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Abstract  
Spatial evolutions of anthropized ecosystems and the progressive trans-
formation of spaces through the course of time emerge more and more as a 
special interest issue in research about the environment. This evolution 
constitutes one of the major concerns in the domain of environmental 
space management. The landscape evolution of a regional area and the per-
spectives for a future state raise particularly important issue. What will the 
state of the region be in 15, 30 or 50 years? 

Time can produce transformations over a regional area such as emer-
gence, disappearance or the union of spatial entities. These transformations 
are called temporal phenomena. We propose two different methods to pre-
dict the forestry development for the forthcoming years in the experimen-
tal area, which reveals these spatial transformations. The proposed meth-
ods are based on fuzzy logic and Cellular Automata (CA). 

The methods are supported by the analysis of the landscape dynamics of 
a test site located in a tropical rain forest country: the oriental piedmont of 
the Andes Mountains in Venezuela. This large area, at the scale of a Spot 
satellite image, is typical of tropical deforestation in a pioneer front. The 
presented approaches allow the geographer interested in environmental 
prospective problems to acquire type cartographical documents showing 
future conditions of a landscape. The experimental tests have showed 
promising results. 

Keywords: Spatial dynamic of environment, modelling, fuzzy logic, cellu-
lar automata, prospective maps, tropical pioneer front.  

4.1 Introduction 

The spatial evolution of anthropized ecosystems and the progressive 
transformation of spaces over time is a large preoccupation in space 
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accommodation, environmental domains, and prospective studies. There 
is an underlying question that arises concerning the landscape development 
and the prospective of the state of a forest area in future: How will 
conditions of a regional area develop within the next 15, 30 or 50 years? 

In fact, the time consists of hierarchical events and can produce trans-
formations upon a terrain landscape such as emergence, disappearing, and 
the union of spatial entities. These transformations are called temporal 
phenomena (Claramunt 1994).  

Simulation with digital images has become an important and an interest-
ing topic for research related to environment monitoring (Centeno and 
Selleron 2001). 

A sequence of digital maps of different dates allows the analysis of the 
landscape dynamics of a region. Images collected by satellite (SPOT and 
Landsat) from the forest of Ticoporo, a tropical rain country that is located 
in Venezuela (South America), were used to investigate different methods 
of spatio-temporal prediction: fuzzy logic and cellular automata. 

These methods enable us to study the future evolution of the forest by 
analysing the forest’s progression and regression zones from a sequence of 
n thematic maps through time. The evolution modelling of regions, for an 
established date, is obtained with help of the sequence of satellite images 
representing the terrain conditions for distinct years. Thus, sensitive factors 
on region evolution are considered for the prediction purpose. It allows the 
geographer interested in environmental prospective problems to acquire 
type cartographical documents showing future conditions of a landscape. 

4.1.1  Fuzzy sets in spatial modelling 

Many works have been developed based on fuzzy systems to solve prob-
lems related to geo-processing. According to Saint-Joan and Desachy 
(1995) fuzzy systems deal with imprecise and uncertain information in a 
more efficient way when compared with algebra maps systems based on 
Boolean logic. Many authors point out some advantages in the use of fuzzy 
inference systems to solve problems associated with the environment 
(Centeno and Gois 2005, Zadeh 1965, Schultz et al. 2006): 

− The integration of diverse and heterogeneous sources of information in 
different scales of magnitude allows a formal trade-off between favour-
able and unfavourable conditions. 

− The possibility of manipulating linguistic terms instead of mathematical 
formulas can facilitate the use of the systems by specialists unfamiliar 
with the mathematical terminology. 
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− The definition of a fuzzy rule base allows the reasoning process to focus 
on specific regions of interest. 

− Smoother decision regions resulting from the fuzzy reasoning can re-
duce abrupt changes in the final decision-making. 

4.1.1.1 Modelling imprecision 

Geographical data has a number of properties, which present challenges to 
the modelling process. Sometimes in image analysis approaches, it is more 
appropriate to regard the geographical regions as fuzzy subsets of the im-
age. This includes complex definitions of location, multidimensionality 
and the inherent fuzziness in many features of the regions and their rela-
tionships (Peuquet 1984). The resultant model should be able to represent 
a simplified approximation of reality and manage the imprecision or indis-
tinctness, which characterizes a lot of geographical information. 

The fuzziness of geographical information can be related to the repre-
sentation of regions, whose location or boundaries are not known pre-
cisely and to the representation of the information, which is expressed in 
imprecise terms. For all these reasons, there is now considerable interest 
in issues of uncertainty and imprecision in geoscientific information 
(Altman 1994). Fuzzy set theory is an appropriate means of modelling 
imprecision or vagueness and there are many areas to which fuzzy sets are 
being applied. 

4.1.2 Cellular Automata Models 

The cellular automata theory was first introduced by John Von Neumann 
in the forties and it gained considerable popularity in the 1970’s, through 
the work of John Conway, called “game of life”(Gardner 1970). 

A cellular automaton is a discrete dynamic system whose behaviour is 
specified in terms of a local relation (Toffoli and Margolus 1998). Accord-
ing to White et al. (2000) a cellular automata model consists of: 

− a one or n-dimensional space divided into an array of identical cells; 
− a cell neighbourhood of a defined size and shape; 
− a set of discrete cell states; 
− a set of transition rules, which determine the state of a cell as a function 

of the states of cells in a neighborhood; 
− discrete time step with all cell state updated simultaneously. 

At each time step, all cells in the array update their current state accord-
ing to the transition rule (representing the dynamic nature of the system) 
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(Wolfram 1994). The number of possible configurations for a cellular 
automata (considering the transition cell updated) with s states and n 
neighbourhood cells is 

nss (Weimar 1998). 
According to the classical Cellular Automata Theory, a rule is called to-

talistic if it only depends on the sum of the states of all cells in the 
neighbourhood. Another classification is to distinguish between determi-
nistic or probabilistic rules. In the first case, the transition rule is a function 
which has exactly one result for each neighbourhood configuration. How-
ever, probabilistic rules provide one or more possible states with associ-
ated probabilities, whose sum must be one for each input configuration 
(Weimar 1998). Each cell must be in one state. A set of discrete cell states 
can be defined by some property linked with the simulation of the phe-
nomenon to be modelled.  

The size of the neighbourhood must be defined. The Fig. 4.1 shows 
three examples of neighbourhoods that can be defined in two dimensions. 
The choice of neighbourhood depends on the context and it influences the 
propagation velocity of the phenomenon to be modelled (Weimar 1998). 

Cellular automata can also be implemented with rules of different range. 
A range of 1 means that only the nearest cells are considered as neighbour 
cells, and a higher range means that more nearby cells are considered 
neighbours, as shown in Fig. 4.2. 

The characteristics of CA used in today’s geographic cellular automata 
(GCA) models are a mixture of the original CA formalism (Wolfram 1984) 
and the multiple transformations required for the modelling of the geo-
graphic space (Couclelis 1997, Torrens and O’Sullivan 2001). However, 
GCA can be used in any context where one of the main drivers of land use 
change is the influence of spatial neighbors. Some studies listed above ex-
emplify this situation since they have consistently shown that the GCA 
modelling framework is well suited to capture the highly decentralized, 
multi-criteria, and spatial dynamics of geographic space. 

 
Fig. 4.1 (a) Von Neuman’s neighbourhood (b) Moore’s neighbourhood (c) Arbi-
trary neighbourhood 
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Fig. 4.2 Range of cellular automata 

4.1.3 Spatio-temporal Prediction technique 

Predictions are important methods of reasoning about the geographic space 
and they are based primarily on inferences, rather than observations (Chase 
and Chi 1981). 

The aim of a prescriptive modelling is to represent facts, to simulate proc-
esses, to express judgements or to provide for effective descriptions of geo-
graphic phenomena, through sets of properties or constraints. The computer 
has to generate the potential answers to these descriptions and to present 
them to the users (Falcidieno et al. 1992). Prescriptive modelling attempts to 
answer questions such as “what should be” by simulating the effects of cer-
tain actions effecting spatial objects/phenomena/processes. Prescriptive 
modelling is often based on the assumption that the problem domain has 
been well understood it provides effective descriptions of geographical phe-
nomena in order to help users to make in spatial decision (Centeno 1998). 

The problems addressed by prescriptive models generally involve two 
different uses for them: exploration and generation. The first requires a se-
lective exploration of the spatial data model using geometric, topological, 
geographical properties in order to satisfy the objectives. The second prob-
lem generates a simulation of geographical phenomena. The initial state-
ment of an allocation problem is a descriptive task, which consists of an 
explicit specification of some geographic conditions necessary to achieve 
the stated objective. The set of conditions expressed by the user defines the 
conceptual model of the spatial phenomena; it depends on the user’s re-
quirements. The simulation of geographical phenomena can be used, for 
example, to foresee potential site modifications in time. 

4 Evaluation of prospective modelling methods
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The achievement of simulation of geographical phenomena through 
time consists of observing the changes of the spatial entities. The sequence 
of events must be considered in order to study the influence of spatial 
processes over the entities’ transformation. The past states of an entity in-
fluence its current state, the current state in turn influences the future states 
of this entity. In this paper, the interest lies in the techniques of simulation. 

4.1.4 Related works 

Some approaches described in literature use a sequence of satellite images 
to generate a prediction for a specific region. In Centeno et al. (1996) the 
prediction method uses geographical data in vector representation and it is 
based on the position and form study of the spatial entities contained in 
each map. However, this method does not take into account relevant land 
area features such as valleys, rivers, slopes, roads, villages or indeed re-
gions frequently destroyed by fire. Therefore the regions are constrained to 
uniform morphological transformations. 

In St-Joan and Vidal (1996), the proposed approach applies mathemati-
cal morphology to zones of forestry progression and regression consider-
ing shape and surface of the regions, but the prediction task is occurs with-
out regard of important factors related to forestry evolution. 

The approach of Centeno and Selleron (2001) is founded on the princi-
ple that we must make use of regression and progression zones within the 
forest in order to discover the privileged directions of evolution that is the 
growth or decline in specific areas. 

Schultz et al. (2008) have developed an approach based on the work of 
Centeno and Selleron (2001), but the method uses genetic algorithms and 
genetic programming to adjust coefficients that limit the process. 

The discrete nature of cell states makes CA attractive for spatial-
temporal modelling in a geographic information system (GIS) raster-based 
environment, which describes the world as a static representation based on 
a discrete array of cells. GIS and CA are complementary with regards to 
spatio-temporal modelling as the former provides the spatial framework 
for geographic data while the latter contributes the temporal dimension for 
describing change. Furthermore, the ability to develop realistic spatial 
models within a GIS environment has progressed due to the increasing 
availability of remote sensing (RS) data.  

Cellular automata have already been used in some works related to pre-
diction using geographic data. Rothermel (1972) has developed a model 
that simulates and predicts surface forest fire together with a GIS terrain 
data. In Vale et al. (1999), a process is described to simulate a viral 
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epidemic through time. First it defines an initial state with some character-
istics in a two-dimensional space and then the evolution is modelled by 
CA. Jants et al. (2003) described and tested a predictive modelling system 
to simulate the impacts of future policy scenarios on urban land use based 
on four different types of urban land use change. Sullivan and Knight 
(2004) provide a potential model for operational fire spread prediction. 

Few studies focused on the land use dynamics of rural or more natural land-
scapes; examples are provided by the modelling of rural residential settlement 
patterns in the periphery of Toronto (Deadman et al. 1993) and in the Rocky 
Mountains (Tehobald and Hobbs 1998), and deforestation in the Brazilian 
Amazonian forest (Soares-Filho et al. 2002, 2004). 

4.2 Test areas and data sets 

4.2.1 The “Forest Reserve” of Ticoporo and the problematic 

The material used to test the prediction modelling is from the forest of 
Ticoporo, on the oriental piedmont of the Andes in Venezuela (Fig. 4.3). 

 
Fig. 4.3 Location of the test site of Ticoporo in Venezuela 

The experimental site called «Ticoporo Forest Reserve», lies on the east-
ern perimeter of the Venezuelan Andes, in the vast plain of Llanos crossed 
by the Orinoco river. This rainforest, covering an area of about 200,000 
hectares, is very rich in tree species. It is very dense and has different 
physionomies. 

4 Evaluation of prospective modelling methods
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It has acquired the protector status of “reserve” (Fig. 4.4), after it was al-
ready one of the last bits of the forest Llanos. 

Indeed, a phenomenon of deforestation, which appeared in the early 
60’s, greatly increased during the 80’s and continues to today. Its origin is 
the result of spontaneous movements of Andean peasants fleeing the land 
of the economically poor mountain region to conquer land in the plains. 
For them, these new “virgin” forest areas on a flat topography became a 
territory that allows the transformation of forest into extensive grazing pas-
ture (land). 

The phenomenon of deforestation is illegal and it has grown in an un-
balanced manner in both time and space, due to several factors: the legal 
status of the land, the level of technology achieved and the social groups 
involved. Thus, at the end of the 70’s, the shape of the massif was affected 
by human activity and then very quickly the heart of the “reserve” was 
reached. The regression of the forest was driven by two very distinct 
forces: on the one hand, a mechanized, industrial logging (a front of me-
thodical and mechanized cutting), this occurs at the eastern and western 
edges of the forest; on the other hand a deforestation by fire (an ancestral 
culture of burn) or by cuts in the central area. 

So there are two distinct phenomena that we will distinctly separate in 
order to consider the modelling. First, on the eastern and western edges 
there is the private concessions.  

If the forest is exploited, it has survived only as a biogeographic entity, 
because the cut trees are systematically replaced by other tree species with 
rapid growth and quite often this regrowth is of a single species. This part 
of the reserve shows significant impoverishment. Both of the logging op-
erations are even protected by private militias! 

At the center, where the second distinct phenomena occurs, it is quite 
different. The forest has a hybrid status –Public and Private State–. It is the 
prime destination of the new usurping peasants, whose aim is the system-
atic destruction of the forest to create new pastures. These pastures will be 
redeemed by the major landowners of the surrounding area, and therefore 
this process will in gradually increase over time. 

Both types of spaces, shown in the satellite images from 1989 (Fig. 4.4), 
are very different: the heart of the reserve is very sparse and surrounded by 
the two private industrial forest-covered properties. Together these two 
outlaying properties form a horse-shape around the barren central region. 
This central area is undergoing the phenomena, which are of concern for 
the modelling of this work. 
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4.2.2 Images of the forest “Reserve of Ticoporo” 

For the experience, we have three Spot images (1987, 1989 and 1994) with 
20 meters resolution and one LANDSAT-MSS image (1975) with 80 me-
ters resolution, one of the oldest images (and without any cloud cover) ac-
quired for this site. 

After geometric correction and thematic classifications of all satellite 
images, we performed binary maps (512 x 512; resolution 70 m.) Each sat-
ellite image contains dynamic information about the forest area with its 
states. The Fig. 4.4 shows an example of the experimental space on the 
image from 1989. 

 
Fig. 4.4 Channel red image from 1989 (left) and threshold image from 1989 (right) 

The reader sees that the original satellite image (left) contains a very large 
variation in hues (here translated into gray-scale) that can not possibly all be 
taken into account by the model. As far as the variation of shades, they 
mostly deal with various grades of existing pastures. The problem is cen-
tered on the process of deforestation: the transformation of the forest into 
pasture over time. It begins with a simplification of the basic image data 
through a spectral binary segmentation of the image. So we use a simplified 
nomenclature: “forest - non-forest”. This treatment is carried out on each 
image using the image processing software Er-Mapper. Fig. 4.4 shows the 
results of the binarization for the year 1989, which clearly differentiates be-
tween the forest (in black), and the rest of the open space (in white). 

4.2.3 Creation of a geographical mask 

A geographical treatment is added to this radiometric pre-treatment. In-
deed, we have two very different phenomena of deforestation and the 
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model can not represent so many differences. Therefore, we chose to rep-
resent the space of the private industrial forest by a mask as shown in 
Fig. 4.5. The evolution in this area has a different behavior from the evo-
lution of natural forest as we indicated in Sect. 4.2.1. For this reason, this 
region is not included in the analysis. Thus, the process of modelling, 
takes into account only those spaces left blank in this figure. Therefore, 
each image includes 128,450 hectares. 

Thus, we have only one image with twelve waves (green, red and near 
infrared for each date). The most interesting dynamics take place in the 
center of the scene in quarter of 512 x 512 pixels.  

 
Fig. 4.5 Geographic mask of two industrial forests in Ticoporo 

The Table 4.1 gives an account of the gradual statistical evolution of the 
forest. The table begins with the treatment of the satellite images on the 
test site since 1975. The total assessment corresponds to a deforestation of 
40,987 hectares in 19 years, that is to say 36% of the forest cover at the 
beginning but with an equivalent pastoral development. 

Table 4.1 Dynamical statistics about deforestation from 1975 to 1994 in the forest 
of Ticoporo 

 1975-image 1987-image 1989-image 1994-image 

Forest 113,123.85 78,193.71 70,914.27 72,136.33 
Non Forest 15,326.71 50,256.85 57,536.29 56,314.23 
Wood Rate 88.07 60.87 55.21 56.16 

total Hectares 128,450.56 12,8450.56 12,8450.56 128,450.56 
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4.2.4 The forest Ticoporo Reserve: the known state 
and the estimation by space remote sensing 

Fig. 4.6 and Table 4.1 thus account for the quantitative evolution of the 
forest and pastoral occupation from 1975 to 1994 by means of the binari-
zation on the red channel of the Landsat and Spot satellites (1975) with a 
simplified nomenclature, “forest - non forest”. 

On the basis of a rate of timbering of 88% in 1975, this corresponds to 
more than 113,000 hectares of tropical forest. The threshold of 56% was 
reached in 1994. Binary cartographic projections “forest - not forest” of 
Fig. 4.6 translate the changes in space dynamics from one date to another. 
It is immediately noted that the metamorphosis of the landscape is not ho-
mogeneous in all places, since it affects mainly the heart of the forest re-
serve while, simultaneously, the “two arms” of the private and protected 
forest fields appear relatively unchanged. Thus, from 1975 to 1994, 36% 
of the territory permuted into pasture, which represents an average of 
2,157 hectares devastated per year, i.e., 2% of the initial capital forest. 

It is important to note that if these data cover a period of 19 years, they 
are not very “recent”. Indeed, it was not possible to acquire new images 
due to cloud cover, which is almost always present in intertropical areas. 
Therefore, in the face of this observation, we chose to calibrate the model 
from the first three dates (1975-1987-1989) to make projections of space in 
1994, 2000, 2005 and 2010. Thus, we reserved the last acquired image, –
the real image of 1994– to validate the model to this date. 

4.3 Methodology and practical application to the data sets 

Through a sequence of Satellite Remote Sensing Images for n instants t1, ... ,tn, 
so that t1< ... < tn, this work proposes to predict the evolution of a temporal 
phenomenon for the time tn +1. 

The method proposed in this paper is founded on the principle described 
in the latter approaches (see Sect. 4.1.1 and Sect. 4.1.2) provided that we 
make use of regression and progression zones of the forest to find the di-
rection of evolution (appearing or disappearing). However, we achieve the 
prediction by coupling fuzzy set theory and out-image data. Thus, the ap-
proach adopted here seeks to yield improved results, since the prediction 
takes into account the zones that are more or less favourable to the evolu-
tion. Considering the following facts may aid the prediction approach: 
− studied temporal events are continuous. 
− geographical data are in raster representation. 

4 Evaluation of prospective modelling methods
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  Convention   
 non forest   forest 

 

  
1975 1987 

  
1989 1994 

Fig. 4.6 Geographic binarization maps for each date from the forest of Ticoporo 

Alpha-level sets 

In fact, the resulting evolution image represents a fuzzy set that will be 
analyzed to determine the final shapes and positions of the regions for the 
predicted map. Fuzzy sets can also be defined by means of their families of 
α-level sets (Klir and Yuan 1995), according to the resolution identity 
theorem (Zadeh 1995). Given a fuzzy set S, its α-level sets Sα from U asso-
ciated to S∈f(u) are given by the following equation: 

})(|{ αμα ≥∈= xUxS s  (4.1) 
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4.3.1 Problem description 

We wish to predict the evolution of a temporal phenomenon for time tn+1 
from a sequence of n thematic maps characterizing this cartographic con-
tinuous temporal phenomenon for n instants t1,..., tn so that t1≤ ...≤tn. 

The first step of the approach proceeds by first predicting the overall 
surface of the region area. What makes it possible to obtain a quantity of 
space permutation on the basis of fixed nomenclature: forest not - forest. 

This stage contains the prediction of the overall surface value applying 
the analytical data in an adaptive linear adjust method. This value is calcu-
lated for the instant tn+1. 

4.3.2 Progression and regression maps 

So, after predicting the overall surface of the region area, the next step is to 
obtain maps representing the progression and regression zones. Each map 
representing a progression or a regression zone is obtained from two con-
secutive images (the geographical maps taken at ti and ti+1). The regression 
map corresponds to the subtraction of the images taken at instants ti and ti+1, 
and the progression map corresponds to the subtraction of images taken at 
ti+1 and ti. Thus, for n instants of time, there will be n-1 progression maps 
and n-1 regression maps. The method proposed in this work is the use of re-
gression and progression maps of the forest to acquire the privileged direc-
tions of evolution (appearing or disappearing). Thus, the approach adopted 
here seeks to yield improved results, since the prediction takes into account 
the zones that are more or less favorable to the forest or pasture evolution. 

4.3.2.1 Stages of the predictive modelling 

From thematic mapping (satellite images in raster format), the basis of the 
proposed methods can be divided into five basic steps (Mez 1998): 

1. computing of the total surface of the spatio-temporal phenomenon stud-
ied at the moment tn+1, 

2. obtaining maps of areas of progression and regression,  
3. determining the preferred directions of progression or regression 

through the calculation of a coefficient of evolution by fuzzy logic or 
cellular automata, 

4. obtaining a map of evolution, 
5. obtaining the projected map. 

In step 3, a specific mathematical formula was applied to compute the 
coefficient of evolution for each pixel of the analyzed image. This coefficient 

4 Evaluation of prospective modelling methods
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of evolution shows zones more or less favorable to the evolution. In order 
to compute this coefficient of evolution, all progression and regression 
maps obtained previously are required. The more recent maps will more 
heavily influence results. The basic principle of the reasoning mechanism 
adopted here is that an area next to a progression region has a higher prob-
ability of increasing than another one that is farther from this region. The 
same principle is applied for regression regions. The size of the regions 
must also be considered, since larger regions have a higher influence on its 
pixel neighbors than smaller regions. 

Thus, for each pixel we determine two values: one of them determines a 
tendency of the pixel to progress; the other determines a tendency of the 
pixel to regress. The variables are defined as: p, the number of progression 
zones, n the number of geographic maps (for n times), Dk the distance be-
tween the pixel i,j to the zone k, Sk the surface of the zone k and T the tem-
poral interval between the analysed map and the time to predict. We define 
the coefficient of progression of each pixel by: 
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where p is the number of progression zones. 
In a similar way the coefficient of regression of each pixel is given by: 
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where r is the number of regression zones. 
The coefficient of evolution results from a subtraction between the coef-

ficients of progression and the previously calculated regression: 

jgijogiji CoefCoefCoef ,Re,Pr, −=  (4.4) 

The resulting coefficients were normalized resulting in a fuzzy set repre-
senting the membership function of the evolution function. This set was 
converted into gray levels resulting in a fuzzy image. The gray values in a 
range of values from 0 (black) to 255 (white) identify the trends of progress 
or regress of diverse areas in the total region. The more favourable regions 
to progress are associated with the greatest coefficients and the regions that 
are less favourable have smaller coefficients. 
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4.3.3 Prediction based on fuzzy logic 

In order to compute this coefficient of evolution for each pixel, all progres-
sion and regression maps are required and the most recent maps will more 
heavily influence the results. It is also necessary to consider the surfaces of 
the progression and regression zones. Probably, the zone with the biggest 
surface will heavily influence a pixel being equidistant from a progression 
zone and from a regression zone. Furthermore, an area of closer proximity to 
a progression zone will have a more pronounced tendency to increase than 
an area near a regression zone and vice versa. Thus, these principles taken 
into consideration in order to compute a coefficient of evolution for each 
pixel of the image. 

Thus, for each pixel we determine two values: one of them provides the 
tendency of the pixel to progress; the other provides the tendency of the 
pixel to regress. Let p be the number of progression zones, n be the num-
ber of geographic maps (for n times), Dk be the distance between the pixel 
i,j to the zone k, Sk be the surface of the zone k and T be the temporal in-
terval between the analysed map and the time to predict. We define the co-
efficient of progression of each pixel by: 
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In a similar way the coefficient of regression of each pixel is given by: 
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where r, is the number of regression zones.  

The coefficient of evolution results from a subtraction between the coef-
ficients of progression and regression previously calculated: 

jgijogiji CoefCoefCoef ,Re,Pr, −=  (4.7) 

This table of coefficients will be normalized in such a way that the coef-
ficient of evolution for each pixel of the image is determined by a mem-
bership function based on the time, the pixel location with regard to pro-
gression and regression zones and the surface of these zones. Thus, the more 
favorable regions to progress are associated with the greatest coefficients 
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and the less favourable regions have smaller coefficients. Thus, the influ-
ence calculated for each pixel results in a fuzzy image. Such fuzzy images 
can help geographers to visualize the whole temporal phenomenon that is 
taking place. However in the final stage of the analysis, the geographer 
may be interested in less fuzzy, more clearly defined data. In this case, the 
imprecise data can be converted to “hard” data by applying the alpha-level 
sets that transform the fuzzy regions into distinct regions. 

The fuzzy subset obtained can then be decomposed by means of its 
α-level sets in order to obtain the resulting map. A gradient rather than a 
line represents the boundary between these regions. This gradient may be 
interpreted as the degree to which each pixel of an image is part of a pro-
gression region of the forest.  

We have done successive applications of this discrete approximation 
(α-cuts) to the coefficients of the evolution image in such a way that the fi-
nal surface reaches the predicted surface. The result is a distinct set con-
taining all the pixels, whose membership grades are greater than or equal 
the specified value of α. 

4.3.4 Prediction based on cellular automata 

The steps to the solution of the problem are described as follows in Fig. 4.7. 

 
Fig. 4.7 Simulation steps using Automate cellular (AC) 

The temporal GIS data was used to create a map called the situation 
map, which describes the forest area in accordance with their progres-
sion, regression or stability through time. The situation map was used to 
create the transition rules. 

In this work, the totalistic rules were used, they are formed by the total 
quantity of neighbourhoods in some specific state.  

After calculating the new value of the surface, the most recent image is 
used to start the prediction until the specified year.  

The “situation map”, in Fig. 4.9, was created to describe the forest areas 
in accordance with their progression, regression or stability through time. 
This map is formed by the combination of the temporal images (Fig. 4.8). 
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The Table 4.2 shows how the “situation map” was composed. It repre-
sents all the possible combinations that one pixel in the same position (i,j) 
with two states (0 or 1) can have when it is compared in three temporal 
images. The Moore’s neighborhood with r = 1 was chosen. 

That combination created three situations called stability, progression 
and regression. The digital level is indicated in the table to compose the 
map visualization (Fig. 4.9). 

 
Fig. 4.8 Combination of temporal maps 

Table 4.2 Composition of the situation map (0 = non forest; 1 = forest) 

1975 1987 1989 Situation Digital level 
0 0 0 stability 250 
0 0 1 progression 50 
0 1 0 regression 200 
1 1 1 stability 5 
1 1 0 regression 200 
1 0 0 regression 200 
0 1 1 progression 50 
1 0 1 progression 50 

 

 

 Convention 

 non forest stability 
 regression 
 progression 
 forest stability  

Fig. 4.9 Situation map (outside the industrial forest mask) 

The forest was considered homogeneous with two states represented in 
the present diagram: 

 

 0 = non forest 1 = forest

The transition rules are the totalistic rules that consider the total quantity 
of cells in the state = 1, in the Moore’s neighborhood. The situation map was 
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adapted to different transition rules according to the zone. There are 3 zones 
for transition rules: stability zones, progression zones and regression zones. 

Rule 1: Progression zones. If the neighbor’s number equal 1 or 0 and the 
central pixel is 1, it will be in the next instant zero. If the neighbor’s num-
ber is equal 2, the central pixel doesn’t modify. If the number of 
neighbours is equal to 8, 7, 6, 5, 4 or 3 and the central pixel is equal to 
zero, it will be in the next instant 1. 

Rule 2: Regression zones. If the number of neighbours is equal to 0, 1, 2, 3, 
4, 5 or 6 and the central pixel is equal to 1 it will be in the next instant zero. If 
the neighbor’s number is equal to 7 or 8, the central pixels don’t modify. 

Rule 3: Stability zones. In this case, there are no changes in the zones. 
The practical application of both cellular automata and fuzzy logic based 

models consists in using specific algorithms in C++, which were devel-
oped by the authors themselves. 

4.4 Results 

The principal aim is to describe the evolution of the landscape of the “Re-
serve of Ticoporo” forest for the years 1994, 2000, 2005 and 2010. The 
geographic maps in Figure 4.6 are satellite images showing the recorded 
changes in the thresholds within the regional area at three times: 1975, 
1987 and 1989. The prediction maps for the years 1994, 2000, 2005 and 
2010 were obtained by applying α-level sets to the years of concern and 
are shown in the following figures. Since a satellite image from 1994 was 
provided, we have used it to validate the results. 

The first three images have been processed taking into account the mask 
of the industrial forest. Using the methodology in Sect. 4.3.2, we have fi-
nally obtained the evolution image (fuzzy image), which shows the coeffi-
cients of evolution that combine the progression and regression data. The 
result is shown in Fig. 4.10, in which the darker a pixel is the more it will 
undergo deforestation (outside the geographic mask). 

4.4.1 Space-time environment dynamics from satellite images 
since 1989 to 1994 

Before assessing the results of the temporal projections, we give a statisti-
cal evaluation of the spatial dynamics in Ticoporo, according to the last 
two acquired images from the years of 1989 and 1994 (binary images indi-
cated as “bin”). Table 4.3 shows the statistical results of evolution (in per-
centage) and their spatializations from Fig. 4.10. The legend of this figure 
translates the grayscale into four possible combinations of evolution: 
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regression of the forest from 89 to 94 (F89b-NF94b), progression of the 
forest (NF89-F94b), forest in 89 and forest in 94 (F89b-F94b), non-forest 
in 89 and non-forest in 94 (NF89b-NF94b). 

 
Fig. 4.10 Evolution zones of the forest 

To evaluate the experimentation’s results for the modelling of the landscape 
changes at various temporal periods, we again used the method introduced by 
Pontius (2004). Indeed, this method applied to research of the LUCC (Land 
Uses & Land Cover Change) program is exportable. In our case, it makes it 
possible to establish a rigorous statistical comparison of known and/or simu-
lated environmental data through time. This makes it possible to estimate the 
relevance of the used methods for space projections. This also provides space 
and statistical dimensions changes to landscape changes over one defined time 
period. This evaluation begins from a former, known state. 

 

  
NF89b_F94b.  
F89b_NF94b.  

NF89b_NF94b.  
F89b_F94b.   

Fig. 4.11 Spatial comparison between satellite image from 1989 to 1994 (left) and 
the main axes of penetration (right) 
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On the other hand, the cartography (Fig. 4.11) authorizes a perception of 
spatio-temporal dynamics in the central part of the forest where more and 
more isolated forest scraps (F89-F94, black) appear compartmentalized. This 
phenomenon is all the more perceptible as the not-forests spaces in white 
(NF89-NF94) seem to increase toward the south through time; the demar-
cate white areas overall from the northwest to the southeast. The right-hand 
side of the figure schematizes the rectilinear axes of this penetration well. 

Table 4.3 Statistical states of forest (F) and non-forest (NF) in % between 1989-
1994 from satellite images 

% 1989-NF 1989- F total 
1994 Gain % Gain Loss Total 

change Swap 
Absolute 
value of 

net change 
1994-NF 34.8 6.9 41.7 6.9 NF 6.9 5.6 12.5 11.2 1.3 

1994-F 5.6 52.7 58.3 5.6 F 5.6 6.9 12.5 11.2 1.3 
total 
1989 40.4 59.6 100.0        

Loss 5.6 6.9         

With Table 4.3, one obtains an evaluation and a comparison between the 
forest states starting from known data: dynamics between two images Spot 
–binarized– of 1989 and 1994. The left side of the translated table is ex-
pressed in percentages, then the proportions of Forest and Non-Forest in 
the time interval and the losses and the profits are added up for each date. 
The right side gives an account of the extent of spaces in the reserve af-
fected by these changes (total changes) and the rate of the permutations 
occurring between these two environmental objects –F and NF– (Swap). 
The nomenclature comprises only two stations, and the “profits and losses” 
are relatively close. 

Comparing the evolution before 1975 to 1989 (Fig. 4.6), when defores-
tation was extreme, and the five year interval 1989-1994 (Table 4.1; see 
Sect. 4.2.3), one observes an attenuation of the rate of deforestation. The 
cross matrix of Table 4.3 establishes the proportion of forest to pastures 
(NF) (52.7% per 34.8%) in 1994. 87.5% of spaces of the reserve thus re-
mained unchanged, whereas only 12.5% permuted between these two sta-
tions of nomenclature. What corresponds in detail to a double phenome-
non: a deforestation, which reaches 6.9%, while reforestation is 5.6%. The 
total rate of permutation remains relatively unimportant 11.2% (difference 
between the total change –12.5– and the absolute value of the net change -
1.3-), which corresponds to 14,386 hectares. These results indicate a rela-
tive statistical stability for 1989 to 1994, which is in conformity with the 
cartography of Fig. 4.6 with few modifications between spaces of pastures 
(NF) and the forest (F). 
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4.4.2 Validation of the predicted model for 1994 

The real image present some small regions. The method applies a filter to the 
image, for this reason the noise does not appear in the two predicted images. 

 

 
Real Spot image 1994 (bin.) Predicted image for1994 by FL Predicted image for1994 by CA 

Fig. 4.12 Comparison between the real satellite image and the predict maps for 
1994 by fuzzy logic (FL) and cellular automata (CA) approaches (Forest, black; 
Non-Forest, white) 

Fig. 4.12 juxtaposes the cartography of two space projections by fuzzy 
logic (FL) and the cellular automats (CA) for the year 1994 beside the real 
satellite image of 1994 (Spot image binarized; left). Generally, the two 
models implemented (FL and CA) seem to provide cartographic results 
that reveal a rather strong similarity. The two modeled images seem to 
have almost entirely eliminated the small forest islands scattered through-
out the central part of the area towards the northwest (whereas the real im-
age shows that they still exist). Both also show the increase of the new 
axes of pasture penetration from the peasants (linear-shaped axes corre-
sponding to a type of deforestation), which have a very perceptible energy 
from the center of the image towards the south. These projections highlight 
the particular behavior of these peasants - principal agents of deforestation. 

Table 4.4 Statistical results compared between two modellings for the year 1994 

 1994-image 1994-FL 1994-CA 
Forest (Ha) 72,136.33 66,602.76 64,159.13 

Non Forest (Ha) 56,314.23 61,847.80 64,291.43 
Timbering Rate (%) 56.16 51.85 49.95 

All (Ha) 128,450.56 128,450.56 128,450.56 

Table 4.4 shows a clear statistical over-estimation of deforestation for the 
two projections compared to the real image, as is indicated by the rate of tim-
bering. It is nearly 52% for fuzzy logic and nearly 50% for the cellular auto-
mats, whereas in reality it is 56%. The FL simulation model overestimates by 
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4.31% (5,533 ha) and the AC model overestimates by 6.21% (7,977 ha) in 
comparison with the real deforestation. In other words, the model of the cel-
lular automats would be a little less relevant than fuzzy logic. 

However, the two projections are fairly similar to each other, for example 
the difference in the deforestation rate is only 1.9%, which corresponds to 
2,443 hectares. These models appear to want to give a scenario of relative 
stability for the phenomenon of spatial deforestation considering the small 
gap between the two projection models for 1994. 

 
94.bin – 94. FL 94. bin  - 94. CA 

  
  

NF94b_F94f  
F94b_NF94f  

NF94b_NF94f  
F94b_F94f   

  

NF94b_F94c  
F94b_NF94c  

NF94b_NF94c  
F94b_F94c   

Fig. 4.13 Space-time dynamic states of Ticoporo between FL and AC in compari-
son with the reality in 1994 

Fig. 4.13 corresponds to the cartographic projections of the two models 
for the year 1994 with a detailed nomenclature of the operated changes. 
The method used is identical to that described in the preceding paragraph 
(i.e Fig. 4.10). Thus, each of the two space projections includes the four 
possible combinations of dynamic environmental between reality (noted 
94b) and projections in 1994 (noted “94 FL” for fuzzy logic and “94 AC” 
for the cellular automats). 

The square matrix of Table 4.5 allows for the comparison of the predic-
tive results of the two models for the year 1994 with the real image of 1994 
(binary image) on the same bases of the nomenclature “Forest-1; Non-forest-
0”. Statistically, the two predictive models used demonstrate relatively little 
difference between them with respect to the field reality. Thus for forest 
spaces, the difference between the predicted totals and the real totals are es-
tablished at 56.5 compared with 58.3% for FL and at 55.2% compared with 
58.3% for AC, that is to say a variation of prediction from only 1.8% for the 
FL and of 3.1% for CA. The variations for nonforest spaces are identical. 
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Table 4.5 Comparison of predictions and the ground reality for 1994 (FL and AC) 

% Real image 94   
1994 Forest- 1 non-forest – 0 total predicted 

FL - forest-1- 51.4 5.1 56.5 
FL- non forest-0- 7.0 36.5 43.5 

total reality 58.3 41.7 100.0 
 

% Real image 94   
1994 Forest- 1 non-forest – 0 total predicted 

AC - forest-1- 49.6 5.6 55.2 
AC- non forest-0- 8.7 36.1 44.8 

total reality 58.3 41.7 100.0 

Thus for forest spaces, the difference between the predicted totals and 
the real totals are established to 56.5 compared with 58.3% with the FL 
and to 55.2% compared with 58.3% with AC, that is to say a variation of 
prediction from only 1.8% for the FL and of 3.1% for CA the variations 
are identical for nonforest spaces. 

Moreover, the total rates of prediction posted by FL and AC are also 
correspond, because they present only 1.3% of difference between them 
for the forest and only 0.3% for pastures (NF). 

 

  
94b-94FL 94b-94CA 

Fig. 4.14 Differences between the image spot of 1994 and the projections in 1994: 
fuzzy logic (left) and cellular automata (right-hand side) 

Figure 4.14 represents the arithmetic difference, pixel with pixel, be-
tween the known reality through the binarised Spot image of 1994 and the 
two types of space projection for the same year. The legend’s format is 
standard in white, a correct prediction at the same time for forested spaces 
and for grazing ground spaces; in black, an erroneous prediction in terms 
of probability for these same spaces. We can also refine these results with 
the method expressed spatially by Figs. 4.8 and 4.11, which define the “ar-
eas of progression and areas of regression”. 
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In terms of the set’s themes, the origin of the shift in results between the 
projected images and the real image (binarised) also come from the quasi-
systematic removal (in both cases) of the many small scattered forest 
scraps, which are still perceptible in the central part of the forest reserve as 
in the northeast corner of the image. In other words, these discontinuous, 
small forest islands of variable sizes, although minority on a become pas-
toral space dominating, would have a probability less strong than envisaged 
to be destroyed contrary to the result provided by the methods of predictive 
modelling. This stage of the analysis, one can put forth the assumption of 
following explanation for the fuzzy logic model : if the principle stated in 
phase 1 (to predict a value of total surface by applying to the analytical data 
a method of adapted regression linear) seems overall true, the absence of in-
troduction of rules of behaviours to the predictive models reduced some 
their capacities to be extrapolated to become it of these small forest small 
islands for, on the contrary, marking more that of the largest solid masses. 

4.4.3 Prospected scenarios of fuzzy logic and cellular automata 
for years 2000, 2005 and 2010 

The modelling on steps of selected times 2000, 2005 and 2010 uses the same 
databases –the binary satellite images–. The two types of projections carried 
out do not seem to visually confirm (Fig. 4.15) what we had previously de-
tected with the analysis of projection over the year 1994 (see Sect. 4.4.1; 
Fig. 4.11). The cellular automata method over-estimates the phenomenon of 
deforestation compared to the fuzzy logic method. It appears that the reverse 
dominates. To be convinced of this, it is enough to compare the central parts 
of the six small images: they became completely white with fuzzy logic, 
therefore a projection which appears radical apparently without nuance and 
undoubtedly far away from reality, whereas the method of the cellular auto-
mata appears less brutal, in other words, more adjusted to the rate/rhythm of 
transformation of the landscape since one still distinguishes pieces isolated 
from forest in center-south space of the image. 

4.5 Statistical validation of spatio-temporal projections by 
fuzzy logic and cellular automata 

4.5.1 The state of the “Reserve of Ticoporo” forest estimated to 
the year 2010 

The validation of the model is a comparison of the results of the two 
projections date for date since 1994, but it is not compared with known 
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results, because there have been no Spot or Landsat images without cloud 
cover since 1994. 

  
by FL: Predicted image for 2000; Predicted image for 2005 ; Predicted image for 2010. 

  
by CA: Predicted image for 2000; Predicted image for 2005; Predicted image for 2010. 

Fig. 4.15 Resulting maps to fuzzy logic (FL) and cellular automata (CA) ap-
proaches (years 2000, 2005, 2010) 

Table 4.6 and Fig. 4.16 shows the statistical results acquired for the pro-
jections for the selected years 2000 - 2005 - 2010 by the two methods: 
fuzzy logic (“Fuz”) and cellular automats (CA). If the scores reached vary 
somewhat for each projected date, the two types of projection have a 
common point: the process of deforestation and/or creation of new spaces 
of pasture are continuous from 1975 to 2010. The forest permutation in 
pastures appears inexorably linked at the neighbourhood level to the tim-
bering rate included/understood spreading from 42 to 46%, respectively 
for the cellular automats and fuzzy logic. 

Table 4.6 Statistics of the space-time dynamics for the test site of Ticoporo for the 
years of  2000, 2005 and 2010 

 

 2000-Fuz 2000-CA 2005-Fuz 2005-CA 2010-Fuz 2010-CA 
Forest  (ha) 54,821.69 59,706.99 51,779.77 56,491.12 58,986.69 54,507.11 
Non Forest (ha) 73,628.87 68,743.57 76,670.79 71,959.44 69,463.87 73,943.45 
Timbering Rate % 42.68 46.48 40.31 43.98 45.92 42.43 
All (ha) 128,450.56 128,450.56 128,450.56 128,450.56 128,450.56 128,450.56 
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Fig. 4.16 Changes occurred with Ticoporo since 1975 to 2010 as well as the tim-
bering rate 

Table 4.7 and the diagrams (Fig. 4.15) are the result of the two types of 
projections in terms of deforestation scenarios. The phenomenon seems at-
tenuated compared to the first period (1975-1994), seeing as the increase of 
devastation would reach 13,150 ha according to fuzzy logic or 17,629 ha 
according to cellular automata by the year 2010. The method of fuzzy logic 
seems to over-estimate deforestation for the years 2000 and 2005 compared 
to that of the cellular automats (24 and 31% against 18 and 28%, calculated 
in hectares, that is a difference in 814 ha in 2000, 429 ha in 2005), and in 
contrast to 2010 with respectively 22 against 34% of additional cuts com-
pared to 1994 (an additional 280 ha for the cellular automats). 

Table 4.7 State of the forest of Ticoporo until 2010. Projection Fuzzy logic and 
cellular automata models 

since 1994 1994-FL 1994CA 2000-FL 2000-CA 2005-FL 2005-CA 2010-FL 2010-CA 
Deforestation 

(Def.) 5,533.57 7,977.20 17,314.64 12,429.34 20,356.56 15,645.21 13,149.64 17,629.22 

Average/year  2,886 2,072 1,851 1,422 822 1,102 

Def. since 94 
(%)  24.00 18.66 31.73 28.54 22.02 34.05 

Def./year 
(%)  4.00 3.11 2.88 2.59 1.38 2.13 

 

Unfortunately, interpretation cannot refine these statistical results more 
by comparing them with known situation on the ground of each projected 
date (variable space and known sets of themes), because there are no satel-
lite images for the period of interest (not since 1994) due to cloud cover 
inhibiting the evaluation of the relevance of these space-time projections. 
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Fig. 4.17 Projections based on FL model (up) and CA model (down) from 1994 to 
2010  

Figure 4.17, in which the two types of projections are shown separately, 
shows a very different behaviour between the two timbering rates from de-
forestation for two consecutive periods (2000-1994; 2005-2000; 2010-
2005) according to the projections: a decidedly more stability for fuzzy 
logic and a regular but decreasing pattern for cellular automata. 

Table 4.8 Differences between the two models for projected estimations in time 

CA-FL 1994 CA-FL 2000  CA-FL 2005  CA-FL 2010 
-2,443.63 Ha 4,885.30 Ha  4,711.35 Ha  -4,479.58 Ha 

Related to the year 1994, the projection by fuzzy logic appears to underes-
timate the deforestation by 5,533 hectares (that is to say -7.67 % of existing 
forest space in 1994), that of cellular automata still more with 7,977 hectares 
(-11.06 %). But compared with the 1975 forest state, the same percentages 
decrease to the respective values of 4.31% and 6.21%. In addition, the dif-
ference between the two projections (CA - FL for same year -1994- adds up 
to a little more than 2,443 hectares. It is a relatively minor difference (3.40% 
compared to the forest state estimated in 1994) in comparison to the same 

H

4 Evaluation of prospective modelling methods



136       Selleron G and Mezzadri-Centeno T 

differences operated for the other years; indeed these last years would reach 
figures higher than 4,400 hectares (6.1% of the forest total of 1994). We also 
note the inversion of direction of this calculation between on the one hand, 
the years 2000-2005, and on the other hand, the year 2010. 

  
 

Forest stable 1994 – 2010  
Non Forest 1994  
Projection : deforestation 2000  
Projection : deforestation 2005  
Projection : deforestation 2010   

Fig. 4.18 Result of the space projections cumulated for 1994 to 2010 by fuzzy 
logic (left) and cellular automata (right) 

This cartographic result spatially combines three temporal cumulated 
projections of fuzzy logic and cellular automata by superposition. This car-
tography will confirm that even the heart of the forest Reserve, which is 
mainly affected by this continuous phenomenon of deforestation, is well. 
The fuzzy logic method proceeds in a spatial way (like an areola), whereas 
cellular automata function much more in a staircase. 

Our observations on the ground, show that the displacement of the mi-
grating peasants, who are major participants in the deforestation, is always 
toward the southeast. These individuals, who are involved in the radical 
permutation “forest-pastures,” claiming pasture land along the axes di-
rected north-west-south-, this penetration into the surrounding forest is al-
ready well marked on the 1989 image. Logically, these projections thus 
appear as a continuity of the process that started around 1975. 

In addition, always in the heart of the solid mass (more precisely in the 
south-western centre), a black, untouched area remains, of a rather impos-
ing size. In other words, in the space of 16 years, this means that the peas-
ants have not entirely destroyed this forest unit. The advance thus appears 
to be blocked by the presence of an insuperable river. 
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4.6 Conclusion and outlook 

The predictive methods of fuzzy logic and cellular automata make it possi-
ble to answer partly the question of short-term and medium-term condi-
tions for a tropical forest environment whose existence is radically threat-
ened by a migrating peasant population, who use a cut and burn technique 
to win pasture land from the rain forest. The present method combines the 
remote observation of a face tropical pioneer front with the means of the 
processing of multi-date satellite images to fuzzy logic and cellular auto-
mata. This achieves the objectives of description, cartography, and tempo-
ral projections of the deforestation dynamics in progress for various steps 
of the selected times (1994 to 2010). The method is founded on the dia-
chronic analysis of the space-time evolutions contained in a sequence of 
chart sets of themes resulting from satellite images (Landsat and Spot) 
from three years: 1975-1987-1989. With a simplified nomenclature “forest 
- non forest”, the model of evolution takes into account the contemporary 
history of the face by analyzing the changes the of the existing forest areas 
for each image. These last, two methods - fuzzy logic and cellular auto-
mata make it possible to manage the inherent uncertainties and inaccura-
cies, which surround the modelling of the evolution of this unstable and 
dynamic forest environment. 

A detailed statistical estimate is carried out specifying the compared 
contributions of the two implemented methods. We can also relate the sta-
tistical estimates of the Department of the Environment of Venezuela to 
this study, specifying that “in 1980, 39% of the forest surface of Ticoporo 
was destroyed”. Since 1987, a comparable area to the east is provided by 
the space image processing for comparison. The evaluation of the 1994 
projection (this being the most recent date possible due to the increased 
rate of nebulosity in this intertropical area since then, which has inhibited 
the capture of a new image), provides an encouraging estimate for the use 
of these tools and these space-time methods, which have been described in 
this article. The temporal validation of these two methods of modelling has 
yet to be confirmed. The acquisition of satellite images without cloud 
cover is, however, essential to carry out in assessment and validate the 
temporal modelling methods for this validation. 

However, one can expect that this space-time modelling, in the future, 
will be enriched by new rules for explicit behaviours, thus integrating 
more of the ground data available, including all the factors impacting envi-
ronmental, economic and social processes of evolution. The results of ex-
trapolation would be without doubt refined by it. 
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