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Abstract Schelling [19–22] considered a simple model with individual agents who
only care about the types of people living in their own local neighborhood. The
spatial structure was represented by a one- or two-dimensional lattice. Schelling
showed that an integrated society will generally unravel into a rather segregated one
even though no individual agent strictly prefers this. We make some steps to gener-
alize the spatial proximity model to a proximity model of segregation. That is, we
examine models with individual agents who interact “locally” in a range of network
structures with topological properties that are different from those of regular lattices.
Assuming mild preferences about with whom they interact, we study best-response
dynamics in random and regular non-directed graphs as well as in small-world and
scale-free networks. Our main result is that the system attains levels of segregation
that are in line with those reached in the lattice-based spatial proximity model. That
is, Schelling’s original results seem to be robust to the structural properties of the
network. In other words, mild proximity preferences coupled with adjustment dy-
namics can explain segregation not just in regular spatial networks but also in more
general social networks.
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1 Introduction

Segregation has been widely recognized as a critical issue, from both a socio-
political and a public-economic perspective, in many Western countries. In the USA,
segregation has dominated the political debate for some time in the second half of
the last century. More recently, segregation issues are increasingly becoming one of
the main points in the political agenda of the majority of European countries, and
this trend is likely to be reinforced by the geo-political turmoils due to the events
following 9/11 and the ongoing enlargement process of the EU.

The main problem faced by countries trying to reduce segregation is that we still
do not know how to attain this goal. Indeed, the plethora of integration policies that
have been implemented in the last decades turned out to be almost completely inef-
fective. In particular, all policies aimed at changing individual preferences towards
multiculturalism (e.g., by promoting people openness and tolerance with respect to
diversity) did not substantially improve integration [3]. Therefore, gaining a better
knowledge of the forces underlying the dynamics leading to segregated societies
seems crucial today as it was in the second half of the 20th century.

Exactly in those years, Schelling [19–22] studied a simple model of segrega-
tion with individual agents who only care about the types of people living in their
own local neighborhood. The spatial structure was represented by a one- or two-
dimensional lattice. Schelling showed that an integrated society will generally un-
ravel into a rather segregated one even though no individual agent strictly prefers
this. Rather, segregation seemed due to the spontaneous dynamics of the economic
forces, with all individuals following their incentives to move in the most attractive
locations. The preferences considered in the spatial proximity model are said to be
mild, as everybody would be happy in a perfectly integrated society.

More recently, Pancs and Vriend [17] examined the robustness of Schelling’s
spatial proximity model. They showed that the model can be further simplified (ren-
dering the individual preferences even more salient as an explanatory variable of
segregation), and that these proximity preferences may be even more extreme in
favor of integration. This focus on mild individual preferences or preferences that
even favor integration is not to say that institutional constraints or racism may not
hinder integration. But what the model shows is that even without such obstacles
one should perhaps expect segregation. It seems that any integration policy must be
based on a good understanding of these spontaneous dynamics.

Both original Schelling’s model and Pancs and Vriend’s robustness analyses ex-
plore segregation dynamics on regular (one- or two-dimensional) lattices. In other
words, they both study the emergence of segregation in a geographical space. In-
deed, lattices are widely employed in local-interaction models because they can be
considered as a first approximation of geographical space [8]. The idea that peo-
ple care about their spatial proximity can be justified by the fact that this is where
people mow their lawn, where their children play outside, where they do their shop-
ping, and where they park their car. The social environment is, however, not limited
to this spatial proximity. People also interact through networks of friends, relatives,
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and colleagues, and through virtual communities on the internet. And they are likely
to have preferences with whom they do this, just as they have preferences about their
spatial proximity.

This suggests that segregation need not necessarily occur at the spatial (neighbor-
hood) level: one might conceive people who are socially segregated despite being
spatially integrated. This appeared to be the case with some of the recent terror
suspects in the Netherlands and the UK. Therefore, a better understanding of the
phenomenon of segregation in more general network structures seems desirable.

In this paper, we generalize Schelling’s spatial proximity model to a proximity
model of segregation where individual agents interact “locally” in a range of so-
cial network structures with topological properties that are different from those of
regular lattices. Among all network structures alternative to regular lattices, we ex-
plore in particular small-world networks, which have been found to be a good proxy
of real-world social interaction structures [2]. We stick to standard assumptions as
far as types and preferences are concerned, and we study the ensuing best-response
dynamics in two setups. In the first one (global-move setup) agents that are not sat-
isfied with their current state can choose uniformly at random any empty location in
the whole network (i.e., move arbitrarily far away in the social space). In the second
setup (local-move), they are bound to choose one of the available locations in their
social neighborhood (if any).

The rest of the paper is organized as follows. Section 2 discusses in more detail
the classes of networks that we consider in our analysis. In Sects. 3 and 4 we present
the model in its global- and local-move variants, and we discuss its implementation.
Section 5 introduces the index that we employ to measure segregation in social
networks. Simulation results are in Sect. 6, which also contains a sensitivity analysis
of the parameter space. Finally, Sect. 7 concludes.

2 Social Networks and Small Worlds

The last fifteen years have witnessed an incredible outburst of empirical studies on
natural, social and economic networks [1, 16, 23, 24]. More specifically, the bulk of
contributions has focused on the structural and topological properties of empirically-
observable networks such as the Internet and the WWW, airline connections, scien-
tific collaborations and citations, trade and labor-market contacts, friendship and
other social relationships, business relations and R&D partnerships, cellular, eco-
logical and neural networks.

The main message of this vast literature is that most real-world networks belong
to a particular class of structures that display neither the intrinsic spatial regularity
of lattices, nor the disorder of random graphs [i.e., networks where any two agents
are neighbors, independently of all the others, with some given probability, see 5].
To see why, let us begin with some basic definitions.

It is well-known that the simplest mathematical description of a network can be
given in terms of an undirected graph G = (n,A), where n is the number of nodes
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(individuals) and A is a n×n symmetric matrix whose generic element ai j is equal
to 1 if nodes i and j are linked by an edge (i.e., they are neighbors, either in a
geographical or a social space), and 0 otherwise. Different networks can be taxono-
mized according to their structural and topological properties [18, 23, 24]. The most
salient characteristics of a network can be summarized by the distributions of three
statistics: (1) degree of a node; (2) clustering of a node; (3) shortest-path length
between any two nodes. The degree of a node is simply the number of neighbors
it has. Lattices are regular graphs because all nodes have the same degree. In ran-
dom graphs node degrees are heterogeneous and symmetrically distributed around
the average degree, which is proportional to the probability that any two nodes are
neighbors. The clustering of a node is instead the likelihood that any two neighbors
of that node are themselves neighbors. For each node i, this can be easily computed
by counting the number of triangles with i as one vertex (and dividing this number
by the total number of triangles that i could have formed given its degree). Obvi-
ously, lattices are in general much more clustered than random graphs, as their nodes
are typically distributed in tightly connected clusters where any two neighbors are
also neighbors by construction.1 Finally, the shortest path length between any two
nodes (i, j) is defined as the minimum number of links that one has to traverse to
get from i to j. This measure has been popularized as the “degrees of separation,”
see Watts [26]. Again, lattices are extreme cases where this measure is generally
high, as any two nodes far away in the lattice can reach each other only by travelling
through all nodes that are in between. More precisely, the average distance between
any two edges increases as

√
N, much faster than in random graphs, where it only

increases as lnN.
Recent empirical studies [see 1, 16] have shown that real-world social networks

are neither regular lattices nor random graphs, but lie in between. Indeed, they be-
long to the class of “small worlds” [13, 15, 25]. This type of networks preserves
the high clustering level displayed by lattices, while exhibiting a smaller average
shortest-path length, which only increases as lnN as in random graphs. This means
that individuals embedded in real-world social networks tend to form tightly con-
nected local clusters (of friends, relatives, business partners, etc.) as happens in geo-
graphical space. However, these local clusters are also frequently connected among
them by shortcuts that allow any two agents who are arbitrarily far away in the so-
cial space to reach each other in a few steps [actually only six, on average, in many
cases; see 15, for a review].

Networks belonging to the small-world class strongly differ, however, as to the
shape of their degree distributions [2]. A first sub-class, which we will label as
“Watts-Strogatz” (WS) in what follows, exhibits a quasi-symmetric degree distrib-
ution, centered around the average d > 0 (and tails possibly decaying exponentially
fast as in the Gaussian distribution). To the second type of small-world networks
belong the so-called “scale-free” networks (henceforth SF), i.e., networks whose
degree distribution is right-skewed and decays with a power-law tail. Therefore, in
WS small-world networks most of the nodes have the same degree. On the contrary,

1 This may not be the case, however, for some particular choices of the metrics (e.g., the
Von-Neumann one) and a relatively small interaction radius (e.g., equal to one). More on that below.
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a b

Fig. 1 Rewiring procedure for WS small-world graphs. Panel (a): we start from a circle where
each node is connected with two neighbors. Panel (b): the graph after three nodes (in grey) have
successfully rewired one of their links. Dashed lines depict rewired links

Fig. 2 An example of a WS
graph obtained from M = 100
nodes originally lying on a
circle and interacting with
two neighbors only (r = 1).
Rewiring probability β = 0.2.
Node colors depend on degree
after rewiring. Black nodes:
d ≥ 3. Grey nodes: d = 2.
White nodes: d = 1

SF networks are characterized by a few nodes holding many partners (i.e., the hubs)
and many nodes holding a few partners.

WS and SF small-world networks also differ in their generating mechanism [6].
Think of a given graph G as the (long-run) equilibrium of some stochastic dynamic
model of node and edge dynamics. The most simple way to generate WS graphs
runs as follows [27]. Start with a regular lattice (e.g., a circle), where each node has
two neighbors – one on the left, one on the right, as in Fig. 1, panel (a). At each
t = 0, pick a node (say i) at random and rewire with probability β ∈ [0,1] one of
its two links (say the one with j) to another node in the graph (say h �= i) chosen at
random. Figure 1, panel (b) shows the graph after three successful rewirings (nodes
that have successfully rewired are shown in grey). If one repeats this procedure for a
large number of times (avoiding the case that more than one link connects the same
couple of nodes), the resulting graph is a small world, provided that β is sufficiently
small (typically between 0.01 and 0.3), see Fig. 2 for an example. Notice how a
small fraction of nodes (in black) hold more than two links, with some of their links
being to nodes located arbitrarily far from them on the circle, while the other nodes
(in grey or white) who kept only one or two links are usually linked to their direct
neighbors only. This mechanism allows one to span the space of a wide variety of
networks, from lattices (β = 0) to random graphs (β = 1).
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Fig. 3 An example of a
SF graph obtained applying
a preferential attachment
algorithm. The initial
population size is M0 = 16.
All initial nodes have de-
gree d = 4. Final population
size is M = 100. We only
plot a subset of all nodes for
simplicity. White nodes are
the “hubs”

SF networks can instead be generated as the limit of a growth process known
as “preferential attachment” [4]. According to this algorithm, one starts from an
initial graph G0 (e.g., a small lattice) and adds a new node to the graph in each
step. The newly added node makes new connections with existing nodes, where
the probability of connecting with any existing node is proportional to the current
degree of the latter. As this process goes on, better-connected nodes attract more and
more entrants (i.e., the rich get richer). The resulting (limit) graph can be shown to
be a small world with a power-law degree distribution. The underlying assumption
of this setup is that any node can hold at no cost any arbitrarily large number of
nodes (as network size increases). As Fig. 3 shows for an instance of a SF graph
obtained by applying the above procedure for n = 100, a few “hubs” (in white)
holding a large number of links coexist with many nodes (in black) connected with
a small number of other nodes, and possibly with the hubs.

To sum up: Recent empirical works have robustly highlighted that small-world
(WS and SF) networks ubiquitously emerge in many social contexts. Therefore,
small-world networks seem to be the most natural candidate to test the robustness of
Schelling’s spatial proximity model when agents are placed in more general types
of networks. In the following section we shall present an extension of the basic
Schelling’s model that explores this direction.

3 The Model

Consider a society composed of N agents who can locate themselves in one of the
M ≥ N ≥ 3 available locations. Each location can contain at most one agent. Loca-
tions can be connected or not. We model locations and connections through a graph
G composed of M nodes and a collection of non-directed edges linking any pair of
nodes. Edges are described by the (symmetric) M×M matrix W = {wkh}, where
wkk = 0 ∀k = 1, . . . ,M and wkh = whk = 1 if and only if there is an edge connect-
ing nodes k and h, and zero otherwise. We define the “neighborhood” Vk (or the
“interaction group”) of a node k as the set of nodes that node k is linked to

Vk = {h ∈ IM : wkh = whk = 1}, (1)

where IM = {1, . . . ,M}.
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We suppose that each node is empty (i.e., it does not contain an agent) with
probability θ ∈ (0,1), while it is occupied with probability 1− θ . Therefore, on
average, there are N = (1−θ )M agents in the society. Each agent can be one of two
types, say −1 and +1. Time is discrete, and time ticks are labeled by t = 0,1,2, . . . .

Agents have standard, binary, Schelling-type preferences: they are happy if and
only if the relative frequency of agents of their own type is greater or equal than
0.50 in their neighborhood. More formally, if node i is occupied by an agent of type
s ∈ {−1,+1} at time t

uit = uit(s) =

{
1, if xit(s)≥ 0.5,

0, otherwise,
(2)

where uit = uit(s) is the utility of agent i (of type s) at time t and xit(s) is the current
relative frequency of agents (i.e., filled nodes) of type s in Vi.2

The initial state of the system is characterized by: (1) an instance of the network
structure, i.e., a graph G0 = {IM,W0} (more on that below); (2) an allocation of
agents and types across the M available nodes. The initial allocation of agents and
types across the M nodes is drawn uniform randomly. Thus, at t = 0, each node
i ∈ IM will be either empty or occupied. If it is occupied, this will be either a −1 or
a+1 agent, each with probability 0.5. Thus, in the society there will be, on average,
N/2 agents of type−1 and N/2 agents of type +1.

The dynamics runs as follows. At each t > 0, an agent, say k, is drawn at random
(and independently) from IN = {1, . . . ,N}. As far as the behavior of the chosen agent
is concerned, we shall explore two models:

• Global-Move (GM) Model: Agent k computes the utility that he could earn at
each available (i.e., empty) node in the whole network G0 (including in the list
his current node).

• Local-Move (LM) Model: Agent k computes the utility that he could earn at each
available (i.e., empty) node in his neighborhood Vk only (including in the list his
current node).

Then, in both LM and GM models, agent k chooses the node that provides the
highest achievable utility level (i.e., either one of the empty nodes or his current
location). Ties are resolved by randomizing among all nodes providing the same
maximal utility level. Notice that we assume no inertia in the agents’ choices. That
is, agents’ current locations do not bias their choices (e.g., because of moving costs).
The GM model also assumes that agents can move to any empty node in the net-
work, i.e., there are no information or moving constraints or costs (see Sect. 7 for
a discussion). Hence, the LM model can be justified by the presence of either a
moving cost or some information costs preventing agents to observe anything that
is outside their current neighborhood.

2 In line with Pancs and Vriend [17], we assume that the utility associated to an empty neighbor-
hood is zero.
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4 Implementation

The initial network G0 is chosen at random to belong to the small-world class. How-
ever, to benchmark our analysis against Schelling’s one and Pancs and Vriend’s re-
sults, we also study the behavior of the model in the case where initial graphs are
two-dimensional lattices. More precisely, we experiment with Von-Neumann (VN)
and Moore (M) two-dimensional, boundary-less lattices (i.e., torii). It is well-known
that neighborhoods Vk in two-dimensional lattices are completely defined up to the
choice of a metric (specifying how to compute the distance between any two nodes)
and an interaction radius r. Let (xh,yh) the coordinates of node h in the lattice. In
the VN case the distance between nodes (k,k′) is given by

δV N(k,k′) = |xk− xk′ |+ |yk− yk′ |, (3)

while in the Moore case it is equal to

δM(k,k′) = max{|xk− xk′ |, |yk− yk′ |}. (4)

Therefore, if one defines

Vk(r) = {h = 1, . . . ,M : δ•(k,h)≤ r}, (5)

it is easy to see that in VN lattices all nodes have a degree dVN = 2r(r+1), while in
Moore lattices one has dM = 4r(r + 1), see Fig. 4 for an illustration.

Initial small-world networks are instead generated using the following proce-
dures:

• WS Graphs: We start from a two-dimensional boundary-less lattice with VN
neighborhoods for a certain r ≥ 1. Then, each edge (h,k) is independently
rewired to a randomly chosen node, say k′, outside Vh(r) with some probabil-
ity β ∈ (0,1). In case of rewiring, the edge (h,k) is deleted and replaced by the

2D-VN: r=1 2D-M: r=1 a b

Fig. 4 An example of neighborhood shapes with two-dimensional Von-Neumann (2D-VN) and
Moore (2D-M) lattices for r = 1
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new edge (h,k′). This yields a symmetric degree distribution, centered around
2r(r + 1). In the benchmark results presented below, we employ β = 0.2 and
then we study what happens when β is tuned in the unit interval.

• SF Graphs: We employ a standard “preferential attachment” procedure, starting
with M0 nodes linked through a 2D-VN lattice with r = 1 (and thus an initial
degree d = 4). One node at a time is added until a size M is reached. In any
step, the additional node is allowed to form 4 links. Each new link is formed by
choosing one of the existing nodes with a probability proportional to its current
degree.

The model contains a small number of free system- and network-specific para-
meters. System parameters are M (number of nodes) and θ (average percentage of
empty nodes). Network specific parameters characterize – given the class of net-
works to be implemented – the set of possible networks from which the one actually
in place will be drawn. VN and Moore lattices are characterized by their degree.
WS graphs are parameterized by β and the degree d of the underlying lattice (be-
fore rewiring). Finally, SF graphs depend on the initial population size M0. Simula-
tions reveal that average degree d and M0 are linked by the following (approximate)
relation:

d � 0.00003 ·M3
0−0.0062 ·M2

0 + 0.3485 ·M0 + 3.1916. (6)

Notice that d grows for M0 ≤ 39 and decreases for M0 ≥ 40. Hence, in both lattices
and small-world graphs, the only common network-specific parameter to be consid-
ered is the (average) node degree d. WS graphs can also be studied for different β
levels.

In the lattice-case, the initial graph is automatically defined once one specifies the
degree d. In small worlds, given a choice for the network class and for the network-
specific parameters of that class (e.g., d and β for a WS graph), each time we draw
G0 uniformly at random from the set of all possible graphs belonging to that class
and with the given network-specific parameters.

5 Measuring Segregation in Networks

A number of indices have been suggested in the literature to measure segregation
when the agents are located on generic networks [see, e.g., 7, 10–12, 14, and ref-
erences therein]. Here, we will employ Freeman’s segregation index (FSI) [11, 12].
The rationale underlying the computation of the FSI is that if a given agent-attribute
(in our case the type +1 or −1) does not matter for social relationships (i.e., for
the link structure as described by G0), then the links among the agents should be
distributed randomly with respect to that attribute. Therefore, suppose we observe a
given allocation of agent types across the M nodes, connected through the network
G0. Let us, then, split the agents in two groups according to their type and, for each
type, let us count the number of cross-group links (i.e., the number of links con-
necting any pair of agents of different types), as well the number of within-group
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links (i.e., the number of links connecting any pair of agents of the same type).
This gives us a 2× 2 contingency table whose generic entry lxy gives us the num-
ber of links between type-x and type-y agents in G0. Similarly, one can compute
the expected contingency table for a random allocation of agent types on G0. The
difference between the number of cross-group ties expected by chance and the num-
ber of observed ties (divided by expected ones) gives us the FSI. The index ranges
between −1 and 1, with the highest segregation level obtained when there are no
cross-group links in place.

We also check our results against a number of alternative segregation indices,
such as the “spectral segregation index” [7], those proposed in Fershtman [10]
and Freeman [12], and some of the indices originally developed in the lattice-case
[see 17], e.g., the average mix deviation index. As we discuss in Sect. 7, our main
results are not qualitatively altered if one considers these alternative segregation
measures. Therefore, in what follows we will mainly focus on FSI as our measure
of segregation in networks.

6 Results

In this section, we explore the behavior of our model for a society of M = 100
nodes. Our study will take the form of a Monte Carlo (MC) analysis. The proce-
dure is as follows. For each choice of network class and network-specific parame-
ters we generate a number of independent runs. For each run, where necessary, we
randomly select a specific instance of the network class, and we generate an ini-
tial allocation of agents and types across the network uniformly at random. We,
then, let the best-response dynamics run, and collect system statistics when either
FSI or the configuration of types across the M nodes have reached a steady-state.
This typically happens well before T = 50,000 time-steps with probability one. We
independently repeat this exercise 1,000 times, computing the Monte Carlo (MC)
average and standard deviation of FSI. Since across-run variability turns out to be
very small (across-run standard deviations are of an order of magnitude of 10−5)
and MC distributions appear to be symmetric, we report below MC averages of FSI
only.

The main questions we initially address are:

Q1 Are segregation levels in WS and SF small-world networks (as measured by
FSI) different from those attained in a society where individuals live in lattices?

Q2 Does the answer to Q1 differ when individuals behave according to a GM or a
LM model?

Let us begin with a rough comparison of segregation levels. Figures 5 and 6 show
average FSI levels for lattices and small-world graphs in both the GM and LM mod-
els. Although segregation seems to be slightly larger in lattices than in WS and SF
graphs, overall levels in both lattices and small worlds remain quite large accord-
ing to FSI (which, we recall, records values close to one only in extreme cases).
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Fig. 5 GM Model. Average
FSI levels in lattices, WS
and SF graphs for average
degrees d = 4,8. Parameters:
M = 100, θ = 0.3. Note:
d = 4: VN-lattice; d = 8:
M-lattice
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Fig. 6 LM Model. Average
FSI levels in lattices, WS
and SF graphs for average
degrees d = 4,8. Parameters:
M = 100, θ = 0.3. Note:
d = 4: VN-lattice; d = 8:
M-lattice

0.0

0.2

0.4

0.6

0.8

1.0

Lattice WS SF

A
v
e
r
a
g
e
 
F
S
I

d=4

d=8

Schelling’s results seem to be confirmed when one moves from spatial to social
segregation in the GM model.

This result was somewhat expected. When one leaves a lattice world to move in
the small-world realm, two important features change. First, the average path length
tends to decrease; second, and most important here, neighborhood sizes become
heterogeneous (less in WS graphs, more in SF ones). In the GM model agents can
freely move in any empty location of the network, no matter their neighborhood size.
Hence, it would have been surprising if segregation levels would have substantially
changed.

When one comes to the LM model, however, heterogeneity in neighborhood sizes
might have some impact on segregation levels. Our simulations instead show that
this is not the case, see Fig. 6. Segregation levels in WS and SF networks remain
comparable to those in lattices: Schelling’s results seem even more robust. Notice
also that segregation levels decrease when one moves from a GM to a LM model.
In fact, agents in a LM world tend to explore a smaller number of options and the
ensuing dynamics turn out to be more “sticky.” As a result, high levels of segregation
can be attained less easily by the system.
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The above results indicate that both Q1 and Q2 have a simple, common answer:
“Not very much.” If any, some overall decrease in segregation levels is observed
in SF networks.3 However, SFI differentials are not so large to draw statistically-
significant implications (more on that in Sect. 7).4

These findings are robust to a sensitivity analysis across system and network-
specific parameters [9]. However, inspection of Figs. 5 and 6 suggests that segrega-
tion levels do exhibit some variation with average degree, hinting to some parameter
dependence of segregation levels. We can then formulate the following additional
questions:

Q3 Do segregation levels in WS and SF small-world networks (as measured by FSI)
change with average degree and percentage of empty nodes (θ )?

Q4 Do segregation levels in WS networks change with the rewiring parameter (β )?

Let us begin with Q3. Figures 7 and 8 show how segregation levels change with
average degree and the percentage of empty nodes in WS and SF graphs for the

Fig. 7 GM Model. Average
FSI levels in WS graphs vs.
average degree for different
levels of θ and M = 100
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Fig. 8 GM Model. Average
FSI levels in SF graphs vs.
average degree for different
levels of θ and M = 100
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3 Segregation levels in WS graphs are smaller than in lattices in the GM model only.
4 Simulations also show that the average values of FSI found throughout our analysis are signifi-
cantly larger than average FSI values obtained in purely-random allocations of networks and types
(when best-response dynamics is not made at work), see Fagiolo et al. [9] for details.
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Fig. 9 LM Model. Average
FSI levels in WS graphs vs.
average degree for different
levels of θ and M = 100
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Fig. 10 LM Model. Average
FSI levels in SF graphs vs.
average degree for different
levels of θ and M = 100
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GM model. We see that FSI levels are decreasing with the average degree for any
value of θ . Very high segregation levels are attained by the system when the so-
ciety is poorly connected and there is a small percentage of empty nodes. As the
connectivity increases, segregation becomes somewhat less pronounced, but even in
very connected societies, segregation levels remain significantly high. Furthermore,
segregation tends to decrease in the GM model as the percentage of empty nodes
increases, as agents have more degrees of freedom to move around.

The above results substantially change in the LM model, see Figs. 9 and 10. Re-
call that, in the LM model, degree heterogeneity (which increases as one goes from
WS to SF graphs) does now play some role. While more connected WS societies
are less segregated, this is not so in SF networks, where segregation mildly increases
with average degree. As a result, topological properties of SF networks seem to have
an impact on segregating dynamics in our model. Despite more heterogeneity seems
to slightly decrease segregation levels given the same connectivity, switching from a
less degree-heterogeneous to a more degree-heterogenous society changes the way
in which connectivity affects segregation levels.

Finally, Figs. 11 and 12 show segregation levels attained in a WS network for
different values of the rewiring probability in both the GM and the LM model.
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Fig. 11 GM Model. Average
FSI levels in WS graphs
vs. rewiring probability for
different average degrees.
Parameters: θ = 0.3 and
M = 100
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Fig. 12 LM Model. Average
FSI levels in WS graphs
vs. rewiring probability for
different average degrees.
Parameters: θ = 0.3 and
M = 100
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It is easy to see that FSI levels are only mildly decreasing with β . In the SF case,
segregation levels are substantially stable. This implies that, as one interpolates be-
tween lattices (β = 0) and purely random graphs (β = 1), segregation levels remain
quite stable.

7 Concluding Remarks

In his seminal contributions, Schelling [19–22] studied a proximity dynamic model
of spatial segregation where individuals lived on one- or two-dimensional lattices.
He showed that a perfectly integrated society would evolve into a segregated one
even though no individual agent would have strictly preferred that outcome in his
local neighborhood.

In this paper we have argued that segregation might occur not only in the geo-
graphical space, but also in more general social networks. Empirical evidence in-
dicates that in the real-world such networks are neither lattices nor random graphs,
but rather belong to the class of small worlds. Building upon this evidence, we
have presented a dynamic model of segregation where individuals interact in small-
world social networks. The model sticks to Schelling’s original formulation as far
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as individual preferences are concerned and studies best-response dynamics as in
Pancs and Vriend [17]. We consider two specifications of the general model, one in
which agents can move arbitrarily far away in the social space from their current lo-
cation (global move model), the other wherein agents can only move in their current
social interaction group (local move model).

When one replaces lattices with small worlds, the degree distribution becomes
heterogeneous. This heterogeneity is relatively low in Watts-Strogatz (WS) small
worlds, while becomes more relevant in scale-free (SF) small worlds. Our main
result is that this increase in degree heterogeneity does not dramatically affect
Schelling’s findings: segregation levels remain comparable to those attained in a
lattice world in both a local- or global-move model. We also perform a sensitivity
analysis on the parameter space. Simulations show that in the global-move model
more connected societies are less segregated. However, when a local-move model is
considered, this result does not hold anymore: higher connectivity can imply either
smaller or larger segregation levels, depending on the heterogeneity of degrees. The
higher heterogeneity, the more likely is that strongly connected societies are also
more segregated.

The above results are robust to a series of extensions and modifications [see 9,
for details]. These include: (1) segregation measures alternative to the FSI [e.g., the
spectral segregation index proposed in 7]; (2) additional network structures such as
regular or random graphs; (3) average percentages of empty nodes (θ ) larger than
50%; (4) network size (M).

Furthermore, similar results are obtained if one introduces some “inertia” in
the picture. Suppose that an agent located in node i is drawn at random from
IN = {1, . . . ,N}. With inertia, this agent stays put if there is no vacant location
that he would strictly prefer to his current location. The idea of inertia is based
on the implicit modelling assumption of some small costs of moving (smaller than
the smallest possible difference in satisfaction between any two locations, but other-
wise arbitrarily small). Notice that under the inertia rule, satisfied agents will never
move.

Many interesting issues remain to be explored. First, agents in our model jump
from its current location to an available one without being affected by the topology
of the network. This implies that average path length has no effect whatsoever in the
dynamic process leading to segregation. Therefore, the current formulation of our
model does not fully exploit a fundamental difference existing between lattices and
small worlds, i.e., the fact that in small worlds average path length tends to decrease.
By incorporating into agents’ behavioral rules an appropriate algorithm governing
the path they follow to travel from their current node to the newly selected one, one
might attempt to explore the role played by average path length in the picture.

Finally, our results indicate that degree heterogeneity does affect segregation lev-
els. In particular, when one switches from WS to SF networks, segregation seems to
generally decrease and the way in which connectivity affects segregation substan-
tially changes. Therefore, a deeper understanding of the behavior of the model in
SF graphs seems desirable.
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