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Abstract. Diverse modelling formalisms are applied in Computational Biology.
Some describe the biological system in a continuous manner, others focus on
discrete-event systems, or on a combination of continuous and discrete descrip-
tions. Similarly, there are many simulators that support different formalisms and
execution types (e.g. sequential, parallel-distributed) of one and the same model.
The latter is often done to increase efficiency, sometimes at the cost of accu-
racy and level of detail. JAMES II has been developed to support different mod-
elling formalisms and different simulators and their combinations. It is based on
a plug-in concept which enables developers to integrate spatial and non-spatial
modelling formalisms (e.g. STOCHASTIC π CALCULUS, BETA BINDERS, DEVS,
SPACE-π), simulation algorithms (e.g. variants of Gillespie’s algorithms (includ-
ing Tau Leaping and NEXT SUBVOLUME METHOD), SPACE-π simulator,
parallel BETA BINDERS simulator) and supporting technologies (e.g. partitioning
algorithms, data collection mechanisms, data structures, random number genera-
tors) into an existing framework. This eases method development and result eval-
uation in applied modelling and simulation as well as in modelling and simulation
research.

1 Introduction

A Model (M) for a system (S) and an experiment (E) is anything to which E can be
applied in order to answer questions about S. This definition that has been coined by
Minsky in 1965 [Min65] implies the co-existence of several models for any system.
Each model and its design is justified by its specific objectives. Simulation on the other
hand can be interpreted as “an experiment performed at a model”, as stated by Korn
and Wait [KW78]. The term simulation is sometimes used for one simulation run, but
more often it refers to the entire experimental setting including many simulation runs
and the usage of additional methods for optimization, parameter estimation, sensitivity
analysis etc. Each run requires a multitude of steps: e.g., model selection, initialization,
defining the observers, selecting the simulation engine, and storing results – to name
only a few. Given the long tradition of modelling and simulation, its many facets and the
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diversity of application areas, it is not surprising that a plethora of different modelling
and simulation methods have been developed, and scarcely less simulation tools.

While modelling and simulation has been applied to gain a better understanding of
biological systems for well over four decades, broad interest in applying modelling
and simulation in cell biology has been renewed by recent developments in experimen-
tal methods, e.g. high content screening and microscopy, and has spawned the devel-
opment of new modelling and simulation methods. Since the millennium, the signifi-
cance of stochasticity in cellular information processing has become widely accepted,
so that stochastic discrete-event simulation has emerged as an established method to
complement conventional ordinary differential equations in biochemical simulations.
This is also reflected in simulation tools for systems biology that have started to offer
at least one discrete-event simulator in addition to numerical integration algorithms,
e.g. [ROB05,TKHT04]. The trend to offer more flexibility is not exclusive to the simu-
lation layer. Different parameter estimation methods [HS05] and different possibilities
to describe models (e.g., by rules or with BETA BINDERS [GHP07]), are receiving more
and more attention as well. Thus, the insight is taking hold in the computational biol-
ogy realm that a silver bullet does not exist – there are only horses for courses. This
diversification and the implied need for a flexible simulation framework is likely to in-
crease over the next years, particularly as, in addition to noise, space is entering the
stage of computational biology. In vivo experiments revealed that many intra-cellular
effects depend on space, e.g. protein localization, cellular compartments, and molecular
crowding [Kho06]. Approaches that support both stochasticity and space are therefore
particularly promising [TNAT05, BR06].

The motivation for developing JAMES II (JAva-based Multipurpose Environment for
Simulation) has been to support diverse application areas and to facilitate the devel-
opment of new modelling and simulation methods. JAMES II has been created based
on a “Plug’n simulate” [HU07b] concept which enables developers to integrate their
ideas into an existing framework and thus eases the development and the evaluation
of methods. In the following we will describe basic concepts and some of the current
developments to support cell-biological applications in JAMES II.

2 JAMES II– Plug’n Simulate

The simulation framework JAMES II is a lean system consisting of a set of core classes.
The core of JAMES II is the central and most rarely changed part of the framework.
The main parts are: User interface, Data, Model, Simulator, Simulation, Experiment,
and Registry. We used common software engineering techniques for the creation of
the framework, e.g. the model-view-controller paradigm [GHJV95] for decoupling the
parts, and the abstract factory and factory patterns [GHJV95] for realizing the “Plug’n
simulate” approach. Another important design decision was to split model and simula-
tion code completely. Thus, a simulator can access the interface of a model class but
a model class is never allowed to access something in a simulator class. This makes it
possible to switch the simulation engine (even during runtime) and to exchange the data
structures used for the executable models – an essential feature for a flexible framework.
In combination with an XML-based model component plugin, this flexibility enables
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Fig. 1. Packages of the simulation framework JAMES II [HU07b]

the freedom of choice in regards to model data type, simulator code (algorithm as such
or parts of the simulation algorithms, e.g. event queues), visualization, and runtime en-
vironment. The architecture is sketched in Figure 1. The layers depict the distance of a
user from the packages.

Functionality not included in the core classes, especially modelling formalisms and
simulation algorithms, can be extended by using plugins. Due to the strict separation be-
tween models and simulators, simulation algorithms can be easily exchanged and thus
evaluated. This makes the PlugIn mechanism a base for a reliable evaluation of new
simulation algorithms. For the integration of a new formalism, one has to create model
classes which can represent an instantiated and executable model defined in a certain
formalism. Conducting experiments requires at least one additional plugin that provides
a simulator. Having created the formalism classes, one can directly start to code mod-
els and experiment with them. A prototypical example can be found in [HU07b], where
cellular automata are added to the framework. Plugins exist for a number of formalisms,
among them variants of DEVS [ZPK00], e.g. ML-DEVS [UEJ+07], and variants of the
π CALCULUS, e.g. BETA BINDERS [PQ05] and SPACE-π [JEU08]. If models shall be
described in a declarative manner, a model reader can be used, which converts arbitrary
model definitions (e.g., from XML files or databases) into executable models [RU06]
based on consistency checking of interface descriptions [RM07]. Interface definitions
are according to the Unified Modelling Language 2.0 [OMG05]. Thereby, the provi-
sions and requirements of each model component can be explicitly specified, internal
details of a component, i.e. the implementation of model behaviour, can be hidden, and
direct dependencies between models can be eliminated.

Different formalisms may require different simulation algorithms for their execution.
Different hardware infrastructures (e.g. clusters, workstations, the Grid) may impose re-
strictions or options which should be taken into account by an algorithm. For example,
symmetric multiprocessor machines provide fast access to shared memory. Even mod-
els described in the same formalism might require different simulators for an efficient
simulation, depending on model size and other characteristics. Thus, various simulation
plugins have been implemented for JAMES II. As they all provide simulators, i.e. algo-
rithms that execute models, they are integrated via the simulator extension point.
An extension point subsumes all plugins of one type and provides mechanisms to select
the right plugin for a given problem (see fig. 2).

Other extension points provide partitioning and load balancing, random number gen-
eration and probability distributions, optimization, parameter estimation, data storage
and retrieval, and experiment definitions. JAMES II also offers several extension points
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Fig. 2. Factory classes and flow-chart describing the plugin filtering process

for the integration of data structures, among them an extension point for the integration
of event queues. Extension points can be defined easily, so their number and the number
of implemented plugins grows steadily.

The simulator extension point can be combined with other extension points and
forms the basis of a flexible and scalable experimentation layer. Such an experimen-
tation layer can adapt to different types of experiments (e.g. optimization, validation),
to different execution schemes (e.g. sequential, parallel distributed), and to different
models realized in different modelling formalisms.

The selection process for a simulation algorithm is illustrated in figure 2. Several
criteria are subsequently applied to select a suitable simulation algorithm. The first cri-
terion is built-in and selects factories according to the user parametrization of the run.
Each plugin is described by a list of factories and a name [HU07b]. For example, se-
lecting a suitable simulator requires to apply a set of specific criteria for factories that
can instantiate those for the model at hand. Such a factory also needs to suit the given
partition (i.e. whether to compute the model in a distributed or sequential manner), and
finally the most efficient factory shall be determined. For this, we strive to take earlier
experiences regarding simulator performance into account [EHUar] (see section 4.2).

Experiments with JAMES II show that exchangeable algorithms are the precondi-
tion for an efficient execution of experiments [HU07a]. In addition, a subset of these
algorithms are reusable across simulation algorithms, even if they have been designed
for different formalisms. Thus, the implementation effort required for the creation of
algorithms is significantly reduced, see e.g. [HU04]. In addition, the validation and
evaluation of simulation algorithms is eased in such a framework: a novel algorithm
simply has to be added to the framework and can be compared to all competing so-
lutions, without bias or the need to recode those. The benefits of reusing simulation
algorithms or data structures is similar to the arguments that pushes the development
of model components. For example, if we define the nucleus as one model component,
this allows us to easily replace the model by more abstract, refined, or alternative ver-
sions. Thus, a space of interesting hypotheses referring to the system under study can
be evaluated without the need to recode the complete model. This freedom of choice
with respect to model and simulator configuration is accompanied by an explicit repre-
sentation of the experimental setting in XML, ensuring repeatability of simulation runs
and comparability of the results achieved by alternative models.
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3 Modelling Formalisms Supported in JAMES II

Modelling means to structure our knowledge about a given system. Thereby, the
modelling formalism plays a crucial role. Whereas continuous modelling formalisms
support a macro, population-based view, with its associated continuous, deterministic
dynamics progressing at the same speed and being based on real-valued variables, dis-
crete event approaches in contrast tend to focus on a micro perception of systems and
their discrete, stochastic dynamics. Variables can be arbitrarily scaled. Sub-systems ad-
vance over a continuous time scale, but in steps of variable size. Discrete event models
forego assumptions about homogeneous structure or behaviour. For example, DEVS

[ZPK00], PETRI NETS [Mur89], STATE CHARTS [Har87] and STOCHASTIC π CAL-
CULUS [Pri95] are formal and generally applicable approaches toward discrete event
systems modelling. Their use has been explored in Systems Biology (e.g. [PRSS01,
FPH+05, EMRU07]), and depending on their success inspired a broader exploitation
and the refinement of methods. The focus in JAMES II has been on discrete event for-
malisms, with emphasis on DEVS, followed by STOCHASTIC π CALCULUS; lately a
first plugin for STATE CHARTS has been implemented.

3.1 Biologically Inspired Variants of DEVS

The strength of DEVS lies in its modular, hierarchical design which provides a basis
for developing complex cellular models, whose individual entities are easy to under-
stand if visualized, e.g. by a STATE CHARTS variant. In contrast to STATE CHARTS, the
interaction between individual components is explicitly modelled and the interfaces be-
tween systems are clearly described by input and output ports. DEVS supports a parallel
composition of models via coupling. The general structure of DEVS models is static, a
problem that it shares with STATE CHARTS and PETRI NETS. The generation of new
reactions, new interactions, or new components is therefore not supported by default.
Starting already in the 1980s, several extensions have addressed the problem of variable
structures, among them recent developments like DYNDEVS, ρ-DEVS, and ML-DEVS,
which are realized as plugins in JAMES II.

DYNDEVS [Uhr01] is a reflective variant of DEVS which supports dynamic behav-
iour, composition, and interaction patterns. In ρ-DEVS [UHRE06] dynamic ports and
multi-couplings are introduced, whose combination allows models to reflect significant
state changes to the outside world and to enable or disable certain interactions at the
same time. Unlike DEVS, which realizes an extensional definition of couplings between
individual ports, multi-couplings in conjunction with variable ports form an elegant
mechanism of dynamic coupling. ML-DEVS [UEJ+07] is our most recent addition to
the family of DEVS-formalisms. It inherits from ρ-DEVS variable structures, dynamic
ports, and multi-couplings. In addition, it supports an explicit description of macro and
micro level. Therefore, the coupled model is equipped with a state and a behaviour of
its own, such that the macro level does not appear as a separate unit (an executive) of the
coupled model. Secondly, information at macro level can be accessed from micro level
and vice versa, which is realized by value couplings and variable ports. Downward and
upward activation can be modelled by synchronous activation of multiple micro models
and invariants at macro level. Current work is dedicated to applying the formalism to
RNA secondary structure prediction and associated regulatory mechanisms.
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Fig. 3. Comparison of multi-level modelling with DEVS and ML-DEVS. (A) With DEVS the
macro level behaviour is modelled at the same hierarchical level as the micro level models. (B)
With ML-DEVS the macro dynamics are part of the coupled model. Functions for downward and
upward causation reduce the number of explicit couplings needed.

Whereas the biologically inspired extensions of the DEVS formalisms aim to soften
the original rigid, modular and hierarchical structure of the formalism, e.g. by intro-
ducing variable structures, variable ports, and multi-level interactions, the opposite de-
velopment can be observed for other formalisms which introduce additional means to
structure biological models. These structures are often spatially interpreted, e.g. in terms
of cell membranes or compartments. For example, this is the case for BETA BINDERS,
which base on STOCHASTIC π CALCULUS.

3.2 Taking Space into Account: SPACE-π

BETA BINDERS [PQ05], as well as MEMBRANE-CALCULI [Car03] or BIOAMBIENTS

[RPS+04], address the need to structure space into compartments and confine processes
and their interactions spatially. Here, the focus is on indirect, relative space. Given the
experimental setups, e.g. confocal microscopy, biologists are particularly interested in
a combination of the individual-based approach with absolute space. This has been the
motivation for developing SPACE-π [JEU08]. SPACE-π extends the π CALCULUS in
a way such that processes are associated with coordinates and individual movement
functions. The coordinates are related to a given vector space that provides a norm
for calculating distances. A minimum distance is assigned to each channel. As usual,
processes can communicate over a channel, but as an additional requirement their dis-
tance must be less than or equal to the minimum distance of the channel. Processes
move continuously between interactions, as determined by their movement functions.
Therefore, SPACE-π is considered to be a hybrid modelling formalism.

Introducing space to the π CALCULUS seems to be straightforward, as it just requires
some further restrictions to the standard communication rule. However, an explicit no-
tion of time is needed to describe movement functions. Therefore, an essential compo-
nent of SPACE-π is a timed version of the π CALCULUS. Although many timed process
algebras already exist, the common concept of extending process algebras with time
as presented in [NS92] cannot be used. This is because on one hand SPACE-π requires
communication to occur as soon as possible, e.g. to describe colliding molecules. On
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the other hand, the time of an interaction strongly depends on process motion. Since
processes can change their motion by communication, one interaction may have an im-
pact on all future events. Therefore, the essential assumption of timed process algebras
to consider processes one by one and let them idle for a certain amount of time does not
hold in case of SPACE-π. Instead, to assure a valid execution, the global minimum time
for the next reaction needs to be calculated after every communication. This makes the
approach rather unique in the context of timed process algebras.

The advantage of the SPACE-π approach is that intracellular structures and spatial
effects can be represented in a very detailed manner. It is possible to build the trails
of membranes or microtubules, to introduce compartments and active transportation
processes. Even the impact of molecule sizes and shapes can be modelled. This makes
the approach applicable to scenarios that are hard to model with implicit representations
of space.

P1 P2

P1P2

P1 P2

d(x)

P1 P2

Fig. 4. Communication of two processes: P1 and P2 move along some vectors given by their
movement functions. If one process is sending and the other receiving on channel x, they can
communicate because at some point in time their distance is less than the channel distance d(x).
Thereby, they change their movement functions such that they move along different vectors after
communicating. Although depicted as simple vectors here, SPACE-π’s movement functions can
also be used to describe more complex continuous motions.

3.3 Summary

Several plugins exist for various formalisms, including ML-DEVS, SPACE-π, STOCHAS-
TIC π CALCULUS, BETA BINDERS, and chemical reaction networks (described by re-
action rules). Although the supported formalisms are quite different, their realization
has been facilitated by the core classes in JAMES II and also a reuse of data structures
across different formalisms has reduced the implementation effort (see section 5 for fur-
ther details). However, the architecture and the “Plug’n simulate” concept of JAMES II
are even more significant for developing simulation algorithms. For each modelling
formalism there is at least one simulator plugin, but many are supported by several
simulation algorithms. Up to now, no “multi formalism” approaches are integrated into
JAMES II, although such an integration would not pose any problems for the archi-
tecture. Some work in this direction is under way, e.g. to combine π CALCULUS and
DEVS [MJU07]. These approaches will be strictly separated from the existing realiza-
tions (besides the aforementioned reuse of sub-algorithms and data structures) to ensure
an efficient execution.
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4 Simulation Engines for Computational Biology in JAMES II

The simulation layer of JAMES II focuses on the discrete event world, although some
plugins for numerical integration and hybrid simulation exist as well. Gillespie’s al-
gorithms [Gil77] and their variants are of particular interest for the area of systems
biology and their implementation in JAMES II reflects the idea of re-usable simula-
tion algorithms and data structures. In the following, these and a similar set of process
algebra simulators will serve as examples.

In [Gil77], Gillespie introduced two methods to stochastically simulate reaction net-
works, the Direct Method and the First Reaction Method. Although both methods pro-
duce the same results, their performance may differ strongly. This is caused by the use
of different operations. For example, the Direct Method needs to generate only two
random numbers per iteration, whereas the First Reaction variant needs r + 1 random
numbers per iteration, r being the number of reactions. Gibson and Bruck propose some
enhancements to Gillespie’s original algorithms in [GB00], the Next Reaction Method.
The new method reduces the time-consuming re-calculation of reaction propensities.
A dependency graph is used to identify the reactions that require a propensity update.
Furthermore, Gibson and Bruck’s approach linearly interpolates the reaction times of
all updated reactions, so that the generation of additional random numbers is avoided.
Although all SSA approaches work well for small systems and deliver exact stochastic
results, they do not perform well when applied to larger problems. This is especially
true for systems with concurrent reactions of differing speed (e.g., gene expression and
metabolic reactions): If populations of the metabolites are sufficiently high, many it-
erations (and propensity updates) are needed without any significant changes in any
reaction propensity. This problem is equivalent to the challenge of numerically inte-
grating stiff ODE systems. To overcome this problem in the discrete-event realm, a
technique called Tau Leaping has been introduced by Gillespie et al. [Gil01]. Tau Leap-
ing approximates the execution of Gillespie’s exact approach by leaping forward a time
step τ , in which the propensities of all reactions are approximately constant. How often
each reaction has occurred during this leap can be determined by a Poisson distribution.
All reaction occurrences are then executed at once, their propensities are updated, and
the algorithm continues by determining the size of the τ leap for the next iteration. One
has to solve several problems to implement a suitable Tau Leaping method, as outlined
in [TB04, CGP06]. The Direct Method, two implementation variants of the Next Reac-
tion Method, and Tau Leaping have been realized as plugins in JAMES II. They operate
on the same model interface and re-use auxiliary data structures like event queues, etc.

4.1 Taking Space into Account

Different approaches toward spatial simulation exist [TNAT05]. At the microscopic
level, the fields of molecular dynamics [vGB90] and Brownian dynamics permit the
accurate simulation of single interacting particles in continuous space. However, their
high computational effort hampers their applications to large scale models containing
many thousand particles. Rather than considering individual particles and instead focus-
ing on concentrations of species, partial differential equations operate on a macroscopic
level with continuous space and time. As the approach is deterministic, stochastic ef-
fects cannot be taken into account easily. The basic algorithm for simulating reactions
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Fig. 5. Left: Discretization of a volume into smaller sub-volumes with side length l. The diffusion
of molecules between neighbouring sub-volumes is modelled as a Markov process with diΔt =
Di
l2

· Δt as the probability that a particular molecule of species i performs a diffusion during
the infinitesimal small time step Δt (with Di as the diffusion constant for species i). Right: The
concentration for sub-volumes of a simple model is plotted for different time stamps. The model
consists of a row of 20 sub-volumes with an initial distribution of 1000 molecules of species A
in sub-volume 0 and 1000 molecules of species B in sub-volume 19 and a consuming reaction
A+B → C. Molecules A and B diffuse towards the centre where they react and the concentration
of molecule C increases.

between chemical species on a mesoscopic level (no individuals, but discrete amount
of species elements) is the already mentioned stochastic simulation algorithm (SSA)
by Gillespie [Gil77]. One key assumption is that the distribution of the species inside
the volume is homogeneous. To simulate systems that do not adhere to this assumption,
other approaches that allow to consider compartments and the diffusion of species are
necessary, e.g. [Kho06].

A common way of introducing diffusion on mesoscopic level is the partition of space
into sub-volumes and the extension of the master equation with a diffusion term, re-
sulting in the reaction-diffusion master equation (RDME) [Gar96]. The solution of the
RDME is intractable for all but very simple systems, leading to the development of
the Next-Subvolume Method (NSM) [EE04], an algorithm that generates trajectories
of an underlying RDME, similarly to SSA sampling the chemical master equation.
The Next-Subvolume Method is a discrete-event algorithm for simulating both reac-
tions and diffusion of species within a volume in which particles are distributed inho-
mogeneously. The volume is partitioned into cubical sub-volumes, each representing a
well-stirred system. Events generated by the algorithm are either reactions inside or dif-
fusions between these sub-volumes. A plugin for NSM has been realized in JAMES II.
NSM uses a variant of Gillespie’s Direct Method to calculate the first event times for
all sub-volumes during initialization. Within the main loop, the sub-volume assigned
to the smallest next event time is selected and the current event type according to the
diffusion and reaction rates is determined. Finally, the event is executed and an update
of the model state occurs. Note that the state update is performed only in a small region
of the model volume, because either one sub-volume (in the case of a reaction) or two
sub-volumes (in the case of a diffusion) are affected and their propensities and next
event times have to be updated. With its discretization of space into sub-volumes, the
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Next-Subvolume Method lends itself to a distributed parallel execution by assigning sets
of sub-volumes to logical processes. Messages exchanged between logical processes
correspond to diffusion events involving neighbouring sub-volumes that reside on dif-
ferent logical processes. Current work is directed towards exploring the specific require-
ments and potential of an optimistic NSM version on a grid-inspired platform and first
results of our experiments with an optimistic NSM variant are reported in [JEP+ar]. Our
developments based on NSM have not been driven by specific modelling formalisms –
the modelling formalisms for the Gillespie variants are simple reaction networks, which
have been enriched for the NSM simulator by assigning diffusion coefficients to the
species and information about their spatial distribution. The focus has been on the sim-
ulation layer taking Gillespie’s approach as a starting point. The development of other
simulators has been motivated by supporting specific modelling formalisms.

As STOCHASTIC π CALCULUS, SPACE-π, and BETA BINDERS have a common root,
basic plugins to support the π CALCULUS have been added to JAMES II. They form a
common base for all simulators processing variants of the π CALCULUS. The SPACE-π
formalism locates and moves individual processes in absolute space, hence its simulator
works in an individual-based manner. With movement functions that are defined to be
continuous and could, in principle, even be defined by differential equations, the formal-
ism is clearly hybrid. The hybrid state comprises, besides the processes themselves, all
processor positions which change continuously over time. Obviously, this situation pro-
vides plenty of challenges for an efficient execution of larger SPACE-π systems. Hence,
we developed and implemented an algorithm that approximates movement functions by
a sequence of vectors, each of them interpolating the function for δt time, resulting in a
discretization of the continuous movement of the processes into a sequence of uniform
motions. As δt can be chosen arbitrarily, the approximation’s fidelity can be adjusted
seamlessly [JEU08]. The advantage of the simulation is its decent computational com-
plexity, however, if more complex movement functions are involved or a very precise
result is necessary, the current solution will not be sufficient and other algorithms will
be needed, e.g. approximation methods that adapt their interval size to the slope of the
movement functions at hand.

The modelling formalism BETA BINDERS (developed by [PQ05]) provides, simi-
larly to DEVS, means to structure space relatively, e.g. to describe compartments or to
distinguish between inter and intra-cellular behaviour by introducing boxes (so called
BIOPROCESSES) and explicit interaction sites. A sequential simulator [HLP+06] and
a parallel one have been developed for the BETA BINDERS formalism as JAMES II
plugins [LPU07]. The stochastic interaction between BIOPROCESSES does not allow
an easy definition of lookaheads, which moves the attention to optimistic parallel ap-
proaches. However, due to the large effort required in handling the model structure
an unbounded optimistic simulation does not appear very promising either. Therefore,
we decided to combine conservative and optimistic features in a parallel simulator.
Whereas the intra events (that are taking place within one box) are processed in an op-
timistic manner, the inter events form a kind of barrier and as such are only processed
if they are safe. The later is guaranteed by letting all BIOPROCESSES advance up to
this barrier [LPU07]. As with all parallel, distributed approaches the question of how
to best partition such a model arises, and is subject of ongoing work. JAMES II allows
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Performance Dependency of Next Reaction Method in James II
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Fig. 6. Performance dependency of the Next Reaction Method regarding the event queue imple-
mentation (see [HU07a] for other examples and a discussion of the algorithms). Each setup was
replicated 3 - 15 times.

to develop new simulators with very little effort. This is particularly true for simulator
families, e.g. simulators for variants of modelling formalisms, e.g. DEVS [HU04] or π
CALCULUS. However, also simulators that are quite different share a lot of details. Their
re-use reduces programming effort, errors, and, at the same time, increases the chance
of an unbiased evaluation. As these details have typically also a significant impact on
the efficiency of the simulation engine, they deserve a closer look.

4.2 Details Matter

Simulators are usually not built as monolithic algorithms, but consist of several sub-
structures and sub-algorithms. These may have a strong impact on simulation speed
and even the accuracy of the produced results (e.g. when considering approximation
algorithms). Simulation algorithms may rely on event queues [HU07a], random number
generators, or data structures to manage the simulator’s state. Parallel and distributed
simulators may also require partitioning or load balancing algorithms.

JAMES II provides several plugins for most of those sub-algorithms, including ran-
dom number generators, probability distributions, event queues, and partitioning algo-
rithms. As an illustration, consider the average runtime of the Next Reaction Method
implementation of JAMES II (see section 4) when using different event queue imple-
mentations (figure 6).

The benchmark model was a simple 10-species reaction network with arbitrarily
many reactions of form Xi + Xi+1 → Xi+2, but the performance difference is still
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considerable (≈ 400% when choosing SimpleEventQueue instead of SimpleBuckets)
– even considering different implementations of the same algorithm (cf. TwoList and
TwoList2 in fig. 6).

Thus, data structures like event queues are of essential importance when evaluating
discrete-event simulators. They influence the performance of the simulation engine and
may in turn be influenced by certain properties of the model. For example, the perfor-
mance of an event queue may depend on the distribution of event time stamps. These
interdependencies are a general problem in assessing algorithm performance. The de-
sign of JAMES II facilitates algorithm performance evaluation and development of new
simulation methods by allowing for isolated testing within a fixed, unbiased experimen-
tation environment. The “Plug’n simulate” concept complements this idea by providing
means to add new functionality to the system [HU07b].

Partitioning is another domain where sub-algorithms play an important role. Model
partitioning, i.e. distributing model entities over the set of available processors, is a
prerequisite for any distributed simulation. It aims at minimizing communication be-
tween parallel simulation processes and assigning each processor a fair share of entities.
Doing it badly may hamper the performance of a distributed simulation algorithm to
the point of slower-than-sequential simulation speed. JAMES II provides a partitioning
layer [EHU06] to experiment with different partitioning strategies. Several partitioning
algorithms have been integrated as plugins (including a wrapper for the METIS [KK98]
package) and have been evaluated. Again, experiments showed that the performance
gain from using a particular partitioning strategy depends on the simulation algorithm,
the model, and the available infrastructure.

Simulation experiments in computational biology are typically not restricted to sin-
gle simulation runs. They may require thousands of replications and could even include
parameter estimation or optimization methods on top (for which again a multitude of
methods exist), so that performance issues become even more pressing. Additionally,
new algorithms are frequently proposed and need to be evaluated. For example, Cao et
al. introduced an optimized version of Gillespie’s Direct Method, which is faster than
the Next Reaction Method on many problem instances [CLP04]. JAMES II allows to re-
validate these findings with custom event queue implementations, since these may have
a huge impact on the overall performance [CLP04]. Simulation algorithms that have
been built upon the SSA approach, such as the Next Subvolume Method (see section
4), will also benefit from such re-validations, because performance analysis could direct
implementation efforts to the most promising code optimizations. These challenges mo-
tivated the creation of an infrastructure for simulation algorithm performance analysis
in JAMES II [EHUar], which should lead to effective algorithm selection mechanisms
in the future.

5 Benefits of JAMES II

The integration of so many aspects into a single modelling and simulation framework
requires considerable additional software engineering efforts. From our experiences,
these efforts are vastly compensated by time savings from reuse and other benefits,
such as unbiased algorithm comparison and validation.
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JAMES II provides reuse on different levels. If an additional modelling paradigm
shall be supported, only the modelling formalism and at least one simulation algorithm
have to be added. Plugins from other extension points, e.g. the experimentation layer
with algorithms for optimization, random number generation, partitioning, data sinks
and so on, can be reused without any further effort. The actual development of new plu-
gins is supported by predefined algorithms and data structures. For example, simulation
algorithms that rely on event queues simply reuse the validated and evaluated ones from
the corresponding JAMES II extension point. This reduces the effort for developing new
modelling formalisms and simulators significantly.

The integration of new simulation algorithms for existing formalisms is eased as
well. Often only small variations between simulators that execute a formalism – e.g.
sequentially, in parallel, paced, or unpaced – do exist. To generate a paced variant from
an unpaced one usually requires merely a few lines of code, e.g. the Template pattern
helped us to develop a set of simulators for DEVS with very little effort [HU04]. Newly
developed algorithms can be evaluated and validated easily by comparing their results
with those of existing algorithms. Does the new algorithm produce the same results?
For which type of model and available infrastructure works the new algorithm best?
Developing simulators for new variants of already supported modelling formalisms, e.g.
ML-DEVS or SPACE-π, also requires less effort, because parts of existing simulators can
still be reused. This is also helpful to identify essential parts and re-occurring patterns
in simulation algorithms, which facilitates the conception of new simulation engines.

New data structures and algorithms become available in all situations where their
corresponding extension points are used. If a new random number generator or a new
event queue is available, it can be directly used in all relevant settings, e.g. when ex-
perimenting with stochastic and discrete event models. Thus, new developments are in-
stantly propagated to all potential users. The development of particular data structures
and algorithms can be done by domain experts, who have the required knowledge and
experience. This is very important, as the field of modelling and simulation subsumes
a variety of different expertises. These range from in-depth knowledge about mathe-
matics (random number generation, sensitivity analysis, optimization, statistics, graph
theory) and computer science (databases, compilers, efficient data structures and algo-
rithms in general) up to application-specific extensions required for certain domains,
e.g. the use of metaphors in biology.

6 Conclusion

The purpose of JAMES II is twofold. On the one hand its flexibility and scalability is
aimed at supporting a wide range of different application areas and different require-
ments. This feature has shown to be of particular value in research areas like Compu-
tational Biology, which is characterized by the wish to experiment with diverse model
and simulation types. On the other hand JAMES II’s virtue lies in facilitating the devel-
opment and evaluation of new modelling and simulation methods.

Thus, to support application studies and methodological studies equally is the strength
of JAMES II, which is also reflected in current projects. Some of them are directed
towards applications, e.g. models of the Wnt signalling pathway, or gene regulatory
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mechanisms. Others are concerned with the development of new modelling and simu-
lation methods, including modelling formalisms like ML-DEVS and SPACE-π, or new
simulators like the parallel optimistic versions for BETA BINDERS and NEXT SUBVOL-
UME METHOD, and the combination of modelling formalisms and simulator engines.
Both endeavours are tightly connected, as new requirements drive the development of
new methods. Both types of our experiments are directed towards a better understand-
ing of complex systems, i.e. biological systems and simulation systems, and their many
interdependencies.
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