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Summary. Error propagation on the Euclidean motion group arises in a number
of areas such as and in dead reckoning errors in mobile robot navigation and joint
errors that accumulate from the base to the distal end of manipulators. We address
error propagation in rigid-body poses in a coordinate-free way. In this paper we show
how errors propagated by convolution on the Euclidean motion group, SE(3), can be
approximated to second order using the theory of Lie algebras and Lie groups. We
then show how errors that are small (but not so small that linearization is valid) can
be propagated by a recursive formula derived here. This formula takes into account
errors to second-order, whereas prior efforts only considered the first-order case [8, 9].
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1 Introduction

In this section we review the literature on error propagation, and review the
terminology and notation used throughout the paper.

1.1 Literature Review

Murray, Li and Sastry [3], and Selig [4] presented Lie-group-theoretic notation
and terminology to the robotics community, which has now become standard
vocabulary. Chirikjian and Kyatkin [1] showed that many problems in robot
kinematics and motion planning can be formulated as the convolution of func-
tions on the Euclidean group. The representation and estimation of spatial un-
certainty has also received attention in the robotics and vision literature. Two
classic works in this area are due to Smith and Cheeseman [6] and Su and Lee
[7]. Recent work on error propagation by Smith, Drummond and Roussopoulos
[5] describes the concatenation of random variables on groups and applies this
formalism to mobile robot navigation. In all three of these works, errors are
assumed small enough that covariances can be propagated by the formula [8, 9]

Σ1∗2 = Ad(g−1
2 )Σ1AdT (g−1

2 ) + Σ2, (1)
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where Ad is the adjoint operator for SE(3). This equation essentially says that
given two ‘noisy’ frames of reference g1, g2 ∈ SE(3), each of which is a Gaussian
random variable with 6 × 6 covariance matrices1 Σ1 and Σ2, respectively, the
covariance of g1 ◦ g2 will be Σ1∗2. This approximation is very good when errors
are very small. We extend this linearized approximation to the quadratic terms
in the expansion of the matrix exponential parametrization of SE(3). Results
for SO(3) are generated in the process.

1.2 Review of Rigid-Body Motions

The Euclidean motion group, SE(3), is the semi direct product of IR3 with the
special orthogonal group, SO(3). We denote elements of SE(3) as g = (a, A) ∈
SE(3) where A ∈ SO(3) and a ∈ IR3. For any g = (a, A) and h(r, R) ∈ SE(3),
the group law is written as g ◦ h = (a + Ar, AR), and g−1 = (−AT a, AT ).
Alternately, one may represent any element of SE(3) as a 4 × 4 homogeneous
transformation matrix of the form

H(g) =

⎛
⎝

A a

0T 1

⎞
⎠ ,

in which case the group law is matrix multiplication.
For small translational (rotational) displacements from the identity along

(about) the ith coordinate axis, the homogeneous transforms representing in-
finitesimal motions look like

Hi(ε)
�
= exp(εẼi) ≈ I4×4 + εẼi

where

Ẽ1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ ; Ẽ2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ; Ẽ3 =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ;

Ẽ4 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ; Ẽ5 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ; Ẽ6 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ .

These are related to the basis elements {Ei} for so(3) as

Ẽi =

⎛
⎝

Ei 0

0T 0

⎞
⎠

when i = 1, 2, 3.
1 Exactly what is meant by a covariance for a Lie group is quantified later in the

paper.
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Large motions are also obtained by exponentiating these matrices. For exam-
ple,

exp(tẼ3) =

⎛
⎜⎜⎝

cos t − sin t 0 0
sin t cos t 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ and exp(tẼ6) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 t
0 0 0 1

⎞
⎟⎟⎠ .

More generally, it can be shown that every element of a matrix Lie group G
can be described with the exponential parametrization

g = g(x1, x2, ..., xN ) = exp

(
N∑

i=1

xiẼi

)
. (2)

This kind of relationship is common in the study of Lie groups and algebras.
One defines the ‘vee’ operator, ∨, such that

(
N∑

i=1

xiẼi

)∨

=

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
x3
...

xN

⎞
⎟⎟⎟⎟⎟⎠

The vector, x ∈ IRN , can be obtained from g ∈ G from the formula

x = (log g)∨. (3)

When integrating a function over a group in a neighborhood of the identity,
a weight w(x) is defined as

∫

G

f(g)dg =
∫

IRN

f(g(x))w(x)dx.

It may be shown that due to the nature of the exponential parameterization,
w(x) = 1 + O(‖x‖2) near the identity, and so the approximation w(x) = 1 can
be used in the first order theory. However, in the current presentation we retain
w(x) for higher order errors.

We calculate

w(x) = det

[(
g−1 ∂g

∂x1

)∨
, · · · ,

(
g−1 ∂g

∂xN

)∨]
. (4)

If the approximation g = I +X +X2/2+X3/6 is used, then to second order we
can write

w(x) = 1 − 1
2
xT Kx

for some matrix K that depends on the structure of the group. K is computed
for SO(3) and SE(3) in the Appendix.
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2 Nonparametric Second-Order Theory

Let g1, g2 ∈ SE(3) be two precise reference frames. Then g1◦g2 is the frame result-
ing from stacking one relative to the other. Now suppose that each has some un-
certainty. Let {hi} and {kj} be two sets of frames of reference that are distributed
around the identity. Let the first have N1 elements, and the second have N2. What
will the covariance of the set of N1 ·N2 frames {(g1◦g2)−1 ◦g1◦hi◦g2 ◦kj} (which
are assumed to be distributed around the identity) look like ?

A pdf, ρ, on a Lie group G is said to have mean at the identity if the function

C(g) =
∫

G

‖[log(g−1 ◦ h)]∨‖2ρ(h)dh

is minimized at g = e. For this kind of pdf, the covariance is defined as

Σ =
∫

G

log(g)∨[log(g)∨]T ρ(g)dg. (5)

A similar expression can be defined for discrete cloud of frames, which is equiv-
alent to replacing ρ(g) with a weighted sum of Dirac delta functions.

Let ρi(g) be a unimodal pdf with mean at the identity and which has a
preponderance of its mass concentrated in a unit ball around the identity (where
distance from the identity is measured as ‖(log g)∨‖). Then ρi(g−1

i ◦ g) will be a
distribution with the same shape centered at gi. In general, the convolution of
two pdfs is defined as

(f1 ∗ f2)(g) =
∫

G

f1(h)f2(h−1 ◦ g)dh,

and in particular if we make the change of variables k = g−1
1 ◦ h, then

ρ1(g−1
1 ◦ g) ∗ ρ2(g−1

2 ◦ g) =
∫

G

ρ1(k)ρ2(g−1
2 ◦ k−1 ◦ g−1

1 ◦ g)dk.

Making the change of variables g = g1 ◦ g2 ◦ q, where q is a relatively small
displacement measured from the identity, the above can be written as

ρ1∗2(g1 ◦ g2 ◦ q) =
∫

G

ρ1(k)ρ2(g−1
2 ◦ k−1 ◦ g2 ◦ q)dk. (6)

The essence of this paper is the efficient approximation of covariances associated
with (6) when those of ρ1 and ρ2 are known. This problem reduces to the efficient
approximation of

Σ1∗2 =
∫

G

∫

G

log(q)∨[log(q)∨]T ρ1(k)ρ2(g−1
2 ◦ k−1 ◦ g2 ◦ q)dkdq. (7)

In many practical situations, discrete data are sampled from ρ1 and ρ2 rather
than having complete knowledge of the distributions themselves. Therefore, sam-
pled covariances can be computed by making the following substitutions:
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ρ1(g) =
N1∑
i=1

αiΔ(h−1
i ◦ g) (8)

and

ρ2(g) =
N2∑
j=1

βjΔ(k−1
j ◦ g) (9)

where
N1∑
i=1

αi =
N2∑
j=1

βj = 1.

Here Δ(g) is the Dirac delta function for the group G, which has the properties
∫

G

f(g)Δ(h−1 ◦ g)dg = f(h) and Δ(h−1 ◦ g) = Δ(g−1 ◦ h).

Using these properties, if we substitute (8) into (5), the result is

Σ1 =
∫

G

log(g)∨[log(g)∨]T
N1∑
i=1

αiΔ(h−1
i ◦ g)dg =

N1∑
i=1

αi log(hi)∨[log(hi)∨]T

(10)
Substitution of the sampled ρ1 into (7) yields

Σ1∗2 =
N1∑
i=1

αi

∫

G

log(q)∨[log(q)∨]T ρ2(g−1
2 ◦ h−1

i ◦ g2 ◦ q)dq. (11)

Similarly, substitution of the sampled ρ2 into the above equation kills the integral
and substitutes values of q for which g−1

2 ◦ h−1
i ◦ g2 ◦ q = kj . This yields

Σ1∗2 =
N1∑
i=1

N2∑
j=1

αiβj log(g−1
2 ◦ hi ◦ g2 ◦ kj)∨[log(g−1

2 ◦ hi ◦ g2 ◦ kj)∨]T . (12)

While this equation is exact, it has the drawback of requiring O(N1 · N2)
arithmetic operations. In the first-order theory of error propagation, we made
the approximation

log(k−1 ◦ q) = X − Y,

or equivalently
[log(k−1 ◦ q)]∨ = x − y,

where k = expY and q = exp X are elements of the Lie group SE(3). This
decouples the summations and makes the computation O(N1 + N2). However,
the first-order theory breaks down for large errors. Therefore, we explore here
a second-order theory that has the benefits of greater accuracy, while retaining
good computational performance.

In the second-order theory of error propagation on Lie groups (and SE(3) in
particular), we now make the approximation
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log(k−1 ◦ q) = X − Y +
1
2
[X, Y ],

or equivalently

[log(k−1 ◦ q)]∨ = x − y +
1
2
ad(x)y. (13)

Interestingly, terms such as X2 and Y 2 do not appear in the approximation (13).
Here [·, ·] denotes the Lie bracket, and

[X, Y ] =
∑
i,j,k

Ck
ijxiyjẼk,

which means that the kth component of [X, Y ]∨ will be of the form
∑

i,j Ck
ijxiyj

which is a weighted product of elements from x and y. We therefore write

[X, Y ]∨ = x ∧ y = ad(X)y.

ad(X) should not be confused with Ad(g), which is defined by Ad(g)x =
(gXg−1)∨. The relationship between these two is Ad(exp X) = exp(ad(X)).
See the Appendix for a more complete review.

In addition to the approximation in (13) we use two additional properties of
the log function:

[log(k−1)]∨ = −[log(k)]∨ (14)

and
[log(g ◦ h ◦ g−1)]∨ = Ad(g)[log(h)]∨. (15)

Using (13), (14) and (15), then to second order,

log(g−1
2 ◦ hi ◦ g2 ◦ kj)∨ = Ad(g−1

2 )yi + Bizj

where yi = (log hi)∨, zj = (log kj)∨, and Bi = B(Ad(g−1
2 )yi) where

B(x) = I +
1
2
ad(x).

Note also that B(y)y = y because [Y, Y ] = 0, and therefore [B(y)]−1y = y as
well. Substitution into the formula (12) for Σ1∗2 then yields

Σ1∗2 =
N1∑
i=1

N2∑
j=1

αiβj(Bizj + Ayi)(Bizj + Ayi)T

where A = Ad(g−1
2 ).

Assuming that the sampled distributions are centered around the identity (so
that cross terms sum to zero), allows the summations over i and j to decouple.
The result is written as

Σ1∗2 = AΣ1A
T +

N1∑
i=1

αiBiΣ2B
T
i (16)

In practice, αi = 1/N1 and βj = 1/N2.
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Note, in the first order theory we approximated Bi = I, and the above reduced
to

Σ1∗2 = Adg−1
2

Σ1AdT
g−1
2

+ Σ2.

3 Numerical Examples

Evaluating the robustness of the first-order (1) and the second-order (16) co-
variance propagation formula over a wide range of kinematic errors is essential
to understand effectiveness of these formulas. In this section, we test these two
covariance propagation formulas with concrete numerical examples.

Consider a spatial serial manipulator, PUMA 560. The link-frame assignments
of PUMA 560 for D-H parameters is the same as those given [2]. Table 1 lists
the D-H parameters of PUMA 560, where a2 = 431.8 mm, a3 = 20.32 mm,
d3 = 124.46 mm, and d4 = 431.8 mm. The solution of forward kinematics is the
homogeneous transformations of the relative displacements from one D-H frame
to another multiplied sequentially.

In order to test these covariance propagation formulas, we first need to create
some kinematic errors. Since joint angles are the only variables of the PUMA
560, we assume that errors exist only in these joint angles. We generated errors
by deviating each joint angle from its ideal value with uniform random absolute
errors of ±ε. Therefore, each joint angle was sampled at three values: θi − ε,
θi, θi + ε. This generates n = 36 different frames of references {gi

ee} that are
clustered around desired gee. Here gee denotes the position and orientation of
the distal end of the manipulator relative to the base in the form of homogeneous
transformation matrix.

Three different methods for computing the same error covariances for the
whole manipulator are computed. The first is to apply brute force enumeration,
which gives the actual covariance of the whole manipulator:

Σ =
1
n

n∑
i=1

xixT
i (17)

where xi = [log(g−1 ◦ gi)]∨, and the formula (17) is used to all the 36 differ-
ent frames of references {gi

ee}. The second method is to apply the first-order
propagation formula (1). The third is to apply the second-order propagation
formula (16). For the covariance propagation methods, we only need to find the
covariance of each individual link. Then the covariance of the whole manipulator
can be recursively calculated using the corresponding propagation formula. In
our case, all the individual links have the same covariance since we assumed the
same kinematic errors at each joint angle.

In order to quantify the robustness of the two covariance approximation meth-
ods, we define a measure of deviation of results between the first/second order
formula and the actual covariance using the Hilbert-Schmidt (Frobenius) norm
as
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Table 1. DH PARAMETERS of PUMA 560

i αi−1 ai−1 di θi

1 0 0 0 θ1

2 −90o 0 0 θ2

3 0 a2 d3 θ3

4 −90o a3 d4 θ4

5 90o 0 0 θ5

6 −90o 0 0 θ6

deviation =
‖Σprop − Σactual‖

‖Σactual‖
, (18)

where Σprop is the covariance of the whole manipulator calculated using either
the first-order (1) or the second-order (16) propagation formula, Σactual is the
actual covariance of the whole manipulator calculated using (17), and ‖·‖ denotes
the Hilbert-Schmidt (Frobenius) norm.

With all the above information, we now can conduct the specific computation
and analysis. Our numerical simulations have showed that different configura-
tions of the manipulator will not influence the end-effector covariances too much.
Here the ideal joint angles from θ1 to θ6 were taken as [0, π/2, −π/2, 0, 0, π/2].
The joint angle errors ε were taken from 0.1 rad to 0.6 rad. The covariances of the
whole manipulator corresponding to these kinematic errors were then calculated
through the three aforementioned methods. The results of the first-order and
second-order propagation formula were graphed in Fig. 1 in terms of deviation
defined by Eq. (18). It was shown that the second-order propagation formula
makes significant improvements in terms of accuracy than that of the first-order
formula. The second-order propagation theory is much more robust than the
first-order formula over a wide range of kinematic errors. These two methods
both work well for small errors, and deviate from the actual value more and
more as the errors become large. However, the deviation of the first-order for-
mula grows rapidly and breaks down while the second-order propagation method
still retains a reasonable value.

To give the readers a sense of what these covariances look like, we listed the
values of the covariance of the whole manipulator for the joint angle error ε = 0.3
rad below.

The ideal pose of the end effector can be found easily via forward kinematics
to be

gee =

⎛
⎜⎜⎝

0.0000 −1.0000 0 0.0203
−1.0000 −0.0000 0 0.1245

0 0 −1.0000 −0.8636
0 0 0 1.0000

⎞
⎟⎟⎠ .

The actual covariance of the whole manipulator calculated using equations
(17) is
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Fig. 1. The Deviation of the First and Second-order Propagation Methods

Σactual =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.1748 0.0000 0.0000 0.0000 −0.0755 −0.0024
0.0000 0.0078 0.0000 0.0034 −0.0000 0.0003
0.0000 0.0000 0.1747 0.0012 −0.0072 −0.0000
0.0000 0.0034 0.0012 0.0025 −0.0001 0.0001

−0.0755 −0.0000 −0.0072 −0.0001 0.0546 0.0015
−0.0024 0.0003 −0.0000 0.0001 0.0015 0.0011

⎞
⎟⎟⎟⎟⎟⎟⎠

,

the covariance using the first-order propagation formula (1) is

Σprop, 1st =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.1800 0.0000 0 0.0000 −0.0777 −0.0024
0.0000 0.0000 0 0.0000 −0.0000 −0.0000

0 0 0.1800 0.0012 −0.0075 0
0.0000 0.0000 0.0012 0.0000 −0.0002 −0.0000

−0.0777 −0.0000 −0.0075 −0.0002 0.0569 0.0016
−0.0024 −0.0000 0 −0.0000 0.0016 0.0000

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and the covariance using the second-order propagation formula (16) is

Σprop, 2nd =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.1765 0.0000 0.0000 0.0000 −0.0762 −0.0024
0.0000 0.0079 0.0000 0.0034 −0.0000 0.0003
0.0000 0.0000 0.1765 0.0012 −0.0072 0.0000
0.0000 0.0034 0.0012 0.0025 −0.0001 0.0001

−0.0762 −0.0000 −0.0072 −0.0001 0.0551 0.0015
−0.0024 0.0003 0.0000 0.0001 0.0015 0.0011

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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where the covariance of one link is

Σone−link =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.0600 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

4 Conclusions

In this paper, first-order kinematic error propagation formulas are modified to in-
clude second-order effects. This extends the usefulness of these formulas to errors
that are not necessarily small. In fact, in the example to which the methodology
is applied, errors in orientation can be as large as a radian or more and the
second-order formula appears to capture the error well. The second-order prop-
agation formula makes significant improvements in terms of accuracy than that
of the first-order formula. The second-order propagation theory is much more
robust than the first-order formula over a wide range of kinematic errors.
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A Appendix

A.1 Background

Given g ∈ SE(3) of the form,

g =
(

R t
0T 1

)

and X ∈ se(3) of the form

X =
(

Ω v
0T 0

)
,

if

x = (X)∨ =
(

ω
v

)
,

then Ad(g) is defined by the expression

(gXg−1)∨ = Ad(g)x

and explicitly

Ad(g) =
(

R 0
TR R

)
. (19)

The matrix T is skew-symmetric, and vect(T ) = t.
Similarly, ad(X) (which can also be written as ad(x)), is defined by

[X, Y ]∨ = ad(X)y,

where [X, Y ] = XY − Y X is the Lie bracket. Explicitly,

ad(X) =
(

Ω 0
V Ω

)
(20)

where the matrix V is skew-symmetric, and vect(V ) = v.

A.2 Second Order Approximation of Volume Weighting Function
for SO(3) and SE(3)

Let g be an element of the matrix Lie group G, and X be an arbitrary element of
the associated Lie algebra, G. Let g = expX . Then we can truncate the Taylor
series expansion for g and g−1 as:

g = I +X +X2/2+X3/6+O(X4) and g−1 = I −X +X2/2−X3/6+O(X4).

If X =
∑

i xiEi, this means that

∂g

∂xi
= Ei +

1
2
(EiX + XEi) +

1
6
(EiX

2 + XEiX + X2Ei) + O(X3).
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Therefore,

g−1 ∂g

∂xi
= Ei +

1
2
[Ei, X ] − 1

3
XEiX +

1
6
(EiX

2 + X2Ei) + O(X3).

Taking the ∨ of both sides yields the columns of the Jacobian matrix, the deter-
minant of which provides the desired weighting function. Note that (Ei)∨ = ei

and ([Ei, X ])∨ = −([X, Ei])∨ = −ad(X)ei, and so we can write the ith column
as:

(
g−1 ∂g

∂xi

)∨
= ei − 1

2
ad(X)ei − 1

3
(XEiX)∨ +

1
6
(EiX

2 + X2Ei)∨. (21)

If we define,
J1(x) = [(XE1X)∨, (XE2X)∨, (XE3X)∨]

and

J2(x) = [(E1X
2 + X2E1)∨, (E2X

2 + X2E2)∨, (E3X
2 + X2E3)∨],

then to second order,

J(x) = I − 1
2
ad(X) − 1

3
J1(x) +

1
6
J2(x). (22)

Details for SO(3)

In the case of SO(3),

X =

⎛
⎝

0 −x3 x2
x3 0 −x1

−x2 x1 0

⎞
⎠

and ad(X) = X . Direct calculation shows that the matrix J
so(3)
1 can be written

as

J
so(3)
1 (x) = −

⎛
⎝

x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3

⎞
⎠

Similarly, for J
so(3)
2 one finds

J
so(3)
2 (x) = −

⎛
⎝

2x2
1 + x2

2 + x2
3 x1x2 x1x3

x1x2 x2
1 + 2x2

2 + x2
3 x2x3

x1x3 x2x3 x2
1 + x2

2 + 2x2
3

⎞
⎠

Now, to second order, the full Jacobian is

Jso(3)(x) = I − 1
2
X − 1

3
J

so(3)
1 (x) +

1
6
J

so(3)
2 (x) = I − 1

2
X +

1
6
X2,
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where of course

X2 =

⎛
⎝

−x2
2 − x2

3 x1x2 x1x3
x1x2 −x2

1 − x2
3 x2x3

x1x3 x2x3 −x2
1 − x2

2

⎞
⎠

The second-order approximation of the determinant of Jso(3)(x) is then

wso(3)(x) = det Jso(3)(x) ≈ det(I− 1
2
X)·det(I+

1
6
X2) ≈ (1+

1
4
‖x‖2)(1− 1

3
‖x‖2).

The reason why this is justified is that all terms in the cofactor expansion of
the det depend on X2 will be of higher than second order, except those on the
diagonal. This is due to the fact that second-order terms here will multiply the
diagonal entries of the identity matrix yielding second-order terms.

Finally, this means that to second order,

wso(3)(x) = 1 − 1
2
xT Kx where K =

1
6
I (23)

Details for SE(3)

It is convenient to write an arbitrary element of se(3) as

X =
(

Ω v
0T 0

)

where Ω is an arbitrary element of so(3) and v is an arbitrary element of IR3.
In this case,

ad(X) =
(

Ω 0
V Ω

)

where (V )∨ = v.
Referring back to (21), we can compute each term directly to find:

(XEiX)∨ =
(

(ΩEiΩ)∨

ΩEiv

)

for rotational components (i = 1, 2, 3) and

(XEiX)∨ = 0

for transitional components (i = 4, 5, 6). This means that

J
se(3)
1 (ω,v) =

(
J

so(3)
1 (ω) 0

ω∧ (I ∧ v) 0

)
.

Similarly,

(EiX
2 + X2Ei)∨ =

(
(EiΩ

2 + Ω2Ei)∨

EiΩv

)
.
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for rotational components (i = 1, 2, 3) and

(EiX
2 + X2Ei)∨ =

(
0

Ω2ei

)
.

for transitional components (i = 4, 5, 6) and

J
se(3)
2 (ω,v) =

(
J

so(3)
2 (ω) 0
(Ωv)∧ Ω2

)
.

Substituting into (22) and taking the determinant,

detJse(3)(ω,v) = | detJso(3)(ω)|2

This means that to second order,

wse(3)(x) = 1 − 1
2
xT Kx where K =

( 1
3I 0
0 0

)
. (24)
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