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Abstract. This paper describes a new approach to sampling-based motion planning
with PRM methods. Our aim is to compute good quality roadmaps that encode the
multiple connectedness of the Cspace inside small but yet representative graphs, that
capture well the different varieties of free paths. The proposed approach relies on a
notion of path deformability indicating whether or not a given path can be continuously
deformed into another existing one. By considering a simpler form of deformation than
the one allowed between homotopic paths, we propose a method that extends the
Visibility-PRM technique [12] to constructing compact roadmaps that encode a richer
and more suitable information than representative paths of the homotopy classes. The
Path Deformation Roadmaps also contain additional useful cycles between paths in the
same homotopy class that can be hardly deformed into each other. First experiments
presented in the paper show that our technique enables small roadmaps to reliably and
efficiently capture the multiple connectedness of the space in various problems.

1 Introduction

Robot motion planning has led to active research over the past decades [5] and
sampling-based planning techniques have now emerged as a general and effective
framework for solving challenging problems that remained out of reach of the
previously existing complete algorithms. Today they make it possible to han-
dle the complexity of many practical problems arising in such diverse fields as
robotics, graphics animation, virtual prototyping and computational biology. In
particular, the Probabilistic RoadMap planner (PRM) introduced in [4, 8] and
further developed in many other works (see [2, 6] for a survey) has been conceived
to solve multiple-query problems.

While most of the PRM variants focus on the fast computation of roadmaps
reflecting the connectivity of the free configuration space, only few works [7, 9]
address the problem of computing good quality roadmaps that encode the multi-
ple connectedness of the space inside small graphs containing only useful cycles,
ie. cycles representative of the varieties of free paths. Introducing such cycles is
important for getting higher quality solutions when postprocessing queries, thus
avoiding the computation of unnecessarily long paths, difficult to shorten by the
smoothing techniques (e.g. [10, 13]).
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Intuitively, the probability that a roadmap captures well the different paths
varieties of Cfree increases with its degree of redundancy. However, a direct
approach attempting connections between all pair of nodes is far too costly and
several heuristic-based connection strategies have been proposed to limit the
number of redundant connections. A first way (e.g. [4]) is to limit the connection
attempts of new samples to the k nearest nodes of the roadmap (or of each
connected component). Another variant is to only consider nodes within a ball
of radius r centered at the new sampled configuration (e.g. [1]). A more recent
technique proposed in [7] only creates cycles between already connected nodes
if they are k times more distant in the roadmap than in the configuration space.
In all cases, the chances of capturing the different path varieties of Cfree notably
varies depending on the choice of the k or r parameter. Moreover it is difficult to
choose with these heuristic sampling strategies the good parameter values for a
given environment. This may result in a significant loss of performance regarding
the roadmap construction process.

In this paper we present an alternative method to building compact roadmaps
that are yet representative of the different varieties of free paths. The method
only generates a limited number of useful cycles in the roadmap. Moreover it
stops automatically when most of the relevant alternative paths have been found.
Our approach relies on a notion of path deformability indicating whether or not
a given path can be continuously deformed into another existing one. Compared
with the standard notion of homotopy which is not directly suitable for our
purpose because it relies on too complicated deformations (Sect. 2), we consider
simpler and more easily computable deformations between paths (Sect. 3). This
results in compact roadmaps capturing a richer set of paths than homotopy
(Sect. 4). We describe in Section 5 a two-stage algorithm for constructing such
(easy) path deformation roadmaps. The first stage uses Visibility-PRM [12] to
construct a small tree covering the space and capturing its connected components
as well as possible. The second stage aims at enriching the roadmap with new
nodes involved in the creation of useful cycles. The key ingredient of this step
is an efficient path visibility test used for the filtering of useless cycles that
can be easily deformed into existing roadmap paths. Following the philosophy
of Visibility-PRM, the second stage integrates a stop condition based on the
difficulty of finding new useful cycles. Finally, our first experiments (Sect. 6)
show that the technique enables small roadmaps to reliably capture the multiple
connectedness of configuration spaces in various problems involving free flying
or articulated robots.

2 Homotopy Versus Useful Roadmap Paths

First we informally discuss the relation between homotopy and the represen-
tative path varieties that it would be desirable to store in the roadmap. The
capture of the homotopy classes of Cfree corresponds to a stronger property
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than connectivity. Two paths are called homotopic (with fixed end points) if
one can be ”continuously deformed” into the other (see section 3.1). Homotopy
defines an equivalence relation on the set of all paths of Cfree. A roadmap cap-
turing the homotopy classes means that every valid path (even cyclic paths)
can be continuously deformed into a path of the roadmap. PRM methods usu-
ally do not ensure this property. Only the work of Schmitzberger [9] considers
the problem formally and sketches a method for encoding the set of homotopy
classes inside a probabilistic roadmap. However, the approach is only applied
on two-dimensional problems and its extension is limited by the difficulty of
characterizing homotopic deformations in higher dimensions.
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Fig. 1. Two examples of query for a 2 nodes graph (n1-n2). In the left picture, the
solution path (qi-n1-n2-qf ) extracted from the graph could be easily deformed into the
displayed short path connecting query configurations (qi, qg) whereas a deformation in
Cfree would be much complex in the case of the right picture.

Moreover, as it was noted in [7] capturing the homotopy classes in higher
dimensions may not be sufficient to encode the set of representative paths since
homotopic paths (i.e. paths in the same homotopy class) may be too hard to
deform into each other. This problem is illustrated by the example in Figure
1. Here Cfree contains only one homotopy class. Therefore, an homotopy-based
roadmap would have a tree structure, such as the simple 2 nodes (n1,n2) tree
shown in the figure. While for the left query example, the solution path (qi-n1-
n2-qf ) found in the roadmap could be easily deformed into the displayed short
path connecting query configurations (qi, qg), a free deformation would be much
difficult to compute for the right example. Even if the topological nature of the
two displayed paths is the same, their difference is such that it is preferable to
store a representation of both paths in the roadmap. Generalizing this idea, we
say that a roadmap is a good representation of the varieties of free paths if any
path can be ”easily” deformed into a path of the roadmap. This notion of simple
path deformation is formalized below.
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3 Complexity of a Path Deformation

In this section, after a brief reminder of the definition of a homotopic deforma-
tion, we propose a way to characterize classes of path deformations according to
their complexity.

3.1 Homotopy

The homotopy between two paths is a standard notion from Topology (see [3]
for a complete definition). Two paths τ and τ ′ in a topological space X are
homotopic (with fixed end points) if there exists a continuous map h : [0, 1] ×
[0, 1] → X with h(s, 0) = τ(s) and h(s, 1) = τ ′(s) for all s ∈ [0, 1] and h(0, t) =
h(0, 0) and h(1, t) = h(1, 0) for all t ∈ [0, 1].

Homotopy is a way to define any continuous deformation from one path to
another. Next, we introduce a less general class of deformations, called K-order
deformations characterizing specific subsets of homotopic deformations and that
is used in section 4 for computing path deformation roadmaps.

3.2 K-Order Deformation

Definition 1. A K-order deformation is a particular homotopic deformation
such that each curve transforming a point of τ into a point of τ ′ is an angle
line of K segments.

τ

τ
′

τ

τ
′

τ

τ
′

a b c

Fig. 2. (a) General homotopic deformation. (b) first order deformation: the deforma-
tion surface is a ruled surface. (c) Second order deformation: the deformation surface
is obtained by concatenating two ruled surfaces.

Therefore, a first-order deformation surface describes a ruled surface and a K-
order deformation is obtained by concatenation of K ruled surfaces. This is
illustrated by Figure 2, which shows different types of path deformations: (a) is
a general homotopic deformation whereas (b) and (c) respectively show 1st-order
and a 2nd-order deformations.

Let Di denote the set of i-order deformations. We clearly have Di ⊂ Dj for all
i < j. Thus, the value K of the smallest K-order deformation existing between
two paths is a good measure of the difficulty to deform one path into the other.
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3.3 Visibility Diagram of Paths

It is important to note that a first-order deformation between two paths exists
if and only if it is possible to simultaneously go through the two paths while
maintaining a visibility constraint between the points of each path (see Figure 3).
This formulation provides a computational way to test the existence of a first-
order deformation, also called visibility deformation between two paths.

Let Llin be the straight line segment between two configurations of C. The
parametric visibility function V is of two paths (τ, τ ′) is defined as follows:

V is :

⎧
⎨

⎩

[0, 1] × [0, 1] → {0, 1}
V is(t, t′) = 1 if Llin(τ(t), τ ′(t′)) ∈ Cfree

V is(t, t′) = 0 otherwise

t = 0

t
′
= 0

t
′
= 1

t = 1

τ

τ
′

qt1

qt
′

1 qt
′

2

qt2

V is(t1, t
′

1
) = 1

V is(t2, t
′

2
) = 0

Fig. 3. The parametric visibility function of two paths evaluates the visibility between
the points of each path

Then, the visibility diagram of paths (τ, τ ′) is defined as the two-dimensional
diagram of the V is function. It is illustrated by Figure 4 showing several exam-
ples of computed visibility diagrams with the corresponding paths.

Thanks to the visibility diagram, the visibility (i.e. first-order) deformation
between two paths can now be expressed as follows: two paths (τ , τ ′) (with
the same endpoints) are visibility deformable one into the other if and only if
there is a path in their visibility diagram linking the points of parameters (0, 0)
and (1, 1). Therefore it is possible to test the visibility deformation between two
paths by computing their visibility diagram and then searching for a path in the
diagram linking the points (0, 0) and (1, 1). In Figure 4, such a deformation is
only possible for the last example (d).

4 K-Order Deformation Roadmap

In the previous section we have defined a way to characterize the complexity
for two paths to be deformed one into the other. This formalism is now used to
define, for a given roadmap, its ability to capture the different varieties of free
paths of the configuration space.
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Fig. 4. Visibility diagrams for pairs of paths with the same endpoints. White areas
represent regions where V is(t, t′) = 1. A visibility deformation is only possible in the
last example (d), where a valid path linking the points (0,0) and (1,1) can be found in
the visibility diagram.

Definition 2. A roadmap R is a K-order deformation roadmap if and only if for
any path τ of Cfree it is possible to extract a path τ ′ from R (by connecting the
two endpoint configurations of the paths) such that τ and τ ′ are K-deformable.

This definition establishes a strong criterion specifying how the different varieties
of free paths are captured inside the roadmap. One can also note that since a
K-order deformation is a specific kind of homotopic deformation, any deforma-
tion roadmap captures the homotopy classes of Cfree. The following subsections
present a computational method to construct such roadmaps.

4.1 Visibility Deformation Roadmap

We first define the notion of Roadmap Connected from any Point of View (called
RCPV roadmaps) previously introduced in [9]. Then we establish that RCPV
roadmaps are visibility (i.e. first-order) deformation roadmaps.

Visible Subroadmap

Let R be a roadmap with a set N of nodes and a set E of edges. If R covers Cfree,
we can extract a set of nodes Ng (called guards) maintaining this coverage. Then,
we can define for a free configuration qv, the Visible Subroadmap Rv = (Nv, Ev),
as follows :

• Nv sublist of guards visible from qv: Nv = {n ∈ Ng/Llin(qv, n) ∈ Cfree}
• Ev, sublist of edges visible from qv: Ev = {e ∈ E/Llin(qv, e) ∈ Cfree}

Note that the notation Llin(qv, e) ∈ Cfree means that {∀q ∈ e, L(qv, q) ∈
Cfree}. Examples of visible subroadmaps are presented in Figure 5.
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qv

qv

Gards Connectors

Fig. 5. Two examples of visible subroadmap from a given configuration qv . On the
left, the visible subroadmap is disconnected whereas it is connected on the right.

RCPV Roadmaps

Definition 3. A Roadmap Connected from any Point of View (or RCPV
roadmap) is such that for any configuration of Cfree, the visible subroadmap
is connected.

The following property establishes the link between RCPV roadmaps and visi-
bility deformation roadmaps.

Property: A RCPV roadmap is a particular case of visibility deformation
roadmap.

Sketch of proof: Let R be a RCPV roadmap and τ , a path of Cfree. τ can be
partitioned into 2n − 1 successive paths:

τ = {τg1 ⊕ τg1∩g2 ⊕ ... ⊕ τgi ⊕ τgi∩gi+1 ⊕ τgi+1 ⊕ ...τ
gn−1

⊕ τgn−1∩gn ⊕ τgn}

with τgi denoting the portion of path only visible from the gi guard and τgi∩gi+1

the portion visible simultaneously from gi and gi+1. Since τgi and gi are by
definition visible, it is possible to build a patch of ruled surface between them
(Figure 6.a). Similarly, there is a patch of ruled surface between τgi+1 and gi+1.
Because R is a RCPV roadmap, any configuration qv ∈ τgi ∩ τgi+1 sees a path τ ′

connecting gi to gi+1. This property makes it possible to build a third patch of
ruled surface between qv and τ ′ (Figure 6.b). Finally, it is possible to fuse these
three patches into a single ruled surface between τgi ∩ τgi+1 and τ ′ (Figure 6.c).
Thus, there exists a ruled surface (i.e. a visibility deformation surface) between
the totality of τ and a path of the roadmap.

RCPV roadmaps are first-order deformation roadmaps. However, these
roadmaps involve a high level of redundancy (see results section 6) and yet
contain many useless cycles, especially in constrained situations. Therefore, to
keep a compact structure we filter a part of the redundancy as explained in
the following section. We will show that this filtering leads to a second-order
deformation roadmap.
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Fig. 6. A RCPV roadmap is a visibility deformation roadmap. (a) the visibility of the
guards gives first patches of ruled surfaces. (b) the RCPV roadmap property guarantees
the visibility of a roadmap path connecting two guards. (c) By construction, a global
visibility deformation surface can be built.

4.2 Second-Order Deformation Roadmaps

Let R be a RCPV roadmap, Ng ∈ R be a set of guard nodes ensuring the Cfree

coverage. Let us consider a pair of guards and τ , τ ′ two paths of the roadmap
linking theses guards (i.e. creating a cycle) and visibility deformable one into
the other. Then we have the following property:

Property: From a RCPV roadmap, the deletion of redundant paths τ ′ (i.e.
visibility deformable into paths τ and connecting the same guards) leads to a
second-order deformation roadmap.

Sketch of proof: Let us consider the partition of a free path τ , as defined
in section 4.1. In that section we have shown that with a RCPV roadmap, one
can extract a roadmap path τ ′ such that τgi ∩ τgi+1 is visibility deformable into
τ ′ (Figure 7.a). Now suppose that the redundant path τ ′ has been deleted as
proposed above. It means that τ ′ was visibility deformable into another path τ ′′

which remains in the roadmap (Figure 7 b). Thus, by concatenation of the two
ruled surfaces it is possible to build a second-order deformation surface between
any path τ of Cfree and a path of the roadmap (Figure 7 c).

Based on this notion of deformation roadmap, we describe below an algorithm
for constructing such roadmaps.
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Fig. 7. Deleting redundant paths in a RCPV roadmap leads to a second-order defor-
mation roadmap. (a) Visibility deformation for a RCPV roadmap. (b) A filtered path
is itself deformable by visibility into a roadmap path. (c) By construction, there is a
second-order deformation surface between a free path and a portion of roadmap.
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5 Algorithm for Building Deformation Roadmaps

First, the roadmap is initialized with a tree structure computed with the
Visibility-PRM method [12]. This ensures the coverage of the free space with
a limited number of nodes and edges (i.e. no cycles). Then, instead of first build-
ing a RCPV roadmap and filtering in a second step the redundant cycles (as
defined in section 4.2), the redundancy test is directly performed for efficiency
purposes before each addition of a new cycle to the roadmap.

The pseudo-code of the algorithm used to build a second-order deformation
roadmaps is shown in Figure 8. At each iteration a free configuration qv is ran-
domly sampled and the connectivity of the visible subroadmap is computed
(TestVisibSubRoadmap function line 6). The evaluation of its connectivity is per-
formed avoiding as much as possible the whole computation of the subroadmap.
The redundancy test is only performed when the visible subroadmap is discon-
nected. For this test, we randomly choose two disconnected components of the
subroadmap and pick among them the nearest guards n1, n2, from qv. Then, we
test whether there is a visibility deformation between the path τ = n1−qv−n2
and a path of the roadmap (TestRedundancy function line 10). If such a visibility
deformation exists, the configuration is useless with regards to the construction
of a second-order deformation roadmap and is therefore rejected. The algorithm
memorizes the number of successive failure since the last useful cycle inserted.
This information is used to stop the iterations when the insertion of a new cy-
cle becomes too difficult, meaning that most of the useful cycles are already
captured by the roadmap.

PATH-DEFORMATION-PRM
input : the robot A, the environment B, ntrymax, ntry cyclmax

output : a Path Deformation Roadmap
1 G ← Visibility-PRM(A, B, ntrymax)
2 ntry ← 0
3 While ntry < ntry cyclmax

4 qv ← RandomFreeConfig(A, B)
5 ntry ← ntry + 1
6 If TestVisibSubRoadmap(G, qv) = Disconnected
7 n1 ← NearestGuard(qv , Comp1(Gv))
8 n2 ← NearestGuard(qv , Comp2(Gv))
9 τ ← BuildPath(n1, qv, n2)
10 If TestRedundancy (τ, n1, n2, G) = False
11 CreateCyclicPath(τ, G)
12 ntry ← 0
13 End If
14 End If
15 End While

Fig. 8. General algorithm for building a Path Deformation Roadmap
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We next detail the algorithms used to establish the subroadmap connectivity
(TestVisibSubRoadmap function) and to test the visibility deformation between
pairs of paths (TestRedundancy function).

5.1 Visible Subroadmap

The method used to check the connectivity of a visible subroadmap from a
given configuration qv (TestVisibSubRoadmap function in the Path-Deforma-
tion-PRM algorithm) corresponds to the pseudo-code of Figure 9. First, the
set of nodes visible from qv is computed by testing whether the straight line
segments linking qv to each of the roadmap nodes are free. Then, we test in
two phases the connectivity of these nodes from the point of view of qv. First,
we evaluate all the roadmap edges as potentially visible. Thus, two nodes are
detected as disconnected if all the paths of the roadmap connecting them pass
through at least one invisible node (VisibleConnectivity function line 8). If this
fast test is not sufficient to establish the connectivity of the visible subroadmap,
we establish it by computing the visibility of the edges linking the visible nodes
(VisibleConnectivity function line 12). We describe in the next section how the
visibility of an edge from a given configuration can be tested.

TestVisibSubRoadmap(G, qv)
1 Nvis ← EmptyList
2 For all node n ∈ G
3 If VisibleNode(n, qv)
4 AddToList(n, Nvis)
5 End If
6 Endfor
7 TestEdges ← False
8 If VisibleConnectivity(qv , Nvis, G,TestEdges) = False
9 Return Disconnected
10 End If
11 TestEdges ← True
12 If VisibleConnectivity(qv , Nvis, G ,TestEdges) = False
13 Return Disconnected
14 End If
15 Return Connected

Fig. 9. Algorithm testing the visible subroadmap connectivity from a given configu-
ration qv

5.2 Edge Visibility

Testing the visibility of an edge from a configuration qv is equivalent to checking
the validity of triangular configuration-space facets, defined by qv and the two
edge’s endpoints (c.f. Figure 10). This visibility test possibly involves one or
several facets depending on the topological nature of C:
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n1

n2

qv

Fig. 10. Edge visibility: n1−n2 is visible from qv if the facet {qv , n1, n2} is valid

• If C is isomorphic to [0, 1]n (the robot’s degrees of freedom are only trans-
lations and/or bounded rotations) then the visibility test can be done by
testing only a single facet in C (Figure 11.a).

• If C is isomorphic to [0, 1]n × SO(d)m with m > 0 (one or more degrees of
freedom are cyclic), the visibility test of an edge can lead to test several facets
(Figure 11.b). In fact, a discontinuity occurs each time the distance between
qv and a configuration on the edge is equal to π according to a given degree
of freedom.

Fig. 11. Testing the visibility of an edge can lead to test one (a) or several (b) facets,
depending on the topological nature of the configuration space

5.3 Elementary Facet Test

To test the validity of a facet we try to cover it entirely with free balls of C

(Figure 12). First, the radii of the balls centered on each vertex of the facet are
computed using a conservative method based on the robot kinematics and the
distance of its bodies to the obstacles. If the balls are sufficient for covering the
facet, then the algorithm returns that the facet is valid. Otherwise it is split into
two sub-facets computed such that their common vertex is as far as possible
from the regions already covered by the balls. The radius of the ball centered
on this vertex is then computed. This dichotomic process is performed until the
entire facet is covered or one vertex is tested as invalid.
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Fig. 12. Dichotomic covering of a valid facet with Cfree balls

5.4 Redundancy Test

A disconnected subroadmap from the point of view of a configuration qv can be
reconnected by linking two of the subcomponents through qv. Before performing
such connection attempt, we test whether it may lead to a redundant path which
could be filtered. To do so, first we build the path τ = n1−qv−n2 with n1, n2 be-
longing to two distinct subcomponents. Then we test its visibility deformation into
a roadmap path thanks to the TestRedundancy algorithm (line 10 in Figure 8).
This algorithm is shown in Figure 13. Roadmap paths are iteratively extracted
and tested according to their visibility deformation relatively to τ . This process
starts with the shortest path found and stops when a visible deformation is pos-
sible (then the configuration is rejected) or when all the possible paths have been
tested (then the configuration and the edges n1−qv and n2−qv are inserted).

TestRedundancy(τ,n1, n2, G)
1 τ ′ ← BestPath(n1, n2, G)
2 While τ ′ �= ∅

3 If VisibDeformation(τ, τ ′) = True
4 Return True
5 End If
6 τ ′ ← BestPath(n1, n2, G)
7 End While
8 Return False

Fig. 13. Visibility deformation test between a path τ and a roadmap path

The VisibDeformation function (line 3 of algorithm 13) tests whether two
paths τ and τ ′ can be visibility deformed one into the other. This function is
based on the grid based computation of the visibility diagram associated to the
two paths. The deformation is only possible when there exists a path between
the (0, 0) and (1, 1) points in this diagram (c.f. section 3.3). In practice, the
whole diagram is not computed. The tests are limited to the grid cells visited
during the A∗ search of a valid path in the visibility diagram, incrementally
developed during the search. This implicit search of the diagram notably limits
the number of visibility tests to be performed (Figure 14) and highly speeds up
the redundancy test.
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Fig. 14. Visibility diagram (left) and cells explored during the visibility deformation
test (right)

6 Experimental Results

We implemented the algorithm for constructing (second-order) deformation
roadmaps in the Move3D software platform [11]. The experiments reported below
were performed on a 1.2GHz G4 PowerPC running on Mac OS-X. The perfor-
mance results summarized in Table 2 correspond to average values computed
over several runs of the algorithm.

The first experiment shown on Figure 15 compares the level of redundancy ob-
tained in function of the algorithm used: (a), a minimum tree structure obtained
with the Visibility-PRM, (b) a first-order roadmap (built without the filtering
process) and (c) a second-order deformation roadmap (PDR) that captures the
different varieties of paths while maintaining a compact structure.

b ca

Fig. 15. Comparison between three algorithms of roadmap construction. (a) Visibility-
PRM. (b), first-order and (c), second-order deformation roadmap.

The next set of experiments (Figure 16) presents the path deformation
roadmaps obtained for a 2-dof robot evolving in complex environments. The first
scene (a) requires 25 elementary cycles to capture the homotopy. Our method
builds a roadmap capturing these cycles in only 109 seconds. The second scene
(b) has a higher geometrical complexity (70 000 facets). The computing time (164
secs) reported in Table 2 shows that the algorithm can efficiently handle such
geometrically complex scenes. One can also note that the resulting 2D roadmaps
contain a very limited number of additional cycles compared to homotopy.
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a b

Fig. 16. Path Deformation Roadmaps for 2D environments: (a) a labyrinth with many
homotopy classes. (b) an indoor environment with a complex geometry.

Thethirdexperiment(Figure17) involvesanarrowpassageproblemforasquared
robotwith 3-dof (two translations and one rotation). The robot has four ways to go
through the narrow passage, depending on its orientation. Therefore the narrow
passage corresponds to four homotopy classes in the configuration space.
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Fig. 17. Path Deformation Roadmap capturing the four homotopy classes for a ro-
tating square and a narrow passage. (a) (x,y) view of the deformation roadmap, (b)
(y,θ) view of the same roadmap showing the four kinds of passages found in C, (c)
comparison with the dense roadmap obtained with a classic k-nearest PRM.

Table 1. Homotopy classes found by a k-nearest PRM for the problem of Figure 17

n classes time (s)
k 10 20 100 10 20 100

N

1000 0.1 0.2 1.2 6.4 9.3 33.2
2000 0.1 0.6 1.6 33.2 43.5 110.0
4000 0.8 1.0 2.8 246 336 455
8000 1.4 2.4 3.2 2947 3295 3819

Table 1 presents results obtained with a traditional k-nearest PRM [4] for
different couples (N, k) (with N, the number of roadmap nodes). The reported re-
sults (averaged over several runs) show that even for the densest and most redun-
dant case (N = 8000, k = 100), the homotopy is not well captured (n classes =
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3.2/4) by the k-nearest PRM. Moreover, the large size of the computed roadmap
results in a significant computing time (3819 secs) due to the amount of collision
tests required for adding new nodes and edges. Comparatively, our method cap-
tures the four homotopy classes in only 37 secs. The high speed-up comes from
the very compact size of the path deformation roadmap (only 12 nodes) which
largely compensates the additional cost of filtering the useless redundant cycles.

The last set of experiments (Figure 18) involves 6-dof robots in 3D environ-
ments. In the first case (free flying robot), the free space has only one homotopy
class. Thus, a roadmap based on homotopy would have a tree structure. The
results show that our method makes it possible to build a compact roadmap
(in 56 secs) while capturing a richer variety of paths than the homotopy. The
second scene concerns a 6-dof manipulator arm where 6 additional nodes (and
12 edges) are added to the visibility roadmap (total time of 99 secs) to repre-
sent the complexity of the space. In both cases, the number of roadmap cycles,
although limited, results into shorter paths during the query phase.

Finally, the performance results are summarized in Table 2 which also provides
a break-up of the total computing time showing the respective contributions of
the visibility tree building and the cycle addition stages.

a b

Fig. 18. Path Deformation Roadmaps for complex environments: (a) free flying robot,
(b) 6-dof manipulator arm

Table 2. Computing time of the Deformation Roadmaps

time repartition (%)
dof nodes edges cycles time (s) Vis-PRM SubRoadmap Redundancy Other

Laby 2 149 177 29 109 19 32 35 14
Indoor 2 66 83 18 164 25 20 49 6
Square 3 12 14 3 37 24 61 11 4
Helico 6 30 39 10 56 5 9 80 6
Arm 6 41 46 6 99 12 70 13 5

7 Conclusion

We have presented a general method to build compact PDR roadmaps with use-
ful cycles representative of the different varieties of free paths of the configuration
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space. The introduction of these cycles is important for obtaining higher qual-
ity solutions when postprocessing queries inside the roadmap. Our approach is
based on the notion of path deformability indicating whether or not a given path
can be easily deformed into another one. Our experiments show that the method
enables small roadmaps to reliably capture the multiple connectedness of possi-
bly complex configuration spaces. Several improvements remain for future work.
First, the method has so far been tested for free flying and articulated robots
with up to 6 dof. We need to further evaluate its performance for higher dof
articulated robots. We would also like to further investigate the link between
the varieties of free paths stored in the roadmap and the smoothing method
used to shorten the solution paths when postprocessing queries. Finally, another
improvement concerns the extension to robots with kinematically constrained
motions requiring the use of a non-linear local method.
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