
11 Greenhouses, land use change, and predictive 
models: MaxEnt and Geomod working together 

Benito de Pando B and Peñas de Giles J 

 

Abstract 
We have developed a methodology which predicts the expansion of green-
houses and evaluates the results, combining a species distribution model 
(MaxEnt) and a simulator of land use change (Geomod). In the simula-
tions, we take into account not only the effect of different environmental 
variables governing greenhouse expansion but also the spatial distribution 
of the error. The method has been tested on a region of SE Spain to estab-
lish future greenhouse-expansion scenarios. The results indicate that the 
combination of MaxEnt and Geomod improves the predictive capacity, as 
well as the functional interpretation of the land use change models. 
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11.1 Introduction 

In the context of global change, the study of land use change takes on great 
relevance because small changes at the local scale (plots of a few ha), 
added together, can exert an impact on the scale of the entire planet. An 
example is the deforestation of tropical jungles, which diminishes atmos-
pheric carbon fixation, imposing long-term consequences on global cli-
mate (Dixon et al. 1994). An analogous problem of emerging importance 
involves the expansion of greenhouses, a form of industrial agriculture that 
is developing on a grand scale in certain regions of the planet. In 1999, an 
estimated 682,000 ha were occupied by greenhouses throughout the world, 
especially in China (380,000 ha), followed by Mediterranean countries 
(161,300 ha in France Italy, Spain, Greece, Turkey, Morocco, and Algeria 
(Takakura and Fang 2002). 

The problems arising from the spread of greenhouses are directly related, 
on the one hand, to the natural resources available in the affected region 
(biodiversity, natural habitats, water resources, etc.) and, on the other hand, 
to human resources (nearby populations). The construction of greenhouses 
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covers the soil, depriving it of its ecological functions (evapotranspiration, 
infiltration of precipitation, supporting habitats, etc.), and it degrades the dy-
namics of natural habitats by fragmenting and destroying them. Greenhouse 
crops, though designed to make maximum use of irrigation, nevertheless 
demand huge quantities of water, altering the regime of aquifers. Other prob-
lems associated with greenhouses that can concern human health are plastic 
waste and organic debris contaminated by pesticides and fertilizers. 

In the last two decades, the European food market has generated a high 
demand for fresh vegetables and fruits, triggering the uncontrolled prolif-
eration of greenhouses in productive regions. The growth rate of green-
houses and the lack of a territorial management policy have wreaked 
havoc, inflicting grave environmental repercussions. In this context of un-
controlled land use change, management plans are indispensable for bal-
anced regional development in which the economy and natural conserva-
tion are in balance. 

Some GIS-based methods are useful to design and improve land use man-
agement plans, such as the land use and cover change simulations (LUCCs) 
(e.g., cellular automata, Geomod or Markov chains), which experimentally 
replicate the transition between land uses (Pontius et al. 2001, Jantz et al. 
2003, Pontius and Pacheco 2004, Aguilera 2006). Other applicable methods 
are the species distribution models (SDMs) (e.g. Bioclim, GARP, MaxEnt), 
which provide knowledge on the potential distribution of targeted species 
and are increasingly in use for the design of conservation plans (Guisan and 
Zimmermann 2000, Posillico et al. 2004, Johnson and Gillingham 2005). 

In this paper, we propose a method to predict land use change based on 
the integration of SDMs and LUCCs. The main idea is to use MaxEnt to 
compute distribution models, and use them in Geomod as suitability maps 
to perform better land use change simulations. 

The main objectives of this paper are: 

• Compare simulations performed by Geomod used in stand alone mode 
with the combined simulations performed by Geomod and MaxEnt, to 
test the feasibility of integrating the two methods. 

• Introduce Procrustes analysis as a tool to evaluate the spatial agreement 
between simulations and ground-truth information. 

• Introduce an easy method to compute the spatial distribution of certainty 
in Geomod simulations in order to generate certainty maps for assessing 
simulation accuracy. 

• Test the proposed method in the period 1987-2001 (using 1987 data to 
calibrate and 2001 data to evaluate) to perform simulations for the pe-
riod 2001-2010, in order to provide and explore three future scenarios of 
spreading of greenhouses. 
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11.2 Test area, data sets and tools 

11.2.1 Test area 

The test area selected was the province of Almeria (SE Spain, see Fig. 11.1), 
located between 3.14ºE and 1.62ºE longitude and 36.6ºN and 37.46ºN 
latitude (Fig. 11.1). The surface area analysed is 7,171 km². The climate is 
Mediterranean, with rainfall of 200-300 mm and means annual tempera-
tures of 16-17ºC. Geologically, post-orogenic sedimentary materials pre-
dominate, and the landscape is dominated by a mosaic of chamaephyte 
plant communities, xerophytic grasslands and varied communities of an-
nual plants. Greenhouses have been spreading in the area since 1960, oc-
cupying around 37,000 ha in 2001. 

 
Fig. 11.1 Situation of the test area in the Mediterranean geographical context 

11.2.2 Data sets 

11.2.2.1 Environmental and geographical variables 

From a digital elevation model of 20 m resolution (provided by the Envi-
ronmental Information Network of the Andalusian Regional Government) 
a total of 11 topographical variables were derived: elevation, slope, north-
ness, southness, eastness, westness (in gradient from 100 to 0), direct solar 
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radiation (mean, minimum and maximum computed by the Solar Analyst 
extension for ArcView 3.2), topographical wetness index (TWI) and sedi-
ment transport index (STI) (both computed in ILWIS 3.4 Open using the 
Flow_indices script available at http://spatial-analyst.net). 

From road maps from 1987, 2000 and 2006 (2006 map includes roads 
under construction expected for 2010), we mapped the distance to roads of 
1st, 2nd, 3rd, and 4th order (motorways and national highways, regional 
roads, provincial roads and local roads, respectively) for years 1987, 2001 
and 2010. For each year, an “accessibility index” coverage was built, com-
puted by a weighted mean of the distance coverages. Weights were: 1 for 
1st order roads, 0.75 for 2nd order roads, 0.50 for 3rd order roads and 0.25 
for 4th order roads. The weighted sum was scaled into values from 0 to 
100 using the module Stretch of the Idrisi Andes software. 

Coverages of distances to water resources in years 1987 and 2001 were 
drawn using the cartography of water infrastructures of the regional gov-
ernment of Andalusia. Distances to water resources in 2010 were com-
puted using the locations of future desalination plants projected by the Wa-
ter Plan of the Ministry of the Environment of Spain. Areas not suitable for 
greenhouses (towns, lakes, natural parks) were masked in the datasets so as 
to be excluded from the analysis. 

To avoid high correlation between variables in the dataset, we used Bio-
mapper 3.0 (Hirzel et al. 2006), which computes UPGMA (Unweighted 
Pair-Group Meted with Arithmetic Mean) trees using Pearson’s correlation 
index as the distance between variables. With 0.75 being selected as the 
maximum correlation threshold, from each group of highly correlated vari-
ables, one was retained. The remaining variables (elevation, slope, topog-
raphical-wetness index, mean solar radiation, accessibility index, distance 
to water resources, and the distances to roads of 1st, 2nd, 3rd and 4th or-
der) were used to compose three data sets corresponding to the years 1987, 
2001 and 2010, which had in common topographic variables but differed 
in the values of the distance variables (see Fig. 11.2). 

11.2.2.2 Greenhouse coverages and presence records 

For the calibration and evaluation of MaxEnt suitability maps and Geomod 
simulations, presence records and greenhouse coverages are needed. For 
calculating greenhouse coverages for 1987 and 2001, digital land use maps 
from the years 1991 and 1999 (stored as polygon layers) were manually 
corrected using Landsat images (RGB composites) of years 1987 and 2001 
as reference. The resulting polygon layers were rasterized to determine 
greenhouse (absence/presence) Boolean coverages. From these coverages, 
340 and 471 presence records of greenhouses were collected, respectively, 
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by random sampling, establishing a minimum-distance criterion (at least 
1000 m between records) in order to avoid spatial autocorrelation effects 
from using samples too close together (pseudoreplication). 

 
Fig. 11.2 Flowchart I. Making of the environmental datasets and presence samples 

Although the initial resolution of both data sets (variables and green-
house coverage) was 20 m, the process that we wished to model occurred 
at a lower resolution, related to the dimensions of the greenhouses (Hengl 
2006). A study of the mean area of the greenhouses indicated that a pixel 
size of 80 x 80 m would properly represent the land use change, and there-
fore all the spatial data were rescaled to this resolution using the module 
Contract included in Idrisi Andes (pixel aggregation for continuous data 
and pixel thinning for categorical data). 

11.2.3 Modelling and evaluation tools 

11.2.3.1 MaxEnt 

MaxEnt (Maximum Entropy), a general purpose method for making pre-
dictions from incomplete information, has recently been applied to model-
ling biological species distribution (Phillips et al. 2006). Successful tests 
have demonstrated that its results are among the best possible within the 
broad set of algorithms for distribution modelling (Elith et al. 2006). 
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The algorithm needs a sample of presence records of the organism and a 
set of environmental variables of the entire study area to compute the distri-
bution model. The environmental variables and functions representing the 
interactions among them are called “features”, from which the ecological 
niche of the species is defined. Using presences, features, and a background 
sample (locations taken randomly from the entire study area) MaxEnt 
searches iteratively for the probability distribution of the maximum entropy 
(the closest to uniform), but subject to one condition: the expected value for 
each feature under the estimated distribution matches its empirical average 
(calculated from the values of the feature in the presence records). The 
probability is computed in terms of “gain” (log of the number of grid cells 
minus the average of the negative log probabilities of the sample locations), 
which starts at zero and increases in each iteration, until differences be-
tween iterations fall below a predefined “convergence threshold”, or the 
“maximum iterations” number is reached (Phillips et al. 2006).  

The probability distribution is projected onto the geographical space, re-
sulting in a distribution model with a range of values of between 0 and 100, 
which expresses in relative terms the suitability of the habitat for the spe-
cies (suitability map). MaxEnt can also project the model over variables 
representing a different time, to explore simulated past or future scenarios. 
In order to provide a better understanding in the relationships between vari-
ables and presence records, MaxEnt performs a Jackknife test to measure 
variable importance, and plots the log response curves for each variable. 

Greenhouses require a combination of environmental variables (tempera-
ture, solar radiation, etc.) and geographical ones (distance to roads, water re-
sources) that influence its productivity. These requirements determine the 
greenhouse construction site selection in the same way as a biological spe-
cies selects an appropriate habitat. This quasi-biological behaviour permits 
the application of MaxEnt to calculate the potential distribution of green-
houses, using the same method as applied to biological species. According 
to this idea, high suitability values in a greenhouse MaxEnt distribution 
model indicate areas adapted for the construction of greenhouses. 

11.2.3.2 Geomod 

Geomod (Pontius et al. 2001) is a land use change simulator implemented 
in Idrisi Andes (Clarklabs 2006). It simulates the land use change between 
two categories (e.g. from unoccupied to occupied by greenhouses) using as 
start-up information the beginning and ending time of the simulation, a 
coverage with the initial state of the two categories, the land area changing 
in use (indicated by the number of cells), a series of environmental vari-
ables from which a suitability map is drawn (determining the areas most 
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prone to use change), and a stratification map (enabling the area to be di-
vided into regions that behave differently). 

The simulation is based on certain decision rules: 

1. Land use change is simulated in only one direction, from occupied to 
unoccupied or vice versa, but not both simultaneously. If a stratification 
map is used, Geomod can simulate changes in different directions for 
different strata.  

2. A neighbourhood rule should be defined: in the constrained mode, a ra-
dius is established for the edge of the initial use patches within which 
Geomod will search for the areas prone to change. In the unconstrained 
mode, it searches for transition areas without restrictions on the radius, 
throughout the entire territory being analysed. 

3. The suitability map for land use change. Geomod computes a suitability 
map from a set of environmental variables (that influence land use 
change) and a coverage of the initial state of land use. The computing 
method reclassifies each variable into categories, assigning to every new 
category the value of the percentage of cells occupied by the land use 
towards which the change is going to be simulated. Finally, a weighted 
sum of the reclassified variables is used to compute the suitability map. 
The weighting factor may be equal for all the variables or defined for 
each one by the user. The values of the suitability map are called “lubri-
cation values”: larger lubrication values implies high suitability for land 
use change (for more details, see Pontius and Chen 2006). 

11.2.3.3 Procruster analysis 

Sensitivity (S) is the conditional probability that a presence cell in the ref-
erence image is predicted correctly in a simulation. It can be calculated 
from the confusion matrix provided by de Crosstab module of Idrisi An-
des, dividing the true presences (correctly simulated cells) by the sum of 
true presences and false presences (incorrectly simulated presence cells). 
The result (the true positive fraction) is a measure of agreement between a 
simulation and a reference image in terms of quantity, without bearing spa-
tial differences in mind. We use this additional evaluation measure to sup-
port the results of the Procrustes analysis. 

11.3 Methodology and practical application to the datasets 

Two simulation phases were executed using Geomod: to test the performance 
of MaxEnt suitability maps and select the decision rules that best represent 
the spreading of greenhouses, nine simulations using different combinations 
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of decision rules were performed and evaluated for the interval 1987-2001 
(1987 data to calibrate and 2001 data to evaluate simulations). Then, using 
the selected rules, Geomod simulations considering three different land use 
change scenarios were performed for the interval 2001-2010. 

11.3.1 Simulations 1987-2001 

The aim is to select the decision rules available to calibrate Geomod simu-
lations that best describe the spreading of greenhouses in the study area. 
Suitability maps computed by MaxEnt and Geomod, and different 
neighbourhood rules were combined in nine performed simulations: 

− Suitability maps: Three suitability maps were used: 1) M1, (computed in 
MaxEnt) model calibrated with the training sample and variables of 1987. 
2) M2, (computed in MaxEnt) model calibrated with the training sample 
and variables of 1987 and projected over variables of 2001 (using the Pro-
jection feature available in the software). Suitability maps computed with 
MaxEnt were calibrated using the default settings (Phillips et al. 2006). 
3) G1, computed in Geomod with the greenhouse’s coverage and vari-
ables of 1987 (using the same weighting factor for all variables). 

− Neighbourhood: settings used were 80 m (1 cell around), 2,000 m (25 
cells around) and unconstrained. 

The simulations were calibrated setting the starting time at 1987, initial 
area of the greenhouses coverage of 1987 (38,743 cells, 24,795 ha.), end-
ing time at 2001 and final area of the greenhouse coverage of 2001 (58,097 
cells, 37,182 ha). All simulations were stratified by municipality limits, 
representing the diversity of land-management policies in different towns. 
An extra simulation (unstratified, without suitability map and uncon-
strained neighbourhood) was performed in order to simulate the random 
spreading of greenhouses, calling this the Random Simulation (hereafter, 
RS; to clarify this explanation, see Fig. 11.3). 

11.3.1.1 Evaluation and spatial certainty of the simulations 

It is important to consider that, on comparing a simulation with the refer-
ence image, both share the entire area occupied by greenhouses at the start-
ing time (1987). Consequently, any comparison index that we apply will 
interpret an inflated degree of agreement between the simulation and the 
reference image. To avoid this inflation, we eliminated (in all the simula-
tions, the RS, and the reference image) the area corresponding to green-
houses in 1987. Therefore, the evaluation took into account only the area 
of the new greenhouses. 
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Results were evaluated by Procrustes analysis and sensitivity using the 
greenhouse coverage of 2001 as the reference image. The simulation with 
the least m² and greatest S with respect to the reference image will determine 
the decision rules that best describe the spreading of greenhouses. Results 
were tested separately for Procrustes analysis and sensitivity by factorial 
ANOVA, establishing a “suitability map” (levels: G1, M1 and M2) and 
“neighbourhood” (levels: 80 m, 2,000 m, and unconstrained) as categorical 
predictors. The relationship between m2 and S were assessed by linear 
regression. 

Usually, when evaluating a simulation by calculating its sensitivity, a 
homogeneous spatial distribution of certainty must be considered, assum-
ing that all the simulated cells have the same likelihood of being correctly 
classified. In the real world, if greenhouses are constructed preferably in 
areas of high suitability (according to the suitability maps) because it fa-
vours greenhouse productivity, and Geomod selects as a priority these ar-
eas to simulate land use change to greenhouses construction, we can as-
sume that the certainty of the simulation will vary according to the values 
of the suitability map. Following this reasoning, in the areas of greatest 
suitability, the probability of finding cells where the presence of new 
greenhouses has been correctly simulated is higher than in the areas of 
lower suitability. To test this idea, a joint analysis was made of the best 
simulation, its suitability map and the reference image (coverage of green-
houses in 2001), in order to: 1) describe graphically the relationship be-
tween the suitability map and the total amount of hits (correctly simulated 
cells) and errors (incorrect simulated cells) in the simulation, plotting the 
number of hits and errors against suitability values; 2) find a suitability-
certainty function that relates each suitability value to a given probability 
for a cell to be correctly simulated, which is useful to compute a simula-
tion certainty map. For this, the percentage of correctly simulated cells was 
plotted against suitability. The plot represents the specific behaviour of the 
best simulation, but we are looking for a more general function, capable of 
predicting approximately the behaviour of different simulations. With this 
aim, the data was smoothed by means of a moving average (using 25 as 
span size), and analysed by a polynomial-curve fitting using Octave. 

11.3.1.2 Simulations 2001-2010 

The spreading of greenhouses in the study area has been continuous from 
1954, and today the construction of greenhouses is booming, due to the 
construction of new infrastructures oriented to increase water supply. But 
the greenhouses are involved in a dynamic market, and the profitability of 
the crops depends on multiple economic and social factors difficult to 
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predict. Another emerging factor adding uncertainty in the last years is the 
competition with other Mediterranean countries with cheaper production. 
To confront this uncertainty we propose three simple scenarios of spread-
ing of greenhouses for the period 2001-2010: 

a) Linear greenhouse area growth with the trend identified for 1987-2001.  
b) Accelerated growth (20%) over the linear trend due to increased demand.   
c) Slowed growth (20%) under the trend due to increased competition 

from countries with cheaper production (e.g. Morocco and Algeria). 

 
Fig. 11.3 Flowchart II. Steps followed to select the suitability map and the neigh-
bourhood setting most appropriate to simulate the spreading of greenhouses 

To be used a suitability map in the projections, a MaxEnt (M3) distribu-
tion model was calibrated using the training sample and variables of 2001, 
and projected over the variables of 2010. Differences in suitability between 
M2 and M3 were computed by map algebra. Using the 2001 greenhouse 
coverage as the starting image, the suitability map M3, and the projected 
areas in the different scenarios, three Geomod simulations for the period 
2001-2010 were performed. To assess the spatial certainty of the simula-
tions, the computed suitability-certainty function (see Sect. 11.3.1.1) was 
applied to the M3 suitability map (replacing M2 values by M3 values and 
dividing the result by 100 to translate percent values into probabilities). 
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11.4 Results 

11.4.1 Simulations 1987-2001 

Fig. 11.4 shows the coverage of greenhouses (1987) and the suitability 
maps used as inputs to calibrate Geomod simulations. Fig. 11.5 summa-
rizes the influence of the modelling variables in the MaxEnt distribution 
model (suitability maps M1 and M2) and shows the log-response curves of 
the most relevant variables. 

 
Fig. 11.4 Greenhouses in 1987 and suitability maps. a) Coverage of greenhouses 
in 1987 (starting time) used to calibrate simulations and non-suitable areas ex-
cluded from the analysis; b) G1 Suitability map, computed by Geomod; c) and d) 
M1 and M2 suitability maps calibrated in MaxEnt using presence records and 
variables of 1987 (M1), and projecting the model over variables of 2001 (M2). 
Dark colours indicate high suitability for the construction of greenhouses 

The results of the Procrustes analysis and sensitivity for the nine per-
formed simulations are shown in Fig. 11.6. All the simulations performed 
better than the RS (m²=0.04; S=0.02), the results of which are not shown in 
Fig. 11.5 due to problems of scale. Two simulations calibrated with the 
suitability map M2 worked better than the remaining ones: the uncon-
strained neighbourhood simulation (m²=0.0062; S=0.4060), selected 
as the best simulation and the 2,000 m neighbourhood simulation 
(m²=0.0063; S=0.4050). Factorial ANOVA test found significant differences 
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Fig. 11.5 Jackknife test and response curves of MaxEnt distribution model. Bars 
plot: dark grey bars indicate model gain when computed with only the variable, 
and light grey is the model gain when computed with the other variables. Minor 
differences between the two bars indicate major importance of the variable in the 
model. Log-response curves: the five most important variables are shown. Values 
over 0 indicate suitable conditions for greenhouses, whereas the values below zero 
indicate unfavourable conditions 

in simulations performance between suitability maps, but not between 
neighbourhood rules (see Table 11.1 for a summary of factorial ANOVA 
results). Procrustes and sensitivity values were closely correlated (adjusted 
R²=0.947; p-level=0.000006). Unconstrained neighbourhood and MaxEnt 
suitability map (but replacing M2 with M3) were the settings selected to 
calibrate and simulate the three future scenarios of land use change. 
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Fig. 11.6 Evaluation results. Evaluation of 9 simulations performed in Geomod 
combining three neighbourhood rules (80 m, 2,000 m and unconstrained) and 
three suitability maps, one computed in Geomod (G1), and two computed in 
MaxEnt (M1 and M2). Each bar corresponds to a performed simulation. The ref-
erence image is the real coverage of greenhouses in 2001 (ending time in the 
simulations). Low values of m² are indicative of a good spatial agreement between 
a simulation and the reference image. Higher values in S indicate a good agree-
ment between a simulation and the reference image in quantity of correctly pre-
dicted cells. The best simulation was performed with an unconstrained neighbour-
hood and the suitability map M2. 

Table 11.1 Summary of results of factorial ANOVA. Significant values in bold 

Dependent 
variable m² S 

Categorical 
predictor suitability map neighbourhood suitability map neighbourhood 

F 9.132 0.009 29.158 0.108 

P 0.032 0.990 0.004 0.900 

Fig. 11.7 (left) shows the graphical analysis of correctly and incorrectly 
simulated cells of the best simulation. Fig. 11.7 (right) shows the 
polynomial relationship between the suitability values (of the M2 
suitability map) and the percentage of cells correctly predicted for that 
suitability value, calculated from the best simulation. Eq. 11.1 expresses 
the suitability-certainty function (R²=0.99; RMSE=1.24). 
% HITS = 1.186·10-13 M29 + -4.729·10-11 M28 + 7.417·10-9 M27 + 
-5.681·10-7 M26 + 2.08·10-5 M25 + -0.0002511 M24 + -0.003183 M23

+ 0.1024 M22 + -0.3118 M2 + 0.3413 

(11.1) 

M2: values for every pixel of the M2 suitability map. 
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Fig. 11.7 Certainty against suitability in the best simulation. Left: the plots describe 
the behaviour of the best simulation in terms of total amount of correctly (hits) and 
incorrectly (errors) predicted cells against suitability. Right: 9th order polynomial 
relationship between the percentage of correctly predicted cells and suitability (M2 
suitability map). The black plots represent the real data, and the grey dots the 
smoothed data. The curve represents the curve fitted to the smoothed data 

11.4.2 Simulations 2001-2010 

Fig. 11.8 shows the differences in suitability between M2 and M3. The 
construction of new infrastructures (roads and desalination plants) boosts 
the suitability for greenhouses in areas that already were fulfilling suitable 
topographic conditions. The relative importance of the variables and the 
response curves in the M3 distribution model were similar to those of the 
M2 distribution model, confirming that both models had close similarities. 

 
Fig. 11.8 Differences in suitability between M2 and M3. Differences in suitability be-
tween M2 and M3 were computed as M3-M2 in the raster calculator of Idrisi Andes. 
Higher values are indicative of new suitable areas for the spreading of greenhouses 
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Fig. 11.9 shows the simulations corresponding to the proposed scenarios 
A, B, and C, compared to the real greenhouse-occupied area in 2001. 

 
Fig. 11.9 Simulations of scenarios A, B, and C. Scenario B is the sum of 2010 B, 
2010 A, 2010 C, and 2001 occupied areas. Scenario A is the sum of 2010 A, 2010 
C, and 2001 occupied areas, etc. The zoomed area is a detail of Campohermoso 
(see Fig. 11.1), a locality with an intense growth of the area occupied by green-
houses in recent years 

Fig. 11.10 shows the certainty map of the simulations of scenarios A, B, 
and C for the year 2010. 

 
Fig. 11.10 Certainty map for simulations of scenarios A, B, and C. The certainty 
map computed from Eq. 11.1 applied over the M3 suitability map. The values 
indicate the probability that a cell with presence of greenhouses simulated by 
Geomod will really be occupied in 2010 



312        Benito de Pando B and Peñas de Giles J 

11.5 Validation of the results and discussion 

11.5.1 Simulations 1987-2001 

The ANOVA analysis of the evaluation values indicate that the simula-
tions performed with MaxEnt suitability maps work better than those per-
formed with Geomod ones (in terms of S and m²). While MaxEnt uses 
scattered presence points as input, Geomod uses the complete land use 
coverage. If, for reasons other than the suitability of the territory, there is a 
great concentration of greenhouses in a given area (e.g. historical causes), 
the combination of variables present at this site takes on relatively high 
importance with respect to the other combinations of variables in the rest 
of the territory, resulting in a misleading suitability map. The same can 
happen in the MaxEnt models when the presence records provided as input 
were very close together, but the initial treatment that we applied (mini-
mum distance between presence points greater than 1,000 m) diminish any 
possibility that aggregation effects could affect the quality of the models. 
Another difference between the two methods to calculate suitability maps 
is based on the relative weight given to the variables. Geomod does not use 
any algorithm to compute weights, and they have to be established by the 
user (by subjective criteria, or criteria based on previous statistical analy-
sis). MaxEnt includes a Jackknife test, which automatically computes the 
relative contribution of every variable to the model. Another advantage of 
the MaxEnt algorithm successfully explored in this paper is the “Projec-
tion” feature, capable of projecting a distribution model over variables 
with values expected for the future. It is a useful tool to explore alternative 
land use change scenarios bearing in mind expected changes in the values 
of the variables (accordingly to known information, such as projected 
roads). Our results support the idea that the MaxEnt algorithm can gener-
ate useful suitability maps applicable to Geomod simulations, outperform-
ing the results given by a stand-alone use of Geomod. 

The results for the importance of the variables in the suitability maps 
computed by MaxEnt (Fig. 11.4) and of their response curves (Fig. 11.5) 
indicate that the fundamental factors influencing greenhouse distribution in 
the study area are related to topography and distance to roads. The open 
plains (which coincide with the areas having high indices of topographical 
moisture) at low altitudes have the temperature, slope, and solar radiation 
appropriate for greenhouse operation. The factors related to the distances 
to roads do not appear to be limiting, although the longest distance to first-
order roads (motorways) are related to a lower presence of greenhouses. 
The variable “accessibility index”, the fourth in importance, accurately 
summarizes the distances to different types of roads, and it is useful to 
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predict the spreading of greenhouses. Interpretation problems arise with 
the variable Distance to Water Resources, because the great majority of 
greenhouses do not depend on centralized resources such as reservoirs or 
desalination plants, but rather use their own wells, which pump water from 
aquifers. This variable is the only one that has lost relevance over time 
among the 1987-2001 and 2001-2010 models, since desalination of sea 
water has proliferated on the Almería coast. Even so, the low gain shown 
by all the models indicates that the contribution of desalination does not 
significantly affect the results. 

In the evaluation of the simulations, we considered two sides: agreement 
in number of predicted cells, expressed in terms of S, and spatial agree-
ment, tested by Procrustes analysis and expressed in terms of m². Both 
measures were correlated, but not perfectly because, for two simulations 
with the same sensitivity (compared with a reference image), there may be 
differences in the location of the errors detected by the Procrustes analysis. 
Procrustes analysis is a quick and simple way to assess spatial agreement 
between simulations and real land use coverages. 

The analysis of hits and errors of the best simulation (Fig. 11.7, left) shows 
that it works better in the section of higher values of the M2 suitability map 
(especially in the range 100-50), and the errors increases when suitability 
trends toward zero. When the percentage of hits against suitability values is 
smoothed by a moving average (Fig. 11.7, right), the pattern remains quite 
clear, making it possible to find, by means of curve fitting, a function (9th-
order polynomial, see Eq. 11.1) describing the behaviour of the simulation. 

11.5.2 Simulations 2001-2010 

The construction of new roads and desalination plants can increase the area 
suitable for greenhouses, as shown in the map of differences between M2 
and M3 suitability maps (Fig. 11.8). Apart from the increase of suitable area, 
both models show identical behaviour regarding the relative contribution 
and the response curve that every variable presents. During the studied peri-
ods 1987-2001 and 2001-2010, the relationships between the presence of 
greenhouses and the variables that influence their distribution did not sig-
nificantly change. 

Geomod is designed to predict the locations of land use change, not the 
quantity of area that changed. Therefore, the validity of the simulations is 
based on a solid interpretation of the data for surface-area growth of 
greenhouses. Using only the two available sets of temporal data (1987 and 
2001), we used a linear estimation to calculate the amount of occupied area 
in the scenarios A, B and C, but it would be more appropriate to use data 
from temporal series with a greater number of control points. The problem 
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arises when inflexion points are foreseen in the growth curves of the occu-
pied area, a possibility in the study areas because there is a high degree of 
saturation (a large area of land that can be occupied by the greenhouses is 
already occupied) and the resources supporting the greenhouse industry 
(mainly soil and water) are being depleted. Thus, to our knowledge, sce-
narios A and C are probably the closest to reality (see Fig. 11.9). 

The certainty map (Fig. 11.10) can be useful to assess the expected ac-
curacy of the simulations when it is not possible to validate them with 
ground-truth information. Nevertheless, the function used to compute the 
certainty map of the simulations 2001-2010 has been calculated for a simu-
lation performed for the period 1987-2001 and the suitability map M2, 
there are at least two ideas that may justify its application: 

− M2 and M3 distribution models are quite similar, and therefore a sig-
nificant behavioural change in the suitability-certainty function between 
models is not expected.  

− The smoothing of the data by moving the average prior to the curve fit-
ting removes bias and generalizes the function, allowing its application 
to other simulations performed under the same conditions. 

However, it is important to bear in mind the limitations of this applica-
tion: the function does not take into account the effect of the area that will 
predictably undergo land use change. This effect is important because it 
tends to increase the percentage of correctly predicted cells of the simula-
tion and can influence the relationship between certainty and suitability, al-
tering the shape of the curve and changing the coefficients of the function. 
This can lead to an erroneous interpretation of the probability values of the 
certainty map. It would be useful to make an in-depth study of the relation-
ship between suitability and certainty for different simulations to find an 
equation that can function in a general way in order to associate each simu-
lating cell with a particular certainty value. 

11.6 Conclusion and perspectives 

11.6.1 Conclusions 

The combined use of MaxEnt and Geomod provide a series of significant 
advantages with respect to the stand-alone use of Geomod in land use 
change simulations: 

• Geomod simulations using MaxEnt distribution models as suitability 
maps significantly outperform simulations calibrated with suitability 
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maps computed by Geomod. In addition, the “projection” feature of 
MaxEnt makes it possible to explore alternative scenarios by changing 
the values of the variables used to calibrate the model. 

• It is possible to predict accurately the spreading of greenhouses using 
only topographic variables and distances to roads. In this sense, the pro-
posed “accessibility index” is a useful variable that summarizes dis-
tances to different types of roads. 

• Relationships between greenhouses and variables are stable in time for 
the periods studied, allowing the exploration of future scenarios. 

• Procrustes analysis is a powerful tool to assess spatial similarity be-
tween simulations and ground-truth information, and provides a simple 
and easily interpretable measure of agreement (m²). 

• The certainty of Geomod simulations is not spatially uniform. There is a 
strong relationship between the amount of correctly simulated cells and 
suitability. This relationship is useful to compute certainty maps to as-
sess the spatial accuracy of simulations. 

• The proposed methodology can be applied to territorial management of 
areas in which greenhouse expansion can represent an environmental 
problem, as in the Mediterranean countries mentioned in the present 
work. From the simulations, it is possible to identify the hotspots on 
which to focus environmental management and conservation efforts. 

11.6.2 Perspectives 

In the context of global change, the studies on land use change are becom-
ing as relevant as those related to climatic change. Though we have spe-
cifically oriented tools, the complexity of the web of factors affecting land 
use is such that it is difficult to develop highly accurate techniques. It is 
necessary to continue to delve into the possibilities offered by geographic 
information technology to formulate predictions that enable us to face 
coming changes. 

The present study seeks to combine two different perspectives: ecologi-
cal species-distribution models used in biology, and land use change mod-
els used in geography. Both approaches combined can generate powerful 
tools to analyse our changing world and to explore alternative scenarios. 

Although the analysis proposed for land use change is applied only to 
greenhouses, it has other potential applications (perhaps irrigation, urbani-
zation, tourist facilities, etc.). This implies another alternative to the differ-
ent use of change models currently being used. 
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