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Abstract. Most algorithms for simultaneous localization and mapping (slam) do not
incorporate prior knowledge of structural or geometrical characteristics of the envi-
ronment. In some cases, such information is readily available and making some as-
sumptions is reasonable. For example, one can often assume that many walls in an
indoor environment are rectilinear. In this paper, we develop a slam algorithm that
incorporates prior knowledge of relative constraints between landmarks. We describe a
“Rao-Blackwellized constraint filter” that infers applicable constraints and efficiently
enforces them in a particle filtering framework. We have implemented our approach
with rectilinearity constraints. Results from simulated and real-world experiments show
the use of constraints leads to consistency improvements and a reduction in the number
of particles needed to build maps.

1 Introduction

The simultaneous localization and mapping (slam) problem is for a mobile robot
to concurrently estimate both a map of its environment and its pose with re-
spect to the map. Most slam algorithms make few assumptions about the en-
vironment; thus, slam does not take advantage of prior information when the
environment is known to have specific structural characteristics. For example, a
robot designed to operate indoors can often assume its environment is “mostly”
rectilinear.

In many cases structural or geometrical assumptions can be represented as in-
formation about relative constraints between landmarks in a robot’s map, which
can be used in inference to determine which landmarks are constrained and the
parameters of the constraints. In the rectilinearity example, such a formulation
can be used to constrain the walls of a room separately from, say, the boundary
of a differently-aligned obstacle in the center of the room.

Given relative constraints between landmarks, they must be enforced. Some
previous work has enforced constraints on maps represented using an extended
Kalman filter (ekf) [6, 11, 14]. In this paper, we develop techniques to in-
stead enforce constraints in maps represented by a Rao-Blackwellized particle
filter (rbpf). The major difficulty is that rbpf slam relies on the conditional
independence of landmark estimates given a robot’s pose history, but relative
constraints introduce correlation between landmarks.
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Our approach exploits a property similar to that used in the standard
slam Rao-Blackwellization: conditioned on values of constrained state variables,
unconstrained state variables are independent. We use this fact to incorporate
per-particle constraint enforcement into rbpf slam. We have also developed
a technique to address complications which arise when initializing a constraint
between groups of landmarks that are already separately constrained; the tech-
nique efficiently recomputes conditional estimates of unconstrained variables
when modifying the values of constrained variables.

Incorporating constraints can have a profound effect on the computation re-
quired to build maps. A motivating case is the problem of mapping with sparse
sensing. In previous work [3], we have shown that particle filtering slam is pos-
sible with limited sensors such as small arrays of infrared rangefinders, but that
many particles are required due to increased measurement uncertainty. By ex-
tending sparse sensing slam to incorporate constraints, an order-of-magnitude
reduction in the number of particles can be achieved.

The paper proceeds as follows. We first discuss previous work on constrained
slam. Then, in Section 2, we briefly review the general slam problem and the
ideas behind rbpf, and discuss the assumption of unstructured environments
made by most slam algorithms. In Section 3 we formalize the idea of slam

with relative constraints and describe a simple but infeasible approach. We then
introduce the Rao-Blackwellized constraint filter: Section 4 describes an rbpf-
based algorithm for enforcing constraints, and Section 5 incorporates inference
of constraints. Finally, in Section 6 we describe the results of simulated and
real-world experiments with a rectilinearity constraint.

1.1 Related Work

Most work on slam focuses on building maps using very little prior informa-
tion about the environment, aside from assumptions made in feature extraction
and data association. A thorough coverage of much of the state-of-the art in
unconstrained slam can be found in, e.g., [8].

The problem of inferring when constraints should be applied to a map is
largely unexplored. Rodriguez-Losada et al. [11] employ a simple thresholding
approach to determine which of several types of constraints should be applied.

On the other hand, several researchers have studied the problem of enforcing a
priori known constraints in slam. In particular, Durrant-Whyte [6] and Wen and
Durrant-Whyte [14] have enforced constraints in ekf-based slam by treating the
constraints as zero-uncertainty measurements. More recently, Csorba, Newman
and Durrant-Whyte [4, 10] and Deans and Hebert [5] have built maps where
the state consists of relationships between landmarks; they apply constraints on
the relationships to enforce map consistency. From a consistent relative map an
absolute map can be estimated.

Finally, others have studied general constrained state estimation using the
ekf. Simon and Chia [12] derive Kalman updates for linear equality con-
straints (discussed in detail in Section 3.1) that are equivalent to projecting
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Fig. 1. A Bayes network showing common slam model assumptions. Input variables
are represented by shaded nodes; the objective of slam is to estimate values for the
unshaded nodes. Arcs indicate causality or correlation between variables. (Correspon-
dence variables nt are omitted for clarity — observations are connected directly to
the corresponding landmarks.) Correlations between landmarks due to structure in the
environment (dashed arcs) are typically ignored in slam.

the unconstrained state onto the constraint surface. In [13], Simon and Simon
extend this approach to deal with linear inequality constraints.

2 The SLAM Problem

The goal of slam is to simultaneously estimate both a map M of the envi-
ronment and the robot’s (time-dependent) pose st with respect to the map. A
number of map representations exist; we focus on landmark-based mapping with
M = {x1, x2, . . . , xn}, where each landmark xi is a parameterized geometric ob-
ject such as a point or a line. In the basic slam process, the robot executes a
motion and estimates its new pose using odometry. It then takes a sensor read-
ing and extracts geometric features from the raw sensor data. Data association
matches features with landmarks in the map, and the map and pose estimates
are updated.

slam is often posed in a Bayesian filtering formulation where the goal is to
estimate a posterior distribution over poses and maps given all of the measure-
ments zt, commanded motions ut, and correspondences nt between features and
landmarks [8]. (The superscript notation indicates a set of values 1 . . . t over all
time steps.) A Bayes network depicting the standard slam model assumptions
is shown in Fig. 1. The filter can be written recursively:

p(st, M |zt, ut, nt) =

ηp(zt|st, xnt , nt)
∫

p(st|st−1, ut)p(st−1, M |zt−1, ut−1, nt−1) dst−1 (1)

where p(zt|st, xnt , nt) is the measurement model, p(st|st−1, ut) models the
robot’s motion, and η is a normalization constant. In this approach, slam is
usually done using the extended Kalman filter (ekf).
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An alternative is to filter over the entire robot trajectory st, i.e.:

p(st, M |nt, zt, ut) =
ηp(zt|st, xnt , nt) p(st|st−1, ut)p(st−1, M |nt−1, zt−1, ut−1) (2)

Under the assumption that the environment is static and that no direct corre-
lations exist between landmarks, this leads to the observation that landmarks
are conditionally independent given the robot’s trajectory, since correlation be-
tween landmarks arises only through robot pose uncertainty [9]. In Fig. 1, the
highlighted variables (the robot’s trajectory) d-separate the landmark variables.
Thus, the posterior over trajectories and maps can be factored:

p(st, M |nt, zt, ut) = p(st|nt, zt, ut)
n∏

i=1

p(xi|st, nt, zt) (3)

This factorization is known as Rao-Blackwellization. To perform slam based on
Eqn. 3, the posterior over trajectories can be represented with a particle filter
where each particle samples a single trajectory. Associated with a particle are
a number of separate small filters (typically ekfs) to analytically estimate each
landmark in the particle’s map. This approach is known as Rao-Blackwellized
particle filtering (rbpf) and is the basis for the well-known Fastslam algo-
rithm [8].

2.1 Structured Environments

Typically, slam approaches assume the environment is unstructured, i.e., that
landmarks are randomly and independently distributed in the workspace. Often
this is not the case, as in indoor environments where landmarks are placed
methodically. Thus, some correlation exists between landmarks, due not to the
robot’s pose uncertainty, but rather to the structure in the environment. (This
is represented by the dotted arcs in Fig. 1).

Correlation between landmarks can arise in many ways, making it difficult to
include in the slam model. In this paper, we assume that structure in the envi-
ronment takes on one of a few forms — i.e., that the space of possible (structured)
landmark relationships is small and discrete. When this is the case, the model
shown in Fig. 2 can be used. Here, arcs indicating correlation between landmarks
are parameterized. The parameters ci,j indicate the constraints (or lack thereof)
between landmarks xi and xj . We perform inference on the constraint parameter
space, and then enforce the constraints. In this paper we focus on the pairwise
case, but more complicated relationships can in principle be exploited.

3 SLAM with Relative Constraints

We begin by addressing the issue of efficiently enforcing known relative con-
straints. Parallel to this is the problem of merging constraints when new rela-
tionships are found between separate groups of already constrained landmarks.
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Fig. 2. Bayes network for a slam model that incorporates pairwise constraints between
landmarks, parameterized by the variables ci,j . Inference in the space of relationship
parameters can be used to determine correlations between landmark parameters; rela-
tive constraints on the landmarks enforce inferred relationships.

Throughout the rest of the paper we omit time indices for clarity. Variables
are vectors unless otherwise noted. We use Pi to represent the covariance of
the landmark estimate xi. We assume that measurements of a landmark are in
the parameter space of the landmark (i.e., measurements are of the landmark
state). Measurements that do not meet this condition can easily be transformed.
Finally, while we present our formulation for a single constraint, the approach
can be applied in parallel to several types of constraints.

3.1 The Superlandmark Filter

There is an immediate problem with slam when the environment is structured:
landmark correlations lead to interdependencies that break the factorization
utilized in Eqn. 3, which assumes correlation arises only through robot pose
uncertainty. We first describe a simple (but ultimately impractical) approach to
deal with the correlation, which leads to an improved technique in Section 4.
Note that the rbpf factorization still holds for unconstrained landmarks; we
rewrite the filter, grouping constrained landmarks. Formally, partition the map
into groups:

L = {{xa1 , xa2 , . . .}, {xb1 , xb2 , . . .}, {xc}, . . .} (4)

Each group (“superlandmark”) Li ∈ L contains landmarks constrained with
respect to each other; correlation arises only among landmarks in the same group.
We immediately have the following version of the rbpf slam filter:
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p(st, M |nt, zt, ut) = p(st|nt, zt, ut)
|L|∏
i=1

p(Li|st, nt, zt) (5)

We can still apply a particle filter to estimate the robot’s trajectory. Each su-
perlandmark is estimated using an ekf, which accounts for correlation due to
constraints since it maintains full covariance information.

There are several ways to enforce constraints on a superlandmark. One
approach is to treat the constraints as zero-uncertainty measurements of the
constrained landmarks [6, 14, 11]. An alternative is to directly incorporate con-
strained estimation into the Kalman filter. Simon and Chia [12] have derived a
version of the ekf that accounts for equality constraints of the form

DLi = d (6)

where Li represents the superlandmark state with n variables, D is an s × n
constant matrix of full rank, and d is a s × 1 vector; together they encode s
constraints. In their approach, the unconstrained ekf estimate is computed and
then repaired to account for the constraints. Given the unconstrained state Li

and covariance matrix PLi , the constrained state and covariance are computed
as follows (see [12] for the derivation):

L̃i ← Li − PDT (DPDT )−1(DLi − d) (7)
P̃Li ← PLi − PLiD

T (DPLiD
T )−1DPLi (8)

i.e., the unconstrained estimate is projected onto the constraint surface.
If a constraint arises between two superlandmarks they are easily merged:

Lij ←
[
Li

Lj

]
, Pij ←

[
Pi Pi

∂Lj

∂Li

T

∂Lj

∂Li
Pi Pj

]
(9)

Unfortunately, the superlandmark filter is too expensive unless the size of
superlandmarks can be bounded by a constant. In the worst case the environ-
ment is highly constrained and, in the extreme, the map consists of a single
superlandmark. ekf updates for slam take at least O(n2) time and constraint
enforcement using Eqns. 7 and 8 requires O(n3) time for a superlandmark of
size n. If the particle filter has N particles, the superlandmark filter requires
O(Nn3) time for a single update. We thus require a better solution.

3.2 Reduced State Formulation

A simple improvement can be obtained by noting that maintaining the full state
and covariance for each landmark in a superlandmark is unnecessary. Constrained
state variables are redundant: given the value of the variables from one “rep-
resentative” landmark, the values for the remaining landmarks in a superland-
mark are determined. In the rectilinearity example, with landmarks represented
as lines parameterized by distance r and angle θ to the origin, a full superland-
mark state vector has the form: [r1 θ1 r2 θ2 . . . rn θn]T . If the {θi} are con-
strained the state can be rewritten as: [r1 θ1 r2 g2(c1,2; θ1) . . . rn gn(c1,n; θ1)]T .



Inferring and Enforcing Relative Constraints in SLAM 145

Thus, filtering of the superlandmark need only be done over the reduced state:
[r1 r2 . . . rn θ1]T . The function gi(cj,i; xj,ρ) with parameters cj,i maps the con-
strained variables xj,ρ of the representative landmark xj to values for xi,ρ; in the
rectilinearity case, cj,i ∈ {0, 90, 180, 270} and gi(cj,i; θj) = θj − cj,i. We assume
the constraints are invertible: the function hi(cj,i; xi,ρ) represents the reverse
mapping, e.g., hi(cj,i; θi) = θi + cj,i. We sometimes refer to the unconstrained
variables of landmark xi as xi,ρ.

4 Rao-Blackwellized Constraint Filter

From the reduced state formulation we see it is easy to separate the map state
into constrained variables M c = {x1,ρ, . . . , xn,ρ}, and unconstrained variables
Mf = {x1,ρ, . . . , xn,ρ}. By the same reasoning behind Eqn. 3, we factor the
slam filter as follows:

p(st, M |nt, zt, ut) = p(st, M c|nt, zt, ut)
|Mf |∏
i=1

p(xi,ρ|st, M c, nt, zt) (10)

In other words, conditioned on both the robot’s trajectory and the values of all
constrained variables, free variables of separate landmarks are independent.

Eqn. 10 suggests that we can use a particle filter to estimate both the robot
trajectory and the values of the constrained variables. We can then use separate
small filters to estimate the unconstrained variables conditioned on sampled
values of the constrained variables. The estimation of representative values for
the constrained variables is accounted for in the particle filter resampling process,
where particles are weighted by data association likelihood.

4.1 Particlization of Landmark Variables

We first discuss initialization of constraints between previously unconstrained
landmarks. Given a set R = {x1, x2, . . . , xn} of landmarks to be constrained,
along with constraint parameters c1,i for each xi ∈ R, i = 2 . . . n (i.e., with x1
as the “representative” landmark — see Section 3.2), we form a superlandmark
from R. Then, we perform a particlization procedure, sampling the constrained
variables from the reduced state of the superlandmark. Conditioning of the un-
constrained variables of every landmark in the superlandmark is performed using
the sampled values. We are left with an ekf for each landmark that estimates
only the values of unconstrained state variables.

In selecting values of the constrained variables on which to condition, we
should take into account all available information, i.e., the estimates of the con-
strained variables from each landmark. We compute the maximum likelihood
estimate of the constrained variables:

Pρ̂ ←

⎛
⎝ ∑

xj∈R
P−1

j,ρ

⎞
⎠

−1

, ρ̂ ← P−1
ρ̂

⎛
⎝ ∑

xj∈R
hj(c1,j ; xj,ρ)P−1

j,ρ

⎞
⎠ (11)
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(a) (b)

Fig. 3. Merging groups of constrained landmarks. (a) Two constrained groups of land-
marks. (b) After finding a new landmark constrained with respect to both groups, all
landmarks are constrained together.

To choose values for ρ, we can either sample, e.g., according to N (ρ̂, Pρ̂); or we
can simply pick ρ̂, which is the approach we take in our implementation.

Once values of constrained variables are selected, we condition the uncon-
strained variables on the selected values. To condition xi with covariance Pi on
values for xi,ρ, we first partition the state and covariance:

xi = [xi,ρ xi,ρ]T , Pi =
[

Pi,ρ Pi,ρρ

Pi,ρρ Pi,ρ

]
(12)

Then given xi,ρ = gi(c1,i; ρ̂) and since landmark state is estimated by an ekf,
the standard procedure for conditioning the Normal distribution yields:

x̃i,ρ ← xi,ρ + Pi,ρρP
−1
i,ρ (gi(c1,i; ρ̂) − xi,ρ) (13)

P̃i,ρ ← Pi,ρ − Pi,ρρP
−1
i,ρ PT

i,ρρ (14)

For purposes of data association it is convenient to retain the full state and
covariance, in which case x̃i,ρ = gi(c1,i; ρ̂) and P̃i,ρ = P̃i,ρρ = P̃i,ρρ = [0].

4.2 Reconditioning

Particlization is straightforward if none of the landmarks is already constrained.
This is not the case when a new landmark is added to a superlandmark or when
merging several constrained superlandmarks. Since the values of unconstrained
state variables are already conditioned on values of the constrained variables, we
cannot change constrained variables without invalidating the conditioning. Such
a situation is depicted in Fig. 3.

One solution is to “rewind” the process to the point when the landmarks were
first constrained and then “replay” all of the measurements of the landmarks,
conditioning on the new values of the constrained variables. This is clearly infea-
sible. However, we can achieve an equivalent result efficiently because the order
in which measurements are applied is irrelevant. Applying k measurements to
the landmark state is equivalent to merging k + 1 Gaussians. Thus, we can “ac-
cumulate” all of the measurements in a single Gaussian and apply this instead,
in unit time.
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From this, we obtain the following reconditioning approach:

1. Upon first constraining a landmark xi, store its pre-particlization uncon-
strained state βi = xi, Λi = Pi, initialize the “measurement accumulator”
Zi = [0], Qi = [∞], and particlize the landmark.

2. For a measurement z with covariance R of the constrained landmark update
both the conditional state and the measurement accumulator:

xi ← xi + Pi(Pi + R)−1(z − xi) (15)
Pi ← Pi − Pi(Pi + R)−1PT

i (16)
Zi ← Zi + Qi(Qi + R)−1(z − Zi) (17)
Qi ← Qi − Qi(Qi + R)−1QT

i (18)

3. When instantiating a new constraint on xi, recondition xi on the new con-
strained variable values by rewinding the landmark state (xi = βi, Pi = Λi),
computing the conditional distribution x̃i, P̃i of the state (Eqns. 13-14), and
replaying the measurements since particlization with:

xi ← x̃i + P̃i(P̃i + Qi)−1(Zi − x̃i) (19)
Pi ← P̃i − P̃i(P̃i + Qi)−1P̃T

i (20)

The reconditioning technique can be extended to handle multiple types of
constraints simultaneously by separately storing the pre-particlization state and
accumulated measurements for each constraint. Only completely unconstrained
state variables should be stored at constraint initialization, and only the mea-
surements of those variables need be accumulated.

4.3 Discussion

A potential issue with our approach is that reconditioning neither re-evaluates
data associations nor modifies the trajectory of a particle. In practice we have
observed that the effect on map estimation is negligible.

Computationally, the constrained rbpf approach is a significant improvement
over the superlandmark filter, requiring only O(Nn) time per update.1 At first
it appears that more particles may be necessary since representative values of
constrained variables are now estimated by the particle filter. However, incorpo-
rating constraints often leads to a significant reduction in required particles by
reducing the degrees of freedom in the map. In a highly constrained environment,
particles only need to filter a few constrained variables using the reduced state,
and the ekfs for unconstrained variables are smaller since they filter only over
the unconstrained state. By applying strong constraint priors where appropriate,
the number of particles required to build maps is often reduced by an order of
magnitude, as can be seen in Section 6.
1 We note that while the data structures that enable O(N log n) time updates for

Fastslam [8] can still be applied, they do not improve the complexity of constrained
rbpf since the reconditioning step is worst-case linear in n.
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4.4 Inequality Constraints

So far we have only considered equality constraints, whereas many useful con-
straints are inequalities. For example, we might specify a prior on corridor width:
two parallel walls should be at least a certain distance apart. In [13], the authors
apply inequality constraints to an ekf using an active set approach. At each
time step, the applicable constraints are tested. If a required inequality is vio-
lated, an equality constraint is applied, projecting the unconstrained state onto
the boundary of the constraint region.

While this approach appears to have some potential problems (e.g., it ignores
the landmark pdf over the unconstrained half-hyperplane in parameter space),
a similar technique can be incorporated into the Rao-Blackwellized constraint
filter. After updating a landmark, applicable inequality constraints are tested.
Constraints that are violated are enforced using the techniques described in Sec-
tion 4. The unconstrained state is accessible via the measurement accumulator,
so if the inequality is later satisfied, the parameters can be “de-particlized” by
switching back to the unconstrained estimate.

5 Inference of Constraints

We now address the problem of deducing the relationships between landmarks,
i.e., deciding when a constraint should be applied. A simple approach is to just
examine the unconstrained landmark estimates. In the rectilinearity case, we
can easily compute the estimated angle between two landmarks. If this angle
is “close enough” to one of 0◦, 90◦, 180◦, or 270◦, the constraint is applied to
the landmarks. (A similar approach is used by Rodriguez-Losada et al. [11].)
However, this technique ignores the confidence in the landmark estimates.

We instead compute a pmf over the space C of pairwise constraint parameters;
the pmf incorporates the landmark pdfs. In the rectilinearity example, C =
{0, 90, 180, 270, �}, where � is used to indicate that landmarks are unconstrained.
Given a pmf over C, we sample constraint parameters for each particle to do
inference of constraints. Particles with incorrectly constrained landmarks will
yield poor data associations and be resampled.

We compute the pmf of the “relationship” of landmarks xi and xj using:

p(ci,j) =
∫

p(xi,ρ)
∫ hj(ci,j ;xj,ρ)+δ

hj(ci,j ;xj,ρ)−δ

p(xj,ρ) dxj,ρ dxi,ρ (21)

for all ci,j ∈ C \ �. Then, p(�) = 1 −
∑

ci,j∈C\� p(ci,j). The parameter δ encodes
“prior information” about the environment: the larger the value of δ, the more
liberally we apply constraints. A benefit of this approach is that the integrals
can be computed efficiently from standard approximations to the Normal cdf

since the landmarks are estimated by ekfs.
In the rectilinearity case, given orientation estimates described by the pdfs

p(θi) and p(θj), for ci,j ∈ {0, 90, 180, 270}, we have:
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Algorithm 1. initialize-landmark(xn+1, Pn+1, L)
1: βn+1 ← xn+1; Λn+1 = Pn+1 // initialize backup state
2: Zn+1 ← [0]; Qn+1 ← [∞] // initialize measurement accumulator
3: R ← {} // initialize constraint set
4: for all Li ∈ L do // previously constrained groups
5: cn+1,j ∼ p(cn+1,j), ∀xj ∈ Li // draw constraint parameters
6: if ∃xj ∈ Li such that cn+1,j �= � then // constrained?
7: for all xj ∈ Li do
8: R ← R ∪ {xj} // add xj to constraint set
9: L ← L \ Li // remove old superlandmark

10: if R = ∅ then
11: return // no constraints on xn+1

12: R ← R ∪ {xn+1} // add new landmark to constraint set
13: L ← L ∪ {R} // add new superlandmark
14: for all xj ∈ R do // for all constrained landmarks
15: x̂j ← βj + ΛjQ−1

j (Zj − βj) // compute unconstrained state estimate
16: P̂j ← Λj − ΛjQ−1

j ΛT
j // compute unconstrained covariance

17: Pρ̂ ←
(∑

xj∈R P −1
j,ρ

)−1
// covariance of ML estimate of ρ

18: ρ̂ ← P −1
ρ̂

(∑
xj∈R hj(cn+1,j ; xj,ρ)P −1

j,ρ

)
// ML estimate of ρ

19: for all xj ∈ R do // for all constrained landmarks
20: xj ← βj ; Pj ← Λj // “rewind” state to pre-particlized version
21: xj,ρ ← xj,ρ + Pj,ρρP −1

j,ρ (gj(cn+1,j ; ρ̂) − xj,ρ) // conditional mean given ρ

22: Pj,ρ ← Pj,ρ − Pj,ρρP −1
j,ρ P T

j,ρρ // conditional covariance
23: xj,ρ ← gj(cn+1,j ; ρ̂); Pj,ρ ← [0]; Pj,ρρ ← [0] // fix constrained variables
24: xj ← xj + Pj(Pj + Qj)−1(Zj − xj) // “replay” meas. since particlization
25: Pj ← Pj − Pj(Pj + Qj)−1P T

j

Algorithm 2. update-landmark(xj, Pj , z, R)

1: xj ← xj + Pj(Pj + R)−1(z − xj) // update state
2: Pj ← Pj − Pj(Pj + R)−1P T

j // update covariance
3: if ∃L ∈ L, xk ∈ L such that xj ∈ L and xj �= xk then // is xj constrained?
4: Zj ← Zj + Qj(Qj + R)−1(z − Zj) // update measurement accumulator
5: Qj ← Qj − Qj(Qj + R)−1QT

j // update accumulator covariance
6: else // not constrained
7: βj ← xj ; Λj ← Pj // update backup state/covariance

p(ci,j) =
∫ ∞

−∞
p(θi)

∫ θi+ci,j+δ

θi+ci,j−δ

p(θj) dθj dθi (22)

which gives a valid pmf as long as δ ≤ 45◦.
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6 Results

We have now described the complete approach for implementing constrained
rbpf slam. Algorithm 1 gives pseudocode for initializing a landmark xn+1
given the current set of superlandmarks L. Algorithm 2 shows how to update
a (possibly constrained) landmark given a measurement of its state. The algo-
rithms simply collect the steps described in detail in Sections 4 and 5.

We have implemented the Rao-Blackwellized constraint filter for the rectilin-
earity constraint described earlier, on top of our algorithm for rbpf slam with
sparse sensing [3], which extracts features using data from multiple poses. Be-
cause of the sparseness of the sensor data, unconstrained slam typically requires
many particles to deal with high uncertainty. We performed several experiments,
using both simulated and real data, which show that incorporating prior knowl-
edge and enforcing constraints leads to a significant improvement in the resulting
maps and a reduction in estimation error.

6.1 Simulated Data

We first used a simple kinematic simulator based on an RWI MagellanPro robot
to collect data from a small simulated environment with two groups of rectilinear
features. The goal was to test the algorithm’s capability to infer the existence of
constraints between landmarks. Only the five range sensors at 0◦, 45◦, 90◦, 135◦,
and 180◦ were used (i.e., ). Noise was introduced by perturbing measurements
and motions in proportion to their magnitude. For a laser measurement of range
r, σr = 0.01r; for a motion consisting of a translation d and rotation φ, the
robot’s orientation was perturbed with σθ = 0.03d+0.08φ, and its position with
σx = σy = 0.05d.

Fig. 4 shows the results of rbpf slam with a rectilinearity prior (as described
in Section 5, with δ = π

10 ). The filter contained 20 particles and recovered the
correct relative constraints. The edges of the the inner “box” were constrained,
and the edges of the boundary were separately constrained.

A separate experiment compared the consistency of the rectilinearity-
constrained filter and the unconstrained filter (all other filter parameters were
kept identical, including number of particles). A filter is inconsistent if it sig-
nificantly underestimates its own error. It has been shown that rbpf slam is
generally inconsistent [1]; our experiments indicate that using prior knowledge
and enforcing constraints improves (but does not guarantee) consistency.

Fig. 5 depicts the consistency analysis. The ground truth trajectory from
the simulation was used to compute the normalized estimation error squared
(nees) [2, 1] of the robot’s trajectory estimate. For ground truth pose st and
estimate ŝt with covariance P̂st (estimated from the weighted particles assuming
they are approximately normally distributed), the nees is (st − ŝt)P̂−1

st
(st − ŝt)T .

For more details of how nees can be used to examine slam filter consistency,
see [1]. The experiment used 200 particles for each of 50 Monte Carlo trials, with
a robot model similar to the previous simulation.
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(a) (b)

Fig. 4. (a) Simulated environment (ground truth). (b) Results of applying constrained
slam. The dark curved line is the trajectory estimate, the light curved line is the ground
truth trajectory, and the dot is the starting pose. The landmarks on the boundary form
one constrained group; those in the interior form the other.
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Fig. 5. (a) Normalized estimation error squared (nees) of the robot’s estimated pose
with respect to the ground truth, computed over 50 Monte Carlo trials for the environ-
ment in (b). The gray plot is the error for standard (unconstrained) rbpf slam. The
black plot is the error for our algorithm with rectilinearity constraints. Error signifi-
cantly above the dashed line indicates an optimistic (inconsistent) filter. Our approach
is less optimistic. (Sharp spikes correspond to degeneracies due to resampling upon
loop closure.) (c) A typical map produced by unconstrained sparse sensing slam. (d)
A typical rectilinearity-constrained map.

6.2 Real-World Data

Our real-world experiments used data from Radish [7], an online repository of
slam datasets. Most of the datasets use scanning laser rangefinders. Since our
goal is to enable slam with limited sensing, we simply discarded most of the
data in each scan, keeping only the five range measurements at 0◦, 45◦, 90◦, 135◦,
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(a)
(b)

(c) (d)

Fig. 6. (a) and (b) show the USC SAL Building, second floor (dataset courtesy of An-
drew Howard). (c) and (d) show Newell-Simon Hall Level A at CMU (dataset courtesy
of Nicholas Roy). (a) and (c) Occupancy data for the corrected trajectories (generated
using the full laser data for clarity). (b) and (d) The estimated landmark maps (black)
and trajectories (gray).

and 180◦. We also restricted the sensor range (see Table 1). We used the same
rectilinearity prior as for the simulated examples (δ = π

10 ).
Fig. 6 shows the results of our algorithm for two datasets. The USC SAL

dataset consists of a primary loop and several small excursions. Most landmarks
are constrained, in three separate groups. For the CMU NSH experiment, the
maximum sensing range was restricted to 3 m, so the large initial loop (bot-
tom) could not be closed until the robot finished exploring the upper hallway.
Aside from several landmarks in the curved portion of the upper hallway, most
landmarks are constrained.

Table 1 gives mapping statistics. Also included is the number of particles re-
quired to successfully build an unconstrained map, along with running times
for comparison. (The complete results for unconstrained sparse sensing slam

can be found in [3].) All tests were performed on a P4-1.7 GHz computer
with 1 GB RAM. Incorporating constraints enables mapping with many fewer
particles — about the same number as needed by many unconstrained slam
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Table 1. Experiment statistics

USC SAL CMU NSH
Dimensions 39 × 20 m2 25 × 25 m2

Particles (constrained) 20 40
Particles (unconstrained) 100 600
Avg. Runtime (constrained, 30 runs) 11.24 s 34.77 s
Avg. Runtime (unconstrained, 30 runs) 32.02 s 268.44 s
Sensing range 5 m 3 m
Path length 122 m 114 m
Num. landmarks 162 219
Constrained groups 3 3

algorithms that use full laser rangefinder information. This leads to significant
computational performance increases when constraints are applicable.

One caveat is that the conditioning process is sensitive to the landmark cross-
covariance estimates. (The cross-covariances are used in Eqns. 13-14 to compute
a “gain” indicating how to change unconstrained variables when conditioning
on constrained variables.) Because we use sensors that give very little data for
feature extraction, the cross-covariance of [r θ]T features is only approximately
estimated. This leads to landmark drift in highly constrained environments since
landmarks are frequently reconditioned, as can be seen in, e.g., the upper right
corner of the NSH map in Fig. 6(d). Future research will examine alternative
feature estimators and map representations (e.g., relative maps [10, 5]) that may
alleviate this issue.

7 Conclusions

In this paper we have described a Rao-Blackwellized particle filter for slam that
exploits prior knowledge of structural or geometrical relationships between land-
marks. Relative constraints between landmarks in the map of each particle are
automatically inferred based on the estimated landmark state. By partitioning
the state into constrained and unconstrained variables, the constrained variables
can be sampled by a particle filter. Conditioned on these samples, unconstrained
variables are independent and can be estimated by ekfs on a per-particle basis.

We have implemented our approach with rectilinearity constraints and per-
formed experiments on simulated and real-world data. For slam with sparse
(low spatial resolution) sensing, incorporating constraints significantly reduced
the number of particles required for map estimation.

Most of this work has focused on linear equality constraints. While we have
described a way to extend the approach to inequality constraints, this remains
an area for future work. Also, while constraints clearly help in mapping with
limited sensing, they do not significantly improve data association inaccuracies
related to sparse sensing, another potential avenue for improvement.
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