
Caging Polygons with Two and Three Fingers

Mostafa Vahedi and A. Frank van der Stappen

Department of Information and Computing Sciences, Utrecht University
{vahedi,frankst}@cs.uu.nl

Abstract. We present algorithms for computing all placements of two and three fin-
gers that cage a given polygonal object with n edges in the plane. A polygon is caged
when it is impossible to take the polygon to infinity without penetrating one of the
fingers. Using a classification into squeezing and stretching cagings, we provide an al-
gorithm that reports all caging placements of two disc fingers in O(n2 log n) time. Our
result extends and improves a recent solution for point fingers. In addition, we con-
struct a data structure requiring O(n2) storage that can answer in O(log n) whether
two fingers in a query placement cage the polygon. We also study caging with three
point fingers. Given the placements of two so-called base fingers, we report all place-
ments of the third finger so that the three fingers jointly cage the polygon. Using the
fact that the boundary of the set of placements for the third finger consists of equilib-
rium grasps, we present an algorithm that reports all placements of the third finger in
O(n6 log2 n) deterministic time and O(n6 log n(log log n)3) expected time. Our results
extend previous solutions that only apply to convex polygons.

1 Introduction

The caging problem was posed by Kuperberg in [7] as a problem of designing
an algorithm for finding a set of points that prevents a polygon from moving
arbitrarily far from a position. In other words, a polygon is caged when it is
impossible to take it to infinity without penetrating a finger. However, to solve
the problem it is easier to keep the polygon fixed and move the fingers instead,
keeping their mutual distances fixed.

Caging is related to the notions of form (and force) closure grasps (see e.g.
Mason’s text book [9]), and immobilizing and equilibrium grasps [12]. Rimon et
al. [11] introduced the notion of a caging set (or capture region) as the set of
placements of fingers that may not immobilize the object but may prevent it
from escaping to infinity. A comprehensive review on caging and related prob-
lems can be found in [1]. Caging sets have been applied to several problems in
manipulation, such as grasping and in-hand manipulation, mobile robot motion
planning, parts feeding, and stable pose computation (see [4] for the references).

Using stratified Morse theory, Rimon and Blake [11] showed that in a two-
fingered one-parameter gripping system, the hand’s configuration at which the
cage is broken corresponds to a frictionless equilibrium grasp. These results are
extended by Davidson and Blake [2] to a three-fingered one-parameter gripper.

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 71–86, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

72 M. Vahedi and A.F. van der Stappen

In the problem of caging a polygon with two disc fingers, it is required to
compute all placements of two disc fingers that cage a polygonal object. This
problem was first tackled by Sudsang and Luewirawong [14] by computing an
acceptable distance for every pair of immobilizing vertices independent of the en-
tire body of the polygon. As a result, the algorithm is not complete as it reports
only a subset of all caging placements of two disc fingers. Independently Pipat-
tanasomporn and Sudsang [10] have recently also solved the problem for point
fingers in O(n2 log n), and also provided a data structure capable of answering
queries in O(log n). However the disc-finger problem has not been analyzed in
their paper.

In the problem of caging a polygon with three fingers, the placements of two
fingers, called the base fingers, are given. It is required to find all placements
of the third finger, such that the resulting fingers cage the polygon. Sudsang
[13] stated a sufficient (but not necessary) condition for caging a convex object
in the plane with more than two fingers using the width of the object. For a
non-convex object it was proposed to divide the object into convex parts and to
consider the maximum width sub-part. The concept of the caging set was used
by Sudsang and Ponce [15] as a basis for computing a plan for manipulating
polygonal objects using three discs. The resulting caging set was very small and
hence not complete, as the computation only takes three edges into account.
Erickson et al. [4] provided the first complete algorithm for three-finger cagings
of convex polygons. Two fingers are placed along the boundary of the polygon
and then a region —the caging set— is computed for the third finger. An exact
algorithm is provided that determines this region in O(n6) time, and also an
approximation algorithm is provided with pre-specified accuracy. However, the
problem of computing the set of all caging placements for non-convex polygons
remained open, and is tackled in this paper.

In the first part of this paper (in Section 3) a solution for computing all
caging placements of two disc fingers is presented. In addition a data structure
is presented that requires O(n2) storage and is capable of answering in O(log n)
whether a given placement of two fingers is caging. A given placement of two
fingers is squeezing (stretching) caging, if it is caging and anyhow closing (open-
ing) the fingers without penetrating the polygon the fingers remain caging until
they reach a minimum (maximum) in which both fingers are on the boundary.
It can be proven that any caging is squeezing or stretching. Using this fact, our
work for two fingers extends and improves the result in [10] by providing an
algorithm for computing all caging placements of two disc fingers that runs in
O(n2 log n). To solve the problem we have employed pseudo triangulation, cell
decomposition, connectivity graphs, and an event processing technique.

In the second part of this paper (in Section 4), the solution for computing all
caging placements of three fingers with a fixed pair of base fingers is presented.
It is shown that the boundary of the caging regions made by the third finger
corresponds to equilibrium grasps. Our work on three-finger caging uses this
fact to extend the result in [4] by providing the first complete algorithm for
computing the set of all caging placements for non-convex polygons. To solve

Caging Polygons with Two and Three Fingers 73

this problem we have used similar techniques as in our two fingers solution. The
running time of the proposed three point-finger caging algorithm is O(n6 log2 n)
deterministic time, and O(n6 log n(log log n)3) expected time.

2 Definitions and Assumptions

The given simple closed polygon P has no holes and is bounded by n edges. Let
Pd be the Minkowski sum outer-face of P and a closed disc of radius d. More
formally Pd = P ⊕ Δd

1, where Δd is the disc of radius d centered at the origin.
Placing disc fingers of radius d around P is equivalent to placing point fingers
around the generalized polygon Pd. A generalized polygon is a shape bounded by
straight segments and circular arcs. As the holes of Pd correspond to placements
of a single finger caging P , we discard these holes in our computations of two
and three finger cagings.

Without loss of generality we can assume that Pd is enclosed in a sufficiently
large rectangle B. Let F ⊂ R

2 be F = B \ int(Pd). Clearly F is the set of
all possible placements for a finger. Throughout the paper we assume that the
fingers are points, P is Pd, and we refer to F 2 (= F ×F) and F 3 (= F ×F ×F)
as the admissible space for two and three fingers.

To solve the caging problem with two disc fingers, we decompose F into pseudo
triangles. A pseudo triangle here is defined as a triangle that has at most one
concave circular arc of radius d, and arc angle less than π. To obtain a pseudo-
triangulation, new vertices may be added, but no vertex of a pseudo triangle
should lie inside the edge or arc of one of its neighbor triangles.

A force vector with its application point fixed uniquely determines a wrench.
Our model for wrenches induced by a given polygon differs from that of Marken-
scoff et al. [8] in the case of a point contact and a convex vertex. Consider a point
on a convex vertex of a polygon. In our model, the possible wrenches for this point,
similar to the concave case, contains the set of all convex combinations of the two
unit normal wrenches to both incident edges which makes a cone. The intuition
behind this model is that an ε-radius disc-finger on a convex vertex can apply any
wrench being a combination of the two normal wrenches with ε adjustment.

Using Corollary 4.1 from [12], the grasp made by fingers on edges is an equi-
librium grasp if and only if the wrench vectors meet in a common point and the
angle between two consecutive wrenches is not more than π. When some of the
fingers are at vertices, the grasp is an equilibrium grasp provided that there is a
point that lies on the intersection of cones and wrenches and satisfies the angle
condition. The number of fingers that make an equilibrium grasp is the number
of fingers that exert a non-zero wrench on the object.

3 Two Fingers Caging

In this section the solution for the caging problem of a polygon P with two disc
fingers with the same fixed radius is presented. In this problem all placements
1 A ⊕ B = {a + b|a ∈ A, b ∈ B}.

74 M. Vahedi and A.F. van der Stappen

of two fingers that cage the polygon is computed. It is also required to answer
quickly whether a given placement of two fingers is caging.

Let CP be the set of all two-finger caging placements of a polygon P and let
Cδ,P be the set of all caging placements for which the fingers are δ apart. Clearly
CP =

⋃
0<δ∈R Cδ,P . Increasing or decreasing δ, the topology of Cδ,P changes at

certain critical δ’s. We use this fact to construct the set of all cagings.
Let (p1, q1) and (p2, q2) ∈ F 2 be two placements of a two-finger hand. These

placements are δ-reachable if |p1q1| = |p2q2| = δ and both of them lie in the
same connected component of the admissible space of finger placements that
are δ apart. They are δ-max-reachable (δ-min-reachable) if |p1q1|, |p2q2| ≤ δ
(|p1q1|, |p2q2| ≥ δ) and both of them lie in the same connected component of
the admissible space of finger placements that are at most (at least) δ apart.
When two placements are δ-reachable, δ-max-reachable, or δ-min-reachable, it
is possible to move the two-finger hand between the placements keeping the
distance of the fingers fixed, at most δ, or at least δ respectively. Note that when
two placements are δ-max-reachable (δ-min-reachable) they are δ′-max-reachable
(δ′-min-reachable) for any δ′ ≥ δ (δ′ ≤ δ). Hence, if a δ-apart placement is not
δ-max-reachable (δ-min-reachable) to a δ-apart placement being remote from the
polygon, it is squeezing (stretching) caging. If the reachability type is clear from
the context or if we want to define something for all types of reachability we
will use just the word reachable. Because of the lack of space we just mention
the following important fact that provides the basis for our approach outlined
in Subsection 3.2.

Lemma 3.1. Given one obstacle in the plane, if two placements (p1, q1) and
(p2, q2) of a two-finger hand satisfying |p1q1| = |p2q2| = δ are both δ-max-
reachable and δ-min-reachable, then they are δ-reachable.

The direct result of Lemma 3.1 is that, if a placement is caging, then it is
squeezing caging, stretching caging, or both. In Figure 1(a) a shaded polygon
and four δ apart placements (p1, q1), (p2, q2), (p3, q3) and (p4, q4) are shown.
No two placements are δ-reachable, but (p1, q1) and (p2, q2) are δ-max-reachable
while (p1, q1) and (p3, q3) are δ-min-reachable. Moreover (p1, q1) is not caging,
(p2, q2) is stretching caging, (p3, q3) is squeezing caging, and (p4, q4) is both
stretching and squeezing caging.

Based on above reachability notions and a pseudo triangulation of the set F ,
the space F 2 is decomposed into constant-complexity 4D cells for every δ, such
that all placements inside each cell are reachable from each other. The required
property of the pseudo triangulation is stated in the following lemma. The con-
struction is relatively easy and therefore we confine ourselves to mentioning the
result.

Lemma 3.2. It is possible to decompose F in O(n log n) time in O(n) pseudo
triangles such that every pseudo triangle has a constant number of neighbors.

Based on δ and the cell decomposition of F 2, a connectivity graph is defined
in Subsection 3.1, with cells as the nodes, and two neighbor nodes are con-
nected by an edge if there are reachable placements inside the corresponding

Caging Polygons with Two and Three Fingers 75

cells. Note that all the corresponding placements of one node are either all caging
or all noncaging. Hence we associate with a node the caging status (caging or
noncaging) of all its placements. Since all noncaging placements are reachable
from each other, the noncaging nodes form a connected component in the connec-
tivity graph. Therefore, all components in the graph except the one containing
noncaging placements represent a set of caging placements.

To compute all caging placements of two fingers, it is possible to start from
zero and increase (or equivalently start from a largely enough distance and
decrease) the distance of the fingers. Meanwhile, there are critical distances
at which the connectivity graph changes. The idea is to compute all critical
distances and sort them increasingly. Clearly between two consecutive critical
distances, the connectivity graph does not change. Therefore it is possible to
compute all possible connectivity graphs for all distances by considering the
critical distances one by one, and updating the connectivity graph accordingly
in a reasonable time (instead of computing the whole connectivity graph from
scratch every time). When a caging cell merges to or becomes disconnected from
the noncaging cell, equivalently a connected component of the graph respec-
tively merges to or becomes disconnected from the component of the graph that
represents the noncaging placements. To update the graph for every merging
or splitting of cells some edges respectively should be added to or deleted from
the graph as the update operation. If the update operation includes deletion of
edges the components of the graphs should be maintained during the process
and it is not possible to do this operation in constant time (at least easily). But
if it consists of just addition of edges the components will just merge or emerge
and therefore it is possible to maintain the two types of components in con-
stant amortized time. By using the squeezing/stretching fact, defined formally
in Subsection 3.1, and increasing/decreasing the distance the cells just merge or
emerge and therefore the update operation just include addition of nodes and
edges in constant time. Whenever a caging node is going to join a noncaging
node by a path, the corresponding 4D cell of the caging node is reported as a
set of caging placements; any placement inside this cell is caging. The complete
algorithm and the running time analysis is explained in Subsection 3.2.

3.1 Two Fingers Squeezing and Stretching Caging

Let s and s′ be two closed subsets of F . The set of admissible placements induced
by a pair of subsets of F for two fingers with distance δ is the set

Rδ(s, s′) = {(p, q) ∈ s × s′ | |pq| = δ}.

The set Rδ(s, s′) consists of a number of 4D connected components. Every con-
nected component corresponds to a set of δ-reachable placements. Let RM

δ (s, s′)
be the set of connected components of Rδ(s, s′). Therefore every member of
RM

δ (s, s′) is a subset of F 2 and is called a cell. If s and s′ have constant com-
plexity, the number of cells in RM

δ (s, s′) and their complexity will be constant
too. Figure 1(b) shows a shaded polygon, its Minkowski-sum outer-face with a

76 M. Vahedi and A.F. van der Stappen

p1

q1 q2

p2

p3

q3

p4

q4

δ

a

b d

e

i h fg

C B

A

δ

(a) (b) (c)

A

B

C

D

E

F

O

δp1
q1

q2p2

d

Fig. 1. (a) Reachability notions and caging types, (b) RM
δ (ABC,DEF) has one cell,

(c) connectivity subgraph of distance δ when fingers are points and the first finger is
inside ABC

disc of radius d (displayed dashed), and two pseudo-triangles ABC and DEF .
Here RM

δ (ABC, DEF) has one cell. It seems that (p2, q2) is not δ-reachable from
(p1, q1) using the placements inside the two pseudo-triangles; but the placement
is reachable from (p1, q1) by moving p1 toward B and moving q1 toward F and
then moving p1 toward C.

Let T be a suitable pseudo triangulation of F (i.e. satisfies Lemma 3.2). The
connectivity graph CGδ,T (V, E) for T and distance δ is defined by

⎧
⎪⎪⎨

⎪⎪⎩

V = {r ⊂ F 2 | ∃ t, t′ ∈ T : r ∈ RM
δ (t, t′)},

E = { (r1, r2) ∈ V 2 | ∃ t1, t
′
1, t2, t

′
2 ∈ T : r1 ∈ RM

δ (t1, t′1),
r2 ∈ RM

δ (t2, t′2) ∧ ∃r ∈ RM
δ (t1 ∪ t2, t

′
1 ∪ t′2) : r = r1 ∪ r2 }.

By definition every cell is assigned a unique node and therefore every admissible
placement of fingers is assigned a node in the graph; there is no edge between
the cells of a set RM

δ (t, t′). There is an edge between two cells in RM
δ (t1, t′1) and

RM
δ (t2, t′2) when there is a cell in RM

δ (t1 ∪ t2, t
′
1 ∪ t′2) that contains the two cells.

In other words there is an edge between two nodes when their corresponding
pairs of pseudo triangles are neighbor and their corresponding placements are
reachable. As every pseudo triangle has a constant number of neighbors in T ,
the total number of edges is linear in the total number of nodes. Therefore if
there are O(n) pseudo triangles in T , there will be O(n2) nodes and edges in
CGδ,T (V, E).

In Figure 1(c) a shaded polygon bounded in a rectangle, the polygon exterior
triangulated (displayed dotted), and one of the triangles ABC are shown. Since
it is not easy to draw the whole connectivity graph for distance δ, we show a
subset of the graph for point fingers while the first finger is inside ABC. For any
triangle if there are δ apart points inside that triangle and ABC, then consider
a node in the graph (the nodes are displayed with small letters). Since there are
no two points of distance δ inside ABC no node is considered for it. Note that
here since no RM

δ (ABC, t) has more than one cell, every pair of (ABC, t) has
at most one node in the graph. When it is possible to move the second finger

Caging Polygons with Two and Three Fingers 77

from one triangle to its neighbor while keeping the first finger inside ABC and
the distance δ, then connect the two corresponding nodes by an edge (displayed
with dashed segments).

Lemma 3.3. Let (p1, q1) ∈ r1 ∈ RM
δ (t1, t′1) and (p2, q2) ∈ r2 ∈ RM

δ (t2, t′2) be
two placements. (p1, q1) and (p2, q2) are δ-reachable, if and only if there is a
path between r1 and r2 in CGδ,T (V, E).

Let vδ be a noncaging node for which vδ ∈ RM
δ (tδ, t′δ), and tδ, t

′
δ ∈ T . Without

loss of generality, we can assume that it is possible to compute vδ based on
B, T , and δ such that is not caging (clearly vδ may change when δ changes).
The points on the boundary of B at distance δ e.g. do not cage the polygon
being remote from the polygon. Using the fact that all noncaging nodes form a
connected component in the graph, a given placement of fingers is caging if and
only if there is no path between the corresponding node and vδ in the graph.
Let the set of caging nodes for the polygon P and distance δ be the set

CNδ,P = {v ∈ V (CGδ,T) | There is no path in CGδ,T between v and vδ}.

and let the set of caging placements obtained by CG graphs be the set

CNP = {(p, q) ∈ F 2 | ∃v ∈ CN|pq|,P : (p, q) ∈ v}.

Consider the following definitions of R′
δ(s, s

′) and R′′
δ (s, s′) that correspond to

the δ-max-reachable and δ-min-reachable set of placements induced by s and s′:

R′
δ(s, s

′) = {(p, q) ∈ s × s′ | |pq| ≤ δ},

R′′
δ (s, s′) = {(p, q) ∈ s × s′ | |pq| ≥ δ}.

Replacing Rδ(s, s′) with R′
δ(s, s

′) and R′′
δ (s, s′), and δ-reachable with δ-max-

reachable and δ-min-reachable in above definitions results in new definitions of
R′M

δ (s, s′) and R′′M
δ (s, s′), CG′

δ,T and CG′′
δ,T , CN ′

δ,P and CN ′′
δ,P , and CN ′

P and
CN ′′

P respectively in order. The adjusted Lemma 3.3 still holds for CG′
δ,T and

CG′′
δ,T . We refer to CG′

δ,T and CG′′
δ,T as the max and min connectivity graph and

to CN ′
P and CN ′′

P as the set of all squeezing and stretching caging placements
respectively. Because of the lack of space we just mention the following important
facts. Lemma 3.5 is the direct result of Lemma 3.1.

Lemma 3.4. Given a polygon P and a distance δ, it is possible to compute
CGδ,T , CG′

δ,T , CG′′
δ,T , CNδ,P , CN ′

δ,P , and CN ′′
δ,P in O(n2). Then using T it

is possible to determine in O(log n) time whether a given placement of two disc
fingers that are δ apart cages P .

Lemma 3.5. CP = CNP = CN ′
P ∪ CN ′′

P .

As it was mentioned in Section 3, it is possible to maintain the graph compo-
nents in computing the squeezing and stretching caging placements in constant
amortized time. Therefore, based on Lemma 3.5 that states the relation between
the common notion of caging on one hand and squeezing and stretching caging
at the other hand, we compute all caging placements by computing CN ′

P and
CN ′′

P separately in Subsection 3.2.

78 M. Vahedi and A.F. van der Stappen

3.2 Two Disc Fingers Caging Algorithm

In this section we present our approach to solving the problem of finding all
caging placements of two disc fingers of equal radius. To report all cagings the
algorithm uses Lemma 3.5 and reports the two sets CN ′

P and CN ′′
P instead,

which both consist of 4D cells corresponding to squeezing and stretching cagings
respectively. Each point inside every cell corresponds to a placement of two disc
fingers on the plane that cages P . The algorithm consists of three steps for both
types of cagings. Since these steps are similar for both types, we focus on the
computation of the set CN ′

P of squeezing cagings:

1. find and sort the critical distances (see below) induced by all pairs of pseudo-
triangles in T (a suitable pseudo-triangulation of F),

2. compute CG′
δ,T for all δ by processing the critical distances and updat-

ing CG′
δ,T accordingly, meanwhile reporting the possible squeezing caging-

placements,
3. report the remaining squeezing caging-placements.

Hereafter we use pseudo triangle and triangle interchangeably. The first step is
based on the fact that the structure of CG′

δ,T only changes at particular values
of δ, to which we shall refer as critical distances. Increasing δ from zero, we
distinguish three types of critical distances induced by a single pair (t, t′):

1. |R′M
δ (t, t′)| increases,

2. |R′M
δ (t, t′)| decreases,

3. for neighbor pairs of (t1, t′1) and (t2, t′2) in R′M
δ (t1 ∪ t2, t

′
1 ∪ t′2), a member of

R′M
δ (t1, t′1) merges with a member of R′M

δ (t2, t′2).

The cells of a pair of triangles can only merge and not split, because when two
placements become δ-max-reachable they remain so for any bigger δ. Therefore,
the first type only occurs when a cell emerges, and the second only occurs when
two cells merge together. Since the first two types of critical distances depend
on t and t′ only, the number of such distances is constant for a given t and t′.
From the fact that all pseudo-triangles in T have a constant number of neighbors
and also R′M

δ (t, t′) has constant cardinality, it follows that the number of critical
distances of the latter type is constant as well. As a result, we can accomplish
the computation and sorting of all O(n2) critical distances in O(n2 log n) time.

In the last two steps we use a graph-based data structure to keep track of
the changes in CG′

δ,T while increasing δ. When R′M
δ (t, t′) changes topologically

for a critical distance δ, a new cell emerges or two cells merge into a single cell
containing the original ones. For each newly emerging or merging cell there is a
corresponding node in the graph and all nodes are included in the graph from
the start. With every node in the graph we associate a caging status, caging or
noncaging. Initially all nodes are caging. Every node also has a critical distance
that will be determined later; initially it is set to zero. Every pair of triangles
has a corresponding set of nodes in the graph and a set that specifies the current
nodes in the graph for the current value of δ.

Starting from zero with CG′
0,T , which is built from scratch, the second step

processes the critical distances in order to update the connectivity graph. Since

Caging Polygons with Two and Three Fingers 79

P does not contain holes, there is no caging node in CG′
0,T . At each critical

distance some actions are taken to determine CG′
δ,T from CG′

δ′,T , in which δ
and δ′ are the current and previous critical distances respectively. We recall
that between two consecutive critical distances the graph does not change. The
actions taken to update the graph depend on the type of critical distance. The
first two sets of actions are the same and they are not repeated. They follow in
order:

1,2. The current set of nodes for the corresponding pair of triangles is updated.
The edges for the new node are computed. If there is no edge or the new
edges only connect to caging nodes, the caging status of the node is ‘caging’.
Otherwise the caging status is ‘noncaging’. If the corresponding node is a
bridge between a caging node and a noncaging node, a maximal report (see
below) is performed; otherwise the critical distances of the old nodes (if
existing) are set to the current value of δ.

3. An edge is added between the corresponding nodes. If the nodes had a differ-
ent caging status, a maximal report is performed.

A maximal report is done, when the caging status of a node changes from caging
to noncaging. This happens for squeezing caging-placements for which δ reaches
the critical maximum distance, at which any distance larger than that distance
allows the fingers to escape. Look at Figure 2(a) for some of the critical maximum
distances that lead to maximal report. In this operation, the corresponding 4D
cells of all the nodes in the graph that are in the same connected component of
the changing node are reported, and their associated critical distances are set to
the current value of δ and their associated caging statuses are set to ‘noncaging’.
If a node becomes ‘noncaging’, it can never become ‘caging’ again. Hence every
node is reported at most once, and the time devoted to reporting the caging cells
is linear in the number of nodes and therefore is O(n2).

Every update operation takes constant time. Clearly every change is local to
a node and its neighbors. Since no node is added to the graph, the addition of
edges is the only performed operation; the number of neighbor nodes and the
number of edges for each node is constant. Therefore, the updates induced by a
single critical distance take constant time in total.

Since some of the squeezing cagings may have no critical maximum distance
(e.g. (p4, q4) in Figure 1(a)), all the remaining squeezing cagings are reported
in a separate step at the end. In the third step the final connectivity graph is
traversed for nodes that are ‘caging’ but their critical distance fields are still
zero. For every such node, the field is set to infinity and its 4D cells is reported.
The following theorem follows from the preceding discussion.

Theorem 3.6. Given a polygon with n edges and two disc fingers of equal radius,
it is possible to report all the caging placements in O(n2 log n) time.

Theorem 3.7. It is possible to compute a data structure with O(n2) space and
time complexity, with which it is possible to answer in O(log n) whether a given
placement of fingers is caging.

80 M. Vahedi and A.F. van der Stappen

Proof. To answer the caging query using the two final (squeezing and stretching)
computed data structures, the corresponding pseudo triangles are located in
O(log n) [3]. Then for the given distance of the fingers, the corresponding two
nodes in the graphs can be determined in constant time. There are two cases;
If the caging status of any node is caging, the answer is caging. Otherwise, the
critical distance field of every node is compared with the query distance. For
squeezing/stretching caging, if the query is smaller/larger the answer is caging;
otherwise the answer is noncaging. Therefore the total time to answer a query
is O(log n). Clearly the space needed to store the data structure is O(n2).

4 Three Fingers Caging

In this section, the caging problem for three point fingers is presented. In this
problem the placement of two fingers, called the base fingers, is given. It is
required to find all placements of the third finger, such that the fingers cage the
polygon. The caging placements form some regions on the plane of which the
boundaries should be reported. We assume that the base fingers do not cage
the polygon without the third finger.

(b) (c)(a)

Fig. 2. (a) Three critical maximum distances displayed with dotted arrows and two
critical minimum distances displayed with solid arrows. (b and c) Two loci are displayed
for two polygons at the right side in which the filled boxes represent the base fingers
and dotted triangles represent equilibrium grasps.

Similar to the solution of the two fingers case, F is triangulated and the
connectivity graph for F 3 is defined for a given triangulation T and a given vector
of distances of three fingers δ. Therefore Rδ(s, s′, s′′), RM

δ (s, s′, s′′), CGδ,T , and
CNδ,P are defined similarly. Because of the similarity we have not repeated the
definitions and the lemmas, except for the following important lemma.

Lemma 4.1. Given T and δ, it is possible to compute CGδ,T and CNδ,P in
O(n3) and to answer queries about caging status of given fingers placements
with δ distances in O(log n).

In Subsection 4.2 it is shown that the third finger placed on a point on the caging
boundary jointly with the given placements of the base fingers correspond to

Caging Polygons with Two and Three Fingers 81

some equilibrium grasps. It does not mean that the fingers necessarily make an
equilibrium grasp at that placement, but there is a corresponding placement,
reachable from that placement, at which the fingers make an equilibrium grasp.
Every curve on the caging boundaries corresponds to a set of equilibrium grasps
that induced by the same pair or triple of features of the polygon. Therefore, it
is possible to compute all curves on the caging boundaries by considering every
pair or triple of features and computing the possible equilibrium grasps. The
resulting grasps when moved to the fixed placement of the base fingers define
some 2D curves which we call curves of equilibrium grasps ; only some parts of
these curves constitute the caging boundaries. Based on these facts, the idea is
to compute all possible caging intervals on every curve, and then to compute the
caging boundaries using the caging intervals. In Subsection 4.1 all equilibrium
grasps involving the two base fingers are computed. Note that the base fingers
have a fixed distance.

To compute the caging intervals on each curve of equilibrium grasps the vector
of distances, δ, is altered by changing the position of the third finger along that
curve. Therefore for every point on the curve, CGδ,T is computed accordingly.
Similar to the two fingers case, there are critical points on the curve at which
CGδ,T changes and it does not change between two consecutive critical points.
The same event processing approach is employed here to compute all possible
CGδ,T when the third finger moves along the curve. It is shown that the total
number of possible nodes is O(n3) and all of them are included in the graph
from the start; so there is no need to add or remove nodes from the graph. Here
in contrast to the two fingers case, the update operation may require deletion
of edges beside addition because an existing cell may split. Therefore, we have
to use a special data structure called fully dynamic graph to efficiently query
the caging property each time. The complete algorithm and the running time
analysis is explained in Subsection 4.2.

4.1 Locus of Three Fingers Equilibrium Grasps

Consider all possible equilibrium grasps involving three fingers, two of which —
referred to as base fingers— have a fixed distance, and the triangles defined by
the fingers for every such grasp. Now consider two fixed points in the plane with
distance equal to that between the base fingers, and draw the triangles such that
the fixed points are on the base fingers. It is required to find the locus of the
third finger in the plane. There are two general cases depending on the number
of fingers that make the equilibrium grasp:

1. two fingers on
a) two edges: the two edges should be parallel, hence it is possible to move

the fingers together in one direction along the edges: the locus of all
placements of the third finger describes a circular arc;

b) an edge and a vertex, or two vertices: the locus of all placements of the
third finger describes a circular arc;

82 M. Vahedi and A.F. van der Stappen

2. three fingers with
a) a base finger at a vertex: the locus of all placements of the third finger

describes a line segment;
b) the third finger at a vertex: the locus of all placements of the third finger

describes a limaçon of Pascal or a line segment;
c) all fingers on edges: the locus of all placements of the third finger de-

scribes a circular arc or a line segment;
d) a base finger and the third finger at vertices: the locus of all placements

of the third finger describes a finite number of points.

In Figure 2(b and c) two loci are displayed for two polygons. The filled boxes
represent the base fingers and the empty boxes represent the third finger. Each
dotted triangle represents an equilibrium grasp and is redisplayed at the right
side with solid lines. For the polygon (b), the third finger is at a vertex and the
base fingers are on two edges for which the locus is a limaçon of Pascal arc. For
the polygon (c), all three fingers are on edges for which the locus is a circular
arc. The loci are displayed with dotted curves at right side above the triangles
for each polygon.

Since the boundary of the caging regions consists of continues curves, the
points of case 2.d are not relevant and can be discarded. Since the number of
features is at most three, there are O(n3) curves.
Theorem 4.2. The locus of all equilibrium grasps made by three fingers of which
the distance of base fingers is fixed, when moved to a fixed placement of the base
fingers, defines O(n3) constant complexity 2D curves.

4.2 Three Fingers Caging Algorithm

We report all placements of a point finger such that it cages P together with
the two given base fingers. The output of the algorithm is a set of regions. Each
point inside every region corresponds to a placement of the third finger that
cages the polygon jointly with the base fingers.

Before explaining the algorithm, it should be shown that the boundary of
the caging regions correspond to the boundary of the polygon or to sets of
equilibrium grasps. Consider an intersection point of the caging boundary (not
on the polygon boundary) and an arbitrary line. The intersection point is a
puncture point (see [11] for the definition), because moving the third finger
along the line, the caging status changes at that point. Considering the set
of fingers consisting of the base fingers and the third finger moving on the line,
Proposition 3.3 of [11] states that the corresponding placement corresponds to an
equilibrium grasp. Therefore the caging boundaries correspond to the boundary
of the polygon or to sets of equilibrium grasps.

Lemma 4.3. The caging regions of a polygon are bounded by curves of equilib-
rium grasps or the polygon boundary.

The algorithm consists of four steps:

1. Compute the locus of the third finger in all possible equilibrium grasps made
with three fingers,

Caging Polygons with Two and Three Fingers 83

2. determine critical points related to a triple of triangles and a curve, and sort
all of the critical points for every curve on that curve,

3. determine the caging intervals by computing all possible CGδ,T for every
curve by processing the sorted critical points,

4. report the caging boundaries using the computed caging intervals.

In the first step, all the equilibrium grasps induced by three fingers are computed
as a set of curves, curves of equilibrium grasps. To ease the computation of caging
intervals on the caging boundaries (in the last step), the polygon edges are added
to the set of curves.

To explain the second step, the notion of a critical point should be defined
first. Consider a curve E of equilibrium grasps and a point p on E at which the
third finger is placed. It is possible to build a connectivity graph for p and the
base fingers. Moving the third finger along E, there are two groups of critical
points on E related to a triple of triangles (t, t′, t′′):

1. |RM
δ (t, t′, t′′)| changes,

2. (t2, t′2, t′′2) and (t1, t′1, t′′1) are neighbors and a member of RM
δ (t1, t′1, t′′1) merges

with or becomes disconnected from a member of RM
δ (t2, t′2, t

′′
2) inside RM

δ (t1∪
t2, t

′
1 ∪ t′2, t

′′
1 ∪ t′′2).

In the second step, all critical points related to a triple of triangles and a curve
are calculated, and then all of the critical points for every curve are sorted along
that curve. Since both the complexity of the triangles and their neighbors and
the complexity of each curve are constant, there are constant number of critical
points for every triple of triangles. Considering all possible ordered triples of
triangles, there are O(n3) critical points for each curve, including the intersection
points of that curve with the polygon and other curves of equilibrium grasps.

In the third step, all possible CGδ,T are computed for every curve by taking
the critical points in order and updating CGδ,T for that curve; meanwhile the
caging intervals are calculated. The approach for every curve E is as follows.
One of the critical points p on E is taken as the starting point. The same data
structure that was used in the two fingers case is used, without critical distance
field. Initially CGδ,T is built from scratch for p and the base fingers. Changing
the position of p on E according to sorted critical points, one of the following
actions is taken to update the current CGδ,T , depending on the type of the
critical point:

1. the current set of nodes for the corresponding ordered triple of triangles is
updated and the edges for the new set of nodes are computed, or

2. an edge is added between or removed from the two corresponding nodes.

Similar to the two fingers case, the update operation on the graph can be done in
constant time for every critical point. In addition, however, we need to know the
caging status of the current placement. Therefore, it is required to maintain a
special data structure to quickly answer whether the current placement is caging.

84 M. Vahedi and A.F. van der Stappen

A placement is caging, if there is no path in the current CGδ,T between the
corresponding node and vδ, a noncaging node (here too, the vδ may change when
δ changes). Using the fully dynamic graph data structure [6, 5], it is possible to
query for the connectivity of two nodes in the graph in O(log n/ log log n) time
and to update the mentioned data structure in O(log2 n) deterministic amortized
time and in O(log n(log log n)3) expected amortized time. To find vδ, choose a
placement remote from the polygon in F , and find the corresponding node in
the graph by locating the containing ordered triple of triangles in O(log n) [3].

To properly compute the caging status on the boundary of caging regions we
use the trapezoidal map of the arrangement of the curves of equilibrium grasps.
Since all the points inside a trapezoid have similar caging status, instead of
choosing points on curves, we choose points exactly inside the trapezoids.

In the fourth step, the caging boundaries are reported from the previously
computed caging intervals. To report the caging boundaries, first a curve is
found on the boundary of each caging region. To do this, every caging interval
of every curve is taken and one of its starting points is considered. Clearly, the
starting point is on the caging boundary. Considering the caging intervals that
include this point, there is a caging interval such that all the other ones lie on
one side of it. This interval is on the boundary of a caging region, and the other
intervals are inside this caging region. Walking along the corresponding curve
such that the interior of the caging region is on the left, the next intersection
point on the curve is considered. On every intersection point, the caging intervals
are considered that include the intersection point and the rightmost curve is
selected. The next intersection point along the selected curve is considered and
the same steps are repeated till the same starting point is reached. The same is
done for every unvisited caging interval. Recalling that our algorithm computes
all three-finger caging regions, we get the following final result.

Theorem 4.4. Given a polygon with n edges and given placements of base fin-
gers, it is possible to report all placements of the third finger such that the
three fingers jointly cage the polygon in O(n6 log2 n) deterministic time, and
in O(n6 log n(log log n)3) expected time.

Proof. F can be triangulated in O(n log n) time [3], and the number of triangles
is linear. Since the total number of locus curves is O(n3) and computing every one
takes a constant time, the first step can be done in O(n3) time (Theorem 4.2).
Since every ordered triple of triangles has constant number of critical points,
the total number of critical points on each curve is O(n3). Therefore the second
step takes O(n6 log n). In the third step, for each critical point, adding and re-
moving edges takes constant time, but testing the connectivity takes O(log2 n)
deterministic and O(log n(log log n)3) expected amortized time. Since there are
O(n6) critical points, the third step takes O(n6 log2 n) deterministic time and
O(n6 log n(log log n)3) expected time. Since every intersection point is visited at

Caging Polygons with Two and Three Fingers 85

most once the fourth step takes O(n6) time. Hence, the algorithm takes totally
O(n6 log2 n) deterministic time and O(n6 log n(log log n)3) expected time.

5 Conclusion

In this paper we have presented algorithms for computing all possible caging place-
ments of two disc fingers of equal radius, and three point fingers of which the
placements of two base fingers are given. In the case of three fingers, extending
the results to disc-shaped fingers is straightforward. Although the curves of equi-
librium grasps become more complicated, their degrees remain constant. We in-
tend to implement the algorithms to gain more insight into the shapes of caging
regions and their combinatorial complexities with the purpose of improving the
worst-case running time of our algorithm. In addition we would like to consider
the three-finger caging query as well. Finally, extending the results to 3D seems
challenging, because of the problem of decomposing a polyhedron into few simple
cells. Hence we will look for alternative ways to tackle the caging problems.

References

1. Bicchi, A., Kumar, V.: Robotic grasping and contact: A review. In: ICRA, pp.
348–353. IEEE, Los Alamitos (2000)

2. Davidson, C., Blake, A.: Caging planar objects with a three-finger one-parameter
gripper. In: ICRA, pp. 2722–2727. IEEE, Los Alamitos (1998)

3. de Berg, M., van Kreveld, M., Overmars, M., Schwartzkopf, O.: Computational
Geometry: Algorithms and Applications. Springer, Heidelberg (1997)

4. Erickson, J., Thite, S., Rothganger, F., Ponce, J.: Capturing a convex object with
three discs. In: ICRA, pp. 2242–2247. IEEE, Los Alamitos (2003)

5. Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with poly-
logarithmic time per operation. J. ACM 46(4), 502–516 (1999)

6. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. In: STOC 1998: Proceedings of the 30th annual ACM symposium on
Theory of computing, pp. 79–89. ACM Press, New York (1998)

7. Kuperberg, W.: Problems on polytopes and convex sets. In: DIMACS Workshop
on Polytopes, pp. 584–589 (1990)

8. Markenscoff, X., Ni, L., Papadimitriou, C.H.: The geometry of grasping.
Int. J. Robotics Res. 9(1), 61–74 (1990)

9. Mason, M.: Mechanics of Robotic Manipulation. Intelligent Robotics and Au-
tonomous Agents Series. MIT Press, Cambridge (2001)

10. Pipattanasomporn, P., Sudsang, A.: Two-finger caging of concave polygon. In:
ICRA, pp. 2137–2142. IEEE, Los Alamitos (2006)

11. Rimon, E., Blake, A.: Caging 2d bodies by 1-parameter two-fingered gripping sys-
tems. In: ICRA, vol. 2, pp. 75–91. IEEE, Los Alamitos (1995)

12. Rimon, E., Burdick, J.W.: Mobility of bodies in contact—part i: A 2nd–order
mobility index for multiple–finger grasps. IEEE Tr. on Robotics and Automa-
tion 14(5), 696–717 (1998)

86 M. Vahedi and A.F. van der Stappen

13. Sudsang, A.: A sufficient condition for capturing an object in the plane with disc-
shaped robots. In: ICRA, pp. 682–687. IEEE, Los Alamitos (2002)

14. Sudsang, A., Luewirawong, T.: Capturing a concave polygon with two disc-shaped
fingers. In: ICRA, pp. 1121–1126. IEEE, Los Alamitos (2003)

15. Sudsang, A., Ponce, J.: A new approach to motion planning for disc-shaped robots
manipulating a polygonal object in the plane. In: ICRA, pp. 1068–1075. IEEE, Los
Alamitos (2000)

	Caging Polygons with Two and Three Fingers
	Introduction
	Definitions and Assumptions
	Two Fingers Caging
	Two Fingers Squeezing and Stretching Caging
	Two Disc Fingers Caging Algorithm

	Three Fingers Caging
	Locus of Three Fingers Equilibrium Grasps
	Three Fingers Caging Algorithm

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

