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Summary. This paper presents an algorithm for a visibility-based pursuit-evasion
problem in which bounds on the speeds of the pursuer and evader are given. The
pursuer tries to find the evader inside of a simply-connected polygonal environment,
and the evader in turn tries actively to avoid detection. The algorithm is at least
as powerful as the complete algorithm for the unbounded speed case, and with the
knowledge of speed bounds, generates solutions for environments that were previously
unsolvable. Furthermore, the paper develops a characterization of the set of possible
evader positions as a function of time. This characterization is more complex than
in the unbound-speed case, because it no longer depends only on the combinatorial
changes in the visibility region of the pursuer.

1 Introduction

Consider a robot in a search-and-rescue operation, such as firefighting inside a
building. Victims have to be located before they can receive proper aid. The
objective of this robot, called here the pursuer, is to find each person inside the
building. In the worst-case, the robot should plan as if a person, called an evader,
is actively hiding. However, the pursuer can make some safe assumptions about
each evader. For example, a person does not move at more than 12m/s. This
paper studies the search taking into consideration such speed bounds.

We consider a version of the visibility-based pursuit-evasion problem, in which
bounds on the speed of the pursuer, and the evader are given. This yields a major
complication for describing the set of possible positions where the evader might
be. Perhaps surprisingly, describing the possible positions of the evader with
unbounded speed is much easier; they depend only on the combinatorial changes
in the visibility region of the pursuer. This is no longer true in the bounded speed
case, because the set of possible evader positions is also a function of time.

Determining the set of possible evader’s positions as a function of time, called
the reachable set of the evader has been previously studied in [2, 7, 14]. Even in
the absence of obstacles, the exact computation of the reachable set is compu-
tational intractable, since it involves finding a solution to the Hamilton-Jacobi-
Bellman equation [6]. The present paper is the first attempt to describe the set
of evader’s position inside a polygonal environment. Whereas this description is
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made exact, it is rather used to prove that an approximation to the reachable
set that is easier to compute is conservative. This approximation is then used
together with the combinatorial changes in the visibility of the robot, enlarging
the class of environments that can be searched by a single pursuer. Thus, even
though knowing speed bounds makes the problem easier to the pursuer, since
evader capabilities are decreased, the design of a complete algorithm becomes
much more complicated. This is one of the reasons of why the speed bounds
have been ignored for visibility-based pursuit-evasion.

The visibility-based pursuit-evasion problem was proposed in [15]. The un-
bounded speed case has been discussed extensively in the literature. A complete
algorithm for a pursuer with an omnidirectional field of view was presented
in [4]. A solution for a limited pursuer’s field of view was presented in [3]. For
pursuers moving on the boundary of the environment, having a single ray of
visibility, a complete algorithm was presented in [12]. For the same problem, an
finite state automaton was designed in [10]. A randomized solution for a pur-
suer moving under polyhedral kinematic constraints was described in [8], based
on a randomized strategy presented in [9]. The randomized algorithm gives an
arbitrarily high probability of evader detection, even when the environment is
not searchable with one pursuer by the complete algorithm in [4]. Minimal sens-
ing solutions, in which the environment is unknown to the pursuer, have been
presented in [5, 13].

This paper formalizes the problem of pursuit-evasion with bounded speed. We
give a description of the set of evader possible positions, contaminated regions, in
the form of an information state. This information state takes advantage of the
combinatorial structure studied in previous approaches to compute the worst-
case contamination of a region. Contaminated regions are not kept explicitly, but
are computed selectively as the pursuer needs them. Assuming a pursuer that
moves in piecewise-linear paths, we present a search algorithm that uses the
description of the contaminated regions as a function of the evader speed. This
algorithm is as powerful as any complete algorithm for the unbounded speed
case. The movement of the pursuer presents a challenging optimization problem
[7, 17, 18, 19]; thus, moving the pursuer in piecewise-linear paths may not lead to
a complete algorithm. However, by taking into account the speed bounds defined
in the problem, this algorithm solves many instances of pursuit-evasion tasks in
environments for which no solution exists in the unbounded speed case.

2 Problem Formulation

The pursuer and the evader are modeled as points moving in an open set R ⊂ R
2.

It is assumed that R is simply-connected, with a polygonal boundary ∂R. Let
e(t) ∈ R denote the position of the evader at time t ≥ 0. It is assumed that
e : [0, ∞) → R is a continuous function. Let Ve(t) be the speed of the pursuer
at time t. The mapping Ve : [0, ∞) → [0, ve] may not be continuous, but sets a
maximum speed for the evader at ve. Similarly, let p(t) ∈ R denote the position
of the pursuer at time t ≥ 0. It is assumed that p : [0, ∞) → R is continuous
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and piecewise-differentiable. The pursuer moves with a maximum speed of vp

according to the speed map Vp : [0, ∞) → [0, vp], which may not be continuous.
Since dynamics is disregarded, the implication of the speed bounds are better
understood if the position mappings are parametrized as a function of their
arclength s. For example, if the length of the path from e(t0) to e(tf ) is s, then
s ≤ ve(tf − t0), for any t0, tf ∈ [0, ∞), t0 ≤ tf .

For a point q ∈ R, let V (q) denote the set of all points in R that are
visible from q (i.e., the line segment joining q and any point in V (q) lies in
R). The set V (q) is called the visibility region at q. A mapping p(t) is called
a solution strategy if for every continuous path e : [0, ∞) → R subject to
arclength(e(t0), e(t)) ≤ ve(t − t0), ∀t0, t ∈ [0, ∞), there exists a time tc ∈ [0, ∞)
such that e(tc) ∈ V (p(tc)). The time tc is called the time of capture for the
strategy p(t). Thus, the position of the evader remains unknown to the pursuer
until tc. The pursuer’s task is to find a p(t) solution strategy with a finite time
of capture. A complete algorithm reports such a solution strategy if it exits, or
reports that evader remains undetected for the given speed bounds.

It is clear that the particular values of speeds of the pursuer and evader are
not as important as the ratio ve/vp between them. For each simple polygon and
each evader speed, a pursuer speed can be found such that a solution strategy
exists:

Proposition 1. Given a simply-connected polygonal environment R and a max-
imum evader speed ve, a speed of a pursuer vp can be found such that a solution
strategy exists.

Proof. Compute the visibility graph of R and find the edge with the smallest
length lmin. Set vp = lRve/lmin, in which lR is the length of ∂R. If the pursuer
transverses ∂R at such speed, any evader is detected. This is because the evader
can only hide from reflex vertex to reflex vertex (bitangents), but the pursuer
sees all such paths before the evader can transverse them. 	


Proposition 1 motivates the study of visibility pursuit-evasion with bounds on the
speed. Rather than declaring the problem unsolvable, bounds on the speed may
be found such that a strategy exists. An interesting question considers finding
the maximum ve/vp for which there exists a solution. If the maximum ve/vp

approaches infinity, then R can be searched assuming an evader with unbounded
speed. Likewise, if it approaches 0, then the search looks like a visibility coverage
problem. An upper bound for this ratio can be found with a binary search using
the strategy presented in this paper.

2.1 The Model

The pursuer has perfect information about its position and orientation with
respect to R. It has two sensors, a clock and a visibility sensor. The clock reports
a positive real number that indicates the time elapsed from the beginning of the
pursuing task. The visibility sensor V : R → pow(R) reports the visibility
region from the current position of the pursuer. An observation space is defined
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as Y = [0, ∞) × pow(R). It can be interpreted as visibility regions together
with a timestamp. Let ỹt be the history (sequence) of observations up to time
t, and let p̃t be the history of all the pursuer positions up to time t. Also, let
x = (p(t), e(t)) be the state of the pursuit-evasion task. This leads to a state
space X = R

2 × R
2 = R

4. Consider the history information state (η0, p̃t, ỹt),
in which the initial condition η0 = (p(0), R) reflects the fact that at t = 0
the position of the pursuer is known, but the evader can be anywhere in R.
Let X(η0, p̃t, ỹt) ⊆ X be the smallest set of states in which the pursuit-evasion
task might be, as it is deduced from (η0, p̃t, ỹt). Each ηt = X(η0, p̃t, ỹt) is an
information state of the nondeterministic information space Indet = pow(X)
(see [11]). The information state ηt is represented as ηt = (p(t), E(t)), in which
the set E(t) ⊂ R is the set of all positions in which the evader might be at time
t. Consider the maximal connected sets of points in E(t). Each of these sets is
referred to as a contaminated region of R. Each of the maximal connected sets
of points in R\E(t) is referred to as a cleared region of R. When a contaminated
region becomes cleared and later it becomes contaminated again, such region is
referred to as recontaminated. An equivalent way to describe a solution strategy
is to find the mapping p(t) such that the state (p, e) is known. In other words, the
task is completed when E(t) contains a single point (the location of the evader),
or it is the null set (no evader is in R).

Let yt′ ∈ Y be the observation made at time t′. The information transition
equation is defined as ηt′ = fI(ηt, p(t′), yt′). The main complication of determin-
ing fI lies in describing how E(t) changes. The next section describes the changes
in E(t) as a function of time and the pursuer movements. This description is
used later to find a solution strategy.

3 Describing Contaminations

The edges of a visibility polygon V (p) alternate between being part of ∂R or
crossing the interior of R. The latter ones are collinear with p, and are referred
to as gaps. A label of contaminated or of cleared is assigned to each gap. The
label indicates whether the maximal connected region in R\V (p) for which the
gap is an edge might contain the evader. As the pursuer moves, V (p) changes
combinatorially. For the unbounded speed case, E(t) depends uniquely on the
gaps changes. If gap α appears, the region behind α is cleared, and α is la-
beled accordingly. If a cleared gap α merges with a contaminated gap β to form
gap γ, then the whole region behind α gets recontaminated, and γ is labeled
as contaminated. Gap changes occur when the pursuer crosses inflection rays
(appearances and disappearances), or when it crosses bitangent complements
(merges and splits). For a deeper discussion of gap changes the reader is referred
to [16].

These conditions no longer hold when bounds on the speed are present. A
gap does not have to disappear and appear again to mark the whole region
behind it as cleared. Likewise, when two gaps merge, a cleared region does not
contaminate immediately. Before modeling contaminations, we introduce some
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gap terminology. A gap that can disappear is called primitive. Otherwise, if it
can split, it is called nonprimitive. For a gap α starting at reflex vertex aα, let
lv and ln be the edges of ∂R that intersect at aα. As shown in Figure 1, lv is the
edge that is (perhaps partially) visible from p, while ln is completely hidden. Let
θ(t) be the angle between α and ln at time t. If θ(t) increases, α is said to move
in the positive direction. The length of α at time t is denoted by λ(t). Let iα and
in be the ray extensions of α and ln respectively, until an edge of ∂R is hit. If α
is primitive, in is the inflection ray that, if crossed, forces α to disappear. Also,
let α(r, θ(t)) be the point on α at r distance from aα when α is at the angular
position θ(t). Finally, let b(t) = α(λ(t), θ(t)) be the intersection point of α with
∂R. Thus, α is the line segment [aα, b(t)].

θ

lvln

p

in

iα

α

aα

Fig. 1. Gap description. The gap α starts at reflex vertex aα. It has an angular position
of θ, as measured from the edge ln. The rays iα, and in, extend from aα in the direction
of α and ln respectively, until they hit an edge of the polygon.

3.1 A Recontamination Fan

Let α be a gap currently visible for which the region behind it is completely
contaminated at time t = 0. Assume that from t = 0 to t = tf , α does not
disappear, split or merge. The region between α at θ(0), and α at θ(tf ) is called
the recontamination fan of α, or α-fan. Recontamination inside the α-fan is de-
scribed next. If α moved in the negative direction, that is θ(0) > θ(tf ), the whole
region behind α is still contaminated and no more computations are needed. For
the positive direction the angular velocity ω(t) of α is needed. Assume that the
vertex aα is placed at the origin of the plane, and that the pursuer position is
given by p = (px(t), py(t)). Let p be the position vector of p, and let n be its unit
normal vector. Also, let vp = [dpx/dt, dpy/dt] be the velocity of the pursuer.
We have:

ω(t) =
vp · n
|p| =

px
dy

dt
− py

dx

dt

p2
x + p2

y

(1)
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Assume that ω(t) has a single maximal value at ω(tmax) = ωmax. The general
case, when ω(t) has several critical points is discussed later in this section.

Recontamination from t = 0 to t = tmax

Consider an evader arbitrarily close to α(r, θ(0)). If the evader is to remain
arbitrarily close to α(r, θ(t)) during t ∈ [0, tmax], then ωmax ≤ ve/r. Let
rn = ve/ωmax. Any evader at distance less than or equal to rn from aα can
follow exactly the angular motion described by α. Thus, the evader could be
anywhere along this arc and such region remains contaminated (see Figure 2.a).
Consider now rb = ve/ω(0). Any evader arbitrarily close to α(rb, θ(0)) cannot
follow the angular motion described by α. This is true for positions on the gap
with r ≥ rb. Their recontamination regions can be described with a circular sec-
tion with radius vetmax, centered at the original position of the evader, as shown
in Figure 2.b. The circular sections do not grow towards aα. This is because ei-
ther the positions reachable are already considered by a radius of smaller length,
or because the evader would otherwise cross α. The latter is better exemplify
if w(t) remains constant at w(0). In this case, rn and rb coincide. The region
after the arc at rn is bounded by the involute of a circle (see Figure 2.b). These
circular sections cannot intersect α at any time before tmax, since w(t) never
decreases. Adding all the circular sections for radii larger than rb makes the
portion of α starting at rb and ending at b(0) sweep perpendicularly by vetmax

(see Figure 2.b). As α moves, its length λ(t) may change. If λ(t) decreases, the
vetmax sweep is done as described, but eliminating the part that intersects with
the polygon. If λ(t) increases, a contamination region grows as a circular section,
with radius vetmax and center b(0). This circular section is also present when
rn > λ(0). In this case, the region of the circular section crossing (above) α is
eliminated.

For r ∈ (rn, rb), let tr be the smallest time for which ve ≥ w(t)r does not hold.
This time is referred to as the breaking time of r. Before tr, an evader placed
arbitrarily close to α(r, θ(t)) follows the arc described by α. From tr to tmax, the
evader could be anywhere in a growing circular section centered at the last point
of contact with α at θ(tr), and bounded by α at θ(t). When adding the effect
of such contamination regions, a sweep similar to the one described before takes
place. The difference is that, per radius r, the sweep length is ve(tmax − tr) and
the evader travels perpendicularly to α at θ(tr).

Recontamination from t = tmax to t = tf

Since w(t) is now decreasing, positions for which a breaking time existed may be
able to intersect α in the sweep ve(tf − tmax). Suppose the sweep intersects α at
α(rm, θ(tf )), and rm is the maximum radius for all such intersections. Then the
circular section with radius rm and center aα, bounded by α at θ(0) and θ(tf ),
is completely contaminated. This circular section is added to the contamination
sweep that did not intersect α, namely the sweep of the radii after rm. In general,
the contamination boundary consists of:
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rn

aα
e

θ(tf )

e

α

rb rn θ(0)

(a) (b)

Fig. 2. Recontamination fan. (a) Gap α moved from θ(0) to θ(tf ). Any evader before
rn follows exactly the angular motion of α. Any evader after rb can be anywhere inside a
circular section of radius vetf . The net effect is a line segment sweeping perpendicularly
to the original position. (b) For w(t) constant, the contamination region between the
vertical dashed line and the dashed arc is bounded by the involute of a circle.

1. A line segment from aα to α(rm, θ(tf ))
2. A curve function of p(t) from α(rm, θ(tf )) to the point (rb, vetf ),
3. A line segment [(rb, vetf ), (b(0), vetf )], parallel to α at θ(0).
4. A circular section, with center b(0) and radius vetf .

For some values of rm some elements may not be present. Note that the region
between α at θ(tf ) and the contamination boundary is cleared, In the unbounded
speed case, the whole region behind α would be marked as contaminated. When
w(t) has more than one maximum, the concepts before described are applied as
follows. Find all the local minima of ω(t) in [0, tf ]. Assume the local minima
occur at t1, t2, ..., tn. The recontamination fan is computed by parts, from t = 0
to t1, from the gap at θ(0) to θ(t1), and so on. At each step, new breaking times
should be computed, and the sweep of vet should be checked for intersection.
Note that the contamination boundary may contain two or more elements of the
same type. This is because the breaking times would change for each radius at
each period of time. Particularly, we can consider the line segment up to rm of
the previous time period as a gap, for which a recontamination fan is computed.

Piecewise-Linear Approximation

While a complete algorithm should compute the contamination boundary ex-
actly, a piecewise linear approximation is easily computed. Let rn′ = vetf/ tan
(θ(tf )− θ(0)). An evader traveling vetf from α(rn′ , θ(0)) and perpendicularly to
α at θ(0), intersects α at α(rm′ , θ(tf )), with r2

m′ = r2
n′ + (vet)2. The approxima-

tion is a line segment from aα to α(rm′ , θ(tf )), and a line segment α(rm′ , θ(tf ))
parallel to α at θ(0) that extends until an edge of ∂R is hit (see Figure 3). Note
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rn

e

θ(tf )

e

α

rb rn

rm′

θ(0)
p

Fig. 3. Piecewise-linear approximation. Instead of computing the exact contamination
boundary, an approximation is easily generated by ignoring the angular velocity of the
gap, considering only its final angular position.

that rm′ > rm, because traveling from rm′ did not have to wait for a break-
ing time to intersect α. Thus, this approximation is conservative and may be
preferred over the exact one in real robotic implementations given its simplicity.

Fan Contamination for a Pursuer Moving in a Piecewise-Linear Path

As an example of a fan recontamination, consider a pursuer that moves in a
piecewise-linear path with constant velocity vp. To simplify the example, assume
that the pursuer moves in a vertical line at a distance x0 of the y-axis. From
Equation 1:

ω(t) =
x0vp

x2
0 + p2

y

=
x0vp

x2
0 + (tvp − y0)2

(2)

Equation 2 has a maximum at ω(y0/vp) = vp/x0. Thus, rn = vex0/vp, the
last radius for which an evader can follow exactly the angular motion of α. Based
on Equation 2, an expression for the breaking time of each radius can be found
using ω(t)r = ve:

t(r) =
1
vp

(
y0 +

√
rxovp

ve
− x2

o

)
(3)

Note that t(r) for r < rn generates complex solutions. This means, as ex-
pected, that such breaking times do not exist. Figure 4 shows a computed ex-
ample of the fan recontamination for two different speeds of the evader.

3.2 Merges Spreading Contamination

When two gaps merge, contamination spreads in the regions behind them. For
two or more consecutive reflex vertices in ∂R, a merge is also considered when one
of them occludes the others. While this is not entirely true, since a bitangent
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Fig. 4. Recontamination fan computed example for a pursuer linear motion. The gap
start at θ(0) = 0◦, and ends at θ(1) = 45◦. The thick line on the bottom-right represents
an edge of R. The evolution of the contamination is shown for times between [0, 1].

does not exists, it simplifies the description of contamination. Particularly, a
primitive gap is assigned to the first occluded vertex, while a nonprimitive gap
is assigned to each of the remaining consecutive reflex vertices. The split only
generates one gap. To describe the recontamination between gaps, the following
lemma is proposed:

Lemma 1. Let α and β be two gaps that merge into gap γ. When γ splits, α and
β appear at the same angular position at the time of the merge, independently
from the pursuer motion.

Proof. Merges and splits occur when the pursuer crosses a bitangent complement
of ∂R. Thus α, β, and γ are aligned with the bitangent at the split or the merge.
This is independent from where the bitangent complement is crossed. 	


Lemma 1 provides a tool to encode the contamination of cleared regions. If α is
a gap for which the region behind is completely cleared, the angular position of
α before a merge (i.e., when it was last seen) is recorded. The merge may allow a
path between α and a contaminated gap β that the evader can transverse without
being detected. Assume that the merge occurs at time t = 0, and contamination
should be determined for time tf . Further, assume that γ splits at time ts ∈
[t0, tf ]. If the evader does not cross γ by the time ts, it cannot contaminate α
anymore. The worst-case contamination of α has two general cases, function of
whether α is visible from the position of the evader or not.

First, assume that α is completely visible from the current position of the
evader, which is at h distance from aα. For clarity, we disregard the effect of
the recontamination fans for now. The evader should move as to maximize the
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contamination of the region behind α. If vetf > h, then the worst-case appears
when the evader moves to aα. This forces the pursuer to cross the inflection ray
in to completely clear the region again. If vetf ≤ h, the evader cannot reach
aα, but recontamination may still exist. Imagine the evader moves towards some
point in α. When the evader reaches this point and keeps moving, allow α and
its extension ray iα to move with the evader around aα. We said that the evader
is pushing the gap. When the evader reaches a point in ln, the rays in and
iα coincide (see Figure 5). If the pursuer crosses iα before the evader gets to
ln, the evader is detected. Since at the moment of the merge iα is collinear
with the pursuer, the worst-case pushes iα as far as possible from the pursuer.
Thus, in the worst-case, the evader pushes α as to minimize θ(tf ), as any other
movement would make its detection easier. The following lemma provides the
optimal movement for the evader:

Lemma 2. Let α be a cleared gap, let l = vetf , and consider an evader standing
at distance h from aα, with t = 0 and α completely visible from the evader
position. If l > h, then the optimal strategy for the evader is to move to aα. If
l ≤ h, then it should move in a straight line, with an angle of φ = arccos(l/h) as
measured from a parallel line to α, passing through the position of the evader.

Proof. When l ≥ h, moving to aα makes iα coincide with in. When l < h,
assume the optimal strategy is not straight line. Such strategy has an endpoint
b, which can be joined with the position of the evader by a line segment, reaching
b faster, a contradiction. To find the angle φ, consider the angle σ = θ(0)−θ(tf ),
in which θ(0) and θ(tf ) are the positions of the gap before the evader pushed it.
To maximize σ, consider the triangle (see Figure 5) with angles φ, σ and π−φ−σ.
Now, σ is maximized when π−φ−σ = π/2, from which σ = arctan

(
l/

√
h2 − l2

)
,

and φ = arccos(l/h) follows.

If α is partially visible from the evader position, and the path found in Lemma 2
intersects ∂R, then the evader should move to the last reflex vertex obstructing
the path. Once reached, a new path from Lemma 2 should be computed, taking
into account the time elapsed. This can be extended for the case when α is com-
pletely hidden. The evader moves in a shortest-path, until α is visible. Consider
now that the evader is presented with two choices: either, to start at time ts1
at distance h1 from aα, or to start at time ts2 at distance h2 from aα, with the
inequalities ts1 < ts2, and h1 > h2. Given the expression for σ in Lemma 2, ts1 is
the better choice when l21/l22 > (h2

1 − l21)/(h2
2 − l22), for li = vetsi. Thus, given the

time tf , the best path for the evader when α is not visible can be determined.
The recontamination fans alter the computation of the paths, since a shortest-

path may cross a gap visible to the pursuer. A recontamination fan is computed
for every gap that merges, assuming that the region behind the original position
of the gap is completely contaminated. If a path is completely contained inside
the contamination regions defined by the fans, no further modification to the
path is required. Otherwise, the amount of time spent crossing the region between
a contamination boundary and the next merge is added to the path.
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iα

θ(0)
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e

p

Fig. 5. Pushing a gap. The evader travels on l at angle φ as to maximize the angle σ,
thus maximizing contamination. As the evader moves, the gap moves with it, and so
does the gap extension ray iα. In the extreme case, iα coincides with in. If the pursuer
crosses iα, the evader is detected.

(a) (b)

Fig. 6. Clearing equivalent an polygon. The pursuer considers the gap extension ray
in (a) as the actual inflection ray. This is equivalent as clearing the polygon in (b).

Clearing an Equivalent Polygon

From the pursuer perspective, the gap extension ray iα is a real inflection ray.
When the pursuer crosses iα, it clears an equivalent polygon in which α is one
of the edges (see Figure 6). At the extreme case, α will coincide with ln and
the pursuer clears the original polygon. This holds also when the gap γ is a
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nonprimitive gap. As γ moves, iγ aligns with a bitangent complement. From the
pursuer perspective, crossing iγ before the alignment is like clearing a polygon
in which γ is one of the edges, and for a pursuer strategy this polygon is equiv-
alent to the original one. Since contamination paths are computed in a pairwise
manner, this simplifies the contamination computation when the evader force a
gap to split. When γ splits, say in gaps α and β, the evader could have reached
α and β already, by the triangle inequality. In fact, γ will coincide with one of
α or β, the one originated by the same reflex vertex. Thus the pursuer should
consider, at the same time, the worst positions for α, β, and γ, since the evader
may be pushing any of them.

4 The Pursuit Status

Up to now, we have described how the set E(t) of contaminated regions changes
as a function of time and the pursuer movements. In this section we provide an
appropriate representation for the information state ηt = (p(t), E(t)). As seen
in the previous section, a structure that provides the gap relations is needed.
Namely, we need to know which gap will split in which other gaps. This gap
hierarchy is represented with a shortest-path tree T , rooted at the pursuer po-
sition. Except the root, there is a one-to-one correspondence between the reflex
vertices of ∂R, and the nodes in T . Thus the gaps of the corresponding vertex are
assigned to each node. The gap’s angular position recorded at the node depends
on the gap’s current contamination status:

• The gap is cleared. If it is visible, the angle is set to the current angu-
lar position. Otherwise, it is set to the angle that aligns the gap with the
bitangent complement of the merge when it was last seen.

• The evader is pushing the gap. The angle recorded is the one that min-
imizes θ(t), for the period the contamination was allowed.

• The gap has a recontamination fan. The angle is set to 0.

Note that even if a contaminated gap is currently visible, the angle recorded
depends on the status of its contamination. The combinatorial structure of T
changes as the pursuer moves. In fact, it changes in exactly the same places as
gaps do [1, 16]. When T changes combinatorially, together with each merge and
split the time t of the event is recorded. The value of t is necessary to compute
how far the evader could have moved since the last state (i.e., in fan recon-
tamination and pushing of gaps). The tree is modified every time a bitangent
complement is crossed, an inflection ray is crossed, and when the gap extension
ray of a gap being pushed is crossed. Note that if there exists a path in T be-
tween a clear gap and a contaminated one, and this path does not visit the root,
then there is a contamination path between the two gaps.
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(a)

(b)

Fig. 7. Example. The path of the pursuer is shown, from the initial position marked
as a black circle. (a) ve � vp. Note that the room at the upper-left does not get
contaminated. (b) ve = vp. The upper-left room gets recontaminated, and the clearing
path is longer. This example cannot be solved without bounding the speed of the
evader. The algorithm presented here also finds a solution for each problem solvable
without bounding the speed of the evader.

5 An Improved Pursuit Strategy

Once the representation of an information state has been defined, a search in
the information space Indet can be performed to find a pursuit strategy. The
search starting node is η0 ∈ Indet, which has all gaps labeled as contaminated.
An information state ηtc ∈ Indet is a search goal if it has all its gaps labeled
as cleared, and no gap is being pushed. The search strategy is similar to the
unbounded speed case in [4]. The visibility-cell decomposition is computed as in
the unbounded speed case. The center of each cell is computed. For ηt ∈ Indet,
a set of actions Uηt is defined. An action uβ ∈ Uηt takes the pursuer to a
neighboring cell through a straight line. Thus, the paths are restricted to be
piece-wise linear. A state is a candidate to add to the search queue when T is
modified combinatorially, or when a gap extension ray is crossed, as the states
are expanded with Uηt . The candidate is accepted if it has at least one gap in
which progress to clear it is better than in any previous state. Progress here is
defined as: either the gap is cleared, or if the gap is being pushed, the angular
position of the gap is bigger than in any other state.
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The pursuer strategy is not complete. Nevertheless, there is an important
guarantee to its performance. It is at least as powerful as any strategy for the
unbounded speed case. In the unbounded speed case, there are no breaking
times in the recontamination fans and the evader can move arbitrarily close to
any point in the gap. When merges occur, the evader is able to transverse any
shortest-path in arbitrarily small time. Finally, when it sees a gap, it can travel
arbitrarily fast to the vertex that produces it. Thus, the information state cor-
rectly encodes the recontaminations for the unbounded speed case. Crossing gap
extension rays becomes immediately crossing inflection rays, and the search is
performed as presented originally in [4]. Figure 7 presents examples for two dif-
ferent speeds of the evader. These examples cannot be solved without bounding
the speed of the evader.

6 Future Work

We are currently investigating the optimal strategy for the pursuer based on the
description of contamination state presented in this paper. The main practical
difficulty is the description of the contamination boundary of the fans. The piece-
wise linear approximation may be a useful tool for providing better paths for the
pursuer since it is simpler to analyze. Finding the pursuers movements presents
interesting challenges in optimization. For example, since the pursuer has some
control in the contamination inside a fan, it can control to some extent the op-
timal positions for the evader once it reached a cleared gap. It may be possible
to model such scenario as a zero-sum game in which the evader tries to max-
imize recontamination. Other interesting questions remain to be explored. For
example, given that contamination travels in shortest paths, we conjecture that
environments with the same shortest-path graph will require the same pursuer
speed. Our future work considers the study of these questions.
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