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Preface

There is convergent consensus among scientists that many social, economic and
financial phenomena can be described by a network of agents and their interac-
tions. Surprisingly, even though the application fields are quite different, those net-
works often show a common behaviour. Thus, their topological properties can give
useful insights on how the network is structured, which are the most “important”
nodes/agents, how the network reacts to new arrivals. Moreover the network, once
included into a dynamic context, helps to model many phenomena. Among the top-
ics in which topology and dynamics are the essential tools, we will focus on the
diffusion of technologies and fads, the rise of industrial districts, the evolution of
financial markets, cooperation and competition, information flows, centrality and
prestige.

The volume, including recent contributions to the field of network modelling, is
based on the communications presented at NET 2006 (Verbania, Italy) and NET
2007 (Urbino, Italy); offers a wide range of recent advances, both theoretical and
methodological, that will interest academics as well as practitioners.

Theory and applications are nicely integrated: theoretical papers deal with graph
theory, game theory, coalitions, dynamics, consumer behavior, segregation models
and new contributions to the above mentioned area. The applications cover a wide
range: airline transportation, financial markets, work team organization, labour and
credit market.

The volume can be used as a reference book for graduate and postgraduate
courses on Network Theory and Complex Systems in Faculties of Economics, Math-
ematics, Engineering and Social Sciences. In Part I, the invited tutorials introduce
Graph Theory from the theoretical point of view (Marusic) and the possible appli-
cations to economics (Battiston). In Part II, the contributions cover local and global
interaction, complex behavior, network games, while in Part III they refer to Markov
chains and topology. The applications are all placed in Part IV.

Fifteen papers have been selected among roughly thirty submitted extended ab-
stracts; each paper has been reviewed by two referees. Space limitations are the
main reason why no more papers have been accepted, although many of them were
really interesting.
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Tutorials



Some Topics in Graph Theory

Klavdija Kutnar and Dragan Marušič

Abstract In this short introductory course to graph theory, possibly one of the most
propulsive areas of contemporary mathematics, some of the basic graph-theoretic
concepts together with some open problems in this scientific field are presented.

1 Some Basic Concepts

A simple graph X is an ordered pair of sets X = (V,E). Elements of V are called
vertices of X and elements of E are called edges of X . An edge joins two vertices,
called its endvertices. Formally, we can think of the elements of E as subsets of V of
size 2. A simple graph is thus an undirected graph with no loops or multiple edges.

If u �= v are vertices of a simple graph X and {u,v} (sometimes shortened to uv)
is an edge of X , then this edge is said to be incident to u and v. Equivalently, u and
v are said to be adjacent or neighbors, and we write u ∼ v. Phrases like, “an edge
joins u and v” and “the edge between u and v” are also commonly used.

Graphs can be nicely represented with diagrams consisting of dots standing for
vertices and lines standing for edges (see Fig. 1).

In a simple graph there is at most one edge joining a pair of vertices. In a multi-
graph, multiple edges are permitted between pairs of vertices. There may also be
edges, called loops, that connect a vertex to itself (see Fig. 2).

As opposed to a simple graph where edges are undirected, a directed graph (in
short, digraph) is an ordered pair of sets (V,E) where V is a set of vertices and E is

K. Kutnar
University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia
klavdija.kutnar@upr.si
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dragan.marusic@upr.si
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4 K. Kutnar, D. Marušič

Fig. 1 A diagram of a
graph X = (V,E) where
V = {1,2,3,4} and E =
{{1,2},{1,3},{2,3},{3,4}}

Fig. 2 An example of a
multigraph with three edges
between vertices 1 and 2 and
loop on vertex 3

1

3

4

2

Fig. 3 A directed graph 1

2

3

6

5

4

Fig. 4 A weighted graph 1 10 2

5
6

3 3 4

a subset of ordered pairs of vertices from V . Now the edges may be thought of as
arrows going from a tail (vertex) to a head (vertex) (see Fig. 3).

Sometimes it is useful to associate a number, often called its weight, with each
edge in a graph. Such graphs are called edge-weighted or simply weighted graphs;
they may be simple, directed, etc. (see Fig. 4).

From now on by a graph we shall mean a simple and, unless otherwise speci-
fied, finite, undirected and connected graph. Let X = (V,E) be a graph. The degree
d(v) of a vertex v ∈ V is the number of edges with which it is incident. The set of



Some Topics in Graph Theory 5

Fig. 5 |N(v1)| = |N(v3)| =
|N(v4)|= 3, |N(v2)| = 4 and
|N(v5)|= 1

neighbors N(v) of a vertex v is the set of vertices adjacent to v. Hence, d(v) = |N(v)|
(see Fig. 5). In the case of a directed graph X = (V,E) the indegree and the outdegree
of a vertex v ∈ V is the number of edges having v as a head vertex and tail vertex,
respectively. For example the vertex 5 in the graph shown in Fig. 3 has indegree
1 and outdegree 2.

When people at a party shake hands the total number of hands shaken is equal
to twice the number of handshakes. Representing the party by a graph (with each
person represented by a vertex and a handshake between two people represented
by an edge between the corresponding vertices), the above fact, translated into
graph-theoretic terminology, reads as follows.

Proposition 1 (Handshaking lemma). The sum of degrees of all vertices in a sim-
ple graph equals twice the number of edges.

Proof. Every edge contributes two to the sum of the degrees, one for each of its
endvertices. ��

As a corollary we have the following result.

Corollary 1. In every graph, there is an even number of vertices of odd degree.

Proof. Partitioning the vertices into those of even degree and those of odd degree,
we know

∑
v∈V

d(v) = ∑
d(v) isodd

d(v)+ ∑
d(v) iseven

d(v)

The value of the left-handside of this equation is even, and the second summand
on the right-handside is even since it is entirely a sum of even values. So the first
summand on the right-handside must also be even. But since it is entirely a sum of
odd values, it must contain an even number of terms. In short, there must be an even
number of vertices with odd degree. ��

A graph X is d-regular if all vertices have the same degree d. A 3-regular simple
graph is usually called a cubic graph.

Corollary 2. Every cubic graph has an even number of vertices.

A subgraph of a graph X is a graph having all of its vertices and edges in X
(see Fig. 6). A spanning subgraph of X is a subgraph containing all vertices of X .

The complement X of a graph X has V (X) as its vertex set, and two vertices are
adjacent in X if and only if they are not adjacent in X (see Fig. 7).
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Fig. 6 A graph and two of its
subgraphs

Fig. 7 A graph and its
complement

Exercise 1. (a) Rewrite the proof of Corollary 1 more carefully as an inductive proof
on the number of edges in a simple graph. (b) Extend Corollary 1 to multigraphs.
(c) Extend Corollary 1 to digraphs.

Exercise 2. Show that a connected graph with n vertices and degree d, where 2 ≤
d ≤ (n−1)/2, contains an induced 3-path. (An induced subgraph is a subset of the
vertices of a graph together with any edges whose endpoints are both in this subset.
The m-path is a connected graph with two vertices of degree 1, and the other m−2
vertices of degree 2.)

2 Traversability

A walk (or v0vk-walk) of a graph X is a sequence of vertices

v0,v1,v2, . . . ,vk

such that vi is adjacent to vi+1 for every i ∈ {0,1,2, . . . ,k−1}. It is closed if v0 = vk,
and it is open otherwise. It is a path if all the vertices are distinct. It is a trail if all
the edges are distinct. A graph is connected if there is a path connecting any two
distinct vertices, and it is disconnected otherwise. A cycle (also called a circuit)
in a graph is a closed path uv1, . . . ,vk−1u in which all u,vi, i ∈ {1, . . . ,k− 1}, are
distinct. A tree is a connected graph with no cycles.

Let us give a few examples of some well known graphs. A cycle Cn is a connected
graph with n vertices in which each vertex is of degree 2. A complete graph Kn is
a graph with n vertices where any two vertices are adjacent. A bipartite graph is a
graph whose vertex set V can be partitioned into two subsets Y and Y ′ in such a way
that each edge has one end in Y and the other in Y ′. Such a partition (Y,Y ′) is called
a bipartition of the graph. A complete bipartite graph is a simple bipartite graph
with bipartition (Y,Y ′) in which each vertex of Y is joined to each vertex of Y ′. If
|Y |= m and |Y ′|= n, such a graph is denoted by Km,n (see Fig. 8).
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Fig. 8 Examples

Proposition 2. For a simple graph X = (V,E), the following are equivalent:

(1) X is connected and |E|= |V |−1.
(2) X is connected and acyclic (X is a tree).
(3) X is connected, but removing any edge from X leaves a disconnected graph.
(4) There is a unique simple path between any two distinct vertices of X.

2.1 Graphs and Matrices

Let X be a graph. The adjacency matrix of X relative to the vertex labeling v1,v2, . . . ,
vn is the n×n matrix A(X) whose entries ai j are given by the rule

ai j =
{

1, if vi and v j are adjacent
0, otherwise

.

For example, the graph K4 has adjacency matrix

A(K4) =

⎡
⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦ .

Note that the adjacency matrix of an undirected graph is symmetric. The follow-
ing result gives one important use of powers of the adjacency matrix of a graph (see
for example [12, 40]).

Proposition 3. If A is the adjacency matrix of a graph X of order n relative to the
vertex labeling v1,v2, . . . ,vn, the (i, j)-entry of Ar represents the number of distinct
r-walks from vertex vi to vertex v j in the graph.

Taking the square of the matrix A(K4) above gives

A2 = A(K4)2 =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠

2

=

⎡
⎢⎢⎣

3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

⎤
⎥⎥⎦ .

The resulting matrix gives us the number of different paths using two edges between
the vertices of the graph K4.

We end this subsection with the following simple exercise.

Exercise 3. How many different paths using three edges between two vertices of the
graph K5 exist?
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2.2 Eulerian Graphs

A bit of history: Koenigsberg was a city in Prussia situated on the Pregel River,
which served as the residence of the dukes of Prussia in the sixteenth century. To-
day, the city is named Kaliningrad, and is a major industrial and commercial cen-
ter of western Russia. The river Pregel flowed through the town, dividing it into
four regions. In the eighteenth century, seven bridges connected the four regions.
Koenigsberg people used to take long walks through town on Sundays. They won-
dered whether it was possible to start at one location in the town, travel across all
the bridges without crossing any bridge twice and return to the starting point. This
problem was first solved by the prolific Swiss mathematician Leonhard Euler, who,
as a consequence of his solution invented the branch of mathematics now known
as graph theory. Euler’s solution consisted of representing the problem by a graph
with the four regions represented by four vertices and the seven bridges by seven
edges as shown in Fig. 9. Stated as a general graph theory problem, the problem is
to construct a closed walk of the graph that traverses every edge exactly once. By
Proposition 4 it follows that the trail of Koenigsberg bridges is not possible.

An Eulerian trail of an undirected graph X is a closed walk that traverses every
edge of X exactly once.

Proposition 4. If an undirected graph X has Eulerian trail, then X is connected and
every vertex has even degree.

Proof. The Eulerian trail naturally orients every edge. We enter a vertex as many
times as we leave it. So every vertex must have indegree equal to outdegree. In
particular, the degrees are all even. ��
Proposition 5. If X is a connected graph and every vertex has even degree, then X
has an Eulerian trail.

Proof. If X has only one vertex then it has an empty (1-vertex) Eulerian trail. So
assume that in X each vertex has (even) degree at least 2. The result is clearly true
if all vertices are of degree 2, as then X is a cycle. By induction, assume the result
is true for all graphs with “average” degree smaller than that of X . As X is not a tree
we can find a cycle C in X . Then by induction, X −C has an Eulerian trail which
together with C gives us the desired Eulerian trail in X . ��

Fig. 9 Koenigsberg bridges
in a graph
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Exercise 4. Convince yourself that the following graphs are Eulerian: the cycle Cn

for every n; the complete graph Kn if and only if n is odd; the bipartite graph Kn,m if
and only if both n and m are even.

2.3 Hamiltonian Graphs

A simple cycle that traverses every vertex exactly once is called a Hamiltonian cy-
cle (Hamiltonian circuit). Similarly, a simple path that traverses every vertex exactly
once is a Hamiltonian path. A Hamiltonian graph is a graph that possesses a Hamil-
tonian cycle.

Proposition 6 (Dirac theorem [31]). Any graph with n vertices, n≥ 3, in which the
minimum degree of each vertex is at least n/2, has a Hamiltonian cycle.

Proof. Suppose by contradiction, that some non-Hamiltonian graph has n vertices,
n ≥ 3, and that the minimum degree of each vertex is at least n/2. If we add edges
to this graph one at a time, we eventually end up with a complete graph, which does
have a Hamiltonian cycle. Somewhere along this process we get a graph, call it X ,
that does not have a Hamiltonian cycle, but adding an edge uv yields a Hamiltonian
graph, call it X ′. We now get a contradiction for the graph X .

Since X ′ is Hamiltonian, X must have a Hamiltonian path u = u1, . . . ,un = v
joining u and v. By definition this path includes all the vertices of X . Now let us
play with this path and turn it into a cycle, and thus get a contradiction. We use the
fact that u and v each have degree at least n/2 to produce two edges to replace an
edge (ui,ui+1) on this path.

Let us count: of the n−2 intermediate vertices on the path u2, . . . ,un−1 we know
that at least n/2 are neighbors of u, and at least n/2 are neighbors of v. Consequently,
by the Pigeon hole principle, there are two adjacent vertices, ui and ui+1, where ui

is a neighbor of v and ui+1 is a neighbor of u. Namely, let S = {i | ui+1 ∼ u} and
T = {i | ui ∼ v}. Then each of S and T has at least n/2 elements. Since there are
only n−2 possible values of i, some i must be in both sets. That is, ui is a neighbor
of v and ui+1 is a neighbor of u. To produce a Hamiltonian cycle in X is now an easy
exercise, giving us the desired contradiction. ��

To wrap up this subsection we give Hamilton-flavored exercises.

Exercise 5. Prove that the Petersen graph (the graph shown in Fig. 10) has no
Hamiltonian cycle.

Exercise 6. Given any two vertices u and v of the dodecahedron, the graph shown
in Fig. 11. Is there a Hamiltonian path between these two vertices? (This problem is
known as Hamilton’s Icosian game proposed by W. R. Hamilton in T. P. Kirkman in
1857.)
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Fig. 10 The Petersen graph

Fig. 11 The dodecahedron

Exercise 7. Prove that a graph with n vertices (n > 3) has a Hamiltonian cycle if
for each pair of non-adjacent vertices, the sum of their degrees is n or greater. (This
problem is known as Ore theorem [62].)

3 Factorizations, Colorings and Tournaments

A factor of a graph X is a spanning subgraph of X which is not totally discon-
nected. (A totally disconnected graph of order n is the complement nK1 = K̄n of
the complete graph Kn.) We say that X is the sum of factors Xi if it is their edge-
disjoint union, and such a union is called a factorization of X . An n-factor is a
factor which is an n-regular graph. If X is the sum of n-factors, their union is called
an n-factorization and X itself is n-factorable.

When X = (V,E) has a 1-factor it is clear that |V | is even and the edges of this
1-factor are vertex disjoint. In particular, K2n+1 cannot have a 1-factor, but K2n cer-
tainly can as is shown in the proposition below.

Proposition 7. The complete graph K2n is 1-factorable.

Proof. We need only display a partition of the set E of edges of K2n into (2n−1)
1-factors.Denote the vertices of K2n by v1,v2, . . . ,v2n. Define, for i ∈ {1,2, . . . ,n−1},
the sets of edges

Ei = {viv2n}∪{vi− jvi+ j | j ∈ {1,2, . . . ,n−1}},



Some Topics in Graph Theory 11

Fig. 12 Not a good
scheduling

where each of the subscripts i− j and i + j is expressed as one of the numbers
1,2, . . . ,(2n− 1) modulo (2n− 1). The collection {Ei} is easily seen to give an
appropriate partition of E , and the sum of the subgraphs Xi induced by Ei is a 1-
factorization of K2n. ��

An example where the vertex colorings may be used is the exam scheduling prob-
lem. The Schedules Office needs to assign a time slot for each final exam. This is
not easy, because some students are taking several classes with finals, and a student
can take only one test during a particular time slot. The Schedules Office wants to
avoid all conflicts, but wants to make the exam period as short as possible. Let each
vertex represent a course for which final exams are taken. Put an edge between two
vertices if there is some student taking both courses. Identify each possible time slot
with a color. For example, Monday 9–12 is color 1, Monday 1–4 is color 2, Tuesday
9–12 is color 3, etc. If there is an edge between two vertices with the same color,
then a conflict exam will have to be scheduled because there is a student who has to
take exams for the courses represented by the vertices, but the exams are scheduled
at the same time (see Fig. 12). Everyone wants to avoid conflict exams. So the reg-
istrar would like to color each vertex of the graph so that no adjacent vertices have
the same color. To keep exam period as short as possible, the registrar would like to
use the minimum possible number of colors.

The minimum number of colors needed to color the vertices of a graph X so that
no two adjacent vertices are of the same color is called the chromatic number and is
denoted by χ(X). For example: χ(Cn) = 3 if n is odd and χ(Cn) = 2 if n is even.

The following propositions gives the upper bound on the chromatic number.

Proposition 8. For any graph X, χ(X) ≤ 1 + ∆ where ∆ is the maximum degree
of X.

Proof. We use induction on the order n of the graph X . The only graph of order
n = 1 is the complete graph K1 in which case ∆ = 1 and χ(K1) = 1. Now suppose
that the result holds for all graphs of order less than or equal to n− 1, and let X
be a graph of order n and maximal degree ∆ . Let Y be the graph obtained from X
by deleting a vertex v ∈ V (X) and all the edges having v as an endvertex. Since
the order of Y is less than n and its maximal degree is less than or equal to ∆ , by
induction, χ(Y ) ≤ 1 + ∆ . Now a vertex coloring of X is obtained by coloring the
vertex v with the color that is not the color of the neighboring vertices of v. Since v
has at most ∆ neighbors X is colored with at most 1 + ∆ colors. ��
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Proposition 9 (Brook theorem [17]). For a connected graph X different from a
complete graph or an odd cycle, χ(X)≤ ∆ where ∆ is the maximum degree of X.

Now consider the task of coloring a political map. What is the minimum number
of colors needed, with the obvious restriction that neighboring countries should have
different colors? This is related to the so-called edge colorings of a graph.

The minimum number of colors needed to color the edges of a graph X in such
a way that no two incident edges are of the same color is called the edge chromatic
number χ̄(X). By the famous Vizing theorem, given below, there are only two pos-
sibilities for the edge chromatic number of a graph.

Proposition 10 (Vizing theorem [71]). For any graph X, ∆ ≤ χ̄(X)≤ 1+∆ where
∆ is the maximum degree of X.

By Proposition 10 the edge chromatic number in a cubic graph is equal either
to 3 or to 4. A snark is a bridgeless cubic graph with edge chromatic number 4.
(A bridge is an edge that disconnects a graph.) The smallest snark is the Petersen
graph shown in Fig. 10. A search for new snarks is an active topic of research (see
[16, 41, 47, 61, 66]).

A tournament is an oriented complete graph. Tournaments are named so because
an n-vertex tournament corresponds to a tournament in which each member of a
group of n players plays all other n− 1 players. The players are represented by
vertices. For each pair of vertices an arc is drawn from the winner to the loser. The
score sequence for a given tournament is obtained from the set of outdegrees sorted
in nondecreasing order (see Fig. 13).

The following result holds.

Proposition 11 (Landau [42]). The sequence d1≤ d2≤ ·· · ≤ dn of positive integers
is the score sequence of a tournament if and only if

d1 + d2 + · · ·+ dt ≥
(

t
2

)

for all 1≤ t ≤ n−1, and d1 + d2 + · · ·+ dn =
(n

2

)
.

Exercise 8. Give all possible tournaments on five vertices.

Fig. 13 An 4-vertex
tournament
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4 Graphs and Configurations

Suppose that in a presidential election with eight candidates a TV station wishes to
organize eight TV debates with three candidates in each debate. Can candidates be
arranged into eight groups of three such that no two meet more than once? This is
typical problem that can be solved with the use of configurations.

An nk configuration is a finite incidence structure with n points and n lines such
that each line has k points and each point is on k lines. Also, two different lines
intersect each other at most once and two different points are connected by at most
one line. With each nk configuration we can associate the so-called Levi graph. An
incidence graph or Levi graph of an nk configuration C is a bipartite k-regular graph
of order 2n, with n vertices representing the points of C and n vertices representing
the lines of C, and with an edge joining two vertices if and only if the corresponding
point and line are incident in C. In Figs. 14 and 15 the Moebius–Kantor configura-
tion, the configuration solving the above election problem, and its Levi graph are
shown. Since the Moebius–Kantor configuration is the only 83 configuration, this
particular election problem has a unique solution.

Fig. 14 The Moebius–Kantor
configuration

Fig. 15 The Levi graph
of the Moebius–Kantor
configuration
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The property that two different points of a configuration are contained in at most
one line implies that Levi graphs have girth (the length of the shortest cycle) at
least 6. Conversely, each bipartite k-regular graph with girth at least 6 and with a
chosen black-white coloring of the vertex set determines precisely one nk config-
uration. If the coloring is not chosen in advance, such graphs determine a pair of
dual configurations, that is, configurations with the role of their points and lines
interchanged. Therefore the following result holds.

Proposition 12. A k-regular graph of order 2n is a Levi graph of an nk configuration
if and only if it is bipartite and contains no 4-cycles.

A slight modification of the above election problem may be posed: Can nine can-
didates be arranged into nine groups of size 3 such that no two meet more than once?
The answer is again yes. But now there are three possible solutions (see Fig. 16).
The upper 93 configuration on Fig. 16 allows no additional line, the lower allows
one additional line and the middle allows three additional lines. This middle 93 con-
figuration is known as the Pappus configuration. Among others this configuration
solves the classical Orchard Planting Problem for n = 9, k = 3 and r(n,k) = 10
which is as follows: Can n trees be planted so as to produce r(n,k) straight rows
with k trees in each row.

More information on graphs and configurations can be found in [11, 29, 39].

Exercise 9. Show that the 83 configuration given in Fig. 15 is the only 83 configu-
ration.

Exercise 10. Show that the three 93 configurations given in Fig. 16 are the only 93

configurations.

Fig. 16 The 93 configurations
on the left handside pictures
and the corresponding Levi
graphs on the right handside
pictures
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5 Symmetries in Graphs

Digraphs X1 = (V1,E1) and X2 = (V2,E2) are isomorphic if and only if there is a
bijection f : V1→V2 such that for all u,v ∈V1

(u,v) ∈ E1⇔ ( f (u), f (v)) ∈ E2.

The bijection f is called an isomorphism between the graphs.

Example 1. Let X1 be a simple graph whose vertices are integers 1, . . . ,2n with an
edge between two vertices if and only if they are of the same parity. Let X2 be a
simple graph whose vertices are integers −1, . . . ,−2n with an edge between two
vertices if and only if either both vertices are less than −n or both are more than or
equal to−n. Then the function f : {−1, . . . ,−2n}→ {1, . . . ,2n}, where f (k) =−2k
if −n ≤ k ≤ −1 and f (k) = 2(2n + k) + 1 if −2n ≤ k < −n, is an isomorphism
between X1 and X2.

A nonempty set G together with a binary operation · is a group if the following
four axioms are satisfied: (1)(Closure) For all g1,g2 ∈ G, g1 ·g2 ∈ G. (2) (Associa-
tivity) For all g1,g2,g3 ∈ G, g1 · (g2 · g3) = (g1 · g2) · g3. (3) (Identity) There is an
element e in G such that e ·g = g ·e = g for all g∈G. (4) (Inversion) For each g∈G,
there is an element denoted g−1 such that g−1 ·g = g ·g−1 = e.

An automorphism of a graph X is an isomorphism of X with itself. Thus each au-
tomorphism α of X is a permutation of the vertex set V which preserves adjacency.
The set of automorphisms of a graph X is a group, called the automorphism group
of X and denoted by Aut(X). For example, the automorphism group of the Petersen
graph is isomorphic to the symmetric group Aut(GP(5,2)) = S5

Proposition 13. A graph and its complement have the same automorphism group
Aut(X) = Aut(X).

If G is a group and Ω is a set, then a (right) group action of G on Ω is a binary
function Ω ×G→ Ω with notation (ω ,g) �→ ωg which satisfies the following two
axioms:

(1) ω1 = ω for every ω ∈Ω (where 1 denotes the identity element of G).
(2) (ωg)h = ωgh for all g,h ∈ G and ω ∈Ω .

In a similar way we can define (left) group action.
For a group G acting on the set Ω the set

OrbG(ω) = ωG = {ωg | g ∈ G},

where ω ∈ Ω , is called a G-orbit (in short an orbit if the group G is clear from the
contest) of the element ω with respect to the action of G. If the group orbit OrbG(ω)
is equal to the entire set Ω for some element ω in Ω , then G is transitive. For ω ∈Ω
the set Gω = {g ∈ G | ωg = ω}, the stabilizer of the element ω , is a subgroup of
G. If |Gω | = 1 for every element ω ∈ Ω then we say that G acts semiregularly. If
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G acts on Ω transitively and |Gω |= 1 for every element ω ∈Ω we say that G acts
regularly (G is regular). For a more detail discussion on group actions we refer the
reader to [64, 72].

A graph is said to be vertex-transitive, edge-transitive, and arc-transitive (also
called symmetric) if its automorphism group acts vertex-transitively, edge-transitively
and arc-transitively, respectively. Given a group G and a subset S of G \ {1}, the
Cayley graph X = Cay(G,S) has vertex set G and edges of the form {g,gs} for
all g ∈ G and s ∈ S. Every Cayley graph is vertex-transitive but there exist vertex-
transitive graphs that are not Cayley. Sabidussi [65] characterized Cayley graph in
the following way: A graph is a Cayley graph of a group G if and only if its auto-
morphism group contains a regular subgroup isomorphic to G.

Example 2. The graph shown in Fig. 5 is neither vertex-transitive nor edge-transitive.
Graphs shown in Fig. 8 are all vertex-transitive, arc-transitive and Cayley. The Pe-
tersen graph and the dodecahedron (graphs shown in Figs. 10 and 11) are vertex-
transitive and arc-transitive but they are not Cayley graphs.

Example 3. Let n ≥ 3 be a positive integer, and let k ∈ {1, . . . ,n− 1} \ {n/2}. The
generalized Petersen graph GP(n,k) is defined to have the following vertex set and
edge set:

V (GP(n,k)) = {ui | i ∈ Zn}∪{vi | i ∈ Zn},
E(GP(n,k)) = {uiui+1 | i ∈ Zn}∪{vivi+k | i ∈ Zn}∪{uivi | i ∈ Zn}.

There are infinitely many vertex-transitive but only 7 arc-transitive generalized
Petersen graphs: GP(4,1), GP(5,2), GP(8,3), GP(10,2), GP(10,3), GP(12,5),
GP(24,5).

Clearly, a graph that is arc-transitive is also vertex-transitive and edge-transitive.
But the converse is not true in general. In 1966 Tutte proved that the converse is true
for graphs of odd valency.

Proposition 14 (Tutte [70]). A vertex-transitive and edge-transitive graph of va-
lence k, where k is odd, is also arc-transitive.

Corollary 3. Everycubicvertex-transitiveandedge-transitivegraphisarc-transitive.

There exist graphs that are vertex-transitive and edge-transitive but not arc-
transitive. These graphs are called half-arc-transitive graphs. By Proposition 14 the
valency of such a graph is necessarily even. Moreover, in 1970 Bouwer [14] proved
the existence of half-arc-transitive graphs of any given even valency. The smallest
half-arc-transitive graph is the Doyle–Holt graph, the graph of order 27 shown in
Fig. 17. The proof of the next proposition is straightforward.

Proposition 15. Every graph that is edge-transitive but not vertex-transitive is
bipartite.
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Fig. 17 The Doyle–Holt
graph

Fig. 18 The smallest graph
that is vertex-transitive but not
edge-transitive (the 3-prism
K3�K2) and the smallest
graph that is edge-transitive
but not vertex-transitive (the
star K1,2)

Fig. 19 The Folkman graph

Examples of edge-transitive but not vertex-transitive graphs are non-regular
graphs Km,n, n �= m (see also Fig. 18). A regular edge-transitive but not vertex-
transitive graph is called semisymmetric. Research on these graphs has initiated and
the foundations of the theory laid out by Jon Folkman [36]. The smallest such a
graph has 20 vertices and is now known as the Folkman graph (see Fig. 19). The
smallest cubic semisymmetric graph is the Gray graph shown in Fig. 20 (see also
[24]).

Additional information on symmetries in graphs can be found in [38]. To wrap
up this section we give the following two exercises.

Exercise 11. Prove that the Petersen graph is the smallest vertex-transitive graph
that is not a Cayley graph.

Exercise 12. Prove Proposition 15.



18 K. Kutnar, D. Marušič

Fig. 20 The Gray graph

6 Some Well-Known Open Problems

The following unsolved problem proposed by Lovász can be thought of as the main
motivation for the study of vertex-transitive graphs.

Open problem 1 (Lovász [46]) Does every connected vertex-transitive graph have
a Hamiltonian path?

With the exception of K2, only four connected vertex-transitive graphs that do
not have a Hamiltonian cycle are known to exist. These four graphs are the Petersen
graph, the Coxeter graph and the two graphs obtained from them by replacing
each vertex by a triangle. The fact that none of these four graphs is a Cayley
graph has led to a folklore conjecture that every Cayley graph is hamiltonian (see
[7, 9, 10, 30, 37, 52] for the current status of this conjecture). Coming back to vertex-
transitive graphs, it was shown in [32] that, with the exception of the Petersen graph,
a connected vertex-transitive graph whose automorphism group contains a transitive
subgroup with a cyclic commutator subgroup of prime-power order, is hamiltonian.
Furthermore, it has been shown that connected vertex-transitive graphs of orders p,
2p (except for the Petersen graph), 3p, 4p, p2, p3, p4 and 2p2, where p is a prime,
are hamiltonian (see [1, 19, 44, 53–55, 68]). On the other hand, connected vertex-
transitive graphs of orders 5p and 6p are only known to have Hamiltonian paths (see
[45, 59]). Some other partial results related to this problem are known (see [2–6, 8]).

The following open problem was posed in [18, 51].

Open problem 2 ([18, 51]) Does every vertex-transitive graph have a semiregular
automorphism?

An element of a permutation group is semiregular, more precisely (m,n) – semi-
regular, if it has m orbits of size n. It is known that every cubic vertex-transitive
graph has a semiregular automorphism [60]. Recently this result have been extended
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to quartic vertex-transitive graphs [33], but the problem of existence of semiregular
automorphisms in vertex-transitive graphs [18, 51] is still open for larger valencies.
However, some results with restriction to certain orders of the graphs in question
are also known (see [51]). As for arc-transitive graphs of valency pq, where p and q
are primes, recently Xu [73] proved existence of semiregular automorphisms in the
case when their automorphism groups have a nonabelian minimal normal subgroup
with at least three orbits on the vertex set of the graph.

Open problem 3 Classification and structural results for cubic symmetric graphs
of different transitivity degrees (s = 1,2,3,4 or 5).

In 1947 Tutte [69] proved that in a cubic symmetric graph the order of a vertex
stabilizer is 3×2s where s≤ 4. All cubic symmetric graphs on up to 2,048 vertices and
some partial results related to the above problem are known (see [15, 20–22, 26–28]).

Open problem 4 Classification and structural results for quartic half-arc-transitive
graphs.

The listof allquartichalf-arc-transitivegraphson upto 500vertices isclose to being
completed. Although quartic half-arc-transitive graphs are an active topic of research
these days the above problem is still open (see [25, 34, 43, 48, 49, 56, 58, 67]).

Open problem 5 Classification and structural results for semisymmetric graphs.

The list of all cubic semisymmetric graphs on up to 768 vertices in given in [24].
There exist 43 cubic semisymmetric graphs on up to 768 vertices, 21 with solvable
automorphism group and 22 with nonsolvable automorphism group. Partial results
on the above problem were proven in [13, 23, 35, 50, 57, 63].
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53. Marušič D (1985) Vertex transitive graphs and digraphs of order pk . In: Cycles in graphs

(Burnaby BC, 1982). North-Holland, Amsterdam, pp 115–128. Ann Discrete Math 27
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From Graph Theory to Models of Economic
Networks. A Tutorial

Michael D. König and Stefano Battiston

Abstract Networks play an important role in a wide range of economic phenomena.
Despite this fact, standard economic theory rarely considers economic networks
explicitly in its analysis. However, a major innovation in economic theory has been
the use of methods stemming from graph theory to describe and study relations
between economic agents in networks. This recent development has lead to a fast
increase in theoretical research on economic networks. In this tutorial, we introduce
the reader to some basic concepts used in a wide range of models of economic
networks.

1 Introduction

Networks are ubiquitous in social and economic phenomena. The use of methods
from graph theory has allowed economic network theory to improve our understand-
ing of those economic phenomena in which the embeddedness of individuals in their
social inter-relations cannot be neglected. In this tutorial will give a brief overview
of network models, starting from simple network constructions to more complex
models that allow for the strategic formation of links.

When discussing these models we try to introduce the reader to the most im-
portant concepts of economic networks. However, the literature that is discussed in
this tutorial is far from being exhaustive. For a more detailed introduction to eco-
nomic network theory we recommend the books Vega-Redondo [84], Jackson [52]
and Goyal [42] as well as the lecture notes by Calvó-Armengol [15], Zenou [93]. A
more mathematical treatment of complex networks can be found in Chung and Lu
[20] and Durrett [30]. Standard references for graph theory are Bollobas [8], Diestel
[28], West [91].
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This tutorial is organized as follows. First, we will argue in Section 2 that stan-
dard economic theory is in the need of incorporating networks in its analysis. In
Section 3 we will mention several applications of economic network theory and we
will introduce the basic terminology used to describe networks in Section 4. We will
proceed by discussing several prominent network models with an increasing degree
of complexity ranging from Poisson random networks in Section 5.1, its general-
ization in Section 5.2, growing random networks in Section 6 to models of strategic
network formation in Section 7.

2 Why Networks in Economics?

Gallegati and Kirman [36], Kirman [60] propose that the aggregate behavior of an
economy cannot be investigated in terms of the behavior of isolated individuals, as
it is usually done in standard economic theory. Firms interact only with a few other
firms, out of all firms present in the economy. Moreover, there are different ways
in which firms interact, and they may learn over time to adapt their interactions,
meaning that they strengthen profitable ones while they cut costly ones. All this is
based on their previous experience. We may then view the economy as an evolving
network.

Viewing the economy as an evolving network is different from what a standard
neoclassical model1 of the economy would look like. In such a model it is assumed
that anonymous and autonomous individuals take decisions independently and inter-
act only through the price system which they cannot influence at all. This situation
refers to a market with perfect competition. However, competition easily becomes
imperfect because, if agents have only minimal market power, they will anticipate
the consequences of their actions and anticipate the actions of others. In order to
overcome this deficiency, game theorists have tried to integrate strategically interact-
ing firms into a general equilibrium 2 framework. But still they leave two questions
unanswered. First, it is assumed that the behavior is fully optimizing considering all
possible actions as well as all possible actions of others. This leads to agents with
extremely sophisticated information processing capabilities. Such ability of pass-
ing these enormous amounts of information in short times cannot be found in any
realistic setting of human interaction. Advances in weakening that assumption are
referred to as “bounded rationality” [40]. Second, the problem of coordination of
activities is not addressed in the standard equilibrium model of the economy. Instead

1 A standard neoclassical model includes the following assumptions [35]: (1) perfect competition,
(2) perfect information, (3) rational behavior, (4) all prices are flexible (all markets are in equi-
librium). The resulting market equilibrium (allocation of goods) is then efficient. See [49] for a
discussion of these assumptions.
2 The individual decision making process is represented as maximizing a utility function. A utility
function is a way of assigning a number to every possible choice such that more-preferred choices
have a higher number than less-preferred ones [82]. The gradients of the utility function are imag-
ined to be like forces driving people to trade, and from which economic equilibria emerge as a kind
of force balance [32].
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it is assumed that every agent can interact and trade with every other agent, which
becomes quite unrealistic for large systems. One has to specify the framework
within the individual agents take price decisions and thus limit the environ-
ment within which they operate and reason. An obvious way is to view the economy
as a network in which agents interact only with their neighbors. In the case of tech-
nological innovation, neighbors might be similar firms within the same industry,
but these firms will then be linked either through customers or suppliers with firms
in other industries. Through these connections innovations will diffuse throughout
the network. The rate and extent of this diffusion then depends on the structure and
connectivity of the network.

Finally, the evolution of the network itself should be made endogenous. In this
case the evolution of the link structure is dependent on the agents’ experience from
using the links (respectively contacts) available to them. Individuals learn and adapt
their behavior and this in turn leads to an evolution of the network structure which
then feeds back into the incentives of agents to form or sever links. We will briefly
discuss this coupled dynamic interaction between individuals’ incentives and the
network dynamics in Section 4.4.

3 Examples of Networks in Economics

In this section we point to several applications of network models in economics. We
have restricted ourselves to a few applications but this list could of course be greatly
expanded [see e.g. also 84, p. 10].

Corporate Ownership and Boars of Directors

Ownership relations between firms, as well as members in common in the boards
of directors, give raise to intricate networks. On one hand ownership relations
are instruments to exert corporate control and several works have studied indirect
ownership relations [13] and patterns such as the so-called pyramids and cross-
shareholdings [19], as well as business groups [33, 45]. Other works have also
studied the financial architecture of corporations in national or global economies
[5, 21, 37, 61].

On the other hand, interlocked directors among firms are known to convey in-
formation and power [4, 27]. The spread of corporate practices through the director
network and the role of inter-organizational imitation of managers has been stud-
ied by Davis and Greve [26]. Moreover, it has been shown that the structure of the
intrlock network has implications for the decision making process [3].

Labor markets

A wide range of empirical studies of labor markets have shown that a signifi-
cant fraction of all jobs are found through social networks. The role of informal
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social networks in labor markets has been emphasized first by Granovetter [44].
He found that over 50% of jobs were found through personal contacts. In a re-
cent paper, Jackson and Calvo-Armengol [53] introduce a network model of job
information transmission. The model reproduces the empirically stylized fact that
the employment situation of individuals that are connected, either directly or indi-
rectly, is correlated. Further, they show that the topology of the network influences
the length and correlation of unemployment among individuals. Finally, with this
model the authors can explain the pervasive inequalities in wages, employment and
drop-out rates.

Diffusion in Networks

In economics diffusion is usually related to the spread of a technology through a so-
ciety or industry. A new technology or idea might be generated by an innovator and
then be subsequently adopted by others over time. The literature on technological
diffusion focuses on alternative explanations of the dominant stylized fact: that the
usage of new technologies over time typically follows an S-curve. Geroski [39] gives
an excellent survey on models of technological diffusion [see also 24, 79, 85]. Most
models assume that there are no restrictions on the interactions between agents and
the path along which knowledge can flow. This assumption is clearly not supported
by the restrictions and limited contacts firms realistically maintain [47, 74]. In par-
ticular, if knowledge diffuses through social contacts or personal interrelations then
the diffusion of a technology critically depends on the underlying network structure.
Thus, a proper understanding of the diffusion of innovations needs to be grounded
in economic network theory.

Formal and Informal Organizations

The central question in the theory of organizations is how a complex decision prob-
lem can be efficiently decomposed into distinct tasks, distributed among the differ-
ent units of an organization. A network can represent the paths along which these
tasks are distributed in an organization [see 80, 81, for a general discussion of net-
work forms of organization].

One can distinguish between formal or informal networks in an organization.
Formal network usually refer to the hierarchical structure of an organizational chart.
On the other hand, informal organizational networks are usually referred to “com-
munities of practice”. They can serve as a complement to the formal organizational
structure [11, 14, 65]. Beyond the formal working relationships institutionalized in
the organizational chart, informal working relationships may coexists or may even
play a predominant role [16]. In principle. a hierarchical formal organization as-
sumes that a central coordinator can distribute tasks efficiently among the members
of an organization. However, central coordination may not be feasible when the
number of agents in the organization is large, the problems the organization has to
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solve are highly complex and their nature varies considerably such that they cannot
be decomposed and distributed.

The existing literature has mainly focussed on the formal organizational struc-
ture whereas recent works try to incorporate both the formal as well as the informal
communication networks [51] among individuals in an organization. A recent ex-
ample is the work by Dodds et al. [29]. The authors find a particular organizational
network structure that enhances the robustness of the organization and reduces the
possibility of a communication overload among its members.

R&D Collaborations

There exist many theoretical works in the literature on industrial organization try-
ing to explain the effects and incentives of R&D collaborations between competing
firms [see e.g. 59] and Veugelers [86, for a review]. However, these works do not
address the heterogeneity of inter-firm collaborations that have been observed in
empirical studies [e.g. 72]. In recent works by Goyal and Moraga-Gonzalez [43]
and Vega-Redondo [83] R&D collaborations are investigated in a network setup
in which these collaborations are not exogeneously given but the endogeneous out-
come of the incentives of firms to collaborate. In this way, heterogeneous interaction
profiles are possible. Their equilibrium analysis, however, leads to simple network
structures. These simple networks are in contradiction to the empirical literature that
shows that R&D networks can have complex network topologies, in general char-
acterized by high clustering, sparseness and a heterogeneous degree distribution. A
recent example of a model that tries to incorporate these empirical stylized facts can
be found in König et al. [62], König et al. [63] and we will give a brief overview of
this model in Section 7.3.

4 Characterization of Networks

If the links in a network do not change over time (we have a static network) we
can associate a state variable to the nodes based on their position in the network.
If, for example, an agent has many neighbors which in turn have many neighbors,
for instance, she may have much better opportunities to gather information from
others compared to an agent that maintains only a few connections to other loosely
connected agents. We can assign this agent a high centrality in the network (see
Section 4.3.3). But a highly central agent may also be much more frequently ex-
posed to any threat propagating through the network, e.g. viruses or avalanches of
insolvencies.

In this section, we start with some concepts of graph theory that deals with the
properties of static networks. We then review some of the measures that are used
to characterize networks, discussing briefly their meaning in economic systems
and point to some relevant literature. Finally, we introduce a possible classification
scheme for models of networks in economics.
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4.1 Elements of Graph Theory

In this section we follow closely West [91] to which we refer the reader for further
details. In the following, we will use the terms graph and network as synonyms. The
same holds for nodes and nodes as well as links and edges.

A graph G is a pair, G = (V,E), consisting of a node set V (G) and an edge set
E(G). The edge set E(G) induces a symmetric binary relation on V (G) that is called
the adjacency relation of G. Nodes i and j are adjacent if ei j ∈ E(G).

The degree, di, of a node i is the number of edges incident to it. A graph can either
be undirected or directed, where in the latter case one has to distinguish between
indegree, d−i , and outdegree, d+

i , of node i. In the case of an undirected graph, the
(first-order) neighborhood of a node i in G is Ni = {w ∈ V (G) : ewi ∈ E(G)}. The
degree of a node i is then di = |Ni|. The second-order neighborhood of node i is⋃

u∈Ni
Nu\{i∪Ni}. Similarly, higher order neighborhoods can be defined (as well as

neighborhoods for directed graphs). A graph G is regular if all nodes have the same
degree. A graph G is k− regular if every node has degree k.

The adjacency matrix, A(G), of G, is the n×n matrix in which the entry ai j is 1
if the edge ei j ∈ E(G), otherwise ai j is 0. For an undirected graph A is symmetric,
i.e. ai j = a ji ∀i, j ∈V (G). An example of a simple directed graph on four nodes and
its associated adjacency matrix A is given in Figure (1).

The eigenvalues of the adjacency matrix A are the numbers λ such that Ax =
λ x has a nonzero solution vector, which is an eigenvector associated with λ . The
term λPF denotes the largest real eigenvalue of A [the Perron-Frobenius eigenvalue,
cf. 50, 75], i.e. all eigenvalues λ of A(G) satisfy |λ | ≤ λPF and there exists an
associated nonnegative eigenvector v ≥ 0 such that Av = λPFv. For a connected
graph G the adjacency matrix A(G) has a unique largest real eigenvalue λPF and a
positive associated eigenvector v > 0.

A walk is an alternating list, {v0,e01,v1, ...,vk−1,ek−1k,vk}, of nodes and edges.
A trail is a walk with no repeated edge. A path is a walk with no repeated node.
The shortest path between two nodes is also known as the geodesic distance. If the
endpoints of a trail are the same (a closed trail) then we refer to it as a circuit. A
circuit with no repeated node is called a cycle. In particular, Cn denotes the cycle on

A =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 1
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠

1

2

4

3

Fig. 1 (Right) a directed graph consisting of 4 nodes and 5 edges. (Left) the corresponding adja-
cency matrix A. For example, in the first row in A with elements, a11 = 0,a12 = 1,a13 = 0,a14 = 0,
the element a12 = 1 indicates that there exist an edge from node 1 to node 2 while node 1 has not
other outgoing links
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1

2

34
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1 2 3 4 5 1

2

3

4

5

Fig. 2 A cycle C5 (left), a path P5 (middle) and the star K1,4 (right). All graphs are undirected and
contain 5 nodes

n nodes. Note that a cycle is also a circuit but a circuit is not necessarily a cycle.
Examples of simple graphs are shown in Figure (2).

The kth power of the adjacency matrix is related to walks of length k in the graph.
In particular,

(
Ak
)

i j gives the number of walks of length k from node i to node j
[41].

A subgraph, G′, of G is the graph of subsets of the nodes, V (G′) ⊆ V (G), and
edges, E(G′) ⊆ E(G). A graph G is connected, if there is a path connecting every
pair of nodes. Otherwise G is disconnected. The components of a graph G are the
maximal connected subgraphs. A graph is said to be complete if every node is con-
nected to every other node. Kn denotes the complete graph on n nodes.

4.2 Graphs and Matrices

We will state some useful facts about matrices and graphs in this section. The study
of irreducible and primitive graphs is important in linear dynamic network models.
We will present the theory here and discuss a particular application in Section 7.3.
Next, we introduce bipartite graphs and show how they can be applied to study
networks between members of boards of different companies.

Irreducible and Primitive Graphs

If a graph G is not connected then its adjacency matrix A(G) can be decomposed in
blocks, each block correspond to a connected component. An n×n matrix A is said
to be a reducible matrix if and only if for some permutation matrix P, the matrix
PT AP is block upper triangular. If a square matrix is not reducible, it is said to be
an irreducible matrix. If a graph is connected then there exists a path from every
node to every other node in the graph. The adjacency matrix of a connected graph
is irreducible [50] and in particular it cannot be decomposed in blocks. Irreducible
matrices can be primitive or cyclic (imprimitive) [75]. This distinction is relevant for
several results on the convergence of linear systems Boyd [12], Horn and Johnson
[50] and we will apply it in Section 7.3.

A non-negative matrix A is primitive if Ak > 0 for some positive integer k ≤
(n− 1)nn. This means that, A is primitive if, for some k, there is a walk of length
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k from every node to every other node. Notice that this definition is a much more
restrictive than the one of irreducible (or connected) graphs in which it is required
that there exits a walk from every node to every other node, but not necessarily of
the same length. A graph G is said to be primitive if its associated adjacency matrix
A(G) is primitive.

It is useful to look at an alternative but equivalent way to characterize a primitive
graph. A graph G is primitive if and only if it is connected and the greatest common
divisor of the set of length of all cycles in G is 1 [50, 92]. This means for instance
that the connected graph consisting of two connected nodes is not primitive as the
only cycle has length 2 (since the link is undirected a walk can go forward and
backward along the link). Similarly, a chain or a tree is also not primitive, since
all cycles have only even length. However, if we add one link in order to form a
triangle, the graph becomes primitive. The same is true, if we add links in order to
form any cycle of odd length. In general, if the graph of interaction between agents
is connected, the presence of one cycle of odd length is a sufficient condition for the
primitivity of the graph.

Bipartite Graphs

In a bipartite graph G, V (G) is the union of two disjoint independent sets V1 and
V2. In a bipartite graph, if e12 ∈ E(G) then v1 ∈V1 and v2 ∈V2. In other words, the
two endpoints of any edge must be in different sets. The complete bipartite graph
with partitions of size |V1|= n1 and |V2|= n2 is denoted Kn1,n2 . A special case is the
star which is a complete bipartite graph with one partition having size n1 = 1 and
n2 = n−1, denoted as K1,n−1 in Figure (2).

A bipartite graph can be ’projected’ into two one-mode networks. For sake of
clarity let us take the following example. Assume that in Figure (3) each node de-
noted with a number represents the board of directors of a company, while each node
denoted with a letter represents a person. A link, say, between person B and board
1 represents the fact that person B serves in board 1. Notice that B serves also in
board 2. The one-mode projection on the directors is a new graph in which there is a
link between two persons if they serve together in one or more boards. In doing this
projection some information is lost: consider for instance three directors connected
in a triangle (not shown). The links do not specify whether each pair of directors sit
in a different board or whether the three directors sit all in the same board. Denote
C the adjacency matrix of our network of boards and persons,

Cα i =
{

1 if α sits in board i
0 otherwise.

(1)

C is an M×N matrix, M being the number of persons, and N being the number of
boards. This is a binary matrix, and in general it is neither square, nor symmetric.
For the one-mode projection relative to the boards, we should take into account that
the number of directors sitting in boards i and j, is equivalent to the number of paths
of length 2 connecting i and j in the bipartite graph. Therefore, this number can be
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Fig. 3 Example of bipartite network (top). There are two classes of nodes and links are assigned
only between nodes that do not belong to the same class. A one-mode projection is a new graph
consisting only of nodes of one class in which a link between two nodes implies that, in the original
bipartite graph, the two nodes where connected to a same third node

assigned as the weight of the connection between i and j, and result in a natural way
from the follwong operation on the adjacency matrix. If we define the adjacency
matrix of the board network as

Bi j =
{

wi j if i and j are connected with weight wi j

0 if i and j are not connected.
(2)

then it holds that
Bi j = ∑αCα iCα j. (3)

In terms of matrix product this means B = CT C. In analogous way, the adjacency
matrix of the director network is related to the initial board-person network as
follows

Dαβ = ∑
i

Cα iCβ i. (4)

which is equivalent to D = CCT . While the off-diagonal entries correspond to the
edge weights, the diagonal entries, are, respectively, the size Bii of board i (the num-
ber of directors serving on it), and the number Dαα of boards which director α
serves on.

4.3 Network Measures

This section covers only a few network measurements. For a more extensive survey
see Costa et al. [22] and also Newman [67] as well as Wasserman and Faust [87].
The following definitions assume undirected graphs.
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4.3.1 Average Path Length

The average path length L is the mean geodesic (i.e. shortest) distance between
node pairs in a graph

L=
1

1
2 n(n−1)

n

∑
i≥ j

di j

where di j is the geodesic distance from node i to node j. The average path length
is important for instance in networks in which agents benefit from the knowledge
of the others (so called knowledge spillovers, see Section 7.2 and 7.3 for examples).
The smaller is the average distance among agents the more intense is the knowledge
exchange.

For Poisson random graphs (Section 5.1) we obtain L= lnn
lnz where n denotes the

number of nodes in the graph and z the average degree. For a regular graph the
average path length is L = n

2z . For a complete graph Kn it is trivially L = 1. For a
cycle Cn it is half the length of the cycle L = n

2 and for scale free networks (see
Section 6.3) it is L= lnn

ln lnn . [1].

4.3.2 Clustering

For each node i, the local clustering coefficient, Cl(i), is simply defined as the frac-
tion of pairs of neighbors of i that are themselves neighbors. The number of possible
links between the neighbors of node i is simply di(di−1)/2. Thus we get

Cl(i) =
|{e jk ∈ E(G) : ei j ∈ E(G)∧ eik ∈ E(G)}|

di(di−1)/2

The global clustering coefficient Cl is then given by Cl = 1
n ∑n

i=1 Cl(i).
A high clustering coefficient Cl means (in the language of social networks), that

two of your friends are likely to be also friends of each other. It also indicates a high
redundancy of the network. For a complete graph Kn it is trivially Cl = 1. Let 〈d〉
denote the average degree then we get for a Poisson random graph Cl = 〈d〉

n−1 and for

a cycle Cl ∼ 3
4 for large n [1].

4.3.3 Centrality

Centrality measures the importance of a node on the basis of its position in the
network [9, 10, 34]. We can look at a simple example. Consider the star K1,n−1 in
Figure (2). the most central node is node 3 which has the highest centrality, and all
other nodes have minimum centrality. Actually, the star is also the most centralized
graph [87].

In the following paragraphs we will introduce different measures of centrality
which incorporate different aspects of a nodes position in the network. Degree
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centrality counts the number of links incident to a node. Closeness centrality mea-
sures how many steps it takes to reach any other node in the network. Betweenness
centrality measures how many paths between any pair of nodes pass through a node.
Finally, eigenvector centrality measures the importance of a node as a function of
the importance of its neighbors. The different measures of centrality capture differ-
ent aspects of the position of an agent in a network and therefore the choice of the
right measure depends on the particular application under consideration.

Degree Centrality

The degree centrality of node i is just the number of links di . We have that di =
∑n

j=1 ai j = ∑n
j=1 a ji (since A is symmetric). If we consider the degree of an agent

as a measure of centrality then her centrality depends on the size of the network
(with maximum centrality given by n− 1). In order to overcome this bias one can
consider the normalized degree centrality that divides the degree by n−1, yielding
a measure in [0,1]. There are several applications of degree centrality, for example
the popularity in friendship networks, the diffusion of information and the spread of
infections.

Closeness Centrality

The closeness CC(i) of i is the reciprocal of the sum of geodesic distances to all
other nodes in the graph, that is

CC(i) = ∑
v�=i

1
div

. (5)

If an agent has high closeness centrality she can quickly interact with other agents
and gather information from them since she has short communication paths to the
others.

Betweenness Centrality

The betweenness centrality of i, denoted by CB(i) is defined as follows.

CB(i) = ∑
u,v�=i

guv(i)
guv

. (6)

More precisely, if guv is the number of geodesic paths duv from u to v and guv(i)
is the number of paths from u to v that pass through i, then guv(i)

guv
is the fraction

of geodesic paths from u to v that pass through i. Normalized betweenness divides
simple betweenness by its maximum value. Agents who are not directly connected
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might depend on another agent if she lies on a path connecting them. If an agent
lies on many such path connecting different components in a network then she has
a high betweenness centrality.

Eigenvector Centrality

Eigenvector centrality measures the importance of a node from the importance of its
neighbors. Even if a node is only connected to a few others (thus having a low degree
centrality) its neighbors may be important, and therefore the node is important too,
giving it a high eigenvector centrality. Let’s assume that the importance of a node
i is measured by xi. Then the eigenvector centrality of node i is proportional to the
sum of the eigenvector centralities of all nodes which are connected to i [68].

xi =
1
λ ∑

j∈Ni

x j =
1
λ

n

∑
j=1

ai jx j, (7)

where Ni is the set of nodes that are connected to node i, n is the total number of
nodes and λ is a constant. In matrix-vector notation we can write Ax = λ x, which
is the eigenvector equation. If the proportionality factor λ is given by the largest
eigenvalue λPF (Section 4.1) of the adjacency matrix A then all the elements in the
eigenvector must be positive [50] and we get a proper measure of centrality.

4.4 Dynamics of State Variables and Network Evolution

In the following we introduce a classification of network models in four types. This
classification has mainly a didactic value and it should help readers to find their way
in the growing landscape of network models.

As mentioned in the beginning of this section, the agents N = {1, ...,n} in an
economic network G can be associated with a state variable xi, representing agent
i’s wealth, firm i’s output or, in the case of R&D collaborations, knowledge. The
links between the agents i and j can be indicated by the elements ai j of an adjacency
matrix A. It is important to distinguish between (1) the dynamics taking place on
the state variables x(t) and (2) the evolution of the network A(t). In the first, the
state variables are changed as a result of the interaction among connected nodes.
In the latter, nodes or edges are added to/removed from the network by a specific
mechanism. For example, the value of the assets of a firm depends on the value of
the firms it holds shares in. Even if the links do not change the asset value may
change. On the other hand, the links may change in time, depending or not on the
asset value. Consequently, there are four types of dynamics that can be investigated
in models of economic networks, as illustrated in Figure (4).

In socio-economic systems dynamics and evolution are often coupled. The utility
of agents depends on their links to the other agents and agent modify their links
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network

state variables
static dynamic

static dxi
dt = 0,

dai j
dt = 0 dxi

dt �= 0,
dai j
dt = 0

dynamic dxi
dt = 0,

dai j
dt �= 0 dxi

dt �= 0,
dai j
dt �= 0

Fig. 4 Possible combinations of static and dynamic state variables xi associated with the nodes
and fixed or changing links indicated by ai j between the nodes for i, j ∈ N

over time depending on the utility they expect or they experience from a link. So,
in principle, all systems should be studied with models in which the state variables
and the network are dynamic, they co-evolve. However, evolution and dynamics do
not necessarily have the same time scale.

Assume that agents have a certain inertia for creating new links and evaluating
their existing ones. The rate at which links are formed is much slower than the rate at
which the state variables change. In other words, there are two different time scales
in our dynamical system: the fast dynamics of the state variables and the slow evo-
lution of the network. The state variables immediately reach their quasi-equilibrium
state, whereas the network remains unchanged during this short adaptation time. An
illustration can be seen in Figure (4.4). One can say that the variables with the fast
dynamics are “slaved” by the variables with the slow dynamics [48], [see also 46,
for a review]3. We will introduce such an approach in Section 7.3 when studying the
evolution of R&D networks.

initialization

xi reach
quasi-equilibrium

perturbation
of ai j

Another example for the coupling of a dynamic network with dynamic state
variables are credit relations among firms. The links may represent credit relations
among firms, established through contracts. Many financial variables (such as to-
tal asset value or solvency ration) of a firm are affected when financial variables
change in the connected firms. Despite that, some relations maybe fixed until the
expiration of the contract. Therefore, while links may be modified on a time scale
of, say, several months, financial variables may vary on a time scale of days.

In the following sections we will discuss several models of networks. Accord-
ing to the classification we have introduced in this section, the models in Section 5
and Section 6 do not consider a state variable attached to the nodes. These models

3 This principle has been used e.g by [57, 58] in the context of evolutionary biology and by [64] in
order to explain the sustainability of informal knowledge exchange in innovation networks.
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consider different ways how networks can be constructed in a stochastic network
formation process. The process can be viewed as a network evolution. Since these
models do not consider a dynamic state variable, they are easier to analyze and so
we take them as a starting point before moving on to more complex network mod-
els. More complex models follow in the next sections. Both models in Section 7
introduce a state variable attached to the nodes. The nodes are interpreted as agents
and the state variable is their utility. The model in Section 7.2 considers the case of
a dynamic network but does not assume any dynamics on the state variables (even
though the state variables depend on the network). Finally, in Section 7.3 we discuss
a model that includes both a dynamic state variable and a dynamic network and it
assumes a time-scale separation between the two.

5 Random Network Constructions

In this section we present some basic models of networks. In this discussion we fol-
low Newman [67] as well as Vega-Redondo [84]. For a more detailed mathematical
treatment see Chung and Lu [20] and Durrett [30]. The network construction algo-
rithms introduced in this section can be simulated with the Java package “econnet”
available upon request to the authors4. The algorithms used there serve for edu-
cational purposes only and we refer to Batagelj and Brandes [2] for an efficient
implementation.

5.1 Poisson Random Graphs

We denote the Poisson random graph by G(n, p) with n nodes and in which every
edge is present with probability p. The expected degree is z = 2p

n

(n
2

)
= p(n− 1)

where
(n

2

)
is the number of edges in the complete graph Kn. The degree distribution

of G(n, p) is given by

pk =
(

n−1
k

)
pk(1− p)n−1−k, (8)

where pk is the probability that a randomly chosen node has degree k. We have that

lim
n→∞

pk =
zke−z

k!
= Pois(z;k). (9)

Many results on the topological properties and phase transitions can be derived for
Poisson random graphs. We refer to West [91], Chung and Lu [20], Durrett [30] and
Bollobas [7] for the interested reader.

4 Mail to mkoenig@ethz.ch.
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Fig. 5 Poisson random graph G(n, p) 50% below the phase transition p = 1
n−1 (left) and at the

phase transition (right). The graph was generated with the Java package “econnet” and the ARF
layout algorithm [38]
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Fig. 6 Degree distribution of the Poisson random graph G(n, p) with p = 0.1, n = 1000 and aver-
aged over 10 realizations

5.2 Generalized Random Graphs

In the following we give a short introduction to random graphs with arbitrary degree
distributions. For a detailed discussion (including all the material presented here) see
Newman et al. [69, 70].

5.2.1 Random Graph Construction

Consider a set of nodes N = {1, ...,n}. A degree sequence of a graph is a list of node
degrees d1≥ d2≥ ...≥ dn with the property that ∑n

k=1 dk must be even. We construct
the random graph G by creating di half-edges attached to node i, and then pair the
half-edges at random. The resulting graph may have loops and multiple edges.
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5.2.2 Neighborhood Size, Diameter, Phase Transition and Clustering

The probability of a randomly chosen node having degree k is given by

pk =
1
n
|{i ∈ N : di = k}|. (10)

Its generating function is defined by [31]

G0(x) =
∞

∑
k=0

pkxk. (11)

pk is the probability that a randomly chosen node has degree k. The distribution pk

is assumed to be correctly normalized, so that

G0(1) =
∞

∑
k=0

pk = 1. (12)

G0(x) is finite for all |x| ≤ 1. If the distribution is Poisson, pk = zke−z/k!, then the
generating function is

G0(x) = ∑
k

1
k!

e−zzkxk = e−z ∑
k

(zx)k

k!
= ez(x−1). (13)

The probability pk is given by the kth derivative of G0 according to

pk =
1
k!

dkG0

dxk

∣∣∣∣
x=0

. (14)

Thus, the function G0(x) encapsulates all the information of the discrete probability
distribution pk.

The mean (first-order moment), e.g. the average degree z of a node, is given by

z = 〈k〉=
∞

∑
k=0

kpk = G′0(1). (15)

Higher order moments of the distribution can be calculated from higher derivatives.
In general we have

〈kn〉=
∞

∑
k=0

kn pk =
(

x
d
dx

)n

G0(x)
∣∣∣∣
x=1

. (16)

For the first two moments of the Poisson distribution we obtain

x
d
dx

ez(x−1) = z (17)
(

x
d
dx

)2

ez(x−1) = z(1 + z). (18)
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If we select a node i then the number of neighbors has distribution p. However, the
distribution of the first neighbors of a node is not the same as the degree distribution
of nodes on the graph as a whole. Because high-degree nodes have more edges
connected to it, there is a higher probability that a randomly chosen edge is incident
to it, in proportion to the node degree. The number of nodes with degree k is npk.
The number of edges incident to nodes with degree k is given by knpk. This is
equal the number of possibilities to select an edge which is incident to a node with
degree k. Thus, the probability that a node incident to a randomly chosen edge has
degree k is proportional to kpk and not just pk. Through normalization we get that
the probability distribution of the degree among neighbors of a randomly selected
node i is given by [67]

qk =
kpk

∑s sps
. (19)

The average degree of a neighboring node is then

∑
k

kqk = ∑k k2 pk

∑s sps
=
〈k2〉
〈k〉 . (20)

The corresponding generating function is

∑
k

qkxk = ∑k kpkxk

∑s sps

=
1
〈k〉x∑

k

pkkxk−1

︸ ︷︷ ︸
G′p(x)

=
xG′p(x)
G′p(1)

.

(21)

If we are interested in the (excess) distribution p∗k of links of a node that can be
reached along a randomly chosen edge, other then the one we arrived along, p∗ =
qk+1 ∝ (k + 1)pk+1, then its generating function is

Gp∗(x) = ∑
k

(k + 1)pk+1

∑s sps
xk

=
1

G′p(1) ∑
k

kpkxk−1

=
G′p(x)
G′p(1)

.

(22)

In order to compute the expected number of second neighbors we have to exclude
node i from the degree count of its neighboring node and obtain

qk−1 =
kpk

∑s ps
, (23)
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or equivalently

qk =
(k + 1)pk+1

∑s sps
. (24)

The average (excess) degree of such a node is then

∑
k

kqk =
∑k(k + 1)pk+1

∑s sps

= ∑k(k−1)kpk

∑s sps

=
〈k2〉− 〈k〉
〈k〉 .

(25)

The average total number of second neighbors of a node is given by the average
degree of the node times the excess degree of the first neighbours:

z2 = 〈k〉 〈k
2〉− 〈k〉
〈k〉 = 〈k2〉− 〈k〉. (26)

The average number of second neighbors is then equal to the difference between the
second- and first-order moments of the degree distribution p. The expectation of the
first neighbors is z1 = G′p(1) and for the second neighbors one derives z2 = G′′p(1).
Note that in general the number of rth neighbors is not simply the rth derivative of
the generating function.

The average number of edges leaving from a second neighbor is given by Equa-
tion (25). This also holds for any distance m away from a randomly chosen node.
Thus, the average number of neighbors at distance m is

zm =
〈k2〉− 〈k〉
〈k〉 zm−1

=
z2

z1
zm−1

=
(

z2

z1

)m−1

z1,

(27)

where z1 = 〈k〉 and z2 is given by Equation (26). Depending on whether z2 is greater
than z1 or not, this expression will either diverge or converge exponentially as m
becomes large so that the average number of neighbors of a node is either finite or
infinite for n→ ∞. We call this abrupt change a phase transition at z1 = z2. This
condition can be written as 〈k2〉−2〈k〉= 0 or

∑
k

k(k−2)pk = 0. (28)

In the above sum isolated nodes and nodes with degree one do not contribute since
they can be removed from a graph without changing its connectivity.
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We assume that z2� z1 so that there exists a giant component essentially includ-
ing all the nodes and most of the nodes are far from each other, at around distance
D, the diameter of the graph. This means that

n∼ zD =
(

z2

z1

)D−1

z1, (29)

which leads to

ln
n
z1
∼ (D−1) ln

z2

z1

D∼
ln n

z1

ln z2
z1

+ 1.
(30)

For the special case of a Poisson network with z1 = z and z2 = z2 we obtain for
large n

D∼ ln n
z

lnz
+ 1 =

lnn
lnz

(31)

In the following we study the clustering coefficient Cl of a random graph. For this,
we consider a particular node i. The jth neighbor of i has k j links emanating from it
other than the edge ei j and k j is distributed according to the distribution q. The prob-

ability that node j is connected to another neighbor s is
k jks
nz , where ks is distributed

according to q. The average of this probability is precisely the clustering coefficient

Cl =
〈k jks〉

nz

=
1
nz

(
∑
k

kqk

)2

=
z
n

( 〈k2〉〈k〉
〈k〉2

)2

=
z
n

(
c2

v + 1− 1
〈k〉
)2

,

(32)

where cv = 〈(k−〈k〉)〉
〈k〉2 is the coefficient of variation of the degree distribution - the ratio

of the standard deviation to the mean. For Poisson networks we get z2 = 〈k2〉−〈k〉=
〈k〉2 = z2 and the clustering coefficient is Cl = z

n . For arbitrary degree distributions
we still have that limn→∞ Cl = 0 but the leading term in (32) may be higher.

5.2.3 Average Component Size Below the Phase Transition

With similar methods one can compute the average size of the connected component
a node belongs to. Here we closely follow the discussion in Baumann and Stiller [6].
The computation is valid under following assumptions:



42 M.D. König, S. Battiston

(i) The network contains no cycles. One can show that this assumption is a good
approximation for big, sparse random networks.

(ii) For any edge euv of a node u the degree of v is distributed independently of u’s
neighbors and independently of the degree of u.

We then choose an edge e uniform at random among the edges in E(G). We select
one of the incident nodes of e at random, say v. Let p0 denote the distribution of the
size of the component of v in the graph of E(G)\e. Further, let p∗ be the distribution
of the degree of v in E(G)\e. Then p0(1) = p∗(0). If the degree of v is k then we de-
note the neighbors of v in E(G)\e as n1, ...,nk. We define the following probability:
Pk(s− 1) is the probability that the size of the components of the k nodes n1, ...,nk

in E(G)\ {e,evn1 , ...,evnk} sum up to s−1. Then we can write

p0
s = ∑

k

p∗kPk(s−1). (33)

Now let S denote a random variable that is the sum of m independent random vari-
ables X1, ...,Xm, that is

S = X1 + ...+ Xm, (34)

then the generating function of S is given by

GS(x) = GX1(x)GX2(x) · · ·GXm(x). (35)

Consider the distribution of the sum of the degrees of two nodes when pk is the
distribution of a single node. Then the sum of the degrees has a generating function
G0(x)m. For two nodes we get

G0(x)2 =

(
∑
k

pkxk

)2

=

(
∑
k

pkxk

)(
∑

j

p jx
j

)

= ∑
j,k

p j pkx j+k

= p0 p0x0 +(p0 p1 + p1 p0)x1 +(p2 p0 + p1 p1 + p0 p2)x2 + · · · .

(36)

The coefficients of the powers of xn are clearly the sum of all products p j pk such
that j+k = n and hence it gives the probability that the sum of the degrees of the two
nodes will be n. We can use a similar argument to prove that higher order powers of
generating functions can be computed in the same way.

Following our assumptions, the edges evni are chose independently and uniform
at random among all edges in E(G). Therefore, Pk is distributed as the sum of k
random variables, which are in turn distributed according to p0. Using the powers of
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generating functions we have that GPk = Gp0(x)k. Moreover, the generating function
of p0 is

Gp0(x) = ∑
s

p0xs

= ∑
s

xs ∑
k

p∗kPk(s−1)

= x∑
k

p∗k ∑
s

xs−1Pk(s−1)
︸ ︷︷ ︸

GPk
(x)=Gp0 (x)k

= x∑
k

p∗kGp0(x)k

= xGp∗
(

Gp0(x)
)

.

(37)

The quantity we are actually interested in is the distribution of the size of the compo-
nent a randomly chosen node belongs to. The number of edges emanating from such
a node is distributed according to the degree distribution pk. Each such edge leads
to a component whose size is drawn from the distribution generated by the function
Gp0(x). In a similar way to the derivation of Equation (37), one can show that the
size of the component to which a randomly selected node belongs is generated by

Gp̃(x) = x∑
k

pkGp0(x)k

= xGp

(
Gp0(x)

)
.

(38)

The expected component size of a randomly selected node can be computed directly
from above. The expectation of a distribution is the derivative of its generating func-
tion evaluated at point 1. Therefore the mean component size 〈s〉 is given by

〈s〉= G′p̃(1) = Gp

(
Gp0(1)

)
︸ ︷︷ ︸

=1

+G′p
(

Gp0(1)
)

G′p0(1). (39)

where we used the normalization of the generating function. From (37) we know
that

G′p0(1) = Gp∗
(

Gp0(1)
)

+ G′p∗
(

Gp0(1)
)

G′p0(1)

= 1 + G′p∗(1)G′p0(1),
(40)

and thus G′
p0(1) = 1

1−G′p∗ (1) . Inserting this equation into Equation (39) yields

〈s〉= 1 +
G′p(1)

1−G′p∗(1)
. (41)
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We further have that

G′p(1) = ∑
k

kpk = 〈k〉= z1

G′p∗(1) = ∑k k(k−1)pk

∑l l pl

=
〈k2〉− 〈k〉
〈k〉

=
z2

z1
.

(42)

Therefore, the average component size below the transition is

〈s〉= 1 +
z2

1

z1− z2
. (43)

The above expression diverges for z1 = z2 which signifies the formation of the giant
component. We can also write the condition for the phase transition as G′p∗(1) = 1.
We see that for p = 0 〈s〉= 1 (an empty graph contains only isolated nodes). For the

Poisson random graph z1 = z = p(n−1), z2 = z2 and thus we get 〈s〉= 1+ p(n−1)
1−p(n−1) .

5.3 The Watts-Strogatz “Small-World” Model

The model draws inspiration from social systems in which most people have friends
among their immediate neighbors, but everybody has one or two friends who are a
far away - people in other countries, old acquaintances, which are represented by the
long-range edges obtained by rewiring. Empirically, in social networks the average
distance turns out to be “small”: the fact that any two persons in the US are separated
on average by only six acquaintances is the so called “Small-World” phenomenon
discovered by Milgram [66]. Watts and Strogatz [89] introduced a “Small-World”
network model which has triggered an avalanche of works in the field. Their model
generates a one-parameter family of networks laying in between an ordered lattice
and a random graph. We will explain how such a “Small-World” network can be
constructed in the next section.

5.3.1 “Small-World” Network Construction

The initial network is a one-dimensional ring of n nodes (if each node has only two
neighbors it is a cycle) as shown in Figure (7), with periodic boundary conditions,
each node being connected to its z nearest neighbors. The nodes are then visited one
after the other: each link connecting a node to one of its z

2 neighbors in the clockwise
order is left in place with probability 1− p, and with probability p is reconnected
to a randomly chosen node. With varying p the system exhibits a transition between
order (p = 0) and randomness (p = 1).
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Fig. 7 Regular (lattice) graph with n = 50 nodes and neighborhood size z = 6 (left). Small World
graph with n = 50 nodes, neighborhood size z = 6 of the underlying lattice and rewiring probability
p = 0.1 (right). The graph was generated with the Java package “econnet” and the ARF layout
algorithm [38]

5.3.2 Degree Distribution

For p = 0, each node has the same degree, z. On the other hand, a non-zero value of
p introduces disorder in the network, in the form of a non-uniform degree distribu-
tion, while maintaining a fixed average degree 〈X〉= z. Let us denote P(X = k) the
probability of the degree of a node being equal k.

Since z
2 of the original z edges are not rewired by the above procedure, the degree

of node i can be written as [1].

X =
z
2

+ n0 + n+ (44)

with n0 + n+ ≥ 0. n0 denotes the number of links that have been left in place dur-
ing the rewiring procedure (with probability 1− p) and n0 denotes the number of
links that have been rewired to node i from other nodes (with probability p/(n−1),
since there are n− 1 other nodes). This sequence of independent events (the links
left in place as well as the rewired links) is actually a Bernoulli process. Thus, the
probabilities are given by Binomial distributions

P(n0 = s) =
( z

2
s

)
(1− p)sp

z
2−s, (45)

with 0≤ s≤ z
2 and

P(n+ = s) =
(

(n−1) z
2

s

)(
p

n−1

)s(
1− p

n−1

)(n−1) z
2−s

, (46)

where 0 ≤ s ≤ (n− 1) z
2 and n− 1 is the number of other nodes, z

2 the maximum
number of edges that can be rewired by other nodes. If we define
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Fig. 8 Empirical and theoretical degree distributions of the “Small-World” network for n = 500,
neighborhood size z = 6 and and different values of the rewiring probability p ∈ {0.1,0.5,1.0}

N = (n−1) z
2

q = p
n−1

λ = Nq = z
2 (n−1) p

n−1 = nq,
(47)

we get the standard form of the Binomial distribution

P(n+ = s) =
(

N
s

)
qs(1−q)N−s. (48)

For N→ ∞ respectively n→ ∞ we obtain the Poisson distribution

P(n+ = s) =
λ se−λ

s!
=

( pz
2

)s
e−(

pz
2 )

s!
. (49)

Thus, we get for k≥ z
2 (k links remain unchanged by construction)

P(X = k) =
min{k− z

2 , z
2 }

∑
i=0

( z
2
2

)
(1− p)ip

z
2−i

( pz
2

)k− z
2−i

(
k− z

2 − i
)
!
e−

pz
2 . (50)

The upper bound in the sum above guarantees that n0 ≤ z
2 . Since any degree k > z

2
must come from new edges. Figure (8) shows the degree distribution for different
values of p.

5.3.3 Average Path Length and Clustering Coefficient

For a cycle (p = 0) we have a linear chain of nodes and we find for the average path
length (defined in Section 4.3) for large n [1]
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L(p = 0) =
n(n + z−2)

2z(n−1)
∼ n/2z� 1. (51)

Moreover, for p = 0 each node has z neighbors and the number of links between
these neighbors is 3z(z/2−1)

4 and it follows that for large n [1]

Cl(p = 0) =
3(z/2−1)

2(z−1)
∼ 3/4. (52)

Thus, L scales linearly with the system size, and the clustering coefficient is large
and independent of n. On the other hand, for p→ 1 the model converges to a random
graph for whichL(p = 1)∼ ln(n)/ ln(z) and Cl(p = 1)∼ z/n when n is large, thusL
scales logarithmically with n and the clustering coefficient decreases with n. Based
on these scaling relationships, one could expect that a large (small) value of Cl is
always associated with a large (small) value of L. Unexpectedly, it turns out that
there is a broad range of values of p in which L(p < 1) is close to L(p = 1) and
yet Cl(p < 1)� Cl(p = 1). The coexistence of small L and large Cl means that
the network is a “Small-world” like a random graph and has high clustering like a
lattice. Interestingly, this feature is found in many real networks. In a regular lattice
(p = 0) the clustering coefficient Cl does not depend on the system size but only on
its topology. As the edges of the network are randomized, the clustering coefficient
remains close to Cl(p = 0) up to relatively large values of p, while the average
path length L drops quite rapidly. This is the reason of the onset of the small world
regime. We show examples for the clustering coefficient and the average path length
in the “Small-World” network in Figure (9).
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Fig. 9 Clustering coefficient Cl and average path length L of the “Small-World” network for with
n = 500, neighborhood size z = 6 and and different values of the rewiring probability p. The aver-
age path length L is normalized to the corresponding value of the lattice. For p = 1 the normalized
path length (proportional to lnn/n) converges to zero for large n
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6 Growing Random Networks

In the next sections we derive the degree distributions for two types of networks, the
uniform and the preferential attachment network, illustrated in Figure (10) and their
corresponding degree distributions in Figure (11). Both networks are generated by
continuously adding nodes to the existing network. The difference is the following:
in the uniform attachment network new nodes form links uniformly to the existing
nodes and in the preferential attachment network new nodes form links more likely
to existing nodes with higher degree. In the derivation of the degree distribution we
follow closely Vega-Redondo [84].
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Fig. 10 Uniform attachment (left) and preferential attachment (right) networks with n = 50 nodes.
The graph was generated with the Java package “econnet” and the ARF layout algorithm [38]
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6.1 Uniform Attachment Network Construction

The network is constructed as follows. Times is measured at countable dates t ≤ 0.
A node that enters the network at time t is attached the label t. We initialize nodes
1,2 and the edge 12. Then, at every step t > 2 we add a new node t and create the
edge ets, where node s is selected uniformly at random from the set {1, ...,t−1} of
already existing nodes in the network.

6.2 Degree Distribution

In the following we derive the degree distribution if edges are attached to existing
nodes with uniform probability. Denote by qt(s,k) the probability that a particular
node s has degree k at time t where s ≤ t. Any existing node s enjoys degree k ≥ 1
at time t + 1 if, and only if, one of the following events occurs: (i) Node s had
degree k−1 at time t (with probability qt(s,k−1)) and is chosen to be linked by the
entering node at time t (with probability 1

t+1 ), or (ii) node s already had degree k at
time t (with probability qt(s,k)) and is not chosen by the new node (with probability
1− 1

t+1 ).
Thus we get the following master equation [73, 90] and Vega-Redondo [84,

p. 272]

qt+1(s,k) =
1

t + 1
qt(s,k−1)+

(
1− 1

t + 1

)
qt(s,k), (53)

with the boundary conditions5

q1(0,k) = q1(1,k) = δk,1
qt(t,k) = δk,1.

(54)

Denote pt(k) the probability that a randomly selected node has any given degree k
at time t. pt(k) is the degree distribution at time t. Assuming that the selection of
nodes is a sequence of stochastically independent events, it follows that

pt(k) =
1

t + 1

t

∑
s=0

qt(s,k) (55)

Summation over all nodes s = 0, ...,t in Equation (53) yields

t

∑
s=0

qt+1(s,k) =
1

t + 1

t

∑
s=0

qt(s,k−1)+
(

1− 1
t + 1

) t

∑
s=0

qt(s,k), (56)

and further adding the term qt+1(t + 1,k) on both sides gives

5 The Kronecker-Delta is defined as δi j = 1 if i = j and δi j = 0 if i �= j.
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t+1

∑
s=0

qt+1(s,k) =
1

t + 1

t

∑
s=0

qt(s,k−1)+
(

1− 1
t + 1

) t

∑
s=0

qt(s,k)+ δk,1

= pt(k−1)+ t pt(k)+ δk,1,

(57)

where we used the boundary condition qt+1(t + 1,k) = δk,1. This reflects the fact
that, in every period t +1, the entering node t +1 always represents a unit contribu-
tion to the set of nodes with degree 1 (and only these nodes). Then, with

(t + 2)
1

t + 2

t+1

∑
s=0

qt+1(s,k) = (t + 2)pt+1(k), (58)

we may write Equation (57) as follows

(t + 2)pt+1(k)− t pt(k) = pt(k−1)+ δk,1, (59)

which is the law of motion of the degree distribution. In the limit t→∞, pt(k) attains
its stationary distribution p(k).

2p(k) = p(k−1)+ δk,1 (60)

We can solve the above equation for k > 1 (δk,1 = 0):

p(k) = 2−k. (61)

Since there are no disconnected nodes in the network we have that p(0) = 0. For
k = 1 we thus find that Equation (61) also solves Equation (60) for any k = 1,2, ....
This means that the long run stationary degree distribution is geometric.

6.3 Preferential Attachment Network Construction

The network is constructed in a similar way as in the uniform attachment network
formation process. We initialize nodes 1,2 and edge 12, setting t = 3. Let kt(s)
denote the degree of node s at time t. Then, at every step t we add a node t and
create the edge ets with probability kt(s)/∑t−1

r=0 kt(r).

6.4 Degree Distribution

The master equation for the probabilities qt(s,k) that any node s has degree k≥ 1 at
time t, s≤ t is given by

qt+1(s,k) =
k−1

2t
qt(s,k−1)+

(
1− k

2t

)
qt(s,k). (62)
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There are two exclusive events that may lead node s to have degree k in time step
t + 1: (i) Node s had degree k−1 at time t and the new node t + 1 establishes a link
to s, or (ii) node s had degree k at time t and the new node t +1 does not form a link
to it.

The probability of event (i) is given by qt(s,k−1) multiplied by the ratio of the
degree, k− 1, to the sum of the degrees, that is 2t. The probability of the event (ii)
is the complement of the probability that the new node establishes a link to s with
degree k, that is 1− k

2t times qt(s,k). Summing over all nodes s≤ t + 1 in Equation
(62) and adding the term qt+1(t +1,k) on both sides, we arrive at the law of motion
for the degree distribution

t+1

∑
s=0

qt+1(s,k) =
k−1

2t

t

∑
s=0

qt(s,k−1)+
(

1− k
2t

) t

∑
s=0

qt(s,k)+ δk,1. (63)

We have that

t+1

∑
s=0

qt+1(s,k) =
1
2

t + 1
t

[
(k−1)

1
t + 1

t

∑
s=0

qt(s,k−1) −k
1

t + 1

t

∑
s=0

qt(s,k)

]

+(t + 1)
1

t + 1

t

∑
s=0

qt(s,k)+ δk,1

=
1
2

t + 1
t

((k−1pt(k−1)− kpt(k)))+ (t + 1)pt(k)+ δk,1.

(64)

Using the fact that

t+1

∑
s=0

qt+1(s,k) = (t + 2)
1

t + 2

t+1

∑
s=0

qt+1(s,k)

= (t + 2)pt+1(k),

(65)

we get

(t + 2)pt(k) =
1
2

t + 1
t

((k−1)pt(k−1)− kpt(k))+ (t + 1)pt(k)+ δk,1. (66)

In the limit, as t→∞, and each pt(k) converges to its stationary distribution p(k),we
obtain

p(k) =
1
2

((k−1)p(k−1)− kp(k))+ δk,1, (67)

since pt+1(k) = pt(k) in the stationary state and for large t, t + 2 ∼ t + 1 ∼ t. The
solution for k > 1 of Equation (67) is given by

p(k) =
4

k(k + 1)(k + 2)
. (68)
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One can write Equation (67) in the form

p(k) =
1
2

(k [p(k−1)− p(k)]− p(k−1))+ δk,1

=−1
2

(
k

p(k)− p(k−∆k)
∆k

+ p(k−∆k)
)

+ ∆k,
(69)

where ∆k = 1. Taking the limit ∆k→ 0 one obtains the continuous form of (67)

p(k) =−1
2

(
k

d p
dk

+ p(k)
)

=−1
2

d
dk

(kp(k)) .

(70)

The solution of this equation is given by

p(k) = 2k−3, (71)

where the factor 2 comes from the normalization condition
∫ ∞

1 p(k)dk = 1. We find,
therefore, that the degree distribution satisfies a power law of the form p(k) ∝ k−γ .
If the frequency of nodes with a degree k is proportional to k−γ , then the distribution
is scale-free.

7 Strategic Network Formation

In the preceding sections we have studied the formation of networks under different
stochastic processes governing the way in which links are formed between nodes.
However, in social and economic settings the choice of forming a link or not is gov-
erned by individual incentives and the potential benefits versus costs that arise from
the establishment or withdrawal from a relationship. Strategic network formation6

thus constitute strategic settings in which the payoffs of agents are interdependent
and this interdependency is rooted in a network structure.

7.1 Efficiency and Pairwise Stability

If we want to model network formation based on individual incentives then we first
need to introduce a utility function that describes the net benefits an agent enjoys
from being part of the network. This can formally be done via a utility function
ui : G→ R that assigns each agent i ∈ N = {1, ...,n} a utility from the network G.

6 We restrict our discussion in this tutorial to non-cooperative games on networks [see also 42, 55,
84, 93, for an excellent introduction]. Cooperative games on networks have been treated in [76].
For algorithmic issues we refer to Nisan et al. [71].
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Based on a properly defined utility function we can address the question of how
efficient or stable certain network structures are. We treat both of these issues in the
next paragraphs.

A measure of the global performance of the network is introduced by its effi-
ciency. The total utility of a network is defined by U(G) = ∑n

i=1 ui(G). A network is
considered efficient if it maximizes the total utility of the network U(G) among all
possible networks, G with n nodes [56].

Definition 1. Denote the set of networks with n nodes by G(n). A network G is
efficient if U(G) = ∑n

i=1 ui(G)≥U(G′) = ∑n
i=1 ui(G′) for all G′ ∈ G(n).

The evolution of the network is the result of strategic interactions between agents
when they decide to create or delete links. In the following we consider a particularly
simple network formation process. At every time step a pair of agents is chosen at
random and tries to establish a new link between them or delete an already existing
one. If a link is added, then the two agents involved must both agree to its addition,
with at least one of them strictly benefiting (in terms of a higher utility) from its
formation. Similarly a deletion of a link can only take place in a mutual agreement.
The subsequent addition and deletion of links creates a sequence of networks. If
no new links are accepted nor old ones are deleted then the network reaches an
equilibrium. An equilibrium under the above described network formation process
leads us to the notion of pairwise stability, introduced by Jackson and Wolinsky
[56].

Definition 2. A network G is pairwise stable if and only if

(i) for all ei j ∈ E(G), ui(G)≥ ui(E\ei j) and u j(G)≥ u j(E\ei j),
(ii) for all ei j /∈ E(G), if ui(G) < ui(E ∪ ei j) then ui(G) > u j(E ∪ ei j).

A network is pairwise stable if and only if (i) removing any link does not increase
the utility of any agent, and (ii) adding a link between any two agents, either does
not increase the utility of any of the two agents, or if it does increase one of the two
agents’ utility then it decreases the other agent’s utility.

The point here is that establishing a new link with an agent requires the consen-
sus, that is, an increase in utility, of both of them. The notion of pairwise stability
can be distinguished from the one of Nash equilibrium7 which is appropriate when
each agent can establish or remove unilaterally a connection with another agent.

In Section 7.2 and in Section 7.3 we will give specific examples for different
utility functions. As we will show, the particular choice of the utility function sig-
nificantly shapes individual incentives to form or severe links. As a result, different
incentive structures translate into network outcomes that can vary considerably in
terms of efficiency and stability.

7 Considering two agents playing a game (e.g. trading of knowledge) and each adopting a certain
strategy. A Nash equilibrium is characterized by a set of strategies where each strategy is the
optimal response to all the others.
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7.2 The Connections Model

In the Connections Model introduced in Jackson and Wolinsky [56] agents receive
information from others to whom they are connected to. Through these links they
also receive information from those agents that they are indirectly connected to, that
is, trough the neighbors of their neighbors, their neighbors, and so on8.

The utility, ui(G), agent i receives from network G with n agents is a function
ui : G→R with

ui(G) =
n

∑
j=1

δ di j − ∑
j∈Ni

c, (72)

where di j is the number of edges in the shortest path between agent i and agent j.
di j = ∞ if there is no path between i and j. 0 < δ < 1 is a parameter that takes into
account the decrease of the utility as the path between agent i and agent j increases.
N(i) is the set of nodes in the neighborhood of agent i.

There exists a tension between stability and efficiency in the connections model.
This will become clear, after we state the following two propositions.

Proposition 1. The unique efficient network in the symmetric Connections Model is

(i) the complete graph Kn if c < δ − δ 2,
(ii) a star encompassing everyone if δ − δ 2 < c < δ + n−2

2 δ 2,
(iii) the empty graph (no links) if δ + n−2

2 δ 2 < c.

Proof. (i) We assume that δ 2 < δ − c. Any pair of agents that is not directly con-
nected can increase its utility (the net benefit for creating a link is δ−c−δ 2 > 0)
and thus the total utility, by forming a link. Since every pair of agents has an
incentive to form a link, we will end up in the complete graph Kn, where all pos-
sible links have been created and no additional links can be created any more.

(ii) Consider a component of the graph G containing m agents, say G′. The number
of links in the component G′ is denoted by k, where k ≥ m− 1, otherwise the
component would not be connected. E.g. a path containing all agents would
have m− 1 links. The total utility of the direct links in the component is given
by k(sδ − 2c). There are at most m(m−1)

2 − k left over links in the component,
that are not created yet. The utility of each of these left over links is at most 2δ 2

(it has the highest utility if it is in the second order neighborhood). Therefor the
total utility of the component is at most

k2(δ − c)+
(

m(m−1)
2

− k

)
2δ 2. (73)

Consider a star K1,m−1 with m agents. The star has m−1 agents which are not in
the center of the star. An example of a star with 4 agents is given in Figure (12).
The utility of any direct link is 2δ−2c and of any indirect link (m−2)δ 2, since

8 Here only the shortest paths are taken into account.



From Graph Theory to Models of Economic Networks. A Tutorial 55

1 2

3

4

Fig. 12 A star encompassing 4 agents

any agent is 2 links away from any other agent (except the center of the star).
Thus the total utility of the star is

(m−1)(2δ −2c)︸ ︷︷ ︸
direct connections

+(m−1)(m−2)δ 2︸ ︷︷ ︸
indirect connections

. (74)

The difference in total utility of the (general) component and the star is just
2(k−(m−1))(δ−c−δ 2). This is at most 0, since k≥m−1 and c > δ−δ 2, and
less than 0 if k > m− 1. Thus, the value of the component can equal the value
of the star only if k = m− 1. Any graph with k = m− 1 edges, which is not a
star, must have an indirect connection with a distance longer than 2, and getting
a total utility less than 2δ 2. Therefore the total utility from indirect connections
of the indirect links will be below (m− 1)(m− 2)δ 2 (which is the total utility
from indirect connections of the star). If c < δ − δ 2, then any component of a
strongly efficient network must be a star.
Similarly it can be shown [56] that a single star of m+n agents has a higher total
utility than two separate stars with m and n agents. Accordingly, if an efficient
network is non-empty, it must be a star.

(iii) A star encompassing every agent has a positive value only if δ + n−2
2 δ 2 > c.

This is an upper bound for the total achievable utility of any component of the
network. Thus, if δ + n−2

2 δ 2 < c the empty graph is the unique strongly efficient
network. �

Moreover, Jackson and Wolinsky [56] also determine the stable networks in the
Connections Model.

Proposition 2. Consider the Connections Model in which the utility of each agent
is given by Equation (72).

(i) A pairwise stable network has at most one (non-empty) component.
(ii) For c < δ − δ 2, the unique pairwise stable network is the complete graph Kn.

(iii) For δ −δ 2 < c < δ a star encompassing every agent is pairwise stable, but not
necessarily the unique pairwise stable graph.

(iv) For δ < c, any pairwise stable network that is non-empty is such that each agent
has at least two links (and thus is inefficient).

Proof. (i) Lets assume, for the sake of contradiction, that G is pairwise stable and
has more than one non-empty component. Let ui j denote the utility of agent i
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having a link with agent j. Then, ui j = ui(G + ei j)− ui(G) if ei j /∈ E(G) and
ui j = ui(G)−ui(G−ei j) if ei j ∈E(G). We consider now ei j ∈E(G). Then ui j ≥
0. Let ekl belong to a different component. Since i is already in a component
with j, but k is not, it follows that u jk > ui j ≥ 0, because agent k will receive an
additional utility of δ 2 from being indirectly connected to agent i. For similar
reasons u jk > ulk ≥ 0. This means that both agents in the separate component
would have an incentive to form a link. This is a contradiction to the assumption
of pairwise stability.

(ii) The net change in utility from creating a link is δ − δ 2− c. Before creating
the link, the geodesic distance between agent i and agent j is at least 2. When
they create a link, they gain δ but they lose the previous utility from being
indirectly connected by some path whose length is at least 2. So if c < δ − δ 2,
the net gain from creating a link is always positive. Since any link creation is
beneficial (increases the agents’ utility), the only pairwise stable network is the
complete graph, Kn.

(iii) We assume that δ − δ 2 < c− δ and show that the star is pairwise stable. The
agent in the center of the star has a distance of 1 to all other agents and all
other agents are separated by 2 links from each other. The center agent of the
star cannot create a link, since she has already maximum degree. She has no
incentive to delete a link either. If she deletes a link, the net gain is c− δ ,
since there is no path leading to the then disconnected agent. By assumption,
δ − δ 2 < c < δ , c− δ < 0 and the gain is negative, and the link will not be
removed. We consider now an agent that is not the center of the star. She cannot
create a link with the center, since they are both already connected. The net gain
of creating a link to another agent is δ − δ 2− c, which is strictly negative by
assumption. So she will not create a link either. The star is pairwise stable.
Now consider the star encompassing all agents. Suppose an agent would not be
connected to the star. If the center of the star would create a link to this isolated
agent, the net gain would be δ − c > 0 and the benefit of the isolated agent is
again δ − c > 0. So both will create the link.
The star is not the unique pairwise stable network. We will show that for 4
agents, the cycle, C4 is also a pairwise stable network (see Figure (13)).
If agent 3 removes a link to agent 4, then her net gain is c− δ − δ 3. For the
range of costs of δ −δ 2 < c < δ −δ 3 < δ , she will never do it. If agent 3 adds
a link to agent 1, Figure (13), the net gain is δ − δ 2 < 0. Thus, for n = 4 and

1 2

34

1 2

34

1 2

34

Fig. 13 A cycle of 4 agents (left) and the resulting graph after the deletion of a link from agent 3
to agent 4 (middle) and and the resulting graph after the creation of a link from agent 3 to agent 1
(right)
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δ − δ 2 < c < δ − δ 3, then there are at least two pairwise stable networks: the
star and the cycle.

(iv) For δ < c the star is not a pairwise stable network because the agent in the
center of the star would gain c− δ from deleting a link. Moreover, it can be
shown [56] that any connected agent has at least 2 links. �

One can see, from the two propositions described above, that a pairwise stable
network is not necessarily efficient. For high cost c > δ there are non-empty pair-
wise stable networks but they are not efficient. Moreover, Watts [88] shows that if
the benefit from maintaining an indirect link of length two is greater than the net
benefit from maintaining a direct link (δ 2 > δ − c > 0) then the probability that the
unique efficient network, the star K1,n−1, is reached vanishes for large n.

The existence of inefficient equilibria is of interest because it indicates that the
system, let alone to evolve, does not always reach an efficient configuration. In this
respect, the result is important from the point of view of designing of policies that
help the system to reach an efficient configuration.

Finally, we note that Jackson and Rogers [54] have proposed an extension of
the Connections Model in which stable networks show the properties of a “Small-
World” (see Section 5.3).

7.3 A Model of Dynamic Innovation Networks

We now briefly discuss a recent model of dynamic innovation networks in which
agents compete for the most valuable knowledge for production, while knowledge
can only be created through collaborations and knowledge exchange [62, 63]. By
knowledge exchange we mean R&D partnerships (either informal or formal), char-
acterized by bilateral interactions among agents. We characterize the emerging net-
work topologies in terms of their efficiency (total knowledge growth) and in terms
of the individual agents’ knowledge growth.

Consider a set of agents, N = {1, ...,n}, represented as nodes of an undirected
graph G, with an associated variable xi representing the knowledge of agent i. A
link ei j, represents the transfer of knowledge between agent i and agent j. Knowl-
edge is shared among an individual’s direct and indirect acquaintances. The level
of knowledge an agent holds is proportional to the knowledge levels of its neigh-
bors. We assume that knowledge x = (x1, ...,xn) grows, starting from positive values,
xi(0) > 0 ∀i ∈ N, according to the following linear ordinary differential equation

ẋi =
n

∑
j=1

ai jx j, (75)

where ai j ∈ {0,1} are the elements of the adjacency matrix A of the graph G. In
vector notation we have ẋ = Ax. Similar to Carayol and Roux [17, 18] we assume
that the gross return of agent i is proportional to her knowledge growth rate, with
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proportionality constant set to 1 for sake of simplicity9. We also assume that main-
taining a link induces a constant marginal cost c ≥ 0 for both agents connected via
the link. Therefore the utility ui(t) of agent i is given by

ui(t) =
ẋi(t)
xi(t)

− cdi, (76)

where di denotes the degree of agent i. From Equation (75) one can show that [50]
limt→∞

ẋi(t)
xi(t)

= λPF(Gi) where λPF is the largest real eigenvalue (Section 4.1) of the
connected component Gi to which agent i belongs. Therefore, for large times t the
utility function of agent i in a network G is given by

ui = λPF(Gi)− cdi. (77)

We can compare the utility functions of the Connections Model introduced in
Equation (72) and the utility function from Equation (77). In both the utility de-
pends on the position of an agent in the network. In Equation (77) and Equation
(72) the cost term is identical. However, while the utility function in the Connec-
tions Model considers the length di j of the shortest path from node i to node j, the
utility function in Equation (77) takes into account all paths of all lengths (in fact,
λPF is proportional to the asymptotic growth rate of walks in a graph [25]). Indeed,
it has been argued that knowledge gets transferred not only along the shortest path
but also along all other paths in a network [78, 87]. Accordingly, all agents to which
agent i is indirectly connected to along path of any length, contribute to the utility
of agent i in this model.

Based on the definition of efficiency we can derive the efficient networks for
certain values of the marginal cost. For a full characterization of efficient networks
in this model we refer to König et al. [63].

Proposition 3. The complete graph Kn is efficient for c < 1
2 . For costs c ≥ n the

empty graph is efficient.

Proof. Since for the complete graph it is λPF = n−1 and m = n(n−1)
2 , its aggregate

utility is U(Kn) = n(n−1)−2 n(n−1)
2 c = n(n−1)(1− c).

On the other hand, the largest real eigenvalue λPF of a graph G with m edges is
bounded from above so that λPF ≤ 1

2 (
√

8m+ 1− 1) [77]. For the aggregate utility
of the network we then have

U(G) =
n

∑
i=1

λPF(Gi)−2mc≤ n max
1≤i≤n

λPF(Gi)−2mc

≤n
2
(
√

8m+ 1−1)−2cm := b(n,m,c), (78)

9 The detailed derivation of the relation between an agents profits and her knowledge growth rate
can be found in König et al. [63].
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with n ≤ m ≤ (n2). For fixed cost c and number of nodes n, the number of edges

maximizing Equation (78) is given by m∗ = n2−c2

8c2 if n2−c2

8c2 <
(n

2

)
and m∗ = n(n−1)

2

if n2−c2

8c2 >
(n

2

)
. The graph with the latter number of edges is the complete graph.

Inserting m∗ into Equation (78) yields

b(n,m∗,c) =

{
n
2 (
√

n2−c2

c2 + 1−1)− n2−c2

4c c > n
2n−1

n(n−1)(1− c)= Π(Kn) c < n
2n−1 .

(79)

The bound for c ≤ n
2n−1 ∼ 1

2 coincides with the aggregate utility of the complete
graph Kn for large n. Kn is therefore the efficient graph. If instead c = n then m∗ = 0.
The efficient graph is the empty graph. This concludes the proof. �

In the following we make an important assumption. The network evolution
process is assumed to be much slower than the knowledge growth of Equation (75),
so that agents make decisions based on the asymptotic growth rate of knowledge and
the utility function in Equation (77). Thus, we introduce a coupling of fast knowl-
edge growth coupled with a slow network evolution, as illustrated in Figure (4.4) in
Section 4.4.

Given the utility function in Equation (77) and the network evolution introduced
in Section 7.1 one can show that the network evolution can lead to pairwise stable
networks [63]. However, there exists a multiplicity of different equilibria, as the next
proposition reveals (for the proof see König et al. [63]).

Proposition 4. Consider costs c, c′ = αc, α ∈ [0,1] and the network G with n nodes

such that10 � 2
c �≤ n≤ � 1+c′2(6+c′2)

4c′2 �. If there exists an integer k≤ n, mod (n,k) = 0

such that � 1+c(1−c)
c � ≤ k≤ � 2−c′(1−c′)

c′ � then G can be stable for at least two cases:

(i) G consists of disconnected cliques K1
k , ...,Kd

k , n = kd or
(ii) G consists of a spanning star K1,n−1.

There are at least two stable networks for the same level of marginal cost c (degen-
erate cost region).

The variety of the possible equilibria is not only restricted to cliques and stars
of different sizes but it also includes networks with complex topologies which are
characteristic of many real word networks. Examples of such equilibrium networks
can be seen in Figure (14). Differently to the Connections Model this model is able
to reproduce some stylized empirical facts of R&D networks, namely that networks
are sparse, locally dense and show heterogeneous degree distributions [23, 72].

We have seen that in this model there exist multiple equilibrium networks, some
of them being inefficient. Depending on the cost of interactions the system can get
stuck in stable but inefficient structures. However, in König et al. [62] it is shown

10 In the following, �x�, where x is a real valued number x ∈R, denotes the smallest integer larger
or equal than x (the ceiling of x). Similarly, �x� the largest integer smaller or equal than x (the floor
of x).
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Fig. 14 Equilibrium networks for vanishing cost c = 0 (left), intermediate cost c = 0.2 (middle)
and high cost c = 0.5 (right) for n = 50 agents (without link removal in the network formation
process) adopted from König et al. [62]. Clearly, the higher the cost c, the sparser and the more
clustered are the equilibrium networks

that if it is difficult to break up already existing collaborations and agents maintain
R&D collaborations even when, in the short run, they may be unprofitable, then
emerging networks are efficient.

7.4 Summary and Conclusion

In this tutorial we have given an introduction to models of economic networks and
we have tried to show the wide applicability and importance of these models. Since
the field of economic network theory is growing at an increasing pace, this tutorial
is far from being exhaustive. However, the models presented here can serve as a
starting point for interested students and prospective researchers in the field.
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Games of Coalition and Network
Formation: A Survey

Marco A. Marini

Abstract This paper presents some recent developments in the theory of coali-
tion and network formation. For this purpose, a few major equilibrium concepts
recently introduced to model the formation of coalition structures and networks
among players are briefly reviewed and discussed. Some economic applications are
also illustrated to give a flavour of the type of predictions such models are able to
provide.

1 Introduction

Very often in social life individuals take decisions within groups (households,
friendships, firms, trade unions, local jurisdictions, etc.). Since von Neumann and
Morgenstern’s [45] seminal work on game theory, the problem of the formation of
coalitions has been a highly debated topic among game theorists. However, during
this seminal stage and for a long period afterward, the study of coalition forma-
tion was almost entirely conducted within the framework of games in characteristic
form (cooperative games) which proved not entirely suited in games with externali-
ties, i.e. virtually all games with genuine interaction among players. Only in recent
years, a widespread literature on what is currently known as noncooperative coali-
tion formation or endogenous coalition formation has come into the scene with the
explicit purpose to represent the process of formation of coalitions of agents and
hence modelling a number of relevant economic and social phenomena.1 Moreover,
following this theoretical and applied literature on coalitions, the recent paper by
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1 Extensive surveys of the coalition formation literature are contained in Greenberg [23], Bloch
[4, 5], Yi [46, 46] and Ray and Vohra [41].
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Jackson and Wolinsky [34] opened the door to a new stream of contributions using
networks (graphs) to model the formation of links among individuals.2

Throughout these brief notes, I survey non exhaustively some relevant contri-
butions of this wide literature, with the main aim to provide an overview of some
modelling tools for economic applications. For this purpose, some basic guidelines
to the application of coalition formation in economics are presented using as prim-
itives the games in strategic form. As far as economic applications are concerned,
most of the examples presented here mainly focus, for convenience, on a restricted
number of I.O. topics, as cartel formation, horizontal merger and R&D alliances.

2 Coalitions

2.1 Cooperatives Games with Externalities

Since von Neumann and Morgenstern [45], a wide number of papers have developed
solution concepts specific to games with coalitions of players. This literature, known
as cooperative games literature, made initially a predominant use of the characteris-
tic function as a way to represent the worth of a coalition of players.

Definition 1. A cooperative game with transferable utility (TU cooperative game)
can be defined as a pair (N,v), where N = {1,2, ..i, ..N} is a finite set of players
and v : N→ R+ is a mapping (characteristic function) assigning a value or worth to
every feasible coalition, i.e. every nonempty subset of players S ⊂ N belonging to
N, the family of nonempty coalitions 2N\{∅}.3

The value v(S) can be interpreted as the maximal aggregate amount of utility
members of coalition S can achieve by coordinating their strategies. In strategic en-
vironments, players’ payoffs are defined on the strategies of all players and the worth
of a group of players S depends on their expectations about the strategies played by
the remaining players N\S. Hence, to obtain v(S) from a strategic situation, we need
first to define an underlying strategic form game.

Definition 2. A strategic form game is a triple G = {N,(Xi;ui)i∈N}, in which for
each i∈N, Xi is the set of strategies with generic element xi, and ui : X1×·· ·×Xn→
R+ is every player’s payoff function.

Moreover, henceforth we restrict the action space of each coalition S⊂N to XS≡
∏i∈S Xi. Let, also, v(S) = ∑i∈S ui(x), for x ∈ XN ≡∏i∈N Xi.4

2 Myerson [36] and Aumann and Myerson [2] were among the first authors to use graphs to model
cooperation between individuals. Excellent surveys of the network literature are contained in Dutta
and Jackson [17] and in Jackson [28–31].
3 Here we mainly deal with games with transferable utility. In games without transferable utility,
the worth of a coalition associates with each coalition a players’ utility frontier (a set of vectors of
utilities).
4 See Sect. 2.3 for an interpretation of these restrictions.
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Example 1. Two-player prisoner’s dilemma.

A B
A 3,3 1,4
B 4,1 2,2

Therefore, v(N) = 6 and v({i}) =
{

4, if x j = A
2, if x j = B

for j �= i.

The cooperative allocation (3; 3) can be considered stable only if every player is
expected to react with strategy B to a deviation of the other player from the cooper-
ative strategy A.

The above example shows that in order to define the worth of a coalition of
players, a specific assumption on the behaviour of the remaining players is required.

2.1.1 α- and β -Characteristic Functions

The concepts of core, formally studied by Aumann [1], are based on von Neumann
and Morgenstern’s [45] early proposal of representing the worth of a coalition as the
minmax or maxmin aggregate payoff that it can guarantee its members in the under-
lying strategic form game. Accordingly, the characteristic function v(S) in games
with externalities can be obtained assuming that outside players act to minimize the
payoff of every deviating coalition S ⊂ N. In this minimax formulation, if members
of S move second, the obtained characteristic function,

vβ (S) = min
xN\S

max
xS

∑i∈S
ui(xS,xN\S), (1)

denoted β -characteristic function, represents what members in S cannot be pre-
vented from getting. Alternatively, if members of S move first, we have

vα(S) = max
xS

min
xN\S

∑i∈S
ui(xS,xN\S) (2)

denoted α-characteristic function, which represents what members in S can guar-
antee themselves, when they expect a retaliatory behaviour from the complement
coalition N\S.5

When the underlying strategic form game G is zero-sum, (1) and (2) coincide. In
non-zero sum games they can differ and, usually, vα(S) < vβ (S) for all S ⊂ N.

However, α- and β -characteristic functions express an irrational behaviour of
coalitions of players, acting as if they expected their rivals to minimize their payoff.
Although appealing because immune from any ad hoc assumption on the reaction
of the outside players (indeed, their minimizing behavior is here not meant to rep-
resent the expectation of S but rather as a mathematical way to determine the lower

5 Note that here players outside S are treated as one coalition, so the implicit assumption is that
players in N\S stick together after S departure from the grand coalition N.
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bound of S’s aggregate payoff), still this approach has important drawbacks: deviat-
ing coalitions are too heavily penalized, while outside players often end up bearing
an extremely high cost in their attempt to hurt deviators. Moreover,the little prof-
itability of coalitional objections yield very large set of solutions (e.g. large cores).

2.1.2 Nash Behaviour Among Coalitions

Another way to define the characteristic function in games with externalities is to
assume that in the event of a deviation from N, a coalition S plays à la Nash with
remaining players.6

Although appealing, such a modelling strategy requires some specific assump-
tions on the coalition structure formed by remaining players N\S once a coalition S
has deviated from N.

Following the Hart and Kurtz’s [25] coalition formation game, two extreme pre-
dictions can be assumed on the behaviour of remaining players. Under the so called
γ-assumption,7 when a coalition deviates from N, the remaining players split up
in singletons; under the δ -assumption, players in N\S stick together as a unique
coalition.8

Therefore, the obtained characteristic functions can be defined as follows:

vγ(S) = ∑
i∈S

ui

(
xS,
{

x j
}

j∈N\S
)

, (3)

where x is a strategy profile such that, for all S ⊂ N, xS ∈ XS and ∀ j ∈ N\S, x j ∈ Xj

xS = arg max
xS∈XS

∑
i∈S

ui

(
xS,
{

x j
}

j∈N\S
)

x j = arg max
x j∈Xj

u j

(
xS,{xk}k∈(N\S)\{ j} ,x j

)
.

Moreover,
vδ (S) = ∑

i∈S

ui
(
xS,xN\S

)
,

where,

xS = arg max
xS∈XS

∑
i∈S

ui
(
xS,xN\S

)

x j = arg max
xN\S∈XN\S

∑
j∈N\S

u j
(
xS,xN\S

)
.

6 The idea that coalitions in a given coalition structure can play noncooperatively among them was
firstly explored by Ichiishi [26].
7 Hurt and Kurz’s [25] Γ - game is indeed a strategic coalition formation game with fixed payoff
division, in which the strategies consist of the choice of a coalition. Despite the different nature of
the two games, there is an analogy concerning the coalition structure induced by a deviation from
the grand coalition.
8 See Chander and Tulkens [14] for applications of this approach.
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In both cases, for (3) and (4) to be well defined, the Nash equilibrium of the strategic
form game played among coalitions must be unique. Moreover, usually, vα(S) <
vβ (S) < vδ (S) for all S⊂ N.

2.1.3 Timing and the Characteristic Function

It is also conceivable to modify the γ- or δ -assumption reintroducing the temporal
structure typical of the α and β -assumptions.9

When a deviating coalition S moves first under the γ-assumption, the members
of S choose a coordinated strategy as leaders, thus anticipating the reaction of the
players in N\S, who simultaneously choose their best response as singletons. The
strategy profile associated to the deviation of a coalition S is the Stackelberg equi-
librium of the game in which S is the leader and players in N\S are, individually,
the followers. We can indicate this strategy profile as a x̃(S) = (x̃S,x j(x̃S)) such that

x̃S = arg max
xS∈XS

∑
i∈S

ui

(
xS,
{

x j(xS)
}

j∈N\S
)

(4)

and, for every j ∈ N\S,

x j(xS) = arg max
x j∈Xj

u j

(
x̃S,{xk(x̃S)}k∈(N\S)\{ j} ,x j

)
. (5)

Sufficient condition for the existence of a profile x̃(S) can be provided. Assume that
G(N\S,xS), the restriction of the game G to the set of players N\S given the fixed
profile xS, possesses a unique Nash Equilibrium for every S⊂ N and xS ∈ XS, where
XS is assumed compact. Let also each player’s payoff be continuous in each player’s
strategy. Thus, by the closedness of the Nash equilibrium correspondence (see, for
instance, [20]), members of S maximize a continuous function over a compact set
and, by Weiestrass Theorem, a maximum exists. As a consequence, for every S⊂N,
there exists a Stackelberg equilibrium x̃(S). We can thus define the characteristic
function vλ (S) as follows:

vλ (S) = ∑
i∈S

ui

(
x̃S,
{

x j(x̃S)
}

j∈N\S
)

.

Obviously, vλ (S) ≥ vγ (S). Inverting the timing of deviations and reactions, the
γ-assumption can be modified by assuming that a deviating coalition S plays as fol-
lower against all remaining players in N\S acting as singleton leaders. Obviously,
the same can be done under the δ -assumption.

2.1.4 The Core in Games with Externalities

We can test the various conversions of v(S) introduced above by examining the
different predictions obtained using the core of (N,v).

9 See Currarini and Marini [15] for more details.
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We first define an imputation for (N,v) as a vector z ∈ Rn
+ such that ∑i∈N zi

≤ v(N) (feasibility) and zi ≥ v(i) (individual rationality) for all i ∈ N.

Definition 3. The core of a TU cooperative game (N,v) is the set of all imputations
z ∈ Rn

+ such that ∑i∈S zi ≥ v(S) for all S⊆ N.

Given that coalitional payoffs are obtained from an underlying strategic form
game, the core can also be defined in terms of strategies, as follows.

Definition 4. The joint strategy x ∈ XN is core-stable if there is no coalition S ⊂ N
such that v(S) > ∑i∈S ui (x) .

Example 2 (Merger in a linear Cournot oligopoly). Consider three firms N =
{1,2,3} with linear technology competing à la Cournot in a linear demand mar-
ket. Let the demand parameters a and b and the marginal cost c, be selected in such
a way that interior Nash equilibria for all coalition structures exist. The set of all
feasible coalitions of the N players is

N = ({1,2,3} ,{1} ,{2} ,{3} ,{1,2} ,{1,3} ,{2,3}) .

Note that if all firms merge, they obtain the monopoly payoff v({1,2,3}= A
4 , where

A = (a− c)2/b, independently of the assumptions made on the characteristic func-
tion. These assumptions matters for the worth of intermediate coalitions. Under
the α- and β -assumptions, if either one single firm or two firms leave the grand
coalition N, remaining firms can play a minimizing strategy in such a way that, for
every S ⊂ N, vα(S) = vβ (S) = 0. In this case, the core coincides with all individu-
ally rational Pareto efficient payoff, i.e. all points weakly included in the set of co-
ordinates, Z =

[(
A
8 , A

16 , A
16

)
,
(

A
16 , A

8 , A
16

)
,
(

A
16 , A

16 , A
8

)]
. Under the γ-assumption, we

know that when, say firms 1 and 2, jointly leave the merger, a simultaneous duopoly
game is played between the coalition {1,2} and firm {3}. Hence, vγ ({1,2}) = A

9 .
Similarly for all other couples of firms deviating from N. When instead a single
firm i leaves the grand coalition N, a triopoly game is played, with symmetric
payoffs vγ ({i}) = A

16 (all these payoffs are obtained from the general expression
v(S) = A

(n−s+2)2 expressing firms’ profits in a n-firm oligopoly). In this case, since

intermediate coalitions made of two players do not give each firm more than their
individually rational payoff, the core under the γ-assumption coincides with the
core under the α- and β -assumptions. We know from Salant et al. [42] model of
merger in oligopoly, that vγ(S) > ∑i∈S vγ({i}) only for |S| > 0;8 |N|. This means
that in the merger game the core under the γ-assumption shrinks with respect to
the core under the α- and β -assumptions only for n > 5. Under the δ -assumption,
when a single firm leaves N, a simultaneous duopoly game is played between the
firm {i} and the remaining firms N\{i} acting as a single coalition. As a result,
v({i}) = A

9 , which is greater than A
12 , the maximum payoff at least one firm will

obtain in the grand coalition. Therefore, under the δ -assumption, the core is empty.
Finally, note that since under the λ -assumption every single firm playing as leader
obtains v({i}) = A

12 , in such a case the core is unique and contains only the equal
split imputation z = ( A

12 , A
12 , A

12) [see Figs. 1 and 2].
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z3

z1z2

(0, 0, A/4) 

(A/4, 0, 0) (0, A/4, 0) 

(A/16, A/16, A/8)

(A/8, A/16, A/16) 

α-β− and
γ-cores

(A/16, A/8, A/16)

Fig. 1 Merger game: α ,β and γ-cores

(0, 0, A/4) 

(A/4, 0, 0) (0, A/4, 0) 

λλ-core

(A/12, A/12, A/12)

z3

z2 z1

Fig. 2 Merger game: λ -core

2.2 Noncooperative Games of Coalition Formation

Most recent approaches have looked at the process of coalition formation as a strat-
egy in a well defined game of coalition formation (see [7, 8, 47] for surveys). Within
this stream of literature, usually indicated as noncooperative theory of coalition for-
mation (or endogenous coalition formation), the work by Hurt and Kurz [25] repre-
sents the main seminal contribution. Most recent contributions along these lines
include Bloch [4, 5], Ray and Vohra [40, 41] and Yi [46]. In all these works,
cooperation is modelled as a two stage process: at the first stage players form
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coalitions, while at the second stage formed coalitions interact in a well defined
strategic setting. This process is formally described by a coalition formation game,
in which a given rule of coalition formation maps players’ announcements of coali-
tions into a well defined coalition structure, which in turns determines the equilib-
rium strategies chosen by players at the second stage. A basic difference among the
various models lies on the timing assumed for the coalition formation game, which
can either be simultaneous (Hurt and Kurz [25], Ray and Vohra [40], Yi [46]) or
sequential ([5], Ray and Vohra [41]).

2.2.1 Hurt and Kurz’s Games of Coalition Formation

Hurt and Kurz [25] were among the first to study games of coalition formation with
a valuation in order to identify stable coalition structures.10 As valuation, Hurt and
Kurz adopt a general version of Owen value for TU games [38], i.e. a Shapley value
with prior coalition structures, that they call Coalitional Shapley value, assigning to
every coalition structure a payoff vector ϕi(π) in RN , such that (by the efficiency
axiom) ∑i∈N ϕi(π) = v(N). Given this valuation, the game of coalition formation is
modelled as a game in which each player i ∈ N announces a coalition S � i to which
he would like to belong; for each profile σ = (S1,S2, . . . ,Sn) of announcements, a
partition π (σ) of N is assumed to be induced on the system. The rule according
to which π (σ) originates from σ is obviously a crucial issue for the prediction of
which coalitions will emerge in equilibrium. Hurt and Kurz’s game Γ predicts that
a coalition emerges if and only if all its members have declared it (from which the
name of “unanimity rule” also used to describe this game).

Formally:
πγ (σ) = {Si (σ) : i ∈ N} ,

where

Si (σ) =
{

Si if Si = S j for all j ∈ Si

{i} otherwise.

Their game ∆ predicts instead that a coalition emerges if and only if all its mem-
bers have declare the same coalition S (which may, in general, differs from S).
Formally:

πδ (σ) =
{

S ⊂ N : i, j ∈ S if and only if Si = S j
}

.

It can be seen that the two rules generate different partitions after a deviation by
a coalition: in the Γ -game, remaining players split up in singletons; in the ∆ -game,
they stick together.

Example 3. N = {1,2,3}, σ1 = {1,2,3}; σ2 = {1,2,3}; σ3 = {3}

πγ(σ) = ({1} ,{2} ,{3}),

πδ (σ) = ({1,2} ,{3}).

10 Another seminal contribution is Shenoy [43].
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Note that the two rules of formation of coalitions are “exclusive” in the sense that
each player of a forming coalition has announced a list of its members. Moreover, in
the gamma-game this list has to be approved unanimously by all coalition members.

Once introduced these two games of coalition formation, a stable coalition struc-
ture for the game Γ (∆ ) can be defined as a partition induced by a Strong Nash
Equilibrium strategy profile of these games.

Definition 5. The partition π is a γ-stable (δ -stable) coalition structure if π =
πγ(σ∗) (or π = πδ (σ∗)) for some σ∗ with the following property: there exists no
S⊂ N and σS ∈ ΣS such that

ui(σS,σ∗N\S)≥ ui(σ∗) for all i ∈ S

and
uh(σS,σ∗N\S) > uh(σ∗) for at least one h ∈ S.

In the recent literature on endogenous coalition formation, the coalition forma-
tion game by Hurt and Kurz is usually modelled as a first stage of a game in which,
at the second stage formed coalitions interact in some underlying strategic setting.
The coalition formation rules are used to derive a valuation mapping from the set
of all players’ announcements Σ into the set of real numbers. These payoff func-
tions are obtained by associating with each partition π = {S1,S2, . . . ,Sm} a game in
strategic form played by coalitions

G(π) = ({1,2, . . . ,m} ,(XS1 ,XS2 , . . . ,XSm),(US1 ,US2 , . . . ,USm)),

in which XSk is the strategy set of coalition Sk and USk : Π m
k=1XSk → R+ is the payoff

function of coalition Sk, for all k = 1,2, . . . ,m. The game G(π) describes the inter-
action of coalitions after π has formed as a result of players announcements in Γ .or
∆ -coalition formation games.

The Nash equilibrium of the game G(π) (assumed unique) gives the payoff of
each coalition in π ; within coalitions, a fix distribution rule yields the payoffs of
individual members.

Following our previous assumptions (see Sect. 1.2) we can derived the game G(π)
from the the strategic form gameG by assuming thatXSk = ∏

i∈Sk

Xi andUSk = ∑
i∈Sk

ui, for

every coalition Sk ∈ π . We can also assume ui =
USk
|Sk| as the per capita payoff function

of members of Sk. Therefore, using Example 1, for the Γ -game , ui(x∗({1,2,3}) =
A
12 , for i = 1,2,3, ui(x∗({i, j} ,{k})= u j(x∗({i, j} ,{k})= A

18 , uk(x∗({i, j} ,{k})= A
9

and ui(x∗({i} ,{ j} ,{k}) = A
16 , for i = 1,2,3. Therefore, the grand coalition is the

only stable coalition structure of the Γ -game of coalition formation. For the ∆ -
game, there are no stable coalition structures.

If we extend the merger game to n firms, we know that the payoff of each firm
i ∈ S ⊂ N when all remaining firms split up in singletons, is given by:

ui
(
x∗
(
πγ (σ ′)))=

(a− c)2

s(n− s+ 2)2 ,
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where n ≡ |N|, s ≡ |S| and σ ′ =
(
{S}i∈S ,{N}i∈N\S

)
. The grand coalition, induced

by the profile σ∗ =
({N}i∈N

)
, is a stable coalition structure in the Γ -game of coali-

tion formation, if, for every i ∈ N,

ui (x(πγ (σ∗))) =
(a− c)2

4n
≥ ui
(
x
(
πγ (σ ′)))=

(a− c)2

s(n− s+ 2)2 .

The condition above is usually verified for every s ≤ n. Therefore, the stability of
the grand coalition for the Γ -merger game holds also for a n-firm oligopoly.

2.2.2 Timing in Games of Coalition Formation

Following the literature on endogenous timing (for instance, Hamilton and Slutsky’s
[24]) we can add a preplay stage to the basic strategic setting (denoted basic game)
in which players declare independently both their intention to coordinate their ac-
tion with the other players as well as the timing they want to play the basic game.
More specifically, every player i ∈ N is assumed to play an extensive form game
in which at stage t0 (coalition timing game) announces an 2-tuple of strategies
ai = (S,τ) ∈ N× {t1,t2} , where τ = {t1, t2} represents the time (stage 1 or 2)
she intends to play the basic game jointly with the selected coalition S ∈ N. Given
the profile of announcements of the N players a = (a1,a2, . . . ,an), a coalition struc-
ture P(a) = (Sτ

1,S
τ
2, . . . ,S

τ
m) endowed with a sequence of play of the basic game is

induced, for instance, via the Hart and Kurz’s unanimity rule: when a coalition of
players announces both the same coalition S and the same timing, they will play the
basic game of strategies simultaneously and coordinately as a coalition of players;
otherwise, they will play as singletons with the timing prescribed by their own an-
nouncement. As the following example shows, the coalition formation timing rule
constitutes a one-to-one mapping between the set of players’ announcements and
the set of feasible partitions of N.

Example 4 (Two-player). For every i = 1,2 with j �= i, each player’s announcement
set is:

Ai = [({i, j} ,t1) ,({i, j} ,t2) ,({i} , t1) ,({i} , t2)].
In this case the set of feasible partitions induced by the vector of announcement a ∈
A1×A2 includes the following six partitions:

({1,2}t1) ,({1,2}t2) ,({1}t1 ,{2}t1) ,({1}t2 ,{2}t2) ,({1}t1 ,{2}t2) ,({1}t2 ,{2}t1) .
The existence of a Strong Nash equilibrium of the coalition timing game can

be investigated. It can be shown [35] that for a symmetric strategic setting with no
discount, the strategy for players of acting all together at period one constitutes an
equilibrium when players’actions are strategic substitutes (in the sense of Bulow
et al. [12]). Conversely, acting together at period two constitutes an equilibrium
when players’actions are strategic complements.
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2.3 Some Guidelines to Coalition Formation in Economic
Applications

In order to compare and interpret the main predictions that endogenous coalition
formation theories obtain in some classical economic problems, it can be useful to
use a very simple setup in which the equal sharing rule within each coalition is
not assumed but it is obtained through some symmetry assumptions imposed on
the strategic form game describing the economic problem at hand. Once some ba-
sic assumptions are imposed on the strategic form games underlying the games of
coalition formation, the main economic applications can be divided in a few cat-
egories: 1) games with positive or negative players-externalities; 2) games with
actions that are strategic complements or substitutes; 3) games with or without
coalition-synergies. According to these three features, we may have a clear pic-
ture of some of the results which can be expected from the different concepts of
coalitional stability illustrated above and, in particular, of the stability of the grand
coalition.11

We start imposing some symmetry requirements on the strategic form game G.
Assumption 1. (Symmetric Players): Xi = X ⊂ R for all i ∈ N. Moreover, for all
x ∈ XN and all pairwise permutations p : N→ N:

up(i)
(
xp(1), . . . ,xp(n)

)
= ui (x1, . . . ,xn) .

Assumption 2. (Monotone Externalities): One of the following two cases must
hold for ui(x) : XN → R assumed quasiconcave:

1. Positive externalities: ui(x) strictly increasing in xN\i for all i and all x ∈ XN ;
2. Negative externalities: ui(x) strictly decreasing in xN\i for all i and all x ∈ XN .

Assumption 1 requires that all players have the same strategy set, and that play-
ers payoff functions are symmetric, by this meaning that any switch of strategies
between players induces a corresponding switch of payoffs. Assumption 2 requires
that the cross effect on payoffs of a change of strategy have the same sign for all
players and for all strategy profiles.

Lemma 1. For all S ⊆ N, x̃S ∈ argmaxxS∈XS ∑i∈S ui(xS,xN\S) implies x̃i = x̃ j for all
i, j ∈ S and for all xN\S ∈ XN\S.

Proof. See Appendix.

An important implication of Lemma 1 is that all players belonging to a given
coalition S ⊆ N will play the same maximizing strategy and then will obtain the
same payoff. We can thus obtain a game in valuation form from a game in partition
function form without imposing a fixed allocation rule.

The next lemma expresses the fact that in every feasible coalition structure π , at
the Nash equilibrium played by coalitions, when players-externalities are positive

11 Some of the results presented here comes from Currarini and Marini [16].
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(negative), being a member of bigger rather than a smaller coalition is convenient
only when each member of S plays a strategy that is lower (higher) than that played
by each member of a smaller coalition.

Lemma 2. Let Assumptions 1 and 2 hold. Then for every S and T ∈ π , with |T |
≥ |S|:

(1) Under Positive Externalities, us(x∗(π))≥ ut(x∗(π)) if and only if xs ≤ xt ;
(2) Under Negative Externalities, us(x∗(π))≥ ut(x∗(π)) if and only if xs ≥ xt .

Proof. See Appendix.

Finally, we can use a well known classification of all economic models in two
classes: (1) games in which players’ actions are strategic complements; (2) games
in which players’ actions are strategic substitutes.12

Definition 6. The payoff function ui exhibits increasing differences on XN if for all
S, xS ∈ XS, x′S ∈ XS, xN\S ∈ XN\S and x′N\S ∈ XN\S such that x′S > xS and x′N\S > xN\S
we have

ui

(
x′S,x

′
N\S
)
−ui

(
xS,x

′
N\S
)
≥ ui
(
x′S,xN\S

)−ui
(
xS,xN\S

)
.

This feature is typical of games, as price oligopoly models with differentiated
goods, for which players’ best-replies are upward-sloping. For these games, we can
prove the following.

Lemma 3. Let assumptions 1–2 hold, and let ui have increasing differences on XN,
for all i ∈ N. Then for every S and T ∈ π , with |T | ≥ |S|:

(1) Positive Externalities imply xs ≤ xt ; (2) Negative Externalities imply xs ≥ xt .

Proof. See Appendix.

Suppose now to have a game with actions that are strategic substitutes. This is
the case of Cournot oligopoly and many other economic models. Suppose also that
a boundary on the slope of the reaction mapping fS : RN\S→ RS is imposed by the
following contraction assumption.
Assumption 3. (contraction) Let S ∈ π . Then, there exists a c < 1 such that for all
xN\S and x′N\S ∈ XN\S

∥∥∥ fS
(
xN\S
)− fS

(
x′N\S
)∥∥∥≤ c

∥∥∥xN\S− x′N\S
∥∥∥ ,

where ‖.‖ denotes the euclidean norm defined on the space Rn−s.

Lemma 4. Let assumptions 1–3 hold. Then for every S and T ∈ π , with |T | ≥ |S|:
(1) Positive Externalities imply xs ≤ xt ; (2) Negative Externalities imply xs ≥ xt .

Proof. See Currarini and Marini [16].

12 See, for this definition, Bulow et al. [12].
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Using all lemmata presented above we are now able to compare the valuation of
players belonging to different coalitions in a given coalition structure and then, to a
certain extent, the profitability of deviations. However, the above analysis is limited
to games in which forming a coalition does not enlarge the set of strategy available
to its members and does not modify the way payoffs within a coalition originate
from the strategies chosen by players in N. In fact, as assumed at the beginning
of the paper, the action space of each coalition S ⊂ N is restricted to XS ≡ ∏

i∈S
Xi.

Moreover US = ∑
i∈S

ui (x(π)). The only advantage for players to form coalitions is

to coordinate their strategies in order to obtain a coalitional efficient outcome. This
approach encompasses many well known games without synergies, such as Cournot
and Bertrand merger or cartel formation and public good and environmental games,
but rules out an important driving force of coalition formation, i.e. the exploitation
of synergies, typically arising for instance in R&D alliances or mergers among firms
yielding some sort of economies of scales. Within this framework, we can present
the following result.

Proposition 1. Let assumptions 1–2 hold, and let ui possess increasing differences
on XN, for all i ∈ N. Then the grand coalition N is a stable coalition structure in the
game of coalition formation Γ derived from the game in strategic form G.

Proof. By Lemma 3, positive externalities imply that for all π , at x(π) larger coali-
tions choose larger strategies than smaller coalitions, while the opposite holds under
negative externalities, and then US(x∗(πγ ))

|S| ≥ US(x∗(πγ ))
|T | for all S,T ∈ πγ with |T | ≥ |S|.

This directly implies the stability of the grand coalition in Γ . To provide a sketch of
this proof, we note that any coalitional deviation from the strategy profile σ∗ yield-
ing the grand coalition induces a coalition structure in which all members outside
the deviating coalitions appear as singleton. Since these players are weakly better
off than any of the deviating members, and since all players were receiving the same
payoff at σ∗, a strict improvement of the deviating coalition would contradict the
efficiency of the outcome induced by the grand coalition. �

In games with increasing differences, players strategies are strategic comple-
ments, and best replies are therefore positively sloped. The stability of the efficient
coalition structure π∗ = {N} in this class of games can be intuitively explained as
follows. In games with positive externalities, a deviation of a coalition S ⊂ N will
typically be associated with a lower level of S’s members’ strategies with respect
to the efficient profile x(π∗), and with a higher level in games with negative exter-
nalities (see lemma 3 and 4 above). If strategies are the quantity of produced public
good or prices (positive player-externalities), S will try to free ride on non mem-
bers by reducing its production or its price; if strategies are emissions of pollutant
or quantities (negative player-externalities), S will try to emit or produce more and
take advantage of non members’ lower emissions or quantities. The extent to which
these deviations will be profitable ultimately depend on the reaction of non mem-
bers. In the case of positive externalities, S will benefit from an increase of non
members’ production levels or prices; however, strategic complementarity implies
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that the decrease of S’s production levels or prices will be followed by a decrease
of the produced levels or prices of non members. Similarly, the increase of S’s pol-
lutant emissions or quantities will induce higher pollution or quantity levels by non
members. Free riding is therefore little profitable in these games. From the above
discussion, it is clear that deviations can be profitable only if best reply functions
are negatively sloped, that is, strategies must be substitutes in G. However, the above
discussion suggests that some “degree” of substitutability may still be compatible
with stability. Indeed, if S’s decrease in the production of public good is followed
by a moderate increase in the produced level of non members, S may still not find it
profitable to deviate from the efficient profile. Therefore, if the absolute value of the
slope of the reaction maps is bounded above by 1, the stability result of proposition
1 extends to games with strategic substitutes.

Proposition 2. Let assumptions 1–3 hold. The grand coalition N is a stable coali-
tion structure in the game of coalition formation Γ derived from the game in strate-
gic form G.

Moreover, we can extend the results of proposition 1 and 2 to games with negative
coalition-externalities.13

Definition 7. A game G(π) exhibits positive (negative) coalition-externalities if,
for any feasible coalition structure π and coalition S ∈ π , for every player i ∈ S,
ui(x∗ (π ′)) > (<) ui(x∗ (π)) where π ′ is obtained from π by merging coalitions in
π\S.

It is clear from the above definition, that under negative coalition-externalities,

ui (x(πγ (σ ′))) < ui
(
x
(
πδ (σ ′)

))
where σ ′ =

(
{S}i∈S ,{N} j∈N\S

)
just because

πγ (σ ′) =
(
{S} ,{ j} j∈N\S

)
and πδ (σ ′) = ({S} ,{N\S}) . The following proposi-

tions exploits this fact.

Proposition 3. Let assumptions 1–2 hold, and let ui possess increasing differences
on XN, for all i∈N. Let also the game G(π) exhibits negative coalition-externalities.
Then the grand coalition N is a stable coalition structure in the ∆ -game of coalition
formation derived from the game in strategic form G.

Proposition 4. Let assumptions 1–3 hold. Let also the game G(π) exhibits negative
coalition-externalities. Then the grand coalition N is a stable coalition structure in
the ∆ -game of coalition formation derived from the game in strategic form G.

13 See Bloch [6] or Yi [47] for such a definition. There is not a clear relationship between games
with positive (or negative) player-externalities and games with positive (or negative) coalition-
externalities. However, for most well known games without synergies, both positive-player ex-
ternalities (PPE) plus strategic complement actions (SC) as well as negative-player externalities
(NPE) plus strategic substitute actions (SS) yield games with positive coalition-externalities. These
are the cases of merger or cartel games in quantity oligopolies (NPE+SS), merger or cartel games
in price oligopolies (PPE+SC) and public goods (PPE+SS) or environmental games (NPE+SS).
Similarly, we can obtain Negative Coalition-Externalities in a game by associating NPE and SC as
in a cartel game in which goods are complements and then the game exhibits SC.
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A comparison of the above results, obtained for Hurt and Kurz’s (1985) games
of coalition formation, with the other solution concepts can be mentioned. It can be
shown (see [46]) that for all games without synergies in which - as in the merger
example - players prefer to stay as singletons to free-ride on a forming coalition –
Bloch’s [5] sequential game of coalition formation gives rise to equilibrium coalition
structures formed by one coalition and a fringe of coalition acting as singletons.
Moreover, even in a linear oligopoly merger game, Ray and Vohra’s [40] Equilib-
rium Binding Agreement may or may not support the grand coalition as a stable
coalition structure, depending on the number of firms in the market. When the game
G is a game with synergies, a classification of the possible results. becomes even
more complex. To give an illustration, we can introduce a simple form of synergy
by assuming, as in Bloch’s [4] and Yi’s [46] R&D alliance models, that when firms
coordinate their action and create a R&D alliance, they pool their research assets
in such a way to reduce the cost of each firm in proportion to the number of firms
cooperating in the project.14 Let the producing cost of firms participating to a R&D
alliance of s firms be c(xi,si) = (c + 1− si)xi, where si is the cardinality of the al-
liance containing firm i: Let also a > c ≥ n. As shown by Yi [46], at the unique
Nash equilibrium associated with every coalition structure , the profit of each firm
in a coalition of size si is given by

uγ
i (x(πγ)) =

(
a− (n + 1)(c + 1− si)+

k
∑
j=1

s j (c + 1− s j)

)2

(n + 1)2 ,

When π = π (σ ′), symmetry can be used to reduce the above expression to

uγ
i

(
πγ (σ ′))=

(a− (n− si + 1)(c + 1− si)+ (n− si)c)2

(n + 1)2 .

Straightforward manipulations show that the deviation of a coalition Si from the
grand coalition in the game Γ is always profitable whenever:

si >−1
2

n + c− 1
2

√
(n2−4(nc− c2)−8(a− c−1).

For example, for n = 8, a deviation by a group of six firms (si = 6) induces a per firm

payoff of vγ
i (πγ (σ ′)) = (a−c+15)2

81 higher than the every firm’s payoff in the grand

coalition vi (πγ (σ∗)) = (a−c+7)2

81 . Therefore, it becomes more difficult to predict
the stable coalition structures in Hurt and Kurz’s Γ and ∆ -games. In the sequential
games of coalition formation [5, 41] for a linear Cournot oligopoly in which firms
can form reducing-cost alliances, and each firm’s i ∈ S bears a marginal cost

ci = γ−θ s ,

14 This is usually classified as a game with negative coalition-externalities (see [46, 47]).
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where s is the size of the alliance to which firm’s i belongs, the equilibrium profit of
each firm i ∈ S is:

vi (π) =
1− γ
n + 1

+ θ si− ∑ j �=i s2
i

n + 1
.

Therefore, the formation of alliances induces negative externalities on outsiders,
just because an alliance reduces marginal costs of participants and make them more
aggressive in the market. Moreover, members of larger alliance have higher profits
and then, if membership is open, all firms wants to belong to the association ([6],
Bloch 2005). In the game of sequential coalition formation, anticipating that re-
maining players will form an association of size (n− s), the first s players optimally
decide to admit s∗ = (3n + 1)/4 and the unique equilibrium coalition structure re-
sults in the formation of two associations of unequal size π∗ =

({ 3n+1
4

}
,
{

n−1
4

})
.

3 Networks

3.1 Notation

We follow here the standard notation applied to networks.15 A nondirected network
(N,g) describes a system of reciprocal relationships between individuals in a set
N = {1,2, . . . ,n}, as friendships, information flows and many others. Individuals are
nodes in the graph g and links represent bilateral relationship between individuals.16

It is common to refer directly to g as a network (omitting the set of players). The
notation i j ∈ g indicates that i and j are linked in network g. Therefore, a network
g is just a list of which pairs of individuals are linked to each other. The set of
all possible links between the players in N is denoted by gN = { i j| i, j ∈ N, i �= j}.
Thus G =

{
g⊂ gN

}
is the set of all possible networks on N, and gN is denoted

as the complete network. To give an example, for N = {1,2,3} , g = {12,13} is
the network with links between individuals 1 and 2 and 1 and 3, but with no link
between player 2 and 3. The complete network is gN = {12,23,13}. The network
obtained by adding link i j to a network g is denoted by g + i j, while the network
obtained by deleting a link i j from a network g is denoted g− i j. A path in g between
individuals i and j is a sequence of players i = i1, i2, . . . , iK = j with K ≥ 2 such
that ikik+1 ∈ g for each k ∈ {1,2, . . . ,K−1}. Individuals who are not connected by
a path are in different components C of g; those who are connected by a path are
in the same component. Therefore, the components of a network are the distinct
connected subgraphs of a network. The set of all component can be indicated as
C(g). Therefore, g =

⋃
g′∈C(g) g′. Let also indicate with N(g) the players who have

at least one link in network g.

15 See, for instance, Jakcson and Wolinski [34], Jackson [28] and van den Nouweland [44].
16 Here both individuals engadged in a relationship have to give their consent for the link to form.
If the relationship is unilateral (as in advertising) the appropriate model is a directed network. Also,
here the intensity of a link is assumed constant.
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3.2 Value Functions and Allocation Rules

It is possible to define a value function assigning to each network a worth.

Definition 8. A value function for a network is a function v : G→ R.

Let V be the set of all possible value functions. In some applications v(g) =
∑i ui(g), where ui : G→ R. A network g ∈ G is defined (strongly) efficient if v(g)
≥ v(g′) for all g′ ∈ G. If the value is transferable across players, this coincides with
Pareto-efficiency.17

Since the network is finite, it always exists an efficient network. Another relevant
modelling feature is the way in which the value of a network is distributed among
the individuals forming the network.

Definition 9. An allocation rule is a function Y : G×V → RN .

Thus, Yi(g,v) is the payoff obtained by every player i ∈ N(g) under the value
function v. Some important properties of the value functions v and of the allocation
rules Y can be defined.18

When compared to the characteristic function of cooperative games (see
Sect. 1.1), here a value function v is sensitive not only to the number of players
connected (in a component of g) but also to the specific architecture in which
they are connected. However, v can be restricted to depend only on the number
of players connected in a coalition. In a seminal contribution, Myerson [36] starts
with a TU cooperative game (N,v) and overlaps a communication network g to
such a framework. Myerson [36] associates a “graph-restricted value” vg : 2N

→ R, assigning to each coalition S a value equal to the sum of worth generated
by the connected components of players in S. Formally, players in S have links
in g(S) = { i j ∈ g| i ∈ S, j ∈ S} and this induces a partition of S into subsets of
players S(g) that are connected in S by g. Thus, vg(S) = ∑g′∈CS(g) v(g′) for every

S⊂ N, where CS(g) indicates the set of components induced by g involving players
belonging to coalition S. This value assumes that players in S can coordinate their
action only within their own components.19 Two assumptions underline this value:
(1) there are no externalities between different components of a network; (2) what
matters for the worth vg is only the worth of the coalition of players which are in
a component, not the type of connections existing within the coalition. Within this
framework, Myerson characterizes a specific allocation rule (known as Myerson
value) distributing the payoffs among individuals, and shows that under two ax-
ioms - fairness and component additivity - the unique allocation rule satisfying
these properties is the Shapley value of the graph-restricted game (N,vg):

17 A network g is Pareto efficient (PE) with respect to a value v and an allocation rule Y if there
not exists any g′ ∈ G such that Yi(g′,v) ≥ Yi(g,v) with strict inequality for some i Note that if a
network is PE with respect to v and Y for all possible allocation rules Y ; it is (strong) efficient (see
[28]).
18 See Jackson and Wolinsky [34] and Jackson [29] for details.
19 This implies a component balanced allocation rule Y .
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Yi(g,vg) = ∑
S⊂N\{i}

|S|!(|N|−1−|S|)!
|N|! (vg (S∪{i})− vg (S)) .

3.3 Networks Formation Games

3.3.1 Networks Formation in Extensive Form

Aumann and Myerson [2] propose an extensive form game to model the endogenous
formation of cooperation structures. In their approach, which involves a sequential
formation of links among players, bilateral negotiations take place in some prede-
termined order. Firstly, an exogenous rule determines the sequential order in which
pairs of players negotiate to form a link. A link is formed if and only if both players
agree and, once formed, cannot be broken. The game is one of perfect information
and each player knows the entire history of links accepted or rejected at any time of
the game. Once all links between pairs of players have formed, single players can
still form links. Once all players have decided, the process stops and the network g
forms and the payoff is assigned according to the Myerson value, i.e. the Shapley
value of the restricted game (N,vg). Stable cooperative structure are considered only
those associated with subgame perfect equilibria of the game.

Example 5.20 Suppose a TU majority game with N = {1,2,3} and v(S) = 1 if |S| ≥
2 and v(S) = 0 otherwise. If the exogenous rule specifies the following order of
pairs: {1,2} , {1,3} , {2,3}. The structure {1,2} is the only cooperation structure
supported by a subgame perfect equilibrium of the game. Neither player 1 nor player
2 have an interest to form a link with player 3, provided that the other player has not
formed a link with 3. So, using backward induction, if at the final stage {2,3} has
formed, at stage 2 also {1,3} forms and player 1 obtains a lower payoff than in a
coalition with only player 2. Thus, at stage 1 player 1 forms a link with player 2 and
the latter accepts. No other links are formed at the following stages.

It is possible that a subgame Nash equilibrium of the Aumann and Myerson’s
network formation game in extensive form does not support the formation of the
complete network even for superadditive games. Moreover, no general results are
known for the existence of stable complete networks even for symmetric convex
games.21

3.3.2 Networks Formation in Strategic Form

Myerson [37] suggests a noncooperative game of network formation in strategic
form.22

20 This example is taken from Dutta et al. [19].
21 See, for a survey of this approach, van den Nouweland [45].
22 This game is also analyzed by Quin [39] and Dutta et al. [19].
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For each player i ∈ N a strategy σi ∈ Σi is given by the set of players with whom
she want to form a link, i.e. Σi = (S|S ⊆ N\{i}). Given a n-tuple of strategies σ ∈
Σ1×Σ2×·· ·×Σn a link i j is formed if and only if j ∈ σi and i ∈ σ j. Denoting the
formed (undirected) network g(σ), the payoff of each player is given by Yi(v,g(σ))
for every σ ∈ ΣN . A strategy profile is a Nash equilibrium of the Myerson’s linking
game if and only if, for all player iand all strategies σ ′ ∈ Σi

Yi(v,g(σ))≥ Yi(v,g(σ ′i ,σ−i)).

We can also define a network g Nash stable with respect to a value function v
and an allocation rule Y , if there exists a pure strategy Nash equilibrium σ such that
g = g(σ).

The concept of Nash equilibrium applied to the network formation game appears
a too weak notion of equilibrium, due to the bilateral nature of links. The empty
network (a g with no links) is always Nash stable for any v and Y . Moreover, all
networks in which there is a gain in forming additional links but no convenience
to sever existing links are also Nash stable. Refinements of the Nash equilibrium
concept for the network formation process have been proposed. The pairwise sta-
bility introduced by Jackson and Wolinsky [34] plays a prominent role in the recent
developments of the analysis of networks formation.

3.3.3 Pairwise Stability

We should expect that in a stable network players do not benefit by altering the
structure of the network. Accordingly, Jackson and Wolinsky [34] defines a notion
of network stability denoted pairwise stability.

Definition 10. A network g is pairwise stable with respect to the allocation rule Y
and value function v if

(1) For all i j ∈ g, Yi(v,g)≥ Yi(g− i j,v) and Yj(v,g)≥ Yj(g− i j,v), and
(2) For all i j /∈ g, if Yi(g + i j,v) > Yi(g,v) then Yj(g + i j,v) < Yj(g,v).

As shown by Jackson and Watts [33], a network is pairwise stable if and only if
it has no improving path emanating from it. An improving path is a sequence of net-
works {g1,g, . . . ,gK}, where each network gk is defeated by a subsequent (adjacent)
network gk+1, i.e. Yi(gk+1,v) > Yi(gk,v) for gk+1 = gk− i j or Yi(gk+1,v)≥Yi(gk,v)
and Yj(gk+1,v) ≥ Yj(gk,v) for gk+1 = gk + i j, with at least one inequality holding
strictly. Thus, if there not exists any pairwise stable network, then it must exists
at least one cycle, i.e. an improving path {g1,g, . . . ,gK} with g1 = gK . Jackson and
Wolinsky [34] show that the existence of pairwise stable networks is always ensured
for certain allocation rules. They prove that under the egalitarian and the component-
wise egalitarian rules,23 pairwise stable networks always exists. In particular, under

23 The egalitarian allocation rule Y e is such that Y e
i (g;v)= v(n)

n for all i and g. The component-wise
allocation rule Y ce is an egalitarian rule respecting component balance, i.e. such that Y ce

i (g;v) =
v(C)
|N(C)| when N(C), the set of players in component C is non empty and Y ce

i (g;v) = 0 otherwise. See
Jackson and Wolinsky [34] and Jackson [28] for details.
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the egalitarian rule, any efficient network is pairwise stable. Under the component-
wise allocation rule, a pairwise stable network can always be found. This can be
done for component additive v by finding components C that maximize the payoffs
of its players, and then continuing this process for the remaining players N\N(C).
The network formed by all these components is pairwise stable. Another allocation
rule with strong existence properties is the Myerson value. As shown by Jackson
and Wolinsky [34], under Myerson’s allocation rule there always exists a pairwise
network for every value function v ∈ V . Moreover, all improving paths emanating
from any network lead to pairwise stable networks, i.e. there are no cycles under the
Myerson value allocation rule.24

However, as it is shown by Jackson and Wolinsky and by Jackson [28], there
exists a tension between efficiency and stability whenever the allocation rule Y is
component balanced and anonymous, in the sense that there does not exists an allo-
cation rule with such properties that for all v ∈ V yields an efficient network that is
pairwise stable.

3.3.4 Further Refinements of Network Stability Concepts

As in the case of coalition formation, equilibrium concepts immune to coordinated
deviations by players are also conceivable for networks (see, [18, 19, 32]). By al-
lowing every subset of players to coordinate their strategies in arbitrary ways yields
a strong Nash equilibrium for network formation games. That is, a strategy profile
σ ∈ ΣN is a strong Nash equilibrium of the network formation game if there not
exist a coalition S ⊆ N and a strategy profile σ ′S ∈ ΣS such that

Yi(v,g(σ ′S,σN\S))≥ Yi(v;g(σ)),

with strict inequality for at least one i∈ S. Hence, a network g is strongly stable with
respect to a value function v and an allocation rule Y , if there exists a strong Nash
equilibrium σ such that g = g(σ).

Similarly, an intermediate concept of stability, stronger than pairwise stability
and weaker than strong Nash equilibrium, has been proposed [34] and denoted pair-
wise Nash equilibrium. This can be defined as a strategy profile σ ∈ ΣN such that,
for all player i and all strategies σ ′i ∈ Σi,

Yi(v,g(σ ′i ,σN\{i}))≥ Yi(v,g(σ))

and there not exists a pair of agents (i, j) such that

Yi(v,g(σ)+ i j) ≥ Yi(v,g(σ))
Yj(v,g(σ)+ i j) ≥ Yj(v,g(σ))

24 See Jackson [28] for details.
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with strict inequality for at least one of the agents. Therefore, a network g is
pairwise Nash stable with respect to a value function v and an allocation rule Y , if
there exists a pairwise Nash equilibrium such that g = g(σ).25

It can be shown that, given a value function v and an allocation rule Y , the set
of strongly stable networks is weakly included in the set of pairwise Nash stable
networks and that the latter set coincides with the intersection of pairwise stable
networks and Nash stable networks.26 Moreover, the set of pairwise stable networks
and the set of Nash stable networks can be completely disjoint even though neither
is empty.27

In the next section, I briefly illustrate some very simple applications of net-
work formation games to classical I. O. models. These are taken from Bloch [9],
Belleflamme and Bloch [3] as well as Goyal and Joshi [22].

3.4 Some Economic Applications

3.4.1 Collusive Networks

In Bloch [7] and in Belleflamme and Bloch [3] it is assumed that firms can sign
bilateral market sharing agreements. Initially firms are present on different (geo-
graphical) markets. By signing bilateral agreement they commit not to enter each
other’s market.

If i j ∈ g, firm i withdraws from market j and firm j withdraws from market i.
For every network g and given N firms, let ni(g) denote the number of firms in firm
i’ s market, with ni(g) = n−di(g) where di(g) is the degree of vertex (firm) i in the
network, i.e. the number of its links. If all firms are identical, firm i’s total profit is

Ui(g) = ui(ni(g))+ ∑
i,i j/∈g

ui (n j(g)) .

With linear demand and zero marginal cost, under Cournot competition we obtain

Ui(g) =
a2

[ni(g)+ 1]2
+ ∑

i,i j/∈g

a2

[n j(g)+ 1]2
.

If n ≥ 3; there are exactly two pairwise stable networks, the empty network and
the complete network. For n = 2, the complete network is the only stable network.

25 This equilibrium concept has been adopted in applications by Goyal and Joshi [22] and
Belleflamme and Bloch [3] and formally studied by Calvo-Armengol and Ilkilic [13], Ilkilic [27]
and Gilles and Sarangi [21].
26 See, for instance, Jackson and van den Nouweland [32] and Bloch and Jackson [10].
27 See Bloch and Jackson [10, 11], for an extensions of these equilibrium concepts to the case in
which transfers among players are allowed.



88 M.A. Marini

Note that the empty network is stable since for every symmetric firm the benefit
to form a link is

Ui(g + i j)−Ui(g) =
a2

n2 −2
a2

(n + 1)2

that, for n≥ 3, is negative.
For every incomplete network, Ui(g)−Ui(g− i j) ≥ 0, requires that

a2

[ni(g)+ 1]2
−
[

a2

[ni(g)+ 2]2
+

a2

[n j(g)+ 1]2

]
≥ 0

and this holds only for ni(g) = n j(g) = 1, i.e. when the network is complete.
In this case,

Ui(gN)−Ui(gN− i j) =
a2

4
− 2a2

9
> 0.

Therefore, it follows that the only nonempty network which is pairwise stable is
the complete network.

3.4.2 Bilateral Collaboration Among Firms

Bloch [7] and Goyal and Joshi [22] consider the formation of bilateral alliances
between firms that reduce their marginal cost, as

ci = γ−θdi(g) ,

where di(g) denotes the degree of vertex i, i.e. the number of bilateral agreements
signed by firm i.

Under Cournot competition with linear demand, we have each firm’s profit is
given by

Ui(g) =
[

a− γ
n + 1

+ θdi(g)− θ ∑ j d j(g)
n + 1

]2

.

For such a case, the only pairwise stable network turns out to be the complete net-
work gN (see [22]). This is because, by signing an agreement, each firm increases its

quantity by ∆qi =
nθ

n + 1
, consequently, its profit. Moreover, when a large fixed cost

to form a link is included in the model, Goyal and Joshi show that stable networks
possess a specific form, with one complete component and a few singleton firms.

4 Concluding Remarks

This paper has attempted to provide a brief overview of the wide and increasing
literature on games of coalition and network formation, paying a specific attention
to the results which may be obtained by applying these games to some well known
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economic problems. It has been shown that, under reasonable assumptions mainly
concerning the symmetry of players’ payoffs, a number of general results can be
obtained in games of coalition formation, which, in turn, can be easily applied to
standard economic problems without synergies, as industry mergers and cartels,
public goods games and many others. Network formation games appear as a nat-
ural extension of coalition formation games with, included, a detailed analysis of
the effects of bilateral links among players. However, the issue of which network
will form and which equilibrium concepts are suitable in a number of economic
applications seems still largely unresolved, thus requiring further investigation. The
future research agenda on the topic of network formation in social environments is
certainly open to new exciting contributions.

Appendix

Lemma 1. For all S⊆N, x̃S ∈ argmaxxS∈XS ∑i∈S ui(xS,xN\S) implies x̃i = x̃ j for all
i, j ∈ S and for all xN\S ∈ XN\S.

Proof. Suppose x̃i �= x̃ j for some i, j ∈ S. By symmetry we can derive from x̃S a new
vector x′S by permuting the strategies of players i and j such that

∑
i∈S

ui(x′S,xN\S) = ∑
i∈S

ui(x̃S,xN\S) (6)

and hence, by the strict quasiconcavity of all ui(x), for all λ ∈ (0,1) we have that:

∑
i∈S

ui(λ x′S +(1−λ )x̃S,xN\S) > ∑
i∈S

ui(x̃S,xN\S). (7)

Since, by the convexity of X , the strategy vector
(
λ x′S +(1−λ )x̃S

) ∈ XS, we obtain
a contradiction. �

Lemma 2. Let Assumptions 1 and 2 hold. Then for every S and T ∈ π , with |T |
≥ |S|: (1) Under Positive Externalities, us(x(π)) ≥ ut(x(π)) if and only if xs ≤ xt ;
(2) Under Negative Externalities, us(x(π))≥ ut(x(π)) if and only if xs ≥ xt .

Proof. We first prove the result for the case of positive externalities, starting with
the “only if” part. By assumption 1, all members of T get the same payoff at x(π).
By definition of x(π), the profile in which all members of T play xt maximizes the
utility of each member of T , so that

ut((xt ,xt)xs)≥ ut((xs,xs) ,xs). (8)

Suppose now that xs > xt . By assumption 1 and 2.1 we have

ut((xs,xs) ,xs) = uti((xs,xs) ,xs) = us((xs,xs) ,xs) > us((xt ,xt) ,xs). (9)
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To prove the “if” part, consider coalitions T1, T2 and S which, as defined at the
beginning of this section, are such that |T1| = |S| and such that {T1,T2} forms a
partition of T . By definition of x(π), the utility of each member of S is maximized
by the strategy profile xS. Using the definition of us and of xs we write:

us((xt ,xt) ,xs)≥ us((xt ,xt) ,xt). (10)

By assumption 2.1, if xs ≤ xt then

us((xt ,xt) ,xt)≥ us((xs,xt) ,xt). (11)

Finally, by assumption 1 and the fact that |T1|= |S|, we obtain

us((xs,xt) ,xt) = ut1((xt ,xt) ,xs) = ut((xt ,xt) ,xs), (12)

implying, together with (11) and (12), that

us(x(π)) = us((xt ,xt) ,xs)≥ ut((xt ,xt) ,xs) = ut(x(π)). (13)

Consider now the case of negative externalities (assumption 2.2). Condition (8)
holds independently of the sign of the externality. Suppose therefore that xs < xt .
By negative externalities and symmetry we have

ut((xs,xs),xs) = us((xs,xs),xs) > us((xt ,xt) ,xs). (14)

The “if” part is proved considering again coalitions T1, T2 and S. Again, Condition
(10) holds independently of the sign of the externality. By negative externalities, if
xs ≥ xt then

us((xt ,xt) ,xt)≥ us((xs,xt) ,xt). (15)

As before, we use assumption 1 and the fact that |T1|= |S| to obtain

us((xs,xt) ,xt) = ut((xt ,xt) ,xs), (16)

and, therefore, that

us(x(π)) = us(xt ,xs)≥ ut(xt ,xs) = ut(x(π)). (17)

�

Lemma 3. Let assumptions 1–2 hold, and let ui have increasing differences on XN,
for all i ∈ N. Then for every S and T ∈ π , with |T | ≥ |S|: (1) Positive Externalities
imply xs ≤ xt ; (2) Negative Externalities imply xs ≥ xt .

Proof. (1) Suppose that, contrary to our statement, positive externalities hold and
xs > xt By increasing differences of ui for all i ∈ N (and using the fact that the sum
of functions with increasing difference has itself increasing differences), we obtain:

us((xs,xt),xs)−us((xs,xt),xt)≥ us((xt ,xt),xs)−us((xt ,xt),xt). (18)
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By definition of xs we also have:

us((xt ,xt),xs)−us((xt ,xt),xt)≥ 0. (19)

Conditions (18) and (19) directly imply:

us((xs,xt),xs)−us((xs,xt),xt )≥ 0. (20)

Referring again to the partition of T into the disjoint coalitions T1 and T2, an appli-
cation of the symmetry assumption 1 yields:

us((xs,xt),xs) = ut1((xs,xt),xs); (21)

us((xs,xt),xt) = ut1((xt ,xt),xs).

Conditions (20) and (21) imply

ut1((xs,xt),xs)≥ ut1((xt ,xt),xs). (22)

Positive externalities and the assumption that xs > xt imply

ut2((xs,xt),xs) > ut2((xt ,xt),xs). (23)

Summing up conditions (22) and (23), and using the definition of T1 and T2, we
obtain:

ut((xs,xt),xs) > ut((xt ,xt),xs), (24)

which contradicts the assumption that xt maximizes the utility of T given xs.
The case (2) of negative externalities is proved along similar lines. Suppose that

xs < xt . Conditions (20) and (21), which are independent of the sign of the external-
ities, hold, so that (22) follows. Negative externalities also imply that if xs < xt then
(23) follows. We therefore again obtain condition (24). �
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Network Formation with Closeness Incentives

Berno Buechel

Abstract Closeness centrality is an index that has been widely used to assess the
strength of an agent’s position in a network of relationships. We study the formation
of networks in a strategic setting, where every agent tries to optimize his close-
ness centrality. We investigate how the curvature of the benefit function (decreasing
vs. increasing marginal returns) affects the set of stable networks and compare the
results to the well-known connections model of Jackson and Wolinsky (JET 71,
1996). It turns out that our model can “replicate” the connections model in the sense
that each result is translatable from one model into the other and the sets of stable
networks coincide for certain specifications. We conclude that the two models incor-
porate the same kind of linking behavior and that grouping these “closeness-type”
models means a first step in organizing network formation models by the type of
incentives.

1 Introduction

Positions in social networks play a predominant role for economic outcomes. For
example, consider a network of R&D collaborations in a technology-based industry.
Companies which occupy a very “central” position are considered to better acquire
and exploit knowledge that finally promotes their performance (e.g. [15]). In the
field of social network analysis there is a long and rich history of studying benefits
of network structures in various contexts. Beyond describing case studies, measures
were developed that quantitatively assess the “merit” of certain network positions.1
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1 The underlying assumption of these approaches is that there are some structural features of net-
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A.K. Naimzada et al. (eds.), Networks, Topology and Dynamics, 95
Lecture Notes in Economics and Mathematical Systems 613,
c© Springer-Verlag Berlin Heidelberg 2009



96 B. Buechel

This paper considers the problem from a different perspective by asking how
network structures can be affected by agents that strive for beneficial positions.2 As
the impetus of each individual’s linking behavior we use one of the most customary
centrality indices: closeness centrality [8]. Closeness captures the idea that it is ben-
eficial for an agent to have short paths to many agents in the network. Applications
range from performance of organizational units [17], over web-based communities,
to status in school classes.3

We model a situation of two-sided link formation, based on the framework
introduced by Jackson and Wolinsky [12]. An important example therein is the
connections model they presented, which was intensively studied thereafter (see,
e.g. [1]). The benefits of the connections model represent information transmission
with some decay. As the decay is based on the length of communication paths, the
benefits of the connections model are also considered as a “closeness-like” cen-
trality index [3]. Since closeness and connections are clearly similar in spirit, the
question arises, to what extent the results for the connections model persist when
using closeness centrality instead.

Experience shows that in network formation models minor changes may have
major effects. E.g. [6] and [11] both study network formation based on the same
concept (“structural holes”), but use a different specification, which leads to quite
different results. Based on these considerations this paper investigates robustness of
the connections model: How do the stable networks in the closeness model differ
from those in the connections model and what is in general the significance of the
curvature of the benefit function? It turns out that the closeness model in its linear
version “replicates” the results of the (symmetric) connections model, meaning that
both payoff functions incorporate the same behavior.

In the next section we will introduce the model. Section 3 provides basic results.
Section 4 compares the linear closeness model to the connections model.

2 Model

Before motivating and defining the closeness model, we introduce the necessary
definitions.

2.1 Framework

Let N = {1, . . . ,n} be a (finite, fixed) set of agents/players, with n ≥ 3. A net-
work/graph g is a set of unordered pairs, {i, j} with i, j ∈ N. This set represents

2 This idea can also be found in Rogers [16], who models the formation of weighted graphs using
an index of social influence.
3 Freeman [8] clarifies that closeness measures one dimension of centrality, while there are other
dimensions, i.e. closeness does not sufficiently capture the intermediary role of some network
positions.
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who is linked to whom in a non-directed graph, i.e. {i, j}= i j ∈ g means that player
i and player j are linked under g. Let gN be the set of all subsets of N of size two
and G be the set of all possible graphs, G = {g : g⊆ gN}. A network can be seen as
a (irreflexive, symmetric) binary relation on the player set. It can be represented by
a matrix of zeros and ones called adjacency matrix.

Let Li(g) be the set of links that player i is involved in, that is Li(g) = {i j ∈ g :
j ∈ N}, and li(g) its cardinality, called degree. An isolate is a player with degree
zero and a pendant is a player with degree one (this structure is called a loose end).

A circle of size K is a sequence of K distinct players (i1, . . . , iK) such that
{ik, ik+1} ∈ g ∀k ∈ {1, . . . ,K}, where iK+1 := i1.

A path between two players i and j is a sequence of distinct players
(i1, . . . , iK) such that i1 = i, iK = j, and {ik, ik+1} ∈ g ∀k ∈ {1, . . . ,K − 1}. The
(geodesic) distance between two players is the length of their shortest path(s),
where the length is the number of links in the sequence. Formally, we can define the
distance between two players (di j(g)) in a graph g by the corresponding adjacency
matrix A(g): di j(g) := min{k ∈N : Ak(g)i j ≥ 1;M}. If two players cannot reach one
another (there does not exist a path connecting them), we define their distance as
M, a number that is bigger than the feasible distances (see Sect. 2.2).

A graph is called connected, if there exists a path between any two players in
the graph. A set of connected players is called component, if they cannot reach
agents outside this set. A link is called critical, if its deletion increases the number
of components in a graph. A graph is called minimal, if all links are critical. A tree
is a connected network that is minimal.

Game Theoretic Framework

We base our model on a game-theoretic framework introduced by [14], [12] and
[1]. Without defining the game explicitly, we take the “shortcut” of working with
preferences and directly applying a stability concept.

For each player i ∈ N a utility function represents his preferences over the set of
possible graphs, ui : G→R.

We work with the most basic equilibrium concept due to [12]: a network is con-
sidered as “stable” if no link will be added or cut (by two, respectively one player).
Formally, a network g is pairwise stable (PS) or just stable if:

(1) ∀i j ∈ g, ui(g)≥ ui(g\i j) and u j(g)≥ u j(g\i j)
(2) ∀i j /∈ g, ui(g∪ i j) > ui(g)⇒ u j(g∪ i j) < u j(g)

2.2 Closeness

The unique feature of the model presented here is the benefit function, which will be
based on closeness centrality. Closeness incorporates the idea that an agent prefers
networks, in which his average distance is short. Closeness is used in a wide variety
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of applications. We can identify the following basic arguments why closeness can
be beneficial:

• The higher your closeness, the smaller the distance to an arbitrary node in the
network. E.g. think of some researcher having a revolutionary idea. In the (co-
author) network of this field of research, people with high closeness are likely to
find out about the result much earlier.

• The higher your closeness, the higher the expected spillovers from other agents.
As short geographic “distances” lead to external economies of scale, e.g. cars
production in Detroit or Silicon Valley (electronics), it is plausible that short
(network) distances have a similar effect, especially in times of well-developed
information and communication technologies.

• The higher your closeness, the higher your status. In the friendship network of a
school class one can assess the popularity of pupils by their closeness.

• The higher your closeness, the better you can shape the community. Networks
with shorter paths facilitate quick diffusion of information/innovation. Agents
with high closeness, therefore, can better spread their ideas.

• The higher your closeness, the better you are informed. The idea here is that
accuracy of knowledge decreases with distances.

The listed arguments are not necessarily valid throughout all applications; the
list only reflects how the importance of closeness can be justified. Our model is
not dependent on the empirical validity of these motivations. The fact that some
researchers or businessmen claim that closeness is desirable, provides enough justi-
fication to study network formation based on closeness incentives.

Definition of Closeness

We can generally define closeness such that benefits of an agent i gained by network
g are decreasing with the (geodesic) distances of i to all other agents. To measure
closeness there are some more details to look at.

To handle pairs that cannot reach one another, one can either restrict attention
to the set of connected graphs, which would be a harsh assumption in a network
formation game, or it must be defined what the distance of unconnected agents is.
Here we define it as M. When i and j are connected, their distance is in [1,n− 1],
hence let M > n−1.4

In the literature on centrality it is standard to normalize an index between 0 and 1.
We follow this convention by defining closeness of an agent i as the following affine

transformation of his average distance ∑ j∈N di j(g)
n−1 :

Closei(g) =
M

M−1
− ∑ j∈N di j(g)

(M−1)(n−1)
.

4 It is often convenient to define M = n. In this paper, however, we will keep it as a parameter.
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There is another operationalization which is more prominent in the literature: the
closeness definition according to Freeman [8]: FrClosei(g) := n−1

∑ j∈N di j(g) .5 The au-

thor’s trade-off here was: while Freeman’s version (inverse distances) is much more
customary, our closeness definition (reverse distances) more naturally separates the
measurement of a structural feature of a network (network statistic) from its eval-
uation (by keeping the units, as argued in [18]). In the next subsection we will see
that this choice does not restrict generality, e.g. if people strive just for Freeman-
closeness, this is a special case of our model.

2.3 Model Specification

Our model is based on three major assumptions on individual behavior:

1. The agents take linking decisions in respect to their degree and their closeness,
where closeness is beneficial and links are costly. To get a pure model we exclude
all other aspects. One can think of any decision about adding or cutting links as
a proposed exchange of average distance vs. degree: You can buy closeness by
adding links; you can save costs by passing on closeness.

2. The utility of a player is composed in an additive way by costs and benefits. This
assumption is not very restrictive as utility functions that are not additive sepa-
rable may be transformed into this form. But it is a very convenient assumption:
As the cross-derivatives are zero, the assumption uncouples the effects on utility
coming from a change in closeness and a change in degree.

3. The players are homogeneous in respect to preferences. It is an interesting ques-
tion to ask how networks evolve when players differ in their preferences (see,
e.g. [9]). As applications of our model are very different in nature, however, we
put emphasis on the different contexts that influence everybody’s choice, not on
the difference between agents (as also argued in [5]).

By introducing a (non-decreasing, twice differentiable) benefit function b :
[0,1]→R and a (non-decreasing, twice differentiable) cost function c : [0,n−1]→
R, we can put all assumptions together to what we call the closeness model:

All agents i ∈ N decide about links according to preferences that can be rep-
resented by ui(g) = b(Closei(g))− c(li(g)).

Although concave and convex cost functions are reasonable – concave costs rep-
resent the combination of fix costs and variable costs; convex costs represent the
scarcity of resources (e.g. time) – we will restrict attention to linear cost functions

5 In the original version Freeman closeness is only defined for connected graphs. The extension to
all networks works with the definition of the distance of unconnected players (as M).
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clinear(g) = c̄li(g), where c̄ ∈ (0,∞).6 The justification is that a concave or con-
vex cost function would induce similar behavior as the benefit function does when
transformed with the inverse function. So these aspects are assumed to be absorbed
by the benefit function.

For the benefit function we will distinguish three cases: concave shape, convex
shape and linear shape.7 The first one represents decreasing marginal returns. For-
mally, ∀x,x′,∆ > 0 a concave benefit function implies b(x+∆)−b(x)≥ b(x′+∆)−
b(x′) whenever x ≤ x′ (by the mean value theorem). Convexity implies increasing
marginal returns: just let x′ ≤ x.

Remark 1. By taking the following convex benefit function f (x) = [M − x(M −
1)]−1, the benefits are equivalent to Freeman-closeness (with linear evaluation),
because f (Closei(g)) = FrClosei(g).

The marginal costs c̄ are constant and serve as the parameter for our model. The
marginal benefits depend on the network g and on the shape of the benefit function.
Let β i j

i (g) denote the marginal benefit that link ij (either added or cut) means to
player i in graph g. That is, β i j

i (g) := b(Closei(g∪ i j))−b(Closei(g \ i j)).
When players take linking decisions, they compare marginal costs and marginal

benefits: in graph g player i is eager to form a link to j (i j /∈ g) iff β i j
i (g) > c̄ and i

wants to cut a link with k (ik ∈ g) iff β ik
i (g) < c̄.8

3 General Results

This section provides boundaries (thresholds of the parameter) for stable networks
in the closeness model and addresses how they can be affected by the curvature of
the benefit function.

3.1 Connectedness and Loose Ends

To have a shorter notation, we substitute two often needed units of closeness:

1. T1 := 1
(n−1)(M−1) . This is the smallest possible change in closeness, as it cor-

responds to a shift in distance of 1. It occurs when two players, who were at
distance two, form a link and only the distance between these two changes, e.g.
because they are already directly linked to everybody else.

6 In fact, this assumption restricts preferences to be quasi-linear in degree.
7 In [10] the role of concave/convex benefits is nicely elaborated. [13] analyzes decreasing marginal
returns in a similar model, but with one-sided link formation.
8 When marginal benefits are equal to marginal costs, the player is indifferent. In this case he does
not cut the link, respectively does not initiate the new link (but agrees when asked).
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2. T2 := 1
(n−1) . This is the change in closeness of a player that links with an isolate.

As his distance shifts from M to 1, his closeness increases by M−1
(n−1)(M−1) = T 2.

The following results provide two characteristics of all stable networks.

Proposition 1. In a closeness model with linear costs and concave benefits the fol-
lowing holds:

(1) If c̄ < b(1)−b(1−T2), all stable graphs are connected.
(2) If c̄ > b(T 2)−b(0), no stable graph exhibits loose ends.

Proof. (1) Take any unconnected graph g. Take any player i and let Closei(g) =: x.
Linking with somebody of another component leads to a shift in closeness of at
least T2. Because x + T2 ≤ 1 and b(·) concave, it holds that b(x + T 2)− b(x) ≥
b(1)−b(1−T2). By assumption the marginal costs are lower, such that i wants to
form this link. As in any unconnected graph there exist two players who are not
connected, they will alter the network structure, which makes g unstable.

(2) Take any network g with at least one pendant and let i be his (only) neighbour.
Denote Closei(g) =: x. Cutting the link to the pendant means a shift in closeness of
T2. Because x≥ T 2 and b(·) concave, it holds that b(x)−b(x−T2)≥ b(T 2)−b(0).
By assumption the marginal costs are higher. Therefore, i will cut the link, which
makes g unstable. ��

The intuition behind the result is that the thresholds of (1) and (2) are just the
minimal and the maximal marginal benefit that a link to an isolated node can mean.9

If the benefit function is not concave but convex, these two thresholds just switch
roles, as stated by the following proposition.

Proposition 2. In a closeness model with linear costs and convex benefits the fol-
lowing holds:

(1) If c̄ < b(T 2)−b(0), all stable graphs are connected.
(2) If c̄ > b(1)−b(1−T2), no stable graph exhibits loose ends.

The proof is analogue to the proof of Proposition 1. Connectedness and non-
existence of pendants heavily restrict the candidates for stable networks.

3.2 Existence

With the assumption of a convex benefit function, there is a very simple – admittedly
not a very elegant – way of proving existence of stable graphs.

9 I.e. the threshold in (2) is the marginal benefit of a new link in the empty graph β i j
i (gempty); and

the threshold in (1) is the marginal benefit that cutting a link means to the center of a star β ci
c (g�).
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Fig. 1 Existence of stable networks for convex benefits

Proposition 3. In a closeness model with linear costs and convex benefits the fol-
lowing holds: for any parameter value there exists at least one stable network.

Proof. To show that for any marginal costs c̄ ∈ (0,∞) there exists a stable network,
we take for low costs the complete graph, for high costs the empty network, and in
the medium range the star. It is easy to verify that:

• The complete graph is stable if c̄≤ β i j
i (gN) = b(1)−b(1−T1). Remember that

T1 is the shift in closeness when distance increases by 1.
• The empty network is stable if c̄≥ β i j

i (gempty) = b(T 2)−b(0).
• A star is stable if b(x + T 1)− b(x) ≤ c̄ ≤ min{b(1)− b(1− T 2),b(x)− b(0)},

where x := M
M−1 − 2n−3

(M−1)(n−1) is the closeness of a peripheral player (pendant).
To verify the result, note that this condition precludes all possible deviations: (a)
no peripheral players add a link c̄ ≥ b(x + T1)− b(x); and (b) the center does
not cut a link c̄ ≤ b(1)− b(1− T 2); and (c) no peripheral player cuts a link
c̄≤ b(x)−b(0).

To prove existence for any marginal cost c̄, it remains to show that (1) the lower
bound of the star is below the upper bound of the complete network and (2) the
upper bound of the star is above the lower bound of the empty network (see Fig. 1).
1. b(x + T1)− b(x)≤ b(1)− b(1−T1) follows from x + T1 ≤ 1 and convexity of
b(·). And 2. b(1)− b(1−T2) ≥ b(T2)− b(0) follows from convexity of b(·); and
b(x)−b(0)≥ b(T 2)−b(0) follows from b(·) increasing and x≥ T 2. ��

Figure 1 shows the idea of the proof: For any marginal cost, we can give a trivial
example for a pairwise stable network.10

Remark 2. Figure 1 also contains the thresholds for Proposition 2 (on the right). In
the case of concave benefits these two thresholds not only switch positions, but also
switch their roles as stated in Proposition 1.

Besides these trivial examples (empty, complete, star) there are many more stable
networks (which will be addressed in Sect. 4).

10 For concave benefits the thresholds shift such that these trivial graphs do not span the whole
parameter space. So in the case of concavity there are two “gaps” for which we could neither prove
existence nor non-existence; for all other parameter values, existence is assured.
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3.3 Pairwise Nash Stability

Besides pairwise stability there are other equilibrium concepts for network forma-
tion models, most of which are refinements of (PS). One of the most used stems
from a non-cooperative framework and is called pairwise nash stability (PNS) (see,
e.g. [2]). We can directly define it by just strengthening condition (1) of (PS):
A network g is pairwise nash stable (PNS) if:

(1) ∀i ∈ N, ∀l ⊆ Li(g) ui(g)≥ ui(g\l).
(2) ∀i j /∈ g ui(g∪ i j) > ui(g)⇒ u j(g∪ i j) < ui(g).

In the closeness model, (PNS) is not always a proper refinement of (PS):

Proposition 4. In a closeness model with linear costs and concave benefits the set
of pairwise stable networks [PS] and the set of pairwise nash stable networks [PNS]
coincide.

One direction of the result follows directly from the definitions: [PNS] ⊆ [PS].
The other direction is more intriguing. Because of its length we omit the proof here
and just present the main ideas11:

Calvó-Armengol and Ilkiliç [7] show that [PNS] and [PS] coincide, if the utility
function u(·) satisfies a property called α − convexity in current links. Moreover,
if costs and benefits are additively separable and marginal costs are constant, it is
enough to show that the benefit function satisfies ∀i ∈ N,∀g ∈G,∀l ⊆ Li(g),

β l
i (g)≥ ∑

i j∈l

β i j
i (g), (1)

where β l
i (g) := bi(Closei(g))−bi(Closei(g\l)) denotes the marginal benefit that the

deletion of the links (in l) means to some player i.
In essence, the condition says that the deletion of some of player i’s links hurts

him weakly more than the sequential deletion of these links, one at the time. For
constant marginal costs it is intuitive that this is the condition requiring that devia-
tions of cutting more than one link are only utility improving, if deviations of cutting
just one link are, which is sufficient for [PS] = [PNS].

To show that condition (1) holds in a closeness model with concave benefits, we
need two steps: one step shows that the shift in closeness on the left-hand side of (1)
cannot be smaller than the shift in closeness on the right-hand side. The other step
exploits decreasing marginal returns (which guarantee, roughly, that multiple small
reductions of closeness are not evaluated as severely as one big reduction).

The proof of Proposition 4 clarifies the role of the benefit function for the stability
of networks: it is a genuine feature of the model that cutting one link at a time
shifts closeness (weakly) less than cutting them at once. The concavity of the benefit
function is just used to preserve this feature.

11 The complete proof can be requested by the author.
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This section showed how the curvature of the benefit function shifts thresholds
for stable graphs. In the next section we study a special case, in which multiple
thresholds coincide (to what we call “transition points”).

4 The Linear Closeness Model

In the linear closeness model, we assume all players to have a linear cost function
and a linear benefit function.12 Without restriction of generality, we represent any
player’s preferences by ulinear

i (g) = Closei(g)− c̄li(g) . Note that by taking the id-
function as benefit function, we mingle in this section what we distinguished before:
the closeness of an agent and his benefit derived from closeness.

4.1 Transition Points

The first proposition is a corollary of Propositions 1 and 2, as the linear benefit
function is a special case of both, concave and convex benefits functions.

Proposition 5. Let again T2 := 1
(n−1) . In the linear closeness model the following

holds:

(1) For c̄ < T 2, all stable graphs are connected.
(2) For c̄ > T 2, no stable graph exhibits loose ends.

Excluding pendants implies for the stable networks: (a) they cannot be minimal
(i.e. a tree); (b) there exists at least one circle if the graph is non-empty; and (c)
if the graph is connected, then it must contain at least n links. Observe that in this
result two thresholds coincide: b(1)−b(1−T 2) = b(T2)−b(0) = T 2. This is also
true for the next transition point.

Proposition 6. Let again T 1 := 1
(n−1)(M−1) . In the linear closeness model the fol-

lowing holds:

(1) For c̄ < T 1, the unique stable network is the complete network.
(2) T 1≤ c̄≤ T 2, a star shaped graph is stable, but not necessarily unique.

Proof. Remember that T1 is the shift in closeness when distances shift by 1.
(1) The minimal increase in benefit that a new link can lead to for both its owners

is T1; because a new link reduces at least the distance to the other player from 2 to 1.
So, if costs are strictly lower than this, it follows immediately that nobody wants to
cut a link in any graph (stability of complete graph) and any two players, who are
not directly linked, will add a link (uniqueness).

(2) Shown in proof of Proposition 3 ��

12 As a consequence, the linear closeness model differs from Freeman-closeness (with linear eval-
uation), but it is equivalent to Freeman-Closeness with a certain concave benefit function.
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Costs below T1 are considered as very small; costs above T2 are considered as
very high. However, T2 is not necessarily a threshold for uniqueness (of the empty
graph): There is a third transition point (which can be bigger than T2).

Let T3 be the maximal marginal benefit that a non-critical link can mean to both
its owners. We claim that T3 = n−1

4(M−1) .13 T 3 occurs in the line graph, where the
pendants form a link, respectively in a circle graph as the marginal benefit of cutting
a link.

Proposition 7. In the linear closeness model the following holds: (1) For c̄ > T 3
every stable graph is minimal or empty. (2) If T 3≥ T2,14 then for c̄ > T 3 the unique
stable graph is the empty network.

Proof. (1) If a non-empty network is not minimal, then there must be at least one
non-critical link. By the definition of T3, networks with such links cannot be stable
in this cost range. (2) The empty graph is stable because c̄≥ T 2. For uniqueness note
that any non-empty graph must contain either loose ends or circles. By Proposition 5
we can exclude all graphs with loose ends for c̄ > T2. By (1) we can exclude all
graphs with circles for c̄ > T3. ��

The transition points organize the equilibria in the parameter space. For very
small costs and for very high costs, there are only trivial stable networks. In the
medium cost range we can find a multitude of stable networks. Figure 2 shows
one example of a stable network in the linear closeness model for n=14, M=n and
medium costs.
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Fig. 2 Example of a stable network (the size and the position of a node indicates its closeness)

13 The derivation of the value for T 3 can be requested by the author.
14 Mostly we will assume that M is such that T3 ≥ T 2 holds. We treat the exception of T3 ≤ T2
in the next subsection as Proposition 8.
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4.2 Comparison to Connections Model

In the famous example of the (symmetric) connections model, basically the follow-
ing benefit is used: Connectionsi(g) = ∑ j∈N\i δ di j(g), where δ ∈ (0,1).15 So every
reachable agent is of value, but this diminishes with distance. Like in the closeness
model agents gain from short paths to other nodes. But there is also a difference: In
the connections model agents benefit from having many nodes close to them; while
in the closeness model agents benefit from having a small average distance.

While the motivation of the two models is similar, the results turn out to be almost
identical.

Observe first that Propositions 5 and 6 correspond directly to the results of the
connections model, where T 1=̂δ − δ 2 and T 2=̂δ .

For n not too big, a computer can enumerate all networks and check for stabil-
ity.16 We did this for n = 8 with the connections model (taking δ = 0.5 and δ = 0.8),
and for the closeness model once with the convex benefit function according to
Freeman and once taking the linear closeness model (with M = n).

For n = 8 there are 12,346 different isomorphic graphs. In the linear closeness
model only 45 of them are stable for some parameter range (greater than 0).17 As de-
picted in Table 1, those 45 networks are not identical to the 63 stable networks with
convex benefit function (Freeman), but overlap to some extent. The stable networks
of the linear closeness model and the connections model overlap more heavily.

All of the above models are driven by similar linking behavior, which we call
“closeness-type” incentives: there is high incentive to link to agents who are at high
distance (or in another component) and there is low incentive to keep links that do
not shorten some paths significantly. Interestingly, the differences within these mod-
els stem from specification details – be it increasing (instead of constant) marginal
returns or level of decay – rather than from the choice of the model (connections

Table 1 Stable networks in the linear closeness model and related models for n=8

Number of stable networks
(for some cost range)

Total Also stable in linear
closeness model

Freeman closeness 63 29

Connections δ = 0.5 29 26

Connections δ = 0.8 45 45

15 By convention, here M = ∞ (see [12]).
16 I thank Vincent Buskens for programming the routines to find all the stable networks for the
various centrality measures.
17 That is: we did not count the networks which are “stable” for only one point in the parameter
space, e.g. the networks which are only stable if c̄ = T 1.
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vs. closeness). In this sense the connections model turns out to be “robust” and
we conclude that the linear closeness model incorporates the same behavior as the
connections model with some decay.

4.3 Trees

A very special case of the connections model occurs when the decay is very small
or zero. Then distances become irrelevant and benefits only depend on the size of
an agent’s component. In this context the stable networks are trees, as non-critical
links are worthless.

It turns out that the closeness model can also replicate this feature of the connec-
tions model by setting M sufficiently large18:

Proposition 8. In the linear closeness model for marginal costs in the range T3 <
c̄ < T 2 the following holds:

(1) All stable networks are trees.
(2) All trees are stable.

Proof. (1) Trees are characterized as minimal graphs that are connected. For c̄ < T 2
all stable graphs are connected, as shown in Proposition 5(1). For c̄ > T 3 all stable
graphs are minimal as shown in Proposition 7(1).

(2) A graph is stable, if (a) nobody cuts a link and (b) no two players add a link.
(a) As a tree is minimal, cutting a link leaves two components (unconnected groups
of players). The more agents there are in the other component, the higher the loss of
benefits. The highest incentive to cut is always given by the neighbor of a pendant;
he loses closeness of 1

n−1 = T2. By assumption, marginal costs are lower than this
(minimal marginal benefit), therefore no agent in a tree will cut a link. (b) Adding
a link to a tree is an addition of a non-critical link (it is a property of trees to be
maximally acyclic graphs). For c̄ > T3 this cannot be favorable for both (by the
definition of T3). ��
Remark 3. Note that many trees are also stable, when costs are below T3 (see [4]).

This section showed that in the linear closeness model multiple thresholds (for
stable networks) coincide. Given this feature, we can replicate the connections
model with or without decay.

5 Concluding Remarks

We introduced a network formation model based on incentives to optimize closeness
centrality. We analyzed how the set of stable networks depends on the curvature of
the benefit function and compared the results to the connections model. It turns out

18 Letting M > 1
4 (n−1)2 +1 assures that T2 > T3.
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that the linear closeness model represents the same kind of behavior as the connec-
tions model, because each result is translatable from one model into the other and
the sets of stable networks coincide for some parameter settings.

By grouping these “closeness-type” models, we have made a first step in orga-
nizing network formation models by the type of incentives. Accordingly, Buechel
and Buskens [4] investigate the emerging networks in this setting and compare
the results to incentives of a different type. Further research should clarify which
structural patterns of networks emerge in which context and discuss the welfare
implications.

The main limitations of our model – as in most models of strategic network
formation – are the strong assumptions on behavior: Our agents are endowed with
complete information and high rationality.
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Abstract Schelling [19–22] considered a simple model with individual agents who
only care about the types of people living in their own local neighborhood. The
spatial structure was represented by a one- or two-dimensional lattice. Schelling
showed that an integrated society will generally unravel into a rather segregated one
even though no individual agent strictly prefers this. We make some steps to gener-
alize the spatial proximity model to a proximity model of segregation. That is, we
examine models with individual agents who interact “locally” in a range of network
structures with topological properties that are different from those of regular lattices.
Assuming mild preferences about with whom they interact, we study best-response
dynamics in random and regular non-directed graphs as well as in small-world and
scale-free networks. Our main result is that the system attains levels of segregation
that are in line with those reached in the lattice-based spatial proximity model. That
is, Schelling’s original results seem to be robust to the structural properties of the
network. In other words, mild proximity preferences coupled with adjustment dy-
namics can explain segregation not just in regular spatial networks but also in more
general social networks.
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1 Introduction

Segregation has been widely recognized as a critical issue, from both a socio-
political and a public-economic perspective, in many Western countries. In the USA,
segregation has dominated the political debate for some time in the second half of
the last century. More recently, segregation issues are increasingly becoming one of
the main points in the political agenda of the majority of European countries, and
this trend is likely to be reinforced by the geo-political turmoils due to the events
following 9/11 and the ongoing enlargement process of the EU.

The main problem faced by countries trying to reduce segregation is that we still
do not know how to attain this goal. Indeed, the plethora of integration policies that
have been implemented in the last decades turned out to be almost completely inef-
fective. In particular, all policies aimed at changing individual preferences towards
multiculturalism (e.g., by promoting people openness and tolerance with respect to
diversity) did not substantially improve integration [3]. Therefore, gaining a better
knowledge of the forces underlying the dynamics leading to segregated societies
seems crucial today as it was in the second half of the 20th century.

Exactly in those years, Schelling [19–22] studied a simple model of segrega-
tion with individual agents who only care about the types of people living in their
own local neighborhood. The spatial structure was represented by a one- or two-
dimensional lattice. Schelling showed that an integrated society will generally un-
ravel into a rather segregated one even though no individual agent strictly prefers
this. Rather, segregation seemed due to the spontaneous dynamics of the economic
forces, with all individuals following their incentives to move in the most attractive
locations. The preferences considered in the spatial proximity model are said to be
mild, as everybody would be happy in a perfectly integrated society.

More recently, Pancs and Vriend [17] examined the robustness of Schelling’s
spatial proximity model. They showed that the model can be further simplified (ren-
dering the individual preferences even more salient as an explanatory variable of
segregation), and that these proximity preferences may be even more extreme in
favor of integration. This focus on mild individual preferences or preferences that
even favor integration is not to say that institutional constraints or racism may not
hinder integration. But what the model shows is that even without such obstacles
one should perhaps expect segregation. It seems that any integration policy must be
based on a good understanding of these spontaneous dynamics.

Both original Schelling’s model and Pancs and Vriend’s robustness analyses ex-
plore segregation dynamics on regular (one- or two-dimensional) lattices. In other
words, they both study the emergence of segregation in a geographical space. In-
deed, lattices are widely employed in local-interaction models because they can be
considered as a first approximation of geographical space [8]. The idea that peo-
ple care about their spatial proximity can be justified by the fact that this is where
people mow their lawn, where their children play outside, where they do their shop-
ping, and where they park their car. The social environment is, however, not limited
to this spatial proximity. People also interact through networks of friends, relatives,
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and colleagues, and through virtual communities on the internet. And they are likely
to have preferences with whom they do this, just as they have preferences about their
spatial proximity.

This suggests that segregation need not necessarily occur at the spatial (neighbor-
hood) level: one might conceive people who are socially segregated despite being
spatially integrated. This appeared to be the case with some of the recent terror
suspects in the Netherlands and the UK. Therefore, a better understanding of the
phenomenon of segregation in more general network structures seems desirable.

In this paper, we generalize Schelling’s spatial proximity model to a proximity
model of segregation where individual agents interact “locally” in a range of so-
cial network structures with topological properties that are different from those of
regular lattices. Among all network structures alternative to regular lattices, we ex-
plore in particular small-world networks, which have been found to be a good proxy
of real-world social interaction structures [2]. We stick to standard assumptions as
far as types and preferences are concerned, and we study the ensuing best-response
dynamics in two setups. In the first one (global-move setup) agents that are not sat-
isfied with their current state can choose uniformly at random any empty location in
the whole network (i.e., move arbitrarily far away in the social space). In the second
setup (local-move), they are bound to choose one of the available locations in their
social neighborhood (if any).

The rest of the paper is organized as follows. Section 2 discusses in more detail
the classes of networks that we consider in our analysis. In Sects. 3 and 4 we present
the model in its global- and local-move variants, and we discuss its implementation.
Section 5 introduces the index that we employ to measure segregation in social
networks. Simulation results are in Sect. 6, which also contains a sensitivity analysis
of the parameter space. Finally, Sect. 7 concludes.

2 Social Networks and Small Worlds

The last fifteen years have witnessed an incredible outburst of empirical studies on
natural, social and economic networks [1, 16, 23, 24]. More specifically, the bulk of
contributions has focused on the structural and topological properties of empirically-
observable networks such as the Internet and the WWW, airline connections, scien-
tific collaborations and citations, trade and labor-market contacts, friendship and
other social relationships, business relations and R&D partnerships, cellular, eco-
logical and neural networks.

The main message of this vast literature is that most real-world networks belong
to a particular class of structures that display neither the intrinsic spatial regularity
of lattices, nor the disorder of random graphs [i.e., networks where any two agents
are neighbors, independently of all the others, with some given probability, see 5].
To see why, let us begin with some basic definitions.

It is well-known that the simplest mathematical description of a network can be
given in terms of an undirected graph G = (n,A), where n is the number of nodes
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(individuals) and A is a n×n symmetric matrix whose generic element ai j is equal
to 1 if nodes i and j are linked by an edge (i.e., they are neighbors, either in a
geographical or a social space), and 0 otherwise. Different networks can be taxono-
mized according to their structural and topological properties [18, 23, 24]. The most
salient characteristics of a network can be summarized by the distributions of three
statistics: (1) degree of a node; (2) clustering of a node; (3) shortest-path length
between any two nodes. The degree of a node is simply the number of neighbors
it has. Lattices are regular graphs because all nodes have the same degree. In ran-
dom graphs node degrees are heterogeneous and symmetrically distributed around
the average degree, which is proportional to the probability that any two nodes are
neighbors. The clustering of a node is instead the likelihood that any two neighbors
of that node are themselves neighbors. For each node i, this can be easily computed
by counting the number of triangles with i as one vertex (and dividing this number
by the total number of triangles that i could have formed given its degree). Obvi-
ously, lattices are in general much more clustered than random graphs, as their nodes
are typically distributed in tightly connected clusters where any two neighbors are
also neighbors by construction.1 Finally, the shortest path length between any two
nodes (i, j) is defined as the minimum number of links that one has to traverse to
get from i to j. This measure has been popularized as the “degrees of separation,”
see Watts [26]. Again, lattices are extreme cases where this measure is generally
high, as any two nodes far away in the lattice can reach each other only by travelling
through all nodes that are in between. More precisely, the average distance between
any two edges increases as

√
N, much faster than in random graphs, where it only

increases as lnN.
Recent empirical studies [see 1, 16] have shown that real-world social networks

are neither regular lattices nor random graphs, but lie in between. Indeed, they be-
long to the class of “small worlds” [13, 15, 25]. This type of networks preserves
the high clustering level displayed by lattices, while exhibiting a smaller average
shortest-path length, which only increases as lnN as in random graphs. This means
that individuals embedded in real-world social networks tend to form tightly con-
nected local clusters (of friends, relatives, business partners, etc.) as happens in geo-
graphical space. However, these local clusters are also frequently connected among
them by shortcuts that allow any two agents who are arbitrarily far away in the so-
cial space to reach each other in a few steps [actually only six, on average, in many
cases; see 15, for a review].

Networks belonging to the small-world class strongly differ, however, as to the
shape of their degree distributions [2]. A first sub-class, which we will label as
“Watts-Strogatz” (WS) in what follows, exhibits a quasi-symmetric degree distrib-
ution, centered around the average d > 0 (and tails possibly decaying exponentially
fast as in the Gaussian distribution). To the second type of small-world networks
belong the so-called “scale-free” networks (henceforth SF), i.e., networks whose
degree distribution is right-skewed and decays with a power-law tail. Therefore, in
WS small-world networks most of the nodes have the same degree. On the contrary,

1 This may not be the case, however, for some particular choices of the metrics (e.g., the
Von-Neumann one) and a relatively small interaction radius (e.g., equal to one). More on that below.
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a b

Fig. 1 Rewiring procedure for WS small-world graphs. Panel (a): we start from a circle where
each node is connected with two neighbors. Panel (b): the graph after three nodes (in grey) have
successfully rewired one of their links. Dashed lines depict rewired links

Fig. 2 An example of a WS
graph obtained from M = 100
nodes originally lying on a
circle and interacting with
two neighbors only (r = 1).
Rewiring probability β = 0.2.
Node colors depend on degree
after rewiring. Black nodes:
d ≥ 3. Grey nodes: d = 2.
White nodes: d = 1

SF networks are characterized by a few nodes holding many partners (i.e., the hubs)
and many nodes holding a few partners.

WS and SF small-world networks also differ in their generating mechanism [6].
Think of a given graph G as the (long-run) equilibrium of some stochastic dynamic
model of node and edge dynamics. The most simple way to generate WS graphs
runs as follows [27]. Start with a regular lattice (e.g., a circle), where each node has
two neighbors – one on the left, one on the right, as in Fig. 1, panel (a). At each
t = 0, pick a node (say i) at random and rewire with probability β ∈ [0,1] one of
its two links (say the one with j) to another node in the graph (say h �= i) chosen at
random. Figure 1, panel (b) shows the graph after three successful rewirings (nodes
that have successfully rewired are shown in grey). If one repeats this procedure for a
large number of times (avoiding the case that more than one link connects the same
couple of nodes), the resulting graph is a small world, provided that β is sufficiently
small (typically between 0.01 and 0.3), see Fig. 2 for an example. Notice how a
small fraction of nodes (in black) hold more than two links, with some of their links
being to nodes located arbitrarily far from them on the circle, while the other nodes
(in grey or white) who kept only one or two links are usually linked to their direct
neighbors only. This mechanism allows one to span the space of a wide variety of
networks, from lattices (β = 0) to random graphs (β = 1).
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Fig. 3 An example of a
SF graph obtained applying
a preferential attachment
algorithm. The initial
population size is M0 = 16.
All initial nodes have de-
gree d = 4. Final population
size is M = 100. We only
plot a subset of all nodes for
simplicity. White nodes are
the “hubs”

SF networks can instead be generated as the limit of a growth process known
as “preferential attachment” [4]. According to this algorithm, one starts from an
initial graph G0 (e.g., a small lattice) and adds a new node to the graph in each
step. The newly added node makes new connections with existing nodes, where
the probability of connecting with any existing node is proportional to the current
degree of the latter. As this process goes on, better-connected nodes attract more and
more entrants (i.e., the rich get richer). The resulting (limit) graph can be shown to
be a small world with a power-law degree distribution. The underlying assumption
of this setup is that any node can hold at no cost any arbitrarily large number of
nodes (as network size increases). As Fig. 3 shows for an instance of a SF graph
obtained by applying the above procedure for n = 100, a few “hubs” (in white)
holding a large number of links coexist with many nodes (in black) connected with
a small number of other nodes, and possibly with the hubs.

To sum up: Recent empirical works have robustly highlighted that small-world
(WS and SF) networks ubiquitously emerge in many social contexts. Therefore,
small-world networks seem to be the most natural candidate to test the robustness of
Schelling’s spatial proximity model when agents are placed in more general types
of networks. In the following section we shall present an extension of the basic
Schelling’s model that explores this direction.

3 The Model

Consider a society composed of N agents who can locate themselves in one of the
M ≥ N ≥ 3 available locations. Each location can contain at most one agent. Loca-
tions can be connected or not. We model locations and connections through a graph
G composed of M nodes and a collection of non-directed edges linking any pair of
nodes. Edges are described by the (symmetric) M×M matrix W = {wkh}, where
wkk = 0 ∀k = 1, . . . ,M and wkh = whk = 1 if and only if there is an edge connect-
ing nodes k and h, and zero otherwise. We define the “neighborhood” Vk (or the
“interaction group”) of a node k as the set of nodes that node k is linked to

Vk = {h ∈ IM : wkh = whk = 1}, (1)

where IM = {1, . . . ,M}.
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We suppose that each node is empty (i.e., it does not contain an agent) with
probability θ ∈ (0,1), while it is occupied with probability 1− θ . Therefore, on
average, there are N = (1−θ )M agents in the society. Each agent can be one of two
types, say −1 and +1. Time is discrete, and time ticks are labeled by t = 0,1,2, . . . .

Agents have standard, binary, Schelling-type preferences: they are happy if and
only if the relative frequency of agents of their own type is greater or equal than
0.50 in their neighborhood. More formally, if node i is occupied by an agent of type
s ∈ {−1,+1} at time t

uit = uit(s) =

{
1, if xit(s)≥ 0.5,

0, otherwise,
(2)

where uit = uit(s) is the utility of agent i (of type s) at time t and xit(s) is the current
relative frequency of agents (i.e., filled nodes) of type s in Vi.2

The initial state of the system is characterized by: (1) an instance of the network
structure, i.e., a graph G0 = {IM,W0} (more on that below); (2) an allocation of
agents and types across the M available nodes. The initial allocation of agents and
types across the M nodes is drawn uniform randomly. Thus, at t = 0, each node
i ∈ IM will be either empty or occupied. If it is occupied, this will be either a −1 or
a+1 agent, each with probability 0.5. Thus, in the society there will be, on average,
N/2 agents of type−1 and N/2 agents of type +1.

The dynamics runs as follows. At each t > 0, an agent, say k, is drawn at random
(and independently) from IN = {1, . . . ,N}. As far as the behavior of the chosen agent
is concerned, we shall explore two models:

• Global-Move (GM) Model: Agent k computes the utility that he could earn at
each available (i.e., empty) node in the whole network G0 (including in the list
his current node).

• Local-Move (LM) Model: Agent k computes the utility that he could earn at each
available (i.e., empty) node in his neighborhood Vk only (including in the list his
current node).

Then, in both LM and GM models, agent k chooses the node that provides the
highest achievable utility level (i.e., either one of the empty nodes or his current
location). Ties are resolved by randomizing among all nodes providing the same
maximal utility level. Notice that we assume no inertia in the agents’ choices. That
is, agents’ current locations do not bias their choices (e.g., because of moving costs).
The GM model also assumes that agents can move to any empty node in the net-
work, i.e., there are no information or moving constraints or costs (see Sect. 7 for
a discussion). Hence, the LM model can be justified by the presence of either a
moving cost or some information costs preventing agents to observe anything that
is outside their current neighborhood.

2 In line with Pancs and Vriend [17], we assume that the utility associated to an empty neighbor-
hood is zero.
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4 Implementation

The initial network G0 is chosen at random to belong to the small-world class. How-
ever, to benchmark our analysis against Schelling’s one and Pancs and Vriend’s re-
sults, we also study the behavior of the model in the case where initial graphs are
two-dimensional lattices. More precisely, we experiment with Von-Neumann (VN)
and Moore (M) two-dimensional, boundary-less lattices (i.e., torii). It is well-known
that neighborhoods Vk in two-dimensional lattices are completely defined up to the
choice of a metric (specifying how to compute the distance between any two nodes)
and an interaction radius r. Let (xh,yh) the coordinates of node h in the lattice. In
the VN case the distance between nodes (k,k′) is given by

δV N(k,k′) = |xk− xk′ |+ |yk− yk′ |, (3)

while in the Moore case it is equal to

δM(k,k′) = max{|xk− xk′ |, |yk− yk′ |}. (4)

Therefore, if one defines

Vk(r) = {h = 1, . . . ,M : δ•(k,h)≤ r}, (5)

it is easy to see that in VN lattices all nodes have a degree dVN = 2r(r+1), while in
Moore lattices one has dM = 4r(r + 1), see Fig. 4 for an illustration.

Initial small-world networks are instead generated using the following proce-
dures:

• WS Graphs: We start from a two-dimensional boundary-less lattice with VN
neighborhoods for a certain r ≥ 1. Then, each edge (h,k) is independently
rewired to a randomly chosen node, say k′, outside Vh(r) with some probabil-
ity β ∈ (0,1). In case of rewiring, the edge (h,k) is deleted and replaced by the

2D-VN: r=1 2D-M: r=1 a b

Fig. 4 An example of neighborhood shapes with two-dimensional Von-Neumann (2D-VN) and
Moore (2D-M) lattices for r = 1
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new edge (h,k′). This yields a symmetric degree distribution, centered around
2r(r + 1). In the benchmark results presented below, we employ β = 0.2 and
then we study what happens when β is tuned in the unit interval.

• SF Graphs: We employ a standard “preferential attachment” procedure, starting
with M0 nodes linked through a 2D-VN lattice with r = 1 (and thus an initial
degree d = 4). One node at a time is added until a size M is reached. In any
step, the additional node is allowed to form 4 links. Each new link is formed by
choosing one of the existing nodes with a probability proportional to its current
degree.

The model contains a small number of free system- and network-specific para-
meters. System parameters are M (number of nodes) and θ (average percentage of
empty nodes). Network specific parameters characterize – given the class of net-
works to be implemented – the set of possible networks from which the one actually
in place will be drawn. VN and Moore lattices are characterized by their degree.
WS graphs are parameterized by β and the degree d of the underlying lattice (be-
fore rewiring). Finally, SF graphs depend on the initial population size M0. Simula-
tions reveal that average degree d and M0 are linked by the following (approximate)
relation:

d � 0.00003 ·M3
0−0.0062 ·M2

0 + 0.3485 ·M0 + 3.1916. (6)

Notice that d grows for M0 ≤ 39 and decreases for M0 ≥ 40. Hence, in both lattices
and small-world graphs, the only common network-specific parameter to be consid-
ered is the (average) node degree d. WS graphs can also be studied for different β
levels.

In the lattice-case, the initial graph is automatically defined once one specifies the
degree d. In small worlds, given a choice for the network class and for the network-
specific parameters of that class (e.g., d and β for a WS graph), each time we draw
G0 uniformly at random from the set of all possible graphs belonging to that class
and with the given network-specific parameters.

5 Measuring Segregation in Networks

A number of indices have been suggested in the literature to measure segregation
when the agents are located on generic networks [see, e.g., 7, 10–12, 14, and ref-
erences therein]. Here, we will employ Freeman’s segregation index (FSI) [11, 12].
The rationale underlying the computation of the FSI is that if a given agent-attribute
(in our case the type +1 or −1) does not matter for social relationships (i.e., for
the link structure as described by G0), then the links among the agents should be
distributed randomly with respect to that attribute. Therefore, suppose we observe a
given allocation of agent types across the M nodes, connected through the network
G0. Let us, then, split the agents in two groups according to their type and, for each
type, let us count the number of cross-group links (i.e., the number of links con-
necting any pair of agents of different types), as well the number of within-group
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links (i.e., the number of links connecting any pair of agents of the same type).
This gives us a 2× 2 contingency table whose generic entry lxy gives us the num-
ber of links between type-x and type-y agents in G0. Similarly, one can compute
the expected contingency table for a random allocation of agent types on G0. The
difference between the number of cross-group ties expected by chance and the num-
ber of observed ties (divided by expected ones) gives us the FSI. The index ranges
between −1 and 1, with the highest segregation level obtained when there are no
cross-group links in place.

We also check our results against a number of alternative segregation indices,
such as the “spectral segregation index” [7], those proposed in Fershtman [10]
and Freeman [12], and some of the indices originally developed in the lattice-case
[see 17], e.g., the average mix deviation index. As we discuss in Sect. 7, our main
results are not qualitatively altered if one considers these alternative segregation
measures. Therefore, in what follows we will mainly focus on FSI as our measure
of segregation in networks.

6 Results

In this section, we explore the behavior of our model for a society of M = 100
nodes. Our study will take the form of a Monte Carlo (MC) analysis. The proce-
dure is as follows. For each choice of network class and network-specific parame-
ters we generate a number of independent runs. For each run, where necessary, we
randomly select a specific instance of the network class, and we generate an ini-
tial allocation of agents and types across the network uniformly at random. We,
then, let the best-response dynamics run, and collect system statistics when either
FSI or the configuration of types across the M nodes have reached a steady-state.
This typically happens well before T = 50,000 time-steps with probability one. We
independently repeat this exercise 1,000 times, computing the Monte Carlo (MC)
average and standard deviation of FSI. Since across-run variability turns out to be
very small (across-run standard deviations are of an order of magnitude of 10−5)
and MC distributions appear to be symmetric, we report below MC averages of FSI
only.

The main questions we initially address are:

Q1 Are segregation levels in WS and SF small-world networks (as measured by
FSI) different from those attained in a society where individuals live in lattices?

Q2 Does the answer to Q1 differ when individuals behave according to a GM or a
LM model?

Let us begin with a rough comparison of segregation levels. Figures 5 and 6 show
average FSI levels for lattices and small-world graphs in both the GM and LM mod-
els. Although segregation seems to be slightly larger in lattices than in WS and SF
graphs, overall levels in both lattices and small worlds remain quite large accord-
ing to FSI (which, we recall, records values close to one only in extreme cases).



Segregation in Small-World Networks 121

Fig. 5 GM Model. Average
FSI levels in lattices, WS
and SF graphs for average
degrees d = 4,8. Parameters:
M = 100, θ = 0.3. Note:
d = 4: VN-lattice; d = 8:
M-lattice
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Fig. 6 LM Model. Average
FSI levels in lattices, WS
and SF graphs for average
degrees d = 4,8. Parameters:
M = 100, θ = 0.3. Note:
d = 4: VN-lattice; d = 8:
M-lattice
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Schelling’s results seem to be confirmed when one moves from spatial to social
segregation in the GM model.

This result was somewhat expected. When one leaves a lattice world to move in
the small-world realm, two important features change. First, the average path length
tends to decrease; second, and most important here, neighborhood sizes become
heterogeneous (less in WS graphs, more in SF ones). In the GM model agents can
freely move in any empty location of the network, no matter their neighborhood size.
Hence, it would have been surprising if segregation levels would have substantially
changed.

When one comes to the LM model, however, heterogeneity in neighborhood sizes
might have some impact on segregation levels. Our simulations instead show that
this is not the case, see Fig. 6. Segregation levels in WS and SF networks remain
comparable to those in lattices: Schelling’s results seem even more robust. Notice
also that segregation levels decrease when one moves from a GM to a LM model.
In fact, agents in a LM world tend to explore a smaller number of options and the
ensuing dynamics turn out to be more “sticky.” As a result, high levels of segregation
can be attained less easily by the system.
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The above results indicate that both Q1 and Q2 have a simple, common answer:
“Not very much.” If any, some overall decrease in segregation levels is observed
in SF networks.3 However, SFI differentials are not so large to draw statistically-
significant implications (more on that in Sect. 7).4

These findings are robust to a sensitivity analysis across system and network-
specific parameters [9]. However, inspection of Figs. 5 and 6 suggests that segrega-
tion levels do exhibit some variation with average degree, hinting to some parameter
dependence of segregation levels. We can then formulate the following additional
questions:

Q3 Do segregation levels in WS and SF small-world networks (as measured by FSI)
change with average degree and percentage of empty nodes (θ )?

Q4 Do segregation levels in WS networks change with the rewiring parameter (β )?

Let us begin with Q3. Figures 7 and 8 show how segregation levels change with
average degree and the percentage of empty nodes in WS and SF graphs for the

Fig. 7 GM Model. Average
FSI levels in WS graphs vs.
average degree for different
levels of θ and M = 100
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Fig. 8 GM Model. Average
FSI levels in SF graphs vs.
average degree for different
levels of θ and M = 100
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3 Segregation levels in WS graphs are smaller than in lattices in the GM model only.
4 Simulations also show that the average values of FSI found throughout our analysis are signifi-
cantly larger than average FSI values obtained in purely-random allocations of networks and types
(when best-response dynamics is not made at work), see Fagiolo et al. [9] for details.
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Fig. 9 LM Model. Average
FSI levels in WS graphs vs.
average degree for different
levels of θ and M = 100
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Fig. 10 LM Model. Average
FSI levels in SF graphs vs.
average degree for different
levels of θ and M = 100
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GM model. We see that FSI levels are decreasing with the average degree for any
value of θ . Very high segregation levels are attained by the system when the so-
ciety is poorly connected and there is a small percentage of empty nodes. As the
connectivity increases, segregation becomes somewhat less pronounced, but even in
very connected societies, segregation levels remain significantly high. Furthermore,
segregation tends to decrease in the GM model as the percentage of empty nodes
increases, as agents have more degrees of freedom to move around.

The above results substantially change in the LM model, see Figs. 9 and 10. Re-
call that, in the LM model, degree heterogeneity (which increases as one goes from
WS to SF graphs) does now play some role. While more connected WS societies
are less segregated, this is not so in SF networks, where segregation mildly increases
with average degree. As a result, topological properties of SF networks seem to have
an impact on segregating dynamics in our model. Despite more heterogeneity seems
to slightly decrease segregation levels given the same connectivity, switching from a
less degree-heterogeneous to a more degree-heterogenous society changes the way
in which connectivity affects segregation levels.

Finally, Figs. 11 and 12 show segregation levels attained in a WS network for
different values of the rewiring probability in both the GM and the LM model.
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Fig. 11 GM Model. Average
FSI levels in WS graphs
vs. rewiring probability for
different average degrees.
Parameters: θ = 0.3 and
M = 100
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Fig. 12 LM Model. Average
FSI levels in WS graphs
vs. rewiring probability for
different average degrees.
Parameters: θ = 0.3 and
M = 100
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It is easy to see that FSI levels are only mildly decreasing with β . In the SF case,
segregation levels are substantially stable. This implies that, as one interpolates be-
tween lattices (β = 0) and purely random graphs (β = 1), segregation levels remain
quite stable.

7 Concluding Remarks

In his seminal contributions, Schelling [19–22] studied a proximity dynamic model
of spatial segregation where individuals lived on one- or two-dimensional lattices.
He showed that a perfectly integrated society would evolve into a segregated one
even though no individual agent would have strictly preferred that outcome in his
local neighborhood.

In this paper we have argued that segregation might occur not only in the geo-
graphical space, but also in more general social networks. Empirical evidence in-
dicates that in the real-world such networks are neither lattices nor random graphs,
but rather belong to the class of small worlds. Building upon this evidence, we
have presented a dynamic model of segregation where individuals interact in small-
world social networks. The model sticks to Schelling’s original formulation as far
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as individual preferences are concerned and studies best-response dynamics as in
Pancs and Vriend [17]. We consider two specifications of the general model, one in
which agents can move arbitrarily far away in the social space from their current lo-
cation (global move model), the other wherein agents can only move in their current
social interaction group (local move model).

When one replaces lattices with small worlds, the degree distribution becomes
heterogeneous. This heterogeneity is relatively low in Watts-Strogatz (WS) small
worlds, while becomes more relevant in scale-free (SF) small worlds. Our main
result is that this increase in degree heterogeneity does not dramatically affect
Schelling’s findings: segregation levels remain comparable to those attained in a
lattice world in both a local- or global-move model. We also perform a sensitivity
analysis on the parameter space. Simulations show that in the global-move model
more connected societies are less segregated. However, when a local-move model is
considered, this result does not hold anymore: higher connectivity can imply either
smaller or larger segregation levels, depending on the heterogeneity of degrees. The
higher heterogeneity, the more likely is that strongly connected societies are also
more segregated.

The above results are robust to a series of extensions and modifications [see 9,
for details]. These include: (1) segregation measures alternative to the FSI [e.g., the
spectral segregation index proposed in 7]; (2) additional network structures such as
regular or random graphs; (3) average percentages of empty nodes (θ ) larger than
50%; (4) network size (M).

Furthermore, similar results are obtained if one introduces some “inertia” in
the picture. Suppose that an agent located in node i is drawn at random from
IN = {1, . . . ,N}. With inertia, this agent stays put if there is no vacant location
that he would strictly prefer to his current location. The idea of inertia is based
on the implicit modelling assumption of some small costs of moving (smaller than
the smallest possible difference in satisfaction between any two locations, but other-
wise arbitrarily small). Notice that under the inertia rule, satisfied agents will never
move.

Many interesting issues remain to be explored. First, agents in our model jump
from its current location to an available one without being affected by the topology
of the network. This implies that average path length has no effect whatsoever in the
dynamic process leading to segregation. Therefore, the current formulation of our
model does not fully exploit a fundamental difference existing between lattices and
small worlds, i.e., the fact that in small worlds average path length tends to decrease.
By incorporating into agents’ behavioral rules an appropriate algorithm governing
the path they follow to travel from their current node to the newly selected one, one
might attempt to explore the role played by average path length in the picture.

Finally, our results indicate that degree heterogeneity does affect segregation lev-
els. In particular, when one switches from WS to SF networks, segregation seems to
generally decrease and the way in which connectivity affects segregation substan-
tially changes. Therefore, a deeper understanding of the behavior of the model in
SF graphs seems desirable.
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Interdependent Preferences

Ahmad K. Naimzada and Fabio Tramontana

Abstract Consumer preferences can be influenced by the choices of other con-
sumers in many ways. For example, through imitative (or bandwagon) and escaping
(or snob) behaviors. Consumption choices are adopted with regard to a reference
group. In this paper we propose a model in which agents can be not only locally
connected to their reference group but, in some degree, also globally connected to
all agents. The result is a network structure in which consumers are the nodes, and
links are given by local and global interactions. In particular, links between agents
belonging to different social groups can only be given by the presence of global in-
teraction whereas local interaction creates a link between agents of the same class.
The first aim of the paper is the building of a general model. The second one is the
study, in a particular simplified case, of the dynamic behaviours of the model arising
with different weights given to the local or to the global interactions. The main result
of the paper is given by the determination of the conditions for the coexistence of
different types of attractors (fixed points, periodic cycles and chaotic attractors) and
by the numerical study of the global bifurcations that change the qualitative nature
of the attractors and the structure of the basins of attraction.

1 Introduction

There is a classical body of literature in the field of the effects of experience on
choices: see, e.g. [1–10]. In a well known paper Benhabib and Day [11] proposed
a rational choice model in a stationary environment (without price dynamics) with
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preferences depending endogenously on past experience that can lead to chaotic
behaviour. Instead, in [12] is developed a model of consumer choice with interde-
pendent preferences characterized by imitative behavior and sluggish transmission
of changes in the consumption of a group of individuals onto the preferences of
another individual. In the present article, in contrast with most of this literature,
we look at the consequences of the endogenous change of preferences by past con-
sumption activity also of other consumers. We extend the investigation of Benhabib
and Day in two main directions: (1) we build a model in a discrete-time framework
with individual preferences depending on past consumption behaviour of other in-
dividuals to whom the agent is related in one way or another, constructing demand
schedules with the presence of imitative (or bandwagon) and escaping (or snob) ef-
fects; (2) we permit the local and global interaction of heterogeneous agents from
the point of view of preferences. In our analysis we look at role played by the pres-
ence of heterogeneous agents and by the nature of interaction among them. The
main result is the rich variety of dynamic behaviours (in/stability, bifurcations, com-
plex dynamics) offered by the model when the degree of heterogeneity is relatively
high and the degree of local interaction is not too high with respect to the global
one. Even when all agents are of the bandwagon type we find multiple equilibria
with low and high levels of consumption. The paper is organized as follows. In the
second section we develop the model. In the third section we show and clarify the
structure of interaction. In the fourth section we give some results, through numer-
ical simulations, about the existence of steady states and the main bifurcations of
the dynamic system. In the fifth section we complete the numerical analysis of the
model investigating its global properties. Finally, the main results are summarized
in the concluding section.

2 The General Model

Let us consider a market of two goods, named x and y. The preferences of the con-
sumers are represented by a Cobb–Douglas utility function:

U(x,y) = xα y1−α , (1)

where α ∈ [0,1] is the elasticity of the good x and measures the consumer’s prefer-
ence for it. In each period consumers are endowed with an income m, so the budget
constraint takes this form:

m = Pxx + Pyy, (2)

where Px and Py are the prices of the goods x and y respectively. The rational choice
(obtaining by solving the optimization problem x = argmaxU

(
x, m−Pxx

Py

)
) is given

by the following quantities of goods bought by the representative consumer:

x∗ =
αm
Px

and y∗ =
(1−α)m

Py
. (3)
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In the classical model, the parameter α is fixed, reflecting the absence of social
interaction. Instead, we assume that the preference of the consumer varies over time,
reflecting the social consumption experience. This means that each individual is
embedded in some type of neighbourhood (in terms of location, income, education,
etc.) and the consumption of the neighbours influences his own consumption. In
particular, we consider a single period lagged interdependence, i.e. the acquisition
of information about the behaviour of other agents requires time. We propose the
following general specification:

α i
t+1 =

N

∑
j=1

wi, j f i, j(x j
t ), (4)

where α i
t+1 is the parameter weight in the utility function of the agent i and f i, j(x j

t )
is the way the preference of the agent i at the time t +1 is influenced by the consump-
tion of the agent j in t. In general, each consumer i, can be influenced in different
ways by different neighbours, so f i, j(x j

t ) needs not be equal to f i,k(xk
t ) for j �= k.

Finally, wi, j represents the weight of the influence of the consumption of the agent
j on the choices of i. The neighbourhood of i is formed by the K ≤ N agents whose
influence on i is strictly positive. If wi, j = 0 then the agent j is not a neighbour of
i, so his/her consumption has no (direct) influence on i (maybe j could influence
another agent in the neighbourhood of i, so j can influence i in an indirect way).

Using (4) we can see the network structure formed by the consumers. We call two
consumers i and j connected, if one of them influences the other. The connection
could be only a one way connection (wi, j = 0 but wj,i �= 0 or the opposite) or a two
way connection (wi, j �= 0 and wj,i �= 0). When two consumers don’t influence each
other there are no links between them (this happens when wi, j = 0 and wj,i = 0).
Links do not only have a direction (who influences who) but also a thickness, given
by the weight of the influence when it is positive. The function (4) has these global
properties:

0≤ αmin ≤ f i, j(x j
t )≤ αmax ≤ 1 ∀i, j , (5)

which means that the preference parameter α has values inside the closed interval
[αmin,αmax] and, by definition, can not be higher then 1 or negative. If αmax is
strictly lower then 1, then the good y has to be bought in a minimum quantity (y is
indispensable); whereas if αmax is strictly positive then is the good x that has to be
bought in a minimum quantity (x is indispensable). According to the shape of f i, j ,
is possible to characterize the behaviour of different kinds of consumers depending
on the ways in which the consumption of an agent can influence the behaviour of
another agent. We consider two different consumers.

3 The Model with Bandwagon and Snob Consumers

We assume that, at each time step, economic agents consider, in taking their present
decisions, the past social consumption experience in one of the following two ways:
by imitating or by escaping. The first is the case in which people desire to adopt
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and imitate the behaviour of others, in other words to join the crowd. This is the so-
called bandwagon effect and means that the more an agent sees of a good, the more
he prefers it. In this case f must be increasing in the consumption of the neighbours
and tending asymptotically to αmax, which is the maximum value for α .

When people have the desire for distinction or to disassociate from common
masses, we speak of the snob effect, which means that the more an agent sees of a
good, the less he prefers it. In this case f must be decreasing in the consumption
of the neighbours and tending asymptotically to αmin. According to the definition,
the change of preferences for a bandwagon agent is such that ∂αt+1

∂x j
t

> 0 for each

neighbour j of the bandwagon agent, whereas ∂αt+1

∂x j
t

< 0 for each neighbour j of the

snob agent.
Until now we have characterized the nodes of our network by saying that they

could be of two different types: bandwagons and snobs. The next step consists in
putting links into the network structure – that is, we have to identify who does
influence the bandwagons’ choices in the way we have showed in this section – the
same for the snob group. We have also to give an intensity to each connection that
represents the thickness of the links.

4 Local and Global Interactions

We introduce an (exogenously given) parameter Ω that represents the share of snob
agents in the population (normalized to 1). If 0 < Ω < 1 snobs and bandwag-
ons coexist, and variations of Ω modulate the share of snob consumers within the
population.

We assume that there are two spaces for social interaction. First of all, we have a
strict local neighbourhood (in our case, the same class) and then we have a global
social space. If we consider only two kinds of consumers, we can analyze the evo-
lution of the consumption of the representative bandwagon agent and of the rep-
resentative snob agent. In this way, the local interaction for a bandwagon agent in
period t +1 is given by the influence of the consumption of the representative band-
wagon agent in period t (xb

t ), which is also his own consumption in the previous
period because. In our simple model, all the agents of the same kind always con-
sume the same quantities of goods as they have the same preferences. The same
happens for the representative snob agent. In order to characterize the global inter-
action we can specify, in each period, the consumption of the representative agent
of the whole population, given by the average consumption. Considering both these
kinds of interactions that influence the preferences, we have the following dynamic
system in the consumption of the representative snob agent xs and the representative
bandwagon agent xb:

T (xb,xs) :

⎧⎨
⎩

xb
t+1 = [γ f b(xb

t )+ (1− γ) f b(Ωxs
t +(1−Ω)xb

t )]
mb

P

xs
t+1 = [γ f s(xs

t )+ (1− γ) f s(Ωxs
t +(1−Ω)xb

t )]
ms

P

, (6)
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where γ ∈ [0,1] is the weight of local interaction, Ωxs
t + (1−Ω)xb

t is the average
consumption in period t and xb (xs) and mb (ms) are consumption and income of the
representative bandwagon (snob) agent respectively. The price of y is normalized
to 1, so we have Px = P and Py = 1. At each time period the consumption of y is
univocally given by the relation yt = m−Pxt .

What does the dynamical system (6) imply about the connections among con-
sumers? We can summarize the main properties of the network structure implicit in
(6) in the following way:

1. There exist only three kinds of links in terms of thickness. The first kind of
link connects bandwagon agents with the other bandwagons, the second kind
connects snobs consumers with the other snobs and the last kind connects agents
of different types.

2. Each agents is more influenced by consumers belonging to the same group.

To understand better points 1 and 2, we have to characterize the weight of the
connection between pairs of agents. Let us consider the bandwagon representative
agent. The local interaction has a weight equal to γ and it involves the 1−Ω band-
wagon agents, so the weight is γ/(1−Ω) for each one. The weight of the global
interaction is (1− γ) and is equally distributed among all the agents. To sum up,
the consumption of each bandwagon agent influences the preference of the repre-
sentative bandwagon agent with a weight given by γ/(1−Ω)+ (1− γ) because its
influence is both local and global.

The weight of the influence of each snob agent, instead, is simply (1− γ), so
the link between one bandwagon and another bandwagon is thicker then the one
connecting the bandwagon with the snob agent. In the same way, the link between
a snob agent and another snob agent has got a total weight equal to γ/Ω +(1− γ).

In Fig. 1 we have the case with two snobs and two bandwagons. We can see the
thicker link between agents belonging to the same group. When there is the same
number of snob and bandwagon agents in the population, we have only two kind of
links, but if the share differs, the link between two snobs will also differ from the
link between two bandwagons. In order to obtain some explicit results we have to
introduce a particular form of the interaction functions f .

Fig. 1 The network structure
connecting bandwagons and
snobs

B

B

S

S
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5 Results

The dynamical system (6) is formed by a pair of very complicated nonlinear equa-
tions and we are not able to characterize analytically the steady states of the system.
We can only observe the results given by a high number of simulations for some
particular specifications of the functions f b(x) and f s(x) that characterize the way
in which the preferences of the two social groups are influenced by the consumption
of the neighbours.

A fairly simple choice for the function that represents the preferences of the
bandwagons is given by

f b(x) = 1− b
b + xρb

, (7)

where b > 0 and ρb > 0 are parameters reflecting the intensity of the influence of
previous period behaviours on the preferences, i.e. “to what degree the agent is a
bandwagon consumer”. For the snobs we can use

f s(x) =
a

a + xρs
, (8)

where a > 0 and ρs > 0 reflect the intensity of the influence of previous period
behaviours on the preferences of a snob agent, i.e. “to what degree the agent is a
snob consumer”. If ρb and ρs are both high valued, then the degree of heterogeneity
is high too. The graphs of these functions are represented in Fig. 2.

We can see that the function associated with the bandwagon increases in neigh-
bours’ consumptions, whereas for the snobs the relation is the opposite. This confirm
that the two functions suitably characterize the evolution of the preferences of the
two groups. In particular, as f b ∈ [0,1[ and f s ∈]0,1], we consider the case in which
no good is indispensable.

We are interested in the effects of variations of the parameters that express the
share of different types of agents in the population (Ω ) and the weight of local
interaction (γ). Let us start with the role of the share of snobs in the population.

Fig. 2 Bandwagon effect and snob effect
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5.1 The Role of the Share Parameter Ω

The parameter Ω regulates the share of snobs in the population. It varies between 0
and 1. If Ω = 1 then the whole population is made up by snob agents. In this case
we have only one dynamic equation – the one characterizing the evolution of the
consumption of the representative snob agent:

xt+1 = s(xt) =
a

a + xtρ
m
P

, (9)

where the apex “s” has been omitted because there remain only one kind of agents
in the population.

The one-dimensional map (9) is decreasing, hence there exists only one fixed
point x∗, whose value is increasing in m, a and ρ and decreasing in P. The fixed
point can lose stability via flip bifurcation if the value of ρ is sufficiently high –
that is, if the agent is snob enough. In that case we obtain a 2-period cycle whose
points are characterized by extreme values of the consumption. In one period the
agent consumes a quantity close to 0 of the good whereas in the next period he/she
uses almost all income for that good (see Fig. 3). It is well known that this kind of
map can not have more than one fixed point and period attractors with periodicity
higher than two.

When there are only bandwagons in the population (Ω = 0), the model reduces
to this one-dimensional map:

xt+1 = b(xt) =
(

1− b
b + xtρ

)m
P

. (10)

In this case, if the agent is bandwagon enough – that is, when the parameter ρ is suf-
ficiently high – the map (10) has three fixed points. In fact, an increase in the value
of ρ gives an S-shape to b(xt), like in Fig. 4. Usually the lower fixed point (the one
corresponding to consumption close to 0) and the higher (the one with consumption
close to the maximum budget available) are locally stable, whereas the intermediate
fixed point is unstable. This means that when the model passes from a situation

Fig. 3 Only snob people.
The bifurcation diagram is
obtained using the parameters
a = 0.9, m = 2.87 and P = 1.4

m/p

r

x

0.5 15
0
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Fig. 4 Only bandwagon
people. The picture is
obtained using the parameters
b = 0.47, ρ = 11.24, m = 2.7
and P = 1.4

xt+1 = b (xt)

xt

2

1

1 2

m/p x

x0 = 0.1

x0 = 0.8

r

100.5
0

Fig. 5 Only bandwagon people. The bifurcation diagram is obtained using the parameters b = 0.47,
m = 2.7 and P = 1.4. Where the curve is smooth the consumption converges to the unique fixed
points. For the values of the parameter in which there are two curves (red and blue) there are two
locally stable fixed points: starting from an initial condition close to 0 the bifurcation diagram
is the higher (dotted) one whereas the lower (dashed) one corresponds to an initial condition close
to m/P

with only one stable fixed point to another with two stable fixed points, the initial
condition becomes crucial in order to know which kind of long run consumption
habit will characterize the behaviour of a population entirely formed by bandwagon
agents. In Fig. 5 we have used two different initial conditions. When the parameter
ρ is sufficiently high we obtain convergence to different fixed points. From these
extreme cases we can conclude that when the representative snob consumer is snob
enough is possible that the dynamic process does not converge to a fixed point but
to a periodic cycle (a 2-cycle). Instead, when the representative consumer is a suffi-
ciently emphasized bandwagon consumer, we can have situations of multistability.
In these cases we need to know the initial condition in order to characterize the final
outcome of the dynamic process. We can suppose that combining these two results
(that is, the degree of heterogeneity is high) makes it possible to obtain the coexis-
tence of more than one attractor, which are more complicated than fixed points. We
will come back to this point in the Sect. 5.3.
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5.2 The Role of Local and Global Interaction

For local interaction we intend the interaction among agents belonging to the same
group (snobs with snobs and bandwagons with bandwagons). Instead, the global
interaction expresses interaction with all the other agents, without considering to
which group they belong. When both the interactions are present, then agents are
more influenced by agents of the same social class. This could be the case in which
the two groups live in different places and agents have social interactions especially
with people like them. In the extreme case γ = 1, the groups have no interactions
at all with agents belonging the other group. In taking their consumption decisions
they only consider the past choices of the members of the same groups. The system
(6) is reduced in a couple of independent difference equations that express the con-
sumption of the representative snob agent and the representative bandwagon agent:

xs,t+1 = s(xs,t) (11)

xb,t+1 = b(xb,t) (12)

that are exactly the equations already analyzed in the previous subsection, with the
difference that in this case the two groups coexist even if they don’t influence each
other.

The extreme case γ = 0 represents the situation in which bandwagon and snob
are influenced in the same way by all the other consumers, because the interaction
is only global. The map (6) can be redesigned in this way:

T (xb,xs) :

{
xb

t+1 = b(Ωxs
t +(1−Ω)xb

t

xs
t+1 = s(Ωxs

t +(1−Ω)xb
t

. (13)

Increasing the value of γ , agents give an increasing importance to the consumers be-
longing to the same group, until the extreme case in which they are only influenced
by themselves and do not consider, in taking their decisions, the choice of the other
class of consumers (when γ = 1). It is hard to analyze bidimensional maps like (6)
and (13) because the equations have strong nonlinearities. In the next section we use
both analytical and numerical tools.

5.3 The General Case

When the parameters Ω and γ don’t assume extreme values we have the general
model in which snobs and bandwagons coexist and the interaction is both local and
global. In this case, the fixed points of the map (6) are given by the intersections of
these functions:
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T ∗ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xb = F(xs) =

{[
(1−γ)a

P
ms xs−γ

(
a

a+(xs)ρs

) −a

] 1
ρs

−Ωxs

}
1

1−Ω

xs = G(xb) =

{[
(1−γ)b

(1−γ)− P
mb xb+γ

(
1− b

b+(xb)ρb

) −b

] 1
ρb

− (1−Ω)xb

}
1
Ω

.

(14)
Before proceeding with the analysis of F(xs) and G(xb), we note that in the equa-
tions are present exponential expressions with real exponent. When the base is neg-
ative, F(xs) and G(xb) are not defined, there are no fixed points at all and the system
always diverges.

The system of equations (14) is too complicated to be completely analyzed ana-
lytically, but something can be said about some properties of the solutions. Consid-
ering F(xs), we can note that it is defined for xs > x̂s, such that:

0 < x̂s <
ms

P
(15)

and it has got these properties:

lim
xs→x̂s

F(xs) = +∞ and lim
xs→+∞

F(xs) =−∞ . (16)

To understand better the shape of F(xs), we need now to analyze the sign of the
derivative F ′(xs)1 (which is always negative), so we can draw approximately F(xs)
as you can see in Fig. 6.

Fig. 6 The shape of F(xs)

xb

x sx s

1 The expression of the derivative F ′(xs) is reported in the appendix.
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Now we need to analyze G(xb), which is defined in the interval [0, x̂b[ where:

(1− γ)
mb

P
< x̂b <

mb

P
. (17)

Moreover, we have that G(0) = 0 and the function owns a vertical asymptote:

lim
xb→x̂b

G(xsb) = +∞. (18)

The derivative G′(xb)2 is not easy to analyze because it may change sign more
than one time, depending on the values of the parameters, with the only rule that
G′(0) < 0. Numerically we found that if the bandwagon consumers are such that
ρb is not too low (we have seen that this condition implies that agents have an
accentuated imitative behaviour) and the share of snobs in the population Ω is not
too high (we know that for Ω = 0 three fixed points coexist), G(xb) assumes the
shape represented in Fig. 7a.

The shapes of F(xs) and G(xb) are such that they may intersect three times
(Fig. 7b). More complicated dynamics occur when bandwagon and snobs are al-
most balanced (Ω close to 0.5), as we can see in the bifurcation diagram shown
in Fig. 8. Looking at the bifurcation diagram in Fig. 8, obtained with initial condi-
tions close to the fixed point with low consumption for bandwagon people, we can
see that increasing the value of Ω produces a cascade of flip bifurcations leading
to chaos. When the value of Ω further increases, the process changes direction and
a backward flip (or period halving) bifurcation occurs. In fact we have seen that if
there are too many snobs in the population there is no more multistability. The most
complicated situation we can find is a cycle of period two. This proves that in the
general case (i.e. when both classes coexist and there are both global and local in-
teractions) is possible to obtain convergence to a cycle with periodicity higher than
two (Fig. 9a) – even to chaos (Fig. 9b).

x s x s

x b

a b

x b

x b

x b

Fig. 7 F(xs) and G(xb)

2 The expression of the derivative G′(xb) is reported in the appendix.
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0.52

0.52

0.66
a

b

xs

Ω

0.66
Ω

−0.1

4.5

xs

−0.1

4.5

Fig. 8 The bifurcation diagram (a) is obtained starting from the point xb = 0.2; xs = 0.8, varying
the value of Ω on the range 0.52–0.66 and keeping fixed this set of parameters: γ = 0.212, ms =
28,32, mb = 26.32, a = 2.628, b = 4.631, ρb = 5,604, ρ s = 14,824 and P = 7,656. For the diagram
(b) we used the initial condition xb = 3; xs = 0.8. On the white side there is no difference between
the two initial conditions

Figure 9a,b confirm that the fixed points are particularly different with respect to
the consumption of the bandwagon agent, whereas in the periodic points (or in the
points of a chaotic attractor) we have an higher variance in the consumption of the
snob agent.

The role played by the parameter that regulates the weight of the local interaction
(γ) is similar to the role played by Ω . In fact, if it assumes a high value, we only
observe convergence to a fixed point or to a 2-cycle, whereas for lower values of the
parameter we see high periodicity cycles and chaos (Fig. 10).

If we repeat such numeric analysis, we observe other combinations of exogenous
parameters, and if ρb and ρ s are high enough we obtain similar results. With low



Interdependent Preferences 139

3.5

3.50 3.50

A4A2

A
A1

A3

B

A

B

CC

x5 3.5 x5
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xb xb

Fig. 9 The initial condition used is xb = 0.2; xs = 0.8 and we keep fixed this set of parameters:
γ = 0.212, ms = 28,32, mb = 26.32, a = 2.628, b = 4.631, ρb = 5,604, ρ s = 14,824 and P = 7,656.
In (a) Ω = 0.537 and in (b) Ω = 0.5565

values of ρb and ρ s the situation becomes quite simple with only one globally stable
fixed point. Indeed, in this case the distinction between snobs and bandwagons is not
very marked.

6 Global Analysis

In situations of multistability, is important to characterize the set of initial conditions
which leads to every coexistent attractor. These sets are called basins of attraction
of the attractors. Let us consider a situation in which a stable fixed point coexists
with a chaotic (or periodic with a high period) attractor (Fig. 11).

According to what we said in the previous subsection, this is one of the most
interesting situations because the attractors are different in many ways. In the stable
fixed point C, the bandwagons’ consumption is higher than the snob’s one. The
points of the chaotic attractor (indicated by arrows), instead, are such that in some
periods the snobs will consume more than the bandwagons. The chaotic attractor
has also the property that the variance of the snobs’ consumption is larger than
the variance of the consumption of the other group. These differences among the
attractors emphasize the importance of a global analysis of the dynamical system.
In the situation in Fig. 11a the grey area represents the basin of attraction of the fixed
point whereas the white area is the basin of the chaotic attractor (whose points are in
the zone indicated by the arrows). Roughly speaking, we can see that starting from
a point close to the fixed point A the system converges to the chaotic attractor and if
the initial condition is located close to the fixed point C then the system converges
to C. The situation is not always so simple. In Fig. 11b we can see that the structure
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xs

a

γ

4.5

-0.1
0 0.76

b

γ
0 0.76

xs4.5

-0.1

Fig. 10 In (a) the initial condition is xb = 0.2; xs = 0.8, whereas in (b) we used xb = 3; xs = 0.8.
The bifurcation diagram is obtained varying the value of γ on the range 0–0.76 and keeping fixed
this set of parameters: Ω = 0.554, ms = 28.32, mb = 26.32, a = 2.628, b = 4.631, ρb = 5.604,
ρ s = 14.824 and P = 7,656. In the grey-shaded portion the diagrams are different, so there is
coexistence

of the basins of attraction is more complicated, and even starting close to A there
exists the possibility of convergence to the fixed point C.

It is not easy to characterize the parameters that easily permit a situation like
the one represented in Fig. 11b. We can only conclude that in this kind of nonlinear
model and in presence of multistability the situation could be quite complicated and
a global analysis becomes necessary for completely understanding it. We intend to
go into the question of the emergence of the disconnected basins of attraction from
a mathematical point of view in a separated paper.
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Fig. 11 Basins of attraction. The figures are obtained using this set of parameters: γ = 0.212,
ms = 28.32, mb = 26.32, a = 2.628, b = 4.631, ρb = 5.604, ρ s = 14.824, P = 7,656, Ω = 0.56 in
(a) and Ω = 0.554 in (b)

7 Conclusions

In this work, starting from the simple model of consumer choice and introducing
local and global interaction and heterogeneous agents, we have shown that endoge-
nous preferences determine the emergence of different phenomena. The first major
achievement is the coexistence of three steady states characterized by varying de-
grees of stability. In particular, there is an always unstable intermediate steady state
that separates the basins of attraction of different attractors. There are intermedi-
ate values for the two parameters that govern the degree of local/global interaction
and the snob/bandwagon share of agents that give rise to the occurrence of more
complicated dynamics, cycles and chaos (in presence of relatively high degree of
heterogeneity). The switch to these dynamics happens around the two extreme fixed
points through period-doubling bifurcations. Moreover, we have shown a further
complication involving the emergence of disconnected basins of attraction. In our
future research we are interested in introducing a third kind of consumers who are
not influenced by the others (Independent Consumers). We think that the presence of
this class of consumers could stabilize the consumption of bandwagons and snobs.

Appendix

Derivatives of F(xs) and G(xb):

Using software for symbolic calculus (Mathematica), we know that the derivatives
F ′(xs) and G′(xb) may be written as follows:
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F ′(xs) =− 1
1−Ω

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
P
ms + aρsγ(xs)−1+ρs

(a+(xs)ρs )2

][
a

(
−1 + 1−γ

Pxs
ms − aγ

a+(xs)ρs

)]−1+ 1
ρs

[
P

(
Pxs

ms − aγ
a+(xs)ρs

)2]
1

a(1−γ)

+ Ω

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(19)

G′(xb) =
1
Ω

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−1−

b(1− γ)
[

b

(
−1+ mb(b+(xb)ρs )(−1+γ)

(xb)ρs (−mb+Pxb)+b(Pxb+mb(−1+γ))

)] 1−ρb
ρb

[
P

(
−1+ Pxb

mb + bγ
b+(xb)ρb

)2][
− P

mb + bγρb(xb)−1+ρb

(b+(xb)ρb )2

]−1 +Ω

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(20)

from which we obtained the properties given in Sect. 5.3.
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Co-Evolutive Models for Firms Dynamics

Giulia Rotundo and Andrea Scozzari

Abstract This paper considers the Bak–Sneppen (B&S) Self-Organized Criticality
model originally developed for species co-evolution. We focus both on the original
application of the model on a lattice, and on scale-free networks. Stylized facts
on firms size distribution are also considered for the application of the model to
the analysis of firms size dynamics. Thus, the B&S dynamics under the uniform,
Normal, lognormal, Pareto, and Weibull distributions is studied. The original model
is also extended by introducing weights on links connecting species, and examining
the topology of the resulting Minimum Spanning Tree (MST) of the underlying
network. In a system of firms a MST may evidence the template of the strongest
interactions among firms. Conditions that lead to particular configurations of a MST
are investigated.

1 Introduction

In the framework of Econometrics, the availability of large electronic databases has
led to an increasing number of statistical analysis of raw data. Numerical studies
on the size of firms often are concerned with the detection of the probability dis-
tribution that best fits the data sets. It is remarkable that same probability distrib-
utions for the size of firms are validated on large data sets encompassing several
different industry sectors and long time extension. There is now wide empirical ev-
idence indicating that the distribution of the degrees of the nodes in many networks
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representing system of firms follows a power law. Other probability distributions are
validated only on constrained subsets of data, but they result invariant on quite long
time intervals [2, 3, 11, 17]. Although each single firm can experience fluctuations
in its size, at a first analysis the collective evolution of firms, traced through their
sizes, can be represented by a stationary process. Hence, the contribution of many
single units to observables at the macrolevel has opened the way to complex sys-
tems approaches mainly based on stochastic models in discrete time and space state.
The emergence of such common behavior from several data sets was explained by
the fact that most firms share the same kind of hierarchical managing structure and
internal organization [2, 3]. Furthermore, the collective behavior of groups of agents
has been often interpreted as a mechanism for social contacts, as the basis for opin-
ion switching relevant for financial applications [20, 29, 45], as well as in many
other fields [6, 31–33]. These studies point out the relevance of closeness of agents
in term of their similarity in the preferential direction for information spreading.
Moreover, spatial closeness plays the major role in neighbors definitions in crowd
behavior [43], thus validating models that mainly consider local dynamics driven by
short range interactions. In particular, percolation models are well suitable for the
modelling of such phenomena.

Bak and Sneppen (B&S) have introduced a simple model in the class of perco-
lation models, addressing to each unit (agent) the role of species in an evolutionary
context [10]. The B&S model is of intrinsic interest, since it is one of the simplest
models giving rise to Self-Organizing Criticality (SOC) behavior. Species co-evolve
to a stationary state and exhibit “intermittent dynamics”, that is, species undergo
long periods of little changes, called stasis, which are punctuated by sudden bursts
of activities called avalanches (which are correlated with extinction events). The
original formulation of the model on d-dimensional lattices with the usual bound-
ary conditions has been already extensively studied [10, 39]. However, as argued
by Watts and Strogatz [49], most real-life networks are neither perfectly ordered,
nor completely disordered, but fall under the category of “small-world” networks,
which interpolate smoothly between the two extremes [1, 49]. Such networks are
characterized by a high degree of local order, yet appear disordered on a large-
scale because of the presence of shortcuts in the networks. Because of their wide
applicability, there have recently been numerous papers characterizing the proper-
ties of such networks. Scale-free networks provide a good example of small-world
networks. Extension of the B&S co-evolutive dynamics on scale-free networks has
evidenced different stasis dynamics of the involved species depending on their num-
ber of first neighbors [34, 35]. In this paper, we consider the application of the B&S
model to firms size co-evolution by referring to probability distributions of the firms
size drawn from empirical literature. We study this dynamics on lattice and scale-
free networks.

The dynamics of the B&S model, at its stationary phase, seems to be well suitable
for firms size modelling, since it accomplishes the permanence of the same firm’s
size probability distribution on long time intervals. We study the B&S dynamics
by considering the same probability distributions that were already validated in the
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literature for the description of the firms size. In particular, the B&S dynamics seems
to be suitable for modelling the extinction process of the firms, whose sizes are well
fitted by a Weibull distribution.

In the original B&S model applied to lattice networks, links only serve to drive
the dynamics and to define the neighborhood of each species. A link between two
species represents a dependence between them, whose straightforward interpreta-
tion in natural evolution models represents a prey-predator relationship.

In this paper we introduce weights on links connecting the nodes, representing
species (e.g., firms), of the network. Weights are intended to give a measure of
the closeness among nodes, and their natural meaning range, for instance, from the
amount of commercial interchange among firms, to the closeness of management
teams, to the intensity of technological innovation, and so forth [3, 4, 42].

Furthermore, weights on links allow to devise subnetworks (or spanning subnet-
works) pointing out the strongest relationships between species (e.g., firms). Among
different classes of spanning subnetworks, we consider here the Spanning Trees,
and, in particular, we are interested in finding a Minimum weight Spanning Tree
(MST) of the underlying network. This is due to by both the existence of efficient
algorithms for finding a MST even on huge networks, and the ease of interpreting its
geometry from an economic viewpoint. The geometry of an MST is important in the
strong disordered limit [19], and it remains unaltered on random graphs even if the
distribution of disorder is made very broad [19]. The main reason can be addressed
to the ordering of links weights, and any probability distribution that does not al-
ter the order of the weights gives rise to the same MST configuration. Numerical
studies on the geometry of Minimum Spanning Trees, when random uncorrelated
weights are assigned to the links or edges of a network, have been provided for
square and cubic lattices [19] and for scale-free networks [28, 36, 47]. The latter
ones show universality of the spanning trees geometry highlighted in the scale-free
structure of the MST itself. In fact, on non-sparse scale-free networks, the MST
nodes degree distribution follows a power law with a degree exponent close to the
one of the original network, and independent from the weight distribution. The B&S
nodes co-evolution can be extended to links weights co-evolution. When applying
the B&S dynamics on networks representing system of firms, we obtain not only a
co-evolution of the firms size but also a evolution of the MSTs describing the evo-
lution of the strongest relationships between firms. Furthermore, we are also able to
investigate the conditions that give rise to different MST structures, with the aim to
provide support for policies decisions.

We are aware of the fact that the B&S model is a toy model, but it has the ad-
vantage to hold some mathematical tractability, it can serve as a first approximation
of collective behavior of market agents, and of the comprehension of properties and
limits of the simple interactions between agents. Therefore, it can constitute a start-
ing point for the development of more complex models.

The paper is organized as follows. The next section reviews the econometric liter-
ature about the distributions of the size of the firms. Section 3 shows the B&S model
and its extensions, and finally Sect. 4 reports some results on our MST approach.
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2 Empirical Studies on the Size of Firms

Several studies have been made on the detection of skew distributions of firms sizes
and on the validity of Gibrat’s law of proportionate effect for the growth rate in
order to explain the empirically observed distribution of the firms size. This law
states that the expected increment of a firm size in each period is proportional to the
current size of the firm, and that the growth rate of each firm is independent from its
size (Gibrat’s law in weak form). Therefore, under the hypothesis that the growth
rates are identically independent distributed, the distribution of the log of a firm’s
size tends to the lognormal distribution for T → ∞, i.e. on sufficiently large time
interval [16].

Mainstream econometric literature on firms size is aimed at showing the limits of
the Gibrat model, and new growth rates and firms size distributions are proposed for
fitting data. The studies about size and growth rate of firms differ for the hypothe-
ses tested and for the data sets that were used. In the literature, data from Census
and COMPUSTAT data bases are mainly analyzed. Census data give information
about small firms, that are crucial for understanding the impact of social dynamics
at the individual level. The volume of sales is used as a proxy for a firm size, and in
some studies other fundamental variables like the total assets, sales and the number
of employees are used as a complementary variables in order to check the validity
and robustness of the results. Literature focuses mostly on the Pareto distribution as
well as on the lognormal distribution as an alternative for the size of firms. The dis-
cussion is not purely an academic exercise. Right skewness implies that most firms
have a size just below the average, and that there are few huge firms and some others
very small. The detection of the proper distribution allows to explain differences in
the reaction of the market to external shocks, like natural catastrophes, or the impact
on some economy of exogenous economic factors. Computer aided simulations of
economic systems show that, in the case of lognormally distributed data, shocks are
absorbed, while in the case of Pareto distribution, correlations internal to the system
can amplify the external shocks leading to strong oscillations of the entire system
and to run the risk of a collapse [14]. These studies can help both in driving the best
policies for economy development and in detecting the maximum charge of bad
events (taxes, wars, natural catastrophes etc.) that can be supported without a com-
plete crash. The next three subsections review the literature presenting some other
studies on the distribution of the size of the firms supporting different probability
distributions [11].

2.1 Econometric Analysis Supporting the Gibrat’s Law

The distributions of the firms sizes in industrial countries are highly skewed, that
is, a small number of large firms coexists along with a large number of small
firms. The presence of right skewness supports both the Gibrat’s law and the Pareto
distribution.
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Some studies [24, 25] inquiry the independence between growth rate and size. In
[24] it is shown that the lognormal distribution hypothesis holds for UK firms larger
than eight employers. Later, the same authors report that the size of the distribution
of the UK companies is close to the lognormal, although the hypothesis of lognor-
mality can be statistically rejected [25]. The test of the suitability of other distrib-
utions shows that the Pareto distribution performs the fit worse than the lognormal
one at the upper tail. Other studies report that the fit of the lognormal distribution
to size data is quite close to the mean, but it performs less on the tails. Families
of functions, that include the lognormal one as a particular function, and that take
into account a power law decay of tails, have also been developed. The goodness of
statistical fit allows for some compromise. The weak form of Gibrat’s law has been
shown to be compatible with power law under further hypotheses. As an example,
the first model is the Simon’s model [16] where the Gibrat’s law is combined with
an entry process to obtain a Levy distribution for the firms size. Particular assump-
tions like the validity of the detailed balance, that states the time-reversal symmetry
for the growth rate, show that Gibrat’s law and Pareto–Zipf’s law hold for firms
larger than a fixed threshold [21]. This property is not valid in general [27], but
the behavior of the largest companies is important because it influences the entire
economy. Therefore, such analysis is useful for driving economic policies at the
Country level. On the other hand, districts constitute small worlds with a preva-
lence of small sized industries, so that policies for district developments will be
different from those based on the common behavior of big firms, and need a finer
analysis.

2.2 Econometric Analysis Supporting the Pareto Distribution

Histograms of companies sizes exhibit skewness. In some data set, skewness has
been shown to be robust over time [8]. It even lived through large-scale demographic
transitions in the work forces and widespread technological changes. Finer analysis
have shown that skewness grows during growing phases of the economy and de-
creases during recessions [22], thus being an indicator of such economic cycles. A
characteristic that emerges is that, although the position of individual firms in a size
distribution does depend on the definition of size, the shape of the distribution does
not. The main concern is to select the best fit to data histograms. Although in older
studies [24, 25] the lognormal hypothesis received great attention, in recent papers
the main results indicate power law for firm size and Laplace law for firms growth
rates [16]. The two results are strictly connected. In fact, it can be shown, under
proper hypotheses, that the logarithm of a Pareto random variable follows an ex-
ponential distribution, and that the difference of two exponential random variables
results in a Laplace distribution [40].

The power law behavior seems to be valid also for parameters that are common
in most developed Countries. The results reported in [15] can be interpreted as the
existence of a significant range of the world GDP distribution where countries share
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a common size-independent average growth rate. Further particular hypotheses like
entry and exit of companies from the market, provide results that contradict the
Gibrat’s law. As an example in [2, 3, 44] the exponential distribution for the growth
rate of firms has been found to hold for the 20 years 1974–1993 of COMPUSTAT
publicly-traded United States manufacturing firms, whilst the variance of the growth
rate should grow with the size of the firm. A model is also proposed which offers
a possible explanation for the power law relationship between firms size and the
variance of growth rate [46], showing a power law dependence of the variance of
the growth rate conditioned to the size of the firms. It has been shown that such kind
of dependence may rise from a hierarchical management organization provided with
a disobedience probability.

2.3 Econometric Analysis Supporting the Weibull Distribution

A comparison with the distribution of the extinction rate of species introduces im-
mediately the comparison between the B&S model for species co-evolution and the
studies presented in Di Guilmi et al. [17]. In the former case the species, corre-
sponding to nodes of a lattice in the B&S model, are the extinguished ones. The
changing in the nodes’ value in the B&S dynamics, indicates the extinction of a
specie (firm) that will be replaced by a new specie represented by that node. The
classification of firms by size is best fitted by a Weibull function. A best fit Weibull
parameters table, reported in [17], considers data about the extinction rate of firms
in eight OECD countries, and divides data into six classes by number of employees.
In our application, we perform simulations with the B&S model referring to each of
the six classes.

3 The Dynamic Model

In its original formulation, at each time t = 0, . . . ,T , the d-dimensional B&S dy-
namic model considers Ld species organized in a simple regular lattice with the
usual boundary conditions in dimension d. Each species, represented by each node
of the lattice, is fully described at time t by its fitness, f d

i (t), i = 1, . . . ,Ld , drawn at
time 0 from a uniform distribution in [0,1]. Therefore, we are considering a network
where to each node is assigned a value (fitness) while each link or edge of the net-
work simply represents the connection between two nodes. In financial applications
the values f d

i (t) ∈ [0,1) can be chosen for representing firm fitness [5, 7], as well as
prices or opinions [12, 41, 50]. At each time step, the B&S model selects the node
with the minimum fitness and changes its fitness and those of its 2d adjacent nodes
by randomly generating new values from a uniform distribution in [0,1).

One of the key problems related to the B&S evolution model is to compute the
limit distribution for the values of the nodes at a stationary regime, as the time of the
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system grows to infinity. Computer simulations show that for a time long enough,
under the B&S dynamics the maximum of minima of fitnesses are above a criti-
cal threshold fc, apart from some periods, called avalanches, where they fall below
fc [9, 10, 23, 26]. In the one-dimensional case (i.e., d = 1) the limit (marginal)
distribution is uniform on ( fc,1), with fc ∼ 0.667. These results were confirmed
theoretically through the mean field approximation [18, 39, 48]. Many other proper-
ties of the B&S model were obtained after a change of distributions: from uniform
to exponential.

3.1 The B&S-Exponential Model

The B&S-exponential model is defined to be the model obtained from the B&S-
uniform one by substituting the hypothesis f d

i (t)∼U [0,1), i = 1, . . . ,Ld , by f d
i (t)∼

D[0,∞), i = 1, . . . ,Ld , where D[0,∞) is the exponential distribution in [0,∞).
Intermediate results in the proof assessing the existence of the critical threshold

fc and the behavior of the joint distribution of f d
i (t), i = 1, . . . ,Ld , are provided in

[37, 38] using the exponential setup. The results were reported to the original B&S
model through the following lemma based on some remarks in [37, 38].

Lemma 1. The B&S-exponential model has the same dynamics properties of the
B&S-uniform one.

Proof. We follow the rules for random numbers generation. Let x be a random
number sampled by a random variable uniformly distributed in [0,1). The function
q : [0,1)→ [0,∞), such that q(x) := −ln(1− x) transforms x into a random num-
ber y = q(x) sampled by a random variable exponentially distributed in [0,∞). If at
times t = 0, . . . ,T , q(·) is applied to the f d

i (t), i = 1, . . . ,Ld , then it provides a one-
to-one mapping between the fitnesses of the B&S-uniform and the B&S-exponential
model. Moreover, the dynamics of the evolution of the fitnesses is still based on the
minimum value of the fitnesses. Actually, q(·) is a monotone function, therefore at
time t, the transformation applied on the f d

i (t), i = 1, . . . ,Ld , maintains the order-
ing of the values of the nodes, and the evolution rule selects the same node and its
neighbors both in the uniform and in the exponential setup. �

After Lemma 1, the function q(·) changes the values of the fitness of each node,
but it does not change the dynamics of the B&S-uniform model. Furthermore, the
results on the threshold in the B&S-exponential model can be easily suited to the
original B&S model by the following remark.

Remark 1. If the B&S-exponential model has threshold fc, then the B&S-uniform
model has threshold q( fc) = 1− e− fc.
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3.2 Extension of B&S Model to Other Probability Distributions

Let us consider the B&S model where the uniform distribution has been substituted
by using a random variable X , defined on an arbitrary interval I, with cumulative
probability distribution FX(x).

Theorem 1. Let fc be the threshold for the B&S-uniform model. Consider now the
B&S model where the uniform distribution has been replaced by a random variable
X with cumulative probability distribution FX(x). Then, the resulting B&S model
has threshold FX( fc).

Proof. Given a random variableU uniformly distributed over the interval (0,1), X =
F−1

X (U) (provided F is invertible). Hence, FX(X) is uniformly distributed in (0,1).
Since FX(X) is continuous, monotone and non decreasing it is order preserving.
Therefore, FX(X) maps the B&S model with any probability distribution to the B&S
model with uniform distribution and FX( fc) holds. �

Theorem 2. If the B&S model has limit distribution given by the product of uni-
form distributions above fc, then the B&S model where the uniform distribution is
replaced by a random variable X exponentially distributed has limit distribution
given by the product of exponential distributions above FX( fc).

Proof. The proof follows from Theorem 1 by considering the transformation FX(·)
on the fitnesses, where FX(·) is the cumulative distribution function of a random
variable X exponentially distributed. �

Firstly, in this paper we are interested in studying the B&S evolution model by
referring to the distributions mostly used for describing the size of the firms. There-
fore, here we consider the uniform, Normal, lognormal, Pareto, log-Pareto, Expo-
nential, and Weibull distributions. Let us consider the B&S model in which the
uniform distribution is substituted by one of the above distributions. The following
remarks hold.

Remark 2. If the B&S-uniform model has threshold fc, then the B&S model us-
ing Normal, lognormal, Pareto, log-Pareto, Exponential, Weibull, distributions, has
thresholds FX( fc), where FX(x) is the cumulative distribution function of a ran-
dom variable X following the Normal, lognormal, Pareto, log-Pareto, Exponential,
Weibull distribution, respectively.

Remark 3. If the B&S-uniform model has limit distribution of the fitnesses given
by the product of uniform distributions, then the B&S model using the lognormal,
Pareto, log-Pareto, Weibull distributions has limit distribution given by the product
of the lognormal, Pareto, log-Pareto, Weibull distribution, respectively.
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3.3 Extension of the B&S Model: The Case of Scale-Free Networks

The B&S model on lattices can be generalized by referring to arbitrary finite
connected networks, like, for instance, small world networks [30] and scale-free
(SF) networks. SF networks have been recognized to describe several real growing
networks, and, at the same time, have proved to show very peculiar properties for
diffusion properties. In a system of firms this serves for modelling the impact of ex-
ternal factors, as the spreading of innovation, the external modification of demand
and supply and so forth. In particular, the diffusion properties corresponding to the
fault tolerance property can provide the maximal amount of changes that a system
can bear before having a deep drastic change in the firms organization. It is then
natural to ask whether and to what extent the topology of these complex networks
would affect the results obtained in classical evolution models like the B&S one.
It results that the critical thresholds continue to exist only on a subset of SF net-
works [34].

4 Minimum Spanning Tree

We extend the B&S model by assigning weights to each link of the underlying
network (lattice or scale-free networks). In our application, each node-firm value
(fitness) represents the size of a firm, while a link provides the connection between
two firms. Depending on the application, a weight associated to a link or edge may
represent the quote of participation of a firm into another [42], the intensity of tech-
nological innovation [4], or the tightness of management structure [3]. In networks
or graphs applications, given a graph, a customary problem is to find out the relevant
relationships between nodes. This is often accomplished by finding certain spanning
subgraphs of the given graph. Different classes of subgraphs can be considered, each
providing different properties about the closeness of the nodes. In this paper we re-
fer to trees. A spanning subtree of a network gives the minimum way of connecting
all the nodes of the graph. Among all the possible spanning subtrees we will look
for the one (or the ones since there may be more that one) that minimizes the sum
of the weights. A Minimum weight Spanning Tree (MST) of a given network points
out the strongest relationships between the nodes. Searching for a spanning subtree
is also preferred compared with other spanning subgraphs since both the availabil-
ity of efficient algorithms for finding a spanning tree even on huge networks, and
the ease of interpreting its geometry. Thus, along with evaluating the nodes dynam-
ics with the classical B&S model, we are able to evaluate the changes in the rela-
tionships between firms over times by observing the changes in the topology of a
MST. Actually, MST topologies and particular kind of spanning subtrees may repre-
sent structures relevant for Economics, like, for instance, the raise of oligopolies. In
the next subsections we show the conditions that give rise to very different shapes
of a MST, leaving the most proper definition of weights to econometric work. In
order to evaluate this dynamics we considered different probability distributions
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for assigning weights to the nodes and edges of the underlying network, and
again we refer to the uniform, Normal, lognormal, Pareto, log-Pareto and Weibull
distributions.

4.1 Weights not Correlated with the Degrees of the Nodes

Numerical results on MST shapes when random edge weights uncorrelated with
nodes weights are considered, appear in Dobrin et al. [19] for square and cubic
lattices. For scale-free networks, in Szabo et al. [47] is shown that if the weights of
the links incident to a given node are independent from the node’s degree (i.e., the
degree of connectivity of the node) then the geometry of a MST depends only on the
topology of the network. Therefore, the probability distribution of the nodes values
(fitnesses) is not relevant for the MST topology, and the B&S dynamics changes
the MST, but not its topology. As an example, Fig. 1 reports on the result in the
case of a Weibull distribution on a two-dimensional square lattice. At time t, the
edge connecting nodes i and j has weight wi j = | f d

i (t)− f d
j (t) |. This is a first

raw measure of distance between i and j, and it is independent of the degree of
connectivity of both i and j. The degree distribution of the nodes is stable under the
B&S dynamics and for the different probability distributions considered.
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Fig. 1 Distribution of the degrees of the nodes in the MSTs on a lattice network and with a Weibull
probability distribution
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4.2 Weights Correlated with the Degrees of the Nodes

In order to observe other MST shapes, it is necessary to assign weights to the links
depending on the degrees of the nodes. We leave the definition and interpretation of
these weights, and their exact meaning problem-oriented, to empirical econometric
papers addressing real-world problems.

In real-world applications, weights should be correlated to both the fitnesses and
the degree of the nodes. Although the values of the fitnesses may change during the
dynamics, only the nodes degree may change the topology of the MST. Referring to
SF networks, due to their practical relevance, an immediate implication of the above
remark is that any rewiring procedure mapping the network into another network
having the same SF property will lead to the same MST topology. Therefore, it
is worth examining the effects of the correlation function between edge weights
and connectivity degree for the general class of SF networks, without adding any
rewiring dynamics.

In [36] it is shown that solely by changing the nature of the correlations be-
tween wights and network topology, the structure of a MST may change from SF
to exponential. In particular, they explore the MST behavior considering weights
wi j from node i to node j defined as being directly proportional to (kik j)ϑ , ϑ > 0,
max(ki,k j), min(ki,k j), 1/(kik j), 1/min(ki,k j), 1/max(ki,k j).

Their numerical results indicate that in the presence of correlations, two classes
of MSTs exist for scale-free networks, having either a power law or an exponential
degree distribution. Correlated weights choices wi j ∝ kik j, or wi j ∝ max(ki,k j) give
rise to MSTs with exponential degree distributions, while the other choices result in
MSTs with power law distributions.

The exponential nature of the first two weights choices is due to the tendency
of a MST algorithm to avoid links with large weights, so that, for this weight selec-
tion, a MST algorithm effectively shuns the highly connected nodes by using, when
possible, links connecting low degree nodes. The remaining weights choices give
rise to power law degree distribution of a MST [28, 36, 47].

Of course, intermediate degree of correlation between edge weights and nodes
degree may give rise to very different shapes of a MST.

4.3 Numerical Results

We examined the B&S dynamics under different probability distributions. We con-
sidered two-dimensional square lattices with the usual boundary conditions and
scale-free networks as underlying networks. Since the B&S dynamics shows a tran-
sient phase, we considered 109 iterations of the B&S dynamics before starting our
analysis, and statistics were drawn on the next 107 iterations. On a two-dimensional
square lattice we considered Ld = 10,000 evolving species. In order to provide sta-
tistics about the MST evolution, at each time t = 0, . . . ,T , we used the distance mea-
sure between nodes i and j defined by wi j = | f d

i (t)− f d
j (t) |. The more the values of
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the nodes are close to each other, the lower is the distance wi j . Mutations following
the B&S dynamics randomly change the f d

i (t), i = 1, . . . ,Ld , and therefore the edge
weights wi j , for each edge (i, j). The sampling of the fitnesses f d

i (t), i = 1, . . . ,Ld ,
was performed according to the uniform, Normal, lognormal, Pareto, log-Pareto and
Weibull distributions. Figure 1 shows the histogram representing the distribution of
the degrees of the nodes in the MSTs in the case of a Weibull distribution.

The analysis on the edge weights in a MST, presented in [19, 36], does not con-
sider any evolution w.r.t. the time. On the other hand, we provide a synthetical
analysis that is obtained by considering the behavior of the weights of the MSTs
obtained during the dynamics. We notice that the f d

i (t), i = 1, . . . ,Ld , and wi j are
not co-monotone, thus allowing the social interpretation of the possibility of dis-
agreement among agents as they change their opinion. In the stationary state we
have that all the f d

i (t) ∈ ( fc,1), i = 1, . . . ,Ld apart from avalanches. Thus, most of
the weights wi j belong to [0,1− fc), and exhibit avalanches as a consequence of
fitnesses avalanches. Following Dobrin et al. [19], we also provide the probability
that a link with a given weight lies on the MST (see Fig. 2).

We also note that for d = 2 and for lattice networks, a changing of the fitness
of a node only implies a change of the weights of its 2d = 4 adjacent nodes. This
corresponds to modify the weights of 16 edges at a time, thus resulting in a fast
updating procedure for the nodes and the edges values. The number of links changed
at each step of the dynamics is centered at 5 over the 16 links changed. The MST
constructing algorithm is based on the Kruskal procedure.
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Fig. 2 Probability that a link with a given weight lies on the MST in a lattice and with a log-Pareto
distribution
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Fig. 3 Power law property for the distribution of the degrees of the nodes in a MST by using the
Weibull distribution on scale-free networks

As introduced before, we also examined the results of the co-evolutive model
when applied on scale-free networks, that are supposed to be the most spread form
of contacts organizations. We used the free downloadable Barabasi–Albert software
for scale-free networks generation. We run simulations on 1,005 nodes, and 20,000
edges. Then we run the B&S dynamics again considering the uniform, Normal,
lognormal, Pareto, log-Pareto, and the Weibull distribution. As shown in Fig. 3, the
distribution of the degrees of the nodes of the MSTs follows a power law, and this
holds also for all the other probability distributions considered. All the programs
implementing the B&S dynamics as well as the Kruskal algorithms for finding the
MSTs are written in C code.

5 Conclusions

The paper goes beyond the B&S model features introducing weights and analyz-
ing the co-evolution of nodes and their relationship with the MST evolution of a
given underlying network. Actually, given a network representing the relationships
between firms (nodes of the networks), a Minimum weight Spanning Tree points
out the strongest relationships between the firms. In this paper, we are interested in
evaluating the evolution of an MST and, in particular, the evolution of the geometry
of an MST since different MST shapes may reveal structures relevant, for instance,
in an economic system, like the raise of oligopolies. We notice that this paper differs
from other papers in the literature (see e.g., [4]), where the values assigned to each
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node and edge of a network are constant. In fact, while their dynamics concerns ac-
tivation/disactivation of links, thus considering the so called rewiring problem, we
are interested in studying the evolution of a spanning subgraph of the network that
summarizes the relationships between the nodes of the network. Indeed, in social
models, a MST may represent the most strong social interactions between agents,
that can be transferred to management links when considering the evolution of firms.

MST dynamics and its evolution strictly depends on the underlying network as
well as on the sampling distribution of the values assigned to its nodes and edges.
Our toy model provides a dynamical co-evolutive model that considers functional
properties observed in empirical studies, and can constitute a starting point for the
construction of more realistic models. Finer econometric analysis evidenced fluctua-
tions of the parameters of probability distribution of the size of the firms, depending
on the selection of the time windows [13]. The models presented here can be easily
adapted to accomplish the arise and the change of the shape and scale parameters
of probability distribution during cycles of recession and expansion of economies.
The introduction of edge weights correlated to the degrees of nodes in place of
weights that are proportional to them, and the rewiring mechanism for changing
network topologies are the main tools for calibrating the models. We leave this for
future research as well as further investigations introducing asymmetry in the net-
work’s links.
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Betweenness Centrality: Extremal Values
and Structural Properties

R. Grassi, R. Scapellato, S. Stefani, and A. Torriero

Abstract In this paper we investigate the structural properties of betweenness cen-
trality and determine some cases in which betweenness reaches its extremal values.
Special attention is paid to Star(G), the set of vertices adjacent to all other vertices
in a graph and we prove several results about the betweenness of the elements of
this set. We introduce the new concept of total betweenness and relate it to group
betweenness. We prove a necessary and sufficient condition for the two measures to
coincide. Next we consider cutsets and cutvertices and we find a lower bound for
their betweenness; in particular for a cutvertex this lower bound is the cutting num-
ber. Finally we apply the previous results to trees, proving an alternative formula for
betweenness based on cutvertex properties.

1 Introduction

Centrality is a major issue in network theory. When referred to a vertex, cen-
trality helps to quantify the role that the vertex plays in the overall structure of
the network. There are several definitions of vertex centrality, each one related
to the network topological properties and applicable to specific contexts. Among
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the vertex centrality measures we may recall betweenness centrality, degree cen-
trality, eigencentrality and closeness centrality. For a thorough description of vertex
centrality see for example [1] and [8]. The degree and the eigenvector centrality got
much attention recently and have been deeply investigated (see [4] and [12]). For
a unifying approach to the vertex centrality measures from a topological point of
view see [3]. In this paper we investigate the betweenness centrality, a measure for
the intermediary role of a vertex in a graph; this gives an idea of the influence of a
vertex over the spread of information through the network and measures how often
a vertex is located on a shortest path between other vertices in the graph. Between-
ness centrality has a wide range of applications. For instance we recall that in the
Internet it provides a measure of the traffic load that a vertex is supposed to handle.
Another application regards social networks, as betweenness measures the influence
that an individual vertex has in the spread of information within the network, assum-
ing that the information, to be spread most rapidly, follows the shortest path. For a
discussion of betweenness in scale-free networks see [10].

What seems natural in investigating betweenness is to find under which con-
ditions betweenness attains its extremal values, i.e. in the least and most central
vertices. First we give a necessary and sufficient condition for a vertex to have zero
betweenness. Then we consider Star(G), the star set of a graph, i.e. the set of ver-
tices that are connected to all other vertices in the graph. The betweenness of the
vertices in Star (G) is maximum. We show that their betweenness decreases as long
as edges are added to the graph. The interpretation is very clear: a vertex adjacent to
all other vertices in a network plays an essential role in spreading information but, if
we increase the number of links, the vertices in Star(G) are less crucial since other
geodesics can be created, bypassing them. The other extreme, zero betweenness,
occurs when the graph is complete, i.e. Star(G) = V : no vertex is necessary to pass
information since all vertices are adjacent to each other.

A natural extension of the concept of vertex centrality is the centrality of a subset
of vertices. To recall an example, the centrality of a subset makes it possible to eval-
uate in a social context the importance of a department within an organization or of a
holding and its associates within a financial participation network. Subset centrality
for trees was considered in [11], focusing on connected subsets (i.e. subtrees). We
introduce the new concept of total betweenness and relate it to group betweenness,
recently introduced in [5]. Our total betweenness, defined as the sum of the between-
ness values of the vertices in the subset, is easy to compute and measures the whole
extent of the centrality of the subset, including in the count the geodesics between
vertices belonging to the subset. Group betweenness centrality, on the other hand,
gives the betweenness of the subset only referring to the paths leading to the exter-
nal vertices, i.e. the vertices not belonging to the subset. We prove a necessary and
sufficient condition for the two measures to coincide, thereby characterizing both
concepts in a formal way. We use here the new concept of pure set.

Further, we clarify the role of cutvertices and cutsets, i.e. sets of vertices whose
removal can disconnect the graph. We find lower bounds for the betweenness of
cutvertices based on the number of connected components that the removal of the
vertices generates and we show that their betweenness is increasing with the number
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of components; this generalizes a result of [7]. Again, the interpretation is easy:
cutvertices are as more important in spreading information through geodesics as
more components are generated by their removal. The more components the re-
moval generates, the more central in betweenness the vertex is. Finally, we consider
the particular case of cutvertices in trees and are able to provide an alternative for-
mula for betweenness.

The paper is structured as follows: in Sect. 2 we recall the fundamental definitions
and we define the pure subsets of a graph, characterizing the connected ones; in
Sect. 3 the extremal values of the vertex betweenness centrality are investigated.
Next we introduce the definition of total betweenness, analyze its properties (Sect. 4)
and related it to cutsets (Sect. 5). Conclusions are in Sect. 6.

2 Preliminaries

We recall here some graph-theoretical definitions and notations. Let G(V,E) be a
simple undirected graph, with n vertices and m edges.

For every v ∈ V , N(v) = {w ∈V : w∼ v} is the set of vertices adjacent to v. Its
cardinality is called the degree of v and denoted by d(v). W ⊆ V is an independent
set of a graph G if, for all pairs {u,v} of vertices in W , we have u �∈ N (v).

We will write H ⊆ G if H is a subgraph of a graph G; the induced subgraph of a
set W ⊆ V is the maximal subgraph of G with vertex set W ; we denote by 〈W 〉 the
induced subgraph of W .

Two subgraphs of G are said to be disjoint if they have no common vertices. If
H1,H2, . . . ,Hm are pairwise disjoint subgraphs of G such that G = H1∪·· ·∪Hm, we
say that G is their disjoint union. When m = 1 the term will be used to simply mean
that G = H1.

A star graph K1,n−1 is a graph with one vertex having degree n−1 and the other
n−1 having degree 1.

A path is a sequence of distinct adjacent vertices; let us denote by v0v1 . . .vk a
path passing through vertices v0,v1, . . . ,vk. The relation x ≡ y, if and only if there
is a path joining x and y, is an equivalence on the set V . Its equivalence classes
G1,G2, . . . ,Gm are called connected components of G. Clearly, G is a disjoint union
of G1,G2, . . . ,Gm. If m = 1, then G is said to be connected. In the sequel we always
suppose that G is connected.

A v−w geodesic is a shortest path between vertices w and v. Its length is called
the distance between v and w and denoted by d (v,w). The betweenness centrality of
a vertex v ∈V is

βG(v) = ∑
u,w

guw (v)
guw

, u,w �= v ,

where guw is the number of geodesics from u to w, and guw (v) is the number of
geodesics between u and w passing through v. In the definition of betweenness we
always suppose that the pairs u,w appear only once in the sum.
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Fig. 1 Pure and non-pure sets

A vertex v∈V is a cutvertex if the graph G�v is not connected; W ⊆V is a cutset
if the graph G �W obtained by removing the set of vertices W is not connected.

For other graph-theoretical definitions see for example [2].

Definition 1. A pure set W ⊆ V is a set such that, for each v ∈ V and w ∈W , no
geodesic between v and w meets W in vertices other than v and w.

In Fig. 1 the graph G contains the pure set W = {w1,w2}; every geodesic from
w1 to another vertex of V meets W only in w1 (the same for vertex w2). In the graph
H, the set W = {w1,w2} is not pure, because one of the two geodesics from u to w1

meets W in w2.
Clearly, all subsets of a pure set are pure. The subgraphs induced by pure subsets

are characterized as follows. Note that here by clique we mean any non-empty set
X of vertices such that 〈X〉 is complete, including singletons. Thus a pure set W
can be independent, which corresponds to the case where all involved cliques are
singletons.

Moreover, if a pure set W is connected, it must consist of a unique clique. A full
characterization of the latter case will be offered by Corollary 1.

Lemma 1. A pure set W of G is a disjoint union of cliques.

Proof. It suffices to show that any two distinct maximal cliques X and Y of W are
disjoint. By contradiction, assume that X ∩Y is non-empty; let z ∈ X ∩Y , x ∈ X �Y
and y ∈ Y � X . As x,y,z are elements of the pure set W and xzy is a path, x must be
adjacent to y. Therefore, every two elements of X ∪Y are adjacent and so X ∪Y is a
clique. As X and Y are distinct, X is a proper subset of X ∪Y . This contradicts the
hypothesis of maximality. ��
Theorem 1. Let G be a graph and W ⊆ V be pure. Let W1,W2, . . . ,Wm be the con-
nected components of 〈W 〉. Then for all v ∈ V , and w,w′ ∈Wi � v, i = 1, . . . ,m we
have d(v,w) = d(v,w′).

Proof. Note that, by Lemma 1, each Wi is a clique. Choose v ∈ V ,w,w′ ∈Wi � v,
i = 1, . . . ,m. If w = w′ there is nothing to prove. Otherwise, w and w′ are adjacent
as Wi is a clique. Assume, by contradiction, that d(v,w′) and d(v,w) are different,
say d(v,w′) < d(v,w). Let v = v0v1 . . .vm = w′ be a geodesic joining v and w′. The
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path v0v1 . . .vm w joins v and w and has length less or equal to d(v,w). Then it is
necessarily a geodesic and passes through w′. This contradicts the fact that W is
pure. ��
Corollary 1. Let G be a graph. A connected subset W of V is pure if and only if for
all v ∈V, and w,w′ ∈W � v we have d(v,w) = d(v,w′).

Proof. The “only if” part follows from Theorem 1. We assume now that the
condition holds and prove that W is pure. Let v ∈ V and w ∈W and consider a
geodesic joining v and w. Suppose, by contradiction, that it meets W in another ver-
tex, say w′; so it contains a geodesic from v to w′, hence it is longer than d(v,w′).
As d(v,w′) = d(v,w) in view of our assumption, this is a contradiction. This shows
that W is pure. ��

3 Extremal Values

In this section we investigate the extremal values that the betweenness of a vertex v
can take. It is known that, for a graph G and for each v ∈V :

0≤ βG (v)≤
(

n−1
2

)
. (1)

Clearly, if G is complete the minimum value is attained by all vertices of G. Like-
wise, all pendant vertices have betweenness zero. The minimum value is completely
characterized by the following proposition:

Proposition 1. Let v ∈ V. Then βG (v) = 0 if and only if 〈N (v)〉 is a complete sub-
graph of G.

Proof. Assume that 〈N (v)〉 is complete. Letting x,y be two vertices of G, different
from v, consider any path from x to y passing through v, say: x = x1 . . . xk−1xk =
vxk+1 . . . xm = y.

By the assumption on v, the vertices xk−1 and xk+1, both adjacent to v, are adja-
cent to each other. So we can remove the vertex v, and we obtain again a path from
x to y but it does not pass through v and its length is less than the previous one.
It follows that a path from x to y passing through v cannot be of minimum length.
Then βG (v) = 0.

On the other hand, if the neighborhood of v is not complete, it contains two
non-adjacent vertices x and y. Now x,v,y is a path joining x and y, whose length is
necessarily minimum and whose contribution to the betweenness value is positive.
Then βG (v) > 0. ��
Remark 1. This was essentially noticed in [6, Theorem 2], with a quite different
terminology.
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Let us now deal with the maximum value. Let G be of order n; then define the
following set:

Star (G) = {v ∈V : d (v) = n−1}. (2)

The elements of Star(G) are called star vertices.
Note that Star(G), along with all its subsets, is always pure. This is a straightfor-

ward consequence of Corollary 1.
In a graph all star vertices have the same maximum betweenness (see

[3, Theorem 3.2]); in particular for K1, n−1, Star (K1, n−1) = {v} , βK1,n−1 (v) =(
n−1

2

)
, and βK1,n−1 (w) = 0 ∀w ∈V � v.

The above results suggest that the betweenness of the vertices in Star (G) de-
creases as its cardinality increases. This is true, as we show in the following:

Theorem 2. Let G be a graph, and let H be a graph such that V (G) = V (H);
suppose that E (G) ⊆ E (H), i.e. G is a spanning subgraph of H; if Star(G) �= ∅

and E (G)⊂ E (H), then βG (v) > βH (v), v ∈ Star (G).

Proof. First observe that Star (G)⊆ Star (H): this is obvious if Star(G) = ∅; when
Star(G) �= ∅, let v ∈ Star(G); then the degree of v is n− 1 in the graph H, so
v ∈ Star (H) as well.

Suppose now that Star(G) �= ∅, then ∀v∈ Star (G), ∀w∈V (G), βG (v)≥ βG (w);
also Star(H) �= ∅ being G a spanning subgraph of H. The graph H is obtained from
G by adding one (or more) edges. Being v ∈ Star (G), the contribution of x,y in G
is equal to zero only if x∼ y. So, letting xy be the new edge, its contribution to the
betweenness of v, which in G is different from zero, vanishes in H, because x and y
are adjacent in H.

Finally, let x,y two vertices that contribute to βG (v); these vertices contribute to
βH (v); by adding new edges, it is possible that new geodesics from x to y appear, so
that βG (v) > βH (v). ��

In Fig. 2, G is a graph with n = 8; v1 ∈ Star (G) and βG (v1) = 3.087. G is a
spanning subgraph of H where d (v1) = d (v2) = n−1 and βH (v1) = 1.827.

v1 v1

v2

G H

v2

Fig. 2 The betweenness of v1 ∈ Star (G) decreases by adding edges to the node v2
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Remark 2. The previous result does not hold when v �∈ Star(G); in general, the be-
tweenness does not necessarily decrease as the number of edges increases. For a
graph G of order n > 3, let us consider for instance a pendant vertex v; v �∈ Star(G)
and βG (v) = 0, and by adding an edge to v its betweenness does not decrease, be-
cause βG (v)≥ 0.

4 Total Betweenness Centrality

In this section we analyze the betweenness of subsets of vertices of V . The underly-
ing idea is to study a natural extension of the concept of single-vertex betweenness
centrality to a set of vertices. Letting W ⊆ V , we define the betweenness centrality
of the set W (total betweenness centrality) as follows:

Definition 2. The total betweenness centrality of W is the sum of the betweenness
values of its vertices, i.e. βG (W ) = ∑w∈W βG (w).

The concept of group centrality was introduced in a sociological framework for
various centrality measures earlier in [5]; we recall here the definition of group
betweenness centrality. For all u,v∈V, let guv (W ) be the number of u−v geodesics
passing through at least one vertex of W .

Definition 3. The group betweenness centrality of W is

αG (W ) = ∑
u,v

guv (W )
guv

u,v ∈V �W (3)

where all pairs u,w appear only once in the sum.

Note that the word “group” is not used in the standard algebraic sense. The total
betweenness is easy to compute and measures the whole extent of the centrality of
the subset, including in the count the geodesics between vertices in the set. On the
other hand, the group betweenness gives the betweenness of subset only referring to
the paths leading to the external vertices, i.e. vertices not belonging to the subset.

The two concepts are related as follows:

Theorem 3. For all W ⊆V, we have αG (W )≤ βG (W ). Moreover, αG (W ) = βG (W )
if and only if W is pure.

Proof. Let u,v be vertices not in W . Every geodesic from u to v passing through W
contributes to the betweenness of all its vertices in W , then each term guv(W )

guv
appears

in βG (W ). Hence the sum of all βG (w), w ∈W, is larger or equal than αG (W ) and
this proves the first part of the statement.

Assume now that W is pure. Consider a pair u,v of vertices outside W . Each
geodesic u,v that meets W in a vertex w gives contribution 1 to the numerator of
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the corresponding summand in αG (W ), 1 to the numerator of βG (w) and 0 to all
the βG (w′) with w′ different than w. Overall, the contribution of u,v to αG (W ) and
βG (W ) is the same for each w. Hence αG (W ) = βG (W ).

Finally, assume that αG (W ) = βG (W ); if W is not pure, consider a w−v geodesic
with w ∈W that meets W in a vertex w′; it gives a positive contribution to βG (W ) ,
but not to αG (W ). Then αG (W ) < βG (W ), and this is a contradiction. Hence W is
pure. ��

From Theorem 3 we see that the two measures coincide when the concerned
subset is pure. In fact, in a pure set the contribution in the total betweenness of pairs
of vertices in the set is zero being the connected components of a pure set, cliques
(Lemma 1), hence with betweenness zero.

Proposition 2. Let G be a graph and let W be a pure set in G. Let U be the set of
all vertices of v ∈ V �W such that d(v,w) = 1 for some w ∈W. If 〈U〉 is a clique,
then the total betweenness of W is zero.

Proof. Let w ∈W . Consider a pair x,y of vertices of V that might give a posi-
tive contribution to β (w). Since W is pure, we can assume that neither x nor y
belongs to W . Let x = x1 . . .xhwyk . . .y1 = y be a path joining x and y and passing
through w. Since x �∈W , there exists i such that xi �∈W and xi+1 ∈W . As xi+1 and
w lie in the same connected component of W, from d (xi,xi+1) = 1 it follows that
d (xi,w) = 1 (Theorem 1). Hence xi ∈U. Likewise, letting j be such that yi �∈W and
y j+1 ∈W, we get y j ∈U. Since 〈U〉 is a clique, xi and y j are adjacent. Consequently,
x1 . . .xhwyk . . .y1 is a path joining x and y. This proves that the original path was not
a geodesic. Therefore β (w) = 0. ��
Corollary 2. Let G be a graph and let W be a pure set in G. If 〈V �W〉 is a clique
then the total betweenness of W is zero.

Proof. Let U be as in Proposition 2; U is a subset of V �W , hence a clique. Now
Proposition 2 applies. ��

5 Total Betweenness and Cutsets

Now we study the total betweenness of a cutset W ⊆ V , in order to obtain some
useful lower bounds.

In Fig. 3 some graphs with pure and non-pure cutsets are depicted.

Remark 3. Let W be a pure cutset of G and let A1,A2, . . . ,Ak be the connected com-
ponents of G�W . If x,y are in different connected components, all geodesics joining
x and y meet W in (only) one vertex; if x,y, both adjacent to w ∈W , are in the same
connected component but x �∼ y, then the path xwy is a geodesic.

Observe that if a vertex w lies in a cutset W,w is not necessarily a cutvertex; if
W = {w} , then w is a cutvertex, and in this case the set W is always a pure cutset.
The following result extends [7, Lemma 2]:
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w1 w1

w2 w2

w3

Non-pure cutset Pure cutset

w3

Fig. 3 Pure and non-pure cutsets

Theorem 4. Let W be a cutset of G and let A1,A2, . . . ,Ak be the connected compo-
nents of G �W, with ai = |V (Ai) |. Then

βG (W )≥∑
i< j

aia j . (4)

Equality holds if and only if W is a pure cutset, and ∀w ∈W and ∀i = 1, . . . ,k, the
vertices in Ai adjacent to w are pairwise adjacent.

Proof. Let x ∈ Ai, y ∈ A j with i �= j. Being W a cutset, all geodesics joining x and y
meet W in a vertex w, so the pair x,y gives to βG (w) a contribution at least equal to 1.
As x,y run over the above sets, the total amount of their contribution to βG (W ) is at
least aia j. Summing up over all pairs i, j, we have that βG (W ) is at least ∑i< j aia j,
then inequality (4) follows.

We prove the second part of the statement by contradiction; let us fix w and i
such that the neighborhood of w 〈Ai∪w〉 is not a complete graph; there are x and
y adjacent to w but not to each other. The pair x,y gives a positive contribution to
βG (w), since xwy is a geodesic. By the above counting argument, this contribution
to βG (W ) was not included in the sum in the right-hand side of (4), therefore, in-
equality (4) holds with sign >. Likewise, if ∀w ∈W and ∀i = 1, . . . ,k, the vertices
in Ai adjacent to w are pairwise adjacent, no further contributions to βG (W ) can
be found other than those already counted in the sum at the right-hand side of (4),
because W is a pure cutset. This completes the proof. ��

A particular case occurs when W = {v} and v is a cutvertex such that d (v) = k.
From Theorem 4, in a pure set, being zero the contribution in the total between-

ness of the pairs of vertices in the set, the total betweenness reaches its lower bound
and equals the cutting number.

Corollary 3. Let G be a graph, let v be a cutvertex of G and let A1, . . . ,Ak be the
connected components of G � v. If k = d(v) then βG (v) = ∑i< j aia j.

Proof. Being v a cutvertex, W = {v} is a pure cutset of G; since d (v) = k, in each
Ai ∪{v} the vertex v has degree 1, hence its neighborhood is a complete graph, so
the inequality (4) of Theorem 4 is satisfied as equality. ��
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Fig. 4 v1 is a cutvertex and
β (v1) > γ(v1)

v3
v1

v2

Fig. 5 v1 is a cutvertex and
β (v1) > γ(v1)

v1

Remark 4. Observe that in this case ∑i< j aia j is the cutting number γ (v) of the ver-
tex v, i.e. the number of pairs {u,w} such that u and w are in different connected
components of G� v (see [9]); from Corollary 3 we deduce that the cutting number
is a lower bound for the betweenness of v.

Remark 5. Every cutvertex such that d (v) = k is adjacent to a pendant vertex, or to
a cutvertex.

Example 1. Let us consider the graph G in Fig. 4; in this case W = {v1} and k = 3;
there is a pair of vertices (v2 and v3) belonging to the same connected component
of G �W , that contributes to the betweenness of v1; so βG (v1) = 19.488 > ∑i< j
aia j = 19.

Example 2. Let us consider the graph in Fig. 5; the vertex v1 is a cutvertex, k =
d (v1) = 2. In this case βG (v1) = 16 = ∑i< j aia j.

Theorem 5. Let G be a graph of order n, let v ∈ V be a cutvertex of G and let
A1,A2, . . . ,Ak be the connected components of G � v of cardinalities a1,a2, . . . ,ak,
respectively, where k = 2,3, . . . ,n−1. Let r be the remainder of the division of n−1
by k. If βG (v) = ∑i< j

i, j=1,...,k

aia j then:
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βG (v) ≤
(

k− r
2

)(
(n−1)− r

k

)2

+
(

r
2

)(
(n−1)− r

k
+ 1

)2

(5)

+r (k− r)
(n−1)− r

k

(
(n−1)− r

k
+ 1

)
,

where the equality holds if and only if all the cardinalities ai (i = 2, . . . ,k) differ by 1
at most. In particular, there are k−r (k > r) components of the same cardinality and
r components that differ by 1 at most.

Proof. Let ∑k
i=1 ai = n−1; observe that n−1 = kp+ r, 0≤ r < k. From the follow-

ing equality:

∑
i< j

i, j=1,...,k

aia j = ∑
i< j

i, j=1,...,k

[(
ai + a j

2

)2

−
(

ai−a j

2

)2
]

(6)

= ∑
i< j

i, j=1,...,k

(
ai + a j

2

)2

− ∑
i< j

i, j=1,...,k

(
ai−a j

2

)2

∑i< j
i, j=1,...,k

aia j attains its maximum value whenever ∑i< j
i, j=1,...,k

(
ai−a j

2

)2
attains its mini-

mum. We distinguish two cases:

1. The ai’s are all equal for every i = 1, . . . ,k. In this case a1 = a2 = · · ·= ak = p,

and n = kp + 1, so we obtain that p = n−1
k ; furthermore ∑i< j

i, j=1,...,k

(
ai−a j

2

)2
= 0

and:

∑
i< j

i, j=1,...,k

aia j = ∑
i< j

i, j=1,...,k

(
ai + a j

2

)2

= ∑
i< j

(
2p
2

)2

(7)

=
(

k
2

)(
n−1

k

)2

=
k (k−1)

2

(
n−1

k

)2

=
(n−1)2

2
· k−1

k

that is formula (5) with r = 0.
2. The ai’s are not all equal, then at least one pair

{
ai,a j

}
exists such that ai =

a j + h, where h is an integer≥ 1; in this case the addendum

(
ai−a j

2

)2

=
(

a j + h−a j

2

)2

=
h2

4
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is minimum only for h = 1, so ai differs from a j by 1. In particular, if r is the
number of components with cardinalities all equal to p + 1, then k− r are the
components with cardinalities p, with p = n−1−r

k .
From (6) we have that

∑
i< j

i, j=1,...,k

aia j = ∑
i< j

(
2p
2

)2

+∑
i< j

(
2p+2

2

)2

+∑
i< j

(
2p+1

2

)2

−∑
i< j

(
p−p−1

2

)2

=
(

k− r
2

)
p2 +
(

r
2

)
(p + 1)2 +(k− r)r

(
p2 + p

)

=
(

k− r
2

)(
n−1− r

k

)2

+
(

r
2

)(
n−1− r

k
+ 1

)2

+(k− r)r

(
n−1− r

k

)(
n−1− r

k
+ 1

)

��
As a consequence of Theorem 5 the betweenness βG (v) attains its maximum

value (n−1)2

2 · k−1
k only when the ai’s are all equal.

Corollary 4. Under the hypothesis of Theorem 5, for equal ai the betweenness

βG (v) increases as k increases and the maximum value βG (v) =
(

n−1
2

)
is at-

tained being v the center of the star graph.

Proof. From Theorem 5, for ai all equal βG (v) = (n−1)2

2 · k−1
k . The statement fol-

lows immediately by observing that the sequence k−1
k ,k = 2, . . . ,n− 1 is strictly

increasing; the maximum value is attained when k = n−1, i.e. when v is the center
of the star graph. ��
Example 3. Let us consider the graph G in Fig. 6; v is a cutvertex, k = 4 and r = 2;
γ (v) = 73 = βG (v) . According to Theorem 5 we have

(
k− r

2

)(
(n−1)− r

k

)2

+
(

r
2

)(
(n−1)− r

k
+ 1

)2

(8)

+r (k− r)
(n−1)− r

k

(
(n−1)− r

k
+ 1

)
= 73 .

When G is a tree every vertex v is either a pendant vertex or a cutvertex, and
d (v) = k, so for a tree we can establish that βG (v) = ∑i< j aia j and inequality (5) of
Theorem 5 holds.

Moreover, this result implies:

Corollary 5. Let G be a tree and v ∈ V a vertex adjacent only to pendant vertices
(except at most one) then:
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Fig. 6 Removing v the graph
has four connected compo-
nents

A1

A4

A2

A3

v

βG(v) =

⎧⎨
⎩

(n−d(v))(d(v)−1)+
(d(v)−1

2

)
if d (v) > 2

(n−d(v))(d(v)−1) if d (v) = 2
. (9)

Proof. If v is adjacent only to pendant vertices, then a1 = a2 = · · ·= ak = 1, where
k = d (v) = n−1 (i.e. G = K1,n−1) and from the formula:

(n−d(v))(d(v)−1)+
(

d (v)−1
2

)
= (n−n+1)(n−2)+

(
n−2

2

)

= (n−2)+
(n−2)!

2(n−4)!
= (n−2)+

(n−2) (n−3)
2

=
(n−2) (n−1)

2
= βG(v)

that is exactly the betweenness value of the vertex v.
Let’s now consider the case when v is again adjacent only to pendant vertices,

and also to a unique vertex w, of degree d (w) > 1, let A1 be the component where
w lies. If G has n vertices we have a1 = n−d (v) and a2 = a3 = · · ·= ak = 1 (here k
is equal to d (v)) Then the pairs of vertices wi,wj �= v, with both wi,wj �∈ A1 give

contribution 1 to βG (v); there are
(d(v)−1

2

)
such pairs. Moreover, for every vertex

ui ∈ A1, the pairs ui, wi �= v each give contribution n− d(v) to βG (v); there are
d(v)−1 such pairs. It follows that

βG (v) = (n−d(v))(d(v)−1)+
(

d (v)−1
2

)
.

��
Example 4. Let us consider the graph G in Fig. 7. The betweenness values, com-
puted via the formula of Corollary 5 are shown in Table 1.
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v17v16

v1

v18

v13

v14

v5

v2

v15v12

v11

v10

v3

v9

v6

v4

v7v8

Fig. 7 A tree whose betweenness values are shown in Table 1

Table 1 Total betweenness values computed via the formula of Corollary 5

v d (v) βG (v)

v1 4 45
v2 4 108
v3 4 45
v4 3 56
v5 4 45
v6 2 16
v7 2 16
v8, . . . ,v18 1 0

6 Conclusions

In this paper we concentrate on betweenness centrality, referring to both vertex and
subset centrality. We believe that the new concept we introduced, the total between-
ness centrality, can help in clarifying the role of subsets in a graph. This can be
interesting from both a practical and a theoretical point of view. Further research
can be done on the cutsets and more in general on the relationship among total
betweenness, group betweenness and the cutting number.

Acknowledgements Thanks to Giovanni Zambruno for useful comments and careful reading. We
would like to thank the referee for his helpful comments. All errors are our responsibility.
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How to Reduce Unnecessary Noise in Targeted
Networks

Giacomo Aletti and Diane Saada

Abstract This work is a review of previous works on the stopping laws in networks.
Among other results, we show a non combinatorial method to compute the stop-
ping law, the existence of a minimal Markov chain without oversized information,
the existence of a polynomial algorithm which projects the Markov chain onto the
minimal Markov chain. Several applied examples are presented.

1 Introduction

Consider a finite state Markov chain, with state space E . The process is stopped
when it reaches a sub-class T of E . It turns out that one does not need the whole
information carried by its transition matrix in order to compute the law of reach-
ing this class. The following paper, which is a compilation of several papers, deals
with how to reduce this unnecessary information, first in real time and then for large
times. An extension is also given for R-networks in [3]. The problem of finding
general closed-forms for different kinds of waiting problems is widely studied, fol-
lowing various approaches. See, for example, [9] in the case of Bernoulli trials, [6],
[10], [1] and [12] for its extensions to Markov-dependent trials, and [13] for an-
other methodology. A new approach was given in [2–5], where it was proved that
there exists an optimal projection for any given Markov problem which leaves the
probability of reaching the target set unchanged. A simple ε-approximation of this
projection exists, provided the system has evolved for a sufficient amount of time
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and some conditions on the Markov chain are satisfied. In the framework of [2–4],
a compatible projection is an equivalence relationship S on the indexing set E s.t.:

• ∀ei ∈ T , ei S e j ⇐⇒ e j ∈ T .
• For any {ei,e j,ek} ⊆ E : ei S e j, we have

∑
el Sek

P(ei,el) = ∑
el Sek

P(e j,el),

where T (the absorbing target class) and P : E×E→R are given (P is the Markov
matrix of the network and R is a semiring, see [3]).

In [2, 3] it was proved the existence of a polynomial-time algorithm which reaches
the minimum Markov network. In [5], the question of a further reduction is posed,
when time tends to infinity. An asymptotic conditional law of exit will exist, accord-
ing to the shape of the transition submatrix which corresponds to the states leading
to the target class. The methodology is based on spectral theory for non-negative ma-
trices and in particular on the Perron–Frobenius theorem. The framework in [2–5]
regards a huge class of problems which occur in many real situations. We recall here
how this class of problem may appear:

1. In finance the filter rule for trading is a special case of the Markov chain stop-
ping rule suggested in [4] (see, e.g., [11]).

2. “When enough is enough!” for example, an insured has an accident only occa-
sionally in a while. How many accidents in a specified number of years should
be used as a stopping time for the insured (in other words, when it should be
discontinued the insurance contract).

3. State dependent Markov chains. Namely, the transition probabilities are given
in terms of the history. In many situations, the matrix of the embedded problem
may be reduced.

4. Medical sciences. Given that the length of a menstrual cycle has a known dis-
tribution, what is the probability that the length of a woman’s menstrual cycle
is the same three consecutive times?

5. Small-world Networks. Given one of the networks as in Fig. 1 (either as Markov
network or as a graph), is it possible to reduce it in polynomial time and to
preserve the law of reaching a given absorbing state?

Fig. 1 Networks that may be compressed (see [4])
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There are of course many other such examples (e.g., records: Arnold et al. [7] and
optimization: Cairoli and Dalang [8]).

1.1 A Combinatorial Problem

Let X = {Xτ,τ ∈ N} be a Markov chain on a finite state space E = {e1, . . . ,en}:

e1 . . . en

e1 p1,1 . . . p1,n
...

...
. . .

...
e1 pn,1 . . . pn,n

⎫⎬
⎭=: P .

The process is stopped when it reaches one of some given states T := (eni)
k
i=1⊆E . For

sake of clarity, we suppose F = {e1, . . . ,ek} and E \T = {ek+1, . . . ,en}. To compute
the law of stopping, we may consider a new Markov chain X ′={X ′τ,τ ∈ N} on
T ∪ (E \T ):

T E \T
e1 . . . ek ek+1 . . . en

e1 1 . . . 0 0 . . . 0

T
...

...
. . .

...
...

. . .
...

ek 0 . . . 1 0 . . . 0
ek+1 pk+1,1 . . . pk+1,k pk+1,k+1 . . . pk+1,n

E \T
...

...
. . .

...
...

. . .
...

en pn,1 . . . pn,k pn,k+1 . . . pn,n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=: P̂ .

Thus, the probability of reaching T by time τ is reduced to the computation of the
τ-th power of P̂:

P(∪i=1τ{Xi ∈ T}) = P({X ′τ ∈ T}) =

p0︷ ︸︸ ︷
(p0

1, . . . , p0
n) (P̂)τ (

k terms︷ ︸︸ ︷
1, . . . ,1,

n−k terms︷ ︸︸ ︷
0, . . . ,0)′ .

(1)

There exists a trivial reduction which preserves the above calculation for any τ ∈ N

and initial distribution p0:

P(∪i=1τ{Xi ∈ T}) =

( k

∑
i=1

p0
i , p0

k+1, . . . , p0
n

)
⎛
⎜⎜⎜⎝

1 0 . . . 0
∑k

i=1 pk+1,i pk+1,k+1 . . . pk+1,n
...

...
. . .

...
∑k

i=1 pn,i pn,k+1 . . . pn,n

⎞
⎟⎟⎟⎠

τ⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ . (2)
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2 Target Problems

We begin the mathematical framework in this section with an example. Suppose (2)
is written in the following way

(
p0

1, p0
2, p0

3, p0
4, p0

5

)
⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1
2

1
6

1
6

1
12

1
12

1
2

1
4

1
12 0 1

6

0 1
2

1
4

1
8

1
8

0 3
8

3
8

1
4 0

⎞
⎟⎟⎟⎟⎟⎠

τ⎛
⎜⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎠ . (3)

We define a problem of compression of redundant information, in terms of equiva-
lence relationships on E (see [2–4]). First, we extend P to PP in the classical way

PP : E×P(E)→ R+∪{0} ,

where P(E) is the set of subsets of E and PP(e,A) = ∑ei∈A P(e,ei). Obviously,
for each e ∈ E , PP(e, ·) is a probability on (E,P(E)) that gives the conditional
probability of reaching · given that we are in the state e.

As stated in the introduction, a compatible projection is an equivalence relation-
ship S on the indexing set E s.t.:

1. ∀ei ∈ T , ei S e j ⇐⇒ e j ∈ T .
2. For any {ei,e j,ek} ⊆ E : ei S e j, we have

∑
el Sek

P(ei,el) = ∑
el Sek

P(e j,el).

1 and 2 are satisfied if and only if the matrix P∗ : E/S×E/S→ R+∪{0} such that
the following diagram commutes, is well-defined:1

E×P(E)

E×E/S R

E/S×E/S

�����������������������
PP

��

��

(IdE ,π−1)

��

PP ◦ (IdE ,π−1)

��

(π ,IdE/S)

�������������
P∗

(4)

For what concerns (3), � j ∈ {2,3,4,5} such that e j S e1 by 1. Note that finding a
nontrivial projection is not a local search. For example, we have P(e4,e2) �= P(e5,e2)
but P(e4,e2) + P(e4,e3) = P(e5,e2) + P(e5,e3), which means that e4 S e5 may be
found if we know that e2 S e3.

1 Here, π : E→ E/S is the canonical projection.
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Now, a nontrivial projection is given by

E/S = {T = {e1}︸ ︷︷ ︸
f1

,{e2,e3}︸ ︷︷ ︸
f2

,{e4,e5}︸ ︷︷ ︸
f3

} .

Accordingly, the new matrix, associated with the projected states E/S = { f1, f2, f3},
is given by

f1 f2 f3

f1 1 0 0
f2

1
2

1
3

1
6

f2 0 3
4

1
4

⎫⎪⎪⎬
⎪⎪⎭

=: P∗ .

The new Markov problem ({ f1, f2, f3},P∗) carries all the necessary information for
the target problem. In fact, the states in fi play all together with respect to the target,
like if they were the same point. For example, problem (3) becomes

(
p0

1, p0
2 + p0

3, p0
4 + p0

5

)⎛⎝1 0 0
1
2

1
3

1
6

0 3
4

1
4

⎞
⎠

τ⎛
⎝1

0
0

⎞
⎠ . (5)

In the general case, we deal with a (at most) countable indexing set E (in (3),
E = {e1, . . . ,e5}). We then take a suitable spaceME of matrices on E (again, for
what concerns (3),ME is the space of 5×5 stochastic matrices); in general it will
be a monoid (ME , ·) where · can be seen as the matrix multiplication. The function
P, as defined above, is assumed to, and plays the role of the conditional probability
of reaching any family of states starting from a given state. A target set T ⊆ E is
fixed, and it is assumed to be an absorbing class. A target problem is therefore a
triple (E,P,T ) where:

• E is an, at most countable, indexing set.
• P ∈ME is a given matrix and PP is well-defined.
• T is an absorbing class: PP(t,T ) = 1 and PP(t,E \T ) = 0, for any t ∈ T .

We are dealing here with Markov matrices only, and we leave more general exten-
sions to [3]. In [3], an extended framework includes graph connection, as well. Note
that one may always change the matrix P as in (2) so that T is an absorbing class,
by defining

P̂(e1,e2) =

⎧⎪⎨
⎪⎩

P(e1,e2), if e1 �∈ T ;

1, if e1 ∈ T and e1 = e2;

0, if e1 ∈ T and e1 �= e2.

Let Ẽ be the set of all equivalence relations on E . Let V,S∈ Ẽ. We say that V " S
if a1 V a2 implies a1 S a2 (if you think E as the set of all men and V is “belonging
to the same state” while S is “belonging to the same continent”, then V " S). An
equivalence relationship S ∈ Ẽ is called compatible projection with respect to the
target problem (E,P,T ) if:
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1. ∀e ∈ T , eS e j ⇐⇒ e j ∈ T (i.e., the target set defines an equivalence class).
2. There exists P∗ ∈ME/S such that (4) commutes.

We call S = S(E,P,T ) the set of all compatible projections.
The previous definition of compatible projection states when it is possible to

project our target problem (E,P,T ) into the smaller one (E/S,P∗, t = π(T )), with-
out loosing necessary information (see [4]). In this framework, we can state the
following general result.

Theorem 1 ([3, 4]). For any target problem (E,P,T ), there exists the optimal pro-
jection: ∃S ∈ S s.t. V " S, ∀V ∈ S.

For example, note that the compatible projection S ∈ S which projects (3) into (5)
is optimal. In fact, suppose there exists S∗ ∈ Ẽ such that (a) { f1} ∈ E/S∗, by 1
above; (b) S � S∗. (a) and (b) imply E/S∗ = {{e1},{e2,e3,e4,e5}}, which is not a
compatible projection, since 1/2 = PP(e2,{e1}) �= PP(e4,{e1}) = 0.

2.1 Target Algorithm

The proof for the existence of the optimal solution was based in [3, 4] on the fact
that the set of compatible projections S has its "-join in S̃.

This proof is useless in practice when the Markov chain is so big that a search
in Ẽ can be impracticable. In fact, as stated in the previous section, searching for a
compressing map is not a local search and it appears as a non-polynomial search, in
the sense that we have to look at the whole set of equivalent relations on E . In [2, 3]
it was proved the existence of a polynomial algorithm which reaches the optimal
projection. We give here the algorithm and we state this result in Theorem 2. The
idea is to reach the optimal projection E/S – unknown – starting from a trivial and
known relation ME ∈ Ẽ , given by the problem. ME ∈ Ẽ is defined by the relation
“being or not a member of T ”: for any (ei,e j) ∈ E×E ,

ei ME e j ⇐⇒ {ei,e j} ⊆ T or {ei,e j} ⊆ (E \T ) .

It is clear that ME is not in general a compatible projection (see, for example, S∗ at
the end of the previous section). By definition, it is obvious that S"ME , ∀S ∈S and
hence, if ME is compatible, then it is optimal.

We denote here by Fπ the optimal equivalence unknown map, and we build a
monotone operatorF on Ẽ which will reach E/Fπ starting from E/ME . F : Ẽ→ Ẽ
is defined as follows: for any S ∈ Ẽ, let s1,s2, . . . be the classes of equivalence of E
induced by S. For any (el ,ek) ∈ E×E , define

elFsiek ⇐⇒ PP(el,si) = PP(ek,si)

F(S) =
⋂

i=1,2,...

Fsi ∩S .
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F(S) is a new equivalence relation, that defines, in consequence, new classes of
equivalence. Two states belong to the same new class if they have the same behavior
towards the classes of S. If this step does not define the compatible projection, then
we go a step further applying F to the classes of F(S). For example, take E/ME =
{{1},{2,3,4,5}} as in (3). For s1 = {1} we have

P(1,{1}) = 1 , P(2,{1}) = P(3,{1}) = 1/2 , P(4,{1}) = P(5,{1}) = 0

and hence E/F(s1) = {{1},{2,3},{4,5}}. Note that E/F(s1) = E/F(s2)⊆ E/ME

and hence E/F(ME) = {{1},{2,3},{4,5}}. The new relationshipF(ME) is a fixed
point for F and it is also the optimal relationship.

This leads to the following theorem.

Theorem 2 ([2, 3]). For any target problem (E,T,P), there exists m = m(E,T,P)
s.t. m≤ N−2 and

Fπ =F ◦F ◦ · · · ◦F︸ ︷︷ ︸
m times

(ME) ,

where N is the cardinality of E/Fπ .

For what concerns the problem (3), we already knew that |E/Fπ | = 3 and hence
m ≤ 1 by Theorem 2. We have indeed noted that F(F(ME)) = F(ME). In fact, in
the proof (see [2, 3]), it is also shown that Fπ is the unique fixed point for a suitable
restriction of F and this algorithm “works” on this restriction.

Remark 1. Note that the operator F may be computed in a |E|-polynomial time.
Theorem 2 ensures that F ◦F ◦ · · · ◦F︸ ︷︷ ︸

at most |E/Fπ |−2 times (≤|E|)

will reach F , given any triple (E,T,P). A MATLAB version of such an algorithm for
multitarget T may be downloaded at http://www.mat.unimi.it/ aletti.

3 Large Time Projections

Suppose now that the Markov chain {Xτ,τ ∈ N} is stationary on a finite set E
and denote by P its transition matrix and by µ0, the initial probability measure.
Let A be the class of transient states which lead to T (the target class), and let
T∞ = {i ∈ E;Pτi j = 0,∀ j ∈ T,∀τ} the class of the remaining states. As before, the
transition matrix can be decomposed as follows:

P =

⎛
⎜⎜⎝

1 0
0 1

0

v∞ v A

⎞
⎟⎟⎠ ,
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v∞ (resp. v) is the vector of probabilities of hitting T∞ (resp. T ) from A, and A
is the sub-matrix of the states lying in A. We suppose that A ≥ 0 -that is, if A =
(ai j)(i, j)∈{1,··· ,n}2 is a square matrix, then every ai j is nonnegative- and that A �= 0.
This matrix also satisfies lim τAτ = 0. Here, 1 denotes the vector whose components
are all equal to one. In order to know whether an asymptotic reduction can be done
or not, we had to check whether the following limit exists

lim
τ→∞

P(Xτ+1 ∈ T |Xτ ∈ A) for any µ0

and under which conditions this limit is independent of µ0. It is easy to show that
this limit is in fact equal to

lim
τ→∞

µT
0|AAτv

µT
0|AAτ1

.

µ0|A is the trace on A of the initial probability µ0. We suppose in the following
that µ0|A > 0. We can decompose A into disjoint classes of communication, where
i communicates with j if i = j or if i leads to j and vice versa, and we obtain
A = ∪N

i=1C∗i . We denote by p(i) the period of state i. We recall that p(i) is defined
as the greatest common divisor of all integers n ≥ 1 for which An

ii > 0, when it
exists, otherwise we set p(i) = ∞. All the elements of a same class have the same
period. The whole discussion in the following on the existence (and uniqueness) of
a solution will depend upon the number of classes and their periodicity.

3.1 The Irreducible Case

This is the case when all the states communicate, and so N = 1. The existence of a
limit depends on the three different cases for the common period of the states; either
(1) p(1) = 1, or (2) p(1) = k > 1, or (3) p(1) = ∞, where 1 denotes the first state
in the matrix A.The third case is not to be taken into account, see [5].

Theorem 3. Suppose A is irreducible and aperiodic, then

lim
τ→∞

µT
0|AAτv

µT
0|AAτ1

(6)

exists for any initial probability, is independent of µ0 and is equal to ( f0)T v
( f0)T 1 , where

f0 is the first left eigenvector of A. If A is irreducible and periodic, then (6) exists
if and only if the asymptotic probabilities of exit from each class of periodicity are
equal.

As a consequence, one obtains at infinity the behavior outlined in Fig. 2.
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T∞ TA

11

λ0

(f0)Tv∞ (f0)Tv

(f0)
T
1 (f0)

T
1

Fig. 2 Behavior when A is irreducible and aperiodic

3.2 The Reducible Case

In the reducible case, A is decomposed into N > 1 disjoint classes C∗i , i = 1, . . . ,N.
As the classes are disjoint, when the chain exits one class, it does not go back to it. It
follows that we can reorder the matrix A so that it will be equal to an upper triangular
(non-negative) matrix with block square irreducible matrices on its diagonal, each
corresponding to a class. The existence of the asymptotic probability of reaching
T from A will therefore depend on the percent of mass that is distributed on each
class. If the more important mass is associated with the final classes, this means that
the mass in each of the remaining classes will decrease with time and we will only
have to take into account this family of final classes. In this case, a limit will exist.
A class is called basic if the sub-matrix of A associated with it, admits as spectral
radius the spectral radius of A.

Theorem 4. Suppose the matrix A is reducible with spectral radius λ0 > 0, and sup-
pose the final classes are the only basic classes. Then there exists a unique asymp-
totic probability (depending on µ0) of exit from A to T if and only if the asymptotic
probability of exit from each final class also exists. Moreover, if the final classes
have dominant spectral radius and if some of them are the only basic classes, then
there exists a unique asymptotic probability of exit from A to T if µ0 charges these
classes.

Finally, a particular case,

Theorem 5. Suppose A admits a Jordan decomposition of the form D+N, where D
is a diagonal block primitive sub-matrices with the same spectral radius λ0 and N is
an upper triangular non-negative matrix. Then the limiting conditional distribution
exists.

4 Extension to Multiple Targets and Examples of Markov
Networks

The previous results may be extended to multiple targets problems. More pre-
cisely, let T = {T1,T2, . . .} be target disjoint sets on the same R-network (E,P) over
ME(R). We are interested in the optimal {T1,T2, . . .}-compatible relationship S such
that (4) holds.
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The answer is trivial, since each target class Ti defines its equivalence relationship
Si. It is not difficult to show that the required set S is just S = ∩Si, see [2] and [5].
We start here by showing some classical Network problems that cannot be projected
in smaller ones.

Example 1 (Negative Binomial Distribution). Repeat independently a game with
probability p of winning until you win n games.

Let Sτ = ∑i=1 τYi, where {Yi, i ∈ N} is a sequence of i.i.d. bernoulli random vari-
able with Prob({Yi = 1}) = 1−Prob({Yi = 0}) = p. Our interest is engaged by the
computation of the probability of reaching n starting from 0. Let E = {0,1, . . . ,n}
be the set of levels we have reached. We have

0 1 2 . . . n−1 n = T
0 (1− p) p 0 . . . 0 0

1 0 (1− p) p
. . . 0 0

2 0 0 (1− p)
. . . 0 0

...
...

...
...

. . .
. . .

...
n−1 0 0 0 . . . (1− p) p
n = T 0 0 0 . . . 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=: P

Since the lengthof theminimumpathforreaching the targetstaten fromdifferentstates
is different, the problem cannot be projected on a smaller one by [4, Proposition 31].

Example 2 (Consecutive winning). Repeat independently a game with probability p
of winning until you win n consecutive games. The problem is similar to the previ-
ous one, where

0 1 2 . . . n−1 n = T
0 (1− p) p 0 . . . 0 0

1 (1− p) 0 p
. . . 0 0

2 (1− p) 0 0
. . . 0 0

...
...

...
...

. . .
. . .

...
n−1 (1− p) 0 0 . . . 0 p
n = T 0 0 0 . . . 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=: P

The problem is again not projectable by [4, Proposition 31].

Example 3 (Gambler’s ruin). Let two players each have a finite number of pennies
(say, n1 for player one and n2 for player two). Now, flip one of the pennies (from
either player), with the first player having p probability of winning, and transfer a
penny from the loser to the winner. Now repeat the process until one player has all
the pennies.

Let Sτ = ∑i=1 τ(2Yi−1), where {Yi, i ∈ N} is a sequence of i.i.d. bernoulli ran-
dom variable with Prob({Yi = 1})= 1−Prob({Yi = 0})= p. Our interest is engaged
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by the computation of the probability of reaching T1 = n2 or T2 =−n1 (multiple tar-
get) starting from 0. Let E = {−n2, . . . ,−1,0,1, . . . ,n1} be the set of levels we have
reached. We have

−n1 = T2 −n1 +1 . . . −1 0 1 . . . n2−1 n2 = T1

−n1 = T2 1 0 . . . 0 0 0 . . . 0 0

−n1 +1 (1− p) 0
. . . 0 0 0 . . . 0 0

...
...

. . .
. . .

. . .
...

...
...

...
...

−1 0 0
. . . 0 p 0 . . . 0 0

0 0 0
... (1− p) 0 p . . . 0 0

1 0 0
... 0 (1− p) 0

. . . 0 0

...
...

...
...

...
...

. . .
. . .

. . .
...

n2−1 0 0
... 0 0 0 . . . 0 p

n2 = T1 0 0 . . . 0 0 0 . . . 0 1

This problem is clearly not projectable on a smaller one, since it is for T1 (for ex-
ample). The problem may be reduced if and only if we are interested in the time of
stopping (without knowing who wins, i.e. T = T1∪T2) and p = 1/2. In this case, the
relevant information is the distance from the nearest border and hence the problem
may be half-reduced.

The following classical problem may be reduced.

Example 4 (Random walk on a cube). A particle performs a symmetric random walk
on the vertices of a unit cube, i.e., the eight possible positions of the particle are
(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), . . . ,(1,1,1), and from its current posi-
tion, the particle has a probability of 1/3 of moving to each of the three neighboring
vertices. This process ends when the particle reaches (0,0,0) or (1,1,1).

Let T1 = (0,0,0), T2 = (1,1,1). The following transition matrix

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)

(0,0,0) 1 0 0 0 0 0 0 0

(1,0,0) 1/3 0 0 0 1/3 1/3 0 0

(0,1,0) 1/3 0 0 0 1/3 0 1/3 0

(0,0,1) 1/3 0 0 0 0 1/3 1/3 0

(1,1,0) 0 1/3 1/3 0 0 0 0 1/3

(1,0,1) 0 1/3 0 1/3 0 0 0 1/3

(0,1,1) 0 0 1/3 1/3 0 0 0 1/3

(1,1,1) 0 0 0 0 0 0 0 1

can be easily reduced on
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t1 f1 f2 t2
t1 1 0 0 0
f1 1/3 0 2/3 0
f2 0 2/3 0 1/3
t2 0 0 0 1

where ti = Ti and fi = {e =(e1,e2,e3) : ∑e j = i}. If we are only interested in the time
of stopping (i.e. T = T1∪T2), the previous problem may be reduced to a geometrical
one. Clearly, this results hold also for random walk on a d-dimensional cube.

We give, in the following, several examples to the different results we obtained
before.

Example 5 (Medical science). We intend to find the probability that the length of a
woman’s menstrual cycle can be the same three consecutive times. If the length of
a menstrual cycle is uniformly distributed between 26 and 35 days (and the length
of menstrual cycles being independent from one another), then the process may be
seen as a Markov chain on E = {26, . . . ,35}, where

P =

⎛
⎜⎝

1/10 . . . 1/10
...

. . .
...

1/10 . . . 1/10

⎞
⎟⎠ .

The problem can be solved by introducing the stopping time defined by

S = inf{τ ∈ N : Xτ−2 = Xτ−1 = Xτ}.

This problem can naturally be embedded in a 21 states Markov problem whose
transition matrix is defined in (7), see [4].

T 26.26 27.27 . . . 35.35 26 27 . . . 35

T 1 0 0 . . . 0 0 0 . . . 0
26.26 1/10 0 0 . . . 0 0 1/10 . . . 1/10
27.27 1/10 0 0 . . . 0 1/10 0 . . . 1/10

...
...

...
...

...
...

...
...

...
...

35.35 1/10 0 0 . . . 0 1/10 1/10 . . . 0
26 0 1/10 0 . . . 0 0 1/10 . . . 1/10
27 0 0 1/10 . . . 0 1/10 0 . . . 1/10
...

...
...

...
...

...
...

...
...

...
35 0 0 0 . . . 1/10 1/10 1/10 . . . 0

(7)

It is simplified by considering the process Zτ with the following three states:

Ê =

⎧⎪⎪⎨
⎪⎪⎩

there is no N ≤ τ : XN−2 = XN−1 = XN :
1, if Xτ−1 �= Xτ
2, if Xτ−2 �= Xτ−1 = Xτ
3 = T, if there exists N ≤ τ : XN−2 = XN−1 = XN
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with initial distribution µT
0 = (1,0,0) and matrix

1 2 3 = T
1 p (1− p) 0
2 p 0 (1− p)

3 = T 0 0 1

⎫⎬
⎭=: P̂ ,

where p = 9/10. Simple calculations (see [4]) give the corresponding Hazard rate:

HS(τ) = 1− 1
20

(9 +
√

117)τ+1− (9−√117)τ+1

(9 +
√

117)τ − (9−√117)τ︸ ︷︷ ︸
−→
τ→∞

λ̂ 0

= P(Xτ+1 ∈ T |Xτ ∈ A) .

The matrix A of the transient states is

A =
(

p 1− p
p 0

)
.

Therefore, the first eigenvalue is

λ0 =
p +
√
−3p2 + 4p

2
=

(p=9/10)

9 +
√

117
20

,

while the first left eigenvector f0 associated to λ0 is

( f0)T =
(

p+
√
−3p2+4p

2(1−p) , 1
)

,

and the limit conditional distribution is

( f 0)T

( f 0)T 1
=
(

p+
√
−3p2+4p

2−p+
√
−3p2+4p

, 2(1−p)
2−p+
√
−3p2+4p

)
.

We have

( f 0)T v
( f 0)T 1

=
( f 0)T

( f 0)T 1
v =
(

p+
√
−3p2+4p

2−p+
√
−3p2+4p

, 2(1−p)
2−p+
√
−3p2+4p

)(
0

1− p

)
= 1−λ0.

As expected, we note that λ0 = λ̂ 0.

Example 6 (The gambler ruin). A gambler A plays against a gambler B a sequence
of heads or tails independent games. The total sum of their wealth is a$. At each
game, A wins one dollar or loses it with probability p and q = 1− p respectively.
The game stops when one of the gamblers is ruined. Denote by Xτ the wealth of A
at the end of the τ-th game. Xτ is a Markov chain with set of states E = {0, . . . ,a}.
Its transition matrix is given by
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P =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0
q 0 p · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · q 0 p
0 0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

If we take the position of A, then T = {a} and T∞ = {0}.
Then the previous matrix can be rearranged:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1

0
q 0
0 0
...

...
0 0
0 p

0 p · · · 0 0
q 0 p · · · 0
...

. . . 0
. . .

...
0 · · · q 0 p
0 · · · · · · q 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this case,

A =

⎛
⎜⎜⎝

0 p ··· 0 0
q 0 p ··· 0
...

.. . 0
. ..

...
0 ··· q 0 p
0 ··· ··· q 0

⎞
⎟⎟⎠ , v =

⎛
⎜⎝

0
0
...
0
p

⎞
⎟⎠ , v∞ =

⎛
⎜⎝

q
0
...
0
0

⎞
⎟⎠ .

A is an irreducible matrix with period 2. Suppose first that a = 2k+1 (2k transient
states A = {1, . . . ,2k} plus T = {a} and T∞ = {0}). Then, if we permute the order
of the states,

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

p 0 ··· ··· 0
q p ··· ··· 0
0 q p ··· 0

. . .
. ..

0 ··· ··· q p
q p ··· ··· 0
0 q p ··· 0

.. .
.. .

0 ··· ··· q p
0 ··· ··· 0 q

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v̂ = v, v̂∞ = v∞.

Suppose now that a = 2k (2k−1 transient states A = {1, . . . ,2k−1} plus T = {a}
and T∞ = {0}). Then

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

p 0 ··· ··· 0
q p ··· ··· 0
0 q p ··· 0

.. .
.. .

0 ··· ··· q p
0 ··· ··· 0 q

q p ··· ··· 0
0 q p ··· 0

. ..
. ..

0 ··· ··· q p

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
0
p
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v̂∞ = v∞.
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In both cases, a = 2k + 1 and a = 2k, Â2 takes the form

Â2 =
(

C1 0
0 C2

)

with (Ci)m� 0 for all m≥ k−1. Moreover,

v2−mod(a,2) = (0,0, . . . ,0)T , v1+mod(a,2) = (0,0, . . . , p)T

In this case it is obvious that the conditional limit does not exist (see [5]); however,
we can compute the asymptotic conditional law given each class of periodicity. For
example, if a = 10 and p = 1/2, we obtain

C1 =

⎛
⎜⎝

1/4 1/4 0 0 0
1/4 1/2 1/4 0 0

0 1/4 1/2 1/4 0
0 0 1/4 1/2 1/4
0 0 0 1/4 1/4

⎞
⎟⎠ and C2 =

⎛
⎝1/2 1/4 0 0

1/4 1/2 1/4 0
0 1/4 1/2 1/4
0 0 1/4 1/2

⎞
⎠ .

We have

λ (1)
0 = λ (2)

0 =
5 +
√

5
8

,

while the corresponding first eigenvectors are

( f 0)T (1)

( f 0)T 1
=
(

1
2(3+

√
5)

, 1/4,
√

5+1
2(3+

√
5)

, 1/4, 1
2(3+

√
5)

)

( f 0)T (2)

( f 0)T 1
=
(

1
3+
√

5
,
√

5+1
2(3+

√
5)

,
√

5+1
2(3+

√
5)

, 1
3+
√

5

)
.

Example 7 (Random walk on a polygon). A particle can move on a regular polygon
with r sides. Its vertices are numbered from 0 to r− 1. If at some time the particle
is on the vertex i (0≤ i≤ r−1) then, right afterwards, it will be in state i+ 1 (mod
r) with probability p and in the state i− 1 (mod r) with probability q. We assume
that r = 2N. We also suppose that the particle can exit the polygon to a target set
from each vertex 0 to N−1 and to T∞ from each other vertex, both with probability
s. We denote by Xτ the vertex visited by the particle at time τ , its transition matrix
is given hereafter

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
s 0 0 p 0 · · · 0 0 q
s 0 q 0 p · · · 0 0 0
s 0 0 q 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 s 0 0 0 · · · 0 p 0
0 s 0 0 0 · · · q 0 p
0 s p 0 0 · · · 0 q 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Consider now the sub-matrix A of transient states leading to T . This matrix is ir-
reducible, periodic with period 2 and A/(p+q) bi-stochastic. The largest eigenvalue
is λ0 = p+q, see [5]. The left eigenvector associated with λ0 is v0 = 1. It follows that

the limiting conditional probability law is equal to ( f 0)T

( f 0)T 1
= (1/r, . . . ,1/r), which is

the result one would expect for a matrix that is bi-stochastic (up to a multiplicative
constant), and irreducible. It, indeed, admits a unique stationary probability given
by u = (u1, . . . ,ur) such that ui = 1/r, for each i.

Then, if we permute the order of the states,

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

p 0 ··· ··· q
q p ··· ··· 0
0 q p ··· 0

.. .
.. .

0 ··· ··· q p
q p ··· ··· 0
0 q p ··· 0

. ..
. ..

0 ··· ··· q p
p ··· ··· 0 q

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v̂ = v, v̂∞ = v∞.

Notice that the first sub-matrix A1 is composed by the even states (we start
from 0) and the second sub-matrix by the odd ones.

It follows that v̂ = (s,s, . . . ,0,0,s,s, . . . ,0)T v̂∞ = v∞. In fact, if N is itself an

even number, v̂1 = v̂2 =

⎛
⎝

s
s
...
0
0

⎞
⎠ and the conditional limit of exit is

f
(1)
0 v̂1

f
(1)
0 1

= f
(2)
0 v̂2

f
(2)
0 1

=

sN/2
N = s

2 . The result will be the same if we consider a random walk on the line with
reflecting barriers together with a jump to the other side.

Example 8 (The bonus and malus model). An insurance company orders the bonus–
malus levels of its clients according to integers 0,1,2, . . .. The level 0 is the most
advantageous for the client. Let 0≤ i≤ j. If the bonus-malus level of an insured is
i at time τ , it will be j at time τ + 1 if, between times τ and τ + 1, he had j− i ac-
cidents. We denote by (Xτ) the sequence of the bonus-malus levels for this insured.
Time unit is a year and we suppose that the number of accidents during a year is a
Poisson random variable with parameter λ . The probability that the insured moves
from level i to level j, j ≥ i is equal to πλ , j−i = e−λ λ j−i/( j− i)!. Furthermore, we
suppose that the contract is canceled once the insured has had N accidents. (Xτ) is
a Markov chain with set of states {0, . . . ,N} and transition matrix

P =

⎛
⎜⎜⎜⎜⎜⎝

πλ ,0 πλ ,1 πλ ,3 · · · πλ ,N
0 πλ ,0 πλ ,1 · · · πλ ,N−1
0 0 πλ ,0 · · · πλ ,N−2
...

...
... · · · ...

...
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

.

N can be considered to be an absorbing state and to represent the target set T .
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This is the Jordan case with D + N, where D is a diagonal matrix, and N is an
upper triangular matrix. According to Theorem 5, the conditional limit probability
of exit from the last class exists.
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The Dynamic Behaviour of Non-Homogeneous
Single-Unireducible Markov and Semi-Markov
Chains

Guglielmo D’Amico, Jacques Janssen, and Raimondo Manca

Abstract In this paper single-unireducible Markov and semi-Markov chains are
defined and their dynamic behaviour is analysed. The main results concern the as-
ymptotic study of these processes. In fact it is proved that the topological structure
of single-unireducibility represents a sufficient condition that guarantees the absorp-
tion after a sufficiently long period in the absorbing class for both Markov and semi-
Markov chains. The probabilistic results are based on graph theory using relations
between the graphs and transition matrices.

1 Introduction

The study of asymptotic behaviour of Markov chain in homogeneous environment is
totally explored, see for example [2, 9, 10]. In non-homogeneous case this topic was
studied and many results were obtained see for example [3, 4, 12, 13, 15]. But, at
authors’ knowing, an explicit study of the asymptotic behaviour of non-homogenous
Markov chains formed by unireducible transition matrices was never done.

Indeed, in multi-state insurance and migration credit risk models the transition
matrices that rule the system evolution usually are unireducible matrices (see for
example [10]) with the unique recurrent class constituted by a unique absorbing
state and in this paper we would face this particular case.
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In some previous papers [6, 8] some results on the asymptotic behaviour of these
kind of matrices were found. More precisely in the first paper it was shown the be-
haviour of these models in the case of a homogeneous semi-Markov environment. In
the second paper the study of asymptotic behaviour of a non-homogeneous Markov
and semi-Markov models was presented. But this study was limited at the case with
only one class of transient states. In this framework the transition matrices and con-
sequently the model were called mono-unireducible.

In this paper we present a general unireducible approach to the problem general-
izing the results obtained in the previous papers. The paper develops the theoretical
aspects of these special kinds of transition models. The applicative aspects will be
faced in some future works.

The study of these models is strictly connected with some graph theory notions.
In the next section the relations between the graphs and the transition matrices are
highlighted. In the section three some particular unireducible transition matrices are
defined generalizing the results given in [7]. The obtained results are extended in a
non-homogeneous discrete time semi-Markov environment.

2 Graphs and Matrices

In this paper the matrices are non negative. As it is well known, a directed weighted
graph corresponds to each matrix and vice-versa.

Definition 2.1. A Hamiltonian matrix is a matrix in which the corresponding di-
graph contains a circuit (Hamiltonian cycle).

Proposition 2.1. A matrix is Hamiltonian iff it is an irreducible matrix.

Proof. Trivial. �
Definition 2.2. ([1]) Given a matrix B the adjacency matrix associated to the matrix
A is defined in the following way:

ai j =
{

1 if bi j �= 0
0 if bi j = 0.

Remark 1. The topological structure of a matrix corresponds to its adjacency matrix.

Definition 2.3. Given two matrices B1 =
[
b1

i j

]
and B2 =

[
b2

i j

]
and let A1, A2 be

the two corresponding adjacency matrices we say that

A1 ⊆ A2
def⇔ (a1

i j = 1⇒ a2
i j = 1

)
.

Definition 2.4. Given the permutation
(

1 2 · · · m
r1 r2 · · · rm

)
∈Πm, (1)



Non-Homogeneous Single-Unireducible Markov and Semi-Markov Chains 197

where Πm is the set of permutations of {1,2, . . . ,m}. The permutation matrix �

corresponding to (1) is defined in the following way

πi j =
{

1 i f j = ri

0 i f j �= ri.

Definition 2.5. A circular permutation matrix is a permutation matrix that corre-
sponds to a circular permutation, where a circular permutation can be denoted in the
following way:

(r1,r2, . . . ,rm−1).

It means that 1 goes to r1,r1 goes to r2, . . . ,rm−1 goes to 1.

Remark 2. A circular permutation matrix � is a Hamiltonian matrix and it results
that πii = 0 ∀i.
Definition 2.6. A circuit matrix C is a primitive Hamiltonian matrix in which cii �=
0 ∀i.
Definition 2.7. Let C a circuit matrix it is a simple circuit matrix if its adjacency
matrix A is given by

A = I+�, where � is a circular permutation matrix and I is the unitary matrix.

Remark 3. Each simple circuit matrix has two elements not equal to 0 for each row
and each column.

Remark 4. Each adjacency matrix of a circuit matrix will contain an adjacency ma-
trix of a simple circuit matrix.

Proposition 2.2. Let (Cn)n∈N
a sequence of simple circuit matrices and (An)n∈N

the corresponding sequence of their adjacency matrices. Given

S(n) = A1 ∗A2 ∗ · · · ∗An,

where ∗ represents the usual row column product, then
m

∑
k=1

s(n)
ik = 2n.

Proof. The proposition is true for n = 1. It is supposed that it is true for n−1. Then

S(n) = S(n−1) ∗An. (2)

A row of (2) is given by

s(n)
i∗ =

m
∑

k=1
s(n−1)

ik an
k∗ =
(

s(n−1)
i1 an

11,0, . . . ,0,s(n−1)
ir1

an
r11,0, . . . ,0

)
+ · · ·

· · ·+
(

0, . . . ,0,s(n−1)
irm

an
rmm,0, . . . ,0,s(n−1)

im an
mm

)
,

(3)

where (r1, . . . ,rm) is a circular permutation of {1,2, . . . ,m}.
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From (3), it results

m

∑
k=1

s(n)
ik =

m

∑
k=1

s(n−1)
ik +

m

∑
k=1

s(n−1)
irk

= 2n.

�

Remark 5. s(n)
i j represents the number of different paths of length n that start from i

and arrive in j.

Remark 6. 2n represents the number of different paths of length n that start from i.

Remark 7. Similar results can be proved for the columns.

The next result can be useful for a better understanding of the main theorem.

Proposition 2.3. Let B and C two simple circuit matrices if

D = B∗C

then each row di∗ will have three or four non-zero elements.

Proof. From Definition 2.7 it results that bi∗ has only the two elements bii, biri �=
0, i �= ri, in the same way also cii,cisi �= 0, i �= si will be the only two elements not
equal to zero in the i-th row, where respectively

π1 =
(

1 2 · · · m
r1 r2 · · · rm

)
and π2 =

(
1 2 · · · m
s1 s2 · · · sm

)

are two circular permutations. This time the notation given in (1) is used also for
circular permutations.

Given D = B∗C from the hypotheses it results that di∗ can have only

dii = biicii,diri = biricriri ,disi = biicisi ,disri
= biricrisri

not equal to zero. If i,ri,si,sri are all each other different then there will be four
elements not equal to zero in the i-th row of the matrix D.

It is possible that ri = si then sri �= i. In fact if sri = i then it results that cisi = ciri �=
0 and crisri

= crii = csii �= 0 and π2 is no more a circular permutation and matrix C
is not a simple circuit matrix.

It is also possible that sri = i then ri �= si. In fact if ri = si then it results cisi =
ciri �= 0 and csissi

= crisri
= crii �= 0 and π2 is no longer a circular permutation and

matrix C is not a simple circuit matrix. These two last results implies that there are
at least three elements not equal to zero for each row of D �

Theorem 2.1. Let {C1,C2, . . . ,Cn} be circuit matrices with n < m then if

S(n) = C1 ∗C2 ∗ · · · ∗Cn (4)

then each row (column) of (4) will have at least n + 1 elements greater then 0.
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Proof. Each circuit matrix contains a simple circuit matrix, so it is enough to prove
the proposition for simple circuit matrices.

Let B be a matrix and C a simple circuit matrix where, as before,

cii,cisi �= 0, i �= si (5)

are the only two non-zero elements for each row.
Let bi∗ the i-th row of matrix B in which bir1 ,bir2 , . . . ,birh �= 0, h < m are the only

non zero elements of the i-th row.
Let D = B∗C then it results

dir1 ,dir2 , . . . ,dirh �= 0, dirk = birk crkrk �= 0k = 1, . . . ,h.

Taking into account (5) the other elements of di∗ that are not zero are the
following:

disr1
= bir1cr1sr1

, r1 �= sr1

disr2
= bir2cr2sr2

, r2 �= sr2

disr3
= bir3cr3sr3

, r3 �= sr3 (6)

...

disrh−1
= birh−1crh−1srh−1

, rh−1 �= srh−1

disrh
= birhcrhsrh

, rh �= srh .

From the properties of C the following can happen

1.1) sr1 /∈ {r2,r3, . . . ,rh} ,
1.2) sr1 ∈ {r2,r3, . . . ,rh} ,sr1 = rk1 ,k1 ∈ {2,3, . . . ,h} .

If ii) holds then there will be h + 1 non-zero elements in the row di∗ otherwise
the following can happen:

2.1) srk1
/∈ {r1,r2,r3, . . . ,rh} ,

2.2) srk1
∈ {r1,r2,r3, . . . ,rh}−

{
r1,rk1

}
, srk1

= rk2 , k2 ∈ {1,2,3, . . . ,h}−{1,k1} .
(7)

If 2.1) holds then there will be h + 1 non-zero elements in the row di∗. Now it
will be explained because if 2.1) does not hold then it must be srk1

�= r1,rk1 . In fact if

srk1
= rk1 ⇔ disrk1

= birk1
crk1

rk1
,

that contradicts (6) and if

srk1
= r1⇔ disrk1

= birk1
crk1

r1 �= 0 and disr1
= bir1cr1rk1

�= 0 (8)

and C is not a simple circuit matrix (r1 goes to rk1 and rk1 goes to r1).
If 1.2) and 2.2) hold then the following can happen:

3.1) srk2
/∈ {r1,r2,r3, . . . ,rh} ,

3.2) srk2
∈{r1,r2,r3, . . . ,rh}−

{
r1,rk1 ,rk2

}
,srk2

=rk3 ,k3 ∈ {1,2,3, . . . ,h}−{1,k1,k2} .
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If 3.1) holds then there will be h+1 non-zero elements in the row di∗. Now it will
be explained because if 3.1) does not hold then it must be srk2

�= r1,rk1 ,rk2 . In fact
srk2

= rk2 contradicts (6), srk2
= rk1 corresponds to (8), and, finally, if srk2

= r1 ⇔
disrk2

= birk2
crk2

r1 �= 0, dirk2
= birk1

crk1
rk2
�= 0 and dirk1

= bir1cr1rk1
�= 0 and C is not

a simple circuit matrix (r1 goes to rk1 , rk1 goes to rk2 and rk2 goes to r1). Continuing
with this construction the following can happen

srk j
/∈ {r1,r2,r3, . . . ,rh} , j = 1,2, . . . ,h−2 (9)

and, in this case, there will be h + 1 no-zero elements in the row di∗. If (9) does not
hold it results that

srkh−1
�= rkh−1 , rkh−2 , . . . ,rk2 , rk1 , r1

and all the r j will be different from each other, otherwise a cycle will be closed and
C will not be a simple circuit matrix. This implies that

srkh−1
/∈ {r1,r2,r3, . . . ,rh} .

So if a row of a matrix B has h < m elements greater than 0 then after the multipli-
cation with a simple circuit matrix it will have at least h+1 elements greater than 0.

Now let {C1,C2, . . . ,Cn} be simple circuit matrices with n < m then C1 ∗C2

shall have at least three elements greater than 0 because C1 has two elements greater
than 0 in each row and so on. Finally, the following results:

S(n) = C1 ∗C2 ∗ · · · ∗Cn (10)

has at least n + 1 elements in each row

Remark 8. In (10) if n = m−1 the matrix S(m−1) will be a full matrix.

Remark 9. Given a non-negative matrix B of orders p×n that has only the element
bi j > 0 and the matrix S(n) then the matrix A = B ∗S(n)(A = S(n) ∗B) has at least
n + 1 elements greater than 0 in the row ai∗ (column a∗ j).

3 Single-Unireducible Non-Homogeneous Markov Chains

As it is well known, see [10], the states of a Markov chain can be partitioned in
equivalence classes. A class of states can be transient or recurrent (absorbing).

If the Markov chain has only one class then the Markov chain is irreducible if
there is more than one class then the process can be unireducible if there is only one
recurrent class and reducible if there are two or more recurrent classes. One partic-
ular case of unireducible matrix is the one with the absorbing class formed by only
one state. Matrices of this kind are present in many finance and insurance models.

In homogeneous Markov chains, the behaviour of these models is well known
(see books [9, 10, 14, 16] or the paper [8]).
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In this paper, we will show how these matrices can behave in particular way in a
non-homogeneous discrete time process environment.

Among the classes of the Markov chain states an order relation can be defined
(see [8]).

In this paper we suppose that, in unireducible and reducible cases, the states that
belong to the same class are close. Furthermore we suppose that the classes are al-
ready ordered following the partial order as defined in [8]. This ordering means that
in the first transition matrix row there are the maximal classes, that are a particular
case of transient classes from which it is not possible to entry from other classes but
it is possible to get out, after there are the non-maximal transient classes in which it
is possible to arrive and to get out and in the last rows there are the recurrent (ab-
sorbing) classes that are also named minimal classes because it is only possible to
arrive inside them but not to get out.

By means of this hypothesis we do not loose generality because once the classi-
fication of classes is done (see [8]) then with a permutation of rows and columns it
is possible to get the transition matrix ordered in the way described before.

In this case, there is only one absorbing (recurrent) class A, in the following
the absorbing class will be formed by only one state. The maximal classes are
C1,C2, . . . ,Ck. The remaining classes can be related as follows:

C1 ≥C1
2 ≥C1

3 ≥ . . .≥C1
l1
≥ A,

C2 ≥C2
2 ≥C2

3 ≥ . . .≥C2
l2
≥ A,

.....................................

Ck ≥Ck
2 ≥Ck

3 ≥ . . .≥Ck
ls
≥ A,

(11)

where Ci
j is a non-maximal transient class and Ci

j ≥Ci
j+1 means that it is possible

to migrate from class Ci
j to class Ci

j+1. We define the elements of (11) chains of
classes.

If Ch ≥Ch
2 ≥Ch

3 ≥ . . .≥Ch
lh
≥ A is one of the class chains of (11) then it results

Ch =
{

ih0, i
h
0 + 1, ih0 + 2, . . . , ih0 + h0−1

}
Ch

1 =
{

ih1, i
h
1 + 1, ih1 + 2, . . . , ih1 + h1−1

}
...

Ch
lh

=
{

ihlh , i
h
lh

+ 1, ihlh + 2, . . . , ihlh + hlh−1
}

A = {m} .

(12)

Remark 10. Let (P(s))s∈N be the sequence of a discrete time non-homogeneous m-
states Markov chain. If P(s), s ∈ N are circuit matrices then from Theorem 2.1,
∀t ≥ m− 1 their row column product, P(t)(s) = P(s + 1) ∗P(s + 2) ∗ · · · ∗P(s + t),
that represents the stochastic process t-step evolution equation, is a full matrix.

Some definitions and results given in [7] are reported.
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Definition 3.1. Let

A =

[
A1,1 A1,2

0T A2,2

]

be a m×m matrix, where A1,1 is a m−1×m−1 circuit matrix, A1,2 is a m−1 non
negative column vector in which at least 1 element is positive, A2,2 = [amm] , amm>0
and 0T is a m−1 null row vector; then A is a mono-unireducible matrix.

Definition 3.2. A homogeneous Markov chain is mono-unireducible if its transition
probability matrix P is a mono-unireducible matrix.

Consequently the chain has:

1) Only two classes of states. The first is a transient class and the second is an
absorbing class.

2) The absorbing class is constituted by only one state.
3) All the elements of the main diagonal of the transition matrix are always greater

than 0.

Theorem 3.1. ([7]) Let (P(s))s∈N be the sequence of a discrete time non-
homogeneous m-states Markov chain. If each P(s), s ∈ N, is a mono-unireducible
matrix.

Fixed P(t)(s) = P(s + 1) ∗P(s + 2) ∗ · · ·∗P(s + t),∀t ≥ m− 1 then we have the
following results:

1) P(t)(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(t)
1,1(s) p(t)

1,2(s) · · · p(t)
1,m−1(s) p(t)

1,m(s)

p(t)
2,1(s) p(t)

2,2(s) · · · p(t)
2,m−1(s) p(t)

2,m(s)
...

...
. . .

...
...

p(t)
m−1,1(s) p(t)

m−1,2(s) · · · p(t)
m−1,m−1(s) p(t)

m−1,m(s)

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

where ∀t ≥ m−1 p(t)
i j (s) > 0;

2) lim
t→∞

P(t)(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1

0 0 · · · 0 1

...
...

. . .
...

...

0 0 · · · 0 1

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∀s ∈ N. (14)

The result of this theorem is really useful in insurance and credit risk models
because usually the transition matrices in these environment are mono-unireducible.

In some particular credit risk models it can be interesting the generalization of
the Theorem 3.1 in this line.
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Definition 3.3. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 · · · A1s A1s+1

0 A22 A23 · · · A2s A2s+1

0 0 A33 · · · A3s A3s+1
...

...
...

. . .
...

...
0 0 0 · · · Ass Ass+1

0 0 0 · · · 0 As+1s+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

be a m×mnon negative matrix, where
Ai,i are square circuit matrices,

∀i ∃ j > i : Ai, j ≥ 0, Ai, j �= 0,

As+1s+1 = [amm] , amm > 0, then A is a single-unireducible matrix.

Definition 3.4. An homogeneous Markov chain with a single-unireducible transi-
tion probability matrix P is said to be a single-unireducible Markov chain.

Consequently a single-unireducible homogeneous Markov chain has:
– The absorbing class with only one state.
– Each sub-matrix that represents a class constitutes a circuit matrix.

A mono-unireducible Markov chain is a particular case of single-unireducible
Markov chain. An example of single-unireducible Markov chain is given in Fig. 1.
The sub-matrices represent, if they are in the main diagonal (Ai,i), the relation in-
side a class. These sub-matrices are circuit matrices. A sub-matrix outside the main
diagonal represents the connections between two classes; it has to be a non-zero
matrix. This fact expresses the possibility to go from one class to the other. All the

X X X X

X X X X

X X X X

X X X X

X X X X X X

X X X X X X

X X X X

X X X X

X X X

X X X

X X X

X X X

X

Fig. 1 Seven classes of states single unireducible Markov matrix
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Fig. 2 Graph of the partial
order among the classes

C1 C2

C3

C5 C6

C7

C4

X X X X X X X

X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X

X X X X X X X

X X X X X

X X X X X

X X X

X X X

X X X

X X X

X

Fig. 3 Reachability matrix of Markov matrix given in Fig. 1

sub-matrices related to the transient classes do not have the same order; the matrix
in Fig. 1 is constructed in this way only to distinguish the transient classes by the
unique absorbing class.

Figure 2 represents the partial relation order defined on the classes of states of
the matrix depicted in Fig. 1. In this example it results

C1 ≥C4 ≥C5 ≥C7 = A;
C2 ≥C3 ≥C5 ≥C7 = A;
C2 ≥C3 ≥C6 ≥C7 = A.

In the Fig. 3 it is given the reachability matrix (see [1]) of the matrix shown in
Fig. 1.
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Definition 3.5. Two block matrices have the same topological block structure if the
non-zero blocks are in the same positions.

Definition 3.6. A non-homogeneous Markov chain with transition probability ma-
trices (P(s))s∈N is said to be single-unireducible if ∀s P(s) is a single-unireducible
matrix and they have the same topological block structure.

Theorem 3.2. Let (X(s))s∈N a m-states single-unireducible non-homogeneous
Markov chain with transition probability matrices (P(s))s∈N. Then

lim
t→∞

P(t)(s) =

⎡
⎢⎢⎢⎣

0 0 · · · 1
0 0 · · · 1
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎦ .

Proof. ∀i �= m∃ a class Ch
j to which i ∈Ch

j . Then since Ch
j ≥Ch

lh
it exists a sequence

of times {s,s+ t1,s+ t2, . . . ,s+ th} and states
{

i,xs+t1 ,xs+t2 , . . . ,xs+th

}
such that

P(Xth = xth ∈Ch
lh
,Xth−1 = xth−1 , . . . ,Xs = i ∈Ch

j ) > 0

consequently p(th)
i,xth

(s) > 0.

Let consider whatever time t > th > s. It results that

p(t)
i,m(s) = ∑

k �=m

p(t−1)
i,k (s)pk,m(t + s)+ p(t−1)

i,m (s)

from which p(t)
i,m(s)− p(t−1)

i,m (s) = ∑
k �=m

p(t−1)
i,k (s)pk,m(t + s).

So we can see that the sequences
(

p(t)
i,m(s)

)
t∈N
t≥s∈N

is an increasing bounded sequence

then its limit exists. Let suppose that lim
t→∞

p(t)
i,m(s) = 1−ε, 0 < ε < 1 then ∀δ > 0 ∃n̄∈

N:∀n≥ n̄1−ε−δ < p(t)
i,m(s) < 1−ε which implies that∀t > n̄ p(t)

i,m(s)− p(t−1)
i,m (s) < δ

if and only if ∑
k �=m

∑
α∈E

p(th)
i,α (s) · p(t−1−th)

α ,k (th + s) · pk,m(t + s)<δ which implies

∑
α∈Ch

lh

∑
k∈Ch

lh

p(th)
i,α (s) · p(t−1−th)

α ,k (th + s) · pk,m(t + s) < δ . (16)

Now since Ch
lh

is a minimal transient class it exists ∃k ∈Ch
lh

: pk,m(t + s) > 0; more-

over for i ∈ Ch
j ∃α ∈ Ch

lh
: p(th)

i,α (s) > 0; furthermore ∀α,k ∈ Ch
lh

and (t − 1− th) >

m−1 p(t−1−th)
α ,h (th + s) > 0 (see Theorem 2.1).

Now call b = min
α ,k∈Ch

lh

{
p(t−1−th)

α ,k (s+ th)
}

> 0 then (16) implies that
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∑
α∈Ch

lh

∑
k∈Ch

lh

p(th)
i,α (s) ·b · pk,m(t + s) < δ and setting B = b ∑

α∈Ch
lh

p(th)
i,α (s) > 0 it

should be
∑

k∈Ch
lh

pk,m(t + s) <
δ
B

(17)

But nothing can ensure (17) for single-unireducible Markov chains, consequently

lim
t→∞

p(t)
im(s) = 1− ε, 0 < ε < 1 can not be true for all ε and lim

t→∞
p(t)

im (s) = 1,∀i =
1, . . . ,m−1. �

4 Single Unireducible Semi-Markov Chains

First of all we define the DTNHSMP and the most used variables.
In SMP environment, two random variables (r.v.) run together. Jn n∈N with state

space E = 1,2, . . . ,m represents the state at the n-th transition. Tn,n ∈ N with state
space equal to N represents the time of the n-th transition,

Jn : Ω → E Tn : Ω → N.

We suppose that the process (Jn,Tn) is a non-homogeneousMarkov renewal process.
The kernel B = [bi j(s, t)] associated to the process is defined in the following

way:
bi j(s,t) = P[Jn+1 = j,Tn+1 = t| Jn = i,Tn = s]

and it results

pi j(s) = lim
t→∞

t

∑
τ=s+1

bi j(s,τ); i, j ∈ E, s ∈ N, s≤ t,

where P(s) = [pi j(s)] is the transition matrix of the embedded non-homogeneous
Markov chain in the process. Furthermore, it is necessary to introduce the probabil-
ity that process will leave state i from time s up to time t

Hi(s,t) = P [Tn+1 ≤ t|Jn = i, Tn = s] =
m

∑
j=1

t

∑
τ=s+1

bi j(s,τ).

Now it is possible to define the distribution function of the waiting time in each
state i, given that the state successively occupied is known

Gij (s, t) = P [Tn+1 ≤ t|Jn = i,Jn+1 = j,Tn = s]

=

⎧⎨
⎩

t
∑

τ=s+1
bi, j(s,τ)/pi, j(s) if pi, j(s) �= 0

1 if pi, j(s) = 0.
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Now let N(t) = sup{n ∈ N|Tn ≤ t} then the NHSMP Z(t) = JN(t), t ∈ N can be
defined.

It represents, for each waiting time, the state occupied by the process.
The semi-Markov transition probabilities are defined by

φi, j(s,t) = P [Z(t) = j|Z(s) = i] .

The evolution equation of DTNHSMP is

φi, j(s, t) = (1−Hi(s,t))δi j +
m

∑
k=1

t

∑
ϑ=s+1

bi,k(s,ϑ)φk, j(ϑ , t).

Definition 4.1. Let B(t) = t − TN(t)be the backward recurrence time process (see
[10, 11]). We denote

bφi, j(l,s;t) = P [Z(t) = j|Z(s) = i, B(s) = l] , (18)

φb
i, j(s; l,t) = P [Z(t) = j, B(t) = l|Z(s) = i] . (19)

Definition 4.2. A discrete time non-homogeneous semi-Markov process (DTNH
SMP) is mono-unireducible if:

(1) B(s,s+ 1), ∀s ∈N is mono-unireducible.
(2) bi,i(s,t) > 0 ∀i ∈ E, ∀s < t; s, t ∈ N.

Definition 4.3. It is possible to define the following probability:

b(n)
i, j (s, t) = P [Jn = j, Tn = t|J0 = i, T0 = s] ,

where

B(1)(s, t) = B(s,t),

B(2)(s, t) = B(s,t)•B(1)(s,t); b(2)
i, j (s, t) = ∑

k∈E

t

∑
ϑ=s+1

bi,k(s,ϑ)b(1)
k, j (ϑ ,t),

...

B(n)(s, t) = B(s,t)•B(n−1)(s,t); b(n)
i, j (s, t) = ∑

k∈E

t

∑
ϑ=s+1

bi,k(s,ϑ)b(n−1)
k, j (ϑ , t).

Lemma 4.1. ([7]) Let (Zt |t ∈ N) be a mono-unireducible DTNHSMC and fixed

B(n)(s,t) =

[
B(n)

1,1(s, t) B(n)
1,2(s, t)

0T 1

]
; n≥ m; s < t; s,t ∈ N

then it results
B(n)

1,1(s, t)� O, B(n)
1,2(s, t)� 0 , (20)

where O is an m−1×m−1 zero matrix.
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Theorem 4.1. ([7]) Let (Z(t)|t ∈ N) be a semi-Markov chain and φi, j(s,t) =
P [Z(t) = j|Z(s) = i]. If the DTNHSMP is mono-unireducible then

lim
t→∞

�(s,t) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 0 1
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦

, ∀s ∈ N.

Remark 11. From the previous theorem it results that

1) the sequence (φi,m(s,t))t∈N , ∀s ∈N, ∀i ∈ E is increasing.
2) lim

t→∞
φi,m(s, t) = 1.

This implies that (φi,m(s,t))t∈N , ∀s ∈N, ∀i∈ E is the d.f. of going in the absorb-
ing state starting from state iat time s.

In credit risk problems it can be interesting the generalization of the Theorem 4.1
in this line.

Definition 4.4. A unireducible non-homogeneous semi-Markov chain such that:

(1) B(s,s + 1), ∀s ∈ N is single-unireducible and they have the same topological
structure.

(2) B(s, t)∀s < t; s, t ∈ Nis a matrix with the same diagonal block structure as
B(s,s+ 1).

is said to be a single-unireducible semi-Markov chain.

Theorem 4.2. Let (Z(t)|t ∈ N) be a semi-Markov chain and φi, j(s, t) = P [Z(t) =
j|Z(s) = i]. If the DTNHSMP is single-unireducible then

lim
t→∞

�(s,t) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 0 1
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦

, ∀s ∈ N.

Proof. It results

φi,m(s,t) = (1−Hi(s, t))δim +
m

∑
k=1

t

∑
ϑ=s+1

bi,k(s,ϑ)φk,m(ϑ ,t). (21)

If i ∈ E−{m} ∃ h, j : i ∈Ch
j and (21) becomes

φi,m(s, t) =
m

∑
k=1

t

∑
ϑ=s+1

bi,k(s,ϑ)φk,m(ϑ , t).



Non-Homogeneous Single-Unireducible Markov and Semi-Markov Chains 209

Taking into account all the possible states and backward values (see [6]) it results

φi,m(s, t) = P [Z(t) = m|Z(s) = i]

=
t−1−s

∑
l=0

∑
k∈E

P [Z(t) = m, Z(t−1) = k, B(t−1) = l|Z(s) = i]

=
t−1−s

∑
l=0

∑
k∈E

P [Z(t) = m|Z(t−1) = k, B(t−1) = l,Z(s) = i]

×P [Z(t−1) = k, B(t−1) = l|Z(s) = i] .

From markovianity of backward processes (see [11]) it results

φi,m(s,t) =
t−1−s

∑
l=0

∑
k∈E

P [Z(t) = m|Z(t−1) = k, B(t−1) = l]

×P [Z(t−1) = k, B(t−1) = l|Z(s) = i] ,

that is

φi,m(s, t) =
m

∑
k=1

t−s−1

∑
l=0

φb
i,k(s; l,t−1)bφk,m(l, t−1;t), (22)

where, as already stated, the b apex on the left stands for initial backward and on
the right for final backward

φi,m(s,t) =
t−s−1

∑
l=0

φb
i,m(s; l, t−1)bφm,m(l, t−1;t)

+
m−1

∑
k=1

t−s−1

∑
l=0

φb
i,k(s; l,t−1)bφk,m(l, t−1; t),

that is

φi,m(s,t) = φi,m(s, t−1)+
m−1

∑
k=1

t−s−1

∑
l=0

φb
i,k(s; l,t−1)bφk,m(l, t−1;t). (23)

From (23) it results that the sequences (φim(s, t))t>s , i = 1, . . . ,m−1; s, t ∈N are
increasing and φim(s,t)≤ 1that means ∃ lim

t→∞
φi,m(s, t), ∀i.

Now we suppose that

lim
t→∞

φi,m(s, t) = 1− ε, 0 < ε < 1. (24)

From (23) and (24) it results

∀δ > 0∃n̄ ∈ N : ∀t > n̄⇒
m−1

∑
k=1

t−s−1

∑
l=0

φb
i,k(s; l,t−1)bφk,m(l, t−1;t) < δ . (25)
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Such condition implies that

m−1

∑
k=1

φb
i,k(s;0,t−1)bφk,m(0,t−1;t) < δ . (26)

Furthermore:
1) bφk,m(0,t−1;t) = φk,m(t−1,t) = bk,m(t−1,t) because it denotes the absence

of backward at the starting time.

2) φb
i,k(s;0,t−1)≥ b(n)

i,k (s, t−1) ∀n≤ (t−1)−s because the left part denotes the
probability of entering in state k at time t− 1, starting from state i at times, in any
possible number of transitions. The right part denotes the same event considering
just n transitions.

From (26) it results

m−1

∑
k=1

b(n)
i,k (s, t−1)bk,m(t−1,t) < δ ⇒

m−1

∑
k=1

∑
α∈E

b(r)
i,α(s,th) ·b(n−r)

α ,k (th, t−1) ·bk,m(t−1, t) < δ ⇒ (27)

∑
k∈Ch

lh

∑
α∈Ch

lh

b(r)
i,α(s, th) ·b(n−r)

α ,k (th,t−1) ·bk,m(t−1, t) < δ .

Without loss of generality we assume that m−1 < r < n− (m−1).
Since Ch

lh
is a minimal transient class it∃ k ∈Ch

lh
: bk,m(t−1, t) > 0.

Setting θ = min
α ,k∈Ch

lh

{
b(n−r)

α ,k (tr, t−1)
}

it results that θ > 0 in fact α ∈ Ch
lh
, k ∈

Ch
lh

and Ch
lh

corresponds to a circuit matrix then from Lemma 4.1 B(n−r)(tr, t)� 0.

It should be θ ∑
k∈Ch

lh

∑
α∈Ch

lh

b(r)
i,α(s,tr) ·bk,m(t−1,t) < δ and setting Θ = θ ·

∑
α∈Ch

lh

b(r)
i,α(s, tr),Θ > 0 because i ∈Ch

j and α ∈Ch
lh

with Ch
j ≥Ch

lh
then it exists a se-

quence of times {s,t1,t2, . . . ,tr} and a sequence of states {i,xt1 ,xt2 , . . . ,xtr} such that

P(Xr = xtr ∈Ch
lh
,Tr = tr|XN(s) = i ∈Ch

j ,TN(s) = s) = b(r)
i,xtr

(s, tr) > 0.

Then we should have

∑
k∈Ch

lh

bk,m(t−1, t) <
δ
Θ

(28)

but nothing can ensure (28) for single-unireducible semi-Markov chains, conse-
quently, (28) is false. This means that lim

t→∞
φi,m(s, t) = 1− ε, 0 < ε < 1 can not be

true ∀ε and
lim
t→∞

φim(s, t) = 1, ∀i = 1, . . . ,m−1.

�
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Shareholding Networks and Centrality:
An Application to the Italian Financial Market

M. D’Errico, R. Grassi, and S. Stefani, and A. Torriero

Abstract In this paper we studied the Shareholding Network (SN) embedded in the
Italian Stock Market (MIB). We identified the central companies both in the role
of transferring information flows and controlling companies. To this end we used
betweenness and flow betweenness centrality measures, together with in and out
degree. We tested the scale-free property on in and out degree, betweenness and
flow betweenness centrality. The effect of external shocks to SN and the different
extent on which companies react to them are measured relating asset volatility and
betweenness.

1 Introduction

As it is well known from firm growth theory, companies can substantially reduce
their risk by diversifying production (even in presence of important institutional
constraints), create scale economies thereby reducing their average costs and coping
with the necessary dimensional growth due to the market structure, globalization,
etc., increase their market power by implementing strategies aimed at controlling
other companies.

For these reasons companies tend to acquire other companies and exercise their
shareholding power. Due to the need to survive in a market becoming large and
integrated, mergers and control acquisition over companies are phenomena quite
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common in Europe nowadays (see the recent case Banco Santander-San Paolo) and
networks of companies are created by connection through shareholding. Thus it is
crucial to investigate the stability of such networks or, in other words, to ascertain
how an external shock propagates through the network and which the effect on the
market performance of the controlled and controlling companies can be. The Share-
holding Network (SN) is the tool we use to analyze the shock transmission effects
among companies which are connected by shareholding. We agree with [2] that al-
though understanding the properties of a (national or supernational) system is an
important strategic issue in economics, the topological structure of ownership and
shareholding networks has not yet been thoroughly studied. Such networks seem
sensitive to local bankruptcies and it is recognized that a failure on one or more
companies related to each other by ownership ties can have unexpected effects on
the market as a whole (see for instance the cases Enron and Parmalat). In the light
of these anomalies one can wonder which is the best topological structure of a SN,
i.e. whether a network which is well connected can stand disruption better than a
network composed of many connected components. We will see, in an application
to the Italian Market MIB, that the topology of the network can give indications on
the market structure and its components.

Recent research has been carried out to model financial markets as a network.
More precisely, in [3] and [4] a financial network is constructed representing the
stock market data, which is obtained by calculating cross-correlations of stock price
returns based on the opening prices over a certain period of time. Two vertices are
connected if the correlation coefficient (for a given time span) exceeds a specified
threshold. The structural properties of the market graph over time are also studied to
obtain useful information on the dynamics of the stock market. In [7] a correlation-
based network is constructed in the same way. A metric distance based on corre-
lations, and structural properties, is introduced through minimum spanning trees at
different time horizons, are deduced. In [13] a financial community is defined as
a group of stocks selected by common opinion makers. By analyzing a large data
base of web opinions, the authors relate connectedness to return correlations and
find stocks that are hubs for information flows. Stocks with high centrality scores
tend to have longer average covariance with other stocks than those with low scores.

In this paper we adopt a similar approach as in [1, 2], and [23], and model as a
SN the universe of the quoted companies in the Italian Market MIB related to each
other by shareholding ties.

In [17] some statistical properties of NYSE, NASDAQ and MIB are analyzed. In
[23] the Japanese SN is studied with a special attention to the automotive industry
and several properties of the sector are discussed.

Another important issue in SN refers to the detection of dominant subgraphs, i.e.
a group (or groups) of companies that control the market through ownership. We
believe that exploring topological measures to identify preeminent companies in the
network is the right approach and in particular we refer to centrality. In the literature
there are many contributions on centrality, both theoretical and empirical (see, for
example [5, 6, 10] and [15]) and the concept is broad enough to allow us to choose
which of the centrality measures fits our needs. A formal definition of betweenness
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and flow betweenness centrality was introduced first in [14] and [16] respectively;
we refer to Borgatti [8] for other definitions and their implications. For a theoretical
unifying approach see [18], where it is shown that all centrality measures, under
certain conditions, are compatible with structural or automorphic equivalence. In
[19] the structural properties related to betweenness are deeply investigated, in par-
ticular some cases in which betweenness attains its extremal values are examined;
moreover, the new concept of total betweenness is defined and related to group be-
tweenness, and a necessary and sufficient condition for the two measures to coincide
is proved.

By introducing indegree, outdegree, betweenness and flow betweenness as cen-
trality measures, we detect central companies under the different concepts: as far
as the flow of information is concerned, the role of banks and insurance companies
is clearly identified as the core of the Italian system. They play the role of hubs
and we find evidence of a scale-free behaviour. Further, we relate asset volatility
to centrality and quite reasonably find that central companies are less volatile. This
means that external shocks tend to be absorbed by the central companies and the
stability of the system is ensured by hubs. On the contrary, peripheral nodes are
more volatile and then more sensible to external shocks. On the other hand, as soon
as we recur to flow betweenness, i.e. we take into account the amounts of holding
quotas, the scenario changes and industrial groups emerge, showing that large part
of the MIB-quoted companies relate to seven companies, four of which lead to three
major industrial groups.

Our model is not based on portfolio diversification (see, e.g. [2]): we claim, and
this is confirmed by our results, that detection of ownership quotas can only in part
be related to diversification purposes. In fact, as a side result of this research we
confirm the intuition mentioned in [2]: the well known Capital Asset Pricing Model
does not apply in our SN network. Companies diversify but not according to the
market portfolio, i.e. investing in all companies in the market with a quota given by
the respective capitalization relatively to the market capitalization, but instead tend
to hold shares of companies of the same sector (this is a quite common practice in
the production sector). Hubs, in our case essentially financial institutions, diversify.
This result is supported by the distribution of holding quotas, showing a typical
scale-free pattern.

The paper is structured as follows: in Sect. 2 we report preliminary definitions on
graphs and scale-free networks; in Sect. 3 we describe all centrality measures used
in this work; in Sect. 4 we introduce the model and the data set; the results are shown
in Sect. 5. Conclusions and suggestions for further research are in the last section.

2 Preliminaries

A graph (denoted by G(V,E)) is a pair of sets (V,E), where V is the set of n nodes
and E is the set of m unordered pairs of nodes of V ; the pair (i, j) ∈ E is called an
edge of G and i and j are called adjacent (i ∼ j). A graph is simple if it is without
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loops and multiple edges. An undirected graph is a graph in which if (i, j) ∈ E, then
( j, i) ∈ E . The degree d(i) of a node i is the number of edges on which the node is
incident.

A path is a sequence of adjacent nodes, where all nodes are distinct. The shortest
path starting from a node i and ending in j is said geodesic. We will indicate as i− j
the geodesic starting from i and ending in j.

The distance d(i, j) between two vertices i and j is the length of a shortest path
from i to j.

A graph is connected if for each pair of nodes i and j, (i, j = 1,2, . . . ,n), there
is a path beginning in i and ending in j. A connected component of G(V,E) is the
maximal connected subgraph of G(V,E); obviously, a graph is connected if and only
if it has only one connected component, otherwise G is disconnected.

A graph is complete if every pair of nodes is adjacent; we denote the complete
graph on n nodes with Kn; the graph K2 is called triangle.

The adjacency matrix A(G) of an undirected graph is a matrix in which the i j-th
entry is 1 if i∼ j, and 0 otherwise.

A weighted graph is a graph G where every edge (i, j) has a weight w(i, j) = wi j

associated with it. We indicate a weighted graph with N(V,E), (network) where W
is the finite set of the m weights, each for every edge. If N(V,E,W ) is a network,
G(V,E) is the underlying graph.

A digraph D(V,A) is a pair of sets (V,A), where A is the set of m ordered pairs of
nodes of V ; the pair (i, j) ∈ A is an arc of D. A pair of arcs joining nodes i and j is
said symmetric if both arcs (i, j), ( j, i) ∈ A; an oriented graph is a digraph D(V,A)
having no symmetric pairs of arcs.

All the previous definitions about G can be naturally extended to D; some def-
initions, useful for our results, are recalled here.1 If there is an arc starting from i
and ending in j we say that i is adjacent to j and j is adjacent from i; the in-degree
din( j) of a node j is the number of adjacents to i, and the out-degree dout( j) of j is
the number of adjacents from j.

The degree function p(k) gives the number of nodes with exactly k edges. A
random variable (r.v.) K is distributed as a power law if its probability distribution is

f (k) = ck−α ,

where α is a positive parameter and c is a positive scale factor (see for example
[20]), so f (k) gives the probability that a node in the network has degree k.

A r.v. has a lognormal distribution if Y = lnK is normally distributed. Hence the
density function of a lognormal satisfies

f (k) =
1√

2πσk
e−(lnk−µ)2/2σ 2

,

where µ and σ2 are mean and variance of Y respectively.
The lognormal and power law distributions are similar in shape. In a log–log

plot, while the power law can be easily fitted by a straight line, the lognormal will

1 For more definitions and properties see for example [10].



Shareholding Networks and Centrality: An Application to the Italian Financial Market 219

generally appear to be nearly a straight line for a large portion of the body of the
distribution. If in particular the variance of the degree distribution is large, the dis-
tribution may appear linear for a large range of values [11, 22].

In a scale-free network only few nodes have a high degree (hubs), while most
nodes have a low degree. As a consequence, the degree distribution is characterized
by a high variance or variation coefficient [20].

It has been recognized [11, 22] that generative processes leading to scale free
networks (like the preferential attachment property) yield to power law or lognormal
distributions. In many applications it has been proved that the degree distribution
follows a power law where 2 < α < 3 [20]. In those cases f (k) has infinite variance.

3 Centrality Measures

In this section we review some definitions about centrality measures which will be
needed later. Among various centrality indices that have been introduced over the
years, we will focus our attention on: indegree, outdegree, betweenness and flow
betweenness centrality.

Actually, as we discuss later on, we consider them as the most appropriate mea-
sures for our analysis.

The degree centrality is the simplest centrality measure, related to degree, and in-
dicates how many neighbours each node has: a node is degree central if it is adjacent
to many other nodes. Formally:

Definition 1. Let G(V,E) be a graph and let i ∈V . The degree centrality d(i) is the
number of edges incident to i.

This definition can be generalized to a digraph D(V,A) as follows:

Definition 2. The indegree centrality din(i) and the outdegree dout(i) of a node
i in a digraph are the number of arcs directed respectively to and from i.

The betweenness centrality, related to geodesics, identifies the intermediary role
of a node in a graph: a node is betweenness central if it lies on many geodesics
between other nodes. It gives the idea of traffic/information volume flowing between
two nodes and passing through the intermediary. A node is central if it controls a
large amount of the information flowing in the network. Formally:

Definition 3. Let G(V,E) be a graph and let k ∈V . The betweenness centrality b(k)
is defined as

b(k) = ∑
i< j

gi j (k)
gi j

, i, j �= k,

where gi j is the number of geodesics from i to j, and gi j (k) is the number of geo-
desics between i and j passing through k.
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The normalized betweenness is

b(k)(
n−1

2

) .

For valued graphs (networks), the flow betweenness centrality, related to the con-
cept of maximum flow, generalizes the notion of betweenness. All paths between
nodes, not only geodesics, are considered. Formally:

Definition 4. Let N (V,E,W ) be a network. For a node k in V , the flow betweenness
centrality f b(k) is

f b(k) = ∑
i< j

mi j (k) , i, j �= k ,

where mi j (k) is the maximum flow from node i to node j passing through k.

Thus the flow betweenness measures the contribution of a node to all possible
maximum flows.

4 The Model

4.1 The Data Set

We considered the universe of companies (n = 223) quoted in MIB (Milan Stock
Exchange) in the time span 1/1/2004, 31/12/2004. Shareholding data are taken from
[9, 12, 21]. We computed the daily returns and the historical volatility as the daily re-
turn standard deviation σi (i = 1, . . . ,n). Since the quantity held by investment funds
(even in a short period) can be floating, to get a single value we referred to [21].

4.2 The Shareholding Network (SN)

We investigate the Italian market (MIB) and focus on some topological proper-
ties. The graph associated with the shareholders and quoted companies network
is weighted and oriented. Companies are the nodes; an arc is drawn from the share-
holder to the owned company, weighted by the proportion of shares held by the
shareholder. Denoting by qi j the number of shares of the j-th company held by the
i-th company and by cap j the market value of j, the weight is given by

w̃i j =
qi j

cap j
i, j = 1, . . . ,n

where n is the number of quoted companies. We considered as shareholders only
quoted companies, i.e. we did not include shares held by companies not MIB-
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quoted. The weight wi j can be interpreted as a measure of the capacity flowing
through an arc: no more than 100% can flow towards the owned company and this
is an obvious upper limit to shareholding. Another interpretation is based on reliabil-
ity theory: the weight can be seen as the probability that an information can through
flow freely the arc. We introduced a threshold w0 of 0.01%, so our weights are

wi j =
{

0, if w̃i j−w0 ≤ 0,
w̃i j, if w̃i j−w0 > 0.

(See, for instance, [13] or [3] under which the weights are set to zero.) The idea
behind is that a low participation share has practically no influence on the owned
company’s strategy and consequently on its market performance.

A non-symmetric weight matrix W = [wi j], i, j = 1, . . . ,n is generated.
Our first aim is to identify the SN central companies, taking in mind that central-

ity depends on the particular features we want to discover.
We computed some centrality measures: indegree, outdegree, betweenness2 and

flow betweenness. The first two are related to degree centrality and give an imme-
diate idea of the direct connections of nodes: a high outdegree means high share-
holding, a high indegree means a high number of company’s shareholders. Note
that while the indegree, possibly with the sum of weights, indicates precisely which
fraction of the company is detained by other companies, the outdegree does not pro-
vide information on the amount of capital involved and indicates quite roughly the
diversification attitude of the company.

On the other hand centrality measured by betweenness allows an interesting in-
sight into the inner SN structure. Then we assess how an external shock propagates
through the network and how companies are affected. In the light of the efficiency
theory of capital markets, we assume here that the market is immediately receptive
of external shocks so prices adjust instantaneously. Betweenness is based on the
number of shortest paths passing through each node connecting other pairs of nodes
and so relies on the idea that an information or a shock takes the shortest path to
reach a node. Since it has to be computed on the undirected and not weighted graph,
what we can deduce from a high betweenness is the fact that the company is a nodal
point in the flow of information but it can be either a controlling or a controller.3

Viceversa a low betweenness shows that the company is not an information in-
termediary. On the other hand, flow betweenness, by definition, does not require
the information flowing necessarily through the shortest path (thereby suggesting
an unreasonable delay in transferring information) but, while maximizing the flow,
considers all paths: this seems a more reasonable approach to describe control. An
indirect control of a company can be achieved by reaching it via different paths,
passing through more and more companies.

2 Note that in order to calculate betweenness centrality we limited ourselves to the adjacency
matrix A = [ai j] where 1 indicates the presence of shareholding. This implies that if wi j > 0 then
ai j = 1. In this case the graph is neither weighted nor oriented.
3 We can define roughly as controller a company whose capitals devoted to diversification are
much higher than the own capitals held by others.
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5 The Results

Taking out the isolated nodes4 (102), the resulting graph is as in Fig. 1.
The SN is composed of five connected components: we will concentrate our

analysis on the largest connected one (109 nodes).

5.1 Degrees, Betweenness and Information

The most outdegree and indegree central nodes are reported in Table 1.
Banca Intesa (dout = 88) and S. Paolo IMI (dout = 74) are the highest outdegree

companies5 and account for 29% of all outdegrees. Not surprisingly the first ten
companies with highest outdegree are all financial institutions (banks or insurance
companies) and account for 73% of all outdegrees. This confirms the key role of
financial intermediaries in the Italian economy and qualify them as possible hubs.
We checked the presence of the scale-free property in outdegree and indegree. See
the outdegree logarithmic plot in Fig. 2.

The outdegree distribution shows a high volatility (µ = 5.18, σ = 13.73,σ/µ =
2.65) and the power law function (α = 1.39) fits nicely the distribution (R2 = 0.94).

Fig. 1 SN without isolated nodes

4 We do not consider control quotas held by non MIB-quoted companies.
5 Banca Intesa and S. Paolo IMI merged at the end of 2006 creating the sixth largest financial
institution in the world.
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Table 1

Name dout Name din

B. Intesa 88 Autostrade 13
S. Paolo IMI 74 B. Intesa 12
RAS 60 RCS Mediagroup 11
B. Fideuram 46 Alleanza 10
B. Sardegna 37 Mediobanca 10
BP Lodi 27 BPU Banca 10
Generali 22 Autogrill 10
B. Intermobiliare 20 B. Antonveneta 9
Fondiaria-SAI 18 B.P. Verona No 9
BNL 18 Ass. Generali 9

Fig. 2 Log outdegree – R2 = 0.94, α = 1.39

The indegree distribution shows a more regular pattern (µ = 4.15, std. dev σ = 2.79,
σ/µ = 0.672) and a power law fitting of α = 0.62 (R2 = 0.79). Knowing that the
scale-free property is a necessary condition for the presence of hubs (see [17, 20]),
detection of scale-free in outdegree means the possible presence of hubs, while a less
pronounced scale-free in the indegree sequence shows a kind of assortative mixing
(see [23]). Thus there are very few companies that diversify (essentially banks and
insurance companies), while most of the companies in the biggest connected com-
ponent have scarce direct links or are controlled (56 out of 109 companies have zero
outdegree).

This result is confirmed by betweenneess values.
Banca Intesa and S. Paolo-IMI are again the highest betweenness central compa-

nies and the 12 most central companies are all banks and insurance companies, but
not necessarily the highest in outdegree, as can be seen in Fig. 3.

A scale free behaviour is confirmed by the fitting of betweenness centrality; a log-
normal curve fits better the distribution than a power law (R2 = 0.95 vs R2 = 0.82,
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Company Betweenness Out-degree In-degree

(norm)

B Intesa 0,7058162 88 12

S. Paolo - Imi 0,5335697 74 5

Ras 0,2986899 60 0

B Fideuram 0,2030733 46 8

Assicurazioni Generali 0,1234863 22 9

Bnl 0,1157525 18 8

BP Lodi 0,1043315 27 6

B Sard 0,0915177 37 1

Banca Antonveneta 0,0713815 5 9

B Intermobiliare 0,0691372 20 6

BP Verona No 0,0577655 3 9

Monte Paschi Si 0,0541684 7 4

Fig. 3 The 12 most betweenness central companies

α = 2.39; the distribution: µ = 0.03, σ = 0.09, σ/µ = 3.02, see Fig. 4). This is
explained by the magnitude of the variance. The distribution is not so volatile like
in and out degrees and the second order interpolation gives a higher R2 since the
coefficient of the second order power is a function of the reciprocal of the vari-
ance [11, 22].

In this scenario it is interesting to understand how the information intermediaries
react to external shocks and how the flow of information spreads along the paths.
To this end we related historical stock volatility and betweenness. Our conjecture is
that a highly betweenness central company, when it receives sudden information to
be spread in the network, is actually more stable than less central nodes (we assume
that stability means relatively low stock volatility). The central companies act as
a cushion and partially absorb with their strength the incoming shocks. This can
be seen in Fig. 5: the highest betweenness central companies show strong stability,
while there are low betweenness companies that are highly volatile. This could also
probably due to low capitalization. The four highest betweenness-lowest volatility
are Banca Intesa, San Paolo-Imi, Ras, Fideuram; the three highest volatility-low
betweenness are Geox, Bipielle Inv., Impregilo.

During our data collection two companies went bankrupt: Giacomelli and Cirio,
the first a singleton, the second belonging to a triangle. Whether they should have
survived had they belonged to the biggest component is a matter out of the scope of
this work.
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Fig. 4 Log Betweeness centrality Second order: R2 = 0.95 (blue); first order: R2 = 0.82 (black),
α = 2.39

Fig. 5 Historical volatility and betweenness
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5.2 Flow Betweenness and Control

Another interesting feature that can be studied in SN is related to control. In our
opinion a possible way to detect the real controllers is by the use of flow between-
ness. This centrality measure takes into account weights and considers all possible
paths from a node to another, thereby revealing the possible ways a company can
follow to control indirectly another company, while maximizing flow. By computing
the flow betweenness of all nodes belonging to the largest connected component, we
found out that 34 nodes out of 109 show a flow betweenness different than zero and
seven companies emerge, as in the Table 2.

A bank and an insurance company (Mediobanca and Generali) are still at the
top, even though they are not among the highest in betweenness and outdegree,
but now the industrial groups show their importance: Pirelli, Fiat and Edison. Their
central role is apparent. A particular case is RCS, an editorial company, owner of the
famous newspaper Corriere della Sera. RCS was recently (after 2004) at the center
of a struggle for control that ended up in judicial courts.

We checked again the presence of scale free in flow betweenness. As in between-
ness, a better fitting is obtained by a second order interpolation, i.e. a lognormal
instead of a power law (R2 = 0.97 vs R2 = 0.86 with α = 2.41; the distribution:
µ = 160.57, σ = 621.94, σ/µ = 3.87; see Fig. 6). Thus, the seven companies play
the role of “control hubs”.

6 Conclusions

This paper focuses on some topological properties of the financial Italian Market
(MIB), from the point of view of the shareholding structure. More specifically,
suitable centrality measures are used to perform our analysis. First we suggest that
betweenness centrality can identify companies which are central in the informa-
tion flow; then, recognizing that the control of a company can be exercised also in
an indirect way, i.e. through a chain of shareholding not necessarily via the mini-
mum path, we propose flow betweenness to detect the indirect control. The results

Table 2 Flow betweenness highest central companies

Flow betw Betw (norm.) Outdeg Indeg

Mediobanca 4,196.5 0.0375 9 10
Generali 3,565.28 0.1235 22 9
Pirelli 2,832.08 0.0098 5 7
RCS Mediagroup 2,463.08 0.0380 2 11
Fiat 1,858.42 0.0198 4 4
Edison 737.274 0.0232 4 1
Ifil 641.26 0.0000 3 5
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Fig. 6 Log Flow-betweenness centrality Second order (blue): R2 = 0.97; first order (black):
R2 = 0.86, α = 2.41

show, quite obviously indeed, that each centrality measure helps detecting reveal-
ing specific network properties and companies which are central in one sense are in
fact playing a secondary role in another. An extension of this study to further years
could help capturing the dynamic structure of the market and the possible changes
in shareholding.
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Network Dynamics when Selecting Work Team
Members

Arianna Dal Forno and Ugo Merlone

Abstract When selecting work team members several behavioral components con-
cur. In this chapter we summarizes our line of research on this topic; here, we artic-
ulate our results and provide suggestions for extending our analysis in order to shed
light on the selection of work team members. First, a computational model – to-
gether with a theoretical approach and the results of two human experiments where
subjects interact in a similar game – allows us to identify some of the most impor-
tant determinants. Our results suggest that the occurrence of two factors is crucial:
the presence of leaders as aggregators of knowledge and the presence of agents able
to expand and improve their higher profit projects. Second, we explicitly assume
the presence of formal leaders. By analyzing the results of this modified model, we
shed light on the conditions which allow the emergence of effective leaders.

1 Introduction

Human interaction and group formation in the workplace is an important aspect in
terms of performance and satisfaction and has been studied by several authors (for
instance, [16]). In [14] it is claimed that the literature about intra-organizational
network has largely ignored the literature about formal teams. In social network
analysis various methods are available. Among others, some important threads have
included the development of mathematical tools (namely, graph theory) to charac-
terize networks, and the development of statistical tools to analyze the interdepen-
dencies peculiar to networks.
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In [22] the Author presents a model of evolution of friendship network where the
dynamics of the network structure is considered as the result of individual charac-
teristics and of behavioral rules such as preferences for similar friends.

Previous work provides a description of the mathematical models for network
evolution when ties are directed and the node set is fixed [1]. There, it is also shown
that many of these models tend to an asymptotically connected network.

Some authors present an empirical study on group composition [10]. Their find-
ings show that, when selecting group members, people are biased towards others
of the same race, or towards others who have a reputation for being competent and
hard working, or towards others with whom they have developed a strong working
relationship.

The computational approach allows a sort of “What if” analysis, and simulation
can be used to establish constructive sufficiency [21]. This may be helpful in com-
plex models where analytical results may be difficult to obtain, and in which the
consequences depend partly on random or pseudorandom processes. It may also
be a source of other insights into the relationship between the assumptions and the
consequences. Of course, the explanation has a greater impact when the relationship
between the assumptions and the result is nonobvious, and is supported by empirical
evidence.

This paper summarizes our line of research on this topic; here we articulate our
results which were published in previous contributions and provide suggestions for
extending our analysis in order to shed light on the selection of work team members.
Our line of research is articulated in several stages. First, in [5] we proposed a the-
oretical model of social interaction for the study of network dynamics, then in [6]
we analyze human subjects behavior when interacting in the proposed model. Fi-
nally, in [8], such behaviors were implemented to simulate the evolution of artificial
agent populations in a similar context. From both the analysis and the comparison
of these data two major issues emerged: the existence of leaders and their role in the
interaction, which leads to a further stage of research, concerning the emergence of
effective leaders. The results of this line of research were published in [7].

The structure of the paper is the following. In Sect. 2 the underlying theoretical
model is presented and the unique Nash equilibrium and social equilibrium are pro-
vided. Section 3 displays the results obtained after the implementation of observed
behavioral rules. Sections 4 and 5 are devoted to the proposal of our future lines
of research on this topic, namely the role of communication among agents and its
effectiveness, and a quantitative study of networks that takes into account a measure
ad hoc of influence (i.e., leadership).

2 The Theoretical Model

The organization consists of n agents univocally identified by an index i ∈ N =
{1,2, . . . ,n}. Agents interact forming projects in which at most m members can
participate. In the artificial simulations and the human subjects experiments we fixed
m = 7 (for an empirical motivation of this choice the reader may refer to Chap. II
in [15].
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Each agent can choose its partners from a subset M ⊆ N of known people. Ac-
quaintance of agents in the organization is described using a sociomatrix K. Each
element ki j of the sociomatrix K indicates whether agent i knows agent j: zero in-
dicates that i does not know j; by converse, value one indicates that i knows j. We
assume that each agent knows itself; as a consequence all diagonal entries are set to
one. K is not necessarily a symmetric n×n matrix.

Agents can participate in at most two projects; in each of them two decisions
have to be taken:

1. They must specify the designated members of the project.
2. They must specify the effort they will exert in a (repeated) public goods game.

We consider exclusively the projects where all participating agents, agree on the
team composition. The team composition, together with the participants’ efforts,
constitute an implemented project.

The relation “i works with j in an implemented project” defines a non-
dichotomous symmetric matrix W where element wi j ∈ {0,1,2} is defined by
the number of projects in which agents i and j work together. Matrix W defines
the project network; when n agents work together on an n-member project we say
they form a size n clique since in the graphical representation of matrix W they are
depicted as a clique with n nodes.

Within each implemented project agents play a public goods game (for a survey
on experimental research see [12]). The efforts of the participants are aggregated
and used to produce a commodity with a production function f ; the output is shared
among the members of the team. We denote ci agent i’s cost of effort, and assume
that greater effort means greater cost to the agent and increasing marginal cost. The
payoff of agent i in project p can be formalized as follows:

πi,p =
f
(

∑ j∈Tp(i) e j

)
n

− ci (ei) , (1)

where ei is agent i’s effort and Tp(i) is the set of partners of agent i in project p.
We assume that:

1. There is a unique level of effort maximizing agent’s payoff.
2. There exists a unique Nash equilibrium eN .
3. When all the agents exert the same effort, both the optimal effort eN and the

optimal payoff increase with the number of members participating to the project.

In order to keep the maths simple we considered in our experiments and simulations
the following payoff formulation:

πi,p =

(
∑ j∈Tp(i) e j

)2

n
− e3

i . (2)

In this case it is easy to prove that eN = 2/3, and that the socially optimal effort
for a n-team is eS

n = 2n/3. With this payoff formulation, when everybody exerts the
socially optimal effort, the individual payoff increases with the number of agents in
the team.



232 A. Dal Forno, U. Merlone

3 The Results of the Computational Model

The second stage of our research consisted in performing some experiments where
human subjects interacted on the game we presented in the previous section. The
results of these experiment were presented in [6]. When considering the simulation
stage, the first step consists in the implementation of some of the behaviors we ob-
served in the human subjects. Our purpose is not to replicate the observed human
behavior in experiments, but rather, to use the empirical data to infer some of the
implicit behaviors that generated them and model them in our artificial agents. The
objective is to establish the constructive sufficiency of the model to produce be-
havior like that observed in human aggregation processes, such as the formation of
partially connected cliques and leadership.

Human interaction and team formation is a complex phenomenon. To identify the
different components we introduce a computational model of interaction and team
formation among artificial agents (Fig.1). This way we are able to break down the
agents’ behavior in micro phases. We study the relative importance of each of these
micro aspects of behavior when these lead towards the emergence of some macro
behaviors in the artificial society we consider. Our agents are all utility maximizers
but, at the same time, they are heterogeneous in terms of behavioral rules, described
as follows. We study how heterogeneity (in our sense individual attributes at the
micro level) affects, at the macro level, the network structure and its dynamics.
Finally, the task our agents are asked to perform comprises both intragroup and
intergroup levels of conflict and, for this reason, may be interpreted as a sort of
generalized team game as studied in [3].

As mentioned, the computational model we consider is an Agent Based Model
where the classes of the behavior of the agents have been obtained analyzing the
results we acquired considering two human subject series of experiments. The first
series consisted of 21 sessions each including about 93 individuals, while the second
one consisted of 12 sessions with about 48 individuals (for a complete description
of the experiment the reader may refer to [6], while for a discussion on the use of
human subjects experiment the reader may refer to [4] and [7]).

Fig. 1 Team composition as the result of individual behavior
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While in the public goods game, agents are assumed to have the same role, in our
human subject experiments some subjects took a different role. This is not surprising
since, as it is well known, several aspects of human behavior cannot be completely
explained in terms of rationality, see for instance, [11]. In particular some individ-
uals took a leadership role within their group; this may be explained since in our
interaction the agents were allowed to communicate and discuss the game before
each repetition.

While several classes of behavior were implemented, those which resulted more
interesting were the following:

• Agents considering the two best projects and expanding the second one either by
adding one more subject or proposing a new project with at least one agent more
than the second best project.

• Agents playing the socially optimal effort.
• Provided that the leader knows less than thirteen agents, when the first best

project is not a size 7 clique or, the first best project is a size 7 clique but the
second project is not, then it introduces all the agents it knows to one another.

• When the leader knows less than seven agents and the best project is not a size
7 clique or, the agent knows less than eight agents and the best project is a size
7 clique but the second best project is not, the agent expands the vector of its
known agents in order to include all the agents that in the sociomatrix have a
geodesic distance smaller than three; in a friendship relation this would simply
mean that “the friends of my friends become my friends”.

The results we obtain with our computational model are quite interesting. They
are reported in [8] and for the sake of brevity cannot be reported here in full. Never-
theless, they can be articulated in diverse ways. A first important aspect is the role of
communication and mutual acquaintance between potential group members. While
our model was not intended to capture the individual communication between sub-
jects, even in the much simpler model of project discussion that we considered, the
importance of mutual acquaintance and agent coordination, in choosing the project
to implement, is relevant. For example, our model explains both the difficulties in
large groups with no leaders and the problems emerging when too many leaders
are present. In fact, we compared the effectiveness of leaders in terms of number
of links in the organization. According to our findings the number of leaders and
their relative location is extremely important. In this sense the leadership role is
necessary for a sort of implicit coordination of agents. In our model, leaders do not
suggest projects, rather they act on the social network and may help the emergence
of projects in the discussion phase. That is, social leaders are cardinal in stating the
pace of a balanced expansion of the social matrix; essentially they control the com-
binatorial explosion while fostering mutual acquaintance among agents. Given the
role of social leaders in group formation it is interesting to consider the model of
group development by [19]. This model in its original form consists of four stages:
forming, storming, norming and performing. While our model was not meant to
replicate Tuckman’s model, some considerations are in order. Firstly, we can inter-
pret the role of social leader in sharing members’ mutual acquaintance as a way
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Fig. 2 Project network evolution in populations with 7-interval leaders and circle graph initial
sociomatrix at turns 1–6, 10–60, 100–600, 1,000–6,000 and 10,000

to reduce uncertainty in the forming stage when importance is placed on making
acquaintances, sharing information and testing each other. Secondly, we can also
observe a sort of norming stage as the group members exert the effort which is op-
timal to the group and do not free ride. As a final point, it must be observed that,
since in our model the leaders were those agents that incentivized acquaintance
among the others, they were not the agents with more connections. By contrast, the
agents in the “influence area” of two leaders were those with more connections.
Another interesting aspect is the comparison of the human experiment and the com-
puter simulation. In Figs. 2 and 3 we present respectively artificial population evo-
lution at turns 1, 2, 3, 4, 5, 6, 10, 20, 30, 40, 50, 60, 100, 200, 300, 400, 500, 600,
1,000, 2,000, 3,000, 4,000, 5,000, 6,000 and 10,000 while human subject evolu-
tion is presented on the first 21 consecutive turns.

Finally, in Fig. 3, the project network evolution is reported for one of the human
subject experiments we considered. In this case the reported turns are consecutive
from the first to the last.

While with human subjects we found the same tendency to aggregation as in
the artificial experiments, nevertheless two important differences must be observed.
First, since the project selection process among humans is more interactive and
effective than the simple model of communication we implemented, the network
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Fig. 3 Project network evolution for a human subjects experiment at turns 1–21

evolution is faster than in the artificial society; here size 6 weakly connected clus-
ters are present on turn 2 while on turn 3 appear strongly connected clusters. Second,
the human experiment took place on different dates and we had the no-turn up prob-
lem: not all of the subjects turned up at each session of the experiment. This may
explain the project network disaggregation: subjects had to continuously adapt their
projects according to the contingent situation. The analysis of our simulations and
the comparison to the human experiment behavior indicates several directions where
to extend our research.

4 Modeling the Leadership Role

In this case we focus on the emergence of leadership when some of the observed
behaviors (see [7]) are incorporated in a network. In the first stage of our research
we consider a similar theoretical model with different stress on the leadership role.
While in the network dynamics research we studied a sort of implicit leadership, the
approach we follow in this research explicitly models the leader role. Analyzing the
different interactions, we study under what conditions individuals may emerge as
effective leaders.

In the following stage of our research the leader role will be introduced more
explicitly in the network interaction. In other words, agents will be able to decide
whether they want to be followers of a particular leader, find a different leader or
even stand as leaders themselves. The approach we follow is the one outlined in
[4] where gathered data and observations, when performing classroom experiments
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with human subjects, are used to model bounded rationality agents. The theory we
build is a “Grounded theory” in the sense of [18], i.e., a theory that is derived from
data systematically gathered and analyzed through the research process.

The different results we were able to observe, both in the human experiments
and the simulations, are the further confirmation of interaction complexity in orga-
nizations. The simulation proved to be extremely important in analyzing the system
behavior when some variables were fixed; this would be impossible when consider-
ing only human subjects, as many uncontrollable factors determine their decisions.
In our approach we were interested in discovering under which conditions we could
observe different leaders emerge. At the beginning of the interactions, in the human
subject experiments leadership roles seemed to be distributed to the agents. In fact,
in the human subjects experiments the number and composition of initial groups
and leaders seemed to be the result of subject physical positioning during the exper-
iment, and this was someway replicated in the computer simulations. So the question
was to understand on what basis only few of them could emerge and survive during
the repeated interaction. These leaders emerged in the sense that they could “keep
followers”. This point is interesting because somehow it links some aspects of lead-
ership described in popular books ([17], for instance) to empirical evidence. Also
comparing the results obtained with the human subjects experiments to the simula-
tions provides some interesting suggestions, since in both cases leaders rewarding
followers according to distributive justice would emerge; this kind of leader was
named “Fair”.

The interaction we used with the human subjects represented many of the el-
ements of complexity theory per se. The computational model we present retains
some of these elements. For example, with some classes of leaders, we can observe
different final outcomes with small variations in the parameters, namely, the respon-
siveness probability and the initial number of leaders. This was particularly evident
when considering either free riders or leadership styles different from Fair. In par-
ticular, while in the absence of free riders the only perceived inequity is leaders’
distributive fairness, in a population with free riders further inequity is perceived.
Both kinds of inequity cause some turbulence which, under certain conditions, does
not encourage the emergence of the most suitable leader. Furthermore, unlike the
computer simulation, the human subjects experiments do not produce single final
leaders, which may suggest that the human subject responsiveness is not imme-
diate. In addition, if we assume that in the human subjects experiments emerging
leaders were those with larger groups, we can observe that the computer simula-
tions are consistent with the empirical evidence, as in both emerging leaders have
the larger groups. As a final point, recall that the underlying theoretical model leads
to a unique final group, because of the higher individual payoffs. We did not im-
plement agents having the maximization payoff as an objective, rather, following
evidence in human subjects experiments, we chose to model sensitiveness to in-
equity. Yet, inequity minimization led chiefly to the maximization of the aggregate
payoff, when fewer Fair leaders were present. The results of both the human sub-
jects experiment and the computer simulation, showed how leadership emergence is
a complex phenomenon, where many aspects and variables interact.
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5 Introducing Explicit Agent Communication

While in the original paper the communication phase is modeled as a sort of brain-
storming, in this research we are incorporating a model of communication among
agents. The agent will be able to communicate about future projects and will be en-
dowed with a sort of social cognition about what happened in the past. This way is-
sues like free riding, commitment and reputation will be considered. In other words,
the communication phase we observed in the human subject experiment will be
modeled more explicitly. Many important matters will be tackled in this research.
For instance, how can agents identify free riders? How can a bargaining process
on the team composition end in reasonable time with a project? Furthermore, how
can teams sanction free-riders or expel them from the project? The answers to these
questions are still under study and are part of our further research.

6 Social Network Analysis

As mentioned in the results of the computational model for the artificial population
we found that social leaders were not the agents with more connections. Rather, the
agents in the “influence area” of two leaders were those with more connections. It
would be interesting to understand the different roles agents play during the inter-
action simply by analyzing the social network.

In the artificial population analysis we introduced some measures for quantifying
the evolution. The density of a graph – which is a recommended measure of group
cohesion (see [2]) – is proportional to the number of links; these statistics seem
appropriate for our analysis. In the first stage, we had to adapt density measure ac-
cordingly to our situation which consists of multiple projects and non-dichotomous
networks. We actually considered modified density together with the number of
components, which seems to be appropriate for our analysis. This way the different
situations could be described as follows:

• Several links and several components indicate the presence of isolated size n
cliques.

• Several links and few components indicate the presence of several connected size
n cliques.

• Few links and several components indicate the presence of several isolated
agents.

• Few links and few components indicate the presence of simple structures such as
the circle graph or chains of agents.

While on the hand it would be interesting to refine the measures we used, on
the other hand it would be appealing to find some network measure able to identify
the leaders from the social network data without any knowledge of their actions. We
are analyzing some of the network measures introduced in [20] in order to be able
to identify the social leader simply by analyzing the network evolution over time.
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Another aspect we are considering is the modification of network representation
algorithm such as [13] in order to have an efficient graphical representation of the
social network evolution over time. The first step has been to analyze and reimple-
ment [13] visualization procedure as described in [9].
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Empirical Analysis of the Architecture
of the Interbank Market and Credit Market
Using Network Theory

Giulia De Masi

Abstract The credit relationships in an economic system are essentially three: the
interbank market, the lending market between banks and firms, the commercial
credit among firms. Here the focus is on the first two kinds of credit, using net-
work tools. The graph theory, which is at the basis of network analysis, is used as
the natural mathematical environment to investigate the architecture (topology) of
these markets. The interbank market is represented as a network where the nodes
are banks and the links are the reciprocal exposures. The lending relationships be-
tween banks and firms is represented by a bipartite graph where the nodes are of
two kinds: banks and firms. From the bipartite graph, the network of cofinancing
banks is extracted. We observe the leading role of large Italian banks which form
a strong core in the network both in the interbank and in the lending market. The
small banks act as lenders and the large as borrowers in the interbank market. Both
of them finance firms on the lending market, the large ones financing the most of
the large firms, while the small ones the small local firms.

1 Introduction

In the recent years the study of Complex Networks has acquired increasing impor-
tance. Several real systems have been represented as networks. This kind of ap-
proach allows to get insights into the architecture of complex systems composed by
many objects, linked to each other in a non trivial way [1, 2]. Most of them show pe-
culiar scaling properties. In particular many networks are scale-free, that means that
the degree distribution is power-law tailed. Applications of network theory in Eco-
nomics can be useful in order to consider explicitly the relations among economic
agents [3]. Many empirical analysis of economic systems have been done using
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network tools: the main examples are the applications to world trade web [4, 5],
interbank market [6, 7], stock market [8], e-commerce [9].

In this paper we focus on the problem of credit relationships, defining the concept
of credit network [10]. A complete understanding of the architecture of credit rela-
tionships in economic systems is of primary importance. The problem of the eco-
nomic stability in fact is strongly related to the underlying structure of credit/debt
relationships among its components: this structure plays a crucial role in the expo-
sure to risk of avalanche failures and domino effects in systems characterized by
credit relationships [11]. In general three kinds of credit relationships can be iden-
tified: financial credit from banks to firms, inter-bank credit and commercial credit
between firms.

In the following we focus on the first and the second type of credit relation-
ships. The presence of credit/debt relationship allows us to define a network of credit
where nodes are the economic agents (banks and/or firms) and the links are credit
relationships.

The interbank market emerges as a consequence of the need of banks to manage
their liquidity. The loans are originated by the fact that every bank needs liquidity
in order to satisfy the demands of customers. To buffer liquidity shocks the Euro-
pean Central Bank requires that on average 2% of all deposits and debts owned by
banks are stored in the National Central Banks. Given this constraint, the banks can
exchange excess reserves on the interbank market with the objective to satisfy the
reserve requirement and in order to minimize the reserve implicit costs [12–14].

In the lending market, the firms behave very differently from each other. Some
firms obtain credit just from one bank, other ones have loans from many banks (mul-
tiple relationships). Given the relevance of the problem, a recent literature focuses
on this topic [15–17].

In this paper the network approach in applied to two real cases: the Italian inter-
bank data and the Italian credit relationships between banks and firms. This paper
differs from the previous studies not merely for the method used, but because the
network analysis allows to obtain information on the structure of relationships and
in particular in the architecture of second order or higher. While standard econo-
metric analysis are useful to detect correlations among different features of banks
and firms, they do not allow to study the topology of the underlying architecture of
bank-credit relationships. Nevertheless the structure of relationships plays a crucial
role in bankruptcy diffusion. We organize the paper in the following way:

• Section 2: network approach
• Section 3: the application to the interbank market in Italy
• Section 4: the description of multilending in Italy
• Section 5: discussion and conclusions

2 The Network Representation

We represent this system as a network, in order to use an approach based on the
graph theory to analyze the complex structure of credit relationships in the Italian
economic system.
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A network is defined as a set of nodes and links and it is mathematically repre-
sented as a graph.

In our particular case the nodes are banks and firms [10]. The links represent the
credit relationships among them. These kinds of networks, composed by two kinds
of nodes, are called “bipartite networks”.

Moreover, we can extract two networks from the overall network, each one com-
posed by just one kind of node: this method is called one-mode reduction and the
two networks projected networks, in the sense that they are obtained as a projection
of the initial graph in the subspace composed by only one kind of node.

A network is represented from a mathematical point of view by an adjacency
matrix. The element of the adjacency matrix ai j indicates that a link exists between
nodes i and j, that is ai j = 1 if the bank i provides a loan to the firm j; otherwise
ai j = 0.

The degree of a node i is the number of links outgoing from it and is calculated by

ki = ∑
j

ai, j . (1)

The assortativity is a measure of similarity among nodes and it is defined as

knn(i) =
1
ki

∑
j∈ν(i)

k j. (2)

A graph is said assortative if the nodes with high degree are connected to nodes with
high degree, on the contrary it is said disassortative, if they are connected to nodes
with low degree.

In a graph, the distance between two vertices is defined as the length of the short-
est path joining them.

The distance di j between two vertices i, j is the shortest number of edges to go
from i to j. Therefore the neighbors of a vertex i are all the vertices j which are
connected to that vertex by a single edge (di j = 1). Using the adjacency matrix this
can be written as

di j = min

{
∑

k,l∈Pi j

akl

}
, (3)

where Pi j is a path connecting vertex i and vertex j.
The diameter of a graph is given by the maximum of all distances between all

the pairs of nodes.
An important concept is the “importance” of the node, or centrality. The concept

of importance is related to the system under study. An usual definition of “centrality”
is given from dynamical properties of the graph. A sensible measure is given by the
number of times that one vertex k is crossed going from one vertex i to another j
following the path of minimal length (distance d(i, j)). This quantity is called site
betweenness b(i) and it is usually defined by

b(i) = ∑
j,l=1,n
i�= j �=l

D jl(i)
D jl

, (4)
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where D jl is the total number of different shortest paths (distances) going from j to
l andD jl(i) is the subset of those distances passing through i. The sum runs over all
pairs with i �= j �= l.

The clustering coefficient cc1(i) is a measure of the density of connections
around a vertex and is defined as

cc1(i) =
2

ki(ki−1) ∑
j,h

ai jaiha jh. (5)

Hence, the clustering coefficient allows to calculate the proportions of the nearest
neighbors of a node that are linked to each other. The average clustering coefficient,

<cc1>=
1
N ∑

i
cc1(i)

indicates the statistical level of cohesiveness measuring the global density of inter-
connected vertex triplets in the network.

Many tentative of studies have been done in the field of bipartite graphs [18–20].
While we can apply the above measures in networks where all nodes are of the same
kind, in bipartite networks some of these measures can not be applied, because of the
different nature of the nodes. Therefore the main statistical quantities under study
are degree distribution of each of the two kinds of nodes and correlations among the
degree of the two kinds of nodes. A measure of connectedness in bipartite networks
is given by the density of cycles of size 4 surrounding a node [21]. Explicitly this
clustering coefficient reads

cc2(i) =
∑ki

m=1 ∑ki
n=m+1 qi(m,n)

∑ki
m=1 ∑ki

n=m+1 [ai(m,n)+ qi(m,n)]
, (6)

where m and n label neighbors of node i, qi(m,n) are the number of common
neighbors between m and n and ai(m,n) = (km − ηi(m,n))(kn − ηi(m,n)) with
ηi(m,n) = 1 + qi(m,n)+ θmn and θmn = 1 if neighbors m and n are connected with
each other and 0 otherwise.

In the case of projected networks, the quantities under study are degree distribu-
tion, clustering coefficient, assortativity, betweenness centrality, diameter [18].

3 Application to the Italian Interbank Market

The interbank market emerges in order to allow the banks to manage their liquid-
ity. Liquidity management in the banking system is essential for a smooth oper-
ate of payment systems. For example, in the Euro area the European Central Bank
(ECB) normally aims to satisfy the liquidity needs of the banking system via its
open market operations (main and long-term re-financing operations, fine-tuning
and structural interventions) the most relevant of which are the weekly auctions.
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Banks submit the amount of money they want to deal and interest rate they are ready
to pay for it. The ECB collects bids and executes the auctions. The allocations are
settled on the bank’s account to the National Central Bank (NCB) on Wednesdays.

Credit institutions in the Euro area are required to hold minimum reserve bal-
ances with NCBs (set at 2% of all deposits and debts issued with a maturity of
less than two years, excluding repos and interbank liabilities, but with a minimum
threshold applied). Reserves provide a buffer against unexpected liquidity shocks,
mitigating the related fluctuations of market rates. They have to be fulfilled only on
average over a one-month maintenance period that runs from the 24th of a month
to the 23rd of the following month (when this is not a holiday in which case is an-
ticipated to the previous working day). Given this constraint, banks can exchange
excess reserves on the interbank market with the objective to satisfy the reserve
requirement and in order to minimize the reserve implicit costs [12–14].

The interbank markets are basically managed by each European country [12].
These markets are in almost all cases phone-based, that means that each bank has
some brokers doing their transactions by phone. The only exception is the Italian
market, which is totally screen-based, implying that each banks operator can see
real time quotes of all other banks and do its transaction.

This paper analyses on the network analysis of the Italian interbank market. This
market is unique in the Euro area in being screen based and fully electronic: outside
Italy interbank trades are largely bilateral or undertaken via voice brokers. While
banks can still choose with whom to trade, the information about the rates and the
trades are public. The Italian electronic broker market e-MID (electronic Market for
Interbank Deposits)1 covers the entire existing domestic overnight deposit market in
Italy. Both Italian banks and foreign banks can exchange funds on the e-MID. The
participating banks were 215 in 1999, 196 in 2000, 183 in 2001 and 177 in 2002.

Our data set is composed by banks operating on the Italian market for which
we have the complete record of all transactions. The data set used to construct
the interbank network includes only overnight transactions and consists of en-
coded name of first bank, encoded name of second bank, amount of transaction,
rate applied to transactions, date and time. To de-codify the name of banks, a list
of banks has been provided: the first number is the label of the bank, the second
one is the group of classification of that bank provided by Italian National Bank
(1 = foreign banks, 2 = big Italian banks, 3 = medium Italian banks, 4 = small Italian
banks, 5 = cooperative credit banks).

For every day of trading, we compute the network of debts/loans. Our dataset also
allows us to build the matrices associated to directed graphs. We can make direc-
tional links by allowing them to follow the flow of money, so that a link is incoming
to the buyer and outgoing from the seller. A directed graph may be more relevant
in assessing the risk of contagion2 and systemic default in the system. Hence we
define six more matrices Ab,Al , Cb,Cl and W b,W l . The elements ab

i j (al
i j) indicate

1 e-MID is run by e-MID S.p.A. Società Interbancaria per l’Automazione (SIA), Milan. The central
system is located in the office of the SIA and the peripherals on the premises of the member
participants.
2 A shortage of liquidity can propagate from a bank to the ones that have a relation of credit to it.
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Fig. 1 A plot of the inter bank network. The color codes for the various groups are the following:
1 = yellow, 2 = red, 3 = blue, 4 = black. Note that the black vertices (bank of group 4) form the core
of the system [6]

if at least one transaction has occurred on a given day between bank i and bank j,
with bank i as the borrowing (lending) bank. The elements of the connectivity ma-
trix cb

i j (cl
i j) denote the number of transactions on a given day between bank i and

bank j, with bank i as the borrowing (lending) bank. The elements of the weighted
connectivity matrix wb

i j (wl
i j) denote the overall volume exchanged on a given day

between bank i and bank j, with bank i as the borrowing (lending) bank. Obviously
wl

i j = wb
ji. We define the flow between two banks as fi j = wl

i j −wb
i j . The flow is

positive if the bank is a net lender. With this convention we define a weighted graph,
whose plot is in Fig. 1

The distribution of banks degree and of weights of the links indicates that banks
have an highly heterogeneous behavior, since the number of their partners varies
very widely. In Fig. 2 the distribution of degree for a particular day is plotted: we
observe high skewness, proving that some banks have many partners, but most of
the banks have few partners. Moreover in same figure the assortativity and clus-
tering distributions show a peculiar architecture of the network. The system shows
disassortative mixing, i.e. banks with higher degree are more likely connected to
banks with lower degree.
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Fig. 2 Cumulative distribution of banks degree (left); distribution of clustering coefficient c and
assortativity knn(k) versus k [6]

In Fig. 3 (top panel) we show that the banking system is highly heterogeneous
with fat tailed cumulative distribution of banks weights (volume of single contract).

The total volume transacted by each bank is even not equally distributed among
its links as we observe from the plot of the participation ratio Y c

2 (i) (Fig. 3, bottom
panel): real participation ratio (dots) differ from a random case of equally distrib-
uted weights (straight line); banks with an high number of connections have hetero-
geneous volumes of contracts with their partners [7].

Interestingly, regardless the change in volumes, all the above topological mea-
surements remain similar when computed in different days of month.
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4 Application to the Italian Multilending

Among European countries, Italy has the biggest average number of banks relation-
ships per firm. The multiple bank relationships became more relevant in Italy in
the 50s [22]. In fact, after the second world war Italian firms were able to finance
themselves: therefore the interaction among banks and firms was very small. In the
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70s the worsening of financial conditions of Italian firms induced entrepreneurs to
ask for credit to the banks. In these years the multiple bank relationships emerged.
On the one hand, this implied that a firm received credit from more than one bank,
on the other hand implied that a good knowledge of the real economic conditions of
firm was not easily available to banks. In many cases credit was provided also for
personal trust reasons, without a deep investigation on the actual financial condition
of the firm [22].

Detragiache et al. studied data of medium-small size Italian manufacturing firms
(firms with less than 500 employees). In 1994, 89% of Italian firms have multiple
links; the median number of relationship is 5 and the 75th percentile is 8 [17]. The
phenomenon of multiple linking is more striking also respect to U.S..

While it is quite clear why big firms have multiple links, it is not clear why small
firm have multiple links [23].

In the following we analyze a subset of the AIDA database [24]. We study data
regarding Italy. This set contains information on the largest 170,000 Italian societies
from 1992. We have detailed information on the characteristics of each firm, as the
total net worth, the total asset, the solvency ratio, the number of workers, the added
value. Moreover we know the identity of banks financing each firm. This allows us
to study how the number of relationships varies for firms of different size. We merge
this dataset with another one derived from Bank of Italy classification of the whole
set of Italian banks in five groups [25]: large banks, medium banks, small banks,
cooperative credit banks and rural banks. In this way we can identify the attributes
of the banks lending to each individual firm and to detect different behavior of banks
of different sizes. The Bank of Italy provides a classification of Italian banks in five
categories:

• Larger banks have funds of more than 45 billion Euros.
• Large banks between 20 and 45.
• Medium between 7 and 20.
• Small between 1 and 7.
• The remaining banks are minor banks.

Our sample is composed by 11 larger banks, 11 large banks, 34 medium banks,
125 small banks and 307 smaller banks. In this paper we focus on credit relation-
ships of Italian firms with Italian banks in the year 2003. The set is composed by
55,005 contracts among 488 Italian banks and 33,468 Italian firms. The study of the
evolution of the structure of the credit network will appear in a further paper.

We distinguish firms following the ISTAT classification [26]: in 2003 the Italian
firms were 4.1 million: the 95% micro, 4.5% small, 0.5% medium. In our sample
29% are micro, 40% small, 23% medium, 7% large [27]. In this sense our sample
privileges the analysis of big firms and does not consider small firms and small
banks.

Unfortunately we do not have access to the amount, the rate and the duration of
credit, but this dataset is more extended than other ones studied in the literature.
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4.1 The Bipartite Network of Banks and Firms

We denote firms with the index f and banks with the index b.
By definition each bank is linked just with firms and each firm is linked just with

banks.
We have recently done a detailed analysis of the network of banks and firms

[28, 29]. It emerges that small banks have a few credit links and large banks a great
number of contracts. Moreover, big firms tend to receive loans from big banks but
also from some small banks; on the contrary, small firms receive loans from small
(local) banks. In general big firms prefer multiple relationships, while small firms
have mostly single relationship. According to the literature this is just a consequence
of the exposure to risk: in fact firms with a single linkage are in general the smallest,
with low solvency ratio and therefore less solvent.

The largest kb is 6,699, the mean 149, the median 3 and the 75th percentile 30;
whereas the largest k f is 15, the mean 1.8, the median 2 and the 75th percentile is 2.
The behavior of banks in our sample is more heterogeneous than that of firms: in
fact the degree ranges in three orders of magnitude from 1 to 6,699. There is also a
fat-tailed degree distribution of the degree of the banks; some banks finance a large
number of firms: they are the hubs of the network [29].

It can be emphasized that large firms receive credit from many large banks, while
small firms are financed by small local banks and often by one bank alone. It is not
uncommon, that large firms with multiple linkages have relationships with banks
of very different size. Firms with multiple linkages are big, often regarded as fi-
nancially safe: because of it, small banks finance them, even without doing a rating
investigation. Moreover large firms are usually able to provide hard information. On
the contrary, small firms often find financing problems: therefore they are usually
financed by small local banks, often better able to collect soft information than large
banks [29].

4.2 The Projected Network of Co-Financing Banks

In the study of bipartite graph a very widely used approach is to study separately
two networks that can be defined from the original network. If we call the two kinds
of nodes as nodes A and B, we can study the network GA+B which has the total set
of nodes (A + B) or the networks GA and GB which have only nodes of kind A or B
respectively [31, 32].

In our case we can define the network of banks and the network of firms. The first
is the network of cofinancing banks: two banks are linked if they finance the same
firm. The second is the network of co-financed firms, that is two firms are connected
if they are financed by the same bank. The network of firms is highly disconnected;
therefore we focus just on the bank network. In Fig. 4 is provided an example of
projection. Let consider a set of firms F = 1,2,3,4 (squares) and a set of banks
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Fig. 4 Bipartite graph and projected graph (one mode reduction on banks space). Firms are square
and banks circles

Pajek

Fig. 5 Graph representation of the one-mode reduction network on the subspace of banks. The
convention for the use of colors is the same given above (the white dots are the foreign banks)

B = a,b,c,d,e, f (circles). The corresponding graph is given in the top panel. The
corresponding projected network is in the bottom panel.

This kind of approach allows to identify common characteristics (if they exist)
among banks linked with the same firm.

The bank network in Fig. 5 is composed by 507 Italian banks. Banks are colored,
using the Bank of Italy classification: red nodes are larger banks, orange large banks,
yellow medium banks, green small banks, blue smaller banks.
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In the projection process, we lose some information related to how many firms
finance in common two banks. In fact two banks have a link both if they have only
one firm in common and more than one. To maintain this information we define
a weighted network: the weight associated to the link between two banks is the
number of common firms they finance.

In the bank network the average degree is 5.7, while the average clustering co-
efficient is 0.3. The distributions of the degree and of the weights are fat-tailed
distributions, reproducing the heterogeneous behavior of banks [29].

In Fig. 6 the two measures of clustering coefficients are plotted: cc1 (density of
cycles of size 3) and cc2 (density of cycles of size 4).

In Fig. 7 (left panel) the distribution of distances is plotted. The graph is con-
nected and the maximum distance is 6. This is an evidence of the fact that the bank
graph shows small-world properties. In the right panel the betweenness b is plotted
as a function of k. The nodes with high degree have also high betweenness. This is
a sign of the underlying structure characterized by a strong core of hubs and not by
small subgraphs weakly linked each other (in this latter case we should observe in
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fact high betweenness for low values of k). The measure of betweenness is not only
important to study the architectural properties but also the dynamical properties.

To investigate the role of relationships among large banks (hubs), we measure
the rich-club properties. The rich-club phenomenon is one of the main structural
properties of complex networks: this property refers to the tendency of high degree
nodes, the hubs of the network, to be very connected to each other; nodes with high
degree are much more likely to form tight and well interconnected subgraphs (clubs)
than low degree nodes [33]

φ(k) =
2E>k

N>k(N>k−1)
, (7)

where N>k is the number of nodes with degree higher than k, E>k is the number of
links between nodes having degree higher than k and N>k(N>k− 1)/2 is the max-
imum possible number of links among the N>k nodes. The rich club phenomenon
is not trivially related to the properties of assortative–disassortative mixing in net-
works. Many different networks (both assortative and disassortative) display rich
club phenomenon, that is φ(k) increasing with increasing k, indicating the presence
of oligarchies in financial networks.

In Fig. 8 we observe that the system of Italian banks is only slightly disassorta-
tive, that is the hubs (large banks) are linked partially with banks with high degree,
partially with banks with low degree. The rich club properties are present only for
values of degree k < 30.

We want to progressively isolate the most important links. Therefore we clear
progressively links with values lower than 100,300,500 (Fig. 9). That means that
we progressive focus on banks which co-finance in common at least 100,300,500
firms. As we see from the figure (where the cases with 100 and 500 common
firms are plotted), progressively the surviving banks are the core of the Italian large
banks.
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Fig. 9 The networks of banks cofinancing at least 100 (left) and 500 (right) firms in common

5 Discussion and Conclusions

In this paper we have analyzed the Italian interbank market, credit market and the
network of Italian banks in Italy focusing on their cofinancing relationships.

The interbank network is fairly random, preferential lending is limited and cash
flows directly from the lender to the borrower without intermediaries. Banks also do
not seem able to exploit short term profit opportunities by borrowing from some and
lending to others on the same day. All these observations suggest that the interbank
market is relatively efficient [7].

This also due to the fact that the banking system is highly heterogeneous and
is arranged in a configuration with large banks borrowing from a large number of
small creditors.

Moreover, the multilending in Italy is very widespread and it may be a channel
of diffusion of financial distresses. The topology of the underlying credit network
plays a crucial role in bankruptcy propagation.

The large banks are the hubs of the network and they form the core of the net-
work. This is an evidence of the fact that the Central Bank may guarantee the stabil-
ity of the whole banking system controlling the financial status of large banks. The
small banks on the contrary are the leaves of the network. In a recent paper we have
shown that the structure detected by the MST method points out that they are linked
in regional branches, where the central node is the largest regional bank surrounded
by small local banks [29]. These ones are largely exposed to failures in the case of
bankruptcy of the large bank. In this case, if the large bank is able to absorb the
shock, this prevents the diffusion of the distress on the whole network.
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Network Measures in Civil Air Transport:
A Case Study of Lufthansa

Aura Reggiani, Sara Signoretti, Peter Nijkamp, and Alessandro Cento

Abstract Air transport networks have exhibited a trend towards complex dynam-
ics in recent years. Using Lufthansa’s networks as an example, this paper aims to
illustrate the relevance of various network indicators – such as connectivity and
concentration – for the empirical analysis of airline network configurations. The re-
sults highlight the actual strategic choices made by Lufthansa for its own network,
as well in combination with its partners in Star Alliance.

1 Introduction

Network analysis has already a long history in operations research and quantitative
social science research. In the past, much attention has been paid to shortest-route
algorithms (for example, the travelling salesman problem), where the spatial con-
figuration of networks was put in the centre of empirical investigation. Integer pro-
gramming, linear and nonlinear programming turned out to offer a proper analytical
toolbox. In recent years, we have seen several new trends, in particular, the rise of
hub-and-spoke systems in liberalized networks, the emergence of dynamic adjust-
ments to new competitive conditions and the increase in complexity in international
networks.
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Furthermore, it appears that in the past decades many social, spatial and eco-
nomic systems show an organized pattern characterized by network features, such
as transportation, telecommunication, information or energy systems. As a conse-
quence, much attention has recently been paid to the study of network properties
emerging in many social, spatial and economic fields, as witnessed by the vast
amount of literature published in the past years [8, 23, 24, 35, 36, 42, 43]. Air trans-
port is a prominent example of modern network constellations and will be addressed
in this paper from a connectivity perspective.

Air transport shows indeed clear network features, which impact on the way
single airline carriers operate [15]. The abundant scientific literature on airline net-
works has addressed this topic in terms of theoretical modelling and empirical mea-
surements on different typologies of airline network configurations. This strand of
recent research aimed to measure the network structure in relation to the effects of:
(a) the market deregulation in United States in 1978 and in the European Union
in the 1990s, (b) new trends in recent airline business strategies denoted as “low
cost” principles. Low cost carriers developed rather fast after the deregulation pol-
icy, by acquiring a competitive network advantage on traditional airlines, which
consequently seemed to reorganise rapidly their airline network to respond to the
new market dynamics.

In this context, interesting research has emerged that mainly addressed the issue
of describing and classifying networks by means of geographical concentration in-
dices of traffic or flight frequency [13, 16, 17, 28, 30, 38–40, 44]. These measures,
such as the Gini concentration index or the Theil index, provide a proper measure of
frequency or traffic concentration of the main airports in a simple, well-organized
network. However, if a real-world network structure is complex, including multi-hub
or mixed point-to-point and hub-spokes connections, the concentration indices may
record high values for all types of structure, but fail to clearly discriminate between
different network shapes [3]. There is a need for a more appropriate measurement
of connectivity structures in complex networks.

Starting from the above considerations and research challenges, the present pa-
per aims to investigate the scientific potential and applicability of a series of network
connectivity/concentration indices, in order to properly typify and map out complex
airline network configurations. Specifically, these various network indicators will be
adopted and tested to describe the main properties – in terms of the network con-
nectivity and configuration – of Lufthansa’s airline system. The aims of the present
paper are then: (a) to detect the extent to which the real network configuration is
close to typical network models that evolved over time; (b) to examine how concen-
tration measures can point to the different network topologies; and (c) to study the
way nodes are connected, that is, to analyse their distribution function.

The present article is organized as follows: Sect. 2 will provide a brief description
of the main models of network connectivity that have been developed in the frame-
work of (spatial or social) network analysis. In this section, the focus will mainly be
on the concept of vertex degree distribution in a network and on the main indicators
used for the analysis of air transport. Next, Sect. 3 presents a novel empirical analy-
sis of Lufthansa’s network; the methods provided by network analysis are applied
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in order to understand more thoroughly the real network’s topology. Finally, Sect. 4
will offer some conclusions from the present paper, as well as some further research
challenges.

2 Network Models and Measures in Air Transport Systems

2.1 Preface

Many economic activities are currently characterized by network characteristics
with a high degree of complexity, since their processes and outcomes depend not
only on the choices of the single agents but also on the dynamic – often nonlinear –
interactions between them in a continuous dynamic interplay [36].1 A clear example
of a complex spatial-economic network is the geographical network of the air trans-
port industry: understanding its peculiarities and responding to these features can
bring about substantial advantages for both consumers and producers [15]. Airline
network analysis has gained much popularity in recent years.

Modelling complex networks is also a great challenge: on the one side, the
topology of the network is governing the complex connectivity dynamics (see, for
instance, [6]); on the other side, the functional-economic relationships in such net-
works might also depend on the type of connectivity structure. The understanding
of these two interlinked network aspects may be instrumental for capturing and
analysing airline network patterns. Starting from the above considerations, we will
review, in the next subsection, the main connectivity models and measures which
have recently gained a great deal of attention in the scientific literature, with a par-
ticular view to air transport networks.

2.2 Network Models

In the last decades network theory has gained scientific interest and sophisticated
network models have been used in different fields, including economics and ge-
ography [46]. This trend faced also quite some difficulty, because existing models
were not able to clearly describe the network properties of many real-world systems,
whose complexity could not fully be understood [4].

Spatial-economics systems – including air transport networks – are complex,
because agents interact, obtaining significant benefits by means of a joint activity
[11]. This interacting process may become a permanent feature thus leading to a
new meso- or macro structure, for example, to the creation of clusters.

1 These authors point out that the main feature of complexity is that the outcome (of the activity of
a complex system) “should not be obvious from the single building blocks” [12]. Consequently, the
term complexity indicates that the final result cannot be foreseen even when the single components
of a system are known and studied.
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Air transport systems have over the past years been experiencing such clustering
processes. An example is provided by airlines’ alliances.2 The main reason why
airline carriers cooperate of aggregate stems from cost reductions they can thus
obtain. Being a member of an alliance impacts on the carriers’ strategy for a long
time and also influences the network configuration they adopt. It is worth noteworthy
that alliances play also an important role in determining market dynamics; in 2005,
the three main alliances in air transport accounted for 80% of the total capacity
offer.3 Therefore, we need to develop airline network models that can adequately
take into account clustering and merger processes.

A further important trend many real networks show is the so-called “Small-World
(SW) effect”. This term indicates that the diameter4 of a network is so short that it
takes only a few movements along links in order to move between any two nodes of
a network [37]. In air transport systems, we can point out the SW effect by taking
into consideration and comparing the network configuration of single carriers or of
alliances; such systems exhibit a clear SW effect when it takes only a small number
of flights to link the two most distant airports in the network.

Alongside the SW effect, the SW network model has been developed in order to
take into account both the SW effect and the related clustering processes [47]. The
main features of this model are a short diameter and a high clustering coefficient.

A further elaboration of the SW model is the so called Scale-Free (SF) network
introduced by Barabási and Albert [4] in order to incorporate two mechanisms upon
which many real networks have proven to be based: growth and preferential attach-
ment. The former points to the dynamic character of networks, which grow by the
addition of new nodes and new vertices; the latter explains how new nodes enter the
network, namely by connecting themselves to the nodes having the highest number
of links.

An important feature of SF networks is represented by their vertex degree distri-
bution5 P(k) which is proportional to k−γ (with k being the number of links), that
is, to a power law. The value of the degree exponent γ depends on the attributes of
the single systems and is crucial to detect the exact network topology, in particu-
lar the existence of the hubs (highly connected nodes). As Barabási and Oltvai [6]
highlight, a SF network embeds the proper hub-and-spoke model only when γ = 2,
while for 2 < γ ≤ 3 a hierarchy of hubs emerge. For γ > 3, the hub features are
absent and the SF network behaves like a random one.

In air transport systems, we can point out SW networks by considering full-
service carriers. Without national or political impediments in a free market, these
carriers typically organize their network into a hub-and-spoke system, where one or
a few central airports called “hubs” have a high number of links to the other airports
called “spokes”. Passengers travelling from a place of origin to a place of destination

2 The processes underlying the creation of an alliance can be clearly depicted by considering the
integration of Lufthansa and Swiss, described in the Lufthansa Annual Report (2005); available on
the website http://konzern.lufthansa.com/en/html/ueber uns/swiss/index.html).
3 See http://www.tourismfuturesintl.com/special%20reports/alliances.html.
4 The concept of a diameter will be defined in Sect. 2.3.
5 P(k) is the probability that a chosen node has exactly k links [6]. See also (1).
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have to stop typically in one or a few hubs to change aircraft. Hubs are organised
in order to allow flight connectivity by coordinating the scheduled timetable of the
arriving and departing flights. Investigating the airline strategy in designing hub con-
nectivity and timetable coordination has been the aim of several empirical network
studies. Some examples of theoretical and empirical investigation of hub connec-
tivity can be found in the works of Bootsma [10], Dennis [18], Rietveld and Brons
[41], Veldhuis and Kroes [45], and Burghouwt and de Wit [14]. As a consequence,
the hub has to manage normally a high volume of traffic at the same time, due to
their central connecting role in the network.

In contrast to SF networks, we have to highlight also random networks [19],
which display homogeneous, sparse patterns, without cluster characters. Their ver-
tex degree distribution follows a Poisson distribution.6

In air transport, random networks are useful to map point-to-point connections,
as it is the case for low-cost airlines [17]. In the ideal point-to point network all
airports are connected to each other, so that passengers can fly from one airport to
any other directly without stopping in any hub to change aircrafts. These networks
have a low diameter, as a consequence of the high number of direct links between
airports. Reggiani and Vinciguerra [[37], p. 148] point out that a random network
can be seen as “a homogeneous system which gives accessibility to the majority of
the nodes in the same way”. Furthermore, as it is evident by looking at the plot of the
exponential function, the probability to find highly connected nodes is equal to 0.
Therefore, no clear hubs exist, and the network configuration appears to be random
because no single airport displays a dominant role in a connected network.

In Sect. 2.3, we will address two main degree (connectivity) distributions that
have often been observed in empirical experiments, vis-à-vis exponential and
power-law.

2.3 Network Degree Distributions

The vertex degree distribution is one of the key tools we may use to point out the
network configuration [37], since this function determines the way nodes are con-
nected. It can be defined as the probability P(k) of finding nodes with k links.

In general, we can state that

P(k) = N(k)
/

N, (1)

where N(k) is the number of nodes with k links and N is the number of nodes of the
network.

With regard to the network topologies developed in the framework of graph the-
ory, complex systems tend to show two main degree distributions: the Poisson dis-
tribution [19] and the power-law function [5].

6 For a review of random models, SW models and SF models, see Albert and Barabási [2] and
Jeong [27].
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The former is defined as

P(k)∼ e<k> < k >k

k!
, (2)

and describes networks – so-called random networks – where the majority of
nodes have approximately the same number of links, close to the average degree
< k > [4]. Equation (2) is a distinctive feature of point-to-point networks, such as
those adopted by low-cost airlines; this network topology is typical of equilibrated
economic-geographical areas, where a high number of direct links can be profitably
operated.

The power-law function is defined as

P(k)∼ k−γ , (3)

and characterizes networks having a small number of nodes with a very high degree
while the majority of nodes have a few links. Equation (3) has important economic
implications: it characterizes SF networks, where the term SF refers to the fact that
“the power-law distribution does not change its form no matter what scale is used to
observe it” [[37], p. 150], and that, in these networks, distances are irrelevant. There-
fore, we expect to find SF networks in “global networks”, such as the Internet and
air transport, and in general in those networks where relevant economic aggregation
clusters (preferential attachments) attract flows from distant nodes.

It interesting to note that from the above distribution functions (2) and (3) we
can extrapolate the related cost/utility/impedance functions [37]. However, when
the identification of the two functions is ambiguous, we need to obtain additional
information from network theory (for example, centrality indices, dominance in-
dices). A multidimensional approach is needed in this respect, where not only the
way airports are connected is relevant (spatial network components), but also the
geometrical architecture of the network, as well as its degree of network homogene-
ity (physical network components).

In Sects. 2.4 and 2.5 we will now introduce some indicators and measures we can
adopt to study the network configuration of carriers: the computation of the above
indices is crucial to understand the tendency to agglomeration of concentration pat-
terns, and hence the possibility of hierarchical network relations among nodes.

It is moreover important to identify a SF network because of its strong features
in terms of robustness and vulnerability. In the case of a random attack (or distur-
bance) on nodes, the SF network will strongly persist, because a random attack will
probably damage nodes that have only a few connections, which are the majority.
Nevertheless in case of an attack against the main hubs, the network will easily be
fragmented. Consequently, we might also talk of “vulnerability/permeability” of the
SF network: if a strategic input, for example, a virus, is dispersed in the hubs, it is
certainly diffused all over the network. On the other hand, random networks are
weak against a random attack which will cause the split of the network.

Consequently, it is important to identify hubs in the network in order to prevent
targeted attacks and to preserve the system [23]. The identification of such char-
acteristics is certainly useful to the understanding of the dynamics of air network
configurations, also from the perspective of policy/planning interventions.
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2.4 Network Topology Indices

Airline networks may exhibit simple or complex topologies. Networks have been
given several definitions in the framework of graph theory, as for instance by Harary
[25]: “a network is a graph, or directed graph, together with a function which as-
signs a positive real number to each edge”. In this context it is useful to outline the
geometrical indicators most frequently used to represent the network shape; they are
illustrated in Table 1.

Table 1 Network’s topology indices

Index or mea-
surement

Description Formulation Variables Source

Degree The degree of
a node is given
by the number
of its links

k(v) k(v) is the number of
links of node v

Barabási and
Oltvai [6]

Closeness It indicates a
node’s proxim-
ity to the other
nodes

C(v) = ∑t∈V dvt
n−1 dvt is the shortest

path (geodesic
distance)
between nodes v
and t; n is the
number of nodes
in the network

Newman [31]

Betweenness It indicates a
node’s ability to
stand between
the others, and
therefore, to
control the flows
among them

B(v) = ∑
s�=t �=v∈V

σst (v)
σst

σst(v) and σst are,
respectively, the
number of geodesic
distances between s
and t that pass
through node v, and
the overall number
of geodesic
distances between
nodes s and t

Freeman [20]

Diameter It measures the
maximum value
of the geodesic
distances
between all
nodes

D = maxs,t∈V,s�=t dst dst is the
geodesic distance
between nodes s
and t

Boccaletti
et al. [9]

Clustering
coefficient

It measures the
cliquishness of
a node

Cl(v) = lv
maxlv

lv and maxlv are,
respectively, the
number of existing
and maximum
possible links
between the nodes
directly connected to
node v (its
neighbours)

Watts and
Strogatz
[47]
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It should be mentioned that the first three indices measure the centrality of a
vertex in a graph, while the last two can be used to investigate the networks’ topo-
logical properties [37]. It is necessary to underline that the “geodesic distance”,
used to compute closeness, betweenness and diameter, represents the shortest of all
distances between two nodes [21].

In the context of our empirical experiments, we will apply the above indicators
to explore Lufthansa’s network structure and configuration, since all complex sys-
tems characterized by a network structure share properties exclusively depending
on network’s configuration (see also [46]). Before starting our empirical analysis,
Sect. 2.5 will illustrate additional indices that we may use to investigate the net-
works’ concentration.

2.5 Network Concentration Indices

If we want to detect the networks’ configuration (random versus SF) we also need
to understand to what extent these networks are concentrated, because the existence
of hubs implies a high degree of concentration [40]. To this purpose we will use: (a)
the Gini concentration index; (b) the Freeman centrality index;7 and (c) the entropy
index. These three indices are illustrated in Table 2.

The first index G measures the inequality existing in a distribution, and ranges
between 0 and 1; the higher its value, the more uneven is the distribution [21]. The
second index F takes into account the structure of the system, and measures the
network shape as the degree of inequality in a network with respect to a perfect star
network [21].

The third is the entropy function E , which shows the degree of variety existing in
an economic or spatial network [22]. In particular, entropy can be employed as a tool
for studying spatial differentiation, that is, heterogeneity in a system: “for instance,
by investigating whether certain spatial configurations are completely arbitrary and
disordered or whether these configurations show a certain degree of spatial orga-
nization or regularity” [[32], pp. 18–19]. Therefore the entropy function indicates
how organized a system is: the higher is the value of E , the more diversified the
network [22].

Next, in Sect. 3 we will carry out an empirical study on four networks – based on
Lufthansa’s airline network – by means of the analytical tools previously described.

7 The concept of concentration aims at discerning whether or not the activity we are studying is
located homogeneously over a geographical area, without considering the form of corresponding
system. In the framework of our experiments, networks are concentrated to the extent that some
nodes have a share of flights which is higher than the area they occupy [21].

The concepts of centrality – referring to single nodes – and centralization – referring to a whole
network – are closely related: a network is centralized when a node, or a group of nodes, can control
the flows the network represents and are consequently given higher centrality values [20]. We can,
therefore, state that centralized networks are always concentrated as well, while the opposite does
not always holds.
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Table 2 Network’s concentration indices

Indicator Formula Use Variables used Sources

Gini
concentration
index

G =
∑n

i=1 ∑n
j=1 |xi−x j|
2n2µ It is a measure of

geographical
concentration

xi,x j are the number
of weekly flights
from airports i and j,
ranked in increasing
order; n is the
number of airports in
the network; µ is
∑i xi/n

Cento [17]

Freeman
centrality index

FB =
∑i [FB(x∗)−FB(xi)]

n3−4n2+5n−2

It is a measure of
similarity to a
perfect star
network

FB(xi) = ∑∑b jk(xi)
is the j < k j < k
betweenness
centrality of node xi;
FB(x∗) is the highest
betweenness
centrality value of
the distribution

Cento [17]

Entropy
function

E =−∑i j pi j ln pi j It measures the
degree of spatial
organisation and
variety in a
system

pi j is the probability
of a link between
nodes i and j

Nijkamp and
Reggiani
[32]; Frenken
[22]

3 An Empirical Application to Lufthansa’s Airline Network

3.1 The Data Base

This section will focus on the geographical analysis of Lufthansa’s aviation net-
work in the year 2006. The airline network measurement is essential for exploring
the airline behaviour and its implications for the supply, the traffic demand, the
airports’ infrastructure and aviation planning. The airline network can be subdi-
vided into domestic, international or intercontinental configurations depending on
whether the airports connected are located within a country, a continent or in differ-
ent continents. Furthermore, an airline network can be interconnected or interlined
to partner’s networks within the alliance concerned. This classification is based on
geographical, air transport-political and economic characteristics, such as airlines’
degree of freedom from the Chicago Convention (see [17]) market liberalization, or
costs and traffic demand. Therefore, the overall network configuration is the result
of the integrated optimisation of the domestic, international, and intercontinental
parts of the total network. These sub-network configurations may range from fully-
connected or point-to-point to hub-and-spokes configurations to alliances (fully-
contracted) or to a mix of these configurations. Within this conceptual framework,
we will position our analysis of four sub-networks of Lufthansa. As summarized in
Table 3, we coin networks A1 and A2, referring respectively to the flights operated
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Table 3 Lufthansa’s network constellation (2006)

Network Area under
consideration

Carrier or
alliance
operating the
flight

Nodes Total number of
links

A1 Europe Lufthansa 111 522
A2 World Lufthansa 188 692
B1 Europe Star Alliance 111 3,230
B2 World Star Alliance 188 6,084

by Lufthansa in Europe and in the whole world, while networks B1 and B2 take
into consideration – respectively at a European and at a global level – the flights
operated by all the carriers which are members of Star Alliance (to which Lufthansa
belongs).8

The variable under analysis is represented by the number of direct connections
of each airport in the summer season of the year 2006, measured on a weekly basis.
The networks are represented in Figs. 3–6 in Appendix 2.

In all four cases we only consider those airports where Lufthansa operates with
its fleet and not by partner’s airlines. When we consider A1 and A2 networks, we
clearly see that the majority of Lufthansa’s flights are operated at a continental level.
On the contrary, nearly half of Star Alliance’s flights are operated outside Europe.
This finding is not surprising, if we consider that the carriers making up Star Al-
liance are mainly from non-European countries.

Sections 3.2, 3.3 and 3.4 will now illustrate the empirical results of our experi-
ments, aiming at analysing the connectivity and concentration patterns in the above
mentioned networks.

3.2 Lufthansa’s Network Geometry

On the basis of the indicators illustrated in Table 1, we will now show the results
emerging from the related applications to the four Lufthansa’s network domains A1,
A2, B1 and B2. In particular, since all the indicators displayed in Table 1 charac-
terise the nodes in a network, we will investigate by means of these indicators – in
our four networks – the single nodes’ features as well as the relations among nodes.

More specifically, in order to examine the nodes’ location, we have computed the
three centrality measures (degree, closeness and betweenness) described in Table 1.
Concerning the investigation of the nodes’ relations, we have examined the diameter
and the clustering coefficient of the network (see again Table 1).

8 The Star Alliance member carriers are currently: Air Canada; Air New Zealand; ANA; Asiana
Airlines; Austrian; bmi; LOT Polish Airlines; Lufthansa; Scandinavian Airlines; Singapore Air-
lines; South African Airlines; Spanair; Swiss; TAP Portugal; THAI; United Airlines; US Airways;
VARIG (the list was retrieved from www.staralliance.com).
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The degree of a node (Table 1) can be seen as a measure of centrality if we
assume – in the framework of our analysis – that the best connected airports have
a greater power over the whole network, as they can control a considerable amount
of all flights. In all networks we find that the airports of Frankfurt and Munich have
always the highest degree (see Table 10 in Appendix 1).

A further analysis of nodes’ centrality focuses on their “ease-of-access” to the
other nodes.9 In order to investigate this concept we have computed the closeness
centrality10 (Table 1). The values of this index for the networks under consider-
ation (listed in Table 11 in the Appendix 1) show that the highest values usually
correspond to the best connected nodes; therefore, closeness centrality is able to
map out – in the framework of our study – the most important airports in terms of
connectivity. A similar trend can be observed by considering betweenness central-
ity (Table 1; the values for networks A1, A2, B1 and B2 are listed in Table 12 in
Appendix 1). This finding is not surprising, since hubs – in the framework of the
hub-and-spoke model – are chosen from those airports falling among the highest
possible number of pairs of other airports [15, 33].

The networks’ topology can also be explored by examining how the various
nodes relate and link, since this last attribute impacts the configuration of the whole
structure. For this purpose we have computed the clustering coefficient (defined in
Table 1; the ten highest values for the nodes of the four networks of our experiments
are listed in Table 13 in the Appendix 1). The values indicate a significant difference
between the networks A1 and A2 and the networks B1 and B2; in the former case
the airports of Frankfurt and Munich dominate the chart; in the latter case, other
airports appear to emerge, thus showing that flights are spread more equally on the
whole network.

In addition, we will also consider the diameter of the above networks in order to
investigate how the links’ patterns influence the ability to move inside the network.
Both A1 and A2 have a diameter of 4, while B1 and B2 have a diameter of 2. This
can be justified only if there is no significant difference in the geographical configu-
ration between A1 and A2, approximately a hub-and spoke, while B1 and B2 can be
a mixture of hub-and-spoke and point-to-point networks. In other words, the inte-
gration of Lufthansa network in the Star Alliance reduces the travel distance, as the
passengers can benefit from more connections and thus shorter paths to travel be-
tween the origin and the destination. This has important implications in the context
of our study, because it entails that Lufthansa’s networks shrink, when we consider
the flights of all Star Alliance members.

Having examined now Lufthansa nodes’ characteristics, we will explore
Lufthansa’s network features, in particular its network concentration and con-
nectivity. The related results will be offered in the following Sects. 3.3 and 3.4.

9 It can be assumed that access to the network is easier when nodes are closer [21].
10 We compute the closeness centrality, as well as the subsequent betweenness centrality, using the
Pajek software (http://vlado.fmf.uni-lj.si/pub/networks/pajek/).
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3.3 Lufthansa’s Network Concentration

The study of the networks’ degree of concentration – which is carried out in the
present subsection – is crucial in order to detect the exact network topology, because
the hub-and-spoke model is highly concentrated, while point-to-point networks do
not show this feature.

First, Table 4 presents the normalized Gini index (see Table 1) for the four
networks under consideration. Both Star Alliance networks are less concentrated
than the Lufthansa counterparts, meaning that when we enlarge the measurement
to a broader network including intercontinental destinations and partners’ networks,
the configuration will probably evolve into a mix of multi hub-and-spoke and point-
to-point structures. In particular, network A2 appears to be the most concentrated.

The information provided by the Gini index refers to the degree of concentration
existing in a network, without any evidence on how this concentration impacts on
the network topology. For this last purpose the Freeman centrality index (Table 1)
has been computed. Its normalized values are represented in Table 5. This index
assumes the value 1 for a hub-and-spoke network, and the value 0 for a point-to-
point network [17].

According to the Freeman index, again networks A1 and A2 turn out to be the
most concentrated ones. In particular, A2 network seems to be again the closest to
the hub-and-spoke model; we may suppose that this network is characterized by a
strong hierarchy among nodes.

Finally, concerning the last concentration index, that is, entropy (Table 1), Table 6
shows the related values for the networks A1, A2, B1 and B2. The results from

Table 4 Normalized Gini index

Network Gini index

A1 0.762
A2 0.813
B1 0.524
B2 0.600

Table 5 Normalized Freeman index

Network Freeman index

A1 0.504
A2 0.757
B1 0.059
B2 0.056

Table 6 Entropy values

Network Entropy

A1 5.954
A2 6.194
B1 7.790
B2 8.389
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Table 6 show that the entropy values are higher when we consider those flights
operated by Lufthansa’s partners (networks B1 and B2). A likely explanation for
this increase is given by the process of construction of these networks, obtained by
the addition of flights to the nodes of A1 and A2, respectively. Both B1 and B2 are
therefore the “sum” of the networks implemented by the different carriers that are
members of Star Alliance, and hence they are not the result of a specific strategy,
as is the case for A1 and A2. Clearly, the above values indicate that A1 and A2
networks are more concentrated and less dispersed than the B1 and B2 networks;
more specifically, A1 appears to be the most concentrated network.

In conclusion, from the above three indicators, networks A1 and A2 appear to
be the most concentrated. However, among these two networks, A2 seems the most
concentrated with respect to two indicators (Gini and Freeman), while A1 seems the
most concentrated with respect to the entropy index.

In order to formally detect hub-and-spoke models, our next step will be the analy-
sis of the vertex connectivity distribution functions of the four networks A1, A2, B1
and B2, in the light of their performance indicators (see also Sect. 2.3).

3.4 Lufthansa’s Network Configuration

In Sect. 2.3 we have already stressed the importance of the vertex degree distrib-
ution function, in order to detect the most plausible network configuration. In this
section, we will explore whether the variable “number of weekly connections” is
rank-distributed – over A1, A2, B1 and B2 – according to either an exponential or a
power function.

The R2 values and the b coefficients of the two interpolating functions (exponen-
tial and power) concerning the four ranked distributions (in log terms) are listed in
Table 7. The plots of both functions for the four networks under consideration are
displayed in Figs. 1 and 2.

Both Table 7 and Figs. 1 and 2 highlight that our data sets better fit a power
function, as the higher R2 values indicate. It is worth noting that the b coefficient of
the power function for A1, A2, B1 and B2 is respectively equal to 0.99, 0.82, 0.67

Table 7 Exponential and power fitting of rank distributions

Network A1 A2 B1 B2

Network parameters R2 b R2 b R2 b R2 b

Distribution function
Power 0.95 0.99 0.93 0.82 0.75 0.67 0.70 0.65
Exponential 0.75 0.03 0.67 0.01 0.66 0.02 0.48 0.01



270 A. Reggiani et al.

Network A1

Exponential:Power:

0.1

1

10

100

0 20 40 60 80 100

Rank

C
on

ne
ct

io
ns

120

Network A2

1

10

100

1000

Rank

C
on

ne
ct

io
ns

 

y = 89.421x−0.9908 y = 9.2195e−0.0256x

R2 = 0.9497 R2 = 0.7538

Exponential:Power:
y = 73.081x−0.9017 y = 14.744e−0.0421x

R2 = 0.8896 R2 = 0.5398

1 10 100

Fig. 1 Rank distribution fitting for networks A1 and A2

and 0.65. If we carry out a transformation11 of these coefficients, we observe that
the A1 network displays a power-law exponent equal to 2, thus indicating a stronger
tendency to a hub-and-spoke system according to Barabási and Oltvai [6], while the
other three networks A2, B1 and B2 display power-law exponent between 2 and 3,
thus indicating a tendency to a hierarchy of hub/agglomeration patterns.

11 Adamic [1] shows that the power-law exponent γ (emerging from the nodes’ probability distrib-
ution (3)) is related to the power function coefficient b (emerging from the distribution relating the
degree of the nodes to their rank (rank size rule); see Figs. 1 and 2) as follows: γ = 1+(1/b).
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Fig. 2 Distribution fitting for networks B1 and B2

A further issue concerns the fitting of the exponential function. Also in this case
we obtain high R2values, although inferior to the ones emerging in the power case;
however, the coefficient of the exponential function is always very low, ranging from
0.01 to 0.03 (Table 7).

Therefore, if we look at the R2indicators, all networks under consideration appear
to be in a “border-line” situation (that is, an ambiguity between a power and expo-
nential fitting). Nevertheless, if we look at the coefficient values, the four networks
seem to show a tendency toward an agglomeration structure of SF type, expressed
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by a clear power-law vertex degree distribution, with the degree exponent γ equal to
2 (network A1), or varying between 2 and 3 (networks A2, B1, B2).

A further consideration concerns the plots of networks B1 and B2 (Fig. 2). We
can clearly see that both identify a power function with a cut-off. Thus, if we elim-
inate – in both networks B1 and B2 – those nodes which have less than 10 links,
we slightly improve the fitting of their power function, obtaining for networks B1
and B2 respectively R2 values of 0.84 and 0.75, but still lower than the R2 values
regarding A1 and A2.

In conclusion, from the estimation results displayed in Table 3, the networks A1,
A2 appear to show the strongest characteristics of concentration and preferential at-
tachment. In particular, network A1 appears to be the closest to the hub-and-spoke
model, from the perspective of Barabási and Oltvai’s approach. Given these pre-
liminary results, it is worth to examine these configurations, by exploring further
indicators of the network concentration, such as those defined in Sects. 2.4 and 2.5.
Consequently, a multidimensional method, such as Multi Criteria Analysis (MCA),
taking into account – by means of an integrative approach – all adopted indicators
and related results, was next carried out and applied.12 The alternatives are the four
networks A1, A2, B1, B2 under consideration, while the criteria have been grouped
according to three macro-criteria: network concentration, topology and connectivity
(Table 8). It should be noted that, concerning the topology criteria, we have consid-
ered the diameter and the clustering coefficient, since these two indices provide the
network geometry’s features (see Sect. 3.2). In particular, concerning the latter, the
average clustering coefficient has been adopted [6].

The first group of macro-criteria is related to the networks’ concentration. It
should be noted that in our MCA procedure, the entropy indicator needs to be
transformed positively because the real values of the entropy function increase

Table 8 Alternatives and criteria

Alternatives A1 (Lufthansa, Europe)
A2 (Lufthansa, World)
B1 (Star Alliance, Europe)
B2 (Star Alliance, World)

“Concentration” criteria Gini index
Freeman index
Entropy

“Topology” criteria Diameter
Average clustering coefficient

“Connectivity” criteria R2 of the fitted power function (ranked degree distribution)
Coefficient of the power function
R2 of the fitted exponential function (ranked degree distribution)
Coefficient of the exponential function

12 In particular, the Regime method and software has been used [26].
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Table 9 Findings of multi-criteria analyses

Criteria All criteria Concentration Topology Connectivity Concentration and
considered combined criteria criteria criteria topology criteria

Hierarchy of the A1 A2 B1 A1 A1
alternatives A2 A1 B2 B1 B1

B2 B2 A1 A2 A2
B1 B1 A2 B2 B2

when networks are more heterogeneous, that is, less concentrated.13 The second
group of macro-criteria refers to the networks’ physical measurement. Here, the
diameter needs to be converted in utility, because its value is higher when networks
are less centralized. The third group of macro-criteria is related to connectivity.
This property is investigated through the interpolation of the ranked degree distri-
butions, where – in the power function – the highest exponent of 0.99 implies a
value of the exponent degree14 – in the associated power-law distribution – close
to 2 (perfect hub-and-spoke). The R2and the coefficient of the exponential function
need to be converted to utility, since both values indicate random and homogeneous
patterns.

We have carried out five scenarios by considering: (a) all the criteria mentioned
above; (b) each macro-criteria separately; (c) concentration and topology criteria
together. In each scenario an equal weight, that is, unknown priority, has been given
to the single criteria. The results are listed in Table 9.

These findings point out that network A1 prevails, however with two exceptions.
The former is represented by network A2, which is the top-scorer when we consider
the criteria related to the networks’ concentration/geography: this finding comes
from the higher centralization and concentration degree of network A2, as demon-
strated by the Freeman and Gini indices. The latter exception is represented by
network B1, which prevails when we consider the criteria related to the physical
measurement of networks.

It turns out that the Lufthansa network A1 is the most concentrated one; we
can conjecture that A1 is close to a hub-and-spoke system, according to the values
expressed by its exponent degree in the power-law distribution (see Table 7). This re-
sult confirms the dual-hubs network strategy advocated by the German carrier [29].
Frankfurt and Munich act as central hubs, where all intercontinental flights depart
and arrive in conjunction with the European and domestic flights. This timetable
coordination is designed to allow passengers to transfer from one flight to another
for different national and international destinations. The general conclusions of the
present article are included in the Sect. 4.

13 The relation between concentration and centralization is described in Footnote 6 in Sect. 2.5.
14 See Footnote 12.
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4 Conclusions

Airline networks are fascinating examples of emerging complex and interacting
structures, which may evolve in a competitive environment under liberalized market
conditions. They may exhibit different configurations, especially if a given carrier
has developed a flanking network framework together with partner airlines.

The present paper has investigated the network structure of four networks of
Lufthansa by considering several indicators concerning the concentration, topology
and connectivity (degree distribution) functions characteristics of this carrier. An
integrated multidimensional approach, in particular multicriteria analysis has been
adopted, in order to take into account all information obtained by the above indica-
tors.

The related results point out that all the four Lufthansa networks can be prop-
erly mapped into the SF model of the Barabási type. In particular, network A1
can be formally identified as a hub-and-spoke structure. In general, we can con-
jecture a “tendency” towards a hubs’ hierarchy or hub-and-spoke configuration in
Lufthansa’s European network, as also witnessed by the emergence of various nodes
(Frankfurt, Munich and Dusseldorf) which are organized as hubs in the framework
of Lufthansa’s activities. All in all the four networks exhibit a hierarchical structure
mainly dominated by German airports.

The results obtained thus far highlight various characteristic features of complex
aviation networks, but need to be complemented with additional investigations, in
particular, on the structure and driving forces of the demand side (types of cos-
tumers, in particular). Furthermore, the market is decisive in a liberalized airline sys-
tem, and hence also price responses of customers as well as competitive responses
of main competitors would need to be studied in the future.

From a methodological viewpoint a refined weighted network analysis – taking
into account the strength of each connecting link – might offer better insights into
the topological structure of the airline network at hand (see, for example, [7]).

Acknowledgements The authors wish to thank Roberto Patuelli (University of Bologna at
Rimini) for his comments on the present chapter, as well as for his cooperation in the editing
process.

Appendix 1

In this Appendix, we will present the top ten scores of the airports – according
to the main topological indices illustrated in Table 1– belonging to the four air-
line networks A1, A2, B1 and B2. These networks are visualized in the subsequent
Appendix 2.
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Table 10 Top-ten scores of airports according to the degree index (corresponding values in
brackets)

A1 A2 B1 B2

MUC (82) FRA (138) FRA (106) FRA (183)
FRA (81) MUC (100) MUC (105) MUC (179)
DUS (39) DUS (41) BRE (97) HAM (172)
HAM (24) HAM (24) HAM (97) DUS (171)
STR (18) STR (18) BSL (94) STR (168)
TXL (10) TXL (10) DUS (94) LEJ (166)
CDG (8) CDG (8) LEJ (92) ZRH (165)
NUE (8) NUE (8) NUE (92) TXL (164)
BRU (7) BRU (7) STR (92) NUE (163)
LHR (6) MXP (6) CGN (89) BRE (162)

Table 11 Top-ten scores of airports according to the closeness index (corresponding values in
brackets)

A1 A2 B1 B2

MUC (0.78) FRA (0.79) FRA (0.96) BRE (1)
FRA (0.76) MUC (0.64) MUC (0.95) DUS (1)
DUS (0.60) DUS (0.53) HAM (0.89) ZRH (1)
HAM (0.55) HAM (0.51) DUS (0.87) FRA (0.98)
STR (0.54) STR (0.50) NUE (0.86) MUC (0.95)
TXL (0.51) CDG (0.49) STR (0.86) HAM (0.93)
CDG (0.51) NUE (0.49) LEJ (0.85) STR (0.91)
NUE (0.51) BRU (0.48) CGN (0.84) LEJ (0.89)
LHR (0.51) LHR (0.48) TXL (0.84) NUE (0.89)
MXP (0.51) MXP (0.48) ZRH (0.84) FMO (0.85)

VIE (0.48)

Table 12 Top-ten scores of airports according to the betweenness index (corresponding values in
brackets)

A1 A2 B1 B2

MUC (0.51) FRA (0.76) MUC (0.06) MUC (0.06)
FRA (0.50) MUC (0.03) FRA (0.06) FRA (0.06)
DUS (0.06) DUS (0.03) DUS (0.05) DUS (0.06)
KUF (0.05) BKK (0.02) HAM (0.05) BRE (0.05)
HAM (0.03) KUF (0.02) STR (0.05) CGN (0.05)
GOJ (0.02) HAM (0.01) BRE (0.04) HAM (0.05)
STR (0.01) CAI (0.01) HAJ (0.04) NUE (0.05)
CDG (4.5e−4) CAN (0.01) NUE (0.04) STR (0.05)
CGN (9.5e−5) GOJ (0.01) TXL (0.04) ZRH (0.05)
BRU (1.9e−5) GRU (0.01) CGN (0.04) CGN (0.05)

JED (0.01) DRS (0.05)
KRT (0.01) LEJ (0.05)
LOS (0.01)
PHC (0.01)
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Table 13 Top-ten scores of airports according to the clustering coefficient (corresponding values
in brackets)

A1 A2 B1 B2

MUC (0.82) FRA (0.75) FRA (0.96) BRE (1)
FRA (0.80) MUC (0.48) MUC (0.89) DUS (1)
DUS (0.24) DUS (0.11) LEJ (0.77) ZRH (1)
HAM (0.10) HAM (0.04) ZRH (0.67) FRA (0.96)
STR (0.06) STR (0.02) BSL (0.66) MUC (0.88)
CDG (0.01) TXL (6e-3) STR (0.57) LEJ (0.84)
TXL (0.01) CDG (5e-6) DUS (0.55) BSL (0.81)
NUE (9e-3) NUE (4e-3) HAM (0.55) GVA (0.67)
BRU (6e-3) BRU (2e-3) GVA (0.48) HAM (0.63)
MXP (4e-4) ZRH (2e-3) TXL (0.47) STR (0.60)
VIE (4e-4)

Table 14 Nomenclature of airports under study

BKK Bangkok

BRE Bremen
BRU Bruxelles
BSL Basel
CDG Paris Charles de Gaulle
CGN Koln
DRS Dresden
DUS Dusseldorf
FMO Munster
FRA Frankfurt
GOJ Novgorod
GRU Sao Paulo
GVA Geneva
HAM Hamburg
JED Jedda
KRT Khartoum
KUF Samara
LEJ Leipzig
LHR London-Heathrow
LOS Laos
MUC Munich
MXP Milano-Malpensa
NUE Nuremberg
PHC Port Harcour
STR Stuttgart
TXL Berlin-Tegel
VIE Wien
ZRH Zurich
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On Certain Graph Theory Applications

Klavdija Kutnar and Dragan Marušič

Abstract Recent developments with regards to certain open problems in fullerenes
and torusenes together with the methods used to solve these problems in a graph-
theoretic context are presented. The stability of fullerenes and torusenes via the
number of perfect matching and Hamiltonian cycles is considered in more detail.

1 Introductory Remarks

Graph theory has come into its own through many important contributions to a
wide range of fields (such as economy, statistics, interconnection networks, biology,
chemistry, etc.) and is now one of the fastest-growing areas in discrete mathematics
and computer science. It turns a real-world problem into a mathematical one.

For instance, designing computer interconnection networks based on graph
theory gives more efficient networks (see [2]). To model computer interconnec-
tion networks with graphs topologies, the following correspondences are used:
graph vertices model computer processors; and graph edges model connections
between individual processors. Some such networks are two-dimensional meshes
and tori [16, 32], hypercubes [15, 21], cubic symmetric graphs [3] and others [8].

In this paper we restrict ourselves to graph theory applications to chemistry. In
particular, we survey some recent developments with regards to certain open prob-
lems in fullerenes and torusenes together with the methods used to solve these
problems in a graph-theoretic context.
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Throughout this paper graphs are finite, undirected and connected, unless spec-
ified otherwise. For adjacent vertices x and y in X , we write x ∼ y and denote the
corresponding edge by xy. Given a graph X we let V (X) and E(X) be the vertex
set and the edge set of X , respectively. If S ⊆ V (X), then Sc = V (X) \ S denotes
the complement of S and the graph induced on S is denoted by X [S]. The line
graph L(X) of X is a graph with vertex set E(X) and any two vertices of L(X)
are adjacent if and only if their corresponding edges share a common endvertex in
X . A graph is 3-edge-connected if three edges are needed to be removed in order
to disconnect the graph. A graph X is said to be vertex-transitive, edge-transitive
and arc-transitive if its automorphism group AutX acts transitively on V (X), E(X)
and A(X), respectively. A Hamiltonian cycle in a graph is a cycle passing through
all vertices. A Hamiltonian path in a graph is a path passing through all vertices.
A perfect matching in a graph is a set of disjoint edges covering every vertex of the
graph.

2 Graph Theory Applications to Chemistry

With the revolution in carbon chemistry and physics that stemmed from the dis-
covery of fullerenes, graph theory has come to new prominence in chemistry, as a
means of obtaining systematic qualitative information about isomerism, shape, sta-
bility, electronic structure and reactivity of these previously unsuspected forms of
the most well-studied element in the Periodic Table. An exciting spin-off from this
frantic activity (over 10,000 papers in chemistry and physics journals in the past
decade) has been the upsurge of mathematical interest in the graphs and polyhe-
dra related to the fullerenes. This in turn has suggested new directions for chemical
application, for example, the use of independence numbers as indicators of stable
addition patterns in fullerene compounds.

A main challenge in this multidisciplinary area is the relation between graph
invariants and real-world applications. Many classical graph invariants have a role
in chemistry. For example, qualitative theories of stability invoke the Kekulé number
or the number of perfect matchings, and in the fullerene area counting of pentagon–
pentagon adjacencies gives a first filter to separate stable from unstable isomers.

In Sect. 2.1 some open problems with regards to fullerenes and torusenes from
a graph-theoretic viewpoint are presented. Section 2.2 deals with existence of
Hamiltonian cycles, and existence of Hamiltonian paths in fullerenes.

2.1 Fullerenes and Torusenes

Fullerenes, discovered in 1985, are all-carbon “sphere”-shaped molecules with triva-
lent polyhedral skeletons, having pentagonal faces and all other hexagonal faces.
This important class of molecules is a basis of thousands of patents for a broad
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range of pharmaceutical, electronic and other commercial applications [4, 28]. The
most stable fullerene is Buckminsterfullerene that consists of 60 carbon atoms. It
was obtained for the first time in the graphite vaporization experiment [19] and
spectroscopic evidences of his structure are given in [20]. R. F. Curl, H. Kroto and
R. E. Smalley received the Nobel Prize for this discovery. From a mathematical
point of view, fullerene graphs, in short fullerenes, correspond to cubic (trivalent)
and 3-edge-connected planar graphs which have, in view of the well known Euler
formula for connected planar graphs, 12 pentagons and the remaining faces are
hexagons. (Recall that by Euler’s formula the number of faces of a connected planar
graph X in its planar embedding is equal to |E(X)|+ |V (X)|−2.) It is therefore not
surprising that many questions about the chemistry of fullerenes together with the
methods used to answer these questions find their natural environment in a graph-
theoretic context.

In a classical paper by Grünbaum and Motzkin [13] the existence of fullerenes
on n vertices was established for all even n ≥ 20 except for n = 22. The smallest
fullerene is the dodecahedron. For a systematic introduction on fullerene graphs we
refer the reader to the monograph [11].

One of many open problems with regards to fullerenes cast in a graph-theoretic
language, concerns the number of perfect matchings in a fullerene. The concept of
perfect matchings corresponds to the notion of Kekulé structure in chemistry [31]
and plays a very important role in analysis of benzenoid systems, fullerenes and
other carbon molecules [14, 29]. The existence of a perfect matching in every
fullerene follows from a classical result of Petersen that every connected cubic graph
with no more than two cut-edges has a perfect matching. However, in [35] it was
shown that a fullerene of order n has at least �3(n + 2)/4� perfect matchings. Re-
cently it was shown that for all sufficiently large n there is a fullerene of order n
that has exponentially many perfect matchings in terms of the number of vertices
(see [10]).

The leapfrog-fullerene Le(F) is obtained from a fullerene F by performing the
so called tripling (leapfrog transformation) which consists in the truncation of the
dual of F . Hence Le(F) = Trun(Du(F)) (see [7]).

In a particular situation a perfect matching in a cubic graph arises as a com-
plement of a Hamiltonian cycle. Therefore, knowing that a fullerene contains a
Hamiltonian cycle, and hence possibly lots of such cycles, is a useful information
when analyzing stability properties of fullerenes. This brings us to the next open
problem on fullerene, concerning existence of a Hamiltonian cycle in an arbitrary
fullerene, which will be dealt with in more detail in Sect. 2.2.

The synthesis of fullerenes prompted a natural question as to whether similar car-
bon structures exist on other closed surfaces. Apart from the sphere only three other
surfaces are possible: the torus, the Klein bottle and the projective plane [5]. Of
these only torus-shaped graphite-like carbon structures, known as torusenes, have
received enough research attention [6, 7, 12, 17, 22] in view of their direct exper-
imental relevance, [23] but also since the other two types are meaningless from a
chemical point of view as they do not admit a realization in the Euclidean 3-space.
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Only two fullerenes, notably the dodecahedron fullerene C20 and the buck-
minsterfullerene C60 (that is, the leapfrog-fullerene of C20), are vertex-transitive
admitting a transitive group of automorphisms and thus a high degree of sym-
metry. The situation with torusenes is completely different since all torusenes are
vertex-transitive.

From a graph-theoretic viewpoint, a torusene is a cubic (trivalent) graph, embed-
dable onto the torus in such a way that each face is a hexagon. The description uses
three parameters p, q and t, explained hereafter. A torusene H(p,q,t) is obtained
from pq hexagons stacked in an p×q parallelogram where the two sides are glued
together in order to form a tube, and then the top boundary of the tube is glued to the
bottom boundary of the tube in order to form a torus. At this last stage the top part
is rotated by t hexagons before the actual gluing takes place. In Fig. 1 the H(8,1,2)
torusene realization of the Moebius–Kantor graph is shown. Note that this graph
admits also an H(4,2,1) torusene realization [25].

Since every torusene is vertex-transitive the existence of a Hamiltonian cycle in
an arbitrary torusene follows from results proved by Thomassen [30]. Perfect match-
ings in torusenes have also be investigated (see [17]). However, by Voorhoeve’s
result [34], every bipartite torusene of order n has at least (4/3)n/2 different perfect
matchings.

In chemistry, a molecule is said to be chiral if it is not superimposable on its
mirror image regardless of how it is contorted. (A graph X embedded onto the torus
is chiral if AutX contains no automorphism which “flips” an edge of a face while
preserving this face.) Since biomolecules, such as proteins and enzymes, in living
organisms are chiral, therapeutics possessing this property significantly enhance the
potential impact of a drug product. Consequently, research involving the concept of
chirality is very important.

In the case of an arc-transitive torusene the automorphism group of the under-
lying cubic graph must contain, by the classical theorem of Tutte [33], a subgroup
acting regularly on the corresponding set of 1-arcs. In other words, vertex stabilizers
are isomorphic to Z3 and the graphs are therefore without reflections. Such a graph is
referred to as 1-regular provided this subgroup coincides with the full automorphism
group. In [22] the following natural question with regards to chirality of torusenes
H(p,q, t) was posed.

Problem 1. [22, Problem 1.1] For which parameters p, q and t there exists a chiral
torusene H(p,q,t)?

1 2 3 4 5 6 7 8 1

Fig. 1 The H(8,1,2) torusene of the Moebius–Kantor graph



On Certain Graph Theory Applications 287

For example, the H(3,1,1) torusene of the complete bipartite graph K3,3 on six
vertices is achiral since it possesses reflective symmetry. On the other hand, the
H(13,1,3) torusene corresponding to the unique 1-regular graph on 26 vertices pos-
sesses no reflective symmetry, and is thus chiral. In particular, Problem 1 has defi-
nitely a positive answer for a triple (p,q,t) whenever there exists a cubic 1-regular
graph having an H(p,q,t) torusene realization. A partial answer to Problem 1 fol-
lows from a complete classification of cubic arc-transitive Cayley graphs of dihedral
groups [25]. Furthermore, in [22] from a chiral torusene H(n,1,r) a chiral torusene
H(pn, p, pr), where p is a prime coprime with n, was constructed.

The chirality has also been studied in the framework of fullerenes. For detailed
information on this topic we refer the reader to [18].

2.2 Hamiltonian Cycles and Paths in Fullerenes

A long standing conjecture suggests that an arbitrary fullerene contains a Hamiltonian
cycle (see [26]). Not much progress has been made with regards to this conjecture.
It has been verified for graphs on at most 176 vertices (see [1]). To the best of our
knowledge, the following proposition is the most general result in this topic.

Proposition 1. [24, Theorem 1.1] Let F be a fullerene. Then the leapfrog-fullerene
Le(F) has a Hamiltonian cycle if |F | (and thus also |Le(F)|) is congruent to 2
modulo 4, and contains a long cycle missing out only two adjacent vertices (and
thus contains a Hamiltonian path) if |F| (and thus also |Le(F)|) is divisible by 4.

The method used in the proof of Proposition 1 to construct Hamiltonian cy-
cles and paths in an arbitrary leapfrog-fullerene consists in identifying, in a given
fullerene F , a subset of vertices inducing a tree, the complement of which has as
few edges as possible. Since by [9, Theorem 2] fullerenes are cyclically 5-edge-
connected graphs (a graph is cyclically k-edge-connected if at least k edges need to
be removed in order to disconnect the graph into two components each containing
a cycle), [27, Théorème 5] implies that the complement has either no edge when
|F | ≡ 2(mod 4) or a single edge when |F | ≡ 0(mod 4). Hence, in the correspond-
ing leapfrog-fullerene Le(F) this tree gives rise to a tree of faces the boundary of
which is either a full Hamiltonian cycle when |F | ≡ 2(mod 4) and a long cycle
missing only two (adjacent) vertices when |F| ≡ 0(mod 4).

Here we give examples of two leapfrog-fullerenes, arising respectively from
fullerenes on 24 vertices and 26 vertices. The above mentioned method gives in
the respective leapfrog-fullerenes a long cycle missing out two adjacent vertices
(and therefore a Hamiltonian path) in C72 and a Hamiltonian cycle in C78.

Example 1. In the left picture of Fig. 2 we show a fullerene on 24 vertices with an
identified maximal induced tree with 17 vertices whose complement is a set of 7
vertices inducing a single edge. In the right picture the corresponding tree of faces
whose boundary gives rise to a long cycle missing only two adjacent vertices in its
leapfrog-fullerene C72 is shown.
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Fig. 2 A fullerene on 24 vertices and its leapfrog-fullerene with a Hamiltonian path

Fig. 3 A fullerene on 26 vertices and its leapfrog-fullerene with a Hamiltonian cycle

Example 2. In the left picture of Fig. 3 we show a fullerene on 26 vertices with an
identified maximal induced tree with 19 vertices whose complement is an indepen-
dent set of 7 vertices. In the right picture we show the corresponding tree of faces
whose boundary gives rise to a Hamiltonian cycle in the corresponding leapfrog-
fullerene on 78 vertices.

A natural question is whether this approach could be further explored, say in the
context of other classical fullerenes transformations, such as chamfering (quadru-
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Fig. 4 The dodecahedron, its line graph and its chamfering-fullerene with a cycle of length 78

pling) and capra (septupling) transformations [18]. The theorem below shows the
existence of a Hamiltonian path in certain chamfering-fullerenes. The chamfering-
fullerene Q(F) is obtained from a fullerene F by performing the so called quadru-
pling transformation which consists in the truncation of the dual of the line graph
L(F) of F . Hence, Q(F) = Trun(Du(L(F))) (in other words, Q(F) is obtained from
L(F) by performing the leapfrog transformation).

Theorem 1. Let F be a fullerene of order n that contains a Hamiltonian cycle. Then
Q(F) contains a long cycle missing out only two nonadjacent vertices lying on a
common hexagon. Moreover, Q(F) contains a Hamiltonian path.

Proof. Let F be a fullerene of order n that contains a Hamiltonian cycle C. Note
that the chamfering-fullerene Q(F) is of order 4n.

Clearly, C gives rise to a cycle C′ of length n in the line graph L(F) whose
complement is an independent set of n/2 vertices (recall that L(F) is of order 3n/2).
Now let v ∈ V (L(F))∩C′. Then L(F)[C′ \ {v}] is a path whose complement (C′ \
{v})c induces a graph with two incident edges (therefore two vertices of valency 1
and a vertex v of valency 2 exist in L(F)[(C′ \ {v})c]). Moreover, since every edge
in L(F) lies on a triangle the set C′ \ {v} is a maximal cyclically stable subset of
V (L(F)) and |C′ \ {v}|= n−1.

Now the path L(F)[C′ \ {v}] gives rise to a path of faces in the chamfering-
fullerene Q(F) whose boundary is a cycle C of length 4n− 2 in Q(F). This may
be seen, for example, by counting the number of vertices on the boundary of this
path of faces. First, the boundary is clearly a cycle missing out two nonadjacent
vertices, say v′ and v′′, lying on a hexagon corresponding to the vertex v in L(F).
And second, since all faces in this path are hexagonal the length of this cycle is
6(n− 1)− 2(n− 2) = 4n− 2. Finally, since v′ and v′′ are adjacent to neighboring
vertices of C it follows that Q(F) contains a Hamiltonian path (see also Example 3).

Example 3. In the left picture of Fig. 4 we show the dodecahedron fullerene with
a Hamiltonian cycle. In the middle picture we show the line graph of the dodeca-
hedron fullerene, with an identified maximal induced tree with 19 vertices whose
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complement is a set of 11 vertices inducing a graph with two incident edges. In the
right picture the corresponding tree of faces whose boundary gives rise to a long cy-
cle missing only two vertices in the chamfering-fullerene C80 of the dodecahedron
is shown.
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