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Abstract This paper presents some recent developments in the theory of coali-
tion and network formation. For this purpose, a few major equilibrium concepts
recently introduced to model the formation of coalition structures and networks
among players are briefly reviewed and discussed. Some economic applications are
also illustrated to give a flavour of the type of predictions such models are able to
provide.

1 Introduction

Very often in social life individuals take decisions within groups (households,
friendships, firms, trade unions, local jurisdictions, etc.). Since von Neumann and
Morgenstern’s [45] seminal work on game theory, the problem of the formation of
coalitions has been a highly debated topic among game theorists. However, during
this seminal stage and for a long period afterward, the study of coalition forma-
tion was almost entirely conducted within the framework of games in characteristic
form (cooperative games) which proved not entirely suited in games with externali-
ties, i.e. virtually all games with genuine interaction among players. Only in recent
years, a widespread literature on what is currently known as noncooperative coali-
tion formation or endogenous coalition formation has come into the scene with the
explicit purpose to represent the process of formation of coalitions of agents and
hence modelling a number of relevant economic and social phenomena.1 Moreover,
following this theoretical and applied literature on coalitions, the recent paper by
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1 Extensive surveys of the coalition formation literature are contained in Greenberg [23], Bloch
[4, 5], Yi [46, 46] and Ray and Vohra [41].
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Jackson and Wolinsky [34] opened the door to a new stream of contributions using
networks (graphs) to model the formation of links among individuals.2

Throughout these brief notes, I survey non exhaustively some relevant contri-
butions of this wide literature, with the main aim to provide an overview of some
modelling tools for economic applications. For this purpose, some basic guidelines
to the application of coalition formation in economics are presented using as prim-
itives the games in strategic form. As far as economic applications are concerned,
most of the examples presented here mainly focus, for convenience, on a restricted
number of I.O. topics, as cartel formation, horizontal merger and R&D alliances.

2 Coalitions

2.1 Cooperatives Games with Externalities

Since von Neumann and Morgenstern [45], a wide number of papers have developed
solution concepts specific to games with coalitions of players. This literature, known
as cooperative games literature, made initially a predominant use of the characteris-
tic function as a way to represent the worth of a coalition of players.

Definition 1. A cooperative game with transferable utility (TU cooperative game)
can be defined as a pair (N,v), where N = {1,2, ..i, ..N} is a finite set of players
and v : N→ R+ is a mapping (characteristic function) assigning a value or worth to
every feasible coalition, i.e. every nonempty subset of players S ⊂ N belonging to
N, the family of nonempty coalitions 2N\{∅}.3

The value v(S) can be interpreted as the maximal aggregate amount of utility
members of coalition S can achieve by coordinating their strategies. In strategic en-
vironments, players’ payoffs are defined on the strategies of all players and the worth
of a group of players S depends on their expectations about the strategies played by
the remaining players N\S. Hence, to obtain v(S) from a strategic situation, we need
first to define an underlying strategic form game.

Definition 2. A strategic form game is a triple G = {N,(Xi;ui)i∈N}, in which for
each i∈N, Xi is the set of strategies with generic element xi, and ui : X1×·· ·×Xn→
R+ is every player’s payoff function.

Moreover, henceforth we restrict the action space of each coalition S⊂N to XS≡
∏i∈S Xi. Let, also, v(S) = ∑i∈S ui(x), for x ∈ XN ≡∏i∈N Xi.4

2 Myerson [36] and Aumann and Myerson [2] were among the first authors to use graphs to model
cooperation between individuals. Excellent surveys of the network literature are contained in Dutta
and Jackson [17] and in Jackson [28–31].
3 Here we mainly deal with games with transferable utility. In games without transferable utility,
the worth of a coalition associates with each coalition a players’ utility frontier (a set of vectors of
utilities).
4 See Sect. 2.3 for an interpretation of these restrictions.
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Example 1. Two-player prisoner’s dilemma.

A B
A 3,3 1,4
B 4,1 2,2

Therefore, v(N) = 6 and v({i}) =
{

4, if x j = A
2, if x j = B

for j �= i.

The cooperative allocation (3; 3) can be considered stable only if every player is
expected to react with strategy B to a deviation of the other player from the cooper-
ative strategy A.

The above example shows that in order to define the worth of a coalition of
players, a specific assumption on the behaviour of the remaining players is required.

2.1.1 α- and β -Characteristic Functions

The concepts of core, formally studied by Aumann [1], are based on von Neumann
and Morgenstern’s [45] early proposal of representing the worth of a coalition as the
minmax or maxmin aggregate payoff that it can guarantee its members in the under-
lying strategic form game. Accordingly, the characteristic function v(S) in games
with externalities can be obtained assuming that outside players act to minimize the
payoff of every deviating coalition S ⊂ N. In this minimax formulation, if members
of S move second, the obtained characteristic function,

vβ (S) = min
xN\S

max
xS

∑i∈S
ui(xS,xN\S), (1)

denoted β -characteristic function, represents what members in S cannot be pre-
vented from getting. Alternatively, if members of S move first, we have

vα(S) = max
xS

min
xN\S

∑i∈S
ui(xS,xN\S) (2)

denoted α-characteristic function, which represents what members in S can guar-
antee themselves, when they expect a retaliatory behaviour from the complement
coalition N\S.5

When the underlying strategic form game G is zero-sum, (1) and (2) coincide. In
non-zero sum games they can differ and, usually, vα(S) < vβ (S) for all S ⊂ N.

However, α- and β -characteristic functions express an irrational behaviour of
coalitions of players, acting as if they expected their rivals to minimize their payoff.
Although appealing because immune from any ad hoc assumption on the reaction
of the outside players (indeed, their minimizing behavior is here not meant to rep-
resent the expectation of S but rather as a mathematical way to determine the lower

5 Note that here players outside S are treated as one coalition, so the implicit assumption is that
players in N\S stick together after S departure from the grand coalition N.
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bound of S’s aggregate payoff), still this approach has important drawbacks: deviat-
ing coalitions are too heavily penalized, while outside players often end up bearing
an extremely high cost in their attempt to hurt deviators. Moreover,the little prof-
itability of coalitional objections yield very large set of solutions (e.g. large cores).

2.1.2 Nash Behaviour Among Coalitions

Another way to define the characteristic function in games with externalities is to
assume that in the event of a deviation from N, a coalition S plays à la Nash with
remaining players.6

Although appealing, such a modelling strategy requires some specific assump-
tions on the coalition structure formed by remaining players N\S once a coalition S
has deviated from N.

Following the Hart and Kurtz’s [25] coalition formation game, two extreme pre-
dictions can be assumed on the behaviour of remaining players. Under the so called
γ-assumption,7 when a coalition deviates from N, the remaining players split up
in singletons; under the δ -assumption, players in N\S stick together as a unique
coalition.8

Therefore, the obtained characteristic functions can be defined as follows:

vγ(S) = ∑
i∈S

ui

(
xS,
{

x j
}

j∈N\S
)

, (3)

where x is a strategy profile such that, for all S ⊂ N, xS ∈ XS and ∀ j ∈ N\S, x j ∈ Xj

xS = arg max
xS∈XS

∑
i∈S

ui

(
xS,
{

x j
}

j∈N\S
)

x j = arg max
x j∈Xj

u j

(
xS,{xk}k∈(N\S)\{ j} ,x j

)
.

Moreover,
vδ (S) = ∑

i∈S

ui
(
xS,xN\S

)
,

where,

xS = arg max
xS∈XS

∑
i∈S

ui
(
xS,xN\S

)

x j = arg max
xN\S∈XN\S

∑
j∈N\S

u j
(
xS,xN\S

)
.

6 The idea that coalitions in a given coalition structure can play noncooperatively among them was
firstly explored by Ichiishi [26].
7 Hurt and Kurz’s [25] Γ - game is indeed a strategic coalition formation game with fixed payoff
division, in which the strategies consist of the choice of a coalition. Despite the different nature of
the two games, there is an analogy concerning the coalition structure induced by a deviation from
the grand coalition.
8 See Chander and Tulkens [14] for applications of this approach.
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In both cases, for (3) and (4) to be well defined, the Nash equilibrium of the strategic
form game played among coalitions must be unique. Moreover, usually, vα(S) <
vβ (S) < vδ (S) for all S⊂ N.

2.1.3 Timing and the Characteristic Function

It is also conceivable to modify the γ- or δ -assumption reintroducing the temporal
structure typical of the α and β -assumptions.9

When a deviating coalition S moves first under the γ-assumption, the members
of S choose a coordinated strategy as leaders, thus anticipating the reaction of the
players in N\S, who simultaneously choose their best response as singletons. The
strategy profile associated to the deviation of a coalition S is the Stackelberg equi-
librium of the game in which S is the leader and players in N\S are, individually,
the followers. We can indicate this strategy profile as a x̃(S) = (x̃S,x j(x̃S)) such that

x̃S = arg max
xS∈XS

∑
i∈S

ui

(
xS,
{

x j(xS)
}

j∈N\S
)

(4)

and, for every j ∈ N\S,

x j(xS) = arg max
x j∈Xj

u j

(
x̃S,{xk(x̃S)}k∈(N\S)\{ j} ,x j

)
. (5)

Sufficient condition for the existence of a profile x̃(S) can be provided. Assume that
G(N\S,xS), the restriction of the game G to the set of players N\S given the fixed
profile xS, possesses a unique Nash Equilibrium for every S⊂ N and xS ∈ XS, where
XS is assumed compact. Let also each player’s payoff be continuous in each player’s
strategy. Thus, by the closedness of the Nash equilibrium correspondence (see, for
instance, [20]), members of S maximize a continuous function over a compact set
and, by Weiestrass Theorem, a maximum exists. As a consequence, for every S⊂N,
there exists a Stackelberg equilibrium x̃(S). We can thus define the characteristic
function vλ (S) as follows:

vλ (S) = ∑
i∈S

ui

(
x̃S,
{

x j(x̃S)
}

j∈N\S
)

.

Obviously, vλ (S) ≥ vγ (S). Inverting the timing of deviations and reactions, the
γ-assumption can be modified by assuming that a deviating coalition S plays as fol-
lower against all remaining players in N\S acting as singleton leaders. Obviously,
the same can be done under the δ -assumption.

2.1.4 The Core in Games with Externalities

We can test the various conversions of v(S) introduced above by examining the
different predictions obtained using the core of (N,v).

9 See Currarini and Marini [15] for more details.
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We first define an imputation for (N,v) as a vector z ∈ Rn
+ such that ∑i∈N zi

≤ v(N) (feasibility) and zi ≥ v(i) (individual rationality) for all i ∈ N.

Definition 3. The core of a TU cooperative game (N,v) is the set of all imputations
z ∈ Rn

+ such that ∑i∈S zi ≥ v(S) for all S⊆ N.

Given that coalitional payoffs are obtained from an underlying strategic form
game, the core can also be defined in terms of strategies, as follows.

Definition 4. The joint strategy x ∈ XN is core-stable if there is no coalition S ⊂ N
such that v(S) > ∑i∈S ui (x) .

Example 2 (Merger in a linear Cournot oligopoly). Consider three firms N =
{1,2,3} with linear technology competing à la Cournot in a linear demand mar-
ket. Let the demand parameters a and b and the marginal cost c, be selected in such
a way that interior Nash equilibria for all coalition structures exist. The set of all
feasible coalitions of the N players is

N = ({1,2,3} ,{1} ,{2} ,{3} ,{1,2} ,{1,3} ,{2,3}) .

Note that if all firms merge, they obtain the monopoly payoff v({1,2,3}= A
4 , where

A = (a− c)2/b, independently of the assumptions made on the characteristic func-
tion. These assumptions matters for the worth of intermediate coalitions. Under
the α- and β -assumptions, if either one single firm or two firms leave the grand
coalition N, remaining firms can play a minimizing strategy in such a way that, for
every S ⊂ N, vα(S) = vβ (S) = 0. In this case, the core coincides with all individu-
ally rational Pareto efficient payoff, i.e. all points weakly included in the set of co-
ordinates, Z =

[(
A
8 , A

16 , A
16

)
,
(

A
16 , A

8 , A
16

)
,
(

A
16 , A

16 , A
8

)]
. Under the γ-assumption, we

know that when, say firms 1 and 2, jointly leave the merger, a simultaneous duopoly
game is played between the coalition {1,2} and firm {3}. Hence, vγ ({1,2}) = A

9 .
Similarly for all other couples of firms deviating from N. When instead a single
firm i leaves the grand coalition N, a triopoly game is played, with symmetric
payoffs vγ ({i}) = A

16 (all these payoffs are obtained from the general expression
v(S) = A

(n−s+2)2 expressing firms’ profits in a n-firm oligopoly). In this case, since

intermediate coalitions made of two players do not give each firm more than their
individually rational payoff, the core under the γ-assumption coincides with the
core under the α- and β -assumptions. We know from Salant et al. [42] model of
merger in oligopoly, that vγ(S) > ∑i∈S vγ({i}) only for |S| > 0;8 |N|. This means
that in the merger game the core under the γ-assumption shrinks with respect to
the core under the α- and β -assumptions only for n > 5. Under the δ -assumption,
when a single firm leaves N, a simultaneous duopoly game is played between the
firm {i} and the remaining firms N\{i} acting as a single coalition. As a result,
v({i}) = A

9 , which is greater than A
12 , the maximum payoff at least one firm will

obtain in the grand coalition. Therefore, under the δ -assumption, the core is empty.
Finally, note that since under the λ -assumption every single firm playing as leader
obtains v({i}) = A

12 , in such a case the core is unique and contains only the equal
split imputation z = ( A

12 , A
12 , A

12) [see Figs. 1 and 2].
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z3

z1z2

(0, 0, A/4) 

(A/4, 0, 0) (0, A/4, 0) 

(A/16, A/16, A/8)

(A/8, A/16, A/16) 

α-β− and
γ-cores

(A/16, A/8, A/16)

Fig. 1 Merger game: α ,β and γ-cores

(0, 0, A/4) 

(A/4, 0, 0) (0, A/4, 0) 

λλ-core

(A/12, A/12, A/12)

z3

z2 z1

Fig. 2 Merger game: λ -core

2.2 Noncooperative Games of Coalition Formation

Most recent approaches have looked at the process of coalition formation as a strat-
egy in a well defined game of coalition formation (see [7, 8, 47] for surveys). Within
this stream of literature, usually indicated as noncooperative theory of coalition for-
mation (or endogenous coalition formation), the work by Hurt and Kurz [25] repre-
sents the main seminal contribution. Most recent contributions along these lines
include Bloch [4, 5], Ray and Vohra [40, 41] and Yi [46]. In all these works,
cooperation is modelled as a two stage process: at the first stage players form
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coalitions, while at the second stage formed coalitions interact in a well defined
strategic setting. This process is formally described by a coalition formation game,
in which a given rule of coalition formation maps players’ announcements of coali-
tions into a well defined coalition structure, which in turns determines the equilib-
rium strategies chosen by players at the second stage. A basic difference among the
various models lies on the timing assumed for the coalition formation game, which
can either be simultaneous (Hurt and Kurz [25], Ray and Vohra [40], Yi [46]) or
sequential ([5], Ray and Vohra [41]).

2.2.1 Hurt and Kurz’s Games of Coalition Formation

Hurt and Kurz [25] were among the first to study games of coalition formation with
a valuation in order to identify stable coalition structures.10 As valuation, Hurt and
Kurz adopt a general version of Owen value for TU games [38], i.e. a Shapley value
with prior coalition structures, that they call Coalitional Shapley value, assigning to
every coalition structure a payoff vector ϕi(π) in RN , such that (by the efficiency
axiom) ∑i∈N ϕi(π) = v(N). Given this valuation, the game of coalition formation is
modelled as a game in which each player i ∈ N announces a coalition S � i to which
he would like to belong; for each profile σ = (S1,S2, . . . ,Sn) of announcements, a
partition π (σ) of N is assumed to be induced on the system. The rule according
to which π (σ) originates from σ is obviously a crucial issue for the prediction of
which coalitions will emerge in equilibrium. Hurt and Kurz’s game Γ predicts that
a coalition emerges if and only if all its members have declared it (from which the
name of “unanimity rule” also used to describe this game).

Formally:
πγ (σ) = {Si (σ) : i ∈ N} ,

where

Si (σ) =
{

Si if Si = S j for all j ∈ Si

{i} otherwise.

Their game ∆ predicts instead that a coalition emerges if and only if all its mem-
bers have declare the same coalition S (which may, in general, differs from S).
Formally:

πδ (σ) =
{

S ⊂ N : i, j ∈ S if and only if Si = S j
}

.

It can be seen that the two rules generate different partitions after a deviation by
a coalition: in the Γ -game, remaining players split up in singletons; in the ∆ -game,
they stick together.

Example 3. N = {1,2,3}, σ1 = {1,2,3}; σ2 = {1,2,3}; σ3 = {3}

πγ(σ) = ({1} ,{2} ,{3}),

πδ (σ) = ({1,2} ,{3}).

10 Another seminal contribution is Shenoy [43].
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Note that the two rules of formation of coalitions are “exclusive” in the sense that
each player of a forming coalition has announced a list of its members. Moreover, in
the gamma-game this list has to be approved unanimously by all coalition members.

Once introduced these two games of coalition formation, a stable coalition struc-
ture for the game Γ (∆ ) can be defined as a partition induced by a Strong Nash
Equilibrium strategy profile of these games.

Definition 5. The partition π is a γ-stable (δ -stable) coalition structure if π =
πγ(σ∗) (or π = πδ (σ∗)) for some σ∗ with the following property: there exists no
S⊂ N and σS ∈ ΣS such that

ui(σS,σ∗N\S)≥ ui(σ∗) for all i ∈ S

and
uh(σS,σ∗N\S) > uh(σ∗) for at least one h ∈ S.

In the recent literature on endogenous coalition formation, the coalition forma-
tion game by Hurt and Kurz is usually modelled as a first stage of a game in which,
at the second stage formed coalitions interact in some underlying strategic setting.
The coalition formation rules are used to derive a valuation mapping from the set
of all players’ announcements Σ into the set of real numbers. These payoff func-
tions are obtained by associating with each partition π = {S1,S2, . . . ,Sm} a game in
strategic form played by coalitions

G(π) = ({1,2, . . . ,m} ,(XS1 ,XS2 , . . . ,XSm),(US1 ,US2 , . . . ,USm)),

in which XSk is the strategy set of coalition Sk and USk : Π m
k=1XSk → R+ is the payoff

function of coalition Sk, for all k = 1,2, . . . ,m. The game G(π) describes the inter-
action of coalitions after π has formed as a result of players announcements in Γ .or
∆ -coalition formation games.

The Nash equilibrium of the game G(π) (assumed unique) gives the payoff of
each coalition in π ; within coalitions, a fix distribution rule yields the payoffs of
individual members.

Following our previous assumptions (see Sect. 1.2) we can derived the game G(π)
from the the strategic form gameG by assuming thatXSk = ∏

i∈Sk

Xi andUSk = ∑
i∈Sk

ui, for

every coalition Sk ∈ π . We can also assume ui =
USk
|Sk| as the per capita payoff function

of members of Sk. Therefore, using Example 1, for the Γ -game , ui(x∗({1,2,3}) =
A
12 , for i = 1,2,3, ui(x∗({i, j} ,{k})= u j(x∗({i, j} ,{k})= A

18 , uk(x∗({i, j} ,{k})= A
9

and ui(x∗({i} ,{ j} ,{k}) = A
16 , for i = 1,2,3. Therefore, the grand coalition is the

only stable coalition structure of the Γ -game of coalition formation. For the ∆ -
game, there are no stable coalition structures.

If we extend the merger game to n firms, we know that the payoff of each firm
i ∈ S ⊂ N when all remaining firms split up in singletons, is given by:

ui
(
x∗
(
πγ (σ ′)))=

(a− c)2

s(n− s+ 2)2 ,
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where n ≡ |N|, s ≡ |S| and σ ′ =
(
{S}i∈S ,{N}i∈N\S

)
. The grand coalition, induced

by the profile σ∗ =
({N}i∈N

)
, is a stable coalition structure in the Γ -game of coali-

tion formation, if, for every i ∈ N,

ui (x(πγ (σ∗))) =
(a− c)2

4n
≥ ui
(
x
(
πγ (σ ′)))=

(a− c)2

s(n− s+ 2)2 .

The condition above is usually verified for every s ≤ n. Therefore, the stability of
the grand coalition for the Γ -merger game holds also for a n-firm oligopoly.

2.2.2 Timing in Games of Coalition Formation

Following the literature on endogenous timing (for instance, Hamilton and Slutsky’s
[24]) we can add a preplay stage to the basic strategic setting (denoted basic game)
in which players declare independently both their intention to coordinate their ac-
tion with the other players as well as the timing they want to play the basic game.
More specifically, every player i ∈ N is assumed to play an extensive form game
in which at stage t0 (coalition timing game) announces an 2-tuple of strategies
ai = (S,τ) ∈ N× {t1,t2} , where τ = {t1, t2} represents the time (stage 1 or 2)
she intends to play the basic game jointly with the selected coalition S ∈ N. Given
the profile of announcements of the N players a = (a1,a2, . . . ,an), a coalition struc-
ture P(a) = (Sτ

1,S
τ
2, . . . ,S

τ
m) endowed with a sequence of play of the basic game is

induced, for instance, via the Hart and Kurz’s unanimity rule: when a coalition of
players announces both the same coalition S and the same timing, they will play the
basic game of strategies simultaneously and coordinately as a coalition of players;
otherwise, they will play as singletons with the timing prescribed by their own an-
nouncement. As the following example shows, the coalition formation timing rule
constitutes a one-to-one mapping between the set of players’ announcements and
the set of feasible partitions of N.

Example 4 (Two-player). For every i = 1,2 with j �= i, each player’s announcement
set is:

Ai = [({i, j} ,t1) ,({i, j} ,t2) ,({i} , t1) ,({i} , t2)].
In this case the set of feasible partitions induced by the vector of announcement a ∈
A1×A2 includes the following six partitions:

({1,2}t1) ,({1,2}t2) ,({1}t1 ,{2}t1) ,({1}t2 ,{2}t2) ,({1}t1 ,{2}t2) ,({1}t2 ,{2}t1) .
The existence of a Strong Nash equilibrium of the coalition timing game can

be investigated. It can be shown [35] that for a symmetric strategic setting with no
discount, the strategy for players of acting all together at period one constitutes an
equilibrium when players’actions are strategic substitutes (in the sense of Bulow
et al. [12]). Conversely, acting together at period two constitutes an equilibrium
when players’actions are strategic complements.
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2.3 Some Guidelines to Coalition Formation in Economic
Applications

In order to compare and interpret the main predictions that endogenous coalition
formation theories obtain in some classical economic problems, it can be useful to
use a very simple setup in which the equal sharing rule within each coalition is
not assumed but it is obtained through some symmetry assumptions imposed on
the strategic form game describing the economic problem at hand. Once some ba-
sic assumptions are imposed on the strategic form games underlying the games of
coalition formation, the main economic applications can be divided in a few cat-
egories: 1) games with positive or negative players-externalities; 2) games with
actions that are strategic complements or substitutes; 3) games with or without
coalition-synergies. According to these three features, we may have a clear pic-
ture of some of the results which can be expected from the different concepts of
coalitional stability illustrated above and, in particular, of the stability of the grand
coalition.11

We start imposing some symmetry requirements on the strategic form game G.
Assumption 1. (Symmetric Players): Xi = X ⊂ R for all i ∈ N. Moreover, for all
x ∈ XN and all pairwise permutations p : N→ N:

up(i)
(
xp(1), . . . ,xp(n)

)
= ui (x1, . . . ,xn) .

Assumption 2. (Monotone Externalities): One of the following two cases must
hold for ui(x) : XN → R assumed quasiconcave:

1. Positive externalities: ui(x) strictly increasing in xN\i for all i and all x ∈ XN ;
2. Negative externalities: ui(x) strictly decreasing in xN\i for all i and all x ∈ XN .

Assumption 1 requires that all players have the same strategy set, and that play-
ers payoff functions are symmetric, by this meaning that any switch of strategies
between players induces a corresponding switch of payoffs. Assumption 2 requires
that the cross effect on payoffs of a change of strategy have the same sign for all
players and for all strategy profiles.

Lemma 1. For all S ⊆ N, x̃S ∈ argmaxxS∈XS ∑i∈S ui(xS,xN\S) implies x̃i = x̃ j for all
i, j ∈ S and for all xN\S ∈ XN\S.

Proof. See Appendix.

An important implication of Lemma 1 is that all players belonging to a given
coalition S ⊆ N will play the same maximizing strategy and then will obtain the
same payoff. We can thus obtain a game in valuation form from a game in partition
function form without imposing a fixed allocation rule.

The next lemma expresses the fact that in every feasible coalition structure π , at
the Nash equilibrium played by coalitions, when players-externalities are positive

11 Some of the results presented here comes from Currarini and Marini [16].
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(negative), being a member of bigger rather than a smaller coalition is convenient
only when each member of S plays a strategy that is lower (higher) than that played
by each member of a smaller coalition.

Lemma 2. Let Assumptions 1 and 2 hold. Then for every S and T ∈ π , with |T |
≥ |S|:

(1) Under Positive Externalities, us(x∗(π))≥ ut(x∗(π)) if and only if xs ≤ xt ;
(2) Under Negative Externalities, us(x∗(π))≥ ut(x∗(π)) if and only if xs ≥ xt .

Proof. See Appendix.

Finally, we can use a well known classification of all economic models in two
classes: (1) games in which players’ actions are strategic complements; (2) games
in which players’ actions are strategic substitutes.12

Definition 6. The payoff function ui exhibits increasing differences on XN if for all
S, xS ∈ XS, x′S ∈ XS, xN\S ∈ XN\S and x′N\S ∈ XN\S such that x′S > xS and x′N\S > xN\S
we have

ui

(
x′S,x

′
N\S
)
−ui

(
xS,x

′
N\S
)
≥ ui
(
x′S,xN\S

)−ui
(
xS,xN\S

)
.

This feature is typical of games, as price oligopoly models with differentiated
goods, for which players’ best-replies are upward-sloping. For these games, we can
prove the following.

Lemma 3. Let assumptions 1–2 hold, and let ui have increasing differences on XN,
for all i ∈ N. Then for every S and T ∈ π , with |T | ≥ |S|:

(1) Positive Externalities imply xs ≤ xt ; (2) Negative Externalities imply xs ≥ xt .

Proof. See Appendix.

Suppose now to have a game with actions that are strategic substitutes. This is
the case of Cournot oligopoly and many other economic models. Suppose also that
a boundary on the slope of the reaction mapping fS : RN\S→ RS is imposed by the
following contraction assumption.
Assumption 3. (contraction) Let S ∈ π . Then, there exists a c < 1 such that for all
xN\S and x′N\S ∈ XN\S

∥∥∥ fS
(
xN\S
)− fS

(
x′N\S
)∥∥∥≤ c

∥∥∥xN\S− x′N\S
∥∥∥ ,

where ‖.‖ denotes the euclidean norm defined on the space Rn−s.

Lemma 4. Let assumptions 1–3 hold. Then for every S and T ∈ π , with |T | ≥ |S|:
(1) Positive Externalities imply xs ≤ xt ; (2) Negative Externalities imply xs ≥ xt .

Proof. See Currarini and Marini [16].

12 See, for this definition, Bulow et al. [12].
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Using all lemmata presented above we are now able to compare the valuation of
players belonging to different coalitions in a given coalition structure and then, to a
certain extent, the profitability of deviations. However, the above analysis is limited
to games in which forming a coalition does not enlarge the set of strategy available
to its members and does not modify the way payoffs within a coalition originate
from the strategies chosen by players in N. In fact, as assumed at the beginning
of the paper, the action space of each coalition S ⊂ N is restricted to XS ≡ ∏

i∈S
Xi.

Moreover US = ∑
i∈S

ui (x(π)). The only advantage for players to form coalitions is

to coordinate their strategies in order to obtain a coalitional efficient outcome. This
approach encompasses many well known games without synergies, such as Cournot
and Bertrand merger or cartel formation and public good and environmental games,
but rules out an important driving force of coalition formation, i.e. the exploitation
of synergies, typically arising for instance in R&D alliances or mergers among firms
yielding some sort of economies of scales. Within this framework, we can present
the following result.

Proposition 1. Let assumptions 1–2 hold, and let ui possess increasing differences
on XN, for all i ∈ N. Then the grand coalition N is a stable coalition structure in the
game of coalition formation Γ derived from the game in strategic form G.

Proof. By Lemma 3, positive externalities imply that for all π , at x(π) larger coali-
tions choose larger strategies than smaller coalitions, while the opposite holds under
negative externalities, and then US(x∗(πγ ))

|S| ≥ US(x∗(πγ ))
|T | for all S,T ∈ πγ with |T | ≥ |S|.

This directly implies the stability of the grand coalition in Γ . To provide a sketch of
this proof, we note that any coalitional deviation from the strategy profile σ∗ yield-
ing the grand coalition induces a coalition structure in which all members outside
the deviating coalitions appear as singleton. Since these players are weakly better
off than any of the deviating members, and since all players were receiving the same
payoff at σ∗, a strict improvement of the deviating coalition would contradict the
efficiency of the outcome induced by the grand coalition. �

In games with increasing differences, players strategies are strategic comple-
ments, and best replies are therefore positively sloped. The stability of the efficient
coalition structure π∗ = {N} in this class of games can be intuitively explained as
follows. In games with positive externalities, a deviation of a coalition S ⊂ N will
typically be associated with a lower level of S’s members’ strategies with respect
to the efficient profile x(π∗), and with a higher level in games with negative exter-
nalities (see lemma 3 and 4 above). If strategies are the quantity of produced public
good or prices (positive player-externalities), S will try to free ride on non mem-
bers by reducing its production or its price; if strategies are emissions of pollutant
or quantities (negative player-externalities), S will try to emit or produce more and
take advantage of non members’ lower emissions or quantities. The extent to which
these deviations will be profitable ultimately depend on the reaction of non mem-
bers. In the case of positive externalities, S will benefit from an increase of non
members’ production levels or prices; however, strategic complementarity implies
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that the decrease of S’s production levels or prices will be followed by a decrease
of the produced levels or prices of non members. Similarly, the increase of S’s pol-
lutant emissions or quantities will induce higher pollution or quantity levels by non
members. Free riding is therefore little profitable in these games. From the above
discussion, it is clear that deviations can be profitable only if best reply functions
are negatively sloped, that is, strategies must be substitutes in G. However, the above
discussion suggests that some “degree” of substitutability may still be compatible
with stability. Indeed, if S’s decrease in the production of public good is followed
by a moderate increase in the produced level of non members, S may still not find it
profitable to deviate from the efficient profile. Therefore, if the absolute value of the
slope of the reaction maps is bounded above by 1, the stability result of proposition
1 extends to games with strategic substitutes.

Proposition 2. Let assumptions 1–3 hold. The grand coalition N is a stable coali-
tion structure in the game of coalition formation Γ derived from the game in strate-
gic form G.

Moreover, we can extend the results of proposition 1 and 2 to games with negative
coalition-externalities.13

Definition 7. A game G(π) exhibits positive (negative) coalition-externalities if,
for any feasible coalition structure π and coalition S ∈ π , for every player i ∈ S,
ui(x∗ (π ′)) > (<) ui(x∗ (π)) where π ′ is obtained from π by merging coalitions in
π\S.

It is clear from the above definition, that under negative coalition-externalities,

ui (x(πγ (σ ′))) < ui
(
x
(
πδ (σ ′)

))
where σ ′ =

(
{S}i∈S ,{N} j∈N\S

)
just because

πγ (σ ′) =
(
{S} ,{ j} j∈N\S

)
and πδ (σ ′) = ({S} ,{N\S}) . The following proposi-

tions exploits this fact.

Proposition 3. Let assumptions 1–2 hold, and let ui possess increasing differences
on XN, for all i∈N. Let also the game G(π) exhibits negative coalition-externalities.
Then the grand coalition N is a stable coalition structure in the ∆ -game of coalition
formation derived from the game in strategic form G.

Proposition 4. Let assumptions 1–3 hold. Let also the game G(π) exhibits negative
coalition-externalities. Then the grand coalition N is a stable coalition structure in
the ∆ -game of coalition formation derived from the game in strategic form G.

13 See Bloch [6] or Yi [47] for such a definition. There is not a clear relationship between games
with positive (or negative) player-externalities and games with positive (or negative) coalition-
externalities. However, for most well known games without synergies, both positive-player ex-
ternalities (PPE) plus strategic complement actions (SC) as well as negative-player externalities
(NPE) plus strategic substitute actions (SS) yield games with positive coalition-externalities. These
are the cases of merger or cartel games in quantity oligopolies (NPE+SS), merger or cartel games
in price oligopolies (PPE+SC) and public goods (PPE+SS) or environmental games (NPE+SS).
Similarly, we can obtain Negative Coalition-Externalities in a game by associating NPE and SC as
in a cartel game in which goods are complements and then the game exhibits SC.
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A comparison of the above results, obtained for Hurt and Kurz’s (1985) games
of coalition formation, with the other solution concepts can be mentioned. It can be
shown (see [46]) that for all games without synergies in which - as in the merger
example - players prefer to stay as singletons to free-ride on a forming coalition –
Bloch’s [5] sequential game of coalition formation gives rise to equilibrium coalition
structures formed by one coalition and a fringe of coalition acting as singletons.
Moreover, even in a linear oligopoly merger game, Ray and Vohra’s [40] Equilib-
rium Binding Agreement may or may not support the grand coalition as a stable
coalition structure, depending on the number of firms in the market. When the game
G is a game with synergies, a classification of the possible results. becomes even
more complex. To give an illustration, we can introduce a simple form of synergy
by assuming, as in Bloch’s [4] and Yi’s [46] R&D alliance models, that when firms
coordinate their action and create a R&D alliance, they pool their research assets
in such a way to reduce the cost of each firm in proportion to the number of firms
cooperating in the project.14 Let the producing cost of firms participating to a R&D
alliance of s firms be c(xi,si) = (c + 1− si)xi, where si is the cardinality of the al-
liance containing firm i: Let also a > c ≥ n. As shown by Yi [46], at the unique
Nash equilibrium associated with every coalition structure , the profit of each firm
in a coalition of size si is given by

uγ
i (x(πγ)) =

(
a− (n + 1)(c + 1− si)+

k
∑
j=1

s j (c + 1− s j)

)2

(n + 1)2 ,

When π = π (σ ′), symmetry can be used to reduce the above expression to

uγ
i

(
πγ (σ ′))=

(a− (n− si + 1)(c + 1− si)+ (n− si)c)2

(n + 1)2 .

Straightforward manipulations show that the deviation of a coalition Si from the
grand coalition in the game Γ is always profitable whenever:

si >−1
2

n + c− 1
2

√
(n2−4(nc− c2)−8(a− c−1).

For example, for n = 8, a deviation by a group of six firms (si = 6) induces a per firm

payoff of vγ
i (πγ (σ ′)) = (a−c+15)2

81 higher than the every firm’s payoff in the grand

coalition vi (πγ (σ∗)) = (a−c+7)2

81 . Therefore, it becomes more difficult to predict
the stable coalition structures in Hurt and Kurz’s Γ and ∆ -games. In the sequential
games of coalition formation [5, 41] for a linear Cournot oligopoly in which firms
can form reducing-cost alliances, and each firm’s i ∈ S bears a marginal cost

ci = γ−θ s ,

14 This is usually classified as a game with negative coalition-externalities (see [46, 47]).
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where s is the size of the alliance to which firm’s i belongs, the equilibrium profit of
each firm i ∈ S is:

vi (π) =
1− γ
n + 1

+ θ si− ∑ j �=i s2
i

n + 1
.

Therefore, the formation of alliances induces negative externalities on outsiders,
just because an alliance reduces marginal costs of participants and make them more
aggressive in the market. Moreover, members of larger alliance have higher profits
and then, if membership is open, all firms wants to belong to the association ([6],
Bloch 2005). In the game of sequential coalition formation, anticipating that re-
maining players will form an association of size (n− s), the first s players optimally
decide to admit s∗ = (3n + 1)/4 and the unique equilibrium coalition structure re-
sults in the formation of two associations of unequal size π∗ =

({ 3n+1
4

}
,
{

n−1
4

})
.

3 Networks

3.1 Notation

We follow here the standard notation applied to networks.15 A nondirected network
(N,g) describes a system of reciprocal relationships between individuals in a set
N = {1,2, . . . ,n}, as friendships, information flows and many others. Individuals are
nodes in the graph g and links represent bilateral relationship between individuals.16

It is common to refer directly to g as a network (omitting the set of players). The
notation i j ∈ g indicates that i and j are linked in network g. Therefore, a network
g is just a list of which pairs of individuals are linked to each other. The set of
all possible links between the players in N is denoted by gN = { i j| i, j ∈ N, i �= j}.
Thus G =

{
g⊂ gN

}
is the set of all possible networks on N, and gN is denoted

as the complete network. To give an example, for N = {1,2,3} , g = {12,13} is
the network with links between individuals 1 and 2 and 1 and 3, but with no link
between player 2 and 3. The complete network is gN = {12,23,13}. The network
obtained by adding link i j to a network g is denoted by g + i j, while the network
obtained by deleting a link i j from a network g is denoted g− i j. A path in g between
individuals i and j is a sequence of players i = i1, i2, . . . , iK = j with K ≥ 2 such
that ikik+1 ∈ g for each k ∈ {1,2, . . . ,K−1}. Individuals who are not connected by
a path are in different components C of g; those who are connected by a path are
in the same component. Therefore, the components of a network are the distinct
connected subgraphs of a network. The set of all component can be indicated as
C(g). Therefore, g =

⋃
g′∈C(g) g′. Let also indicate with N(g) the players who have

at least one link in network g.

15 See, for instance, Jakcson and Wolinski [34], Jackson [28] and van den Nouweland [44].
16 Here both individuals engadged in a relationship have to give their consent for the link to form.
If the relationship is unilateral (as in advertising) the appropriate model is a directed network. Also,
here the intensity of a link is assumed constant.
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3.2 Value Functions and Allocation Rules

It is possible to define a value function assigning to each network a worth.

Definition 8. A value function for a network is a function v : G→ R.

Let V be the set of all possible value functions. In some applications v(g) =
∑i ui(g), where ui : G→ R. A network g ∈ G is defined (strongly) efficient if v(g)
≥ v(g′) for all g′ ∈ G. If the value is transferable across players, this coincides with
Pareto-efficiency.17

Since the network is finite, it always exists an efficient network. Another relevant
modelling feature is the way in which the value of a network is distributed among
the individuals forming the network.

Definition 9. An allocation rule is a function Y : G×V → RN .

Thus, Yi(g,v) is the payoff obtained by every player i ∈ N(g) under the value
function v. Some important properties of the value functions v and of the allocation
rules Y can be defined.18

When compared to the characteristic function of cooperative games (see
Sect. 1.1), here a value function v is sensitive not only to the number of players
connected (in a component of g) but also to the specific architecture in which
they are connected. However, v can be restricted to depend only on the number
of players connected in a coalition. In a seminal contribution, Myerson [36] starts
with a TU cooperative game (N,v) and overlaps a communication network g to
such a framework. Myerson [36] associates a “graph-restricted value” vg : 2N

→ R, assigning to each coalition S a value equal to the sum of worth generated
by the connected components of players in S. Formally, players in S have links
in g(S) = { i j ∈ g| i ∈ S, j ∈ S} and this induces a partition of S into subsets of
players S(g) that are connected in S by g. Thus, vg(S) = ∑g′∈CS(g) v(g′) for every

S⊂ N, where CS(g) indicates the set of components induced by g involving players
belonging to coalition S. This value assumes that players in S can coordinate their
action only within their own components.19 Two assumptions underline this value:
(1) there are no externalities between different components of a network; (2) what
matters for the worth vg is only the worth of the coalition of players which are in
a component, not the type of connections existing within the coalition. Within this
framework, Myerson characterizes a specific allocation rule (known as Myerson
value) distributing the payoffs among individuals, and shows that under two ax-
ioms - fairness and component additivity - the unique allocation rule satisfying
these properties is the Shapley value of the graph-restricted game (N,vg):

17 A network g is Pareto efficient (PE) with respect to a value v and an allocation rule Y if there
not exists any g′ ∈ G such that Yi(g′,v) ≥ Yi(g,v) with strict inequality for some i Note that if a
network is PE with respect to v and Y for all possible allocation rules Y ; it is (strong) efficient (see
[28]).
18 See Jackson and Wolinsky [34] and Jackson [29] for details.
19 This implies a component balanced allocation rule Y .
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Yi(g,vg) = ∑
S⊂N\{i}

|S|!(|N|−1−|S|)!
|N|! (vg (S∪{i})− vg (S)) .

3.3 Networks Formation Games

3.3.1 Networks Formation in Extensive Form

Aumann and Myerson [2] propose an extensive form game to model the endogenous
formation of cooperation structures. In their approach, which involves a sequential
formation of links among players, bilateral negotiations take place in some prede-
termined order. Firstly, an exogenous rule determines the sequential order in which
pairs of players negotiate to form a link. A link is formed if and only if both players
agree and, once formed, cannot be broken. The game is one of perfect information
and each player knows the entire history of links accepted or rejected at any time of
the game. Once all links between pairs of players have formed, single players can
still form links. Once all players have decided, the process stops and the network g
forms and the payoff is assigned according to the Myerson value, i.e. the Shapley
value of the restricted game (N,vg). Stable cooperative structure are considered only
those associated with subgame perfect equilibria of the game.

Example 5.20 Suppose a TU majority game with N = {1,2,3} and v(S) = 1 if |S| ≥
2 and v(S) = 0 otherwise. If the exogenous rule specifies the following order of
pairs: {1,2} , {1,3} , {2,3}. The structure {1,2} is the only cooperation structure
supported by a subgame perfect equilibrium of the game. Neither player 1 nor player
2 have an interest to form a link with player 3, provided that the other player has not
formed a link with 3. So, using backward induction, if at the final stage {2,3} has
formed, at stage 2 also {1,3} forms and player 1 obtains a lower payoff than in a
coalition with only player 2. Thus, at stage 1 player 1 forms a link with player 2 and
the latter accepts. No other links are formed at the following stages.

It is possible that a subgame Nash equilibrium of the Aumann and Myerson’s
network formation game in extensive form does not support the formation of the
complete network even for superadditive games. Moreover, no general results are
known for the existence of stable complete networks even for symmetric convex
games.21

3.3.2 Networks Formation in Strategic Form

Myerson [37] suggests a noncooperative game of network formation in strategic
form.22

20 This example is taken from Dutta et al. [19].
21 See, for a survey of this approach, van den Nouweland [45].
22 This game is also analyzed by Quin [39] and Dutta et al. [19].
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For each player i ∈ N a strategy σi ∈ Σi is given by the set of players with whom
she want to form a link, i.e. Σi = (S|S ⊆ N\{i}). Given a n-tuple of strategies σ ∈
Σ1×Σ2×·· ·×Σn a link i j is formed if and only if j ∈ σi and i ∈ σ j. Denoting the
formed (undirected) network g(σ), the payoff of each player is given by Yi(v,g(σ))
for every σ ∈ ΣN . A strategy profile is a Nash equilibrium of the Myerson’s linking
game if and only if, for all player iand all strategies σ ′ ∈ Σi

Yi(v,g(σ))≥ Yi(v,g(σ ′i ,σ−i)).

We can also define a network g Nash stable with respect to a value function v
and an allocation rule Y , if there exists a pure strategy Nash equilibrium σ such that
g = g(σ).

The concept of Nash equilibrium applied to the network formation game appears
a too weak notion of equilibrium, due to the bilateral nature of links. The empty
network (a g with no links) is always Nash stable for any v and Y . Moreover, all
networks in which there is a gain in forming additional links but no convenience
to sever existing links are also Nash stable. Refinements of the Nash equilibrium
concept for the network formation process have been proposed. The pairwise sta-
bility introduced by Jackson and Wolinsky [34] plays a prominent role in the recent
developments of the analysis of networks formation.

3.3.3 Pairwise Stability

We should expect that in a stable network players do not benefit by altering the
structure of the network. Accordingly, Jackson and Wolinsky [34] defines a notion
of network stability denoted pairwise stability.

Definition 10. A network g is pairwise stable with respect to the allocation rule Y
and value function v if

(1) For all i j ∈ g, Yi(v,g)≥ Yi(g− i j,v) and Yj(v,g)≥ Yj(g− i j,v), and
(2) For all i j /∈ g, if Yi(g + i j,v) > Yi(g,v) then Yj(g + i j,v) < Yj(g,v).

As shown by Jackson and Watts [33], a network is pairwise stable if and only if
it has no improving path emanating from it. An improving path is a sequence of net-
works {g1,g, . . . ,gK}, where each network gk is defeated by a subsequent (adjacent)
network gk+1, i.e. Yi(gk+1,v) > Yi(gk,v) for gk+1 = gk− i j or Yi(gk+1,v)≥Yi(gk,v)
and Yj(gk+1,v) ≥ Yj(gk,v) for gk+1 = gk + i j, with at least one inequality holding
strictly. Thus, if there not exists any pairwise stable network, then it must exists
at least one cycle, i.e. an improving path {g1,g, . . . ,gK} with g1 = gK . Jackson and
Wolinsky [34] show that the existence of pairwise stable networks is always ensured
for certain allocation rules. They prove that under the egalitarian and the component-
wise egalitarian rules,23 pairwise stable networks always exists. In particular, under

23 The egalitarian allocation rule Y e is such that Y e
i (g;v)= v(n)

n for all i and g. The component-wise
allocation rule Y ce is an egalitarian rule respecting component balance, i.e. such that Y ce

i (g;v) =
v(C)
|N(C)| when N(C), the set of players in component C is non empty and Y ce

i (g;v) = 0 otherwise. See
Jackson and Wolinsky [34] and Jackson [28] for details.
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the egalitarian rule, any efficient network is pairwise stable. Under the component-
wise allocation rule, a pairwise stable network can always be found. This can be
done for component additive v by finding components C that maximize the payoffs
of its players, and then continuing this process for the remaining players N\N(C).
The network formed by all these components is pairwise stable. Another allocation
rule with strong existence properties is the Myerson value. As shown by Jackson
and Wolinsky [34], under Myerson’s allocation rule there always exists a pairwise
network for every value function v ∈ V . Moreover, all improving paths emanating
from any network lead to pairwise stable networks, i.e. there are no cycles under the
Myerson value allocation rule.24

However, as it is shown by Jackson and Wolinsky and by Jackson [28], there
exists a tension between efficiency and stability whenever the allocation rule Y is
component balanced and anonymous, in the sense that there does not exists an allo-
cation rule with such properties that for all v ∈ V yields an efficient network that is
pairwise stable.

3.3.4 Further Refinements of Network Stability Concepts

As in the case of coalition formation, equilibrium concepts immune to coordinated
deviations by players are also conceivable for networks (see, [18, 19, 32]). By al-
lowing every subset of players to coordinate their strategies in arbitrary ways yields
a strong Nash equilibrium for network formation games. That is, a strategy profile
σ ∈ ΣN is a strong Nash equilibrium of the network formation game if there not
exist a coalition S ⊆ N and a strategy profile σ ′S ∈ ΣS such that

Yi(v,g(σ ′S,σN\S))≥ Yi(v;g(σ)),

with strict inequality for at least one i∈ S. Hence, a network g is strongly stable with
respect to a value function v and an allocation rule Y , if there exists a strong Nash
equilibrium σ such that g = g(σ).

Similarly, an intermediate concept of stability, stronger than pairwise stability
and weaker than strong Nash equilibrium, has been proposed [34] and denoted pair-
wise Nash equilibrium. This can be defined as a strategy profile σ ∈ ΣN such that,
for all player i and all strategies σ ′i ∈ Σi,

Yi(v,g(σ ′i ,σN\{i}))≥ Yi(v,g(σ))

and there not exists a pair of agents (i, j) such that

Yi(v,g(σ)+ i j) ≥ Yi(v,g(σ))
Yj(v,g(σ)+ i j) ≥ Yj(v,g(σ))

24 See Jackson [28] for details.
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with strict inequality for at least one of the agents. Therefore, a network g is
pairwise Nash stable with respect to a value function v and an allocation rule Y , if
there exists a pairwise Nash equilibrium such that g = g(σ).25

It can be shown that, given a value function v and an allocation rule Y , the set
of strongly stable networks is weakly included in the set of pairwise Nash stable
networks and that the latter set coincides with the intersection of pairwise stable
networks and Nash stable networks.26 Moreover, the set of pairwise stable networks
and the set of Nash stable networks can be completely disjoint even though neither
is empty.27

In the next section, I briefly illustrate some very simple applications of net-
work formation games to classical I. O. models. These are taken from Bloch [9],
Belleflamme and Bloch [3] as well as Goyal and Joshi [22].

3.4 Some Economic Applications

3.4.1 Collusive Networks

In Bloch [7] and in Belleflamme and Bloch [3] it is assumed that firms can sign
bilateral market sharing agreements. Initially firms are present on different (geo-
graphical) markets. By signing bilateral agreement they commit not to enter each
other’s market.

If i j ∈ g, firm i withdraws from market j and firm j withdraws from market i.
For every network g and given N firms, let ni(g) denote the number of firms in firm
i’ s market, with ni(g) = n−di(g) where di(g) is the degree of vertex (firm) i in the
network, i.e. the number of its links. If all firms are identical, firm i’s total profit is

Ui(g) = ui(ni(g))+ ∑
i,i j/∈g

ui (n j(g)) .

With linear demand and zero marginal cost, under Cournot competition we obtain

Ui(g) =
a2

[ni(g)+ 1]2
+ ∑

i,i j/∈g

a2

[n j(g)+ 1]2
.

If n ≥ 3; there are exactly two pairwise stable networks, the empty network and
the complete network. For n = 2, the complete network is the only stable network.

25 This equilibrium concept has been adopted in applications by Goyal and Joshi [22] and
Belleflamme and Bloch [3] and formally studied by Calvo-Armengol and Ilkilic [13], Ilkilic [27]
and Gilles and Sarangi [21].
26 See, for instance, Jackson and van den Nouweland [32] and Bloch and Jackson [10].
27 See Bloch and Jackson [10, 11], for an extensions of these equilibrium concepts to the case in
which transfers among players are allowed.
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Note that the empty network is stable since for every symmetric firm the benefit
to form a link is

Ui(g + i j)−Ui(g) =
a2

n2 −2
a2

(n + 1)2

that, for n≥ 3, is negative.
For every incomplete network, Ui(g)−Ui(g− i j) ≥ 0, requires that

a2

[ni(g)+ 1]2
−
[

a2

[ni(g)+ 2]2
+

a2

[n j(g)+ 1]2

]
≥ 0

and this holds only for ni(g) = n j(g) = 1, i.e. when the network is complete.
In this case,

Ui(gN)−Ui(gN− i j) =
a2

4
− 2a2

9
> 0.

Therefore, it follows that the only nonempty network which is pairwise stable is
the complete network.

3.4.2 Bilateral Collaboration Among Firms

Bloch [7] and Goyal and Joshi [22] consider the formation of bilateral alliances
between firms that reduce their marginal cost, as

ci = γ−θdi(g) ,

where di(g) denotes the degree of vertex i, i.e. the number of bilateral agreements
signed by firm i.

Under Cournot competition with linear demand, we have each firm’s profit is
given by

Ui(g) =
[

a− γ
n + 1

+ θdi(g)− θ ∑ j d j(g)
n + 1

]2

.

For such a case, the only pairwise stable network turns out to be the complete net-
work gN (see [22]). This is because, by signing an agreement, each firm increases its

quantity by ∆qi =
nθ

n + 1
, consequently, its profit. Moreover, when a large fixed cost

to form a link is included in the model, Goyal and Joshi show that stable networks
possess a specific form, with one complete component and a few singleton firms.

4 Concluding Remarks

This paper has attempted to provide a brief overview of the wide and increasing
literature on games of coalition and network formation, paying a specific attention
to the results which may be obtained by applying these games to some well known
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economic problems. It has been shown that, under reasonable assumptions mainly
concerning the symmetry of players’ payoffs, a number of general results can be
obtained in games of coalition formation, which, in turn, can be easily applied to
standard economic problems without synergies, as industry mergers and cartels,
public goods games and many others. Network formation games appear as a nat-
ural extension of coalition formation games with, included, a detailed analysis of
the effects of bilateral links among players. However, the issue of which network
will form and which equilibrium concepts are suitable in a number of economic
applications seems still largely unresolved, thus requiring further investigation. The
future research agenda on the topic of network formation in social environments is
certainly open to new exciting contributions.

Appendix

Lemma 1. For all S⊆N, x̃S ∈ argmaxxS∈XS ∑i∈S ui(xS,xN\S) implies x̃i = x̃ j for all
i, j ∈ S and for all xN\S ∈ XN\S.

Proof. Suppose x̃i �= x̃ j for some i, j ∈ S. By symmetry we can derive from x̃S a new
vector x′S by permuting the strategies of players i and j such that

∑
i∈S

ui(x′S,xN\S) = ∑
i∈S

ui(x̃S,xN\S) (6)

and hence, by the strict quasiconcavity of all ui(x), for all λ ∈ (0,1) we have that:

∑
i∈S

ui(λ x′S +(1−λ )x̃S,xN\S) > ∑
i∈S

ui(x̃S,xN\S). (7)

Since, by the convexity of X , the strategy vector
(
λ x′S +(1−λ )x̃S

) ∈ XS, we obtain
a contradiction. �

Lemma 2. Let Assumptions 1 and 2 hold. Then for every S and T ∈ π , with |T |
≥ |S|: (1) Under Positive Externalities, us(x(π)) ≥ ut(x(π)) if and only if xs ≤ xt ;
(2) Under Negative Externalities, us(x(π))≥ ut(x(π)) if and only if xs ≥ xt .

Proof. We first prove the result for the case of positive externalities, starting with
the “only if” part. By assumption 1, all members of T get the same payoff at x(π).
By definition of x(π), the profile in which all members of T play xt maximizes the
utility of each member of T , so that

ut((xt ,xt)xs)≥ ut((xs,xs) ,xs). (8)

Suppose now that xs > xt . By assumption 1 and 2.1 we have

ut((xs,xs) ,xs) = uti((xs,xs) ,xs) = us((xs,xs) ,xs) > us((xt ,xt) ,xs). (9)
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To prove the “if” part, consider coalitions T1, T2 and S which, as defined at the
beginning of this section, are such that |T1| = |S| and such that {T1,T2} forms a
partition of T . By definition of x(π), the utility of each member of S is maximized
by the strategy profile xS. Using the definition of us and of xs we write:

us((xt ,xt) ,xs)≥ us((xt ,xt) ,xt). (10)

By assumption 2.1, if xs ≤ xt then

us((xt ,xt) ,xt)≥ us((xs,xt) ,xt). (11)

Finally, by assumption 1 and the fact that |T1|= |S|, we obtain

us((xs,xt) ,xt) = ut1((xt ,xt) ,xs) = ut((xt ,xt) ,xs), (12)

implying, together with (11) and (12), that

us(x(π)) = us((xt ,xt) ,xs)≥ ut((xt ,xt) ,xs) = ut(x(π)). (13)

Consider now the case of negative externalities (assumption 2.2). Condition (8)
holds independently of the sign of the externality. Suppose therefore that xs < xt .
By negative externalities and symmetry we have

ut((xs,xs),xs) = us((xs,xs),xs) > us((xt ,xt) ,xs). (14)

The “if” part is proved considering again coalitions T1, T2 and S. Again, Condition
(10) holds independently of the sign of the externality. By negative externalities, if
xs ≥ xt then

us((xt ,xt) ,xt)≥ us((xs,xt) ,xt). (15)

As before, we use assumption 1 and the fact that |T1|= |S| to obtain

us((xs,xt) ,xt) = ut((xt ,xt) ,xs), (16)

and, therefore, that

us(x(π)) = us(xt ,xs)≥ ut(xt ,xs) = ut(x(π)). (17)

�

Lemma 3. Let assumptions 1–2 hold, and let ui have increasing differences on XN,
for all i ∈ N. Then for every S and T ∈ π , with |T | ≥ |S|: (1) Positive Externalities
imply xs ≤ xt ; (2) Negative Externalities imply xs ≥ xt .

Proof. (1) Suppose that, contrary to our statement, positive externalities hold and
xs > xt By increasing differences of ui for all i ∈ N (and using the fact that the sum
of functions with increasing difference has itself increasing differences), we obtain:

us((xs,xt),xs)−us((xs,xt),xt)≥ us((xt ,xt),xs)−us((xt ,xt),xt). (18)
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By definition of xs we also have:

us((xt ,xt),xs)−us((xt ,xt),xt)≥ 0. (19)

Conditions (18) and (19) directly imply:

us((xs,xt),xs)−us((xs,xt),xt )≥ 0. (20)

Referring again to the partition of T into the disjoint coalitions T1 and T2, an appli-
cation of the symmetry assumption 1 yields:

us((xs,xt),xs) = ut1((xs,xt),xs); (21)

us((xs,xt),xt) = ut1((xt ,xt),xs).

Conditions (20) and (21) imply

ut1((xs,xt),xs)≥ ut1((xt ,xt),xs). (22)

Positive externalities and the assumption that xs > xt imply

ut2((xs,xt),xs) > ut2((xt ,xt),xs). (23)

Summing up conditions (22) and (23), and using the definition of T1 and T2, we
obtain:

ut((xs,xt),xs) > ut((xt ,xt),xs), (24)

which contradicts the assumption that xt maximizes the utility of T given xs.
The case (2) of negative externalities is proved along similar lines. Suppose that

xs < xt . Conditions (20) and (21), which are independent of the sign of the external-
ities, hold, so that (22) follows. Negative externalities also imply that if xs < xt then
(23) follows. We therefore again obtain condition (24). �
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