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Abstract This work is a review of previous works on the stopping laws in networks.
Among other results, we show a non combinatorial method to compute the stop-
ping law, the existence of a minimal Markov chain without oversized information,
the existence of a polynomial algorithm which projects the Markov chain onto the
minimal Markov chain. Several applied examples are presented.

1 Introduction

Consider a finite state Markov chain, with state space E . The process is stopped
when it reaches a sub-class T of E . It turns out that one does not need the whole
information carried by its transition matrix in order to compute the law of reach-
ing this class. The following paper, which is a compilation of several papers, deals
with how to reduce this unnecessary information, first in real time and then for large
times. An extension is also given for R-networks in [3]. The problem of finding
general closed-forms for different kinds of waiting problems is widely studied, fol-
lowing various approaches. See, for example, [9] in the case of Bernoulli trials, [6],
[10], [1] and [12] for its extensions to Markov-dependent trials, and [13] for an-
other methodology. A new approach was given in [2–5], where it was proved that
there exists an optimal projection for any given Markov problem which leaves the
probability of reaching the target set unchanged. A simple ε-approximation of this
projection exists, provided the system has evolved for a sufficient amount of time
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and some conditions on the Markov chain are satisfied. In the framework of [2–4],
a compatible projection is an equivalence relationship S on the indexing set E s.t.:

• ∀ei ∈ T , ei S e j ⇐⇒ e j ∈ T .
• For any {ei,e j,ek} ⊆ E : ei S e j, we have

∑
el Sek

P(ei,el) = ∑
el Sek

P(e j,el),

where T (the absorbing target class) and P : E×E→R are given (P is the Markov
matrix of the network and R is a semiring, see [3]).

In [2, 3] it was proved the existence of a polynomial-time algorithm which reaches
the minimum Markov network. In [5], the question of a further reduction is posed,
when time tends to infinity. An asymptotic conditional law of exit will exist, accord-
ing to the shape of the transition submatrix which corresponds to the states leading
to the target class. The methodology is based on spectral theory for non-negative ma-
trices and in particular on the Perron–Frobenius theorem. The framework in [2–5]
regards a huge class of problems which occur in many real situations. We recall here
how this class of problem may appear:

1. In finance the filter rule for trading is a special case of the Markov chain stop-
ping rule suggested in [4] (see, e.g., [11]).

2. “When enough is enough!” for example, an insured has an accident only occa-
sionally in a while. How many accidents in a specified number of years should
be used as a stopping time for the insured (in other words, when it should be
discontinued the insurance contract).

3. State dependent Markov chains. Namely, the transition probabilities are given
in terms of the history. In many situations, the matrix of the embedded problem
may be reduced.

4. Medical sciences. Given that the length of a menstrual cycle has a known dis-
tribution, what is the probability that the length of a woman’s menstrual cycle
is the same three consecutive times?

5. Small-world Networks. Given one of the networks as in Fig. 1 (either as Markov
network or as a graph), is it possible to reduce it in polynomial time and to
preserve the law of reaching a given absorbing state?

Fig. 1 Networks that may be compressed (see [4])
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There are of course many other such examples (e.g., records: Arnold et al. [7] and
optimization: Cairoli and Dalang [8]).

1.1 A Combinatorial Problem

Let X = {Xτ,τ ∈ N} be a Markov chain on a finite state space E = {e1, . . . ,en}:

e1 . . . en

e1 p1,1 . . . p1,n
...

...
. . .

...
e1 pn,1 . . . pn,n

⎫⎬
⎭=: P .

The process is stopped when it reaches one of some given states T := (eni)
k
i=1⊆E . For

sake of clarity, we suppose F = {e1, . . . ,ek} and E \T = {ek+1, . . . ,en}. To compute
the law of stopping, we may consider a new Markov chain X ′={X ′τ,τ ∈ N} on
T ∪ (E \T ):

T E \T
e1 . . . ek ek+1 . . . en

e1 1 . . . 0 0 . . . 0

T
...

...
. . .

...
...

. . .
...

ek 0 . . . 1 0 . . . 0
ek+1 pk+1,1 . . . pk+1,k pk+1,k+1 . . . pk+1,n

E \T
...

...
. . .

...
...

. . .
...

en pn,1 . . . pn,k pn,k+1 . . . pn,n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=: P̂ .

Thus, the probability of reaching T by time τ is reduced to the computation of the
τ-th power of P̂:

P(∪i=1τ{Xi ∈ T}) = P({X ′τ ∈ T}) =

p0︷ ︸︸ ︷
(p0

1, . . . , p0
n) (P̂)τ (

k terms︷ ︸︸ ︷
1, . . . ,1,

n−k terms︷ ︸︸ ︷
0, . . . ,0)′ .

(1)

There exists a trivial reduction which preserves the above calculation for any τ ∈ N

and initial distribution p0:

P(∪i=1τ{Xi ∈ T}) =

( k

∑
i=1

p0
i , p0

k+1, . . . , p0
n

)
⎛
⎜⎜⎜⎝

1 0 . . . 0
∑k

i=1 pk+1,i pk+1,k+1 . . . pk+1,n
...

...
. . .

...
∑k

i=1 pn,i pn,k+1 . . . pn,n

⎞
⎟⎟⎟⎠

τ⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ . (2)
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2 Target Problems

We begin the mathematical framework in this section with an example. Suppose (2)
is written in the following way

(
p0

1, p0
2, p0

3, p0
4, p0

5

)
⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1
2

1
6

1
6

1
12

1
12

1
2

1
4

1
12 0 1

6

0 1
2

1
4

1
8

1
8

0 3
8

3
8

1
4 0

⎞
⎟⎟⎟⎟⎟⎠

τ⎛
⎜⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎠ . (3)

We define a problem of compression of redundant information, in terms of equiva-
lence relationships on E (see [2–4]). First, we extend P to PP in the classical way

PP : E×P(E)→ R+∪{0} ,

where P(E) is the set of subsets of E and PP(e,A) = ∑ei∈A P(e,ei). Obviously,
for each e ∈ E , PP(e, ·) is a probability on (E,P(E)) that gives the conditional
probability of reaching · given that we are in the state e.

As stated in the introduction, a compatible projection is an equivalence relation-
ship S on the indexing set E s.t.:

1. ∀ei ∈ T , ei S e j ⇐⇒ e j ∈ T .
2. For any {ei,e j,ek} ⊆ E : ei S e j, we have

∑
el Sek

P(ei,el) = ∑
el Sek

P(e j,el).

1 and 2 are satisfied if and only if the matrix P∗ : E/S×E/S→ R+∪{0} such that
the following diagram commutes, is well-defined:1

E×P(E)

E×E/S R

E/S×E/S

�����������������������
PP

��

��

(IdE ,π−1)

��

PP ◦ (IdE ,π−1)

��

(π ,IdE/S)

�������������
P∗

(4)

For what concerns (3), � j ∈ {2,3,4,5} such that e j S e1 by 1. Note that finding a
nontrivial projection is not a local search. For example, we have P(e4,e2) �= P(e5,e2)
but P(e4,e2) + P(e4,e3) = P(e5,e2) + P(e5,e3), which means that e4 S e5 may be
found if we know that e2 S e3.

1 Here, π : E→ E/S is the canonical projection.
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Now, a nontrivial projection is given by

E/S = {T = {e1}︸ ︷︷ ︸
f1

,{e2,e3}︸ ︷︷ ︸
f2

,{e4,e5}︸ ︷︷ ︸
f3

} .

Accordingly, the new matrix, associated with the projected states E/S = { f1, f2, f3},
is given by

f1 f2 f3

f1 1 0 0
f2

1
2

1
3

1
6

f2 0 3
4

1
4

⎫⎪⎪⎬
⎪⎪⎭

=: P∗ .

The new Markov problem ({ f1, f2, f3},P∗) carries all the necessary information for
the target problem. In fact, the states in fi play all together with respect to the target,
like if they were the same point. For example, problem (3) becomes

(
p0

1, p0
2 + p0

3, p0
4 + p0

5

)⎛⎝1 0 0
1
2

1
3

1
6

0 3
4

1
4

⎞
⎠

τ⎛
⎝1

0
0

⎞
⎠ . (5)

In the general case, we deal with a (at most) countable indexing set E (in (3),
E = {e1, . . . ,e5}). We then take a suitable spaceME of matrices on E (again, for
what concerns (3),ME is the space of 5×5 stochastic matrices); in general it will
be a monoid (ME , ·) where · can be seen as the matrix multiplication. The function
P, as defined above, is assumed to, and plays the role of the conditional probability
of reaching any family of states starting from a given state. A target set T ⊆ E is
fixed, and it is assumed to be an absorbing class. A target problem is therefore a
triple (E,P,T ) where:

• E is an, at most countable, indexing set.
• P ∈ME is a given matrix and PP is well-defined.
• T is an absorbing class: PP(t,T ) = 1 and PP(t,E \T ) = 0, for any t ∈ T .

We are dealing here with Markov matrices only, and we leave more general exten-
sions to [3]. In [3], an extended framework includes graph connection, as well. Note
that one may always change the matrix P as in (2) so that T is an absorbing class,
by defining

P̂(e1,e2) =

⎧⎪⎨
⎪⎩

P(e1,e2), if e1 �∈ T ;

1, if e1 ∈ T and e1 = e2;

0, if e1 ∈ T and e1 �= e2.

Let Ẽ be the set of all equivalence relations on E . Let V,S∈ Ẽ. We say that V " S
if a1 V a2 implies a1 S a2 (if you think E as the set of all men and V is “belonging
to the same state” while S is “belonging to the same continent”, then V " S). An
equivalence relationship S ∈ Ẽ is called compatible projection with respect to the
target problem (E,P,T ) if:
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1. ∀e ∈ T , eS e j ⇐⇒ e j ∈ T (i.e., the target set defines an equivalence class).
2. There exists P∗ ∈ME/S such that (4) commutes.

We call S = S(E,P,T ) the set of all compatible projections.
The previous definition of compatible projection states when it is possible to

project our target problem (E,P,T ) into the smaller one (E/S,P∗, t = π(T )), with-
out loosing necessary information (see [4]). In this framework, we can state the
following general result.

Theorem 1 ([3, 4]). For any target problem (E,P,T ), there exists the optimal pro-
jection: ∃S ∈ S s.t. V " S, ∀V ∈ S.

For example, note that the compatible projection S ∈ S which projects (3) into (5)
is optimal. In fact, suppose there exists S∗ ∈ Ẽ such that (a) { f1} ∈ E/S∗, by 1
above; (b) S � S∗. (a) and (b) imply E/S∗ = {{e1},{e2,e3,e4,e5}}, which is not a
compatible projection, since 1/2 = PP(e2,{e1}) �= PP(e4,{e1}) = 0.

2.1 Target Algorithm

The proof for the existence of the optimal solution was based in [3, 4] on the fact
that the set of compatible projections S has its "-join in S̃.

This proof is useless in practice when the Markov chain is so big that a search
in Ẽ can be impracticable. In fact, as stated in the previous section, searching for a
compressing map is not a local search and it appears as a non-polynomial search, in
the sense that we have to look at the whole set of equivalent relations on E . In [2, 3]
it was proved the existence of a polynomial algorithm which reaches the optimal
projection. We give here the algorithm and we state this result in Theorem 2. The
idea is to reach the optimal projection E/S – unknown – starting from a trivial and
known relation ME ∈ Ẽ , given by the problem. ME ∈ Ẽ is defined by the relation
“being or not a member of T ”: for any (ei,e j) ∈ E×E ,

ei ME e j ⇐⇒ {ei,e j} ⊆ T or {ei,e j} ⊆ (E \T ) .

It is clear that ME is not in general a compatible projection (see, for example, S∗ at
the end of the previous section). By definition, it is obvious that S"ME , ∀S ∈S and
hence, if ME is compatible, then it is optimal.

We denote here by Fπ the optimal equivalence unknown map, and we build a
monotone operatorF on Ẽ which will reach E/Fπ starting from E/ME . F : Ẽ→ Ẽ
is defined as follows: for any S ∈ Ẽ, let s1,s2, . . . be the classes of equivalence of E
induced by S. For any (el ,ek) ∈ E×E , define

elFsiek ⇐⇒ PP(el,si) = PP(ek,si)

F(S) =
⋂

i=1,2,...

Fsi ∩S .
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F(S) is a new equivalence relation, that defines, in consequence, new classes of
equivalence. Two states belong to the same new class if they have the same behavior
towards the classes of S. If this step does not define the compatible projection, then
we go a step further applying F to the classes of F(S). For example, take E/ME =
{{1},{2,3,4,5}} as in (3). For s1 = {1} we have

P(1,{1}) = 1 , P(2,{1}) = P(3,{1}) = 1/2 , P(4,{1}) = P(5,{1}) = 0

and hence E/F(s1) = {{1},{2,3},{4,5}}. Note that E/F(s1) = E/F(s2)⊆ E/ME

and hence E/F(ME) = {{1},{2,3},{4,5}}. The new relationshipF(ME) is a fixed
point for F and it is also the optimal relationship.

This leads to the following theorem.

Theorem 2 ([2, 3]). For any target problem (E,T,P), there exists m = m(E,T,P)
s.t. m≤ N−2 and

Fπ =F ◦F ◦ · · · ◦F︸ ︷︷ ︸
m times

(ME) ,

where N is the cardinality of E/Fπ .

For what concerns the problem (3), we already knew that |E/Fπ | = 3 and hence
m ≤ 1 by Theorem 2. We have indeed noted that F(F(ME)) = F(ME). In fact, in
the proof (see [2, 3]), it is also shown that Fπ is the unique fixed point for a suitable
restriction of F and this algorithm “works” on this restriction.

Remark 1. Note that the operator F may be computed in a |E|-polynomial time.
Theorem 2 ensures that F ◦F ◦ · · · ◦F︸ ︷︷ ︸

at most |E/Fπ |−2 times (≤|E|)

will reach F , given any triple (E,T,P). A MATLAB version of such an algorithm for
multitarget T may be downloaded at http://www.mat.unimi.it/ aletti.

3 Large Time Projections

Suppose now that the Markov chain {Xτ,τ ∈ N} is stationary on a finite set E
and denote by P its transition matrix and by µ0, the initial probability measure.
Let A be the class of transient states which lead to T (the target class), and let
T∞ = {i ∈ E;Pτi j = 0,∀ j ∈ T,∀τ} the class of the remaining states. As before, the
transition matrix can be decomposed as follows:

P =

⎛
⎜⎜⎝

1 0
0 1

0

v∞ v A

⎞
⎟⎟⎠ ,
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v∞ (resp. v) is the vector of probabilities of hitting T∞ (resp. T ) from A, and A
is the sub-matrix of the states lying in A. We suppose that A ≥ 0 -that is, if A =
(ai j)(i, j)∈{1,··· ,n}2 is a square matrix, then every ai j is nonnegative- and that A �= 0.
This matrix also satisfies lim τAτ = 0. Here, 1 denotes the vector whose components
are all equal to one. In order to know whether an asymptotic reduction can be done
or not, we had to check whether the following limit exists

lim
τ→∞

P(Xτ+1 ∈ T |Xτ ∈ A) for any µ0

and under which conditions this limit is independent of µ0. It is easy to show that
this limit is in fact equal to

lim
τ→∞

µT
0|AAτv

µT
0|AAτ1

.

µ0|A is the trace on A of the initial probability µ0. We suppose in the following
that µ0|A > 0. We can decompose A into disjoint classes of communication, where
i communicates with j if i = j or if i leads to j and vice versa, and we obtain
A = ∪N

i=1C∗i . We denote by p(i) the period of state i. We recall that p(i) is defined
as the greatest common divisor of all integers n ≥ 1 for which An

ii > 0, when it
exists, otherwise we set p(i) = ∞. All the elements of a same class have the same
period. The whole discussion in the following on the existence (and uniqueness) of
a solution will depend upon the number of classes and their periodicity.

3.1 The Irreducible Case

This is the case when all the states communicate, and so N = 1. The existence of a
limit depends on the three different cases for the common period of the states; either
(1) p(1) = 1, or (2) p(1) = k > 1, or (3) p(1) = ∞, where 1 denotes the first state
in the matrix A.The third case is not to be taken into account, see [5].

Theorem 3. Suppose A is irreducible and aperiodic, then

lim
τ→∞

µT
0|AAτv

µT
0|AAτ1

(6)

exists for any initial probability, is independent of µ0 and is equal to ( f0)T v
( f0)T 1 , where

f0 is the first left eigenvector of A. If A is irreducible and periodic, then (6) exists
if and only if the asymptotic probabilities of exit from each class of periodicity are
equal.

As a consequence, one obtains at infinity the behavior outlined in Fig. 2.
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T∞ TA

11

λ0

(f0)Tv∞ (f0)Tv

(f0)
T
1 (f0)

T
1

Fig. 2 Behavior when A is irreducible and aperiodic

3.2 The Reducible Case

In the reducible case, A is decomposed into N > 1 disjoint classes C∗i , i = 1, . . . ,N.
As the classes are disjoint, when the chain exits one class, it does not go back to it. It
follows that we can reorder the matrix A so that it will be equal to an upper triangular
(non-negative) matrix with block square irreducible matrices on its diagonal, each
corresponding to a class. The existence of the asymptotic probability of reaching
T from A will therefore depend on the percent of mass that is distributed on each
class. If the more important mass is associated with the final classes, this means that
the mass in each of the remaining classes will decrease with time and we will only
have to take into account this family of final classes. In this case, a limit will exist.
A class is called basic if the sub-matrix of A associated with it, admits as spectral
radius the spectral radius of A.

Theorem 4. Suppose the matrix A is reducible with spectral radius λ0 > 0, and sup-
pose the final classes are the only basic classes. Then there exists a unique asymp-
totic probability (depending on µ0) of exit from A to T if and only if the asymptotic
probability of exit from each final class also exists. Moreover, if the final classes
have dominant spectral radius and if some of them are the only basic classes, then
there exists a unique asymptotic probability of exit from A to T if µ0 charges these
classes.

Finally, a particular case,

Theorem 5. Suppose A admits a Jordan decomposition of the form D+N, where D
is a diagonal block primitive sub-matrices with the same spectral radius λ0 and N is
an upper triangular non-negative matrix. Then the limiting conditional distribution
exists.

4 Extension to Multiple Targets and Examples of Markov
Networks

The previous results may be extended to multiple targets problems. More pre-
cisely, let T = {T1,T2, . . .} be target disjoint sets on the same R-network (E,P) over
ME(R). We are interested in the optimal {T1,T2, . . .}-compatible relationship S such
that (4) holds.
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The answer is trivial, since each target class Ti defines its equivalence relationship
Si. It is not difficult to show that the required set S is just S = ∩Si, see [2] and [5].
We start here by showing some classical Network problems that cannot be projected
in smaller ones.

Example 1 (Negative Binomial Distribution). Repeat independently a game with
probability p of winning until you win n games.

Let Sτ = ∑i=1 τYi, where {Yi, i ∈ N} is a sequence of i.i.d. bernoulli random vari-
able with Prob({Yi = 1}) = 1−Prob({Yi = 0}) = p. Our interest is engaged by the
computation of the probability of reaching n starting from 0. Let E = {0,1, . . . ,n}
be the set of levels we have reached. We have

0 1 2 . . . n−1 n = T
0 (1− p) p 0 . . . 0 0

1 0 (1− p) p
. . . 0 0

2 0 0 (1− p)
. . . 0 0

...
...

...
...

. . .
. . .

...
n−1 0 0 0 . . . (1− p) p
n = T 0 0 0 . . . 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=: P

Since the lengthof theminimumpathforreaching the targetstaten fromdifferentstates
is different, the problem cannot be projected on a smaller one by [4, Proposition 31].

Example 2 (Consecutive winning). Repeat independently a game with probability p
of winning until you win n consecutive games. The problem is similar to the previ-
ous one, where

0 1 2 . . . n−1 n = T
0 (1− p) p 0 . . . 0 0

1 (1− p) 0 p
. . . 0 0

2 (1− p) 0 0
. . . 0 0

...
...

...
...

. . .
. . .

...
n−1 (1− p) 0 0 . . . 0 p
n = T 0 0 0 . . . 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=: P

The problem is again not projectable by [4, Proposition 31].

Example 3 (Gambler’s ruin). Let two players each have a finite number of pennies
(say, n1 for player one and n2 for player two). Now, flip one of the pennies (from
either player), with the first player having p probability of winning, and transfer a
penny from the loser to the winner. Now repeat the process until one player has all
the pennies.

Let Sτ = ∑i=1 τ(2Yi−1), where {Yi, i ∈ N} is a sequence of i.i.d. bernoulli ran-
dom variable with Prob({Yi = 1})= 1−Prob({Yi = 0})= p. Our interest is engaged
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by the computation of the probability of reaching T1 = n2 or T2 =−n1 (multiple tar-
get) starting from 0. Let E = {−n2, . . . ,−1,0,1, . . . ,n1} be the set of levels we have
reached. We have

−n1 = T2 −n1 +1 . . . −1 0 1 . . . n2−1 n2 = T1

−n1 = T2 1 0 . . . 0 0 0 . . . 0 0

−n1 +1 (1− p) 0
. . . 0 0 0 . . . 0 0

...
...

. . .
. . .

. . .
...

...
...

...
...

−1 0 0
. . . 0 p 0 . . . 0 0

0 0 0
... (1− p) 0 p . . . 0 0

1 0 0
... 0 (1− p) 0

. . . 0 0

...
...

...
...

...
...

. . .
. . .

. . .
...

n2−1 0 0
... 0 0 0 . . . 0 p

n2 = T1 0 0 . . . 0 0 0 . . . 0 1

This problem is clearly not projectable on a smaller one, since it is for T1 (for ex-
ample). The problem may be reduced if and only if we are interested in the time of
stopping (without knowing who wins, i.e. T = T1∪T2) and p = 1/2. In this case, the
relevant information is the distance from the nearest border and hence the problem
may be half-reduced.

The following classical problem may be reduced.

Example 4 (Random walk on a cube). A particle performs a symmetric random walk
on the vertices of a unit cube, i.e., the eight possible positions of the particle are
(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), . . . ,(1,1,1), and from its current posi-
tion, the particle has a probability of 1/3 of moving to each of the three neighboring
vertices. This process ends when the particle reaches (0,0,0) or (1,1,1).

Let T1 = (0,0,0), T2 = (1,1,1). The following transition matrix

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)

(0,0,0) 1 0 0 0 0 0 0 0

(1,0,0) 1/3 0 0 0 1/3 1/3 0 0

(0,1,0) 1/3 0 0 0 1/3 0 1/3 0

(0,0,1) 1/3 0 0 0 0 1/3 1/3 0

(1,1,0) 0 1/3 1/3 0 0 0 0 1/3

(1,0,1) 0 1/3 0 1/3 0 0 0 1/3

(0,1,1) 0 0 1/3 1/3 0 0 0 1/3

(1,1,1) 0 0 0 0 0 0 0 1

can be easily reduced on
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t1 f1 f2 t2
t1 1 0 0 0
f1 1/3 0 2/3 0
f2 0 2/3 0 1/3
t2 0 0 0 1

where ti = Ti and fi = {e =(e1,e2,e3) : ∑e j = i}. If we are only interested in the time
of stopping (i.e. T = T1∪T2), the previous problem may be reduced to a geometrical
one. Clearly, this results hold also for random walk on a d-dimensional cube.

We give, in the following, several examples to the different results we obtained
before.

Example 5 (Medical science). We intend to find the probability that the length of a
woman’s menstrual cycle can be the same three consecutive times. If the length of
a menstrual cycle is uniformly distributed between 26 and 35 days (and the length
of menstrual cycles being independent from one another), then the process may be
seen as a Markov chain on E = {26, . . . ,35}, where

P =

⎛
⎜⎝

1/10 . . . 1/10
...

. . .
...

1/10 . . . 1/10

⎞
⎟⎠ .

The problem can be solved by introducing the stopping time defined by

S = inf{τ ∈ N : Xτ−2 = Xτ−1 = Xτ}.

This problem can naturally be embedded in a 21 states Markov problem whose
transition matrix is defined in (7), see [4].

T 26.26 27.27 . . . 35.35 26 27 . . . 35

T 1 0 0 . . . 0 0 0 . . . 0
26.26 1/10 0 0 . . . 0 0 1/10 . . . 1/10
27.27 1/10 0 0 . . . 0 1/10 0 . . . 1/10

...
...

...
...

...
...

...
...

...
...

35.35 1/10 0 0 . . . 0 1/10 1/10 . . . 0
26 0 1/10 0 . . . 0 0 1/10 . . . 1/10
27 0 0 1/10 . . . 0 1/10 0 . . . 1/10
...

...
...

...
...

...
...

...
...

...
35 0 0 0 . . . 1/10 1/10 1/10 . . . 0

(7)

It is simplified by considering the process Zτ with the following three states:

Ê =

⎧⎪⎪⎨
⎪⎪⎩

there is no N ≤ τ : XN−2 = XN−1 = XN :
1, if Xτ−1 �= Xτ
2, if Xτ−2 �= Xτ−1 = Xτ
3 = T, if there exists N ≤ τ : XN−2 = XN−1 = XN
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with initial distribution µT
0 = (1,0,0) and matrix

1 2 3 = T
1 p (1− p) 0
2 p 0 (1− p)

3 = T 0 0 1

⎫⎬
⎭=: P̂ ,

where p = 9/10. Simple calculations (see [4]) give the corresponding Hazard rate:

HS(τ) = 1− 1
20

(9 +
√

117)τ+1− (9−√117)τ+1

(9 +
√

117)τ − (9−√117)τ︸ ︷︷ ︸
−→
τ→∞

λ̂ 0

= P(Xτ+1 ∈ T |Xτ ∈ A) .

The matrix A of the transient states is

A =
(

p 1− p
p 0

)
.

Therefore, the first eigenvalue is

λ0 =
p +
√
−3p2 + 4p

2
=

(p=9/10)

9 +
√

117
20

,

while the first left eigenvector f0 associated to λ0 is

( f0)T =
(

p+
√
−3p2+4p

2(1−p) , 1
)

,

and the limit conditional distribution is

( f 0)T

( f 0)T 1
=
(

p+
√
−3p2+4p

2−p+
√
−3p2+4p

, 2(1−p)
2−p+
√
−3p2+4p

)
.

We have

( f 0)T v
( f 0)T 1

=
( f 0)T

( f 0)T 1
v =
(

p+
√
−3p2+4p

2−p+
√
−3p2+4p

, 2(1−p)
2−p+
√
−3p2+4p

)(
0

1− p

)
= 1−λ0.

As expected, we note that λ0 = λ̂ 0.

Example 6 (The gambler ruin). A gambler A plays against a gambler B a sequence
of heads or tails independent games. The total sum of their wealth is a$. At each
game, A wins one dollar or loses it with probability p and q = 1− p respectively.
The game stops when one of the gamblers is ruined. Denote by Xτ the wealth of A
at the end of the τ-th game. Xτ is a Markov chain with set of states E = {0, . . . ,a}.
Its transition matrix is given by
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P =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0
q 0 p · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · q 0 p
0 0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

If we take the position of A, then T = {a} and T∞ = {0}.
Then the previous matrix can be rearranged:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1

0
q 0
0 0
...

...
0 0
0 p

0 p · · · 0 0
q 0 p · · · 0
...

. . . 0
. . .

...
0 · · · q 0 p
0 · · · · · · q 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this case,

A =

⎛
⎜⎜⎝

0 p ··· 0 0
q 0 p ··· 0
...

.. . 0
. ..

...
0 ··· q 0 p
0 ··· ··· q 0

⎞
⎟⎟⎠ , v =

⎛
⎜⎝

0
0
...
0
p

⎞
⎟⎠ , v∞ =

⎛
⎜⎝

q
0
...
0
0

⎞
⎟⎠ .

A is an irreducible matrix with period 2. Suppose first that a = 2k+1 (2k transient
states A = {1, . . . ,2k} plus T = {a} and T∞ = {0}). Then, if we permute the order
of the states,

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

p 0 ··· ··· 0
q p ··· ··· 0
0 q p ··· 0

. . .
. ..

0 ··· ··· q p
q p ··· ··· 0
0 q p ··· 0

.. .
.. .

0 ··· ··· q p
0 ··· ··· 0 q

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v̂ = v, v̂∞ = v∞.

Suppose now that a = 2k (2k−1 transient states A = {1, . . . ,2k−1} plus T = {a}
and T∞ = {0}). Then

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

p 0 ··· ··· 0
q p ··· ··· 0
0 q p ··· 0

.. .
.. .

0 ··· ··· q p
0 ··· ··· 0 q

q p ··· ··· 0
0 q p ··· 0

. ..
. ..

0 ··· ··· q p

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
0
p
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v̂∞ = v∞.
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In both cases, a = 2k + 1 and a = 2k, Â2 takes the form

Â2 =
(

C1 0
0 C2

)

with (Ci)m� 0 for all m≥ k−1. Moreover,

v2−mod(a,2) = (0,0, . . . ,0)T , v1+mod(a,2) = (0,0, . . . , p)T

In this case it is obvious that the conditional limit does not exist (see [5]); however,
we can compute the asymptotic conditional law given each class of periodicity. For
example, if a = 10 and p = 1/2, we obtain

C1 =

⎛
⎜⎝

1/4 1/4 0 0 0
1/4 1/2 1/4 0 0

0 1/4 1/2 1/4 0
0 0 1/4 1/2 1/4
0 0 0 1/4 1/4

⎞
⎟⎠ and C2 =

⎛
⎝1/2 1/4 0 0

1/4 1/2 1/4 0
0 1/4 1/2 1/4
0 0 1/4 1/2

⎞
⎠ .

We have

λ (1)
0 = λ (2)

0 =
5 +
√

5
8

,

while the corresponding first eigenvectors are

( f 0)T (1)

( f 0)T 1
=
(

1
2(3+

√
5)

, 1/4,
√

5+1
2(3+

√
5)

, 1/4, 1
2(3+

√
5)

)

( f 0)T (2)

( f 0)T 1
=
(

1
3+
√

5
,
√

5+1
2(3+

√
5)

,
√

5+1
2(3+

√
5)

, 1
3+
√

5

)
.

Example 7 (Random walk on a polygon). A particle can move on a regular polygon
with r sides. Its vertices are numbered from 0 to r− 1. If at some time the particle
is on the vertex i (0≤ i≤ r−1) then, right afterwards, it will be in state i+ 1 (mod
r) with probability p and in the state i− 1 (mod r) with probability q. We assume
that r = 2N. We also suppose that the particle can exit the polygon to a target set
from each vertex 0 to N−1 and to T∞ from each other vertex, both with probability
s. We denote by Xτ the vertex visited by the particle at time τ , its transition matrix
is given hereafter

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
s 0 0 p 0 · · · 0 0 q
s 0 q 0 p · · · 0 0 0
s 0 0 q 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 s 0 0 0 · · · 0 p 0
0 s 0 0 0 · · · q 0 p
0 s p 0 0 · · · 0 q 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Consider now the sub-matrix A of transient states leading to T . This matrix is ir-
reducible, periodic with period 2 and A/(p+q) bi-stochastic. The largest eigenvalue
is λ0 = p+q, see [5]. The left eigenvector associated with λ0 is v0 = 1. It follows that

the limiting conditional probability law is equal to ( f 0)T

( f 0)T 1
= (1/r, . . . ,1/r), which is

the result one would expect for a matrix that is bi-stochastic (up to a multiplicative
constant), and irreducible. It, indeed, admits a unique stationary probability given
by u = (u1, . . . ,ur) such that ui = 1/r, for each i.

Then, if we permute the order of the states,

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

p 0 ··· ··· q
q p ··· ··· 0
0 q p ··· 0

.. .
.. .

0 ··· ··· q p
q p ··· ··· 0
0 q p ··· 0

. ..
. ..

0 ··· ··· q p
p ··· ··· 0 q

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v̂ = v, v̂∞ = v∞.

Notice that the first sub-matrix A1 is composed by the even states (we start
from 0) and the second sub-matrix by the odd ones.

It follows that v̂ = (s,s, . . . ,0,0,s,s, . . . ,0)T v̂∞ = v∞. In fact, if N is itself an

even number, v̂1 = v̂2 =

⎛
⎝

s
s
...
0
0

⎞
⎠ and the conditional limit of exit is

f
(1)
0 v̂1

f
(1)
0 1

= f
(2)
0 v̂2

f
(2)
0 1

=

sN/2
N = s

2 . The result will be the same if we consider a random walk on the line with
reflecting barriers together with a jump to the other side.

Example 8 (The bonus and malus model). An insurance company orders the bonus–
malus levels of its clients according to integers 0,1,2, . . .. The level 0 is the most
advantageous for the client. Let 0≤ i≤ j. If the bonus-malus level of an insured is
i at time τ , it will be j at time τ + 1 if, between times τ and τ + 1, he had j− i ac-
cidents. We denote by (Xτ) the sequence of the bonus-malus levels for this insured.
Time unit is a year and we suppose that the number of accidents during a year is a
Poisson random variable with parameter λ . The probability that the insured moves
from level i to level j, j ≥ i is equal to πλ , j−i = e−λ λ j−i/( j− i)!. Furthermore, we
suppose that the contract is canceled once the insured has had N accidents. (Xτ) is
a Markov chain with set of states {0, . . . ,N} and transition matrix

P =

⎛
⎜⎜⎜⎜⎜⎝

πλ ,0 πλ ,1 πλ ,3 · · · πλ ,N
0 πλ ,0 πλ ,1 · · · πλ ,N−1
0 0 πλ ,0 · · · πλ ,N−2
...

...
... · · · ...

...
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

.

N can be considered to be an absorbing state and to represent the target set T .
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This is the Jordan case with D + N, where D is a diagonal matrix, and N is an
upper triangular matrix. According to Theorem 5, the conditional limit probability
of exit from the last class exists.
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