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Abstract This paper considers the Bak–Sneppen (B&S) Self-Organized Criticality
model originally developed for species co-evolution. We focus both on the original
application of the model on a lattice, and on scale-free networks. Stylized facts
on firms size distribution are also considered for the application of the model to
the analysis of firms size dynamics. Thus, the B&S dynamics under the uniform,
Normal, lognormal, Pareto, and Weibull distributions is studied. The original model
is also extended by introducing weights on links connecting species, and examining
the topology of the resulting Minimum Spanning Tree (MST) of the underlying
network. In a system of firms a MST may evidence the template of the strongest
interactions among firms. Conditions that lead to particular configurations of a MST
are investigated.

1 Introduction

In the framework of Econometrics, the availability of large electronic databases has
led to an increasing number of statistical analysis of raw data. Numerical studies
on the size of firms often are concerned with the detection of the probability dis-
tribution that best fits the data sets. It is remarkable that same probability distrib-
utions for the size of firms are validated on large data sets encompassing several
different industry sectors and long time extension. There is now wide empirical ev-
idence indicating that the distribution of the degrees of the nodes in many networks

G. Rotundo
Faculty of Economics, University of Tuscia, Viterbo, Italy
giulia.rotundo@uniroma1.it

A. Scozzari
Faculty of Economics, University of Rome “La Sapienza”, Rome, Italy
andrea.scozzari@uniroma1.it

A.K. Naimzada et al. (eds.), Networks, Topology and Dynamics, 143
Lecture Notes in Economics and Mathematical Systems 613,
c© Springer-Verlag Berlin Heidelberg 2009



144 G. Rotundo, A. Scozzari

representing system of firms follows a power law. Other probability distributions are
validated only on constrained subsets of data, but they result invariant on quite long
time intervals [2, 3, 11, 17]. Although each single firm can experience fluctuations
in its size, at a first analysis the collective evolution of firms, traced through their
sizes, can be represented by a stationary process. Hence, the contribution of many
single units to observables at the macrolevel has opened the way to complex sys-
tems approaches mainly based on stochastic models in discrete time and space state.
The emergence of such common behavior from several data sets was explained by
the fact that most firms share the same kind of hierarchical managing structure and
internal organization [2, 3]. Furthermore, the collective behavior of groups of agents
has been often interpreted as a mechanism for social contacts, as the basis for opin-
ion switching relevant for financial applications [20, 29, 45], as well as in many
other fields [6, 31–33]. These studies point out the relevance of closeness of agents
in term of their similarity in the preferential direction for information spreading.
Moreover, spatial closeness plays the major role in neighbors definitions in crowd
behavior [43], thus validating models that mainly consider local dynamics driven by
short range interactions. In particular, percolation models are well suitable for the
modelling of such phenomena.

Bak and Sneppen (B&S) have introduced a simple model in the class of perco-
lation models, addressing to each unit (agent) the role of species in an evolutionary
context [10]. The B&S model is of intrinsic interest, since it is one of the simplest
models giving rise to Self-Organizing Criticality (SOC) behavior. Species co-evolve
to a stationary state and exhibit “intermittent dynamics”, that is, species undergo
long periods of little changes, called stasis, which are punctuated by sudden bursts
of activities called avalanches (which are correlated with extinction events). The
original formulation of the model on d-dimensional lattices with the usual bound-
ary conditions has been already extensively studied [10, 39]. However, as argued
by Watts and Strogatz [49], most real-life networks are neither perfectly ordered,
nor completely disordered, but fall under the category of “small-world” networks,
which interpolate smoothly between the two extremes [1, 49]. Such networks are
characterized by a high degree of local order, yet appear disordered on a large-
scale because of the presence of shortcuts in the networks. Because of their wide
applicability, there have recently been numerous papers characterizing the proper-
ties of such networks. Scale-free networks provide a good example of small-world
networks. Extension of the B&S co-evolutive dynamics on scale-free networks has
evidenced different stasis dynamics of the involved species depending on their num-
ber of first neighbors [34, 35]. In this paper, we consider the application of the B&S
model to firms size co-evolution by referring to probability distributions of the firms
size drawn from empirical literature. We study this dynamics on lattice and scale-
free networks.

The dynamics of the B&S model, at its stationary phase, seems to be well suitable
for firms size modelling, since it accomplishes the permanence of the same firm’s
size probability distribution on long time intervals. We study the B&S dynamics
by considering the same probability distributions that were already validated in the
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literature for the description of the firms size. In particular, the B&S dynamics seems
to be suitable for modelling the extinction process of the firms, whose sizes are well
fitted by a Weibull distribution.

In the original B&S model applied to lattice networks, links only serve to drive
the dynamics and to define the neighborhood of each species. A link between two
species represents a dependence between them, whose straightforward interpreta-
tion in natural evolution models represents a prey-predator relationship.

In this paper we introduce weights on links connecting the nodes, representing
species (e.g., firms), of the network. Weights are intended to give a measure of
the closeness among nodes, and their natural meaning range, for instance, from the
amount of commercial interchange among firms, to the closeness of management
teams, to the intensity of technological innovation, and so forth [3, 4, 42].

Furthermore, weights on links allow to devise subnetworks (or spanning subnet-
works) pointing out the strongest relationships between species (e.g., firms). Among
different classes of spanning subnetworks, we consider here the Spanning Trees,
and, in particular, we are interested in finding a Minimum weight Spanning Tree
(MST) of the underlying network. This is due to by both the existence of efficient
algorithms for finding a MST even on huge networks, and the ease of interpreting its
geometry from an economic viewpoint. The geometry of an MST is important in the
strong disordered limit [19], and it remains unaltered on random graphs even if the
distribution of disorder is made very broad [19]. The main reason can be addressed
to the ordering of links weights, and any probability distribution that does not al-
ter the order of the weights gives rise to the same MST configuration. Numerical
studies on the geometry of Minimum Spanning Trees, when random uncorrelated
weights are assigned to the links or edges of a network, have been provided for
square and cubic lattices [19] and for scale-free networks [28, 36, 47]. The latter
ones show universality of the spanning trees geometry highlighted in the scale-free
structure of the MST itself. In fact, on non-sparse scale-free networks, the MST
nodes degree distribution follows a power law with a degree exponent close to the
one of the original network, and independent from the weight distribution. The B&S
nodes co-evolution can be extended to links weights co-evolution. When applying
the B&S dynamics on networks representing system of firms, we obtain not only a
co-evolution of the firms size but also a evolution of the MSTs describing the evo-
lution of the strongest relationships between firms. Furthermore, we are also able to
investigate the conditions that give rise to different MST structures, with the aim to
provide support for policies decisions.

We are aware of the fact that the B&S model is a toy model, but it has the ad-
vantage to hold some mathematical tractability, it can serve as a first approximation
of collective behavior of market agents, and of the comprehension of properties and
limits of the simple interactions between agents. Therefore, it can constitute a start-
ing point for the development of more complex models.

The paper is organized as follows. The next section reviews the econometric liter-
ature about the distributions of the size of the firms. Section 3 shows the B&S model
and its extensions, and finally Sect. 4 reports some results on our MST approach.
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2 Empirical Studies on the Size of Firms

Several studies have been made on the detection of skew distributions of firms sizes
and on the validity of Gibrat’s law of proportionate effect for the growth rate in
order to explain the empirically observed distribution of the firms size. This law
states that the expected increment of a firm size in each period is proportional to the
current size of the firm, and that the growth rate of each firm is independent from its
size (Gibrat’s law in weak form). Therefore, under the hypothesis that the growth
rates are identically independent distributed, the distribution of the log of a firm’s
size tends to the lognormal distribution for T → ∞, i.e. on sufficiently large time
interval [16].

Mainstream econometric literature on firms size is aimed at showing the limits of
the Gibrat model, and new growth rates and firms size distributions are proposed for
fitting data. The studies about size and growth rate of firms differ for the hypothe-
ses tested and for the data sets that were used. In the literature, data from Census
and COMPUSTAT data bases are mainly analyzed. Census data give information
about small firms, that are crucial for understanding the impact of social dynamics
at the individual level. The volume of sales is used as a proxy for a firm size, and in
some studies other fundamental variables like the total assets, sales and the number
of employees are used as a complementary variables in order to check the validity
and robustness of the results. Literature focuses mostly on the Pareto distribution as
well as on the lognormal distribution as an alternative for the size of firms. The dis-
cussion is not purely an academic exercise. Right skewness implies that most firms
have a size just below the average, and that there are few huge firms and some others
very small. The detection of the proper distribution allows to explain differences in
the reaction of the market to external shocks, like natural catastrophes, or the impact
on some economy of exogenous economic factors. Computer aided simulations of
economic systems show that, in the case of lognormally distributed data, shocks are
absorbed, while in the case of Pareto distribution, correlations internal to the system
can amplify the external shocks leading to strong oscillations of the entire system
and to run the risk of a collapse [14]. These studies can help both in driving the best
policies for economy development and in detecting the maximum charge of bad
events (taxes, wars, natural catastrophes etc.) that can be supported without a com-
plete crash. The next three subsections review the literature presenting some other
studies on the distribution of the size of the firms supporting different probability
distributions [11].

2.1 Econometric Analysis Supporting the Gibrat’s Law

The distributions of the firms sizes in industrial countries are highly skewed, that
is, a small number of large firms coexists along with a large number of small
firms. The presence of right skewness supports both the Gibrat’s law and the Pareto
distribution.
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Some studies [24, 25] inquiry the independence between growth rate and size. In
[24] it is shown that the lognormal distribution hypothesis holds for UK firms larger
than eight employers. Later, the same authors report that the size of the distribution
of the UK companies is close to the lognormal, although the hypothesis of lognor-
mality can be statistically rejected [25]. The test of the suitability of other distrib-
utions shows that the Pareto distribution performs the fit worse than the lognormal
one at the upper tail. Other studies report that the fit of the lognormal distribution
to size data is quite close to the mean, but it performs less on the tails. Families
of functions, that include the lognormal one as a particular function, and that take
into account a power law decay of tails, have also been developed. The goodness of
statistical fit allows for some compromise. The weak form of Gibrat’s law has been
shown to be compatible with power law under further hypotheses. As an example,
the first model is the Simon’s model [16] where the Gibrat’s law is combined with
an entry process to obtain a Levy distribution for the firms size. Particular assump-
tions like the validity of the detailed balance, that states the time-reversal symmetry
for the growth rate, show that Gibrat’s law and Pareto–Zipf’s law hold for firms
larger than a fixed threshold [21]. This property is not valid in general [27], but
the behavior of the largest companies is important because it influences the entire
economy. Therefore, such analysis is useful for driving economic policies at the
Country level. On the other hand, districts constitute small worlds with a preva-
lence of small sized industries, so that policies for district developments will be
different from those based on the common behavior of big firms, and need a finer
analysis.

2.2 Econometric Analysis Supporting the Pareto Distribution

Histograms of companies sizes exhibit skewness. In some data set, skewness has
been shown to be robust over time [8]. It even lived through large-scale demographic
transitions in the work forces and widespread technological changes. Finer analysis
have shown that skewness grows during growing phases of the economy and de-
creases during recessions [22], thus being an indicator of such economic cycles. A
characteristic that emerges is that, although the position of individual firms in a size
distribution does depend on the definition of size, the shape of the distribution does
not. The main concern is to select the best fit to data histograms. Although in older
studies [24, 25] the lognormal hypothesis received great attention, in recent papers
the main results indicate power law for firm size and Laplace law for firms growth
rates [16]. The two results are strictly connected. In fact, it can be shown, under
proper hypotheses, that the logarithm of a Pareto random variable follows an ex-
ponential distribution, and that the difference of two exponential random variables
results in a Laplace distribution [40].

The power law behavior seems to be valid also for parameters that are common
in most developed Countries. The results reported in [15] can be interpreted as the
existence of a significant range of the world GDP distribution where countries share
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a common size-independent average growth rate. Further particular hypotheses like
entry and exit of companies from the market, provide results that contradict the
Gibrat’s law. As an example in [2, 3, 44] the exponential distribution for the growth
rate of firms has been found to hold for the 20 years 1974–1993 of COMPUSTAT
publicly-traded United States manufacturing firms, whilst the variance of the growth
rate should grow with the size of the firm. A model is also proposed which offers
a possible explanation for the power law relationship between firms size and the
variance of growth rate [46], showing a power law dependence of the variance of
the growth rate conditioned to the size of the firms. It has been shown that such kind
of dependence may rise from a hierarchical management organization provided with
a disobedience probability.

2.3 Econometric Analysis Supporting the Weibull Distribution

A comparison with the distribution of the extinction rate of species introduces im-
mediately the comparison between the B&S model for species co-evolution and the
studies presented in Di Guilmi et al. [17]. In the former case the species, corre-
sponding to nodes of a lattice in the B&S model, are the extinguished ones. The
changing in the nodes’ value in the B&S dynamics, indicates the extinction of a
specie (firm) that will be replaced by a new specie represented by that node. The
classification of firms by size is best fitted by a Weibull function. A best fit Weibull
parameters table, reported in [17], considers data about the extinction rate of firms
in eight OECD countries, and divides data into six classes by number of employees.
In our application, we perform simulations with the B&S model referring to each of
the six classes.

3 The Dynamic Model

In its original formulation, at each time t = 0, . . . ,T , the d-dimensional B&S dy-
namic model considers Ld species organized in a simple regular lattice with the
usual boundary conditions in dimension d. Each species, represented by each node
of the lattice, is fully described at time t by its fitness, f d

i (t), i = 1, . . . ,Ld , drawn at
time 0 from a uniform distribution in [0,1]. Therefore, we are considering a network
where to each node is assigned a value (fitness) while each link or edge of the net-
work simply represents the connection between two nodes. In financial applications
the values f d

i (t) ∈ [0,1) can be chosen for representing firm fitness [5, 7], as well as
prices or opinions [12, 41, 50]. At each time step, the B&S model selects the node
with the minimum fitness and changes its fitness and those of its 2d adjacent nodes
by randomly generating new values from a uniform distribution in [0,1).

One of the key problems related to the B&S evolution model is to compute the
limit distribution for the values of the nodes at a stationary regime, as the time of the
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system grows to infinity. Computer simulations show that for a time long enough,
under the B&S dynamics the maximum of minima of fitnesses are above a criti-
cal threshold fc, apart from some periods, called avalanches, where they fall below
fc [9, 10, 23, 26]. In the one-dimensional case (i.e., d = 1) the limit (marginal)
distribution is uniform on ( fc,1), with fc ∼ 0.667. These results were confirmed
theoretically through the mean field approximation [18, 39, 48]. Many other proper-
ties of the B&S model were obtained after a change of distributions: from uniform
to exponential.

3.1 The B&S-Exponential Model

The B&S-exponential model is defined to be the model obtained from the B&S-
uniform one by substituting the hypothesis f d

i (t)∼U [0,1), i = 1, . . . ,Ld , by f d
i (t)∼

D[0,∞), i = 1, . . . ,Ld , where D[0,∞) is the exponential distribution in [0,∞).
Intermediate results in the proof assessing the existence of the critical threshold

fc and the behavior of the joint distribution of f d
i (t), i = 1, . . . ,Ld , are provided in

[37, 38] using the exponential setup. The results were reported to the original B&S
model through the following lemma based on some remarks in [37, 38].

Lemma 1. The B&S-exponential model has the same dynamics properties of the
B&S-uniform one.

Proof. We follow the rules for random numbers generation. Let x be a random
number sampled by a random variable uniformly distributed in [0,1). The function
q : [0,1)→ [0,∞), such that q(x) := −ln(1− x) transforms x into a random num-
ber y = q(x) sampled by a random variable exponentially distributed in [0,∞). If at
times t = 0, . . . ,T , q(·) is applied to the f d

i (t), i = 1, . . . ,Ld , then it provides a one-
to-one mapping between the fitnesses of the B&S-uniform and the B&S-exponential
model. Moreover, the dynamics of the evolution of the fitnesses is still based on the
minimum value of the fitnesses. Actually, q(·) is a monotone function, therefore at
time t, the transformation applied on the f d

i (t), i = 1, . . . ,Ld , maintains the order-
ing of the values of the nodes, and the evolution rule selects the same node and its
neighbors both in the uniform and in the exponential setup. �

After Lemma 1, the function q(·) changes the values of the fitness of each node,
but it does not change the dynamics of the B&S-uniform model. Furthermore, the
results on the threshold in the B&S-exponential model can be easily suited to the
original B&S model by the following remark.

Remark 1. If the B&S-exponential model has threshold fc, then the B&S-uniform
model has threshold q( fc) = 1− e− fc.
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3.2 Extension of B&S Model to Other Probability Distributions

Let us consider the B&S model where the uniform distribution has been substituted
by using a random variable X , defined on an arbitrary interval I, with cumulative
probability distribution FX(x).

Theorem 1. Let fc be the threshold for the B&S-uniform model. Consider now the
B&S model where the uniform distribution has been replaced by a random variable
X with cumulative probability distribution FX(x). Then, the resulting B&S model
has threshold FX( fc).

Proof. Given a random variableU uniformly distributed over the interval (0,1), X =
F−1

X (U) (provided F is invertible). Hence, FX(X) is uniformly distributed in (0,1).
Since FX(X) is continuous, monotone and non decreasing it is order preserving.
Therefore, FX(X) maps the B&S model with any probability distribution to the B&S
model with uniform distribution and FX( fc) holds. �

Theorem 2. If the B&S model has limit distribution given by the product of uni-
form distributions above fc, then the B&S model where the uniform distribution is
replaced by a random variable X exponentially distributed has limit distribution
given by the product of exponential distributions above FX( fc).

Proof. The proof follows from Theorem 1 by considering the transformation FX(·)
on the fitnesses, where FX(·) is the cumulative distribution function of a random
variable X exponentially distributed. �

Firstly, in this paper we are interested in studying the B&S evolution model by
referring to the distributions mostly used for describing the size of the firms. There-
fore, here we consider the uniform, Normal, lognormal, Pareto, log-Pareto, Expo-
nential, and Weibull distributions. Let us consider the B&S model in which the
uniform distribution is substituted by one of the above distributions. The following
remarks hold.

Remark 2. If the B&S-uniform model has threshold fc, then the B&S model us-
ing Normal, lognormal, Pareto, log-Pareto, Exponential, Weibull, distributions, has
thresholds FX( fc), where FX(x) is the cumulative distribution function of a ran-
dom variable X following the Normal, lognormal, Pareto, log-Pareto, Exponential,
Weibull distribution, respectively.

Remark 3. If the B&S-uniform model has limit distribution of the fitnesses given
by the product of uniform distributions, then the B&S model using the lognormal,
Pareto, log-Pareto, Weibull distributions has limit distribution given by the product
of the lognormal, Pareto, log-Pareto, Weibull distribution, respectively.
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3.3 Extension of the B&S Model: The Case of Scale-Free Networks

The B&S model on lattices can be generalized by referring to arbitrary finite
connected networks, like, for instance, small world networks [30] and scale-free
(SF) networks. SF networks have been recognized to describe several real growing
networks, and, at the same time, have proved to show very peculiar properties for
diffusion properties. In a system of firms this serves for modelling the impact of ex-
ternal factors, as the spreading of innovation, the external modification of demand
and supply and so forth. In particular, the diffusion properties corresponding to the
fault tolerance property can provide the maximal amount of changes that a system
can bear before having a deep drastic change in the firms organization. It is then
natural to ask whether and to what extent the topology of these complex networks
would affect the results obtained in classical evolution models like the B&S one.
It results that the critical thresholds continue to exist only on a subset of SF net-
works [34].

4 Minimum Spanning Tree

We extend the B&S model by assigning weights to each link of the underlying
network (lattice or scale-free networks). In our application, each node-firm value
(fitness) represents the size of a firm, while a link provides the connection between
two firms. Depending on the application, a weight associated to a link or edge may
represent the quote of participation of a firm into another [42], the intensity of tech-
nological innovation [4], or the tightness of management structure [3]. In networks
or graphs applications, given a graph, a customary problem is to find out the relevant
relationships between nodes. This is often accomplished by finding certain spanning
subgraphs of the given graph. Different classes of subgraphs can be considered, each
providing different properties about the closeness of the nodes. In this paper we re-
fer to trees. A spanning subtree of a network gives the minimum way of connecting
all the nodes of the graph. Among all the possible spanning subtrees we will look
for the one (or the ones since there may be more that one) that minimizes the sum
of the weights. A Minimum weight Spanning Tree (MST) of a given network points
out the strongest relationships between the nodes. Searching for a spanning subtree
is also preferred compared with other spanning subgraphs since both the availabil-
ity of efficient algorithms for finding a spanning tree even on huge networks, and
the ease of interpreting its geometry. Thus, along with evaluating the nodes dynam-
ics with the classical B&S model, we are able to evaluate the changes in the rela-
tionships between firms over times by observing the changes in the topology of a
MST. Actually, MST topologies and particular kind of spanning subtrees may repre-
sent structures relevant for Economics, like, for instance, the raise of oligopolies. In
the next subsections we show the conditions that give rise to very different shapes
of a MST, leaving the most proper definition of weights to econometric work. In
order to evaluate this dynamics we considered different probability distributions
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for assigning weights to the nodes and edges of the underlying network, and
again we refer to the uniform, Normal, lognormal, Pareto, log-Pareto and Weibull
distributions.

4.1 Weights not Correlated with the Degrees of the Nodes

Numerical results on MST shapes when random edge weights uncorrelated with
nodes weights are considered, appear in Dobrin et al. [19] for square and cubic
lattices. For scale-free networks, in Szabo et al. [47] is shown that if the weights of
the links incident to a given node are independent from the node’s degree (i.e., the
degree of connectivity of the node) then the geometry of a MST depends only on the
topology of the network. Therefore, the probability distribution of the nodes values
(fitnesses) is not relevant for the MST topology, and the B&S dynamics changes
the MST, but not its topology. As an example, Fig. 1 reports on the result in the
case of a Weibull distribution on a two-dimensional square lattice. At time t, the
edge connecting nodes i and j has weight wi j = | f d

i (t)− f d
j (t) |. This is a first

raw measure of distance between i and j, and it is independent of the degree of
connectivity of both i and j. The degree distribution of the nodes is stable under the
B&S dynamics and for the different probability distributions considered.
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Fig. 1 Distribution of the degrees of the nodes in the MSTs on a lattice network and with a Weibull
probability distribution
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4.2 Weights Correlated with the Degrees of the Nodes

In order to observe other MST shapes, it is necessary to assign weights to the links
depending on the degrees of the nodes. We leave the definition and interpretation of
these weights, and their exact meaning problem-oriented, to empirical econometric
papers addressing real-world problems.

In real-world applications, weights should be correlated to both the fitnesses and
the degree of the nodes. Although the values of the fitnesses may change during the
dynamics, only the nodes degree may change the topology of the MST. Referring to
SF networks, due to their practical relevance, an immediate implication of the above
remark is that any rewiring procedure mapping the network into another network
having the same SF property will lead to the same MST topology. Therefore, it
is worth examining the effects of the correlation function between edge weights
and connectivity degree for the general class of SF networks, without adding any
rewiring dynamics.

In [36] it is shown that solely by changing the nature of the correlations be-
tween wights and network topology, the structure of a MST may change from SF
to exponential. In particular, they explore the MST behavior considering weights
wi j from node i to node j defined as being directly proportional to (kik j)ϑ , ϑ > 0,
max(ki,k j), min(ki,k j), 1/(kik j), 1/min(ki,k j), 1/max(ki,k j).

Their numerical results indicate that in the presence of correlations, two classes
of MSTs exist for scale-free networks, having either a power law or an exponential
degree distribution. Correlated weights choices wi j ∝ kik j, or wi j ∝ max(ki,k j) give
rise to MSTs with exponential degree distributions, while the other choices result in
MSTs with power law distributions.

The exponential nature of the first two weights choices is due to the tendency
of a MST algorithm to avoid links with large weights, so that, for this weight selec-
tion, a MST algorithm effectively shuns the highly connected nodes by using, when
possible, links connecting low degree nodes. The remaining weights choices give
rise to power law degree distribution of a MST [28, 36, 47].

Of course, intermediate degree of correlation between edge weights and nodes
degree may give rise to very different shapes of a MST.

4.3 Numerical Results

We examined the B&S dynamics under different probability distributions. We con-
sidered two-dimensional square lattices with the usual boundary conditions and
scale-free networks as underlying networks. Since the B&S dynamics shows a tran-
sient phase, we considered 109 iterations of the B&S dynamics before starting our
analysis, and statistics were drawn on the next 107 iterations. On a two-dimensional
square lattice we considered Ld = 10,000 evolving species. In order to provide sta-
tistics about the MST evolution, at each time t = 0, . . . ,T , we used the distance mea-
sure between nodes i and j defined by wi j = | f d

i (t)− f d
j (t) |. The more the values of
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the nodes are close to each other, the lower is the distance wi j . Mutations following
the B&S dynamics randomly change the f d

i (t), i = 1, . . . ,Ld , and therefore the edge
weights wi j , for each edge (i, j). The sampling of the fitnesses f d

i (t), i = 1, . . . ,Ld ,
was performed according to the uniform, Normal, lognormal, Pareto, log-Pareto and
Weibull distributions. Figure 1 shows the histogram representing the distribution of
the degrees of the nodes in the MSTs in the case of a Weibull distribution.

The analysis on the edge weights in a MST, presented in [19, 36], does not con-
sider any evolution w.r.t. the time. On the other hand, we provide a synthetical
analysis that is obtained by considering the behavior of the weights of the MSTs
obtained during the dynamics. We notice that the f d

i (t), i = 1, . . . ,Ld , and wi j are
not co-monotone, thus allowing the social interpretation of the possibility of dis-
agreement among agents as they change their opinion. In the stationary state we
have that all the f d

i (t) ∈ ( fc,1), i = 1, . . . ,Ld apart from avalanches. Thus, most of
the weights wi j belong to [0,1− fc), and exhibit avalanches as a consequence of
fitnesses avalanches. Following Dobrin et al. [19], we also provide the probability
that a link with a given weight lies on the MST (see Fig. 2).

We also note that for d = 2 and for lattice networks, a changing of the fitness
of a node only implies a change of the weights of its 2d = 4 adjacent nodes. This
corresponds to modify the weights of 16 edges at a time, thus resulting in a fast
updating procedure for the nodes and the edges values. The number of links changed
at each step of the dynamics is centered at 5 over the 16 links changed. The MST
constructing algorithm is based on the Kruskal procedure.
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x 104

Fig. 2 Probability that a link with a given weight lies on the MST in a lattice and with a log-Pareto
distribution
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Fig. 3 Power law property for the distribution of the degrees of the nodes in a MST by using the
Weibull distribution on scale-free networks

As introduced before, we also examined the results of the co-evolutive model
when applied on scale-free networks, that are supposed to be the most spread form
of contacts organizations. We used the free downloadable Barabasi–Albert software
for scale-free networks generation. We run simulations on 1,005 nodes, and 20,000
edges. Then we run the B&S dynamics again considering the uniform, Normal,
lognormal, Pareto, log-Pareto, and the Weibull distribution. As shown in Fig. 3, the
distribution of the degrees of the nodes of the MSTs follows a power law, and this
holds also for all the other probability distributions considered. All the programs
implementing the B&S dynamics as well as the Kruskal algorithms for finding the
MSTs are written in C code.

5 Conclusions

The paper goes beyond the B&S model features introducing weights and analyz-
ing the co-evolution of nodes and their relationship with the MST evolution of a
given underlying network. Actually, given a network representing the relationships
between firms (nodes of the networks), a Minimum weight Spanning Tree points
out the strongest relationships between the firms. In this paper, we are interested in
evaluating the evolution of an MST and, in particular, the evolution of the geometry
of an MST since different MST shapes may reveal structures relevant, for instance,
in an economic system, like the raise of oligopolies. We notice that this paper differs
from other papers in the literature (see e.g., [4]), where the values assigned to each
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node and edge of a network are constant. In fact, while their dynamics concerns ac-
tivation/disactivation of links, thus considering the so called rewiring problem, we
are interested in studying the evolution of a spanning subgraph of the network that
summarizes the relationships between the nodes of the network. Indeed, in social
models, a MST may represent the most strong social interactions between agents,
that can be transferred to management links when considering the evolution of firms.

MST dynamics and its evolution strictly depends on the underlying network as
well as on the sampling distribution of the values assigned to its nodes and edges.
Our toy model provides a dynamical co-evolutive model that considers functional
properties observed in empirical studies, and can constitute a starting point for the
construction of more realistic models. Finer econometric analysis evidenced fluctua-
tions of the parameters of probability distribution of the size of the firms, depending
on the selection of the time windows [13]. The models presented here can be easily
adapted to accomplish the arise and the change of the shape and scale parameters
of probability distribution during cycles of recession and expansion of economies.
The introduction of edge weights correlated to the degrees of nodes in place of
weights that are proportional to them, and the rewiring mechanism for changing
network topologies are the main tools for calibrating the models. We leave this for
future research as well as further investigations introducing asymmetry in the net-
work’s links.
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