Δv := s(v, Nv)− s(v, Nu). If uv satisfies

s(uv) ≥ max
Cu,Cv

min
{
s(v, Cv)− s(v, Cu) + Δv, s(u, Cu)− s(u, Cv) + Δu

}
(1)

where the maximum runs over all subsets Cu, Cv ⊆ W with Cu ∩ Cv = ∅,
then merge uv.

Rule 4 cannot be applied to all subsets C ⊆ V so we greedily choose reasonable
subsets: We start with a vertex C := {u} maximizing

∑
v∈V \{u} |s(uv)|, and

successively add vertices such that in every step, vertex w ∈ V \C with maximal
connectivity

∑
v∈C s(vw) is added. In case the connectivity of the best vertex is

twice as large as that of the runner-up, we try to apply Rule 4 to the current
set C. We cancel this iteration if the newly added vertex u is connected to more
vertices in V \ C than to vertices in C.

Proving the correctness of Rule 5 is rather involved, we defer the details to
the full paper. This rule turns out to be highly efficient but its computation
is expensive: For integer-weighted graphs, we can find the maximum (1) using
dynamic programming in time O(|W |Z) where Z :=

∑
w∈W (s(uw)+s(vw)). For

real-valued edge weights we can only approximate the calculation by multiplying
with a blowup factor and rounding. In practice, we use Rule 5 only in case no
other rules can be applied.

Using parameter-dependent data reduction. We use the parameter-dependent
data reduction for Weighted Cluster Editing from [2]: We define induced



Exact Algorithms for Cluster Editing: Evaluation and Experiments 293

costs icf (uv) and icp(uv) for setting uv to “forbidden” or “permanent” by

icf (uv) =
∑

w∈N(u)∩N(v)

min{s(uw), s(vw)}, icp(uv) =
∑

w∈N(u)�N(v)

min{|s(uw)| , |s(vw)|},

where A � B denotes the symmetric set difference of A and B. If icp(uv) or
icf (uv) exceed k, we can set uv to “forbidden” or “permanent”, respectively. In
the latter case, we merge u,v and reduce k by icp(uv) accordingly. We can also
remove isolated cliques.

As an algorithm-engineering technique, we now describe fast methods to
compute a lower bounds on the cost of a weighted instance. Clearly, such bounds
can be used to stop search tree recursion more efficiently. Assume that there exist
t conflict triples in our instance G, k. For every tuple uv let t(uv) denote the
number of conflict triples in G that contain uv, and let r(uv) := |s(uv)| /t(uv).
To resolve t conflicts in our graph we have to pay at least t · minuv{r(uv)}. A
more careful analysis shows that we can sort tuples uv according to the ratio
r(uv), then go through this sorted list from smallest to largest ratio. This leads
to a tighter lower bound but requires more computation time.

Our third lower bound proved to be most successful in applications: Let CT be
a set of edge-disjoint conflict triples. Then,

∑
vuw∈CT min{s(uv), s(uw),−s(vw)}

is a lower bound for solving all conflict triples. Since finding the set CT
maximizing this value is computationally expensive, we greedily construct a set
of edge-disjoint conflict triples CT and use the above sum as a lower bound.

We can use such lower bounds to make induced costs icf (uv) and icp(uv)
tighter: let b(G, uv) be a lower bound that ignores all edges uw and vw for
w ∈ V \ {u, v} in its computation. Then, we can set an edge to “forbidden” or
“permanent” if icp(uv) > k − b(G, uv) or icf (uv) > k − b(G, uv) holds, resp.

To use this powerful reduction during (parameter-independent) preprocessing,
we generate a problem instance (G, k) from G by using an upper bound for
the modification costs of G as our parameter k. There exist a multitude of
possibilities to compute such upper bounds, because we can use any heuristic
for the problem and compute the cost of its solution, see for instance [18]. For
this study, we calculate an upper bound using a greedy approach that iteratively
searches for edges where reduction rules almost apply. We find this reduction to
be extremely effective in applications.

Branching strategy. After parameter-independent data reduction, the remaining
instance can be solved using a branching tree strategy. In these algorithms, we
identify a conflict triple and then branch into sub-cases to repair this conflict.
In practice, branching strategies that do merge vertices clearly outperform
branching strategies that do not [2]. The fastest known branching strategy for
Cluster Editing, both in theory and in practice, is surprisingly simple [3]:
Let uv be an edge of a conflict triple vuw. Then, (a) set uv to forbidden, or
(b) merge uv. If we always choose the edge uv with minimal branching number,1

1 The branching number is the root of the characteristic polynomial and governs the
asymptotic size of the search tree, see e.g. [12] for details.



294 S. Böcker, S. Briesemeister, and G.W. Klau

then the resulting search tree has size O(2k). To find an optimal solution we
call the algorithm repeatedly, increasing k in an interval defined by lower and
upper bound for this problem instance. While traversing the search tree, we
apply reduction rules in every node of the search tree. The simple Rules 1–3 and
parameter-dependent rules are applied in every node of the search tree, whereas
the two more involved Rules 4 and 5 are applied only every sixth step. To find an
edge with minimal branching number, we approximate log branching numbers
using two rational functions.

4 Integer Linear Programming and Branch-and-Cut

In this section we describe an algorithm for Weighted Cluster Editing,
which is based on mathematical optimization. It relies on the following integer
linear programming (ILP) formulation due to Grötschel and Wakabayashi [8].

Let x be a binary decision vector with xe = 1 if edge e is part of the solution
and xe = 0 otherwise, for all e ∈ E. Then, an optimal solution to Weighted
Cluster Editing can be found by solving

minimize
∑

e∈E

s(e)−
∑

1≤i<j≤n

s(ij)xij (2)

subject to + xij + xjk − xik ≤ 1 for all 1 ≤ i < j < k ≤ n (3)
+ xij − xjk + xik ≤ 1 for all 1 ≤ i < j < k ≤ n (4)
− xij + xjk + xik ≤ 1 for all 1 ≤ i < j < k ≤ n (5)
xij ∈ {0, 1} for all 1 ≤ i < j ≤ n . (6)

The 3
(
n
3

)
triangle inequalities (3)–(5) of the ILP ensure that no conflict triple

occurs in the solution. The above ILP formulation can already be used to solve
instances of Weighted Cluster Editing to provable optimality.

A faster algorithm can be obtained by a mathematical analysis of the
corresponding problem polyhedron. Using methods from polyhedral combina-
torics, Grötschel and Wakabayashi have studied the facial structure of the
corresponding clique partitioning polytope. They have identified a number of
classes of facet-defining inequalities. As proposed by the authors, we concentrate
on the 2-partition inequalities

∑

i∈S,j∈T

xij −
∑

i∈S,j∈S

xij −
∑

i∈T,j∈T

xij ≤ min{|S|, |T |} ,

where S and T are disjoint and nonempty subsets of V .
There is an exponential number of 2-partition inequalities. We therefore do

not generate them at once but follow a cutting plane approach, adding 2-
partition inequalities only if they are violated by a current fractional solution. We
have implemented a variant of the iterative cutting plane method proposed by
Grötschel and Wakabayashi. We start optimizing the LP relaxation (2) with an
empty constraint set. Let x∗ denote the vector corresponding to an intermediate



Exact Algorithms for Cluster Editing: Evaluation and Experiments 295

solution of the linear programming relaxation. We first check whether x∗ violates
any triangle inequalities. If this is the case, we add the violated inequalities,
resolve, and iterate. Otherwise, we check whether x∗ is integral. If so, we stop,
and x∗ is an optimal solution. If x∗ has fractional entries, we heuristically try to
find violated 2-separation inequalities in the following manner:

For every node i ∈ V we look at the nodes in W := {j ∈ V \ {i} | x∗ij > 0}.
Then, we pick a node w ∈W and iteratively construct a subset T of W , setting
initially T = {w} and adding nodes k ∈ W to T if x∗ik −

∑
j∈T x∗jk > 0. Finally,

we check whether ∑

j∈T

x∗ij −
∑

j∈T

∑

k∈T,k 	=j

x∗jk > 1 .

If this is the case, we add the violated 2-partition inequality
∑

j∈T

xij −
∑

j∈T

∑

k∈T,k 	=j

xjk ≤ 1 .

If we find cutting planes in the separation procedure we iterate, otherwise we
branch.

5 Datasets

In the absence of publicly available datasets that meet our requirements (note
that the datasets used in [5] are far too small for our evaluations) we concentrate
on the following two datasets:

Random unweighted graphs. Given a number of nodes n and parameter k, we
uniformly select an integer i ∈ [1, n] and define i nodes to be a cluster. We
proceed in this way with the remaining n ← n − i nodes until n ≤ 5 holds:
In this case, we assign all remaining n nodes to the last cluster. Starting from
this transitive graph G = (V, E) we choose k′ distinct vertex tuples uv ∈ (

V
2

)

and delete or insert the edge uv in G. Let k denote the minimum number of
modifications to make G transitive, then k ≤ k′. For instances where we cannot
compute exact modification costs k, we estimate k using upper, lower bounds,
and general observations.

Protein similarity data. We also apply our algorithms to weighted instances
that stem from biological data. Rahmann et al. [13] present a set of graphs
derived from protein similarity data: The vertices of our graph are more than
192 000 protein sequences from the COG database [16]. The similarity S(u, v) of
two proteins u, v is calculated from log10 E-values of bidirectional BLAST hits.
We use an E-value of 10−10 as our threshold indicating that two proteins are
“sufficiently similar”, so s(uv) := S(u, v)− 10. See [13] for more details.

The graph encoded by s contains 50 600 connected components: 42 563
components are of size 1 or 2, and 4 073 components are cliques of size ≥ 3. The
remaining 3 964 components serve as our evaluation instances. Only 11 instances



296 S. Böcker, S. Briesemeister, and G.W. Klau

have more than 600 vertices. As a side comment, we mention that Wittkop
et al. [18] evaluate several clustering methods for this application, and find that
Weighted Cluster Editing methods show the best clustering quality.

Evaluation platform. All algorithms were implemented in C++, the branch-
and-cut algorithm (ILP) uses the Concert interface to the commercial CPLEX
solver 9.03. Running times were measured on an AMD Opteron-275 2.2 GHz
with 6+ GB of memory.

6 Data Reduction Results

We now compare the performance of the unweighted kernel [9] and the weighted
data reduction from Sec. 3 on the dataset of random unweighted graphs. To allow
for a fair comparison with the weighted data reduction, we merge all permanent
edges of the unweighted kernel, resulting in an integer-weighted graph with
even fewer vertices. This seems reasonable since both ILP and edge branching
can handle integer-weighted input graphs. For the weighted data reduction,
we first merge all critical cliques in the input graph. Next, we use weighted
reduction rules plus the parameter-dependent reduction rules as described in
Sec. 3. Despite the additional reduction steps, the reduced graph can have 4kopt

vertices for both approaches: A disjoint union of k paths of length 3 is not
reduced by any reduction rule.

For our first evaluation, we concentrate on the weighted reduction strategy.
For fixed k = 2 000 and varying n = 100, . . . , 5 000 we study reduction ratio and
absolute size of the resulting graph for 11 000 random instances. Results for n
up to 1 000 are shown in Fig. 1. Similar results were obtained for larger n and
other choices of k, data not shown. As one can see, the larger the graphs get, the
better the reduction ratio on average. Most graphs are either reduced down to a

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

re
du

cti
on

 ra
tio

200 400 600 800 1000

1
5

10
50

10
0

50
0

10
00

|n
re

d|

Fig. 1. Data reduction for fixed k = 2 000 and variable graph size n: Left plot shows
reduction ratio vs. n, right plot shows reduced graph size nred vs. n. Both plots show
11000 instances.



Exact Algorithms for Cluster Editing: Evaluation and Experiments 297

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

re
du

ct
io

n 
ra

tio

n = 100
n = 500
n = 1500
n = 2000
unweighted kernel

Fig. 2. Average reduction ratio vs. ratio k/n for n = 100, 500, 1 500, 2 000. Note that
the unweighted kernel is practically independent from graph size n.

few vertices or stay unreduced. Only a few reduced graphs end up in a “twilight
zone” between these extremes. This effective reduction is not due to the upper
bound n ≤ 4k = 8 000: In fact, the absolute size of reduced graphs gets smaller
when input graphs get larger. This might seem counterintuitive at first glance,
but larger graphs show smaller relative defects, which allows weighted reduction
rules to more “aggressively” merge or delete edges.

The above evaluation indicates that reduction results do not only depend on
k and n directly, but even more so on the ratio k/n. In our second evaluation,
we choose n ∈ {100, 500, 1 500, 2 000} and set k := c · n, for varying factors
c ∈ {0.25, 0.5, . . . , 2.0}. For every combination of n and k we create 10 input
graphs and apply the unweighted kernel. See Fig. 2 for resulting reduction ratios.
We find reduction ratios of the unweighted kernel to be mostly independent of
the actual graph size. The unweighted kernel is very effective for graphs with
k ≤ 1

2n, and graphs are downsized to half of their original size on average. For
k ≥ 2n no reduction is observed. To evaluate the weighted data reduction we
again set k := c ·n, for factors c ∈ {1, 2, . . . , 25}. For every combination of k and
graphs size with n < 1 000 (n ≥ 1 000) we create 50 (20) input graphs. See again
Fig. 2 for reduction ratios. We observe that the weighted data reduction is much
more effective than the unweighted kernel. Here, the reduction ratio depends
strongly on the ratio k/n and, less pronounced, also on the graph size n. We
observed that large graphs of size n = 2 000 are reduced by 80% for k = 25 and
by more than 90% for k = 18n.

Figure 3 shows the ratio of input graphs being reduced by more than 90%. For
the weighted data reduction, we vary the number of vertices n and set k := cn
for c = 5, 10, 15, 20.2 For the unweighted kernel we observe significantly reduced
graphs only for c = 0.25. Most interestingly, for the weighted data reduction,
the ratio of significantly reduced graphs increases for larger graphs.

2 We also performed experiments for all c = 0.25, 0.5, 0.75, 1, 2, 3, . . . , 25 but find that
results follow the same trend, data not shown.



298 S. Böcker, S. Briesemeister, and G.W. Klau

500 1000 1500 2000

0
20

40
60

80
10

0

%
 o

f i
ns

ta
nc

es
 r

ed
uc

ed
 b

y 
>

 9
0%

k = 5 n
k = 10 n
k = 15 n
k = 20 n
unweighted kernel for k >= 0.5n

Fig. 3. Percentage of instances which are reduced more than 90% for varying graph
size n and k = cn for c = 5, 10, 15, 20

In case we only use parameter-independent reduction rules from Sec. 3, the
weighted reduction is only slightly better than the unweighted kernel, data not
shown. We find the combination of parameter-dependent data reduction and
lower/upper bounds to be the reason for the effective reduction. To this end,
we estimate the accuracy of our lower and upper bound. We find that our lower
bound has a relative error of 1.7 % on average, and the upper bound had a
relative error of 17.9 % on average. Calculating tighter upper bounds by, say,
a heuristic such as FORCE [18] will further improve the performance of our
weighted data reduction.

Running times of data reduction. Using the unweighted kernel, most of the
instance were reduced in less than a minute, instances of size 2 000 in about one
hour computation time. Graphs with k around n need more computation time
than graphs with lower or greater k since reduction rules are checked very often
but rarely applied. Running times of the weighted data reduction are equally high
for k around 5n, whereas for k around 20n running times are slightly higher.
Making the data reduction run fast has not been the focus of our research,
because we assumed running times of data reduction to be negligible to the fol-
lowing (exponential-time) step of the analysis. We do not report details and just
note that reducing graphs of size 500 took 51.23 seconds on average but at most
9.09 minutes, whereas reducing graphs of size 2 000 took 1.61 hours on average
and at most 23.69 hours. Our experiments show that many graphs are reduced
to trivial or very small instances, so the exponential-time step of the algorithm
has very small running times. We believe that by optimizing our data reduction
algorithm we can achieve significantly reduced running times in the future.

Data reduction results for weighted instances. We also apply our weighted
data reduction strategy to the protein similarity data. In this case, however,
parameter k does not reflect the complexity of the instance: here, edges might



Exact Algorithms for Cluster Editing: Evaluation and Experiments 299

have modification costs ≤ 1 and, hence, the total modification costs may equal
1 even if thousands of edge modifications are necessary. Instead, we use the
number of edge modifications as a complexity measure of an instance. Table 1
shows results of the weighted data reduction. We find that the data reduction
reduces weighted instances not as much as unweighted instances. This is mainly
caused by the fact that our lower and upper bounds are not as tight as for
the unweighted case. In detail, our lower bound has a relative error of 3.6 %
on average, and the upper bound had a relative error of 54.7 % on average.
In contrast to our findings for unweighted instances, we observe that larger
graphs are reduced less effectively than smaller graphs. This can be attributed
to the fact that the number of edge modifications is growing faster than linear.
Furthermore, parameter-independent reduction rules are less efficient on large
weighted graphs, since it gets less likely that an edge weight is greater than a
sum over O(n) other edge weights.

Table 1. Protein similarity data: Average reduction ratio for different graph size n

graph size n 3 - 49 50 - 99 100 - 149 150 - 199 200 - 249 250-299 300+

No. of instances 3453 341 78 22 24 20 25
av. reduction ratio 0.84 0.89 0.73 0.68 0.66 0.58 0.35

7 Integer Linear Programming and Search Tree Results

We want to compare the performance of the FPT branching algorithm approach
and the ILP-based branch-and-cut method. For this evaluation, we use random
unweighted graphs and reduce them by the weighted data reduction. Reduced
graphs are sorted into bins for sizes n ≈ 100, 200, . . . , 900 and costs k ≈
1n, 2n, . . . , 10n, and every bin contains 28 graphs on average. As described in
Sec. 6, most graphs are either reduced completely or not at all, so building
these reduced graphs is computationally expensive. For each reduced instance
we apply the FPT branching algorithm and ILP with an upper limit of 6 hours
of running time. For average running times, we count unfinished instances as 6
hours. Figure 4 shows the resulting running times.

Running times of the fixed-parameter algorithm most strongly depend on the
ratio k/n and, to a smaller extent, on the actual parameter k. Instances with
modification cost k ≈ 5n need about one hour of computation to be solved.
Note that running times for FPT branching are much better than worst-case
running time analysis suggests, and dependence on the actual parameter k is
much less pronounced than expected. We believe that this is mainly due to the
good lower bound estimation for the parameter-dependent data reduction used
in interleaving, and also the vertex merging operation.

The limiting factor for the ILP algorithm is the size of the input graph whereas
dependence on modification costs k is much less pronounced. Small instances
with only 100 vertices are solved within seconds, and medium graphs of size
500 are solved within minutes. We find that ILP is well-suited for medium-size



300 S. Böcker, S. Briesemeister, and G.W. Klau

2 4 6 8 10

0
50

00
10

00
0

15
00

0

tim
e 

in
 s

ec

FPT n= 100
FPT n= 500
FPT n= 900
ILP n= 100
ILP n= 500
ILP n= 900

Fig. 4. Running times of FPT branching and ILP branch-and-cut in seconds, for
varying ratio k/n and n = 100, 500, 900

Table 2. Running times on reduced protein similarity data for FPT branching and ILP.
Instances that did not finish after 24 hours of computation were ignored for average
running time computation.

Size red. instance 3–49 50–99 100–149 150–199 200–249 250–299 300–1400
No. red. instances 297 52 16 10 9 2 19

Unfinished FPT 0 0 1 1 2 2 15
time FPT 125 ms 23.9 s 44.1 min 4.52 min 47.3 min n/a 8.98 min

Unfinished ILP 0 0 0 0 1 1 10
time ILP 17 ms 6.97 s 5.30 min 18.20 min 76.2 min 6.85 min 1.67 h

Cluster Editing instances and clearly outperforms the fastest fixed-parameter
algorithm for these instances. We stress that ILP requires preprocessing by
parameter-independent data reduction since its performance is solely dependent
on the input graph size. Only for large graphs with very low modification costs
k ≤ 2n, the FPT algorithm may outperform the cutting plane algorithm. High
running times of the cutting plane approach for large instances are, however,
mostly not due to their structural complexity but to the large number of triangle
inequalities that have to be checked in the current implementation. Once a better
separation strategy has been found, we expect the branch-and-cut algorithm to
perform well even on larger instances.

Results for weighted instances. We now compare the performance of FPT
branching and ILP using protein similarity data. We reduced all instances in
the protein dataset using our weighted data reduction strategy, resulting in 365
non-trivial instances. In Tab. 2 we report running times of the two methods.
The FPT branching algorithm is usually fast enough for graphs with up to 200
vertices, but for most larger graphs, no solution can be computed within 24



Exact Algorithms for Cluster Editing: Evaluation and Experiments 301

hours. In contrast, the ILP algorithm was able to solve most instances with less
than 500 vertices in only some minutes.

8 Conclusion

Our results demonstrate that computing exact solutions of Cluster Editing
instances is no longer limited to small or almost transitive graphs, thus
invalidating what has often been reported in previous work. Using data reduction
for Weighted Cluster Editing in combination with parameter-dependent
rules and lower/upper bounds strongly improves the ability to shrink down input
instances in polynomial running time. Even complex input graphs that are far
from transitive and that have modification costs much larger than the number
of vertices, can often be reduced very effectively.

We also compared the fastest known FPT branching algorithm for Cluster
Editing against a branch-and-cut approach for this problem, based on the ILP
formulation by Grötschel and Wakabayashi. Both algorithms perform well, and
reduced graphs with hundreds of vertices and thousands of edge modifications
are processed in acceptable running time. In particular, our results suggest that
ILP is suitable for solving large instances with many modifications.

We believe that better upper bounds will allow even larger instances of
(unweighted and weighted) Cluster Editing to be solved exactly in the future.
We will make the source code of our reduction and cluster editing tools, as
well as the data used in this article publicly available. Furthermore, we plan to
implement a web interface for our tools in order to give a large community access
to our exact clustering tools and to facilitate comparison and evaluation.

Acknowledgments. We thank Svenja Simon for support with evaluation and
implementation. S. Briesemeister gratefully acknowledges financial support from
LGFG Promotionsverbund “Pflanzliche Sensorhistidinkinasen” at the University
of Tübingen.

References

1. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J.
Comput. Biol. 6(3-4), 281–297 (1999)

2. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: A fixed-parameter approach
for weighted cluster editing. In: Proc. of Asia-Pacific Bioinformatics Conference
(APBC 2008). Series on Advances in Bioinformatics and Computational Biology,
vol. 5, pp. 211–220. Imperial College Press (2008)

3. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: Parameterized
algorithms for cluster editing (Manuscript) (2008)

4. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
J. Comput. Syst. Sci. 71(3), 360–383 (2005)

5. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The
cluster editing problem: Implementations and experiments. In: Bodlaender, H.L.,
Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer,
Heidelberg (2006)



302 S. Böcker, S. Briesemeister, and G.W. Klau

6. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347
(2004)

7. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering:
Fixed-parameter algorithms for clique generation. Theor. Comput. Syst. 38(4),
373–392 (2005)

8. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering
problem. Math. Program. 45, 52–96 (1989)

9. Guo, J.: A more effective linear kernelization for Cluster Editing. In: Chen, B.,
Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47.
Springer, Heidelberg (2007)

10. Kochenberger, G.A., Glover, F., Alidaee, B., Wang, H.: Clustering of microarray
data via clique partitioning. J. Comb. Optim. 10(1), 77–92 (2005)

11. Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta
Inform. 23(3), 311–323 (1986)

12. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

13. Rahmann, S., Wittkop, T., Baumbach, J., Martin, M., Truß, A., Böcker, S.: Exact
and heuristic algorithms for weighted cluster editing. In: Proc. of Computational
Systems Bioinformatics (CSB 2007), vol. 6, pp. 391–401 (2007)

14. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Appl. Math. 144(1–2), 173–182 (2004)

15. Sharan, R., Maron-Katz, A., Shamir, R.: CLICK and EXPANDER: a system for
clustering and visualizing gene expression data. Bioinformatics 19(14), 1787–1799
(2003)

16. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin,
E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S.,
Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J., Natale, D.A.: The
COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41
(2003)

17. van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation
and other ranking and clustering problems. In: Proc. of Workshop on Approxima-
tion and Online Algorithms (WAOA 2007). Lect. Notes Comput. Sc., vol. 4927,
pp. 260–273. Springer, Heidelberg (2008)

18. Wittkop, T., Baumbach, J., Lobo, F., Rahmann, S.: Large scale clustering of
protein sequences with FORCE – a layout based heuristic for weighted cluster
editing. BMC Bioinformatics 8(1), 396 (2007)



Combining Hierarchical and Goal-Directed

Speed-Up Techniques for Dijkstra’s Algorithm�

Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,
Dominik Schultes, and Dorothea Wagner

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
{rbauer,delling,sanders,schief,schultes,wagner}@ira.uka.de

Abstract. In [1], basic speed-up techniques for Dijkstra’s algorithm
have been combined. The key observation in their work was that it is
most promising to combine hierarchical and goal-directed speed-up tech-
niques. However, since its publication, impressive progress has been made
in the field of speed-up techniques for Dijkstra’s algorithm and huge data
sets have been made available.

Hence, we revisit the systematic combination of speed-up techniques
in this work, which leads to the fastest known algorithms for various
scenarios. Even for road networks, which have been worked on heavily
during the last years, we are able to present an improvement in per-
formance. Moreover, we gain interesting insights into the behavior of
speed-up techniques when combining them.

1 Introduction

Computing shortest paths in a graph G = (V, E) is used in many real-world
applications like route planning in road networks, timetable information for rail-
ways, or scheduling for airplanes. In general, Dijkstra’s algorithm [2] finds a
shortest path of length d(s, t) between a given source s and target t. Unfortu-
nately, the algorithm is far too slow to be used on huge datasets. Thus, sev-
eral speed-up techniques have been developed (see [3] for an overview) yielding
faster query times for typical instances, e.g., road or railway networks. In [1],
basic speed-up techniques have been combined systematically. One key obser-
vation of their work was that it is most promising to combine hierarchical and
goal-directed techniques. However, since the publication of [1], many powerful
hierarchical speed-up techniques have been developed, goal-directed techniques
have been improved, and huge data sets have been made available to the commu-
nity. In this work, we revisit the systematic combination of speed-up techniques.

� Partially supported by the Future and Emerging Technologies Unit of EC (IST
priority – 6th FP), under contract no. FP6-021235-2 (project ARRIVAL), and by
DFG grant SA 933/1-3.

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 303–318, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



304 R. Bauer et al.

1.1 Related Work

Since there is an abundance of related work, we decided to concentrate on pre-
vious combinations of speed-up techniques and on the approaches that our work
is directly based on.

Bidirectional Search executes Dijkstra’s algorithm simultaneously forwards
from the source s and backwards from the target t. Once some node has been vis-
ited from both directions, the shortest path can be derived from the information
already gathered [4]. Many more advanced speed-up techniques use bidirectional
search as an optional or sometimes even mandatory ingredient.

Hierarchical Approaches try to exploit the hierarchical structure of the given
network. In a preprocessing step, a hierarchy is extracted, which can be used to
accelerate all subsequent queries.

Reach. Let R(v) := max Rst(v) denote the reach of node v, where Rst(v) :=
min(d(s, v), d(v, t)) for all s-t shortest paths including v. Gutman [5] observed
that a shortest-path search can be pruned at nodes with a reach too small to
get to either source or target from there. The basic approach was considerably
strengthened by Goldberg et al. [6], in particular by a clever integration of short-
cuts [3], i.e., single edges that represent whole paths in the original graph.

Highway-Node Routing [3] computes for a given sequence of node sets V =:
V0 ⊇ V1 ⊇ . . . ⊇ VL a hierarchy of overlay graphs [7,8]: the level-� overlay graph
consists of the node set V� and an edge set E� that ensures the property that
all distances between nodes in V� are equal to the corresponding distances in
the underlying graph G�−1. A bidirectional query algorithm takes advantage of
the multi-level overlay graph by never moving downwards in the hierarchy—by
that means, the search space size is greatly reduced. The most recent variant
of HNR [9], Contraction Hierarchies, obtains a node classification by iteratively
contracting the ‘least important’ node, yielding a hierarchy with up to |V | levels.
Moreover, the input graph G is transfered to a search graph G′ by storing only
edges directing from unimportant to important nodes. As a remarkable result,
G′ is smaller than G yielding a negative overhead per node. Finally, by this
transformation the query is simply a plain bidirectional Dijkstra operating on G′.

Transit-Node Routing [10] is based on a simple observation intuitively used by
humans: When you start from a source node s and drive to somewhere ‘far away’,
you will leave your current location via one of only a few ‘important’ traffic
junctions, called (forward) access nodes

−→
A (s). An analogous argument applies

to the target t, i.e., the target is reached from one of only a few backward access
nodes

←−
A (t). Moreover, the union of all forward and backward access nodes of all

nodes, called transit-node set T , is rather small. This implies that for each node
the distances to/from its forward/backward access nodes and for each transit-
node pair (u, v) the distance between u and v can be stored. For given source



Combining Hierarchical and Goal-Directed Speed-Up Techniques 305

and target nodes s and t, the length of the shortest path that passes at least one
transit node is given by dT (s, t) = min{d(s, u) + d(u, v) + d(v, t) | u ∈ −→A (s), v ∈←−
A (t)}. As a final ingredient, a locality filter L : V × V → {true, false} is needed
that decides whether given nodes s and t are too close to travel via a transit
node. L has to fulfill the property that L(s, t) = false implies d(s, t) = dT (s, t).
Then, the following algorithm can be used to compute the shortest-path length
d(s, t):

if L(s, t) = false then compute and return dT (s, t); else use any other routing
algorithm.

Note that for a given source-target pair (s, t), let a := max(|−→A (s)|, |←−A (t)|).
For a global query (i.e., L(s, t) = false), we need O(a) time to lookup all access
nodes, O(a2) to perform the table lookups, and O(1) to check the locality filter.

Goal-Directed Approaches direct the search towards the target t by prefer-
ring edges that shorten the distance to t and by excluding edges that cannot
possibly belong to a shortest path to t—such decisions are usually made by
relying on preprocessed data.

ALT [11] is based on A∗ search, Landmarks, and the Triangle inequality. Af-
ter selecting a small number of nodes, called landmarks, for all nodes v, the
distances d(v, λ) and d(λ, v) to and from each landmark λ are precomputed.
For nodes v and t, the triangle inequality yields for each landmark λ two lower
bounds d(λ, t) − d(λ, v) ≤ d(v, t) and d(v, λ) − d(t, λ) ≤ d(v, t). The maximum
of these lower bounds is used during an A∗ search. The original ALT approach
has fast preprocessing times and provides reasonable speed-ups, but consumes
too much space for very large networks. In the subsequent paragraph on “Pre-
vious Combinations”, we will see that there is a way to reduce the memory
consumption by storing landmark distances only for a subset of the nodes.

Arc-Flags. The arc-flag approach, introduced in [12], first computes a partition
C of the graph. A partition of V is a family C = {C0, C1, . . . , Ck} of sets Ci ⊆ V
such that each node v ∈ V is contained in exactly one set Ci. An element of a
partition is called a cell. Next, a label is attached to each edge e. A label contains,
for each cell Ci ∈ C, a flag AFCi(e) which is true if a shortest path to a node in
Ci starts with e. A modified Dijkstra then only considers those edges for which
the flag of the target node’s cell is true. The big advantage of this approach is its
easy and fast query algorithm. However, preprocessing is very expensive, either
regarding preprocessing time or memory consumption [13].

Previous Combinations. Many speed-up techniques can be combined. In [7],
a combination of a special kind of geometric container [14], the separator-based
multi-level method [8], and A∗ search yields a speed-up of 62 for a railway
transportation problem. In [1], combinations of A∗ search, bidirectional search,
the separator-based multi-level method, and geometric containers are studied:
Depending on the graph type, different combinations turn out to be best.



306 R. Bauer et al.

REAL. Goldberg et al. [6] have successfully combined their advanced version
of REach with landmark-based A∗ search (the ALt algorithm), obtaining the
REAL algorithm. In the most recent version, they introduce a variant where
landmark distances are stored only with the more important nodes, i.e., nodes
with high reach values. By this means, the memory consumption can be reduced.

HH∗ [15] combines highway hierarchies [16] (HH) with landmark-based A∗

search. Similar to [6], the landmarks are not chosen from the original graph,
but for some level k of the highway hierarchy, which reduces the preprocessing
time and memory consumption. As a result, the query works in two phases: in an
initial phase, a non-goal-directed highway query is performed until all entrance
points to level k have been discovered; for the remaining search, the landmark
distances are available so that the combined algorithm can be used.

SHARC [17] extends and combines ideas from highway hierarchies (namely, the
contraction phase, which produces SHortcuts) with the ARC flag approach. The
result is a fast unidirectional query algorithm, which is advantageous in scenar-
ios where bidirectional search is prohibitive. In particular, using an approxima-
tive variant allows dealing with time-dependent networks efficiently. Even faster
query times can be obtained when a bidirectional variant is applied.

1.2 Our Contributions

In this work, we study a systematic combination of speed-up techniques for Dijk-
stra’s algorithm. However, we observed in [18] that some combinations are more
promising than others. Hence, we focus on the most promising ones: adding goal-
direction to hierarchical speed-up techniques. By evaluating different inputs and
scenarios, we gain interesting insights into the behavior of speed-up techniques
when combining them. As a result, we are able to present the fastest known
techniques for several scenarios. For sparse graphs, a combination of Highway-
Node Routing and Arc-Flags yields excellent speed-ups with low preprocessing
effort. The combination is only overtaken by Transit-Node Routing in road net-
works with travel times, but the gap is almost closed. However, even Transit-
Node Routing can be further accelerated by adding goal-direction. Moreover,
we introduce a hierarchical ALT algorithm, called CALT, that yields a good
performance on denser graphs. Finally, we reveal interesting observations when
combining Arc-Flags with Reach.

We start our work on combinations in Section 2 by presenting a generic ap-
proach how to improve the performance of basic speed-up techniques in general.
The key observation is that we extract an important subgraph, called the core,
of the input graph and use only the core as input for the preprocessing-routine
of the applied speed-up technique. As a result, we derive a two-phase query
algorithm, similar to partial landmark REAL or HH∗. During phase 1 we use
plain Dijkstra to reach the core, while during phase 2, we use a speed-up tech-
nique in order to accelerate the search within the core. The full power of this
core-based routing approach can be unleashed by using a goal-directed technique



Combining Hierarchical and Goal-Directed Speed-Up Techniques 307

during phase 2. Our experimental study in Section 5 shows that when using ALT
during phase 2, we end in a very robust technique that is superior to plain ALT.

In Section 3, we show how to remedy the crucial drawback of Arc-Flags: its
preprocessing effort. Instead of computing arc-flags on the full graph, we use a
purely hierarchical method until a specific point during the query. As soon as we
have reached an ‘important’ subgraph, i.e., a high level within the hierarchy, we
turn on arc-flags. As a result, we significantely accelerate hierarchical methods
like Highway-Node Routing. Our aggressive variant moderately increases prepro-
cessing effort but query performance is almost as good as Transit-Node Routing
in road networks: On average, we settle only 45 nodes for computing the distance
between two random nodes in a continental road network. The advantage of this
combination over Transit-Node Routing is its very low space consumption.

ALT

Arc-Flags

Reach

Core-Based Routing

Highway Hierarchies

Highway-Node Routing

Transit Node Routing

REAL

SHARC

HH ∗

TNR+AF

CHASE

ReachFlags

CALT

Fig. 1. Overview of combinations of speed-up tech-
niques. Speed-up techniques are drawn as nodes
(goal-directed techniques on the left, hierarchical on
the right). A dashed edge indicates an existing com-
bination, whereas thick edges indicate combinations
presented in this work.

However, we are also able
to improve the performance
of Transit-Node Routing. In
Section 4, we present how to
add goal-direction to this ap-
proach. As a result, the num-
ber of required table lookups
can be reduced by a factor of
13, resulting in average query
times of less than 2 μs—more
than three million times faster
than Dijkstra’s algorithm.

As already mentioned, a
few combinations like HH∗,
REAL, and SHARC have al-
ready been published. Hence,
Figure 1 provides an overview
over existing combinations already published and those which are presented in
this work. Note that all techniques in this work use bidirectional search. Also
note that due to space limitations all proofs of correctness are skipped but will
be included in the full paper.

2 Core-Based Routing

In this section, we introduce a very easy and powerful approach to generally
reduce the preprocessing of the speed-up techniques introduced in Section 1.
The central idea is to use contraction [9] to extract an important subgraph and
preprocess only this subgraph instead of the full graph.

Preprocessing. At first, the input graph G = (V, E) is contracted to a graph
GC = (VC , EC), called the core. Note that we could use any contraction rou-
tine, that removes nodes from the graph and inserts edges to preserve distances
between core nodes. Examples are those from [16,6,17] or the most advanced



308 R. Bauer et al.

one from [9]. The key idea of core-based routing is not to use G as input for
preprocessing but to use GC instead. As a result, preprocessing of most tech-
niques can be accelerated as the input can be shrunk. However, sophisticated
methods like Highway Hierarchies, REAL, or SHARC already use contraction
during preprocessing. Hence, this advantage especially holds for goal-directed
techniques like ALT or Arc-Flags. After preprocessing the core, we store the
preprocessed data and merge the core and the normal graph to a full graph
GF = (V, EF = E ∪ EC). Moreover, we mark the core-nodes with a flag.

Query. The s-t query is a modified bidirectional Dijkstra, consisting of two
phases and performed on GF . During phase 1, we search the graph search until
all entrance points of s and t are found (cf. [15] for details). We identify a superset
of those nodes by the following approach. We run a bidirectional Dijkstra rooted
at s and t not relaxing edges belonging to the core. We add each core node settled
by the forward search to a set S (T for the backward search). The first phase
terminates if one of the following two conditions hold: (1) either both priority
queues are empty or (2) the distance to the closest entry points of s and t is
larger than the length of the tentative shortest path. If case (2), the whole query
terminates. The second phase is initialized by refilling the queues with the nodes
belonging to S and T . As key we use the distances computed during phase 1.
Afterwards, we execute the query-algorithm of the applied speed-up technique
which terminates according to its stopping condition.

CALT. Although we could use any of the speed-up techniques to instantiate our
core-based approach we focus on a variant based on ALT due to the following
reasons. First of all, ALT works well in dynamic scenarios. As contraction seems
easy to dynamize, we are optimistic that CALT (Core-ALT) also works well in
dynamic scenarios. Second, pure ALT is a very robust technique with respect
to the input. Finally, ALT suffers from the critical drawback of high memory
consumption—we have to store two distances per node and landmark—which
can be reduced by switching to CALT.

On top of the preprocessing of the generic approach, we compute landmarks
on the core and store the distances to and from the landmarks for all core
nodes. However, ALT needs lower bounds for all nodes to the source and target.
As we do not store distances from all nodes to the landmarks, we need proxy
nodes, which were introduced for the partial REAL algorithm in [6]. The method
developed there can directly be applied to CALT: The proxy s′ of a node s is
the core node closest to s. We compute these proxy nodes for a given s–t query
during the initialization phase of the first phase of the query. During the second
phase we use the landmark information for the core in order to speed-up the
query within the core.

3 Hierarchy-Aware Arc-Flags

Two goal-directed techniques have been established during the last years: ALT
and Arc-Flags. The advantages of ALT are fast preprocessing and easy adaption



Combining Hierarchical and Goal-Directed Speed-Up Techniques 309

to dynamic scenarios, while the latter is superior with respect to query-
performance and space consumption. However, preprocessing of Arc-Flags is ex-
pensive. The central idea of Hierarchy-Aware Arc-Flags is to combine—similar
to REAL or HH∗—a hierarchical method with Arc-Flags. By computing arc-
flags only for a subgraph containing all nodes in high levels of the hierarchy, we
are able to reduce preprocessing times. In general, we could use any hierarchical
approach but as Contraction Hierarchies (CH) is the hierarchical method with
lowest space consumption, we focus on the combination of Contraction Hier-
archies and Arc-Flags. However, we also present a combination of Reach and
Arc-Flags.

3.1 Contraction Hierarchies + Arc-Flags (CHASE)

As already mentioned in Section 1.1, Contraction Hierarchies is basically a plain
bidirected Dijkstra on a search graph constructed during preprocessing. We are
able to combine Arc-Flags and Contraction Hierarchies in a very natural way and
name it the CHASE-algorithm (Contraction-Hierarchy + Arc-flagS + highway-
nodE routing).

Preprocessing. First, we run a complete Contraction Hierarchies preprocessing
which assembles the search graph G′. Next, we extract the subgraph H of G′

containing the |VH | nodes of highest levels. The size of VH is a tuning parameter.
Recall thatContraction Hierarchies uses |V | levels with the most important node
in level |V |−1. We partition H into k cells and compute arc-flags according to [13]
for all edges in H . Summarizing, the preprocessing consists of constructing the
search graph and computing arc-flags for H .

Query. Basically, the query is a two-phase algorithm. The first phase is a bidi-
rected Dijkstra on G′ with the following modification: When settling a node v
belonging to H , we do not relax any outgoing edge from v. Instead, if v is settled
by the forward search, we add v to a node set S, otherwise to T . Phase 1 ends
if the search in both directions stops. The search stops in one direction, if either
the respective priority queue is empty or if the minimum of the key values in
that queue and the distance to the closest entrance point in that direction is
equal or larger than the length of the tentative shortest path. The whole search
can be stopped after the first phase, if either no entrance points have been found
in one direction or if the tentative shortest-path distance is smaller than mini-
mum over all distances to the entrance points and all key values remaining in
the queues. Otherwise we switch to phase 2 of the query which we initialize
by refilling the queues with the nodes from S and T . As keys we use the dis-
tances computed during phase 1. In phase 2, we use a bidirectional Arc-Flags
Dijkstra. We identify the set CS (CT ) of all cells that contain at least one node
u ∈ S (u ∈ T ). The forward search only relaxes edges having a true arc-flag for
any of the cells CT . The backward search proceeds analogously. Moreover, we
use the CH stopping criterion and the strict alternating strategy for forward and



310 R. Bauer et al.

backward search. However, during our experimental study, it turned out that
stall-on-demand [3], which accelerates pure CH, does not pay off for CHASE.
The computational overhead is too high which is not compensated by the slight
decrease in search space. So, the resulting query is a plain bidirectional Dijkstra
operating on G′ with the CH stopping criterion and arc-flags activated on high
levels of the hierarchy.

Note that we have a trade-off between performance and preprocessing. If we
use bigger subgraphs as input for preprocessing arc-flags, query-performance is
better as arc-flags can be used earlier. However, preprocessing time increases as
more arc-flags have to be computed.

3.2 Reach + Arc-Flags (ReachFlags)

Similar to CHASE, we can also combine Reach and Arc-Flags, called Reach-
Flags. However, we slightly alter the preprocessing: Reach-computation accord-
ing to [6] is a process that iteratively contracts and prunes the input. This itera-
tion can be interpreted as levels of a hierarchy: A node u belongs to level i if u is
still part of the graph during iteration step i. With this notion of hierarchy, we
are able to preprocess ReachFlags. We first run a complete Reach-preprocessing
as described in [6] and assemble the output graph. Next, we extract a subgraph H
from the output graph containing all nodes of level ≥ �. Again, we compute arc-
flags in H according to [13]. The ReachFlags-query can easily by adapted from
the CHASE-query in straight-forward manner. Note that the input parameter
� adjusts the size of VH . Thus, a similar trade-off in performance/preprocessing
effort like for CHASE is given.

4 Transit-Node Routing + Arc-Flags (TNR+AF)

Recall that the most time-consuming part of a TNR-query are the table lookups.
Hence, we want to further improve the average query times, the first attempt
should be to reduce the number of those lookups. This can be done by excluding
certain access nodes at the outset, using an idea very similar to the arc-flag
approach. We consider the minimal overlay graph GT = (T , ET ) of G, i.e., the
graph with (transit) node set T and an edge set ET such that |ET | is minimal
and for each node pair (s, t) ∈ T ×T , the distance from s to t in G corresponds
to the distance from s to t in GT . We partition this graph GT into k regions and
store for each node u ∈ T its region r(u) ∈ {1, . . . , k}. For each node s and each
access node u ∈ −→A (s), we manage a flag vector f→s,u : {1, . . . , k} → {true, false}
such that f→s,u(x) is true iff there is a node v ∈ T with r(v) = x such that

d(s, u)+d(u, v) is equal to min{d(s, u′)+d(u′, v) | u′ ∈ −→A (s)}. In other words, a
flag of an access node u for a particular region x is set to true iff u is useful to get
to some transit node in the region x when starting from the node s. Analogous
flag vectors f←t,u are kept for the backward direction.

Preprocessing. The flag vectors can be precomputed in the following way,
again using ideas similar to those used in the preprocessing of the arc-flag



Combining Hierarchical and Goal-Directed Speed-Up Techniques 311

approach: Let B ⊆ T denote the set of border nodes, i.e., nodes that are adjacent
to some node in GT that belongs to a different region. For each node s ∈ V and
each border node b ∈ B, we determine the access nodes u ∈ −→A (s) that minimize
d(s, u) + d(u, b); we set f→s,u(r(b)) to true. In addition, f→s,u(r(u)) is set to true

for each s ∈ V and each access node u ∈ −→A (s) since each access node obviously
minimizes the distance to itself. An analogous preprocessing step has to be done
for the backward direction.

Query. In a query from s to t, we can take advantage of the precomputed flag
vectors. First, we consider all backward access nodes of t and build the flag
vector ft such that ft(r(u)) = true for each u ∈ ←−A (t). Second, we consider only
forward access nodes u of s with the property that the bitwise AND of f→s,u and

ft is not zero; we denote this set by
−→
A ′(s); during this step, we also build the

vector fs such that fs(r(u)) = true for each u ∈ −→A ′(s). Third, we use fs to
determine the subset

←−
A ′(t) ⊆ ←−A (t) analogously to the second step. Now, it is

sufficient to perform only |−→A ′(s)|× |←−A ′(t)| table lookups. Note that determining−→
A ′(s) and

←−
A ′(t) is in O(a), in particular operations on the flag vectors can be

considered as quite cheap.

Optimizations. Presumably, it is a good idea to just store the bitwise OR of
the forward and backward flag vectors in order to keep the memory consumption
within reasonable bounds. The preprocessing of the flag vectors can be acceler-
ated by rearranging the columns of the distance table so that all border nodes
are stored consecutively, which reduces the number of cache misses.

5 Experiments

In this section, we present an extensive experimental evaluation of our com-
bined speed-up techniques in various scenarios and inputs. Our implementation
is written in C++ (using the STL at some points). As priority queue we use a bi-
nary heap. The evaluation was done on two similar machines: An AMD Opteron
22181 and an Opteron 2702. The second machine is used for the combination
of Transit-Node Routing and Arc-Flags, the first one for all other experiments.
Note that the second machine is roughly 10% faster than the first one due to
faster memory. All figures in this paper are based on 10000 random s-t queries
and refer to the scenario that only the lengths of the shortest paths have to be
determined, without outputting a complete description of the paths. Efficient
techniques for the latter have been published in [15,19].

1 The machine runs SUSE Linux 10.1, is clocked at 2.6 GHz, has 16 GB of RAM and
2 x 1 MB of L2 cache. The DIMACS benchmark on the full US road network with
travel time metric takes 6 013.6 s.

2 SUSE Linux 10.0, 2.0 GHz, 8 GB of RAM, and 2 x 1 MB of L2 cache. The DIMACS
benchmark: 5 355.6 s.



312 R. Bauer et al.

5.1 Road Networks

As inputs we use the largest strongly connected component3 of the road net-
works of Western Europe, provided by PTV AG for scientific use, and of the
US which is taken from the DIMACS Challenge homepage.The former graph
has approximately 18 million nodes and 42.6 million edges. The corresponding
figures for the USA are 23.9 million and 58.3 million, respectively. In both cases,
edge lengths correspond to travel times. For results on the distance metric, see
Tab. 4 in Appendix A.

CALT. In [20], we were able to improve query performance of ALT over [11]
by improving the organization of landmark data. However, we do not compress
landmark information and use a slightly better heuristic for landmark4 selection.
Hence, we report both results. By adding contraction—we use the one from [17]
with c = 3.0 and h = 30—to ALT, we are able to reduce query time to 2.0ms for
Europe and to 4.9ms for the US. This better performance is due to two facts.
On the one hand, we may use more landmarks (we use 64) and on the other
hand, the contraction reduces the number of hops of shortest paths. The latter
observation is confirmed by the figures of CALT with 16 landmarks. Moreover,
the most crucial drawback of ALT—memory consumption—can be reduced to a
reasonable amount, even when using 64 landmarks. Still, CALT cannot compete
with REAL or pure hierarchical methods, but the main motivation for CALT
is its presumably easy dynamization.

CHASE. We report the figures for two variants of CHASE: the economical
variant computes arc-flags only for a subgraph of 0.5% size of the input while
for the generous variant, the subgraph H has a size of 5% of the input (with
respect to number of nodes). We partition H with SCOTCH [21] into 128 cells.

For Europe, the economical variant only needs 7 additional minutes of prepro-
cessing over pure CH and the preprocessed data is still smaller than the input.
Recall that a negative overhead derives from the fact that the search graph
is smaller than the input, see Section 1.1. This economical variant is already
roughly 4 times faster than pure CH. However, by increasing the size of the sub-
graph H used as input for arc-flags, we are able to almost close the gap to pure
Transit-Node Routing. CHASE is only 5 times slower than TNR (and is even
faster than the grid-based approach of TNR [19]). However, the preprocessed
data is much smaller for CHASE, which makes it more practical in environments
with limited memory. Using the distance metric (cf. Tab. 4 in Appendix A), the
gap between CHASE and TNR can be reduced even further. Remarkably, both
pure Arc-Flags and CH perform much worse on distances than on travel times,
whereas the combination CHASE performs—with respect to queries—very sim-
ilarly on both metrics.
3 For historical reasons, some quoted results are based on the respective original net-

work that contains a few additional nodes that are not connected to the largest
strongly connected component.

4 16 landmarks are generated by the maxCover algorithm, 64 are generated by
avoid [11].



Combining Hierarchical and Goal-Directed Speed-Up Techniques 313

Table 1. Overview of the performance of various speed-up techniques, grouped by (1.)
hierarchical methods [Highway Hierarchies (HH), highway-node routing based on HH
(HH-HNR) and on Contraction Hierarchies (CH-HNR), Transit-Node Routing (TNR)],
(2.) goal-directed methods [landmark-based A∗ search (ALT), Arc-Flags (AF)], (3.)
previous combinations, and (4.) the new combinations introduced in this paper. The
additional overhead is given in bytes per node in comparison to bidirectional Dijkstra.
Preprocessing times are given in minutes. Query performance is evaluated by the av-
erage number of settled nodes and the average running time of 10 000 random queries.

Europe USA

method
prepro. query prepro. query

time overhead #settled time time overhead #settled time
[min] [B/node] nodes [ms] [min] [B/node] nodes [ms]

Reach [6] 83 17.0 4 643 3.4700 44 20.0 2 317 1.8100
HH [3] 13 48.0 709 0.6100 15 34.0 925 0.6700
HH-HNR [3] 15 2.4 981 0.8500 16 1.6 784 0.4500
CH-HNR [9] 25 -2.7 355 0.1800 27 -2.3 278 0.1300
TNR [19] 164 251.0 N/A 0.0056 205 244.0 N/A 0.0049
TNR [9] 112 204.0 N/A 0.0034 90 220.0 N/A 0.0030

ALT-a16 [6] 13 70.0 82 348 160.3000 19 89.0 187 968 400.5000
ALT-m16 [20] 85 128.0 74 669 53.6000 103 128.0 180 804 129.3000
AF [13] 2 156 25.0 1 593 1.1000 1 419 21.0 5 522 3.3000

REAL [6] 141 36.0 679 1.1100 121 45.0 540 1.0500
HH∗ [3] 14 72.0 511 0.4900 18 56.0 627 0.5500
SHARC [17] 192 20.0 145 0.0910 158 21.0 350 0.1800

CALT-m16 2 16 8.0 3 017 3.9000 26 8.0 7 079 8.3000
CALT-a64 2 14 20.0 1 394 2.0000 21 19.0 3 240 4.9000
CHASE eco 3.1 32 0.0 111 0.0440 36 -0.8 127 0.0490
CHASE gen 3.1 99 12.0 45 0.0170 228 11.0 49 0.0190
ReachFlags 3.2 229 30.0 1 168 0.7600 318 25.0 1 636 1.0200
TNR+AF 4 229 321.0 N/A 0.0019 157 263.0 N/A 0.0017

Size of the Subgraph. The combination of Contraction Hierarchies and Arc-Flags
allows a very flexible trade-off between preprocessing and query performance.
The bigger the subgraph H used as input for Arc-Flags, the longer preprocess-
ing takes but query performance decreases. Table 2 reports the performance
of CHASE for different sizes of H in percentage of the original graph. Recall
that 0.5% equals our economical variant, while 5% corresponds to the generous
variant.

Two observations are remarkable: the effect of stall-on-demand (→ Section 3.1)
and the size of the subgraphs. While stall-on-demand pays off for pure CH,
CHASE does not win from turning on this optimization. The number of set-
tled nodes decreases but due to the overhead query times increase. Another
very interesting observation is the influence of the input size for arc-flags. Ap-
plying goal-direction on a very high level of the hierarchy speeds up the query
significantly. Increasing the size of H to 10% or even 20% yields a much higher
preprocessing effort (both space and time) but query performance decreases only



314 R. Bauer et al.

Table 2. Performance of CHASE for Europe with stall-on-demand turned on and off
running 10 000 random queries

size of H 0.0% 0.5% 1.0% 2.0% 5.0% 10.0% 20.0%

Prepro. time [min] 25 31 41 62 99 244 536
space [Byte/n] -2.7 0.0 1.9 4.9 12.1 22.2 39.5

Query # settled 355 86 67 54 43 37 34
(with s-o-d) time [µs] 180.0 48.5 36.3 29.2 22.8 19.7 17.2

Query # settled 931 111 78 59 45 39 35
(without s-o-d) time [µs] 286.3 43.8 30.8 23.1 17.3 14.9 13.0

slightly, compared to 5%. However, our fastest variant settles only 35 nodes on
average having query times of 13μs. Note that for this input, the average short-
est path in its contracted form consists of 22 nodes, so only 13 unnecessary nodes
are settled on average.

ReachFlags. We use l = 2 to determine the sub-graph for arc-flags prepro-
cessing (cf. Section 3.2). We observe that it does not pay off to combine Arc-
Flags—instead of landmarks—with REAL. Although query times are slightly
faster than REAL, the search space is higher. One reason might be that our
choice of parameters for Reach yield an increase in search space by roughly 20%
compared to [6]. Still, it seems as if ReachFlags is inferior to CHASE which is
mainly due to the good performance of Contraction Hierarchies.

TNR+AF. The fastest variant of Transit-node Routing without using flag vec-
tors is presented in [9]; the corresponding figures are quoted in Tab. 1. For this
variant, we computed flag vectors according to Section 4 using k = 48 regions.
This takes, in the case of Europe, about two additional hours and requires 117
additional bytes per node. Then, the average query time is reduced to as little
as 1.9μs, which is an improvement of almost factor 1.8 (factor 2.9 compared to
our first publication in [19]) and a speed-up compared to Dijkstra’s algorithm of
more than factor 3 million. The results for the US are even better.

The improved running times result from the reduced number of table accesses:
in the case of Europe, on average only 3.1 entries have to be looked up instead
of 40.9 when no flag vectors are used. Note that the runtime improvement is
considerably less than a factor of 40.9 / 3.1 = 13.2 though. This is due to the
fact that the average runtime also includes looking up the access nodes and
dealing with local queries.

5.2 Robustness of Combinations

In the last section we focused on the performance of our combinations on road
networks. However, existing combinations of goal-directed and hierarchical meth-
ods like REAL or SHARC are very robust to the input. Here, we evaluate our
most promising combinations—CALT and CHASE—on various other inputs.



Combining Hierarchical and Goal-Directed Speed-Up Techniques 315

Table 3. Performance of bidirectional Dijkstra, ALT, CALT, CH, and economical
CHASE on unit disk graphs with different average degree and grid graphs with different
number of dimensions. Note that the we use the aggressive variant of Contraction
Hierarchies, better results may be achieved by better input parameters.

Prepro Query Prepro Query Prepro Query
time space #settled time space #settled time space #settled

[s] [B/n] nodes [s] [B/n] nodes [s] [B/n] nodes

unit disk average degree 5 average degree 7 average degree 10

bidir. Dijkstra 0 0 299 077 0 0 340 801 0 0 325 803
ALT-m16 490 128 10 051 514 128 10 327 566 128 11 704
CALT-m16 34 2 726 166 13 927 658 62 2 523
CALT-a64 32 7 689 135 29 670 511 137 992
CH-HNR 94 -13 236 1 249 -11 1 089 34 274 -4 2 475
CHASE 103 -12 66 1 368 -7 424 34 847 6 1 457

grid 2-dimensional 3-dimensional 4-dimensional

bidir. Dijkstra 0 0 79 962 0 0 45 269 0 0 21 763
ALT-m16 65 128 2 362 100 128 1 759 133 128 1 335
CALT-m16 113 98 798 202 165 1 057 171 142 1 275
CALT-a64 60 211 458 101 386 557 129 487 774
CH-HNR 70 0 418 13 567 14 2 177 133 734 29 14 501
CHASE 73 2 274 13 585 22 2 836 133 741 32 30 848

railways Berlin/Brandenburg Ruhrgebiet long distance

bidir. Dijkstra 0 0 1 299 830 0 0 1 134 420 0 0 609 352
ALT-m16 604 128 56 404 556 128 60 004 291 128 30 021
CALT-m16 174 18 4 622 377 32 7 107 158 29 3 335
CALT-a64 123 45 2 830 191 68 4 247 87 63 2 088
CH-HNR 1636 0 416 2584 4 546 486 3 376
CHASE 2 008 2 125 2863 7 244 536 5 229

We use time-expanded timetable networks5, synthetic unit disk graphs6 (1 000 000
nodes with an average degree of 5, 7, and 10), and grid graphs (2–4 dimensions
with each having 250 000 nodes, edge weights picked uniformly at random be-
tween 1 and 1000.). The results can be found in Tab. 3.

For almost all inputs it pays off to combine goal-directed and hierarchical
techniques. Moreover, CHASE works very well as long as the graph stays some-
how sparse, only on denser graphs like 3- and 4-dimensional grids, preprocessing
times increase significantly, which is mainly due to the contraction routine. Es-
pecially the last 20% of the graph take a long time to contract.

Concerning CALT, we observe that turning on contraction pays off—in most
cases—very well: Preprocessing effort gets less with respect to time and space
5 3 networks: local traffic of Berlin/Brandenburg (2 599 953 nodes and 3 899 807 edges),

local traffic of the Ruhrgebiet (2 277 812 nodes, 3 416 552 edges), long distance con-
nections of Europe (1 192 736 nodes,1 789 088 edges).

6 We obtain such graphs by arranging nodes uniformly at random on the plane and con-
necting nodes with a distance below a given threshold. As metric we use the distance
according to the embedding.



316 R. Bauer et al.

while query performance improves. However, as soon as the graph gets too dense,
e.g. 4-dimensional grids, the gain in performance is achieved by a higher amount
of preprocessed data. The reason for this is that contraction works worse on dense
graphs, thus the core is bigger. Comparing CALT and CHASE, we observe
that CHASE works better or very sparse graphs while CALT yields better
performance on denser graphs. So, it seems as if for dense graphs, it is better to
stop contraction at some point and use a goal-directed technique on the core of
the graph.

6 Conclusion

In this work, we systematically combine hierarchical and goal-directed speed-up
techniques. As a result we are able to present the fastest algorithms for several
scenarios and inputs. For sparse graphs, CHASE yields excellent speed-ups with
low preprocessing effort. The algorithm is only overtaken by Transit-Node Rout-
ing in road networks with travel times, but the gap is almost closed. However,
even Transit-Node Routing can be further accelerated by adding goal-direction.
Finally, we introduce CALT yielding a good performance on denser graphs.

However, our study not only leads to faster algorithms but to interesting
insights into the behavior of speed-up techniques in general. By combining goal-
directed and hierarchical methods we obtain techniques which are very robust to
the input. It seems as if hierarchical approaches work best on sparse graphs but
the denser a graph gets, the better goal-directed techniques work. By combining
both approaches the influence—with respect to performance—of the type of
input fades. Hence, we were able to refine the statement given in [1]: Instead of
blindly combining goal-directed and hierarchical techniques, our work suggest
that for large networks, it pays off to drop goal-direction on lower levels of
the hierarchy. Instead, it is better with respect to preprocessing (and query
performance) to use goal-direction only on higher levels of the hierarchy.

Regarding future work, it may be interesting how the insight stated above
can be used for graphs where hierarchical preprocessing fails. One could think
of a technique that runs only a hierarchical query during the first phase and the
second phase is only a goal-directed search, similar to CALT. For example, we
could stop the construction of a contraction hierarchy at some point and apply
Arc-Flags or ALT to the remaining core. We are optimistic that such a technique
would even achieve very good results on dense graphs. Another open problem
is the dynamization of CALT. We are confident, that CALT is very helpful
in scenarios where edge updates occur very frequentely, e.g. dynamic timetable
information systems.

Acknowledgments. We would like to thank Riko Jacob for interesting discus-
sions on the combination of Transit-Node Routing and Arc-Flags. Moreover, we
thank Robert Geisberger for helping us to use Contraction Hierarchies [9] in our
work. He provided his implementation of [9] and some precomputed contraction
hierarchies for various networks.



Combining Hierarchical and Goal-Directed Speed-Up Techniques 317

References

1. Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining Speed-up Techniques
for Shortest-Path Computations. ACM J. of Exp. Algorithmics 10 (2006)

2. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1, 269–271 (1959)

3. Schultes, D.: Route Planning in Road Networks. PhD thesis, Universität Karlsruhe
(TH), Fakultät für Informatik (2008)

4. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton (1962)

5. Gutman, R.J.: Reach-Based Routing: A New Approach to Shortest Path Algo-
rithms Optimized for Road Networks. In: Proceedings of the 6th Workshop on
Algorithm Engineering and Experiments (ALENEX 2004), pp. 100–111. SIAM
(2004)

6. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better Landmarks Within Reach. In:
Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg
(2007)

7. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line: An Empirical
Case Study from Public Railroad Transport. ACM J. of Exp. Algorithmics 5 (2000)

8. Holzer, M., Schulz, F., Wagner, D.: Engineering Multi-Level Overlay Graphs for
Shortest-Path Queries. In: Proceedings of the 8th Workshop on Algorithm Engi-
neering and Experiments (ALENEX 2006), SIAM (2006)

9. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In: Proceedings of
the 7th Workshop on Experimental Algorithms (WEA 2008). LNCS, Springer,
Heidelberg (2008)

10. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with
Transit Nodes. Science 316, 566 (2007)

11. Goldberg, A.V., Werneck, R.F.: Computing Point-to-Point Shortest Paths from
External Memory. In: Proceedings of the 7th Workshop on Algorithm Engineering
and Experiments (ALENEX 2005), pp. 26–40. SIAM (2005)

12. Lauther, U.: An Extremely Fast, Exact Algorithm for Finding Shortest Paths in
Static Networks with Geographical Background. In: Geoinformation und Mobilität
- von der Forschung zur praktischen Anwendung, vol. 22, pp. 219–230. IfGI prints
(2004)

13. Hilger, M.: Accelerating Point-to-Point Shortest Path Computations in Large Scale
Networks. Master’s thesis, Technische Universität Berlin (2007)

14. Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric Containers for Efficient
Shortest-Path Computation. ACM J. of Exp. Algorithmics 10, 1.3 (2005)

15. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway Hierarchies Star. In:
9th DIMACS Implementation Challenge - Shortest Paths (2006)

16. Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In: Azar, Y., Erlebach,
T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

17. Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. In:
Proceedings of the 10th Workshop on Algorithm Engineering and Experiments
(ALENEX 2008), pp. 13–26. SIAM (2008)

18. Schieferdecker, D.: Systematic Combination of Speed-Up Techniques for exact
Shortest-Path Queries. Master’s thesis, Universität Karlsruhe (TH) (2008)

19. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant
Shortest-Path Queries in Road Networks. In: Proceedings of the 9th Workshop on
Algorithm Engineering and Experiments (ALENEX 2007), pp. 46–59. SIAM (2007)



318 R. Bauer et al.

20. Delling, D., Wagner, D.: Landmark-Based Routing in Dynamic Graphs. In: Deme-
trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)

21. Pellegrini, F.: SCOTCH: Static Mapping, Graph, Mesh and Hypergraph Partition-
ing, and Parallel and Sequential Sparse Matrix Ordering Package (2007)

A Further Experiments

Table 4. Overview on the performance of prominent speed-up techniques and combi-
nations analogous to Tab. 1 but with travel distances as metric

Europe USA

method
prepro. query prepro. query

time overhead #settled time time overhead #settled time
[min] [B/node] nodes [ms] [min] [B/node] nodes [ms]

Reach [6] 49 15.0 7 045 5.5300 70 22.0 7 104 5.9700
HH [3] 32 36.0 3 261 3.5300 38 66.0 3 512 3.7300
CH-HNR 3.1 89 -0.1 1 650 4.1900 57 -1.2 953 1.5000
TNR [3] 162 301.0 N/A 0.0380 217 281.0 N/A 0.0860

ALT-a16 [6] 10 70.0 276 195 530.4000 15 89.0 240 750 430.0000
ALT-m16 2 70 128.0 218 420 127.7000 102 128.0 278 055 166.9000
AF [13] 1 874 33.0 7 139 5.0000 1 311 37.0 12 209 8.8000

REAL [6] 90 37.0 583 1.1600 138 44.0 628 1.4800
HH∗ [3] 33 92.0 1 449 1.5100 40 89.0 1 372 1.3700
SHARC [17] 156 26.0 4 462 2.0100 - -.0 - -000

CALT-m16 2 17 8.0 6 453 8.1000 20 8.0 9 034 11.0000
CALT-a64 2 14 19.0 2 958 4.2000 15 19.0 4 015 5.6000
CHASE eco 3.1 224 7.0 175 0.1560 185 2.5 148 0.1030
CHASE gen 3.1 1 022 27.0 67 0.0640 1 132 18.0 63 0.0430
ReachFlags 3.2 516 31.0 5 224 4.0500 1 897 27.0 6 849 4.6900



Contraction Hierarchies: Faster and Simpler

Hierarchical Routing in Road Networks�

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
{robert.geisberger,sanders,schultes,delling}@ira.uka.de

Abstract. We present a route planning technique solely based on the
concept of node contraction. The nodes are first ordered by ‘importance’.
A hierarchy is then generated by iteratively contracting the least impor-
tant node. Contracting a node v means replacing shortest paths going
through v by shortcuts. We obtain a hierarchical query algorithm using
bidirectional shortest-path search. The forward search uses only edges
leading to more important nodes and the backward search uses only
edges coming from more important nodes. For fastest routes in road net-
works, the graph remains very sparse throughout the contraction pro-
cess using rather simple heuristics for ordering the nodes. We have five
times lower query times than the best previous hierarchical Dijkstra-
based speedup techniques and a negative space overhead, i.e., the data
structure for distance computation needs less space than the input graph.
CHs can be combined with many other route planning techniques, lead-
ing to improved performance for many-to-many routing, transit-node
routing, goal-directed routing or mobile and dynamic scenarios.

1 Introduction

Planning optimal routes in road networks has recently attracted considerable
interest in algorithm engineering because it is an important application that
admits a lot of interesting algorithmic approaches. Many of these techniques
exploit the hierarchical nature of road networks in some way or another.

Here we present a very simple approach to hierarchical routing. Assume the
nodes of a weighted directed graph G = (V, E) are numbered 1..n in order of
ascending ‘importance’. We now construct a hierarchy by contracting the nodes
in this order. A node v is contracted by removing it from the network in such
a way that shortest paths in the remaining overlay graph are preserved. This
property is achieved by replacing paths of the form 〈u, v, w〉 by a shortcut edge
〈u, w〉. Note that the shortcut 〈u, w〉 is only required if 〈u, v, w〉 is the only
shortest path from u to w.

� Partially supported by DFG grant SA 933/1-3, and by the Future and Emerging
Technologies Unit of EC (IST priority – 6th FP), under contract no. FP6-021235-2
(project ARRIVAL).

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 319–333, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



320 R. Geisberger et al.

We shall view the contraction process as a way to add all discovered shortcuts
to the edge set E. We obtain a contraction hierarchy (CH). Section 2 gives more
details.

In Section 3 we explain how the nodes are ordered. Although ‘optimal’ node
ordering seems a quite difficult problem, already very simple local heuristics
turn out to work quite well. The basic idea is to keep the nodes in a priority
queue sorted by some estimate of how attractive it is to contract a node. The
main ingredient of this heuristic estimate is the edge difference: The number of
shortcuts introduced when contracting v minus the number of edges incident
to v. The intuition behind this is that the contracted graph should have as few
edges as possible. Even using only edge difference, quite good CHs are computed.
However, further refinements are useful. In particular, it is important to contract
nodes ‘uniformly’.

For routing, we split the CH (V, E) into an upward graph G↑:= (V, E↑) with
E↑:= {(u, v) ∈ E : u < v} and a downward graph G↓:= (V, E↓) with E↓ :=
{(u, v) ∈ E : u > v}. For a shortest path query from s to t, we perform a mod-
ified bidirectional Dijkstra shortest path search, consisting of a forward search
in G↑ and a backward search in G↓. If, and only if, there exists a shortest s-t-
path in the original graph, then both search scopes eventually meet at a node
v that has the highest order of all nodes in a shortest s-t-path. More details of
the query algorithm are given in Section 4. Applications and refinements like
dynamic routing (i.e., edge weights are allowed to change), many-to-many rout-
ing, and combinations with other speedup techniques can be found in Section 5.
Section 6 shows that in many cases, we get significant improvements over previ-
ous techniques for large real world inputs. Lessons learned and possible future
improvements are summarized in Section 7.

Related Work

Since there has recently been extensive work on speed-up techniques, we can only
give a very abridged overview with emphasis on the directly related techniques
beginning with the closest kin. For a more detailed overview we refer to [1,2].
CHs are an extreme case of the hierarchies in highway-node routing (HNR)
[3,2] – every node defines its own level of the hierarchy. CHs are nevertheless
a new approach in the sense that the node ordering and hierarchy construction
algorithms used in [3,2] are only efficient for a small number of geometrically
shrinking levels. We also give a faster and more space efficient query algorithm
using G↑ and G↓.

The node ordering in highway-node routing uses levels computed by highway
hierarchies (HHs) [4,5,2]. Our original motivation for CHs was to simplify HNR
by obviating the need for another (more complicated) speedup technique (HHs)
for node ordering. HHs are constructed by alternating between two subroutines:
Edge reduction is a sophisticated and relatively costly routine that only keeps
edges required ‘in the middle’ of ‘long-distance’ paths. Node reduction contracts
nodes. In the original paper for undirected HHs [5], node reduction only con-
tracted nodes of degrees one and two, i.e., it removed attached trees and multihop



Contraction Hierarchies: Faster and Simpler Hierarchical Routing 321

paths. We originally viewed node contraction as a mere helper for the main work-
horse edge reduction. For directed graphs [5], we needed a more general criterion
which nodes should be contracted away. It turned out that the edge difference is
a good way to estimate the cost of contracting a node v. In [6,7] this method is
further refined to use a priority queue and to avoid parallel edges. All previous
approaches to contraction had in common that the average degree of the nodes
in the overlay graph would eventually explode. So it looked like an additional
technique such as edge reduction or reaches would be a necessary ingredient of
any high-performance hierarchical routing method. Perhaps the most important
result of CHs is that using only (a more sophisticated) node contraction, we get
very good performance.

The fastest speedup technique so far, transit-node routing [8,2], offers a factor
up to 40 times better query times than CHs. However, it needs considerably
higher preprocessing time and space, is less amenable to dynamization, and,
most importantly it relies on another hierarchical speedup technique for its pre-
processing. We have preliminary evidence that using CHs for this purpose leads
to improved performance.

Finally, there is an entirely different family of speedup techniques based on
goal-directed routing. Combination of CHs with goal-directed routing is the sub-
ject of another paper [9] that systematically studies such combinations.

2 Contraction

Recall from the introduction that when contracting node v, we are dealing with
an overlay graph G′ = (V ′, E′) with V ′ = v..n and an edge set E′ that pre-
serves shortest path distances wrt the input graph. In G′, we face the follow-
ing many-to-many shortest-path problem: For each source node u ∈ v + 1..n
with (u, v) ∈ E′ and each target node w ∈ v + 1..n with (v, w) ∈ E′, we
want to compare the shortest-path distance d(u, w) with the shortcut length
c(u, v) + c(v, w) in order to decide whether the shortcut is really needed. A sim-
ple way to implement this is to perform a forward shortest-path search in the
current overlay graph G′ from each source, ignoring node v, until all targets have
been found. We can also stop the search from u when it has reached distance
d(u, v) + max {c(v, w) : (v, w) ∈ E′}.

Our actual implementation uses a simple, asymmetric form of bidirectional
search inspired by [10]: For each target node w we perform a single-hop backward
search. For each edge (x, w) ∈ E′ we store a bucket entry (c(x, w), w) with node
x. This way, forward search from u can be limited to distance

c(u, v) + max
w:(v,w)∈E′

c(v, w) − min
x:(x,w)∈E′

c(x, w) .

When reaching a node x, we scan its bucket entries. For each entry (C, w), we
can infer that there is a path from u to w of length d(u, x) + C.

Since exact shortest path search for contraction can be rather expensive, we
have implemented two ways to limit the range of searches: We can limit the



322 R. Geisberger et al.

number of hops (edges) used in any path 〈u, . . . , w〉, and we can limit the total
search space size of a forward search. Note that this has no influence on the
correctness of subsequent queries in the CH as long as we make sure to always
insert a shortcut (u, w) when we have not found a path from u to w witnessing
that the shortcut is unnecessary. Also note that for hop limit two, our bidirec-
tional approach obviates a full fledged Dijkstra search. It suffices to scan the
edges leaving a source node u.

Let us now focus the discussion on the hop limit. We get a tradeoff between
fast contraction ‘now’ for small hop limits and a more sparse graph with better
query time and possible easier contraction ‘later’ for a large hop limit. In our
experiments it turned out, that it makes sense to start with a hop limit as small
as one and to later increase it. We switch from one hop limit to the next when
the average degree of the overlay graph G′ exceeds a specified bound.

3 Node Ordering

As already mentioned in the introduction, our basic approach uses a priority
queue whose minimum element contains the node looking most attractive to be
contracted next. The priority used is a linear combination of several terms. In
addition to the single terms used, the linear coefficients of the different terms
are important, some of them can be found in Section 6. In this section we focus
on different possible terms. One difficulty with this approach is that when node
v is contracted, this might affect the priorities of other nodes. We use several
techniques to handle this problem:

– We use lazy update, i.e., before actually contracting v, we update its priority.
If it now exceeds the priority of the second largest element v′, we reinsert v
and continue with v′. This process is repeated until a consistent minimum
is found. Note that (at least wrt the result of node ordering) lazy update
obviates immediate updates when a priority increases.

– We recompute the priority of the neighbors of v.
– We periodically reevaluate all priorities and rebuild the priority queue.

Edge Difference. Arguably the most important term is the edge difference. For
computing it, node ordering uses the same heuristics for limiting search spaces
as are later used in the actual contraction.1

Uniformity. Using only the edge difference, one can get quite slow routing.
For example, if the the input graph is a path, contraction would produce a
linear hierarchy where most queries would again follow paths of linear length.
In contrast, if we iteratively contract maximal independent sets, we would get a
hierarchy where any query is finished in logarithmic time.
1 Updating neighbors of contracted nodes and lazy update ‘almost’ suffice to keep the

priorities up to date wrt the edge difference. However, with some highly constructed
example, not all priorities are updated in time when the search horizon is limited.



Contraction Hierarchies: Faster and Simpler Hierarchical Routing 323

More generally, it seems to be a good idea, to contract nodes everywhere in
the graph in a uniform way, rather than keep contracting nodes in a small region.
We have tried several heuristics for choosing nodes uniformly out of which we
present the two most successful ones. For all measures used here, a large value
means that the node is contracted late.

Deleted Neighbors: We count the number of neighbors that have already been
contracted. This includes neighbors reached via shortcuts. Obviously, this
quantity can be maintained correctly by either lazy update or by updating
the neighbors of a contracted node. This heuristics is very simple and can
be computed efficiently.

Voronoi Regions: Define the Voronoi-Region R(v) of a node v in an overlay
graph as the set of nodes in the input graph that are closer to v than to any
other node in the overlay graph. We use the square root of the size of the
Voronoi-region as a term in the priority function. By preferably contract-
ing small Voronoi regions, we can hope that the nodes of the overlay graph
are spread uniformly over the network. When v is contracted, its neighbor-
ing Voronoi regions will ‘eat up’ R(v). The necessary computations can be
made using O(|R(v)|) steps of Dijkstra’s algorithm [11]. If we always contract
Voronoi regions of size at most a constant times the average region size, we
can easily show that the total number of Dijkstra-steps for maintaining the
size of the Voronoi regions is O(n logn), i.e., computing Voronoi regions is
reasonably efficient. Since Voronoi regions can only grow, lazy update en-
sures that the priority queue works correctly wrt this term of the priority
function.

There are a number of further, optional parameters of the priority function
that turn out to further improve the hierarchy at the cost of increased time for
node ordering.

Cost of contraction. A time consuming part of the contraction are the forward
shortest-path searches to decide the necessity of shortcuts. So for example, we
can use the sum of these search space sizes as a priority term. Note that this
quantity can change beyond the direct neighborhood of the contracted node, i.e.,
our update rules are only heuristics.

Cost of queries. One can try to estimate how contracting nodes affects the size of
query search spaces. We have implemented the following simple estimate Q(v)
that can be shown to be an upper bound for the number of hops of a path
〈s, . . . , v〉 explored during a query: Initially, Q(v) = 0. When v is contracted
then for each neighbor u of v, Q(u):= max(Q(u), Q(v) + 1).

Global measures. We can prefer contracting globally unimportant nodes based
on some path based centrality measure such as (approximate) betweenness [12]
or reach [13,6].

Generally speaking, one can come up with many heuristic terms. But one gets
an inflation of tuning parameters. Therefore, in the experiments we try to keep



324 R. Geisberger et al.

the number of actually used terms small, we use the same set of parameters for
different inputs, and we make some sensitivity analysis to find out how robust
the parameter choices are.

4 Query

In the introduction we have already outlined the basic approach which we shall
now describe in more detail. An algorithm that already works quite well performs
complete Dijkstra searches from s in G↑ and from t in G↓. We have

Lemma 1. d(s, t) = min {d(s, v) + d(v, t) : v is settled in both searches}.

Proof. We only give a proof outline for self-containedness since the CH-query
is a special case of the HNR-query for which a detailed yet simple correctness
proof is given in [2]. In particular, here we only consider the case where shortest
paths are unique.

Let v denote the largest2 node on the shortest path P from s to t. We first
claim that the sequence of prefix maxima3 of P forms the shortest path from
s to v in the upward graph G↑. If s = v there is nothing to prove. Otherwise,
consider any pair (u, w) of subsequent prefix maxima in P and the overlay graph
G′ = (u..n, E′) existing at some point during contraction. Since the shortest path
from u to w uses only interior nodes smaller than u, and by definition of the
properties of an overlay graph, (u, w) ∈ E′ and c(u, w) = d(u, w). Moreover,
u < w and hence (u, w) ∈ G↑. Analogously, the sequence of suffix maxima of P
forms the shortest path from v to t in the downward graph. ��

There are two refinements to the complete search algorithm (that are also anal-
ogous to the HNR-query algorithm [3,2]). The query alternates between forward
and backward search. Whenever we settle a node in one direction that is already
settled in the other direction, we get a new candidate for a shortest path. Search
is aborted in one direction if the smallest element in the queue is at least as large
as the best candidate path found so far. This does not affect correctness, since
additional settled nodes in this direction cannot possibly contribute to better
solutions.

We also prune the search space using the stall-on-demand technique: Before
a node v is settled at distance d(v) in the forward search, it uses the information
available in G↓ to inspect downward edges (w, v) with w > v. If d(w)+c(w, v) <
d(v), then the search can be stopped (stalled) at v with stalling distance d(w)+
c(w, v) since the computed distance to v is suboptimal so that a continuation
of the search from v would be futile. Such stalled nodes are settled but their
incident edges are not relaxed, leading to a considerably smaller search space.
Moreover, stalling can propagate to further nodes x in the neighborhood of v,
if the path over w in G to x is shorter than the currently found path to x in
2 Recall that nodes are considered to be numbered during node ordering.
3 i.e., the sequence of nodes ui on P = 〈s = u1, u2, . . . , uk = t〉 with the property that

ui > max {u1, u2, . . . , ui−1}.



Contraction Hierarchies: Faster and Simpler Hierarchical Routing 325

G↑. We perform a local BFS from v using the edges available in G↑ or G↓.4

The search stops at nodes that are not being stalled. To ensure correctness, we
unstall a node x if a shorter path in G↑ to x than the current one in G↑ is found.
Stall-on-demand is also applied to the backward search in the same way.

The graphs G↑ and G↓ can be stored in one data structure, using two direction
flags for each edge to indicate whether it belongs to G↑ or G↓. Irrespective of the
direction flags, each edge (u, v) is stored only once, namely at the smaller node,
which complies with the requirements of both forward and backward search
(including the stall-on-demand technique). In particular, this also applies to
undirected edges {u, v} with the same weight in both directions. In contrast,
an efficient implementation of Dijkstra’s (even unidirectional) algorithm needs
to store such undirected edges {u, v} both at u and v. This is the reason why
we may need less space than Dijkstra’s algorithm for the original graph, even
though we have to insert shortcuts.

Outputting Paths. As all routing techniques that use shortcuts, we need a way
to unpack them in order to obtain a shortest path in the input graph. This is
particularly simple for CHs since each shortcut (u, w) bypasses exactly one node
v. We therefore obtain a simple recursive unpacking routine. In order to imple-
ment this efficiently, we need to store v together with the shortcut somewhere.
Note that this information is not easily obtained just from G↑ or G↓, i.e., our
observation that we may need less space than the input graph only holds when
path unpacking is not required.

5 Applications

Changing all Edge Weights. In CHs we can distinguish between two main phases
of preprocessing, node ordering and hierarchy construction. Similar to highway-
node routing, we do not have to redo node ordering when the edge weights
change – for example when we switch from driving times for a fast car to a slow
truck. Hierarchy construction ensures correctness for all node orderings. We will
see that the resulting hierarchies are almost as good as hierarchies where node
ordering has been repeated. The intuition behind this is that most important
nodes remain important even if the actual edge weights change – both sports
cars and trucks are fastest on the motorway.

Changing some Edge Weights. Since CHs are a special case of HNR [3,2], we
can also adopt the successful approaches used there for routing in presence of
some changed edges (e.g., due to traffic jams).

Many-to-Many Routing. In [10] we developed an algorithm based on highway
hierarchies that finds all shortest path distances between a set S of source nodes
and a set T of target nodes. The idea is to perform only |T | backward searches,
4 We also have a version that additionally exploits the parent pointers of the shortest

path tree. This slightly decreases search space but slightly increases query time.



326 R. Geisberger et al.

store the resulting search spaces appropriately and then to perform |S| forward
searches that use the stored information on the backward searches to find the
shortest path distances. As explained in [2], this works for a large family of non-
goal-directed hierarchical routing techniques including highway-node routing and
reach-based routing [13,6]. CHs are particularly well suited for many-to-many
routing because they have very small search spaces and because for the backward
search spaces we only need to store nodes that are not stalled.

Distance Oracles for Replacing Large Distance Tables. CH search-spaces are so
small that we can drop the distance tables computed by many-to-many routing
and instead store the search spaces from S and T as arrays of node-distance
pairs sorted by node-id. Then an s-t query amounts to intersecting the search
spaces for s and t and computing the minimum resulting distance. This inter-
section operation is similar to binary merging and thus runs very fast and cache
efficiently.

Transit-Node Routing. Transit-node routing [8,2] is currently the fastest static
routing technique available. Its main disadvantage compared to simpler tech-
niques is that it needs considerably more preprocessing time. The preprocessing
for transit-node routing is essentially a generalization of many-to-many routing.
Hence, we can also do preprocessing using CHs and expect to obtain an improve-
ment. We can use the nodes designated as most important by node ordering to
define the sets of transit nodes. The edge difference criterion used by node or-
dering might help to identify transit-node sets that imply small sets of access
nodes.

Combination with Other Speedup Techniques. There are interesting synergies be-
tween hierarchical speedup techniques and goal-directed methods such as land-
mark A∗ [6] or arc flags [14,15]. Goal-directed techniques become cheaper in
terms of preprocessing time and space if they are only applied to a core ob-
tained after some contraction [16,17,6,7]. Since CHs are a fast, flexible, effective,
and very fine-grained approach to this contraction, they seem best suited for
this. The resulting overall query time is often better than any of the techniques
alone. For example, an integration of CHs and arc-flags is so fast that it almost
achieves the query times of transit-node routing using less space [9]. Another
interesting example is SHARC-routing [7] which applies a sophisticated, multi-
level variant of arc-flags to an network enriched with shortcuts. This has the
advantage that it yields a unidirectional, very simple query algorithm that takes
hierarchy into account indirectly via the arc flags.

Perhaps most importantly, not all graph families are as well behaved as road
networks with travel time weights with respect to contraction. So it sometimes
seems to be the best idea to stop contraction at some point and solely rely on
goal-directed techniques for the core [9].

Node contraction started out as an ingredient of highway hierarchies (HHs). It
would be interesting to see how good HHs would perform if we would reintegrate
CHs into HHs. We could expect a more sparse network in the upper levels but



Contraction Hierarchies: Faster and Simpler Hierarchical Routing 327

also a more complicated, less focused query algorithm. Our guess would be that
for road networks, we cannot expect an additional improvement but perhaps we
should keep this approach in mind for network where contraction does not work
so well.

Similarly, we could integrate CHs with reach-based routing [13,6]. CHs could
contribute the shortcuts to be used, possibly simplifying the reach approxima-
tions during preprocessing. During the query, we could use reach values to prune
the search additionally.

Implementation on Mobile Devices. Due to its small memory overhead and
search space, CHs are a good starting point for route planning on mobile devices.
This is the subject of a separate paper [18].

6 Experiments

Environment. Experiments have been done on one core of a single AMD Opteron
Processor 270 clocked at 2.0 GHz with 8 GB main memory and 2 × 1 MB L2
cache, running SuSE Linux 10.3 (kernel 2.6.22). The program was compiled by
the GNU C++ compiler 4.2.1 using optimization level 3.

Test Instances. Our experiments in this section have been done on a road net-
work of Western Europe5 with 18 029 721 nodes and 42 199 587 directed edges,
which has been made available for scientific use by the company PTV AG. For
each edge, its length and one out of 13 road categories (e.g., motorway, national
road, regional road, urban street) is provided so that an expected travel time
can be derived, which we use as edge weight. Results for other test instances can
be found in the full paper.

Different Variants. Although the basic idea of CHs is simple, we have many
tuning parameters that should be set carefully and we should verify that these
choices are robust in the sense that they work reasonably well for different in-
stances. Therefore, we build up the system incrementally. Tab. 1 shows the most
fundamental performance parameters for a number of increasingly sophisticated
variants. For comparison, we add the times for the fastest variant of highway-
node routing (HNR) from [3] using the same system environment. Note that this
version of HNR outperforms all previous speedup techniques with comparable
preprocessing time so that focusing on HNR is meaningful.

Already using only the edge difference we obtain query times better than
HNR. However, the preprocessing time and space is quite large. Just adding
the uniformity parameter based on number of deleted neighbors (Line ED), we
obtain more than four times better query time than HNR. The time for hierarchy
construction becomes better than HNR once we take the search space size into

5 Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and the UK.



328 R. Geisberger et al.

Table 1. Performance of various node ordering heuristics. Terms of the priority
function: E=edge difference, D=deleted neighbors, S=search space size, W=relative
betweenness, V=

√
Voronoi region size, L=limit search space on weight calculation,

Q=upper bound on edges in search paths. Digits denote hop limits for testing short-
cuts. Space overhead is wrt an adjacency array for bidirectional Dijkstra that stores
each directed edge at both endpoints. The bottom line shows the performance for
highway-node routing using the code from [3].

method node hierarchy query nodes non-stalled edges space
ordering [s] construction [s] [μs] settled nodes relaxed overhead

[B/node]

E 13010 1739 670 1791 1127 4999 -1.6
ED 7746 1062 183 403 236 1454 -2.3
ES 5355 123 245 614 366 1803 -3.5
ESL 1158 123 292 758 465 2169 -3.5
EDL 2071 576 187 418 243 1483 -2.3
EDSL 1414 165 175 399 228 1335 -2.6
ED5 634 98 224 470 250 1674 -1.6
EDS5 652 99 213 462 256 1651 -2.1

EDS1235 545 57 223 459 234 1638 0.6
EDSQ1235 591 64 211 440 236 1621 1.0

EDSQL 1648 199 173 385 220 1378 -2.1
EVSQL 1627 170 159 368 209 1181 -2.7

EDSQWL 1629 199 163 372 218 1293 -2.5
EVSQWL 1734 180 154 359 208 1159 -3.0

HNR 594 203 802 957 630 7561 9.5

account (letter S). This also improves node ordering if we limit the size of a local
search (letter L).

To improve the preprocessing times, it helps to limit the number of hops in
the searches during preprocessing and to take search space sizes for contraction
into account. Figure 1 shows the development of the average degree during node
contraction for different hop limits. We see that for hop limits below four, the
average degree eventually explodes. We choose limits for the average degree that
switch to a larger hop limit sufficiently before this explosion.6 Interestingly, this
also further improves query time. The algorithm in Line EDS1235 of Tab. 1
outperforms HNR in all respects and with a wide margin with respect to query
time and hierarchy construction7 time. As explained in Section 5, the latter time
is particularly interesting when we want to exchange the edge weight function.
We use this variant as our main economical8 variant for further experiments.

6 1 → 2 hops @ degree 3.3, 2 → 3 @ 10, 3 → 5 @ 10. After switching to hop limit
3, we remove all edges e for which there is a witness with at most 3 edges that e is
not a shortest path. This reduces the average degree and leaves some time before we
have to switch to hop limit 5.

7 There is a version of HNR in [3] with about two times faster hierarchy construction
but with slower queries and more space consumption.

8 Coefficients for priority: E=190, D=120, S=1.



Contraction Hierarchies: Faster and Simpler Hierarchical Routing 329

0 2 5 10 20 50 100 200 400 800 1600

3
4

5
6

8
10

15
20

size of overlay graph / 10 000

av
er

ag
e 

de
gr

ee

1 hop
2 hops
3 hops
4 hops
5 hops
6 hops
no hop limit

Fig. 1. Average degree development for different hop limits

By investing more preprocessing time, we can further improve the query per-
formance. We abandon hop limitations and take the path-length estimate Q(v)
into account. The resulting algorithm, Line EVSQL in Tab. 1, is used as our ag-
gressive9 variant for further experiments. Using betweenness10 approximations
(letter W) can improve the query time by additional 3%.11 It is interesting to
compare different indicators for query performance between aggressive CH and
HNR. CHs are 5 times faster although the number of settled nodes is only 2.6
times smaller. This is in part due to a simpler data structure12 and in part due
to a far larger improvement (factor 6.4) wrt the number of relaxed edges. For
many-to-many routing, we are mostly interested in the number of non-stalled
nodes, which make the bucket-scan operations more expensive. In this respect,
CHs are a factor 3 better.

Local Queries. Since random queries are unrealistic for large graphs, Fig. 2
shows the distributions of query times for various degrees of locality [4]. We
see a uniform improvement over HNR and small fluctuations in query time.
This is further underlined in Fig. 3 where we give upper bounds for the search
space size of all n × n possible queries (see [5] for the algorithm). We see a
superexponential decay of the probability to observe a certain search-space size
and maximal search-space size bound less than 2.5 times the size of the average
actual search-space sizes (see also Tab. 1).
9 Coefficients for priority: E=190, V=60, S=1, Q=145, L=1000.

10 The execution times for betweenness approximation [12] are not included in Tab. 1.
11 Preliminary experiments with reach-approximations were not successful.
12 The HNR implementation from [3] has to compare level information to find out

which edges should be relaxed.



330 R. Geisberger et al.

0
20

0
40

0
60

0
80

0
10

00
12

00

0
20

0
40

0
60

0
80

0
10

00
12

00

211 212 213 214 215 216 217 218 219 220 221 222 223 224

Dijkstra rank

qu
er

y 
tim

e 
[μ

s]

CH aggressive
CH economical
HNR

Fig. 2. Local queries, box-and-whisker plot [19]: each box spreads from the lower to
the upper quartile and contains the median, the whiskers extend to the minimum and
maximum value omitting outliers, which are plotted individually. The queries generated
for x-value r are random s–t-queries under the constraint that t is the r-th node visited
by Dijkstra’s algorithm (see also [4]).

Unpacking Paths needs an average of 317μs for the aggressive variant and 332μs
for the economical variant. The difference between the two variants is bigger
for the space overhead which is 5.8 B/node and 10.8 respectively. Among the
path unpacking times we have seen, this is only outperformed by the fastest
variant for highway hierarchies in [5] that explicitly stores completely unpacked
representations of the most important shortcuts. Note that this optimization
works for any shortcut-based speedup technique including CHs.

Many-to-Many Routing for a random 10000 × 10000 table using the aggressive
variant needs 10.2 s. This is about six times faster than the highway-hierarchy-
based code from [10] and more than twice as fast as the HNR-based implemen-
tation from [2]. Our current implementation of many-to-many routing does not
(yet) use the asymmetry between forward and backward search that has proved
useful in [10,2]. Hence, we can expect further improvements.

Exchanging the Edge Weight Function. The table below shows the hierarchy
construction time and query time using our economical variant for different
speed profiles which come from the company PTV (see also [3]). The times in
brackets refer to the case when node ordering was done with the same speed
profile and the main times are for the case that node ordering was done for our
default speed profile.



Contraction Hierarchies: Faster and Simpler Hierarchical Routing 331

1
10

0
10

−
12

10
−

10
10

−
8

10
−

6
10

−
4

10
−

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

settled nodes

%
 o

f s
ea

rc
he

s

CH aggr. (max. 884)
CH eco. (max. 1012)
HNR (max. 2148)

Fig. 3. Upper bound on search space in settled nodes for the worst percentages of
queries

default fast car slow car slow truck
hier. construction [s] 57 80 (62) 82 (63) 88 (65)
query [μs] 223 208 (211) 232 (243) 294 (291)

We can see that preprocessing time goes up by about 30 %. Query times are
about the same. Query performance decreases with the speed of the vehicle
since the hierarchy induced by fast streets gets less pronounced.

Transit-Node Routing. We used the node ordering with the aggressive variant
of CHs to determine the transit-node sets for the implementation from [2]. As
we hoped for, this resulted in a reduced number of access nodes, which in turn
results in better query time (4.3 → 3.4μs) and lower space consumption (247
→ 204 Byte/node), compared to [2]. Preliminary experiments suggest that we
get further improvements with an additional term for node ordering that takes
into account the number of edges of the input graph that make up a shortcut.
We have not yet implemented a CH-based preprocessing so that it is too early
to judge the effect of CHs on preprocessing time. It is quite likely however, that
we will also see an improvement in preprocessing time.

7 Conclusions

CHs are a simple and efficient basis for many hierarchical routing methods in
road networks. The experiments in [9] suggest that CHs also work well for other
sparse networks with high locality such as transportation networks, or sparse



332 R. Geisberger et al.

unit-disk graphs. For more dense networks, CHs can be used for an initial con-
traction phase whereas a goal-directed technique is applied to the resulting core
network.

Several further improvements might be possible. The performance of node
ordering is so far only slightly better than the HH based method used in [3]
for HNR. One reason is that we perform many similar searches that might be
saved if we would reuse search spaces. The main problem with reuse is that
storing search spaces would cost a lot of space. But perhaps we can partition
large networks into smaller networks; perform the node ordering separately for
each subnetwork; and only then merge the pieces into a global order. To a lesser
extend such an optimization might also accelerate hierarchy construction. As a
side effect we might also obtain a way to update the search space sizes of all
nodes affected by a node contraction.

Although we have established that uniformity is important for good node or-
dering, it is not so clear whether the two uniformity measures we have introduced
are the final word. In particular, the right measure might depend on the appli-
cation. For example, our current code for transit-node routing uses a geometric
locality filter and hence it might be good if the uniformity measure would take
geometry into account.

We have already demonstrated that CHs yield improved preprocessing times
when changing the entire cost function. We still have to try how well the dy-
namization techniques for changing few edge weights from [3,2] translate.

Last but not least, we are now developing a method for fast routing in road
networks with time-dependent edge weights. We hope that the simplicity and
efficiency of CHs will give us a good starting point for this challenging task. The
good performance of CHs for (unrolled) transportation networks observed in [9]
may be an indicator that this will work well.

References

1. Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: Deme-
trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 23–36. Springer, Heidelberg (2007)

2. Schultes, D.: Route Planning in Road Networks. PhD thesis (2008)
3. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.)

WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)
4. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries.

In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579.
Springer, Heidelberg (2005)

5. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach,
T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

6. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In:
Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg
(2007)

7. Bauer, R., Delling, D.: SHARC: Fast and robust unidirectional routing. In: Work-
shop on Algorithm Engineering and Experiments (ALENEX) (2008)

8. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science 316(5824), 566 (2007)



Contraction Hierarchies: Faster and Simpler Hierarchical Routing 333

9. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:
Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algo-
rithm. In: WEA 2008. LNCS, vol. 5038, Springer, Heidelberg (2008)

10. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing many-
to-many shortest paths using highway hierarchies. In: Workshop on Algorithm
Engineering and Experiments (ALENEX) (2007)

11. Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using
Precomputed Cluster Distances. In: Àlvarez, C., Serna, M.J. (eds.) WEA 2006.
LNCS, vol. 4007, pp. 316–328. Springer, Heidelberg (2006)

12. Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness
centrality. In: Workshop on Algorithm Engineering and Experiments (ALENEX)
(2008)

13. Gutman, R.: Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. In: Workshop on Algorithm Engineering and Exper-
iments (ALENEX)., pp. 100–111 (2004)

14. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Geoinformation und Mobilität – von
der Forschung zur praktischen Anwendung, vol. 22, pp. 219–230. IfGI prints, In-
stitut für Geoinformatik, Münster (2004)

15. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and con-
strained shortest path computation. In: WEA 2005. LNCS, vol. 3503, Springer,
Heidelberg (2005)

16. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In:
9th DIMACS Implementation Challenge [20] (2006)

17. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In:
9th DIMACS Implementation Challenge [20] (2006)

18. Sanders, P., Schultes, D., Vetter, C.: Mobile Route Planning (2008) in preparation,
http://algo2.iti.uka.de/schultes/hwy/

19. R Development Core Team: R: A Language and Environment for Statistical Com-
puting (2004), http://www.r-project.org

20. 9th DIMACS Implementation Challenge: Shortest Paths (2006),
http://www.dis.uniroma1.it/∼challenge9/

http://algo2.iti.uka.de/schultes/hwy/
http://www.r-project.org
http://www.dis.uniroma1.it/~challenge9/


Bidirectional A∗ Search for Time-Dependent

Fast Paths�

Giacomo Nannicini1,2, Daniel Delling3, Leo Liberti1, and Dominik Schultes3

1 LIX, École Polytechnique, F-91128 Palaiseau, France
{giacomon,liberti}@lix.polytechnique.fr

2 Mediamobile, 10 rue d’Oradour sur Glane, Paris, France
giacomo.nannicini@v-trafic.com

3 Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
{delling,schultes}@ira.uka.de

Abstract. The computation of point-to-point shortest paths on time-
dependent road networks has many practical applications, but there have
been very few works that propose efficient algorithms for large graphs.
One of the difficulties of route planning on time-dependent graphs is
that we do not know the exact arrival time at the destination, hence
applying bidirectional search is not straightforward; we propose a novel
approach based on A∗ with landmarks (ALT) that starts a search from
both the source and the destination node, where the backward search is
used to bound the set of nodes that have to be explored by the forward
search. Extensive computational results show that this approach is very
effective in practice if we are willing to accept a small approximation
factor, resulting in a speed-up of several times with respect to Dijkstra’s
algorithm while finding only slightly suboptimal solutions.

1 Introduction

We consider the Time-Dependent Shortest Path Problem (TDSPP): given
a directed graph G = (V, A), a source node s ∈ V , a destination node t ∈ V , an
interval of time instants T , a departure time τ0 ∈ T and a time-dependent arc
weight function c : A× T → R+, find a path p = (s = v1, . . . , vk = t) in G such
that its time-dependent cost γτ0(p), defined recursively as follows:

γτ0(v1, v2) = c(v1, v2, τ0) (1)
γτ0(v1, . . . , vi) = γτ0(v1, . . . , vi−1) + c(vi−1, vi, τ0 + γτ0(v1, . . . , vi−1)) (2)

for all 2 ≤ i ≤ k, is minimum. We also consider a function λ : A → R+ which
has the following property:

∀(u, v) ∈ A, τ ∈ T (λ(u, v) ≤ c(u, v, τ)).
� Partially supported by the Future and Emerging Technologies Unit of EC (IST

priority – 6th FP), under contract no. FP6-02123502 (project ARRIVAL), and by
DFG grant SA 933/1-3.

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 334–346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{giacomon,liberti}@lix.polytechnique.fr
giacomo.nannicini@v-trafic.com
{delling,schultes}@ira.uka.de


Bidirectional A∗ Search for Time-Dependent Fast Paths 335

In other words, λ(u, v) is a lower bound on the travelling time of arc (u, v) for
all time instants in T . In practice, this can easily be computed, given an arc
length and the maximum allowed speed on that arc. We naturally extend λ to
be defined on paths, i.e. λ(p) =

∑
(vi,vj)∈p λ(vi, vj).

In this paper, we propose a novel algorithm for the TDSPP based on a bidirec-
tional A∗ algorithm. Since the arrival time is not known in advance (so c cannot
be evaluated on the arcs adjacent to the destination node), our backward search
occurs on the graph weighted by the lower bounding function λ. This is used for
bounding the set of nodes that will be explored by the forward search.

Many ideas have been proposed for the computation of point-to-point shortest
paths on static graphs (see [1,2] for a review), and there are algorithms capable
of finding the solution in a matter of a few microseconds [3]; adaptations of those
ideas for dynamic scenarios, i.e. where arc costs are updated at regular intervals,
have been tested as well (see [4,5,6]).

Much less work has been undertaken on the time-dependent variant of the
shortest paths problem; this problem has been first addressed by [7] (a good
review of this paper can be found in [8], p. 407): Dijkstra’s algorithm [9] is ex-
tended to the dynamic case through a recursion formula based on the assumption
that the network G = (V, A) has the FIFO property. The FIFO property is also
called the non-overtaking property, because it basically states that if A leaves
u at time τ0 and B at time τ1 > τ0, B cannot arrive at v before A using the
arc (u, v). The FIFO assumption is usually necessary in order to mantain an
acceptable level of complexity: the TDSPP in FIFO networks is polynomially
solvable [10], while it is NP-hard in non-FIFO networks [11]. Given source and
destination nodes s and t, the problem of maximizing the departure time from
node s with a given arrival time at node t is equivalent to the TDSPP (see [12]).

Goal-directed search, also called A∗ [13], has been adapted to work on all the
previously described scenarios; an efficient version for the static case has been
presented in [14], and then developed and improved in [15]. Those ideas have
been used in [4] on dynamic graphs as well, while the time-dependent case on
graphs with the FIFO property has been addressed in [16] and [4].

Moreover, the recently developed SHARC-algorithm [17] allows fast unidirec-
tional shortest-path calculations in large scale networks. Due to its unidirectional
nature, it can easily be used in a time-dependent scenario. However, in that case
SHARC cannot guarantee to find the optimal solution.

The rest of this paper is organised as follows. In Section 2 we describe A∗

search and the ALT algorithm, which are needed for our method. In Section 3
we describe the foundations of our idea, and present an adaptation of the ALT
algorithm based on it. In Section 4 we formally prove our method’s correctness. In
Section 5 we propose some improvements. In Section 6 we discuss computational
experiments and provide computational results.

2 A∗ with Landmarks

A∗ is an algorithm for goal-directed search, similar to Dijkstra’s algorithm, but
which adds a potential function to the priority key of each node in the queue. The



336 G. Nannicini et al.

A∗ algorithm on static graphs can be described as follows. The potential function
on a node v is an estimate of the distance to reach the target from v; A∗ then
follows the same procedure as Dijkstra’s algorithm, but the use of this potential
function has the effect of giving priority to nodes that are (supposedly) closer
to target node t. If the potential function π is such that π(v) ≤ d(v, t)∀v ∈ V ,
where d(v, t) is the distance from v to t, then A∗ always finds shortest paths.
A∗ is guaranteed to explore no more nodes than Dijkstra’s algorithm: if π(v) is
a good approximation from below of the distance to target, A∗ efficiently drives
the search towards the destination node, and it explores considerably fewer nodes
than Dijkstra’s algorithm; if π(v) = 0 ∀v ∈ V , A∗ behaves exactly like Dijkstra’s
algorithm. In [18] it is shown that A∗ is equivalent to Dijkstra’s algorithm on a
graph with reduced costs, i.e. wπ(u, v) = w(u, v)− π(u) + π(v).

One way to compute the potential function, instead of using Euclidean dis-
tances, is to use the concept of landmarks. Landmarks have first been proposed in
[14]; they are a preprocessing technique which is based on the triangular inequal-
ity. The basic principle is as follows: suppose we have selected a set L ⊂ V of
landmarks, and we have precomputed distances d(v, �), d(�, v)∀v ∈ V, � ∈ L; the
following triangle inequalities hold: d(u, t)+d(t, �) ≥ d(u, �) and d(�, u)+d(u, t) ≥
d(�, t). Therefore πt(u) = max�∈L{d(u, �) − d(t, �), d(�, t) − d(�, u)} is a lower
bound for the distance d(u, t), and it can be used as a potential function which
preserves optimal paths. On a static graph (i.e. non time-dependent), bidirec-
tional search can be implemented, using some care in modifying the poten-
tial function so that it is consistent for the forward and backward search (see
[15]); the consistency condition states that wπf

(u, v) in G is equal to wπb
(v, u)

in the reverse graph G, where πf and πb are the potential functions for the
forward and the backward search, respectively. Bidirectional A∗ with the po-
tential function described above is called ALT. It is straightforward to note
that, if arc costs can only increase with respect to their original value, the po-
tential function associated with landmarks is still a valid lower bound, even
on a time-dependent graph; in [4] this idea is applied to a real road network
in order to analyse the algorithm’s performances, but with a unidirectional
search.

The choice of landmarks has a great impact on the size of the search space, as
it severely affects the quality of the potential function. Several selection strategies
exist, although none of them is optimal with respect to random queries, i.e., is
guaranteed to yield the smaller search space for random source-destination pairs.
The best known heuristics are avoid and maxCover [19].

3 Bidirectional Search on Time-Dependent Graphs

Our algorithm is based on restricting the scope of a time-dependent A∗ search
from the source using a set of nodes defined by a time-independent A∗ search
from the destination, i.e. the backward search is a reverse search in Gλ, which
corresponds to the graph G weighted by the lower bounding function λ.



Bidirectional A∗ Search for Time-Dependent Fast Paths 337

Given a graph G = (V, A) and source and destination vertices s, t ∈ V , the
algorithm for computing the shortest time-dependent cost path p∗ works in three
phases.

1. A bidirectional A∗ search occurs on G, where the forward search is run on the
graph weighted by c with the path cost defined by (1)-(2), and the backward
search is run on the graph weighted by the lower bounding function λ. All
nodes settled by the backward search are included in a set M . Phase 1
terminates as soon as the two search scopes meet.

2. Suppose that v ∈ V is the first vertex in the intersection of the heaps of
the forward and backward search; then the time dependent cost μ = γτ0(pv)
of the path pv going from s to t passing through v is an upper bound to
γτ0(p∗). In the second phase, both search scopes are allowed to proceed until
the backward search queue only contains nodes whose associated key exceeds
μ. In other words: let β be the key of the minimum element of the backward
search queue; phase 2 terminates as soon as β > μ. Again, all nodes settled
by the backward search are included in M .

3. Only the forward search continues, with the additional constraint that only
nodes in M can be explored. The forward search terminates when t is settled.

The pseudocode for this algorithm is given in Algorithm 1.

4 Correctness

We denote by d(u, v, τ) the length of the shortest path from u to v with departure
time τ , and by dλ(u, v) the length of the shortest path from u to v on the graph
Gλ. We have the following theorems.

Theorem 4.1. Algorithm 1 computes the shortest time-dependent path from s
to t for a given departure time τ0.

Proof. The forward search of Algorithm 1 is exactly the same as the unidirec-
tional version of the A∗ algorithm during the first 2 phases, and thus it is correct;
we have to prove that the restriction applied during phase 3 does not interfere
with the correctness of the A∗ algorithm.

Let μ be an upper bound on the cost of the shortest path; in particular, this
can be the cost γτ0(pv) of the s→ t path passing through the first meeting point
v of the forward and backward search. Let β be the smallest key of the backward
search priority queue at the end of phase 2. Suppose that Algorithm 1 is not
correct, i.e. it computes a sub-optimal path. Let p∗ be the shortest path from s to
t with departure time τ0, and let u be the first node on p∗ which is not explored
by the forward search; by phase 3, this implies that u /∈ M , i.e. u has not been
settled by the backward search during the first 2 phases of Algorithm 1. Hence,
we have that β ≤ πb(u) + dλ(u, t); then we have the chain γτ0(p∗) ≤ μ < β ≤
πb(u) + dλ(u, t) ≤ dλ(s, u) + dλ(u, t) ≤ d(s, u, τ0) + d(u, t, d(s, u, τ0)) = γτ0(p∗),
which is a contradiction. �	



338 G. Nannicini et al.

Algorithm 1. Compute the shortest time-dependent path from s to t with
departure time τ0

1:
−→
Q.insert(s, 0);

←−
Q.insert(t, 0); M := ∅; μ := +∞; done := false; phase := 1.

2: while ¬done do
3: if (phase = 1) ∨ (phase = 2) then
4: ↔∈ {→,←}
5: else
6: ↔:=→
7: u :=

←→
Q .extractMin()

8: if (u = t) ∧ (↔=→) then
9: done := true

10: continue
11: if (phase = 1) ∧ (u.dist→ + u.dist← <∞) then
12: μ := u.dist→ + u.dist←

13: phase := 2
14: if (phase = 2) ∧ (↔=←) ∧ (μ < u.key←) then
15: phase := 3
16: continue
17: for all arcs (u, v) ∈ ←→A do
18: if ↔=← then
19: M.insert(u)
20: else if (phase = 3) ∧ (v /∈M) then
21: continue;

22: if (v ∈ ←→Q ) then
23: if u.dist↔ + c(u, v, u.dist↔) < v.dist↔ then

24:
←→
Q .decreaseKey(v, u.dist↔ + c(u, v, u.dist↔) +←→π (v))

25: else
26:

←→
Q .insert(v, u.dist↔ + c(u, v, u.dist↔) +←→π (v))

27: return t.dist→

Theorem 4.2. Let p∗ be the shortest path from s to t. If the condition to switch
to phase 3 is μ < Kβ for a fixed parameter K, then Algorithm 1 computes a
path p from s to t such that γτ0(p) ≤ Kγτ0(p∗) for a given departure time τ0.

5 Improvements

The basic version of the algorithm can be enhanced by making use of the fol-
lowing results.

Proposition 5.1. During phase 2 the backward search does not need to explore
nodes that have already been settled by the forward search.

We can take advantage of the fact that the backward search is used only to bound
the set of nodes explored by the forward search, i.e. the backward search does
not have to compute shortest paths. This means that we can tighten the bounds
used by the backward search, as long as they are still valid lower bounds, even



Bidirectional A∗ Search for Time-Dependent Fast Paths 339

if doing so would result in an A∗ backward search that computes suboptimal
distances.

Proposition 5.2. At a given iteration, let v be the last node settled by the for-
ward search. Then, for each node w which has not been settled by the forward
search, d(s, v, τ0) + πf (v)− πf (w) ≤ d(s, w, τ0).

Let v be as in Prop. 5.2, and w a node which has not been settled by the forward
search. Prop. 5.2 suggests that we can use

π∗b (w) = max{πb(w), d(s, v, τ0) + πf (v) − πf (w)} (3)

as a lower bound to d(s, w, τ0) during the backward search. However, to prove
the algorithm’s correctness when using π∗b we must assume that the node v used
in (3) is fixed at each backward search iteration. Thus, we do the following: we
set up 10 checkpoints during the query; when a checkpoint is reached, the node
v used to compute (3) is updated, and the backward search queue is flushed
and filled again using the updated π∗b . This is enough to guarantee correctness.
The checkpoints are computed comparing the initial lower bound πf (t) and the
current distance from the source node, both for the forward search.

6 Experiments

In this section, we present an extensive experimental evaluation of our time-
dependent ALT algorithm. Our implementation is written in C++ using solely
the STL. As priority queue we use a binary heap. Our tests were executed on
one core of an AMD Opteron 2218 running SUSE Linux 10.1. The machine is
clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The program
was compiled with GCC 4.1, using optimization level 3.

Unless otherwise stated, we use 16 maxcover landmarks [14], computed on
the input graph using the lower bounding function λ to weight edges, and we
use (3) as potential function for the backward search, with 10 checkpoints (see
Section 5). When performing random s-t queries, the source s, target t, and the
starting time τ0 are picked uniformly at random and results are based on 10 000
queries.

Inputs. We tested our algorithm on two different road networks: the road network
of Western Europe provided by PTV AG for scientific use, which has approxi-
mately 18 million vertices and 42.6 million arcs, and the road network of the US,
taken from the TIGER/Line Files, with 23.9 million vertices and 58.3 million
arcs. A travelling time in uncongested traffic situation was assigned to each arc
using that arc’s category (13 categories for Europe, 4 for US) to determine the
travel speed.

Modeling Traffic. Unfortunately, we are not aware of a large publicly available
real-world road network with time-dependent arc costs. Therefore, we have to



340 G. Nannicini et al.

use artificially generated costs. In order to model the time-dependent costs on
each arc, we developed an heuristic algorithm, based on statistics gathered using
real-world data on a limited-size road network; we used piecewise linear cost
functions, with one breakpoint for each hour over a day. Arc costs are generated
assigning, at each node, several random values that represent peak hour (i.e. hour
with maximum traffic increase), duration and speed of traffic increase/decrease
for a traffic jam; for each node, two traffic jams are generated, one in the morning
and one in the afternoon. Then, for each arc in a node’s arc star, a speed profile
is generated, using the traffic jam’s characteristics of the corresponding node,
and assigning a random increase factor between 1.5 and 3 to represent that arc’s
slowdown during peak hours with respect to uncongested hours. We do not assign
speed profile to arcs that have both endpoints at nodes with level 0 in a pre-
constructed Highway Hierarchy [20], and as a result those arcs will have the same
travelling time value throughout the day; for all other arcs, we use the traffic
jam values associated with the endpoint with smallest ID. The breakpoints of
these speed profiles are stored in memory as a multiplication factor with respect
to the speed in uncongested hours, which allows us to use only 7 bits for each
breakpoint. We assume that all roads are uncongested between 11PM and 4AM,
so that we do not need to store the corresponding breakpoints; as a result, we
store all breakpoints using 16 additional bytes per edge. The travelling time of
an arc at time τ is computed via linear interpolation of the two breakpoints that
precede and follow τ .

This method was developed to ensure spatial coherency between traffic in-
creases, i.e. if a certain arc is congested at a given time, then it is likely that ad-
jacent arcs will be congested too. This is a basic principle of traffic analysis [21].

Random Queries. Table 1 reports the results of our bidirectional ALT vari-
ant on time-dependent networks for different approximation values K using the
European and the US road network as input. For the European road network,
preprocessing takes approximately 75 minutes and produces 128 additional bytes
per node (for each node we have to store distances to and from all landmarks);
for the US road network, the corresponding figures are 92 minutes and 128 bytes
per node. For comparison, we also report the results on the same road network
for the time-dependent versions of Dijkstra, unidirectional ALT, and the SHARC
algorithm [17].

As the performed ALT-queries compute approximated results instead of op-
timal solutions, we record three different statistics to characterize the solution
quality: error rate, average relative error, maximum relative error. By error rate
we denote the percentage of computed suboptimal paths over the total number of
queries. By relative error on a particular query we denote the relative percentage
increase of the approximated solution over the optimum, computed as ω/ω∗−1,
where ω is the cost of the approximated solution computed by our algorithm
and ω∗ is the cost of the optimum computed by Dijkstra’s algorithm. We report
average and maximum values of this quantity over the set of all queries. We also
report the number of nodes settled at the end of each phase of our algorithm,
denoting them with the labels phase 1, phase 2 and phase 3.



Bidirectional A∗ Search for Time-Dependent Fast Paths 341

Table 1. Performance of the time-dependent versions of Dijkstra, unidirectional ALT,
SHARC, and our bidirectional approach. For SHARC, we use approximation values of
1.001 and 1.002 (cf. [17] for details).

Error Query
relative # settled nodes time

input method K rate avg max phase 1 phase 2 phase 3 [ms]

EUR

Dijkstra - 0.0% 0.000% 0.00% - - 8 908 300 6 325.8
uni-ALT - 0.0% 0.000% 0.00% - - 2 192 010 1 775.8
1.001-SHARC - 57.1% 0.686% 34.31% - - 140 945 60.3
1.002-SHARC - 42.8% 0.583% 34.31% - - 930 251 491.4
ALT 1.00 0.0% 0.000% 0.00% 125 068 2 784 540 3 117 160 3 399.3

1.02 1.0% 0.003% 1.13% 125 068 2 154 900 2 560 370 2 723.3
1.05 4.0% 0.029% 4.93% 125 068 1 333 220 1 671 630 1 703.6
1.10 18.7% 0.203% 8.10% 125 068 549 916 719 769 665.1
1.13 30.5% 0.366% 12.63% 125 068 340 787 447 681 385.5
1.15 36.4% 0.467% 13.00% 125 068 265 328 348 325 287.3
1.20 44.7% 0.652% 18.19% 125 068 183 899 241 241 185.3
1.30 48.2% 0.804% 23.63% 125 068 141 358 186 267 134.6
1.50 48.8% 0.844% 25.70% 125 068 130 144 172 157 121.9
2.00 48.9% 0.886% 48.86% 125 068 125 071 165 650 115.7

USA

Dijkstra - 0.0% 0.000% 0.00% - - 12 435 900 8 020.6
uni-ALT - 0.0% 0.000% 0.00% - - 2 908 170 2 403.9
ALT 1.00 0.0% 0.000% 0.00% 272 790 4 091 050 4 564 030 4 534.2

1.10 21.5% 0.135% 7.02% 272 790 633 758 829 176 656.3
1.15 54.4% 0.402% 9.98% 272 790 312 575 405 699 289.6
1.20 62.0% 0.482% 9.98% 272 790 278 345 359 190 251.1
1.50 64.8% 0.506% 13.63% 272 790 272 790 351 865 247.5
2.00 64.8% 0.506% 16.00% 272 790 272 791 351 854 246.8

As expected, we observe a clear trade-off between the quality of the computed
solution and query performance. If we are willing to accept an approximation
factor of K = 2.0, on the European road network queries are on average 55
times faster than Dijkstra’s algorithm, but almost 50% of the computed paths
will be suboptimal and, although the average relative error is still small, in the
worst case the approximated solution has a cost which is 50% larger than the
optimal value. The reason for this poor solution quality is that, for such high
approximation values, phase 2 is very short. As a consequence, nodes in the
middle of the shortest path are not explored by our approach, and the meeting
point of the two search scopes is far from being the optimal one. However, by
decreasing the value of the approximation constant K we are able to obtain
solutions that are very close to the optimum, and performance is significantly
better than for unidirectional ALT or Dijkstra. In our experiments, it seems
as if the best trade-off between quality and performance is achieved with an
approximation value of K = 1.15, which yields average query times smaller than
300 ms on both road neworks with a maximum recorded relative error of 13%
(on the European road network, while the corresponding figure is 9.98% for the



342 G. Nannicini et al.

US instance). By decreasing K to values < 1.05 it does not pay off to use the
bidirectional variant any more, as the unidirectional variant of ALT is faster and
is always correct.

Comparing results for K > 1.15 for the US with those for Europe, we observe
that number of queries that return suboptimal paths increases, but the average
and maximum error rates are smaller than the corresponding values on the
European road network with the same values of K. Moreover, the speed-ups
of our algorithm with respect to plain Dijkstra are lower on the US instance: the
maximum recorded speed-up (for K = 2.0) is only of a factor 33. This behaviour
has also been observed in the static scenario [4]. However, with K = 1.15, which
is a good trade-off between quality and speed, query performance is very similar
on both networks.

An interesting observation is that for K = 2.0 switching from a static to a
time-dependent scenario increases query times only of a factor of ≈ 2: on the
European road network, in a static scenario, ALT-16 has query times of 53.6
ms (see [4]), while our time-dependent variant yields query times of 115 ms.
We also note that for our bidirectional search there is an additional overhead
which increases the time spent per node with respect to unidirectional ALT: on
the European road network, using an approximation factor of K = 1.05 yields
similar query times to unidirectional ALT, but the number of nodes settled by
the bidirectional approach is almost 30% smaller. We suppose that this is due
to the following facts: in the bidirectional approach, one has to check at each
iteration if the current node has been settled in the opposite direction, and
during phase 2 the upper bound has to be updated from time to time. The cost
of these operations, added to the phase-switch checks, is probably not negligible.

Comparing the time-dependent variant of SHARC with our approach, we ob-
serve that SHARC with an approximation value of 1.001 settles as many nodes
as ALT with K = 2.0. However, query performance is better for SHARC due to
its small computational overhead. By increasing the approximation value, com-
putational times are slowed by almost one order of magnitude, but the solution
quality merely improves. The reason for this poor performance is that SHARC
uses a contraction routine which cannot bypass nodes incident to time-dependent
edges. As in our scenario about half of the edges are time-dependent, the prepro-
cessing of SHARC takes quite long (≈ 12 hours) and query performance is poor.
Summarizing, ALT seems to work much better in a time-dependent scenario.

Local Queries. For random queries, our bidirectional ALT algorithm (with K =
1.15) is roughly 6.7 times faster than unidirectional ALT on average. In order to
gain insight whether this speed-up derives from small or large distance queries,
Fig. 1 reports the query times with respect to the Dijkstra rank1. These values
were gathered on the European road network instance. Note that we use a loga-
rithmic scale due to the fluctuating query times of bidirectional ALT. Comparing
both ALT version, we observe that switching from uni- to bidirectional queries

1 For an s-t query, the Dijkstra rank of node t is the number of nodes settled before t
is settled. Thus, it is some kind of distance measure.



Bidirectional A∗ Search for Time-Dependent Fast Paths 343

Local Queries time−dependent ALT (Europe)

Dijkstra Rank

Q
ue

ry
 T

im
e 

[m
s]

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
1

1
10

10
0

10
00

unidirectional ALT
bidirectional ALT (K=1.15)

Fig. 1. Comparison of uni- and bidirectional ALT using the Dijkstra rank methodol-
ogy [20]. The results are represented as box-and-whisker plot: each box spreads from
the lower to the upper quartile and contains the median, the whiskers extend to the
minimum and maximum value omitting outliers, which are plotted individually.

pays off especially for long-distance queries. This is not surprising, because for
small distances the overhead for bidirectional routing is not counterbalanced by
a significant decrease in the number of explored nodes: unidirectional ALT is
faster for local queries. For ranks of 224, the median of the bidirectional variant
is almost 2 orders of magnitude lower than for the unidirectional variant. An-
other interesting observation is the fact that some outliers of bidirectional ALT
are almost as slow as the unidirectional variant.

Number of Landmarks. In static scenarios, query times of bidirectional ALT can
be significantly reduced by increasing the number of landmarks to 32 or even
64 (see [4]). In order to check whether this also holds for our time-dependent
variant, we recorded our algorithm’s performance using different numbers of
landmarks. Tab. 2 reports those results on the European road network. We
evaluate 8 maxcover landmarks (yielding a preprocessing effort of 33 minutes and
an overhead of 64 bytes per node), 16 maxcover landmarks (75 minutes, 128 bytes
per node) and 32 avoid landmarks (29 minutes, 256 bytes per node). Note that
we do not report error rates here, as it turned out that the number of landmarks
has almost no impact on the quality of the computed paths. Surprisingly, the
number of landmarks has a very small influence on the performance of time-
dependent ALT. Even worse, increasing the number of landmarks even yields
larger average query times for unidirectional ALT and for bidirectional ALT
with low K-values. This is due the fact that the search space decreases only
slightly, but the additional overhead for accessing landmarks increases when
there are more landmarks to take into account. However, when increasing K,
a larger number of landmarks yields faster query times: with K = 2.0 and 32



344 G. Nannicini et al.

Table 2. Performance of uni- and bidirectional ALT with different number of land-
marks in a time-dependent scenario

8 landmarks 16 landmarks 32 landmarks
K # settled time [ms] # settled time [ms] # settled time [ms]

uni-ALT - 2 321 760 1 739.8 2 192 010 1 775.8 2 111 090 1 868.5

ALT 1.00 3 240 210 3 270.6 3 117 160 3 399.3 3 043 490 3 465.1
1.10 863 526 736.5 719 769 665.1 681 836 669.7
1.15 495 649 382.1 348 325 287.3 312 695 280.0
1.20 389 096 286.3 241 241 185.3 204 877 170.1
1.50 320 026 228.4 172 157 121.9 133 547 98.3
2.00 313 448 222.2 165 650 115.7 126 847 91.1

landmarks we are able to perform time-dependent queries 70 times faster than
plain Dijkstra, but the solution quality in this case is as poor as in the 16
landmarks case. Summarizing, for K > 1.10 increasing the number of landmarks
has a positive effect on computational times, although switching from 16 to
32 landmarks does not yield the same benefits as from 8 to 16, and thus in our
experiments is not worth the extra memory. On the other hand, for K ≤ 1.10 and
for unidirectional ALT increasing the number of landmarks has a negative effect
on computational times, and thus is never a good choice in our experiments.

7 Conclusion and Future Work

We have presented an algorithm which applies bidirectional search on a time-
dependent road network, where the backward search is used to bound the set of
nodes that have to be explored by the forward search; this algorithm is based
on the ALT variant of the A∗ algorithm. We have discussed related theoretical
issues, and we proved the algorithm’s correctness. Extensive computational ex-
periments show that this algorithm is very effective in practice if we are willing to
accept a small approximation factor: the exact version of our algorithm is slower
than unidirectional ALT, but if we can accept a decrease of the solution quality
of a few percentage points with respect to the optimum then our algorithm is
several times faster. For practical applications, this is usually a good compro-
mise. We have compared our algorithm to existing methods, showing that this
approach for bidirectional search is able to significantly decrease computational
times.

Future research will include the possibility of an initial contraction phase for a
time-dependent graph, which would be useful for several purposes, and algorithm
engineering issues such as the balancing of the forward and backward search, and
the update of the available upper bound on the optimal solution cost. The idea of
bidirectional routing on time-dependent graphs, using a time-dependent forward
search and a time-independent backward search, may be applied to other static
routing algorithms, in order to generalize them in a time-dependent scenario.



Bidirectional A∗ Search for Time-Dependent Fast Paths 345

Acknowledgements

We would like to acknowledge Mediamobile’s financial support, and thank
Daniele Pretolani for providing useful discussions.

References

1. Wagner, D., Willhalm, T.: Speed-up techniques for shortest-path computations. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 23–36. Springer,
Heidelberg (2007)

2. Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: Deme-
trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 23–36. Springer, Heidelberg (2007)

3. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science 316(5824), 566 (2007)

4. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Deme-
trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, Springer, Heidelberg (2007)

5. Sanders, P., Schultes, D.: Dynamic highway-node routing. In: Demetrescu, C. (ed.)
WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)

6. Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric containers for efficient
shortest-path computation. ACM Journal of Experimental Algorithmics 10, 1–30
(2005)

7. Cooke, K., Halsey, E.: The shortest route through a network with time-dependent
internodal transit times. Journal of Mathematical Analysis and Applications 14,
493–498 (1966)

8. Dreyfus, S.: An appraisal of some shortest-path algorithms. Operations Re-
search 17(3), 395–412 (1969)

9. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1, 269–271 (1959)

10. Kaufman, D.E., Smith, R.L.: Fastest paths in time-dependent networks for intel-
ligent vehicle-highway systems application. Journal of Intelligent Transportation
Systems 1(1), 1–11 (1993)

11. Orda, A., Rom, R.: Shortest-path and minimum delay algorithms in networks with
time-dependent edge-length. Journal of the ACM 37(3), 607–625 (1990)

12. Daganzo, C.: Reversibility of time-dependent shortest path problem. Technical re-
port, Institute of Transportation Studies, University of California, Berkeley (1998)

13. Hart, E., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems, Science and Cybernetics SSC-
4(2), 100–107 (1968)

14. Goldberg, A., Harrelson, C.: Computing the shortest path: A∗ meets graph theory.
In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2005), SIAM (2005)

15. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A∗: Efficient point-to-point
shortest path algorithms. In: Demetrescu, C., Sedgewick, R., Tamassia, R. (eds.)
Proceedings of the 7th Workshop on Algorithm Engineering and Experimentation
(ALENEX 2005), SIAM (2005)

16. Chabini, I., Shan, L.: Adaptations of the A∗ algorithm for the computation of
fastest paths in deterministic discrete-time dynamic networks. IEEE Transactions
on Intelligent Transportation Systems 3(1), 60–74 (2002)



346 G. Nannicini et al.

17. Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. In:
Proceedings of the 10th Workshop on Algorithm Engineering and Experiments
(ALENEX 2008), SIAM (to appear, 2008)

18. Ikeda, T., Tsu, M., Imai, H., Nishimura, S., Shimoura, H., Hashimoto, T., Ten-
moku, K., Mitoh, K.: A fast algorithm for finding better routes by ai search tech-
niques. In: Proceedings for the IEEE Vehicle Navigation and Information Systems
Conference, pp. 291–296 (2004)

19. Goldberg, A., Werneck, R.: An efficient external memory shortest path algorithm.
In: Demetrescu, C., Sedgewick, R., Tamassia, R. (eds.) Proceedings of the 7th
Workshop on Algorithm Engineering and Experimentation (ALENEX 2005), pp.
26–40. SIAM (2005)

20. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579.
Springer, Heidelberg (2005)

21. Kerner, B.S.: The Physics of Traffic. Springer, Berlin (2004)



Multi-criteria Shortest Paths in Time-Dependent

Train Networks

Yann Disser1, Matthias Müller–Hannemann2, and Mathias Schnee1

1 Technische Universität Darmstadt, Department of Computer Science,
Hochschulstraße 10, 64289 Darmstadt, Germany

{disser,schnee}@algo.informatik.tu-darmstadt.de
2 Martin-Luther-Universität Halle-Wittenberg, Department of Computer Science,

Von-Seckendorff-Platz 1, 06120 Halle, Germany
muellerh@informatik.uni-halle.de

Abstract. We study the problem of finding all Pareto-optimal solutions
in a multi-criteria setting of the shortest path problem in time-dependent
graphs. This has important applications in timetable information systems
for train schedules. We present a new prototype to solve this problem in a
fully realistic scenario based on a multi-criteria generalization of Dijkstra’s
algorithm. As optimization criteria we use travel time and number of train
changes, as well as a new criterion “reliability of transfers”.

The performance of the prototype and various speed-up techniques are
analyzed experimentally on a large set of real test instances. In compar-
ison with a base-line implementation, our prototype achieves significant
speed-up factors of 20 with respect to the number of label creations and
of 138 with respect to label insertions into the priority queue. We also
compare our prototype with a time-expanded graph model.

Keywords: shortest paths, time-dependent graphs, multi-criteria op-
timization, speed-up techniques, case study.

1 Introduction

In peak times the timetable information system of the German railway com-
pany Deutsche Bahn AG calculates over 1,600,000 connections per hour [1].
This demonstrates the importance that such systems have gained. It is obvi-
ous that efficient algorithms have to be used in order to cope with that large
a demand. To achieve this kind of efficiency, the system currently in use by
Deutsche Bahn AG applies rather restrictive heuristics. Therefore, optimality of
the gained results cannot be guaranteed. Moreover, commercial systems usually
apply single-criteria algorithms optimizing travel time only.

In recent years, several research efforts have demonstrated that exact single-
criteria shortest path queries in train networks can be performed very efficiently
due to powerful speed-up techniques. Multi-criteria shortest path search is much
more challenging. Given two paths p and q, we say that p dominates q if and
only if there is at least one criterion for which p has a better value than q and

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 347–361, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



348 Y. Disser, M. Müller–Hannemann, and M. Schnee

there is no criterion for which p has a worse value than q. A path is called
Pareto-optimal if it is not dominated by any other path. Here, the usual goal is
to find all Pareto-optimal solutions. In theory, there can be exponentially many
Pareto-optima in the worst case, although in practice only a few are observed in
a realistic setting [2]. But in contrast to single-criteria search, one cannot abort
the search after finding a first optimal solution. In fact, even after finding all
Pareto-optima, search algorithms require a substantial amount of time to find a
certificate that no further solutions exist.

Related work. Two main approaches have been proposed for modeling
timetable information as a shortest path problem: the time-expanded [3,4,5],
and the time-dependent approach [6,7,8,9,10,11,5]. These models and algorithms
are described in detail in a recent survey [12].

Pyrga et al. [5] have presented an extensive computational study comparing
the time-expanded and the time-dependent graph for the earliest arrival prob-
lem. They also consider a bicritera search for all Pareto-optima with respect
to travel time and number of transfers. However, in the time-dependent ver-
sion they heavily exploit the fact that the number of transfers in Pareto-optimal
solutions is usually fairly small. More specifically, Pyrga et al. reduce the bicri-
teria search to a sequence of single-criteria problems with a bounded number
of transfers. They start by obtaining the lexicographically smallest optimum for
the combination of earliest arrival and number of transfers. If this optimum uses
T transfers, another T searches are performed bounding the number of transfers
by T − 1, . . . , 0. By excluding dominated results from all the obtained ones, all
Pareto-optima are computed in this particular bicriteria scenario. This trick is
neither well-suited for more than two criteria nor for criteria which may attain
a large range of values.

The second and third author have designed a fully realistic multi-criteria pro-
totype MOTIS (multi-criteria timetable information system) which is capable of
answering queries in about one second on standard PCs [13]. The MOTIS system
is currently based on a time-expanded graph due to the fact that it is much eas-
ier to model all side constraints arising in practice in this framework. However,
the major drawback of time-expanded graphs in comparison to time-dependent
models is the higher space consumption, in particular if highly-periodically oper-
ating regional mass transit has to be included. In addition, the time-dependent
graph model is easier to adapt in case of dynamic graph changes due to train
delays. This motivates our investigation of the time-dependent graph model in
this paper.

Only a few months ago Bauer et al. [14] have presented an experimental study
on speed-up techniques for timetable information systems. They observed that
many of the recently developed speed-up techniques are much slower on graphs
derived from timetable information than on road networks. Moreover, many
single-criteria speed-up techniques rely on a simultaneous bidirected search from
source and target. Such techniques are not applicable in train search applications
since we only know the target station but not the time at which an arrival can be
expected. A recently developed technique is the unidirectional routing algorithm



Multi-criteria Shortest Paths in Time-Dependent Train Networks 349

SHARC [15]. A time-dependent version of SHARC yields only approximations,
but works well on road networks.

Our Contribution and Overview. To the best of our knowledge, no com-
plete, realistic system has been built for exact multi-criteria search of all Pareto-
optimal solutions in the time-dependent graph model. In [5], Pyrga et al. treat
constant transfer times and traffic days, but other aspects of real timetables
like foot-paths and special transfer rules are not considered. In this paper we
describe a first prototype for multi-criteria search of all Pareto-optima within a
fully featured, real timetable. Its search results are guaranteed to be optimal.
We provide an extensive computational study showing the impact of several
speed-up techniques. Even though the number of possible speed-up techniques
is restricted severely in order to guarantee the optimality of all search results, the
performance of our prototype is already comparable to time-expanded systems,
but consumes much less space.

Most previous research (in particular [5]) concentrates on the earliest arrival
problem from a given point in time. But here we focus on a many-source short-
est path version because in a pre-trip search for train connections a user usually
wants to specify a time interval in which his journey should start. This implies
that we have to perform a simultaneous search from multiple starting times. In
a time-expanded graph model this can be handled very easily: One simply adds
a “super-source” and edges of length zero to all start events, thereby reducing
the search to a single-source search. In time-dependent graphs, however, solving
the many-source shortest path problem is more subtle if travel time is used as
an optimization criterion. Consider two subpaths from the source to some inter-
mediate node. Then, path p1 with start time s1 and travel time t1 dominates
another path p2 with start time s2 and travel time t2 with respect to travel time
only if t1 < t2 and s1 ≥ s2. Otherwise both paths are incomparable. This leads to
weaker dominance during search than for the earliest arrival problem, and con-
sequently to more non-dominated solutions which can be offered to customers.
It is therefore remarkable that we still achieve quite a reasonable performance.

Our approach can easily be extended to further criteria. In order to exemplify
this, the “reliability of transfers” is introduced as an additional criterion. The
reliability of transfers is a property of a connection that captures the probability
of catching all trains within it. Since possible train delays cannot be ignored,
such a criterion is of practical importance.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the time-dependent graph model and describe the adaptations needed in
order to make it suited for fully realistic timetables. A modification of Dijkstra’s
algorithm that makes it capable of minimizing multiple criteria is introduced
in Section 3. Several speed-up techniques that do not violate the optimality of
the search results are proposed. The results of the experimental analysis of our
time-dependent search system are presented in Section 4. We analyze the impact
of the proposed speed-up techniques on performance. The final performance is
then compared to a fully optimized search using a time-expanded graph. The



350 Y. Disser, M. Müller–Hannemann, and M. Schnee

last aspect of our discussion covers the relationship between performance and
the number of search criteria. Finally, Section 5 summarizes and gives an outlook
on future work.

2 Realistic Time-Dependent Graph Model

In this section we will describe a time-dependent graph model as introduced in
[5,10,11]. We will start off with a very basic time-dependent model and extend
it in the following.

We assume the timetable to consist of a set T of trains, a set S of stations, and
a set E of elementary connections. An elementary connection e ∈ E describes
a connection between two adjacent train stations without intermediate stops.
Such a connection contains a departure station from(e) ∈ S, an arrival station
to(e) ∈ S, a departure time d(e), and an arrival time a(e). In addition to that,
each elementary connection has several properties like train class, traffic days
and train number. Each train tr ∈ T is an ordered list of elements of E . A train
connection is composed of an ordered list of elementary connections which must
be consistent with the sequence of departure and arrival stations.

2.1 Basic Time-Dependent Model

For each station S ∈ S in the timetable there is a node v(S) ∈ V in the basic
time-dependent graph G = (V, E). We call these nodes station nodes. There is an
edge eAB = (v(A) , v(B)) ∈ E if the set EAB :={e ∈ E|from(e) = A ∧ to(e) = B}
is non-empty. The characteristics of all elementary connections in EAB are at-
tributed to this single edge eAB. Each edge has multiple length functions, one for
each optimization criterion. These length functions are time-dependent: depend-
ing on the time t at which the edge is to be used, different connections in EAB

may be favorable. In general, this is implemented with an iterator which com-
putes edge lengths “on-the-fly” and returns all necessary variants with different
characteristics.

If we only consider travel time and make the assumption that a connection
e1 ∈ EAB may not overtake another connection e2 ∈ EAB in the sense that
d(e1) ≥ d(e2) and a(e1) < a(e2), then the connection with the earliest depar-
ture after time t is the one chosen from EAB. Its travel time length is precisely
a(rel(EAB, t)) − t, where rel(EAB, t) := argmine∈EAB ,d(e)≥t d(e) is the relevant
connection in EAB at time t.

2.2 Transfers

In the basic model, transfers between different trains are not modeled differently
than two consecutive elementary connections with the same train. In order to
allow for our search to count the number of transfers and in order to assign a
duration to transfers, the model has to be extended as follows. We assume here
for simplicity that a constant transfer time is provided for each station.



Multi-criteria Shortest Paths in Time-Dependent Train Networks 351

Fig. 1. Extension of a simple time-dependent graph (left) to support transfers. The
timetable has three routes r1, r2, r3 so that the extended station (right) has three route
nodes.

In order to still be able to take advantage of the fact that multiple elemen-
tary connections are modeled by a single edge, it is necessary to group train
connections into routes. The set of routes forms a partition of T such that two
connections are in the same route if and only if they share equal stations and
properties. The departure and arrival times of two connections in the same route
may differ as well as their traffic days. Using this partition, each station is rep-
resented by several route nodes in addition to its station node. The station node
is used only to connect the route nodes and has no edges to nodes from other
stations. The expanded model is depicted in Figure 1.

One route node is required for each route that arrives or departs at the station.
For all connections in the same route, the corresponding route node plays the role
of the station node in the basic model. The assumption that connections may
not overtake each other can now be restricted to connections within a route. If
we have overtaking elementary connections within a route, the route can simply
be split up in order to separate the two elementary connections (and so we can
get rid off this assumption). If the route has a connection that arrives at the
station, an edge connecting the route node to the station node is introduced; if
the route has a connection that departs from the station, an edge connecting
the station node to the route node is introduced. One of these two edges needs
to carry the transfer costs at the station and is called transfer-edge, the other
has a transfer cost of 0. In the following we choose the edges from route nodes
to station nodes as transfer-edges. This is called exiting transfers as opposed to
entering transfers. We will see, that our choice is preferable due to performance
advantages of the multi-criteria search.

2.3 Foot-Paths and Special Transfer Rules

We propose the following extensions to make the model fully realistic. In a
real environment it is possible to walk from one station to another if the two



352 Y. Disser, M. Müller–Hannemann, and M. Schnee

Fig. 2. (a) Illustration of a station with two foot-edges in the time-dependent model
(b) Modifications to the graph for a station with a special transfer from train t1 to
train t2

stations lie in geographic proximity. Realistic models therefore contain foot-paths
to model this. Foot-paths are tuples (A, B, c) that represent a possibility to walk
between stations A and B within c minutes. We assume, that c already contains
all transfer costs at both A and B, so that no additional cost for switching trains
arise. Foot-paths are special in that their length is constant in time. Figure 2 (a)
shows the modifications that are needed in order to model a foot-path (A, B, c).
It is not sufficient to simply add an edge from the station node of A to the
station node of B with length c. This is because no additional transfer costs
have to be paid when using a foot-path. Reducing c by the transfer cost at A,
does not correctly model the costs when the journey starts at A. To circumvent
these problems, an additional foot-node is added to the stations subgraph.

Another feature of realistic timetables are special transfer rules, that change
the transfer time between two specific trains. The general transfer time of a
station may be increased or decreased that way, depending on the real-world
situation at the station. Two trains that use the same platform may for instance
have a reduced transfer time. For each transfer rule several changes to the graph
have to be made. Consider a special transfer time to get from train t1 to train
t2 at station A. Let X denote the route node of A for t1 and Y the route node
of A for t2. The station node for A is denoted by S. We assume that all special
transfers are reasonable, i.e. it is not possible to reach a train departing before t2
at Y if we arrived with t1. However, there are cases in which it is explicitly made
impossible to reach t2 by setting the time of the special transfer higher than the
usual transfer time. Figure 2 (b) shows the changes that have to be applied to
the model when a special transfer rule is introduced. A new edge leads from X
to Y carrying the special transfer cost. This edge may only be used after using
t1. The existing edges from S to Y and from Y to S have to be restricted so
that they may not be used if t1 is the last used train. This way Y cannot be
reached from X without using the special transfer and the special transfer may
not be used as shortcut to get to another route. For a proof of correctness of
this model, we refer to the full version of this paper.



Multi-criteria Shortest Paths in Time-Dependent Train Networks 353

3 Multi-criteria Dijkstra and Speed-Up Techniques

In the following we briefly review an extension to Dijkstra’s algorithm [16] that
makes it capable of coping with several minimization criteria. Pseudocode is
given in Algorithm 1. See Möhring [17] or the PhD-thesis of Theune [18] for a
general description and correctness proofs.

3.1 Dijkstra’s Algorithm for Multiple Criteria

The major difference when considering multiple search criteria is that nodes in
the graph may be visited multiple times. The order in which nodes are visited
in the classical algorithm guarantees that once a node is visited no better way
of reaching it will be found later on. Multiple criteria allow for the possibility of
different paths to a node that are not comparable – neither is strictly better.

Thus we need a way to remember all promising paths with which a node was
reached. We do this by using multi-dimensional labels. Labels are associated with
nodes and contain an entry for each criterion and a reference to its predecessor
on the path. For every node in the graph we maintain a list of labels that are not
dominated by any other label at the node. In the beginning, all label lists are
empty. Then, start labels are created for all nodes with a timestamp within the
query interval and are stored in a priority queue (lines 4-6). In the main loop of
the algorithm, a lexicographically minimal label is extracted from the priority
queue in each iteration (line 8). For the corresponding node of that label all
outgoing edges are scanned and labels for their head nodes are created, provided
that the edge is feasible (lines 9-11). Any new label is compared to all labels in
the list corresponding to its node. It is only inserted into that list and into the
priority queue if it is not dominated by any other label in the list. On the other
hand, labels dominated by the new label are marked as invalid and removed
from the node list (line 16).

3.2 Speed-Up Techniques

A good measure for the performance of this multi-criteria search algorithm is the
number of labels created during a search. There are several techniques of reducing
this number and thus increasing the algorithm’s performance. As inserting labels
into the priority queue is an expensive part of the search, the number of insertions
can serve as a secondary measure of the algorithm’s performance. We will now
briefly discuss some important optimizations of the search, starting with some
techniques that have been used in the time-expanded approach for some time
[13]. In Section 3.2 we introduce two new and rather technical optimizations that
have some impact on the search within the time-dependent graph.

Obtaining Lower Bounds. Some of the techniques described below make use
of lower bounds for the distance of a node to the target node. These bounds
can be available for some or all criteria. A general way of obtaining bounds is to



354 Y. Disser, M. Müller–Hannemann, and M. Schnee

Input: a timetable graph and a query
Output: a set of Pareto-optimal labels at the terminal

foreach node v do1

list<Label> labelListAt(v) := ∅;2

PriorityQueue pq := ∅;3

foreach node v in start interval do4

Label startLabel := createStartLabel(v);5

pq.insert(startLabel);6

while ! pq.isEmpty() do7

Label label := pq.extractLabel();8

foreach outgoing edge e=(v,w) of v=label.getNode() do9

if isInfeasible(e) then continue; // ignore this edge10

Label newLabel := createLabel(label, e);11

if newLabel is dominated then continue;12

// newLabel is not dominated13

pq.insert(newLabel);14

labelListAt(w).insert(newLabel);15

labelListAt(w).removeLabelsDominatedBy(newLabel);16

Algorithm 1. Pseudocode for the generalized Dijkstra algorithm

simplify the graph enough to make it possible to search quickly. In a simplified
auxiliary graph, a single-criterion backward search is performed in order to ob-
tain lower bounds for all nodes and one criterion. In order to be able to perform
a backward search, any time-dependency must be eliminated.

We have implemented two different versions of simplified graphs with different
properties. The more efficient one uses the graph of the basic time-dependent
model in which only travel time can be optimized and transfers are costless.
Time-dependency is removed by replacing variable edge costs with their mini-
mal cost over time. This graph is suited for obtaining lower bounds for travel
time only. Another simplification procedure keeps the complete graph and only
substitutes time-dependent edges with constant ones as in the first approach.
The resulting graph is more complicated but yields tighter bounds and can also
be used for transfers.

Dominance by Early Results. The basic version of the generalized Dijkstra
algorithm tests only labels which reside at the same node for mutual domination.
Therefore, sub-optimality of sub-paths can often only be detected at a later stage
— at the latest at the terminal. This causes a significant amount of wasted work
which we try to avoid.

A way to improve the behavior is to explicitly check newly created labels
against results we already have. If they are already worse they may be discarded
right away. The sooner our first results are obtained, the less avoidable labels are
created this way. Lower bounds may be used when trying to dominate a label



Multi-criteria Shortest Paths in Time-Dependent Train Networks 355

by earlier results. The criteria are therefore modified by adding the lower bound
for the current node. That way labels that cannot lead to new Pareto optima
are discarded as early as possible. If the lower bounds are tight enough, this can
lead to major improvements once the first result has been found.

Goal-Directed Search. The lower bounds at a node can be used to add them
as future costs to the cost values of a partial connection. If the extract opera-
tion from the priority queue is based on these modified values, this results in
a goal-directed search as in the A* algorithm. It is important to note that this
modification by itself leads to no improvement of running-time. It simply causes
the search to find the first result earlier on. Together with the dominance by
early results however, it leads to a major running-time improvement.

Avoid Hopping and Label Forwarding. Two phenomena that often arise
when searching the time-dependent graph can be eliminated in order to improve
performance. The first one is that labels propagate back to the node which they
originated from. In this case the labels are immediately dominated. The search
can easily be adapted to forbid “hopping”, i.e. the back-propagation of labels.
The other phenomenon is due to the fact that all edges between station and
route nodes in our graph have a cost of zero for all criteria. Because of this, newly
created labels often have the same values for the single criteria as the label they
originated from. Therefore, they are lexicographically minimal in the priority
queue from the moment on they are inserted. We can thus avoid inserting them
and simply hold them back until the current label has been processed completely.
Before extracting further labels from the queue, the labels that are held back
can be processed.

4 Computational Study

In the following, we analyze the performance of our multi-criteria search algo-
rithm. We apply the above speed-up techniques and compare our prototype to
a time-expanded approach. For the main part of our experiments we selected
two relatively unrelated criteria, namely travel time and the number of trans-
fers. Later we also show the influence on performance when adding an additional
criterion to the search.

4.1 Train Network and Test Cases

The train network used in this study is derived from the train schedule of
all trains within Germany of 2007 (56,994 trains, 8916 stations). The time-
dependent graph has about 240,000 nodes and 670,000 edges while the corre-
sponding time-expanded graph uses about 3,479,000 nodes and 5,633,000 edges.
Three different sets of test cases were used. Each test case contains a source
and a target station for the search, a date and a start time interval on that
date. The first set of test cases is a synthetic one. It contains 1,000 randomly



356 Y. Disser, M. Müller–Hannemann, and M. Schnee

created tests that allow for arbitrary start time intervals (referred to as random
cases). The second set also contains 1,000 randomly created tests which however
have more realistic start time intervals of exactly one hour (realistic cases). The
third set contains about 14,000 tests that were obtained from a snapshot of real
connection queries provided by Deutsche Bahn AG (real cases).

4.2 Computational Environment

All computations were executed on an AMD Athlon(tm) 64 X2 dual core pro-
cessor 4600+ with 2.4 GHz and 4 GB main memory running under Suse Linux
10.2. Our C++ code has been compiled with g++ 4.1.2 and compile option -O3.

4.3 Experiments

We first analyze the impact of single speed-up techniques. As a main indicator
for performance we use several operation counts on representative operations,
most importantly on the number of created labels, as well as on the number of
labels which pass the domination tests and are inserted into the priority queue.
We also provide CPU times, however, since our system is just a prototype to
demonstrate feasibility of the approach, no serious effort was spent on fine-tuning
the code in order to improve running time directly.

Impact of Exact Speed-Up Techniques. We start with a base-line vari-
ant which is the generalized Dijkstra algorithm on the fully realistic graph
model without using any optimization techniques and choosing exiting trans-
fers (cf. Section 2.2). Our first investigation compares this base-line variant with
an optimized version which includes domination by early results as well as goal
direction. The lower bounds are obtained from the basic time-independent graph
(cf. Section 3.2). In addition to that, avoidance of hopping and label forwarding
are used. Table 1 shows the combined impact of these techniques on performance.
We observe an improvement of a factor of about six with respect to the number
of created labels and a factor of 13 with respect to the number of insertions into
the priority queue. A more careful analysis reveals the individual impact of the
low level optimizations of avoiding the hopping of labels and their forwarding
along costless edges (cf. Section 3.2). This can be seen in Table 2.

It can also be seen that the choice between entering and exiting transfers
(cf. Section 2.2) makes a notable difference in performance. Together a factor
of nearly two is achieved in the number of created labels and a factor of over
three is achieved in the number of inserted labels. Note that the running times
of the different sets of queries cannot be compared. The real cases use start time
intervals of three hours while the realistic cases use one hour. This leads to an
average number of about six non-dominated solutions for the real cases, but only
an average of about two for the realistic cases. Therefore, different running times
are to be expected. Although the average number of created labels is similar for
both sets of instances, the actual distribution of the number of created labels
has a significantly larger variance for the real cases.



Multi-criteria Shortest Paths in Time-Dependent Train Networks 357

Table 1. Comparison of the base-line variant with an optimized version

1000 realistic cases

created inserted average time
labels labels in seconds

base-line variant 1236744 636393 4.730

optimized version 207976 47967 1.050

Table 2. Performance improvement when avoiding hopping and forwarding labels

1000 random cases 1000 realistic cases 14076 real cases

created inserted avg. created inserted avg. created inserted avg.
labels labels time labels labels time labels labels time

entering transfers 1232592 545416 7.049s 385982 160200 1.606s 386764 176540 2.360s

exiting transfers 1072187 552012 5.990s 315565 160516 1.311s 343248 177193 2.098s

avoid hopping 682925 552014 5.453s 207984 160514 1.183s 212503 177192 1.932s

avoid hopping +
label forwarding 682897 146766 4.690s 207976 47967 1.050s 212516 45114 1.570s

As explained in Section 3.2, there are several ways of obtaining lower bounds.
The above results used the basic time-dependent graph. However, by using the
more complex approach, lower bounds can be obtained for other criteria as well,
like the number of transfers. Unfortunately, the lower bounds on the number
of transfers do not improve the search sufficiently to overcome the effort of
determining the bounds in the first place, as can be seen in Table 3.

An improvement can still be achieved with tighter bounds on the travel time.
Compared to not using any heuristic, we obtain an improvement of factor about
two. The most efficient variant of these bounds — the complex graph with travel
time bounds only — will from here on be used as our standard variant for further
comparisons.

Further Speed-Up by Realistic Assumptions. One of the strengths of our
approach is the guaranteed optimality of the search results. We are not willing
to sacrifice this advantage by using speed-up techniques that violate optimal-
ity. The only exception are optimizations that use realistic assumptions in order
to limit the search to certain reasonable ranges for the criteria. The results of
applying some of these techniques are shown in the following. There are two
ways of restricting the allowed travel time. Firstly it can be restricted by a fixed
upper limit like 24 hours. This helps a lot for long connections but does not
help at all for short ones. A more adaptive restriction is to limit the allowed
travel time to γ times the time of the fastest connection, where γ is a variable
parameter of our algorithm. This improves the search a lot for short queries.
Our results are summarized in Table 4. To limit the number of transfers did
not show a notable effect on performance in our tests. A maximum of five al-
lowed transfers did not yield a better performance, even though it makes some



358 Y. Disser, M. Müller–Hannemann, and M. Schnee

Table 3. Performance when using several combinations of the simple and the complex
graph in order to obtain lower bounds (realistic cases)

heuristic for lower bounds created inserted average time
labels labels in seconds

none 420803 92305 1.839

simple (time) 207976 47967 1.050

complex (time) 205260 45886 1.003

simple (time), complex (transfers) 207813 47939 1.106

complex (time & transfers) 205101 45866 1.159

Pareto-optimal connections impossible. Hence we dropped the limit on the num-
ber of transfers completely. A reasonable limitation can be put on the maximum
waiting time at a station since long waiting periods are very unattractive for
most passengers. This especially improves the search for connections running
over night. The improvement can be seen in Table 5. Finally, the single limits
can be applied together in different ways. We applied conservative limits of 24
hours for maximum travel time, five hours for maximum waiting time and γ = 5
and tight limits of ten hours for maximum travel time, three hours for maximum
waiting time and γ = 2. The improvements can be found in Table 6. In summary,
together with the exact speed-up techniques, a speed-up factor of about 20 over
the base-line version has been achieved with respect to the number of created
labels and a factor of 138 with respect to the number of insertions.

Comparison with a Time-Expanded Approach. In general, we expect a
better performance of the time-dependent approach than of the time-expanded
one. It is unclear however, whether this can be achieved in a multi-criteria setting.
In order to answer this question, we compare the performance of our time-
dependent approach with the time-expanded search incorporated in MOTIS.
As the time-dependent system was developed as a proof of concept only, it
makes not much sense to compare running times. We restrict our analysis to
the comparison of the number of labels inserted into the priority queue. As
can be seen in Table 7 the time-dependent approach creates much fewer labels.
When using realistic assumptions, the time-dependent system adds 5.4 times
less labels into the priority queue. However, it should be noted, that the time-
dependent approach requires additional effort to compute actual edge lengths
on-the-fly. Thus we expect (and empirically observe) similar running times for
both approaches. As expected, the memory consumption of the time-expanded
graph is a lot higher than that of the time-dependent one. In our tests, MOTIS
needed 1.25 GB while the time-dependent graph used only 281 MB.

Adding an Additional Criterion: Reliability of Transfers. The above
experiments were performed using travel time and the number of transfers as
only search criteria. An interesting question is how the performance worsens
when further criteria are introduced. This was explored by adding the “reliability
of transfers” as a further criterion.



Multi-criteria Shortest Paths in Time-Dependent Train Networks 359

Table 4. Limiting the maximum travel time (realistic cases)

algorithmic created inserted average time
variant labels labels in seconds

standard 205260 45886 1.003

max. travel time = 24h 180910 30893 0.845

max. travel time = 15h 141602 16175 0.631

max. travel time = 10h 83162 6999 0.406

γ = 5 182535 32030 0.865

γ = 3 144678 17015 0.653

γ = 2 84125 6890 0.415

Table 5. Limiting the maximum waiting time (realistic cases)

algorithmic created inserted average time
variant labels labels in seconds

standard 205260 45886 1.003

max. waiting time = 5h 167914 19751 0.777

max. waiting time = 3h 151680 15441 0.637

Table 6. Performance improvement when combining limits (realistic cases)

algorithmic created inserted average time
variant labels inserted in seconds

standard 205260 45886 1.003

conservative limits 156515 17827 0.685

tight limits 63261 4605 0.335

The reliability of a single transfer is a function of the buffer time which is the
available time exceeding the minimum transfer time at the station. This means
that a passenger will catch the connecting train unless the incoming train is
delayed by more than the buffer time. There are many plausible ways to map a
buffer time t into a reliability measure. In this paper, we propose to define

reliability : t �→ s− expln(1−a)− 1
b ·t,

with parameters a = 0.6, b = 8, s = 0.99 so that the maximal reliability of a
single transfer is 99% and a buffer time of 0 minutes leads to 60% reliability. The
reliability of connections with several transfers is defined as the product of the
reliabilities of each single transfer. This yields a continuous reliability measure
which we further transformed into a discrete one by subdividing the interval of
[0,1] into 50, 20 and 10 equivalence classes of equal width. Table 8 summarizes
the performance of the search when using different numbers of criteria. The
addition of the number of transfers as second criterion leads to a slow-down of



360 Y. Disser, M. Müller–Hannemann, and M. Schnee

Table 7. The number of labels inserted into the priority queue on average for both
the time-dependent and the time-expanded search

real cases inserted labels

time-expanded (optimized, conservative limits) 92538

time-expanded (optimized, tight limits) 64782

time-dependent (optimal, no limits) 44133

time-dependent (realistic assumptions, tight limits) 11913

Table 8. Relationship between the number of criteria and performance on 1000 realistic
test cases. Different numbers of discretization steps are used for reliability.

criteria created inserted average time average number of
labels labels in seconds Pareto optima

time 99284 19401 0.454 1.28

time, transfers 205260 45886 1.003 2.34

time, transfers, reliability (50 classes) 990664 160254 5.726 6.76

time, transfers, reliability (20 classes) 853742 149366 4.727 5.67

time, transfers, reliability (10 classes) 772822 142615 4.138 4.66

factor two, the addition of reliability of transfers as third criterion leads to a
slow-down of another factor four if we use 10 equivalence classes.

5 Conclusions and Future Work

In this work we have presented our prototype for a time-dependent, multi-criteria
search system that works in a fully realistic scenario. We have shown how to in-
troduce the most important features of real timetables and how to improve per-
formance significantly. We have provided the results of our experimental analysis
that show that a speed-up factor of 20 with respect to the number of label cre-
ations and 138 with respect to the number of label insertions can be achieved
under realistic assumptions. A comparison to the time-expanded approach was
done, indicating that the new approach clearly is competitive. Finally we dis-
cussed the impact on performance when adding further criteria to the search.

In order to make the time-dependent approach able to replace current online
search systems, its performance needs to be improved further. If possible, opti-
mality should be maintained. It remains a challenge to design better speed-up
techniques for multi-criteria search. Another goal is to extend our prototype to
a dynamic scenario with train delays.

Acknowledgments

This work was partially supported by the DFG Focus Program Algorithm Engi-
neering, grant Mu 1482/4-1. We wish to thank Deutsche Bahn AG for providing
us timetable data for scientific use.



Multi-criteria Shortest Paths in Time-Dependent Train Networks 361

References

1. HaCon web-site (2007), http://www.hacon.de/hafas/konzept.shtml
2. Müller-Hannemann, M., Weihe, K.: On the cardinality of the Pareto set in bicriteria

shortest path problems. Annals of Operations Research 147, 269–286 (2006)
3. Pallottino, S., Scutellà, M.G.: Shortest path algorithms in transportation models:

Classical and innovative aspects. In: Equilibrium and Advanced Transportation
Modelling, Kluwer Academic Publishers, Dordrecht (1998)

4. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM Journal of Experimental Algorithmics,
Article 12, 5 (2000)

5. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient models for timetable
information in public transportation systems. ACM Journal of Experimental Al-
gorithmics (JEA) 12, 2.4 (2007)

6. Cooke, K.L., Halsey, E.: The shortest route through a network with time-dependent
internodal transit times. Journal of Mathematical Analysis and Applications 14,
493–498 (1966)

7. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. Journal of the ACM 37, 607–625 (1990)

8. Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. Net-
works 21, 295–319 (1991)

9. Nachtigal, K.: Time depending shortest-path problems with applications to railway
networks. European Journal of Operations Research 83, 154–166 (1995)

10. Brodal, G.S., Jacob, R.: Time-dependent networks as models to achieve fast exact
time-table queries. In: Proceedings of the 3rd Workshop on Algorithmic Methods
and Models for Optimization of Railways (ATMOS 2003). Electronic Notes in
Theoretical Computer Science, vol. 92, pp. 3–15. Elsevier, Amsterdam (2004)

11. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Towards realistic modeling of
time-table information through the time-dependent approach. In: Proceedings of
the 3rd Workshop on Algorithmic Methods and Models for Optimization of Rail-
ways (ATMOS 2003). Electronic Notes in Theoretical Computer Science, vol. 92,
pp. 85–103. Elsevier, Amsterdam (2004)

12. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable informa-
tion: Models and algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner,
D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–89.
Springer, Heidelberg (2007)

13. Müller-Hannemann, M., Schnee, M.: Finding all attractive train connections by
multi-criteria Pareto search. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner,
D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 246–
263. Springer, Heidelberg (2007)

14. Bauer, R., Delling, D., Wagner, D.: Experimental study on speed-up techniques
for timetable information systems. In: ATMOS 2007 (2007)

15. Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. In:
Proceedings of the 9th Workshop on Algorithm Engineering and Experiments
(ALENEX 2008) (2008)

16. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

17. Möhring, R.H.: Verteilte Verbindungssuche im öffentlichen Personenverkehr:
Graphentheoretische Modelle und Algorithmen. In: Angewandte Mathematik - ins-
besondere Informatik, Vieweg, pp. 192–220 (1999)

18. Theune, D.: Robuste und effiziente Methoden zur Lösung von Wegproblemen.
Teubner Verlag, Stuttgart (1995)

http://www.hacon.de/hafas/konzept.shtml


Author Index

Aho, Timo 1
Ajwani, Deepak 208
Althaus, Ernst 275
Andrade, Diogo V. 220

Bar-Noy, Amotz 194
Bauer, Reinhard 303
Bian, Zhengbing 87
Böcker, Sebastian 289
Briesemeister, Sebastian 289
Buchheim, Christoph 249

Chimani, Markus 55
Clautiaux, François 43
Couto, Marcelo C. 101

de Rezende, Pedro J. 101
de Souza, Cid C. 101
Delling, Daniel 303, 319, 334
Disser, Yann 347

Elomaa, Tapio 1

Feng, Yi 194
Frias, Leonor 142

Geisberger, Robert 319
Gregg, David 28
Gu, Qian-Ping 87
Gustedt, Jens 129
Gutwenger, Carsten 55

Jägersküpper, Jens 263
Johnson, Matthew P. 194
Jouglet, Antoine 43

Kalles, Dimitris 181
Kaporis, Alexis C. 181
Klau, Gunnar W. 289
Kujala, Jussi 1

Lach, Gerald 235
Liberti, Leo 334

Liers, Frauke 249
Lillis, Kevin M. 69
Liu, Ou 194
Lübbecke, Marco E. 235

Malinger, Itay 208
Meyer, Ulrich 208
Moukrim, Aziz 43
Müller–Hannemann, Matthias 347
Mutzel, Petra 55

Nannicini, Giacomo 334
Nash, Nicholas 28
Naujoks, Rouven 275
Noronha, Thiago F. 169

Oswald, Marcus 249

Packer, Eli 114
Pemmaraju, Sriram V. 69
Petit, Jordi 142
Preuss, Mike 263

Resende, Mauricio G.C. 169, 220
Ribeiro, Celso C. 169

Sanders, Peter 303, 319
Schieferdecker, Dennis 303
Schnee, Mathias 347
Schultes, Dominik 303, 319, 334
Sinha, Ranjan 14
Spirakis, Paul G. 181

Toledo, Sivan 208

Vigna, Sebastiano 154

Wagner, Dorothea 303
Werneck, Renato F. 220
Wirth, Anthony 14
Wong, Hoi-Ming 55


	Title Page
	Preface
	Organization
	Table of Contents
	Reducing Splaying by Taking Advantage of Working Sets
	Introduction
	Adaptive Data Structures and Working Sets
	Conditional Adaptation of a Binary Search Tree
	The Algorithm Detecting Working Sets: Wsplay
	Test Setting
	The Evaluated Version of Wsplay
	Description of the Data

	Empirical Evaluation
	Average Depth of an Access
	Access Times
	On the Suitability of Zipf's Distribution

	Conclusion

	Engineering Burstsort: Towards Fast In-Place String Sorting
	Introduction
	Traditional Approaches to String Sorting
	Burstsort
	Related Work
	Our Contributions
	Paper Organization

	Bucket Redesign
	Buffer-Based String Sorting
	Experimental Design
	Discussion
	Conclusions and Further Work

	Comparing Integer Data Structures for 32 and 64 Bit Keys
	Introduction
	Background and Motivation
	Related Work and Contributions

	Background
	Engineering Burst Tries
	In-Node Data Structures
	Bucket Data Structures
	Operations

	Results
	Experimental Setup
	Random Data
	Valgrind Workloads

	Conclusion

	A New Graph-Theoretical Model for $k$-Dimensional Guillotine-Cutting Problems
	Introduction
	Notation and Graph-Theoretical Concepts
	Problem Formulation and Notation
	Graph-Theoretical Concepts

	A New Graph-Theoretical Model for the Guillotine-Cutting Problem
	Guillotine-Cutting Classes
	A New Graph-Theoretical Model

	Cycle-Contractable Graphs
	Cycle-Contractable Graphs and Guillotine Graphs
	Finding the Hamiltonian Cycle in a Cycle-Contractable Graph

	From Cycle-Contractable Graphs to Guillotine Patterns
	Finding Suitable Orientation and Coloring for the Edges
	Computing the Size of the Guillotine Pattern

	A Constraint-Programming Approach
	Conclusion

	Layer-Free Upward Crossing Minimization
	Introduction
	Upward Planarization Approach
	Feasible Graphs and Paths
	Upward Edge Insertion
	Routing Network
	Locking Edges
	Upward Edge Insertion Algorithm

	Runtime Analysis
	Experiments

	On the Efficiency of a Local Iterative Algorithm to Compute Delaunay Realizations
	Introduction
	Technical Background
	The HMS Test for Delaunay Realizability
	The Koebe Representation Theorem

	The FindAngles Algorithm
	Experimental Results
	Relative Performance of Algorithm FindAngles
	Scaling to Graphs of Order n=1000
	Most Triangulations Are Delaunay Realizable

	Understanding the Convergence
	Future Work

	Computing Branch Decomposition of Large Planar Graphs
	Introduction
	Preliminaries
	Divide-and-Conquer Based Algorithms
	Computational Results
	Results for Instances in Class (1)
	Results for Instances in Classes (2) and (3)

	Concluding Remarks

	Experimental Evaluation of an Exact Algorithm for the Orthogonal Art Gallery Problem
	Introduction
	Basics
	Discretization Strategies
	Computational Experiments
	Instances
	Results

	Conclusions and Remarks

	Computing Multiple Watchman Routes
	Introduction
	Preliminaries
	Algorithm
	Computing a Static Guard Set (Step a)
	Constructing the Visibility Graph (Step b)
	Computing the Pairwise Shortest Paths (Step c)
	Constructing the Minimum Spanning Tree (Step d)
	Splitting the Minimum Spanning Tree into k Subtrees (Step e)
	Constructing Hamiltonian Routes (Step f)
	Substituting Vertices (Step g)
	Removing Vertices (Step h)
	Total Complexity

	Experiments
	Conclusions and Future Work

	Engineering Parallel In-Place Random Generation of Integer Permutations
	Introduction and Overview
	Randomized Distributed Shuffling and the Generation of Integer Permutations
	Reducing Communication under Full Randomness Assumptions
	Generating Permutations in Place

	Engineering
	Range Encoding
	Families of Universal Hash Functions

	Experiments
	Compression by Range Encoding
	In Place Generation

	Conclusion and Outlook

	Parallel Partition Revisited
	Introduction
	Previous Work and a Variant
	The New Parallel Cleanup Phase
	The Data Structure
	The Algorithm
	Cost Analysis

	Implementation
	Experimental Analysis
	Conclusions

	Broadword Implementation of Rank/Select Queries
	Introduction
	Notation
	rank9
	$k$-Bit Comparisons
	select9
	simple
	Elias--Fano Representation of Monotone Sequences
	Experiments
	Conclusions

	Efficient Implementations of Heuristics for Routing and Wavelength Assignment
	Introduction
	Related Work
	Implementation Issues
	Computational Experiments
	Concluding Remarks

	Myopic Distributed Protocols for Singleton and Independent-Resource Congestion Games
	Introductory Motivation
	Related Work
	Sequential and Concurrent Congestion Games
	Insights from Distributed Computing and Traffic Distributions

	An Efficient Selfish Distributed Protocol
	Experimental Validation of Singleton Congestion Games
	On the Validity and the Implications of the Results
	Conclusions

	When to Reap and When to Sow – Lowering Peak Usage with Realistic Batteries
	Introduction
	Model and Algorithms
	GA and Lossy Battery Algorithms
	Factor-Revealing LPs
	Performance Evaluation
	Experiment Setup
	Simulation Results

	Conclusion
	References

	Characterizing the Performance of Flash Memory Storage Devices and Its Impact on Algorithm Design
	Introduction
	Implications of Flash Devices for Algorithm Design
	Characterization of Flash Memory Devices
	Flash Memory
	Configuration
	Result and Analysis

	Designing Algorithms to Exploit Flash When Used Together with a Hard Disk
	Discussion

	Fast Local Search for the Maximum Independent Set Problem
	Introduction
	Basics
	Local Search
	Incremental Version
	Maximum Clique

	Metaheuristics
	Iterated Local Search
	The GLP Algorithm

	Experimental Results
	Instances
	Local Search
	Metaheuristics

	Final Remarks

	Optimal University Course Timetables and the Partial Transversal Polytope
	Introduction
	Our Contribution
	Related Work

	Integer Programs and Decomposition
	An Intuitive Integer Program
	Decomposition into Time and Room Assignment

	The Partial Transversal Polytope
	Facets
	Generating All Facets, and a Generating Subset
	Facet Enumeration

	Consequences
	Computational Results
	The Second International Timetabling Competition
	Statistics and Results on Simulated Data

	Discussion
	Auxiliary Results

	A Basic Toolbox for Constrained Quadratic 0/1 Optimization
	Introduction
	Definitions
	Cutting Planes from Maxcut
	Target Cuts for Quadratic 0/1 Problems
	Applications
	Finding Highly Similar Subgraphs -- Quadratic Matching
	Bipartite Crossing Minimization -- Quadratic Linear Ordering I
	Linear Arrangement -- Quadratic Linear Ordering II

	Experiments
	The Quadratic Matching Problem
	The Quadratic Linear Ordering Problem

	Conclusion

	Empirical Investigation of Simplified Step-Size Control in Metaheuristics with a View to Theory
	Introduction
	Cumulative Step-Size Adaptation (CSA)
	Two Simplified CSA-Derivatives
	Related Work, Discussion, and a View to Theory
	Experimental Investigation of the CSA-Variants
	Conclusions and Outlook

	Reconstructing Phylogenetic Networks with One Recombination
	Introduction
	Model
	Related Work
	The Algorithm
	Preliminaries
	Evaluation of a Recombination Network
	Enumeration Process
	Pruning the Search Space
	Recombination Phase

	Experiments
	Fixed Recombination Scenarios
	Results

	Conclusion and Future Work

	Exact Algorithms for Cluster Editing: Evaluation and Experiments
	Introduction
	Preliminaries
	Data Reduction and Branching Algorithm
	Integer Linear Programming and Branch-and-Cut
	Datasets
	Data Reduction Results
	Integer Linear Programming and Search Tree Results
	Conclusion

	Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm
	Introduction
	Related Work
	Our Contributions

	Core-Based Routing
	Hierarchy-Aware Arc-Flags
	Contraction Hierarchies + Arc-Flags (CHASE)
	Reach + Arc-Flags (ReachFlags)

	Transit-Node Routing + Arc-Flags (TNR+AF)
	Experiments
	Road Networks
	Robustness of Combinations

	Conclusion
	Further Experiments

	Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks
	Introduction
	Contraction
	Node Ordering
	Query
	Applications
	Experiments
	Conclusions

	Bidirectional $A^*$ Search for Time-Dependent Fast Paths
	Introduction
	A with Landmarks
	Bidirectional Search on Time-Dependent Graphs
	Correctness
	Improvements
	Experiments
	Conclusion and Future Work

	Multi-criteria Shortest Paths in Time-Dependent Train Networks
	Introduction
	Realistic Time-Dependent Graph Model 
	Basic Time-Dependent Model
	Transfers
	Foot-Paths and Special Transfer Rules

	Multi-criteria Dijkstra and Speed-Up Techniques 
	Dijkstra's Algorithm for Multiple Criteria
	Speed-Up Techniques 

	Computational Study 
	Train Network and Test Cases
	Computational Environment
	Experiments

	Conclusions and Future Work

	Author Index



