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Summary. Most estimation problems in robotics are difficult because of (a) the non-
linearity in observation models; and (b) the lack of suitable probabilistic models for
the process and observation noise. In this paper we develop a set-valued approach
to estimation that overcomes both these limitations and illustrates the application to
localization of multiple, mobile sensor platforms with range sensors.

1 Introduction

Practical estimation tasks require us to deal with nonlinearities that are inherent
in process dynamics and observation models. Common solutions to deal with
such nonlinear state transition and measurement models require linearization
of at least some portion of the problem. The concern is that linearization can
lead to inconsistent error handling, removes the ability to directly represent
ambiguous confidence sets, and can not be applied when the underlying state is
unobservable.

Many techniques have been proposed to either avoid or delay linearization.
Some of the most popular in recent years are sampling-based approaches such
as Monte Carlo Localization, introduced by Fox et al. [9]. They rely on estimat-
ing a probability distribution for the system state, but instead of maintaining
a simple parameterized distribution, which may require linearization, the distri-
bution is discretely sampled to allow for arbitrary densities. Further refinements
have allowed the fusion of sampled representations with standard parameterized
ones to solve more challenging problems such as simultaneous localization and
mapping tasks [10].

The opposite approach is to delay linearization by simply storing all mea-
surement and state updates until a later time when the larger data base allows
for the use of consistency to improve the estimates. The GraphSLAM algorithm
presented by Thrun, Burgard, and Fox [4] is an example of such a technique;
after several measurements have been taken, an estimate is formed by iteratively
linearizing the state propagation and measurement equations and solving a least
squares problem to maximize agreement with measurements and problem dy-
namics. Several different variations on this theme have been used by others such
as Folkesson and Christensen [11] and Konolige [12].
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The disadvantage of such delayed measurement integration is that best
estimates are not available during data acquisition, making it impossible to
knowledgeably improve the collection process. As a compromise, Thrun et al. [4]
propose the Sparse Extended Information Filter to proactively incorporate each
measurement as it is taken while being able to explicitly manage the information
links between different entities formed through measurements and motion. The
final picture allows for intuitive identification of how features are related but
still requires linearization.

For many applications, such linearization may prove to be acceptable, but
not for our current application of localization using range-only measurements.
In the most general form of this problem, there is no sense of direction and so
any attempt to linearize a range measurement will likely result in crippling in-
consistency after further measurements and motion. Compelling sampling-based
estimation approaches to this problem have been demonstrated by Djugash,
Singh and Corke [5], but such implementations may require large numbers of
samples making them computationally unattractive.

An important evolution in the methodology of Information-type filters was
presented by Hanebeck [6]. The central idea is a nonlinear embedding, some-
times referred to as an over-parameterization, that maps the system states into
a extended state space in a way such that the measurement equations become
linear. The resulting framework lends itself to the application of the methodol-
ogy introduced by Schweppe in the field of dynamic estimation under bounded
noise [3]. Successful application of such set-based estimation techniques to static
localization tasks involving range-only measurements and relative bearing mea-
surements are demonstrated in [7]. While set-based techniques have been investi-
gated by other researchers [14,15,16,17], Hanebeck’s representation allows exact
representations in the extended state space.

We build on Hanebeck’s work and address the range-only localization problem
that is frequently encountered in robotics. First, we present techniques that allow
estimates of the actual state fromthe extended state representation. Inaddition,we
present the first incorporation of dynamics into the framework, bringing the system
closer touseful implementationonmobile robotics.The resultingfilter is simple, ro-
bust, recursive, and avoids linearization. The forms are Information-like and so the
filter behaves much like the SEIF [4] when it comes to identifying information links
between different entities and watching how these links change through motion.

In Section 2, we present notation and equations for a mobile robot system
using range-only measurements in Section 2. This work makes extensive use of
ellipsoidal calculus, which we introduce in Section 3. The nonlinear transforma-
tion framework is presented and demonstrated in Section 4 and we present new
techniques for approximate inversion of the filtered sets in Section 5. Finally, we
introduce motion in Section 6 and discuss in Section 7.

2 Problem Formulation

We consider a mobile sensor network equipped with relative-range measurement
capabilities with some capability of local sensing such as odometry or inertial
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measurements. This network consists of n standard nodes that have either un-
known or only partially known positions and m anchor nodes that have fully
known positions with respect to some global reference frame. For convenience,
we will assume these m nodes are stationary.

Expressed in the global frame, the position of the ith standard node is a
variable, x̄i = [xi yi ]T , and the position of the lth anchor node is a constant,
āl. The total state of the network is x̃ = [ x̄T

1 . . . x̄T
n ]T , and belongs to the space

S = �2n. A measurement between standard node i and standard node j has the
form:

zij = hij(x̃) + e = ‖x̄i − x̄j‖ + e (1)

while a measurement between standard node i and anchor node l has the form:

zl
i = hl

i(x̃) + e = ‖x̄i − āl‖ + e (2)

These measurements have noise e; for the purposes of this paper we assume that
this noise is bounded with constant bound ε. Thus e ∈ [−ε, ε]. These assumptions
could be relaxed to include other models of bounded noise.

In a mobile sensor network, the n standard nodes can be considered to be
attached to mobile robots. We adopt, for simplicity, a point model:

x̄i,k+1 = x̄i,k + ūi,k, i = 1, 2, . . . n (3)

where ūi is the control input for the ith mobile node at time k. The state of the
system evolves discretely, with the dynamic transition from step k to k+1 given
by (3), and a set of inter-node measurements taken at each step k:

z̃k = h̃k(x̃k) + ẽk

where h̃k is a combination of the measurement types expressed in (1) and (2).

3 Ellipsoids

Because we rely extensively on the results in [2], we now summarize their notation
and definitions. We will use x, x0 to denote the state and z to denote observations
without worrying about the notation (̄.) or (̃.) in this section.

An ellipsoid can be defined by two quantities: a vector specifying the posi-
tion of its center, and a symmetric positive semi-definite matrix that encodes
the directions and lengths of its semi-axes as the eigenvectors and eigenvalues
respectively. Given x0 ∈ �n and E ∈ Sn

+, an n-dimensional ellipsoid is defined
by the set:

εn(x0, E) =
{

x
∣∣ (x − x0)T E(x − x0) ≤ 1

}
(4)

If E is singular, then the resulting ellipsoid is degenerate and possesses di-
rections, corresponding to the eigenvectors of the zero eigenvalues, where x is
unconstrained. The center in this case is actually only a single representative
point of the affine set at the center of the ellipsoid.
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3.1 Fusion

Analogous to the fusion operation in sensor fusion, we define fusion for set valued
estimates to be the operation that takes two ellipsoids and finds an ellipsoid that
tightly bounds their intersection. The minimum-volume bounding ellipsoid can
be found using iterative algorithms such as that of [13], but, as noted there, the
complexity of this procedure is an open problem. However, the suboptimal ap-
proach taken in [2], repeated here, involves the minimization of a convex function
over a bounded interval and so is simple and fast. Given two n-dimensional el-
lipsoids, B1 = εn(x1, E1) and B2 = εn(x2, E2), a one-parameter family of fusing
ellipsoids is ελ

n(x0, E), λ ∈ [0, 1], defined by:

X = λE1 + (1 − λ)E2

k = 1 − λ(1 − λ)(x2 − x1)T E2X
−1E1(x2 − x1)

x0 = X−1(λE1x1 + (1 − λ)E2x2)

E =
1
k

X

(5)

and the fused ellipsoid is taken as the ελ
n that has minimum volume. This

amounts to either solving a bounded minimization problem over λ using the
above, or finding the zero of the derivative of the volume as in Theorem 3 of [2].
This approximate intersection is denoted by ∩̃:

εn(x0, E) ← εn(x1, E1) ∩̃ εn(x2, E2)

3.2 Propagations

We have interest in two different ellipsoid propagations, both paralleling the state
operations of our system given by (1), (2), and (3). Theorem 1 of [2] provides
the general operation that is specialized to these two special cases.

We consider first a 1-dimensional ellipsoid associated with a single measure-
ment (also seen as an interval) ε1(z, 1/ε2). If this measurement is obtained with
a linear observation model, z = H1×nx, its pre-image is the n-dimensional de-
generate ellipsoid: εn(H†z, (1/ε2)HT H). H†z can be any solution of the linear
map, but we will use H† as the pseudoinverse of H ; note that the ellipsoid is
rank 1 due to the form of its matrix. Thus there is an n − 1 dimensional affine
set of points that are consistent with this one dimensional observation.

Given an n-dimensional ellipsoid εn(x0, E), its image under the linear map
y = An×nx+bn×1 is the n-dimensional ellipsoid: εn(Ax0 + b, AEAT ). This is the
same expression encountered in propagation of Gaussian distributions in linear
systems theory.

3.3 Slicing

It can be shown that the intersection of an n-dimensional ellipsoid εn(x0, E)
with an m-dimensional (m ≤ n) affine set in �n, A = { y0 + Y c | c ∈ �m },
produces an ellipsoid εm(η, F ′), where:
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F =Y T EY

η =F †Y T E(x0 − y0)

k =1 − (x0 − y0)T E(x0 − y0) + ηT Fη

F ′ =
1
k

F

(6)

If k < 0 then the affine set and the ellipsoid do not intersect.

3.4 Projection

An ellipsoid projection finds the “shadow” of an ellipsoid in some of its com-
ponents. It can be shown that the projection of the n-dimensional ellipsoid
B = εn(x0, E) onto its first m components is given by:

P(B) = εm(x0,m, E11 − E12E
−1
22 ET

12) (7)

where x0,m are the first m components of x0, and E =
[

E11 E12
ET

12 E22

]
, with E11 as

an m-dimensional block.
Furthermore, if Y is a basis for any subspace of dimension m and Z is a basis

for its null space of dimension n−m, then the ellipsoid B = εn(x0, E) projected
onto this subspace is given by BY = εm(Y T x0, EY ), with EY given by:

EY = Y T E Y − Y T E Z (ZT E Z)−1ZT E Y (8)

The projection operation for ellipsoids is analogous to marginalization of mul-
tivariate Gaussians (see [4]).

4 Nonlinear Embedding

Hanebeck [6] introduced a novel framework involving a nonlinear embedding
that maps the system states into an extended state space in such a way that the
measurement equations become linear. The basic idea is shown in Figure 1.

S

S

M

~

f(x)
~

x
~

x*
~

Fig. 1. The state space S is extended by adding functionally dependent coordinates
of S to create the extended state space S� = S ⊕ S̃
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The extended space S� is formed by augmenting the base space S with addi-
tional dimensions. Define a smooth map f : S → S̃. Recall that x̃ denotes ele-
ments of S and let x̃� denote elements of S�. The map f defines a 2n-dimensional
smooth sub-manifold in S� with coordinates x̃:

x̃� = g(x̃) =
[

x̃
f(x̃)

]

The Jacobian of g,
∂g

∂x̃
=

[
I
∂f
∂x̃

]

is always full rank and the resulting manifold M is diffeomorphic to S. Our goal
is to choose f and transform the system equations in such a way as to make
them linear in the p-dimensional extended space S� (p > 2n). Note that we
will ultimately be interested only in those points that lie on the manifold, i.e.,
x̃� ∈ M . The procedure is illustrated with an example next.

It should be noted that we have no automatic procedure for choosing f and in-
stead rely on inspection of the system equations. However, Hanebeck [6] suggests
that general polynomial bases such as Bernstein polynomials could be useful in
this regard.

4.1 Application to Range Measurements

As an illustration, begin with the range measurement equation between two
standard nodes:

zij − e = ‖x̄i − x̄j‖
and square both sides. The left hand side represents the interval [zij − ε, zij + ε]
which, when squared using interval arithmetic, becomes [z2

ij − 2zijε + ε2, z2
ij +

2zijε + ε2]. By letting z�
ij = z2

ij + ε2 and w ∈ [−2zijε, 2zijε], the transformed
measurement equation is:

z�
ij = x̄i · x̄i + x̄j · x̄j − 2x̄i · x̄j + w

If a different bounded-noise model is used for e, such a transformation is still
possible as long as care is taken to ensure that the modified estimate and bounds
are conservative.

Notice that this equation is nonlinear in the system variables x̄i and x̄j but
is linear in the variables x̄i · x̄i, x̄j · x̄j , and x̄i · x̄j :

z�
ij = [ 1 1 −2 ]

⎡

⎣
x̄i · x̄i

x̄j · x̄j

x̄i · x̄j

⎤

⎦ + w

Applying this process to the range measurement equation between a standard
node and an anchor node leads to:

zl,�
i − āl · āl = [−2āT

l 1 ]
[

x̄i

x̄i · x̄i

]
+ w
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Accordingly, we define f so that:

f(x̃) = [. . . , x̄i · x̄i, x̄j · x̄j , x̄i · x̄j , . . .]T .

Thus S� is constructed by adding at most n+ nC2 dimensions to S, correspond-
ing to all dot product combinations of the positions of the nodes that appear in
the measurement equations. The measurement equations, after suitable modifi-
cations to the additive noise, are now linear in S� while having bounded noise.

We are not limited to range-only sensors. Indeed, the measurement equa-
tions for bearing-only sensors can also be made linear with a similar embedding
(see [7]).

4.2 Recursive Filtering

We saw that an appropriate definition of the map f allows us to write each
measurement equation at time step k in the form:

z�
k − w�

k = H�
k x̃�

k

where x̃�
k ∈ S�. By viewing the interval quantity on the left-hand side as a

1-dimensional ellipsoid, we apply the results of Section 3.2 to define Zk =
εP ((H�

k )†z�
k, (1/(w�

k)2)(H�
k )T H�

k ) as the feasibility ellipsoid in S� consistent with
this measurement.

S

S

M

~

Fig. 2. A measurement Z, transformed
into a set bounded by two hyperplanes,
defines an interesting set in the base
space S when intersected with M

S

S

M

~

X

Fig. 3. The feasibility set X ⊂ S is
found by intersecting an ellipsoid E� ⊂
S� with the manifold M

Each Zk can be seen as a pair of bounding hyperplanes constraining the pos-
sible embedded states. However, since only the values of S� lying in M have
meaning, the actual set described by Zk can be interesting, as portrayed in
Figure 2. As more measurements are included, more bounds need to be incorpo-
rated. However, rather than tracking an increasing number of hyperplanes, each
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new Zk is incorporated into an aggregate state estimate ellipsoid E�
k using the

fusion introduced in Section 3.1:

E�
k ← E�

k ∩̃ Zk

When the filtering is started, E�
k can be initialized with εp(0, 0) to reflect the

fact that nothing is known about the state. This is analogous to the initialization
of the Information form of the Kalman filter (see [4]). Unlike the case of an
extended Kalman filter, problematic estimate initialization procedures are not
necessary.

4.3 Set Inversion

After performing filtering steps, the feasibility ellipsoid E�
k contains all x̃�

k consis-
tent with measurements up to step k, but not all of these elements have physical
meaning. Only the x̃�

k ∈ M actually represent the images of states in S. This
feasible set, Xk ⊂ S is found by:

Xk = { x̃ ∈ S | g(x̃) ∈ E�
k }

The basic idea is shown in Figure 3.
This inversion can be carried out exactly using the implicit form (4) of E�

k =
εp(x0, E) together with g:

(g(x̃k) − x0)T E(g(x̃k) − x0) ≤ 1 (9)

Any x̃k satisfying this implicit nonlinear inequality belong to the true feasibility
set.

4.4 Single Robot Application

In order to demonstrate the operation of this framework, we present results
for the simulated localization of one robot using range measurements to known
anchors in Figure 4. The state space is given by a single pair x̃ = [x y ]T ∈ S = �2

and is embedded into S� by

x̃� = [x, y, x2 + y2 ]T . (10)

The only measurements are from the single standard node to one of n anchor
nodes at positions āi, i ∈ {1, . . . ,n}. The transformed measurement equation to
anchor i is given by:

((zi)2 + ε2 − āi · āi) + wi = [−2āT
i 1 ] x̃�

where zi is the measured range from the robot to the anchor, ε is the symmetric
noise bound on this measurement, and wi ∈ [−2εzi, 2εzi].
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Fig. 4. Visualization of the proposed embedding for a single robot range-only local-
ization problem along with examples of possible estimate uncertainties represented by
this formulation. In this case a closed form expression is available for the position es-
timate set. This set can take the form of an annulus or either a single or two disjoint
transformed ellipses. The linear estimate sub-space and projected tangent slice results
are discussed in Section 5.

5 Approximate Inversion

Since (9) describes the feasible set in S as a single nonlinear implicit inequality in
dim(S) variables, it may not be suitable for finding feasible sets of large systems.
We propose two methods for approximating this inversion: the first makes use
of the projection idea introduced in Section 3.4 and is provably conservative,
and the second makes use of the recognition of the embedded manifold M in
an intuitive yet not provably conservative result. In order to demonstrate the
effectiveness of these approximations, the simulation begun in Section 4.4 is
scaled up to include more standard nodes, making it impossible to meaningfully
use the exact inversion (9).

5.1 Base Projection

Working within an extended space, an ellipsoid εp(x0, E) can have its parameters
split according to terms belong to the base space and the augmentations:



178 E. Stump, B. Grocholsky, and V. Kumar

x0 =
[

x0,L

x0,N

]
E =

[
EL EC

EC
T EN

]

with L, N , and C denoting linear, nonlinear, and coupling terms, respectively.
The exact inversion would be, using (9):

Xk =

{

x̃ ∈ S
∣∣
∣
∣
∣

[
x̃ − x0,L

f(x̃) − x0,N

]T [
EL EC

EC
T EN

] [
x̃ − x0,L

f(x̃) − x0,N

]
≤ 1

}

but using ellipsoid projection gives a conservative bound on Xk. We also refer to
this base projection process as the linear estimate sub-space in the figures. The
validity of the process follows straight from the operation of projection, but a
proof of the result serves to identify potentially important conditions:

Theorem 1 (Base Projection). If EN is invertible, then Xk

⊂ ε2n(x0,L, EL − ECE−1
N ET

C ).

Proof. First define y ≡ x̃ − x0,L and q(y) ≡ f(y + x0,L) − x0,N . Then, points in
Xk must satisfy:

yT ELy ≤ 1 − 2yT ECq(y) − q(y)T ENq(y)

The ellipsoid εN (x0,L, EL − ECE−1
N ET

C), once shifted, is defined by the in-
equality:

yT (EL − ECE−1
N ET

C)y ≤ 1

and so all points of Xk belong to this ellipsoid if:

1 − 2yT ECq(y) − q(y)T EN q(y) − yT ECE−1
N ET

Cy ≤ 1

The maximum of the left hand side is found by the program:

max
y

1 −
[

y
q(y)

]T [
ECE−1

N ET
C EC

EC
T EN

] [
y

q(y)

]
(11)

Call this matrix A; its Schur complement is S = ECE−1
N ET

C − ECE−1
N ET

C = 0.
Using results from [1], A � 0 since S � 0, and so the program (11) has a finite
maximum at 1. Thus, Xk ⊂ εn(x0,L, EL − ECE−1

N ET
C). ♦

The first question to ask is whether it can be expected that EN will be full
rank. Intuition suggests that this will be true after many measurements have
been incorporated. Consider the fact that the nonlinear terms from f have only
been introduced to correspond with terms in the measurement equations. After
a full set of measurements have been taken, each nonlinear term will have shown
up at least once in the measurement equations and so information will be known
about it.

However, this intuition only makes sense in well-conditioned cases where there
are several interconnected measurement that can serve to isolate the contribu-
tions of each nonlinear term to the final estimate. If this is not the case, then



Extensive Representations and Algorithms 179

further reference to [1] tells us that the claim S � 0 =⇒ A � 0 made above
will be true if (I − ENE†

N )EC = 0.
These conditions only come about because we would like to completely ignore

the details of the nonlinear transformation when trying to approximate the true
set. If the simple tests fail, then we must take f into account, and the base
projection is only conservative if it can be shown that:

inf
y

[
y

q(y)

]T [
ECE†

NET
C EC

EC
T EN

] [
y

q(y)

]
≥ 0

over the domain in question.
If the base projection is indeed conservative, then the coordinates of the true

state must lie within it.

5.2 Tangent Slices

We now present an alternate technique that does take the contributions of the
nonlinear transformation into account when approximating the true set inver-
sion. By recognizing M as a manifold embedded into S� by g, the tangent space
of M at a point x̃� ∈ M can be found using the Jacobian of g.

Now ∂g
∂x̃ and x̃� define an affine set in S� with the same dimension as S. By re-

stricting E�
k to this set using the slicing operation of Section 3.3, an approximate

representation is found in S.
Use of this operation requires two steps: first finding a single point of M to

use, and then calculating the Jacobian at this point and slicing E�
k . The point

could be chosen by an optimization procedure that sought to find the closest
suitable point to the mean of E�

k = εp(x0, E):

min
x̃

‖g(x̃) − x0‖2

where x0 could possibly be an affine set, x0 + Null(E)λ, if E�
k has degenerate

directions.
This optimization problem has the potential to be very nasty and the effects

of choosing a non-optimal point are not known. As a simple heuristic, we have
taken x̃� = g(x0,L) as the point to linearize about.

The over- or under-estimation of the true set would seem to be intimately
related with the curvature of M , but we have no proofs regarding the quality
of this approximation, only demonstrations of its use in the following examples.
Accordingly, the true state coordinates need not lie within the tangent slice
estimate.

5.3 Multiple Robot Application

As a comparison of the set approximation techniques, we present simulation
results of an experiment with two standard nodes and three anchor nodes in
Figure 5. Both the base projection and tangent slicing approximations are com-
pared against a brute force calculation found by griding the x, y coordinates of
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both standard nodes and then checking for inclusion in E�
k by using the implicit

form (9).
The system state consists of a two position vectors x̃ = [ x̄T

1 x̄T
2 ]T =

[x1 y1 x2 y2 ]T ∈ S = �4 and the state is transformed into S� according to:

x̃� =
[
x̄1, x̄2, x̄1 · x̄1, x̄2 · x̄2, x̄1 · x̄2

]T (12)

As a representative example, the measurement between standard node 1 and
anchor i would take the form:

((zi
1)

2 + ε2 − āi · āi) + wi
1 =

[
−2āT

i 01×2 1 0 0
]

x̃�

where zi
1 is the measured range from robot 1 to the anchor, ε is the symmetric

noise bound on this measurement, and wi
1 ∈ [−2εzi

1, 2εzi
1]. Measurements to

robot 2 take a similar form.
The inter-robot measurement is:

((z1,2)2 + ε2) + w1,2 =
[
01×2 01×2 1 1 −2

]
x̃�

where z1,2 is the measured range from robot 1 to robot 2, ε is the symmetric
noise bound on this measurement, and w1,2 ∈ [−2εz1,2, 2εz1,2].

When calculating the tangent slice approximation, the Jacobian of this system
is:

Fig. 5. Two robot localization examples that illustrate the ability of the proposed
representation to capture complex structured estimate uncertainty. Note that the base
projection of the higher-dimensional uncertainty bounds a smaller estimate recoverable
from the intersection of E�

k with M .
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∂T

∂x̃
=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2x1 2y1 0 0
0 0 2x2 2y2
x2 y2 x1 y1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

This example is taken further by including more standard nodes in Figure 6.
The brute force representation of the feasible set is computationally daunting,
so we present only the approximate representations.

6 Incorporating Motion

The static examples seen so far have shown the power of the representation, but
have failed to take advantage of the dynamics of the problem. In applications,
the incorporation of motion often transforms a poorly posed problem and makes
it possible to estimate the state effectively. In [6], Hanebeck makes no use of
dynamics, and further work in [7] and [8] also deals only with static systems.
The main problem with incorporating dynamics into this framework is due to
the fact that the chosen embedding renders the measurement equations linear
but does not necessarily do so for the state update and, even worse, can make
linear dynamics become nonlinear.

However, for the problem at hand, we will show that dynamic updates can in
fact be incorporated using the fairly restrictive assumptions of a point model and
perfect input. Despite these limitations, this inclusion represents a step forward
for the theory and relaxations may be possible.

We consider a single robot once more and apply the transformation (10) to
the dynamics given by (3). By inserting (3) into (10), we derive an expression
relating the state at a given time step to the state at a previous time step:

D

⎡

⎣
x
y

x2 + y2

⎤

⎦ =

⎡

⎣
x + ux

y + uy

(x + ux)2 + (y + uy)2

⎤

⎦

=

⎡

⎣
1 0 0
0 1 0

2ux 2uy 1

⎤

⎦ x̃� +

⎡

⎣
ux

uy

u2
x + u2

y

⎤

⎦

A similar derivation is possible for the two robot case as well, using (12):

D

⎡

⎢
⎢
⎢
⎢
⎣

x̄1
x̄2

x̄1 · x̄1
x̄2 · x̄2
x̄1 · x̄2

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

2u1,x 2u1,y 0 0 1 0 0
0 0 2u2,x 2u2,y 0 1 0

u2,x u2,y u1,x u1,y 0 0 1

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

x̃� +

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

u1,x

u1,y

u2,x

u2,y

u2
1,x + u2

1,y

u2
2,x + u2

2,y

0

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦



182 E. Stump, B. Grocholsky, and V. Kumar

0 1 2 3 4 5 6

0

1

2

3

4

5

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

Landmark 1

Landmark 2

Landmark 3

x
y

Linear Estimate
Sub−Space

Projected Tangent Slice 
at Estimate Mean

Range Observations
(Relative not shown)

Fig. 5. (Continued) Two additional
range observations provide a unique es-
timate solution captured by this rep-
resentation. In this case the projected
linear subspace is unbounded.

Fig. 6. Three landmarks are sufficient
to yield a unique bounded estimate from
the linear sub-space in this network local-
ization example. The tangent slice yields
much tighter estimates.
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Fig. 7. Two solutions illustrating unique and consistent simultaneous localization and
landmark mapping through robot motion: Given an initial robot location estimate
(left), and the aid of a known landmark given no prior estimate information (right). A
27 state sparse linear filter fully captures the complex uncertainty structure. The linear
sub-space approximation is unbounded when the true uncertainty set is unbounded or
non-unique. This approximation becomes bounded in both cases once the robot has
performed motion and measurements in two distinct directions.
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This demonstrates that the process can extend to any number of point robots.
The resulting update equation now has a nonlinear coupling between the state

and input appearing in the transition matrix, making it impossible to allow
input disturbances under the current framework. If we allow for perfect input
knowledge, then each dynamic update step is performed using the propagation
results of Section 3.2 to find E�

k+1. Simulations show that this approach works
well for small time steps but may break down over larger intervals – the reasons
for this have not been fully explored.

6.1 Application to Landmark Mapping

To demonstrate the effectiveness of incorporating motion into the filtering proce-
dure, we present simulated results of an experiment with a standard node mounted
on a mobile robot moving through a system of unlocalized static nodes. Two cases
are presented in Figure 7. Global reference is provided by either giving the robot
an initial position fix or observing a known landmark. Perfect inputs are applied in
accordance with the dynamic update assumptions stated above. After the robot
has completed multiple turns, the static nodes have been mapped.

7 Conclusion

We present a novel application of set-based estimation theory that lends itself to
simultaneous localization and mapping with multiple mobile sensor platforms.
While this paper focussed on range sensors, it is easy to include other types of
sensors. The main advantage is our ability to incorporate sensors with nonlinear
observation models without any knowledge of the noise.

While our approach shows robustness to modeling uncertainties and to initial-
ization, there are two main limitations that we are currently addressing. First,
the approach, as presented, is limited to Euclidean dynamic models. We are
exploring alternative representations that will allow us to treat the dynamics
and the observation as linear processes with additive noise. Second, while our
extensive representation incorporates all relevant information in S� and makes
checking data for consistency and correspondence very easy, it is computationally
difficult to translate this information to the base space S. This is because of the
complexity of computing the intersection of the feasibility set with the manifold
M. However, because the underlying representation is algebraic, it is possible to
use symbolic computation software for polynomial algebra to delineate this set
and this is an area of ongoing investigation.

Finally, we are also addressing the control of vehicles to actively reduce the vol-
ume of the uncertainty with the set-valued representation discussed here. In [18]
we present an experimental study with multiple robots localizing static features.
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