
Some Topics in Graph Theory

Klavdija Kutnar and Dragan Marušič

Abstract In this short introductory course to graph theory, possibly one of the most
propulsive areas of contemporary mathematics, some of the basic graph-theoretic
concepts together with some open problems in this scientific field are presented.

1 Some Basic Concepts

A simple graph X is an ordered pair of sets X = (V,E). Elements of V are called
vertices of X and elements of E are called edges of X . An edge joins two vertices,
called its endvertices. Formally, we can think of the elements of E as subsets of V of
size 2. A simple graph is thus an undirected graph with no loops or multiple edges.

If u �= v are vertices of a simple graph X and {u,v} (sometimes shortened to uv)
is an edge of X , then this edge is said to be incident to u and v. Equivalently, u and
v are said to be adjacent or neighbors, and we write u ∼ v. Phrases like, “an edge
joins u and v” and “the edge between u and v” are also commonly used.

Graphs can be nicely represented with diagrams consisting of dots standing for
vertices and lines standing for edges (see Fig. 1).

In a simple graph there is at most one edge joining a pair of vertices. In a multi-
graph, multiple edges are permitted between pairs of vertices. There may also be
edges, called loops, that connect a vertex to itself (see Fig. 2).

As opposed to a simple graph where edges are undirected, a directed graph (in
short, digraph) is an ordered pair of sets (V,E) where V is a set of vertices and E is
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Fig. 1 A diagram of a
graph X = (V,E) where
V = {1,2,3,4} and E =
{{1,2},{1,3},{2,3},{3,4}}

Fig. 2 An example of a
multigraph with three edges
between vertices 1 and 2 and
loop on vertex 3
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Fig. 3 A directed graph 1
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Fig. 4 A weighted graph 1 10 2

5
6

3 3 4

a subset of ordered pairs of vertices from V . Now the edges may be thought of as
arrows going from a tail (vertex) to a head (vertex) (see Fig. 3).

Sometimes it is useful to associate a number, often called its weight, with each
edge in a graph. Such graphs are called edge-weighted or simply weighted graphs;
they may be simple, directed, etc. (see Fig. 4).

From now on by a graph we shall mean a simple and, unless otherwise speci-
fied, finite, undirected and connected graph. Let X = (V,E) be a graph. The degree
d(v) of a vertex v ∈ V is the number of edges with which it is incident. The set of
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Fig. 5 |N(v1)| = |N(v3)| =
|N(v4)|= 3, |N(v2)| = 4 and
|N(v5)|= 1

neighbors N(v) of a vertex v is the set of vertices adjacent to v. Hence, d(v) = |N(v)|
(see Fig. 5). In the case of a directed graph X = (V,E) the indegree and the outdegree
of a vertex v ∈ V is the number of edges having v as a head vertex and tail vertex,
respectively. For example the vertex 5 in the graph shown in Fig. 3 has indegree
1 and outdegree 2.

When people at a party shake hands the total number of hands shaken is equal
to twice the number of handshakes. Representing the party by a graph (with each
person represented by a vertex and a handshake between two people represented
by an edge between the corresponding vertices), the above fact, translated into
graph-theoretic terminology, reads as follows.

Proposition 1 (Handshaking lemma). The sum of degrees of all vertices in a sim-
ple graph equals twice the number of edges.

Proof. Every edge contributes two to the sum of the degrees, one for each of its
endvertices. ��

As a corollary we have the following result.

Corollary 1. In every graph, there is an even number of vertices of odd degree.

Proof. Partitioning the vertices into those of even degree and those of odd degree,
we know

∑
v∈V

d(v) = ∑
d(v) isodd

d(v)+ ∑
d(v) iseven

d(v)

The value of the left-handside of this equation is even, and the second summand
on the right-handside is even since it is entirely a sum of even values. So the first
summand on the right-handside must also be even. But since it is entirely a sum of
odd values, it must contain an even number of terms. In short, there must be an even
number of vertices with odd degree. ��

A graph X is d-regular if all vertices have the same degree d. A 3-regular simple
graph is usually called a cubic graph.

Corollary 2. Every cubic graph has an even number of vertices.

A subgraph of a graph X is a graph having all of its vertices and edges in X
(see Fig. 6). A spanning subgraph of X is a subgraph containing all vertices of X .

The complement X of a graph X has V (X) as its vertex set, and two vertices are
adjacent in X if and only if they are not adjacent in X (see Fig. 7).
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Fig. 6 A graph and two of its
subgraphs

Fig. 7 A graph and its
complement

Exercise 1. (a) Rewrite the proof of Corollary 1 more carefully as an inductive proof
on the number of edges in a simple graph. (b) Extend Corollary 1 to multigraphs.
(c) Extend Corollary 1 to digraphs.

Exercise 2. Show that a connected graph with n vertices and degree d, where 2 ≤
d ≤ (n−1)/2, contains an induced 3-path. (An induced subgraph is a subset of the
vertices of a graph together with any edges whose endpoints are both in this subset.
The m-path is a connected graph with two vertices of degree 1, and the other m−2
vertices of degree 2.)

2 Traversability

A walk (or v0vk-walk) of a graph X is a sequence of vertices

v0,v1,v2, . . . ,vk

such that vi is adjacent to vi+1 for every i ∈ {0,1,2, . . . ,k−1}. It is closed if v0 = vk,
and it is open otherwise. It is a path if all the vertices are distinct. It is a trail if all
the edges are distinct. A graph is connected if there is a path connecting any two
distinct vertices, and it is disconnected otherwise. A cycle (also called a circuit)
in a graph is a closed path uv1, . . . ,vk−1u in which all u,vi, i ∈ {1, . . . ,k− 1}, are
distinct. A tree is a connected graph with no cycles.

Let us give a few examples of some well known graphs. A cycle Cn is a connected
graph with n vertices in which each vertex is of degree 2. A complete graph Kn is
a graph with n vertices where any two vertices are adjacent. A bipartite graph is a
graph whose vertex set V can be partitioned into two subsets Y and Y ′ in such a way
that each edge has one end in Y and the other in Y ′. Such a partition (Y,Y ′) is called
a bipartition of the graph. A complete bipartite graph is a simple bipartite graph
with bipartition (Y,Y ′) in which each vertex of Y is joined to each vertex of Y ′. If
|Y |= m and |Y ′|= n, such a graph is denoted by Km,n (see Fig. 8).
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Fig. 8 Examples

Proposition 2. For a simple graph X = (V,E), the following are equivalent:

(1) X is connected and |E|= |V |−1.
(2) X is connected and acyclic (X is a tree).
(3) X is connected, but removing any edge from X leaves a disconnected graph.
(4) There is a unique simple path between any two distinct vertices of X.

2.1 Graphs and Matrices

Let X be a graph. The adjacency matrix of X relative to the vertex labeling v1,v2, . . . ,
vn is the n×n matrix A(X) whose entries ai j are given by the rule

ai j =
{

1, if vi and v j are adjacent
0, otherwise

.

For example, the graph K4 has adjacency matrix

A(K4) =

⎡
⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦ .

Note that the adjacency matrix of an undirected graph is symmetric. The follow-
ing result gives one important use of powers of the adjacency matrix of a graph (see
for example [12, 40]).

Proposition 3. If A is the adjacency matrix of a graph X of order n relative to the
vertex labeling v1,v2, . . . ,vn, the (i, j)-entry of Ar represents the number of distinct
r-walks from vertex vi to vertex v j in the graph.

Taking the square of the matrix A(K4) above gives

A2 = A(K4)2 =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠

2

=

⎡
⎢⎢⎣

3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

⎤
⎥⎥⎦ .

The resulting matrix gives us the number of different paths using two edges between
the vertices of the graph K4.

We end this subsection with the following simple exercise.

Exercise 3. How many different paths using three edges between two vertices of the
graph K5 exist?



8 K. Kutnar, D. Marušič

2.2 Eulerian Graphs

A bit of history: Koenigsberg was a city in Prussia situated on the Pregel River,
which served as the residence of the dukes of Prussia in the sixteenth century. To-
day, the city is named Kaliningrad, and is a major industrial and commercial cen-
ter of western Russia. The river Pregel flowed through the town, dividing it into
four regions. In the eighteenth century, seven bridges connected the four regions.
Koenigsberg people used to take long walks through town on Sundays. They won-
dered whether it was possible to start at one location in the town, travel across all
the bridges without crossing any bridge twice and return to the starting point. This
problem was first solved by the prolific Swiss mathematician Leonhard Euler, who,
as a consequence of his solution invented the branch of mathematics now known
as graph theory. Euler’s solution consisted of representing the problem by a graph
with the four regions represented by four vertices and the seven bridges by seven
edges as shown in Fig. 9. Stated as a general graph theory problem, the problem is
to construct a closed walk of the graph that traverses every edge exactly once. By
Proposition 4 it follows that the trail of Koenigsberg bridges is not possible.

An Eulerian trail of an undirected graph X is a closed walk that traverses every
edge of X exactly once.

Proposition 4. If an undirected graph X has Eulerian trail, then X is connected and
every vertex has even degree.

Proof. The Eulerian trail naturally orients every edge. We enter a vertex as many
times as we leave it. So every vertex must have indegree equal to outdegree. In
particular, the degrees are all even. ��
Proposition 5. If X is a connected graph and every vertex has even degree, then X
has an Eulerian trail.

Proof. If X has only one vertex then it has an empty (1-vertex) Eulerian trail. So
assume that in X each vertex has (even) degree at least 2. The result is clearly true
if all vertices are of degree 2, as then X is a cycle. By induction, assume the result
is true for all graphs with “average” degree smaller than that of X . As X is not a tree
we can find a cycle C in X . Then by induction, X −C has an Eulerian trail which
together with C gives us the desired Eulerian trail in X . ��

Fig. 9 Koenigsberg bridges
in a graph
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Exercise 4. Convince yourself that the following graphs are Eulerian: the cycle Cn

for every n; the complete graph Kn if and only if n is odd; the bipartite graph Kn,m if
and only if both n and m are even.

2.3 Hamiltonian Graphs

A simple cycle that traverses every vertex exactly once is called a Hamiltonian cy-
cle (Hamiltonian circuit). Similarly, a simple path that traverses every vertex exactly
once is a Hamiltonian path. A Hamiltonian graph is a graph that possesses a Hamil-
tonian cycle.

Proposition 6 (Dirac theorem [31]). Any graph with n vertices, n≥ 3, in which the
minimum degree of each vertex is at least n/2, has a Hamiltonian cycle.

Proof. Suppose by contradiction, that some non-Hamiltonian graph has n vertices,
n ≥ 3, and that the minimum degree of each vertex is at least n/2. If we add edges
to this graph one at a time, we eventually end up with a complete graph, which does
have a Hamiltonian cycle. Somewhere along this process we get a graph, call it X ,
that does not have a Hamiltonian cycle, but adding an edge uv yields a Hamiltonian
graph, call it X ′. We now get a contradiction for the graph X .

Since X ′ is Hamiltonian, X must have a Hamiltonian path u = u1, . . . ,un = v
joining u and v. By definition this path includes all the vertices of X . Now let us
play with this path and turn it into a cycle, and thus get a contradiction. We use the
fact that u and v each have degree at least n/2 to produce two edges to replace an
edge (ui,ui+1) on this path.

Let us count: of the n−2 intermediate vertices on the path u2, . . . ,un−1 we know
that at least n/2 are neighbors of u, and at least n/2 are neighbors of v. Consequently,
by the Pigeon hole principle, there are two adjacent vertices, ui and ui+1, where ui

is a neighbor of v and ui+1 is a neighbor of u. Namely, let S = {i | ui+1 ∼ u} and
T = {i | ui ∼ v}. Then each of S and T has at least n/2 elements. Since there are
only n−2 possible values of i, some i must be in both sets. That is, ui is a neighbor
of v and ui+1 is a neighbor of u. To produce a Hamiltonian cycle in X is now an easy
exercise, giving us the desired contradiction. ��

To wrap up this subsection we give Hamilton-flavored exercises.

Exercise 5. Prove that the Petersen graph (the graph shown in Fig. 10) has no
Hamiltonian cycle.

Exercise 6. Given any two vertices u and v of the dodecahedron, the graph shown
in Fig. 11. Is there a Hamiltonian path between these two vertices? (This problem is
known as Hamilton’s Icosian game proposed by W. R. Hamilton in T. P. Kirkman in
1857.)
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Fig. 10 The Petersen graph

Fig. 11 The dodecahedron

Exercise 7. Prove that a graph with n vertices (n > 3) has a Hamiltonian cycle if
for each pair of non-adjacent vertices, the sum of their degrees is n or greater. (This
problem is known as Ore theorem [62].)

3 Factorizations, Colorings and Tournaments

A factor of a graph X is a spanning subgraph of X which is not totally discon-
nected. (A totally disconnected graph of order n is the complement nK1 = K̄n of
the complete graph Kn.) We say that X is the sum of factors Xi if it is their edge-
disjoint union, and such a union is called a factorization of X . An n-factor is a
factor which is an n-regular graph. If X is the sum of n-factors, their union is called
an n-factorization and X itself is n-factorable.

When X = (V,E) has a 1-factor it is clear that |V | is even and the edges of this
1-factor are vertex disjoint. In particular, K2n+1 cannot have a 1-factor, but K2n cer-
tainly can as is shown in the proposition below.

Proposition 7. The complete graph K2n is 1-factorable.

Proof. We need only display a partition of the set E of edges of K2n into (2n−1)
1-factors.Denote the vertices of K2n by v1,v2, . . . ,v2n. Define, for i ∈ {1,2, . . . ,n−1},
the sets of edges

Ei = {viv2n}∪{vi− jvi+ j | j ∈ {1,2, . . . ,n−1}},
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Fig. 12 Not a good
scheduling

where each of the subscripts i− j and i + j is expressed as one of the numbers
1,2, . . . ,(2n− 1) modulo (2n− 1). The collection {Ei} is easily seen to give an
appropriate partition of E , and the sum of the subgraphs Xi induced by Ei is a 1-
factorization of K2n. ��

An example where the vertex colorings may be used is the exam scheduling prob-
lem. The Schedules Office needs to assign a time slot for each final exam. This is
not easy, because some students are taking several classes with finals, and a student
can take only one test during a particular time slot. The Schedules Office wants to
avoid all conflicts, but wants to make the exam period as short as possible. Let each
vertex represent a course for which final exams are taken. Put an edge between two
vertices if there is some student taking both courses. Identify each possible time slot
with a color. For example, Monday 9–12 is color 1, Monday 1–4 is color 2, Tuesday
9–12 is color 3, etc. If there is an edge between two vertices with the same color,
then a conflict exam will have to be scheduled because there is a student who has to
take exams for the courses represented by the vertices, but the exams are scheduled
at the same time (see Fig. 12). Everyone wants to avoid conflict exams. So the reg-
istrar would like to color each vertex of the graph so that no adjacent vertices have
the same color. To keep exam period as short as possible, the registrar would like to
use the minimum possible number of colors.

The minimum number of colors needed to color the vertices of a graph X so that
no two adjacent vertices are of the same color is called the chromatic number and is
denoted by χ(X). For example: χ(Cn) = 3 if n is odd and χ(Cn) = 2 if n is even.

The following propositions gives the upper bound on the chromatic number.

Proposition 8. For any graph X, χ(X) ≤ 1 + ∆ where ∆ is the maximum degree
of X.

Proof. We use induction on the order n of the graph X . The only graph of order
n = 1 is the complete graph K1 in which case ∆ = 1 and χ(K1) = 1. Now suppose
that the result holds for all graphs of order less than or equal to n− 1, and let X
be a graph of order n and maximal degree ∆ . Let Y be the graph obtained from X
by deleting a vertex v ∈ V (X) and all the edges having v as an endvertex. Since
the order of Y is less than n and its maximal degree is less than or equal to ∆ , by
induction, χ(Y ) ≤ 1 + ∆ . Now a vertex coloring of X is obtained by coloring the
vertex v with the color that is not the color of the neighboring vertices of v. Since v
has at most ∆ neighbors X is colored with at most 1 + ∆ colors. ��
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Proposition 9 (Brook theorem [17]). For a connected graph X different from a
complete graph or an odd cycle, χ(X)≤ ∆ where ∆ is the maximum degree of X.

Now consider the task of coloring a political map. What is the minimum number
of colors needed, with the obvious restriction that neighboring countries should have
different colors? This is related to the so-called edge colorings of a graph.

The minimum number of colors needed to color the edges of a graph X in such
a way that no two incident edges are of the same color is called the edge chromatic
number χ̄(X). By the famous Vizing theorem, given below, there are only two pos-
sibilities for the edge chromatic number of a graph.

Proposition 10 (Vizing theorem [71]). For any graph X, ∆ ≤ χ̄(X)≤ 1+∆ where
∆ is the maximum degree of X.

By Proposition 10 the edge chromatic number in a cubic graph is equal either
to 3 or to 4. A snark is a bridgeless cubic graph with edge chromatic number 4.
(A bridge is an edge that disconnects a graph.) The smallest snark is the Petersen
graph shown in Fig. 10. A search for new snarks is an active topic of research (see
[16, 41, 47, 61, 66]).

A tournament is an oriented complete graph. Tournaments are named so because
an n-vertex tournament corresponds to a tournament in which each member of a
group of n players plays all other n− 1 players. The players are represented by
vertices. For each pair of vertices an arc is drawn from the winner to the loser. The
score sequence for a given tournament is obtained from the set of outdegrees sorted
in nondecreasing order (see Fig. 13).

The following result holds.

Proposition 11 (Landau [42]). The sequence d1≤ d2≤ ·· · ≤ dn of positive integers
is the score sequence of a tournament if and only if

d1 + d2 + · · ·+ dt ≥
(

t
2

)

for all 1≤ t ≤ n−1, and d1 + d2 + · · ·+ dn =
(n

2

)
.

Exercise 8. Give all possible tournaments on five vertices.

Fig. 13 An 4-vertex
tournament
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4 Graphs and Configurations

Suppose that in a presidential election with eight candidates a TV station wishes to
organize eight TV debates with three candidates in each debate. Can candidates be
arranged into eight groups of three such that no two meet more than once? This is
typical problem that can be solved with the use of configurations.

An nk configuration is a finite incidence structure with n points and n lines such
that each line has k points and each point is on k lines. Also, two different lines
intersect each other at most once and two different points are connected by at most
one line. With each nk configuration we can associate the so-called Levi graph. An
incidence graph or Levi graph of an nk configuration C is a bipartite k-regular graph
of order 2n, with n vertices representing the points of C and n vertices representing
the lines of C, and with an edge joining two vertices if and only if the corresponding
point and line are incident in C. In Figs. 14 and 15 the Moebius–Kantor configura-
tion, the configuration solving the above election problem, and its Levi graph are
shown. Since the Moebius–Kantor configuration is the only 83 configuration, this
particular election problem has a unique solution.

Fig. 14 The Moebius–Kantor
configuration

Fig. 15 The Levi graph
of the Moebius–Kantor
configuration
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The property that two different points of a configuration are contained in at most
one line implies that Levi graphs have girth (the length of the shortest cycle) at
least 6. Conversely, each bipartite k-regular graph with girth at least 6 and with a
chosen black-white coloring of the vertex set determines precisely one nk config-
uration. If the coloring is not chosen in advance, such graphs determine a pair of
dual configurations, that is, configurations with the role of their points and lines
interchanged. Therefore the following result holds.

Proposition 12. A k-regular graph of order 2n is a Levi graph of an nk configuration
if and only if it is bipartite and contains no 4-cycles.

A slight modification of the above election problem may be posed: Can nine can-
didates be arranged into nine groups of size 3 such that no two meet more than once?
The answer is again yes. But now there are three possible solutions (see Fig. 16).
The upper 93 configuration on Fig. 16 allows no additional line, the lower allows
one additional line and the middle allows three additional lines. This middle 93 con-
figuration is known as the Pappus configuration. Among others this configuration
solves the classical Orchard Planting Problem for n = 9, k = 3 and r(n,k) = 10
which is as follows: Can n trees be planted so as to produce r(n,k) straight rows
with k trees in each row.

More information on graphs and configurations can be found in [11, 29, 39].

Exercise 9. Show that the 83 configuration given in Fig. 15 is the only 83 configu-
ration.

Exercise 10. Show that the three 93 configurations given in Fig. 16 are the only 93

configurations.

Fig. 16 The 93 configurations
on the left handside pictures
and the corresponding Levi
graphs on the right handside
pictures
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5 Symmetries in Graphs

Digraphs X1 = (V1,E1) and X2 = (V2,E2) are isomorphic if and only if there is a
bijection f : V1→V2 such that for all u,v ∈V1

(u,v) ∈ E1⇔ ( f (u), f (v)) ∈ E2.

The bijection f is called an isomorphism between the graphs.

Example 1. Let X1 be a simple graph whose vertices are integers 1, . . . ,2n with an
edge between two vertices if and only if they are of the same parity. Let X2 be a
simple graph whose vertices are integers −1, . . . ,−2n with an edge between two
vertices if and only if either both vertices are less than −n or both are more than or
equal to−n. Then the function f : {−1, . . . ,−2n}→ {1, . . . ,2n}, where f (k) =−2k
if −n ≤ k ≤ −1 and f (k) = 2(2n + k) + 1 if −2n ≤ k < −n, is an isomorphism
between X1 and X2.

A nonempty set G together with a binary operation · is a group if the following
four axioms are satisfied: (1)(Closure) For all g1,g2 ∈ G, g1 ·g2 ∈ G. (2) (Associa-
tivity) For all g1,g2,g3 ∈ G, g1 · (g2 · g3) = (g1 · g2) · g3. (3) (Identity) There is an
element e in G such that e ·g = g ·e = g for all g∈G. (4) (Inversion) For each g∈G,
there is an element denoted g−1 such that g−1 ·g = g ·g−1 = e.

An automorphism of a graph X is an isomorphism of X with itself. Thus each au-
tomorphism α of X is a permutation of the vertex set V which preserves adjacency.
The set of automorphisms of a graph X is a group, called the automorphism group
of X and denoted by Aut(X). For example, the automorphism group of the Petersen
graph is isomorphic to the symmetric group Aut(GP(5,2)) = S5

Proposition 13. A graph and its complement have the same automorphism group
Aut(X) = Aut(X).

If G is a group and Ω is a set, then a (right) group action of G on Ω is a binary
function Ω ×G→ Ω with notation (ω ,g) �→ ωg which satisfies the following two
axioms:

(1) ω1 = ω for every ω ∈Ω (where 1 denotes the identity element of G).
(2) (ωg)h = ωgh for all g,h ∈ G and ω ∈Ω .

In a similar way we can define (left) group action.
For a group G acting on the set Ω the set

OrbG(ω) = ωG = {ωg | g ∈ G},

where ω ∈ Ω , is called a G-orbit (in short an orbit if the group G is clear from the
contest) of the element ω with respect to the action of G. If the group orbit OrbG(ω)
is equal to the entire set Ω for some element ω in Ω , then G is transitive. For ω ∈Ω
the set Gω = {g ∈ G | ωg = ω}, the stabilizer of the element ω , is a subgroup of
G. If |Gω | = 1 for every element ω ∈ Ω then we say that G acts semiregularly. If
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G acts on Ω transitively and |Gω |= 1 for every element ω ∈Ω we say that G acts
regularly (G is regular). For a more detail discussion on group actions we refer the
reader to [64, 72].

A graph is said to be vertex-transitive, edge-transitive, and arc-transitive (also
called symmetric) if its automorphism group acts vertex-transitively, edge-transitively
and arc-transitively, respectively. Given a group G and a subset S of G \ {1}, the
Cayley graph X = Cay(G,S) has vertex set G and edges of the form {g,gs} for
all g ∈ G and s ∈ S. Every Cayley graph is vertex-transitive but there exist vertex-
transitive graphs that are not Cayley. Sabidussi [65] characterized Cayley graph in
the following way: A graph is a Cayley graph of a group G if and only if its auto-
morphism group contains a regular subgroup isomorphic to G.

Example 2. The graph shown in Fig. 5 is neither vertex-transitive nor edge-transitive.
Graphs shown in Fig. 8 are all vertex-transitive, arc-transitive and Cayley. The Pe-
tersen graph and the dodecahedron (graphs shown in Figs. 10 and 11) are vertex-
transitive and arc-transitive but they are not Cayley graphs.

Example 3. Let n ≥ 3 be a positive integer, and let k ∈ {1, . . . ,n− 1} \ {n/2}. The
generalized Petersen graph GP(n,k) is defined to have the following vertex set and
edge set:

V (GP(n,k)) = {ui | i ∈ Zn}∪{vi | i ∈ Zn},
E(GP(n,k)) = {uiui+1 | i ∈ Zn}∪{vivi+k | i ∈ Zn}∪{uivi | i ∈ Zn}.

There are infinitely many vertex-transitive but only 7 arc-transitive generalized
Petersen graphs: GP(4,1), GP(5,2), GP(8,3), GP(10,2), GP(10,3), GP(12,5),
GP(24,5).

Clearly, a graph that is arc-transitive is also vertex-transitive and edge-transitive.
But the converse is not true in general. In 1966 Tutte proved that the converse is true
for graphs of odd valency.

Proposition 14 (Tutte [70]). A vertex-transitive and edge-transitive graph of va-
lence k, where k is odd, is also arc-transitive.

Corollary 3. Everycubicvertex-transitiveandedge-transitivegraphisarc-transitive.

There exist graphs that are vertex-transitive and edge-transitive but not arc-
transitive. These graphs are called half-arc-transitive graphs. By Proposition 14 the
valency of such a graph is necessarily even. Moreover, in 1970 Bouwer [14] proved
the existence of half-arc-transitive graphs of any given even valency. The smallest
half-arc-transitive graph is the Doyle–Holt graph, the graph of order 27 shown in
Fig. 17. The proof of the next proposition is straightforward.

Proposition 15. Every graph that is edge-transitive but not vertex-transitive is
bipartite.
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Fig. 17 The Doyle–Holt
graph

Fig. 18 The smallest graph
that is vertex-transitive but not
edge-transitive (the 3-prism
K3�K2) and the smallest
graph that is edge-transitive
but not vertex-transitive (the
star K1,2)

Fig. 19 The Folkman graph

Examples of edge-transitive but not vertex-transitive graphs are non-regular
graphs Km,n, n �= m (see also Fig. 18). A regular edge-transitive but not vertex-
transitive graph is called semisymmetric. Research on these graphs has initiated and
the foundations of the theory laid out by Jon Folkman [36]. The smallest such a
graph has 20 vertices and is now known as the Folkman graph (see Fig. 19). The
smallest cubic semisymmetric graph is the Gray graph shown in Fig. 20 (see also
[24]).

Additional information on symmetries in graphs can be found in [38]. To wrap
up this section we give the following two exercises.

Exercise 11. Prove that the Petersen graph is the smallest vertex-transitive graph
that is not a Cayley graph.

Exercise 12. Prove Proposition 15.
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Fig. 20 The Gray graph

6 Some Well-Known Open Problems

The following unsolved problem proposed by Lovász can be thought of as the main
motivation for the study of vertex-transitive graphs.

Open problem 1 (Lovász [46]) Does every connected vertex-transitive graph have
a Hamiltonian path?

With the exception of K2, only four connected vertex-transitive graphs that do
not have a Hamiltonian cycle are known to exist. These four graphs are the Petersen
graph, the Coxeter graph and the two graphs obtained from them by replacing
each vertex by a triangle. The fact that none of these four graphs is a Cayley
graph has led to a folklore conjecture that every Cayley graph is hamiltonian (see
[7, 9, 10, 30, 37, 52] for the current status of this conjecture). Coming back to vertex-
transitive graphs, it was shown in [32] that, with the exception of the Petersen graph,
a connected vertex-transitive graph whose automorphism group contains a transitive
subgroup with a cyclic commutator subgroup of prime-power order, is hamiltonian.
Furthermore, it has been shown that connected vertex-transitive graphs of orders p,
2p (except for the Petersen graph), 3p, 4p, p2, p3, p4 and 2p2, where p is a prime,
are hamiltonian (see [1, 19, 44, 53–55, 68]). On the other hand, connected vertex-
transitive graphs of orders 5p and 6p are only known to have Hamiltonian paths (see
[45, 59]). Some other partial results related to this problem are known (see [2–6, 8]).

The following open problem was posed in [18, 51].

Open problem 2 ([18, 51]) Does every vertex-transitive graph have a semiregular
automorphism?

An element of a permutation group is semiregular, more precisely (m,n) – semi-
regular, if it has m orbits of size n. It is known that every cubic vertex-transitive
graph has a semiregular automorphism [60]. Recently this result have been extended
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to quartic vertex-transitive graphs [33], but the problem of existence of semiregular
automorphisms in vertex-transitive graphs [18, 51] is still open for larger valencies.
However, some results with restriction to certain orders of the graphs in question
are also known (see [51]). As for arc-transitive graphs of valency pq, where p and q
are primes, recently Xu [73] proved existence of semiregular automorphisms in the
case when their automorphism groups have a nonabelian minimal normal subgroup
with at least three orbits on the vertex set of the graph.

Open problem 3 Classification and structural results for cubic symmetric graphs
of different transitivity degrees (s = 1,2,3,4 or 5).

In 1947 Tutte [69] proved that in a cubic symmetric graph the order of a vertex
stabilizer is 3×2s where s≤ 4. All cubic symmetric graphs on up to 2,048 vertices and
some partial results related to the above problem are known (see [15, 20–22, 26–28]).

Open problem 4 Classification and structural results for quartic half-arc-transitive
graphs.

The listof allquartichalf-arc-transitivegraphson upto 500vertices isclose to being
completed. Although quartic half-arc-transitive graphs are an active topic of research
these days the above problem is still open (see [25, 34, 43, 48, 49, 56, 58, 67]).

Open problem 5 Classification and structural results for semisymmetric graphs.

The list of all cubic semisymmetric graphs on up to 768 vertices in given in [24].
There exist 43 cubic semisymmetric graphs on up to 768 vertices, 21 with solvable
automorphism group and 22 with nonsolvable automorphism group. Partial results
on the above problem were proven in [13, 23, 35, 50, 57, 63].
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