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Foreword

By the dawn of the new millennium, robotics has undergone a major transfor-
mation in scope and dimensions. This expansion has been brought about by
the maturity of the field and the advances in its related technologies. From a
largely dominant industrial focus, robotics has been rapidly expanding into the
challenges of the human world. The new generation of robots is expected to
safely and dependably co-habitat with humans in homes, workplaces, and com-
munities, providing support in services, entertainment, education, healthcare,
manufacturing, and assistance.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neuro-
sciences, virtual prototyping, animation, surgery, and sensor networks among
others. In return, the challenges of the new emerging areas are proving an abun-
dant source of stimulation and insights for the field of robotics. It is indeed at
the intersection of disciplines that the most striking advances happen.

The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to
bring, in a timely fashion, the latest advances and developments in robotics on
the basis of their significance and quality. It is our hope that the wider dissemina-
tion of research developments will stimulate more exchanges and collaborations
among the research community and contribute to further advancement of this
rapidly growing field.

This volume is the outcome of the seventh edition of the biennial Workshop
Algorithmic Foundations of Robotics (WAFR). Edited by S. Akella, N.M. Am-
ato, W.H. Huang, and B. Mishra, the book offers a collection of a broad range
of topics in advanced robotics. The contents of these contributions represent a
cross-section of the current state of research from one particular aspect: algo-
rithms, and how they reflect on the theoretical basis of subsequent developments.
Validation of algorithms, design concepts, or techniques is the common thread
running through this focused collection.



VIII Foreword

Rich by topics and authoritative contributors, WAFR culminates with this
unique reference on the current developments and new directions in the field of
algorithmic foundations. A fine addition to the series!

Naples, Italy Bruno Siciliano
April 2008 STAR Editor



Preface

Algorithms are a fundamental component of robotic systems: they control or
reason about motion and perception in the physical world. They receive input
from noisy sensors, consider geometric and physical constraints, and operate
on the world through imprecise actuators. The design and analysis of robot
algorithms therefore raises a unique combination of questions in control theory,
computational and differential geometry, and computer science.

The Workshop on the Algorithmic Foundations of Robotics (WAFR) is a
multi-disciplinary single-track workshop with submitted papers and invited talks
on advances on algorithmic problems in robotics. It has been held every other
year since 1994 and has an established reputation as one of the most (if not the
most) important venues for presenting algorithmic work related to robotics.

As you will see, the topics of interest in WAFR are very broad since the focus
is on algorithm development and analysis rather than on specific problems or ap-
plications. Increasingly, robotics algorithms are finding use in areas far beyond
the traditional scope of robots. One of the most important aspects of WAFR
is its informal atmosphere which allows a frank exchange of new, previously
unpublished ideas. In particular, WAFR has been an occasion for graduate stu-
dents to meet and interact with more senior researchers who many times are not
accessible to students at the larger robotics conferences.

The seventh WAFR was held July 16–18, 2006, in New York City at the
Tribeca Grand Hotel in lower Manhattan.WAFR 2006 had a record number of
submissions and a record attendance with 106 registrants, just over 50 students.
In addition to the 32 contributed papers contained in this volume, the workshop
featured six invited speakers, including both researchers who defined the field
and who are today defining the frontiers of the field – in several cases the same
people: James Gimzewski (UCLA), Jessica K. Hodgins (CMU), Jean-Claude
Latombe (Stanford), Tomás Lozano-Pérez (MIT), Jacob Schwartz (NYU), and
Sebastian Thrun (Stanford).

WAFR 2006 had a very strong program of 32 contributed technical papers.
These papers were selected from 62 submissions by a rigorous evaluation process,
with each submission being reviewed by at least 3 members of the program
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committee. The authors of selected papers were invited to submit expanded
versions of their WAFR 2006 papers to a special issue of the International Journal
of Robotics Research.

We are extremely grateful to the program committee for their careful and in-
sightful reviews. The program committee members were: O. Burchan Bayazit, An-
tonio Bicchi, Greg Chirikjian, Mike Erdmann, Dan Halperin, Hirohisa Hirukawa,
Seth Hutchinson, Lydia Kavraki, James Kuffner, Vijay Kumar, Jean-Paul Lau-
mond, Steve LaValle, Ming Lin, Yoshi Nakamura, Dinesh Pai, Elon Rimon, Jack
Snoeyink, Dezhen Song, Frank van der Stappen, and Gaurav Sukhatme.

This meeting would not have been possible without the dedicated work and
assistance of many individuals and organizations. We have many thanks to give:
to Kay Jones from Texas A&M for overall support and logistics; to the student
volunteers from Rensselaer and from Texas A&M for their diligent work; to
our institutions (NYU, Rensselaer, and Texas A&M) for their support; to the
National Science Foundation for the student travel grants that provided support
to 38 students; to Microsoft for sponsoring the banquet cruise; and, of course,
to the WAFR steering committee for their advice and suggestions.

Thank you all for making WAFR 2006 a WAFR to remember!

Srinivas Akella
Nancy M. Amato
Wesley H. Huang

Bud Mishra
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Quantitative Analysis of Nearest-Neighbors
Search in High-Dimensional Sampling-Based
Motion Planning

Erion Plaku and Lydia E. Kavraki

Department of Computer Science, Rice University
{plakue,kavraki}@cs.rice.edu

Abstract. We quantitatively analyze the performance of exact and approximate
nearest-neighbors algorithms on increasingly high-dimensional problems in the context
of sampling-based motion planning. We study the impact of the dimension, number
of samples, distance metrics, and sampling schemes on the efficiency and accuracy
of nearest-neighbors algorithms. Efficiency measures computation time and accuracy
indicates similarity between exact and approximate nearest neighbors.

Our analysis indicates that after a critical dimension, which varies between 15 and
30, exact nearest-neighbors algorithms examine almost all the samples. As a result,
exact nearest-neighbors algorithms become impractical for sampling-based motion
planners when a considerably large number of samples needs to be generated. The im-
practicality of exact nearest-neighbors algorithms motivates the use of approximate al-
gorithms, which trade off accuracy for efficiency. We propose a simple algorithm, termed
Distance-based Projection onto Euclidean Space (DPES), which computes approxi-
mate nearest neighbors by using a distance-based projection of high-dimensional met-
ric spaces onto low-dimensional Euclidean spaces. Our results indicate DPES achieves
high efficiency and only a negligible loss in accuracy.

1 Introduction

Research in motion planning has in recent years focused on sampling-based algo-
rithms [1,5,9,13,14,17,20,22] for solving problems involving multiple and highly
complex robots. Such algorithms rely on an efficient sampling of the configura-
tion space and compute nearest neighbors for the sampled points. In general, the
k nearest neighbors of a point in a data set are defined as the k closest points
in the data set according to a distance metric.

As research in motion planning progressively addresses problems of unprece-
dented complexity, nearest-neighbors computations based on arbitrary distance
metrics and large high-dimensional data sets become increasingly challenging.
Researchers have developed many nearest-neighbors algorithms, such as the kd-
tree, R-tree, X-tree, M-tree, VP-tree, Gnat, iDistance, surveyed in [7, 10, 11],
and others [3]. Analysis has shown that for certain distance metrics and data
distributions, the computational efficiency of such algorithms decreases as the
dimension increases [4,6,12,18,23]. As summarized in [15], although the nearest

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 3–18, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



4 E. Plaku and L.E. Kavraki

neighbor of a point according to L2 from an n-point d-dimensional data set can
be computed in O(dO(1) log n) time, the associated nO(d) space requirement is
impractical. Reducing the space requirement to what is practical, i.e., O(dn),
increases the query time to min(2O(d), dn). In fact, after a critical dimension,
the brute-force linear method, which examines the entire data set, is computa-
tionally faster than other exact nearest-neighbors algorithms. The work in [23]
shows 610 as the theoretical bound on the critical dimension for L2 and uni-
formly distributed points in [0, 1]d. The experiments in [23] however indicate 10
as the critical dimension, a much lower estimate than the theoretical bound.
In [4, 12], the critical dimension is estimated between 10–15 for Lp and several
synthetic and image data sets.

Another viable approach for nearest-neighbors computations is to use ap-
proximate algorithms which trade off accuracy for efficiency [2,19,21,10], where
accuracy indicates similarity between exact and approximate nearest neighbors.
As summarized in [15], in the case of L2, approximate nearest neighbors can be
computed probabilistically in dn1/1+ε time and O(dn) space or deterministically
in (d log n/ε)O(1) time and n1/εO(1)

space. Such algorithms gain efficiency by
projecting the data set onto low-dimensional spaces and achieve high accuracy
when the projection results in low distortion of distances. The computational
advantages of approximate nearest-neighbors algorithms are more evident when
the dimension d of the data set is high. The problem however remains chal-
lenging for general metrics. As summarized in [16], any n-point metric space
can be projected onto R

O(log2 n) with only O(log n) distortion. However, solv-
ing high-dimensional motion planning problems requires generating millions of
samples, which makes O(log2 n) impractical. By increasing the distortion to
O(n2/d log3/2 n), and thus reducing the accuracy, any n-point d-dimensional
metric space could be projected onto R

d. Therefore, the efficiency or accuracy
of approximate nearest-neighbors algorithms is typically reduced when general
metrics are used instead of L2.

The analysis of nearest-neighbors algorithms generally assume a uniform dis-
tribution of points and the use of L2. In motion planning, the distribution is
impacted by the sampling scheme. Samples satisfy certain criteria, such as repre-
senting collision-free configurations, and, consequently, the distribution is usually
non-uniform. Furthermore, distances between configurations are not necessarily
defined by L2, but instead attempt to capture the success of the local planner.
Motion planners therefore exhibit a degree of flexibility which can be exploited to
compute approximate instead of exact nearest neighbors. Research in [22] shows
that in certain high-dimensional problems using random neighbors actually im-
proves the performance of motion planners. Therefore, an understanding of the
impact of these factors on the efficiency and accuracy of nearest-neighbors algo-
rithms employed by motion planners could provide valuable insight in addressing
high-dimensional motion planning problems.

In this work, we quantitatively analyze exact and approximate nearest-
neighbors algorithms in the context of high-dimensional sampling-based mo-
tion planning. We focus on roadmap-based algorithms, such as the Probabilistic
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RoadMap (PRM) method with uniform [17], bridge [13], Gaussian [5], and ob-
stacle [1] sampling, and tree-based algorithms, such as the Rapidly-exploring
Random Tree (RRT) [20] and the Expansive-Spaces Tree (EST) [14].

We address the following questions: (i) under what conditions, if any, should
motion planners use the brute-force linear method instead of other exact nearest-
neighbors algorithms? (ii) do approximate nearest-neighbors algorithms compute
more efficiently nearest neighbors that are similar to exact nearest neighbors
on high-dimensional motion planning problems? We study the impact of the
dimension, number of samples, distance metrics, and sampling schemes on the
efficiency and accuracy of nearest-neighbors algorithms.

Our analysis indicates that after a critical dimension the brute-force linear
method is computationally more efficient than other exact nearest-neighbors
algorithms. The critical dimension however depends on the number of samples,
distance metric, and sampling scheme. We present results that quantify these
dependencies.

Motivated by the impracticality of exact nearest-neighbors algorithms, we
propose the use of approximate algorithms for the computation of neighbors in
high-dimensional motion planning problems. In this work, we develop a sim-
ple algorithm, termed Distance-based Projection onto Euclidean Space (DPES),
which computes approximate nearest neighbors by projecting high-dimensional
metric spaces onto low-dimensional Euclidean spaces. The projection is based
on distances between a set of selected points and points in the data set. Our
experiments indicate DPES achieves high computational efficiency and only a
negligible loss in accuracy.

The rest of the paper is organized as follows. In Sect. 2 we describe the
methodology we use in our analysis and the DPES algorithm. In Sect. 3 we
describe the experimental setup. In Sect. 4 we present the results of our analysis
of nearest-neighbors algorithms. We conclude in Sect. 5 with a discussion.

2 Methods

In this section, we describe the nearest-neighbors algorithms we use in this paper
including DPES. We also outline the motion planners and distance metrics we
use in this study. We denote the data set, number of nearest neighbors, and
distance metric by S, k, and ρ : S × S → R

≥0, respectively.

2.1 Exact k Nearest-Neighbors Algorithms

We define the k nearest neighbors (kNN) of a point si ∈ S, denoted by
NNS(si, k), as the k closest points to si from S − {si} according to ρ.

Linear. This is a brute-force approach which resolves NNS(si, k) by computing
the distance from si to each point in S. The Linear method provides the basis
for the comparison with other more sophisticated kNN algorithms.
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Gnat. Gnat [7] constructs a tree recursively by partitioning S into smaller
sets and associating each set with a branch in the tree. Gnat then uses the
triangle inequality to prune certain branches of the tree in order to compute
kNN more efficiently. We choose Gnat in our analysis, since the results in [7] and
our experiments in the context of motion planning with several kNN algorithms,
such as kd-tree, M-tree, VP-tree, [3], etc., indicate Gnat to be more efficient
especially on large data sets and metric spaces.

2.2 Approximate k Nearest-Neighbors Algorithms

We define approximate k nearest neighbors (kANN) of a point si ∈ S, denoted
by ANNS(si, k), as a subset of S−{si} of cardinality k that according to certain
measures is similar to NNS(si, k).
Random. This method selects S′ ⊂ S uniformly at random, |S′| � k, and
computes ANNS(si, k) as NNS′(si, k). Random provides a basis for evaluating
the quality of other kANN algorithms.
Distance-based Projection onto Euclidean Space (DPES). Our kANN
algorithm is based on projecting each point si ∈ S to a point v(si) ∈ R

m, for
some fixed m > 0. We then use L2 to define distances between projected points
and compute ANNS(si, k) as

ANNS(si, k) = {s′ : v(s′) ∈ NNV (S)(v(si), k)}, V (S) = {v(si) : si ∈ S}.

We thus compute ANNS(si, k) according to the distance metric ρ by comput-
ing NNV (S)(v(si), k) according to L2. Any kNN data structure A can be used
to compute NNV (S)(v(si), k). DPES supports dynamic addition and removal
of points. When a point s is added to or removed from S, the corresponding
projection v(s) is added to or removed from A, respectively.

We obtain the projection by selecting m pivots {p1, p2, · · · , pm} ⊂ S and
setting each v(si) ∈ R

m to v(si)[j] = ρ(si, pj), 1 ≤ j ≤ m. We select p1 uniformly
at random in S and each pj , 2 ≤ j ≤ m, as the point in S that maximizes
minj−1

i=1 ρ(pi, pj). The objective is to select pivots that preserve relative distances
between points in S when projected onto R

m, e.g., projections of points in S
that are close according to ρ should be close according to L2.

DPES has certain computational advantages. The projection of S onto R
m

greatly improves the efficiency, since, as shown in Sect. 4.2, typically fewer dis-
tance evaluations are necessary for computing nearest neighbors. In addition,
evaluating L2 is more efficient than evaluating distance metrics commonly used
in motion planning, such as those in Sect. 2.3.
Quality Evaluation. We determine the quality of ANNS(si, k) by using
two common measures based on distances between points in ANNS(si, k) and
NNS(si, k). Similar to [10], we use the ratio of false dismissals:

rfdε =
1
k

∑

s∈ANNS(si,k)

{
1, ρ(s, si) > (1 + ε)maxs′∈NNS(si,k) ρ(si, s

′),
0, otherwise.
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The rfdε error, ε ≥ 0, indicates the fraction of points in ANNS(si, k) that are
(1 + ε)-times farther away from the k-th nearest neighbor of si. Note however
that some s′, s′′ ∈ ANNS(si, k) could contribute the same value to rfdε even
when ρ(s′, si) � ρ(s′′, si). Thus, two different sets could have the same rfdε

value even when points in one set are farther away from si than points in the
other set. Therefore, as in [10], we also use the ratio of distance errors:

rde = 1−
∑

s∈NNS(si,k)ρ(s, si)/
∑

s∈ANNS(si,k)ρ(s, si).

The range of rfdε and rde is [0, 1] and smaller values indicate high quality.

2.3 Sampling-Based Motion Planning and Distance Metrics

In this study, we use roadmap-based algorithms, such as PRM with uniform
(PRMu) [17], bridge (PRMb) [13], Gaussian (PRMg) [5], and obstacle (PRMo) [1] sam-
pling, and tree-based algorithms, such as bi-directional RRT [20] and EST [14].
We follow standard implementations as in [22, 9]. We consider problems with
multiple robots moving freely in 2D or 3D workspaces with static obstacles. We
gradually increase the number of robots until we reach the critical dimension.
We create data sets using configurations of the roadmap in PRM and the initial
tree in RRT and EST.

In 2D workspaces, we use ρSE(2), the geodesic distance in SE(2) [8], as the dis-
tance between any two single robot configurations a and b, i.e., length of shortest
path in SE(2) from a to b. We also use ρwSE(2), which weighs, as discussed be-
low, the geodesic distances in R

2 and SO(2). Similarly, in 3D workspaces, we
use ρSE(3) [8], the geodesic distance in SE(3), and ρwSE(3), which weighs the
geodesic distances in R

3 and SO(3). We also use ρL2 , which approximates the
volume of the workspace region swept by the robot [9] . We experimented with
several weighting schemes for ρwSE(2) and ρwSE(3), but found little variation in
the results of nearest-neighbors algorithms. Therefore in this study we set the
weights to one. In the case of multiple robots, we sum up ρSE(2), ρwSE(2), ρSE(3),
ρwSE(3), and ρL2 distances between configurations for each robot to obtain ρ∗SE(2),
ρ∗wSE(2), ρ

∗
SE(3), ρ

∗
wSE(3), and ρ∗L2

, respectively.

3 Experimental Setup

Data Sets. We use 2D and 3D workspaces, shown in Fig. 1, that provide a
representative benchmark for motion planners. The “maze2d” workspace is a
2D maze, as in Fig. 1(a). Robots must move from one of the borders of the maze
to the opposite border. The “narrow2d” workspace has several narrow passages,
as in Fig. 1(b). Robots must move from the left side to the right side of the box.
In the 3D workspaces, robots are objects in the shape of letters, as in Fig. 1(c).
The “maze3d” workspace is a 3D maze, as in Fig. 1(d). Robots must move
from one corner of the maze to the other and always remain inside the maze.
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(a) “maze2d” (b) “narrow2d” (c) robots3d (d) “maze3d” (e) “cons3d”

Fig. 1. Workspaces. (a), (b) The black and gray polygons indicate obstacles and
robots, respectively. (c),(d),(e) In the 3D workspaces, robots consist of 3D renderings
of English letters and the i-th robot corresponds to the i-th letter.

Table 1. Summary of data sets

motion planner PRM[uniform, bridge, Gaussian, obstacle], RRT, EST
number of points (n) 10000, 50000, 100000

workspace maze2d, narrow2d maze3d, cons3d
distance ρ∗

SE(2), ρ∗
wSE(2) ρ∗

SE(3), ρ∗
wSE(3), ρ∗

L2

dimension (d) 3, 6, 9, . . . , 60 6, 12, 18, . . . , 60

The “cons3d” workspace has ten consecutive walls each with a small hole, as in
Fig. 1(e). Robots must move through all the ten holes.

We created many data sets as summarized in Table 1. We use 1, 2, . . ., 20
and 1, 2, . . ., 10 robots in each 2D and 3D workspace to obtain configurations
with 3, 6, . . ., 60 and 6, 12, . . ., 60 dimensions, respectively. As an example, a
60-dimensional “maze3d” problem is obtained by placing 10 robots, consisting of
3D renderings of letters A through I as in Fig. 1(c), in the “maze3d” workspace.
We note that the choice of letters for the robots does not affect the results of our
experiments. For each dimension, we generate data sets with 10000, 50000, and
100000 points. For each dimension and number of points, we use each motion
planner to generate data sets using ρ∗SE(2) and ρ∗wSE(2) in each 2D workspace
and ρ∗SE(3), ρ∗wSE(3), and ρ∗L2

in each 3D workspace. During data generation,
each motion planner uses Linear for the kNN computations.
Experiments. For each data set, we use Gnat and Linear to compute kNN
queries and DPES and Random to compute kANN queries for various values of
k ∈ {15, 45, 150}. We report only results obtained for k = 45, since the results for
the other values of k are similar. In each case, we measure the time and distance
evaluations required to compute nearest neighbors of a point s ∈ S selected
uniformly at random. In addition, for kANN algorithms, we measure the rfdε,
ε ∈ {0.00, 0.05, 0.10}, and rde errors. We obtain averages of these quantities by
repeating the above step 100 times. We choose |S′| such that the running time
of Random is the same as that of DPES.
Platform. We utilized three high-performance computing clusters, Rice Teras-
cale Cluster, PBC Cluster, and Rice Cray XD1 Cluster ADA.
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4 Results

We compare the computational efficiency of Gnat and DPES relative to Linear
for kNN and kANN computations, respectively. We also focus on the accuracy
of DPES and Random. The use of Linear and Random provides a normalization
of the results obtained for data sets generated using various motion planners,
distance metrics, number of points, dimensions, and workspaces. We present
results for “maze2d” and “maze3d” workspaces, since the correlation with results
for “narrow2d” and “cons3d” workspaces is above 90%.

4.1 Exact k Nearest-Neighbors Algorithms

We compare Gnat to Linear for various distance metrics.
Using ρ∗

SE(2). We present the results in Fig. 2. These results are indicative of
other distances and illustrate general trends observed in kNN algorithms. We
indicate the workspace, motion planner, distance metric, and number of points
at the top and legend of each figure. In Fig. 2(a), we compare the computation
time of Gnat relative to Linear on data sets generated using PRM with uniform
sampling. We observe that Gnat is more efficient than Linear on low-dimensional
data sets. The efficiency of Gnat increases even more when the number of points
increases. However, as the dimension increases, the efficiency of Gnat deteriorates
rapidly. In fact, after a certain dimension, d > 18, Gnat is even less efficient than
Linear.

In Fig. 2(b), we focus on the number of distance evaluations. We observe
trends similar to Fig. 2(a). We note that Gnat evaluates far fewer distances
than Linear on low-dimensional data sets, especially on large low-dimensional
data sets. However, as in Fig. 2(a), the number of distance evaluations by Gnat
relative to Linear increases rapidly with the dimension and even approaches 1.0
when d > 18. Since Gnat has more computational overhead than Linear, we
observed in Fig. 2(a), that for d > 18, Gnat is less efficient than Linear.

In Fig. 2(c), we compare the computation time of Gnat relative to Linear on
data sets with n = 100000 points generated using PRM with different sampling
schemes. We observe that Gnat is unable to take advantage of the different
distributions that result from changing the sampling in PRM. There is almost no
variation in the efficiency of Gnat when the sampling in PRM is changed from
uniform to bridge, Gaussian, or obstacle. Similar observations also hold for the
smaller data sets.

In Fig. 2(d) and (e), we focus on RRT and EST, respectively. As in Fig. 2(a),
the efficiency of Gnat relative to Linear is significantly better on low-dimensional
data sets, but quickly deteriorates as the dimension increases, and becomes worse
after the critical dimension. However, the critical dimension is higher for RRT and
EST than for PRM due to the local nature of RRT and EST which create samples
that are more distinctly clustered and, consequently, can be used by Gnat to
eliminate certain distance computations.
Using ρ∗

wSE(2), ρ∗
SE(3), ρ∗

wSE(3), and ρ∗
L2

. We present the results in Fig. 3.
We compare the computation time of Gnat relative to Linear. The filled region
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(a) (b)

(c) (d) (e)

Fig. 2. Comparing Gnat to Linear when using ρ∗
SE(2)

indicates the variation in the efficiency of Gnat for the different PRM versions,
while the dashed and dotted lines indicate the results obtained for EST and RRT,
respectively. We show results only for data sets with n = 100000 points, since
we obtain similar results for the smaller data sets.

In Fig. 3(a), we focus on ρ∗wSE(2). As in the case of ρ∗SE(2), the efficiency of Gnat
relative to Linear is at least one order of magnitude better on low-dimensional
data sets, but rapidly decreases with the dimension. We note there is almost no
variation in the efficiency of Gnat when the sampling in PRM is changed from
uniform to bridge, Gaussian, or obstacle.

Similarly, in Fig. 3(b) and (c), we observe that when using ρ∗SE(3) or ρ∗wSE(3),
the efficiency of Gnat remains the same for PRM variants, but improves for RRT
and EST due to the local sampling.

In Fig. 3(d), we focus on ρ∗L2
. The efficiency of Gnat remains the same when

PRM uses uniform, bridge, or obstacle sampling, as indicated by the small area
of the shaded region, but decreases when Gaussian sampling is used. As before,
due to the local sampling Gnat is more efficient when RRT and EST are used.
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(a) (b)

(c) (d)

Fig. 3. Comparing Gnat to Linear when using ρ∗
wSE(2), ρ∗

SE(3), ρ∗
wSE(3), and ρ∗

L2

A comparison between Fig. 2(c, d, e) and Fig. 3(a) and between Fig. 3(b) and
Fig. 3(c) indicates that in general the efficiency of Gnat is better when geodesic
distances are used instead of weighted distances. Our intuition is that this is
due to the decoupling of translational and rotational components which reduces
the number of distinct clusters in the data set. As mentioned in Sect. 2.3, we
obtained similar results for several different weighting schemes.

4.2 Approximate k Nearest-Neighbors Algorithms

In this section, we analyze the efficiency and accuracy of DPES using Linear and
Random as the basis of comparison, respectively. We present results for various
distance metrics. In the experiments presented in this section, DPES uses m = 15
pivots for the projection. These results are indicative of the behavior of DPES.
In the next section, we present results where we vary m.
Using ρ∗

SE(2). We focus on PRM variants in Fig. 4 and RRT and EST in Fig. 5.
In Fig. 4(a), we compare the computation time of DPES relative to Linear on
data sets generated using PRM with uniform sampling. We observe that for low-
dimensional and small data sets, DPES is less efficient than Linear, since data
sets are projected onto R

15. However, as the dimension increases, the efficiency
of DPES relative to Linear improves rapidly. The improvement is even greater
on the larger data sets.

In Fig. 4(b), we focus on distance evaluations for the same data sets as in
Fig. 4(a). Recall that DPES uses L2 in R

15, while Linear uses ρ∗SE(2). We note
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(a) (b) (c)

(d) (e)

Fig. 4. kANN results for PRM and the ρ∗
SE(2) distance metric

that although the number of distance evaluations by DPES relative to Linear
increases with the dimension, it decreases with the number of points. In general,
DPES evaluates only a fraction of distances to the query point.

In Fig. 4(c), we compare the computation time of DPES relative to Linear
on data sets with n = 100000 points generated using different PRM variants.
We observe only small changes in the computational time of DPES when the
sampling in PRM is changed from uniform to bridge, Gaussian, and obstacle. We
obtain similar results for the smaller data sets as well.

In Fig. 4(d), we compare the rde error of Random and DPES on data sets
with n = 100000 points generated using PRM with uniform sampling. The rde
error of Random is high on low-dimensional data sets but decreases with the
dimension. This is due to the sparsity of data on high-dimensional spaces which
as shown in [4] implies that the relative distances between points decrease as the
dimension increases. On the other hand, the rde error of DPES is small on low-
dimensional data sets but increases, although only slightly, with the dimension.
The increase in the rde error of DPES is a consequence of the projection onto a
low-dimensional Euclidean space, i.e., R

15. In all cases however the rde error of
DPES relative to Random is at least 2.5 times smaller.

In Fig. 4(e), we focus on the rfd error using the same data sets as in Fig. 4(d).
The rfd error of Random remains very high even when the dimension increases.
Such high values indicate that even though relative distances between points
decrease with the dimension, as seen in Fig. 4(d), there is a clear distinction
between the nearest neighbors and other points in the data set. A similar
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(a) (b) (c)

(d) (e) (f)

Fig. 5. kANN results for RRT and EST and the ρ∗
SE(2) distance metric

observation has also been made in [12], where it is shown that under certain
conditions nearest neighbors are meaningful on high-dimensional data sets. In
the case of DPES, we observe that the rfd error increases with the dimension.
The increase is more rapid when ε = 0.00. This is expected since rfd0.00 indicates
how many points in ANNS(si, k) are not in NNS(si, k). However, as ε increases,
the rfd error of DPES decreases significantly and for ε = 0.10 comes close to
zero even on the high-dimensional data sets.

The accuracy results in Fig. 4(d) and (e) indicate that although the approxi-
mate nearest neighbors computed by DPES are not the same as the exact nearest
neighbors, the differences between them are small. In Sect. 4.3, we show how to
further improve the accuracy of DPES.

In Fig. 5(a) and (d), we compare the efficiency of DPES relative to Linear
on data sets generated using RRT and EST, respectively. As in the case of PRM
in Fig. 4(a), the relative efficiency improves rapidly with the dimension and for
d > 12, DPES is several times faster than Linear.

In Fig. 5(b) and (e), we compare the rde error of Random and DPES on
data sets with n = 100000 points generated using RRT and EST, respectively. We
obtain similar results on the smaller data sets. In addition to the observations
made for Fig. 4(d), we note that for RRT and especially EST the rde error of
Random is larger while the rde error of DPES is smaller than for PRM. This is
due to the local sampling of RRT and EST, which generate data sets where relative
distances between points are more distinct, especially in the case of EST which
expands slower than RRT. Consequently, the likelihood that a random point is a
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Table 2. Summary of kANN results for various distance metrics

Accuracy (•DPES �Random)
n = 100000 Efficiency rfd
d = 60 (tDPES/tLinear) rde ε=0.00 ε=0.05 ε=0.10• .. � • .. � • .. � • .. �

PRMu 0.40 0.07 0.17 0.80 0.99 0.46 0.95 0.04 0.84 ρ∗
wSE(2)

PRMb 0.38 0.06 0.17 0.79 0.99 0.42 0.95 0.04 0.84
PRMg 0.42 0.07 0.17 0.80 0.99 0.45 0.95 0.05 0.84
PRMo 0.39 0.06 0.17 0.79 0.99 0.42 0.96 0.03 0.85
RRT 0.36 0.06 0.28 0.54 0.99 0.30 0.97 0.06 0.93
EST 0.24 0.03 0.49 0.14 0.99 0.08 0.98 0.06 0.98
PRMu 0.08 0.07 0.19 0.78 0.99 0.45 0.96 0.08 0.88 ρ∗

SE(3)

PRMb 0.08 0.07 0.19 0.79 0.98 0.46 0.96 0.08 0.88
PRMg 0.08 0.07 0.19 0.78 0.99 0.46 0.96 0.09 0.89
PRMo 0.08 0.07 0.19 0.80 0.99 0.51 0.96 0.11 0.88
RRT 0.06 0.05 0.25 0.55 0.99 0.20 0.97 0.02 0.94
EST 0.07 0.06 0.25 0.58 0.99 0.27 0.97 0.06 0.94
PRMu 0.14 0.07 0.17 0.81 0.99 0.48 0.95 0.07 0.84 ρ∗

wSE(3)

PRMb 0.15 0.07 0.17 0.81 0.99 0.49 0.96 0.08 0.85
PRMg 0.14 0.07 0.17 0.82 0.99 0.49 0.96 0.09 0.86
PRMo 0.14 0.07 0.17 0.82 0.99 0.50 0.95 0.10 0.85
RRT 0.11 0.05 0.25 0.56 0.99 0.22 0.97 0.03 0.95
EST 0.11 0.05 0.25 0.57 0.99 0.25 0.97 0.04 0.94
PRMu 0.50 0.02 0.24 0.39 0.99 0.04 0.97 0.00 0.94 ρ∗

L2

PRMb 0.46 0.02 0.24 0.38 0.99 0.03 0.97 0.00 0.94
PRMg 0.49 0.02 0.24 0.37 0.99 0.04 0.97 0.00 0.94
PRMo 0.46 0.03 0.22 0.45 0.99 0.07 0.97 0.01 0.93
RRT 0.29 0.01 0.29 0.20 0.99 0.00 0.98 0.00 0.96
EST 0.44 0.01 0.28 0.14 0.99 0.00 0.98 0.00 0.95

nearest neighbor decreases while the projection done by DPES better preserves
the relative distances between points.

In Fig. 5(c) and (f), we focus on the rfd error using the same data sets as in
Fig. 5(b) and (e). In addition to the observations made for Fig. 4(e), we note that
the rfd error of Random remains high, while the rfd error of DPES decreases
when RRT and especially EST are used instead of PRM. In fact, in the case of
EST, even the rfd0.00 error of DPES is less than 0.1, which indicates that DPES
computes above 90% of the exact nearest neighbors.
Using ρ∗

wSE(2), ρ∗
SE(3), ρ∗

wSE(3), and ρ∗
L2

. We summarize the results obtained
for the other distance metrics in Table 2. We focus on data sets with n = 100000
points and d = 60 dimensions generated using the “maze2d” and “maze3d”
workspaces. The results for the other data sets are similar. For each motion
planner, we present the computation time of DPES relative to Linear and the
rde and rfdε, ε ∈ {0.00, 0.05, 0.10}, errors of DPES and Random.
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As in the case of ρ∗SE(2), DPES is more efficient than Linear. The improvements
vary between 2–4 and 12–16 times on the high-dimensional data sets, in the worst
and best cases, corresponding to ρ∗L2

and ρ∗SE(3), respectively. In addition, the
efficiency of DPES remains almost the same when the sampling in PRM is changed
from uniform to bridge, Gaussian, or obstacle. However, DPES is generally more
efficient in the case of RRT and EST.

We observe in Table 2 that DPES achieves high quality especially in the case
of ρ∗L2

. The small values of rde indicate that approximate nearest neighbors
computed by DPES are very close to exact nearest neighbors. This is further
confirmed by the small values of the rfd error of DPES for ε ≥ 0.05 when ρ∗L2

is
used and ε ≥ 0.10 when the other distance metrics are used.

4.3 Improving the Quality of kANN Queries Computed by DPES

The quality of DPES can be improved by increasing the dimension of the Eu-
clidean space onto which data sets are projected. The results in Sect. 4.2 are
obtained by using m = 15 pivots. In Fig. 6, we present results where we vary the
number of pivots m ∈ {10, 30, 50}. We focus on large data sets generated using
ρ∗SE(2) and PRM with uniform sampling, since we obtain similar results with the
other data sets and distance metrics.

In Fig. 6(a), we compare the computation time of DPES relative to Linear.
As expected, the computation time of DPES relative to Linear increases as the
number of pivots increases. However, even for m = 50, DPES is still several

(a) (b)

(c) (d)

Fig. 6. Improved kANN results for PRM and the ρ∗
SE(2) distance metric
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times faster than Linear. As the dimension increases, the improvement in the
computation time of DPES relative to Linear increases as well.

In Fig. 6(b), we focus on the rde error of DPES. As before, we observe that
the rde error of DPES increases with the dimension but still remains small even
when d = 60 and m = 10. Furthermore, as the number of pivots increases, the
rde error of DPES quickly approaches zero.

In Fig. 6(c), we focus on the rfd error for ε = 0.00. We note that the rfd0.00
error of DPES increases with the dimension but decreases rapidly as the number
of pivots increases. In fact, when d = 54 and m = 50, the rfd0.00 error is less
than 0.20. This indicates that DPES includes at least 80% of the exact k nearest
neighbors in the computed approximate k nearest neighbors.

In Fig. 6(d), we focus on the rfd error for ε = 0.05. We again note that the
rfd0.05 error of DPES increases with the dimension but decreases rapidly and
approaches 0 as the number of pivots increases. In fact, when m = 50, the rfd0.05
error of DPES is 0.00, i.e., all the approximate nearest neighbors are no more
than 1.05 times farther away from the k-th nearest neighbor.

5 Discussion

In this work, we quantitatively analyzed exact and approximate nearest-
neighbors algorithms for points obtained from sampling-based motion planning
methods in high-dimensional problems.

Our analysis indicates that the computational efficiency of exact nearest-
neighbors algorithms deteriorates rapidly as the dimension increases. After a
critical dimension, which in our experiments varied between 15 and 30, exact
nearest-neighbors algorithms evaluate almost as many distances as the brute-
force Linear method and are thus impractical when a considerably large number
of samples is necessary for solving motion planning problems.

Motivated by the impracticality of exact nearest-neighbors algorithms on
high-dimensional motion planning problems, we developed a simple approxi-
mate nearest-neighbors algorithm, DPES, which achieves high computational
efficiency and only a negligible loss in accuracy. The computational efficiency
of DPES relative to Linear improves rapidly as the dimension increases. This
is due to (i) the distance-based projection of high-dimensional data sets onto
low-dimensional Euclidean spaces reduces to a certain extent the computational
dependencies on the dimension (ii) the number of distance computations by
DPES relative to Linear is only a small fraction; and (iii) DPES uses L2 which
is computationally more efficient than ρ∗SE(2), ρ∗SE(2), ρ∗wSE(3), ρ∗wSE(3), or ρ∗L2

.
Our analysis also shows that DPES is highly accurate. In the computed queries,
DPES includes many of the exact nearest neighbors and the rest are close to the
exact nearest neighbors.

Since in motion planning the purpose of nearest neighbors is to provide candi-
dates which the local planner can connect to the query point, using approximate
nearest neighbors that are similar to exact nearest neighbors may indeed be
sufficient. This paper shows that in high-dimensional motion planning problems
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nearest neighbors can be computed more efficiently by using highly accurate ap-
proximate nearest-neighbors algorithms, such as DPES, instead of exact nearest-
neighbors algorithms.
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Abstract. This paper describes a new approach to sampling-based motion planning
with PRM methods. Our aim is to compute good quality roadmaps that encode the
multiple connectedness of the Cspace inside small but yet representative graphs, that
capture well the different varieties of free paths. The proposed approach relies on a
notion of path deformability indicating whether or not a given path can be continuously
deformed into another existing one. By considering a simpler form of deformation than
the one allowed between homotopic paths, we propose a method that extends the
Visibility-PRM technique [12] to constructing compact roadmaps that encode a richer
and more suitable information than representative paths of the homotopy classes. The
Path Deformation Roadmaps also contain additional useful cycles between paths in the
same homotopy class that can be hardly deformed into each other. First experiments
presented in the paper show that our technique enables small roadmaps to reliably and
efficiently capture the multiple connectedness of the space in various problems.

1 Introduction

Robot motion planning has led to active research over the past decades [5] and
sampling-based planning techniques have now emerged as a general and effective
framework for solving challenging problems that remained out of reach of the
previously existing complete algorithms. Today they make it possible to han-
dle the complexity of many practical problems arising in such diverse fields as
robotics, graphics animation, virtual prototyping and computational biology. In
particular, the Probabilistic RoadMap planner (PRM) introduced in [4, 8] and
further developed in many other works (see [2, 6] for a survey) has been conceived
to solve multiple-query problems.

While most of the PRM variants focus on the fast computation of roadmaps
reflecting the connectivity of the free configuration space, only few works [7, 9]
address the problem of computing good quality roadmaps that encode the multi-
ple connectedness of the space inside small graphs containing only useful cycles,
ie. cycles representative of the varieties of free paths. Introducing such cycles is
important for getting higher quality solutions when postprocessing queries, thus
avoiding the computation of unnecessarily long paths, difficult to shorten by the
smoothing techniques (e.g. [10, 13]).

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 19–34, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Intuitively, the probability that a roadmap captures well the different paths
varieties of Cfree increases with its degree of redundancy. However, a direct
approach attempting connections between all pair of nodes is far too costly and
several heuristic-based connection strategies have been proposed to limit the
number of redundant connections. A first way (e.g. [4]) is to limit the connection
attempts of new samples to the k nearest nodes of the roadmap (or of each
connected component). Another variant is to only consider nodes within a ball
of radius r centered at the new sampled configuration (e.g. [1]). A more recent
technique proposed in [7] only creates cycles between already connected nodes
if they are k times more distant in the roadmap than in the configuration space.
In all cases, the chances of capturing the different path varieties of Cfree notably
varies depending on the choice of the k or r parameter. Moreover it is difficult to
choose with these heuristic sampling strategies the good parameter values for a
given environment. This may result in a significant loss of performance regarding
the roadmap construction process.

In this paper we present an alternative method to building compact roadmaps
that are yet representative of the different varieties of free paths. The method
only generates a limited number of useful cycles in the roadmap. Moreover it
stops automatically when most of the relevant alternative paths have been found.
Our approach relies on a notion of path deformability indicating whether or not
a given path can be continuously deformed into another existing one. Compared
with the standard notion of homotopy which is not directly suitable for our
purpose because it relies on too complicated deformations (Sect. 2), we consider
simpler and more easily computable deformations between paths (Sect. 3). This
results in compact roadmaps capturing a richer set of paths than homotopy
(Sect. 4). We describe in Section 5 a two-stage algorithm for constructing such
(easy) path deformation roadmaps. The first stage uses Visibility-PRM [12] to
construct a small tree covering the space and capturing its connected components
as well as possible. The second stage aims at enriching the roadmap with new
nodes involved in the creation of useful cycles. The key ingredient of this step
is an efficient path visibility test used for the filtering of useless cycles that
can be easily deformed into existing roadmap paths. Following the philosophy
of Visibility-PRM, the second stage integrates a stop condition based on the
difficulty of finding new useful cycles. Finally, our first experiments (Sect. 6)
show that the technique enables small roadmaps to reliably capture the multiple
connectedness of configuration spaces in various problems involving free flying
or articulated robots.

2 Homotopy Versus Useful Roadmap Paths

First we informally discuss the relation between homotopy and the represen-
tative path varieties that it would be desirable to store in the roadmap. The
capture of the homotopy classes of Cfree corresponds to a stronger property
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than connectivity. Two paths are called homotopic (with fixed end points) if
one can be ”continuously deformed” into the other (see section 3.1). Homotopy
defines an equivalence relation on the set of all paths of Cfree. A roadmap cap-
turing the homotopy classes means that every valid path (even cyclic paths)
can be continuously deformed into a path of the roadmap. PRM methods usu-
ally do not ensure this property. Only the work of Schmitzberger [9] considers
the problem formally and sketches a method for encoding the set of homotopy
classes inside a probabilistic roadmap. However, the approach is only applied
on two-dimensional problems and its extension is limited by the difficulty of
characterizing homotopic deformations in higher dimensions.

qi

qf

n1

n2

qi

qf

n1

n2

Fig. 1. Two examples of query for a 2 nodes graph (n1-n2). In the left picture, the
solution path (qi-n1-n2-qf ) extracted from the graph could be easily deformed into the
displayed short path connecting query configurations (qi, qg) whereas a deformation in
Cfree would be much complex in the case of the right picture.

Moreover, as it was noted in [7] capturing the homotopy classes in higher
dimensions may not be sufficient to encode the set of representative paths since
homotopic paths (i.e. paths in the same homotopy class) may be too hard to
deform into each other. This problem is illustrated by the example in Figure
1. Here Cfree contains only one homotopy class. Therefore, an homotopy-based
roadmap would have a tree structure, such as the simple 2 nodes (n1,n2) tree
shown in the figure. While for the left query example, the solution path (qi-n1-
n2-qf ) found in the roadmap could be easily deformed into the displayed short
path connecting query configurations (qi, qg), a free deformation would be much
difficult to compute for the right example. Even if the topological nature of the
two displayed paths is the same, their difference is such that it is preferable to
store a representation of both paths in the roadmap. Generalizing this idea, we
say that a roadmap is a good representation of the varieties of free paths if any
path can be ”easily” deformed into a path of the roadmap. This notion of simple
path deformation is formalized below.
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3 Complexity of a Path Deformation

In this section, after a brief reminder of the definition of a homotopic deforma-
tion, we propose a way to characterize classes of path deformations according to
their complexity.

3.1 Homotopy

The homotopy between two paths is a standard notion from Topology (see [3]
for a complete definition). Two paths τ and τ ′ in a topological space X are
homotopic (with fixed end points) if there exists a continuous map h : [0, 1] ×
[0, 1] → X with h(s, 0) = τ(s) and h(s, 1) = τ ′(s) for all s ∈ [0, 1] and h(0, t) =
h(0, 0) and h(1, t) = h(1, 0) for all t ∈ [0, 1].

Homotopy is a way to define any continuous deformation from one path to
another. Next, we introduce a less general class of deformations, called K-order
deformations characterizing specific subsets of homotopic deformations and that
is used in section 4 for computing path deformation roadmaps.

3.2 K-Order Deformation

Definition 1. A K-order deformation is a particular homotopic deformation
such that each curve transforming a point of τ into a point of τ ′ is an angle
line of K segments.

τ

τ
′

τ

τ
′

τ

τ
′

a b c

Fig. 2. (a) General homotopic deformation. (b) first order deformation: the deforma-
tion surface is a ruled surface. (c) Second order deformation: the deformation surface
is obtained by concatenating two ruled surfaces.

Therefore, a first-order deformation surface describes a ruled surface and a K-
order deformation is obtained by concatenation of K ruled surfaces. This is
illustrated by Figure 2, which shows different types of path deformations: (a) is
a general homotopic deformation whereas (b) and (c) respectively show 1st-order
and a 2nd-order deformations.

Let Di denote the set of i-order deformations. We clearly have Di ⊂ Dj for all
i < j. Thus, the value K of the smallest K-order deformation existing between
two paths is a good measure of the difficulty to deform one path into the other.
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3.3 Visibility Diagram of Paths

It is important to note that a first-order deformation between two paths exists
if and only if it is possible to simultaneously go through the two paths while
maintaining a visibility constraint between the points of each path (see Figure 3).
This formulation provides a computational way to test the existence of a first-
order deformation, also called visibility deformation between two paths.

Let Llin be the straight line segment between two configurations of C. The
parametric visibility function V is of two paths (τ, τ ′) is defined as follows:

V is :

⎧
⎨

⎩

[0, 1]× [0, 1] → {0, 1}
V is(t, t′) = 1 if Llin(τ(t), τ ′(t′)) ∈ Cfree

V is(t, t′) = 0 otherwise

t = 0

t
′
= 0

t
′
= 1

t = 1

τ

τ
′

qt1

qt
′

1 qt
′

2

qt2

V is(t1, t
′

1
) = 1

V is(t2, t
′

2
) = 0

Fig. 3. The parametric visibility function of two paths evaluates the visibility between
the points of each path

Then, the visibility diagram of paths (τ, τ ′) is defined as the two-dimensional
diagram of the V is function. It is illustrated by Figure 4 showing several exam-
ples of computed visibility diagrams with the corresponding paths.

Thanks to the visibility diagram, the visibility (i.e. first-order) deformation
between two paths can now be expressed as follows: two paths (τ , τ ′) (with
the same endpoints) are visibility deformable one into the other if and only if
there is a path in their visibility diagram linking the points of parameters (0, 0)
and (1, 1). Therefore it is possible to test the visibility deformation between two
paths by computing their visibility diagram and then searching for a path in the
diagram linking the points (0, 0) and (1, 1). In Figure 4, such a deformation is
only possible for the last example (d).

4 K-Order Deformation Roadmap

In the previous section we have defined a way to characterize the complexity
for two paths to be deformed one into the other. This formalism is now used to
define, for a given roadmap, its ability to capture the different varieties of free
paths of the configuration space.
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init goal
Init goal

init

goal

a b

c d

init goal

c
Init

Fig. 4. Visibility diagrams for pairs of paths with the same endpoints. White areas
represent regions where V is(t, t′) = 1. A visibility deformation is only possible in the
last example (d), where a valid path linking the points (0,0) and (1,1) can be found in
the visibility diagram.

Definition 2. A roadmap R is a K-order deformation roadmap if and only if for
any path τ of Cfree it is possible to extract a path τ ′ from R (by connecting the
two endpoint configurations of the paths) such that τ and τ ′ are K-deformable.

This definition establishes a strong criterion specifying how the different varieties
of free paths are captured inside the roadmap. One can also note that since a
K-order deformation is a specific kind of homotopic deformation, any deforma-
tion roadmap captures the homotopy classes of Cfree. The following subsections
present a computational method to construct such roadmaps.

4.1 Visibility Deformation Roadmap

We first define the notion of Roadmap Connected from any Point of View (called
RCPV roadmaps) previously introduced in [9]. Then we establish that RCPV
roadmaps are visibility (i.e. first-order) deformation roadmaps.

Visible Subroadmap

Let R be a roadmap with a set N of nodes and a set E of edges. If R covers Cfree,
we can extract a set of nodes Ng (called guards) maintaining this coverage. Then,
we can define for a free configuration qv, the Visible Subroadmap Rv = (Nv, Ev),
as follows :

• Nv sublist of guards visible from qv: Nv = {n ∈ Ng/Llin(qv, n) ∈ Cfree}
• Ev, sublist of edges visible from qv: Ev = {e ∈ E/Llin(qv, e) ∈ Cfree}

Note that the notation Llin(qv, e) ∈ Cfree means that {∀q ∈ e, L(qv, q) ∈
Cfree}. Examples of visible subroadmaps are presented in Figure 5.
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qv

qv

Gards Connectors

Fig. 5. Two examples of visible subroadmap from a given configuration qv . On the
left, the visible subroadmap is disconnected whereas it is connected on the right.

RCPV Roadmaps

Definition 3. A Roadmap Connected from any Point of View (or RCPV
roadmap) is such that for any configuration of Cfree, the visible subroadmap
is connected.

The following property establishes the link between RCPV roadmaps and visi-
bility deformation roadmaps.

Property: A RCPV roadmap is a particular case of visibility deformation
roadmap.

Sketch of proof: Let R be a RCPV roadmap and τ , a path of Cfree. τ can be
partitioned into 2n− 1 successive paths:

τ = {τg1 ⊕ τg1∩g2 ⊕ ...⊕ τgi ⊕ τgi∩gi+1 ⊕ τgi+1 ⊕ ...τ
gn−1

⊕ τgn−1∩gn ⊕ τgn}

with τgi denoting the portion of path only visible from the gi guard and τgi∩gi+1

the portion visible simultaneously from gi and gi+1. Since τgi and gi are by
definition visible, it is possible to build a patch of ruled surface between them
(Figure 6.a). Similarly, there is a patch of ruled surface between τgi+1 and gi+1.
Because R is a RCPV roadmap, any configuration qv ∈ τgi ∩ τgi+1 sees a path τ ′

connecting gi to gi+1. This property makes it possible to build a third patch of
ruled surface between qv and τ ′ (Figure 6.b). Finally, it is possible to fuse these
three patches into a single ruled surface between τgi ∩ τgi+1 and τ ′ (Figure 6.c).
Thus, there exists a ruled surface (i.e. a visibility deformation surface) between
the totality of τ and a path of the roadmap.

RCPV roadmaps are first-order deformation roadmaps. However, these
roadmaps involve a high level of redundancy (see results section 6) and yet
contain many useless cycles, especially in constrained situations. Therefore, to
keep a compact structure we filter a part of the redundancy as explained in
the following section. We will show that this filtering leads to a second-order
deformation roadmap.
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gi gi+1

τgi+1τgi

gi gi+1

τgi+1τgi

gi gi+1

τgi+1τgi

qv qv

a b c
τ
′

τ
′

Fig. 6. A RCPV roadmap is a visibility deformation roadmap. (a) the visibility of the
guards gives first patches of ruled surfaces. (b) the RCPV roadmap property guarantees
the visibility of a roadmap path connecting two guards. (c) By construction, a global
visibility deformation surface can be built.

4.2 Second-Order Deformation Roadmaps

Let R be a RCPV roadmap, Ng ∈ R be a set of guard nodes ensuring the Cfree

coverage. Let us consider a pair of guards and τ , τ ′ two paths of the roadmap
linking theses guards (i.e. creating a cycle) and visibility deformable one into
the other. Then we have the following property:

Property: From a RCPV roadmap, the deletion of redundant paths τ ′ (i.e.
visibility deformable into paths τ and connecting the same guards) leads to a
second-order deformation roadmap.

Sketch of proof: Let us consider the partition of a free path τ , as defined
in section 4.1. In that section we have shown that with a RCPV roadmap, one
can extract a roadmap path τ ′ such that τgi ∩ τgi+1 is visibility deformable into
τ ′ (Figure 7.a). Now suppose that the redundant path τ ′ has been deleted as
proposed above. It means that τ ′ was visibility deformable into another path τ ′′

which remains in the roadmap (Figure 7 b). Thus, by concatenation of the two
ruled surfaces it is possible to build a second-order deformation surface between
any path τ of Cfree and a path of the roadmap (Figure 7 c).

Based on this notion of deformation roadmap, we describe below an algorithm
for constructing such roadmaps.

gi gi+1

τgi+1τgi

qv

c

τ
′

gi gi+1

τgi+1τgi

qv

b

τ
′

gi gi+1

τgi+1τgi

qv

a

τ
′

τ
′′

τ
′′

Fig. 7. Deleting redundant paths in a RCPV roadmap leads to a second-order defor-
mation roadmap. (a) Visibility deformation for a RCPV roadmap. (b) A filtered path
is itself deformable by visibility into a roadmap path. (c) By construction, there is a
second-order deformation surface between a free path and a portion of roadmap.
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5 Algorithm for Building Deformation Roadmaps

First, the roadmap is initialized with a tree structure computed with the
Visibility-PRM method [12]. This ensures the coverage of the free space with
a limited number of nodes and edges (i.e. no cycles). Then, instead of first build-
ing a RCPV roadmap and filtering in a second step the redundant cycles (as
defined in section 4.2), the redundancy test is directly performed for efficiency
purposes before each addition of a new cycle to the roadmap.

The pseudo-code of the algorithm used to build a second-order deformation
roadmaps is shown in Figure 8. At each iteration a free configuration qv is ran-
domly sampled and the connectivity of the visible subroadmap is computed
(TestVisibSubRoadmap function line 6). The evaluation of its connectivity is per-
formed avoiding as much as possible the whole computation of the subroadmap.
The redundancy test is only performed when the visible subroadmap is discon-
nected. For this test, we randomly choose two disconnected components of the
subroadmap and pick among them the nearest guards n1, n2, from qv. Then, we
test whether there is a visibility deformation between the path τ = n1−qv−n2
and a path of the roadmap (TestRedundancy function line 10). If such a visibility
deformation exists, the configuration is useless with regards to the construction
of a second-order deformation roadmap and is therefore rejected. The algorithm
memorizes the number of successive failure since the last useful cycle inserted.
This information is used to stop the iterations when the insertion of a new cy-
cle becomes too difficult, meaning that most of the useful cycles are already
captured by the roadmap.

PATH-DEFORMATION-PRM
input : the robot A, the environment B, ntrymax, ntry cyclmax

output : a Path Deformation Roadmap
1 G ← Visibility-PRM(A, B, ntrymax)
2 ntry ← 0
3 While ntry < ntry cyclmax

4 qv ← RandomFreeConfig(A, B)
5 ntry ← ntry + 1
6 If TestVisibSubRoadmap(G, qv) = Disconnected
7 n1 ← NearestGuard(qv , Comp1(Gv))
8 n2 ← NearestGuard(qv , Comp2(Gv))
9 τ ← BuildPath(n1, qv, n2)
10 If TestRedundancy (τ, n1, n2, G) = False
11 CreateCyclicPath(τ, G)
12 ntry ← 0
13 End If
14 End If
15 End While

Fig. 8. General algorithm for building a Path Deformation Roadmap
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We next detail the algorithms used to establish the subroadmap connectivity
(TestVisibSubRoadmap function) and to test the visibility deformation between
pairs of paths (TestRedundancy function).

5.1 Visible Subroadmap

The method used to check the connectivity of a visible subroadmap from a
given configuration qv (TestVisibSubRoadmap function in the Path-Deforma-
tion-PRM algorithm) corresponds to the pseudo-code of Figure 9. First, the
set of nodes visible from qv is computed by testing whether the straight line
segments linking qv to each of the roadmap nodes are free. Then, we test in
two phases the connectivity of these nodes from the point of view of qv. First,
we evaluate all the roadmap edges as potentially visible. Thus, two nodes are
detected as disconnected if all the paths of the roadmap connecting them pass
through at least one invisible node (VisibleConnectivity function line 8). If this
fast test is not sufficient to establish the connectivity of the visible subroadmap,
we establish it by computing the visibility of the edges linking the visible nodes
(VisibleConnectivity function line 12). We describe in the next section how the
visibility of an edge from a given configuration can be tested.

TestVisibSubRoadmap(G, qv)
1 Nvis ← EmptyList
2 For all node n ∈ G
3 If VisibleNode(n, qv)
4 AddToList(n, Nvis)
5 End If
6 Endfor
7 TestEdges ← False
8 If VisibleConnectivity(qv , Nvis, G,TestEdges) = False
9 Return Disconnected
10 End If
11 TestEdges ← True
12 If VisibleConnectivity(qv , Nvis, G ,TestEdges) = False
13 Return Disconnected
14 End If
15 Return Connected

Fig. 9. Algorithm testing the visible subroadmap connectivity from a given configu-
ration qv

5.2 Edge Visibility

Testing the visibility of an edge from a configuration qv is equivalent to checking
the validity of triangular configuration-space facets, defined by qv and the two
edge’s endpoints (c.f. Figure 10). This visibility test possibly involves one or
several facets depending on the topological nature of C:
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n1

n2

qv

Fig. 10. Edge visibility: n1−n2 is visible from qv if the facet {qv , n1, n2} is valid

• If C is isomorphic to [0, 1]n (the robot’s degrees of freedom are only trans-
lations and/or bounded rotations) then the visibility test can be done by
testing only a single facet in C (Figure 11.a).

• If C is isomorphic to [0, 1]n × SO(d)m with m > 0 (one or more degrees of
freedom are cyclic), the visibility test of an edge can lead to test several facets
(Figure 11.b). In fact, a discontinuity occurs each time the distance between
qv and a configuration on the edge is equal to π according to a given degree
of freedom.

Fig. 11. Testing the visibility of an edge can lead to test one (a) or several (b) facets,
depending on the topological nature of the configuration space

5.3 Elementary Facet Test

To test the validity of a facet we try to cover it entirely with free balls of C

(Figure 12). First, the radii of the balls centered on each vertex of the facet are
computed using a conservative method based on the robot kinematics and the
distance of its bodies to the obstacles. If the balls are sufficient for covering the
facet, then the algorithm returns that the facet is valid. Otherwise it is split into
two sub-facets computed such that their common vertex is as far as possible
from the regions already covered by the balls. The radius of the ball centered
on this vertex is then computed. This dichotomic process is performed until the
entire facet is covered or one vertex is tested as invalid.
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Fig. 12. Dichotomic covering of a valid facet with Cfree balls

5.4 Redundancy Test

A disconnected subroadmap from the point of view of a configuration qv can be
reconnected by linking two of the subcomponents through qv. Before performing
such connection attempt, we test whether it may lead to a redundant path which
could be filtered. To do so, first we build the path τ = n1−qv−n2 with n1, n2 be-
longing to two distinct subcomponents. Then we test its visibility deformation into
a roadmap path thanks to the TestRedundancy algorithm (line 10 in Figure 8).
This algorithm is shown in Figure 13. Roadmap paths are iteratively extracted
and tested according to their visibility deformation relatively to τ . This process
starts with the shortest path found and stops when a visible deformation is pos-
sible (then the configuration is rejected) or when all the possible paths have been
tested (then the configuration and the edges n1−qv and n2−qv are inserted).

TestRedundancy(τ,n1, n2, G)
1 τ ′ ← BestPath(n1, n2, G)
2 While τ ′ �= ∅

3 If VisibDeformation(τ, τ ′) = True
4 Return True
5 End If
6 τ ′ ← BestPath(n1, n2, G)
7 End While
8 Return False

Fig. 13. Visibility deformation test between a path τ and a roadmap path

The VisibDeformation function (line 3 of algorithm 13) tests whether two
paths τ and τ ′ can be visibility deformed one into the other. This function is
based on the grid based computation of the visibility diagram associated to the
two paths. The deformation is only possible when there exists a path between
the (0, 0) and (1, 1) points in this diagram (c.f. section 3.3). In practice, the
whole diagram is not computed. The tests are limited to the grid cells visited
during the A∗ search of a valid path in the visibility diagram, incrementally
developed during the search. This implicit search of the diagram notably limits
the number of visibility tests to be performed (Figure 14) and highly speeds up
the redundancy test.
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Fig. 14. Visibility diagram (left) and cells explored during the visibility deformation
test (right)

6 Experimental Results

We implemented the algorithm for constructing (second-order) deformation
roadmaps in the Move3D software platform [11]. The experiments reported below
were performed on a 1.2GHz G4 PowerPC running on Mac OS-X. The perfor-
mance results summarized in Table 2 correspond to average values computed
over several runs of the algorithm.

The first experiment shown on Figure 15 compares the level of redundancy ob-
tained in function of the algorithm used: (a), a minimum tree structure obtained
with the Visibility-PRM, (b) a first-order roadmap (built without the filtering
process) and (c) a second-order deformation roadmap (PDR) that captures the
different varieties of paths while maintaining a compact structure.

b ca

Fig. 15. Comparison between three algorithms of roadmap construction. (a) Visibility-
PRM. (b), first-order and (c), second-order deformation roadmap.

The next set of experiments (Figure 16) presents the path deformation
roadmaps obtained for a 2-dof robot evolving in complex environments. The first
scene (a) requires 25 elementary cycles to capture the homotopy. Our method
builds a roadmap capturing these cycles in only 109 seconds. The second scene
(b) has a higher geometrical complexity (70 000 facets). The computing time (164
secs) reported in Table 2 shows that the algorithm can efficiently handle such
geometrically complex scenes. One can also note that the resulting 2D roadmaps
contain a very limited number of additional cycles compared to homotopy.
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a b

Fig. 16. Path Deformation Roadmaps for 2D environments: (a) a labyrinth with many
homotopy classes. (b) an indoor environment with a complex geometry.

Thethirdexperiment(Figure17) involvesanarrowpassageproblemforasquared
robotwith 3-dof (two translations and one rotation). The robot has four ways to go
through the narrow passage, depending on its orientation. Therefore the narrow
passage corresponds to four homotopy classes in the configuration space.
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Fig. 17. Path Deformation Roadmap capturing the four homotopy classes for a ro-
tating square and a narrow passage. (a) (x,y) view of the deformation roadmap, (b)
(y,θ) view of the same roadmap showing the four kinds of passages found in C, (c)
comparison with the dense roadmap obtained with a classic k-nearest PRM.

Table 1. Homotopy classes found by a k-nearest PRM for the problem of Figure 17

n classes time (s)
k 10 20 100 10 20 100

N

1000 0.1 0.2 1.2 6.4 9.3 33.2
2000 0.1 0.6 1.6 33.2 43.5 110.0
4000 0.8 1.0 2.8 246 336 455
8000 1.4 2.4 3.2 2947 3295 3819

Table 1 presents results obtained with a traditional k-nearest PRM [4] for
different couples (N, k) (with N, the number of roadmap nodes). The reported re-
sults (averaged over several runs) show that even for the densest and most redun-
dant case (N = 8000, k = 100), the homotopy is not well captured (n classes =
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3.2/4) by the k-nearest PRM. Moreover, the large size of the computed roadmap
results in a significant computing time (3819 secs) due to the amount of collision
tests required for adding new nodes and edges. Comparatively, our method cap-
tures the four homotopy classes in only 37 secs. The high speed-up comes from
the very compact size of the path deformation roadmap (only 12 nodes) which
largely compensates the additional cost of filtering the useless redundant cycles.

The last set of experiments (Figure 18) involves 6-dof robots in 3D environ-
ments. In the first case (free flying robot), the free space has only one homotopy
class. Thus, a roadmap based on homotopy would have a tree structure. The
results show that our method makes it possible to build a compact roadmap
(in 56 secs) while capturing a richer variety of paths than the homotopy. The
second scene concerns a 6-dof manipulator arm where 6 additional nodes (and
12 edges) are added to the visibility roadmap (total time of 99 secs) to repre-
sent the complexity of the space. In both cases, the number of roadmap cycles,
although limited, results into shorter paths during the query phase.

Finally, the performance results are summarized in Table 2 which also provides
a break-up of the total computing time showing the respective contributions of
the visibility tree building and the cycle addition stages.

a b

Fig. 18. Path Deformation Roadmaps for complex environments: (a) free flying robot,
(b) 6-dof manipulator arm

Table 2. Computing time of the Deformation Roadmaps

time repartition (%)
dof nodes edges cycles time (s) Vis-PRM SubRoadmap Redundancy Other

Laby 2 149 177 29 109 19 32 35 14
Indoor 2 66 83 18 164 25 20 49 6
Square 3 12 14 3 37 24 61 11 4
Helico 6 30 39 10 56 5 9 80 6
Arm 6 41 46 6 99 12 70 13 5

7 Conclusion

We have presented a general method to build compact PDR roadmaps with use-
ful cycles representative of the different varieties of free paths of the configuration
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space. The introduction of these cycles is important for obtaining higher qual-
ity solutions when postprocessing queries inside the roadmap. Our approach is
based on the notion of path deformability indicating whether or not a given path
can be easily deformed into another one. Our experiments show that the method
enables small roadmaps to reliably capture the multiple connectedness of possi-
bly complex configuration spaces. Several improvements remain for future work.
First, the method has so far been tested for free flying and articulated robots
with up to 6 dof. We need to further evaluate its performance for higher dof
articulated robots. We would also like to further investigate the link between
the varieties of free paths stored in the roadmap and the smoothing method
used to shorten the solution paths when postprocessing queries. Finally, another
improvement concerns the extension to robots with kinematically constrained
motions requiring the use of a non-linear local method.
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Summary. This paper presents Workspace-based Connectivity Oracle (WCO), a dy-
namic sampling strategy for probabilistic roadmap planning. WCO uses both domain
knowledge—specifically, workspace geometry—and sampling history to construct dy-
namic sampling distributions. It is composed of many component samplers, each based
on a geometric feature of a robot. A component sampler updates its distribution, using
information from the workspace geometry and the current state of the roadmap be-
ing constructed. These component samplers are combined through the adaptive hybrid
sampling approach, based on their sampling histories. In the tests on rigid and articu-
lated robots in 2-D and 3-D workspaces, WCO showed strong performance, compared
with sampling strategies that use dynamic sampling or workspace information alone.

1 Introduction

Probabilistic roadmap (PRM) planning [6] is currently the most successful ap-
proach for motion planning of robots with many degrees of freedom (DOFs).
PRM planners sample a robot’s configuration space C according to a suitable
probability distribution and capture the connectivity of C in a graph, called a
roadmap, which is an extremely simplified representation of C.

Despite their successes, PRM planners behave poorly when C contains narrow
passages. A narrow passage is a small region whose removal changes the con-
nectivity of C. The probability of sampling in narrow passages is low, because
of their small volumes. In such spaces, it is difficult for PRM planners to build
roadmaps with good connectivity. Although many PRM planners have been pro-
posed (e.g., [4, 9, 12, 16, 17, 18, 21, 22]), narrow passages remain a bottleneck
for PRM planning.

With few exceptions, most PRM planners use static sampling distributions
based on a priori assumed geometric properties of the configuration space or
the workspace. Interestingly, the first PRM planner [16], which consists of two
sampling stages, uses dynamic sampling: the second stage exploits information
gathered in the first stage to update the sampling distribution and resample C.
Recently, with the use of machine learning techniques in PRM planning [5, 13,
19], dynamic sampling has again gained popularity. Dynamic sampling incre-
mentally infers partial knowledge of key geometric properties of C during the
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roadmap construction and uses this knowledge to adapt the sampling distri-
bution. It reveals and exploits the probabilistic foundations of PRM and is a
promising way of speeding up PRM planners [11].

To infer geometric properties of C, existing PRM planners with dynamic sam-
pling use sampling history. This is, however, inadequate. For example, to learn
the usefulness of sampling a particular region of C, we need many samples in that
region. This is difficult to achieve in narrow passages. One way of addressing this
issue is to use domain knowledge such as the geometry of robots and obstacles in
the workspace W . Compared with C, W has low dimensionality and an explicit
geometric representation, which make it easy to find narrow passages. Narrow
passages in W often suggest the presence and the location of narrow passages
in C. Furthermore, workspace geometry provides information complementary to
that from sampling history.

In this paper, we present a new PRM planner that combines information
from both workspace geometry and sampling history to construct a dynamic
sampling distribution. Core to our new planner is a new sampling strategy called
Workspace-based Connectivity Oracle (WCO). WCO is an ensemble sampler
composed of many component samplers. They are all based on a key observation:
a collision-free path between a start configuration s and a goal configuration g
in a robot’s configuration space C implies a collision-free path in W for every
point in the robot between the corresponding start and goal positions of the
point. So, if we find a collision-free path in W for every point in the robot
and all these paths correspond to the same path γ in C, then γ is indeed a
collision-free path in C for the robot to move from s to g. Finding a path for
every point is, of course, impractical. Nevertheless, we can use the paths of a set
of geometric features in W—points, line segments, triangles, etc.— to predict
regions of C that are likely to be useful for connecting disconnected components
of a roadmap. Each WCO component sampler is based on a single geometric
feature. They are then combined, based on their sampling histories, through the
adaptive hybrid sampling (AHS) approach [13], which is a restricted form of
reinforcement learning.

2 Background

2.1 PRM Basics

The standard multi-query PRM approach consists of two phases, roadmap con-
struction and roadmap query. In the roadmap construction phase, the planner
samples C according to a suitable probability distribution and approximates the
connectivity of C with a roadmap graph R. The nodes of R represent sampled
collision-free configurations, called milestones. An edge exists between two mile-
stones if they can be connected with a collision-free straight-line path. In the
query phase, the planner is given a start and a goal configuration. It tries to
connect the two query configurations to two corresponding milestones in R and
then searches for a path in R between these two milestones, using standard
graph search algorithms. See [6] for details.
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The performance of PRM planners depends critically on the quality of
roadmaps constructed. A good roadmap has two important properties: cover-
age and connectivity. Denote by FC the collision-free subset of C. Good coverage
means that for any configuration q ∈ FC, there is a collision-free straight-line
path between q and a milestone in R with high probability. Good connectivity
means that any two milestones in the same connected component of FC are also
connected by a path in R. Good coverage is relatively easy to achieve through
uniform sampling [15]. Good connectivity is more difficult to achieve, especially
when FC contains narrow passages.

2.2 PRM Planners That Generate Dynamic Sampling Distributions

In addition to the early PRM planner in [16], the planner in [19] also uses a
two-stage sampling strategy, but employs more sophisticated techniques to gen-
erate the distribution for resampling C in the second stage. Instead of breaking
sampling into two stages, some recent planners use on-line machine learning to
update sampling distributions incrementally. In adaptive hybrid sampling [13],
the sample distribution is constructed as a linearly weighted combination of com-
ponent distributions. To adapt the distribution, the weights are updated after
each sampling operation during roadmap construction to favor component dis-
tributions having the most promising results. In entropy-guided planning [5], an
approximate model of C is built and used to sample C so that the expected value
of a utility function is maximized.

2.3 PRM Planners That Use Workspace Information

Several PRM planners use workspace geometry as a guide for sampling C. Let
FW denote the subset of W that is not occupied by obstacles. Some planners bias
sampling by focusing a fixed set of workspace paths, e.g., paths on the medial
axis of FW [9, 10, 22]. Other planners bias sampling by identifying important
regions in W. For instance, the watershed algorithm focuses on small regions
connecting large open regions [21]. Workspace importance sampling (WIS) fo-
cuses on regions with small local feature size [17]. These planners all use static
sampling distributions.

In summary, workspace geometry has been used in earlier work to construct
static sampling distributions for PRM planners. Sampling history has been used
to update sampling distributions dynamically. Our new sampling strategy com-
bines the information from both workspace geometry and sampling history to
construct a dynamic sampling distribution.

3 Overview

3.1 The WCO Planner

Our planner adopts the standard multi-query PRM approach described in Sec-
tion 2.1 and uses WCO for sampling C. Since there is no confusion, we use WCO
to refer to both the sampling strategy and the planner.
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Before describing WCO, let us first consider the relationship between C and
W . For a point f in the robot, let Pf (q) be the position in W of f when the
robot is placed at configuration q ∈ C. We call the mapping Pf : C → W a
projection, as C has higher dimensionality than W . Similarly, we define the lift
mapping Lf :W → 2C . For any x ∈ W , Lf (x) is the subset of C such that each
configuration in Lf (x) places f at x. For convenience, we extend the definitions
of Pf and Lf to subsets of C and W , respectively, by taking set union. Using
this notation, we can state the observation in Section 1 formally:

Proposition 1. If two configurations q, q′ ∈ C are connected by a path in FC,
then for any point f in a robot, Pf (q) and Pf (q′), the projections of q and q′ in
W, are connected by a path in FW.

During the roadmap construction, WCO maintains a partially constructed
roadmap R. Distinct connected components of R may in fact lie in the same con-
nected component of FC, due to inadequate sampling of certain critical regions.
To sample such regions, WCO examines the workspace paths of a set of feature
points in the robot and constructs a sampler for each feature point f . To connect
two components R1 and R2 of R, we use Pf to project the milestones of R into
W and search for “channels” in W that connect the projected milestones of R1
and R2. These channels suggest the regions of C that may connect R1 and R2.
So, we use Lf to lift the channels into C and adapt the distribution to sample
more densely in the regions covered by the lifted channels. To be sensitive to the
changes in R, WCO adapts its sampling distribution incrementally whenever a
new milestone is added to R.

Although workspace-based PRM planners often consider only a single feature
point, this is inadequate. By Proposition 1, a collision-free path in C implies
a collision-free path in W for every point in the robot. So, we use a set of
pre-selected feature points and construct an independent sampler si for each
feature point fi, i = 1, 2, . . .. We make two simplifying assumptions. First, a
finite number of feature points are sufficient to indicate the important regions
of C for sampling. Second, we can treat the feature points independently. These
two assumptions reduce the computational cost and are shown to be effective
in identifying important regions of C (see Section 6). Despite the independence
assumption, the kinematic constraints of a robot are not entirely ignored. Implic-
itly, WCO assigns higher sampling density to regions obeying such constraints.
To provide roadmap coverage, we add a uniform sampler s0 to the WCO sam-
plers s1, s2, . . . and form the set S = {s0, s1, s2, . . .}. The component samplers in
S are combined through the AHS approach to form an ensemble sampler: each
component sampler has an associated weight proportional to the probability of
it being used, and the weights are adjusted to reflect the success of the sampler
according to the sampling history.

3.2 When Is Workspace Connectivity Information Useful?

To represent FW , the collision-free subset of W , WCO computes a decomposition
T of FW into non-overlapping cells. It represents the connectivity of FW as an
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Fig. 1. A partition of W induces a partition of C. Obstacles are shaded in dark color.
A workspace channel and its lifted version are shaded in light color. In general, Lf is
a one to many mapping. It maps a region of W to several regions of C.

adjacency graph GT for the cell decomposition T . Each node of GT represents
a cell in T , and two nodes are connected by an edge if the corresponding cells
are adjacent. By Proposition 1, if two cells t, t′ ∈ T are disconnected in FW ,
then Lf(t) and Lf (t′) are disconnected in FC for any feature point f . Thus, the
connectivity information encoded in GT can help in capturing the connectivity
of FC during the roadmap construction.

Although we often think of W and C as two distinct spaces, they are closely
related. For a fixed feature point f , T induces a partition of the collision-free
subset of C into equivalent classes: FC =

⋃
t∈T (Lf (t) ∩ FC) and for all t, t′ ∈ T

and t �= t′, Lf (t) ∩ Lf(t′) = ∅ unless when t and t′ share a boundary, in which
case Lf(t) and Lf (t′) share a boundary too (Fig. 1). Two configurations are in
the same equivalent class if they project to the same cell in T . WCO exploits
this connection extensively to integrate the information from both W and C.

To connect two milestones m and m′ of a roadmap, consider their projections.
Suppose that Pf (m) ∈ t and Pf (m′) ∈ t′, where t, t′ ∈ T . A workspace channel
λ is the set of cells corresponding to the nodes on a path in GT between t and t′.
The lifted channel Lf(λ) suggests a region of C for sampling in order to connect
m and m′. Of course, no particular Lf (λ) guarantees that a path between m and
m′ can be found within it, as the converse of Proposition 1 is not true in general.
Nevertheless, a channel helps to improve sampling efficiency by narrowing down
the sampling domain to a relevant subset of C.

The usefulness of a workspace channel can be defined formally:

Definition 1. Let m and m′ be two milestones of a roadmap and λ be a
workspace channel between the cells containing Pf (m) and Pf (m′) for some fea-
ture point f . The channel λ has the (n, p)-property if n samples drawn from
Lf(λ) are sufficient to find a path in FC between m and m′ with probability at
least p, provided such a path exists.

A channel Lf (λ) has good (n, p)-property if n is small and p is large. It is
known that Lf(λ) has good (n, p)-property under various conditions, e.g., path
clearance [14], ε-complexity [20], and expansiveness [12]. The effectiveness in
finding useful workspace channels depends on the cell decomposition and the
method of searching for channels. These issues are detailed in the next section.
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4 Constructing a WCO Component Sampler

We now describe the construction of a component sampler of WCO for a fixed
feature point, specifically, how to extract workspace connectivity (Section 4.1),
how to adapt the sampling distribution (Section 4.2), and how to take a sample
for rigid and articulated robots (Section 4.3).

4.1 Extracting Workspace Connectivity

WCO computes a cell decomposition T of FW and represents the connectivity
of FW in the adjacency graph of T . This decomposition is computed only once
and used by all WCO component samplers. Many spatial decomposition methods
can be used here, e.g., triangulations and quadtrees for 2-D workspaces and their
counterparts for 3-D workspaces.

Building on our earlier work [17], we have chosen to sample the boundary
of obstacles in W and construct a Delaunay triangulation [8] over the sampled
points. Under reasonable assumptions, the constructed triangulation is conform-
ing [1], meaning that every triangle in the resulting triangulation lies either en-
tirely in FW or its complement. Although helpful, this property is not required
for our purposes. Throughout the rest of the paper, triangles refer to triangles
in 2-D workspaces and tetrahedra in 3-D workspaces.

4.2 Adapting the Sampling Distribution

A skeleton of a WCO component sampler is shown in Algorithm 1. Let us
now look at how it represents and updates the sampling distribution based
on workspace channels. During the roadmap construction, WCO maintains a
partially constructed roadmap R. To sample a new milestone, each component
sampler maintains a separate sampling distribution πT defined over T . The dis-
tribution πT assigns equal probabilities to all triangles of T inside workspace
channels and zero probabilities to all other triangles.

To find workspace channels, we first project milestones of R to W (Algo-
rithm 1, line 8). Suppose that a milestone m belongs to a roadmap component
Ri of R. We associate Ri with the triangle t ∈ T that contains Pf (m). Thus,
each triangle t contains a set of labels that indicates the roadmap components
which t is associated with. A triangle t is a terminal if its label set is non-empty,
meaning that t contains at least one projected milestone. See Fig. 2a for an
example.

Next, we find channels that connect terminals with different label sets by
considering the adjacency graph GT . We compute a subgraph of GT , called a
channel graph G′, that spans all the terminals and connect them together. The
workspace channels are then the triangles corresponding to the vertices of G′.
The intuition behind the channel graph is very much like that of a roadmap
in the configuration space: it uses simple paths, in this case, the shortest paths
to connect every pair of two terminals that are close to each other and have
different label sets. See Fig. 2 for an example.
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Algorithm 1. A WCO component sampler.
1: Given a feature point f , sample a configuration q, based on the sampling distribu-

tion defined over the decomposition T .
2: if q is collision-free then
3: Insert q into the roadmap R as a new milestone m.
4: Nm← the set of at most M milestones closest to m among all existing milestones

of R within a distance of Dmax from m. M and Dmax are fixed constants.
5: for each m′ ∈ Nm do
6: if m′ and m lie in different connected components of R then
7: Check whether there is a collision-free straight-line path between m and m′.

If so, insert an edge between m and m′ into R,
8: Project m to W.
9: Update the label sets for all affected triangles in T .

10: Let t ∈ T be the triangle that contains Pf (m). Perform a breadth-first search
from t and stop when reaching the first terminal t′ other than t.

11: Add the path between t and t′ to G′ if t and t’ hold different label sets and delete
the path from G′ if t and t’ hold the same label sets.

12: Update the sampling distribution.

R2

R3
R4

R5

R5

R1

{R5}

{R1,R2}

{R3}{R4}

{R5} {R5} {R5}

{R3}
{R4}

{R1,R2}

(a) (b) (c)

Fig. 2. (a) Milestones projected to the triangulated workspace. The labels indicate the
roadmap components to which the milestones belong. The feature point of the rigid
robot is marked by a black dot. (b) The adjacency graph GT . Terminals are marked by
crosses. (c) The channel graph G′ . Paths that connect terminals with the same label
set (e.g., the path between the two terminals labelled {R5}) are not in G′, as they
connect terminals corresponding to milestones in the same connected components of
R and hence unlikely to help in improving the connectivity of R.

The channel graph is computed incrementally, as new milestones are added
(Algorithm 1, lines 10–11). The incremental construction allows WCO to respond
to changes in R and simplifies computation. To see that G′ indeed “connects”
all the terminals together, note that the channel graph G′ clearly contains all the
terminals. Furthermore, it is weakly connected in the sense that between every
pair of terminals t and t′, there is a sequence of terminals ti, i = 1, 2, . . . , n with
t1 = t and tn = t′ such that every adjacent pair ti and ti+1 either have exactly
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the same label set or have a path between them in G′. In the example shown in
Fig. 2c, the two terminals {R3} and {R4} are weakly connected.

The incremental construction of the channel graph is quite efficient. Using the
union-find data structure [7], we can project a milestone and update the label
sets (Algorithm 1, lines 8–9) in O(|R|) worst-case time, where |R| is the number
of different labels and is equal to the number of roadmap components that has
been constructed so far. A loose upper bound for updating G′ (Algorithm 1,
lines 10–11) is O(|T |), where |T | is the number of triangles in T . In practice,
the upper bound is rarely reached. The entire update takes little time, compared
with other parts of the planner (see Section 6.1).

4.3 Sampling a Configuration

To generate a sample from C (Algorithm 1, line 1), we perform two simple steps.
First, we sample a point x ∈ FW by picking a triangle t ∈ T according to the
distribution πT and then picking a point x ∈ t uniformly at random. Next, we
sample a configuration from Lf (x). The details depend on the specifics of the
robot’s kinematics and are described below separately for rigid and articulated
robots.

The configuration q of a rigid robot consists of a positional component qx,
which specifies the position of the robot’s reference point in the workspace, and
an orientational component qθ, which specifies the orientation of the robot. To
sample a configuration, we first pick qθ uniformly at random. We then pick a
point x ∈ FW , as described above, and compute qx so that at q = (qx, qθ), the
robot’s feature point f lies at x and the robot has orientation qθ.

For an articulated robot, the configuration q specifies its joints parameters
q1, q2, . . .. Suppose that the feature point f lies in the 	th link of the robot.
To sample a configuration, we again pick a point x ∈ FW and then find the
joint parameters q1, q2, . . . , q� that place f at x by solving the robot’s inverse
kinematics (IK) equations. If IK has no solution, we must pick another x. If IK
has more than one solution, we pick one at random. We then sample the other
joint parameters q�+1, q�+2, . . . uniformly at random. Various improvements can
be made to speed-up this process. For instance, we may restrict the sampling
domain according to the reachability of each feature point.

5 Constructing the Ensemble Sampler

WCO is an ensemble sampler composed of many component samplers, which all
have different distributions due to the different feature points used. If WCO uses
a single feature point, i.e., a single component sampler, then to perform well,
this component sampler must generate a good distribution everywhere in C. In
general, such a sampler is difficult to construct. Using multiple feature points
simplifies the task. It is sufficient for a component sampler to work well in only
part of C, provided that several component samplers can be combined effectively
to generate a distribution good in entire C.
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Algorithm 2. Workspace-based Connectivity Oracle.
1: Let pi be the probability of picking a component sampler si. Initialize pi = 1/K

for i = 0, 1, . . . , K − 1.
2: for t = 1, 2, . . . do
3: Pick a component sampler si from S = {s0, s1, . . . , sK−1} with probability pi.
4: Sample a new configuration q using the component sampler picked.
5: if a new milestone m is added to the roadmap R then
6: Update the distributions for each component sampler si, i = 1, . . . , K − 1.
7: Update the probabilities pi, i = 0, 1, . . . , K − 1.

5.1 Combining Samplers through AHS

Recall from Section 3.1 that WCO uses a set of component samplers, S =
{s0, s1, . . . , sK−1}, where s0 is a special, uniform sampler and each si, i =
1, 2, . . . ,K − 1 is based on a feature point of the robot. We combine the com-
ponent samplers through AHS. Each sampler si has an associated weight wi,
which reflects the success of si according to its sampling history. The sampler
si is chosen to run with probability pi that depends on wi. To adapt the en-
semble distribution, we adjust the weights so that the component samplers with
better performance have higher weights. See Algorithm 2 for an outline of the
algorithm.

In iteration t of Algorithm 2, we choose si with probability

pi = (1 − η)
wi(t)∑K−1

i=0 wi(t)
+

η

K
, (1)

where wi(t) is the weight of si in iteration t and η ∈ (0, 1] is a small fixed
constant. We use the chosen si to sample a new milestone m and assign to si a
reward r that depends on the effect of m on the roadmap R:
• The milestone m reduces the number of connected components of R. In

this case, m merges two or more connected components and improves its
connectivity. We set r = 1.

• The milestone m increases the number of connected components of R. In
this case, m creates a new connected component and potentially improves
the coverage of R. We also set r = 1.

• Otherwise, r = 0.
We then update the weight of si:

wi(t + 1) = wi(t) exp ((r/pi)η/K) . (2)

Note that the exponent depends on the received reward r weighted by the prob-
ability pi of choosing si. If a sampler is not chosen, then its weight remains the
same as before: wi(t + 1) = wi(t). More details on AHS are available in [13].

Although there are many possible schemes for updating the weights, AHS has
an important advantage. It can be shown that under suitable assumptions, the
ensemble sampler generated by AHS is competitive against the best component
sampler [13]. More precisely, the following competitive ratio holds:
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Rmax −R ≤ (e− 1)ηRmax +
K lnK

η
, (3)

where R is the expected total reward received by the ensemble sampler and
Rmax is the total reward received by the best component sampler if it is always
chosen to run. This result can be interpreted as saying that the ensemble sampler
performs almost as well as the best component sampler, without knowing in
advance which component sampler is the best. With some small variations on the
scheme for updating the weights, one can also show that the modified ensemble
sampler is competitive against any linearly weighted combination of component
samplers, an even stronger result theoretically [2]. This is one reason why we
choose AHS for combining component samplers.

The ensemble sampling distributionπ is a linearlyweighted combination of com-
ponent distributions: π =

∑K−1
i=0 pi.πi, where pi is the probability for choosing si

and πi is the distribution for si. Each WCO component sampler maintains its own
workspace channels and only samples in the lifted channels in C. Since the compo-
nent sampling distributions are combined linearly, the intersections of lifted chan-
nels from different component samplers have higher probability of being sampled.
These intersections contain the configurations that simultaneously place multiple
feature points in their respective workspace channels. Thus, although each compo-
nent sampler operates independently, the ensemble sampler automatically takes
into account a robot’s kinematic constraints on the feature points.

5.2 Choosing Feature Points

We must still choose a set of feature points. By Proposition 1, a collision-free
path in C implies a collision-free path in W for every point in the robot. So,
to infer the configuration-space path from the workspace paths of a finite set of
feature points, these workspace paths must be representative. Ideally, the feature
set is small, because we construct a component sampler for each feature point.
A large number of component samplers increase both the difficulty of identifying
the good ones through AHS and the computational cost.

Since small feature sets are preferred, we choose feature points to be spaced far
apart. The reason is that feature points close together generate similar sampling
distributions. Below we give specific choices for rigid and articulated robots.
These heuristics worked well in our experiments, but more research is needed to
develop a principled method for selecting feature points.

For a rigid robot, the feature set is the union of two point sets, CH and MP.
CH consists of the vertices on the convex hull of the robot. MP contains a single
point in the middle of the robot, e.g., the centroid. For an articulated robot, we
take CH and MP with respect to each rigid link of the robot and take their union.

6 Implementation and Experimental Results

We implemented the new planner in C++, using the Qhull [3] library for
workspace triangulation. We tested the planner and compared it with other
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PRM planners. For each planner, we set the required parameters by performing
10 trial runs and choosing the values that gave good results. We ran the planner
30 times independently on each test environment. Each run was terminated once
the query was solved. Note that we did not insert the query configurations into
the roadmap as milestones or used any information from the query configura-
tions to bias sampling. The experiments were conducted on a PC with a 3 GHz
processor and 1 GB memory. The results reported below are the averages of 30
runs.

6.1 Comparison with Other PRM Planners

Since WCO uses workspace information and generates a dynamic sampling dis-
tribution, we compared it with PRM planners of these two classes. For the
former, we compared with workspace importance sampling (WIS) [17]. For the
latter, we compared with the original AHS [13], whose component samplers con-
sist of a uniform sampler, several Gaussian samplers, and several bridge tests.
These two planners were chosen because they are closely related to our work,
and both have shown strong performance in narrow passages sampling. We also
ran a PRM planner with uniform sampling to benchmark the difficulty of test
environments.

We tested our planner on Tests 1–4. In all tests, WCO uses CH ∪ MP as the
feature set. However, since Test 4 uses a common articulated robot with a fixed
base and all rotational joints, the workspace displacement of the robot’s links
near the base is very limited. To improve computational efficiency, we consider
only the feature points in the furthest link, which contains the end-effector and
the large plate.

WIS uses a single feature point. In our tests, it used MP for a rigid robot
(Tests 1–3) and MP of the furthest link for an articulated robot (Test 4).

Overall, WCO performed much better than the original AHS and WIS (see
Table 1). Although WCO incurs the additional costs of processing the workspace
geometry and updating the sampling distribution, it uses fewer milestones and
places them in strategic locations. It improves the overall performance by re-
ducing the total number of collision checks needed for sampling new milestones
and connecting milestones in the roadmap. See Fig. 4 for an illustration of the
differences between WCO and the other planners.

For comparison between WCO and the original AHS, it is especially inter-
esting to consider Test 2. The start configuration s and the goal configuration
g, when projected to W , are very close; however, to go from s to g, the robot
must go out of the narrow tunnel, reorient, and then go back to the tunnel
again. Regardless of which feature point f is chosen, it may potentially mislead
the planner, because all short paths in W between Pf (s) and Pf (g) give little
information on the correct configuration-space path that connects s and g. Nev-
ertheless, WCO performed well here, because it combines information from both
W and C. It dynamically updates the workspace channels, which provide infor-
mation for connecting distinct roadmap components. By doing so, as soon as FC
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Test 1 Test 2 Test 3

Test 4 Test 5 Test 6

Fig. 3. Test 1: A 3-DOFs rigid-body robot moves from the lower left corner to the
lower right corner by passing through five narrow openings. Test 2: A 3-DOFs rigid-
body robot turns 180 degrees in a narrow deadend. Test 3: A 6-DOFs rigid-body
robot must pass through 6 out of 7 narrow openings in order to answer the given
query. Test 4: A 6-DOFs robot manipulator with its end-effector holding a large plate
maneuvers through a narrow slot. Test 5: The robot is a planar articulated arm with
a free-flying base. The dimensionality of C is increased by adding up to 8 links to the
robot, resulting in a maximum of 10 DOFs. The robot must move through the narrow
passage in the middle. Test 6: A 3-DOFs rigid-body robot moves from the left to the
right wide-open space. It only fits through the passage in the middle. The number of
false passages increases from 2 to 10.

is covered adequately by R, WCO can potentially identify the correct regions of
C to sample.

Compared with WIS, WCO performed significantly better except for Test 2.
This is expected, because WIS uses a single feature point (MP) and a static
sampling distribution, which does not respond to changes in R and wastes lots
of effort in sampling regions of C already well covered. In Test 3 and 4, WIS
performed as badly as uniform sampling. The reason is that in both cases, the
solution path requires the robot to rotate and translate in a coordinated fash-
ion. A single feature, used by WIS, is incapable of representing such complex
motion and generates a suitable sampling distribution for solving the problem.
Furthermore, WIS does not update the distribution dynamically to improve the
performance. In Test 2, to solve the query, the entire FC must be adequately
covered, whether a static or a dynamic sampling distribution is used. WIS has
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Uniform Original AHS WIS WCO

Fig. 4. 700 milestones generated by different planners. The pictures show that WCO
increases the number of milestones in important regions that improve the connectivity
of the roadmap, without generating too many unnecessary milestones in unimportant
regions.

Table 1. Performance comparison of several PRM planners. All times are measured
in seconds.

Sampler Test 1 Test 2
Tpre Tupd Ttol Nmil Nsam Tpre Tupd Ttol Nmil Nsam

Uniform 75.9 13,540 52,687 4.1 601 53,616
Original AHS 23.0 3,477 164,776 3.3 163 76,742
WIS 0.034 6.6 1,660 7,024 0.007 0.7 154 11,521
WCO 0.045 0.072 2.7 650 2,448 0.008 0.012 0.8 170 5,531
Sampler Test 3 Test 4

Tpre Tupd Ttol Nmil Nsam Tpre Tupd Ttol Nmil Nsam
Uniform 94.6 9,011 36,594 69.8 9,246 35,878
Original AHS 56.7 1,669 198,313 56.0 2,672 168,013
WIS 0.607 80.3 5,723 160,686 0.071 200.7 14,423 961,613
WCO 0.942 2.408 25.9 2,080 22,811 0.244 0.993 31.1 3,211 62,405

Tpre: time for triangulating FW . Tupd: time for updating component sampling distribu-
tions (Algorithm 1, lines 8–12). Ttot: total running time. Nmil: number of milestones
required for answering the query. Nsam: number of configurations sampled.

Table 2. The effect of feature points on the running times of WCO. All times are
measured in seconds. |CH| denotes the number of feature points in CH.

Test Env. |CH| MP CH CH ∪MP
Test 1 6 2.2 4.7 2.7
Test 2 5 1.3 0.7 0.8
Test 3 13 40.8 28.9 25.9
Test 4 8 154.3 62.0 31.1

an advantage, because it is simpler and does not incur the cost of updating the
sampling distribution. Even so, the performance of WCO is comparable.

6.2 The Choice of Feature Points

Different feature points are good for sampling different regions of C. To assess
the benefits of multiple feature points, we ran WCO on Tests 1–4 with different
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feature sets. The experimental results show that although the performance of CH
and MP varies across the test environments, the combined feature set CH ∪MP
has consistently good performance (see Table 2). This corroborates the theoret-
ical result that the ensemble sampler is almost as good as the best component
sampler and demonstrates the effectiveness of the AHS approach.

6.3 Other Experiments
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Fig. 5. The performance of WCO, as
dim(C) increases (Test 5)

One concern of using workspace infor-
mation to guide sampling in C is that
as the dimensionality of C increases,
workspace information becomes less
useful. For this, we constructed a test
environment with increasing dimen-
sionality of C (Test 5). The results in-
dicate that workspace information still
has its merit (Fig. 5). The usefulness
of workspace information does not di-
rectly depend on the dimensionality of
C [11]. Instead, it depends more on

whether there are workspace channels with good (n, p)-property.
One drawback of WCO is that it may find false workspace passages as chan-

nels, i.e., workspace passages that the robot can not pass through. It seems
plausible that as the number of false passages grows, the performance of WCO
will keep on worsening. So, we performed a test with an increasing number of
false workspace passages (Test 6). The results indicate that this trend happens,
but only to a limited extent (Fig. 6). The reason is that by construction, the
number of channels in a channel graph G′ is linear in the number of terminals
in G′. Hence, after a certain limit, increasing the number of invalid workspace
passages does not increase the number of channels or affect WCO’s performance.
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Fig. 6. The performance of WCO, as the number of false passages increases (Test 6)

7 Discussion

The WCO component samplers treat the feature points independently. Only
the ensemble sampler implicitly accounts for the robot’s kinematic constraints
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on the feature points. To further improve sampling efficiency, we may explic-
itly incorporate such constraints. We start with the simplest type, namely, the
distance between a pair of feature points, as the distance between two feature
points of a rigid robot or a rigid link of an articulated robot is fixed. One way
of imposing such a constraint is to find the workspace channels for all feature
points, as explained in Section 4.2. However, instead of immediately updating
the sampling distribution, we check whether two channels violate the distance
constraint for the corresponding feature points and ignore the channels if they
do. One way to check distance constraint is by enlarging each channel accord-
ing to the given distance constraint and check whether the enlarged channels
intersect. There are also many other types of kinematic constraints, which can
possibly be incorporated through more sophisticated geometric features, such as
line segments and surface triangles.

Although the above idea is simple and intuitively should improve WCO’s
performance, more thoughts and experiments are needed for finding good meth-
ods to incorporate and combine the information from multiple kinematic con-
straints. Treating each geometric feature as a “robot” and viewing WCO as
multi-robot planning give us a spectrum of options. One extreme is decoupled
planning with no coordination among robots. This approach is computationally
efficient, because it ignores all constraints, but is not complete. WCO is some-
what similar to this approach, though it actually handles kinematic constraints
implicitly. The other extreme is centralized configuration-space planning, which
accounts for all the constraints, but is slower. Between the extremes, there are
decoupled planning with pairwise coordination, global coordination, and pri-
oritized planning. Each can translate to a method for incorporating kinematic
constraints. For instance, the idea in the previous paragraph is similar to pairwise
coordination.

8 Conclusion

This paper presents WCO, an adaptive sampling strategy for PRM planning.
WCO is composed of many component samplers, each based on a geometric
feature of a robot. Using the adaptive hybrid sampling approach, it combines
information from both workspace geometry and sampling history to construct
a dynamic sampling distribution. In our experiments, WCO significantly out-
performed two recently proposed sampling strategies, which use, respectively,
workspace information and dynamic sampling alone.

For future work, it would be interesting to extend WCO by relaxing the inde-
pendence assumption on the component samplers and developing good methods
to incorporate a robot’s kinematic constraints explicitly. Viewing WCO as multi-
robot planning is a promising direction. Another interesting extension is to use
sampling history to improve the search for workspace channels, instead of just
relying on the channel graph.
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Abstract. Probabilistic roadmap methods (prms) have been highly successful in solv-
ing many high degree of freedom motion planning problems arising in diverse applica-
tion domains such as traditional robotics, computer-aided design, and computational
biology and chemistry. One important practical issue with prms is that they do not
provide an automated mechanism to determine how large a roadmap is needed for
a given problem. Instead, users typically determine this by trial and error and as a
consequence often construct larger roadmaps than are needed. In this paper, we pro-
pose a new prm-based framework called Incremental Map Generation (img) to address
this problem. Our strategy is to break the map generation into several processes, each
of which generates samples and connections, and to continue adding the next incre-
ment of samples and connections to the evolving roadmap until it stops improving. In
particular, the process continues until a set of evaluation criteria determine that the
planning strategy is no longer effective at improving the roadmap. We propose some
general evaluation criteria and show how to apply them to construct different types
of roadmaps, e.g., roadmaps that coarsely or more finely map the space. In addition,
we show how img can be integrated with previously proposed adaptive strategies for
selecting sampling methods. We provide results illustrating the power of img.

1 Introduction

Automatic motion planning has applications in many areas such as robotics,
computer animation, computer-aided design (CAD), virtual prototyping, and
computational biology and chemistry. Although many deterministic motion plan-
ning methods have been proposed, most are not used in practice because they
are computationally infeasible except for some restricted cases, e.g., when the
robot has few degrees of freedom (dof) [14]. Indeed, there is strong evidence that
any complete planner (one that is guaranteed to find a solution or determine that
none exists) requires time exponential in the robot’s dof [21].

For this reason, attention has focused on randomized approaches that sample
and connect points in the robot’s configuration space (C-space). Such methods
include graph-based methods such as the probabilistic roadmap methods (prms)
[13] (along with their various extensions and variants [1,4,5,9,25]) and tree-based
methods such as Ariadne’s Clew algorithm [16], RRT [15], and Hsu’s expansive

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 53–68, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Flow diagram for Incremental Map Generation (img)

planner [10]. These methods have been highly successful in solving challenging
problems with many dof that were previously unsolvable and thus have become
the method of choice for a wide range of applications.

One important practical issue not addressed by the prm framework is that it
does not provide an automated mechanism to determine when to stop. Ideally,
planning should be terminated when the planner is no longer adding useful
information to the roadmap. In practice, users select a roadmap size they believe
is appropriate, usually by trial and error. This often results in larger maps than
needed or in the construction of several maps before obtaining one that meets
the user’s needs. While there are a number of reasons for this disconnect between
the ideal and practice, perhaps the most important has been the lack of effective
techniques for measuring roadmap improvement.

In this paper, we propose a prm-based framework called Incremental Map
Generation (img) that addresses this issue. In particular, we advocate a strategy
that measures the improvement achieved over time in an evolving roadmap to
automatically determine when to stop (or perhaps change) the planner. This
is implemented by iteratively building the roadmap until it satisfies a set of
evaluation criteria (see Figure 1). The main difference from the traditional two-
phase prm method [13] is that we partition the roadmap construction into several
iterations (expansion steps), each of which adds samples and connections to the
evolving roadmap, and we add a new phase called “roadmap evaluation” which
tests if the roadmap satisfies some evaluation criteria (stopping condition). If
the roadmap passes the stopping condition, then roadmap construction finishes.
Otherwise, another iteration is performed to expand the roadmap by adding
additional samples and connections. The framework can accept a broad range
of stopping criteria, which can be customized for particular applications or user
preferences. For example, the criteria can be as simple as satisfying a specified
set of queries, or more complicated such as monitoring graph topology.

img has several important features, including:

• Automatic determination of roadmap size. The most important feature of
img is that it provides a mechanism to incrementally construct roadmaps
and to automatically determine when construction should be halted.

• Evaluation criteria. A key requirement for img is effective evaluation criteria
that can be efficiently tested during roadmap construction. A contribution
of this work is to propose evaluation criteria for measuring roadmap quality
(e.g., coverage and connectivity) that do not require prior knowledge about
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the solution (as do, e.g., test queries) and that do not rely on C-space dis-
cretization (so can be efficiently applied to high dof problems).

• Compatibility with existing sampling-based planners. img is not a new sam-
pling method; instead, it is a general strategy that can be used with any
sampling-based planner and, moreover, it provides a natural mechanism for
adaptive planning. For example, each img iteration can use any of the existing
adaptive strategies that utilize multiple planners (e.g., [11, 17]) or different
strategies could be chosen for different img iterations.

2 Related Work

The general prm methodology [13] consists of a preprocessing phase and a query
phase. Preprocessing, which is done once for a given environment, first samples
points ‘randomly’ from the robot’s C-space, retaining those that satisfy certain
feasibility requirements. Then, these points are connected to form a graph, or
roadmap, containing representative paths in the free C-space. The query phase
then connects any given start and goal to the same connected component of the
roadmap, and if successful, returns a path connecting them.

The probability of failing to find a path in a probabilistic roadmap, when
one exists in C-free, decreases exponentially as the number of samples in the
roadmap increases [12]. However, it is difficult to decide beforehand the roadmap
size required in practice.

The coverage and connectivity of an ideal prm roadmap should match that of
its underlying C-space. In [7], coverage and maximal connectivity achieved by
different sampling methods was compared to that of the C-space being modeled.
Coverage indicates how each query can be connected to the roadmap. If there
exists a path in the free C-space between two query configurations, maximal
connectivity ensures that a path between them can be found in the roadmap.
The authors evaluate the time needed to adequately cover and connect the free
C-space for various techniques. This work relies on a discretization of C-space
and so cannot be applied to high dof problems.

Since there is no principled mechanism to determine when to stop roadmap
construction, a commonly used evaluation criterion is to predefine a set of rel-
evant queries in each environment and continue building the roadmap until the
query configurations can be connected to the same connected component. This is
helpful in environments where the user knows beforehand such a representative
query. However, in many situations defining such a query can be problematic,
e.g., in cluttered environments or in higher dof problems such as the protein
folding applications. The stopping criteria we propose can be applied when it is
hard or even impossible to define a representative query for a given problem. In
the case when such a query is easy to define or when solving a particular query
is the user’s objective, then img can easily use it as a stopping criterion, i.e.,
img also supports the traditional query-based criterion.

A set of metrics are proposed in [18] to estimate how each new sample im-
proves, or not, the representation of C-space achieved by the planner. With
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these metrics, the authors identify three phases common to all sampling-based
planners: quick learning (a coarse roadmap is constructed), model enhancement
(the roadmap is refined), and learning decay (most new samples do not provide
additional information). They also demonstrate that the traditional scheme of
testing a set of witness queries, which is commonly used in practice as a stopping
criterion, can be misleading.

Adaptive hybrid prm sampling [11] proposes using a mixture of samplers.
They adapt the mixture of strategies based on each strategy’s past success. In
this work, we incorporate hybrid prm sampling and apply our img framework
to hybrid prm to decide when to stop building the roadmap.

3 Incremental Map Generation (IMG)

We propose a new prm-based framework called Incremental Map Generation
(img) in which we iteratively build a roadmap until it satisfies a set of evaluation
criteria (see Figure 1). Most importantly, this framework provides a systematic
way to automatically decide when to stop roadmap construction. Algorithm 3.1
describes img. This framework is simple and general. It can be customized for
a particular application domain or problem by simply varying the node genera-
tion and connection strategies used and the evaluation criteria. In the following
sections we discuss two main aspects of our framework: incremental roadmap
construction and roadmap evaluation.

Algorithm 3.1. Incremental Map Generation.
Input. An existing roadmap R, a roadmap evaluator E, the size of a node set, n.
Output. A roadmap R that meets the criteria indicated by E.
1: repeat
2: Initialization. Set parameters for this iteration.
3: Sampling. Generate the new node set (n nodes) and add them to roadmap R.
4: Connection. Perform connection.
5: until R meets criteria in E

3.1 Incremental Roadmap Construction

To build the roadmap incrementally, we first divide roadmap construction into
“sets” of size n; the size, or target number of nodes for each set, is specified by
the user. Then, for each iteration, img performs the following steps.

Initialization. In line 2, Algorithm 3.1, in order to ensure the independence of
each set, we seed the random number generator. The seed s is a polynomial
function of the base seed of the program (e.g., the time execution starts), the
type of node generation method used, and the number of sets completed by that
node generation method so far. Calculating the seed in a deterministic way based
on a (possibly random) base seed supports reproducibility given the same base
seed.
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Sampling. In line 3, Algorithm 3.1, the sampling strategy selected for that iter-
ation is applied. Recall that img is not a new sampling method, but rather is a
general strategy that can be applied to any sampling-based planner.

In addition, img provides a natural mechanism for adaptive planning. For
example, each iteration of img could select a different sampling strategy or it
might use one of the recently proposed adaptive strategies that utilize multiple
planners (e.g., [11,17]). To illustrate this feature of img, we incorporated hybrid
prm [11] in our current implementation. In hybrid prm [11], the performance
of component samplers is evaluated and the methods with good performance
are chosen to run more frequently. We incorporated hybrid prm in two different
ways: (1) it is simply used as described in [11] as the sampling method in img,
and (2) in each img iteration, an initial phase uses the hybrid prm strategy to
select a planner to use for the remainder of that iteration.

Connection. In line 4, Algorithm 3.1, the connection strategy chosen by the
user is applied to connect the new set of nodes to the existing roadmap. In
the results presented here, we use a variant of the commonly used K-closest
connection strategy. K-closest attempts to connect each node to its k “nearby”
neighbors, but it does not distinguish successful attempts from failed attempts.
Nevertheless, identifying successes and failures in connection attempts provides
some information about the complexity of the local area. When a node can be
connected to most of its neighbors, it indicates that this node is in an easy to
connect area and we probably do not need to try many connection attempts;
on the other hand, if a node fails to be connected to most of its neighbors, it
indicates that this node is in a difficult local area and it could be useful to try to
connect it to more neighbors. In order to adjust the connection effort based on
a node’s local environment, we use a modified version of K-Closest connection
method called L-Success-M-Failure. In L-Success-M-Failure, the local planner
attempts to connect each node to its l+m “nearby” neighbors, stopping as soon
as it has achieved l successful attempts or m failed attempts.

3.2 Roadmap Evaluation

The other key component enabling automatic determination of roadmap size is
the stopping or evaluation criteria. In this paper, we propose two classes of eval-
uation methods: roadmap progress evaluation and application-specific evaluation.
The following sections give examples of evaluators for both classes.

Roadmap Progress Evaluation

Our roadmap progress evaluators are based on metrics for evaluating roadmap
coverage and connectivity, which have been noted as important properties by
many researchers working with sampling-based planners (see, e.g., [7]). Here, we
are interested in monitoring the contribution of new samples to the coverage and
connectivity modeled by the roadmap. Classification of new samples provides a
mechanism to perform this evaluation as shown in [18]. In [18], every node is
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classified as it is inserted into the roadmap (see Figure 2). A node is classified as
cc-create if it cannot be connected to any existing roadmap component. A node
is classified as cc-merge if it connects to more than one connected component
(cc) in the roadmap. A node is classified as cc-expand if it connects to exactly
one component in the roadmap and satisfies an expanding criterion. A node is
classified as cc-oversample if it does not fall in any of the previous categories.
In previous work [20, 11], cc-expand and cc-oversample nodes were not always
distinguished, in some cases because it was considered too expensive to classify
a node as cc-expand.
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Fig. 2. (a) A 2D C-space. Classification of samples as (b) cc-create, (c) cc-merge, (d)
cc-expand, and (e) cc-oversample.

In this work, we use the diameter of the connected components as a mea-
surement of component expansion. The diameter of a cc is the length of the
longest shortest-path in the cc. The diameter is an interesting metric because
its changes correlate with changes in cc-create, cc-merge or cc-expand nodes.
Also, the diameter of a graph can be approximated and is independent of the
distance metric [22]. We let max-diameter be the maximum diameter of all the
ccs and sum-diameter be the sum of the diameters of all ccs. Note that max-
diameter is an approximation of the coverage of the largest connected compo-
nent. Similarly, sum-diameter is an approximation of the coverage and connec-
tivity of all the components in the roadmap. Then we use the rates of change of
max-diameter and sum-diameter to approximate the planner’s effectiveness in
mapping C-space.

In this evaluation method, we stop building a roadmap when the rates of
change of max-diameter and sum-diameter over a certain period of time, e.g.,
k sets of nodes, is smaller than a user-defined threshold, τ , which is used to
define the desired variability in coverage and connectivity (as indicated by the
components’ diameters). We compute the max-diameter among all ccs and the
sum-diameter of all the ccs at the end of each node set.

The percentage of change of the max-diameter (PCMAXi) in the ith set over
its k previous sets is computed as:

PCMAXi =
k−1∑

j=0

|MDi−j −MDi−j−1|
MDi−j−1

,
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where MDi−j is the max-diameter in the (i− j)th node set. We define the per-
centage change of the sum-diameter (PCSUMi) over all the components in a
similar way.

Application-Specific Evaluation

The img framework can accept a broad range of stopping or evaluation criteria
customized for particular applications or user preferences. In this section, we
give two examples of application-specific evaluation methods.

Query Evaluation. This evaluator simply determines whether a roadmap can
solve a set of user specified queries. For each query, it attempts to connect the
start and goal to the roadmap and returns successful if they are connected to the
same connected component. The evaluator returns success when all queries are
solved. This type of evaluator is useful when the user wants to solve a particular
set of test problems or for a single query application.

Max-flow Evaluation. Some applications require many paths between two config-
urations. For example, motion planning has been recently applied to study prob-
lems in computational biology such as protein folding and transitions [3, 23]. To
study how a protein changes between two configurations, we can examine the
probable paths between them in the roadmap. We can define this as a maximum
flow problem on a network. If a roadmap edge weight, w(e), reflects the likelihood
that the protein will move from one configuration to the next, then we can de-
fine edge capacity c(e) as 1/w(e). The evaluator returns success if the max-flow
between the two configurations is above some user specified threshold f .

4 Experiments

img is not a new sampling method, instead it is a general strategy that can
be applied to any sampling-based planner. We investigate how img automat-
ically builds roadmaps with an appropriate number of samples using different
evaluation criteria. Our experiments use the following sampling methods:

• Uniform random sampling: samples are created by picking random values for
each dof.

• Gaussian-biased sampling [4]: sets of two samples are created, one uniformly
at random and the other a distance d away, where d has a Gaussian distribu-
tion. A collision-free sample is added to the roadmap when one is collision-free
and the other is not.

• Bridge-test sampling [9]: similar to Gaussian sampling, it takes two random
samples a distance d apart, where d has a Gaussian distribution, until both
samples are in collision and their midpoint is not. The collision-free sample
is added to the roadmap.
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• Obstacle-based sampling (obprm) [1]: samples are generated near C-obstacle
surfaces by first generating a random colliding (resp., collision-free) sample
and searching along a random direction until the sample becomes collision-
free (resp., in collision).

We implemented all planners with the Parasol Lab motion planning library
developed at Texas A&M University and performed collision detection with
RAPID [8]. For each problem, we built two types of roadmaps: a tree and a
graph. We use the L-Success-M-Failure connection strategy introduced in Sec-
tion 3. In particular, we apply a 10-Success-20-Failure connection strategy for
building trees and 5-Success-20-Failure for building graphs. For rigid-body mo-
tion planning, we use two local planners: straight-line and rotate at 0.5 [2], which
translates from the start to the midpoint, rotates to the orientation of the goal
configuration and then translates to the goal configuration. For articulated link-
age motion planning, we only use the straight-line local planner. All results were
run on 700MHz Intel PIII Xeon processors.

In the following sections, we discuss the performance of img’s roadmap
progress evaluator, the overhead of the img framework, how img and hybrid
prm may be combined, and how img can be tailored to specific applications
such as protein folding.

4.1 Automatically Stopping Roadmap Construction

Here we investigate the performance of the roadmap progress evaluator (see Sec-
tion 3.2) in the four different environments shown in Figure 3. For these experi-
ments, the node set size is 50 samples. After each set, we compute PCMAXi and
PCSUMi. Roadmap construction stops when both PCMAXi and PCSUMi are
below a threshold τ . τ represents the desired roadmap improvement over a period
of time, i.e., k sample sets. Note that in the beginning of roadmap construction
(during the quick learning stage), there will be large changes in PCMAX and
PCSUM . These changes will drop when the enhancement stage begins.

We studied the impact of τ and k on img’s performance for each sampling
method in each environment by varying k with constant τ and alternatively by
varying τ with constant k. Due to space limitations, we only show a subset of
these results. A complete set of results can be found in [26].

A Case Study: Varying k with Constant τ

Figure 4 shows img’s performance at building both trees and graphs for each plan-
ner in the hook environment. Here we vary k (the number of sample sets over
which the percentage change in diameter is computed) while keeping τ constant
at 0.0125. In each plot, the upper two curves show the sum-diameter and max-
diameter as a function of roadmap size for a tree, and the lower two curves for a
graph. The circles indicate where img would stop roadmap construction for var-
ious k. For example, the circle labeled k1, 1250 in Figure 4(a) shows that with
k = k1 = 5, img would stop construction of the tree after 1250 samples. Similarly,
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(a) (b)

(c)

(d)

Fig. 3. Problems studied. (a) Maze environment (wire frame): rigid body robot must
navigate the maze. (b) U shape environment: rigid body robot must navigate from one
chamber to the other. (c) Hook environment: rigid body robot must rotate to move
from one side of the walls to the other. (d) Hook manipulator environment: articulated
linkage (10 dof) must move from one end to the other.

the circle labeled k1, 2150 indicates img would stop construction of the graph after
2150 samples with the same k value. All plots use the same random seed.

From the evolution of max-diameter and sum-diameter, it is clear that the
roadmap grows rapidly in the beginning and then experiences a long period of
refinement until both stabilize. As expected, the diameter in the tree roadmap is
larger than the diameter in the graph roadmap. This corresponds to the graph
roadmap having shorter and smoother paths. An interesting observation from
the graph roadmap is that the “path refinement” stage is clearly shown as the
diameters drop.

Overall, we see that for a fixed τ , increasing k causes the planner to stop
later because larger k values allow img to capture changes over longer periods.
This trend appears in all experiments we ran. This means that we can decide
how long we want to refine the roadmap by what value we choose for k. It is
also clear that for a given k value, different planners stop at different points. In
particular, BasicPRM (Figure 4(a)) stops the earliest. The intuition behind this
is that BasicPRM is the slowest to progress in terms of samples, and thus needs
larger values of k to capture similar changes.

Finally, we defined a witness query from the first chamber to the last chamber.
We use this query in the query evaluation method as described in Section 3.2.
BasicPRM is unable to solve the query after 15000 samples, while Bridge test
solved it after 550 samples, Gauss after 3600 samples, and OBPRM after 500
samples1. It is clear from Figure 4 that the max-diameter and sum-diameter
still experience large changes after solving the witness query. This confirms the
observation in [18] that solving queries is not enough by itself to evaluate whether
the planner is still making progress in mapping the space.

1 The tree and graph roadmaps solve the query at the same point since we used the
same random seed.
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Fig. 4. Performance of img for the hook environment for various planners and k values
with τ = 0.0125. (a) BasicPRM; unable to solve the witness query with 15000 samples.
(b) Bridge test; witness query solved at 550 samples. (c) Gauss; witness query solved
at 3600 samples. (d) OBPRM; witness query solved at 500 samples.

A Case Study: Varying τ with Constant k

Here we study the effect of τ (a threshold for desired variability in coverage
and connectivity) while fixing k at 10 for OBPRM [1] in different environments.
Figure 5 shows results for both trees and graphs using the same random seed.
As before, the circles indicate where img would stop roadmap construction for
the various τ .

Overall, decreasing τ requires the planner to run longer because smaller τ
values signify a smaller tolerance for diameter variability. Thus, a smaller τ
means the planner has to run longer before the learning stabilizes enough to
cause the diameter changes to fall below the threshold.

We set witness queries as described in Figure 3. OBPRM is unable to solve
the query for the hook manipulator after 20000 samples, while it solved the
query for the maze environment after 3750 samples and the U environment after
2850 samples. For the hook manipulator (Figure 5(a)), we observe that τ = 0.025
roughly marks the end of the “quick learning” stage as it transitions into “model
enhancement.” Note, the planner remains in “model enhancement” for the entire
duration. This is reflected by the fact that τ = 0.0007 was never satisfied and
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Fig. 5. Performance of img with OBPRM for several environments and τ values
when k = 10. (a) Hook manipulator environment; unable to solve witness query in
20000 samples. (b) Maze environment; witness query solved at 3750 samples. (c) U
environment; witness query solved at 2850 samples.

the witness query was never solved. In Figures 5(b) and 5(c), “learning decay”
is clearly marked with τ = 0.0007.

Overhead

The overhead incurred by the calculation of roadmap diameter as an evaluation
of roadmap progress is affordable. We show in Table 1 the percentage of total
running time spent in the diameter computation for the hook environment for
the case when the roadmap can contain cycles (a graph). The diameter com-
putation is performed after every 50 samples and for the tree roadmap case is
exactly computed by a Dijkstra search. In the cyclic graph case, the diameter is
approximated using two Dijkstra searches, with the second search starting from
the furthest node found during the first search. While more accurate approxi-
mations of cyclic graph diameters exist [6], this was sufficient for our
experiments.
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Table 1. Diameter computation as a percentage of total running time in the Hook
environment. Diameter computation was performed after every 50 samples. For all
methods, the overhead for img is small, even for large numbers of samples.

Sampling Number of Samples
Method 100 500 1000 2000 4000 8000

BasicPRM 0.20 1.04 1.86 3.16 4.75 6.50
OBPRM 0.00 0.44 0.93 1.70 2.84 4.41
Gauss 0.09 0.48 0.95 1.78 3.13 5.39
Bridge test 0.02 0.09 0.19 0.45 0.99 1.93
Hybrid PRM 0.08 0.34 0.71 1.47 2.70 4.64

Combining img and Hybrid prm

The img framework can be used with any sampling strategy. In this section,
we incorporated hybrid prm [11] in two different ways. First, we simply used
hybrid prm as the sampling strategy in img. Second, we partitioned each img

iteration into two parts: a “learning window” and a “sampling window,” with the
learning window at 20% of the total set size. During the learning window, we use
hybrid prm to learn the appropriate probabilities of using each sampler, starting
with a uniform distribution. We then fix this distribution during the sampling
window. We experimented with several different ways of learning during the
learning window and all variants displayed comparable behavior. In the results
shown here, we use a fixed uniform probability distribution during the learning
window, but learn the probability distribution for the sampling window just as
with hybrid prm sampling. Because the learning window is relatively small, this
allows the learner to observe all the samplers. For all experiments shown here, we
use the cost-based version of hybrid prm described in [11] and five component
samplers: BasicPRM, two versions of the Bridge test, and two versions of Gauss.
The reward mechanism of the original hybrid prm only rewards a planner when
it generates cc-create and cc-merge samples. However, a sample that expands
a roadmap is also important. Therefore, when a planner generates a cc-expand
sample we reward it equal to the complement of the percentage of successful
connections from that sample.

In Figure 6, we show hybrid prm in the img framework. For clarity, we only
show BasicPRM, and the version of Bridge test and Gauss that performed best.
Figure 6(a) shows where img would stop roadmap construction with pure hybrid
prm sampling for various k and τ . This shows similar trends when varying k
and τ as seen previously. Figure 6(b) shows the relative number of samples
created by each sampler. Figure 6(c) shows the probability of being selected and
the percentage of cc-oversample nodes for each sampler. Our results confirm the
findings in [11]: BasicPRM is selected early on because it is relatively inexpensive
but dies out quickly as other, more powerful and expensive samplers are selected.



Incremental Map Generation (IMG) 65

 50

 100

 150

 200

 250

 300

 350

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

di
st

an
ce

samples

Hook environment: Hybrid. tau: t1=0.05, t2=0.0125, t3=0.0062, k: k1=5, k2=10

graph: max diameter graph: sum diameter

k1:t1,2400

k1:t2,4000
k1:t3,4600

k2:t1,4250
k2:t2,3,4850

(a)

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

no
de

s 
[lo

g 
sc

al
e]

samples (500 per set) [log scale]

Hook environment: Hybrid Sampling

N(PRM) N(Bridge) N(Gauss)

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 1  10  100  1000  10000

pr
ob

ab
ili

ty

Hook environment: Hybrid Sampling

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1  10  100  1000  10000

ov
er

sa
m

pl
ed

 %

samples (500 per set) [log scale]

PRM Bridge Gauss

(c)

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

no
de

s 
[lo

g 
sc

al
e]

samples (500 per set) [log scale]

Hook environment: IMG with Hybrid Learning Window

N(PRM) N(Bridge) N(Gauss)

(d)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1  10  100  1000  10000

pr
ob

ab
ili

ty

Hook environment: IMG with Hybrid Learning Window

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1  10  100  1000  10000

ov
er

sa
m

pl
ed

 %

samples (500 per set) [log scale]

PRM Bridge Gauss

(e)

Fig. 6. Applying Hybrid prm with img. Hybrid prm using img: (a) stopping criteria,
(b) number of samples per sampler, and (c) sampler probability and oversample %.
Hybrid prm Learning Window: (d) number of samples per sampler and (e) sampler
probability and oversample %. The witness query solved after 1440 samples.

In the end, after the witness query is solved, hybrid prm vacillates between a
version of Gauss and a version of Bridge test.

Figure 6(d) and 6(e) show similar plots as 6(b) and 6(c), respectively, for img

with a hybrid learning window. Unlike the previous plots (b and c), this version
does not select a dominant sampler towards the end of roadmap construction,
after the witness query is solved. We believe in fact that this is a more accurate
evaluation because at this stage all samplers are equally “bad,” i.e., none are
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able to generate useful samples and should not necessarily be distinguished. In
particular, note that more than 80% of the nodes created by all samplers are
cc-oversample nodes in the later stages of roadmap construction.

4.2 Application-Specific Stopping Criteria

As discussed in Section 3.2, the img framework can accept a broad range of
stopping criteria that can be customized for particular applications or user pref-
erences. We can apply our framework to study computational biology problems
such as protein folding and protein structure transitions.

Here, we compare our general roadmap progress evaluation to an application
specific one that measures when the secondary structure formation order (i.e.,
the high-level order in which the protein folds) has stabilized in the roadmap
(see [24] for details). We specifically study the folding of proteins G, L, and
mutants of protein G, NuG1 and NuG2 [19] because they are known to fold
differently despite having similar structure.

Figure 7 shows how each metric varies during roadmap construction for pro-
tein G and NuG1: roadmap progress evaluation indicated by black circles at
various k and τ and stable secondary structure formation order indicated by red
circles. (Similar plots for all proteins studied can be found in [26].) The plots
also show the percentage of folding pathways in the roadmap that follow the
same order as seen experimentally. The application specific stopping criteria is
noisy in the early phases of roadmap construction and then stabilizes after 4000
nodes. For this application, PCMAX and PCSUM are similar since there is
typically one large connected component with the remaining nodes as singletons.
Even so, roadmap progress evaluation is able to identify different stopping points
for different τ and k values. In fact, for both proteins shown here, τ = 0.0062
and k = 5 corresponds to when the percentage of folding pathways matching
experimental data stabilizes.
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Fig. 7. Comparison of img roadmap progress evaluation to application specific evalu-
ation for (a) protein G (112 dof) and (b) a mutant of protein G (114 dof) which are
experimentally known to fold differently despite structural similarity.
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5 Conclusion

Here, we proposed a framework to automatically determine how many samples a
planner needs for a given motion planning problem. This framework can accept a
broad range of evaluation criteria which can be customized for particular appli-
cations. We provide easy to define parameters that allow users to stop roadmap
construction by satisfying criteria based on the quality of the roadmap. This has
many potential applications that we plan to study. There are also several other
areas that we would like to investigate further. For example, we would like to
expand our list of node generation methods to include other types of random
sampling and grid-based techniques.
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Abstract. We present algorithms for computing all placements of two and three fin-
gers that cage a given polygonal object with n edges in the plane. A polygon is caged
when it is impossible to take the polygon to infinity without penetrating one of the
fingers. Using a classification into squeezing and stretching cagings, we provide an al-
gorithm that reports all caging placements of two disc fingers in O(n2 log n) time. Our
result extends and improves a recent solution for point fingers. In addition, we con-
struct a data structure requiring O(n2) storage that can answer in O(log n) whether
two fingers in a query placement cage the polygon. We also study caging with three
point fingers. Given the placements of two so-called base fingers, we report all place-
ments of the third finger so that the three fingers jointly cage the polygon. Using the
fact that the boundary of the set of placements for the third finger consists of equilib-
rium grasps, we present an algorithm that reports all placements of the third finger in
O(n6 log2 n) deterministic time and O(n6 log n(log log n)3) expected time. Our results
extend previous solutions that only apply to convex polygons.

1 Introduction

The caging problem was posed by Kuperberg in [7] as a problem of designing
an algorithm for finding a set of points that prevents a polygon from moving
arbitrarily far from a position. In other words, a polygon is caged when it is
impossible to take it to infinity without penetrating a finger. However, to solve
the problem it is easier to keep the polygon fixed and move the fingers instead,
keeping their mutual distances fixed.

Caging is related to the notions of form (and force) closure grasps (see e.g.
Mason’s text book [9]), and immobilizing and equilibrium grasps [12]. Rimon et
al. [11] introduced the notion of a caging set (or capture region) as the set of
placements of fingers that may not immobilize the object but may prevent it
from escaping to infinity. A comprehensive review on caging and related prob-
lems can be found in [1]. Caging sets have been applied to several problems in
manipulation, such as grasping and in-hand manipulation, mobile robot motion
planning, parts feeding, and stable pose computation (see [4] for the references).

Using stratified Morse theory, Rimon and Blake [11] showed that in a two-
fingered one-parameter gripping system, the hand’s configuration at which the
cage is broken corresponds to a frictionless equilibrium grasp. These results are
extended by Davidson and Blake [2] to a three-fingered one-parameter gripper.

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 71–86, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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In the problem of caging a polygon with two disc fingers, it is required to
compute all placements of two disc fingers that cage a polygonal object. This
problem was first tackled by Sudsang and Luewirawong [14] by computing an
acceptable distance for every pair of immobilizing vertices independent of the en-
tire body of the polygon. As a result, the algorithm is not complete as it reports
only a subset of all caging placements of two disc fingers. Independently Pipat-
tanasomporn and Sudsang [10] have recently also solved the problem for point
fingers in O(n2 logn), and also provided a data structure capable of answering
queries in O(log n). However the disc-finger problem has not been analyzed in
their paper.

In the problem of caging a polygon with three fingers, the placements of two
fingers, called the base fingers, are given. It is required to find all placements
of the third finger, such that the resulting fingers cage the polygon. Sudsang
[13] stated a sufficient (but not necessary) condition for caging a convex object
in the plane with more than two fingers using the width of the object. For a
non-convex object it was proposed to divide the object into convex parts and to
consider the maximum width sub-part. The concept of the caging set was used
by Sudsang and Ponce [15] as a basis for computing a plan for manipulating
polygonal objects using three discs. The resulting caging set was very small and
hence not complete, as the computation only takes three edges into account.
Erickson et al. [4] provided the first complete algorithm for three-finger cagings
of convex polygons. Two fingers are placed along the boundary of the polygon
and then a region —the caging set— is computed for the third finger. An exact
algorithm is provided that determines this region in O(n6) time, and also an
approximation algorithm is provided with pre-specified accuracy. However, the
problem of computing the set of all caging placements for non-convex polygons
remained open, and is tackled in this paper.

In the first part of this paper (in Section 3) a solution for computing all
caging placements of two disc fingers is presented. In addition a data structure
is presented that requires O(n2) storage and is capable of answering in O(log n)
whether a given placement of two fingers is caging. A given placement of two
fingers is squeezing (stretching) caging, if it is caging and anyhow closing (open-
ing) the fingers without penetrating the polygon the fingers remain caging until
they reach a minimum (maximum) in which both fingers are on the boundary.
It can be proven that any caging is squeezing or stretching. Using this fact, our
work for two fingers extends and improves the result in [10] by providing an
algorithm for computing all caging placements of two disc fingers that runs in
O(n2 logn). To solve the problem we have employed pseudo triangulation, cell
decomposition, connectivity graphs, and an event processing technique.

In the second part of this paper (in Section 4), the solution for computing all
caging placements of three fingers with a fixed pair of base fingers is presented.
It is shown that the boundary of the caging regions made by the third finger
corresponds to equilibrium grasps. Our work on three-finger caging uses this
fact to extend the result in [4] by providing the first complete algorithm for
computing the set of all caging placements for non-convex polygons. To solve
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this problem we have used similar techniques as in our two fingers solution. The
running time of the proposed three point-finger caging algorithm is O(n6 log2 n)
deterministic time, and O(n6 logn(log logn)3) expected time.

2 Definitions and Assumptions

The given simple closed polygon P has no holes and is bounded by n edges. Let
Pd be the Minkowski sum outer-face of P and a closed disc of radius d. More
formally Pd = P ⊕Δd

1, where Δd is the disc of radius d centered at the origin.
Placing disc fingers of radius d around P is equivalent to placing point fingers
around the generalized polygon Pd. A generalized polygon is a shape bounded by
straight segments and circular arcs. As the holes of Pd correspond to placements
of a single finger caging P , we discard these holes in our computations of two
and three finger cagings.

Without loss of generality we can assume that Pd is enclosed in a sufficiently
large rectangle B. Let F ⊂ R

2 be F = B \ int(Pd). Clearly F is the set of
all possible placements for a finger. Throughout the paper we assume that the
fingers are points, P is Pd, and we refer to F 2 (= F ×F ) and F 3 (= F ×F ×F )
as the admissible space for two and three fingers.

To solve the caging problem with two disc fingers, we decompose F into pseudo
triangles. A pseudo triangle here is defined as a triangle that has at most one
concave circular arc of radius d, and arc angle less than π. To obtain a pseudo-
triangulation, new vertices may be added, but no vertex of a pseudo triangle
should lie inside the edge or arc of one of its neighbor triangles.

A force vector with its application point fixed uniquely determines a wrench.
Our model for wrenches induced by a given polygon differs from that of Marken-
scoff et al. [8] in the case of a point contact and a convex vertex. Consider a point
on a convex vertex of a polygon. In our model, the possible wrenches for this point,
similar to the concave case, contains the set of all convex combinations of the two
unit normal wrenches to both incident edges which makes a cone. The intuition
behind this model is that an ε-radius disc-finger on a convex vertex can apply any
wrench being a combination of the two normal wrenches with ε adjustment.

Using Corollary 4.1 from [12], the grasp made by fingers on edges is an equi-
librium grasp if and only if the wrench vectors meet in a common point and the
angle between two consecutive wrenches is not more than π. When some of the
fingers are at vertices, the grasp is an equilibrium grasp provided that there is a
point that lies on the intersection of cones and wrenches and satisfies the angle
condition. The number of fingers that make an equilibrium grasp is the number
of fingers that exert a non-zero wrench on the object.

3 Two Fingers Caging

In this section the solution for the caging problem of a polygon P with two disc
fingers with the same fixed radius is presented. In this problem all placements
1 A ⊕ B = {a + b|a ∈ A, b ∈ B}.
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of two fingers that cage the polygon is computed. It is also required to answer
quickly whether a given placement of two fingers is caging.

Let CP be the set of all two-finger caging placements of a polygon P and let
Cδ,P be the set of all caging placements for which the fingers are δ apart. Clearly
CP =

⋃
0<δ∈R Cδ,P . Increasing or decreasing δ, the topology of Cδ,P changes at

certain critical δ’s. We use this fact to construct the set of all cagings.
Let (p1, q1) and (p2, q2) ∈ F 2 be two placements of a two-finger hand. These

placements are δ-reachable if |p1q1| = |p2q2| = δ and both of them lie in the
same connected component of the admissible space of finger placements that
are δ apart. They are δ-max-reachable (δ-min-reachable) if |p1q1|, |p2q2| ≤ δ
(|p1q1|, |p2q2| ≥ δ) and both of them lie in the same connected component of
the admissible space of finger placements that are at most (at least) δ apart.
When two placements are δ-reachable, δ-max-reachable, or δ-min-reachable, it
is possible to move the two-finger hand between the placements keeping the
distance of the fingers fixed, at most δ, or at least δ respectively. Note that when
two placements are δ-max-reachable (δ-min-reachable) they are δ′-max-reachable
(δ′-min-reachable) for any δ′ ≥ δ (δ′ ≤ δ). Hence, if a δ-apart placement is not
δ-max-reachable (δ-min-reachable) to a δ-apart placement being remote from the
polygon, it is squeezing (stretching) caging. If the reachability type is clear from
the context or if we want to define something for all types of reachability we
will use just the word reachable. Because of the lack of space we just mention
the following important fact that provides the basis for our approach outlined
in Subsection 3.2.

Lemma 3.1. Given one obstacle in the plane, if two placements (p1, q1) and
(p2, q2) of a two-finger hand satisfying |p1q1| = |p2q2| = δ are both δ-max-
reachable and δ-min-reachable, then they are δ-reachable.

The direct result of Lemma 3.1 is that, if a placement is caging, then it is
squeezing caging, stretching caging, or both. In Figure 1(a) a shaded polygon
and four δ apart placements (p1, q1), (p2, q2), (p3, q3) and (p4, q4) are shown.
No two placements are δ-reachable, but (p1, q1) and (p2, q2) are δ-max-reachable
while (p1, q1) and (p3, q3) are δ-min-reachable. Moreover (p1, q1) is not caging,
(p2, q2) is stretching caging, (p3, q3) is squeezing caging, and (p4, q4) is both
stretching and squeezing caging.

Based on above reachability notions and a pseudo triangulation of the set F ,
the space F 2 is decomposed into constant-complexity 4D cells for every δ, such
that all placements inside each cell are reachable from each other. The required
property of the pseudo triangulation is stated in the following lemma. The con-
struction is relatively easy and therefore we confine ourselves to mentioning the
result.

Lemma 3.2. It is possible to decompose F in O(n log n) time in O(n) pseudo
triangles such that every pseudo triangle has a constant number of neighbors.

Based on δ and the cell decomposition of F 2, a connectivity graph is defined
in Subsection 3.1, with cells as the nodes, and two neighbor nodes are con-
nected by an edge if there are reachable placements inside the corresponding
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cells. Note that all the corresponding placements of one node are either all caging
or all noncaging. Hence we associate with a node the caging status (caging or
noncaging) of all its placements. Since all noncaging placements are reachable
from each other, the noncaging nodes form a connected component in the connec-
tivity graph. Therefore, all components in the graph except the one containing
noncaging placements represent a set of caging placements.

To compute all caging placements of two fingers, it is possible to start from
zero and increase (or equivalently start from a largely enough distance and
decrease) the distance of the fingers. Meanwhile, there are critical distances
at which the connectivity graph changes. The idea is to compute all critical
distances and sort them increasingly. Clearly between two consecutive critical
distances, the connectivity graph does not change. Therefore it is possible to
compute all possible connectivity graphs for all distances by considering the
critical distances one by one, and updating the connectivity graph accordingly
in a reasonable time (instead of computing the whole connectivity graph from
scratch every time). When a caging cell merges to or becomes disconnected from
the noncaging cell, equivalently a connected component of the graph respec-
tively merges to or becomes disconnected from the component of the graph that
represents the noncaging placements. To update the graph for every merging
or splitting of cells some edges respectively should be added to or deleted from
the graph as the update operation. If the update operation includes deletion of
edges the components of the graphs should be maintained during the process
and it is not possible to do this operation in constant time (at least easily). But
if it consists of just addition of edges the components will just merge or emerge
and therefore it is possible to maintain the two types of components in con-
stant amortized time. By using the squeezing/stretching fact, defined formally
in Subsection 3.1, and increasing/decreasing the distance the cells just merge or
emerge and therefore the update operation just include addition of nodes and
edges in constant time. Whenever a caging node is going to join a noncaging
node by a path, the corresponding 4D cell of the caging node is reported as a
set of caging placements; any placement inside this cell is caging. The complete
algorithm and the running time analysis is explained in Subsection 3.2.

3.1 Two Fingers Squeezing and Stretching Caging

Let s and s′ be two closed subsets of F . The set of admissible placements induced
by a pair of subsets of F for two fingers with distance δ is the set

Rδ(s, s′) = {(p, q) ∈ s× s′ | |pq| = δ}.

The set Rδ(s, s′) consists of a number of 4D connected components. Every con-
nected component corresponds to a set of δ-reachable placements. Let RM

δ (s, s′)
be the set of connected components of Rδ(s, s′). Therefore every member of
RM

δ (s, s′) is a subset of F 2 and is called a cell. If s and s′ have constant com-
plexity, the number of cells in RM

δ (s, s′) and their complexity will be constant
too. Figure 1(b) shows a shaded polygon, its Minkowski-sum outer-face with a
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Fig. 1. (a) Reachability notions and caging types, (b) RM
δ (ABC,DEF ) has one cell,

(c) connectivity subgraph of distance δ when fingers are points and the first finger is
inside ABC

disc of radius d (displayed dashed), and two pseudo-triangles ABC and DEF .
Here RM

δ (ABC,DEF ) has one cell. It seems that (p2, q2) is not δ-reachable from
(p1, q1) using the placements inside the two pseudo-triangles; but the placement
is reachable from (p1, q1) by moving p1 toward B and moving q1 toward F and
then moving p1 toward C.

Let T be a suitable pseudo triangulation of F (i.e. satisfies Lemma 3.2). The
connectivity graph CGδ,T (V,E) for T and distance δ is defined by

⎧
⎪⎪⎨

⎪⎪⎩

V = {r ⊂ F 2 | ∃ t, t′ ∈ T : r ∈ RM
δ (t, t′)},

E = { (r1, r2) ∈ V 2 | ∃ t1, t
′
1, t2, t

′
2 ∈ T : r1 ∈ RM

δ (t1, t′1),
r2 ∈ RM

δ (t2, t′2) ∧ ∃r ∈ RM
δ (t1 ∪ t2, t

′
1 ∪ t′2) : r = r1 ∪ r2 }.

By definition every cell is assigned a unique node and therefore every admissible
placement of fingers is assigned a node in the graph; there is no edge between
the cells of a set RM

δ (t, t′). There is an edge between two cells in RM
δ (t1, t′1) and

RM
δ (t2, t′2) when there is a cell in RM

δ (t1 ∪ t2, t
′
1 ∪ t′2) that contains the two cells.

In other words there is an edge between two nodes when their corresponding
pairs of pseudo triangles are neighbor and their corresponding placements are
reachable. As every pseudo triangle has a constant number of neighbors in T ,
the total number of edges is linear in the total number of nodes. Therefore if
there are O(n) pseudo triangles in T , there will be O(n2) nodes and edges in
CGδ,T (V,E).

In Figure 1(c) a shaded polygon bounded in a rectangle, the polygon exterior
triangulated (displayed dotted), and one of the triangles ABC are shown. Since
it is not easy to draw the whole connectivity graph for distance δ, we show a
subset of the graph for point fingers while the first finger is inside ABC. For any
triangle if there are δ apart points inside that triangle and ABC, then consider
a node in the graph (the nodes are displayed with small letters). Since there are
no two points of distance δ inside ABC no node is considered for it. Note that
here since no RM

δ (ABC, t) has more than one cell, every pair of (ABC, t) has
at most one node in the graph. When it is possible to move the second finger
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from one triangle to its neighbor while keeping the first finger inside ABC and
the distance δ, then connect the two corresponding nodes by an edge (displayed
with dashed segments).

Lemma 3.3. Let (p1, q1) ∈ r1 ∈ RM
δ (t1, t′1) and (p2, q2) ∈ r2 ∈ RM

δ (t2, t′2) be
two placements. (p1, q1) and (p2, q2) are δ-reachable, if and only if there is a
path between r1 and r2 in CGδ,T (V,E).

Let vδ be a noncaging node for which vδ ∈ RM
δ (tδ, t′δ), and tδ, t

′
δ ∈ T . Without

loss of generality, we can assume that it is possible to compute vδ based on
B, T , and δ such that is not caging (clearly vδ may change when δ changes).
The points on the boundary of B at distance δ e.g. do not cage the polygon
being remote from the polygon. Using the fact that all noncaging nodes form a
connected component in the graph, a given placement of fingers is caging if and
only if there is no path between the corresponding node and vδ in the graph.
Let the set of caging nodes for the polygon P and distance δ be the set

CNδ,P = {v ∈ V (CGδ,T ) | There is no path in CGδ,T between v and vδ}.

and let the set of caging placements obtained by CG graphs be the set

CNP = {(p, q) ∈ F 2 | ∃v ∈ CN|pq|,P : (p, q) ∈ v}.

Consider the following definitions of R′
δ(s, s

′) and R′′
δ (s, s′) that correspond to

the δ-max-reachable and δ-min-reachable set of placements induced by s and s′:

R′
δ(s, s

′) = {(p, q) ∈ s× s′ | |pq| ≤ δ},

R′′
δ (s, s′) = {(p, q) ∈ s× s′ | |pq| ≥ δ}.

Replacing Rδ(s, s′) with R′
δ(s, s

′) and R′′
δ (s, s′), and δ-reachable with δ-max-

reachable and δ-min-reachable in above definitions results in new definitions of
R′M

δ (s, s′) and R′′M
δ (s, s′), CG′

δ,T and CG′′
δ,T , CN ′

δ,P and CN ′′
δ,P , and CN ′

P and
CN ′′

P respectively in order. The adjusted Lemma 3.3 still holds for CG′
δ,T and

CG′′
δ,T . We refer to CG′

δ,T and CG′′
δ,T as the max and min connectivity graph and

to CN ′
P and CN ′′

P as the set of all squeezing and stretching caging placements
respectively. Because of the lack of space we just mention the following important
facts. Lemma 3.5 is the direct result of Lemma 3.1.

Lemma 3.4. Given a polygon P and a distance δ, it is possible to compute
CGδ,T , CG′

δ,T , CG′′
δ,T , CNδ,P , CN ′

δ,P , and CN ′′
δ,P in O(n2). Then using T it

is possible to determine in O(log n) time whether a given placement of two disc
fingers that are δ apart cages P .

Lemma 3.5. CP = CNP = CN ′
P ∪ CN ′′

P .

As it was mentioned in Section 3, it is possible to maintain the graph compo-
nents in computing the squeezing and stretching caging placements in constant
amortized time. Therefore, based on Lemma 3.5 that states the relation between
the common notion of caging on one hand and squeezing and stretching caging
at the other hand, we compute all caging placements by computing CN ′

P and
CN ′′

P separately in Subsection 3.2.
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3.2 Two Disc Fingers Caging Algorithm

In this section we present our approach to solving the problem of finding all
caging placements of two disc fingers of equal radius. To report all cagings the
algorithm uses Lemma 3.5 and reports the two sets CN ′

P and CN ′′
P instead,

which both consist of 4D cells corresponding to squeezing and stretching cagings
respectively. Each point inside every cell corresponds to a placement of two disc
fingers on the plane that cages P . The algorithm consists of three steps for both
types of cagings. Since these steps are similar for both types, we focus on the
computation of the set CN ′

P of squeezing cagings:

1. find and sort the critical distances (see below) induced by all pairs of pseudo-
triangles in T (a suitable pseudo-triangulation of F ),

2. compute CG′
δ,T for all δ by processing the critical distances and updat-

ing CG′
δ,T accordingly, meanwhile reporting the possible squeezing caging-

placements,
3. report the remaining squeezing caging-placements.

Hereafter we use pseudo triangle and triangle interchangeably. The first step is
based on the fact that the structure of CG′

δ,T only changes at particular values
of δ, to which we shall refer as critical distances. Increasing δ from zero, we
distinguish three types of critical distances induced by a single pair (t, t′):

1. |R′M
δ (t, t′)| increases,

2. |R′M
δ (t, t′)| decreases,

3. for neighbor pairs of (t1, t′1) and (t2, t′2) in R′M
δ (t1 ∪ t2, t

′
1 ∪ t′2), a member of

R′M
δ (t1, t′1) merges with a member of R′M

δ (t2, t′2).

The cells of a pair of triangles can only merge and not split, because when two
placements become δ-max-reachable they remain so for any bigger δ. Therefore,
the first type only occurs when a cell emerges, and the second only occurs when
two cells merge together. Since the first two types of critical distances depend
on t and t′ only, the number of such distances is constant for a given t and t′.
From the fact that all pseudo-triangles in T have a constant number of neighbors
and also R′M

δ (t, t′) has constant cardinality, it follows that the number of critical
distances of the latter type is constant as well. As a result, we can accomplish
the computation and sorting of all O(n2) critical distances in O(n2 logn) time.

In the last two steps we use a graph-based data structure to keep track of
the changes in CG′

δ,T while increasing δ. When R′M
δ (t, t′) changes topologically

for a critical distance δ, a new cell emerges or two cells merge into a single cell
containing the original ones. For each newly emerging or merging cell there is a
corresponding node in the graph and all nodes are included in the graph from
the start. With every node in the graph we associate a caging status, caging or
noncaging. Initially all nodes are caging. Every node also has a critical distance
that will be determined later; initially it is set to zero. Every pair of triangles
has a corresponding set of nodes in the graph and a set that specifies the current
nodes in the graph for the current value of δ.

Starting from zero with CG′
0,T , which is built from scratch, the second step

processes the critical distances in order to update the connectivity graph. Since
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P does not contain holes, there is no caging node in CG′
0,T . At each critical

distance some actions are taken to determine CG′
δ,T from CG′

δ′,T , in which δ
and δ′ are the current and previous critical distances respectively. We recall
that between two consecutive critical distances the graph does not change. The
actions taken to update the graph depend on the type of critical distance. The
first two sets of actions are the same and they are not repeated. They follow in
order:

1,2. The current set of nodes for the corresponding pair of triangles is updated.
The edges for the new node are computed. If there is no edge or the new
edges only connect to caging nodes, the caging status of the node is ‘caging’.
Otherwise the caging status is ‘noncaging’. If the corresponding node is a
bridge between a caging node and a noncaging node, a maximal report (see
below) is performed; otherwise the critical distances of the old nodes (if
existing) are set to the current value of δ.

3. An edge is added between the corresponding nodes. If the nodes had a differ-
ent caging status, a maximal report is performed.

A maximal report is done, when the caging status of a node changes from caging
to noncaging. This happens for squeezing caging-placements for which δ reaches
the critical maximum distance, at which any distance larger than that distance
allows the fingers to escape. Look at Figure 2(a) for some of the critical maximum
distances that lead to maximal report. In this operation, the corresponding 4D
cells of all the nodes in the graph that are in the same connected component of
the changing node are reported, and their associated critical distances are set to
the current value of δ and their associated caging statuses are set to ‘noncaging’.
If a node becomes ‘noncaging’, it can never become ‘caging’ again. Hence every
node is reported at most once, and the time devoted to reporting the caging cells
is linear in the number of nodes and therefore is O(n2).

Every update operation takes constant time. Clearly every change is local to
a node and its neighbors. Since no node is added to the graph, the addition of
edges is the only performed operation; the number of neighbor nodes and the
number of edges for each node is constant. Therefore, the updates induced by a
single critical distance take constant time in total.

Since some of the squeezing cagings may have no critical maximum distance
(e.g. (p4, q4) in Figure 1(a)), all the remaining squeezing cagings are reported
in a separate step at the end. In the third step the final connectivity graph is
traversed for nodes that are ‘caging’ but their critical distance fields are still
zero. For every such node, the field is set to infinity and its 4D cells is reported.
The following theorem follows from the preceding discussion.

Theorem 3.6. Given a polygon with n edges and two disc fingers of equal radius,
it is possible to report all the caging placements in O(n2 logn) time.

Theorem 3.7. It is possible to compute a data structure with O(n2) space and
time complexity, with which it is possible to answer in O(log n) whether a given
placement of fingers is caging.
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Proof. To answer the caging query using the two final (squeezing and stretching)
computed data structures, the corresponding pseudo triangles are located in
O(log n) [3]. Then for the given distance of the fingers, the corresponding two
nodes in the graphs can be determined in constant time. There are two cases;
If the caging status of any node is caging, the answer is caging. Otherwise, the
critical distance field of every node is compared with the query distance. For
squeezing/stretching caging, if the query is smaller/larger the answer is caging;
otherwise the answer is noncaging. Therefore the total time to answer a query
is O(log n). Clearly the space needed to store the data structure is O(n2).

4 Three Fingers Caging

In this section, the caging problem for three point fingers is presented. In this
problem the placement of two fingers, called the base fingers, is given. It is
required to find all placements of the third finger, such that the fingers cage the
polygon. The caging placements form some regions on the plane of which the
boundaries should be reported. We assume that the base fingers do not cage
the polygon without the third finger.

(b) (c)(a)

Fig. 2. (a) Three critical maximum distances displayed with dotted arrows and two
critical minimum distances displayed with solid arrows. (b and c) Two loci are displayed
for two polygons at the right side in which the filled boxes represent the base fingers
and dotted triangles represent equilibrium grasps.

Similar to the solution of the two fingers case, F is triangulated and the
connectivity graph for F 3 is defined for a given triangulation T and a given vector
of distances of three fingers δ. Therefore Rδ(s, s′, s′′), RM

δ (s, s′, s′′), CGδ,T , and
CNδ,P are defined similarly. Because of the similarity we have not repeated the
definitions and the lemmas, except for the following important lemma.

Lemma 4.1. Given T and δ, it is possible to compute CGδ,T and CNδ,P in
O(n3) and to answer queries about caging status of given fingers placements
with δ distances in O(log n).

In Subsection 4.2 it is shown that the third finger placed on a point on the caging
boundary jointly with the given placements of the base fingers correspond to
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some equilibrium grasps. It does not mean that the fingers necessarily make an
equilibrium grasp at that placement, but there is a corresponding placement,
reachable from that placement, at which the fingers make an equilibrium grasp.
Every curve on the caging boundaries corresponds to a set of equilibrium grasps
that induced by the same pair or triple of features of the polygon. Therefore, it
is possible to compute all curves on the caging boundaries by considering every
pair or triple of features and computing the possible equilibrium grasps. The
resulting grasps when moved to the fixed placement of the base fingers define
some 2D curves which we call curves of equilibrium grasps ; only some parts of
these curves constitute the caging boundaries. Based on these facts, the idea is
to compute all possible caging intervals on every curve, and then to compute the
caging boundaries using the caging intervals. In Subsection 4.1 all equilibrium
grasps involving the two base fingers are computed. Note that the base fingers
have a fixed distance.

To compute the caging intervals on each curve of equilibrium grasps the vector
of distances, δ, is altered by changing the position of the third finger along that
curve. Therefore for every point on the curve, CGδ,T is computed accordingly.
Similar to the two fingers case, there are critical points on the curve at which
CGδ,T changes and it does not change between two consecutive critical points.
The same event processing approach is employed here to compute all possible
CGδ,T when the third finger moves along the curve. It is shown that the total
number of possible nodes is O(n3) and all of them are included in the graph
from the start; so there is no need to add or remove nodes from the graph. Here
in contrast to the two fingers case, the update operation may require deletion
of edges beside addition because an existing cell may split. Therefore, we have
to use a special data structure called fully dynamic graph to efficiently query
the caging property each time. The complete algorithm and the running time
analysis is explained in Subsection 4.2.

4.1 Locus of Three Fingers Equilibrium Grasps

Consider all possible equilibrium grasps involving three fingers, two of which —
referred to as base fingers— have a fixed distance, and the triangles defined by
the fingers for every such grasp. Now consider two fixed points in the plane with
distance equal to that between the base fingers, and draw the triangles such that
the fixed points are on the base fingers. It is required to find the locus of the
third finger in the plane. There are two general cases depending on the number
of fingers that make the equilibrium grasp:

1. two fingers on
a) two edges: the two edges should be parallel, hence it is possible to move

the fingers together in one direction along the edges: the locus of all
placements of the third finger describes a circular arc;

b) an edge and a vertex, or two vertices: the locus of all placements of the
third finger describes a circular arc;
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2. three fingers with
a) a base finger at a vertex: the locus of all placements of the third finger

describes a line segment;
b) the third finger at a vertex: the locus of all placements of the third finger

describes a limaçon of Pascal or a line segment;
c) all fingers on edges: the locus of all placements of the third finger de-

scribes a circular arc or a line segment;
d) a base finger and the third finger at vertices: the locus of all placements

of the third finger describes a finite number of points.

In Figure 2(b and c) two loci are displayed for two polygons. The filled boxes
represent the base fingers and the empty boxes represent the third finger. Each
dotted triangle represents an equilibrium grasp and is redisplayed at the right
side with solid lines. For the polygon (b), the third finger is at a vertex and the
base fingers are on two edges for which the locus is a limaçon of Pascal arc. For
the polygon (c), all three fingers are on edges for which the locus is a circular
arc. The loci are displayed with dotted curves at right side above the triangles
for each polygon.

Since the boundary of the caging regions consists of continues curves, the
points of case 2.d are not relevant and can be discarded. Since the number of
features is at most three, there are O(n3) curves.
Theorem 4.2. The locus of all equilibrium grasps made by three fingers of which
the distance of base fingers is fixed, when moved to a fixed placement of the base
fingers, defines O(n3) constant complexity 2D curves.

4.2 Three Fingers Caging Algorithm

We report all placements of a point finger such that it cages P together with
the two given base fingers. The output of the algorithm is a set of regions. Each
point inside every region corresponds to a placement of the third finger that
cages the polygon jointly with the base fingers.

Before explaining the algorithm, it should be shown that the boundary of
the caging regions correspond to the boundary of the polygon or to sets of
equilibrium grasps. Consider an intersection point of the caging boundary (not
on the polygon boundary) and an arbitrary line. The intersection point is a
puncture point (see [11] for the definition), because moving the third finger
along the line, the caging status changes at that point. Considering the set
of fingers consisting of the base fingers and the third finger moving on the line,
Proposition 3.3 of [11] states that the corresponding placement corresponds to an
equilibrium grasp. Therefore the caging boundaries correspond to the boundary
of the polygon or to sets of equilibrium grasps.

Lemma 4.3. The caging regions of a polygon are bounded by curves of equilib-
rium grasps or the polygon boundary.

The algorithm consists of four steps:

1. Compute the locus of the third finger in all possible equilibrium grasps made
with three fingers,
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2. determine critical points related to a triple of triangles and a curve, and sort
all of the critical points for every curve on that curve,

3. determine the caging intervals by computing all possible CGδ,T for every
curve by processing the sorted critical points,

4. report the caging boundaries using the computed caging intervals.

In the first step, all the equilibrium grasps induced by three fingers are computed
as a set of curves, curves of equilibrium grasps. To ease the computation of caging
intervals on the caging boundaries (in the last step), the polygon edges are added
to the set of curves.

To explain the second step, the notion of a critical point should be defined
first. Consider a curve E of equilibrium grasps and a point p on E at which the
third finger is placed. It is possible to build a connectivity graph for p and the
base fingers. Moving the third finger along E, there are two groups of critical
points on E related to a triple of triangles (t, t′, t′′):

1. |RM
δ (t, t′, t′′)| changes,

2. (t2, t′2, t′′2) and (t1, t′1, t′′1 ) are neighbors and a member of RM
δ (t1, t′1, t′′1) merges

with or becomes disconnected from a member of RM
δ (t2, t′2, t

′′
2) inside RM

δ (t1∪
t2, t

′
1 ∪ t′2, t

′′
1 ∪ t′′2 ).

In the second step, all critical points related to a triple of triangles and a curve
are calculated, and then all of the critical points for every curve are sorted along
that curve. Since both the complexity of the triangles and their neighbors and
the complexity of each curve are constant, there are constant number of critical
points for every triple of triangles. Considering all possible ordered triples of
triangles, there are O(n3) critical points for each curve, including the intersection
points of that curve with the polygon and other curves of equilibrium grasps.

In the third step, all possible CGδ,T are computed for every curve by taking
the critical points in order and updating CGδ,T for that curve; meanwhile the
caging intervals are calculated. The approach for every curve E is as follows.
One of the critical points p on E is taken as the starting point. The same data
structure that was used in the two fingers case is used, without critical distance
field. Initially CGδ,T is built from scratch for p and the base fingers. Changing
the position of p on E according to sorted critical points, one of the following
actions is taken to update the current CGδ,T , depending on the type of the
critical point:

1. the current set of nodes for the corresponding ordered triple of triangles is
updated and the edges for the new set of nodes are computed, or

2. an edge is added between or removed from the two corresponding nodes.

Similar to the two fingers case, the update operation on the graph can be done in
constant time for every critical point. In addition, however, we need to know the
caging status of the current placement. Therefore, it is required to maintain a
special data structure to quickly answer whether the current placement is caging.
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A placement is caging, if there is no path in the current CGδ,T between the
corresponding node and vδ, a noncaging node (here too, the vδ may change when
δ changes). Using the fully dynamic graph data structure [6, 5], it is possible to
query for the connectivity of two nodes in the graph in O(log n/ log logn) time
and to update the mentioned data structure in O(log2 n) deterministic amortized
time and in O(log n(log logn)3) expected amortized time. To find vδ, choose a
placement remote from the polygon in F , and find the corresponding node in
the graph by locating the containing ordered triple of triangles in O(log n) [3].

To properly compute the caging status on the boundary of caging regions we
use the trapezoidal map of the arrangement of the curves of equilibrium grasps.
Since all the points inside a trapezoid have similar caging status, instead of
choosing points on curves, we choose points exactly inside the trapezoids.

In the fourth step, the caging boundaries are reported from the previously
computed caging intervals. To report the caging boundaries, first a curve is
found on the boundary of each caging region. To do this, every caging interval
of every curve is taken and one of its starting points is considered. Clearly, the
starting point is on the caging boundary. Considering the caging intervals that
include this point, there is a caging interval such that all the other ones lie on
one side of it. This interval is on the boundary of a caging region, and the other
intervals are inside this caging region. Walking along the corresponding curve
such that the interior of the caging region is on the left, the next intersection
point on the curve is considered. On every intersection point, the caging intervals
are considered that include the intersection point and the rightmost curve is
selected. The next intersection point along the selected curve is considered and
the same steps are repeated till the same starting point is reached. The same is
done for every unvisited caging interval. Recalling that our algorithm computes
all three-finger caging regions, we get the following final result.

Theorem 4.4. Given a polygon with n edges and given placements of base fin-
gers, it is possible to report all placements of the third finger such that the
three fingers jointly cage the polygon in O(n6 log2 n) deterministic time, and
in O(n6 logn(log logn)3) expected time.

Proof. F can be triangulated in O(n log n) time [3], and the number of triangles
is linear. Since the total number of locus curves is O(n3) and computing every one
takes a constant time, the first step can be done in O(n3) time (Theorem 4.2).
Since every ordered triple of triangles has constant number of critical points,
the total number of critical points on each curve is O(n3). Therefore the second
step takes O(n6 logn). In the third step, for each critical point, adding and re-
moving edges takes constant time, but testing the connectivity takes O(log2 n)
deterministic and O(log n(log logn)3) expected amortized time. Since there are
O(n6) critical points, the third step takes O(n6 log2 n) deterministic time and
O(n6 logn(log logn)3) expected time. Since every intersection point is visited at
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most once the fourth step takes O(n6) time. Hence, the algorithm takes totally
O(n6 log2 n) deterministic time and O(n6 logn(log logn)3) expected time.

5 Conclusion

In this paper we have presented algorithms for computing all possible caging place-
ments of two disc fingers of equal radius, and three point fingers of which the
placements of two base fingers are given. In the case of three fingers, extending
the results to disc-shaped fingers is straightforward. Although the curves of equi-
librium grasps become more complicated, their degrees remain constant. We in-
tend to implement the algorithms to gain more insight into the shapes of caging
regions and their combinatorial complexities with the purpose of improving the
worst-case running time of our algorithm. In addition we would like to consider
the three-finger caging query as well. Finally, extending the results to 3D seems
challenging, because of the problem of decomposing a polyhedron into few simple
cells. Hence we will look for alternative ways to tackle the caging problems.
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Abstract. This paper addresses the problem of navigating an autonomous moving
entity in an environment with both stationary and movable obstacles. If a movable
obstacle blocks the path of the entity attempting to reach its goal configuration, the
entity is allowed to alter the placement of the obstacle by manipulation (e.g. pushing or
pulling), to clear its path. This paper presents a probabilistically complete framework
for solving path planning problems among movable obstacles. Heuristics are presented
to provide efficient solutions for problems in environments encountered in practical
situations.

1 Introduction

Motion planning [8] has been an active area of research for three decades.
Over the past years the motivation has gradually extended from the traditional
robotics context toward applications in computer-assisted training and advanced
games. These applications feature planning problems of huge complexity, as they
involve many (often human) entities with large numbers of degrees of freedom.
The entities move in environments that are not necessarily fixed but can or even
must (in the light of the objective of the training or game) be modified by the
entities. As complete solutions (that guarantee a solution provided one exists)
to motion planning are only feasible for problems involving a few degrees of
freedom, research has led to approaches that provide a weaker form of complete-
ness. A particularly successful approach that is suited for complex problems is
the probabilistic roadmap method [6] in which a roadmap of the free space is
built incrementally. After creation, the roadmap can be queried for a collision-
free path for the moving entity. Over the past decade, many planners based on
this principle have been proposed.

We explore the relatively unaddressed problem of planning the motions of a
moving entity in an environment inhabited by both stationary and movable ob-
stacles. Our motivation comes from an ultimate wish to automatically generate
visually-convincing motions for computer-controlled entities in virtual environ-
ments and games. A rigorous way to plan motions among stationary and moving
obstacles would be to consider the problem in the high-dimensional composite
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configuration space of the moving entity and the movable obstacles. Unfortu-
nately, in all but the simplest instances the complexity is too high to efficiently
find a solution.

However, with our motivation in mind, we believe that the above costly ap-
proach is not required. A human entity moving in a realistic (e.g. office) envi-
ronment will plan his or her motions on the basis of knowledge about the layout
of the stationary features of the environment. While executing the path, the
entity may encounter movable obstacles such as a chair or a trolley with sup-
plies standing in the way, or a door that is closed. If the entity encounters such
movable obstacles it will try to move them out of the way by manipulating them
or by getting around them, so that it will be able to continue its predetermined
path. Only if the required manipulations get truly complicated or require a lot
of effort, the entity may start to explore alternative paths toward the goal. Since
it is our aim to provide convincing motions of entities, we want the planner to
follow a similar strategy.

The difference between our approach and that in the composite configuration
space resembles the difference between decoupled [5] and centralized [10] planning
for multiple robots. As in decoupled planning we approach the problem in a
lower-dimensional configuration space taking into account stationary features
only. The resulting path is subsequently adjusted to resolve collisions with non-
stationary features.

Rearrangement planning [2, 1] is a problem closely related to motion plan-
ning among movable obstacles. Here, an entity also navigates in an environment
among movable obstacles, but the goal is not defined in terms of a configuration
for the entity, but rather in terms of configurations for the movable obstacles.
Even though rearrangement planning has had considerable attention over the
years, motion planning among movable obstacles has not.

Wilfong [13] has shown that motion planning among movable obstacles is NP-
hard. Chen and Hwang [4] created a grid based planner that heuristically tries
to minimize the cost to move obstacles out of the way. To reduce the cost, they
only consider a very limited number of different states. With their planner they
are able to solve some simple but realistic problems.

Another planner is the one developed by Stilman and Kuffner [12]. Their
global approach uses the fact that the free space of the entity consists of mul-
tiple connected components. If start and goal are not in the same connected
component then the entity uses manipulation to move obstacles to try to join
connected components. To detect if a manipulation action has succeeded, a grid
based approach is used. To manipulate an obstacle, contact points are sampled
and a set of primitive actions is applied to those points. The candidate obstacles
for manipulation are found by using an A∗ search on a grid from the current po-
sition of the entity to the goal. Obstacles encountered during this search are the
candidates. In case of failure, backtracking is used. The authors prove that their
planner is resolution complete for a class of problems they call LP1, analogous
to the LP1 class in rearrangement planning [2]. The LP1 class contains prob-
lems in which disjoint components of the free space can be merged by moving
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Fig. 1. Rooms consisting of couches, tables and chairs. The entity is represented as
the light colored object. The goal for the entity is to leave the room. (a) Moving only
the couch is enough to open the path to another room (LP1). (b) First the table has
to be moved before the couch can be moved (LP2). (c) The couch is blocked by the
round tables which on their turn are blocked by the chairs (LP3).

a single obstacle. Stated differently, only if an obstacle blocks the path of the
entity directly, it will be manipulated. Problems that require the manipulation
of an obstacle that blocks another obstacle will not be solved. An example of an
LP1 problem is shown as Figure 1a.

Solving a motion planning problem among stationary and movable obstacles
can be regarded as finding an alternating sequence of motions toward a mov-
able obstacle and manipulation of these obstacles until the goal configuration
is reachable without further manipulation. In this paper a novel framework is
presented based on the expansion of a so-called action tree. This action tree
represents the complete set of motions toward movable obstacles and manipu-
lations of movable obstacles in every order. Finding a motion plan is equivalent
to finding a path in the action tree. If the problem gets more complicated (i.e.
more movable obstacles are involved), the construction of the complete action
tree may become infeasible. Therefore, we present heuristics inspired by prob-
lems encountered in practical applications that guide the construction process
of the action tree in favor of promising tree nodes. The class of problems that
can be solved using our planner is LP [2], i.e., the set of problems that can be
solved by a sequence of manipulations (Figures 1b+c). In contrast to the LP1
class, the LP class contains problems for which movable obstacles have to be
manipulated that do not directly block the path of the entity. For example, the
manipulation of a movable obstacle can be blocked by another movable obsta-
cle for which the manipulation is blocked by yet another movable obstacle etc.
During the manipulation of a movable obstacle, the other movable obstacles are
assumed to be stationary.

This paper is arranged as follows, first in Section 2, we will describe the
problem in more detail and state some properties for the solution. Next, in
Sections 3 and 4 the action tree and its properties are presented. The heuristics
to guide the search process are described in Section 5. Finally, results of our
experiments in are presented in Section 6.
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2 Problem Statement and Preliminaries

Let E be an entity defined in a workspace that, besides stationary obstacles,
contains k movable obstacles (or movables for short) M = {M1,M2, ...Mk}. All
movables are assumed to be closed sets. A movable Mi cannot move by itself,
but can only be moved by E if Mi is first grasped by E. The distance between
two objects Oi and Oj is denoted by d(Oi, Oj), which is the Euclidean distance
between the two points on the boundary of Oi and Oj that are closest together. If
the Euclidean distance between points p and q is denoted by e(p, q) and int(O)

denotes the interior of object O, then:

d(Oi, Oj) =

⎧
⎨

⎩
min

p∈Oi,q∈Oj

e(p, q) if int(Oi) ∩ int(Oj) = ∅

∞ if int(Oi) ∩ int(Oj) �= ∅

Mi is only said to be grasped by E if d(E,Mi) = 0. If Mi is grasped by E, the
combination of E and Mi is denoted by ME

i . A physical model is used to define
the set of possible motions of ME

i , depending on the forces that E is able to apply
to Mi. This model can also describe the potential positions on the boundary of
Mi where grasps are allowed. Since the physical model is highly dependent on
the specific capabilities of E and the properties of the environment, we use a
simplified model in which E is capable to push/pull a movable in any direction
and grasp it whenever d(E,Mi) = 0. Other models can be used without affecting
the algorithm. We do not allow E to manipulate two movables at the same time.

Our goal is to create a motion plan for E from a given start to a given goal
configuration. The behavior of E should be convincing compared to the behavior
of its real (e.g. human) counterpart. For example, if a human has the choice
between moving multiple obstacles that block a door and taking a small detour,
it will most likely do the latter. Also most problems will be solved locally, i.e.
a blocking movable will not have to be pushed a long distance before E will be
able to move around it.

In this paper we introduce the concept of an action tree. The action tree
is a general framework for solving motion planning problems among movable
obstacles. In contrast to a roadmap graph, which represents the free configuration
space, the action tree represents the different actions E can perform given the
configurations of the movables. Using this framework, a planner is presented that
uses heuristics to guide the search process through the action tree in order to
efficiently find a solution.

3 Action Tree

In the basic motion planning problem all obstacles are stationary. Here, the mov-
ables can also change position during the execution of the planning algorithm.
Therefore we introduce the notion of a worldstate that encodes the placement
of all non-stationary obstacles, i.e. entity E and movables M .
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Definition 1 (Worldstate). A worldstate W = (we, w1, ..., wi, ..., wk) de-
scribes the configuration of E and the configurations of all movables in M .

A worldstate is essentially a point in the composite configuration space of E
and M . As stated before however, we will not solve the planning problem in this
composite configuration space.

We will define two basic actions that are used to transform one worldstate into
another. The first action is grasp(Mi). A successful call to grasp(Mi) trans-
forms worldstate W = (we, w1, ..., wi, ..., wk) into worldstate W ′ = (w′

e, w1, ...,
wi, ..., wk) satisfying d(E[w′

e],Mi[wi]) = 0, else it reports failure. grasp(Mi),
moves E from its current configuration we to a randomly selected configura-
tion w′

e on the boundary of Mi. If Mi cannot be grasped (because E is not
able to reach the boundary of Mi) the action reports failure. Note that if
d(E[we],Mi[wi]) = 0, the grasp(Mi) action has the effect of re-grasping Mi

at another location. A re-grasp can be useful if the current grasp does not suf-
fice, for example if the room for ME

i to maneuver is limited.
The second action is manip(ME

i ), which tries to manipulate the currently
grasped movable. A successful call to manip(ME

i ) transforms worldstate W =
(we, w1, ..., wi, ..., wk) with d(E[we],Mi[wi]) = 0 into worldstate W ′ = (w′

e, w1,
..., w′

i, ..., wk) with d(E[w′
e],Mi[w′

i]) = 0. manip(ME
i ) results in a joint motion

of Mi and E satisfying the constraints imposed by the physical model from their
current configuration to a randomly selected configuration. If manip(ME

i ) does
not succeed, for example because the physical model forbids the manipulation
or a collision occurs, manip(ME

i ) reports failure.
We now define the action tree TA that represents all valid actions in all possible

orders.

Definition 2 (Action Tree). The action tree is a description of the space of
all valid actions. Every node of the tree corresponds to a worldstate. The edges
between the nodes represent the action (grasp() or manip()) that results in the
transformation from one worldstate to another worldstate.

At every node n of TA, a worldstate W (n) is associated. TA consists of two types
of nodes: manipulation nodes are the result of a call to manip(), grasp nodes are
the result of a call to grasp(). A manipulation node will never have a child
node that is also a manipulation node. This can be seen as follows. Suppose
manipulation node n has a child node m that is also a manipulation node. Then
node m could also have been a direct child of the parent of n (e.g. a sibling of
n). The same holds for grasp nodes, a grasp node will never have another grasp
node as a child because the second movable should have been grasped at once
without first grasping the first one. Therefore a grasp node will always have a
manipulation node as a parent and vice versa. We do not allow E to grasp two
movables at the same time.

After initializing the algorithm by associating the initial worldstate to the root
node ns of TA, the algorithm constructs TA by expanding nodes. The expansion
of a manipulation node adds a child node in which a movable is grasped at
a random configuration; this may also be a re-grasp of the currently grasped
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movable. The expansion of a grasp node adds a child node that manipulates the
currently grasped movable.

After the addition of a manipulation node n to TA, E may be able to reach
its destination. If a grasp node is added, this is not possible since no movables
have changed their configuration. After manipulating a movable though, a new
path may have emerged that brings E to its goal. Therefore after the addition of
a manipulation node to TA, the algorithm checks whether E can reach its goal
configuration. If this succeeds, the algorithm terminates, if not, the construction
of TA continues. An example of the construction of an action tree is shown in
Figure 2.

1
4

3

2

1 4 3 3 4 3 31

4 31

4 314 31 3 3

3

2 3 1 2 3 1

2 3 1

Fig. 2. Example of the construction of TA. Left the the action tree TA is shown, at
the right the corresponding workspaces. The circle nodes in TA are the grasp nodes,
the triangles are the manipulation nodes. The square nodes are the start and goal
configurations. The dashed nodes are omitted parts of TA that did not contribute to
the final solution or were unfeasible. In the first workspace, the start position of E is
shown in the top left, the goal in the top right.

A motion plan is a finite alternating sequence of grasp and manipulation ac-
tions. In the action tree such a plan is represented by a path from the root to
another node. If the physical model is such that during a manipulation ME

i

behaves as a rigid body and the physical model imposes no nonholonomic con-
straints on the motion, then, eventually every possible grasp and manipulation
action will be represented in TA. Also if nodes in TA are selected randomly for
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expansion, every possible order of such actions will be represented by a path in
TA from the root node to another node. Therefore the framework of the action
tree is probabilistically complete.

4 Realization of the Action Tree

In this section we will describe how to implement the necessary building blocks
for the action tree. In scenes encountered in practical settings, we have observed
that after a few expansions of a node, further expansion rarely led to more
progress. For that reason we only expand nodes once (i.e. only leaves in TA

are expanded) but add multiple child nodes at once. If a manipulation node
is selected for expansion, k children are added all grasping a different movable
(including the current one). The expansion of grasp node adds a number of child
nodes that manipulate the currently grasped movable.

To grasp a movable or to check whether the goal configuration can be reached,
a graph G is used. G represents the free space for E with respect to the stationary
obstacles. It should preferably contain cycles to provide alternative routes. Any
path planning technique that results in a graph for E that represents feasible
paths can be used to create G. A well known example of such a technique is
the probabilistic roadmap method [6]. Without loss of generality, we will assume
that the start and goal configurations for E are configurations in G.

4.1 Checking If the Goal Can Be Reached

After the addition of a manipulation node n, E may be able to reach its desti-
nation. Since G is collision free for the stationary obstacles only, it needs to be
updated according to W (n). Edges in G that collide with one of the movables
have to be invalidated such that queries are guaranteed to be collision free.

A manipulation transforms worldstate W (p(n)) = (we, w1, ..., wi, ..., wk) to
worldstate W ′(n) = (w′

e, w1, ..., w
′
i, ..., wk), where p(n) is the parent of node n.

To be able to quickly update G for a given worldstate, at every manipulation
node, a list of invalidated edges of G is stored. This list is equivalent to the
list of p(n) except for edges that intersect with either Mi[wi] or Mi[w′

i]. Only
these edges have to be collision checked against Mi. To find these efficiently,
the endpoints of the edges are stored in a Kd-tree [3]. A Kd-tree allows for
quickly identifying the edges that are close to wi so that they can be checked for
collision. When the root node is added to TA, G needs to be checked once against
all movables in order to create the initial list of invalidated edges. Grasp nodes
simply copy the list from their parent. After updating G, w′

e is connected to G
using standard procedures from motion planning. Finally, a query is performed
to see if E can reach its destination.

4.2 Grasping a Movable Obstacle

The grasp(Mi[wi]) action creates a path for E from its current configuration
we to w′

e where d(E[w′
e],Mi[wi]) = 0. Here, w′

e is a randomly chosen grasp
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on the boundary of Mi. Depending on the application, the selection of grasp
configurations can be customized. As described in the previous section, G is
updated w.r.t. the current worldstate. Next, we and w′

e are attempted to be
connected to G. If this succeeds, a query can be executed between we and w′

e.
If the query is successful, a new node is added to TA.

4.3 Manipulating a Movable Obstacle

After E has grasped Mi, resulting in a grasp node, it will try to manipulate
Mi by executing the manip(ME

i ) action. To move ME
i we will use an approach

based on the Rapidly-exploring Random Trees (RRT) algorithm [9]. An RRT is
aimed at growing a tree from a given start configuration in an attempt to cover
the free space. Here, the RRT operates in the configuration space of ME

i where
all movables Mj with i �= j are considered stationary. An RRT quickly generates
many different paths away from the start configuration. This property is very
useful in our situation because our target is to move ME

i away from its current
configuration to many different goal configurations.

The vertices1 in the RRT represent configurations for ME
i . The edges repre-

sent paths between them. The RRT algorithm works as follows. First the start
configuration is added to the RRT as a vertex. Next, a random (not necessarily
collision free) configuration cr = (we, wi) with d(E[we],Mi[wi]) = 0 for ME

i is
generated. The nearest configuration cn = (w′

e, w
′
i) in the RRT to cr is found

(not necessarily a vertex of the RRT) and a path is tested for collision moving
from cn to cr. If cr is reached, it is added as a vertex to the RRT together with
the edge (cn, cr). If a collision occurs before cr is reached, the last collision free
configuration cs = (w′′

e , w
′′
i ) is added to the RRT together with the edge (cn, cs).

This process is repeated until some stop criterion is met.
The RRT algorithm needs to check whether a path exists between cn and cr.

To verify the existence of such a path a local planner is used in many sampling
based motion planning techniques. Given two configurations the local planner
checks whether the path between them is feasible. Because of the many collision
checks involved, a call to a local planner may be relatively expensive. There-
fore, usually the local planner only checks whether the straight line connection
between two configurations is feasible. Rotational parameters are often inter-
polated. In our algorithm, the generated path also needs to comply with the
physical model for the specific type of manipulation (e.g. pushing/pulling). The
local planner is allowed to use any physical model as long as it is capable of
deciding whether a manipulation path exists between two configurations or, in
case of a collision, what the closest reachable configuration is to cr.

Since the RRT algorithm works incrementally by nature, it is easy to imple-
ment our manip() action using an RRT. Every grasp node n contains an RRT.
The child nodes of n (which are all manipulation nodes) represent the vertices
of that RRT.
1 Note the difference between the action tree that contains nodes, and the RRT that

contains vertices.
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We have now described all the building blocks necessary for expanding a node.
Algorithm 1 shows how a node is expanded. Calling this function with ns (that
contains the initial worldstate), initiates the creation of TA. Nodes are expanded
in a breadth first manner to provide an optimal solution. In the next section, we
will describe heuristics to tailor this concept to problem settings encountered in
practical settings.

Algorithm 1. ExpandNode (ns, G, Wg)

1: if ns.type = ManipulationNode then
2: for all Mi ∈ M do
3: W ′ ← Grasp (Mi, W (ns)) {grasp Mi at a random position}
4: if W ′ �= null then
5: ns.AddChild(W ′) {add a grasp node}
6: else {ns is a grasp node}
7: ns.InitRRT () {ns is the container of the RRT}
8: for i = 0 to MaxRRTVertices do
9: W ′ ← ExtendRRT (W (ns))

10: if W ′ �= null then
11: ns.AddChild(W ′) {add a manipulation node}
12: UpdateEntityGraph(G,W ′) {update G for W ′}
13: if PathExists(G, W ′, Wg) {is there a path to Wg?} then
14: return PathFound {the goal can be reached}
15: for i = 1 to ns.nrChildren do
16: ExpandNode (ns.Child[i], G, Wg)

5 Planner

Although breadth-first expansion of TA guarantees an exhaustive exploration of
all possible sequences of manipulations, this strategy becomes computationally
expensive or even infeasible when the number of movables is large. In problems
encountered in practical settings however, only a small subset of the movables
are involved in the final motion plan of E. In that respect, many nodes of TA will
most likely not contribute to the final solution. For example, if a motion plan
needs to be created that moves E from room A to B, then often the movables
present in room C will not be part of the final motion plan. On the other hand, a
movable that is not directly impeding the path of E, may very well be blocking
the manipulation of another movable and because of that be part of a feasible
motion plan. Because of the above considerations, expanding nodes in a breadth
first search manner is not the most efficient way to find a motion plan. In this
section we will describe how to focus the expansion process toward promising
nodes, such that a solution can be found rapidly without affecting the probability
of finding a solution.
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5.1 Choosing a Path through the Action Tree

Instead of expanding TA in a breadth first manner, we will use heuristics to
guide the expansion process. To be able to do this, every node n is assigned a
probability q(n). The following holds:

∑

m∈children(n)

q(m) = 1 (1)

Nodes are now selected for expansion by creating a path from the root node to
a not yet expanded node (a leaf). Starting at the root (having probability 1), a
child node is selected randomly based on its probability. This process is repeated
until a leaf is reached. Then that leaf is selected for expansion.

After expanding a node n, all its children are initially assigned equal probabil-
ities. Later on in the process we will increase probabilities for a node depending
on the progress that is made. For example, if n is successful in getting closer
to the goal, q(n) is increased. Increasing q(n) should not violate Equation 1.
In addition we must assure that q(n) never reaches 0 as this would exclude its
selection. If q(n) is already very high (e.g. q(n) = 0.95), there is little reason to
increase it more. Using the above observations, we use the following procedure
to adapt the probabilities: a fraction f ∈ [0, 1] is used to increase q(n) of a node
n. We denote the updated value of the probability of n by q′(n). The siblings of
node n are denoted by the set S(n).

q′(n) = (1 − q(n))f + q(n) (2)

∀
m∈S(n)

: q′(m) = q(m)(1 − f) (3)

Similarly if, after the expansion of a node, no or little progress is made, the
probabilities of selecting that node should be decreased. The following procedure
is used to decrease the probabilities of node n if n has at least one sibling:

q′(n) = q(n)− f · q(n) (4)

∀
m∈S(n)

: q′(m) =
1− q(m)

|S(n)| − 1 + q(n)
f · q(n) + q(m) (5)

Equations 2-5 lead to the following lemma, for which the proof is omitted:

Lemma 1. The updates given by Equations 2 and 3 and by 4 and 5 maintain
Equation 1.

The probability that n will be selected for expansion is: q(n) ·
∏

m∈ancestors(n)
q(m).

If q(n) is increased (at the expense of its siblings), the probability of n being
selected will increase only by a small amount (especially when n is not close to
the root). To solve this issue, the increased probability of n is propagated along
the path from n to the root, i.e. the probabilities of all ancestors of n are increased
as well. We must make sure however that after a few updates, the probabilities
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of nodes higher in the tree do not become too high. If we consider the path from
n to the root, the further away a node n′ is from n, the less similarity between
W (n) and W (n′). Therefore f is lowered during the propagation. The procedures
to increase and decrease the probabilities of nodes are shown as Algorithms 2a
and 2b.

Algorithm 2. (a) Increasing and (b) decreasing probabilities

IncreaseProbability (n, f) DecreaseProbability (n, f)

1: q′(n) = (1 − q(n)) · f + q(n)
2: for all m ∈ S(n) do
3: q′(m) = q(m) ∗ (1 − f)
4: f = factor ∗ f {lower f by a factor}
5: IncreaseProbability (p(n), f)

1: if |S(n)| > 1 then
2: q′(n) = q(n) − f · q(n)
3: for all m ∈ S(n) do
4: q′(m) = 1−q(m)

|S(n)|−1+q(n) + q(m)
5: f = factor ∗ f {lower f by a factor}
6: DecreaseProbability (p(n), f)

An example of increasing the probability of a node is shown in Figure 3. Since
only the nodes (and their children) on the path from n to the root are updated,
the cost of the propagation is O(r), where r is the rank of n.

1.00

0.53

0.160.410.370.06

0.20

0.090.260.310.11

0.27

0.23

1.00

0.32

0.580.200.190.03

0.12

0.060.180.210.08

0.56

0.47

n

f=
0.

5

f=0.5

f=0.4

f=0.32 0.09

x 0.8

x 0.8

Fig. 3. Increasing the probability of a node. The values in the nodes are the probabil-
ities. (a) The probability of node n is increased by a fraction of 0.5. If f is propagated
to the parent node, it is multiplied by a factor of 0.8 (shown left). (b) The resulting
probabilities after propagation using Algorithm 2a.

The value of the fraction f determines the global behavior of the algorithm.
If f is small, the differences between the probabilities of the nodes will not be
large, resulting in a breadth first type of expansion. If f is high however, a small
number of nodes will receive a high probability, resulting in a more depth first
type of expansion.
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5.2 Adapting Probabilities

As stated before, often only a small subset of M will be blocking the path of E.
Therefore we will increase the probability of manipulating movables that actually
block the path of E. A movable Mi can block the path of E either directly or
indirectly. Directly blocking means that the path of E actually collides with Mi,
indirectly blocking means that some Mj , i �= j blocks the manipulation of Mi.

Directly Blocking Movable Obstacles

After the expansion of a manipulation node n, it is checked whether E can
reach its destination (Section 4). If no path to the goal is found, it is necessary
to manipulate movables. Selecting a good movable candidate for manipulation
involves taking into account our target of creating convincing paths for E. One of
the properties of such a path is that a small detour is favorable over manipulating
many movables. Therefore a second version of G is created in which no edges are
invalidated but rather get a penalty when colliding with one of the movables.
This graph is denoted by Gp. The cost of traversing an edge in Gp is a function
of its length in C-space and the penalty. Using G, Gp can be constructed by
assigning a penalty to edges instead of invalidating them. No additional collision
checks are necessary to construct Gp.

After reconnecting E to the graph, a shortest path query on Gp, using for
example A∗ or D∗ Lite ( [11], [7]) yields a path that prefers to avoid movables.
By using the result of the query, the first colliding movable Mi on the path to
the goal in Gp can be easily determined. Mi is called a directly blocking movable.
The probability of the child node of n grasping Mi is increased.

The above procedure is repeated a few times to make sure that the expansion
process does not become too focused toward one path. For this, the edges in Gp

that collide with Mi are invalidated and a new query is initialized. If successful,
again the first colliding movable is determined and the corresponding node’s
probability is increased.

Indirectly Blocking Movable Obstacles

Movables that block the path of E directly, can be determined by a shortest path
query. However, a movable can also block the manipulation action of another
movable, thus blocking the path of E indirectly (see Figure 4a for an example).
Using the properties of the RRT algorithm, these can be determined easily. Recall
that an RRT is extended by trying to create a path for ME

i from the RRT to a
randomly chosen configuration. If this random configuration is not reached, ME

i

collides with either a stationary obstacle or another movable Mj (Figure 4b). In
the latter case, Mj blocks the manipulation path of ME

i and Mj is identified as
an indirectly blocking movable.

During the expansion of a grasp node n in which Mi is grasped (creating child
nodes that are vertices of the RRT), if a blocking movable Mj is encountered,
the probability of the sibling of n that grasps Mj is increased using Algorithm
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Fig. 4. E tries to pull the couch to the dotted target position. (a) The start of the
manipulation action. (b) The coffee table blocks the path. This configurations is added
to the RRT and the probability of the node in which the coffee table is grasped is
increased.

2a. The more often Mj acts as indirectly blocking movable, the more likely it is
that Mj is selected for manipulation.

Decreasing Probabilities

If a node n in TA has many successful descendants, q(n) will increase because of
the propagation algorithm. However, if its descendants cease to make progress, its
probability should be lowered. For this, we need a method to measure progress.
A cheap measure of progress is the graph distance of E to the destination in G.
The current position of E is connected to G and using a shortest path query
to the destination provides an estimate of the current distance to the goal. The
distance estimate is saved in the node such that the progress between a node
and its parent can easily be determined. If no or little progress is made, the
probability of the node is decreased by a small fraction using Algorithm 2b.

5.3 Lazy Expansion

Expanding a node (Algorithm 1) can be a costly operation. Luckily many oper-
ations can be postponed until the moment a node is actually selected for expan-
sion. Manipulation nodes contain child nodes that grasp a movable. Checking
the feasibility of the grasp (i.e. can the grasp configuration be reached by E
from its current configuration) is not necessary until the moment the child node
is selected for expansion. So if a manipulation node is chosen for expansion, it
adds child nodes that represent grasps of movables without verifying that such
grasps actually exists.

If a child node is added to a grasp node, the entity graphs (G and Gp) need to
be updated. This update involves collision checks and is thus relatively expensive.
Only when the child node is selected for expansion this update is necessary.
Therefore the calculation of the update of G and Gp can be postponed until the
node is actually chosen for expansion.

If lazy expansion is used then it is uncertain if n is feasible at the moment it
is added to TA. Only if n is selected by the random process for expansion, its
feasibility is checked. If it is not feasible, n is declared a dead end and q(n) is set
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Table 1. Results of the experiments. The results were obtained by averaging 100 runs.
The average tree size is the average total number of nodes in the tree.

Scene Avg. running time Avg. tree size Avg. rank of solution

1 1.06s 81 14.4
2 8.1s 167 43.8
3 29.0s 506 13.5
4 22.0s 400 23.3

to 0. The probabilities of S(n) are updated such that Equation 1 is maintained.
Now another random leaf node is selected for expansion.

6 Experiments

We implemented our algorithm in C++ and conducted experiments with three
scenes on a Pentium 2.40GHz with 1GB of memory. In all scenes the heuristics
as described in Section 5 were used. The different values for f were determined
experimentally and the same values turned out to be useful in all experiments.
A node grasping a blocking movable received an increase of its probability using
f = 0.8. The probabilities of nodes containing an indirectly blocking movable
were increased using f = 0.05 for every collision. If a new node did not result
in progress toward the goal, the probability of the corresponding node was de-
creased using f = 0.2. The number of child nodes added to a grasp node was at
most 5, the edge penalty used in Gp was 100 times its length.

For the first experiment the LP3 scene of Figure 1c was used. Next, for the
second experiment, to verify that our method also scales to multiple indirectly
blocking movables, we took three versions of the scene of Figure 1c and connected
them together, effectively creating a problem involving a series of three LP3
problems. The third scene is shown in Figure 5. The pitfall in this scene is
that the shortest path (shown as the dotted arrow) is blocked by an immovable
obstacle close to the goal. Thus, to reach a solution, the algorithm probably
needs backtracking (depending on the random choices). The fourth experiment
(Figure 6) has two indirectly blocking movables. For all scenes, we conducted
100 experiments and averaged the results, shown in Table 1.

7 Discussion

In this paper we have presented a probabilistically complete framework based on
an action tree to solve motion planning queries among movable obstacles. The
nodes of the tree represent worldstates, the edges the transitions between the
worldstates. During those transitions, the entity either manipulates one of the
movables or (re)grasps a movable. A path in the action tree represents a motion
plan. Constructing the complete action tree (in a breadth first search manner)
can be infeasible because of the huge number of nodes.



An Effective Framework for Path Planning Amidst Movable Obstacles 101

Fig. 5. The third scene. (a) The entity E is represented by a cylinder. The two solid
arrows show feasible paths, the dotted path results in a dead end (behind the first
movable is another one that blocks the manipulation of the first). (b) The situation
after the entity has reached its destination.

Fig. 6. The fourth scene. The entity needs to move from the top left to the right
bottom. (a) The two encircled movables are indirectly blocking movables. (b) The
situation after the entity has reached its destination.

In environments encountered in practical settings often only a small subset of
the motion plans in the action tree are useful. Therefore we presented heuristics
that focus the node expansion process toward these motion plans. This process
is solely guided by adapting the probabilities of selecting nodes. By continuously
adapting these probabilities, using information gathered during the process, an
efficient algorithm is obtained that is capable of solving realistic problems in
reasonable running times.

An issue we did not address in this paper is smoothing. To smooth the path
of the entity during a grasp action, standard smoothing techniques can be used.
Also, since the final path is the result of a probabilistic process, some nodes from
the action tree in the solution may be redundant. A smoothing procedure may
be able to by-pass them.

Even though the heuristics are often successful in guiding the probabilistic pro-
cess in realistic problems, in certain situations the process may become slow. This
happens if many movables are close together and need to be manipulated in a cer-
tain order. If n movables are involved, there are n! sequences of manipulating the
movables. Since none of these result in overall progress, many nodes get compara-
ble probabilities resulting in breadth first search behavior. Experiments have also
shown that sometimes computation time is spent on parts of the action tree that
are quite similar (e.g. they only slightly differ in the configuration of a movable).
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A solution could be to use information gathered in the process not only locally
in the action tree but rather in all nodes that resemble the current node in some
aspects. For example, if a movable is impeding the entity in a node, then its
probability of manipulation should not only be increased in that node but in
all nodes that contain a similar subproblem. If the subproblem is solved in one
node, then a shortcut in the action tree could be added to all other nodes. This
type of extensions are the subject of current research.
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Abstract. In this paper we discuss the problem of planning safe paths amidst unpre-
dictably moving obstacles in the plane. Given the initial positions and the maximal
velocities of the moving obstacles, the regions that are possibly not collision-free are
modeled by discs that grow over time. We present an approach to compute the shortest
path between two points in the plane that avoids these growing discs. The generated
paths are thus guaranteed to be collision-free with respect to the moving obstacles
while being executed. We created a fast implementation that is capable of planning
paths amidst many growing discs within milliseconds.

1 Introduction

An important challenge in robotics is motion planning in dynamic environments.
That is, planning a path for a robot from a start location to a goal location that
avoids collisions with the moving obstacles. In many cases the motions of the
moving obstacles are not known beforehand, so often their future trajectories
are estimated by extrapolating current velocities (acquired by sensors) in order
to plan a path [2, 5, 10]. This path may become invalid when some obstacle
changes its velocity (say at time t), so then a new path should be planned.
However, there is actually no time for planning; as the world is continuously
changing, the computation would already be outdated even before it is finished.

To overcome this problem, often a fixed amount of time, say τ , is reserved for
planning [6, 9]. The planner then takes the expected situation of the world at
time t + τ as initial world state, and the plan is executed when the time t + τ
has come. This scheme carries two problems:

• The predicted situation of the world at time t+ τ may differ from the actual
situation when some obstacles change their velocities again during planning.
This may result in invalid paths.

• The path the robot will follow between time t and time t + τ is not guaran-
teed to be collision-free, because this path was computed based on the old
velocities of the obstacles.
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In this paper we take a first step to overcome these problems. We present
an approach to compute a path from a start location to a goal location that is
guaranteed to be collision-free, no matter how often the obstacles change their
velocities in the future. Replanning might still be necessary from time to time,
to generate trajectories with more appealing global characteristics, but the two
problems identified above do not occur in our case. The first problem is solved
by incorporating all the possible situations of the world at time t+τ in the world
model. The second problem is solved as the computed paths are guaranteed to
be collision-free regardless of what the moving obstacles do.

We assume that all obstacles and the robot are modeled as discs in the plane,
and that the robot and each of the obstacles have a (known) maximum velocity.
The maximum velocity of the obstacles should not exceed the maximum velocity
of the robot. The problem is solved in the configuration space, that is, the radius
of the robot is added to the radii of the obstacles, so that we can treat the robot
as a point.

Given the initial positions of each of the obstacles, the regions of the space
that are possibly not collision-free are modeled by discs that grow over time
with rates corresponding to the maximal velocities of the obstacles. Our goal
is to compute a shortest path (a minimum time path) from a start to a goal
configuration that avoids these growing discs (see Fig. 1).

Fig. 1. An environment with two moving obstacles and a shortest path. The pictures
show the growing discs at t = 0, t = 1 and t = 2, respectively. A small dot indicates
the position along the path.

Although computing shortest paths is a well studied topic in computational
geometry (see [8] for a survey), the problem we study in this paper is new. In
fact, it is a three-dimensional shortest path problem, as the time accounts for
an additional dimension. Such problems are NP-hard in general, yet we present
an O(n3 logn) algorithm (n being the number of discs) for our problem in the
restricted case that all discs have the same growth rate.1 In case the growth
rates are different, we cannot give a time bound expressed in n. Instead, we

1 Note that the special case of discs with zero growth rate gives a two-dimensional
shortest path problem, which can be solved in O(n2 log n) time (see e.g. [4]).
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implemented a practical algorithm for this general case, that appears to work
well: Experimental results show that we are able to generate shortest paths
amidst many growing discs within only milliseconds of computation time.

The rest of the paper is organized as follows. We formally define the problem
in Section 2. In Section 3 we examine the structure of shortest paths amidst
growing discs. We sketch our global approach in Section 4, and in Section 5
we present efficient algorithms for the restricted and general case. Experimental
results are given in Section 6, and Section 7 concludes the paper.

2 Problem Definition

The problem is formally defined as follows. Given are n moving obstacles
O1, . . . , On which are discs in the plane. The centers of the discs (i.e. the posi-
tions of the obstacles) at time t = 0 are given by the coordinates p1, . . . , pn ∈ R

2,
and the radii of the discs by r1, . . . , rn ∈ R

+. All of the obstacles have a maximal
velocity, given by v1, . . . , vn ∈ R

+. The robot is a point (if it is a disc, it can
be treated as a point when its radius is added to the radii of the obstacles), for
which a path should be found between a start configuration s ∈ R

2 and a goal
configuration g ∈ R

2. The robot has a maximal velocity V ∈ R
+ which should

be larger than each of the maximal velocities of the obstacles, i.e. (∀i :: V > vi).
As we do not assume any knowledge of the velocities and directions of motion

of the moving obstacles, other than that they have a maximal velocity, the region
that is guaranteed to contain all the moving obstacles at some point in time t
is bounded by

⋃
i B(pi, ri + vit), where B(p, r) ⊂ R

2 is an open disc centered at
p with radius r. In other words, each of the moving obstacles is conservatively
modeled by a disc that grows over time with a rate corresponding to its maximal
velocity (see Fig. 1 for an example environment).

Definition 1. A point p ∈ R
2 is collision-free at time t ∈ R

+ if p �∈
⋃

i B(pi, ri+
vit).

The goal is to compute the shortest possible path π : [0, tg] → R
2 between s and

g (i.e. a minimal time path with minimal tg where π(0) = s and π(tg) = g) that
is collision-free with respect to the growing discs for all t ∈ [0, tg].

3 Properties of Shortest Paths

In this section we deduce some elementary properties of shortest paths amidst
growing discs. We first show that we are actually dealing with a three-dimensional
path planning problem: As the discs grow over time, we can see the obstacles as
cones in a three-dimensional space (see Fig. 2), where the third dimension repre-
sents the time. Each obstacle Oi transforms into a cone Ci, whose central axis is
parallel to the time-axis of the coordinate frame, and intersects the xy-plane at
point pi. The maximal velocity vi determines the opening angle of the cone, and
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together with the initial radius ri, it determines the (negative) time-coordinate
of the apex. The equation of cone Ci is given by:

Ci : (x − pix)2 + (y − piy)2 = (vit + ri)2. (1)

The goal configuration g is transformed into a line parallel to the time-axis,
where we want to arrive as soon as possible (i.e. for the lowest value of t). In the
three-dimensional space it is easier to reason about the properties of shortest
paths.

Fig. 2. The three-dimensional space of the same environment as Fig. 1

3.1 Maximal Velocity

We will first show that a shortest path is always traversed at the maximal velocity
V , and hence a shortest path makes a constant angle arctan(1/V ) with the xy-
plane.

Lemma 1. A point p ∈ R
2 that is collision-free at time t = t′, is collision-free

for all t :: 0 ≤ t ≤ t′.

Proof. If t1 ≤ t2, we know that
⋃

i B(pi, ri + vit1) ⊆
⋃

i B(pi, ri + vit2). Thus if
a point p is collision-free at time t2, i.e. p �∈

⋃
i B(pi, ri + vit2), it is certainly not

in
⋃

i B(pi, ri + vit1). Hence point p is collision-free at time t1 as well. �

Theorem 1. The velocity ‖(δx,δy)‖
δt of a shortest path is constant and equal to

the maximal velocity V .

Proof. Suppose π is a path to g, of which a sub-path has a velocity smaller than
V . Then this sub-path could have been traversed at maximal velocity, so that
points further along the path would be reached at an earlier time. Lemma 1
proves that these points are then collision-free as well, so also g could have been
reached sooner, and hence π is not a shortest path. �
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3.2 Straight-Line Segments and Spiral Segments

Next, we prove that that a shortest path can only consist of straight-line motions,
and motions that stay in contact with the growing discs. These latter motions
follow curves ‘winding’ around a disc while it grows. They lie on the surface of
a cone, when viewed in the three-dimensional space.

Theorem 2. A shortest path solely consists of straight-line segments, and seg-
ments on the boundary of a growing disc.

Proof. Theorem 1 implies that the time it takes to traverse a path is proportional
to its length. Hence, parts of the path in ‘open’ space can always be shortcut
by a straight-line segment. Only when the path stays in contact with a growing
disc, it is not possible to shortcut. �

We next show that in fact, as both the velocity of the path and the growth rate
of the discs are constant, the segments on the boundary of a disc are supported
by a logarithmic spiral.

Without loss of generality, we assume that the disc has radius 0 at t = 0, that
the disc is centered at the origin, and that the disc grows with velocity 1 (other
discs can be transformed such that these conditions hold). Let the velocity of
the path be V . We express the equations of the path curve in polar coordinates
(r(t), θ(t)), parametrized by the time t. The radius r(t) of the curve at time t is
equal to the radius of the disc at time t, thus:

r(t) = t. (2)

The angle θ(t) is not trivially deduced, but we know that
√

x′(t)2 + y′(t)2 = V, (3)

as the velocity along the path is constantly equal to V . From this equation, we
deduce a closed form for θ(t):

{
x(t) = r(t) cos θ(t),

y(t) = r(t) sin θ(t)
}
,

{
x′(t) = r′(t) cos θ(t) − r(t)θ′(t) sin θ(t),

y′(t) = r′(t) sin θ(t) + r(t)θ′(t) cos θ(t)
}
,

x′(t)2 + y′(t)2 = r′(t)2 + r(t)2θ′(t)2 = 1 + t2θ′(t)2. (4)

Combining Equations (4) and (3), and solving for θ(t) gives:
√

1 + t2θ′(t)2 = V,

1 + t2θ′(t)2 = V 2,

θ′(t) = ±
√
V 2 − 1

t
,

θ(t) = ±
√

V 2 − 1 log t + θ0. (5)
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Equations (2) and (5) together define a curve which is well known as the loga-
rithmic spiral [11]. The ± indicates whether the spiral revolves counterclockwise
(+), or clockwise (−) about the growing disc. The term θ0 gives the starting
angle of the spiral.

3.3 Path Smoothness

Theorem 3. A shortest path is C1-smooth.

Proof. Suppose path π is not C1-smooth and contains sharp turns. Then these
turns could be shortcut by a straight-line segment. Hence π is not a shortest
path. �

This theorem implies that in a (general) shortest path the straight-line segments
and spiral segments alternate each other, and that the straight-line segments
must be tangent to the supporting spirals of the spiral segments. In terms of
the three-dimensional space this means that the straight-line segments (which
“connect” two spiral segments), are bitangent to the cones on which the spirals
lie.

3.4 Departure Curves

There are four ways in which a straight-line segment can be bitangent to a pair
of cones (say Ci and Cj): left-left, right-right, left-right and right-left. In each
of these cases, there is an infinite number of possible segments (whose slope
corresponds to the maximal velocity V ) that are tangent to both Ci and Cj .
However, the possible tangency points at the surface of Ci form a continuous
curve on that surface. We call such curves departure curves. They play a major
role in our algorithm to compute a shortest path.

Definition 2. For two cones Ci and Cj, the set DC(Ci, Cj) is defined as the
collection of points on the surface of Ci, for which the straight-line of slope 1/V
that is tangent to Ci in that point is also tangent to Cj. The set DC(Ci, Cj) con-
sists of four continuous curves, each associated with one of the tangency cases.
We call them departure curves. They are denoted DCll(Ci, Cj), DClr(Ci, Cj),
DCrl(Ci, Cj) and DCrr(Ci, Cj), respectively.

The set DC(Ci, g) to the goal configuration g is defined similar, but then the
tangent line segment should go through the goal configuration g. In this case the
departure curves DCr(Ci, g) and DCl(Ci, g) are distinguished.

We now show how we can deduce equations for the departure curves on the
surface of a cone C. Again, without loss of generality, we assume that the disc
associated with the cone has radius 0 at t = 0, that the disc is centered at the
origin, and that the disc grows with velocity 1. Let the velocity of the path be
V . The surface of C can be parametrized by two variables, time T and angle Θ:

C : (T,Θ) → {T cosΘ, T sinΘ, T } .
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Let us consider the counterclockwise spirals about this cone. Each of them is
uniquely defined by the initial angle θ0 (see Equation (5)). Each point (T,Θ) on
the surface of the cone has a unique spiral that goes through that point. This
spiral can be found by solving θ(T ) = Θ for θ0:

θ0 = −
√

V 2 − 1 logT + Θ. (6)

Hence, the spiral though (T,Θ) is described in Euclidean coordinates as:

{
x(t) = t cos

(√
V 2 − 1 log t−

√
V 2 − 1 log T + Θ

)
,

y(t) = t sin
(√

V 2 − 1 log t−
√

V 2 − 1 logT + Θ
)}

.

If we walk along this spiral, we can depart for another cone if the straight-line
segment tangent to the spiral is tangent to another cone as well. The straight-line
segment 	 tangent to the spiral at point (T,Θ) is represented by:

	(t) =
{
x(T ) + (t− T )x′(T ), y(T ) + (t− T )y′(T )

}
= (7)

=
{
t cosΘ − (t− T )

√
V 2 − 1 sinΘ, t sinΘ + (t− T )

√
V 2 − 1 cosΘ

}
.

This segment must be tangent to another cone, say Ci with position pi, initial
radius ri and velocity vi, in order for point (T,Θ) to be on a departure curve of
DC(C,Ci). The surface of Ci is given by Equation (1). If we fill in line 	 in (1),
by substituting x = 	x(t) and y = 	y(t), and solve for t, we get a solution of the
following form:

t1,2 = A(T,Θ) ±
√

D(T,Θ). (8)

Here, D(T,Θ) is the discriminant whose sign indicates whether or not line 	
intersects Ci. When D(T,Θ) = 0, 	 is tangent to Ci, hence D(T,Θ) = 0 is an
implicit equation for the set DCr(C,Ci). We can make this explicit by solving
D(T,Θ) = 0 for T . In Fig. 3 this function is plotted for various values of vi (note
that the function has a period of 2π). In each of these cases we see two sine-
like curves (for vi = 1, it is degenerate). They correspond with DCrl(C,Ci)
and DCrr(C,Ci), respectively. The other departure curves DClr(C,Ci) and
DCll(C,Ci) can be found when considering clockwise spirals.

Given a position (T,Θ) on the surface of cone C for which D(T,Θ) = 0,
the arrival time of the straight-line segment at cone Ci is given by A(T,Θ).
The departure time of the segment is given by T . For some points along the
departure curve A(T,Θ) is smaller than T . They correspond with bitangencies
in the negative direction, i.e. the arrival time on Ci is smaller than the departure
time at C. In the plots this is indicated by dashed curves. In the remainder of
this paper these improper curves are ignored when we refer to departure curves.

We also have to take into account departure curves of DC(C, g) associated
with segments tangent to C and leading to the goal configuration g. In this case,
we have to solve the system of equations [	(t) = g] for T , to get a closed form
for the departure curve.
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(a) (b) (c)

Fig. 3. Departure curves DCr(C,Ci) on the surface of C parametrized by angle Θ and
time T for different values of vi. (a) vi < 1. (b) vi = 1. (c) vi > 1. The dashed curves
are improper departure curves. The gray area, given by the inequality (T cos Θ−pix)2+
(T sin Θ − piy)2 < (ri + viT )2, is the region on the surface of C that is penetrated by
Ci, i.e. these points are not collision-free.

4 A Naive Algorithm

With the notions introduced so far, we can devise a first, rather naive algorithm
to find a shortest path amidst growing discs from some start configuration s to
some goal configuration g. Our approach grows a tree of possible shortest paths
that is rooted in the start configuration at time t = 0. A leaf is expanded if the
length of its path from the start configuration is minimal among all leafs of the
tree. To this end, each leaf is maintained in a priority queue, with a key value
equal to its time coordinate (which equals the length of its path from s). The
priority queue is initialized with the initial motions from the start configuration
s that possibly belong to a shortest path. These are straight-line segments with
slope 1/V leading either directly to the goal configuration, or to a tangency point
on the surface of one of the cones. Some of these segments may intersect other
cones, which would make them invalid, so only the collision-free segments are
considered. The endpoint of each valid segment is put into the priority queue
with a key corresponding to its t-value.

Now, the algorithm proceeds by handling the point with the lowest t-value
in the queue (the front element of the queue). This point is either the goal
configuration, in which case the shortest path has been found, or a point on
the surface of a cone. In this latter, more general case we proceed by walking
along a spiral about the cone. This spiral either runs into an obstacle (another
cone), in which case there is no valid continuation of the path, or it encounters
a departure curve on the surface of the cone. In this case there are two outgoing
branches: (1) continuing along the spiral on the surface of the cone to find a
next departure curve, and (2) departing for the other cone by a straight-line
segment. If this latter segment is collision-free, its endpoint is inserted into the
queue. Also for the first option an entry is enqueued.
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This procedure is repeated until the goal configuration is popped from the
priority queue. In this case the shortest path has been found, and can be read
out if backpointers have been maintained during the algorithm. If the priority
queue becomes empty, or if the front element of the queue has a time-value for
which the goal configuration is not collision-free anymore (it is occupied by one
of the growing discs), no valid path exists. In Algorithm 1, the algorithm is given
in pseudocode.

Algorithm 1. ShortestPathNaive(s, g)
1: Initialize priority queue Q with endpoints of all valid outgoing segments from s.
2: while Q is not empty do
3: Pop the front element 〈q, t〉 from the queue.
4: if the goal configuration is not collision-free anymore at time t then
5: Path does not exist. Terminate.
6: else if q = g then
7: Shortest path found! Terminate.
8: else
9: q is on the surface of a cone, say Ci, so proceed along the spiral about Ci until

it runs into another cone, or encounters a departure curve.
10: if the spiral encounters a departure curve, say DC(Ci, Cj), then
11: 〈q′, t′〉 ← the intersection point of the spiral and the departure curve.
12: 〈q′′, t′′〉 ← arrival point of the bitangent segment on the surface of Cj .
13: Insert 〈q′, t′〉 into Q.
14: if segment 〈q′, t′〉, 〈q′′, t′′〉 is collision-free then
15: Insert 〈q′′, t′′〉 into Q.
16: Path does not exist.

In the above algorithm, we have to identify the spiral we are on (let us assume
that it is a counterclockwise spiral), given a point on the surface of the cone
(line 9). Let q be a point on the surface of some cone, say Ci, given in Euclidean
coordinates (x, y, t). Then the corresponding coordinates (T,Θ) on the surface
of Ci are given by (T,Θ) = (t, arctan y−piy

x−pix
).

The spiral on the surface of Ci going through (T,Θ) is given by θ0 as computed
in Equation (6). Equation (5) then gives a function for the angle θ(t) along
the spiral through (T,Θ). In line 10 of Algorithm 1, we wish to know whether
the spiral encounters any departure curves. To this end, we should find the
intersections of the spiral and the departure curves on the surface of Ci. Recall
that we can deduce an implicit equation D(T,Θ) = 0 for the departure curves of
any pair of cones (see Equation (8)). The intersections are thus found by solving
D(t, θ(t)) = 0 for t.

When we have found an intersection for some value t = T of the spiral and
a departure curve of, say, DC(Ci, Cj), we wish to know what kind of departure
curve we have encountered. The arrival time at cone Cj when departed from
time T is A(T, θ(T )) (see Equation (8)). If this arrival time is smaller than T ,
the intersection can be ignored. If it is larger, we like to know whether the tangent
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straight-line segment arrives on the left side of Cj (and should be succeeded by
a clockwise spiral on Cj), or on the right side of Cj (and should be succeeded
by a counterclockwise spiral). This is determined by the derivative of D(t, θ(t))
to t. If this derivative is negative at point T , we have arrived on the left side.
If it is positive, we have arrived on the right side. The exact arrival location on
the surface of cone Cj is given by 	(A(T, θ(T )) (see Equation (7)). From this
information we can deduce the parameters defining the spiral on Cj on which
we have arrived.

5 An Efficient Algorithm

The algorithm described above will indeed find a shortest path to the goal within
a finite amount of time. However, in order to have a bound on the running time
we must define nodes that can provably be visited only once in a shortest path,
such that we can do relaxation on them as in Dijkstra’s algorithm [7]. We will
show that this is easy to achieve in the restricted case where all discs have equal
growth rates, and present an O(n3 log n) algorithm (n being the number of discs).
For the general case this problem is left open, but we will present an algorithm
that is very fast in practice, by pruning large parts of the search tree.

5.1 Discs with Equal Growth Rates

If a point q = (T,Θ) on the surface of a cone has been visited during the search
for a shortest path to the goal, all points on the cone that are reachable from
q by following some collision-free path with a velocity less than the maximal
velocity V (i.e., ‖(δx,δy)‖

δt < V ), can never lie on a shortest path from the start
to the goal (this follows directly from Theorem 1). These points are contained
in the wedge formed by the clockwise and counterclockwise spiral going through
q (see Fig. 4; a spiral appears as an exponential function in the ΘT -coordinate
frame), as we know that on the spirals ‖(δx,δy)‖

δt = V . We call this region the
wedge region of q.

Let us consider the arrangement [1] on the surface of a cone containing all
(proper) departure curves and all obstacle regions (other cones penetrating the
surface) on that cone (see Fig. 5 for an impression). Note that the departure
curves may be subdivided into a number of collision-free intervals by the obstacle
regions. In case all discs have the same growth rate, say vi = v < V for all i,
these intervals satisfy an interesting property (see Fig. 3(b)): let (T,Θ) be a
point on some departure curve interval, then all points (T ′, Θ′) on the same
interval for which T ′ > T are within the wedge region of (T,Θ). To prove this,
we must show that for the departure curves hold that ‖(δx,δy)‖

δt ≤ V . As the
proof is rather technical, we omit it here.

This means that these departure curve intervals can serve as nodes in our
Dijkstra-algorithm. Only the path arriving earliest in an interval can contribute
to a shortest path. Paths arriving later in the interval cannot be part of the
shortest path, because the path arriving earliest in the interval can be extended
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with a traversal along the interval to end up at the same position (and time) as
the path arriving later in the interval.

Fig. 4. The region (light grey)
on the surface of a cone that is
reachable from point q by paths
with ‖(δx,δy)‖

δt
≤ V . The dark

grey area is an obstacle.

Each node (an interval) has two outgoing
edges. Let the interval be a segment of a depar-
ture curve of DC(Ci, Cj), then the first edge is
a spiral segment to the next departure curve on
the surface of Ci, and the second edge consists
of a bitangent straight-line segment and a spiral
segment and arrives in the first departure curve
encountered on the surface of Cj . For the first
edge, which stays on the cone, we have to deter-
mine the next departure curve that is encoun-
tered if we proceed by moving along the spiral
about the cone. This can be done efficiently using
the arrangement, if we have computed its trape-
zoidal map [1], where the sides of the trapezoids
are spiral segments.

For the second edge, which traverses to an-
other cone, we have to determine what the first
departure curve is we will encounter there. This
can be done efficiently using the arrangement we have computed on that cone.
Using a point-location query, we can determine in what cell of the arrangement
the straight-line segment has arrived, and using the trapezoidal map we know
what the first departure curve is we will encounter if we proceed from there.

Finally, we must ascertain that each edge is collision-free with respect to the
other cones. Spiral segments may collide with other cones if these penetrate the

Fig. 5. An impression of an arrangement on the surface of the cone. The thick lines are
the departure curves, of which one has a shadow interval (dashed). The thin dashed
lines are spiral segments that delimit trapezoidal regions that have the same next
departure curve or collision (only the counter-clockwise spirals are shown). The gray
area depicts an obstacle area of another cone penetrating the surface, and cutting
several departure curves into two intervals.
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spiral’s cone surface. Since obstacle areas are incorporated into the arrangement,
such collisions are easily detected. Straight-line segments may collide with any
cone, so for each departure curve and each cone, we calculate the shadow inter-
val this cone casts on the departure curve, in which a departure will result in
collision. These shadow intervals are stored in the arrangement as well. In Fig. 5,
an impression is given of how such an arrangement might look.

Theorem 4. The algorithm to compute a shortest path amidst n growing discs
with equal growth rates runs in O(n3 logn) time.

Proof. For each pair of cones there are O(1) departure curves. Since there are
O(n2) pairs of cones, there are O(n2) departure curves in total. Each of the
departure curves can be segmented into at most O(n) intervals, as there are
at most O(n) cones intersecting the departure curve (each cone can split the
departure curve into at most two segments). Hence, there are O(n3) departure
curve intervals. Each departure curve interval has O(1) outgoing edges, making
a total of O(n3) edges.

The complexity of Dijkstra’s algorithm is known to be O(N logN +E) where
N is the number of nodes, and E the number of edges. Each edge requires some
additional work. Firstly, we have to find the departure curve interval in which it
will arrive, by doing a point-location query in the trapezoidal map of one of the
arrangements. This takes O(log n) time. Further, we must determine whether an
edge is collision-free. Using the shadow intervals stored at the departure curves,
this can be done in O(log n) time as well. Thus, as both N and E are O(n3),
Dijkstra’s algorithm will run in O(n3 log n) time in total.

Computing the arrangements and their trapezoidal maps takes O(n2) time per
cone, as there are O(n) departure curves on each cone, and O(n) intersection
areas of other cones. As there are O(n) cones, this step takes O(n3) time in total.
All the shadow intervals can be computed in O(n3) time as well, as there are
O(n2) departure curves and O(n) cones.

Overall, we can conclude that our algorithm runs in O(n3 logn) time. �

5.2 General Case: Discs Have Different Growth Rates

In the general case, where the discs may have different growth rates, the problem
becomes much harder. We can follow the same approach as above, but let us
look at what happens to the slope of the departure curves in this case (see Figs.
3(a) and (c)). In the case where the arrival cone has a slower growth rate, the
departure curves (provably) satisfy ‖(δx,δy)‖

δt ≤ V (see Fig. 3(a)). However, in the
case where the arrival cone has a faster growth rate (Fig. 3(c)), it is clear that this
is not the case. The departure curve DCrr is horizontal at some point, meaning
that ‖(δx,δy)‖

δt = ∞. Hence, we cannot define intervals on these departure curves
that serve as nodes in the search process.

We can still use Algorithm 1 for the general case, but a problem is that
this algorithm considers many branches in the search tree of which we know



Planning the Shortest Safe Path Amidst Unpredictably Moving Obstacles 115

that they will not lead to a shortest path. For instance, it lets the spirals wind
around the cones forever, thereby encountering many departure curves, which in
turn generate other spirals on other cones. Hence, it lets the size of the search
tree blow up quickly.

In order to have an algorithm that runs fast in practice, we need to prune
these useless branches of the search tree. The key observation we use for this is
that a point (T,Θ) on the surface of cone Ci cannot be part of shortest path if we
have visited (T ′, Θ) already (where T ′ < T ) and the vertical line segment on the
surface of the cone between (T ′, Θ) and (T,Θ) is collision-free. This is because
(T,Θ) is then in the wedge region of (T ′, Θ) (note that the velocity ‖(δx,δy)‖

δt
along the vertical line segment equals vi < V ). Hence a spiral encountering
(T,Θ) need not be expanded any further.

To implement this practically, we only do this test for a constant number of
Θ’s. To this end, we augment Algorithm 1 by choosing a small constant ε, and
drawing 2π

ε evenly distributed vertical lines on the surface of each cone. These
vertical lines are segmented into collision-free intervals by obstacle regions on
the surface. Now, these intervals will serve as nodes in our practical algorithm
on which we perform relaxation.

This means that if we walk along a spiral on the surface of a cone, and the
spiral crosses a vertical line, we have to check whether this spiral is the first to
arrive in the particular interval. If not, this spiral can never be part of a shortest
path, for the same reasons as above. Thus, this branch of the search tree can be
pruned.

The smaller ε is chosen, the sooner the spirals can be pruned, and hence
the smaller the size of the search tree will be. On the other hand, a smaller
ε also causes the algorithm to perform more (costly) relaxation checks, with
diminishing returns. So ε should not be chosen too small. Even though we are
unable to bound the running time of this algorithm in terms of the number of
discs (n) or the value of ε, it turns out to be very fast in practice, as we will see
next.

5.3 Implementation Details

We created a fast implementation of Algorithm 1, augmented with the pruning
heuristic presented above. We did not create an arrangement of all vertical lines
and all obstacle regions on each cone. This would take too much time. Instead, we
maintain for each vertical line m one time-value at which it was last visited, say
tm. Given the order in which the points are considered in the priority queue, we
know that when a point q is popped from the queue, it has a higher time value than
any point previously considered. So, if point q lies on vertical line m, its time value
qt is larger than the time-value tm of the point previously considered on that line.
If the line segment between tm and qt on m is collision-free, q is in a previously
visited interval, and hence this point is not expanded. However, if the vertical line
segment between these two points is not collision-free, point q is the first to arrive
in a new interval, and its outgoing edges must be inserted into the priority queue.
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From this moment on, qt is set as the time value attached to the vertical line m,
as we know that no point below qt will be considered anymore.

Outgoing edges of a point q on a vertical line segment are a spiral segment
to the next vertical line, and –in case this spiral segment crosses one or more
departure curves– segments to vertical lines on other cones. In our implemen-
tation, the intersection between spiral segments and departure curves is found
using a combination of two approximate root-finding algorithms [3].

Collision-checking straight-line segments is done by testing them for inter-
sections with all cones, except the ones they are tangent to. We approximate
a spiral segment between two consecutive vertical lines by one or more small
straight-line segments, and collision-check them in the same way (in our imple-
mentation, we use a single straight-line segment, as the radial distance ε between
two consecutive vertical lines is small).

Finally, the Dijkstra paradigm was replaced by an equally suited A*-method
[7], that is faster in practice as it focusses the search to the goal. It adds a lower
bound estimate of the distance to the goal to the key-value of each point in the
priority queue. In our implementation, the lower bound estimate is simply the
Euclidean distance divided by the maximal velocity.

6 Experimental Results

We created an interactive application for planning paths amidst growing discs.
The properties of the growing discs (position, size, growth rate) can be changed
by the user, and on-the-fly a new path is computed. From this application we
report results. Experiments were run on a Pentium IV 3.0GHz with 1 GByte of
memory. The value of ε was optimized and fixed at 2π

40 .

Fig. 6. A shortest path amidst 10 growing discs. A small dot indicates the position
along the path at t = 0, 1, . . . , 7. The pictures were generated by our application.
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We report the running times of the algorithm for a varying number of discs.
As the running time of the algorithm does not only depend on the number of
obstacles, but also on the exact configuration of the discs, and how well the A*
method manages to focus the search, etc., we averaged the running times over
various positions of the start configuration for each experiment. In Fig. 7 the
results are given.
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Fig. 7. Results of our experiments

What first of all can be seen
from the results is that our im-
plementation is very fast. Even for
15 growing discs, the running time
is only 0.0042 seconds, well within
real-time requirements. We did not
show results for more than 15 discs,
as it appeared to be difficult to find
sensible setups with this many discs
that still contain a valid path to the
goal. From the figure it seems that
the running time is more or less
quadratically related to the num-
ber of discs. This is what we expected based on the implementation. In Fig. 6,
snapshots are shown of a shortest path amidst 10 growing discs.

7 Conclusion

In this paper we presented an algorithm for computing shortest paths (mini-
mum time paths) amidst discs that grow over time. A growing disc can model
the region that is guaranteed to contain a moving obstacle of which the maximal
velocity is given. Hence, using our algorithm, paths can be found that are guar-
anteed to be collision-free in the future, regardless of the behavior of the moving
obstacles. As the regions grow fast over time, a new path should be planned from
time to time –based on newly acquired sensor data– to generate paths with more
appealing global characteristics. Our implementation shows that such paths can
be generated very quickly. A great advantage over other methods is that this
replanning can be done safely. The old path that is still used during replanning
is guaranteed to be collision-free. A requirement though, is that the robot has a
higher maximal velocity than any of the moving obstacles.

A drawback of the method we presented is that a path to the goal often does
not exist. This occurs when the goal is covered by a growing disc before it can be
reached. A solution to this problem would be to find the path that comes closest
to the goal. It seems that this can easily be incorporated into our algorithm.
Other possible extensions include allowing obstacles with different shapes (other
than discs), and fixed obstacles in the environment, but they are still subject of
ongoing research.
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Summary. This paper presents artificial constraints as a method for guiding heuristic
search in the computationally challenging domain of motion planning among movable
obstacles. The robot is permitted to manipulate unspecified obstacles in order to create
space for a path. A plan is an ordered sequence of paths for robot motion and object
manipulation. We show that under monotone assumptions, anticipating future manip-
ulation paths results in constraints on both the choice of objects and their placements
at earlier stages in the plan. We present an algorithm that uses this observation to in-
crementally reduce the search space and quickly find solutions to previously unsolved
classes of movable obstacle problems. Our planner is developed for arbitrary robot
geometry and kinematics. It is presented with an implementation for the domain of
navigation among movable obstacles.

1 Introduction

A robot that can move obstacles out of its way is capable of more autonomous
tasks. For example, in Figure 1, the robot cannot directly plan a path to the
goal. By manipulating four objects, the robot changes its configuration space and
opens free space for a path. This capacity comes at the cost of computational
complexity. We explore a method for allowing robots to constrain their action
space and create computationally manageable search spaces.

A simple path planning task in the movable obstacle domain becomes a com-
plex manipulation planning problem with a partially specified goal. The robot
can change its own configuration and the configurations of other objects. Each
of these changes alters the workspace of the robot by increasing or decreasing
the free space for future motions. The size of the search space is exponential in
the number of movable objects. Furthermore, the branching factor of forward
search is linear in the number of all possible world interactions [1]. A simpli-
fied variant of this domain involving only one movable obstacle is NP-hard.[2]
More recent results demonstrated NP-hardness results for trivial problems where
square blocks are pushed in block-size increments on a planar grid.[3]

In this paper we show that allowing one interaction with each object and
reverse planning let the robot constrain its initial search space. We do not es-
cape the curse of dimensionality. The proposed method of artificial constraints
enables fast heuristic search in a domain where standard proximity heuristics

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 119–135, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. A simulated solution to a problem of Navigation Among Movable Obstacles.
The robot is instructed to reach the goal. After constructing a plan, it first moves the
three smaller objects to the niches. The robot uses the new free space to move the
table. Finally it clears a path and navigates to the goal.

provide little or no insight. We demonstrate that our method is directly applica-
ble to robot tasks in a simulated domain. Furthermore, we introduce a problem
formulation and runtime analysis that form a basis for future work.

2 Related Work

Obstacles moving along specified trajectories is a problem addressed by bound-
ing the velocities of the obstacles and augmenting the configuration space with
time.[4] A point in the free space ensures that a configuration is valid at the given
time in which it takes place. This approach has been extended to kinodynamic
domains, [5] as well as real-time deformable plans.[6] These algorithms do not
allow the robot to affect the world.

Initial work in coordinating robot motions can be found in [7, 8, 9]. Most re-
cent research that deals with robots repositioning multiple objects is in assembly
planning. Assembly planners focus on separating a collection of parts and typ-
ically ignore the robot/manipulator. Domain operators also allow unassembled
parts to be removed to “infinity.”[10, 11]

In the movable obstacle domain, objects cannot move unless manipulated
by the robot. The motion of the objects is constrained to the workspace of
the robot, while the robot is constrained to move along collision-free paths.
Rearrangement planning is the domain that is most closely related. [12, 13, 14]
The final configurations of all objects are specified, and the robot must find
coordinated transport paths. For instance, when a manipulation path to the goal
collides with other objects, [14] heuristically selects intermediate configurations
for interfering obstacles.



Planning Among Movable Obstacles with Artificial Constraints 121

In our domain, final configurations for objects are unspecified. Hence the
robot must decide not only where to move objects but which objects must be
moved. [15] searched a graph of robot paths, allowing objects to be pushed away
from the robot trajectory. This method is effective on small problems, but easily
encounters local minima. [1] and [16] propose to consider joining regions of robot
free space and constructing graphs of interfering obstacles respectively. Neither
planner handles objects that interfere with the motion of other objects. [17]
ignores the robot, but offers some insight into graph-based chronological and
spatial coordination of movable objects.

[15, 1, 16, 14] were developed for mobile robots. Our work addresses the prob-
lem generally for any kinematic structure of the robot. This is important when
considering manipulation problems where robot geometry varies significantly for
different portions of the workspace. We will base our domain on configuration
space operators first described in [12]. Our constraint approach is related to [8],
however we do not assume a priority on object motions, rather we must search
the space of object choices and orders.

3 Movable Obstacle Domain

In this section, we develop a geometric model for movable obstacles. Our choice of
space and operators make the presented approach general for any robot kinemat-
ics in the framework of rigid body motion and prehensile manipulation. Section 7
gives an example of how the tools developed in this framework can be applied
to a specific robot problem.

Consider a path planning problem in a 2D or 3D Euclidian space that contains
a set of fixed objects OF = {F1, . . . , Ff} and a set of movable objects OM =
{O1, . . . , Om}. The space also contains an n degree of freedom robot, R. While
paths are not explicitly parameterized by time, we will use the variable t to refer
to a chronological ordering on states and operations. A world state at time-step
t is the tuple consisting of t, the robot configuration rt and the configuration qt

i

of each movable object: W t = (t, rt, qt
1, q

t
2, . . . , q

t
m).

Let CW be the space of all possible W t. We permit the robot to move one
object at a time. Consequently, we are interested in subspaces or slices of CW :

CR(W t) = ({r}, qt
1, q

t
2, . . . , q

t
m) - the slice of robot configurations, and

COi(W
t) = (rt, qt

1, q
t
2, . . . , {qi}, . . . , qt

m) - configurations of object Oi.

Observe that any slice is parameterized by the positions of other objects. Fol-
lowing [18] we define free space to be the subspace of collision free configura-
tions. First consider the configuration space obstacles (CO). Let A(q) = {x ∈
Rk|x is a point of object A in configuration q}. For any set of points S in Rk, a
configuration space obstacle in CB is the set: COB(S) = {p ∈ CB|B(p)∩S �= ∅}.
Let q be a configuration of object A and p be a configuration of object B. Since
no two objects can occupy the same space in Rn, CO is symmetric:

p ∈ COB(A(q)) ⇒ B(p) ∩A(q) �= ∅ ⇒ q ∈ COA(B(p)) (1)

To simplify notation, let COqi

R = COR(Oi(qi)) and COqi

Oj
= COOj (Oi(qi)) rep-

resent obstacles due to Oi in CR and COj respectively.
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Let COA(B) be the complement of COA(B) in CA. The free space of a movable
object, Cfree

A (W t), is the set of configurations where the object is not in collision
with fixed or movable obstacles.

Cfree
Oi

(W t) =
⋂

k

COOi(Fk)
⋂

Oj 
=Oi

CO
qt

j

Oi
(2)

Collisions between a moving object and the robot are treated separately
from Eq. 2 since the motion of an object also implies the motion of the robot.
Cfree

R (W t) is expressed analogously in terms of COR.
In spaces with external forces, such as gravity, objects will not remain static

in arbitrary configurations. Manipulated objects must be released in place-
ment configurations Cplace

Oi
(W t) ⊆ Cfree

Oi
(W t). When solving three dimensional

problems, we propose form closure to develop this set. In our two dimen-
sional examples, we assume gravity is orthogonal to the object plane and hence
Cplace

Oi
(W t) = Cfree

Oi
(W t).

Having defined the sets of free configurations for the robot and movable ob-
jects, we now address the allowable interactions between the robot and the en-
vironment. Following [12], we define two parameterized operators on the Cspace:
Transit and Transfer. Transit creates a path for the robot. Transfer represents
the motion of the robot and a single movable object.

Transit: We first define a continuous path τ in the configuration space of
the robot: τ : [0, 1] → r for r ∈ CR. τ(ri, rj) will shorten the notation for a path
where τ [0] = ri and τ [1] = rj . The Transit operator is a function that maps a
world state and path to another world state.

Transit : (W t, τ(rt, rt+1)) → W t+1 (3)

This operator is valid if and only if the following condition holds:

τ(s) ∈ Cfree
R (W t) ∀s ∈ [0, 1] (4)

Transfer: When an object is rigidly grasped, its configuration is fully deter-
mined by a transformation of the generalized pose of the robot end effector.
K : CR → x (x ∈ Rn) is the kinematic mapping of robot configurations to
end effector positions/orientations. We will consider a discrete or sampled set of
grasps for each movable object: GS(Oi) = {GOi}. Each GOi is a rigid trans-
form from the robot pose to a configuration of Oi. GOi(K(r)) = q states that
the robot configuration r grasps Oi in configuration q.

For any grasp Gk
Oi

∈ GS(Oi), the Transfer operator maps a world state and
a path in CR to a new state where the robot and an object are displaced:

Transfer : (W t, Oi,Gk
Oi

, τ(rt, rt+1)) → W t+1 (5)

Notice that for any robot path τ we can compute τOi for the object as the path
τOi = GOi(K(τ)). A valid Transfer operator must satisfy:
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τ(s) ∈ Cfree
R (W t) ∪ CO

qt
i

R τOi (s) ∈ Cfree
Oi

(W t) ∀s ∈ [0, 1] (6)

τOi(0) = qt
i (7)

τOi(1) ∈ Cplace
Oi

(W t) (8)
R(τ(s)) ∩Oi(τOi(s)) = ∅ ∀s ∈ [0, 1] (9)

Eq. 8 requires that the final configuration of the object be statically stable. Eq. 9
ensures that the robot does not collide with obstacle Oi.

4 Motions of Multiple Objects

The problems we are interested in are realistic domains with numerous movable
objects. Due to the dimension of these spaces, finding meaningful sub-domains
and heuristics takes precedence over completeness. In earlier work [1] we observed
that Cfree

R can be partitioned into disjoint subsets {C1, C2, . . . , Cd} such that a
robot in configuration ri ∈ Ci can access any configuration in Ci via a Transit
operation but no configuration in Cj �= Ci.

Our planner detected objects that could be moved in order to give the robot
access to other components of Cfree

R . For two subsets Ci, Cj ∈ Cfree
R (W t) and a

border obstacle Ol we pursued a k-length sequence of Transit and Transfer

operations that yield a merged component Cmrg ⊂ Cfree
R (W t+k):

Cmrg = (Ci ∪ Cj

⋃
CO

qt
l

R )
⋂

CO
qt+k

l

R (10)

∀ri, rj ∈ Cmrg there exists τ(ri, rj) s.t. ∀s(τ [s] ∈ Cmrg) (11)

Based on the concept of connecting free space components, we defined the class
of linear problems (LP ). A problem has a linear solution when there exists a
sequence of free space components {C1, C2, . . . , Cn} such that merging adjacent
components Ci and Cj does not constrain the Cspace required to merge adjacent
Ck and Cl where (i < j ≤ k < l). [1] presented a resolution complete algorithm
for problems in L1, where only one object must be displaced to merge two
components.

Extending [1] to Lk problems where up to k objects may be moved to connect
free space components is challenging even for k = 2. In the best case, every
robot path between two components would pass through two objects, O1 and O2,
allowing the planner to locally search the joint motion space of size |O1| × |O2|.
However, as seen in Figure 1, the path between Ci, Cj ∈ Cfree

R might only
pass through one object (the table). A complete L2 planner must consider all
possibilities for the choice of second object. In general, for Lk problems, we may
need to enumerate 2k−1 possible sets of objects that do not directly interfere
with a path to the goal.

4.1 Proposed Hierarchy

In order to manage the increased complexity when local search requires the mo-
tion of multiple objects, we propose further classification of the movable obstacle
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domain to monotone plans. In assembly planning, monotone plans refer to plans
where each application of an operator yields a subassembly that is part of the
final assembly [11]. We do not enforce a final assembly and define monotone
plans as those in which a transferred object cannot be moved again:

W t+1 = Transfer(W t, Oi,Gk
Oi

, τ) ⇒ qT
i = τOi(1) (T > t) (12)

Monotone search decouples the joint motion space of objects into individual path
plans. The search must decide which objects to displace, the Transfer paths
for each object and the ordering of object motion.

Notice that any plan can be expressed as a sequence of monotone plans:

PlanNM = . . . , τ1, (Oi, τ2), τ3, (Oj , τ4), τ5, (Oi, τ6), τ7, . . . ≡
PlanM1 = . . . , τ1, (Oi, τ2), τ3, (Oj , τ4), τ5 and PlanM2 = (Oi, τ6), τ7, . . . (13)

Let W 6 be the world state after the operation Transit(W 5, τ5), prior to the
second displacement of Oi. We refer to W 6 as an intermediate world state. A
problem can be characterized in its non-monotone degree by the number of
intermediate states necessary to construct a sequence of monotone plans.

We propose the following classes of problems:

Lk Linear problems where components of Cfree
R can be connected in-

dependently. k is the maximum number of objects that must be
displaced to connect two components.

NL Non-linear problems that require the planner to consider interactions
between keyholes.

M Monotone problems where each object needs to only be displaced
once throughout the plan.

NMi Non-monotone problems that can be expressed as i monotone prob-
lems with intermediate states.

A planner can operate in the space of one or two of these classes. For instance
a planner in L3NM6 would seek linear solutions that require manipulating at
most three objects and using six intermediate states to merge two free space
components. Our proposed algorithm operates in LkM .

5 Artificial Constraints

The monotone class of problems helps organize the study of movable objects.
It still preserves a number of the computational challenges of our domain. The
planner determines a subset {O1, . . . , O

′
m} = O′

M ⊂ OM of movable objects
to displace. It constructs a valid set of paths {τO1 , . . . , τO′

m
} for displacing the

objects and {τ1, . . . , τm+1} Transit operations between grasps. Additionally,
the planner decides an ordering for object motion. This section will analyze the
retained problem complexity and present our solution.
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5.1 Complexity of Forward Search

Suppose we were to perform a standard forward search of obstacle motion. In the
monotone case, we do not need to consider all possible Transit and Transfer
paths. At each time-step t we select an object Oi for motion and a goal config-
uration qt+2

i ∈ Cplace
Oi

(W t+2). We verify that there exists a robot configuration
rt+1 ∈ Cfree

R (W t) that satisfies qt
i = Gk

Oi
(K(rt+1)) for some k. Additionally, we

check the existence of valid paths:

Transit(W t, τ1(rt, rt+1)) and
Transfer(W t+1, Oi,Gk

Oi
, τ2(rt+1, rt+2))

such that qt+2
i = Gk

Oi
(K(rt+2)) (14)

Assume that verification could be performed in constant time, and that the
number of placements is O(dn), where d is the resolution of each of the n di-
mensions of COi . Typically, n = 3 or 6. At t = 0, this algorithm would select
from m objects and dn configurations for each object: O(mdn). Expanding the
search to depth 2, there are now m − 1 objects and dn placements for each
object: O(mdn × (m − 1)dn). This algorithm has an asymptotic runtime of
O(mdn × (m− 1)dn × ...× 2dn × dn) = O(m!dnm).

The difficulty lies in finding an informed heuristic for the exponentially large
space of object placements. A good placement for the object is one that re-
spects the motion of subsequent obstacles. Since the motion of future objects is
postponed in the search, good placements are unknown.

5.2 Reverse Search

Reverse planning is common in assembly problems. However, the implementation
and motivation of reverse planning is different in our domain. Assembly planners
have fixed goal configurations for all objects in which the motion of the objects is
typically highly constrained. Consequently, the reverse search space has a much
smaller branching factor due to actual constraints.

In the domain of movable obstacles, the final configuration is not pre-
determined, hence object motion must be planned from the initial state. Search
reversal is performed in regard to the ordering of object motions (i.e. a Transfer
of the last object is performed as the first step of the search). At the start of
search, the branching factor is large due to the non-existence of goal config-
urations. However, artificial constraints yield significant space reduction when
searching prior motions.

Artificial Constraints

Let W 0 be the initial world state. Assume that at some future time step t > 0,
the robot will perform a Transit(W t, τ t(rt, rt+1)) operation. This operation is
valid only when τ t(s) ∈ Cfree

R (W t) (Eq. 4). Let qt
j be the configuration of obstacle

Oj at time t. By the definition of free configuration space (Eq. 2):

τ t(s) �∈ COR(Oj(qt
j)) (15)

Due to the symmetry of CO (Eq. 1), we can invert this relationship.
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qt
j �∈ COOj (R(τ t(s))) ∀s ∈ [0, 1] (16)

The robot motion along τ t defines a swept volume in Rn. Let V (τ t) be the
volume of points occupied by the robot during its traversal of τ t:

Transit(W t, τ t(rt, rt+1)) → V (τ t) =
⋃

s∈[0,1]

R(τ t(s)) (17)

qt
j �∈ COOj (V (τ t)) (18)

Analogously, if we assume a valid Transfer(W t, Oi,Gk
Oi

, τ(rt, rt+1)) at step t

(t > 0), we would define V (τ t, Oi,Gk
Oi

) as the volume of points occupied by the
robot and the object during their joint motion:

Transfer(W t, Oi,Gk
Oi

, τ t(rt, rt+1)) →

V (τ t, Oi,Gk
Oi

) =
⋃

s∈[0,1]

[R(τ t(s)) ∪Oi(τ t
Oi

(s))] (19)

From Eq. 6 we find

τ t(s) �∈ COR(Oj(qt
j)) τ t

Oi
(s) �∈ COOi (Oj(qt

j))) (j �= i). (20)

Due to the symmetry of CO:

qt
j �∈ COOj [R(τ t(s)) ∪Oi(τ t

Oi
(s))] ∀s ∈ [0, 1] (21)

qt
j �∈ COOj (V (τ t, Oi,Gk

Oi
)) (22)

Eq. 18 and 22 indicate that the swept volume of any Transit or Transfer
operation in W t places a constraint on the configurations of movable objects:
V t = V (τ t) or V (τ t, Oi,Gk

Oi
) respectively. Since objects remain fixed unless

moved by Transfer, then for some final time T :

q0
j �∈ COOj (V

T ) or there exists a time t(0 ≤ t < T ) such that

Transfer(W t, Oj ,Gk
Oj

τ t(rt, rt+1)) and τ t
Oj

(1) �∈ COOj (V
T ) (23)

Due to our assumption of monotone plans, if the initial configuration of an
obstacle conflicts with V T , there is exactly one Transfer operator that displaces
it to a non-conflicting configuration at some time-step t (t < T ).

6 Algorithm

In order to apply the method of artificial constraints, our planner consists of two
modules: obstacle identification and constraint resolution. Obstacle identification
decides the last object that will be manipulated prior to reaching the goal or a
subgoal. Constraint resolution plans a Transfer path for this object and the fol-
lowing Transit to the goal. The two paths form artificial constraints. We detect
objects that violate the constraints in W 0 and recursively plan corresponding
Transfer and Transit operations. The first grasping configuration identified by
a successful resolution step is used as the preceding subgoal for obstacle iden-
tification. Both modules backtrack on their choices when the algorithm fails to
resolve the constraints.
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(a) Problem (b) P0
last (Unsolved) (c) P1

last (Solved) (d) P2
last

Fig. 2. Plast selects the last object for manipulation by the robot. The planner is
called for alternative selections (c), and for preceding subgoals (d).

6.1 Obstacle Identification

The search is initialized by a constrained relaxed planner Plast. [1] OL ← Plast

operates in CR. It is permitted to pass through movable configuration space
obstacles with a heuristic one-time cost for entering any object. Plast finds a
path to the goal and selects the last colliding obstacle, OL, to schedule for
manipulation. In Figure 2(b), P0

last selects the table.
Constraint resolution, described in Section 6.2, validates the heuristic selection

with a sequence of Transit and Transfer operations. If no such sequence is pos-
sible, Plast is called again, prohibiting any transition into CO

q0
i

R . Since constraint
resolution fails on the table, P1

last selects the couch for motion in Figure 2(c). We
ensure completeness over the selection of final objects by aggregating Oavoid, a
set of prohibited transitions for Plast.[1]

When resolution is successful, Plast is called with the goal of reaching the ini-
tial grasping configuration identified by constraint resolution. Figure 2(d) shows
that after successfully scheduling the manipulation of the couch, P2

last selects the
chair for motion. Finally, when Plast finds a collision-free path to the subgoal,
the algorithm terminates successfully.

6.2 Constraint Resolution

Let T index the final time step of the plan and t be the current time step. We
will maintain the following sets:

Ot
f - the set of objects Oi scheduled for manipulation after time t.

Ot
c - the set of objects scheduled for motion prior to time t.

Vt - the union of all artificial constraints V t′
(t < t′ < T ).

VT is initialized as an empty volume of space. OT
f and OT

c are empty sets.
We begin by applying OL ← Plast and adding OL to OT

c . Constraint reso-
lution attempts to move all objects from Oc to Of . Objects may be added to
Oc when they interfere with manipulation. The following three procedures are
performed recursively. Each iteration of recursion will plan from state W t, such
that operations that follow time step t are assumed to be known.
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(a) Problem (b) Manipulation Plan (c) Constraint Resolution

Fig. 3. (a) To free a goal path in W T , P chooses to manipulate the couch in W T−2.
(b) The planner selects the manipulation of the couch that minimizes collision. (c) In
W T−4 our planner manipulates the table to clear space for transferring the couch.

(1) Choosing an Obstacle and Grasp

First, we select an obstacle Od ∈ Ot
c. We then choose a grasp, Gk

Od
from a

predefined set {G1, ...,Gn}. Each grasp corresponds to a robot configuration
rgi. If the robot is redundant the space of inverse kinematic solutions is sampled,
yielding a set of robot configurations {rg1, rg2, ..., rgn}.

From the set of grasping configurations we select rt−2 such that for some k:
Gk

Od
(rt−2) = qt−2

d = q0
d. The grasp transform specifies that the robot configura-

tion rt−2 is grasping object Od in the objects initial configuration.
We plan a path τg(r0, r

t−2) to verify that the grasp configuration can be
reached by the robot without passing through previously scheduled obstacles in
their initial configurations:

τg(s) �∈ (
⋃

Oi∈Ot
f

CO
q0

i

R ) ∪CO
q0

d

R ∀s ∈ [0, 1] (24)

If such a path does not exist, the planner searches over alternative grasps.

(2) Dual Planning for Transfer and Transit

The Transit operation to the subsequent grasp, or goal, occurs after the
Transfer of an object. Chronologically it should be planned first. However, we
have not yet determined the initial configuration for Transit since it is equiva-
lent to the final configuration of the Transfer task. We propose assembling the
Transit path from two segments: τ1 is a path from the initial grasp of the object
to rT and τ2 is the Transfer path of the object. The robot returns to its initial
grasping configuration, rt−1, during transit.

τ1) Plan a partial path τ1 from rt−2 to rt. The path must not pass through any
future scheduled obstacle:

τ1(s) �∈
⋃

Oi∈Ot
f

CO
q0

i

R ∀s ∈ [0, 1] (25)

Notice that taken alone this path is not intended for a Transit operation.
In the world state W t−2, object Od may still block this path. We choose
this path heuristically to pass through the least number of objects in their
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initial configuration and minimize euclidian path length. If no such path is
possible, a different grasp, rt−2, is selected.

τ2) Plan Transfer(W t−2, Od,Gk
Od

, τ t−2
2 ). The robot configuration at the start

of the plan is τ2(0) = rt−2. The final configuration of the robot must be
selected by the planner. Given that τ2 maps to the object path Gk

Od
(τ2) →

τ2Od
, we require the paths to adhere to the following constraints:

τ2(s) �∈
⋃

Oi∈Ot
f

CO
q0

i

R τ2Od
(s) �∈

⋃

Oi∈Ot
f

CO
q0

i

Od
∀s ∈ [0, 1] (26)

τ2Od
(1) �∈ COOd

[R(τ1(s)) ∪R(τ2(s))] ∀s ∈ [0, 1] (27)
τ2Od

(1) �∈ COOd
(Vt) (28)

Eq. 26 states that the object and the robot may not pass through the con-
figuration space obstacles of future scheduled objects. Eq. 27 states that the
final configuration of Od may not interfere with neither path segment τ1 nor
τ2. Eq. 28 requires the final configuration of Od to be consistent with the
artificial constraints imposed by future motion.

Merging τ1 and τ2 into a single τ , we can define the operation Transit(W t−1, τ).
The transit is valid after the obstacle has been displaced.

(3) Composing Artificial Constraints

Having selected Transfer and Transit operations in W t, we can advance the
search to W t−2. To do so, we will update the three sets described earlier:

Ot−2
f ← Ot

f ∪ {Od} (29)

Vt−2 ← Vt ∪ V (τ1) ∪ V (τ2, Od,Gk
Od

)

= Vt ∪R(τ1(s)) ∪R(τ2(s)) ∪Od(τ2Od
(s)) ∀s ∈ [0, 1] (30)

Ot−2
c ← {Oi | Oi �∈ Ot−2

f ∧ q0
i ∈ COOi (V

t−2)} (31)

Eq. 29 fixes the configuration of Od to the initial configuration and marks it
as resolved in future states. Eq. 30 updates the artificial constraint to include
the Transfer and Transit in W t−2 and W t−1 respectively. Eq. 31 updates the
set of conflicting objects that must be moved earlier than W t−2 to resolve the
constraints.

6.3 Depth First Search

Section 6.1 and 6.2 detailed the components of our planner. We now introduce
pseudo-code that reflects the structure of the search. Identify-Obstacle is
called to initialize the plan. The algorithm is implemented as depth first search
to conserve space required for planning and help with the interpretability. �

indicates a successful base case while (nil) reflects backtracking.
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Identify-Obstacle(rt, (Vt,Of ,Oc))
1 Oavoid ← ∅
2 while OL ← Plast(W 0, rt,Oavoid) �= nil

3 do
4 if OL = none return �

5 Oc ← {OL}
6 (Plan, rt−n, (Vt−n,Ot−n

f )) ← Resolve-Constraints(rt, (Vt,Of ,Oc))
7 if Plan �= nil

8 then PastP lan ← Identify-Obstacle(rt−n, (Vt−n,Ot−n
f ,Ot−n

c ))
9 if PastP lan �= nil

10 then return (PastP lan append Plan)
11 Oavoid ← Oavoid ∪ {OL}
12 return nil

Resolve-Constraints(rt,Vt,Ot
f ,Ot

c)
1 if Ot

c = ∅ return �

2 for each Od ∈ Oc

3 do
4 Choose rt−2 : Gk

Od
(rt−2) = q0

d

5 s.t. exists τg(r0, r
t−2) satisfying Eq. 24

6 Choose τ1(rt−2, rt)
7 Satisfying Eq. 25
8 Choose τ2(rt−2, rt−1)
9 Satisfying Eq. 26− 28

10 if no valid choices
11 then return nil

12 determine (Ot−2
f ,Vt−2,Ot−2

c ) by Eq. 29− 31
13 (Plan, rt−n, (Vt−n,Ot−n

f ,Ot−n
c )) ←

14 Resolve-Constraints(rt−2, (Vt−2,Ot−2
f ,Ot−2

c ))
15 if Plan �= nil

16 then Plan append Transfer(W t−2, Od,Gk
Od

τ2(rt−2, rt−1))
17 Plan append Transit(W t−1, τ2 + τ1)
18 return (Plan, rt−n, (Vt−n,Ot−n

f ,Ot−n
c ))

19 return nil

7 Implementation

The algorithm described in this paper is entirely general for two and three di-
mensional spaces with arbitrary configuration spaces for the manipulator. In
this section we will discuss our implementation of the algorithm in the domain
of Navigation Among Movable Obstacles (NAMO) [1].

NAMO is two dimensional domain where obstacles are represented by poly-
gons. The robot is a circular disc that can grasp objects when the center of
the disc is at a given distance from pre-defined contact points. The domain is
selected due to its interpretability and the simple property of object placement:
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(b) Search for Subgoal 1

(c) Search for Subgoal 2

(a) Problem and Solution

Fig. 4. A search tree for the given example. Large upward arrows indicate backtracking
when an object cannot be resolved.

Cplace
Oi

(W t) ⊂ COi(W t). The figures in this paper are constructed by the imple-
mented planner in our NAMO simulation environment.

7.1 Planning Details

When constructing a plan for the NAMO domain, we directly apply the algo-
rithm in Section 6 by selecting a computational representation of paths and
artificial constraints:
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• For paths, we choose a grid planner based on an evenly spaced discretization
of CR. The robot configuration space has three dimensions: (R×R×SO(2)).
Robot paths are planned in a matrix of resolution (10cm, 10cm, 10o) in each
dimension respectively. This yields a simple, resolution complete search space.

• In the two dimensional domain, artificial constraints are sets of points in
R2. Due to the rotation of objects, these sets could have complex curved
boundaries. To reduce constraint verification (collision detection) to polygon
intersection, we construct swept volumes using a local convex hull approxi-
mation method similar to [19] and [20]. We create local bounding polygons
for the object and robot throughout the path.

• All obstacles and artificial constraints are rasterized in the form of an oc-
cupancy grid of the environment. Set membership in world coordinates is
confirmed by verifying the occupancy of grid cells.

Choosing a Transit path (τ1) in CR is performed using A∗. The heuristic is
euclidian distance with a penalty for entering COR(Oi) for the first instance of
Oi along the path. This heuristic is selected to minimize the number of objects
that will violate the artificial constraint in the preceding plan.

Analogously, since Transfer paths (τ2) have no explicit goal, we use best
first search to make a selection. The first path and resulting state encountered
by the search that satisfy the artificial constraints are chosen by the planner.
Heuristically, we penalize states where robot or the transferred object enter
movable configuration space obstacles.

7.2 Results

The implemented planner was tested on a number of examples, including all the
figures presented in this paper. Table 1 summarizes the running times on an
Intel Pentium M 1.6Ghz processor.

Table 1. Quantities of objects and running times for examples in Figures 1-4

Fig.1 Fig.2 Fig.3 Fig.4
# Objects 4 4 4 9

# Transferred 4 2 2 6
Planning Time 0.77s 0.05s 0.10s 2.08s

Of the presented examples, Fig. 1, 2 and 4 cannot be solved by existing plan-
ners [15, 1, 16]. In Fig. 3, the proposed method is asymptotically faster than [1]
due to the early selection of Transit paths as constraints in contrast to path val-
idation during Transfer search. However, this choice precludes completeness in
the proposed implementation. In L1 problems, [1] will discover remote Transit
paths that are not considered by the proposed implementation.
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We find these results encouraging towards the implementation of this plan-
ner on a real robot system. Since the planner searches locally in the configu-
ration space of the robot, the same algorithm can be applied directly to very
high dimensional configuration spaces by replacing grid search methods with
sampling-based alternatives.

7.3 Complexity

Since Identify-Obstacle never considers an obstacle more than once at any
level of the search tree, it can generate at most m! sequences. Each sequence
can contain m objects to be resolved by Resolve-Constraints. A breadth
first search of CR of resolution d in n dimensions has runtime O(dn). The overall
algorithm is asymptotically O(m!dn). This is a vast overestimate. In most cases
only a few sequences will satisfy the conditions of the planner.

Notice, however, that each of three “Choose” statements in Resolve-

Constraints is an opportunity for backtracking (Lines 4, 6 and 8). Selecting a
different simple path for Transfer or Transit will yield distinct artificial con-
straints for the remainder of the search. While enumerating all possible simple
paths for robot motion and manipulation is computationally expensive, selecting
a subset of these paths may prove to be valuable.

8 Conclusion and Future Work

In this paper, we have presented a general planner for movable obstacles in
arbitrary configuration spaces. The heuristic methods of artificial constraints
have proven to be fast and effective in resolving complex examples from the
sample domain of Navigation Among Movable Obstacles.

Future work will consider the possibility of reducing the number of object or-
derings and examining alternative object paths. Some likely classes of heuristics
are the following:

Accessibility Constraints - Currently we search through all orderings of objects
that violate an artificial constraint. However, clearly some objects cannot be
reached by the robot before others are moved. These objects must be moved
at a later time-step.

Path Heuristics - Reverse search carries significant advantages to forward search
in selecting alternative paths. Simply by finding paths that explore distinct,
or distant, portions of space we would change the topology of artificial
constraints and therefore open distinct possibilities for prior object place-
ments.

In addition to the investigation of heuristics, it will be interesting to study the
potential for using artificial constraints to determine the necessity of intermediate
states. Doing so will enable planners to address the greater challenges of non-
monotone problems.
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Inferring and Enforcing Relative Constraints in
SLAM
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Abstract. Most algorithms for simultaneous localization and mapping (slam) do not
incorporate prior knowledge of structural or geometrical characteristics of the envi-
ronment. In some cases, such information is readily available and making some as-
sumptions is reasonable. For example, one can often assume that many walls in an
indoor environment are rectilinear. In this paper, we develop a slam algorithm that
incorporates prior knowledge of relative constraints between landmarks. We describe a
“Rao-Blackwellized constraint filter” that infers applicable constraints and efficiently
enforces them in a particle filtering framework. We have implemented our approach
with rectilinearity constraints. Results from simulated and real-world experiments show
the use of constraints leads to consistency improvements and a reduction in the number
of particles needed to build maps.

1 Introduction

The simultaneous localization and mapping (slam) problem is for a mobile robot
to concurrently estimate both a map of its environment and its pose with re-
spect to the map. Most slam algorithms make few assumptions about the en-
vironment; thus, slam does not take advantage of prior information when the
environment is known to have specific structural characteristics. For example, a
robot designed to operate indoors can often assume its environment is “mostly”
rectilinear.

In many cases structural or geometrical assumptions can be represented as in-
formation about relative constraints between landmarks in a robot’s map, which
can be used in inference to determine which landmarks are constrained and the
parameters of the constraints. In the rectilinearity example, such a formulation
can be used to constrain the walls of a room separately from, say, the boundary
of a differently-aligned obstacle in the center of the room.

Given relative constraints between landmarks, they must be enforced. Some
previous work has enforced constraints on maps represented using an extended
Kalman filter (ekf) [6, 11, 14]. In this paper, we develop techniques to in-
stead enforce constraints in maps represented by a Rao-Blackwellized particle
filter (rbpf). The major difficulty is that rbpf slam relies on the conditional
independence of landmark estimates given a robot’s pose history, but relative
constraints introduce correlation between landmarks.

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 139–154, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Our approach exploits a property similar to that used in the standard
slam Rao-Blackwellization: conditioned on values of constrained state variables,
unconstrained state variables are independent. We use this fact to incorporate
per-particle constraint enforcement into rbpf slam. We have also developed
a technique to address complications which arise when initializing a constraint
between groups of landmarks that are already separately constrained; the tech-
nique efficiently recomputes conditional estimates of unconstrained variables
when modifying the values of constrained variables.

Incorporating constraints can have a profound effect on the computation re-
quired to build maps. A motivating case is the problem of mapping with sparse
sensing. In previous work [3], we have shown that particle filtering slam is pos-
sible with limited sensors such as small arrays of infrared rangefinders, but that
many particles are required due to increased measurement uncertainty. By ex-
tending sparse sensing slam to incorporate constraints, an order-of-magnitude
reduction in the number of particles can be achieved.

The paper proceeds as follows. We first discuss previous work on constrained
slam. Then, in Section 2, we briefly review the general slam problem and the
ideas behind rbpf, and discuss the assumption of unstructured environments
made by most slam algorithms. In Section 3 we formalize the idea of slam

with relative constraints and describe a simple but infeasible approach. We then
introduce the Rao-Blackwellized constraint filter: Section 4 describes an rbpf-
based algorithm for enforcing constraints, and Section 5 incorporates inference
of constraints. Finally, in Section 6 we describe the results of simulated and
real-world experiments with a rectilinearity constraint.

1.1 Related Work

Most work on slam focuses on building maps using very little prior informa-
tion about the environment, aside from assumptions made in feature extraction
and data association. A thorough coverage of much of the state-of-the art in
unconstrained slam can be found in, e.g., [8].

The problem of inferring when constraints should be applied to a map is
largely unexplored. Rodriguez-Losada et al. [11] employ a simple thresholding
approach to determine which of several types of constraints should be applied.

On the other hand, several researchers have studied the problem of enforcing a
priori known constraints in slam. In particular, Durrant-Whyte [6] and Wen and
Durrant-Whyte [14] have enforced constraints in ekf-based slam by treating the
constraints as zero-uncertainty measurements. More recently, Csorba, Newman
and Durrant-Whyte [4, 10] and Deans and Hebert [5] have built maps where
the state consists of relationships between landmarks; they apply constraints on
the relationships to enforce map consistency. From a consistent relative map an
absolute map can be estimated.

Finally, others have studied general constrained state estimation using the
ekf. Simon and Chia [12] derive Kalman updates for linear equality con-
straints (discussed in detail in Section 3.1) that are equivalent to projecting
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Fig. 1. A Bayes network showing common slam model assumptions. Input variables
are represented by shaded nodes; the objective of slam is to estimate values for the
unshaded nodes. Arcs indicate causality or correlation between variables. (Correspon-
dence variables nt are omitted for clarity — observations are connected directly to
the corresponding landmarks.) Correlations between landmarks due to structure in the
environment (dashed arcs) are typically ignored in slam.

the unconstrained state onto the constraint surface. In [13], Simon and Simon
extend this approach to deal with linear inequality constraints.

2 The SLAM Problem

The goal of slam is to simultaneously estimate both a map M of the envi-
ronment and the robot’s (time-dependent) pose st with respect to the map. A
number of map representations exist; we focus on landmark-based mapping with
M = {x1, x2, . . . , xn}, where each landmark xi is a parameterized geometric ob-
ject such as a point or a line. In the basic slam process, the robot executes a
motion and estimates its new pose using odometry. It then takes a sensor read-
ing and extracts geometric features from the raw sensor data. Data association
matches features with landmarks in the map, and the map and pose estimates
are updated.

slam is often posed in a Bayesian filtering formulation where the goal is to
estimate a posterior distribution over poses and maps given all of the measure-
ments zt, commanded motions ut, and correspondences nt between features and
landmarks [8]. (The superscript notation indicates a set of values 1 . . . t over all
time steps.) A Bayes network depicting the standard slam model assumptions
is shown in Fig. 1. The filter can be written recursively:

p(st,M |zt, ut, nt) =

ηp(zt|st, xnt , nt)
∫

p(st|st−1, ut)p(st−1,M |zt−1, ut−1, nt−1) dst−1 (1)

where p(zt|st, xnt , nt) is the measurement model, p(st|st−1, ut) models the
robot’s motion, and η is a normalization constant. In this approach, slam is
usually done using the extended Kalman filter (ekf).
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An alternative is to filter over the entire robot trajectory st, i.e.:

p(st,M |nt, zt, ut) =
ηp(zt|st, xnt , nt) p(st|st−1, ut)p(st−1,M |nt−1, zt−1, ut−1) (2)

Under the assumption that the environment is static and that no direct corre-
lations exist between landmarks, this leads to the observation that landmarks
are conditionally independent given the robot’s trajectory, since correlation be-
tween landmarks arises only through robot pose uncertainty [9]. In Fig. 1, the
highlighted variables (the robot’s trajectory) d-separate the landmark variables.
Thus, the posterior over trajectories and maps can be factored:

p(st,M |nt, zt, ut) = p(st|nt, zt, ut)
n∏

i=1

p(xi|st, nt, zt) (3)

This factorization is known as Rao-Blackwellization. To perform slam based on
Eqn. 3, the posterior over trajectories can be represented with a particle filter
where each particle samples a single trajectory. Associated with a particle are
a number of separate small filters (typically ekfs) to analytically estimate each
landmark in the particle’s map. This approach is known as Rao-Blackwellized
particle filtering (rbpf) and is the basis for the well-known Fastslam algo-
rithm [8].

2.1 Structured Environments

Typically, slam approaches assume the environment is unstructured, i.e., that
landmarks are randomly and independently distributed in the workspace. Often
this is not the case, as in indoor environments where landmarks are placed
methodically. Thus, some correlation exists between landmarks, due not to the
robot’s pose uncertainty, but rather to the structure in the environment. (This
is represented by the dotted arcs in Fig. 1).

Correlation between landmarks can arise in many ways, making it difficult to
include in the slam model. In this paper, we assume that structure in the envi-
ronment takes on one of a few forms — i.e., that the space of possible (structured)
landmark relationships is small and discrete. When this is the case, the model
shown in Fig. 2 can be used. Here, arcs indicating correlation between landmarks
are parameterized. The parameters ci,j indicate the constraints (or lack thereof)
between landmarks xi and xj . We perform inference on the constraint parameter
space, and then enforce the constraints. In this paper we focus on the pairwise
case, but more complicated relationships can in principle be exploited.

3 SLAM with Relative Constraints

We begin by addressing the issue of efficiently enforcing known relative con-
straints. Parallel to this is the problem of merging constraints when new rela-
tionships are found between separate groups of already constrained landmarks.
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Fig. 2. Bayes network for a slam model that incorporates pairwise constraints between
landmarks, parameterized by the variables ci,j . Inference in the space of relationship
parameters can be used to determine correlations between landmark parameters; rela-
tive constraints on the landmarks enforce inferred relationships.

Throughout the rest of the paper we omit time indices for clarity. Variables
are vectors unless otherwise noted. We use Pi to represent the covariance of
the landmark estimate xi. We assume that measurements of a landmark are in
the parameter space of the landmark (i.e., measurements are of the landmark
state). Measurements that do not meet this condition can easily be transformed.
Finally, while we present our formulation for a single constraint, the approach
can be applied in parallel to several types of constraints.

3.1 The Superlandmark Filter

There is an immediate problem with slam when the environment is structured:
landmark correlations lead to interdependencies that break the factorization
utilized in Eqn. 3, which assumes correlation arises only through robot pose
uncertainty. We first describe a simple (but ultimately impractical) approach to
deal with the correlation, which leads to an improved technique in Section 4.
Note that the rbpf factorization still holds for unconstrained landmarks; we
rewrite the filter, grouping constrained landmarks. Formally, partition the map
into groups:

L = {{xa1 , xa2 , . . .}, {xb1 , xb2 , . . .}, {xc}, . . .} (4)

Each group (“superlandmark”) Li ∈ L contains landmarks constrained with
respect to each other; correlation arises only among landmarks in the same group.
We immediately have the following version of the rbpf slam filter:
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p(st,M |nt, zt, ut) = p(st|nt, zt, ut)
|L|∏

i=1

p(Li|st, nt, zt) (5)

We can still apply a particle filter to estimate the robot’s trajectory. Each su-
perlandmark is estimated using an ekf, which accounts for correlation due to
constraints since it maintains full covariance information.

There are several ways to enforce constraints on a superlandmark. One
approach is to treat the constraints as zero-uncertainty measurements of the
constrained landmarks [6, 14, 11]. An alternative is to directly incorporate con-
strained estimation into the Kalman filter. Simon and Chia [12] have derived a
version of the ekf that accounts for equality constraints of the form

DLi = d (6)

where Li represents the superlandmark state with n variables, D is an s × n
constant matrix of full rank, and d is a s × 1 vector; together they encode s
constraints. In their approach, the unconstrained ekf estimate is computed and
then repaired to account for the constraints. Given the unconstrained state Li

and covariance matrix PLi , the constrained state and covariance are computed
as follows (see [12] for the derivation):

L̃i ← Li − PDT (DPDT )−1(DLi − d) (7)
P̃Li ← PLi − PLiD

T (DPLiD
T )−1DPLi (8)

i.e., the unconstrained estimate is projected onto the constraint surface.
If a constraint arises between two superlandmarks they are easily merged:

Lij ←
[
Li

Lj

]
, Pij ←

[
Pi Pi

∂Lj

∂Li

T

∂Lj

∂Li
Pi Pj

]
(9)

Unfortunately, the superlandmark filter is too expensive unless the size of
superlandmarks can be bounded by a constant. In the worst case the environ-
ment is highly constrained and, in the extreme, the map consists of a single
superlandmark. ekf updates for slam take at least O(n2) time and constraint
enforcement using Eqns. 7 and 8 requires O(n3) time for a superlandmark of
size n. If the particle filter has N particles, the superlandmark filter requires
O(Nn3) time for a single update. We thus require a better solution.

3.2 Reduced State Formulation

A simple improvement can be obtained by noting that maintaining the full state
and covariance for each landmark in a superlandmark is unnecessary. Constrained
state variables are redundant: given the value of the variables from one “rep-
resentative” landmark, the values for the remaining landmarks in a superland-
mark are determined. In the rectilinearity example, with landmarks represented
as lines parameterized by distance r and angle θ to the origin, a full superland-
mark state vector has the form: [r1 θ1 r2 θ2 . . . rn θn]T . If the {θi} are con-
strained the state can be rewritten as: [r1 θ1 r2 g2(c1,2; θ1) . . . rn gn(c1,n; θ1)]T .
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Thus, filtering of the superlandmark need only be done over the reduced state:
[r1 r2 . . . rn θ1]T . The function gi(cj,i;xj,ρ) with parameters cj,i maps the con-
strained variables xj,ρ of the representative landmark xj to values for xi,ρ; in the
rectilinearity case, cj,i ∈ {0, 90, 180, 270} and gi(cj,i; θj) = θj − cj,i. We assume
the constraints are invertible: the function hi(cj,i;xi,ρ) represents the reverse
mapping, e.g., hi(cj,i; θi) = θi + cj,i. We sometimes refer to the unconstrained
variables of landmark xi as xi,ρ.

4 Rao-Blackwellized Constraint Filter

From the reduced state formulation we see it is easy to separate the map state
into constrained variables M c = {x1,ρ, . . . , xn,ρ}, and unconstrained variables
Mf = {x1,ρ, . . . , xn,ρ}. By the same reasoning behind Eqn. 3, we factor the
slam filter as follows:

p(st,M |nt, zt, ut) = p(st,M c|nt, zt, ut)
|Mf |∏

i=1

p(xi,ρ|st,M c, nt, zt) (10)

In other words, conditioned on both the robot’s trajectory and the values of all
constrained variables, free variables of separate landmarks are independent.

Eqn. 10 suggests that we can use a particle filter to estimate both the robot
trajectory and the values of the constrained variables. We can then use separate
small filters to estimate the unconstrained variables conditioned on sampled
values of the constrained variables. The estimation of representative values for
the constrained variables is accounted for in the particle filter resampling process,
where particles are weighted by data association likelihood.

4.1 Particlization of Landmark Variables

We first discuss initialization of constraints between previously unconstrained
landmarks. Given a set R = {x1, x2, . . . , xn} of landmarks to be constrained,
along with constraint parameters c1,i for each xi ∈ R, i = 2 . . . n (i.e., with x1
as the “representative” landmark — see Section 3.2), we form a superlandmark
from R. Then, we perform a particlization procedure, sampling the constrained
variables from the reduced state of the superlandmark. Conditioning of the un-
constrained variables of every landmark in the superlandmark is performed using
the sampled values. We are left with an ekf for each landmark that estimates
only the values of unconstrained state variables.

In selecting values of the constrained variables on which to condition, we
should take into account all available information, i.e., the estimates of the con-
strained variables from each landmark. We compute the maximum likelihood
estimate of the constrained variables:

Pρ̂ ←

⎛

⎝
∑

xj∈R
P−1

j,ρ

⎞

⎠
−1

, ρ̂ ← P−1
ρ̂

⎛

⎝
∑

xj∈R
hj(c1,j ;xj,ρ)P−1

j,ρ

⎞

⎠ (11)
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(a) (b)

Fig. 3. Merging groups of constrained landmarks. (a) Two constrained groups of land-
marks. (b) After finding a new landmark constrained with respect to both groups, all
landmarks are constrained together.

To choose values for ρ, we can either sample, e.g., according to N (ρ̂, Pρ̂); or we
can simply pick ρ̂, which is the approach we take in our implementation.

Once values of constrained variables are selected, we condition the uncon-
strained variables on the selected values. To condition xi with covariance Pi on
values for xi,ρ, we first partition the state and covariance:

xi = [xi,ρ xi,ρ]T , Pi =
[
Pi,ρ Pi,ρρ

Pi,ρρ Pi,ρ

]
(12)

Then given xi,ρ = gi(c1,i; ρ̂) and since landmark state is estimated by an ekf,
the standard procedure for conditioning the Normal distribution yields:

x̃i,ρ ← xi,ρ + Pi,ρρP
−1
i,ρ (gi(c1,i; ρ̂)− xi,ρ) (13)

P̃i,ρ ← Pi,ρ − Pi,ρρP
−1
i,ρ PT

i,ρρ (14)

For purposes of data association it is convenient to retain the full state and
covariance, in which case x̃i,ρ = gi(c1,i; ρ̂) and P̃i,ρ = P̃i,ρρ = P̃i,ρρ = [0].

4.2 Reconditioning

Particlization is straightforward if none of the landmarks is already constrained.
This is not the case when a new landmark is added to a superlandmark or when
merging several constrained superlandmarks. Since the values of unconstrained
state variables are already conditioned on values of the constrained variables, we
cannot change constrained variables without invalidating the conditioning. Such
a situation is depicted in Fig. 3.

One solution is to “rewind” the process to the point when the landmarks were
first constrained and then “replay” all of the measurements of the landmarks,
conditioning on the new values of the constrained variables. This is clearly infea-
sible. However, we can achieve an equivalent result efficiently because the order
in which measurements are applied is irrelevant. Applying k measurements to
the landmark state is equivalent to merging k + 1 Gaussians. Thus, we can “ac-
cumulate” all of the measurements in a single Gaussian and apply this instead,
in unit time.
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From this, we obtain the following reconditioning approach:

1. Upon first constraining a landmark xi, store its pre-particlization uncon-
strained state βi = xi, Λi = Pi, initialize the “measurement accumulator”
Zi = [0],Qi = [∞], and particlize the landmark.

2. For a measurement z with covariance R of the constrained landmark update
both the conditional state and the measurement accumulator:

xi ← xi + Pi(Pi + R)−1(z − xi) (15)
Pi ← Pi − Pi(Pi + R)−1PT

i (16)
Zi ← Zi +Qi(Qi + R)−1(z −Zi) (17)
Qi ← Qi −Qi(Qi + R)−1QT

i (18)

3. When instantiating a new constraint on xi, recondition xi on the new con-
strained variable values by rewinding the landmark state (xi = βi, Pi = Λi),
computing the conditional distribution x̃i, P̃i of the state (Eqns. 13-14), and
replaying the measurements since particlization with:

xi ← x̃i + P̃i(P̃i +Qi)−1(Zi − x̃i) (19)
Pi ← P̃i − P̃i(P̃i +Qi)−1P̃T

i (20)

The reconditioning technique can be extended to handle multiple types of
constraints simultaneously by separately storing the pre-particlization state and
accumulated measurements for each constraint. Only completely unconstrained
state variables should be stored at constraint initialization, and only the mea-
surements of those variables need be accumulated.

4.3 Discussion

A potential issue with our approach is that reconditioning neither re-evaluates
data associations nor modifies the trajectory of a particle. In practice we have
observed that the effect on map estimation is negligible.

Computationally, the constrained rbpf approach is a significant improvement
over the superlandmark filter, requiring only O(Nn) time per update.1 At first
it appears that more particles may be necessary since representative values of
constrained variables are now estimated by the particle filter. However, incorpo-
rating constraints often leads to a significant reduction in required particles by
reducing the degrees of freedom in the map. In a highly constrained environment,
particles only need to filter a few constrained variables using the reduced state,
and the ekfs for unconstrained variables are smaller since they filter only over
the unconstrained state. By applying strong constraint priors where appropriate,
the number of particles required to build maps is often reduced by an order of
magnitude, as can be seen in Section 6.
1 We note that while the data structures that enable O(N log n) time updates for

Fastslam [8] can still be applied, they do not improve the complexity of constrained
rbpf since the reconditioning step is worst-case linear in n.
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4.4 Inequality Constraints

So far we have only considered equality constraints, whereas many useful con-
straints are inequalities. For example, we might specify a prior on corridor width:
two parallel walls should be at least a certain distance apart. In [13], the authors
apply inequality constraints to an ekf using an active set approach. At each
time step, the applicable constraints are tested. If a required inequality is vio-
lated, an equality constraint is applied, projecting the unconstrained state onto
the boundary of the constraint region.

While this approach appears to have some potential problems (e.g., it ignores
the landmark pdf over the unconstrained half-hyperplane in parameter space),
a similar technique can be incorporated into the Rao-Blackwellized constraint
filter. After updating a landmark, applicable inequality constraints are tested.
Constraints that are violated are enforced using the techniques described in Sec-
tion 4. The unconstrained state is accessible via the measurement accumulator,
so if the inequality is later satisfied, the parameters can be “de-particlized” by
switching back to the unconstrained estimate.

5 Inference of Constraints

We now address the problem of deducing the relationships between landmarks,
i.e., deciding when a constraint should be applied. A simple approach is to just
examine the unconstrained landmark estimates. In the rectilinearity case, we
can easily compute the estimated angle between two landmarks. If this angle
is “close enough” to one of 0◦, 90◦, 180◦, or 270◦, the constraint is applied to
the landmarks. (A similar approach is used by Rodriguez-Losada et al. [11].)
However, this technique ignores the confidence in the landmark estimates.

We instead compute a pmf over the space C of pairwise constraint parameters;
the pmf incorporates the landmark pdfs. In the rectilinearity example, C =
{0, 90, 180, 270, �}, where � is used to indicate that landmarks are unconstrained.
Given a pmf over C, we sample constraint parameters for each particle to do
inference of constraints. Particles with incorrectly constrained landmarks will
yield poor data associations and be resampled.

We compute the pmf of the “relationship” of landmarks xi and xj using:

p(ci,j) =
∫

p(xi,ρ)
∫ hj(ci,j ;xj,ρ)+δ

hj(ci,j ;xj,ρ)−δ

p(xj,ρ) dxj,ρ dxi,ρ (21)

for all ci,j ∈ C \ �. Then, p(�) = 1 −
∑

ci,j∈C\
 p(ci,j). The parameter δ encodes
“prior information” about the environment: the larger the value of δ, the more
liberally we apply constraints. A benefit of this approach is that the integrals
can be computed efficiently from standard approximations to the Normal cdf

since the landmarks are estimated by ekfs.
In the rectilinearity case, given orientation estimates described by the pdfs

p(θi) and p(θj), for ci,j ∈ {0, 90, 180, 270}, we have:
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Algorithm 1. initialize-landmark(xn+1, Pn+1, L)
1: βn+1 ← xn+1; Λn+1 = Pn+1 // initialize backup state
2: Zn+1 ← [0]; Qn+1 ← [∞] // initialize measurement accumulator
3: R ← {} // initialize constraint set
4: for all Li ∈ L do // previously constrained groups
5: cn+1,j ∼ p(cn+1,j), ∀xj ∈ Li // draw constraint parameters
6: if ∃xj ∈ Li such that cn+1,j �= � then // constrained?
7: for all xj ∈ Li do
8: R ← R ∪ {xj} // add xj to constraint set
9: L ← L \ Li // remove old superlandmark

10: if R = ∅ then
11: return // no constraints on xn+1

12: R ← R ∪ {xn+1} // add new landmark to constraint set
13: L ← L ∪ {R} // add new superlandmark
14: for all xj ∈ R do // for all constrained landmarks
15: x̂j ← βj + ΛjQ−1

j (Zj − βj) // compute unconstrained state estimate
16: P̂j ← Λj − ΛjQ−1

j ΛT
j // compute unconstrained covariance

17: Pρ̂ ←
(∑

xj∈R P −1
j,ρ

)−1
// covariance of ML estimate of ρ

18: ρ̂ ← P −1
ρ̂

(∑
xj∈R hj(cn+1,j ; xj,ρ)P −1

j,ρ

)
// ML estimate of ρ

19: for all xj ∈ R do // for all constrained landmarks
20: xj ← βj ; Pj ← Λj // “rewind” state to pre-particlized version
21: xj,ρ ← xj,ρ + Pj,ρρP −1

j,ρ (gj(cn+1,j ; ρ̂) − xj,ρ) // conditional mean given ρ

22: Pj,ρ ← Pj,ρ − Pj,ρρP −1
j,ρ P T

j,ρρ // conditional covariance
23: xj,ρ ← gj(cn+1,j ; ρ̂); Pj,ρ ← [0]; Pj,ρρ ← [0] // fix constrained variables
24: xj ← xj + Pj(Pj + Qj)−1(Zj − xj) // “replay” meas. since particlization
25: Pj ← Pj − Pj(Pj + Qj)−1P T

j

Algorithm 2. update-landmark(xj, Pj , z, R)

1: xj ← xj + Pj(Pj + R)−1(z − xj) // update state
2: Pj ← Pj − Pj(Pj + R)−1P T

j // update covariance
3: if ∃L ∈ L, xk ∈ L such that xj ∈ L and xj �= xk then // is xj constrained?
4: Zj ← Zj + Qj(Qj + R)−1(z − Zj) // update measurement accumulator
5: Qj ← Qj − Qj(Qj + R)−1QT

j // update accumulator covariance
6: else // not constrained
7: βj ← xj ; Λj ← Pj // update backup state/covariance

p(ci,j) =
∫ ∞

−∞
p(θi)

∫ θi+ci,j+δ

θi+ci,j−δ

p(θj) dθj dθi (22)

which gives a valid pmf as long as δ ≤ 45◦.
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6 Results

We have now described the complete approach for implementing constrained
rbpf slam. Algorithm 1 gives pseudocode for initializing a landmark xn+1
given the current set of superlandmarks L. Algorithm 2 shows how to update
a (possibly constrained) landmark given a measurement of its state. The algo-
rithms simply collect the steps described in detail in Sections 4 and 5.

We have implemented the Rao-Blackwellized constraint filter for the rectilin-
earity constraint described earlier, on top of our algorithm for rbpf slam with
sparse sensing [3], which extracts features using data from multiple poses. Be-
cause of the sparseness of the sensor data, unconstrained slam typically requires
many particles to deal with high uncertainty. We performed several experiments,
using both simulated and real data, which show that incorporating prior knowl-
edge and enforcing constraints leads to a significant improvement in the resulting
maps and a reduction in estimation error.

6.1 Simulated Data

We first used a simple kinematic simulator based on an RWI MagellanPro robot
to collect data from a small simulated environment with two groups of rectilinear
features. The goal was to test the algorithm’s capability to infer the existence of
constraints between landmarks. Only the five range sensors at 0◦, 45◦, 90◦, 135◦,
and 180◦ were used (i.e., ). Noise was introduced by perturbing measurements
and motions in proportion to their magnitude. For a laser measurement of range
r, σr = 0.01r; for a motion consisting of a translation d and rotation φ, the
robot’s orientation was perturbed with σθ = 0.03d+0.08φ, and its position with
σx = σy = 0.05d.

Fig. 4 shows the results of rbpf slam with a rectilinearity prior (as described
in Section 5, with δ = π

10 ). The filter contained 20 particles and recovered the
correct relative constraints. The edges of the the inner “box” were constrained,
and the edges of the boundary were separately constrained.

A separate experiment compared the consistency of the rectilinearity-
constrained filter and the unconstrained filter (all other filter parameters were
kept identical, including number of particles). A filter is inconsistent if it sig-
nificantly underestimates its own error. It has been shown that rbpf slam is
generally inconsistent [1]; our experiments indicate that using prior knowledge
and enforcing constraints improves (but does not guarantee) consistency.

Fig. 5 depicts the consistency analysis. The ground truth trajectory from
the simulation was used to compute the normalized estimation error squared
(nees) [2, 1] of the robot’s trajectory estimate. For ground truth pose st and
estimate ŝt with covariance P̂st (estimated from the weighted particles assuming
they are approximately normally distributed), the nees is (st− ŝt)P̂−1

st
(st− ŝt)T .

For more details of how nees can be used to examine slam filter consistency,
see [1]. The experiment used 200 particles for each of 50 Monte Carlo trials, with
a robot model similar to the previous simulation.
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(a) (b)

Fig. 4. (a) Simulated environment (ground truth). (b) Results of applying constrained
slam. The dark curved line is the trajectory estimate, the light curved line is the ground
truth trajectory, and the dot is the starting pose. The landmarks on the boundary form
one constrained group; those in the interior form the other.
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Fig. 5. (a) Normalized estimation error squared (nees) of the robot’s estimated pose
with respect to the ground truth, computed over 50 Monte Carlo trials for the environ-
ment in (b). The gray plot is the error for standard (unconstrained) rbpf slam. The
black plot is the error for our algorithm with rectilinearity constraints. Error signifi-
cantly above the dashed line indicates an optimistic (inconsistent) filter. Our approach
is less optimistic. (Sharp spikes correspond to degeneracies due to resampling upon
loop closure.) (c) A typical map produced by unconstrained sparse sensing slam. (d)
A typical rectilinearity-constrained map.

6.2 Real-World Data

Our real-world experiments used data from Radish [7], an online repository of
slam datasets. Most of the datasets use scanning laser rangefinders. Since our
goal is to enable slam with limited sensing, we simply discarded most of the
data in each scan, keeping only the five range measurements at 0◦, 45◦, 90◦, 135◦,
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(a)
(b)

(c) (d)

Fig. 6. (a) and (b) show the USC SAL Building, second floor (dataset courtesy of An-
drew Howard). (c) and (d) show Newell-Simon Hall Level A at CMU (dataset courtesy
of Nicholas Roy). (a) and (c) Occupancy data for the corrected trajectories (generated
using the full laser data for clarity). (b) and (d) The estimated landmark maps (black)
and trajectories (gray).

and 180◦. We also restricted the sensor range (see Table 1). We used the same
rectilinearity prior as for the simulated examples (δ = π

10 ).
Fig. 6 shows the results of our algorithm for two datasets. The USC SAL

dataset consists of a primary loop and several small excursions. Most landmarks
are constrained, in three separate groups. For the CMU NSH experiment, the
maximum sensing range was restricted to 3 m, so the large initial loop (bot-
tom) could not be closed until the robot finished exploring the upper hallway.
Aside from several landmarks in the curved portion of the upper hallway, most
landmarks are constrained.

Table 1 gives mapping statistics. Also included is the number of particles re-
quired to successfully build an unconstrained map, along with running times
for comparison. (The complete results for unconstrained sparse sensing slam

can be found in [3].) All tests were performed on a P4-1.7 GHz computer
with 1 GB RAM. Incorporating constraints enables mapping with many fewer
particles — about the same number as needed by many unconstrained slam
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Table 1. Experiment statistics

USC SAL CMU NSH
Dimensions 39 × 20 m2 25 × 25 m2

Particles (constrained) 20 40
Particles (unconstrained) 100 600
Avg. Runtime (constrained, 30 runs) 11.24 s 34.77 s
Avg. Runtime (unconstrained, 30 runs) 32.02 s 268.44 s
Sensing range 5 m 3 m
Path length 122 m 114 m
Num. landmarks 162 219
Constrained groups 3 3

algorithms that use full laser rangefinder information. This leads to significant
computational performance increases when constraints are applicable.

One caveat is that the conditioning process is sensitive to the landmark cross-
covariance estimates. (The cross-covariances are used in Eqns. 13-14 to compute
a “gain” indicating how to change unconstrained variables when conditioning
on constrained variables.) Because we use sensors that give very little data for
feature extraction, the cross-covariance of [r θ]T features is only approximately
estimated. This leads to landmark drift in highly constrained environments since
landmarks are frequently reconditioned, as can be seen in, e.g., the upper right
corner of the NSH map in Fig. 6(d). Future research will examine alternative
feature estimators and map representations (e.g., relative maps [10, 5]) that may
alleviate this issue.

7 Conclusions

In this paper we have described a Rao-Blackwellized particle filter for slam that
exploits prior knowledge of structural or geometrical relationships between land-
marks. Relative constraints between landmarks in the map of each particle are
automatically inferred based on the estimated landmark state. By partitioning
the state into constrained and unconstrained variables, the constrained variables
can be sampled by a particle filter. Conditioned on these samples, unconstrained
variables are independent and can be estimated by ekfs on a per-particle basis.

We have implemented our approach with rectilinearity constraints and per-
formed experiments on simulated and real-world data. For slam with sparse
(low spatial resolution) sensing, incorporating constraints significantly reduced
the number of particles required for map estimation.

Most of this work has focused on linear equality constraints. While we have
described a way to extend the approach to inequality constraints, this remains
an area for future work. Also, while constraints clearly help in mapping with
limited sensing, they do not significantly improve data association inaccuracies
related to sparse sensing, another potential avenue for improvement.
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Summary. Error propagation on the Euclidean motion group arises in a number
of areas such as and in dead reckoning errors in mobile robot navigation and joint
errors that accumulate from the base to the distal end of manipulators. We address
error propagation in rigid-body poses in a coordinate-free way. In this paper we show
how errors propagated by convolution on the Euclidean motion group, SE(3), can be
approximated to second order using the theory of Lie algebras and Lie groups. We
then show how errors that are small (but not so small that linearization is valid) can
be propagated by a recursive formula derived here. This formula takes into account
errors to second-order, whereas prior efforts only considered the first-order case [8, 9].

Keywords: Recursive error propagation, Euclidean group, spatial uncertainty.

1 Introduction

In this section we review the literature on error propagation, and review the
terminology and notation used throughout the paper.

1.1 Literature Review

Murray, Li and Sastry [3], and Selig [4] presented Lie-group-theoretic notation
and terminology to the robotics community, which has now become standard
vocabulary. Chirikjian and Kyatkin [1] showed that many problems in robot
kinematics and motion planning can be formulated as the convolution of func-
tions on the Euclidean group. The representation and estimation of spatial un-
certainty has also received attention in the robotics and vision literature. Two
classic works in this area are due to Smith and Cheeseman [6] and Su and Lee
[7]. Recent work on error propagation by Smith, Drummond and Roussopoulos
[5] describes the concatenation of random variables on groups and applies this
formalism to mobile robot navigation. In all three of these works, errors are
assumed small enough that covariances can be propagated by the formula [8, 9]

Σ1∗2 = Ad(g−1
2 )Σ1AdT (g−1

2 ) + Σ2, (1)

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 155–168, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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where Ad is the adjoint operator for SE(3). This equation essentially says that
given two ‘noisy’ frames of reference g1, g2 ∈ SE(3), each of which is a Gaussian
random variable with 6 × 6 covariance matrices1 Σ1 and Σ2, respectively, the
covariance of g1 ◦ g2 will be Σ1∗2. This approximation is very good when errors
are very small. We extend this linearized approximation to the quadratic terms
in the expansion of the matrix exponential parametrization of SE(3). Results
for SO(3) are generated in the process.

1.2 Review of Rigid-Body Motions

The Euclidean motion group, SE(3), is the semi direct product of IR3 with the
special orthogonal group, SO(3). We denote elements of SE(3) as g = (a, A) ∈
SE(3) where A ∈ SO(3) and a ∈ IR3. For any g = (a, A) and h(r, R) ∈ SE(3),
the group law is written as g ◦ h = (a + Ar, AR), and g−1 = (−AT a, AT ).
Alternately, one may represent any element of SE(3) as a 4 × 4 homogeneous
transformation matrix of the form

H(g) =

⎛

⎝
A a

0T 1

⎞

⎠ ,

in which case the group law is matrix multiplication.
For small translational (rotational) displacements from the identity along

(about) the ith coordinate axis, the homogeneous transforms representing in-
finitesimal motions look like

Hi(ε)

= exp(εẼi) ≈ I4×4 + εẼi

where

Ẽ1 =

⎛

⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞

⎟⎟⎠ ; Ẽ2 =

⎛

⎜⎜⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞

⎟⎟⎠ ; Ẽ3 =

⎛

⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ ;

Ẽ4 =

⎛

⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ ; Ẽ5 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ ; Ẽ6 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟⎟⎠ .

These are related to the basis elements {Ei} for so(3) as

Ẽi =

⎛

⎝
Ei 0

0T 0

⎞

⎠

when i = 1, 2, 3.
1 Exactly what is meant by a covariance for a Lie group is quantified later in the

paper.
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Large motions are also obtained by exponentiating these matrices. For exam-
ple,

exp(tẼ3) =

⎛

⎜⎜⎝

cos t − sin t 0 0
sin t cos t 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ and exp(tẼ6) =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 t
0 0 0 1

⎞

⎟⎟⎠ .

More generally, it can be shown that every element of a matrix Lie group G
can be described with the exponential parametrization

g = g(x1, x2, ..., xN ) = exp

(
N∑

i=1

xiẼi

)
. (2)

This kind of relationship is common in the study of Lie groups and algebras.
One defines the ‘vee’ operator, ∨, such that

(
N∑

i=1

xiẼi

)∨

=

⎛

⎜⎜⎜⎜⎜⎝

x1
x2
x3
...

xN

⎞

⎟⎟⎟⎟⎟⎠

The vector, x ∈ IRN , can be obtained from g ∈ G from the formula

x = (log g)∨. (3)

When integrating a function over a group in a neighborhood of the identity,
a weight w(x) is defined as

∫

G

f(g)dg =
∫

IRN

f(g(x))w(x)dx.

It may be shown that due to the nature of the exponential parameterization,
w(x) = 1 + O(‖x‖2) near the identity, and so the approximation w(x) = 1 can
be used in the first order theory. However, in the current presentation we retain
w(x) for higher order errors.

We calculate

w(x) = det

[(
g−1 ∂g

∂x1

)∨
, · · · ,

(
g−1 ∂g

∂xN

)∨
]
. (4)

If the approximation g = I +X +X2/2+X3/6 is used, then to second order we
can write

w(x) = 1− 1
2
xTKx

for some matrix K that depends on the structure of the group. K is computed
for SO(3) and SE(3) in the Appendix.
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2 Nonparametric Second-Order Theory

Let g1, g2 ∈ SE(3) be two precise reference frames. Then g1◦g2 is the frame result-
ing from stacking one relative to the other. Now suppose that each has some un-
certainty. Let {hi} and {kj} be two sets of frames of reference that are distributed
around the identity. Let the first have N1 elements, and the second have N2. What
will the covariance of the set of N1 ·N2 frames {(g1◦g2)−1 ◦g1◦hi◦g2 ◦kj} (which
are assumed to be distributed around the identity) look like ?

A pdf, ρ, on a Lie group G is said to have mean at the identity if the function

C(g) =
∫

G

‖[log(g−1 ◦ h)]∨‖2ρ(h)dh

is minimized at g = e. For this kind of pdf, the covariance is defined as

Σ =
∫

G

log(g)∨[log(g)∨]T ρ(g)dg. (5)

A similar expression can be defined for discrete cloud of frames, which is equiv-
alent to replacing ρ(g) with a weighted sum of Dirac delta functions.

Let ρi(g) be a unimodal pdf with mean at the identity and which has a
preponderance of its mass concentrated in a unit ball around the identity (where
distance from the identity is measured as ‖(log g)∨‖). Then ρi(g−1

i ◦ g) will be a
distribution with the same shape centered at gi. In general, the convolution of
two pdfs is defined as

(f1 ∗ f2)(g) =
∫

G

f1(h)f2(h−1 ◦ g)dh,

and in particular if we make the change of variables k = g−1
1 ◦ h, then

ρ1(g−1
1 ◦ g) ∗ ρ2(g−1

2 ◦ g) =
∫

G

ρ1(k)ρ2(g−1
2 ◦ k−1 ◦ g−1

1 ◦ g)dk.

Making the change of variables g = g1 ◦ g2 ◦ q, where q is a relatively small
displacement measured from the identity, the above can be written as

ρ1∗2(g1 ◦ g2 ◦ q) =
∫

G

ρ1(k)ρ2(g−1
2 ◦ k−1 ◦ g2 ◦ q)dk. (6)

The essence of this paper is the efficient approximation of covariances associated
with (6) when those of ρ1 and ρ2 are known. This problem reduces to the efficient
approximation of

Σ1∗2 =
∫

G

∫

G

log(q)∨[log(q)∨]T ρ1(k)ρ2(g−1
2 ◦ k−1 ◦ g2 ◦ q)dkdq. (7)

In many practical situations, discrete data are sampled from ρ1 and ρ2 rather
than having complete knowledge of the distributions themselves. Therefore, sam-
pled covariances can be computed by making the following substitutions:
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ρ1(g) =
N1∑

i=1

αiΔ(h−1
i ◦ g) (8)

and

ρ2(g) =
N2∑

j=1

βjΔ(k−1
j ◦ g) (9)

where
N1∑

i=1

αi =
N2∑

j=1

βj = 1.

Here Δ(g) is the Dirac delta function for the group G, which has the properties
∫

G

f(g)Δ(h−1 ◦ g)dg = f(h) and Δ(h−1 ◦ g) = Δ(g−1 ◦ h).

Using these properties, if we substitute (8) into (5), the result is

Σ1 =
∫

G

log(g)∨[log(g)∨]T
N1∑

i=1

αiΔ(h−1
i ◦ g)dg =

N1∑

i=1

αi log(hi)∨[log(hi)∨]T

(10)
Substitution of the sampled ρ1 into (7) yields

Σ1∗2 =
N1∑

i=1

αi

∫

G

log(q)∨[log(q)∨]T ρ2(g−1
2 ◦ h−1

i ◦ g2 ◦ q)dq. (11)

Similarly, substitution of the sampled ρ2 into the above equation kills the integral
and substitutes values of q for which g−1

2 ◦ h−1
i ◦ g2 ◦ q = kj . This yields

Σ1∗2 =
N1∑

i=1

N2∑

j=1

αiβj log(g−1
2 ◦ hi ◦ g2 ◦ kj)∨[log(g−1

2 ◦ hi ◦ g2 ◦ kj)∨]T . (12)

While this equation is exact, it has the drawback of requiring O(N1 · N2)
arithmetic operations. In the first-order theory of error propagation, we made
the approximation

log(k−1 ◦ q) = X − Y,

or equivalently
[log(k−1 ◦ q)]∨ = x− y,

where k = expY and q = expX are elements of the Lie group SE(3). This
decouples the summations and makes the computation O(N1 + N2). However,
the first-order theory breaks down for large errors. Therefore, we explore here
a second-order theory that has the benefits of greater accuracy, while retaining
good computational performance.

In the second-order theory of error propagation on Lie groups (and SE(3) in
particular), we now make the approximation
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log(k−1 ◦ q) = X − Y +
1
2
[X,Y ],

or equivalently

[log(k−1 ◦ q)]∨ = x− y +
1
2
ad(x)y. (13)

Interestingly, terms such as X2 and Y 2 do not appear in the approximation (13).
Here [·, ·] denotes the Lie bracket, and

[X,Y ] =
∑

i,j,k

Ck
ijxiyjẼk,

which means that the kth component of [X,Y ]∨ will be of the form
∑

i,j C
k
ijxiyj

which is a weighted product of elements from x and y. We therefore write

[X,Y ]∨ = x ∧ y = ad(X)y.

ad(X) should not be confused with Ad(g), which is defined by Ad(g)x =
(gXg−1)∨. The relationship between these two is Ad(expX) = exp(ad(X)).
See the Appendix for a more complete review.

In addition to the approximation in (13) we use two additional properties of
the log function:

[log(k−1)]∨ = −[log(k)]∨ (14)

and
[log(g ◦ h ◦ g−1)]∨ = Ad(g)[log(h)]∨. (15)

Using (13), (14) and (15), then to second order,

log(g−1
2 ◦ hi ◦ g2 ◦ kj)∨ = Ad(g−1

2 )yi + Bizj

where yi = (log hi)∨, zj = (log kj)∨, and Bi = B(Ad(g−1
2 )yi) where

B(x) = I +
1
2
ad(x).

Note also that B(y)y = y because [Y, Y ] = 0, and therefore [B(y)]−1y = y as
well. Substitution into the formula (12) for Σ1∗2 then yields

Σ1∗2 =
N1∑

i=1

N2∑

j=1

αiβj(Bizj + Ayi)(Bizj + Ayi)T

where A = Ad(g−1
2 ).

Assuming that the sampled distributions are centered around the identity (so
that cross terms sum to zero), allows the summations over i and j to decouple.
The result is written as

Σ1∗2 = AΣ1A
T +

N1∑

i=1

αiBiΣ2B
T
i (16)

In practice, αi = 1/N1 and βj = 1/N2.
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Note, in the first order theory we approximated Bi = I, and the above reduced
to

Σ1∗2 = Adg−1
2

Σ1AdT
g−1
2

+ Σ2.

3 Numerical Examples

Evaluating the robustness of the first-order (1) and the second-order (16) co-
variance propagation formula over a wide range of kinematic errors is essential
to understand effectiveness of these formulas. In this section, we test these two
covariance propagation formulas with concrete numerical examples.

Consider a spatial serial manipulator, PUMA 560. The link-frame assignments
of PUMA 560 for D-H parameters is the same as those given [2]. Table 1 lists
the D-H parameters of PUMA 560, where a2 = 431.8 mm, a3 = 20.32 mm,
d3 = 124.46 mm, and d4 = 431.8 mm. The solution of forward kinematics is the
homogeneous transformations of the relative displacements from one D-H frame
to another multiplied sequentially.

In order to test these covariance propagation formulas, we first need to create
some kinematic errors. Since joint angles are the only variables of the PUMA
560, we assume that errors exist only in these joint angles. We generated errors
by deviating each joint angle from its ideal value with uniform random absolute
errors of ±ε. Therefore, each joint angle was sampled at three values: θi − ε,
θi, θi + ε. This generates n = 36 different frames of references {gi

ee} that are
clustered around desired gee. Here gee denotes the position and orientation of
the distal end of the manipulator relative to the base in the form of homogeneous
transformation matrix.

Three different methods for computing the same error covariances for the
whole manipulator are computed. The first is to apply brute force enumeration,
which gives the actual covariance of the whole manipulator:

Σ =
1
n

n∑

i=1

xixT
i (17)

where xi = [log(g−1 ◦ gi)]∨, and the formula (17) is used to all the 36 differ-
ent frames of references {gi

ee}. The second method is to apply the first-order
propagation formula (1). The third is to apply the second-order propagation
formula (16). For the covariance propagation methods, we only need to find the
covariance of each individual link. Then the covariance of the whole manipulator
can be recursively calculated using the corresponding propagation formula. In
our case, all the individual links have the same covariance since we assumed the
same kinematic errors at each joint angle.

In order to quantify the robustness of the two covariance approximation meth-
ods, we define a measure of deviation of results between the first/second order
formula and the actual covariance using the Hilbert-Schmidt (Frobenius) norm
as
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Table 1. DH PARAMETERS of PUMA 560

i αi−1 ai−1 di θi

1 0 0 0 θ1

2 −90o 0 0 θ2

3 0 a2 d3 θ3

4 −90o a3 d4 θ4

5 90o 0 0 θ5

6 −90o 0 0 θ6

deviation =
‖Σprop −Σactual‖

‖Σactual‖
, (18)

where Σprop is the covariance of the whole manipulator calculated using either
the first-order (1) or the second-order (16) propagation formula, Σactual is the
actual covariance of the whole manipulator calculated using (17), and ‖·‖ denotes
the Hilbert-Schmidt (Frobenius) norm.

With all the above information, we now can conduct the specific computation
and analysis. Our numerical simulations have showed that different configura-
tions of the manipulator will not influence the end-effector covariances too much.
Here the ideal joint angles from θ1 to θ6 were taken as [0, π/2, −π/2, 0, 0, π/2].
The joint angle errors ε were taken from 0.1 rad to 0.6 rad. The covariances of the
whole manipulator corresponding to these kinematic errors were then calculated
through the three aforementioned methods. The results of the first-order and
second-order propagation formula were graphed in Fig. 1 in terms of deviation
defined by Eq. (18). It was shown that the second-order propagation formula
makes significant improvements in terms of accuracy than that of the first-order
formula. The second-order propagation theory is much more robust than the
first-order formula over a wide range of kinematic errors. These two methods
both work well for small errors, and deviate from the actual value more and
more as the errors become large. However, the deviation of the first-order for-
mula grows rapidly and breaks down while the second-order propagation method
still retains a reasonable value.

To give the readers a sense of what these covariances look like, we listed the
values of the covariance of the whole manipulator for the joint angle error ε = 0.3
rad below.

The ideal pose of the end effector can be found easily via forward kinematics
to be

gee =

⎛

⎜⎜⎝

0.0000 −1.0000 0 0.0203
−1.0000 −0.0000 0 0.1245

0 0 −1.0000 −0.8636
0 0 0 1.0000

⎞

⎟⎟⎠ .

The actual covariance of the whole manipulator calculated using equations
(17) is
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Fig. 1. The Deviation of the First and Second-order Propagation Methods

Σactual =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.1748 0.0000 0.0000 0.0000 −0.0755 −0.0024
0.0000 0.0078 0.0000 0.0034 −0.0000 0.0003
0.0000 0.0000 0.1747 0.0012 −0.0072 −0.0000
0.0000 0.0034 0.0012 0.0025 −0.0001 0.0001
−0.0755 −0.0000 −0.0072 −0.0001 0.0546 0.0015
−0.0024 0.0003 −0.0000 0.0001 0.0015 0.0011

⎞

⎟⎟⎟⎟⎟⎟⎠
,

the covariance using the first-order propagation formula (1) is

Σprop, 1st =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.1800 0.0000 0 0.0000 −0.0777 −0.0024
0.0000 0.0000 0 0.0000 −0.0000 −0.0000

0 0 0.1800 0.0012 −0.0075 0
0.0000 0.0000 0.0012 0.0000 −0.0002 −0.0000
−0.0777 −0.0000 −0.0075 −0.0002 0.0569 0.0016
−0.0024 −0.0000 0 −0.0000 0.0016 0.0000

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and the covariance using the second-order propagation formula (16) is

Σprop, 2nd =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.1765 0.0000 0.0000 0.0000 −0.0762 −0.0024
0.0000 0.0079 0.0000 0.0034 −0.0000 0.0003
0.0000 0.0000 0.1765 0.0012 −0.0072 0.0000
0.0000 0.0034 0.0012 0.0025 −0.0001 0.0001
−0.0762 −0.0000 −0.0072 −0.0001 0.0551 0.0015
−0.0024 0.0003 0.0000 0.0001 0.0015 0.0011

⎞

⎟⎟⎟⎟⎟⎟⎠
,



164 Y. Wang and G.S. Chirikjian

where the covariance of one link is

Σone−link =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.0600 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

4 Conclusions

In this paper, first-order kinematic error propagation formulas are modified to in-
clude second-order effects. This extends the usefulness of these formulas to errors
that are not necessarily small. In fact, in the example to which the methodology
is applied, errors in orientation can be as large as a radian or more and the
second-order formula appears to capture the error well. The second-order prop-
agation formula makes significant improvements in terms of accuracy than that
of the first-order formula. The second-order propagation theory is much more
robust than the first-order formula over a wide range of kinematic errors.
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A Appendix

A.1 Background

Given g ∈ SE(3) of the form,

g =
(

R t
0T 1

)

and X ∈ se(3) of the form

X =
(

Ω v
0T 0

)
,

if

x = (X)∨ =
(

ω
v

)
,

then Ad(g) is defined by the expression

(gXg−1)∨ = Ad(g)x

and explicitly

Ad(g) =
(

R 0
TR R

)
. (19)

The matrix T is skew-symmetric, and vect(T ) = t.
Similarly, ad(X) (which can also be written as ad(x)), is defined by

[X,Y ]∨ = ad(X)y,

where [X,Y ] = XY − Y X is the Lie bracket. Explicitly,

ad(X) =
(

Ω 0
V Ω

)
(20)

where the matrix V is skew-symmetric, and vect(V ) = v.

A.2 Second Order Approximation of Volume Weighting Function
for SO(3) and SE(3)

Let g be an element of the matrix Lie group G, and X be an arbitrary element of
the associated Lie algebra, G. Let g = expX . Then we can truncate the Taylor
series expansion for g and g−1 as:

g = I +X +X2/2+X3/6+O(X4) and g−1 = I−X +X2/2−X3/6+O(X4).

If X =
∑

i xiEi, this means that

∂g

∂xi
= Ei +

1
2
(EiX + XEi) +

1
6
(EiX

2 + XEiX + X2Ei) + O(X3).
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Therefore,

g−1 ∂g

∂xi
= Ei +

1
2
[Ei, X ]− 1

3
XEiX +

1
6
(EiX

2 + X2Ei) + O(X3).

Taking the ∨ of both sides yields the columns of the Jacobian matrix, the deter-
minant of which provides the desired weighting function. Note that (Ei)∨ = ei

and ([Ei, X ])∨ = −([X,Ei])∨ = −ad(X)ei, and so we can write the ith column
as:

(
g−1 ∂g

∂xi

)∨
= ei −

1
2
ad(X)ei −

1
3
(XEiX)∨ +

1
6
(EiX

2 + X2Ei)∨. (21)

If we define,
J1(x) = [(XE1X)∨, (XE2X)∨, (XE3X)∨]

and

J2(x) = [(E1X
2 + X2E1)∨, (E2X

2 + X2E2)∨, (E3X
2 + X2E3)∨],

then to second order,

J(x) = I − 1
2
ad(X)− 1

3
J1(x) +

1
6
J2(x). (22)

Details for SO(3)

In the case of SO(3),

X =

⎛

⎝
0 −x3 x2
x3 0 −x1
−x2 x1 0

⎞

⎠

and ad(X) = X . Direct calculation shows that the matrix J
so(3)
1 can be written

as

J
so(3)
1 (x) = −

⎛

⎝
x2

1 x1x2 x1x3
x1x2 x2

2 x2x3
x1x3 x2x3 x2

3

⎞

⎠

Similarly, for J
so(3)
2 one finds

J
so(3)
2 (x) = −

⎛

⎝
2x2

1 + x2
2 + x2

3 x1x2 x1x3
x1x2 x2

1 + 2x2
2 + x2

3 x2x3
x1x3 x2x3 x2

1 + x2
2 + 2x2

3

⎞

⎠

Now, to second order, the full Jacobian is

Jso(3)(x) = I − 1
2
X − 1

3
J

so(3)
1 (x) +

1
6
J

so(3)
2 (x) = I − 1

2
X +

1
6
X2,
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where of course

X2 =

⎛

⎝
−x2

2 − x2
3 x1x2 x1x3

x1x2 −x2
1 − x2

3 x2x3
x1x3 x2x3 −x2

1 − x2
2

⎞

⎠

The second-order approximation of the determinant of Jso(3)(x) is then

wso(3)(x) = det Jso(3)(x) ≈ det(I− 1
2
X)·det(I+

1
6
X2) ≈ (1+

1
4
‖x‖2)(1− 1

3
‖x‖2).

The reason why this is justified is that all terms in the cofactor expansion of
the det depend on X2 will be of higher than second order, except those on the
diagonal. This is due to the fact that second-order terms here will multiply the
diagonal entries of the identity matrix yielding second-order terms.

Finally, this means that to second order,

wso(3)(x) = 1− 1
2
xTKx where K =

1
6
I (23)

Details for SE(3)

It is convenient to write an arbitrary element of se(3) as

X =
(

Ω v
0T 0

)

where Ω is an arbitrary element of so(3) and v is an arbitrary element of IR3.
In this case,

ad(X) =
(

Ω 0
V Ω

)

where (V )∨ = v.
Referring back to (21), we can compute each term directly to find:

(XEiX)∨ =
(

(ΩEiΩ)∨

ΩEiv

)

for rotational components (i = 1, 2, 3) and

(XEiX)∨ = 0

for transitional components (i = 4, 5, 6). This means that

J
se(3)
1 (ω,v) =

(
J

so(3)
1 (ω) 0

ω∧ (I ∧ v) 0

)
.

Similarly,

(EiX
2 + X2Ei)∨ =

(
(EiΩ

2 + Ω2Ei)∨

EiΩv

)
.
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for rotational components (i = 1, 2, 3) and

(EiX
2 + X2Ei)∨ =

(
0

Ω2ei

)
.

for transitional components (i = 4, 5, 6) and

J
se(3)
2 (ω,v) =

(
J

so(3)
2 (ω) 0
(Ωv)∧ Ω2

)
.

Substituting into (22) and taking the determinant,

detJse(3)(ω,v) = | detJso(3)(ω)|2

This means that to second order,

wse(3)(x) = 1− 1
2
xTKx where K =

( 1
3I 0
0 0

)
. (24)
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Summary. Most estimation problems in robotics are difficult because of (a) the non-
linearity in observation models; and (b) the lack of suitable probabilistic models for
the process and observation noise. In this paper we develop a set-valued approach
to estimation that overcomes both these limitations and illustrates the application to
localization of multiple, mobile sensor platforms with range sensors.

1 Introduction

Practical estimation tasks require us to deal with nonlinearities that are inherent
in process dynamics and observation models. Common solutions to deal with
such nonlinear state transition and measurement models require linearization
of at least some portion of the problem. The concern is that linearization can
lead to inconsistent error handling, removes the ability to directly represent
ambiguous confidence sets, and can not be applied when the underlying state is
unobservable.

Many techniques have been proposed to either avoid or delay linearization.
Some of the most popular in recent years are sampling-based approaches such
as Monte Carlo Localization, introduced by Fox et al. [9]. They rely on estimat-
ing a probability distribution for the system state, but instead of maintaining
a simple parameterized distribution, which may require linearization, the distri-
bution is discretely sampled to allow for arbitrary densities. Further refinements
have allowed the fusion of sampled representations with standard parameterized
ones to solve more challenging problems such as simultaneous localization and
mapping tasks [10].

The opposite approach is to delay linearization by simply storing all mea-
surement and state updates until a later time when the larger data base allows
for the use of consistency to improve the estimates. The GraphSLAM algorithm
presented by Thrun, Burgard, and Fox [4] is an example of such a technique;
after several measurements have been taken, an estimate is formed by iteratively
linearizing the state propagation and measurement equations and solving a least
squares problem to maximize agreement with measurements and problem dy-
namics. Several different variations on this theme have been used by others such
as Folkesson and Christensen [11] and Konolige [12].
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The disadvantage of such delayed measurement integration is that best
estimates are not available during data acquisition, making it impossible to
knowledgeably improve the collection process. As a compromise, Thrun et al. [4]
propose the Sparse Extended Information Filter to proactively incorporate each
measurement as it is taken while being able to explicitly manage the information
links between different entities formed through measurements and motion. The
final picture allows for intuitive identification of how features are related but
still requires linearization.

For many applications, such linearization may prove to be acceptable, but
not for our current application of localization using range-only measurements.
In the most general form of this problem, there is no sense of direction and so
any attempt to linearize a range measurement will likely result in crippling in-
consistency after further measurements and motion. Compelling sampling-based
estimation approaches to this problem have been demonstrated by Djugash,
Singh and Corke [5], but such implementations may require large numbers of
samples making them computationally unattractive.

An important evolution in the methodology of Information-type filters was
presented by Hanebeck [6]. The central idea is a nonlinear embedding, some-
times referred to as an over-parameterization, that maps the system states into
a extended state space in a way such that the measurement equations become
linear. The resulting framework lends itself to the application of the methodol-
ogy introduced by Schweppe in the field of dynamic estimation under bounded
noise [3]. Successful application of such set-based estimation techniques to static
localization tasks involving range-only measurements and relative bearing mea-
surements are demonstrated in [7]. While set-based techniques have been investi-
gated by other researchers [14,15,16,17], Hanebeck’s representation allows exact
representations in the extended state space.

We build on Hanebeck’s work and address the range-only localization problem
that is frequently encountered in robotics. First, we present techniques that allow
estimates of the actual state fromthe extended state representation. Inaddition,we
present the first incorporation of dynamics into the framework, bringing the system
closer touseful implementationonmobile robotics.The resultingfilter is simple, ro-
bust, recursive, and avoids linearization. The forms are Information-like and so the
filter behaves much like the SEIF [4] when it comes to identifying information links
between different entities and watching how these links change through motion.

In Section 2, we present notation and equations for a mobile robot system
using range-only measurements in Section 2. This work makes extensive use of
ellipsoidal calculus, which we introduce in Section 3. The nonlinear transforma-
tion framework is presented and demonstrated in Section 4 and we present new
techniques for approximate inversion of the filtered sets in Section 5. Finally, we
introduce motion in Section 6 and discuss in Section 7.

2 Problem Formulation

We consider a mobile sensor network equipped with relative-range measurement
capabilities with some capability of local sensing such as odometry or inertial
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measurements. This network consists of n standard nodes that have either un-
known or only partially known positions and m anchor nodes that have fully
known positions with respect to some global reference frame. For convenience,
we will assume these m nodes are stationary.

Expressed in the global frame, the position of the ith standard node is a
variable, x̄i = [xi yi ]T , and the position of the lth anchor node is a constant,
āl. The total state of the network is x̃ = [ x̄T

1 . . . x̄T
n ]T , and belongs to the space

S = �2n. A measurement between standard node i and standard node j has the
form:

zij = hij(x̃) + e = ‖x̄i − x̄j‖+ e (1)

while a measurement between standard node i and anchor node l has the form:

zl
i = hl

i(x̃) + e = ‖x̄i − āl‖+ e (2)

These measurements have noise e; for the purposes of this paper we assume that
this noise is bounded with constant bound ε. Thus e ∈ [−ε, ε]. These assumptions
could be relaxed to include other models of bounded noise.

In a mobile sensor network, the n standard nodes can be considered to be
attached to mobile robots. We adopt, for simplicity, a point model:

x̄i,k+1 = x̄i,k + ūi,k, i = 1, 2, . . . n (3)

where ūi is the control input for the ith mobile node at time k. The state of the
system evolves discretely, with the dynamic transition from step k to k+1 given
by (3), and a set of inter-node measurements taken at each step k:

z̃k = h̃k(x̃k) + ẽk

where h̃k is a combination of the measurement types expressed in (1) and (2).

3 Ellipsoids

Because we rely extensively on the results in [2], we now summarize their notation
and definitions. We will use x, x0 to denote the state and z to denote observations
without worrying about the notation (̄.) or (̃.) in this section.

An ellipsoid can be defined by two quantities: a vector specifying the posi-
tion of its center, and a symmetric positive semi-definite matrix that encodes
the directions and lengths of its semi-axes as the eigenvectors and eigenvalues
respectively. Given x0 ∈ �n and E ∈ Sn

+, an n-dimensional ellipsoid is defined
by the set:

εn(x0, E) =
{
x
∣∣ (x− x0)TE(x− x0) ≤ 1

}
(4)

If E is singular, then the resulting ellipsoid is degenerate and possesses di-
rections, corresponding to the eigenvectors of the zero eigenvalues, where x is
unconstrained. The center in this case is actually only a single representative
point of the affine set at the center of the ellipsoid.
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3.1 Fusion

Analogous to the fusion operation in sensor fusion, we define fusion for set valued
estimates to be the operation that takes two ellipsoids and finds an ellipsoid that
tightly bounds their intersection. The minimum-volume bounding ellipsoid can
be found using iterative algorithms such as that of [13], but, as noted there, the
complexity of this procedure is an open problem. However, the suboptimal ap-
proach taken in [2], repeated here, involves the minimization of a convex function
over a bounded interval and so is simple and fast. Given two n-dimensional el-
lipsoids, B1 = εn(x1, E1) and B2 = εn(x2, E2), a one-parameter family of fusing
ellipsoids is ελ

n(x0, E), λ ∈ [0, 1], defined by:

X = λE1 + (1− λ)E2

k = 1− λ(1 − λ)(x2 − x1)TE2X
−1E1(x2 − x1)

x0 = X−1(λE1x1 + (1 − λ)E2x2)

E =
1
k
X

(5)

and the fused ellipsoid is taken as the ελ
n that has minimum volume. This

amounts to either solving a bounded minimization problem over λ using the
above, or finding the zero of the derivative of the volume as in Theorem 3 of [2].
This approximate intersection is denoted by ∩̃:

εn(x0, E) ← εn(x1, E1) ∩̃ εn(x2, E2)

3.2 Propagations

We have interest in two different ellipsoid propagations, both paralleling the state
operations of our system given by (1), (2), and (3). Theorem 1 of [2] provides
the general operation that is specialized to these two special cases.

We consider first a 1-dimensional ellipsoid associated with a single measure-
ment (also seen as an interval) ε1(z, 1/ε2). If this measurement is obtained with
a linear observation model, z = H1×nx, its pre-image is the n-dimensional de-
generate ellipsoid: εn(H†z, (1/ε2)HTH). H†z can be any solution of the linear
map, but we will use H† as the pseudoinverse of H ; note that the ellipsoid is
rank 1 due to the form of its matrix. Thus there is an n− 1 dimensional affine
set of points that are consistent with this one dimensional observation.

Given an n-dimensional ellipsoid εn(x0, E), its image under the linear map
y = An×nx+bn×1 is the n-dimensional ellipsoid: εn(Ax0 + b, AEAT ). This is the
same expression encountered in propagation of Gaussian distributions in linear
systems theory.

3.3 Slicing

It can be shown that the intersection of an n-dimensional ellipsoid εn(x0, E)
with an m-dimensional (m ≤ n) affine set in �n, A = { y0 + Y c | c ∈ �m },
produces an ellipsoid εm(η, F ′), where:
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F =Y TEY

η =F †Y TE(x0 − y0)

k =1− (x0 − y0)TE(x0 − y0) + ηTFη

F ′ =
1
k
F

(6)

If k < 0 then the affine set and the ellipsoid do not intersect.

3.4 Projection

An ellipsoid projection finds the “shadow” of an ellipsoid in some of its com-
ponents. It can be shown that the projection of the n-dimensional ellipsoid
B = εn(x0, E) onto its first m components is given by:

P(B) = εm(x0,m, E11 − E12E
−1
22 ET

12) (7)

where x0,m are the first m components of x0, and E =
[
E11 E12
ET

12 E22

]
, with E11 as

an m-dimensional block.
Furthermore, if Y is a basis for any subspace of dimension m and Z is a basis

for its null space of dimension n−m, then the ellipsoid B = εn(x0, E) projected
onto this subspace is given by BY = εm(Y Tx0, EY ), with EY given by:

EY = Y TE Y − Y TE Z (ZTE Z)−1ZTE Y (8)

The projection operation for ellipsoids is analogous to marginalization of mul-
tivariate Gaussians (see [4]).

4 Nonlinear Embedding

Hanebeck [6] introduced a novel framework involving a nonlinear embedding
that maps the system states into an extended state space in such a way that the
measurement equations become linear. The basic idea is shown in Figure 1.

S

S

M

~

f(x)
~

x
~

x*
~

Fig. 1. The state space S is extended by adding functionally dependent coordinates
of S to create the extended state space S� = S ⊕ S̃
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The extended space S
 is formed by augmenting the base space S with addi-
tional dimensions. Define a smooth map f : S → S̃. Recall that x̃ denotes ele-
ments of S and let x̃
 denote elements of S
. The map f defines a 2n-dimensional
smooth sub-manifold in S
 with coordinates x̃:

x̃
 = g(x̃) =
[

x̃
f(x̃)

]

The Jacobian of g,
∂g

∂x̃
=
[

I
∂f
∂x̃

]

is always full rank and the resulting manifold M is diffeomorphic to S. Our goal
is to choose f and transform the system equations in such a way as to make
them linear in the p-dimensional extended space S
 (p > 2n). Note that we
will ultimately be interested only in those points that lie on the manifold, i.e.,
x̃
 ∈ M . The procedure is illustrated with an example next.

It should be noted that we have no automatic procedure for choosing f and in-
stead rely on inspection of the system equations. However, Hanebeck [6] suggests
that general polynomial bases such as Bernstein polynomials could be useful in
this regard.

4.1 Application to Range Measurements

As an illustration, begin with the range measurement equation between two
standard nodes:

zij − e = ‖x̄i − x̄j‖
and square both sides. The left hand side represents the interval [zij − ε, zij + ε]
which, when squared using interval arithmetic, becomes [z2

ij − 2zijε + ε2, z2
ij +

2zijε + ε2]. By letting z

ij = z2

ij + ε2 and w ∈ [−2zijε, 2zijε], the transformed
measurement equation is:

z

ij = x̄i · x̄i + x̄j · x̄j − 2x̄i · x̄j + w

If a different bounded-noise model is used for e, such a transformation is still
possible as long as care is taken to ensure that the modified estimate and bounds
are conservative.

Notice that this equation is nonlinear in the system variables x̄i and x̄j but
is linear in the variables x̄i · x̄i, x̄j · x̄j , and x̄i · x̄j :

z

ij = [ 1 1 −2 ]

⎡

⎣
x̄i · x̄i

x̄j · x̄j

x̄i · x̄j

⎤

⎦+ w

Applying this process to the range measurement equation between a standard
node and an anchor node leads to:

zl,

i − āl · āl = [−2āT

l 1 ]
[

x̄i

x̄i · x̄i

]
+ w
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Accordingly, we define f so that:

f(x̃) = [. . . , x̄i · x̄i, x̄j · x̄j , x̄i · x̄j , . . .]T .

Thus S
 is constructed by adding at most n+ nC2 dimensions to S, correspond-
ing to all dot product combinations of the positions of the nodes that appear in
the measurement equations. The measurement equations, after suitable modifi-
cations to the additive noise, are now linear in S
 while having bounded noise.

We are not limited to range-only sensors. Indeed, the measurement equa-
tions for bearing-only sensors can also be made linear with a similar embedding
(see [7]).

4.2 Recursive Filtering

We saw that an appropriate definition of the map f allows us to write each
measurement equation at time step k in the form:

z

k − w


k = H

k x̃



k

where x̃

k ∈ S
. By viewing the interval quantity on the left-hand side as a

1-dimensional ellipsoid, we apply the results of Section 3.2 to define Zk =
εP ((H


k )†z

k, (1/(w



k)2)(H


k )TH

k ) as the feasibility ellipsoid in S
 consistent with

this measurement.

S

S

M

~

Fig. 2. A measurement Z, transformed
into a set bounded by two hyperplanes,
defines an interesting set in the base
space S when intersected with M

S

S

M

~

X

Fig. 3. The feasibility set X ⊂ S is
found by intersecting an ellipsoid E� ⊂
S� with the manifold M

Each Zk can be seen as a pair of bounding hyperplanes constraining the pos-
sible embedded states. However, since only the values of S
 lying in M have
meaning, the actual set described by Zk can be interesting, as portrayed in
Figure 2. As more measurements are included, more bounds need to be incorpo-
rated. However, rather than tracking an increasing number of hyperplanes, each
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new Zk is incorporated into an aggregate state estimate ellipsoid E

k using the

fusion introduced in Section 3.1:

E

k ← E


k ∩̃ Zk

When the filtering is started, E

k can be initialized with εp(0, 0) to reflect the

fact that nothing is known about the state. This is analogous to the initialization
of the Information form of the Kalman filter (see [4]). Unlike the case of an
extended Kalman filter, problematic estimate initialization procedures are not
necessary.

4.3 Set Inversion

After performing filtering steps, the feasibility ellipsoid E

k contains all x̃


k consis-
tent with measurements up to step k, but not all of these elements have physical
meaning. Only the x̃


k ∈ M actually represent the images of states in S. This
feasible set, Xk ⊂ S is found by:

Xk = { x̃ ∈ S | g(x̃) ∈ E

k }

The basic idea is shown in Figure 3.
This inversion can be carried out exactly using the implicit form (4) of E


k =
εp(x0, E) together with g:

(g(x̃k)− x0)TE(g(x̃k)− x0) ≤ 1 (9)

Any x̃k satisfying this implicit nonlinear inequality belong to the true feasibility
set.

4.4 Single Robot Application

In order to demonstrate the operation of this framework, we present results
for the simulated localization of one robot using range measurements to known
anchors in Figure 4. The state space is given by a single pair x̃ = [x y ]T ∈ S = �2

and is embedded into S
 by

x̃
 = [x, y, x2 + y2 ]T . (10)

The only measurements are from the single standard node to one of n anchor
nodes at positions āi, i ∈ {1, . . . ,n}. The transformed measurement equation to
anchor i is given by:

((zi)2 + ε2 − āi · āi) + wi = [−2āT
i 1 ] x̃


where zi is the measured range from the robot to the anchor, ε is the symmetric
noise bound on this measurement, and wi ∈ [−2εzi, 2εzi].
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Fig. 4. Visualization of the proposed embedding for a single robot range-only local-
ization problem along with examples of possible estimate uncertainties represented by
this formulation. In this case a closed form expression is available for the position es-
timate set. This set can take the form of an annulus or either a single or two disjoint
transformed ellipses. The linear estimate sub-space and projected tangent slice results
are discussed in Section 5.

5 Approximate Inversion

Since (9) describes the feasible set in S as a single nonlinear implicit inequality in
dim(S) variables, it may not be suitable for finding feasible sets of large systems.
We propose two methods for approximating this inversion: the first makes use
of the projection idea introduced in Section 3.4 and is provably conservative,
and the second makes use of the recognition of the embedded manifold M in
an intuitive yet not provably conservative result. In order to demonstrate the
effectiveness of these approximations, the simulation begun in Section 4.4 is
scaled up to include more standard nodes, making it impossible to meaningfully
use the exact inversion (9).

5.1 Base Projection

Working within an extended space, an ellipsoid εp(x0, E) can have its parameters
split according to terms belong to the base space and the augmentations:
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x0 =
[
x0,L

x0,N

]
E =

[
EL EC

EC
T EN

]

with L, N , and C denoting linear, nonlinear, and coupling terms, respectively.
The exact inversion would be, using (9):

Xk =

{
x̃ ∈ S

∣∣∣∣∣

[
x̃− x0,L

f(x̃)− x0,N

]T [
EL EC

EC
T EN

] [
x̃− x0,L

f(x̃)− x0,N

]
≤ 1

}

but using ellipsoid projection gives a conservative bound on Xk. We also refer to
this base projection process as the linear estimate sub-space in the figures. The
validity of the process follows straight from the operation of projection, but a
proof of the result serves to identify potentially important conditions:

Theorem 1 (Base Projection). If EN is invertible, then Xk

⊂ ε2n(x0,L, EL − ECE−1
N ET

C ).

Proof. First define y ≡ x̃− x0,L and q(y) ≡ f(y + x0,L) − x0,N . Then, points in
Xk must satisfy:

yTELy ≤ 1− 2yTECq(y)− q(y)TENq(y)

The ellipsoid εN (x0,L, EL − ECE−1
N ET

C), once shifted, is defined by the in-
equality:

yT (EL − ECE−1
N ET

C)y ≤ 1

and so all points of Xk belong to this ellipsoid if:

1− 2yTECq(y)− q(y)TEN q(y)− yTECE−1
N ET

Cy ≤ 1

The maximum of the left hand side is found by the program:

max
y

1−
[

y
q(y)

]T [
ECE−1

N ET
C EC

EC
T EN

] [
y

q(y)

]
(11)

Call this matrix A; its Schur complement is S = ECE−1
N ET

C − ECE−1
N ET

C = 0.
Using results from [1], A � 0 since S � 0, and so the program (11) has a finite
maximum at 1. Thus, Xk ⊂ εn(x0,L, EL − ECE−1

N ET
C). ♦

The first question to ask is whether it can be expected that EN will be full
rank. Intuition suggests that this will be true after many measurements have
been incorporated. Consider the fact that the nonlinear terms from f have only
been introduced to correspond with terms in the measurement equations. After
a full set of measurements have been taken, each nonlinear term will have shown
up at least once in the measurement equations and so information will be known
about it.

However, this intuition only makes sense in well-conditioned cases where there
are several interconnected measurement that can serve to isolate the contribu-
tions of each nonlinear term to the final estimate. If this is not the case, then
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further reference to [1] tells us that the claim S � 0 =⇒ A � 0 made above
will be true if (I − ENE†

N )EC = 0.
These conditions only come about because we would like to completely ignore

the details of the nonlinear transformation when trying to approximate the true
set. If the simple tests fail, then we must take f into account, and the base
projection is only conservative if it can be shown that:

inf
y

[
y

q(y)

]T [
ECE†

NET
C EC

EC
T EN

] [
y

q(y)

]
≥ 0

over the domain in question.
If the base projection is indeed conservative, then the coordinates of the true

state must lie within it.

5.2 Tangent Slices

We now present an alternate technique that does take the contributions of the
nonlinear transformation into account when approximating the true set inver-
sion. By recognizing M as a manifold embedded into S
 by g, the tangent space
of M at a point x̃
 ∈ M can be found using the Jacobian of g.

Now ∂g
∂x̃ and x̃
 define an affine set in S
 with the same dimension as S. By re-

stricting E

k to this set using the slicing operation of Section 3.3, an approximate

representation is found in S.
Use of this operation requires two steps: first finding a single point of M to

use, and then calculating the Jacobian at this point and slicing E

k . The point

could be chosen by an optimization procedure that sought to find the closest
suitable point to the mean of E


k = εp(x0, E):

min
x̃

‖g(x̃)− x0‖2

where x0 could possibly be an affine set, x0 + Null(E)λ, if E

k has degenerate

directions.
This optimization problem has the potential to be very nasty and the effects

of choosing a non-optimal point are not known. As a simple heuristic, we have
taken x̃
 = g(x0,L) as the point to linearize about.

The over- or under-estimation of the true set would seem to be intimately
related with the curvature of M , but we have no proofs regarding the quality
of this approximation, only demonstrations of its use in the following examples.
Accordingly, the true state coordinates need not lie within the tangent slice
estimate.

5.3 Multiple Robot Application

As a comparison of the set approximation techniques, we present simulation
results of an experiment with two standard nodes and three anchor nodes in
Figure 5. Both the base projection and tangent slicing approximations are com-
pared against a brute force calculation found by griding the x, y coordinates of
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both standard nodes and then checking for inclusion in E

k by using the implicit

form (9).
The system state consists of a two position vectors x̃ = [ x̄T

1 x̄T
2 ]T =

[x1 y1 x2 y2 ]T ∈ S = �4 and the state is transformed into S
 according to:

x̃
 =
[
x̄1, x̄2, x̄1 · x̄1, x̄2 · x̄2, x̄1 · x̄2

]T (12)

As a representative example, the measurement between standard node 1 and
anchor i would take the form:

((zi
1)

2 + ε2 − āi · āi) + wi
1 =

[
−2āT

i 01×2 1 0 0
]
x̃


where zi
1 is the measured range from robot 1 to the anchor, ε is the symmetric

noise bound on this measurement, and wi
1 ∈ [−2εzi

1, 2εzi
1]. Measurements to

robot 2 take a similar form.
The inter-robot measurement is:

((z1,2)2 + ε2) + w1,2 =
[
01×2 01×2 1 1 −2

]
x̃


where z1,2 is the measured range from robot 1 to robot 2, ε is the symmetric
noise bound on this measurement, and w1,2 ∈ [−2εz1,2, 2εz1,2].

When calculating the tangent slice approximation, the Jacobian of this system
is:

Fig. 5. Two robot localization examples that illustrate the ability of the proposed
representation to capture complex structured estimate uncertainty. Note that the base
projection of the higher-dimensional uncertainty bounds a smaller estimate recoverable
from the intersection of E�

k with M .
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∂T

∂x̃
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2x1 2y1 0 0
0 0 2x2 2y2
x2 y2 x1 y1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

This example is taken further by including more standard nodes in Figure 6.
The brute force representation of the feasible set is computationally daunting,
so we present only the approximate representations.

6 Incorporating Motion

The static examples seen so far have shown the power of the representation, but
have failed to take advantage of the dynamics of the problem. In applications,
the incorporation of motion often transforms a poorly posed problem and makes
it possible to estimate the state effectively. In [6], Hanebeck makes no use of
dynamics, and further work in [7] and [8] also deals only with static systems.
The main problem with incorporating dynamics into this framework is due to
the fact that the chosen embedding renders the measurement equations linear
but does not necessarily do so for the state update and, even worse, can make
linear dynamics become nonlinear.

However, for the problem at hand, we will show that dynamic updates can in
fact be incorporated using the fairly restrictive assumptions of a point model and
perfect input. Despite these limitations, this inclusion represents a step forward
for the theory and relaxations may be possible.

We consider a single robot once more and apply the transformation (10) to
the dynamics given by (3). By inserting (3) into (10), we derive an expression
relating the state at a given time step to the state at a previous time step:

D

⎡

⎣
x
y

x2 + y2

⎤

⎦ =

⎡

⎣
x + ux

y + uy

(x + ux)2 + (y + uy)2

⎤

⎦

=

⎡

⎣
1 0 0
0 1 0

2ux 2uy 1

⎤

⎦ x̃
 +

⎡

⎣
ux

uy

u2
x + u2

y

⎤

⎦

A similar derivation is possible for the two robot case as well, using (12):

D

⎡

⎢⎢⎢⎢⎣

x̄1
x̄2

x̄1 · x̄1
x̄2 · x̄2
x̄1 · x̄2

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

2u1,x 2u1,y 0 0 1 0 0
0 0 2u2,x 2u2,y 0 1 0

u2,x u2,y u1,x u1,y 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

x̃
 +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,x

u1,y

u2,x

u2,y

u2
1,x + u2

1,y

u2
2,x + u2

2,y

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 7. Two solutions illustrating unique and consistent simultaneous localization and
landmark mapping through robot motion: Given an initial robot location estimate
(left), and the aid of a known landmark given no prior estimate information (right). A
27 state sparse linear filter fully captures the complex uncertainty structure. The linear
sub-space approximation is unbounded when the true uncertainty set is unbounded or
non-unique. This approximation becomes bounded in both cases once the robot has
performed motion and measurements in two distinct directions.
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This demonstrates that the process can extend to any number of point robots.
The resulting update equation now has a nonlinear coupling between the state

and input appearing in the transition matrix, making it impossible to allow
input disturbances under the current framework. If we allow for perfect input
knowledge, then each dynamic update step is performed using the propagation
results of Section 3.2 to find E


k+1. Simulations show that this approach works
well for small time steps but may break down over larger intervals – the reasons
for this have not been fully explored.

6.1 Application to Landmark Mapping

To demonstrate the effectiveness of incorporating motion into the filtering proce-
dure, we present simulated results of an experiment with a standard node mounted
on a mobile robot moving through a system of unlocalized static nodes. Two cases
are presented in Figure 7. Global reference is provided by either giving the robot
an initial position fix or observing a known landmark. Perfect inputs are applied in
accordance with the dynamic update assumptions stated above. After the robot
has completed multiple turns, the static nodes have been mapped.

7 Conclusion

We present a novel application of set-based estimation theory that lends itself to
simultaneous localization and mapping with multiple mobile sensor platforms.
While this paper focussed on range sensors, it is easy to include other types of
sensors. The main advantage is our ability to incorporate sensors with nonlinear
observation models without any knowledge of the noise.

While our approach shows robustness to modeling uncertainties and to initial-
ization, there are two main limitations that we are currently addressing. First,
the approach, as presented, is limited to Euclidean dynamic models. We are
exploring alternative representations that will allow us to treat the dynamics
and the observation as linear processes with additive noise. Second, while our
extensive representation incorporates all relevant information in S
 and makes
checking data for consistency and correspondence very easy, it is computationally
difficult to translate this information to the base space S. This is because of the
complexity of computing the intersection of the feasibility set with the manifold
M. However, because the underlying representation is algebraic, it is possible to
use symbolic computation software for polynomial algebra to delineate this set
and this is an area of ongoing investigation.

Finally, we are also addressing the control of vehicles to actively reduce the vol-
ume of the uncertainty with the set-valued representation discussed here. In [18]
we present an experimental study with multiple robots localizing static features.
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Abstract. We consider the problem of computing a minimum-weight polygonal path
between two points in a weighted polygonal subdivision, subject to the constraint
that the path have few segments (links). We give an algorithm that generates paths of
weighted length at most (1+ε) times the weight of a minimum-cost k-link path, for any
fixed ε > 0, while using at most 2k − 1 links. This is an improvement over the previous
(1 + ε)-approximation algorithm, which used at most 5k − 2 links. Further, we have
implemented our new algorithm and we have conducted a performance study of these
algorithms (old and new) on a variety of real-world and synthetic data, comparing not
only the efficiency but also the quality of paths generated using these algorithms. We
also consider the implications of these results on the practical usage of these algorithms.

1 Introduction

Consider a mobile robot that moves within an environment that is partitioned
into regions, each having an associated weight, which represents the cost per
unit distance for travel in the region. Furthermore, assume that there is a cost
associated with each turn that the robot makes. Given an environment specified
by a weighted polygonal subdivision, R, and given a positive integer k, our goal
is to compute a minimum-cost polygonal path for the robot, from point a to
point b, subject to the constraint that the path have at most a specified number,
k − 1, of turns, and therefore at most k links (edges).
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In a weighted subdivision the distance between two points a and b within
the same region Ri ∈ R is defined as the product of the weight wi of Ri and
the Euclidean length |ab| of the line segment ab. For a path p (not necessarily
polygonal), the portion of p that is contained within some region Ri ∈ R has
its length defined as the product of the Euclidean length of p ∩ Ri and the
weight wi. The length ||p|| of the path p is the sum of the lengths over each
region it intersects. The weight of a path that follows an edge ei,j that forms the
boundary between two regions Ri and Rj is defined as min{wi, wj}. We assume
R is triangulated and has n vertices in general position.

1.1 Related Work

For a survey of optimal path algorithms in geometry, see [14, 15].
Minimum-cost paths in weighted subdivisions were first studied algorithmi-

cally by Mitchell and Papadimitriou [16], who give a (1 + ε)-approximation al-
gorithm to compute optimal paths that runs in polynomial time (logarithmic in
1/ε). Alternative solution methods for the weighted region problem (WRP) are
based on discretizing edges of the subdivision, placing Steiner points judiciously,
and interconnecting them to form a discretization graph, G(V,E), which is then
searched for a shortest path. The first experimental studies of the weighted re-
gion problem ( [11,13]) were based on implementations of such algorithms. Much
of the subsequent WRP work has focused on the placement of Steiner points ei-
ther on edges [1,2,21] or on face bisectors [3], with clever techniques to speed the
computation of shortest paths in the discretization graph [21, 3]. None of these
algorithms for the WRP permit one to bound the number of links/turns in the
produced path.

The special case of the 1-link minimum-weight path between two regions in a
weighted subdivision, often called the optimal “link” or “penetration” problem,
was first studied in [5,6]. In [5] the optimal link problem is reduced to O(n2) sub-
problems each of which minimizes a two-variable function f(x, y) over a convex
domain D, where f(x, y) is given as a sum of O(n) fractional terms. An optimal
link between two regions must pass through a vertex in the subdivision [7], a
property that has been exploited to create efficient approximation algorithms
based on a prune and search approach and a sum of fractionals approach [9].

The first algorithms to approximate k-link shortest paths in weighted regions,
with guaranteed approximation bounds, are proposed in [9]. Two different algo-
rithms for approximating k-link shortest path are proposed based on the com-
putation of exact optimal links or approximate optimal links. Their solutions
produce approximation paths that are within an (1 + ε)-factor from optimal (ε-
approximation paths for short) and have 5k−2 links and 14k links, respectively.
As in the algorithms in [3, 12, 21], a discretization graph G(V,E) is constructed
from Steiner points placed on edges in the subdivision. The construction of G
differs in two important ways from discretizations for the shortest path problem.
The first difference arises in the placement of Steiner points. A vertex-vicinity
(see Section 1.3) is chosen small enough so that no line can intersect three vertex-
vicinities. The second difference is in the definition of G. Nodes in V correspond
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to Steiner edges (not points) and vertices in the subdivision. Edges in E corre-
spond to optimal links between the nodes in V .

The problem of computing optimal k-link paths in weighted regions has been
studied in air traffic management applications, where the weights correspond to
traversability or risk factors associated with hazardous weather or congestion,
and the turn constraint corresponds to the need to bound the human factors
complexity of flight trajectories, both from the pilot’s perspective and from the
air traffic control perspective. The algorithms implemented for this application
in Krozel et al. [10] rely on searching grids, using Bellman-Ford methods, but
do not provide guarantees of solution quality.

The problem of computing shortest k-link paths in unweighted settings (e.g.,
in simple polygons or polygonal domains) has been studied by Piatko et al. [19,
4, 17].

1.2 Our Contribution

In this paper we describe two new techniques for approximating k-link shortest
paths in weighted regions, we implement a solver with a suite of algorithms (new
and old), and we perform an experimental investigation:

• We prove that by shrinking the vertex-vicinity by a constant factor of μ,
which depends on some parameters of the subdivision, we can find a (2k−1)-
link path p formed from exact optimal links and turning only on edges, such
that ||p|| ≤ (1 + 2ε)||pk|| where pk is an optimal k-link path from s to t.

• We show that using approximate optimal links we can find a (2k − 1)-link
path p formed from approximate optimal links and turning only on edges
such that ||p|| ≤ (1 + 7ε)||pk|| where pk is an optimal k-link path from s to t.

• We implement our new methods, as well as those previously proposed. We
have built an extensive software system, “k-LinkSolver”, which is available
for public use.

• We conduct the first experimental investigation of these k-link path solutions.
We compare and contrast the run-time performance and solution quality of
our new algorithms with those described in [9], and consider the implications
of our results on the practical usage of these algorithms. This is the first
intensive study on the real-world performance of any of these algorithms.

We refer to a path as being an ε-good approximation if its weighted length
is within a (1 + ε)-factor of the weight of a corresponding optimal path. That
is, p is an ε-good approximation of a path pk if ||p|| ≤ (1 + ε)||pk||. A Cε-good
approximation refers to a path whose weighted length is within a (1+Cε)-factor
of the weight of an optimal path where C is a constant. By letting ε′ = ε/C
it is clear that a Cε-good approximation forms an ε′-good approximation. That
is, any Cε-good approximation trivially forms an ε-good approximation. From
this point forward, we will generally refer to paths as ε-good disregarding the
constant C to mean this and we will state results as being Cε-good or within a
(1 + Cε)-factor to acknowledge the specific constant C required. Thus, the two
solutions presented here form ε-good approximations.



190 O. Daescu et al.

1.3 Definitions and Notations

We begin by describing the terminology and discretization scheme used here.
Whenever possible, our definitions and notations are similar to those in [9].
Let ER be the set of edges that bound the weighted regions of the weighted
subdivision R. Let ER(v) be the set of boundary edges incident to a point v
and let d(v) be the minimum Euclidean distance between v and the edges in
ER \ ER(v). For each edge e ∈ ER, let d(e) = supv∈e d(v). Let v(e) be a point
on e such that d(v(e)) = d(e). The cell formed by the regions incident to a
vertex v is called the vertex-cell of v and is denoted by C(v) (Ci for short for a
vertex vi).

For each vertex of R in each possible vertex triplet formed by the vertices in R
we compute the minimum distance to the line supporting the opposite edge. Let
γi be the minimum such distance obtained from a triplet containing the vertex
vi, and let γ = min{γi/2 | i = 1, 2, . . . , n}. Using a result in [8], γ can be found
in O(n2 logn) time.

For each vertex v of R, let r(v) = min(εd(v)/c, γ) where c is an appropri-
ately chosen constant (see Lemma 2). The disk of radius r(v) centered at a
vertex v defines the vertex-vicinity S(v) of v (or Si for short for a vertex vi).
We refer to r(v) as the vertex-vicinity radius for v. Note that the choice for
r(v) ensures no line can cross more than two vertex-vicinities. This depends
on the non-degeneracy assumption that no three vertices of the subdivision are
collinear.

We now describe how the Steiner points on an edge e = v1v2 are chosen.
Each vertex vi, where i = 1, 2, has a vertex-vicinity Si of radius r(vi) and
the Steiner points vi,1, . . ., vi,ji are placed on e such that |vivi,1| = r(vi) and
|vi,mvi,m+1| ≤ εd(vi,m), m = 1, 2, . . . , ji − 1 (where equality holds in all cases
except possibly when m = ji − 1). The value of ji is such that vi,ji = v(e). Let δ
be the maximum number of Steiner points placed on an edge of the subdivision.
The line segment formed by two adjacent Steiner points vi,m and vi,m+1 is called
a Steiner edge. The pairing of any two Steiner edges forms a quadrilateral shape
called a Steiner strip. The shape could be degenerate if the Steiner edges are on
the same boundary edge or share a vertex.

If a path in R is restricted to turn only on edges it is said to be edge-restricted
otherwise the path is said to be edge-unrestricted. If a link that makes up a
polygonal path follows an edge of the subdivision (rather than crossing a face)
it is said to be edge-crawling.

A key subproblem in approximating k-link shortest paths is that of finding
“good” 1-link paths (links for short). We refer to two different kinds of good
links. An exact optimal link is one that has been solved such that no error
exists. An approximate optimal link is within a (1 + ε)-factor from an optimal
link. Finally, for a path pk, we use |pk| to denote its Euclidean length and ||pk||
to denote its weighted length.
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2 Approximating k-Link Shortest Paths

We recall a key theorem from [9]:

Theorem 1. Given two points s and t of R, there exists a path p between s and
t with at most (2k− 1)-links, that turns only on the edges of the subdivision and
such that the weighted length of p is at most that of a k-link shortest path pk

from s to t.

The edges added to transform an edge-unrestricted path to an edge-restricted
path can be thought of as cutting the “corners” off the edge-unrestricted path
against the edges of the subdivision. We call such links corner-cutting links.

In [9] it is shown how to construct “normalized” paths that either completely
or partially avoid vertex-vicinities. The penalty of such an approach is often
a higher constant multiplier bounding the number of links. In this section we
propose an alternative that decreases the number of links in an approximating
path to (2k− 1) at the cost of increased complexity in the discretization graph.

We do this by decreasing the size of the vertex-vicinity radius to r(v) =
min(μεd(v)/c, γ) where μ = wmin/wmax and c is an appropriately chosen con-
stant (see Lemma 2). The discretization graph G(V,E) is defined similarly to [9]
but with a few subtle changes. Nodes in V still correspond to Steiner edges
and vertices in the subdivision but also include what we will refer to as interior
Steiner edges. An interior Steiner edge is the edge between a vertex and the first
Steiner point on an edge incident to the vertex. Edges in E then correspond to
optimal links between pairs of nodes in V .

Lemma 1. A k-link shortest path, pk, completely contained in a vertex-vicinity
has a maximum weighted length of 2εwmind(v)/c.

Proof. Let l be a link from the start of the path pk to the end of the path pk

(see Fig. 1). Clearly, if ||pk|| > ||l|| then pk is not an optimal path. Therefore,
||pk|| ≤ ||l||. The length of l is constrained by the size of the vertex-vicinity and
thus, |l| < 2εμd(v)/c or ||l|| < 2εwmind(v)/c. And finally, ||pk|| < 2εwmind(v)/c.
We may also conclude that only one link is required for a path p′k to approximate
a path pk such that ||p′k|| < 2εwmind(v)/c.

In this paper, we assume the end points of a path pk are separated by a distance
Ω(d(vi)) for any vertex-vicinity Si through which pk passes. If |pk| � d(vi), then
pk is a trivial path.

Lemma 2. A k-link path, pk, that turns on edges can be approximated by a
2ε-good (2k−1)-link path made up of k optimal links and k−1 connecting links.

Proof. Let the path pk be divided into j subpaths, pk1 , . . ., pkj , as defined below
(see Fig. 2). Let pk0 = ∅. If i = 1 then subpath pki begins where pk begins
otherwise subpath pki begins where pki−1 ends. With pki−1 known, the subpath
pki is defined as follows. Consider the first vertex-vicinity Si that pk crosses after
pki−1 .
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r = μεd(v)/c

pk

l
s

t

Fig. 1. pk has a maximum weighted length of 2εwmind(v)/c where c is an appropriately
chosen constant

S1

C1

S2

C2

pk1

pk2
pk3

Fig. 2. Three subpaths, pk1 , pk2 and pk3

(b)(a) (c)

Fig. 3. Several examples of (a) Case 1 and (b) Case 2 described in Lemma 2 and (c)
where Case 2 is applied twice on a single subpath

Case 1: If pk crosses the boundary of the vertex-cell Ci before entering Si then
let the subpath pki terminate at the first turn after pk exits Si. If no such turn
exists, or pk does not exit Si, then let pki end where pk ends.

Case 2: If pk does not cross the boundary of Ci before entering Si, then let the
subpath pki terminate at the first turn after pk exits Ci. If no turn exists after
pk exits Ci then let pki end where pk ends. If pk does not exit Ci, then we let
pki−1 end where pk ends.

A subpath pki so constructed may intersect no more than four vertex-vicinities
and |pki | = Ω(d(v)) for any vertex-vicinity v crossed by pki (see below for a more
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precise lower bound). Four vertex-vicinities may be crossed if Case 2 is applied
once in a situation similar to the last example in Fig. 3 (b) and then again for
a small link that crosses a vertex-vicinity as illustrated in Fig. 3 (c).

Note that (1 + ε)||pk|| =
∑j

i=1(1 + ε)||pki ||. Let p′k be a path that approxi-
mates pk with k optimal links and k − 1 connecting links. We prove p′k can be
constructed such that ||p′k|| < (1 + 2ε)||pk|| by proving ||p′ki

|| < (1 + 2ε)||pki ||.
First consider a subpath π of pki that does not cross a vertex-vicinity and

its approximating subpath π′. Such a path π is made up of one or more links,
l1, . . ., lξi . Then ||π|| =

∑ξi

j=1 ||lj || and by extension, (1 + ε)||π|| =
∑ξi

j=1(1 +
ε)||lj ||. Let e1 and e2 be the Steiner edges that a link lj ∈ π originates and
terminates at respectively. Let l∗j be an optimal link between e1 and e2. Clearly,
||l∗j || ≤ ||lj ||. Consider the contribution of the last region that lj crosses before
connecting to lj+1. Let this region be R1 with corresponding weight w1. Let
d1 = |R1 ∩ lj |. Since in general the endpoints of l∗j and l∗j+1 on e2 are distinct,
we need to add a single link, lmj , to connect l∗j and l∗j+1 on e2 (lmj is an edge-
crawling connecting link). The link lmj can have length no greater than that of
the Steiner edge on which it lays.

We have |lmj | ≤ εd(v2), with v2 an endpoint of the Steiner edge e2. By defini-
tion, d(v2) ≤ d1. Therefore, |lmj | ≤ εd1. The contribution lmj makes to approx-
imate lj is no more than εw1d1, i.e., d1w1 + ||lmj || ≤ (1 + ε)w1d1. Using l∗j and
lmj to approximate lj we have ||l∗j ||+ ||lmj || ≤ (1 + ε)||lj ||, since ||l∗j || ≤ ||lj ||. It
then follows that ||π′|| =

∑ξi

j=1(||l∗j ||+ ||lmj ||) <
∑ξi

j=1(1 + ε)||lj|| = (1 + ε)||π||.
Equivalently,

∑ξi

j=1 ||lmj || < ε||π||.
Next consider what happens when pki crosses a vertex-vicinity S(v) of vertex

v. From Lemma 1, if pki consists of several links contained in S(v), they can be
replaced by a single link, of weighted length no more than 2εwmind(v).

Let ls be a link in the path pki that enters S(v) and let lt be a link that exits
S(v) (see Fig. 4). Let l∗s be an optimal link that begins and ends on the same
Steiner edges as ls. Let l∗t be an optimal link that begins and ends on the same
Steiner edges as lt. Clearly, ||l∗s || ≤ ||ls|| and ||l∗t || ≤ ||lt||. Let lm be a connecting
link (not necessarily edge-crawling) that connects l∗s to l∗t . We need to bound
lm in terms of pki . We can find a lower bound for the unweighted length of pki

by using d(v) and the vertex-vicinity radius of S(v), i.e., (1 − εμ/c)d(v) < |pki |

lm

ls l∗s

l∗t

lt

Fig. 4. Approximating path construction inside a vertex-vicinity
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and thus d(v) < c|pki |/(c − 1/2). The link lm can achieve an unweighted value
of no more than twice the radius of the vertex-vicinity, thus lm’s maximum
weighted value is bounded by ||lm|| ≤ 2εwmind(v)/c < 2εwmin|pki |/(c− 1/2) ≤
2ε||pki ||/(c − 1/2). Also recall that up to four vertex-vicinities may exist in a
single subpath pki . If we let c = 17, then 4||lm|| < ε

2 ||pki ||.
Combining this result with the result we found for edge-crawling links lmj not

inside the vertex-vicinity, we have a path p′ki
with ||p′ki

|| < (1 + 3ε/2)||pki|| <
(1 + 2ε)||pki ||. That is, a 2ε-good subpath p′ki

can be guaranteed. And thus, a
2ε-good path p′k can also be guaranteed.

Theorem 2. Given two points s and t of R, a k-link shortest path between s
and t can be approximated with a 2ε-good (2k− 1)-link path that turns on edges.

Proof. Consider a link l∗i on the k-link shortest path and refer to Fig. 5. If l∗i ends
on an edge of the subdivision then Lemma 2 applies and it can be replaced in the
approximating path by one optimal link and one connecting link. If l∗i ends inside
a face of R then Theorem 1 applies, adding a corner-cutting link that crosses
the face to connect l∗i to l∗i+1. No additional edge-crawling connecting link is
required because the corner-cutting link crosses only one face and therefore its
length is adequately captured in the discretization.

This new fact that links which cross a single face do not require additional
connecting links was not considered in [9]. Applying this result, we find the
5k− 2 link and 14k link results for optimal links and approximate optimal links
are improved to 3k − 2 links and 8k links respectively.

When computing the discretization graph G(V,E), defined earlier, the number
of vertices in V is clearly bounded by the number of Steiner points O(δn) and the
number of edges in E is O((δn)2). Computing a single edge in G corresponds to
solving a 1-link shortest path problem for a specific subproblem. Let this time be
Th(n). Thus, the time to compute G is O((δn)2Th(n)). Once G is constructed, we
can use dynamic programming to find a k-link shortest path in G in O(k(δn)2)
time.

(a) (b)

Fig. 5. a) Joining two optimal links with an edge-crawling connecting link (Case 1) and
(b) joining two links not constrained to edges of the subdivision with a corner-cutting
link (Case 2)
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3 Approximate Optimal Links

In practice, optimal links can be time consuming to compute. Approximate op-
timal links are links that take advantage of the discretization scheme already
described to find a single link within a (1 + ε) factor of optimal. Such links were
introduced in [9] but unfortunately the normalization process required several
more links than it did for optimal links. In this section we show that approxi-
mate optimal links can be used with our new technique while still maintaining
an approximating path with no more than 2k − 1 links.

R1

R3

R2

(a)

e1

e2

l1
l2

R1

R3

R2

(b)

e1

e2

l2
l1

l
l

Fig. 6. A Steiner strip formed by lines l1 and l2 may intersect edges that are more
coarsely (a) or more finely (b) sampled. In (b) the dotted lines describe an hourglass
defined by Steiner points.

Consider an optimal link l between two edges e1 and e2. Many Steiner points
may be captured inside the Steiner strip formed by e1 and e2. See Fig. 6. These
points define a set of hourglass shaped regions, that represent the space over
which a link can be translated and rotated without passing a Steiner point. An
optimal link clearly must lie in one such hourglass. It has been shown in [9] that
an arbitrary link computed for the same hourglass differs from an optimal link
by only a factor of 1 + 2ε. Here we extend this result to include optimal links
that cross or turn inside a vertex-vicinity.

Theorem 3. Given two points s and t of R, a k-link shortest path between s and
t can be approximated with a 7ε-good (2k−1)-link path made up of k approximate
optimal links connected by k − 1 connecting links.

Proof. We divide the approximating path p′k introduced earlier into j subpaths,
p′k1

, . . ., p′kj
, as already described in Lemma 2. We seek to bound the error be-

tween a subpath p′′ki
made of approximate optimal links and a subpath p′ki

made
of exact optimal links.

Consider a subpath p′ki
. Such a path is made up of one or more optimal links,

l′1, . . ., l
′
ξi

, and one or more small connecting links (but no more than ξi − 1).
The connecting links will remain constrained to the size of the Steiner edge on
which they lay or to twice the radius of a vertex-vicinity. Therefore, we are only
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concerned with how much l′j and l′′j differ in length. In what follows we show
||l′′j || differs from ||l′j || by at most a (1 + ε) factor.

The weighted length of a single link, l′j , intersecting m regions, R1, . . ., Rm,
is given by

∑m
i=1 widi. We must consider the contribution of each segment to

guarantee that the length of an approximating link l′′j is within a (1 + ε)-factor
of the length of l′j.

First consider a link l′j that does not cross a vertex-vicinity. Let e1 and e2 be
the Steiner edges that l′j originates and terminates at respectively. Let VS be the
set of Steiner points contained in the Steiner strip formed from e1 and e2. VS

defines O((δn)2) hourglasses where δ is the number of Steiner points placed on an
edge. Let the weighted length of an arbitrary line segment l′′j that passes through
a particular hourglass approximate the length of the optimal line segment l′j
that passes through the same hourglass. Clearly each term that makes up the
description of l′′j can vary from l′j by at most the weighted lengths of the Steiner
edges si and si+1 corresponding to that term, i.e., ||l′′j || =

∑m
i=1 wi ∗ di(l′′j ) ≤∑m

i=1(wi ∗ di(l′j) + wi|si| + wi|si+1|). By definition |si| ≤ εdi(l′) and |si+1| ≤
εdi(l′). Thus, ||l′′|| =

∑m
i=1 wi ∗ di(l′′) ≤ (1 + 2ε)

∑m
i=1 widi(l′) = (1 + 2ε)||l′||.

The optimal link for the Steiner edges e1 and e2 is captured by one of the
O((δn)2) hourglasses. The length of a representative link for one hourglass can
be found in time proportional to the number of regions intersected by the link,
and thus in O(n) time. By taking the link of smallest weighted length over all
hourglasses we have a link which approximates the optimal link for the Steiner
strip within a factor of (1 + 2ε). The overall computation of this link takes
O(n(δn)2) time.

Next, assume l′j crosses a vertex-vicinity S(v). Note that one or more links
in pki may pass through the vertex-vicinity. Links completely contained in the
vertex-vicinity are in fact not captured at all, but we have shown the maximum
amount of error induced by such links in Lemma 1. We focus our attention on
two links in particular, the link entering and the link exiting the vertex-vicinity
(which may be one in the same link).

As a link l′j enters the vertex-vicinity S(v), it must first pass a Steiner edge
before it passes an internal Steiner edge. An arbitrary link l′′j that falls in the
same hourglass as l′j is captured by a Steiner strip with an internal Steiner edge.
Clearly the term associated with the description of l′j in this strip can vary by
at most ||si||+ εwmind(v)/c, where si is as above. If εwmind(v)/c > εdi(l′j) then
the (1 + 2ε) bound we just discovered earlier does not hold. It is necessary to
consider the error in our approximation that is induced by using internal Steiner
edges not per link but per subpath.

The additional error associated with l′′j entering the vertex vicinity and cross-
ing an internal Steiner edge is εwmind(v)/c. Since the link l′′j may also exit the
vertex-vicinity by crossing another Steiner strip formed from one Steiner edge
and one internal Steiner edge, l′′j can vary by twice as much. The weighted
length inside the vertex vicinity is also captured by 2εwmind(v)/c where c is an
appropriately chosen constant and thus crossing a single vertex-vicinity may cost
4εwmind(v)/c. Since a subpath p′ki

may cross four vertex-vicinities, the maximum
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cost per subpath is 16εwmind(v)/c < 16εwmin|p′ki
|/(c−1/2) < 16ε||p′ki

||/(c−1/2)
and choosing c = 17 we have that 16ε||p′ki

||/(17− 1/2) < ε||p′ki
||.

That is, p′′ki
differs from p′ki

by at most a factor of ε due to error from crossing
internal Steiner edges. Adding this to the error incurred by crossing arbitrary
Steiner edges, p′′ki

differs from p′ki
by at most a factor of 3ε. Then, the difference

between p′′ki
and pki is (1+3ε)(1+3ε/2) < 1+7ε; p′′ki

is a 7ε-good approximation
of pki and p′′k is a 7ε-good approximation of pk.

Substituting the link computation time O(n(δn)2) for Th(n) in the previous sec-
tion we find the time to compute the discretization graph G(V,E) is O(n(δn)4).
As before, once G is constructed, we can use dynamic programming to find a
k-link shortest path in G in O(k(δn)2) time.

4 Experiments

We have implemented the algorithms described in this paper as well as the algo-
rithms described in [9] as part of a C++ application we call “k-LinkSolver”. We
refer to the k-link approximation algorithms in [9] using either optimal links or
approximate optimal links as K-Link-Opt and K-Link-Approx, respectively,
or K-Link collectively. We will refer to the new approximations based on either
optimal links or approximate optimal links presented in this paper as K-Link-

Mu-Opt and K-Link-Mu-Approx, respectively, or K-Link-Mu collectively.
We also define a new heuristic. Instead of solving for either an approximate or

an optimal link between two Steiner edges we simply solve for an arbitrary link
within a Steiner strip. When applied to the original discretization scheme we will
call this algorithm K-Link-Heur and when applied to the discretization scheme
used in this paper we call the technique K-Link-Mu-Heur. This heuristic makes
no optimality guarantees but when ε is very small we might expect that an
arbitrary link between two Steiner edges is very close in value to an optimal link
between those two edges.

The k-LinkSolver solves for a k-link path in three stages: (1) discretization,
(2) link generation and (3) path finding. The first and second stages do not
depend on the start and end points of the path while the third stage does. If
one is interested in finding several k-link paths in a single subdivision the first
two stages can be thought of as preprocessing steps and the third stage can be
executed as many times as required.

We use three different data sets in these experiments. The first is a traced MRI
scan from the Visible Human Project [18] which emphasizes structure features of
the brain (Mri-Data). The second is a topological map of Santiago Peak from
Big Bend National Park, Texas (Topo-Data). The third is a simple subdivision
generated using Shewchuk’s triangulator [20], Triangle, with specific quality and
area guarantees (Tri-Data). The discretization of Mri-Data, Topo-Data,
and Tri-Data is shown in Fig. 7.
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(a) (b) (c)

Fig. 7. A discretization of (a) Mri-Data, (b) Topo-Data, and (c) Tri-Data

4.1 Discretization Performance

The first stage, discretization, is the most efficient. O(nδ) Steiner points are
generated in O(nδ) time, with δ = O(1/ε) (the hidden constant in the O(·)
depends on some parameters of R, such as the maximum edge length and μ. Each
Steiner point can be computed in constant time and each Steiner point becomes
part of the discretization graph, making the discretization process inherently
output sensitive.

Since Steiner points are associated (through edges) to nodes in the discretiza-
tion graph, the number of Steiner points generated directly affects the number
of links that must be calculated in the link generation phase and the number of
links that must be considered in the path finding stage. Ideally we would like
to generate as few Steiner points as possible that will make a specific (1 + ε)
approximation guarantee.

Unlike K-Link, K-Link-Mu depends on the ratio wmin/wmax. In our first
series of tests, we fix ε to 0.5 and then vary μ to gauge μ’s effect on the dis-
cretization process used in K-Link-Mu. See Fig. 8 (a). Very small values for μ
can have a significant impact on Steiner point generation.
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Fig. 8. (a) The effect of fixing ε and varying μ. (b) The effect of fixing μ and varying ε.
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In our second series of tests, we fix μ to 0.5 and then vary ε to gauge the effect
that ε has on Steiner point generation. See Fig. 8 (b). Note that once μ is fixed
the resulting vertex-vicinity radii for the K-Link and K-Link-Mu algorithms
differ by only a constant factor. Although we would like to choose a very small
ε to guarantee the quality of the k-link path we generate, the number of Steiner
points grows quickly as ε becomes small.

4.2 Link Generation Performance

In the link generation stage O((nδ)2) links must be calculated. In our experi-
ments we computed “exact” links using the prune-and-search scheme (see [9]),
which returns an optimal link accurate to any user specified precision.

In the link generation stage we compare the running time for all of the ap-
proaches mentioned earlier. See Fig. 9. The “exact” solutions are clearly the
most expensive while the heuristic solutions are the least expensive. Despite the
fact that the heuristic solutions do not offer any quality guarantees, in our ex-
periments they provided paths very close to those generated by the algorithms
that rely on computing approximate links. This is an interesting finding given
the expensive nature of link generation.

4.3 Path Finding Performance and Quality

Link generation is the true performance bottleneck in finding k-link paths. But
if we assume that discretization and link generation are preprocessing steps to
potentially many path finding operations, the performance of the path finding
step becomes of critical importance.

In our algorithms the path finding step is straightforward and requires simple,
O(k(nδ)2) computation.
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An important issue is the quality of the paths being generated. How closely
do generated paths follow the optimal path? How closely do generated paths
come to the true or optimal k-link path value in practice?

From our experiments we have seen that when ε is quite large there is a
tendency for the path to change quite a bit as ε changes. Making a relatively
small change in ε can change the path drastically. However, as ε becomes smaller
there is a tendency for the path to “lock in” and not change drastically. This
also seems to have the effect that tightening ε to extremely small values often
does not yield proportionally better k-link path lengths.

Fig. 10 is one example of the effect of changing ε. Notice how little the path
changes between Fig. 10 (c) and (d).

(a) (b) (c) (d)

Fig. 10. Four k-link path approximations where k = 3 and (a) ε = 2.0, (b) ε = 1.0,
(c) ε = 0.5, and (d) ε = 0.25

Changing the number of links, k, a path may utilize is usually more profound.
Fig. 11 is an example of the effect of changing k with a fixed ε. In this example
the path for k = 2 is actually not a bad approximation of a path with k = 9 in
that it crosses all of the same faces. This is less likely to be true when considering
more complex subdivisions.

(a) (b) (c) (d)

Fig. 11. Four k-link path approximations where ε = 0.5 and (a) k = 2, (b) k = 3, (c)
k = 4, and (d) k = 9

5 Conclusions

In terms of theory, we believe it will be difficult to improve on the 2k − 1 link
result for an approximating k link path that turns only on edges. Future work
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that seeks to improve this result may need to consider discretization schemes
where Steiner points could also be placed inside the faces of R.

Our experiments highlight many of the difficulties and computation intensive
facets of this problem. While it may be difficult to improve on the number of
links in an approximating path we believe there is potential for improving the
running time for finding solutions using new techniques. For example, while the
K-Link-Mu result provides a nicer theoretical result by reducing the number
of links in an approximating path, the relationship between μ and Steiner point
generation often makes K-Link the more desirable algorithm.
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Abstract. We introduce the notion of low-discrepancy curves and use it to solve the problem
of optimally covering space. In doing so, we extend the notion of low-discrepancy sequences in
such a way that sufficiently smooth curves with low discrepancy properties can be defined and
generated. Based on a class of curves that cover the unit square in an efficient way, we define
induced low discrepancy curves in Riemannian spaces. This allows us to efficiently cover an
arbitrarily chosen abstract surface that admits a diffeomorphism to the unit square. We demon-
strate the application of these ideas by presenting concrete examples of low-discrepancy curves
on some surfaces that are of interest in robotics.

1 Introduction

Uniform coverage of space is an important requirement in several applications in
robotics and allied areas involving motion planning. As noted in a recent survey ar-
ticle [1], coverage path planning is critical in applications such as robotic de-mining,
spray painting, machine milling and non-destructive evaluation of complex industrial
parts, to name just a few.

In a more general setting, uniform coverage is a natural requirement in problems
involving search in abstract spaces. Common abstract spaces of interest include config-
uration spaces of mechanical systems, parameter spaces such as the space of coefficients
of a rational transfer function or a probability distribution, etc. Often, one is interested
in generating continuous curves that cover such spaces. This is a natural requirement
for physical robots that move in a continuous world. However, such a need also arises
in several other settings involving, e.g., continuous adaptation, learning and discovery
in a complex dynamical system.

Motivated by such application needs, we are investigating the problem of generating
low-discrepancy curves that provide an assurance of uniform coverage of space in an
incremental setting, such that the length of the search path correlates to the quality of
coverage.

Our approach to solving this problem involves two steps. First, we generate curves
that uniformly and incrementally cover a model space, e.g., the unit square. We
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generalize the well established theory of low-discrepancy sequences in such a way
that sufficiently smooth curves with low discrepancy properties can be defined and
generated. In addition to the types of curves that we present in this paper, one may
also tap into a sizeable literature on ergodic theory [2] to construct alternate curves
with different coverage properties. Based on such curves, induced low discrepancy
curves in Riemannian spaces may be constructed. This is achieved through the defi-
nition and determination of an area and fairness-preserving diffeomorphism. Given a
suitable parametrization of the space to be covered, this procedure yields a curve that
can cover it uniformly, optimally in a low-discrepancy sense, and incrementally. This
second step ensures that our algorithm is applicable in a wide variety of applications,
requiring only that we have a description of the abstract space in the form of a suitable
Riemannian metric.

Low discrepancy point sets and sequences [3] have a successful history within
robotics. They have been successfully used in sampling based motion planning and
area coverage applications. This work has been covered well in the past proceedings
of the Workshop on the Algorithmic Foundations of Robotics, so we will not exten-
sively survey it here. [4] contains an excellent discussion on the use of low-discrepancy
sampling techniques in motion planning. In more recent work, [5], [6], techniques have
been proposed for generating sequences in an incremental fashion, which is often a very
important requirement. However, on the one hand, the generation of these sequences is
based on a computationally expensive search for an optimal ordering [5] while on the
other hand, even though some of these computational efficiency problems may be ad-
dressed by better algorithm design [6], we often seek the stronger result of a continuous
curve in an abstract space.

The notion of using a diffeomorphism to induce a low-discrepancy curve in the ab-
stract space bears a methodological resemblance to some prior work in robotics, e.g.,
[7], where sphere worlds are mapped to arbitrary convex spaces. However, we are not
aware of prior attempts to define diffeomorphisms that address fairness of space cover-
age. This is crucial for our work.

The plan of the rest of the paper is as follows. In section 2, we begin with an overview
of low-discrepancy sets and sequences. In section 3 we generalize the idea of low-
discrepancy sequences to low-discrepancy curves. We show that such curves do exist.
Section 4 deals with low-discrepancy curves on abstract surfaces and in Riemannian
spaces. These curves can be derived from low-discrepancy curves in unit cubes. In
Section 5, we apply the developed methods to the problem of covering various surfaces.
In a certain sense to be defined, we will show that the proposed procedure yields optimal
coverage. Finally, we conclude with some comments regarding future directions and
open questions.

2 On the Notion of Low-Discrepancy Point Sets and Sequences

The definition of discrepancy of a finite set X was introduced to quantify the homo-
geneity of finite-dimensional point sets [8]:

D(X) = supR|m(R)− p(R)| (1)
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In equation (1), R runs over all d-dimensional rectangles [0, r]d with 0 ≤ r ≤ 1,
m(R) stands for the Lebesgue measure of R and p(R) is the ratio of the number of
points of X in R and the number of all points of X . The lower the discrepancy the
better or more homogeneous is the distribution of the point set. The discrepancy of
an infinite sequence X = {x1, x2, x3, ..., xn, ...} is a new sequence of positive real
numbers D(Xn), where Xn stands for the first n elements of X .

There exists a point set of given length that realizes the lowest discrepancy. It is
known (the Roth bound [9]) that the following inequality holds true for all finite se-
quences Xn of length n in the d-dimensional unit cube.

D(Xn) ≥ Bd
(logn)

d−1
2

n
(2)

Bd depends only on d. Except for the trivial case d = 1, it is unknown whether the
theoretical lower bound is attainable. Many schemes to build finite sequences Xn of
length n do exist that deliver a slightly worse limit,

D(Xn) ≥ Bd
(logn)d

n
(3)

There are also infinite sequences X with the above lower bound, equation (3), for all
subsequences consisting of the first n elements. The latter result leads to the definition
of low-discrepancy infinite sequences X . The inequality (3) must be valid for all sub-
sequences of the first n elements, where Bd is an appropriate constant.

Many low-discrepancy sequences in d-dimensional unit cubes can be constructed as
combinations of 1-dimensional low-discrepancy sequences. Popular low-discrepancy
sequences are based on schemes introduced by Corput [10], Halton [11], Sobol [12]
and Niederreiter [8].

One of the primary motivations for investigations into these sequences arises from
high-dimensional function approximation and Monte-Carlo integration. In this setting,
there is a well-known [8] relationship between integrals I , approximations In, and an
infinite sequence X = {x1, x2, ..., xn, ...} in d-dimensions, known as the Koksma-
Hlawka inequality.

|I(f)− In(f)| ≤ V (f)D(Xn) (4)

I(f) =
∫ 1

0
f(x)dx (5)

In(f) =
1
n

n∑

i=1

f(xi) (6)

where V (f) is the variation of the function in the sense of Hardy and Krause.

3 Low-Discrepancy Curves in the Unit Square

One of the earliest known quasi-random sequences is the Richtmyer sequence [13],
[14], which illustrates a simple but general result in ergodic dynamics [15], [16]. Let
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xn = {nα} (i.e., [nα] mod 1) and X = {x1, x2, ..., xn, ...}, where α = (α1, ..., αd)
is irrational and α1, ..., αd are linearly independent over the rational numbers. Then for
almost all α in �d and for positive ε, with the exception of a set of points that has zero
Lebesgue measure,

D(Xn) = O
( logd+1+ε n

n

)
(7)

The Richtmeyer sequence is probably the only quasi-random sequence based on a
linear congruential algorithm [17]. This is useful because it suggests a natural extension
to the generation of curves. We will now provide such an extension.

Let C be a given piecewise smooth and finite curve in the unit square S. Furthermore,
let R be an arbitrary aligned rectangle in S with lower left corner (0, 0). Let L be the
length of the given curve in S and l be the length of the sub-curve of C that lies in R.
In case of well-distributed curves, the ratio l/L should represent the area A(R) of R
reasonably well. This gives rise to the following definition of discrepancy of a given
finite piecewise smooth curve in S:

D(C) = sup
R

∣∣∣
l

L
− A(R)

A(S)

∣∣∣ (8)

It would be desirable to construct curves C with the property that the discrepancy is
always small. More precisely, we will call an infinite and piecewise sufficiently smooth
curve C : �+ �→ S, in natural parametrization, a low-discrepancy curve if for all
positive arc lengths L the curves CL = C/[0, L] satisfy the inequalities (the function F
must be defined appropriately):

D(CL) ≤ F (L) (9)

In fact, a piecewise smooth curve in natural parametrization generates sequences
{x1, x2, ..., xn, ...} by setting xn = Cn(nΔ) where Δ is a fixed positive num-
ber. The inequality 9 lets us hope for a similar formula for the derived sequence
{x1, x2, ..., xn, ...}. Because of equation 7, a realistic goal is:

F (L) = O
( log3+ε L

L

)
, d = 2 (10)

We have to show that this goal is attainable.
To this end, for α = (α1, α2) , let CA(α) be the piecewise linear curve (tα1

mod 1, tα2 mod 1) = ({tα1}, {tα2}) where t is in �+.
In fact, we can define three classes of curves in the unit square, as shown in figure 1.

For the simplest type of curves, let us call this class CA, the right-left and top-bottom
edges are identified so that the curve jumps from one edge to the other upon hitting it.
In this scheme, all curves are parallel and continue indefinitely when the square tiles
the plane. In the second type of curves, class CB , we introduce reflections at the top
and bottom edges but preserve the same identification between right and left edges.
The third type of curves, class CC , involves reflections on all edges. The latter curve is
continuous.

Theorem 1. For almost all numbers α in �2, CA(α) is a low-discrepancy curve in the
sense of equations 9 and 10.
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Fig. 1. Various low-discrepancy curves for the unit square: CA, CB, CC from left to right

Proof
In order to prove this statement, we will establish that the ratio of the length of a curve
segment to the total length is commensurate with the corresponding ratio of the area of
an axis-aligned rectangle to the unit square that contains it, as suggested in equation 8.

Without loss of generality, we assume α1, α2 > 0. CA(α) intersects the axes at
(x = 0, yn = {nα2

α1
}) and (xn = {nα1

α2
}, y = 0), where n is an arbitrary natural

number. For almost all α1, α2 all three of the quantities (α1, α2), α1
α2

and α2
α1

generate
low-discrepancy sequences in the sense of equation 7, in �2, � and � respectively. In
other words, the aforementioned sequences xn, yn form low-discrepancy sequences in
[0, 1].

Now, for the class of curves CA, all curve segments between points of intersec-
tion with the edges of the square are parallel to each other. So, by reasoning about the
distribution of these points of intersection, we may arrive at conclusions about the dis-
tribution of the curves themselves. With this in mind, we will define the average curve
length, i.e., A(R), in the form of integrals.

Let tanφ = α2
α1

and [0, a] × [0, b] be a rectangle with 0 < a, b < 1. Depending on
the relative values of (α1, α2), a, b the integrals take on specific forms. We will explain
the case when b

a ≤ tanφ, b < 1 − tanφ (see Figure 2) in some detail, the other cases
being similar.

We divide the unit square into three parts, as shown in figure 2. Then, I1, I2 and I3
are real numbers that represent the average length that the (α1, α2) lines corresponding
to these regions have in common with the rectangle [0, a]× [0, b]. Asymptotically, with
curve length L → ∞, these quantities may be represented as follows (based on simple
geometric considerations),

I1 =
∫ a− b

tan φ

0

b

sinφ
dx +

∫ a

a− b
tan φ

a− x

cosφ
dx =

ab

sinφ
− b2 cosφ

2 sin2 φ
(11)

I2 =
∫ b

0

b− y

sinφ
dy =

b2

2 sinφ
(12)

I3 = 0 (13)

I1 sinφ + (I2 + I3) cosφ = ab (14)
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Fig. 2. Definition of the integrals I1, I2 and I3

The final term stands for the average length that (α1, α2) lines in [0, 1]× [0, 1] with
slope tanφ have in common with the rectangle [0, a]× [0, b]. As expected, it is exactly
the area of the rectangle.

In practice, with a finite length curve, what is the discrepancy? We can estimate this
using the Koksma-Hlawka inequality 4. For instance, I1 is approximated using finite
length curve segments of the form,

l1(xi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b

sinφ
: 0 ≤ xi ≤ a− b

tanφ
a− xi

cosφ
: a− b

tanφ
≤ xi ≤ a

0 : a ≤ xi ≤ 1

Using a finite number, n, of such segments, we have the discrepancy,

|I1 −
n∑

i=1

l1(xi)| = O
( log2+ε n

n

)
(15)

where xi = { iα1
α2
}

The sum stands for the length of that part of the given curve that lies in [0, a]× [0, b].
The exact same argument may be made for the integrals I2 and I3. This means that a
finitely generated curve segment of type CA also has a very low discrepancy. Moreover,
note that we are reasoning about a 1-dimensional sequence of points of intersection. So,
the constant 3 (for d = 2) in equation 10 is now replaced with 2 (d = 1). �

We can now develop two variations of Theorem 1.

Theorem 2. For almost all numbers α in �2, CB(α) and CC(α) are low-discrepancy
curves in the sense of equations 9 and 10.
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Proof
We begin with a remark. One can show that Theorem 1 is still valid when in the defini-
tion of low-discrepancy curves a much broader class of rectangles R is considered, i.e.,
rectangles where we replace [0, a]× [0, b] with the more generic [c, a]× [d, b]. We refer
the reader to [3] for several related proofs and expanded discussion on such ideas.

Curves of type B:
Such a curve can be translated into an equivalent version acting in [0, 1] × [0, 2], by
simply mirroring the square. To this end, reflections at the upper edge (see Figure 1) are
ignored. What results is an equivalent scheme as type A in [0, 1] × [0, 2]. For almost
all choices of α, the resulting curve in [0, 1] × [0, 2] is low-discrepancy. The relation
between the original space and the new one is straightforward. The original curve goes
through a rectangle R = [0, a]× [0, b] if and only if the derived curve in [0, 1]× [0, 2]
goes through [0, a]× [0, b] or through [0, a]× [2− b, 2] (see the remark at the beginning
of this proof). The latter implies that CB(α) satisfies equations 9 and 10.

Curves of type C:
We essentially repeat the arguments from type B. For almost all α, curves of type B
in [0, 2]× [0, 1] are low-discrepancy. Such curves can be generated when reflections at
the right edge are ignored. The mirrored version of this curve goes through a rectan-
gle R = [0, a] × [0, b] if and only if the original curve in [0, 2] × [0, 1] goes through
[0, a] × [0, b] or [2 − a, 2] × [0, b] (see the remark at the beginning of this proof). The
latter implies that CC(α) satisfies 9 and 10. �

Curves CC(α) can be regarded as first examples of continuous trajectories in a unit
square that offer low-discrepancy behavior. In real area coverage scenarios they are
highly efficient compared to alternate techniques, as we will demonstrate in section 5.

Finally, these results can be generalized to higher dimensions, using the same style
of argument. We state this theorem without proof.

Theorem 3. For almost all numbers α in �d, CA(α), CB(α) and CC(α) are low-
discrepancy curves in the generalized sense of equations 9 and 10 in d-dimensional
unit cubes.

In practice, the question arises as to how these curves can be realized on digital comput-
ers. For this purpose, it is quite reasonable to assume that we have the ability to generate
rational numbers of user-specified arbitrary precision. In this case, the error due to the
rational approximation of α in theorem 1, 2 and 3 is correspondingly small so that finite
lengths of the resulting curves generate discrepancies that are very low.

Theorem 4. If {nα} generates a low-discrepancy sequence, for some irrational num-
ber α, then ∃N � 1 such that {np

q }, n = 1, . . . , N , also generates a low-discrepancy
sequence, where p, q ∈ ℵ.

Proof
The Hurwitz theorem in number theory [18] states that there are infinitely many p

q with

the property |α− p
q | <

1
q2 .

Given any irrational number, it is possible to find a sufficiently large q ∈ ℵ such
that the error of the rational approximation is small. Let q1 be such a number, with
q1 > N � 1. Then,
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∣∣∣n
(
α− p1

q1

)∣∣∣ < q1.
1
q2
1

=
1
q1

<
1
N

(16)

Now, assume that {(nα) mod 1} generates a low-discrepancy point set, of discrep-
ancy D(α) for n = 1, . . . , N . When α is irrational, {(nα) mod 1} does not intersect
the vertices of the unit square. Then, there always exists a neighborhood where ele-
ments of {(nx) mod 1}, n = 1, . . . , N , are continuous functions of x. This implies
that D(x) is a continuous function of x in this neighborhood.

By selecting suitable p1, q1 that approximate α well, to within ε = 1
q1

, we arrive at
the bound, |D(x)−D(α)| < δ, where δ is a suitably small constant. This implies that a
curve constructed using these sequences, according to the procedure shown in theorem
1, and using rational approximations to α, is still low-discrepancy. �

4 Abstract Surfaces and Riemannian Spaces

In many common applications, we deal with spaces other than the unit square that may,
nonetheless, be related to the unit square via a parametrization. This should allow us to
extend our constructions to these new spaces of interest. However, the parametrization
will only rarely, if ever, respect our stated requirements of fairness and low-discrepancy.
In situations where the parametrization does not preserve low-discrepancy, we may
suitably modify it through the use of some concepts from Riemannian geometry [19],
[20]. In essence, Riemannian geometry allows us to deal with a space whose metric
properties vary from point to point. This means that we can efficiently describe the
warping of a model space into a desired space, i.e., a manifold, in a principled way
through the notion of metrics, line, area and volume elements, etc. Our approach in
this paper will be to define this warping such that the low-discrepancy properties are
preserved.

Given an abstract surface S with a Riemannian metric defined for (u, v) in [0, 1]2,

ds2 = E(u, v)du2 + F (u, v)dudv + G(u, v)dv2 (17)

where E(u, v), F (u, v), G(u, v) are differentiable functions in u and v and EG − F 2

is positive. The area element dA is defined by,

dA =
√

E(u, v)G(u, v)− F 2(u, v)du ∧ dv (18)

The function,
Ψ(u, v) =

√
E(u, v)G(u, v)− F 2(u, v) (19)

is nonnegative in [0, 1]2 and Ψ2(u, v) is differentiable.
Let α = (α1, α2) be a given irrational vector (direction) in �2. According to the

definitions 17 and 18, line and area elements of S for a specific direction (du, dv) =
(α1du, α2du) (i.e., with dv = α2

α1
du) satisfy,

ds

du
=
√

E(u, v)α2
1 + F (u, v)α1α2 + G(u, v)α2

2 (20)

dA

du2 =
√

E(u, v)G(u, v) − F 2(u, v)α1α2 (21)
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From this, we define the quantity Q which describes our notion of fairness,

Q =
ds
du
dA
du2

=

√
E(u, v)α2

1 + F (u, v)α1α2 + G(u, v)α2
2√

E(u, v)G(u, v)− F 2(u, v)α1α2
(22)

Definition 1
A piecewise smooth curve C : �+ �→ S lying on an abstract surface S is called a
low-discrepancy curve based on a vector α = (α1, α2), iff

1. C is S-filling, i.e. C comes arbitrarily close to any point of S.
2. There is a parametrization of S where Q in equation 22 is constant for all (u, v).
3. In any regular point of C, the tangent vector is parallel to α = (α1, α2).

The following algorithm is based on Definition 1.

Algorithm 1

1. Find a parametrization of S that satisfies conditions 2 and 3 in Definition 1. See
also Remark 1 below.

2. Generate a curve in S based on the image of a low-discrepancy curve in the unit
square according to Theorem 2.

Remark 1: The parametrization in step 2 is not unique. In all examples an originally
given natural parametrization is modified using replacements u �→ h(u) or v �→ h(v)
where h is a smooth diffeomorphism.

An abstract d-dimensional surface is defined by,

ds2 =
d∑

i,j=1

gij(u1, u2, ..., ud)dui
2duj

2 (23)

where the matrix consisting of gij : [0, d]d �→ � is always symmetric, differentiable,
and positive semi-definite. An embedding of an abstract space as in equation 23 in an
m-dimensional Euclidean space is a diffeomorphism f of the hypercube [0, 1]d with
f1(u1, u2, ..., ud), f2(u1, u2, ..., ud), ..., fm(u1, u2, ..., ud) : �d �→ �m where the Rie-
mannian metric of this embedding is described by equation 23. Usually, this definition is
too restrictive. Instead, local diffeomorphisms, i.e., coordinate patches, should be used
where these patches cover the whole space under consideration.

Let α = (α1, α2, ..., αd) be a given vector (direction) in �d. According to equation
23, the line and volume/content elements for a specific direction (du1, du2, ..., dud) =
(α1du, α2du, ..., αddu) are:

ds

du
=

√√√√
d∑

i,j=1

gij(u1, u2, ..., ud)αiαj (24)

dV

dun
=
√

det(gij(u1, u2, ..., ud))α1α2...αd (25)



212 S. Ramamoorthy et al.

From this,

Q =
ds
du
dV
dun

=

√∑d
i,j=1 gij(u1, u2, ..., ud)αiαj

√
det(gij(u1, u2, ..., ud))α1α2...αd

(26)

Definition 2
A piecewise smooth curve C : �+ �→ S in the given Riemannian space S is called
low-discrepancy curve based on a vector direction α = (α1, α2, ..., αd) iff

1. C is S-filling, i.e. C comes arbitrarily close to any point of S.
2. There is a parametrization of S where Q in equation 26 is constant for all (u1, u2,

..., ud).
3. In any regular point of C, the tangent vector is parallel to α = (α1, α2, ..., αd).

5 Examples of the Coverage of Various Spaces

In this section we will demonstrate the use of the proposed technique to cover various
surfaces. These examples are chosen to correspond to geometrical shapes and surfaces
that are commonly encountered in robotics. We will present visualizations in the Eu-
clidean space.

5.1 Covering the Surface of the Unit Cube

Consider the surface of a unit cube. This is the most natural generalization of the unit
square in section 3. Figure 3 depicts an ”opened out” version in the plane of the paper,
a transformed version of the which can be used to tile the plane and a low-discrepancy
curve drawn on this tiling.

a b c

Fig. 3. Tiling of the plane and relation to the surface of the unit cube. Part a depicts the faces of an
opened out cube (imagine a typical packing box). Part b depicts an equivalent version, rearranged
in such a way that it is easier to tile the plane. Part c shows the low-discrepancy curve traversing
the tiled and flattened cubes. The key point to note is that whenever two edges of a face in part c
touch, they will also touch in the 3-dimensional cube. The depicted curve is a prescription of the
sequence of faces, and points on that face, to visit.
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5.2 Covering the Annulus

Consider an annulus, i.e., a ring, that has a standard parametrization given by x(u, v) =
(u cos v, u sin v), where 0 ≤ u0 ≤ u ≤ u1 and 0 ≤ v ≤ 2π.

Let us consider a diffeomorphism such that u �→ g(u) and v �→ v. Then the ring
can be re-parameterized by x(u, v) = (g(u) cos v, g(u) sin v). Now, we can apply the
method developed earlier. Let g be sufficiently smooth, where g maps [u0, u1] onto
[u0, u1]. Then, according to our proposed method, g(u) must satisfy an ordinary differ-
ential equation (for α1, α2 > 0 ),

g′(u) =
α2g(u)√

c2g2(u)α2
1α

2
2 − α2

1

(27)

where g(u0) = u0 and g(u1) = u1, and,

ds

du
=
√

g′2(u)α2
1 + g2(u)α2

2 (28)

dA

du2 = g(u)g′(u)α1α2 (29)

Equation 27 has the closed form solution,

α1

α2

{√
c2g2(u)α2

2 − 1 + arctan
( 1√

c2g2(u)α2
2 − 1

)}
= u + D (30)

where D is the unknown constant of integration. Using boundary conditions that arise
from the domain and image constraints of the mapping, g(u0) = u0 and g(u1) = u1, it
follows that,

α1

α2

{√
c2u2

0α
2
2 − 1 + arctan

( 1√
c2u2

0α
2
2 − 1

)}
= u0 + D (31)

α1

α2

{√
c2u2

1α
2
2 − 1 + arctan

( 1√
c2u2

1α
2
2 − 1

)}
= u1 + D (32)

Fig. 4. A low-discrepancy curve in the annulus
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We solve for c,D and then use equation 30 as an implicit definition of the required
diffeomorphism. In general, obtaining such explicit solutions could become tedious and
difficult. In such cases, one may solve the nonlinear differential equations numerically
using shooting methods [21].

Figure 4 shows a resulting low-discrepancy curve filling the given ring for the spe-
cific case where u0 = 1, u1 = 2. The parameters α1, α2 and c were chosen appropri-
ately by numerical experimentation.

5.3 Covering the Surface of a Torus

The torus is one of the most important non-trivial surfaces that appear in robotics, es-
pecially when working with configuration spaces of mechanical systems. We will use
our algorithm to generate a low-discrepancy curve for this surface. We use the diffeo-
morphism u �→ u and v �→ g(v). Given the �3 embedding of a torus (b < a),

x(u, v) = ((a + b cos(2πg(v))) cos(2πu),
(a + b cos(2πg(v))) sin(2πu), b sin(2πg(v))) (33)

ds2 = 4π2(a + b cos(2πg(v)))2du2 + 4π2b2g′2(v)dv2 (34)

dA2 = 16π4b2(a + b cos(2πg(v)))2g′2(v)du2dv2 (35)

The function g maps [0, 1] onto [0, 1] and is sufficiently smooth. Constant ratio of
ds
du and dA

du2 in α-direction can be achieved if the following equation holds true ( c is a
constant, α1 > 0):

(a + b cos(2πg(v)))2α2
1 + b2g′2(v)α2

2

4π2b2g′2(v)(a + b cos(2πg(v)))2α2
1α

2
2

= c ⇒

g′(v) =
(a + b cos(2πg(v)))α1√

4cπ2b2(a + b cos(2πg(v)))2α2
1α

2
2 − b2α2

2

(36)

The boundary conditions are g(0) = 0 and g(1) = 1. A solution of equation 36
guarantees g′(0) = g′(1). As before, this equation also admits a closed form solution.
However, the resulting expressions are long and cumbersome. For the purposes of this
example, the parameter c is chosen numerically with the aid of a shooting method.
Figure 5 depicts part of the resulting low-discrepancy curve lying on the surface of a
torus. Because of g′(0) = g′(1), the curve is smooth.

5.4 Covering the Surface of a Sphere

A more sophisticated example is a part of a sphere given as an abstract surface by
ds2 = 4π2 sin2(πg(v))du2 + π2dv2 where (u, v) is in [0, 1]× [v0, v1] with v0 < v1 in
(0, 1). A Euclidean embedding of this surface is given by,

x(u, v) = (sin(2πu) sin(πg(v)), cos(2πu) sin(πg(v)), cos(πg(v))) (37)
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Fig. 5. Low-discrepancy curve filling the surface of a torus

Fig. 6. A low-discrepancy curve on the surface of a sphere. The figure on the right shows the
three 2-dimensional projections along the axis planes.

The function g(v) is smooth and maps [v0, v1] onto [v0, v1]. According to Definition
1 and equation 22, we have,

g′(v) =
2 sin(πg(v))α1√

4c2π2 sin2(πg(v))α2
1α

2
2 − α2

2

(38)

The boundary conditions are g(v0) = v0 and g(v1) = v1. Figure 6 depicts the
resulting low-discrepancy curve.
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6 Discussion

Broadly speaking, there are three major steps in the procedure outlined above:

1. Define a criterion according to which the curve optimally covers space. This is a
fairness requirement.

2. Define a diffeomorphism that carries the unit square to an abstract surface.
3. Based on the previous two steps, solve a differential equation whose solution yields

the diffeomorphism that respects our stated criterion for fairness.

In this paper, we have defined fairness according to the requirement that any two arbi-
trary segments of the curve, if they have the same length, must cover the same amounts
of area or volume. This is an intuitively obvious definition. There are several ways to
extend the definition of fairness. For instance, we could ask that the diffeomorphism
must be area preserving along several arbitrarily defined directions or for hyperplanes
in n-dimensional space. Fairness requirements of this sort would be difficult to fac-
tor into the traditional techniques for generating low discrepancy sequences but do not
substantially affect our proposed algorithm.

In this paper, for the purposes of exposition, we have considered somewhat regu-
lar and symmetric shapes. Our proposed algorithm would apply to other situations as
well. For instance, consider a simple generalization to the surface defined in section
5.2, a generalized annulus defined in terms of the intersection of two planar surfaces
with star-convex but otherwise arbitrarily shaped boundaries. Instead of x(u, v) =
(g(u) cos v, g(u) sin v), use the more general parametrization x(u, v) = (M(u, v),
N(u, v)). Then our procedure for determining the diffeomorphism would generate a
partial differential equation, of the structural form (ignoring constants), (MuNv −
MvNu)2 = (Mu + Mv)2 + (Nu + Nv)2. This differential equation would need to
be solved subject to boundary conditions defined by the shape of the boundary of the
planar surfaces. The mathematical structure of this equation bears a resemblance to
Cauchy-Riemann equations and conformal mappings. However, our procedure applies
to higher dimensions and handles other requirements including area preservation.

7 Conclusions

We have provided an extension of the theory of low discrepancy sequences to define
curves that can uniformly cover space. In doing so, we take an approach that is more
general than prior work that has depended on constructing and selecting points from
lattices and grids. Our approach is incremental, well suited to search problems in ab-
stract spaces and applicable to any problem where the abstract space can be described
by an appropriate Riemannian metric. We have demonstrated the applicability of our
proposed approach using examples that are of relevance to robotics.

In our current and future work, we are trying to extend these ideas in several direc-
tions. We already mentioned the connection between our technique and other techniques
in the theory of conformal mappings and area-preserving mappings, which we are try-
ing to clarify. From an applications standpoint, we view this approach as a powerful
way to tackle search and coverage problems in abstract spaces including shape spaces
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(such as those describing reconfigurable robots or protein structures), parameter spaces
and configuration spaces of complex dynamical systems, etc.
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Abstract. We introduce the snowblower problem (SBP), a new optimization problem
that is closely related to milling problems and to some material-handling problems. The
objective in the SBP is to compute a short tour for the snowblower to follow to remove
all the snow from a domain (driveway, sidewalk, etc.). When a snowblower passes over
each region along the tour, it displaces snow into a nearby region. The constraint is
that if the snow is piled too high, then the snowblower cannot clear the pile.

We give an algorithmic study of the SBP. We show that in general, the problem is
NP-complete, and we present polynomial-time approximation algorithms for removing
snow under various assumptions about the operation of the snowblower. Most com-
mercially available snowblowers allow the user to control the direction in which the
snow is thrown. We differentiate between the cases in which the snow can be thrown in
any direction, in any direction except backwards, and only to the right. For all cases,
we give constant-factor approximation algorithms; the constants increase as the throw
direction becomes more restricted.

Our results are also applicable to robotic vacuuming (or lawnmowing) with bounded
capacity dust bin and to some versions of material-handling problems, in which the
goal is to rearrange cartons on the floor of a warehouse.

1 Introduction

During a recent major snowstorm in the northeastern USA, one of the authors
used a snowblower to clear an expansive driveway. A snowblower is a “material
shifting machine,” which lifts snow and deposits it nearby. The goal is to dis-
pose of all the snow, moving it outside the driveway. There is a skill in making
sure that the deposited piles of snow do not grow higher than the maximum
depth capacity of the snowblower. This experience crystallized into an algorith-
mic question, which we have called the Snowblower Problem (SBP): How does
one optimally use a snowblower to clear a given polygonal region?
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The SBP shows up in other contexts: Consider a mobile robot that is equipped
with a device that allows it to pick up a carton and then place the carton down
again in a location just next to it, possibly on a stack of cartons. With each such
operation, the robot shifts a unit of “material”. The SBP models the problem in
which the robot is to move a set of boxes to a specified destination in the most
efficient manner, subject to the constraint that it cannot stack boxes higher than
a capacity bound.

In a third motivating application, consider a robotic lawnmower or vacuum
cleaner that has a catch basin for the clippings, leaves, dust, or other debris. The
goal is to remove the debris from a region, with the constraint that the catch
basin must be emptied (e.g., in the compost pile) whenever it gets full.

The SBP is related to other problems on milling, vehicle routing, and traveling
salesman tours, but there are two important new features: (a) material must be
moved (snow must be thrown), and (b) material may not pile up too high.

While the SBP arises naturally in these other application domains, for the
rest of the paper, we use the terminology of snow removal.

The objective of the SBP is to find the shortest snowblower tour that clears
a domain P , assumed to be initially covered with snow at uniform depth 1. An
important parameter of the problem is the maximum snow depth D > 1 through
which the snowblower can move. At all times no point of P should have snow
of greater depth than D. The snow is to be moved to points outside of P . We
assume that each point outside P is able to receive arbitrarily much snow (i.e.,
that the driveway is surrounded by a “cliff” over which we can toss as much
snow as we want).1

Snowblowers offer the user the ability to control the direction in which the
snow is thrown. Some throw directions are preferable over others; e.g., throwing
the snow back into the user’s face is undesirable. However, it can be cumbersome
to change the throw direction too frequently during the course of clearing. Thus,
we consider three throw models. In the default model throwing the snow back-
wards is allowed. In the adjustable-throw model the snow can be thrown only to
the left, right, or forward. In the fixed-throw model the snow is always thrown
to the right. Even though it seems silly to allow the throw direction to be back
into one’s face, the default model is the starting point for the analysis of other
models and is equivalent to the vacuum cleaner problem (discussed later).

Results. In this paper we introduce the snowblower problem, model its variants,
and give the first algorithmic results for its solution. We show that the SBP is
NP-complete for multiply connected domains P . Our main results are constant-
factor approximation algorithms for each of the three throw models, assuming
D ≥ 2; refer to Table 1. The approximation ratio of our algorithms increases
as the throw direction becomes more restricted. We give extensions for clearing
polygons with holes, both where the holes are obstacles and cliffs. Then we
1 The “cliff” assumption accurately models the capacitated-vacuum-cleaner problem

for which there is a (central) “dustpan vac” in the baseboard, where a robotic vacuum
cleaner may empty its load [1] and applies also to urban snow removal using snow
melters [2] or disposing off the snow into a river.
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Table 1. Approximation factors of our algorithms

Default model, Thm. 2
D 2 or 3 any D ≥ 4
Apx. 6 8

Adjustable throw, Thm. 3
D any D ≥ 2
Apx. 4 + 3D/�D/2�

Fixed throw, Thm. 4
D any D ≥ 2
Apx. 34 + 24D/�D/2�

discuss how to adapt our algorithms for clearing nonrectilinear polygons and
polygons with uneven initial distributions of snow. We conclude by giving a
succinct representation of the snowblower tour, in which the tour specification
is polynomial in the complexity of the input polygon.

Related Work. The SBP is closely related to milling and lawn-mowing prob-
lems, which have been studied extensively in the NC-machining and
computational-geometry literatures; see e.g., [5, 4, 11]. The SBP is also closely
related to material-handling problems, in which the goal is to rearrange a set
of objects (e.g., cartons) within a storage facility; see [9, 8, 14]. The SBP may
be considered as an intermediate point between the TSP/lawnmowing/milling
problems and material-handling problems. Indeed, for D = ∞, the SBP is that of
optimal milling. Unlike most material-handling problems, the SBP formulation
allows the material (snow) to pile up on a single pixel of the domain, and it is this
compressibility of the material that distinguishes the SBP from previously stud-
ied material-handling problems. With TSP and related problems, every pixel is
visited only a constant number of times, whereas with material-handling prob-
lems, pixels may have to be visited a number of times exponential in the input
size. For this reason, material-handling problems are not even known to be in
NP [9, 8], in contrast with the SBP. Note that in material handling problems
the objective is to minimize workload (distance traveled while loaded), while in
the SBP (as in the milling/mowing problems) the objective is to minimize total
travel distance (loaded or not).

The SBP is also related to the earth-mover’s distance (EMD), which is the
minimum amount of work needed to rearrange one distribution (of earth, snow,
etc.) to another; see [7]. In the EMD literature, the question is explored mostly
from an existential point of view, rather than planning the actual process of
rearrangement. In the SBP, we are interested in optimizing the length of the
tour, and we do not necessarily know in advance the final distribution of the
snow after it has been removed from P .

The title of this paper coincides with that of [10] but the problems considered
appear to be totally unrelated.

Notation. The input is a polygonal domain, P . Since we are mainly concerned
with proving constant factor approximation algorithms, it suffices to consider
distances measured according to the L1 metric. We consider the snowblower
to be an (axis-parallel) unit square that moves horizontally or vertically by
unit steps. This justifies our assumption, in most of our discussion, that P is
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an integral-orthogonal simple polygon, which is comprised of a union of pixels –
(closed) unit squares with disjoint interiors and integral coordinates. In Section 5
we remark how our methods extend to general (nonrectilinear) regions.

We say that two pixels are adjacent or neighbors if they share a side; the
degree of a pixel is the number of its neighbors. For a region R ⊆ P (subset of
pixels), let GR denote the dual graph of R, having a vertex in the center of each
pixel of R and edges between adjacent pixels. A pixel of degree less than four is
a boundary pixel. For a boundary pixel, a side that is also on the boundary of
P is called a boundary side. The set of boundary sides, ∂P , forms the boundary
of P . We assume that the elements of ∂P are ordered as they are encountered
when the boundary of P is traversed counterclockwise.

An articulation vertex of a graph G is a vertex whose removal disconnects G.
We assume that GP has no articulation vertices. (Our algorithms can be adapted
to regions having articulation vertices, at a possible increase in approximation
ratio.)

Algorithms Overview. Ouralgorithmsproceedby clearing thepolygonVoronoi-
cell-by-Voronoi-cell, starting from the Voronoi cell of the garage g — the pixel on
the boundary of P at which the snowblower tour starts and ends. The order of the
boundary sides in ∂P provides a natural order in which to clear the cells. We ob-
serve that the Voronoi cell of eachboundary side is a tree of one of two special types,
which we call lines and combs. We show how to clear the trees efficiently in each of
the throw models. We prove that our algorithms give constant-factor approxima-
tions by charging the lengths of the tours produced by the algorithms to two lower
bounds, described in the next section.

2 Preliminaries

Voronoi Decomposition. For a pixel p ∈ P let V (p) denote the element of ∂P
closest to p. In case of ties, the tie-breaking rule (see below) is applied. Inspired
by computational-geometry terminology, we call V (p) the Voronoi side of p. We
let δ(p) denote the length of the path from p to the pixel having V (p) as a side.
For a boundary side e ∈ ∂P we let Voronoi(e) denote the (possibly, empty) set
of pixels, having e is the Voronoi side: Voronoi(e) = {p ∈ P |V (p) = e}. We call
Voronoi(e) the Voronoi cell of e. The Voronoi cells of the elements of ∂P form
a partition of P , called the Voronoi decomposition of P .

A set of pixels L whose dual graph GL is a straight path or a path with one
bend, is called a line. Each line L has a root pixel p, which corresponds to one
of the two leaves of GL, and a base, e ∈ ∂P , which is a side of p.

A (horizontal) comb C is a union of pixels consisting of a set of vertically
adjacent (horizontal) rows of pixels, with all of the rightmost pixels (or all of
the leftmost pixels) in a common column. (A vertical comb is defined similarly;
however, by our tie breaking rules, we need consider only horizontal combs.) A
comb is a special type of histogram polygon [6]. The common vertical column of
rightmost/leftmost pixels is called the handle of comb C, and each of the rows is
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called a tooth. A leftward comb has its teeth extending leftwards from the handle;
a rightward comb is defined similarly. The pixel of a tooth that is furthest from
the handle is the tip of the tooth. The topmost row is the wisdom tooth of the
comb. The root pixel p of the comb is either the bottommost or topmost pixel
of the handle, and its bottom or top side, e ∈ ∂P , is the base of the comb.
See Fig. 1, left. The union of a leftward comb and a rightward comb having a
common root pixel is called a double-sided comb.

c
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Fig. 1. Left: a comb. The base is bold. The pixels in the handle are marked with
asterisks, the pixels in the wisdom tooth are marked with bullets. Right: Voronoi cells.
The sides of ∂P are numbered 1 . . . 28 counterclockwise. The pixels in the Voronoi cell
of a side are marked with the corresponding number. Voronoi cell of side 3 is a comb;
Voronoi cells of sides 6, 11, 17, 25, 28 are empty; cells of sides 1, 7, 10, 18, 24 are lines,
comprised of just one pixel; cells of the other edges are lines with more than one pixel.

Tie Breaking. Our rules for finding V (p) for a pixel p that is equidistant
between two or more boundaries is based on the direction of the shortest path
from p to V (p); vertical edges are preferred to horizontal, going down has higher
priority than going up, going to the right — than going left. In fact, any tie-
breaking rule can be applied as long as it is applied consistently. The particular
choice of the rule only affects the orientation of the combs.

Voronoi Cell Structure. An analysis of the structure of the Voronoi partition
under our tie breaking rules gives:

Lemma 1. For a side e ∈ ∂P , the Voronoi cell of e is either a line (whose dual
graph is a straight path), or a comb, or a double-sided comb. By our tie-breaking
rule, the combs may appear only as the Voronoi cells of horizontal edges. The
double-sided combs may appear only as the Voronoi cells of (horizontal) edges of
length 1.

Let p be a boundary pixel of P , let e ∈ ∂P be the side of p such that p ∈
Voronoi(e). We denote Voronoi(e) by T (p) or T (e), indicating that it is a unique
tree (a line or a comb) that has p as the root and e as the base.

Lower Bounds. We exhibit two lower bounds on the cost of an optimal tour,
the snow lower bound, based on the number of pixels, and the distance lower
bound, based on the Voronoi decomposition of the domain. At any time let
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s(R) be the set of pixels of R covered with snow and also, abusing notation, the
number of these pixels. Let d(R) = 1

D

∑
p∈s(R) δ(p) .

Lemma 2. Let R be a subset of P with the snowblower starting from a pixel
outside R. Then s(R) and d(R) are lower bounds on the cost to clear R.

Proof. For the snow lower bound, observe that region R cannot be cleared with
fewer than s(R) snowblower moves because each pixel of s(R) needs to be visited.

For the distance lower bound, observe that, in order to clear the snow initially
residing on a pixel p, the snowblower has to make at least δ(p) moves. When the
snow from p is carried to the boundary of P and thrown away, the snow from
at most D − 1 other pixels can be thrown away simultaneously. Thus, a region
R cannot be cleared with fewer than d(R) moves. !"

NP-Completeness. It is known [12,13] that the Hamiltonian path problem in
cubic grid graphs is NP-complete. The problem can be straightforwardly reduced
to SBP. If G is a cubic grid graph, construct an (integral orthohedral) domain
P such that G = GP . Since GP is cubic, each pixel p ∈ P is a boundary pixel,
thus, the snowblower can throw the snow away from p upon entering it. Hence,
SBP on P is equivalent to TSP on G, which has optimum less than n + 1 iff G
is Hamiltonian (where n is the number of nodes in G). The reduction works for
any D ≥ 1.

The algorithms proposed in this paper show that any domain can be cleared
using a set of moves of cardinality polynomial in the number of pixels in the
domain, assuming D ≥ 2. Thus, we obtain

Theorem 1. If D ≥ 2, the SBP is NP-complete, both in the default model and
in the adjustable throw model, for inputs that are domains with holes.

3 Approximation Algorithm for the Default
Model

In this section we give an 8-approximation algorithm for the case when the snow
can be thrown in all four directions. We first show how to clear a line efficiently
with the operation called line-clearing. We then introduce another operation, the
brush, and show how to clear a comb efficiently with a sequence of line-clearings
and brushes. Finally, we splice the subtours through each line and comb into
a larger tour, clearing the entire domain. The algorithm for the default model,
developed in this section, serves as a basis for the algorithms in the other models.

Clearing a Line. Let L be a line of pixels; let p and e be its root and the
base. We are interested in clearing lines for which the base is a boundary side,
i.e., e ∈ ∂P . Let 	 = s(L); let the first J pixels of L counting from p be clear.
We assume that p is already clear (J > 0); the snow from it was thrown away
through the side e as the snowblower first entered pixel p. Let L|J denote L with
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the J pixels clear; let 	 − J = kD + r.2 Denote by (L|J)D the first kD pixels
of L|J covered with snow; denote by Lr the last r pixels on L|J . The idea of
decomposing L|J into (L|J)D and Lr is that the snow from (L|J)D is thrown
away with k “fully-loaded” throws, and the snow from Lr is thrown away with
(at most one) additional “under-loaded” throw.

We clear line L starting at p by moving all the snow through the base e
and returning back to p. The basic clearing operation is a back throw. In a back
throw the snowblower, entering a pixel u from pixel v, throws u’s snow backward
onto v. Starting from p, the snowblower moves along L away from p until either
the snowblower moves through D pixels covered with snow or the snowblower
reaches the other end of L; this is called the forward pass. Next, the snowblower
makes a U-turn and moves back to p, pushing all the snow in front of it and
over e; this is called the backward pass. A forward and backward pass that clears
exactly D units of snow is called a D-full pass.

Lemma 3. For arbitrary D ≥ 4 the line-clearing cost is at most 2s(L \ p) +
4d(L|J). For D = 2, 3 the line-clearing cost is at most 2s(L \ p) + 2d(L|J). If
every pass is D-full, the cost is 4d(L|J) for D ≥ 4 and 2d(L|J) for D = 2, 3.

Proof. The clearing cost is c(L|J) = c((L|J)D) + c(Lr) =
∑k

i=1 2(J − 1 + iD) +
2(	− 1) = 2kJ + Dk(k + 1) − 2k + 2(	 − 1). The snow lower bound of L \ p is
s(L\p) = 	−1. The distance lower bound of (L|J)D is d((L|J)D) = 1

D

∑kD
i=1(J+

i) = kJ + k(kD + 1)/2.
Thus,

c(L|J) = 2s(L \ p) +
(

2 +
D − 3

J + (Dk + 1)/2

)
d((L|J)D)

If every pass is a D-full pass, then c(Lr) = 0. Therefore, c(L|J) = c((L|J)D) =(
2 + D−3

J+(Dk+1)/2

)
d((L|J)D). !"

Clearing a Comb. Let C be a comb with the root p, base e, and handle H
of length H . Let 	1 . . . 	H be the lengths of the teeth of the comb. Since we are
interested in clearing combs for which the base e is a boundary side (e ∈ ∂P ),
we assume that pixel p is already clear — the snow from it was thrown away
through e as the snowblower first entered p.

Our strategy for clearing C is as follows. While there exists a line L ⊂ C
rooted at p, such that s(L) ≥ D, we perform as many D-full passes on L as we
can. When no such L remains, we call the comb brush-ready and we use another
clearing operation, the brush, to finish the clearing.

A brush, essentially, is a “capacitated” depth-first-search. Among the teeth of
a brush-ready comb that are not fully cleared, let t be the tooth, furthest from
the base. In a brush, we move the snowblower from p through the handle, turn
2 For ease of presentation, we adapt the following convention. For d ∈ {D, �D/2�} and

an integer w we understand the equality w = ad + b as follows: b and a are the
remainder and the quotient, respectively, of w divided by d.
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into t, reach its tip, U-turn, come back to the handle (pushing the pile of snow),
turn onto the handle, move by the handle back towards p until we reach the next
not fully cleared tooth, turn onto the tooth, and so on. We continue clearing the
teeth one-by-one in this manner until D units of snow have been moved (or all
the snow on the comb has been moved). Then we push the snow to p through
the handle and across e. This tour is called a brush (Fig. 2).

� � �

� �
�
� �

� � �

� �
�
� �

�
�

� � �

�

Fig. 2. Left: a brush-ready comb. The snow is shown in light gray. Center: a brush,
D = 4; the part of the brush, traveling through the handle, is bold. Right: the comb
after the brush.

Lemma 4. For arbitrary D ≥ 4 the comb C can be cleared at a cost of at most
4s(C \ p) + 4d(C \ p) (at most 4s(C \ p) + 2d(C \ p) for D = 2, 3).

Proof. If s(C \ p) < D, then the cost of clearing is just 2s(C \ p), so suppose,
s(C \ p) ≥ D. Let B be the number of brushes used; let B be the set of pixels
cleared by the brushes. For b = 1 . . . B let tb and t′b be the first and the last
tooth visited during the bth brush. For b ∈ {1 . . . B − 1} the bth brush enters at
least 2 teeth, so tb > t′b ≥ tb+1.

Each brush can be decomposed into two parts: the part traveling through the
teeth and the part traveling through the handle (Fig. 2). Since each tooth is
visited during at most 2 brushes, the length of the first part is at most 4 times
the size of all teeth, that is, 4s(C \H). The total length of the second part of all
brushes is 2

∑B
b=1(tb − 1). Thus, the cost of the “brushing” is

c(B) ≤ 2
B∑

b=1

(tb − 1) + 4s(C \ H) ≤ 2
B∑

b=2

tb + 4s(C \ p)− 2 (1)

since t1 ≤ H and H ≥ 2 (for otherwise C is a line).
There are exactly D pixels cleared during each brush b ∈ {0 . . . B − 1}, and

each of these pixels is at distance at least tb′ from the base of the comb. Thus,
the distance lower bound of the pixels, cleared during brush b, is at least tb′ .
Consequently, the distance lower bound of B

d(B) ≥
B∑

b=1

tb′ ≥
B−1∑

b=1

tb+1 =
B∑

b=2

tb (2)

From (1) and (2), B can be cleared at a cost of at most 2d(B) + 4s(C \ p).
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Let P ⊆ C be the pixels, cleared during the line-clearings. By our strategy,
during each line-clearing, every pass is D-full; thus, by Lemma 3, P can be
cleared at a cost of at most 4d(P) (or 2d(P) if D = 2, 3). Since P and B are
snow-disjoint and P ∪ B = C \ p, the lemma follows. !"

The above analysis is also valid in the case when the handle is initially clear.
This is the case when the second side of a double-sided comb is being cleared.
Thus, a double-sided comb can be cleared within the same bounds on the cost
of clearing.

Clearing the Domain. Now that we have defined the operations which allow
us to clear efficiently lines and combs, we are ready to present the algorithm for
clearing the domain.

Theorem 2. For arbitrary D ≥ 4 (resp., D = 2, 3) an 8-approximate (resp.,
6-approximate) tour can be found in polynomial time.

Proof. Let p1, . . . , pM be the boundary pixels of P as they are encountered
when going around the boundary of P counterclockwise starting from g = p1;
let e1, . . . , eM ∈ ∂P be the boundary sides of p1, . . . , pM such that ei =
V e(pi), i = 1 . . .M . The polygon P can be decomposed into disjoint trees
T (p1), . . . , T (pM ) = T (e1), . . . , T (eM ) with the bases e1 . . . , eM , where each
tree T (ei) is either a line or a comb.

Our algorithm clears P tree-by-tree starting with T (e1) = T (g). By Lem-
mas 3 and 4, for i = 1 . . .M , the tree T (pi) \ pi can be cleared at a cost of
at most 4s(T (pi) \ pi) + 4d(T (pi) \ pi) starting from pi and returning to pi.
Since

⋃M
1 T (pi) \ pi = P \ {p1 . . . pM}, the interior of P can be cleared at a

cost of at most c(P \ {p1 . . . pM}) = 4s(P \ {p1 . . . pM}) + 4d(P \ {p1 . . . pM}) ≤
4s(P \ g) + 4d(P \ g)− 4M + 4. Finally, the tours clearing the interior of P can
be spliced into a tour, clearing P at a cost of at most 2M . Since the optimum is
at least s(P \ g) and is at least d(P \ g), the theorem follows. !"

4 Other Models

In this section we give approximation algorithms for the case when the throw di-
rection is restricted. Specifically, we first consider the adjustable-throw-direction
formulation. This is a convenient case for the snowblower operator who does not
want the snow thrown in his face. We then consider the fixed-throw-direction
formulation, which assumes that the snow is always thrown to the right.

We remark that the relatively low approximation factors of the algorithms
for the default model, presented in the previous section, were due to a very
conservative clearing: the snow from every pixel p ∈ P was thrown through
the Voronoi side V (p). Unfortunately, it seems hard to preserve this appealing
property if throwing back is forbidden. The reason is that the comb in the
Voronoi cell Voronoi(e) of a boundary side e ∈ ∂P often has a “staircase”-shaped
boundary; clearing the first “stair” in the staircase cannot be done without
throwing the snow onto a pixel of Voronoi(e′), where e′ �= e is another boundary
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side. This is why the approximation factors of the algorithms in this section are
higher than those in the previous one.

Adjustable Throw Direction

In the adjustable-throw model the snow cannot be thrown backward but can be
thrown in the three other directions. To give a constant-factor approximation al-
gorithm for this case, we show how to emulate line-clearings and brushes avoiding
back throws (Fig. 3). The approximation ratios increase slightly in comparison
with the default model.

Line-clearing. We can emulate a (half of a) pass by a sequence of moves, each
with throwing the snow to the left, forward or to the right (Fig. 3, left and
center). Thus, the line-clearing may be executed in the same way as it was done
if the back throws were allowed. The only difference is that now the snow is
moved to the base when the snow from only #D/2$ pixels (as opposed to D
pixels) of the line is gathered.

Lemma 5. The line-clearing cost is at most 3D/#D/2$d(L|J) + 2s(L \ p). If
every pass is #D/2$-full, the cost is 3D/#D/2$d(L|J).

Proof. Let 	− J = k′ #D/2$+ r′. Let (L|J)�D/2� be the first k′#D/2$ pixels of
L|J , let Lr′ be its last r′ pixels. Then the cost of the clearing of L|J is c(L|J) =
c((L|J)�D/2�)+ c(Lr′) =

∑k′

i=1 2(J + i#D/2$)+2	 = 2k′J + #D/2$k′(k′ +1)+2	.
The lower bounds are given by s(L \ p) = 	− 1 and

d((L|J)� D
2 �) =

1
D

k′�D
2 �∑

i=1

(J + i) =
#D

2 $
D

[
k′J +

k′(k′#D
2 $+ 1)
2

]
(3)

Thus,

c(L|J) ≤ D

#D
2 $

(
2 +

2 + #D/2$ k′ − k′

k′J + �D/2�
2 k′2 + k′

2

)
d(L\p)+2s(L\p) !"

Brush. Brush also does not change too much from the default case. The differ-
ence is the same as with the line-clearing: now, instead of clearing D pixels with
a brush, we prepare to clear only #D/2$ pixels (Fig. 3, right). Consequently, the
definition of a brush-ready comb is changed — now we require that there is less
than #D/2$ pixels covered with snow on each tooth of such a comb. Observe
that together with each unit of snow, the snow from at most 1 other pixel is
moved — thus (although the brush may go outside the comb, as, e.g., in Fig. 3),
the brush is feasible.

Lemma 6. A comb can be cleared at a cost of 3D/#D/2$d(C \ p) + 4s(C \ p).

Proof. In comparison with the default model (Lemma 4) several observations
are in place. The number of brushes may go up; we still denote it by B. The
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Fig. 3. Emulating line-clearing and brush. The (possible) snow locations are in light
gray; s is the snowblower. Left: forward and backward passes in the default model;
there are D units of snow on the checked pixel. Center: the passes emulation; there is
(at most) 2�D/2� units of snow on the checked pixel. Right: the snow to be cleared
during a brush is in light gray; there are �D/2� light gray pixels.

cost of the brushes 1 . . . B − 1 does not change. If the Bth brush has to enter
the first tooth, there may be 2 more moves needed to return to the root of the
comb (see Fig. 3, right); hence, the total cost of the brushing (1) may go up by
2. The distance lower bound (2) goes down by D/#D/2$. The rest of the proof is
identical to the proof of Lemma 4 (with Lemma 5 used in place of Lemma 3). !"

Observe that in fact the snow can be removed from more than #D/2$ pixels
during a brush; we just ignore it for now in our analysis. Note that a double-
sided comb can also be cleared in the described way.

Clearing the Domain. As in the default case (Theorem 2),

Theorem 3. A (4 + 3D/#D/2$)-approximate tour can be found in polynomial
time.

Comment on the Parity of D. We remark that if D is even, the cost of the
clearing is the same as it would be if the snowblower were able to move through
snow of depth D+1 (the slight increase of 6/(D−1) in the approximation factor
would be due to the decrease of the distance lower bound).

Fixed Throw Direction

In reality, changing the throw direction requires some effort. In particular, a snow
plow does not change the direction of snow displacement at all. In this section
we consider the fixed throw direction model, i.e., the case of the snowblower
which can only throw the snow to the right. We exploit the same idea as in the
previous subsection — reducing the problem in the fixed throw direction model
to the problem in the default model. All we need is to show how to emulate
line-clearing and brush.

In what follows we retain the notation from the previous section.

Lemma 7. The line-clearing cost is at most 24D/#D/2$d(L|J) + 25s(L \ p). If
every pass is #D/2$-full, the cost is 24D/#D/2$d(L|J).
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Proof. We first consider clearing a line whose dual graph is embedded as a
single straight line segment and whose base is perpendicular to the segment; we
describe the line-clearing, assuming that the line is vertical. Next, we extend the
solution to the case when the base is parallel to the edges of the dual graph; this
can only be a horizontal line — the first tooth in a (double-)comb. Finally, we
consider clearing an L-shaped line; this can only by a tooth together with the
(part of the) handle.

A Line L with GL⊥e. As in the adjustable-throw case (see Fig. 3, left and
center), to clear L we will need to use the pixels to the right of L to throw the
snow onto. Let p′ be the boundary pixel, following p counterclockwise around
the boundary of P . Before the line-clearing is begun, it will be convenient to
have p′ clear. Thus, the first thing we do upon entering L (through p) is clearing
p′. Together with returning the snowblower to p it takes 2 or 4 moves (Fig. 4,
left); we call these moves the double-base setup.

e
s
�

e
s
�
�

�

s
�
�
�

�
�
�

s
�
�
�

�
�
�

Fig. 4. Left: the double-base setup. Right: before the forward pass the snow below
the snowblower is cleared on both lines.

Then, the following invariant is maintained during line-clearing. If the snow-
blower is at a pixel q ∈ L before starting the forward pass, all pixels on L from p
to q are clear, along with the pixels to the right of them (Fig. 4, right). The in-
variant holds in the beginning of the line-clearing and our line-clearing strategy
respects it.

Each back throw is emulated with 5 moves (Fig. 5, left). After moving up by
#D/2$ pixels (and thus, gathering 2#D/2$ units of snow on these #D/2$ pixels),
the snowblower U-turns and moves towards p “pushing” the snow in front of it;
a push is emulated with 11 moves (Fig. 6).

The above observations already show that the cost of line-clearing increases
only by a multiplicative constant in comparison with the adjustable-throw case.
A more careful look at the Figs. 5, 6 reveals that: (1) in the push emulation
the first two moves are the opposites of the last two, thus, all 4 moves may
be omitted – consequently, a push may be emulated by a sequence of only 7
moves; (2) if the boundary side, following e, is vertical, the last push, throwing
the snow away from P , may require 9 moves (Fig. 5, right); and, (3) when
emulating the last back throw in a forward pass, the last 2 of the 5 moves (the
move up and the move to the right in Fig. 5, left) can be omitted – indeed,
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Fig. 5. Left: emulating back throw. Right: pushing the 2 �D/2� units of snow away
from P and returning the snowblower to p may require 9 moves.
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Fig. 6. Emulating pushing the snow in front of the snowblower

during the push emulation, the snowblower may as well start to the right of the
snow (see Fig. 6). Thus, a line L|J can be cleared at a cost of c(L|J) ≤ 4 +∑k′

i=1 (J − 1 + (i− 1) #D/2$+ 5 #D/2$+ 7(J + i #D/2$ − 1))+J+5r′+7(	−1).

A Line L with GL||e. Consider a horizontal line, extending to the left of the
base; such a line may represent the first tooth of a comb. The double-base can
be cleared with 8 or 12 moves, the root can be cleared with 3 moves, left) instead
of 9 moves; the rest of the clearing does not change. Consider now a horizontal
line extending to the right of the base; such a line may appear as the first tooth
in a double-sided comb. The double-base for such a line can be cleared with 3
moves; the rest of the clearing is the same as for the vertical line.

L-shaped Line. An L-shaped line L consists of a vertical and a horizontal seg-
ment. Each of the segments can be cleared as described above.

Thus, any line L|J can be cleared at a cost of at most c(L|J) ≤ 12 +∑k′

i=1 (J − 1 + (i− 1) #D/2$+ 5 #D/2$+ 7(J + i #D/2$ − 1))+J+5r′+7(	−1).
Since the snow and distance (3) lower bounds do not change, the lemma follows.

!"

Lemma 8. A comb can be cleared at a cost of 34s(C \ p) + 24D/�D/2�d(C \ p).

Proof. Brush in the fixed throw direction model can be described easily using
analogy with: a) brush in default and adjustable-throw models and b) line-
clearing in fixed-throw model. As in the adjustable-throw model, we prepare to
clear #D/2$ pixels during each brush. Same as with line-clearing, we setup the
double-base for the comb with at most 12 moves; also, 9 moves per brush may
be needed to push the snow away from P through the base. Back throw and
push can be emulated with 5 and 7 moves (Fig. 5, left and Fig. 6). Thus, if the
cost of a brush (1) in the default model was, say, c, the cost of the brush in the
fixed-throw model is at most 7c+9. Since any brush starts with the double-base
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setup, c ≥ 6; this, in turn, implies 7c + 9 ≤ (51/6)c. Hence, the cost of clearing
B increases by at most a factor of 51/6.

By Lemma 7, the cost of clearing P , c(P) ≤ 24D/#D/2$d(P). The snow and
distance lower bounds do not change in comparison with the adjustable-throw
case. The lemma now follows from simple arithmetic. !"

As in the default and adjustable-throw models (Theorems 2, 3),

Theorem 4. A (34 + 24D
�D/2� )-approximate tour can be found in polynomial time.

5 Extensions

Polygons with Holes. Our methods extend to the case in which P is a polyg-
onal domain with holes. There are two natural ways that holes may arise in the
model.

First, the holes may represent obstacles (e.g., walls of buildings that border
the driveway). No snow can be thrown onto such holes; the holes’ boundaries
serve as walls for the motion of the snowblower and for the deposition of snow.
Our algorithm for the default model extends immediately to this variation. The
SBP in restricted-throw models, however, may become infeasible.

In the second variation, the holes’ boundaries are assumed to be the same
“cliffs” as the polygon’s outer boundary. It is in fact this version of the problem
that we proved to be NP-complete. With some modifications our algorithms
work for this variation as well; see the full paper for details.

Nonrectilinear Polygonal Domains. If P is rectilinear, but not integral,
we proceed as in [4]: first, the boundary of P is traversed once, and then our
algorithms are applied to the remaining part, P ′, of the domain. Every time the
snow is thrown away from P ′, a certain length (which depends on the throw
model) may need to be added to the cost of the tour; thus, the approximation
factors of our algorithms may increase by an additive constant.

We can also extend our methods to general nonrectilinear domains. Since the
snowblower is not allowed to move outside the domain, care must be taken about
specifying which portion of the domain is actually clearable. This portion can
be found by traversing the boundary of the domain; then, the accessible portion
can be cleared as described above.

Vacuum-Cleaner Problem. Consider the following problem. The floor — a
polygonal domain, possibly with holes — is covered with dust and debris. The
house is equipped with a central vacuum system, and certain places on the
boundary of the floor (the baseboard) are connected to the “dustpan vac” — a
dust dump location of infinite capacity [1]. The robotic vacuum cleaner has a
dust/debris capacity D and must be emptied to a dump location whenever full.
The described problem is equivalent to the SBP in the default throw model and
provided the motivation to study the SBP with throwing backwards allowed.
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Nonuniform Depth of Snow. Our algorithms generalize easily to the case in
which some pixels of the domain initially contain more than one unit of snow.
For a problem instance to be feasible it is required that there is less than D (less
than #D/2$ in restricted-throw direction models) units of snow on each pixel.
The approximation ratios in this case depend (linearly) on D (or, in general, on
the ratio of D to the minimum initial depth of snow on P ).

Capacitated Disposal Region. If instead of “cliffs” at the boundary of P ,
there is a finite capacity (maximum depth) associated with each point in the
complement of P , the SBP more accurately models some material handling
problems, but also becomes considerably more difficult. The snow lower bound
still applies, the distance lower bound transforms to a lower bound based on a
minimum-cost matching between the pixels in P and the pixels in the comple-
ment of P . This problem represents a computational problem related to “earth-
mover distance” [7] and is beyond the scope of this paper.

Possible Improvements. We opted for higher approximation factors in favor
of more easily described algorithms. For instance, in the adjustable-throw case,
the line-clearing cost could be reduced by going up for D − 3 pixels, making
a small detour, and going back; in the fixed-throw model, instead of emulating
each and every back throw with 5 moves, we could emulate a whole (#D/2$-full)
pass at once.

Open Problems. The complexity of the SBP in simple polygons and the com-
plexity of the SBP in the fixed-throw model are open. We also do not have an
algorithm for the case of holes as obstacles with restricted throw direction; the
hardness of this version is also open.

One factor we did not address is the difficulty in turning a snowblower (see [3]
for the discussion of the TSP-like problems with turn costs). Another factor is
that a snowblower can throw much further than one cell away.

Acknowledgements. We would like to thank the anonymous referees for their
helpful comments.

References
1. http://www.centralvacuumstores.com/vacpan.htm
2. http://www.plowsunlimited.com/snow melters.htm
3. Arkin, E., Bender, M., Demaine, E., Fekete, S., Mitchell, J., Sethia, S.: Optimal

covering tours with turn costs. SIAM J. on Computing 35(3), 531–566 (2005)
4. Arkin, E.M., Fekete, S.P., Mitchell, J.S.B.: Approximation algorithms for lawn

mowing and milling. Comput. Geom. Theory Appl. 17, 25–50 (2000)
5. Arkin, E.M., Held, M., Smith, C.L.: Optimization problems related to zigzag pocket

machining. Algorithmica 26(2), 197–236 (2000)
6. Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon

in linear time. Discrete Comput. Geom. 21(3), 405–420 (1999)

http://www.centralvacuumstores.com/vacpan.htm
http://www.plowsunlimited.com/snow_melters.htm


234 E.M. Arkin et al.

7. Cohen, S., Guibas, L.: The earth mover’s distance: Lower bounds and invariance
under translation. Technical Report CS-TR-97-1597, Stanford Univ. Dept Of Com-
puter Science (1997)

8. Culberson, J.: Sokoban is PSPACE-complete. In: Proc. Int. Conf. Fun with Algo-
rithms, Elba, Italy, pp. 65–76 (June 1998)

9. Demaine, E.D., Demaine, M.L., Hoffmann, M., O’Rourke, J.: Pushing blocks is
hard. Comput. Geom. Theory Appl. 26(1), 21–36 (2003); Special issue of selected
papers from the 13th Canadian Conference on Computational Geometry (2001)

10. Eliazar, I.: The snowblower problem. Queueing Systems Theory and Applica-
tions 45(4), 357–380 (2003)

11. Held, M.: On the Computational Geometry of Pocket Machining. LNCS, vol. 500.
Springer, Heidelberg (1991)

12. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs.
SIAM J. Comput. 11, 676–686 (1982)

13. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the
traveling salesman problem. J. Algorithms 5, 231–246 (1984)

14. Polishchuk, V.: The box mover problem. In: Proceedings of 16th Canadian Con-
ference on Computational Geometry, pp. 36–39 (2004)



Stratified Deformation Space and Path Planning
for a Planar Closed Chain with Revolute Joints∗

L. Han, L. Rudolph, J. Blumenthal, and I. Valodzin

Department of Mathematics & Computer Science, Clark University
{lhan,lrudolph,jblumenthal,ivalodzin}@clarku.edu

Abstract. Given a linkage belonging to any of several broad classes (both planar and
spatial), we have defined parameters adapted to a stratification of its deformation space
(the quotient space of its configuration space by the group of rigid motions) making
that space “practically piecewise convex”. This leads to great simplifications in motion
planning for the linkage, because in our new parameters the loop closure constraints
are exactly, not approximately, a set of linear inequalities. We illustrate the general
construction in the case of planar nR loops (closed chains with revolute joints), where
the deformation space (link collisions allowed) has one connected component or two,
stratified by copies of a single convex polyhedron via proper boundary identification.
In essence, our approach makes path planning for a planar nR loop essentially no more
difficult than for an open chain.

1 Overview

Motion planning is important to the study of robotics [13, 3, 15] and is also
relevant to other fields as diverse as computer-aided design, computational bi-
ology, and computer animation. A unifying concept for motion planning is the
set of all configurations of a system under study, called the configuration space
of the system and here denoted CSpace. In terms of CSpace, motion planning
amounts to finding a valid curve connecting two given points, where a system
configuration is valid if it satisfies the underlying constraints of the system—e.g.,
the collision free constraint for rigid objects, joint limit constraints for linkage
systems, and loop closure constraints for closed chains. Thus all the complexity
of motion planning is encoded in CSpace and its partition into subsets CFree
and CObstacle of valid and invalid configurations.

In many practical systems, CSpace has high dimension and a complicated
structure in its own right. For some constraints, the partition introduces much
greater complication; for instance, the fastest complete planner taking into
account the ubiquitous collision free constraint [2] has exponential running
time complexity. The general impossibility of analytically computing CSpace
and its partition has driven the development of sampling based methods like
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Probabilistic Roadmap Methods (PRM ) [11] and Rapidly-exploring Random
Trees (RRT ) [12], that try to capture the connectivity of CSpace or CFree us-
ing sampling and discrete data structures. These methods have been shown to
perform very well for many difficult motion planning problems.

Knowledge of CSpace—hard as it is to compute—is invaluable for understand-
ing the system in question and developing efficient motion planning algorithms.
There has been renewed interest in studying and determining CSpace in the
past few years. In particular, Trinkle, Milgram and Liu [22, 20, 18, 17] have
made important discoveries for CSpace of a kinematic chain with fully rotat-
able joints, either n spherical joints in space (nS) or n revolute joints (nR) in
the plane. Building on earlier work by geometers [16, 10], they obtained results
on the geometry and topology of the set of closure configurations for a closed
chain, initially without imposing the collision free constraint but recently allow-
ing point obstacles. Using this information they develop complete path planners,
such as an O(n3) accordion planner for a closed chain (ignoring collisions), and a
planner for avoiding p point obstacles with conjectural lower and upper bounds
Ω(pn−3) and O(p2n−7). Their work, formulated with joint angle parameters, uses
advanced topological tools.

The configuration of a multi-object system in the plane R
2 or space R

3 can
be described by the configuration of the objects with respect to a local frame
and a transformation from the local frame to a fixed reference frame. Unlike a
rigid body which has fixed local coordinates for all points, a multi-body system
has different local configurations. Thus a configuration of a multi-body system
is described by a rigid body transformation together with a deformation of the
system. Call the set of all deformations of the system its deformation space,
DSpace for short, so that DSpace is CSpace modulo rigid motions of R

2 or
R

3. For instance, for a kinematic chain the local coordinates of the joints are
changed by deformations facilitated by the joint degrees of freedom, and re-
stricted by constraints—e.g., fixed link lengths and, for closed chains, the loop
closure constraint—which are independent of rigid motions and so effectively
are defined on DSpace of the chain. Here we focus on the DSpace of a loop and
ignore the collision free constraint until section 3.3.

We have recently developed a new set of parameters—in this paper denoted
by r and s—to describe DSpace for many broad classes of planar and spatial
linkages, including planar chains and loops with revolute joints, spatial chains
and loops with spherical joints, chains with variable link lengths (which can
model prismatic joints), and various kinematic structures more complicated than
a chain or single loop. (Linkages can also be used to model a sequence of points
under distance constraints.) Unlike the parameters used in earlier work, r and
s are not joint parameters: r is a vector of inter-joint distances, and s is a
vector of triangle orientation data to be described below. We use r and s to
endow DSpace of a linkage with a stratification rendering it practically piecewise
convex in a sense we will explain. For both planar and spatial linkages, r and
s are uncoupled and r carries the complicated part of the “practical piecewise
convexity” of DSpace; for planar linkages, s serves only to keep track of the
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(b) DStretch , and one component of
DSpace , for a planar 5R loop

Fig. 1. The 5R loop in (b) has link lengths (100, 42, 37, 95, 86)

“pieces”, whereas for spatial linkages there is just one “piece” and s serves only
to contribute extra “practically convex” dimensions.

Complete treatments of our stratification and new parameters for various link-
age types—including both spatial and planar chains—will appear in our future
papers. Here we describe our approach for the special but representative case of a
planar nR loop, which gives an excellent indication of one major computational
and conceptual advantage of our new approach, namely, how constraints (e.g.,
closure constraints on a loop) that are highly non-linear in terms of traditional
joint angle parameters become linear inequalities in terms of r and s. Our re-
formulation of the constraints and the resulting practical piecewise convexity of
DSpace greatly simplify motion planning for both planar nR loops and spatial
nS loops, as highlighted by the following examples.

Example 1. Consider the problems of generating and joining closure deforma-
tions for a loop. Fig. 1(a) illustrates a path between two deformations of a certain
spatial 1000S loop with randomly chosen link lengths. The two ends of the path
were generated by a method we call diagonal sweeping [8]. For each, we found a
valid vector r of 997 positive inter-joint distances, and a vector s of 997 random
angles in [0, 2π] specifying triangle orientations (all angles are valid), in 19 mil-
liseconds with Matlab on a desktop computer. Our space of valid vectors r and
the cut-open 997-dimensional torus [0, 2π]997 are both convex, so the path was
then very easily calculated using linear interpolation.

Example 2. A planar nR loop has more complicated DSpace and path plan-
ning than a spatial nS loop. For a planar nR loop with generic link lengths,
the set of feasible values of r, which we call DStretch, is an (n− 3)-dimensional
convex polyhedron, and “almost all” of DSpace can be reconstructed from 2n−2

copies of DStretch glued together along parts of their boundaries into either
one connected component or two (depending on the number of “long links”,
a technical term [22]; see section 2.4); the remainder of DSpace is compara-
tively low-dimensional and does not hinder motion planning. For one 5R loop,
Fig. 1(b) shows the 2-dimensional DStretch and one component DSpace, compris-
ing four copies of DStretch labeled with s-values (s(1), s(2),+) (s(i) ∈ {+,−};
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100

100 (+,−,+) → (+,−,+)
→

(a) A linear path

100

100 (+,−,+) → (+,0,+)
→

(b) Segment 1

100100

100 (+,0,+) → (+,0,+)
→

(c) Segment 2

100

100 (+,0,+) → (+,−,+)
→

(d) Segment 3

Fig. 2. The linear path in (a) stays in one stratum but has collisions. The 3-segment
path in (b)–(d) joins the same endpoints and is collision free—segment 1 ends on the
edge of one copy of DStretch , segment 2 crosses a second copy from one edge to its
opposite (where s has the same value), and segment 3 returns to the first copy.

see section 2) and joined along the indicated pairs of edges; the copies in the
other component are labeled (s(1), s(2),−).

Example 3. If the collision free constraint is not imposed, motion planning
in DSpace is straightforward. Within each copy of DStretch the convex struc-
ture provides a unique linear path joining any given start deformation to any
given goal. Fig. 2(a) illustrates this for the copy of DStretch labeled (+,−,+)
in Fig. 1(b). Passing between copies is still straightforward, although uniqueness
of paths is lost—a fact which can be advantageous for motion planning. In fact,
any path joining deformations on different copies of DStretch necessarily passes
through singular deformations. In section 3, we use a notion of singularity depth
(defined in section 2.3) to give upper bounds on the number of singular defor-
mations that must traversed by a path joining two given closure deformations of
a planar nR loop. There is a trade-off between the number of singular deforma-
tions traversed and their depth. Essentially, the greater the singularity depth of
a deformation, the more singular the deformation; a non-singular deformation
has singularity depth 0. We show that any two closure deformations in the same
component can be connected by a piecewise linear path traversing at most n−2
singular deformations, all of depth 1; they can also be connected via at most 2
singular deformations, one of which has singularity depth at least n− 3 (it is a
triangle deformation generalizing one devised by Lenhart and Whitesides [16]).
Importantly, the singular deformations are reusable and easily computable. For
n = 1000, we can find 998 singular r values of singularity depth 1 in about 20
seconds.

To find collision free paths like that in Fig. 2(b-d), we have developed a
preliminary probabilistic planner that makes essential use of our efficient closure
deformation generation and connection methods.

The efficient algorithms and nice geometry of our approach make many more
systems available for use in robot design, where inverse kinematics (closely re-
lated to closure deformation generation), motion planning, and similar kinematic
issues are very important (see [5, 21]).
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2 DSpace for a Planar nR Loop

2.1 The Idea of a Stratification

We recall a few definitions from the mathematical theory of stratifications
(see [6]). Suppose X is a subset of Euclidean space R

N . A partition S of X
into subsets M1, . . . ,MK is a stratification in case: (1) Mi ∩Mj = ∅ for i �= j;
(2) each Mj is a connected smooth submanifold of R

N ; and (3) for each i the
closure cl(Mi) of Mi is itself the union of some of the Mj. Each Mi is called an
S -stratum. For (i �= j), Mi and Mj are incident if Mi ⊂ cl(Mj) or Mj ⊂ cl(Mi).
The dimension dim(X) of X is max{dim(Mi) | i = 1, . . . ,K}; the codimension
codim(Mi) of Mi is dim(X) − dim(Mi). If codim(M) = 0 then M is an open
subset of X (in the topology induced on X by R

N ); if X is connected then X is
the closure of the union of the codimension-0 S -strata.

Simple but paradigmatic examples of stratifications come from convexity the-
ory. Let P ⊂ R

N be a convex polyhedron, i.e., a closed bounded subset of R
N

that is the intersection of finitely many closed half-spaces. The dimension dim(P )
of P is the dimension of the unique smallest flat (i.e., translated linear subspace
of R

N ) containing P ; the relative interior of P is its actual (topological) interior
as a subspace of that flat—equivalently, the set of all points of P not contained
in a face Q of P with dim(Q) < dim(P ). The partition of P into the relative
interiors of all its faces is a stratification we call the face stratification SFace of
P . Each SFace-stratum Q is convex, as is cl(Q); P has exactly one codimension-
0 SFace-stratum. Below we make extensive use of SFace for a polyhedron we
associate to a planar nR loop.

2.2 New Parameters

Consider a closed chain in the plane R
2 consisting of n rigid links with consecutive

link lengths lj > 0 (j = 0, . . . , n− 1), connected by n revolute joints. Denote the
consecutive joints of the chain by Pj , so link j is the vector PjPj+1 (indices are
modulo n). We call P0 the anchor of the loop, and in general call an object “an-
chored” if it includes P0. For j = 1, . . . , n−1, we call the vector P0Pj an anchored
diagonal of the loop; the anchored diagonalsP0P1 and P0Pn−1 are also links of the
loop and thus have fixed non-zero lengths, but other anchoreddiagonal lengths can
vary and may be 0. As illustrated in Fig. 3(a), for j = 1, . . . , n− 2 we denote by
Tri(j) the anchored triangle with vertices at joints P0, Pj , and Pj+1; one edge of
Tri(j) is link j and the others are anchored diagonals. At a given point of DSpace,
Tri(j) is degenerate (i.e., reduces to an anchored line segment) if and only if its
vertices are collinear, which can happen in two distinct ways: either Tri(j) has
three distinct but collinear vertices, or Tri(j) has exactly two distinct vertices, in
which case we call it doubly degenerate. (Since lj > 0, Tri(j) cannot reduce to a
point.) Note that Tri(j) is doubly degenerate in a given deformation if and only
if one of Pj , Pj+1 coincides with P0, so that Tri(j − 1) or Tri(j + 1), respectively,
is also doubly degenerate. We denote the subset of DSpace of deformations with
no doubly degenerate anchored triangles by NDD , and its subset of deformations
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P0

P1

P2
Pn−2

Pn−1

Pj−1
Pj+1

Pj

Tri(n−2) Tri(j) Tri(j−1)

Tri(1)

(a) Here s(1) = s(j−1) = 1, s(j) = 0,
and s(n − 2) = −1; Tri(j) is degener-
ate, with r(j − 1) = r(j) + lj .

(b) Two 10-bar deformations with
opposite orientations: all s(j) are
+ at the left, − at the right.

Fig. 3. New parameters and deformation examples

with no degenerate anchored triangles by ND .(A loop deformation that is singu-
lar in the traditional sense but includes no degenerate anchored triangle poses no
problems for our new parametrization, so for our purposes it is non-singular. We
will discuss the role of anchor choice in future papers.)

In a sense, our new parameters for DSpace are the triangles Tri(j) them-
selves, as embedded in the plane modulo a single rigid motion. We extract more
conventional parameters from them as follows (see Fig. 3).

Definitions. (1) For j = 1, . . . , n − 3, let r(j) = ‖P0Pj+1‖; the link lengths
l0, . . . , ln−1 and the vector r = (r(1), . . . , r(n−3)) ∈ R

n−3 of lengths of anchored
diagonals that are not links together encode Tri(1), . . . ,Tri(n − 2) up to unori-
ented congruence. The first n−3 of our new parameters are r(1), . . . , r(n−3). A
deformation belongs to NDD if and only if every r(j) is strictly positive. (2) For
j = 1, . . . , n− 2, let s(j) be the sign of the determinant with first column P0Pj

and second column P0Pj+1; so s(j) is 0 if Tri(j) is degenerate, and otherwise it
is + or − according as the vertices P0, Pj , Pj+1 are oriented counterclockwise
or clockwise. The last n − 2 of our new parameters are s(1), . . . , s(n − 2). Let
s = (s(1), . . . , s(n− 2)).

On NDD , r and s (defined throughout DSpace) truly are parameters.

Theorem 1. The restriction of (r, s) : DSpace → R
n−3 × {−, 0,+}n−2 to NDD

is one-to-one onto its image.

Proof. Given the value of r on a planar nR loop with fixed link lengths
l0, . . . , ln−1 and no doubly degenerate anchored triangles, we first reconstruct
the triangles Tri(j) abstractly. Using the value of s on the deformation, and
starting from an arbitrary placement of Tri(1) in R

2, we then successively lay
down Tri(2), . . . ,Tri(j − 2) in positions that are well-defined because at each
step the anchored edge along which the next triangle must match up has length
r(j − 1) > 0 and the orientation sign s(j) determines on which side of that edge
(if either) that triangle must lie. The only indeterminacy in this construction is
the initial placement of Tri(1); any two such placements differ by a rigid motion
of R

2 that is well-defined because r(1) > 0. !"
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Theorem 1 says that valid loop deformations in NDD correspond exactly to
feasible values of (r, s). Moreover, given a feasible value of (r, s), the way we
constructed the corresponding valid loop deformation makes it clear that we
obtain other feasible values of (r, s) by changing an arbitrary set of non-zero
entries of s from + to − or vice versa: reversing the sign of s(j) corresponds
to reversing the orientation of the non-degenerate triangle Tri(j) by flipping it
across the anchored diagonal P0Pj , and clearly any subset of the non-degenerate
anchored triangles in a valid loop deformation can be flipped to create a new
valid loop deformation—the entries of s are uncoupled from r, and (for a given
value of r) from each other. We sum this up as follows.

Corollary 1. If r(1), . . . , r(n − 3), s(1), . . . , s(n − 2) are the parameters of a
valid deformation in NDD, then there is a valid deformation in NDD with pa-
rameters r(1), . . . , r(n− 3), ε(1)s(1), . . . , ε(n− 2)s(n− 2) for every “triangle re-
orientation” function ε : {1, . . . , n− 2} → {+,−}. !"

Thus the problem of understanding the topology and geometry of NDD breaks
into two subproblems: (A) What is the topology and geometry of the set
r(NDD)? (B) How can s be used to recover the topology and geometry of NDD
from r(NDD)? We answer (A) in section 2.3 and (B) in section 2.4.

2.3 The Set of Feasible Values of r

In [9], we denoted the set r(DSpace) of feasible values of r by DStretch; we keep
that notation, and also write DStretch+ for r(NDD). Our proof of Theorem 1
shows that, for a given nR loop, a value of r is feasible (corresponds to some
valid loop deformation) if and only if that value and the given link lengths allow
the successful construction of the n − 2 anchored triangles: if some entries of r
are too big or too small, one or more anchored triangles will be impossible to
construct. More precisely, from basic geometry we know that a, b, c ≥ 0 are the
side lengths of a possibly degenerate triangle if and only if a ≤ b + c, b ≤ c + a,
and c ≤ a + b; furthermore, the triangle is non-degenerate if and only if all
three inequalities are strict. In our case, taken together these inequalities for
Tri(1), . . . ,Tri(n−2) give an explicit description of DStretch in terms of the link
lengths l0, . . . , ln−1: it is the set of solutions (r(1), . . . , r(n− 3)) of the following
system of linear inequalities Ineqσ

j . (Here j indicates that Tri(j) contributed the
inequality; Ineq+

j and Ineq−
j define anti-parallel half-spaces, to which that defined

by Ineq⊥
j is perpendicular.)

Ineq+
1 :

Ineq−
1 :

Ineq+
j :

Ineq−
j :

Ineq⊥
j :

Ineq+
n−2 :

Ineq−
n−2 :

r(1)
−r(1)

r(j) − r(j − 1)
−r(j) + r(j − 1)
−r(j) − r(j − 1)

r(n− 3)
−r(n− 3)

≤
≤
≤
≤
≤
≤
≤

l0 + l1

−|l0 − l1|
lj

lj

− lj

ln−2 + ln−1

−|ln−2 − ln−1|

}
j = 2, . . . , n− 3 (1)
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(a) DStretch of
a certain planar
6R loop
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(b) Deformation of a
planar 8R loop of
singularity depth 2

(c) The 6R loop
in a Lenhart–
Whitesides defor-
mation

Fig. 4. The image in the 5-dimensional DStretch for the 8R loop of the deformation
in (b) lies in a 3-dimensional face isometric to the polyhedron in (a)

Rewritten in matrix format, system (1) becomes DStretch = {r | T r ≤ b},
where b = (l0 + l1, . . . ,−|ln−2 − ln−1|) and ≤ is applied termwise. Each row of
T corresponds to an inequality Ineqσ

j in (1), so restricts r to a closed half-space;
thus DStretch is the intersection of at most 3n− 8 closed half-spaces. The link
lengths are fixed, so each r(j) is bounded between zero and the sum of all link
lengths. Thus DStretch is also bounded and is a convex polyhedron.

Example 4. Fig. 4(a) shows DStretch for a planar 6R loop with link lengths
(45, 97, 63, 20, 59, 98). It is a 3-dimensional polyhedron, with faces of codimension
0 (its interior), 1 (the interiors of its polygonal faces), 2 (the interiors of its edges),
and 3 (its vertices). Since r(1) ≥ 97−45, r(3) ≥ 98−59, and r(2) ≥ r(3)−20 ≥ 19,
(1) shows that for this loop DStretch+ = DStretch. The same polyhedron also
arises as the closure of a codimension-2 face of the 5-dimensional polyhedron
DStretch of a planar 8R loop with link lengths (31, 14, 97, 63, 20, 59, 56, 42), cor-
responding to deformations (like that in Fig. 4(b)) with Tri(1) and Tri(6) both
degenerate.

Fig. 4(c) shows a special deformation of the 6R loop used in Example 4, gen-
eralized from the concept of “standard triangular form” used by Lenhart and
Whitesides [16]. It is defined by finding joint index j satisfying

∑j−1
i=0 li ≤ L/2

and
∑j

i=0 li > L/2, where L is the sum of all link lengths, and then using the
subchain from joint 0 (the anchor) to joint j, link j, and the subchain from joint
j + 1 to 0 as three sides of a (possibly degenerate) triangle. It is easy to see that
the r value of such a deformation is a vertex of DStretch, which we will call the
LW vertex. We will call a deformation an LW deformation if the r image of
the deformation is the LW vertex. Note that other DStretch vertices are also
of great interest; our focus on the LW vertex in this paper is to facilitate the
description of earlier work and illustrate the important roles of highly singular
deformations in path planning.
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Our earlier observations show the following.

Theorem 2. (a) DStretch is a convex polyhedron. (b) DStretch+ is the intersec-
tion of DStretch with {(x1, . . . , xn−3) | xj > 0, j = 1, . . . , n− 3}, and is a union
of open faces of DStretch. !"

Since DStretch is a convex polyhedron, by section 2.1 it has a natural face
stratification. As a restriction of DStretch, DStretch+ also has a natural strat-
ification: its strata are exactly those open faces of DStretch not contained
in (and therefore disjoint from) each of the n − 3 coordinate hyperplanes
{(x1, . . . , xn−3) | xj = 0} ⊂ R

n−3. For a planar nR loop that cannot have
any doubly degenerate triangles, DStretch+ = DStretch (see Figs. 1(b) and 2).

Each stratum Q of DStretch+ is characterized by the set of (j, σ), denoted by
E(Q), for which one of the two or three linear inequalities Ineqσ

j in (1) associated
with triangle j is replaced with the corresponding equality Eqσ

j . (Now we can
explain the labels in Figs. 1(b): they are the values of E(Q) on the DStretch
strata of the 5R loop.) Let e(Q) be the number of elements in E(Q). For a
stratum in DStretch+, e(Q) is also the number of degenerate anchored triangles
that can be induced by the values of r ∈ Q; we call e(Q) the singularity depth
of Q. For a loop with generic link lengths, the singularity depth of a stratum
Q is equal to the co-dimension of the stratum; but the singularity depth of a
stratum for a loop with non-generic link lengths may be different from its co-
dimension. For example, the top-left subfigure in Fig. 5 shows DStretch for a
planar 5R loop with link lengths (2, 3, 4, 2, 3), with its E(Q) labels; two of the
codimension-2 strata (the vertices where r = (1, 5) and r = (5, 1)) induce three
degenerate triangles and have singularity depth 3. The following results show
that E(Q) can be used to label the SFace-strata for DStretch and derive their
incidence relations.

Theorem 3. (a) E(Q) �= E(Q′) if Q �= Q′. (b) E(Q) ⊂ E(Q′) if Q′ ⊂ cl(Q).
(c) codim(Q) ≤ e(Q). (d) codim(Q) = e(Q) if e(Q) ≤ 1. !"

2.4 The Stratification and Topology of DSpace

For a stratum Q of DStretch, E(Q) identifies which triangles, if any, are degener-
ate for any given r ∈ Q. In other words, if (j, σ) ∈ E(Q), and r ∈ Q, then Tri(j)
is degenerate in any deformation with that value of r, forcing s(j) = 0 for such a
deformation. On the other hand, if (j, σ) /∈ Q for any σ ∈ {+,−,⊥}, then Tri(j)
cannot be degenerate in any deformation with that value of r, so s(j) must be
+ or − for such a deformation. This observation leads to another way to label
the open face Q, namely, by an (n − 2)-vector reflecting the possible s values
of loop deformations with r ∈ Q: the jth component is the symbol ± if Tri(j)
cannot degenerate, 0 if it must. (The bottom left sub-figure of Fig. 5 is labeled
in this way.) In fact, DStretch+ with this type of labeling can also be viewed
as a compact visualization of NDD itself: each label is to be understood as a
template in which the ±-signs take on all combinations of values + and −, and
the different ways to fill in each template represent different “convex tiles” of
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Fig. 5. DSpace for a planar 5R loop with link lengths (2, 3, 4, 2, 3)

NDD . From this viewpoint, each DStretch+ stratum Q has 2n−2−e(Q) embedded
copies in NDD (which are the inverse images by r), with 0 at the e(Q) entries of
s that correspond to the e(Q) degenerate triangles, and + or − at the remaining
n − 2 − e(Q) entries that correspond to non-degenerate triangles. (Again, refer
to Fig. 5 for an example.) We will show elsewhere that these embedded copies of
SFace-strata of DStretch+, which clearly form a partition of NDD , actually form
a stratification (technical difficulties arise from doubly degenerate triangles, but
can be overcome). We call it the “triangle orientation stratification” STriO .

Theorem 4. If Q is an SFace-stratum of DStretch+, then the STriO-strata
mapped onto Q by r are in one-to-one correspondence via s with 2n−2−e(Q), each
stratum being distinguished by its unique pattern of {+,−} orientation signs for
the n− 2− e(Q) nondegenerate triangles. !"

The significance of Theorem 4 is that it renders NDD—that is, in every case
“practically all” of DSpace, and in many cases literally all of it—practically
piecewise convex in a strong sense: it shows how NDD can be decomposed prac-
tically into convex tiles labeled by values of s, each of which is identified via r
with an open face of the polyhedron DStretch.

As to how two STriO-strata can be directly joined, we have the following.

Theorem 5. The closures of two STriO-strata of DSpace with triangle orienta-
tion signs that differ on some set of k triangles intersect each other if and only
if those triangles can become singular simultaneously. !"

For instance, on the 3-dimensional, codimension-2 STriO-stratum Q for the
planar 8R loop described in Example 4, s is (0,+,+,+,+, 0); four codimension-
0 STriO-strata (where s is (s(1),+,+,+,+, s(6))) are incident on Q, and a start
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deformation in any one of those strata can be joined to a goal in any other by
a 2-segment stratum-wise linear path passing through Q as in Fig. 4(b) (or at
any other point of Q).

Note that for an nR loop, if the r value of the LW vertex corresponds to
a non-degenerate triangle, then the loop has two LW deformations with the
same shape but opposite orientations. In this case, each LW deformation has
singularity depth n − 3 and connects half the convex tiles of NDD . If the LW
triangle form degenerates into a line segment, then the loop has only one LW
deformation, of singularity depth n− 2, which connects all tiles of NDD.

Following [22], we say a planar nR loop (n > 4) has m long links provided
m is the largest number for which there are link lengths lj1 , lj2 , . . . , ljm (0 ≤
j1 < · · · < jm ≤ n − 1) with the sum of any two of them being strictly greater
than half the sum of all the loop’s link lengths. Easily, if a loop has m long
links, then m ∈ {0, 2, 3}. Prior results [16, 10] show that DSpace for a planar
nR loop has two connected components or one, according as the loop has 3
long links or fewer. The 5R loops in Fig. 5 and Figs. 1(b) and 2 have 0 and 3
long links respectively; our figures show the correct reconstruction of the DSpace
topology from the strata. Call an anchored triangle invertible if it is singular in
some deformations. Such triangles are key to understanding the connectivity of
DSpace, and lead to an alternative proof (short, but not short enough to include
here!) of the DSpace connectivity results of [10, 16, 22].

Theorem 6. (a) If a planar nR loop has 0 or 2 long links then every anchored
triangle is invertible. (b) If lj1 , lj2 and lj3 are three long links for a planar nR
loop, then all but one anchored triangle is invertible, that being Tri(j2). !"

3 Path Planning

3.1 Generation of Closure Deformations

We know of no prior closure deformation generation methods designed specif-
ically for planar nR loops, though of course configuration generation methods
for general closed chains [1, 4, 7, 14] apply in particular to planar nR loops. The
more recent methods in [4] (random loop generator) and [1] (iterative constraint
relaxation), designed with chains of many links in mind, considerably improve
performance over earlier methods; but they still have difficulty for loops with
many links (say, over 100), nor do they guarantee that every attempt will gener-
ate a closure deformation. Both these difficulties are overcome by using our new
formulation of the loop closure constraint.

Our main task here is to compute a valid set r of diagonal lengths for a loop
with given link lengths. Since all constraints on r are linear inequalities Ineqσ

j

(or equalities Eqσ
j , in case we wish to force r into particular strata of DStretch),

we can easily find r with linear programming (LP ). The problem size of an LP
formulation for r is linear in n: the numbers of unknowns and constraints are
both in Θ(n). Although there are as yet no theoretical bounds on the worst-case
running time of LP , in practice [19] LP is considered a mature field with many
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efficient algorithms. We have also developed efficient methods other than LP
(described in [8]) that take advantage of the kinematics of a planar nR loop and
the particular simplicity of the constraints. Our fastest generation methods have
linear time complexity Θ(n), which is optimal.

3.2 Connection of Closure Deformations

To the best of our knowledge, there are two complete planners for connecting
deformations of a planar nR loop, ignoring collisions. The line tracking plan-
ner [16] of Lenhart and Whitesides generates a path in time O(n) by using
simple line tracking motions to move two given query deformations to their
“standard triangle form”, in two opposite orientations if needed, and then to
move both triangle deformations to an appropriate singular deformation that
allows the change of the triangle orientations. For some start and goal defor-
mations, only one standard triangle form needs to be passed through. The ac-
cordion planner [22] of Trinkle and Milgram generates a smooth path between
given deformation pairs and empirically exhibits cubic running time. It is also
known [22, 20] that each component of DSpace for a planar nR loop with 3 long
links is a (n − 3)-dimensional torus parametrized by joint angles of the short
links, so valid paths in a given component can be generated by linear interpola-
tion of those angles (modulo 2π). Path planning for a planar nR loop using our
new parameters is considerably simplified by the nice geometry of the DSpace,
because (viewed through r) all strata and their closures are convex, so two query
deformations in the closure of a single stratum can be joined by a path on which
r linearly interpolates their r values (or by a Manhattan path on which only one
or a few entries of r change on each segment). If two deformations are in the
same component of DSpace (easily checked), we can join them by a piecewise
linear path once we determine critical singular deformations through which to
pass successively between strata.

We sum this up in the nearly self-explanatory algorithm Fig. 6, where only
Step 7 may require further comment.

Briefly, there are many ways to compute critical intermediate deformations.
Assume the query deformations have different orientations for k triangles. Fig. 7
illustrates one extreme: we compute k codimension-1 strata, one for each triangle
that needs to be inverted, then pass through them one at a time; feasibility is
guaranteed by standard facts about stratified manifolds (cf. [6]). For a planar
nR loop, we need at most n− 2 singular deformations on codimension-1 strata,
one for each triangle, so our path will be piecewise linear with at most n − 1
segments, each on the closure of one codimension-0 stratum. With this approach,
the running time of our algorithm is determined by the time needed to generate
O(n) singular deformations of depth 1, and has an upper bound of O(n2) when
using deformation generation methods with linear running time [8].

Alternatively, we can look for a stratum of singularity depth at least k that
corresponds to those triangles and directly joins the two strata. The extreme of
this approach is to use the LW deformations mentioned earlier: we can (ignor-
ing collisions) connect any two query deformations of an nR loop in the same
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1. find the number and indices of the triangles, in which the two given
deformations have opposite orientations

2. if the deformations do not have opposite orientation for any triangle
3. pathExistence=true; criticalIntCfgs=null;
4. elseif (the loop has 3 long links) and . . .

(the two cfgs have opposite orientations for the non-invertible triangle)
5. pathExistence=false;
6. else
7. pathExistence=true; find critical intermediate cfgs;
8. end;

Fig. 6. Algorithm for Connecting Two Closure Deformations of a Planar Chain

component of DSpace by using at most 2 critical deformations, one a LW defor-
mation and the other a deformation singular in (at least) the unique non-singular
anchored triangle (if one exists) of the LW deformation. Fig. 8(a) shows the two
critical deformations (subgoals), the first subgoal being the LW deformation, as
used to connect the same start and goal of a 5R loop as in Fig. 7. Clearly the
running time for generating one such path, again determined by the generation
time of the two special critical deformations, is Θ(n), which is optimal.

In Fig. 8(b), the same problem as in Figs 7 and 8(a) is solved with the LW
deformation as the second subgoal: in fact, subgoal 1 (2) in Fig. 8(a) has the same
r value as subgoal 2 (1) in Fig. 8(b). Recall that for a loop with given link lengths,
a feasible r value completely specifies which triangles are singular or not. Denote
by dt(r) the (possibly empty) set of the indices of the anchored triangles that
are singular under the given value of the diagonal lengths r. So to connect two

200 200 200 200

100 100 100 100

0
0 100 200

0
0 100 200

0
0 100 200

0
0 100 200

r(1) r(1) r(1) r(1)

r(2) r(2) r(2) r(2)

start

start

end segment 1

begin segment 2 begin segment 3 begin segment 4

end segment 2

end segment 3 goal

goal
(+,+,+)→(0,+,+) (0,+,+)→(−,0,+) (−,0,+)→(−,−,0) (−,−,0)→(−,−,−)

Fig. 7. Above, we show a piecewise-linear path in DSpace for a planar 5R loop link
lengths [100, 90, 80, 75, 50], connecting the closure deformations (80, 70, +, +, +) and
(125, 110, −, −, −) by traversing four codimension-0 STriO-strata (each identified via
r with a copy of DStretch , and labeled with its value of s), crossing common boundary
pieces of higher codimension. Below, we picture the loop itself, in its deformations at
the beginning and end of each segment
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(a) path1 (b) path2

Fig. 8. Two paths for connecting the same start and goal deformations as in Fig. 7,
using two singular r values—one the LW vertex (for the triangle deformations)—in two
different orders, along with appropriate s values

deformations in the same connected component but with opposite orientations
in k triangles of indices {j1, j2, . . . , jk}, we need to find r values {r1, r2, . . . , rm},
such that {j1, j2, . . . , jk} ⊆

⋃m
i=1 dt(ri). For such an r set having m members,

these r values can be used in arbitrary orders, along with appropriate s values;
we obtain m! different but related paths. An example with m = 2 is shown in
Fig. 8.

Our connection method is clearly complete and guarantees to find a path
between any two closure deformations in one connected component. The com-
plexity of this algorithm depends on the complexity of the generation of the
critical singular deformations. But we note that the singular deformations can
be reused. If it is known that a large number of path planning problems will be
performed for a fixed loop, it will be worth preprocessing the loop to find critical
deformations, be they the LW deformation or deformations of lower singularity
depths. Thereafter we can solve any connection problem for any two deforma-
tions in constant time Θ(1) by using the LW deformation, or in time O(n) by
picking appropriate critical singular depth 1 deformations.

3.3 Sampling-Based Collision-Free Closure Path Planning

The closure deformation connection methods just described do not consider the
collision free constraint, so may involve interference between the links, as in
Fig. 7. Extensive research by the motion planning community has made it clear
that the collision free constraint is very difficult to deal with, and that it is very
hard to describe CFree and CObstacle analytically for general obstacles. Recent
successes of randomized path planners suggest that sampling based planners like
PRM and RRT may be an important framework in which to integrate efficient
node generation and connection methods (including ours and previous ones)
while also dealing with such difficult factors in planning as high dimensionality
and complicated linkage constraints. Our preliminary strategy has been to cap-
ture the stratum connectivity with a roadmap or trees, from which we construct
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(a) cl(S+++) (b) cl(S−++) (c) cl(S+−+) (d) cl(S−−+)

Fig. 9. DSpace for the 5-bar loop with 3 long links already familiar from Fig. 2

the global connectivity of DFree and solve for paths for given query deformation
pairs. Fig. 9 suggests the daunting complexity of this problem. The shaded areas
are the parts of DObstacle in the copies of DStretch that make up half of DSpace
(the other half is its mirror image). The unobstructed part of the (+,−,+) stra-
tum has two connected components, which can however be connected via the
(+,+,+) stratum, as in Fig. 2(b-d).

4 Summary

In this paper, we used our new parameters—some inter-joint distances and tri-
angle orientation data—to study the stratified deformation space and efficient
path planning for a plainer closed chain with revolute joints. Instead of formu-
lating the loop closure constraint as nonlinear equations in joint angles, we break
a loop into an open chain of triangles then use the triangle inequality repeatedly
to formulate the constraint as a set of linear inequalities. This new formulation
endows the deformation space with a nice geometry; for a generic nR loop it is a
stratified space of convex strata. This geometry (and its generalizations for more
complex kinematic systems) greatly simplifies kinematics related issues includ-
ing the generation and connection of closure deformations. In effect, our new
parameters make path planning for a planar nR loop (or a spatial nS loop) no
more difficult than path planning for an open chain.
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Abstract. This paper concerns target unreachability detection during on-line mobile
robot navigation in an unknown planar environment. Traditionally, competitiveness
characterizes an on-line navigation algorithm in cases where the target is reachable from
the robot’s start position. This paper introduces a complementary notion of competi-
tiveness which characterizes an on-line navigation algorithm in cases where the target
is unreachable. The disconnection competitiveness of an on-line navigation algorithm
measures the path length it generates in order to conclude target unreachability rela-
tive to the shortest off-line path that proves target unreachability from the same start
position. It is shown that only competitive navigation algorithms can possess discon-
nection competitiveness. A competitive on-line navigation algorithm for a disc-shaped
mobile robot, called CBUG, is described. This algorithm has a quadratic competitive
performance, which is also the best achievable performance over all on-line navigation
algorithms. The disconnection competitiveness of CBUG is analyzed and shown to be
quadratic in the length of the shortest off-line disconnection path. Moreover, it is shown
that quadratic disconnection competitiveness is the best achievable performance over
all on-line navigation algorithms. Thus CBUG achieves optimal competitiveness both
in terms of connection and disconnection paths. Examples illustrate the usefulness of
connection-and-disconnection competitiveness in terms of path stability.

1 Introduction

This paper is concerned with target unreachability detection during mobile robot
navigation in a planar environment populated by unknown obstacles. The robot
has no apriori information about the environment, but may locally acquire this
information using its on-board sensors. This class of on-line problems has a wide
range of applications. Examples are navigation to various targets for mail and
material delivery in offices and factories, and planetary exploration and sample
acquisition. The most critical parameter in such tasks is physical travel time
rather than on-board computation time. Under a uniform velocity assumption
travel time corresponds to path length. Hence in this paper navigation algorithms
are classified in terms of length of the path traveled by the robot during algorithm
execution. Before discussing target unreachability detection, we summarize the
relevant literature.

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 253–267, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Mobile robot on-line algorithms are discussed in the robotics and computa-
tional geometry literature. Roboticists usually emphasize the type of sensors
required to achieve a given task, and the problems considered here are referred
to as sensor based motion planning [6, 7]. Notable early papers in this area de-
scribe the algorithms BUG1/BUG2 [17] and ALG1/ALG2 [20] for navigating a
two degrees-of-freedom mobile robot in an unknown planar environment using
position and tactile sensors. These works have been extended to navigation in
planar environments using vision and laser sensors [15, 16, 18, 21]. However, the
performance of these algorithms is typically characterized in terms of geometric
parameters of the environment such as total obstacle perimeter, without any
reference to the length of the optimal off-line solution, denoted lopt. As a result,
these algorithms may be fooled to generate lengthy paths in situations where
the optimal off-line path is very short.

Computational geometry researchers introduced the notion of competitive-
ness. An algorithm for a task P is said to be competitive if its solution to every
instance of P is bounded by a constant times the optimal off-line solution. An
early influential paper investigates navigation of a point robot in an unknown
planar environment consisting of m radial corridors [1]. (This problem has its
origin with a simpler problem, where a cow seeks an entry to a pasture along
an unknown fence which corresponds to two corridors [3].) However, a point
robot cannot achieve any form of competitive navigation in general environ-
ments [1, 14, 19]. Subsequent papers discuss on-line navigation of point robots
in specific classes of rectangular rooms [4, 5, 10], rooms with square-shaped ob-
stacles [19], and generalized streets [8, 14]. All of these papers strive to achieve
linear competitiveness (i.e. path length bounded by a constant times lopt) in
specific classes of environments.

In contrast, we depart from the point-robot paradigm and assume that the
robot is a disc of physical size D > 0. While this assumption may seem obvi-
ous, only few papers make use of this assumption (e.g. [9]). We have recently
reported on CBUG, an on-line navigation algorithm for a size D robot moving
in a general planar environment [13]. This algorithm generates a path whose
length is bounded from above by a quadratic function of lopt. Moreover, we have
shown that any on-line navigation algorithm generates in worst case a path
whose length is bounded from below by a quadratic function of lopt. Hence the
quadratic bound of CBUG is tight.

This paper focuses on the performance of on-line navigation algorithms in
cases where the target is unreachable from the robot’s start position. This no-
tion is known as disconnection proofs in off-line graph search algorithms. In the
motion planning literature, disconnection proofs appear in the context of random
path planning, where an off-line sampling technique detects target unreachabil-
ity of a polyhedral robot [2]. The following on-line version of a disconnection
proof is a contribution of this paper. Let a disconnection path be a path that
starts at S and proves that a target T is unreachable (Figure 1). Let λ be the
length of the disconnection path generated from S by an on-line algorithm. Let
λopt be the length of the shortest off-line disconnection path which starts at the
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Fig. 1. All disconnection paths starting from S trace an obstacle boundary surrounding
either S or T

same S. Then an algorithm is h(λopt) disconnection competitive of if λ ≤ h(λopt)
for all instances where T is unreachable from S. Based on this definition, we first
show that a navigation algorithm must be competitive in order to be disconnec-
tion competitive. Then we establish that CBUG generates a disconnection path
whose length is bounded from above by a quadratic function of λopt. Finally, we
establish that any navigation algorithm in an unknown planar environment gen-
erates in worst case a disconnection path whose length is bounded from below
by a quadratic function of λopt. The quadratic disconnection bound of CBUG is
thus tight.

The structure of the paper is as follows. In the next section we define general-
ized competitiveness and introduce the notion of disconnection competitiveness.
The CBUG algorithm is reviewed in Section 3. Its quadratic upper bound is
summarized and shown to match the universal lower bound over all on-line nav-
igation algorithms. The disconnection competitiveness of CBUG is analyzed in
Section 4. It is shown that the length of the disconnection path traveled by the
robot during execution of CBUG is at most quadratic in λopt. It is also shown
that any on-line navigation algorithm generates in worst case a disconnection
path whose length is at least quadratic in λopt, implying that up to constants
CBUG has optimal disconnection competitiveness. Section 5 discusses the effect
of connection-and-disconnection competitiveness on path stability, and compares
the performance of CBUG relative to non-competitive algorithms. The conclud-
ing section mentions several open problems.

2 Definition of Disconnection Competitiveness

This section describes our basic setup, then proceeds with formal definitions
of connection and disconnection competitiveness. We assume a planar unknown
environment populated by stationary and compact obstacles. The mobile robot is
a freely moving planar disc of size D > 0, where D is a given constant. The robot
is equipped with two sensors which are assumed ideal. The first sensor measures
the robot’s position with respect to a fixed reference frame. The second is an
obstacle detection tactile sensor which allows tracing of an obstacle boundary.
In addition to sensors the robot has on-board memory in which information on
the environment can be accumulated.
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Next consider the parameters governing the performance of mobile robot
tasks. The three most significant parameters are physical travel time, on-board
computation time, and on-board memory. In order to simplify the ensuing anal-
ysis, we associate physical travel time with length l of the path traveled by the
robot. As for on-board computation time, we limit our discussion to algorithms
that take polynomial time to compute each physical motion step of the robot.
Since the time required for a physical motion step is typically several orders of
magnitudes longer than the execution time of an on-board computation step,
we focus on l as the main performance parameter. Last, we limit the discus-
sion to algorithms whose storage requirement is at most linear in the size of the
environment.

Thus l denotes length of the path traveled by the robot, while lopt denotes
length of the optimal off-line path. The following definition generalizes the tra-
ditional notion of linear competitiveness to any functional relationship between
l and lopt.

Definition 1 (connection competitiveness). Anon-line navigation algorithm
is f(lopt) competitive when its path length l is bounded from above by a scalable
function f(lopt) over all instances where the target is reachable. In particular, l ≤
c1lopt + c0 is the traditional linear competitiveness, while l ≤ c2l

2
opt + c1lopt + c0 is

quadratic competitiveness, where the ci’s are positive constants that depend on the
robot size D.

The meaning of scalability is as follows. When performance is measured in phys-
ical units such as meters m, one must ensure that both sides of the relationship
l ≤ f(lopt) posses the same units, so that change of scale would not affect the
bound. For instance, the coefficient c2 in the relationship l≤ c2l

2
opt +c1lopt +c0

must have units of m−1, c1 must be unitless, and c0 must have units of m. Note
that the definition of competitiveness focuses on a particular navigation algo-
rithm. However, our objective is to characterize the least upper bound that can
be achieved over all on-line navigation algorithms. This objective requires the
following universal lower bound.

Definition 2. A universal lower bound on the competitiveness of on-line
navigation is a lower bound g(lopt) such that l ≥ g(lopt) over all on-line naviga-
tion algorithms for this task.

Note that the universal lower bound characterizes the on-line navigation task
itself, not any specific algorithm for this task. When the competitive upper bound
of a specific algorithm matches the universal lower bound up to constants, the
bound itself becomes the competitive complexity class of the task [12]. Let us
now define disconnection competitiveness. Recall that λ denotes length of the
path traveled by the robot from a start S until it halts with a conclusion that
the target T is unreachable. Recall, too, that λopt denotes length of the shortest
off-line path which starts at the same S and proves that T is unreachable. The
following definition is analogous to the definition of connection competitiveness.
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Definition 3 (disconnection competitiveness). An on-line navigation algo-
rithm is h(λopt) disconnection competitive when its path length λ is bounded
from above by a scalable function h(λopt) over all instances where the target is
not reachable. In particular, λ ≤ c2λ

2
opt + c1λopt + c0 is quadratic disconnection

competitiveness, where the ci’s are positive constants that depend on the robot
size D.

The last definition concerns the least upper bound on disconnection competi-
tiveness.

Definition 4. A universal lower bound on the disconnection competitiveness
of on-line navigation is a lower bound e(λopt) such that λ≥e(λopt) over all on-
line navigation algorithms for this task.

Note that here, too, the universal lower bound is not associated with a specific
on-line algorithm, but rather characterizes the on-line navigation task itself.

3 The CBUG Algorithm

For clarity of presentation, we describe the algorithm for a point robot equipped
with position and tactile sensors, moving in a planar environment populated
by unknown obstacles. The point robot represents the configuration of the disc
robot, and the “obstacles” are c-space obstacles induced from the physical ones.
The principle idea of CBUG is as follows. Given a start S and target T , the robot
selects an initial ellipse with focal points S and T and area A0, and searches for
T in the portion of the ellipse accessible from S. The search is executed with the
classical BUG1 algorithm reviewed below, which regards the bounding ellipse as
a virtual obstacle1. If the target is detected the algorithm terminates. Otherwise
the robot repeats the process in ellipses with areas 2iA0 for i=1, 2, . . . until the
target is found or determined to be inaccessible from S (Figure 2). The basic
algorithm treats the bounding ellipse as an obstacle whose boundary must be
traced by the robot. A more advanced version of the algorithm described below
does not require any tracing of the bounding ellipse. A description of the basic
algorithm follows.

Basic CBUG Algorithm:
Sensors: Position and tactile sensors.
Input: A start S, a target T , an initial ellipse with focal points S and T and
area A0.
Initialization: Set S1 = S. Set initial search area A(1) = A0. Set i = 1.
Repeat
1. Starting at Si, search for T using BUG1 in ellipse of area A(i) with focal

points S and T .
1 Other sub-algorithms such as ALG1 [20] can be used, but the principle bounds

reported here would remain the same. Simulations of CBUG with BUG1 and ALG1
as sub-algorithms are discussed below.
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Fig. 2. (a)-(d) Execution example of the basic CBUG. (e)-(h) The modified CBUG
does not require tracing of the bounding ellipses.

2. If BUG1 terminates at T : STOP, target is found.
3. If BUG1 determines that an obstacle boundary separates S from T (see

text):
3.1 If obstacle boundary does not intersect ith bounding ellipse: STOP, target

is unreachable.
3.2 Set Si+1 at point where BUG1 terminated (see text).
4. Set A(i+1) = 2A(i). Set i = i + 1.
(End of repeat loop)

First let us review the BUG1 sub-algorithm. Under BUG1 the robot moves from
the ith start position towards the target until it hits an obstacle. Then it circum-
navigates the obstacle in a clockwise direction while recording the closest point to
the target along the current boundary as pmin. When the obstacle circumnaviga-
tion is complete, the robot returns to pmin along the shorter boundary segment.
If the direction from pmin to T points into the current obstacle, the obstacle
necessarily separates S from T and the target is unreachable [17]. Otherwise the
robot resumes its motion to the target until the next obstacle is encountered or
the target is found.

Based on the assumption of compact obstacles, the bounding ellipses of CBUG

eventually contain a path to the target if one exists, or contain an entire obsta-
cle boundary which separates the start from the target. At this stage the BUG1
sub-algorithm finds a path to the target if one exists or determines target un-
reachability. Note that CBUG determines target unreachability only when the
separating obstacle boundary is wholly physical and does not contain portions
of the bounding ellipse. Also note that CBUG requires constant memory: S and
T , the current obstacle hit point, the current pmin, distances along the current
obstacle boundary, and the current search area A(i).

Example 1. Consider the execution of CBUG in the office-like environment
shown in Figure 2(a). Starting at S, the disc robot determines that the initial
ellipse blocks its path to T (Figure 2(b)). Hence it doubles the ellipse’s area and
resumes the search from the point S2 which is closest to T (Figure 2(c)). The
robot next determines that the new bounding ellipse still blocks its path to T .
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Hence it doubles the ellipse’s area for the second time and resumes the search
at the point S3 (Figure 2(d)). This last search ends successfully at T .

Next we describe a practical speedup of CBUG that eliminates the need to
trace the bounding ellipses. When the robot hits an obstacle, either the en-
tire obstacle boundary is contained inside the current bounding ellipse, or the
boundary segment which contains the hit point has its two endpoints on the
bounding ellipse. The modified algorithm requires that the robot trace an obsta-
cle boundary until one of two events happens. Either the robot circumnavigates
the entire obstacle boundary, or it reaches an endpoint of the boundary on the
current bounding ellipse. In the latter case the robot reverses its boundary trac-
ing direction and continues along the obstacle boundary until reaching the other
endpoint of the boundary segment. The robot next moves to the closets point
to the target along the boundary segment, and resumes execution of the sub-
algorithm BUG1.

Example 2. An execution of the modified CBUG on the same office-like en-
vironment is shown in Figure 2(e)-(h). Each time the robot hits an obstacle,
it initiates a clockwise circumnavigation of the obstacle boundary. In the first
and second stages the robot encounters during boundary tracing the current
bounding ellipse (Figure 2(f)-(g)). The robot consequently reverses its tracing
direction until the other endpoint of the boundary segment is encountered. In
both stages the path taken by the robot is significantly shorter than the path
taken under the basic algorithm.

The following result asserts that the path generated by CBUG to an accessible
target is bounded by a quadratic function of lopt.

Proposition 3.1 ([13]). If T is reachable from S, the basic CBUG algorithm
finds the target using a path of length l satisfying the upper bound

l ≤ 6π
D

l2opt + ‖S−T ‖+
6A0

D
, (1)

where lopt is length of the shortest off-line path from S to T , D is the disc-robot
size, and A0 is area of the initial ellipse.

Note that the three summands in (1) have length units, so the upper bound is
scalable. The next result asserts that the universal lower bound on connection
competitiveness is also quadratic in lopt.

Theorem 1 ([13]). Any navigation algorithm in an unknown planar environ-
ment to a reachable target generates in worst case a path of length l satisfying
the quadratic lower bound

l ≥ 4π
3(1+π)2D

(1−ε)l2opt, (2)

where lopt is length of the shortest off-line path from S to T , D is the disc-robot
size, and ε>0 is an arbitrary small constant.

The theorem implies that the connection competitiveness of CBUG is tight.
On-line navigation of a disc robot in planar environments thus belongs to the
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quadratic competitive complexity class. Note that (1) and (2) approach infinity
as D approaches zero. This is consistent with earlier observations that a point
robot cannot achieve any form of competitive on-line navigation in general planar
environments [1, 14, 19].

4 Disconnection Analysis of CBUG Algorithm

This section begins with a generic assertion that connection competitiveness is
necessary for disconnection competitiveness. Then we derive an upper bound
on the disconnection competitiveness of the basic CBUG algorithm. Finally, we
derive a universal lower bound on disconnection competitiveness.

Proposition 4.1. If an on-line navigation algorithm possesses an upper bound
h(λopt) on its disconnection competitiveness, it possesses an upper bound of
h(lopt+ε) on its connection competitiveness (ε is an arbitrary small constant).

Proof sketch: Consider a scenario where T can be reached from S. Let us
assume that T can be surrounded by a small disc of radius δ which is free
from obstacles. Let us further assume that the on-line algorithm guides the
robot directly to the target within this small disc. We now render the target
inaccessible by surrounding it with a disc-obstacle of radius δ. In this case the
shortest disconnection path consists of the shortest path from S to the disc,
and a loop around the disc. The length of the shortest disconnection path is
λopt = lopt + ε, where lopt is the original shortest off-line path from S to T
and ε = 2πδ − δ. By assumption any on-line disconnection path has length λ
satisfying λ ≤ h(λopt). Any disconnection path must circumnavigate the small
disc surrounding T . Hence it can be converted to a path from S to T of length
l ≤ h(λopt) − ε. Substituting λopt = lopt + ε gives the upper bound l ≤ h(lopt+
ε)− ε ≤ h(lopt+ε) on the connection paths. �
In the following analysis we treat the disc robot as a point equipped with position
and tactile sensors, moving in a planar c-space amidst unknown c-obstacles. A
c-space disconnection path starts at a configuration S and contains a c-obstacle
boundary that separates S from T . The first lemma establishes that CBUG

terminates once a disconnection path appears in its current bounding ellipse.

Lemma 4.2. CBUG terminates with a conclusion that T is unreachable in
the first bounding ellipse whose interior contains a disconnection path starting
from S.

The lemma is based on the following argument. The sub-algorithm BUG1
is known to be complete both in terms of its connection and disconnection
paths [17]. Once a disconnection path which starts at S lies in the interior of
the current bounding ellipse, BUG1 finds this path and terminates CBUG with
a conclusion that T is unreachable from S.
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The next lemma characterizes the shortest off-line disconnection path. Let U
be the connected component of the free c-space containing the start S. In general,
U is bounded from the outside by an outer c-obstacle, and is punctured from
the inside by internal c-obstacles. Hence there are two possible cases of target
unreachability. The first case occurs when T lies beyond the outer boundary.
In this case any disconnection path must circumnavigate the outer boundary of
U . The second case occurs when T lies inside a puncture of U . In this case any
disconnection path must circumnavigate the internal c-obstacle boundary. The
two cases are discussed in the following lemma.

Lemma 4.3. Let α be the shortest off-line disconnection path starting from S,
of length λopt. If T lies beyond the outer boundary of U , α lies in a disc with
center at S and radius λopt/2. If T lies inside a puncture of U , α lies in an
ellipse with focal points S and T and major axis of length λopt.

Proof: First consider the case where T lies beyond the outer boundary of U ,
denoted β. We may assume that β is a simple closed loop. Since T lies beyond β,
any disconnection path from S must contain the entire loop β. Since the length
of α is λopt, the length of β is at most λopt. Consider now the collection of all
loops of length at most λopt surrounding S. Clearly, a disc with center at S and
radius λopt/2 contains all such loops. In particular it contains the loop β, and
consequently it contains the path α.

Next consider the case where T lies in a puncture of U . Let γ denote the
puncture’s boundary, which we assume is a simple closed loop. The entire γ is
part of any disconnection path starting at S. In particular, the shortest discon-
nection path α starts at S, contains the loop γ, and has total length λopt. Let p
denote the point where α joins γ, and let L denote the length of γ. Any point
x on γ satisfies ‖x− T ‖ ≤ L/2. Hence the length of the path from p to x along
the shorter portion of γ, then from x straight toward T , has length bounded
by L. Joining the latter path with the portion of α between S and p gives a
continuous path with endpoints at S and T and total length bounded by λopt.
All such paths are contained in an ellipse with focal points S and T and major
axis of length λopt. Since x is an arbitrary point along the loop γ, the entire
disconnection path α is contained in the ellipse. �
The next lemma gives an upper bound on the area of the first bounding ellipse
of CBUG which contains a disconnection path starting from S.

Lemma 4.4. CBUG terminates with a conclusion that T is unreachable in a
bounding ellipse whose area A(n) is bounded by A(n) < π

2 (λopt + ‖S−T‖)(λ2
opt +

2λopt‖S−T‖)1/2, where λopt is length of the shortest off-line disconnection path
which starts at S.

Proof: Based on Lemma 4.2, CBUG terminates with a conclusion of target
unreachability once its bounding ellipse contains a disconnection path starting
at S. It can be verified that the disc and ellipse of Lemma 4.3 are contained
in a larger ellipse with focal points S and T and major axis of length 2a =
λopt +‖S−T‖. The latter ellipse contains the shortest off-line disconnection path



262 Y. Gabriely and E. Rimon

from S. It can be verified that the ellipse’s minor axis has length 2b = (λ2
opt +

2λopt‖S−T‖)1/2. The ellipse’s area is given by πab. Since CBUG doubles the
area of its bounding ellipse in each iteration, A(n) ≤ 2πab. Substituting for a
and b in the latter inequality gives the bound on A(n). �
Next we convert the bound on A(n) to a bound on path length. The conversion is
based on a key geometric fact for which we need the notion of traceable obstacles.
Let CBi be the c-space obstacle induced by an obstacle Bi for a disc robot of
size D. The traceable obstacle induced by Bi, denote Bi, is the physical obstacle
obtained by filling any internal holes in CBi and then shrinking CBi inward by
a distance of D/2. If two traceable obstacles overlap their union is considered a
single traceable obstacle. An important property of Bi is that the area swept by
the disc robot during tracing of its boundary is precisely the area swept by the
robot while tracing the boundary of the original obstacle Bi.

Lemma 4.5 ([12]). Let a planar environment contain individually traceable ob-
stacles B1, . . . , Bk. Let a size-D disc robot trace the ith obstacle boundary, and
let κi be the area swept by the robot during this tracing. Let C be any simple closed
curve surrounding the k regions swept by the robot. Then

∑k
i=1 κi ≤ 4A(C),

where A(C) is the area of the obstacle-free points enclosed by C.

The following proposition establishes a quadratic upper bound on the discon-
nection paths generated by CBUG.

Proposition 4.6. If T is not reachable from S, the basic CBUG algorithm con-
cludes target unreachability along a path whose length λ satisfies the quadratic
upper bound,

λ ≤ 6π
D

(λopt + ‖S−T‖)2 + ‖S−T‖ +
6A0

D
, (3)

where λopt is length of the shortest off-line disconnection path from S, D is the
disc-robot size, and A0 is area of the initial ellipse.

Note that the three summands have units of length, so the upper bound is
scalable.

Proof: At the ith stage of CBUG the robot executes the sub-algorithm BUG1
in an ellipse with focal points S and T and area A(i). The regions swept by the
robot during circumnavigation of obstacles in this ellipse (including the obstacle
formed by the ellipse) are surrounded by the ellipse’s boundary. Identifying the
latter boundary with the curve C of Lemma 4.5, the total length of the robot’s
path during circumnavigation of the obstacles is at most 4A(i)/D. Recall now
that under BUG1 the robot circumnavigates the boundary of each obstacle at
most 1.5 times. Hence the total length of the robot’s path during boundary
following is at most 6A(i)/D. Under BUG1 motion between obstacles is always
directly to the target. The total length of these motion segments equals to the
net decrease of the robot’s distance from T , which is ‖Si − T ‖ − ‖Si+1 − T ‖.
Adding the two terms gives the ith stage path-length bound: λi ≤ 6A(i)/D +(
‖Si − T ‖ − ‖Si+1 − T ‖

)
.
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Suppose that CBUG finds a disconnection path at the nth stage, such that
n > 1. Since the area of the ellipses doubles in each step,

∑n
i=1 A(i) = A0+2A0+

· · · + 2n−1A0, where A0 is the area of the initial ellipse. Since A(n) = 2n−1A0,
we see that

∑n
i=1 A(i) =

∑n−1
i=1 A(i) + A(n) < 2A(n). According to Lemma 4.4,

the area of the nth ellipse satisfies the inequality A(n) < π
2 (λopt +‖S−T‖)(λ2

opt +
2λopt‖S−T‖)1/2 ≤ π

2 (λopt+‖S−T‖)2. Hence the total length of the path traveled
by the robot is bounded by λ =

∑n
i=1 λi ≤ 6

D

∑n
i=1 A(i) +

∑n
i=1(‖Si − T ‖ −

‖Si+1 − T ‖) < 6π
D (λopt + ‖S−T‖)2 + ‖S − T‖, where we substituted S1 = S and

Sn+1 = T . Finally, the term 6A0/D bounds the path traveled by the robot in
the case where the initial ellipse already contains a disconnection path starting
from S. �
The final result is a universal lower bound on disconnection competitiveness.

Proposition 4.7. Any navigation algorithm for unknown planar environments
generates in worst case a disconnection path whose length satisfies the quadratic
lower bound

λ ≥ 4π
3(1+2π)2D

(1−ε)λ2
opt, (4)

where λopt is length of the shortest off-line disconnection path starting from S,
D is the disc-robot size, and ε>0 is an arbitrary small constant.

Proof sketch: We use the environment which is used to prove the universal
lower bound on connection competitiveness [13]. This environment consists of
radial corridors emanating from S and having length r. The radial corridors are
surrounded by a circular corridor such that only one radial corridor enters the
circular corridor. The target is placed in the circular corridor. The shortest off-
line path from S to T satisfies lopt ≤ (1 + π)r, where πr is due to worst case
motion in the circular corridor to a target located opposite the entry. Not know-
ing which radial corridor leads to the circular corridor, any on-line algorithm
would guide the robot in worst case through all radial corridors before finding
the entry to the circular corridor. It is shown in [13] that the worst case on-line
path from S to T in this environment has length l satisfying l ≥ c(1−ε)r2, where
c = 4π/3D and ε is an arbitrary small constant.

We now render the target inaccessible in two ways. First we place T outside
the circular corridor so that it becomes inaccessible from S. In this case the
shortest off-line disconnection path requires radial motion from S to the outer
circular corridor, then a circumnavigation of the circular corridor. In the second
case we place T in the circular corridor and surround it by walls located δ apart
within the circular corridor. If the circular corridor is sufficiently wide, T lies
in a puncture of the region accessible from S. In this case the shortest off-line
disconnection path requires radial motion from S to the circular corridor, then
motion in the circular corridor until the walls surrounding T are met. Combining
the two cases, λopt ≤ (1+2π)r in this environment. Any on-line algorithm must
explore in worst case all radial corridors before finding the entry to the circular
corridor. Then it must circumnavigate in worst case the entire circular corridor.
Hence λ ≥ c(1−ε)r2 + 2πr. Since r ≥ λopt/(1+2π), we obtain the lower bound
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λ ≥ c1(1−ε)λ2
opt + c2λopt, where c1 = 4π/3(1+2π)2D and c2 = 2π/(1+2π). The

latter inequality implies that λ ≥ c1(1−ε)λ2
opt. �

The universal lower bounds (2) and (4) imply that CBUG has the lowest possible
connection as well as disconnection competitiveness.

5 Significance of Double Competitiveness

This section discusses some useful properties of connection-and-disconnection
competitiveness, termed double competitiveness. First and foremost, double com-
petitiveness ensures that an on-line navigation algorithm would not stray away
from the optimal path due to misleading sensory clues. Consider for instance
the office floor environment shown in Figure 3. The paths generated by ALG1
(reviewed below) may stray along the outer walls arbitrarily far from S and T .
When CBUG runs ALG1 as a sub-algorithm, the search is confined to the ellipses
depicted in the figure.

Double competitiveness additionally provides some amount of path stability.
A navigation algorithm possesses path stability when its path varies continuously
with the position of S and T [11]. A weaker notion of path stability is as fol-
lows. A navigation algorithm possesses path length stability when its path length
varies continuously with S and T . This means that small changes in S or T
yield small changes in path length and hence travel time from S to T . Classical
on-line navigation algorithms such as BUG1 and ALG1 respond to small changes
in S or T with possibly unbounded path-length changes (Figure 3). However,
the competitive quantities lopt and λopt are approximately constant with respect
to small changes of S and T . Hence competitive bounds in terms of lopt and
λopt automatically provide path-length bounds in response to small changes of
S and T . Under CBUG the length of all connection paths from S to T vary
in the bounded interval [lopt, c1l

2
opt +c2], where c1 and c2 are constants. Simi-

larly, the length of all disconnection paths from S vary in the bounded interval
[λopt, c

′
1λ

2
opt+c′2], where c′1 and c′2 are constants.

T

small change in Ssmall change in S

T

Fig. 3. The paths generated by ALG1 show significant path-length jumps in response
to small changes in S. The ellipses show the total search area of CBUG.



Competitive Disconnection Detection 265

Next we describe simulations comparing the non-competitive algorithms
BUG1 and ALG1 with CBUG. The algorithm ALG1 relies on the straight line
passing through S and T , and works as follows [20]. The robot moves from S
along the S-T line towards T until it hits an obstacle. Then it circumnavigates
the obstacle in a clockwise direction. Whenever the robot reaches an intersection
point of the current obstacle boundary with the S-T line, denoted p, it leaves the
obstacle if two conditions are met. The point p must be closer to T than all pre-
vious hit and leave points, and the direction from p to T must point away from
the current obstacle. Once the robot leaves an obstacle it resumes motion along
the S-T line until the next obstacle is encountered or the target is found. If p is
not a valid leave point but is a previously defined hit or leave point, the robot
reverses its boundary tracing direction at p. However, the robot is not allowed
any further direction reversals along the current boundary segment. When the
robot completes a loop around the current obstacle boundary without finding a
suitable leave point, it halts with a conclusion of target unreachability. Several
paths of ALG1 are depicted in Figure 3.

In general, the double competitiveness of CBUG comes with an overhead in-
curred by its search ellipses. In order to study the effect of this overhead on
average performance, we compared BUG1 and ALG1 to CBUG implementing
BUG1 and ALG1 as sub-algorithms. We tested the algorithms in the office floor
environment depicted in Figure 3. We placed S and T in three distance ranges:
‖S − T‖≤10D, 10D < ‖S − T‖≤50D, and ‖S − T‖>50D, where D is the robot
size. Each distance range includes 30 runs with S and T varying within the pre-
scribed range. Each 30 runs were subdivided into 10-run batches corresponding
to three furniture occupancy levels of the office floor.

The results listed in Table 1 give the average ratio l/lopt, where l is length
of the path generated by the algorithm and lopt is length of the shortest off-
line path from S to T . In the highest distance range S and T are roughly at
opposite corners of the office floor. In this case CBUG is inferior to BUG1 and
ALG1. In this case lopt is not much shorter than the path along the outer walls
persistently traced by BUG1. The superior performance of ALG1 is due to its
boundary tracing rule, which typically limits its wall tracing to a single room.
However, the advantage of BUG1 and ALG1 diminishes as T moves closer to S.
In the lowest distance range S and T are typically in neighboring rooms. In this
case BUG1 still follows the entire outer walls. Similarly, when T is located just
on the other side of a wall, ALG1 guides the robot along the entire outer walls. In
contrast, CBUG always recognizes when both sub-algorithms stray away from S

Table 1. Summary of average l/lopt results comparing CBUG to BUG1 and ALG1

Distance Range BUG1 ALG1 CBUG with BUG1 CBUG with ALG1
‖S − T‖ > 50D 7.1 3.0 9.0 10.9

10D < ‖S − T‖ ≤ 50D 11.5 4.6 7.2 12.0
‖S − T‖ ≤ 10D 28.8 14.1 3.5 7.3
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and T . It cuts short their wall following with the bounding ellipses, thus ensuring
paths whose average length is twice shorter than the paths of ALG1 and eight
times shorter than the ones generated by BUG1. Simulations of cases where T is
inaccessible from S are under preparation and will be discussed in an extended
version of this paper.

6 Conclusion

The paper introduced a notion of disconnection competitiveness complimentary
to the traditional notion of connection competitiveness. Connection competi-
tiveness concerns cases where T is reachable from S, while disconnection com-
petitiveness concerns cases where T cannot be reached from S. We described a
tactile-sensor based navigation algorithm for a disc-shaped robot, called CBUG.
The algorithm achieves connection as well as disconnection competitiveness by
limiting its search to a series of expanding ellipses. The connection competitive-
ness of CBUG is quadratic in lopt, which matches up to constants the universal
lower bound over all on-line navigation algorithms. The disconnection compet-
itiveness of CBUG is quadratic in λopt, where λopt is the shortest off-line dis-
connection path starting from S. The universal lower bound on disconnection
competitiveness over all on-line navigation algorithms is also quadratic in λopt.
Hence up to constants CBUG has tight connection as well as disconnection com-
petitiveness. However, competitiveness concerns worst case behavior, and does
not necessarily indicate efficient average behavior. Simulations reveal that in
practice CBUG may incur significant overhead in certain situations.

Two over-simplifications of the navigation problem discussed in this paper are
as follows. First, mobile robots are usually not disc-shaped but rather bodies hav-
ing three degrees of freedom. Our preliminary work on three degrees-of-freedom
mobile robots indicates that on-line navigation of simple shapes can be achieved
with cubic competitiveness. Second, CBUG assumes tactile senors. More sophis-
ticated sensors such as vision and laser sensors do not have a significant advan-
tage over tactile sensors in highly congested environments. However, practical
environments tend to be reasonably sparse, and an adaptation of CBUG to such
sensors is an important open problem. Last, the constants in the quadratic up-
per bounds on CBUG differ from the constants in the quadratic universal lower
bounds by a factor of about 100. The closing of this gap is a major challenge
that can yield algorithms with an improved average performance.
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Abstract. We present a simple algorithm to check for path non-existence for a robot
among static obstacles. Our algorithm is based on adaptive cell decomposition of con-
figuration space or C-space. We use two basic queries: free cell query, which checks
whether a cell in C-space lies entirely inside the free space, and C-obstacle cell query,
which checks whether a cell lies entirely inside the C-obstacle region. Our approach re-
duces the path non-existence problem to checking whether there exists a path through
cells that do not belong to the C-obstacle region. We describe simple and efficient al-
gorithms to perform free cell and C-obstacle cell queries using separation distance and
generalized penetration depth computations. Our algorithm is simple to implement and
we demonstrate its performance on 3 DOF robots.

1 Introduction

Motion planning is a fundamental problem in robotics. The goal is to compute a
collision-free path between two configurations of a given robot. This problem has
been extensively studied in the field for more than three decades. At a broad level,
prior algorithms for motion planning can be classified into roadmap methods,
exact cell decomposition, approximate cell decomposition, potential field meth-
ods and randomized sampling-based methods [7, 14, 15]. In particular, planning
algorithms such as the roadmap methods and exact cell decomposition are re-
ferred as complete motion planning algorithms. These approaches can compute
a collision-free path if one exists; otherwise they report path non-existence be-
tween the two configurations. However, these methods are known to have a high
theoretical complexity and are very difficult to implement. Their practical im-
plementations are usually limited to planar robots, convex polytopes or special
shapes such as spheres or ladders.

Practical algorithms for motion planning are based on approximate cell de-
composition, potential field computation or sampling-based algorithms. The
approximate cell decomposition based algorithms subdivide the configuration
space into cells and can be made resolution complete based on a suitable
choice of parameters. However, the number of subdivision in prior approaches
grows quickly with the dimension of the configuration space. In practice, prior
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cell-decomposition algorithms also suffer from the combinatorial complexity and
robustness issues with respect to contact surface enumeration and computation.
For a robot with high geometric complexity, generating and enumerating contact
surfaces can be complicated and time consuming [8, 16].

On the contrary, randomized sampling methods such as probabilistic roadmap
planners (PRMs) are relatively simple to implement and work quite well in
practice [11]. The strength of PRMs lies in their simplicity and they can be
easily applied to general robots with high DOF. However, PRMs have two major
issues: path non-existence (i.e. no passage) and narrow passages. If there is no
collision-free path, PRM algorithms may not terminate. Moreover, it is hard to
distinguish whether such situations arise due to path non-existence or due to
narrow passages and poor sampling.

Main Results

In this paper, we present a simple and efficient cell decomposition algorithm
for path non-existence from the initial to the goal configuration. Our resulting
motion planning algorithm is a complete algorithm for a rigid robot with trans-
lational and rotational DOF. Furthermore, our approach can also be extended
to articulated robots.

We subdivide the configuration space into empty, full and mixed cells. Unlike
prior cell decomposition algorithms, we use efficient algorithms to label a given
cell as full or empty to check whether it lies entirely in the C-obstacle region
or in the free space. Our algorithm uses two kind of queries: free cell query for
identifying empty cells and C-obstacle cell query for identifying full cells. We
efficiently perform these queries in the workspace by computing the separation
distance and generalized penetration depth. As a result, our cell query algorithms
can be easily implemented for 2D or 3D rigid robots, or articulated robots.

In order to check for path non-existence, the algorithm searches for a sequence
of adjacent empty or mixed cells to connect the cell containing the initial config-
uration to the cell containing the goal configuration. The non-existence of such
a sequence is a sufficient condition for path non-existence between the initial
and the goal configuration. We have implemented our algorithm and highlight
its performance on 3 DOF robots.

Organization

The rest of the paper is organized as follows. In Section 2, we briefly survey
related work on motion planning. We give an overview of our method in Sec-
tion 3 and present our cell labelling algorithms in Section 4. We describe our
implementation and discuss a few limitations of our approach in Section 5.

2 Previous Work

Motion planning has been extensively studied for more than three decades. Ex-
cellent surveys of this topic are available in [7, 14, 15]. In this section, we briefly
review prior algorithms for exact and approximate motion planning.
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2.1 Exact Motion Planning

The complete motion planning algorithms compute a collision-free path if one
exists; otherwise they report path non-existence. These include criticality-based
algorithms such as exact free-space computation for a class of robots [2, 9, 17, 12],
roadmap methods [6], and exact cell decomposition methods [20]. The exact cell
decomposition methods require an exact description of the configuration space
consisting of the free space and the C-obstacle region. The boundary between the
free space and C-obstacle region is described by a set of contact surfaces, each
surface being the locus of configurations of a robot at which a specific boundary
feature of the robot is in contact with a boundary feature of the obstacles. The
exact cell decomposition approaches partition the free space into a collection of
simpler geometric regions and compute a connectivity graph representing the
adjacency between the regions.

In theory, these methods are quite general. However, in practice, it is quite
challenging to implement them and no good implementations are known for
general and high DOF robots. As a result, many variants have been proposed to
deal with special cases of motion planning problems [14].

2.2 Approximate Cell Decomposition and Sampling-Based
Approaches

A number of algorithms based on approximate cell decomposition have been
proposed [4, 8, 27]. These methods partition the C-space into a collection of
cells. They classify the cells into three types: empty cells that lie entirely in the
free space, full cells that are entirely within the C-obstacle region, and mixed
cells that correspond to the rest. Unlike exact cell decomposition, the cell used
in approximate cell decomposition algorithms have a simpler, rectangloid shape,
and the empty cells provide a conservative approximation of the free space. The
planner searches through the empty cells to find a path. Moreover, approximate
cell decomposition methods are resolution complete; i.e., they can find a path if
one exists provided the resolution parameters are selected small enough [14]. In
practice, approximate cell decomposition methods have been used for low DOF
robots.

One of the main computational issues in approximate cell decomposition
methods is cell labelling. In order to label a cell, most prior approaches rely
on contact surface computations [27], which could be complicated and prone to
degeneracies. Paden et al. [18] describe a method based on workspace distance
computation. However, their method could be overly conservative in practice.

The probabilistic roadmap method (PRM) [11] is perhaps the most widely
used path planning algorithm for different applications. It is relatively simple to
implement and has been successfully applied to high DOF robots. Since PRM-
based algorithms sample the free space randomly, they may fail to find paths,
especially those passing through narrow passages. A number of extensions have
been proposed to improve the sampling in terms of handling narrow passages
[1, 10, 19] or use visibility-based techniques [22]. All these methods are proba-
bilistically complete.
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Recently, a deterministic sampling approach called star-shaped roadmaps has
been proposed [24]. The free space is partitioned into star-shaped regions and
connectors between star-shaped regions are computed for inter-region connec-
tivity. This algorithm is complete as long as there are no tangential contacts in
the boundary of the free space. Since star-shaped roadmaps compute the global
connectivity of the free space, the number of regions can increase exponentially
as a function of DOF. Moreover, this approach is based on contact surface enu-
meration.

2.3 Path Non-existence

Exact planning approaches such as exact cell decomposition and roadmap
computation can check for path non-existence. However, these methods are not
practical due to their theoretical complexity and implementation difficulty. Ap-
proximate cell decomposition approaches can also check for path non-existence,
but they are also complicated because of contact surface computation. In general,
a popular planning method such as PRM cannot deterministically guarantee the
path non-existence as it is only probabilistically complete. An effort has been
made to address the issue of path non-existence in PRM [3]. The authors have
proposed a disconnection prover, probabilistically showing that the motion plan-
ning problem has no solution. However, this approach is restricted to the special
problem of finding a path through a planar section. The deterministic sampling
approach such as star-shaped roadmaps [24] is a complete approach but it may
be overly conservative and can generate a large number of samples.

3 Overview

In this section, we give an overview of our algorithm. Following the basic frame-
work of approximate cell decomposition, we use reliable algorithms to perform
the cell labelling. Then we build the connectivity graph for the empty and mixed
cells from the cell decomposition, and check for path non-existence between the
initial and the goal configuration by performing a search in the connectivity
graph.

3.1 Notation

We use a symbol A to denote a robot and B to represent a collection of all
fixed obstacles. Let C denote the configuration space or C-space of the robot. F
and O = C\F represent the free space and the configuration space obstacle or
C-obstacle region, respectively. A cell C in n-dimensional C-space is defined as
a Cartesian product of real intervals:

C = [x′
1, x

′′
1 ]× [x′

2, x
′′
2 ] · · · × [x′

n, x
′′
n].

We denote A(q) as a placement of the robot A at configuration q. Let qinit

and qgoal represent the initial and the goal configuration of the robot. A line
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Fig. 1. Path non-existence between qinit and qgoal. (b): A connectivity graph G is
built. The path L, which connects the cells including qinit and qgoal, is computed from
G. Any mixed cell along L is further subdivided. (c): In the new connectivity graph,
the cell containing qinit and the cell containing qgoal are not connected. This concludes
that there is no collision-free path between qinit and qgoal.

segment in C-space connecting configurations qa and qb is represented as πqa,qb
.

Let l(t), t ∈ [0, 1] be an arbitrary motion curve defined in the C-space. We denote
μ(p, l) as the trajectory length of a point p on A when A moves along the motion
curve l.

3.2 Cell Decomposition and Labelling

Our approach to check for path non-existence is based on cell decomposition. The
configuration space C is spatially subdivided into cells at successive levels of the
subdivision. The cells are classified as empty or full depending on whether they
lie entirely inside the free space F , or entirely inside the C-obstacle O. If they are
neither empty nor full, they are labelled as mixed. Fig. 1 illustrates different type
of cells. In Section 4, we present more details about our cell labelling algorithm.

3.3 Connectivity Graphs

For each level of subdivision, the connectivity graph G is built to represent the
adjacency relationship between empty and mixed cells. Formally, the connectiv-
ity graph [14, 27, 28] associated with a decomposition D of C is an undirected
graph, where:

• The vertices in G are the empty and mixed cells in D.
• Two vertices in G are connected by an edge if and only if the corresponding

cells are adjacent.

Intuitively, G captures the connectivity of both the identified free space, which
is covered by the empty cells, and the ‘uncertain’ region, which is represented
by the mixed cells.

In order to check for path non-existence, our algorithm first locates the cells
Cinit and Cgoal, which contain qinit and qgoal, respectively. Next, the algorithm
searches G to find a path L, a sequence of adjacent empty and mixed cells
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connecting Cinit and Cgoal (Fig. 1). If no such path is found, it is sufficient to
claim that there is no collision-free path that connects qinit and qgoal, or qinit

and qgoal are not connected.
There are various known techniques to prioritize the search on the connectivity

graph G. We use the shortest path algorithm to search for a path connecting
Cinit and Cgoal in G. We also assign each edge a different weight, where the edge
associated with two empty cells has the smallest weight (0 in our implementation)
and the one with two mixed cells has the largest weight.

Our algorithm terminates if we can prove path non-existence, or we can find a
collision-free path. For this purpose, a subgraph Ge of G is also constructed. Ge

represents the adjacency relationship among all the empty cells. Intuitively, Ge

represents the connectivity of a part of the free space that has been identified
till the current level of subdivision. If there is a path in Ge connecting Cinit and
Cgoal, a collision-free path can be easily extracted and optimized [27].

3.4 Guided Subdivision

When a path L is reported after searching the connectivity graph G, it is not clear
whether qinit and qgoal are not connected. If so, we need to further explore the
‘uncertain’ regions - the union of mixed cells, to acquire more information about
their connectivity. Considering the fact that not all ‘uncertain’ regions contribute
to separating qinit from qgoal, we employ the first-cut algorithm [14, 27] to first
subdivide some of the ‘uncertain’ regions. More specifically, all the mixed cells on
the path L are assigned higher priorities for the next level of the subdivision than
other mixed cells. Our algorithm is recursively applied until it finds a collision-
free path or concludes path non-existence.

4 Cell Labelling

Compared to prior cell decomposition approaches, one of our distinct features is
that during cell decomposition, we use reliable algorithms for cell labelling. As
a result, our algorithm does not need to compute the contact surfaces. In this
section, we present our free cell query and C-obstacle cell query algorithms for
labelling the cells in C. Formally speaking, the free cell query checks whether a
given cell C is empty or the following predicate Pf is true:

Pf (A,B, C) : ∀q ∈ C, interior(A(q)) ∩ interior(B) = ∅,

where A is a robot, B represents the obstacles and the operator interior is the
interior of a set. Similarly, the C-obstacle cell query or C-obstacle query checks
whether a given cell C is full or the following predicate Po is true:

Po(A,B, C) : ∀q ∈ C, interior(A(q)) ∩ interior(B) �= ∅.

The collision detection algorithms can check whether a single configuration
lies in F or O. However, these predicates need to check whether a spatial cell
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lies in F or O, which corresponds to the collision detection for a set of continu-
ous configurations. Therefore, it is relatively harder to perform these queries as
compared to checking a single configuration.

In our algorithms, we place the robot at qc - the center of the cell and compute
the ‘extent’ of the motion that the robot can undergo as it moves away from
qc while still being confined within the cell C. To answer the predicate Pf , we
compute the separation distance between the robot A(qc) and the obstacle B.
This distance describes the ‘clearance’ between the robot and the obstacle. If this
‘clearance’ is greater than the amount of the maximal motion that the robot can
make, the robot will not collide with the obstacle, and the cell C will be declared
as a free cell.

Similarly, in order to perform the C-obstacle cell query, we measure the
amount of inter-penetration between the robot and the obstacle, and compare
it with the extent of the robot’s bounding motion. In subsection 4.2, we shall
present our method for formulating and computing the inter-penetration between
the robot and the obstacle.

4.1 Motion Bound Calculation

Bounding Motion for a Line Segment

In order to formulate the bounding motion for a C-space cell, we first introduce
a case when a robot moves along a line segment in C-space. Schwarzer et al. [21]
define the bounding motion λ when a robot moves along a line segment πqa,qb

as the maximal trajectory length over all points on the moving robot:

λ(A, πqa,qb
) = Upper Bound(μ(p, πqa,qb

) | p ∈ A).

For 2D planar robots with translational and rotational DOF, the bounding mo-
tion λ can be computed as a weighted sum of the difference between qa and qb

for translational components x, y and the rotational component φ:

λ(A, πqa,qb
) = |qb.x − qa.x|+ |qb.y − qa.y|+ Rφ × |qb.φ − qa.φ|,

where the weight Rφ is defined as the maximum Euclidean distance between
every point on A and its rotation center. In this case, we can achieve a tighter
bound:

λ(A, πqa,qb) =
√

|qb.x − qa.x|2 + |qb.y − qa.y|2 + Rφ × |qb.φ − qa.φ|. (1)

We can also extend this bound to 3D rigid objects.

Bounding Motion for a Cell

Now, we define the bounding motion λ of a robot when it is restricted within a
cell C, instead of a line segment, as:

λ(A, C) = max{λ(A, πqa,qb
) | qb ∈ ∂C}, (2)

where qa is the center of C, and qb is any point on ∂C or the boundary of C.
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Among all line segments πqa,qb
, the diagonal line segments have the maximum

difference on each component between these two configurations. According to
Eq. (1), we can infer that the maximum of the bounding motion λ(A, πqa,qb

)
is achieved by any diagonal line segment of the cell. Therefore, the bounding
motion for the cell C is equivalent to the bounding motion over any diagonal
line segment πqa,qc :

λ(A, C) = λ(A, πqa,qc), (3)

where qa is the center of the cell and qc is any corner vertex of the cell.

4.2 C-Obstacle Cell Query

In order to perform the C-obstacle cell query, we can measure the extent of inter-
penetration between the robot and the obstacle, and compare it with a bound
on the robot’s motion. If the robot only has translational DOF, we can use
translational PD, PDt, which is defined as the minimum translational distance
to separate the robot from the obstacle:

PDt(A,B) = min({‖ d ‖ |interior(A+ d) ∩ B = ∅}).

However, PDt is only useful to perform C-obstacle cell query, when the robot
has only translational DOF. This is because PDt only considers the translational
motion to separate the robot from the obstacle. When the robot is allowed to
both translate and rotate, Fig. 2 shows that the robot can be separated from
the obstacle with ‘less’ amount of motion by making use of rotational motion.

Fig. 2. An example shows that, to separate A from B, the amount of the ‘motion’
when both translational and rotational transformation are allowed (b) is much smaller
than the amount of the ‘motion’ when only translation is allowed (a)

Generalized Penetration Depth

In order to deal with a robot with translational and rotational DOF, we adopt
the notion of generalized penetration depth, PDg, proposed by [25]. PDg takes
both translational and rotational motion into account and can be defined using
the notion of the separating path. A separating path l is such a motion curve
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in C-space when a robot moves along l, the robot can be completely separated
from the obstacle.

Given a set L of all possible candidates of separating paths, PDg between a
robot A and an obstacle B is defined as:

PDg(A,B) = min{max{μ(p, l)|p ∈ A}|l ∈ L}. (4)

A useful property related to PDg is as follows:

Lemma 1. For two convex polytopes A and B, we have

PDg(A,B) = PDt(A,B).

The proof of this lemma can be found in [26].
The exact computation of PDg between non-convex objects is a difficult prob-

lem [26]. In our C-obstacle cell query algorithm, we compute a lower bound on
PDg, which guarantees the correctness of the query. Using Lemma 1, we effi-
ciently compute a lower bound on PDg by (1) decomposing non-convex models
into convex pieces and (2) for each convex pair, compute the PDt as its PDg,
(3) take the maximum value of PDg’s between all pairwise combinations of con-
vex pieces. Many efficient algorithms are known to compute the PDt between
two convex polytopes [5, 23, 13]. The resulting PDg computation algorithm is
described in Algorithm 1.

Algorithm 1. Lower bound on PDg computation
Input: The robot A, the obstacle B and the configuration q
Output: The lower bound on PDg between A(q) and B.
1: {During preprocessing}
2: Decompose A and B into m and n convex pieces; i.e., A = ∪Ai and B = ∪Bj .
3: {During run-time query}
4: for each pair of (Ai(q),Bj) do
5: k = (i − 1)n + j
6: if Ai(q) collides with Bj then
7: PDg

k = PDt((Ai(q),Bj)
8: else
9: PDg

k = 0
10: end if
11: end for
12: return max(PDg

k) for all k.

4.3 C-Obstacle Cell Query Criterion

We now state a sufficient condition for C-obstacle cell query; i.e., checking
whether A and B overlap at every configuration q within a cell C.

Theorem 1: For a cell C with a center at qa, the predicate Po(A,B, C) is true
if: PDg(A(qa),B) > λ(A, C). (5)
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Proof. Our goal is to show that Eq. (5) implies that there is no free configuration
along any line segment πqa,qb

, where qb is any configuration on the boundary of
the cell C. According to the definition of PDg, the maximum trajectory length
for every point on a robot A moving along a possible separating path should
be greater than or equal to PDg(A(qa),B). Moreover, according to Eq. (2), the
trajectory length of the robot when it moves along πqa,qb

is less than or equal
to λ(A, C). Since PDg(A(qa),B) > λ(A, C), the minimum motion required to
separate the robot A from obstacle B is larger than the maximum motion the
robot A can undergo. Therefore, there are no free configurations along any line
segment πqa,qb

.
Since there is no free configuration along every line segment between qa to

qb, we conclude that every configuration in the cell C lies inside the C-obstacle
region, and therefore, the predicate Po(A,B, C) holds. !"

We use Theorem 1 to conservatively decide whether a given cell C lies inside
the C-obstacle region. The C-obstacle cell query algorithm consists of two parts:

1. Compute a lower bound on PDg for the robot A(qa) and the obstacle B by
the Algorithm 1.

2. Compute an upper bound on motion, λ(A, C) by Eq.’s (3) and (1).

Our C-obstacle cell query algorithm is general for both 2D and 3D rigid objects.
We have implemented the query for both types of objects. The main computa-
tional component is to compute PDt between convex objects.

4.4 Free Cell Query Criterion

Similar to C-obstacle cell query, we compare the separation distance between the
robot A(qc) and the obstacle B with the bounding motion of the cell λ(A, C).
If the distance is greater than the bounding motion, then the cell is classified as
a free cell.

4.5 Extension to Articulated Robots

Our free cell and C-obstacle cell queries based method for checking path non-
existence can be extended to articulated robots. The main modifications for
articulated robots are in the components: generalized penetration depth, sepa-
ration distance, and bounding motion computations.

The definition of generalized penetration depth PDg in Eq. (4) is also applica-
ble to articulated robots. In this case, the separating path in C-space is defined
as a curve such that when the articulated robot A moves along it, A will be
completely separated from the obstacle. In order to compute a lower bound on
PDg between A and the obstacles, we regard each link of A as a rigid robot with
translational and rotational DOF. The maximum of lower bounds PDg between
each link of A and the obstacles yields a lower bound on PDg between A and
the obstacles. In order to compute the separation distance and bounding motion
for the articulated robots, we use the algorithms introduced by Schwarzer et al.
[21].
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Fig. 3. Application of our algorithm to the gear benchmark: (a) The goal of this exam-
ple is to move a gear-shaped robot from A to A′ through the two gear-shaped obstacles
B1 and B2. It is uncertain whether there is a path for these configurations, even though
the robot at Am is collision-free. (b, c) shows the graph Ge built from empty cells, and
the region of full cells (shaded volumes). Since no path is found when searching the Ge,
we search the graph G for a guiding path L, which indicates the next level of subdi-
vision. (d) After the subdivision is recursively applied, the algorithm finally concludes
that no path exists. This is because the initial and the goal configuration are separated
by full cells (shaded volumes in (d)).

Table 1. Performance: This table highlights the performance of our algorithm on
different benchmarks

two-gear five-gear five-gear,narrow puzzle narrow puzzle
Total timing(s) 3.356 6.317 85.163 7.898 15.751

Free cell query(s) 0.858 1.376 6.532 2.174 2.993
C-obstacle cell query(s) 0.827 1.162 4.675 2.021 2.612

G searching(s) 0.389 1.409 30.687 1.991 5.685
Ge searching(s) 0.077 0.332 7.169 0.309 1.035

Subdivision,Overhead(s) 1.205 2.038 36.100 1.403 3.426

5 Experimental Results

In this section, we describe the implementation of our algorithm and highlight
its performance on several motion planning scenarios. All timings are measured
on a 2.8 GHz Pentium IV PC with 2G RAM. Our current implementation is not
optimized.

We illustrate the running process of our algorithm for the ‘two-gear’ example
in Fig. 3. In order to find whether the gear-shaped robot can pass through the
passage among star-shaped obstacles, the algorithm performs cell decomposition,
and builds the connectivity graph G for empty and mixed cells as well as its
subgraph Ge for empty cells. The cell decomposition, which is performed in
the region indicated by the guiding path from the search on the connectivity
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Table 2. Application of our algorithm to different benchmarks

two-gear five-gear narrow five-gear puzzle narrow puzzle
# of iterations 41 67 237 66 107

# of free cell queries 32329 44649 192009 59121 77297
# of C-obstacle cell queries 30069 41177 176685 55683 70438

# of cells 28288 39068 168008 51731 67635
# of empty cells 2260 3472 15324 3438 6859
# of full cells 12255 16172 74713 26295 30351

# of mixed cells 13773 19424 77971 21998 30425

Fig. 4. ‘Five-gear’ example. (Left) The goal of this example is to move a gear-shaped
robot from A to A′ through the five gears B1, ... and B5. (Right) There does not exist a
collision-free path for this example. This is because the initial and the goal configuration
are separated by full cells, which correspond to shaded volumes. The right figure also
highlights that to find path non-existence for this example, it is unnecessary to classify
the entire configuration space.

graph G, is iterated by 40 times until the initial and the goal configuration are
found to be separated by full cells. The entire computation takes 3.356s.

We have applied our algorithm to more complex examples of: ‘five-gear’, ‘five-
gear with narrow passage’, ‘2D puzzle’ and ‘2D puzzle with narrow passage’.
Table 1 highlights the performance of our algorithm on these examples. Accord-
ing to Table 1, our approach can report path non-existence for these examples
within 10s. In particular, for the ‘five-gear’ example, the total timing is 6.317s
with 1.162s and 1.376s for the C-obstacle cell query and free cell query, respec-
tively.

Table 2 gives details about application of our algorithm to different bench-
marks. For the ‘five-gear’ example, the cell decomposition, which is restricted
in the region indicated by the guiding path, is iterated 67 times. The final cell-
decomposition includes 39068 cells, with 3473 empty cells, 16172 full cells and
19424 mixed cells.

Since our algorithm uses cell decomposition, the algorithm is applicable to
finding a collision-free paths even when a narrow passage exists. Finding a
collision-free path through a narrow passage has been considered as a difficult
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Fig. 5. ‘2D puzzle’ example. (a) Our algorithm can report the path non-existence for
the problem to move A to A′ in 7.898s. (b) is a modified version of (a) without the
obstacle B3. Our algorithm can find a collision-free path through a narrow passage
among the obstacles. (c) shows intermediate configurations Am of the robot along the
collision free path.

task for probabilistic methods, such as PRM. Fig. 6 shows such an example.
According to the Table 1, for this example, our un-optimized method achieves
about 1.3 times speedup over a deterministic sampling approach, the star-shaped
roadmap [26].

5.1 Comparison

We compare our algorithm for path non-existence with star-shaped roadmap
algorithm, especially because our approach shares similarities with the star-
shaped roadmap algorithm. Star-shaped roadmap method partitions the free
space into star-shaped regions and for each star-shaped region computes a single
point called a guard which can see every point in the region. In our approach,
the empty cells are a special case of star-shaped regions where any configuration
in the cell can be always considered as a guard. Moreover, our method can label
empty cells in a simpler way than the star-shaped roadmap, as the star-shaped
roadmap is based on expensive contact surfaces enumeration.

Finally, star-shaped roadmap method needs to explicitly capture the intra-
connectivity between two adjacent regions, which can be computed using a sim-
ilar way to the guard computation, but in one dimension less. In our method,
the intra-connectivity between two adjacent empty cells is implicit and an edge
connecting the guards of two adjacent cells can represent such a connectivity.

5.2 Analysis

The computational complexity of our C-obstacle cell query is bounded by gen-
eralized penetration depth PDg computation. We only compute a lower bound
to PDg and its complexity is governed by the number of convex pieces that are
obtained from the convex decomposition, and the geometric complexity of these
convex pieces. Let m, n denote the number of convex pieces of the robot A and
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Fig. 6. Finding a passage through narrow passages for the modified ‘five-gear’ example.
(Left) this planning problem is almost the same as Fig. 4 except that the obstacle B5

is slightly modified as well as translated. (Right) our method can find a path under the
existence of narrow passages, which are challenging for probabilistic methods, such as
PRM. The collision-free path, passing through the narrow passage in the free space, is
derived from empty cells.

the obstacle B, respectively. Let the geometric complexity of all convex pieces of
A and B be a and b, respectively. Then, the average numbers of features in each
piece of A and B are a

m and b
n , respectively. Using computational complexity of

translational PD, we can derive that the computational complexity of PDg for
2D rigid objects A and B is O(an + bm), and for 3D rigid objects is O(ab).

Our algorithm for checking path non-existence is based on adaptive decom-
position of the configuration space. At each step, the number of decomposition
depends on the number of the mixed cells indicated by the guiding path L.

5.3 Limitations

Our approach has a few limitations. Our free cell and C-obstacle cell queries
are conservative, which stems from the conservativeness of PDg and bounding
motion computations. Secondly, our algorithm assumes that are no tangential
contacts in the boundary of the free space, otherwise, our path non-existence
algorithm may not terminate. As a result, our algorithm can not deal with com-
pliant motion planning, where a robot cannot pass through obstacles when the
robot is not allowed to touch them. The complexity of our adaptive subdivision
algorithm varies as a function of the dimension of the configuration space. Our
current implementation is limited to 3 DOF robots.

6 Conclusion and Future Work

In this paper, we present a simple approach to check for path non-existence
for low DOF robots. Our approach uses two basic queries to efficiently check
whether a cell in C-space lies entirely inside free space (free cell query) or inside
the C-obstacle region (C-obstacle cell query). We describe simple and efficient
algorithms to perform these queries using separation distance and generalized
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penetration depth computations. Our query algorithms are general for 2D or
3D rigid robots, or articulated robots. Using these queries, our approach for
path non-existence computation is simpler and more efficient than prior cell
decomposition methods.

There are several directions to pursue for future work. We are interested
in extending our approach for higher DOF motion planning problems, such as
6 DOF rigid robots. Our algorithms to compute various queries are directly
applicable and the main challenge is to perform spatial cell decomposition in
higher dimensions. Moreover, we are interested in combining our algorithm with
probabilistic sampling algorithms to design a hybrid planner, which is not only
able to find a collision-free path, but can also check for path non-existence and
handle narrow passages.
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Abstract. Automatic motion planning has applications ranging from traditional
robotics to computer-aided design to computational biology and chemistry. While ran-
domized planners, such as probabilistic roadmap methods (prms) or rapidly-exploring
random trees (rrt), have been highly successful in solving many high degree of free-
dom problems, there are still many scenarios in which we need better methods, e.g.,
problems involving narrow passages or which contain multiple regions that are best
suited to different planners.

In this work, we present resampl, a motion planning strategy that uses local re-
gion information to make intelligent decisions about how and where to sample, which
samples to connect together, and to find paths through the environment. Briefly, re-

sampl classifies regions based on the entropy of the samples in it, and then uses these
classifications to further refine the sampling. Regions are placed in a region graph
that encodes relationships between regions, e.g., edges correspond to overlapping re-
gions. The strategy for connecting samples is guided by the region graph, and can
be exploited in both multi-query and single-query scenarios. Our experimental results
comparing resampl to previous multi-query and single-query methods show that re-

sampl is generally significantly faster and also usually requires fewer samples to solve
the problem.

1 Introduction

The general motion planning problem consists of finding a valid path for an
object from a start configuration to a goal configuration. Traditionally, a valid
path is any path that is collision-free, e.g., avoiding collision with obstacles in
the environment and avoiding self-collision. Motion planning has applications in
robotics, games/virtual reality, computer-aided design (CAD), virtual prototyp-
ing, and bioinformatics.

While an exact motion planning algorithm exists, its complexity grows ex-
ponentially in the complexity of the robot [17]. Instead, research has turned
towards randomized algorithms. One widely used and quite successful random-
ized algorithm is the Probabilistic Roadmap Method (prm) [11]. prms operate
in configuration space (C-space), where each point in C-space corresponds to a
specific robot configuration/placement. While not guaranteed to find a solution,

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 285–300, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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prms are probabilistically complete, i.e., the probability of finding a solution
given one exists approaches 1 as the number of samples in the roadmap ap-
proaches ∞.

Issues: The motion planning problem is significantly more challenging when
there are difficult or narrow areas in C-space that must be explored. While there
have been many attempts to generate samples in difficult or interesting areas of
C-space [1, 4, 21, 7, 5], they are typically applied over the entire C-space and do
not allow for the identification and refinement of particular areas of C-space.

Motion planning problems typically come in one of two types: multi-query
path planning and single-query path planning. The goal of a multi-query planner
is to efficiently model the entire free C-space so as to answer any query in that
space. A single-query planner, however, is only concerned about the portion
of free C-space needed for the query, so it is generally faster than a multi-
query planner. Most randomized motion planners are well-suited to one of these
problem types, but not to both.

Our Contribution: In this work, we propose resampl, a motion planning
strategy that uses local region information to make intelligent decisions about
how and where to sample, which samples to connect together, and to find paths
through the environment. Based on an initial set of samples, we classify regions
of C-space according to the entropy of their samples. We then use these clas-
sifications to further refine the sampling. For example, we increase sampling in
“narrow” regions and decrease sampling in “free” regions. Regions are placed in
a region graph that encodes relationships between regions, e.g., edges correspond
to overlapping regions. We use the region graph to determine appropriate con-
nection strategies for multi-query planning and to extract a sequence of regions
on which to focus sampling and connection for single-query planning.

Our experimental results comparing resampl to previous multi-query and
single-query methods show that it is generally significantly faster and also usually
requires fewer samples to solve the problem. Hence, resampl’s region-based
approach to motion planning addresses both issues mentioned above.

• Regions: Considering local information when deciding where and how to re-
fine sampling and connection enables us to focus on difficult areas instead
of continuously searching in the entire space as is done by most previous
methods.

• Region Graph: The relationships between regions can be exploited during
connection in both multi-query and single-query situations.

2 Related Work

There has been extensive work on randomized motion planners for both multi-
query and single-query problems. In this section we give an overview of some of
the methods that have been proposed.
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Multi-Query Planning. One widely used and quite successful multi-query
randomized planner is the Probabilistic Roadmap Method (prm) [11]. prms
consist of two phases, a preprocessing/roadmap construction phase and a query
phase. During roadmap construction, robot configurations are first randomly
sampled from C-space. Samples are kept if they are in the feasible region of
C-space (C-free). Connections are then attempted using a simple local planner
between neighboring configurations. Valid connections are stored as edges in the
roadmap.

Although prms have been successful in solving previously unsolvable prob-
lems, they have difficulty when the solution path must pass through a narrow
passage in the C-space. Attempts have been made to generate configurations in
interesting areas of C-space that are difficult to discover using uniform random
sampling. For example, [1,4,9,16] attempt to generate samples near the surface
of C-space obstacles. In [21], samples are generated and then pushed toward the
approximate medial axis of C-free, and in [7], the roadmap is generated from a
discrete approximation of the workspace medial axis.

In addition, machine learning techniques have been used to improve planner
performance. In [14], regions of C-space are classified as either free, cluttered,
narrow, or non-homogeneous using features obtained from a coarse sampling and
a decision tree. Regions classified as non-homogeneous are further subdivided
until properly classified or a maximum number of subdivisions has occurred.
Specific node generation methods that were manually selected to work well in a
given type of region are then applied in each region.

In [5, 6], entropy is used to build a model of C-space. To generate a new
sample, the expected information gain is computed over a set of random samples.
The sample with the greatest information gain is added to the model and also
added to the roadmap if it is valid. An important difference from our work is
that sampling and evaluation is done on a global basis, rather than focusing on
particular regions.

Adaptive sampling [10] is proposed to select node generation methods in order
to generate nodes that have been classified as more useful. Again, node genera-
tion is done on a global level reducing the likelihood of generating nodes in the
narrow passages of C-space.

Finally, [20] is a complete, deterministic planner that partitions the free space
into star-shaped regions such that a single sample can see every point in the
region. Then, these samples are connected together to form a roadmap for plan-
ning. This method performs well for low dof robots, but because the complexity
grows exponentially with the robot’s dof, it may be impractical for high dof
robots.

Single-Query Planning. Various single-query techniques have been developed
that attempt to limit planning to the portions of the environment needed to solve
the query. rrt (Rapidly-Exploring Random Tree) [13] is a tree-based method
that attempts to explore C-space beginning from a start configuration until
it reaches the goal configuration. The tree grows by biasing sampling towards
unexplored regions. In [12], a variation to rrt was developed that biases the
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growth of two trees initiated from the start and the goal configurations toward
each other for faster solution of a particular query.

Lazy Evaluation Methods. Several prm variants have been proposed that
delay some or all node/edge validation until they are needed in the query phase.
These methods can be used as multi-query or single-query methods. Lazy prm [3]
initially assumes all nodes and edges to be valid during roadmap construction. To
process a query, nodes and edges are checked. Invalid portions are removed from
the roadmap and a new path is extracted. This repeats until a valid path is found
or a path no longer exists in the roadmap. Fuzzy prm [15] validates nodes during
roadmap construction but postpones edge validation until the query phase. It
uses a priority-based evaluation scheme to validate edges along the path. Finally,
Customizable prm [19] performs a coarse validation of nodes and edges during
roadmap construction and completely validates nodes and edges as necessary to
solve the query.

3 Model Overview

Our general strategy is to learn about local regions of C-space and to exploit
that information during planning. For example, regions are classified to deter-
mine how they should be treated in other planning phases such as node gener-
ation or connection. The local regions may also be put in a region graph that
approximately describes the connectivity of the C-space. This region graph can
be used in both node connection and in single-shot planning.

To improve an existing model, our objective is to identify regions where addi-
tional sampling will lead to significant gains in C-space knowledge. For example,
transition areas between C-free and C-obstacles may represent areas on the sur-
face of C-obstacles or narrow passages in C-space. We want to identify these
transition areas and bias our sampling to increase our knowledge of these areas.
Similarly, we can limit sampling in regions that are completely in C-free or in
C-obstacles as more samples in these areas will be unlikely to yield benefit. In
this way, we focus on areas of C-space that are interesting in both node gener-
ation and connection. In this section we describe how the model is constructed,
regions are classified, and sampling is both biased and filtered. An example of
how our method works can be seen in Figure 1.

3.1 Region Construction

The model is initialized with a set of samples from the C-space, as in Figure 1(b),
including both free and collision configurations. These samples may be generated
by any method. Regions are then defined by a representative sample (e.g., the
center of the region) and neighboring samples (used to compute region statistics
such as the entropy and radius), as in Figure 1(c).

There are many ways to construct a set of regions. Algorithm 3.1 describes
a simple region construction technique. Each new region center is randomly se-
lected from the set of initial samples that are not already in another region.



RESAMPL: A Region-Sensitive Adaptive Motion Planner 289

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

(a) C-space
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(b) Initial Sampling
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(c) Region Construction
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(d) Region Classification
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

(e) Resulting Samples

Fig. 1. Overview of model creation and usage. (a) Given an initial C-space, and (b)
an initial sampling, (c) local regions can be constructed and (d) classified as free (F),
blocked (B), surface (S), or narrow (N). Region classification results in (e) further
sampling or filtering.

Neighboring samples are selected from all initial samples. Samples may be se-
lected as part of multiple regions. In this way, the region radii are relatively
similar. Region construction is complete when each sample is either a region
center, part of a region, or both. As is discussed below, the quality of this type
of region construction is somewhat dependent on the initial sample coverage.

Algorithm 3.1. Region Construction
Require: Model M, initial samples S, and k.
1: while there exists an unmarked sample in S do
2: Let c be a randomly selected unmarked sample ∈ S.
3: Set N = {k nearest neighbors to c}.
4: Set R = a new region with center c and neighbors N .
5: Add R to M.
6: Flag c and N as marked.
7: end while
8: return M

3.2 Entropy Biased Region Classification

In order to identify the transition regions of C-space, we need a model that cal-
culates how “interesting” the region is. We use the region’s entropy to determine
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if it is a transition area. Entropy is a measure of the disorder of the region’s sam-
ples. Regions containing samples that are completely free or completely blocked
are considered to have low entropy. Regions containing a mixture of free and
blocked samples are considered to have high entropy. As described below, four
simple and intuitive classifications can be obtained based on entropy values: free
(low entropy), surface (high entropy), narrow (high entropy), and blocked (low
entropy), see Figure 2 and Figure 1(d). These classifications can later be used
in roadmap construction or other planning.
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(a) Region
Construction
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(b) Free
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(c) Surface
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(d) Narrow
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(e) Blocked

Fig. 2. Classifications based off of region construction

Algorithm 3.2 describes one way to classify regions based on entropy. For each
region, we iteratively evaluate the region’s entropy, attempt to classify, and add
additional samples if a classification cannot be made.

Free regions can be identified by computing the percentage of blocked samples
in the region. When this percentage (or entropy) is low enough, the region is
classified as free. Experience indicates that it is unlikely to misclassify a region
as free with this method. If the initial, coarse sampling in a region contains mostly
free samples, then it is likely that a finer sampling will also contain mostly free
samples. Thus, in every iteration, we first attempt to classify the region as free.

Blocked regions can be identified in a similar manner, i.e., if the percentage
of free samples in the region (or entropy) is low enough, the region is classified
as blocked. Note that unlike a low entropy free region, a low entropy blocked
region should not automatically be considered blocked and then disregarded.
This is because a blocked region could potentially become a high entropy region
with additional sampling, e.g., when the region contains some volume of C-free
which has not yet been sampled. For example, see Figure 1(c) and 1(d) in which
a region constructed does not initially contain any free nodes, but it is classified
as narrow since free nodes are discovered during the classification process. Thus,
we do not classify a region as blocked until several attempts have been made to
classify and add additional samples.

A region is classified as surface if sub-regions within the given region have low
entropy. One way to define the sub-regions is as follows. Let cF be the centroid
of all the free samples and cB be the centroid of all the blocked samples in the
parent region. We then define two regions with centers cF and cB and we assign
each sample in the parent region to the sub-region whose center it is closest to.
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Algorithm 3.2. Region Classification
Require: A region R, threshold elow, threshold ehigh, number of attempts to classify

t, and number of samples to add in each classification attempt k.
1: for t attempts to classify R do
2: Let eR be the entropy of R (% of blocked samples in R).
3: if eR < elow then
4: return free
5: end if
6: Add k additional samples to R and recompute eR.
7: Partition R into two subregions, Rfree and Rblocked.
8: Let efree be the entropy of Rfree (% of blocked samples in Rfree).
9: Let eblocked be the entropy of Rblocked (% of free samples in Rblocked).

10: if efree < elow and eblocked < elow then
11: return surface
12: end if
13: end for
14: if eR == 1 then
15: return blocked
16: end if
17: if eR > ehigh then
18: return narrow
19: end if
20: return surface

Then, if both sub-regions have low entropy, we classify the parent region as a
surface region.

Regions are classified as narrow if they are high entropy regions that cannot
be partitioned into two low entropy regions. Like blocked regions, narrow regions
are more difficult to classify because of the risk of misclassification. Thus, we
do not attempt to classify a region as narrow until several attempts have been
made to classify and add additional samples.

Finally, when a transition region cannot be classified as described above, then
it is considered as a surface region. Empirical testing showed this was the best
assignment for such regions.

3.3 Region Graph

To complete the model construction, we build a region graph that approximately
describes the connectivity of the local C-space regions. In our current implemen-
tation, vertices correspond to regions and an edge is placed between two regions
if they overlap. We assign an edge weight based on the types of regions con-
nected. With this region graph, we can extract region paths to aid single-query
planning or refine it to aid multiple-query planning.

The region graph may be refined by merging adjacent regions of the same type
or splitting regions that were not clearly classified. Regions may be combined if
the resulting parent region is also of the same type. In addition to resulting in
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fewer regions, region merging is useful in obtaining larger portions of C-space
of the same type. This is important when adding or removing samples based on
the region type.

4 Multi-query Planning

In multiple query planning, a single roadmap must support many varied queries
so one desires a roadmap that efficiently characterizes the connectivity of as
much of the free C-space as possible. For this type of planning, we construct the
regions and region graph as outlined in Section 3.

To reduce roadmap construction costs, we only keep “important” samples
from the regions in the roadmap. This greatly reduces construction time by
focusing connection on difficult/narrow areas of C-space and less on large, open
areas of C-space. We keep a sample in a free region with a low probability pF ,
a sample in a surface region with a higher probability pS , and a sample in a
narrow region with a high probability pN . We do not keep any samples from
blocked regions since they do not contain any valid samples. We then perform a
user-selected connection strategy only on these samples.

In addition, we can use the region classification to further improve the
roadmap. For example, we can use rrt to explicitly explore narrow passages
because we have already identified them with the region classification. Thus,
for each connected component in a narrow region, we allow rrt to expand the
component by a user-defined number of iterations. This exploits rrt’s ability to
rapidly search confined regions of C-space by starting it in the difficult to find
narrow passages.

5 Single-Query Planning

Single-shot motion planning involves finding a path for a given query from a
start to goal configuration. Ideally, it involves exploring only the portions of the
space needed to solve the query. An effective single-shot planner should be able
to focus on portions of the path that will be used to solve the query.

We are able to use the model that we have constructed to first find an approx-
imate region path connecting the start and goal configurations. The region path
is extracted from the region graph and approximates a path through regions that
the robot should travel through to move from region to region. In the following
we will describe how the paths are obtained and connected to result in a path
for a given robot from a start to a goal configuration.

5.1 Path Extraction and Improvement

The first step in region path extraction is to find the regions that the start
and goal configurations can connect to. The nearest unblocked (free, surface, or
narrow) region that the start and the goal configurations can connect to are set
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as the start and end regions, respectively, of the region path. A path is then
found through the region graph that connects the start and end regions. The
region graph is weighted such that a path is extracted through unblocked (free,
surface or narrow) regions if possible and uses blocked regions only if needed,
see Figure 3(a). Blocked regions found in the path can be reclassified in order
to have a continuous sequence of unblocked path regions.

The region path extracted as described above is simply a minimal path of
neighboring regions. While it is generally simple to extract an actual path from
the region path that connects two adjacent free regions, it can sometimes be diffi-
cult to extract an actual path when the region path passes through more difficult
(surface, narrow or blocked) regions. To improve our ability to extract paths in
the latter case, we apply a simple region path improvement step that expands
the volume of the region path by including neighboring unblocked regions in
difficult areas. In particular, given neighboring path regions Ri and Ri+1, region
path improvement is achieved by including unblocked regions in the path that
neighbor both Ri and Ri+1. If both Ri and Ri+1 are classified as free regions,
then the region path improvement step can be omitted. An example of this pro-
cess can be seen in Figure 3 in which the resulting region path covers a larger
volume in the difficult and narrow regions. Though this is a simple process, it
was shown to be quite effective during the connection phase in our experiments.

(a) (b)

Fig. 3. Region paths extracted from s-tunnel environment (a) a minimal path extracted
and (b) an improved region path resulting in better connection

5.2 Path Connection

Although the connection strategy proposed here is very simple, it has proven
sufficient for our purposes. For a given region path, nodes can be sampled as
described in Section 4. The samples obtained can then be connected using a
simple k-closest connection strategy. If necessary a simple component connec-
tion method can be applied that connects l-pairs from neighboring unconnected
components.

As a final step, the path obtained should connect the start and goal configu-
rations of the query. If a path cannot be found, then more connection attempts
between neighboring unconnected regions can be attempted.
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6 Results and Discussion

In this section we report on the performance of our region based motion planner
as both a multi-query and a single-query planner. All planners were implemented
using the Parasol Lab motion planning library developed at Texas A&M Uni-
versity. RAPID [8] is used to provide collision detection. Two types of local
planners, straight-line and rotate-at-0.5 [2], are used to connect sampled con-
figurations. Unless otherwise stated, connections were attempted only between
k = 20 “nearby” nodes according to some selected distance metric. All experi-
ments were run on a 700MHz Intel PIII Xeon processor and results are averaged
over 10 runs.

6.1 Multi-query Planning

For multi-query planning, we tested two rigid body environments with narrow
passages, L-Tunnel (Figure 4(a)), where traversing the passage requires mainly
translational motion, and Hook (Figure 4(b)) where traversing the passage re-
quires mainly orientational motion. We also tested an articulated linkage with
12 dof in an environment similar to the Hook environment (Figure 4(c)). We
compare our method to some common prm methods: uniform random sampling
[11], obstacle-based sampling (obprm) [1], gauss-based sampling [4], medial axis-
based sampling (maprm) [21], and bridge test sampling [9]. We also compare our
method to another adaptive sampling method, hybrid prm [10]. To compare the
performance of these multi-query planners, we specified a single query in each
environment that required the robot to pass through each free region. We then
determined the smallest roadmap size required to solve this specific query.

L-Tunnel results. For this environment, we started with 2500 uniform random
samples and constructed regions using the the 15 closest samples to the region
center, as described in Algorithm 3.1. To classify the regions, we defined low
entropy as 0.1 (i.e., at most 10% of the region samples are of one type and
the remaining are of the other type) and attempted to classify each region at
most 10 times by adding 45 random samples to the region. We then filtered
the nodes by only keeping samples from narrow regions. We used the region
graph to aid connection. Within each region, we perform a quick but sparse
connection by attempting the k = 2 nearest unconnected neighbors. Then we
connect components in overlapping regions (i.e., adjacent regions in the region
graph) by attempting to connect the 5 closest pairs of samples between the
regions. We then enhanced the roadmap by using rrt to further explore narrow
regions and attempted 10 additional connections between these components.
We determined the appropriate roadmap size to solve the query by varying the
amount rrt could explore.

Figure 5(a-d) shows how our method classifies local regions as free, surface,
narrow, and blocked. While not perfect, it is able to successfully identify the
two key narrow passages in the central obstacle. Figure 5(e-f) shows the effect
of exploiting region classification to increase and filter samples in local areas.
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(a) (b) (c)

Fig. 4. (a) L-Tunnel environment. The robot (on the right) must pass through corridors
in the central obstacle. (b) Hook environment. The robot (on the left) must twist
through both plates to reach the other end of the environment. (c) Articulated linkage
environment. The robot (on the left) must pass through the plate to reach the other
end of the environment.

The initial distribution of uniform random samples cannot find any free samples
in the two narrow passages and has oversampled the three large free regions.
However, we then classified local regions based on these initial samples, reduced
samples in free and surface regions, and increased samples in narrow regions.
The resulting distribution is much more biased to highly constrained regions of
the environment, namely the two narrow passages in the central obstacle and
near the surfaces of all three obstacles.

Results for the L-Tunnel environment can be seen in Table 1. For this envi-
ronment, uniform random sampling did not solve the query with 32,000 samples
in any of the 10 runs. Region-based sampling was able to solve the query with
the fewest nodes, time, and collision detection calls. While bridge test sampling
requires approximately the same number of nodes, it takes nearly three times
as long and roughly ten times more collision detection calls on average to find
a solution. The local adaptable behavior of region-based sampling enables it to
out-perform global adaptive strategies like hybrid prm.

Hook results. Figure 6(a-d) shows how our method classifies local regions as
free, surface, narrow, and blocked. We scaled the region diameters down for vi-
sualization clarity since regions are mostly defined by orientational differences
than positional differences. Again, the method was able to successfully identity
the different region types, even with a coarser model than the one used in the
L-Tunnel environment. (Here, we reduced the number of initial model samples
down to 400 and only added 25 samples to a region during a classification itera-
tion; all other method parameters were kept the same.) Figure 6(e-f) shows how
our method altered the initial sampling distribution to find more samples in the
narrow passages.

Results for the hook environment can be seen in Table 1. For this environment,
uniform random sampling was only able to solve the query 90% of the time
requiring an extremely large number of samples. In terms of time, region-based
sampling out-performed all methods except obprm, while making the fewest
collision detection calls of all methods. This latter fact could prove significant in
environments were collision detection is more expensive.
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(a) Free

(b) Narrow

(c) Surface

(d) Blocked

(e) Initial

(f) Final

Fig. 5. (a-d) Region classification for the L-Tunnel environment. (e-f) Sampling dis-
tributions for L-Tunnel environment. The robot is scaled to 30% of its original size for
visualization clarity.

Table 1. Multi-query planner performance

Multi-Query Planning
Environment Method Nodes Time (s) CD Calls % Solved

L-Tunnel Region-Based 2,086 136 205,636 100
obprm 8,400 1,036 354,706 100
Gauss 6,150 672 356,177 100
maprm 7,750 1,294 2,015,507 100
Bridge Test 2,500 473 1,963,948 100
Hybrid PRM 3,710 1,401 1,233,573 100
Uniform Sampling 32,000 13,186 554,160 0

Hook Region-Based 1,352 62 64,500 100
obprm 925 36 175,711 100
Gauss 1,625 68 66,953 100
maprm 2,450 202 429,814 100
Bridge Test 1,175 416 698,786 100
Hybrid PRM 1,892 454 413,690 100
Uniform Sampling 28,440 12,840 306,131 90

Articulated linkage Region-Based 3,134 845 151,716 100
obprm 30,600 29,826 1,406,023 10
Gauss 32,000 31,994 1,440,563 10
maprm 15,400 14,647 4,187,952 90
Bridge Test 29,700 29,163 4,538,367 20
Uniform Sampling 30,400 29,015 1,327,550 10
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(a) Free (c) Surface (e) Initial

(b) Narrow (d) Blocked (f) Final

Fig. 6. (a-d) Region classification for the Hook environment. Region diameters are
scaled down for visualization clarity since regions are mostly defined by orientational
differences than positional differences. (e-f) Sampling distributions for Hook environ-
ment. The robot is scaled to 50% of its original size for visualization clarity.

Articulated linkage results. In this environment, we only used a straight-
line local planner because rotate-at-0.5 [2] did not perform well. We used the
same parameters as in the Hook environment to build a coarse model of C-
space. Table 1 gives the results for this environment. Region-based sampling and
maprm were the only methods to consistently solve the query. However, region-
based sampling required significantly fewer nodes, collision detection calls, and
consequently time. We believe that the reason why region-based sampling and
maprm were the only methods to consistently solve the query is that these are
the only two methods that target both free and narrow regions of C-space. In
addition, because only a simple local planner was used, more pressure is placed
on the sampling method to perform well. Note we did not compare to hybrid
prm because all of the component samplers performed poorly.

6.2 Single-Query Planning

In single-query planning, the planner tries to explore only the portions of C-
space relevant for a given query. The approximate representation of C-free in our
region-based approach allows us to focus our search in these relevant portions,
offsetting the cost of building the initial model.

The planners tested for single-query planning are RRT Connect [12], RRT
Expand [13], LazyPRM [3], and our region-based single-query planner. For each
environment, each method is run until a given query can be solved. The en-
vironments tested for these single query methods are the S-Tunnel and Maze
environment. Both of these environments have narrow passages that the robot
must travel through when moving from the start to goal configuration.

S-Tunnel results. The S-Tunnel environment can be seen in Figure 3. The
start and goal configurations are on opposite sides of the environment, such that
the robot has to travel through the narrow passage connecting the query config-
urations. As seen in Table 2, the region-based single query planner outperforms
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the other methods in the number of nodes, time and collision detection calls (CD
Calls) needed to solve the query. While LazyPRM and RRT Connect have sim-
ilar performance in this environment, LazyPRM does perform better than RRT
Connect. RRT Expand performs only slightly worse than RRT Connect. Our
results indicate that the region-based strategy succeeds in identifying important
regions. In particular, the regions and samples identified in the narrow passage,
Figure 3, are used to improve sampling and connection. The RRT methods have
difficulty in finding the difficult areas, while our model identifies these regions
and can utilize them in planning. LazyPRM is able to find samples in these dif-
ficult regions but has difficulty in making valid connections when in the difficult
region.

Table 2. Single-query planner performance

Single-Query Planning
Environment Method Nodes Time (sec) CD Calls
S-Tunnel Region-Based 573 36 82,298

RRT Connect 7,939 958 360,513
RRT Expand 7,774 1,170 473,735
LazyPRM 1,173 609 361,889

Maze Region-Based 334 32 27,493
RRT Connect 2,131 79 48,775
RRT Expand 2,947 187 69,639
LazyPRM 561 364 127,747

(a) (b) (c) (d)

Fig. 7. (a) Maze environment. The robot must pass through a series of passages from
the start to the goal configuration. (b) Narrow local regions of C-space found. (c) Initial
collision-free sampling distribution and (d) final sampling distribution.

Maze results. The Maze environment (Figure 7(a)), consists of a series of pas-
sages that the robot must travel through from the start to the goal configuration.
These configurations are on opposite ends of the maze. Though this environment
is less difficult than the S-Tunnel environment, it is difficult for the RRT and
LazyPRM methods. As seen in Table 2, utilizing information about the local
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regions of C-space enables our region-based method perform significantly better
than the other methods. These important regions, extracted from the region map
are shown in Figure 7(b). Here again, RRT Connect performs better than RRT
Expand and the RRT approaches again have difficulty of finding the narrow pas-
sages. A difference in this case is that LazyPRM spends much more time trying
to solve the query. Although LazyPRM only uses a small number of samples, it
spends a large amount of time verifying edges and finding configurations in the
narrow passage.

7 Conclusion

In this work we have shown how a region-based approach can be applied to
both multi-query and single-query motion planning problems. It has also been
shown to perform better, in many cases, than existing techniques. By focusing
on regions that have been appropriately classified, we are able to better explore
and sample the space. Additional figures are available in [18].
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Abstract. This paper studies the motion of a large and highly mobile six-legged lunar
vehicle called athlete, developed by the Jet Propulsion Laboratory. This vehicle rolls
on wheels when possible, but can use the wheels as feet to walk when necessary. While
gaited walking may suffice for most situations, rough and steep terrain requires novel
sequences of footsteps and postural adjustments that are specifically adapted to local
geometric and physical properties. This paper presents a planner to compute these
motions that combines graph searching techniques to generate a sequence of candidate
footfalls with probabilistic sample-based planning to generate continuous motions to
reach them. The viability of this approach is demonstrated in simulation on several
example terrains, even one that requires rappelling.

1 Introduction

In this paper we describe the design and implementation of a motion planner
for a six-legged lunar vehicle called athlete (All-Terrain Hex-Limbed Extra-
Terrestrial Explorer), shown in Fig 1. This large and highly mobile vehicle was
developed by the Jet Propulsion Laboratory (jpl).1 It can roll rapidly on rotating
wheels over flat smooth terrain and walk carefully on fixed wheels over irregular
and steep terrain. In particular, athlete is designed to scramble across terrain
so rough that a fixed gait (for example, an alternating tripod gait) may prove
insufficient. Such terrain is abundant on the Moon, most of which is rough,
mountainous, and heavily cratered – particularly in the polar regions, a likely
target for future surface operations. These craters can be of enormous size, filled
with scattered rocks and boulders of a few centimeters to several meters in
diameter (Fig. 2). Crater walls are sloped at angles of between 10-45◦, and
sometimes have sharp rims [19].

On this type of terrain, athlete’s walking motion is governed largely by two
interdependent constraints: contact (keep wheels, or feet, at a carefully chosen set
of footfalls) and equilibrium (apply forces at these footfalls that exactly compen-
sate for gravity without causing slip). The range of forces that may be applied
at the footfalls without causing slip depends on their geometry (for example,

1 The views presented in this paper do not reflect those of nasa or jpl.

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 301–316, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. The athlete lunar vehicle (developed by jpl)

Fig. 2. Pictures of lunar terrain from Apollo missions [19]

average slope) and their physical properties (for example, coefficient of friction),
both of which vary across the terrain. So every time athlete takes a step, it
faces a dilemma: it can’t know the constraints on its subsequent motion until it
chooses a footfall, a choice it can’t make until it knows where it will step next.
Direct teleoperation does not help to resolve this dilemma – on the contrary,
teleoperation can be difficult and painfully slow for robots like athlete [6].

To handle this dilemma in our planner, we make a key design choice (Sec-
tion 3) – to choose footfalls before computing motions. We begin by identifying a
number of potentially useful footfalls across the terrain. Each mapping of ath-

lete’s feet to a set of footfalls is a stance, associated with a (possibly empty) set
of feasible configurations that satisfy all motion constraints (including contact
and equilibrium). Athlete can take a step from one stance to another if they
differ by a single footfall and if they share some feasible configuration, which we
call a transition. Our planner proceeds in two stages: first, we generate a candi-
date sequence of footfalls by finding transitions between stances; then, we refine
this sequence into a feasible, continuous trajectory by finding paths between
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subsequent transitions. We do this because athlete’s motion on irregular and
steep terrain is most constrained just as it places a foot at or removes a foot from
a footfall. At this instant, athlete must be able to reach the footfall (contact)
but can not use it to avoid falling (equilibrium). So footfalls are the “bottleneck”
of any motion – if we can find two subsequent transitions, it is likely we can find
a path between them. This statement has been verified in our experiments.

We implement our planner using an approach similar to [6] and [18] that
combines graph searching techniques to generate a sequence of candidate foot-
falls with probabilistic sample-based planning to generate continuous motions to
reach them. But several key tools embedded in this framework (Section 4) are
tailored specifically to athlete. We need a method of sampling feasible config-
urations (from scratch as well as via perturbation) and of connecting pairs of
configurations with local paths, hard since athlete has many degrees of free-
dom and many closed-loop chains. We also need a heuristic to generate footfalls
and to guide our search through the collection of stances, hard since lunar ter-
rain is difficult (so careful selection of footfalls is important) but not extreme
(so the number of candidate stances is enormous). Finally, we need to smooth
athlete’s motion both to look natural when interacting with a human operator
– hard since the robot is not anthropomorphic – and to help avoid disturbing
the ground (for example, by toppling rock).

Simulation results (Section 5) demonstrate the viability of our approach. We
also show the flexibility of our implementation by adapting it to rappelling as
well as walking motions of athlete.

2 Related Work

2.1 Application

Some humanoids are capable of walking over somewhat uneven terrain [49, 28].
Other legged robots are capable of walking over rougher terrain, including
quadrupeds [20], hexapods [43, 26], parallel walkers [48], and spherically sym-
metric robots [35]. Wheeled robots with active or rocker-bogie suspension can
also traverse rough terrain by changing wheel angles and center of mass posi-
tion [14, 23, 29]. Careful descent is possible by rappelling as well, using either
legs [3, 21, 46] or wheels [32]. The terrain we consider for athlete is even more
irregular and steep than in most previous applications, although not as steep as
for free-climbing robots [6].

Careful walking also resembles dexterous manipulation. Athlete grasps the
terrain like a hand grasps an object, placing and removing footfalls rather than
finger contacts. Athlete has to remain in equilibrium as it moves (only the
object must remain in equilibrium during manipulation), and uses fewer con-
tact modes while walking (no sliding or rolling), but still faces similar chal-
lenges [4, 34]. Manipulation planning, involving the rearrangement of many
objects with a simple manipulator, is another related application. A manipu-
lator takes a sequence of motions with and without a grasped object (different
states of contact) just like athlete takes a sequence of steps [2].
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2.2 Planning

In order to walk, athlete must plan both a sequence of footfalls and continuous
motions to reach them. Previous approaches differ primarily in which part of the
problem they consider first:

(a) Motion before footfalls. When it does not matter much where a robot con-
tacts its environment, it makes sense to compute the robot’s (or object’s) overall
motion first. For example, a manipulation planner might generate a trajectory
for the grasped object ignoring manipulators, then compute manipulator trajec-
tories that achieve necessary re-grasps [25]. Similarly, a humanoid planner might
generate a 2-d collision-free path of a bounding cylinder, then follow this path
with a fixed gait [27, 36]. A related strategy is to plan a path for the center of
mass, then to compute footfalls and limb motions that keep the center of mass
stable [13]. These techniques are fast, but do not extend well to irregular and
steep terrain.

(b) Footfalls before motion. When the choice of contact location is critical, it
makes sense to compute a sequence of footfalls first. Most work is based on the
approach to manipulation planning proposed by [2], which expresses connectiv-
ity between different states of contact as a graph. For “spider-robots” walking
on horizontal terrain, the exact structure of this graph can be computed quickly
using analytical techniques [5]. For more general systems, the graph can some-
times be simplified by assuming partial gaits, for example restricting the order
in which limbs are moved [40] or restricting footsteps to a discrete set [28]. But
when motion is distinctly non-gaited (as in manipulation planning [33,37], free-
climbing [6], or for athlete), each step requires the exploration of configuration
space. This motivates the two-stage search strategy we adopt in Section 3.

2.3 Key Tools

Each of the tools embedded in our planner improves and extends previous tech-
niques to satisfy the specific needs of athlete:

(a) Sampling and local connection. We use a variant of the Probabilistic-
Roadmap (prm) approach (see Chap. 7 of [11]) to generate transitions between
stances (configurations that are feasible at both one stance and another) as well
as paths between transitions. A prm planner samples configurations at random,
retaining feasible ones as milestones and connecting close milestones if possible
with feasible local paths. Its performance depends on fast methods of sampling
and local connection, either from scratch across all of configuration space [24]
or via perturbation by growing trees from existing milestones [1, 22, 30]. Closed
kinematic chains (athlete has many) make both of these operations harder
because there is zero probability that an arbitrary configuration will satisfy the
closure constraints. One approach breaks chains into “active” and “passive”
joints, sampling a configuration of the active joints and using analytical inverse
kinematics to solve for the rest [12, 17]. Another approach uses numerical opti-
mization to move a configuration onto the constraint manifold [18, 45, 47]. We
use a combination of these two methods.
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(b) Heuristics for footfall selection. A variety of heuristics have been proposed for
estimating the usefulness of a footfall. Most are geometric criteria that determine
how flat a footfall is [9, 10, 31]. On irregular and steep terrain, however, the
usefulness of a footfall also depends on its location with respect to other footfalls
– in particular, on how these footfalls are combined in each stance. We use these
heuristics to guide the search for a candidate sequence of stances to reach a goal
position, similar to [41, 10].

(c) Path smoothing. Paths generated by a prm planner are feasible, but not neces-
sarily optimal. A number of methods have been suggested to improve the result,
including “short-cut” heuristics [24,42] and gradient descent algorithms [44,15].
We use a similar approach. But in addition to being safe and efficient, athlete’s
motions must also “look good” to human operators.

3 Design of the Motion Planner

3.1 Motion Constraints

A configuration of athlete, denoted q, is a parameterization of the robot’s
placement in 3-d space. In the following, q consists of 6 parameters defining the
position and orientation of the robot’s hexagonal chassis and a list of 36 joint
angles (each leg has six actuated, revolute joints). The set of all such q is the
configuration space, denoted Q, of dimensionality 42.

When athlete is walking, a brake is applied to each wheel so it can not roll.
In this case, we call each wheel a foot. Whenever a foot is placed in contact
with the terrain, we call this placement (the fixed position and orientation of a
wheel in 3-d space) a footfall. Since all feet are identical, potentially any foot
could be placed at any footfall. We call a specific mapping of feet to footfalls a
stance. Consider a stance σ with 3 ≤ N ≤ 6 footfalls (in general, at least three
are required to achieve statically stable equilibrium). The feasible space Fσ is
the set of all feasible configurations of the robot at stance σ. To be in Fσ, a
configuration q must satisfy several constraints:

(a) Contact. The N legs whose feet are in contact with the ground form a linkage
with multiple closed-loop chains. So, q must satisfy inverse kinematic equations.
Let Qσ ⊂ Q be the set of all configurations q that satisfy these equations. This
set Qσ is a sub-manifold ofQ of dimensionality 42− 6N , which we call the stance
manifold. This manifold is empty if it is impossible for the robot to achieve the
contacts specified by σ, for example if two contact points are farther apart than
the maximum span of two legs.

(b) Static equilibrium. To remain balanced, athlete must be able to apply
forces with its feet on the terrain that compensate for gravity without slipping.
A necessary condition is that athlete’s center of mass (cm) lie above a sup-
port polygon. But on irregular and steep terrain, the support polygon does not
always correspond to the base of athlete’s feet. For example, athlete will
slip off a flat and featureless slope that is too steep, regardless of its cm posi-
tion. To compute the support polygon, we model the contact interface at each



306 K. Hauser et al.

footfall as a frictional point. Let r1, . . . , rN ∈ R
3 be the position, νi ∈ R

3 be the
normal vector, μi be the static coefficient of friction, and fi ∈ R

3 be the reac-
tion force acting on the robot at each point. We decompose each force fi into
a component νT

i fiνi normal to the terrain surface (in the direction νi) and a
component (I − νiν

T
i )fi tangential to the surface. Let c ∈ R

3 be the position of
athlete’s cm (which varies with its configuration). Assume athlete has mass
m, and the acceleration due to gravity is g ∈ R

3. All vectors are defined with
respect to a global coordinate system with axes e1, e2, e3, where g = −‖g‖e3.
Then athlete is in static equilibrium if

N∑

i=1

fi + mg = 0 (force balance) (1)

N∑

i=1

ri × fi + c×mg = 0 (torque balance) (2)

‖(I − νiν
T
i )fi‖2 ≤ μiν

T
i fi for all i = 1, . . . , N. (friction cones) (3)

These constraints are jointly convex in f1, . . . , fN and c. In particular, (1)-(2) are
linear and (3) is a second-order cone constraint. In practice we approximate (3)
by a polyhedral cone, so the set of jointly feasible contact forces and cm positions
is a high-dimensional polyhedron [8, 6, 7]. Finally, since

c×mg = m‖g‖

⎡

⎣
−c · e2
c · e1

0

⎤

⎦

then (1)-(2) do not depend on c · e3 (the cm coordinate parallel to gravity), so the
support polygon is the projection of this polyhedron onto the coordinates e1, e2.
There are many ways to compute this projection and to test the membership
of c. An approach that works well for our application is [7].

(c) Joint torque limits. The above equilibrium test assumes athlete is a rigid
body, “frozen” at configuration q. In reality, to maintain q each joint must exert
a torque, which in turn must not exceed a given bound. Let τ be the vector of
all joint torques exerted by the robot, and let ‖·‖ be a weighted L∞ norm where
‖τ‖ < 1 implies that each joint torque is within bounds. Then we check joint
torque limits by computing τ that achieves equilibrium with minimum ‖τ‖ (a
linear program), and verify ‖τ‖ < 1.

(d) Collision. In addition to satisfying joint angle limits, the robot must avoid
collision with the environment (except at contact points) and with itself. We use
techniques based on bounding volume hierarchies to perform collision checking,
as in [16, 39].

3.2 Two-Stage Search

To walk from once place to another, athlete has to take a sequence of steps.
Formally, we define a step as any continuous motion at a fixed stance that
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Explore-StanceGraph(qinitial, σinitial, σfinal)
1 Q ← {σinitial}
2 while Q is nonempty do
3 unstack a node σ from Q
4 if σ = σfinal then
5 construct a path [σ1, . . . , σn] from σinitial to σfinal

6 i ← Explore-TransitionGraph(σ1, . . . , σn, qinitial)
7 if i = n then
8 return the multi-step motion
9 else

10 delete the edge (σi, σi+1) from the stance graph
11 else
12 for each unexplored stance σ′ adjacent to σ do
13 if Find-Transition(σ, σ′) then
14 add a node σ′ and an edge (σ, σ′)
15 stack σ′ in Q
16 return “failure”

Explore-TransitionGraph(σi, . . . , σn, q)
1 imax ← i
2 for q′ ← Find-Transition(σi, σi+1) in each component of Fσi ∩ Fσi+1 do
3 if Find-Path(σi, q, q

′) then
4 icur ← Explore-TransitionGraph(σi+1, . . . , σn, q′)
5 if icur = n then
6 return n
7 elseif icur > imax then
8 imax = icur

9 return imax

Fig. 3. Algorithms to explore the stance graph and the transition graph

terminates by either placing or removing a foot. In particular, let σ and σ′

be the stances before and after a step, respectively. Then this step is a contin-
uous path from the robot’s current configuration qinitial ∈ Fσ to some config-
uration qfinal ∈ Fσ ∩ Fσ′ that we call a transition. During this step, athlete

may move all legs simultaneously, but we assume that no two feet are placed
or removed simultaneously. Therefore, σ and σ′ differ only by a single footfall,
which is present in only one of the two stances.

We encode the connectivity among stances as a stance graph. Each node of
this graph is a stance. Two nodes σ and σ′ are connected by an edge if there is a
transition between Fσ and Fσ′ . So the existence of an edge in the stance graph
is a necessary condition for athlete to take a step from one stance to another.
Both necessary and sufficient conditions are provided by a transition graph. Each
node of this graph is a transition. Two nodes q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′

are connected by an edge if there is a continuous path between them in Fσ. The
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stance and transition graphs represent the connectivity of athlete’s configura-
tion space at coarse and fine resolutions, respectively.

Our planner interweaves exploration of the stance graph and the transition
graph, based on the method of [6]. The algorithm Explore-StanceGraph

searches the stance graph (Fig. 3). It maintains a priority queue Q of nodes to
explore. When it unstacks σfinal, it computes a candidate sequence of nodes and
edges from σinitial. The algorithm Explore-TransitionGraph verifies that
this candidate sequence corresponds to a feasible motion by searching a subset of
the transition graph (Fig. 3). It explores a transition q ∈ Fσ ∩ Fσ′ only if (σ, σ′)
is an edge along the candidate sequence, and a path between q, q′ ∈ Fσ only if σ
is a node along this sequence. We say that Explore-TransitionGraph has
reached a stance σi if some transition q ∈ Fσi−1 ∩ Fσi is connected to qinitial in
the transition graph. The algorithm returns the index i of the farthest stance
reached along the candidate sequence. If this is not σfinal, then the edge (σi, σi+1)
is removed from the stance graph, and Explore-StanceGraph resumes ex-
ploration.

The effect of this two-stage search strategy is to postpone the generation of
one-step paths (a costly computation) until after generating transitions. It works
well because, as we mentioned in Section 1, athlete’s motion on irregular and
steep terrain is most constrained just as it places or removes a foot. In our ex-
periments we have observed that if we can find q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′ ,
then a path between q and q′ likely exists in Fσ.

A number of tools are embedded in this framework (the subroutines Find-

Transition and Find-Path, a heuristic for ordering Q, and a method of
smoothing the resulting motion) that we discuss in the following section.

4 Tools to Support the Motion Planner

4.1 Generating Transitions

Both Explore-StanceGraph and Explore-TransitionGraph require the
subroutine Find-Transition to generate transitions q ∈ Fσ ∩ Fσ′ between
pairs of stances σ and σ′. To implement Find-Transition, we use a sample-
based approach. The basic idea is to sample configurations randomly in q ∈ Q
and reject them if they are not in Fσ ∩ Fσ′ . But since Qσ has zero measure
in Q, this approach will never generate a feasible transition. So like [12, 45, 47],
we spend more time trying to generate configurations that satisfy the contact
constraint at σ (hence, at σ′ if σ′ ⊂ σ) before rejecting those that do not satisfy
other constraints. Like [18], we do this in two steps:

(a) Create a candidate configuration that is close to Qσ. First, we create a nom-
inal position and orientation of the chassis: (1) given a stance σ, we fit a plane
to the footfalls in a least-squares sense; (2) we place the chassis in this plane,
minimizing the distance from each hip to its corresponding footfall; (3) we move
the chassis a nominal distance parallel to the plane-fit and away from the ter-
rain. Then, we sample a position and orientation of the chassis in a Gaussian
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distribution about this nominal placement. Finally, we compute the set of joint
angles that either reach or come closest to reaching each footfall. Note that a
footfall fixes the intersection of the ankle pitch and ankle roll joints relative to
the chassis (Fig. 1). The hip yaw, hip pitch, and knee pitch joints determine this
position. There are up to four inverse kinematic solutions for these joints – or,
if no solutions exist, there are two configurations that are closest (straight-knee
and completely bent-knee). The knee roll, ankle roll, and ankle pitch determine
the orientation of the foot, for which there are two inverse kinematic solutions.
We select a configuration that satisfies joint-limit constraints; if none exists, we
reject the sample and repeat.

(b) Repair the candidate configuration using numerical inverse kinematics. We
move the candidate configuration to a point in Qσ using an iterative Newton-
Raphson method. We represent the error in position and orientation of each
foot i as a differentiable function fi(q) of the configuration q. Let

g(q) =

⎡

⎢⎣
f1(q)

...
fN(q)

⎤

⎥⎦

so we can write the contact constraint as the equality g(q) = 0. Assume we are
given a candidate configuration q1. Then at each iteration k, we transform this
configuration by taking the step

qk+1 = qk − αk∇g(qk)−†g(qk),

where∇g(qk)−† is the pseudo-inverse of the gradient of the error function, and αk

is the step size (computed using backtracking line search). The algorithm termi-
nates with success if at some iteration ‖g(qk)‖ < ε for some tolerance ε, or with
failure if a maximum number of iterations is exceeded.

The first step rarely generates configurations in Qσ, but it quickly generates
configurations that are close to Qσ. Conversely, the primary cost of the second
step is in computing ∇g(qk)−† at every iteration, but if candidate configura-
tions are sufficiently close to Qσ then few iterations are necessary. So, it is the
combination of these two methods that makes our sampler fast.

Note that Explore-TransitionGraph additionally requires that we sample
a single transition in each connected component of Fσ ∩ Fσ′ . Our approach is
not guaranteed to do this, but the probability that it samples at least one in
each component increases with the number of samples.

4.2 Generating Paths between Transitions

Explore-TransitionGraph requires the subroutine Find-Path to generate
paths in Fσ between pairs of transitions q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′ . We use
a variant of the probabilistic roadmap approach called sbl that is bi-directional
(growing trees from both q and q′) and lazy (delaying the creation of local paths
until a candidate sequence of milestones is found) [38].
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Free-Path(q, q′)
1 if the distance from q to q′ is less than ε then
2 return true

3 qmid ← (q + q′)/2
4 if Newton-Raphson from qmid results in qmid ∈ Qσ then
5 if qmid ∈ Fσ then
6 return (Free-Path(q, qmid) & Free-Path(qmid, q′))
7 else
8 return false

9 else
10 return false

Fig. 4. Algorithm to connect close configurations with a local path

To sample configurations in Fσ, we face the same challenge discussed in the
previous section (that a random configuration has zero probability of being
in Qσ), and so we use a similar approach. However, in this case we can fo-
cus our search on a small part of feasible space, near existing milestones in each
tree of the roadmap. Rather than sample a candidate configuration q ∈ Q at
random, we sample it in a neighborhood of an existing configuration q0. Close
to q0, the shape of Qσ is approximated well by the hyperplane

{ p ∈ Q | ∇g(q0)T p = ∇g(q0)T q0 }.

So before applying the iterative method to repair the sampled configuration, we
first project it onto this hyperplane (as in [47]).

To connect milestones with local paths, we face a similar challenge, since the
straight-line path between any two configurations q and q′ will not (in general)
lie in Qσ. So, we deform this straight-line path into Qσ using the bisection
method Free-Path (Fig. 4). At each iteration, Free-Path first applies Newton-
Raphson (see Section 4.1) to the midpoint of q and q′ to generate qmid ∈ Qσ,
then it checks that qmid ∈ Fσ. If both steps succeed, the algorithm continues
to recurse until a desired resolution has been reached; otherwise, the algorithm
returns failure. The advantage of this approach is that it does not require a
direct local parameterization of Qσ, as it may be difficult to compute such a
parameterization that covers both q and q′.

4.3 Ordering the Graph Search

Our two-stage search strategy can be improved by ordering the stances in Q
according to a heuristic cost function g(σ) + h(σ) in Explore-StanceGraph,
where stances with lower cost are given higher priority. We define g(σ) as the
minimum number of steps required to reach σ from σinitial in the stance graph.
We define h(σ) as a weighted sum of several criteria:
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• Planning time. We increase the cost of σ proportional to the amount of time
spent trying to sample a transition q ∈ Fσ′ ∩ Fσ to reach it [33].

• Distance to goal. We increase the cost of σ proportional to the distance
between the centroid of its footfalls and those of the goal stance σfinal.

• Footfall distribution. We increase the cost of σ proportional to the difference
(in a least-squares sense) between its footfalls and those of a nominal stance
on flat ground (with footfalls directly under each hip).

• Equilibrium criteria. We increase the cost of σ inversely proportional to the
area of its support polygon.

This heuristic reduces planning time and improves the resulting motion. It also
allows us to relax an implicit assumption – that Find-Transition and Find-

Path always return “failure” correctly. Because we implement these subroutines
using a probabilistic, sample-based approach, we are unable to distinguish be-
tween impossible and difficult queries. So on failure of Find-Transition in
Explore-StanceGraph, we still add σ to the stance graph but give σ a high
cost. Likewise, rather than delete (σ, σ′) on failure of Find-Path, we increase
the cost of σ and σ′.

4.4 Path Smoothing

Because we use probabilistic sample-based methods to sample transitions and
plan paths between them, the motions we generate are feasible (given an ac-
curate terrain model) but not necessarily high-quality. To improve the result,
we apply a method of smoothing similar to [44, 15], which uses gradient de-
scent to achieve criteria like minimum path length and maximum clearance (or
safety margin). However, we modify this approach in two ways. First, athlete’s
motion consists of a sequence of short paths (steps) through separate feasible
spaces rather than a single path through one feasible space. We consider this
entire sequence of paths at once (deforming transitions as well as paths) rather
than each one individually. So during the optimization, different parts of ath-

lete’s motion are subject to different constraints. Second, because athlete is
expected to interact with humans, we try to make its motion “look good” to
human operators. We do this by allowing the operator to select, ahead of time, a
small set of nominal configurations (for example, standing on six legs, standing
on three legs, or crouching). Then, in addition to minimizing path length and
maximizing clearance, we also minimize deviation from any point q along the
path to the closest nominal configuration q′. Even a small number of iterations
(taking about 10 minutes on a 2GHz pc) makes a noticeable difference in motion
quality.

5 Implementation and Results

We tested our planner in simulation on several example terrains. Each terrain is
a height-map of the form z = f(x, y), created using a fractal generation method
and represented by a triangular mesh consisting of 32768 triangles, each about
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Fig. 5. Walking on smooth, undulating terrain with no fixed gait

Fig. 6. Walking on steep, uneven terrain with no fixed gait

the size of one of athlete’s wheels. Currently, we randomly sample 200 footfalls
in each terrain to use in our planner, relying on our graph search heuristic
(Section 4.3) to identify which of these footfalls are useful. We are working on
ways to better refine our selection of footfalls (for example, during incremental
sensing), but right now the benefit is marginal.

First, we show that our planner enables athlete to walk across varied ter-
rain. Fig. 5 shows motion on smooth, undulating ground (where all contacts
are modeled with the same coefficient of friction). The initial and final stances
are at a distance of about twice the radius of athlete’s chassis. The resulting
motion consisted of 66 steps. Total computation time was 14 minutes. Fig. 6
shows motion on irregular and steep ground. The resulting motion consisted of
84 steps. Total computation time was 26 minutes. For comparison, Fig. 7 shows
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(a) (b)

Fig. 7. Walking with an alternating tripod gait is (a) feasible on smooth terrain but
(b) infeasible on uneven terrain. Infeasible configurations are highlighted red

Fig. 8. Rappelling down an irregular 60◦ slope with no fixed gait

the result of applying a common fixed gait (an alternating-tripod) to both of
these terrains. On smooth ground, the gait works well – it is simpler to plan,
and results in more efficient motion (Fig. 7(a)). On irregular and steep ground,
however, the gait does not work at all – it causes athlete to lose balance or
exceed torque limits at several locations (Fig. 7(b)).

Our results also demonstrate that the planner is flexible enough to handle
different robot morphologies. Fig. 8 shows motion to descend irregular and steep
terrain at an average angle of about 60◦. In this example, athlete is rappelling,
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using a tether (anchored at the top of the cliff) to help maintain equilibrium.
We included the tether with no modification to our planner, treating it as an ad-
ditional leg with a different kinematic structure. The resulting motion consisted
of 32 steps. Total computation time was 16 minutes.

6 Conclusion

In this paper we described the design and implementation of a motion planner
for a six-legged lunar vehicle called athlete, developed by jpl. This vehicle
has wheels on the end of each leg, but can fix these wheels to walk carefully
over terrain so rough that a fixed gait is insufficient. We made a key design
choice in our planner – to choose footfalls before computing motions – because
on this type of terrain, athlete’s motion is most constrained just as it places
or removes a foot. We presented several tools embedded in our planner (for
sampling, local connection, search heuristics, and path smoothing) that extend
previous techniques to satisfy the specific needs of athlete. We demonstrated
the flexibility of our planner with simulation results that included both walking
and rappelling motions on several example terrains.

There are many opportunities for future work. For example, our planner takes
a reasonable amount of time for off-line computation (less than one hour), so it
may help human pilots at jpl design difficult motions more quickly. A similar
approach was used to plan motions for the recent Mars rovers. However, our
planner is still too slow to be used on-the-fly (which may require computation
times of less than five minutes). We are working to derive motion strategies or
other methods of model reduction to address this problem. Other important
issues include incremental sensing and a consideration of dynamics.
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Abstract. We consider a variant of nonholonomic motion planning for a Dubins car
with no reversals, binary left/right steering, and uncertainty in motion direction. We
develop a new motion planner and apply it to steerable needles, a new class of flexible
bevel-tip medical needles that clinicians can steer through soft tissue to reach targets
inaccessible to traditional stiff needles. Our method explicitly considers uncertainty in
needle motion due to patient differences and the difficulty in predicting needle/tissue
interaction: the planner computes optimal turning points to maximize the probability
that the needle will reach the desired target. Given a medical image with segmented ob-
stacles and target, our method formulates the planning problem as a Markov Decision
Process (MDP) based on an efficient discretization of the state space, models motion
uncertainty using probability distributions, and computes turning points to maximize
the probability of successfully reaching the target using infinite horizon Dynamic Pro-
gramming (DP). This approach has three features particularly beneficial for medical
planning problems. First, the planning formulation only requires parameters that can
be directly extracted from images. Second, we can compute the optimal needle insertion
point by examining the DP look-up table of optimal controls for every needle state.
Third, intra-operative medical imaging can be combined with the pre-computed DP
look-up table to permit optimal control of the needle in the operating room without
requiring time-consuming intra-operative re-planning. We apply the method to gener-
ate motion plans for steerable needles to reach targets inaccessible to stiff needles and
illustrate the importance of considering uncertainty during motion plan optimization.

1 Introduction

Advances in medical imaging such as x-ray fluoroscopy, ultrasound, and MRI are
now providing physicians with real-time patient-specific information as they per-
form medical procedures such as extracting tissue samples for biopsies, injecting
drugs for anesthesia, or implanting radioactive seeds for brachytherapy cancer
treatment. These diagnostic and therapeutic medical procedures require inser-
tion of a needle to a specific location in soft tissue. We are developing motion
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(a) Minimize path length
Ps = 36.7%

(b) Maximize probability of success
Ps = 73.7%

Fig. 1. Our motion planner computes controls (insertions and direction changes, in-
dicated by dots) to steer the needle from an insertion entry region (vertical line on left
between the solid squares) to the target (open circle) inside soft tissue, without touch-
ing critical areas indicated by polygonal obstacles in the imaging plane. The motion of
the needle is not known with certainty; the needle tip may be deflected during insertion
due to tissue inhomogeneities or other unpredictable soft tissue interactions. We explic-
itly consider this uncertainty to generate motion plans to maximize the probability of
success, Ps, the probability that the needle will reach the target without colliding with
an obstacle or exiting the workspace boundary. Relative to minimizing path length, our
planner can generate longer paths with greater clearance from obstacles to maximize Ps.

planning algorithms for medical needle insertion procedures that can utilize the
information obtained by real-time imaging to accurately reach desired locations.

We consider a new class of medical needles, composed of a flexible material
and with a bevel-tip, that can be steered to targets in soft tissue that are inac-
cessible to traditional stiff needles [30, 31, 3, 4]. Steerable needles are controlled
by 2 degrees of freedom actuated at the needle base: insertion distance and
bevel direction. Webster et al. experimentally demonstrated that, under ideal
conditions, a flexible bevel-tip needle cuts a path of constant curvature in the
direction of the bevel and the needle shaft bends to follow the path cut by the
bevel tip [30]. In a plane, this nonholonomic constraint based on bevel direction
is equivalent to a Dubins car that cannot go straight; it can only steer its wheels
far left or far right.

The steerable needle motion planning problem is to determine a sequence of
controls (insertions and direction changes) so the needle tip reaches the speci-
fied target while avoiding obstacles and staying inside the workspace. Given a
segmented medical image of the target, obstacles, and starting location, the fea-
sible workspace for motion planning is defined by the soft tissues through which
the needle can be steered. Obstacles represent tissues that cannot be cut by the
needle, such as bone, or sensitive tissues that should not be damaged, such as
nerves or arteries. In this paper we consider motion plans in an imaging plane
since the speed/resolution trade-off of 3D imaging modalities is generally poor
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for 3D real-time interventional applications. In future work, we will explore the
natural extension of our planning approach to 3D as imaging modalities continue
to improve.

Clinicians performing medical needle insertion procedures must consider un-
certainty in the needle’s motion through tissue due to patient differences and
the difficulty in predicting needle/tissue interaction. These sources of uncer-
tainty may result in deflections of the needle’s orientation, which is a type of
slip in the motion of a Dubins car. Real-time imaging in the operating room can
measure the needle’s current position and orientation, but this measurement by
itself provides no information about the effect of future deflections during inser-
tion. We develop a new motion planning approach for steering flexible needles
through soft tissue that explicitly considers uncertainty: our method formulates
the planning problem as a Markov Decision Process (MDP) based on an efficient
discretization of the state space, models motion uncertainty using probability dis-
tributions, and computes optimal controls (within error due to discretization)
using infinite horizon Dynamic Programming (DP).

To define optimality for a needle steering plan, we introduce a new objective
for image-guided motion planning: maximizing probability of success. In the case
of needle steering, the needle is controlled until it reaches the target (success)
or until failure occurs, where failure is defined as hitting an obstacle, exiting the
feasible workspace, or reaching a state in which it is impossible to prevent the
former two outcomes. Since the motion response of the needle is not determin-
istic, success of the procedure can rarely be guaranteed. Our objective function
value for a particular plan has physical meaning: it is the probability that the
needle insertion will succeed assuming optimal control of the needle. In addition
to this intuitive interpretation of the objective, our formulation has a secondary
benefit: all data required for planning can be measured directly from imaging
data without requiring tweaking of user-specified parameters. Rather than as-
signing costs to insertion distance, needle rotation, etc., which are difficult to
estimate or quantify, our method only requires the probability distributions of
the needle response to each feasible control, which can be estimated from previ-
ously obtained images.

Solving the MDP using DP has key benefits particularly relevant for medical
planning problems where feedback is provided at regular time intervals using
medical imaging or other sensor modalities. Like a well-constructed navigation
field, the DP solver provides an optimal control for any state in the workspace.
We use the DP look-up table to automatically optimize the needle insertion
point. Integrated with intra-operative medical imaging, this DP look-up table
can be used to optimally control the needle in the operating room without re-
quiring costly intra-operative re-planning. Hence, the planning solution can serve
as a means of control under real-time medical imaging.

In Fig. 1, we apply our motion planner in simulation to prostate brachyther-
apy, a medical procedure in which physicians implant radioactive seeds at precise
locations inside the prostate under ultrasound image guidance to treat prostate
cancer. In this ultrasound image of the prostate (segmented by a dotted line),
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obstacles correspond to bones, the rectum, the bladder, the urethra, and previ-
ously implanted seeds. Brachytherapy is currently performed using rigid needles;
here we consider steerable needles capable of obstacle avoidance. We compare
the output of our new method to previous work on shortest path planning for
steerable needles [4]. Our method improves the expected probability of success
by over 30% compared to shortest path planning, illustrating the importance of
explicitly considering uncertainty in needle motion.

2 Related Work

Nonholonomic motion planning has a long history in robotics and related fields
[10, 20, 21, 23]. Past work has addressed deterministic curvature-constrained
path planning where a mobile robot’s path is, like a car, constrained by a min-
imum turning radius. Dubins showed that the optimal curvature-constrained
trajectory in open space from a start pose to a target pose can be described
from a discrete set of canonical trajectories composed of straight line segments
and arcs of minimum radius of curvature [15]. Jacobs and Canny considered
polygonal obstacles and constructed a configuration space for a set of canonical
trajectories [18], and Agarwal et al. developed a fast algorithm for a shortest
path inside a convex polygon [1]. For Reeds-Shepp cars with reverse, Laumond
et el. developed a nonholonomic planner using recursive subdivision of collision-
free paths generated by a lower-level geometric planner [22] and Bicchi et al.
proposed a technique that provides the shortest path for circular unicycles [8].
Sellen developed a discrete state-space approach; his discrete representation of
orientation using a unit circle inspired our discretization approach [27].

Our planning problem considers steerable needles currently under develop-
ment that are subject to a constant magnitude turning radius rather than a
minimum turning radius. Webster et al. showed experimentally that, under ideal
conditions, steerable bevel-tip needles follow paths of constant curvature in the
direction of the bevel tip [30], and that radius of curvature of the needle path is
not significantly affected by insertion velocity [31].

Park et al. formulated the planning problem for steerable bevel-tip needles
in stiff tissue as a nonholonomic kinematics problem based on a 3D extension
of a unicycle model and used a diffusion-based motion planning algorithm to
numerically compute a path [25]. Park’s method searches for a feasible path
in full 3D space using continuous control, but it does not consider obstacle
avoidance or the uncertainty of the response of the needle to insertion or direction
changes, both of which are emphasized in our method.

Past work has investigated needle insertion planning in situations where soft
tissue deformations are significant and can be modeled. Our past work addressed
planning optimal insertion location and insertion distance for rigid symmetric-
tip needles to compensate for 2D tissue deformations [5, 6]. Past work has also
addressed steering slightly flexible symmetric-tip needles by translating and ori-
enting the needle base to explicitly cause tissue deformations that will guide the
needle around point obstacles with oval-shaped potential fields [14]. Glozman
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and Shoham also address symmetric-tip needles and approximate the tissue us-
ing springs [17]. We previously developed a different 2D planner for bevel-tip
needles to explicitly compensate for the effects of tissue deformation by com-
bining finite element simulation with numeric optimization [3]. This previous
approach assumed that bevel direction can only be set once prior to insertion
and employed local optimization that can fail to find a globally optimal solution
in the presence of obstacles.

In preliminary work, we proposed an MDP formulation for needle steering
[4] to find a stochastic shortest path from a start position to a target, sub-
ject to user-specified “cost” parameters for direction changes, insertion distance,
and obstacle collisions. However, the formulation was not targeted at image-
guided procedures, did not include insertion point optimization, and optimized
an objective function that has no physical meaning. In this paper, we develop
a 2D motion planning approach for image-guided needle steering that explic-
itly considers motion uncertainty to maximize the probability of success based
on parameters that can be extracted from medical imaging without requiring
user-specified “cost” parameters that may be difficult to determine.

MDP’s are ideally suited for medical planning problems because of the vari-
ance in characteristics between patients and the necessity for clinicians to make
decisions at discrete time intervals based on limited known information. In the
context of medical procedure planning, MDP’s have been developed to assist in
timing decisions for liver transplants [2], discharge of severe sepsis cases [19], and
start dates for HIV drug cocktail treatment [28].

Integrating motion planning with intra-operative medical imaging requires
real-time localization of the needle in the images. Methods are available for this
purpose for a variety of imaging modalities [11, 12]. X-ray fluoroscopy, a relatively
low-cost imaging modality capable of obtaining images at regular discrete time
intervals, is ideally suited for our application because it generates 2D projection
images from which the needle can be cleanly segmented [11].

Medical needle insertion procedures may also benefit from the more precise
control of needle position and velocity made possible through robotic surgical
assistants [29]. Dedicated hardware for needle insertion is being developed for

(a) (b)

Fig. 2. The state of a steerable needle during insertion is characterized by tip position
p, tip orientation angle θ, and bevel direction b (a). Rotating the needle about its base
changes the bevel direction but does not affect needle position (b). The needle will cut
soft tissue along an arc (dotted vector) based on bevel direction.
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stereotactic neurosurgery [24], MR compatible surgical assistance [9, 13], and
prostate biopsy and therapeutic interventions [16, 26].

3 Motion Planning Method

3.1 Problem Definition

Steerable bevel-tip needles are controlled by 2 degrees of freedom actuated at the
needle base: insertion distance and rotation angle about the needle axis. Inser-
tion pushes the needle deeper into the tissue, while rotation re-orients the bevel
at the needle tip. For a sufficiently flexible needle, Webster et al. experimentally
demonstrated that rotating the needle base will change the bevel direction with-
out changing the needle’s position in the tissue [30]. In the plane, the needle
base can be rotated 180◦ about the insertion axis at the base so the bevel points
in either the bevel-left or bevel-right direction. When inserted, the asymmetric
force applied by the bevel causes the needle to bend and follow a curved path
through the tissue [30]. Under ideal conditions, the curve will have a constant
radius of curvature r, which is a property of the needle and tissue. We assume
the tissue is stiff relative to the needle and that the needle is thin, sharp, and
low-friction so the tissue does not significantly deform. While the needle can be
partially retracted and re-inserted, the needle is likely to follow the path in the
tissue cut by the needle prior to retraction. Hence, we only consider insertion,
not retraction, of the needle in this paper.

We define the workspace as a 2D rectangle of depth zmax and height ymax.
We do not consider motion by the needle out of the imaging plane. Obstacles in
the workspace are defined by (possibly nonconvex) polygons. The obstacles can
be expanded using a Minkowski sum to specify a minimum clearance [23]. The
target region is defined by a circle with center point t and radius rt.

As shown in Fig. 2, the state w of the needle during insertion is fully charac-
terized by the needle tip’s position p = (py, pz), orientation angle θ, and bevel
direction b, where b is either bevel-left (b=0) or bevel-right (b=1).

We assume imaging occurs at discrete time intervals and the motion planner
obtains needle tip position and orientation information only at these times. Be-
tween images, we assume the needle moves at constant velocity and is inserted
a distance δ. In our model, direction changes can only occur at discrete decision
points separated by the insertion distance δ. One of two controls, or actions, u
can be selected at any decision point: insert the needle a distance δ (u = 0), or
change direction and insert a distance δ (u = 1).

During insertion, the needle tip orientation may be deflected by inhomoge-
neous tissue, small anatomical structures not visible in medical images, or local
tissue displacements. Additional deflection may occur during direction changes
due to stiffness along the needle shaft. These deflections are due to an unknown
aspect of the tissue structure or needle/tissue interaction, not errors in measure-
ment of the needle’s orientation, and can be considered a type of noise parameter
in the plane. We model uncertainty in needle motion due to such deflections us-
ing probability distributions. The orientation angle θ may be deflected by some
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angle β, which we model as normally distributed with mean 0 and standard
deviations σi for insertion (u = 0) and σr for direction changes followed by in-
sertion (u = 1). Since σi and σr are properties of the needle and tissue, we plan
in future work to automatically estimate these parameters by retrospectively
analyzing images of needle insertion.

The goal of motion planning is to compute an optimal control u for every
state w in the workspace to maximize the probability of success Ps. We define
Ps(w) to be the probability of success given that the needle is currently in state
w. If the position of state w is inside the target, Ps(w) = 1. If the position of
state w is inside an obstacle, Ps(w) = 0. Given a control u for some other state
w, the probability of success will depend on the response of the needle to the
control (the next state) and the probability of success for that next state. The
expected probability of success is Ps(w) = E[Ps(v)|w, u], where the expectation
is over v, a random variable for the next state. The goal of motion planning is
to compute an optimal control u for every state w:

Ps(w) = max
u

{E[Ps(v)|w, u]} . (1)

3.2 Problem Formulation

To evaluate Eq. 1, we approximate needle state w = {p, θ, b} using a discrete
representation. To make this approach tractable, we must round p and θ without
generating an unwieldy number of states while simultaneously bounding error
due to discretization. We describe our approximation approach, which results in
N discrete states, in Sec. 3.3.

For N discrete states, the motion planning problem is to determine the optimal
control ui for each state i = 1, . . . , N . We re-write Eq. 1 using the discrete
approximation and expand the expected value to a summation:

Ps(xi) = max
ui

⎧
⎨

⎩

N∑

j=1

Pij(ui)Ps(xj)

⎫
⎬

⎭ , (2)

where Pij(ui) is the probability of entering state xj after executing control ui at
current state xi.

We observe that the needle steering motion planning problem is a type of
MDP. In particular, Eq. 2 has the form of the Bellman equation for a stochastic
shortest path problem [7]:

J∗(xi) = max
ui

N∑

j=1

Pij(ui) (g(xi, ui, xj) + J∗(xj)). (3)

where g(xi, ui, xj) is a “reward” for transitioning from state xi to xj after control
ui. In our case, g(xi, ui, xj) = 0 for all xi, ui, and xj , and J∗(xi) = Ps(xi).
Stochastic shortest path problems of this form can be optimally solved using
infinite horizon DP, as we describe in Sec. 3.4.
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3.3 State Space Discretization

Our discretization of the planar workspace is based on a grid of points with a
spacing Δ horizontally and vertically. We approximate a point p = (py, pz)
by rounding to the nearest point q = (qy, qz) on the grid. For a rectangu-
lar workspace bounded by depth zmax and height ymax, this results in Ns =⌊
zmaxymax/Δ

2
⌋

position states aligned at the origin.
Rather than directly approximating θ by rounding, which would incur a cu-

mulative error with every transition, we take advantage of discrete insertion
distances δ. We define a control circle of radius r, the radius of curvature of
the needle. Each point c on the control circle represents an orientation θ of the
needle, where θ is the angle of the tangent of the circle at c with respect to
the z-axis. The needle will trace an arc of length δ along the control circle in a
counter-clockwise direction for b = 0 and in the clockwise direction for b = 1.
Direction changes correspond to rotating the point c by 180◦ about the control
circle origin and tracing subsequent insertions in the opposite direction, as shown
in Fig. 3(a). Since the needle traces arcs of length δ, we divide the control circle
into Nc arcs of length δ = 2πr/Nc. The endpoints of the arcs generate a set of
Nc control circle points, each representing a discrete orientation state, as shown
in Fig. 3(b). We require that Nc is a multiple of 4 to facilitate the orientation
state change after a direction change.

At each position on the Δ grid, the needle may be in any of the Nc orientation
states. To define transitions for each orientation state, we overlay the control
circle on a regular grid of spacing Δ and round the positions of the control
circle points to the nearest grid point, as shown in Fig. 3(c). The displacements
between rounded control circle points encode the transitions of the needle tip.
This discretization results in 0 discretization error in orientation when the needle
is controlled at δ intervals.

Using this discretization, a needle state w = {p, θ, b} can be approximated
as a discrete state s = {q, Θ, b}, where q = (qy , qz) is the discrete point closest
to p on the Δ-density grid and Θ is the integer index of the discrete control
circle point with tangent angle closest to θ. The total number of discrete states
is N = 2NsNc.

Deterministic paths designated using this discrete representation of state will
incur error due to discretization, but the error is bounded. At any decision point,
the position error due to rounding to the Δ workspace grid is E0 = Δ

√
2/2.

When the bevel direction is changed, a position error is also incurred because
the distance in centers of the original control circle and the center of the control
circle after the direction change will be in the range 2r ± Δ

√
2. Hence, for a

needle path with h direction changes, the final orientation is precise but the
error in position is bounded above by Eh = hΔ

√
2 + Δ

√
2/2.

Due to motion uncertainty, actual needle paths will not always exactly trace
the control circle. The deflection angle β defined in Sec. 3.1 must also be approx-
imated as discrete. We define discrete transitions from a state xi, each separated
by an angle of deflection of α = 360◦/Nc, and store the transition probability in
Pij(u). In this paper, we model β using a normal distribution with mean 0 and
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(a) Needle tracing control circle (b) Control circle (c) Rounded control circle

Fig. 3. A needle in the bevel-left direction with orientation θ is tracing the solid control
circle with radius r (a). A direction change would result in tracing the dotted circle.
The control circle is divided into Nc = 40 discrete arcs of length δ (b). The control
circle points are rounded to the nearest point on the Δ-density grid, and transitions
for insertion of distance δ are defined by the vectors between rounded control circle
points (c).

standard deviation σi or σr, and compute the probability for each discrete tran-
sition by integrating the corresponding area under the normal curve, as shown
in Fig. 4. We set the number of discrete transitions Npi such that the areas on
the left and right tails of the normal distribution sum to less than 1%. The left
and right tail probabilites are added to the left-most and right-most transitions,
respectively.

Certain states and transitions must be handled as special cases. States inside
the target region and states inside obstacles are absorbing states. If the transition
arc from feasible state xi exits the workspace or intersects an edge of a polygonal
obstacle, a transition to an obstacle state is used.

3.4 Optimization Using Infinite Horizon Dynamic Programming

Infinite horizon dynamic programming is a type of dynamic programming in
which there is no finite time horizon [7]. For stationary problems, this implies
that the optimal control at each state is purely a function of the state without
explicit dependence on time. In the case of needle steering, once a state transition
is made, the next control is computed based on the current position, orientation,
and bevel direction without explicit dependence on past controls.

To solve the infinite horizon DP problem defined by the Bellman Eq. 3, we
use the value iteration algorithm [7], which iteratively updates Ps(xi) for each
state i by evaluating Eq. 2. This generates a DP look-up table containing the
optimal control ui and the probability of success Ps(xi) for i = 1, . . . , N .

Termination of the algorithm is guaranteed in N iterations if the transition
probability graph corresponding to some optimal stationary policy is acyclic [7].
Violation of this requirement will be rare in motion planning since it implies
that an optimal control sequence results in a path that, with probability greater
than 0, loops and passes through the same point at the same orientation more
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Fig. 4. When the needle is inserted, the insertion angle θ may be deflected by some
angle β. We model the probability distribution of β using a normal distribution with
mean 0 and standard deviation σi for insertion or σr for direction change. For a discrete
sample of deflections (β = {−2α, −α, 0, α, 2α}), we obtain the probability of each
deflection by integrating the corresponding area under the normal curve.

than once. Each iteration requires matrix-vector multiplication. To improve per-
formance, we take advantage of the sparsity of the matrices Pij(u) for u = 0 and
u = 1. Although Pij(u) has N2 entries, each row of Pij(u) has only k nonzero
entries, where k << N since the needle will only transition to a state j in the
spatial vicinity of state i. Hence, Pij(u) has at most kN nonzero entries. By
only accessing nonzero entries of Pij(u) during computation, each iteration of
the value iteration algorithm requires only O(kN) rather than O(N2) time and
memory. Thus, the total algorithm’s complexity is O(kN2). To further improve
performance, we terminate value iteration when the maximum change ε over all
states is less than 10−3, which in our test cases occurred in far fewer than N
iterations, as described in Sec. 4.

4 Computational Results

We implemented the motion planner in C++ and tested it on a 2.21GHz Athlon
64 PC. In Fig. 1, we set the needle radius of curvature r = 5.0, defined the
workspace by zmax = ymax = 10, and used discretization parameters Nc = 40,
Δ = 0.1, and δ = 0.785. The resulting DP problem contained N = 800,000
states. In all further examples, we set r = 2.5, zmax = ymax = 10, Nc = 40,
Δ = 0.1, and δ = 0.393, resulting in N = 800,000 states.

Optimal plans and probability of success Ps depend on the level of uncertainty
in needle motion. As shown in Figs. 1 and 5, explicitly considering the variance
of needle motion significantly affects the optimal plan relative to shortest path
plan generated under the assumption of deterministic motion. We also vary
the variance during direction changes independently from the variance during
insertions without direction changes. Optimal plans and probability of success Ps

are highly sensitive to the level of uncertainty in needle motion due to direction
changes. As shown in Fig. 6, the number of direction changes decreases as the
variance during direction changes increases.

By examining the DP look-up table, we can optimize the initial insertion
location, orientation, and bevel direction, as shown in Figs. 1, 5, and 6. In these
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(a) Shortest path
(Deterministic)

(b) Maximize Ps

σi = 10◦, σr = 10◦

Ps = 76.95%

(c) Maximize Ps

σi = 20◦, σr = 20◦

Ps = 29.01%

Fig. 5. As in Fig. 1, optimal plans maximizing the probability of success Ps illustrate
the importance of considering uncertainty in needle motion. The shortest path plan
passes through a narrow gap between obstacles (a). Since maximizing Ps explicitly
considers uncertainty, the optimal expected path has greater clearance from obstacles,
decreasing the probability that large deflections will cause failure to reach the target.
Here we consider medium (b) and large (c) variance in tip deflections for a needle with
smaller radius of curvature than in Fig. 1.

(a) σi = 5◦, σr = 5◦,
Ps = 98.98%

(b) σi = 5◦, σr = 10◦,
Ps = 92.87%

(c) σi = 5◦, σr = 20◦,
Ps = 73.00%

Fig. 6. Optimal plans demonstrate the importance of considering uncertainty in needle
motion, where σi and σr are the standard deviations of needle tip deflections that can
occur during insertion and direction changes, respectively. For higher σr relative to
σi, the optimal plan includes fewer direction changes. Needle motion uncertainty at
locations of direction changes may be substantially higher than uncertainty during
insertion due to transverse stiffness of the needle.

examples, the set of feasible start states was defined as a subset of all states on
the left edge of the workspace. By linearly scanning the DP look-up table, the
method identifies the bevel direction b, insertion point (height y on the left edge
of the workspace), and starting orientation angle θ (which varies from −90◦ to
90◦) that maximizes probability of success, as shown in Fig. 7.
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Fig. 7. The optimal needle insertion location y, angle θ, and bevel direction b are
found by scanning the DP look-up table for the feasible start state with maximal Ps.
Here we plot optimization surfaces for b = 0. The low regions correspond to states
from which the needle has high probability of colliding with an obstacle or exiting the
workspace, and the high regions correspond to better start states.

Integrating intra-operative medical imaging with the pre-computed DP look-
up table could permit optimal control of the needle in the operating room
without requiring costly intra-operative re-planning. We demonstrate the po-
tential of this approach using simulation of needle deflections based on normal
distributions with mean 0 and standard deviations σi = 5◦ and σr = 20◦ in
Fig. 8. After each insertion distance δ, we assume the needle tip is localized in
the image. Based on the DP look-up table, the needle is either inserted or the
bevel direction is changed. The effect of uncertainty can be seen as deflections in
the path, i.e., locations where the tangent of the path abruptly changes. Since
σr > σi, deflections are more likely to occur at points of direction change. In
practice, clinicians could monitor Ps, insertion length, and self-intersection while
performing needle insertion.

As defined in Sec. 3.4, the computational complexity of the motion planner is
O(kN2). Fewer than 300 iterations were required for each example, with fewer
iterations required for smaller σi and σr. In all examples, the number of tran-
sitions per state k ≤ 25. Computation time to solve the MDP for the examples
ranged from 67 sec to 110 sec on a 2.21GHz AMD Athlon 64 PC, with higher
computation times required for problems with greater variance, due to the in-
creased number of transitions from each state. As computation only needs to
be performed at the pre-procedure stage, we believe this computation time is
reasonable for the intended applications. Intra-operative computation time is
effectively instantaneous since only a memory access to the DP look-up table is
required to retrieve the optimal control after the needle has been localized in
imaging.
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(a) (b) (c)

Fig. 8. Three simulated image-guided needle insertion procedures from a fixed starting
point with needle motion uncertainty standard deviations of σi = 5◦ during insertion
and σr = 20◦ during direction changes. After each insertion distance δ, we assume the
needle tip is localized in the image and identified using a dot. Based on the DP look-up
table, the needle is either inserted (small dots) or a direction change is made (larger
dots). The effect of uncertainty can be seen as deflections in the path, i.e., locations
where the tangent of the path abruptly changes. Since σr > σi, deflections are more
likely to occur at points of direction change. In all cases, Ps = 72.35% at the initial
state. In (c), multiple deflections and the nonholonomic constraint on needle motion
prevent the needle from reaching the target.

5 Conclusion and Future Work

We developed a new motion planning approach for steering flexible needles
through soft tissue that explicitly considers uncertainty: the planner computes
optimal controls to maximize the probability that the needle will reach the de-
sired target. Motion planning for steerable needles, which can be controlled by
2 degrees of freedom at the needle base (bevel direction and insertion distance),
is a variant of nonholonomic planning for a Dubins car with no reversals, binary
left/right steering, and uncertainty in motion direction.

Given a medical image with segmented obstacles and target, our method
formulates the planning problem as a Markov Decision Process (MDP) based on
an efficient discretization of the state space, models motion uncertainty using
probability distributions, and computes controls to maximize the probability
of success using infinite horizon DP. We implemented the motion planner and
ran test problems of 800,000 states on a 2.21GHz Athlon 64 PC. The method
generated motion plans for steerable needles to reach targets inaccessible to
stiff needles and illustrated the importance of considering uncertainty in needle
motion, as shown in Figs. 1, 5, and 6.

Our approach has key features particularly beneficial for medical planning
problems. First, the planning formulation only requires parameters that can be
directly extracted from images (the variance of needle orientation after insertion
with or without direction change). Second, we can locate the optimal needle
insertion point by examining the DP look-up table of optimal controls for every
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needle state, as demonstrated in Fig. 7. Third, intra-operative medical imaging
can be combined with the pre-computed DP look-up table to permit optimal
control of the needle in the operating room without requiring time-consuming
intra-operative re-planning, as shown in Fig. 8.

In future work, we plan to extend the motion planner to 3D. Although the
mathematical formulation can be naturally extended, substantial effort will be
required to specify 3D state transitions and improve solving methods to handle
the larger state space. We also plan to develop automated methods to esti-
mate curvature and variance properties from images and explore the inclusion
of multiple tissue types in the workspace with different needle/tissue interaction
properties.

Our motion planner has implications outside the needle steering domain. We
can directly extend the method to motion planning problems with a bounded
number of discrete turning radii where current position and orientation can be
measured but future motion response to controls is uncertain. For example, mo-
bile robots subject to motion uncertainty with similar properties can receive
periodic “imaging” updates from GPS or satellite images. Optimization of “in-
sertion location” could apply to automated guided vehicles in a factory setting,
where one machine is fixed but a second machine can be placed to maximize
the probability that the vehicle will not collide with other objects on the factory
floor. By identifying a relationship between needle steering and infinite horizon
DP, we developed a motion planner capable of rigorously computing plans that
are optimal in the presence of uncertainty.
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Symmetric homo-oligomers are protein complexes with similar subunits arranged sym-
metrically [10]. Figure 1 illustrates the structure of a symmetric homo-oligomer called
phospholamban. Phospholamban is a membrane protein that helps regulate the calcium
level inside the cell and hence aids in muscle contraction and relaxation [7]; ion conduc-
tance studies [5] also suggest that phospholamban might have a separate role as an ion
channel. A detailed molecular-level understanding of homo-oligomeric structures pro-
vides insights into their functions and, in some cases, how to design appropriate drugs.
Nuclear Magnetic Resonance (NMR) spectroscopy underlies many structural studies
of homo-oligomers, but poses significant computational challenges in inferring three-
dimensional structures from indirect (and often sparse) measurements of geometry.

We use two types of information in homo-oligomeric structure determination: dis-
tance restraints from nuclear Overhauser effect (NOE) data, and biophysical model-
ing terms evaluating packing quality. An inter-subunit distance restraint is of the form
‖p − q′‖ ≤ d, where p and q′ are atoms in different subunits of the complex, and
d is the given distance for the restraint. We say that a structure is consistent with a
distance restraint if p and q′ are within d Å of each other. The experimental data are
complemented by biophysical models of the (non-covalent) interactions that stabilize
complexes. Figure 1(b,c) illustrates that the atoms of adjacent subunits of phospholam-
ban are well-packed, interacting at just the right distance to hold the complex together.
Packing interactions are typically evaluated with functions that model the van der Waals
(vdW) energies between the atoms forming the complex [1, 4]. Our approach sepa-
rately accounts for experimental data and biophysical modeling terms, and ultimately
finds structures of symmetric homo-oligomers that are consistent with the inter-subunit
distance restraints and that display high-quality inter-subunit packing interactions.

Traditional protocols [6] for structure determination of protein complexes from NMR
data use simulated annealing and molecular dynamics to optimize a pseudo-potential

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 335–340, 2008.
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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(a) (b) (c)

Fig. 1. Structure of Phospholamban. The five subunits are shown in different colors. (a) Wire-
frame (backbone trace) representation. (b) Van der Waals sphere representation of all the atoms.
(c) Van der Waals sphere representation, viewed down the symmetry axis and illustrating the
5-fold symmetry.

combining both biophysical terms (including packing interactions) and terms evaluating
consistency with experimental data. The goal is to find low-energy conformations, but
these techniques may become trapped in local minima and miss structures consistent
with the data. The precision in the determined structure is also strongly affected by the
annealing temperature. Further, since these approaches combine data and packing, they
cannot identify the contribution to the structure from the experimental data alone ver-
sus both data and packing. Alternative docking-based approaches [2, 3, 8] for structure
determination typically involve a two-stage approach: generate a set of possible docked
structures, and then score them. The possible structures are generated by a heuristic
and/or grid-based sampling of the space of rotations and translations of one subunit with
respect to another. The generated structures are scored by geometric/energetic functions,
and can be filtered based on symmetry. However, the sampling in the generation step
does not account for consistency with the data and thus may miss consistent structures.
Wang et al. [11] developed a branch-and-bound algorithm to compute rigid body trans-
formations satisfying potentially ambiguous inter-subunit distance restraints. In contrast
to this approach, our algorithm exploits the kinematics of the ‘closed-ring’ constraint
due to symmetry, and thereby derives an analytical bound for pruning, which is tighter
and more accurate than the previous randomized numerical techniques.

Our approach, described in detail in [9], is complete in that it tests all possible struc-
tures, and it is data-driven in that our algorithm has two separate stages where the first
stage only tests structures for consistency with the data, and the second stage evaluates
the consistent structures for vdW packing. Completeness ensures that our algorithm
does not miss any solutions because it returns a superset of all structures which are
consistent with the data. This avoids bias in the search, as well as any potential for
becoming trapped in local minima. The data-driven nature of our method allows us to
independently quantify the amount of structural constraint provided by data alone, ver-
sus both data and packing. This avoids over-reliance on subjective choices of parameters
for energy minimization [1], and consequent false precision in determined structures.
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Given a set of inter-subunit NOE restraints, the subunit structure and oligomeric
number (number of subunits forming the complex) as input, our approach determines
the 3D structure of a symmetric homo-oligomer. (We note that it is possible to experi-
mentally determine the subunit structure prior to computing the complex [7].) Given a
single (fixed) sub-unit structure, the entire structure of the homo-oligomer is determined
by the position and orientation of the symmetry axis. We take a configuration space-
based approach and represent each possible structure of the symmetric homo-oligomer
by a point in the four-dimensional space of symmetry-axis parameters, which we call
the symmetry configuration space (SCS), S2 × R

2. Geometrically, a point in R
2 rep-

resents the position of the symmetry axis, and a unit vector in S2 gives the orientation
of the symmetry axis. We must identify all points in SCS representing symmetry axes
that lead to structures consistent with the given set of inter-subunit distance restraints.
Let Ra(θ) ∈ SO(3) be a rotation around the unit vector a by θ = 2π/n radians, where
n is the oligomeric number. Let t ∈ R

2 be the point where the axis of rotation pierces
the xy-plane, specifying the location of the symmetry axis. For an atom q in the fixed
subunit, the corresponding atom in the adjacent subunit, q′, when the symmetry axis is
at (a, t), is obtained as q′ = Tat(q) = Ra(θ)(q − t) + t. We wish to find the set

M = {(a, t) | a ∈ S2, t ∈ R
2, ‖p− Tat(q)‖ ≤ d ∀ ordered triples (p,q, d) ∈ D},

(1)
where D is the set of inter-subunit distance restraints, each specifying atoms p and q in
the fixed subunit and distance d. A restraint constrains the maximum distance between
p and Tat(q), the atom corresponding to q in the adjacent subunit when the symmetry
axis is at (a, t). The set M corresponds to all points in SCS that satisfy all the restraints.

In order to compute the set M , we perform a search over the SCS. The SCS is too
large to search naı̈vely or exhaustively. Therefore, we have developed a novel branch-
and-bound algorithm to search the SCS that is efficient and provably conservative in
that it examines and conservatively eliminates regions in SCS inconsistent with the data.
Without this algorithm, a complete, data-driven search would not be computationally
feasible. The branch-and-bound search performs a search of the SCS by hierarchically
subdividing it. Each node in the tree is a SCS cell—a 4-dimensional hypercuboid de-
fined by values representing extrema along each of the four dimensions. At each node
of the hierarchical subdivision, we test whether any point in the cell represents a con-
sistent structure. If such a point possibly exists, we branch and partition the cell into
smaller sub-cells. We continue branching until we can either eliminate or accept each
cell. We eliminate a cell when all the structures represented by the cell violate at least
one restraint (see below) or contain several atoms that significantly clash with each
other. We conservatively accept a cell as part of the consistent regions when all the
structures it represents either provably satisfy all the restraints or are within an RMSD
(root mean square deviation) of τ0 Å (a user-defined similarity level) of each other and
each restraint is satisfied by at least one structure represented by the cell. At the end of
the branch-and-bound search, we return regions in SCS, the consistent regions, which
provably contain all structures that are consistent with the data.

To test whether we can eliminate a cell G due to restraint violation, we independently
consider each restraint, ‖p − q′‖ ≤ d. We would like to compute Gq (recall that q
corresponds to q′ in the fixed subunit), the set of all possible positions of q′ under
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(a) (b) (c)

Fig. 2. Phospholamban Results: (a) Region of 4D space output by our branch and bound approach
using the nine experimental restraints and knowledge of C5 symmetry. The solution space of
translation parameters and rotation parameters (theta angle denoted by t and phi angle denoted by
p) on a sphere is shown. (b) The set of WPS structures after alignment to the structure with lowest
packing score. Different subunits are in different colors. (c) Variance of the atoms illustrated by
a color scale with blue indicating maximum variance and red minimum variance.

the symmetries defined by G. Since the region Gq is characterized by high-degree
polynomials and it is computationally expensive to test for intersections with Gq, we
approximate Gq by a conservative bounding region that completely contains Gq. If
there is an empty intersection between the conservative bounding region and the ball of
radius d centered at p, then all the structures represented by G violate the restraint and
we eliminate G.

Figure 2(a) shows the consistent regions in SCS for phospholamban based on the
nine experimentally-determined distance restraints. For the sake of illustration, we show
the consistent regions as separate 2-d projections into S2 and R

2. The volume of the
consistent regions in the SCS is 1.24 Å2-radian2. This volume indicates the constraint
on structure provided by data alone. The larger the volume, the lesser the constraint.

Once the consistent regions have been identified, we choose representative structures
from them such that every structure in the consistent regions is within an RMSD of τ0 Å
to at least one representative structure. Note that this sampling is different from the sam-
pling in docking-based approaches in that the native structures are always within τ0 Å
to at least one of the representative structures. Due to the conservative bounds used
in our search, the representative structures might contain structures that are inconsis-
tent with the data. The set of satisfying structures includes only those representative
structures with restraint satisfaction scores below a chosen threshold. We then evaluate
each of the satisfying structures by energy-minimizing and scoring them based on van
der Waals packing. The set of well-packed satisfying (WPS) structures includes those
energy-minimized satisfying structures with van der Waals packing scores below a cho-
sen threshold. Thus, we ultimately return a set of structures consistent with data and
packing representing any consistent, well-packed structure to within an RMSD of τ0 Å.

The structural uncertainty in a set of structures can be quantified by the average
variance in the positions of the atoms. The satisfying structures of phospholamban have
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a variance of 12.32 Å; the incorporation of vdW packing reduces this to 6.80 Å for
the well-packed satisfying structures. Figure 2(b) illustrates the set of WPS structures
for phospholamban. Figure 2(c) illustrates the variance of the atoms in the set of WPS
structures. There is less uncertainty in the lower half of each subunit than in the up-
per half, since there are more experimental restraints in the lower half. Our complete
approach hence allows us to identify the atoms of the complex that have high struc-
tural uncertainty. Further, it allows us to separately quantify the amount of structural
constraint provided by data alone (satisfying structures), versus data and packing (WPS
structures).

Our approach also provides for an independent verification of the oligomeric num-
ber, which is typically determined using experiments such as chemical cross-linking fol-
lowed by SDS-PAGE, or by equilibrium sedimentation. We determine the oligomeric
number by extending our search space to include a search over possible oligomeric
numbers. We refer to this extended space as the extended symmetry configuration space
(ESCS), Z9 × S2 × R

2, where Z9 is the set of possible oligomeric numbers of 2 to
9. We first obtain the set of WPS structures for each oligomeric number. We immedi-
ately prune out those oligomeric numbers that have no WPS structures. This allows us
to determine the oligomeric number with high certainty when only a single oligomeric
number has WPS structures. When several oligomeric numbers have WPS structures,
we determine the oligomeric number as follows. Let El(m) and El(n) represent the
lowest packing scores of the WPS structures from oligomeric numbers of m and n re-
spectively. If El(m) < El(n), the difference El(n) − El(m) indicates the confidence
we have in preferring m versus n as the oligomeric number. On applying this approach
to determine the oligomeric number of phospholamban, the pentamer has the lowest
packing score causing us to correctly conclude that the pentamer is the most feasible
oligomeric number.

In summary, we have developed a novel approach that performs a complete, data-
driven search to identify all structures of a homo-oligomeric complex that are consistent
with NOE restraints and display high-quality vdW packing. Our tests on phospholam-
ban and four other proteins demonstrate the power of our method in determining and
evaluating homo-oligomeric complex structures. Our approach is particularly important
in sparse-data cases, where relying on an incomplete, biased search may result in miss-
ing well-packed, satisfying conformations. Examination of the entire solution space
further enables objective evaluation of the amount of structural uncertainty. Finally, we
show that it is possible to determine the oligomeric number directly from NMR data.
The details of our methods and results are available in our paper [9].
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Abstract. One common mobile robot design consists of three ‘omniwheels’ arranged at the ver-
tices of an equilateral triangle, with wheel axles aligned with the rays from the center of the
triangle to each wheel. Omniwheels, like standard wheels, are driven by the motors in a direction
perpendicular to the wheel axle, but unlike standard wheels, can slip in a direction parallel to the
axle. Unlike a steered car, a vehicle with this design can move in any direction without needing to
rotate first, and can spin as it does so. We show that if there are independent bounds on the speeds
of the wheels, the fastest trajectories for this vehicle contain only spins in place, circular arcs, and
straight lines parallel to the wheel axles. We classify optimal trajectories by the order and type of
the segments; there are four such classes, and there are no more than 18 control switches in any
optimal trajectory.

1 Introduction

This paper presents the time-optimal trajectories for a simple model of the common
mobile-robot design shown in figure 1(b). 1 The three wheels are “omni-wheels”; the
wheels not only rotate forwards and backwards when driven by the motors, but can also
slip sideways freely. Such a robot can drive in any direction instantaneously.

The only other ground vehicles for which the fastest trajectories are known explicitly
are steered cars and differential-drives. Although our results are specific to the particular
vehicle studied, we hope that expanding the set of vehicles for which the optimal trajec-
tories are known will eventually lead to a more unified understanding of the relationship
between robot mechanism design and the use of resources.

We show that the time-optimal trajectories consist of spins in place, circular arcs,
and straight lines parallel to the wheel axles. We label each segment type by a letter: P,
C , S, respectively. There are specific sequences of segments that may be optimal; we
call the four possible classes of trajectories spin, roll, shuffle, and tangent. Figures 3(a),
4(a), 4(b), and 4(c) show an example of each type.

1. Spin trajectories consist of a spin in place through an angle no greater than π, and
are described by the single-letter control sequence P.

2. Roll trajectories consist of a sequence of up to five circular arcs of equal radius
separated by spins in place, and are described by the control sequence CPCPC .

1 A version of this paper with complete proofs of the theorems appears in [1].

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 343–358, 2008.
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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The centers of the arcs all fall on a straight line. With the possible exception of the
first and last segments, the arcs all encompass the same angle, as do the spins, and
the sum of the angular displacement of a complete arc and a complete spin is 120◦.

3. Shuffle trajectories are composed of sequences of three circular arcs followed by a
spin, CCCP, and contain no more than seven control switches. A complete period
of a shuffle moves the vehicle ‘sideways’ in a direction parallel to a line connecting
two wheels.

4. Tangent trajectories consist of a sequence of arcs of circles and spins in place sep-
arated by arbitrarily long translations in a direction parallel to the line containing
the center of the robot and one of its wheels. All straight segments are colinear. The
control sequence is CSCSCP, and trajectories contain no more than 18 switches.
Intuitively, the robot ‘lines up’ in its fastest direction of translation, translates, and
then follows arcs of circles to arrive at its final position and orientation.

Why study optimal trajectories? Knowledge of the shortest or fastest paths between
any two configurations of a particular robot is fundamental. Robots expend resources
to achieve tasks. Possibly the simplest resource is time; the amount of time that must
be expended to move the robot between configurations is a basic property of the mech-
anism, and a fundamental metric on the configuration space.

Knowledge of the time optimal trajectories is also useful. Mechanisms should be de-
signed so that common tasks can be achieved efficiently. Furthermore, the time-optimal
metric is independent of software-design decisions, and therefore provides a benchmark
to compare planners or controllers. Finally, the metric derived from the optimal trajec-
tories may be used as a heuristic to guide sampling in complete planning systems that
permit obstacles or a more complex dynamic model of the mechanism.

We do not argue that controllers should be designed to drive robots to follow the ‘op-
timal’ trajectories we derive.In fact, resources other than time may also be important,
including energy consumption, safety, simplicity of programming, sensing opportuni-
ties, and accuracy. Tradeoffs must be made, but understanding the relative payoffs of
each design requires an understanding of the fundamental behavior of the mechanism.
The knowledge that great circles are geodesics on the sphere does not require that air-
planes must strictly follow great circles, but may nonetheless influence the choice of
flight paths.

(a) Photograph.

v
1

v
2

v
3

(x, y)

θ

(b) Notation.

Fig. 1. The Palm-Pilot Robot Kit, an example of an omni-directional vehicle. Photograph used
by permission of Acroname, Inc., www.acroname.com.
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1.1 Related Work

Most of the work on time-optimal control for vehicles has focused on bounded-velocity
models of steered cars. Dubins [7] determined the shortest paths between two configu-
rations of a car that can only move forwards at constant speed, with bounded steering
angle. Reeds and Shepp [10] found the shortest paths for a steered car that can move
backwards as well as forwards. Sussmann and Tang [15] further refined these results, re-
ducing the number of families of trajectories thought to be optimal by two, and Souères
and Boissonnat [13], and Souères and Laumond [14] discovered the mapping from pairs
of configurations to optimal trajectories for the Reeds and Shepp car. Desaulniers [6]
showed that in the presence of obstacles shortest paths may not exist between certain
configurations of steered cars. Furthermore, in addition to the straight lines and circu-
lar arcs of minimum radius discovered by Dubins, the shortest paths may also contain
segments that follow the boundaries of obstacles. Vendittelli et al. [16] used geometric
techniques to develop an algorithm to obtain the shortest non-holonomic distance from
a robot to any point on an obstacle.

Recently, the optimal trajectories have been found for vehicles that are not steered
cars, and metrics other than time. The time-optimal controls for bounded-velocity
differential-drives were discovered by Balkcom and Mason [2]. Chitsaz et al. [3] de-
termined the trajectories for a differential-drive that minimize the sum of the rotation of
the two wheels. The optimal paths have also been explored for some examples of vehi-
cles without wheels. Coombs and Lewis [5] consider a simplified model of a hovercraft,
and Chyba and Haberkorn [4] consider underwater vehicles. We know of no previous
closed-form solutions for the optimal trajectories for any wheeled omni-directional ve-
hicle.

Bounded-velocity models of the type we study capture the kinematics of a vehicle,
but not the dynamics. The results of this paper strongly depend on the analytical solu-
tion of differential equations describing the optimal trajectories. Analysis of dynamic
models, for which analytical solutions are not typically available, is a very difficult
problem. Results include numerical techniques and geometric characterization rather
than complete closed-form solutions; see papers by Reister and Pin [11], Renaud and
Fourquet [12], and Kalmár-Nagy et al. [8].

2 Model, Assumptions, Notation

Let the state of the robot be q = (x, y, θ)T ; the location of the center of the robot, and
the angle that the line from the center to the first wheel makes with the horizontal, as
shown in figure 1(b). Without loss of generality, we assume that the distance from the
center of the robot to the wheels is one. We further assume that each of the three wheel-
speed controls v1, v2, and v3 is in the interval [−1, 1]. We define the control region

U = [−1, 1]× [−1, 1]× [−1, 1], (1)

and consider the class of admissible controls to be the measurable functions u(t) map-
ping the time interval [0, T ] to U : u(t) = (v1(t), v2(t), v3(t))T .

To simplify notation, we define ci = cos θi, and si = sin θi, where θi = θ + (i −
1)120◦, the angle of the ith wheel measured from the horizontal. Define the matrix S to
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be the Jacobian that transforms between configuration-space velocities of the vehicle,
and velocities of the wheels in the controlled direction:

S =

⎡

⎣
−s1 c1 1
−s2 c2 1
−s3 c3 1

⎤

⎦, S−1 = 2
3

⎡

⎣
−s1 −s2 −s3
c1 c2 c3
1/2 1/2 1/2

⎤

⎦ . (2)

We define the state trajectory q(t) = (x(t), y(t), θ(t)) for any initial state q0 and
admissible control u(t) using Lebesgue integration, with the standard measure:

q(t) = q0 +
∫

S−1u . (3)

It may be easily verified that the kinematic equations and bounds on the controls
satisfy the conditions of theorem 6 of Sussmann and Tang [15]; an optimal trajectory
exists between every pair of start and goal configurations.

3 Pontryagin’s Maximum Principle

This section uses Pontryagin’s Maximum Principle [9] to derive necessary conditions
for time-optimal trajectories. The Maximum Principle states that if the trajectory q(t)
with corresponding control u(t) is time-optimal then the following conditions must
hold:

1. There exists a non-trivial (not identically zero) adjoint function: an absolutely con-
tinuous R3-valued function of time, λ(t), defined by a differential equation, the
adjoint equation, in the configuration and in time-derivatives of the configuration:

λ̇ = − ∂

∂q
〈λ, q̇(q, u)〉 a.e. (4)

We call the inner product appearing in equation 4 the Hamiltonian:

H(λ, q, u) = 〈λ, q̇(q, u)〉. (5)

2. The control u(t) minimizes the Hamiltonian:

H(λ(t), q(t), u(t)) = min
z∈U

H(λ(t), q(t), z) a.e. (6)

Equation 6 is called the minimization equation.
3. The Hamiltonian is constant and non-positive over the trajectory. We define λ0 as

the negative of the value of the Hamiltonian; λ0 is constant and non-negative for
any optimal trajectory.

3.1 Application of the Maximum Principle

We solve for the adjoint vector by direct integration: λ1 = 3k1, λ2 = 3k2, and λ3 =
3(k1y− k2x+ k3), where 3k1, 3k2, and 3k3 are constants of integration. (The constant
factor of 3 will simplify the form of equation 9 below.)
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We now substitute the adjoint function into the minimization equation to determine
necessary conditions for time-optimal trajectories. To simplify notation, we define three
functions,

ϕi(t) = 〈λ(t), fi(q(t))〉, (7)

where fi is the ith column of S−1. Explicitly, if we define the function

η(x, y) = k1y − k2x + k3, (8)

then the functions are:

ϕi = 2(−k1si + k2ci) + η(x, y) (9)

We may now write the equation for the Hamiltonian in terms of these functions and
the controls v1, v2, and v3:

H = ϕ1v1 + ϕ2v2 + ϕ3v3. (10)

The minimization condition of the Maximum Principle (condition 2, above) applied
to equation 10 implies that if the function ϕi is negative, then vi should be chosen
to take its maximum possible value, 1, in order to minimize H . If the function ϕi is
positive, then vi should be chosen to be −1. Since the controls switch whenever one of
the functions ϕi changes sign, we refer to the functions ϕi as switching functions.

Theorem 1. For any time-optimal trajectory of the omni-directional vehicle, there exist
constants k1, k2, and k3, with k2

1 + k2
2 + k2

3 �= 0, such that at almost every time t, the
value of the control vi is determined by the sign of the switching function ϕi:

vi =
{

1 if ϕi < 0
−1 if ϕi > 0,

(11)

where the switching functions ϕ1, ϕ2, and ϕ3 are given by equations 8, 9. Furthermore,
the quantity λ0 defined by

λ0 = −H(ϕ1, ϕ2, ϕ3) = |ϕ1|+ |ϕ2|+ |ϕ3| (12)

is constant along the trajectory.

Proof: Application of the Maximum Principle.

The Maximum Principle does not directly give information about the optimal controls
in the case that one or more of the switching functions ϕi is zero. Theorems 7 and 8
in section 4 specifically address this case. The Maximum Principle also does not give
information about the constants of integration, as these depend on the initial and final
configurations of the robot. In this paper, we give the structure of trajectories as a func-
tion of these constants, but do not describe how to determine the constants except in a
few cases.



348 D.J. Balkcom, P.A. Kavathekar, and M.T. Mason

2
si
n

θ

ϕ1ϕ3

ϕ2

2

S1

S2

S3

L

IC 1

Fig. 2. Geometric interpretation of the switching functions. For the case shown, ϕ1 < 0, ϕ2 > 0,
and ϕ3 > 0, so the controls are v1 = 1, v2 = −1, and v3 = −1.

3.2 Geometric Interpretation of the Switching Functions

The switching functions are not independent, and have a geometric interpretation. Con-
sider the function η(x, y):

η(x, y) = k1y − k2x + k3. (13)

η(x, y) gives the signed distance of the point (x, y) from a line in the plane whose
location is determined by the constants k1, k2, and k3, scaled by the factor k2

1 + k2
2 .

(If k2
1 + k2

2 = 0, we may consider the line to be ‘at infinity’; the robot spins in place
indefinitely. Since this control is identical to the spin trajectories described in section 5,
we do not consider this case separately.) We will call this line the switching line. We
also associate a direction with the switching line such that any point (x, y) is to the left
of the switching line if η(x, y) > 0, and to the right of the switching line if η(x, y) < 0.

Theorem 2. Define the points S1, S2, and S3 rigidly attached to the vehicle, with dis-
tance 2 from the center of the vehicle, and making angles of 180◦, 300◦, and 60◦ with
the ray from the center of the vehicle to wheel 1, respectively (refer to figure 2). For any
time-optimal trajectory, there exist constants k1, k2, and k3, and a line (the switching
line)

L = {(a, b) ∈ R2 : k1b− k2a + k3 = 0},

such that the controls of the vehicle v1, v2, and v3 depend on the location of the points
S1, S2, and S3 relative to the line. Specifically, for i ∈ {1, 2, 3},

vi =
{

1 if Si is to the right of the switching line,
−1 if Si is to the left of the switching line.

Proof: Let (xSi , ySi) be the coordinates of Si. We compute the signed, scaled distance
of the point Si from the line L, and observe from the definition of the switching func-
tions that ϕi(x, y, θ) = η(xSi , ySi).
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We will call S1, S2, and S3 the switching points. For any optimal trajectory, the location
of the switching line is fixed by the choice of constants, and the controls at any point
depend on the signs, but not on the magnitudes, of the switching functions. Figure 2
shows an example. Two of the switching points (S2 and S3) are to the left of the switch-
ing line, so the corresponding switching functions are positive, and wheels 2 and 3 spin
at full speed in the negative direction. The remaining switching point (S1) is to the right
of the switching line, so wheel 1 spins at full speed in the positive direction. As a result
of these controls, the robot will follow a clockwise circular arc. The center of the arc is
a distance of four from the robot, and along the line containing the center of the robot
and wheel 1.

In general, if all three switching functions have the same sign, the controls all take
either their maximum or minimum value, and the robot spins in place. The center of
rotation is the center of the robot; we call this point IC 0. If the switching functions
are non-zero but do not all have the same sign, the vehicle rotates in a circular arc. The
rotation center is a distance of four from the center of the robot, on the ray connecting
the center of the robot and the wheel corresponding to the ‘minority’ switching function.
We call these rotation centers IC 1, IC 2, and IC 3.

The switching functions are invariant to translation of the vehicle parallel to the
switching line (see figure 2), and scaling the switching functions by a positive constant
does not affect the controls. Therefore, for any optimal trajectory, we may without loss
of generality choose a coordinate frame with x-axis on the switching line, and an ap-
propriate scaling, such that y gives the distance from the switching line, and θ gives the
angle of the vehicle relative to the switching line. With this choice of coordinates, the
switching functions become

ϕi = y − 2si (14)

We will use these coordinates for the remainder of the paper.

4 Properties of Extremals

We will say that any trajectory that satisfies the conditions of theorem 1 (or equivalently,
theorem 2) is extremal. In this section, we will enumerate several properties of extremal
trajectories. The primary result is that every extremal trajectory contains only a finite
number of control switches with an upper bound determined by λ0.

We say that an extremal trajectory is generic on some interval if none of the switching
functions ϕi is zero at any point contained in the interval. We say that a trajectory is
singular on some interval if exactly one of the switching functions is identically zero
on that interval, and no other switching function is zero at any point on the interval. We
say that an extremal trajectory is doubly singular on an interval if exactly two of the
switching functions are zero on that interval, and the third switching function is never
zero on the interval. We will call a trajectory singular if it contains any singular interval
of non-zero width.

Detailed proofs of the following properties are omitted due to space limitations, but
may be found in [1] . Most of the proofs are based on differential analysis of the switch-
ing functions.
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Theorem 3. At no point along an extremal trajectory does ϕ1 = ϕ2 = ϕ3 = 0.

Theorem 4. If an extremal trajectory contains any doubly-singular point, then every
point of the trajectory is doubly-singular.

Theorem 5. Every pair of singular points of an extremal trajectory is contained in a
single singular interval, or is separated by a generic point.

Theorem 6. The number of control switches in an extremal trajectory is finite, and
upper-bounded by a constant that depends only on λ0.

In section 7, we will show that for optimal trajectories, a much stronger property holds:
the number of control switches is never greater than 18.

Theorem 7. Consider a singular interval of non-zero duration, with ϕi = 0. At every
point of the interval, y = sin θi = 0, and the controls are constant: vi = 0, and
vj = −vk = ±1.

Theorem 8. Consider a doubly-singular interval of non-zero duration, with ϕi = ϕj =
0. Along the interval, (i) y = ±1, cos θk = 0, and (ii) the controls are constant, with
vk = ±1, and vi = vj = ∓.5.

5 Extremal Controls

Theorems 1, 6, 7, and 8 imply that optimal trajectories are composed of a finite number
of segments, along each of which the controls are constant. Considering all possible
combinations of signs and zeros of the switching functions allows the twenty extremal
controls to be enumerated; table 1 shows the results. The vehicle may spin in place, fol-
low a circular arc, translate in a direction perpendicular to the line joining two wheels,
or translate in a direction parallel to the line joining two wheels. We denote each control
by a symbol: P±, Ci± , Si,j , or Dk± , respectively. The subscripts depend on the specific
signs of the switching functions.

Theorem 2 gives a more geometric interpretation of the extremal controls. The con-
trols depend on the location of the switching points relative to the switching line. There
are four cases:

• Spin in place. If the vehicle is far from the switching line, all of the switching points
are on the same side of the line, and all of the wheels spin in the same direction.
Figure 3(a) shows an example. If the robot is to the left of the switching line, the
robot spins clockwise (P−); if the robot is to the right of the switching line, the
robot spins counterclockwise (P+).

• Circular arc. Figure 3(b) shows an example of a counterclockwise arc around IC2
(C2+ ). If two switching points are on one side of the line, and one switching point
is on the other, two wheels spin in one direction at full speed, and one wheel spins
in the opposite direction at full speed. These controls cause the vehicle to follow
a circular arc of radius four; the center of the arc is the IC corresponding to the
switching point that is not on the same side of the switching line as the others, and
the direction of rotation depends on whether this switching point is to the left or
right of the line.
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Table 1. The twenty extremal controls

Symbol ϕ u λ0

P− +++ -1, -1, -1 3y
P+ --- 1, 1, 1 −3y

C1− -++ 1, -1, -1 y + 4 sin θ1

C2− +-+ -1, 1, -1 y + 4 sin θ2

C3− ++- -1, -1, 1 y + 4 sin θ3

C1+ +-- -1, 1, 1 −y − 4 sin θ1

C2+ -+- 1, -1, 1 −y − 4 sin θ2

C3+ --+ 1, 1, -1 −y − 4 sin θ3

Symbol ϕ u λ0

S1,3 -0+ 1, 0, -1 2
√

3
S1,2 -+0 1, -1, 0 2

√
3

S3,2 0+- 0, -1, 1 2
√

3
S3,1 +0- -1, 0, 1 2

√
3

S2,1 +-0 -1, 1, 0 2
√

3
S2,3 0-+ 0, 1, -1 2

√
3

D3+ 00+ .5, .5, -1 3
D1− -00 1, -.5, -.5 3
D2+ 0+0 .5, -1, .5 3
D3− 00- -.5, -.5, 1 3
D1+ +00 -1, .5, .5 3
D2− 0-0 -.5, 1, -.5 3

• Singular translation. Figure 3(c) shows an example, S1,3, where the second
switching point slides along the switching line. If two switching points are an equal
distance from the switching line but on opposite sides of the line, two of the wheels
spin at full speed, but in opposite direction. If the last switching point falls exactly
on the switching line, theorem 2 does not provide any information about the speed
of the last wheel. If the wheel does not spin, then the vehicle translates along the
switching line, as described by theorem 7. Otherwise, the singular translation is only
instantaneous.

• Doubly-singular translation. Figure 3(b) shows an example, D3+ , where the first
and second switching points slide along the switching line. If two switching points
fall on the switching line, the speeds of the corresponding wheels cannot be deter-
mined from theorem 2. If these wheels spin at half speed, in a direction opposite to
that of the third wheel, both switching points slide along the switching line, and the
vehicle translates. It turns out that that doubly-singular controls, although extremal,
are never optimal; see section 7.

6 Classification of Extremal Trajectories

Every extremal trajectory is generated by a sequence of constant controls from table 1.
However, not every sequence is extremal. This section geometrically enumerates the
five structures of extremal trajectories.

First consider an example, shown in figure 4(a). Initially, switching points 1 and 3 fall
to the left of the switching line, and switching point 2 falls to the right of the switching
line. The vehicle rotates in the clockwise direction about IC 2. After some amount of
rotation, switching point 2 crosses the switching line. Now all three switching points are
to the left of the switching line, the velocity of wheel 2 changes sign, and the vehicle
spins in place. When switching point 3 crosses the switching line, the vehicle begins
to rotate about IC 3. When switching point 3 crosses back to the left side, the vehicle
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(a) An example clockwise spin con-
trol, P−.

S1

S2

S3

L

IC 2

(b) An example clockwise circular
arc control, C2− .
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(c) An example singular transla-
tion control, S1,3.

S1 S2

S3
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(d) An example doubly-singular
translation control, D3+ .

Fig. 3. Extremal controls for an omni-directional robot

spins in place again until switching point 1 crosses the line. The pattern continues in
this form; we describe the trajectory by the sequence of symbols C3+C2−C1+P+ . . . .

In general, if no switching points fall on the switching line (the generic case), then
the controls are completely determined by theorem 2, and the vehicle either spins in
place or rotates around a fixed point. When one of the switching points crosses the
switching line, the controls change. For some configurations for which one or two of
the switching points fall exactly on the switching line (the singular and doubly-singular
cases), there exist controls that allow the switching points to slide along the switching
line.

We will define these classes more rigorously in sections 6.1 and 6.2. However, we
can see geometrically that there are five cases:

• SpinCW and SpinCCW. If the vehicle is far from the switching line, the switching
points are on the same side of the switching line and never cross it; the vehicle spins
in place indefinitely. The structure off the trajectory is either P− (if the vehicle is to
the left of the switching line) or P+ (if the vehicle is to the right of the switching
line). An example is shown in figure 3(a).

• RollCW and RollCCW. If the switching points either straddle the switching line,
or the vehicle is close enough to the switching line that spinning in place will even-
tually cause the switching points to straddle the line, the trajectory is a sequence
of circular arcs and spins in place. If the vehicle is far enough from the switching
line that every switching point crosses the switching line and returns to the same
side before the next switching point crosses the line, the structure of the trajectory
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(c) An example trajectory of type Tangent,
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2− P−Cstart
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Fig. 4. Extremal trajectories for an omni-directional robot

is as described in the example above and in figure 4(a). θ is monotonic during the
trajectory (except where θ wraps around 0).

• Shuffle. If the vehicle is close enough to the switching line that two switching points
cross the switching line before the first returns to its initial side, the sign of θ̇ changes
during the trajectory. An example is shown in figure 4(b).

• Tangent. As the vehicle spins in place or follows a circular arc, the switching points
follow circular arcs. If one of these arcs is tangent to the switching line, a singular
control becomes possible at the point of tangency, and the vehicle may translate
along the switching line for an arbitrary duration before returning to following a
circular arc. An example is shown in figure 4(c). A single circular arc is divided
into three segments in a tangent trajectory. These segments are separated by the
singular S curves, possibly of zero duration. We call these segments Cstart, Cmid,
and Cend, as shown in figure 4(c). The robot rotates through 60◦ during a complete
Cmid segment.

• Slide. If two switching points fall on the switching line, the trajectory is doubly
singular. The vehicle slides along the switching line in a pure translation; an exam-
ple of this trajectory type is shown by figure 3(d). Although slide trajectories are
extremal, we will show in section 7 that they are never optimal.

6.1 Configuration Space

In order to show that the above list of trajectory classes is exhaustive, it is useful to
consider the structure of trajectories in configuration space. The configuration of the
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P−

P+

C1−C2−C3−

C1+ C2+C3+

S1,3 S1,2

S3,2

S3,1 S2,1 S2,3

D3+

D1−

D2+

D3−

D1+

D2−

y

θϕ1 = 0

ϕ2 = 0

ϕ3 = 0

(a) The sinusoidal switching curves partition
the configuration space into eight C and P
control regions.

SpinCW

SpinCCW

RollCW

RollCCW

Shuffle1−Shuffle2−Shuffle3−

Shuffle1+ Shuffle2+Shuffle3+

(b) Each trajectory corresponds to a level
set (contour) of the Hamiltonian. The dashed
lines represent control switches; the bold lines
separate the trajectory classes.

Fig. 5. The configuration space of the robot relative to the switching line

robot relative to the switching line may be represented by (θ, y). Figure 5(a) shows the
configuration space.

Each point on figure 5(a) corresponds to a configuration of the robot relative to
the switching line. The sinusoidal curves defined by ϕ1 = 0, ϕ2 = 0, and ϕ3 = 0
mark boundaries in configuration space; we call these curves the switching curves. The
switching curves and their intersections divide the configuration space into cells, within
each of which the controls are constant.

As an example, consider a point below switching curve 1, but above switching curves
2 and 3. The controls are (−1, 1, 1), described by the symbol C1− ; the vehicle follows a
circular arc around IC 1 in the clockwise direction. This trajectory is a sinusoidal curve
in configuration space.

6.2 Level Sets of the Hamiltonian

The trajectory curves in configuration space can be drawn by considering each possible
initial configuration, determining the constant control, and integrating to find the tra-
jectory. When the trajectory crosses a switching curve, the control switches. However,
the condition that the Hamiltonian remain constant over a trajectory provides an even
simpler way to enumerate all trajectories in the configuration space.

Each extremal trajectory falls on a level set of the Hamiltonian (equation 12), and
extremal trajectories may be classified by the value λ0. Figure 5(b) shows the level sets
of the Hamiltonian, or equivalently, extremal trajectories in configuration space.

• If λ0 > 6, the level set is a pair of horizontal lines, one with y = λ0/3, correspond-
ing to a spinCW trajectory, and one with y = −λ0/3, corresponding to a spinCCW
trajectory.

• If 2
√

3 ≤ λ0 ≤ 6, the level set is composed of two disjoint curves, one correspond-
ing to rollCW trajectory and one corresponding to a rollCCW trajectory.
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• If λ0 = 2
√

3, the level set is the union of the bold curves shown in figure 5(b).
Tangent trajectories follow these curves.

• If 3 < λ0 < 2
√

3, the level set is composed of six disjoint curves, one corresponding
to each of the six symmetric shuffle trajectories.

• If λ0 = 3, the level set is six isolated points, each corresponding to one of the six
slide trajectories.

Table 2. Four of the five classes of extremal trajectories. Every optimal trajectory is composed
of a sequence of controls that is a subsequence of one of the above types. (Doubly-singular slide
trajectories are extremal, but never optimal; see section 7.) The structure of tangent trajectories
is complicated, and shown explicitly in figure 6.

Class Control sequence Value of λ0

SpinCW P− λ0 ≥ 6
SpinCCW P+

RollCW C3−P−C2−P−C1−P− . . . 2
√

3 ≤ λ0 < 6
RollCCW C1+P+C2+P+C3+P+ . . .
Tangent CSCSCP . . . λ0 = 2

√
3

Shuffle1− C2+C1− C3+P+. . . 3 < λ0 < 2
√

3
Shuffle2− C3+C2−C1+P+ . . .
Shuffle3− C1+C3−C2+P+ . . .
Shuffle1+ C3−C1+C2−P− . . .
Shuffle2+ C1−C2+C3−P− . . .
Shuffle3+ C2−C3+C1−P− . . .

C3+ S2,3 C3+ S1,3 C3+ P+ C2+ S1,2 C2+ S3,2 C2+ P+ C1+ S3,1 C1+ S2,1 C1+ P+

C1− S1,2 C1− S1,3 C1− P− C2− S2,3 C2− S2,1 C2− P− C3− S3,1 C3− S3,2 C3− P−

Fig. 6. The structure of tangent trajectories. The controls must occur in left-to-right order in the
direction shown by either the top or the bottom arrows. However, after a singular control S, the
trajectory may switch from one sequence to the other, as shown by the vertical and diagonal lines
segments.

7 Optimal Trajectories

We have presented the five classes of extremal trajectory; every optimal trajectory must
be extremal. However, not all extremal trajectories are optimal. In this section, we will
present further conditions that optimal trajectories must satisfy. Specifically, we will
show that doubly-singular slide trajectories are never optimal, and that the number of
control switches in any optimal trajectory never exceeds 18. Finally, we show that the
classification {spin, roll, shuffle, tangent} is minimal; for each trajectory class, there
exists at least one pair of configurations for which a trajectory of that class is optimal.
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Theorem 9. Doubly-singular slide trajectories are not optimal for any pair of start and
goal configurations.

Proof: (sketch) First show that there exists a shuffle that connects any two configurations
on a slide that are separated by less than 8

√
6/3. Express the distance traveled and the

time taken by a shuffle trajectory as a function of λ0. Finally, show that the average
forward velocity for such a trajectory is strictly less than -1 (the velocity for the doubly
singular trajectory).

Theorem 10. Optimal trajectories contain no more than 18 control switches. Specifi-
cally,

(i) optimal spin trajectories contain zero control switches, and the maximum duration
of an optimal spin trajectory is π;

(ii) optimal roll trajectories contain at most 8 control switches;
(iii) optimal shuffle trajectories contain at most 7 control switches;
(iv) optimal tangent trajectories contain at most 12 control switches if the trajectory is

non-monotonic in θ, and at most 18 control switches if the trajectory is monotonic
in θ;

Proof: (Sketch) The proof for spin trajectories is obvious. For each of roll, shuffle, and
tangent trajectories we slice, reorder, or reflect segments to construct alternative trajec-
tories that take the same time, but are not extremal. Since these equal-cost trajectories
are not extremal, neither these nor the original roll, shuffle, and tangent are optimal.

Theorem 11. There exist bounds on the displacements along the x and θ axis beyond
which spin, roll, and shuffle trajectories are not optimal. In particular,

(i) Roll trajectories with x-displacement more than −40
√

2√
3

are not optimal.

(ii) Shuffle trajectories with x-displacement more than −16
√

2√
3

and θ displacement
more than 60◦ are not optimal.

(iii) Tangent trajectories are not optimal for configurations that are separated by more
than 120◦, with distance between the configurations less than 4.

Proof: (Sketch) Theorem 10 gives the maximum number of segments that comprise
optimal trajectories of each class. We compute the distance of each segment for each
class.

Theorem 12. Spin, Roll, Shuffle, and Tangent trajectories are each optimal for at least
one pair of start and goal configurations of the omni-directional vehicle.

Proof: (Sketch) For each class, we explicitly construct a pair of start and goal config-
urations for which no other trajectory class is optimal. For example, if the goal is suf-
ficiently far away, no roll, spin, or shuffle trajectory can be optimal, since there are no
more than nine segments, and each segment is of bounded length. Therefore a tangent
trajectory is optimal.
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8 Open Problems

We have presented a complete and minimal classification of optimal trajectories, and
explicit descriptions of each trajectory. However, we have not addressed the problem of
determining which of these trajectories is optimal for a particular pair of start and finish
configurations. For the problem of determining the shortest trajectories for a steered
car, Reeds and Shepp [10] suggest the simple approach of enumerating all possible
structures that connect two configurations, and comparing the time of each. A similar
approach should be possible for the omnidirectional vehicle.

Souères and Laumond [14] determined the complete synthesis of optimal trajectories
for the steered car: an explicit mapping from pairs of configurations to trajectories.
Balkcom and Mason [2] determined the synthesis for differential-drive vehicles. Such
a result for the omnidirectional vehicle would remove the need for enumerating and
comparing all trajectories between a pair of configurations, and would give the metric
on the configuration space more explicitly.

The current work also does not consider the presence of obstacles. We expect that
optimal trajectories among obstacles would consist of segments of obstacle-free trajec-
tories, and segments that follow the boundary of the obstacles.

There are also broader questions. The shortest or fastest trajectories are now known
for a few examples of specific systems: steered cars, the differential drive, and the omni-
directional vehicle considered here. The results share some features in common; each of
the optimal trajectories can be described by motion of the robot relative to a switching
line in the plane. The trajectories for steered cars include arcs of circles and straight
lines; the trajectories for differential drives include spins in place and straight lines. The
trajectories for the current system include straight lines, arcs of circles, and spins in
place, and the system could in that sense be considered a hybrid of a steered car and
a differential drive. What generalizations are possible, and can the optimal trajectories
be determined for a generic mechanism whose design is described in terms of a set
of variable parameters? Which mechanism should be chosen to be most efficient for a
given distribution of start and goal configurations?
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Abstract. In this paper we describe methods applicable to the modeling and con-
trol of mechanical manipulation problems, including those that experience uncertain
stick/slip phenomena. Manipulation in unstructured environments often includes un-
certainty arising from various environmental factors and intrinsic modeling uncertainty.
This reality leads to the need for algorithms that are not sensitive to uncertainty, or at
least not sensitive to the uncertainty we can neither model nor estimate. The particular
contribution of this work is to point out that the use of an abstraction, in this case
a kinematic reduction, not only reduces the computational complexity but addition-
ally simplifies the representation of uncertainty in a system. Moreover, this simplified
representation may be directly used in a stabilizing control law. The end result of this
is two-fold. First, modeling for purposes of control is made more straight-forward by
getting rid of some dependencies on low-level mechanics (in particular, the details of
friction modeling). Second, the online estimation of the relevant uncertain variables
is much more elegant and easily implementable than the online estimation of the full
model and its associated uncertainties.

1 Introduction

It is traditional in robotics to view problems of manipulation, motion planning,
and control in one of two extreme lights. First, if a system is kinematic (a
word which for now we leave not specifically defined), we simplify the system
description from a second-order system with forces and inertias to a first-order
system that consists of velocities and constraints. Then motion plans and control
laws (if necessary) are designed for this kinematic system. It is important to
note that in order to implement this design based on kinematics, a backstepping
algorithm is employed, either explicitly in an “inner-loop-outer-loop” control
architecture, or implicitly by purchasing motor controllers (or other appropriate
devices) that provide the inner loop control. In the end, the advantages of using
kinematic structures include both lessened computational burden (due to the
computation in a lower-dimensional space) and increased robustness to some
classes of uncertainty (due to robustness properties of the backstepping, inner-
loop controller).

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 359–374, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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If, however, there is some reason that a kinematic analysis is inappropriate,
then we often revert to a more complex set of modeling choices. In particular,
in multi-point contact many phenomena are introduced, including soft-contact
models [2], elaborate models of frictional interfaces [17], and the inclusion of
dynamic effects such as inertial terms and generalized forces. Nevertheless, it
is not clear that the introduction of these additional modeling techniques helps
for the purpose of control, motion planning, etcetera. In fact, it is often the
case that this hurts our ability to successfully design control strategies. Not
only does the introduction of these effects make problems computationally more
complex, it also decreases robustness by introducing assumptions that are often
not satisfied by the environment or, worse, may only sometimes be satisfied by
the environment. Hence, we can be faced with a situation where our modeling
assumptions are occasionally correct, but not reliably so.

From a design perspective (as opposed to a simulation perspective), it is thus
desirable to, if necessary, introduce elements to a model that provide the full
complexity of possible behavior of the system without introducing too much new
information (thereby decreasing the applicability of the model). This is related to
the idea of abstraction, which originated in the computer science community [10]
and was then made formal in a control context in [18] and related works. In this
paper, we focus on a particular type of abstraction that formalizes the idea of a
system being kinematic, appropriately termed kinematic reducibility. However,
this is merely the setting for the present work. Our main focus is to discuss what
types of representation of uncertainty should be used in the abstracted setting.

Consider the conceptual block diagram in Fig.1. The blocks on the right-hand-
side are familiar–these four blocks represent a traditional backstepping algorithm
using “virtual inputs.” In the case of a kinematic vehicle, we abstract the true
dynamics of the vehicle to a kinematic representation where the abstracted in-
puts are now velocities and the input vector fields are vectors that satisfy the
kinematic constraints. Then a backstepper is used that takes these velocities as
reference signals for a lower-level controller. It is useful to point out that doing
so assumes that this low-level controller is robust to any uncertainties (com-
ing from terrain, parametric uncertainty, etcetera). In the context of Fig.1, this
means that the reduction to the kinematic system induces a formal reduction of
the uncertainty. In this case, there is no representation of uncertainty whatsoever
in the abstract description of the system–all the robustness is built into the back-
stepping algorithm. What we will see is that this same abstraction in multi-point
contact systems again reduces the representation of uncertainty, but not to the
point that there is no uncertainty at all in the reduced equations. Instead, there
is an abstracted uncertainty which corresponds to the hybrid, discrete-valued
state that represents the contact state (whether any given contact is in contact
or out of contact and, if in contact, whether it is slipping or sticking) of the
system. It is this reduced representation of uncertainty we will use in designing
controllers for these systems. The practical advantage of this approach is that
the reduced representation of uncertainty makes some aspects of analysis more
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Fig. 1. Conceptual block diagram for reduction of both the physical model and un-
certainty

simple and that it can make estimation less costly both in terms of computation
and bandwidth requirements.

Our previous work [15] (first presented at WAFR 2002 [14]) in this area showed
that some manipulation surfaces cannot stabilize an object without feedback,
and then showed that by using the Power Dissipation Method (PDM) to model
the system one can design a stabilizing controller that works surprisingly well
experimentally. The weaknesses of this work were primarily that it was unclear
why the power dissipation method would adequately capture the dynamics, and
it was moreover unclear why a feedback controller could be designed in this
context. The former issue was cleared up when we showed in [16] that the power
dissipation method is actually a class of kinematic reductions, in the sense of the
work by Lewis et al [3, 4]. The latter issue, that of understanding why we can do
control design using a heuristic modeling technique, has only recently become
clear, and this paper is intended to explain why and when controller design may
occur in these traditionally heuristic settings.

The key contribution of this paper is that we present a methodology for com-
bining kinematic reductions with stabilizing controllers that only use a reduced
representation of uncertainty in their estimators. When possible, this allows one
to use a reduced model for computational simplicity while not losing any of the
behavior of which the system is capable. We present an example of multiple point
manipulation as an example, but point out that the technique of uncertainty ab-
straction is potentially much more broadly applicable than just what is discussed
here. This paper is organized as follows. Section 2 described an example system
that motivates the present work. Section 3 discusses modeling of multi-point con-
tact systems using Lagrangian mechanics and the constrained affine connection.
Although the use of the constrained affine connection description of the mechan-
ics is absolutely equivalent to the more traditional approach using a Lagrangian
and generalized coordinates, we use it because it gives a precise statement of a
test for kinematic reducibility, as discussed in Section 3.1. Section 4 discusses
stability results relevant to these systems, and Section 5 gives, for purpose of
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Fig. 2. An 8 degree-of-freedom four “finger” manipulator that manipulates objects it
supports. The fingers are constrained, so stick/slip transitions between the actuator
end-effectors and the manipulated object must occur when the actuators move. The
present paper presents simulations of this device (the picture on the right with a “see-
through” box supported and manipulated by four arms is the graphical representation
we use in simulations).

illustration, a quick introduction to how one applies these results to the example
in Section 2 .

2 Motivation: Multi-point Manipulation

A manipulation system consisting of many points of contact typically exhibits
stick/slip phenomenon due to the point contacts moving in kinematically incom-
patible manners. We call this manner of manipulation overconstrained manipu-
lation because not all of the constraints can be satisfied. Naturally, uncertainty
due to overconstraint can sometimes be mitigated by having backdrivable actu-
ators, soft contacts, and by other mechanical means [11], but these approaches
avoid the difficulties associated with stick/slip phenomenon at the expense of
losing information about the state of the mechanism. This, in turn, leads either
to degraded performance or to requiring additional sensors. Consider the object
in Fig. 2. It has eight degrees of freedom, all independently actuated by a DC
brushless motor. The motion of the tips of the “fingers” can be constrained to
be in a horizontal plane, so it can be used as a manipulation surface. However,
the force any given finger exerts is constrained on a line–no finger can exert any
“side-ways” force. In such cases friction forces and intermittent contact play an
important role in the overall system dynamics, leading to non-smooth dynamical
system behavior. The question is how to control the position and orientation of
a supported object without being sensitive to the details of how the frictional
stick/slip interactions adversely affect stability. This is addressed in Section 4
after discussing modeling issues in Section 3.
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3 Modeling and Analysis of Multiple Point Contact

We assume that the systems we are interested in are finite-dimensional sim-
ple mechanical systems (as described for smooth systems in [3]). That is, their
equations of motion may be found using a Lagrangian of the form kinetic en-
ergy minus potential energy (L = K.E. − V ) along with a set of constraints
on the system of the form ω(q)q̇ = 0, where ω(q) is a matrix representing the
configuration (q) dependent constraints. Moreover, there may be external forces
acting on the system. If we ignore potential energy (as is appropriate for many
planar systems including the one in Section 2), such a system’s dynamics may
be written down as: ∇q̇q̇ = uαYα, where the notation uαYα implies summation
over the α. In this expression, ∇ is the constrained affine connection encoding
the free kinetic energy and the constraints, in our case the nonslip constraints.
Moreover, u represents external forces (not necessarily inputs) and Y represents
the associated vector fields on the configuration manifold Q (i.e., Y ∈ TqQ, the
tangent space at q ∈ Q). If we wish to include potential energy, it will show up
as a vector field on the right-hand side of the equation.

The systems of interest have two types of external forces–those that corre-
spond to inputs and those that correspond to external disturbances. In the case
of multiple point contact, the external disturbance forces generally correspond
to reaction forces due to friction when a contact slips. Therefore, it will be useful
to write the dynamic equations as: ∇q̇ q̇ = uαYα + dβVβ so that we can distin-
guish between the different types of external forces. (Note that if a constraint is
satisfied so that the contact is not slipping, there is still a reaction force. In that
case the reaction force is incorporated into the definition of of the constrained
affine connection ∇ in a manner identical to the constrained Euler-Lagrange
equations).

Lastly, because the contact state changes over time (as the contacts transition
between stick and slip), the constraints change over time. This implies that ∇
is not a single constrained affine connection, but rather comes from a set of
constrained affine connections ∇σ, each of which represents a different set of
stick/slip states of the mechanism. The same holds true for Y σ and V σ. Hence,
if we index the set of possible stick/slip states by σ, we get second-order equations
of motion of the following form:

∇σ
q̇ q̇ = uαY σ

α + dβV σ
β (1)

where u are input forces and d are external forces. Equation (1) represents the
equations of motion for any multiple contact system or overconstrained system
that experiences point contact with its environment. (Note that for this equa-
tion to make sense, one must assume that the switching signal σ is at least
measurable, and often it is assumed that it is piecewise continuous.) Lastly, it is
important to point out that the representation ∇q̇q̇ = uαYα is neither more nor
less than the Euler-Lagrange equations [3].



364 T.D. Murphey

3.1 Kinematic Descriptions of Systems That Slip

We use the affine connection formalism to describe mechanical systems because it
is in the context of this formalism that a useful technical connection between 2nd-
order mechanical systems and 1st-order kinematic systems has been made (found
for smooth systems in [9] and for nonsmooth systems in [16]). In particular, it
would be useful to be able to write Eq. (1) in the form:

q̇ = uaXσ
a , (2)

where u are velocity inputs instead of force inputs. Roughly speaking, a system
is kinematic if it can be written as a first order differential equation in q without
losing any information about what trajectories the system is capable of produc-
ing. More precisely, this kinematic description is only useful if it satisfies two
requirements. First, for every solution of the dynamic system in Eq. (1) there
must exist a kinematic solution of the form in Eq. (2). In the case of a vehicle,
this corresponds to requiring that for every trajectory of the vehicle there exists
a corresponding path that can be obtained from kinematic considerations alone.
Secondly, for every kinematic solution there must exist a dynamic solution that
is equal to the kinematic solution coupled with its time derivative (so that it lies
in TQ). This means that there must exist a dynamic solution for every feasible
kinematic path. This way of viewing smooth kinematic systems has been studied
extensively, including [9]. Motion planning has been studied using these concepts
in [3, 4], but these works were all intended for smooth systems. However, it was
shown in [16] that the kinematic reduction of a nonsmooth system of the form
in Eq. (1) to one of the form in Eq. (2) is equivalent to the reduction of each
smooth model of the multiple model system. The associated algebraic test of
kinematic reducibility is that the symmetric product between two vector fields
Y σ

i and Y σ
j (defined by

〈
Y σ

i : Y σ
j

〉
= ∇σ

Y σ
i
Y σ

j +∇σ
Y σ

j
Y σ

i for given i, j, σ) lie within
the distribution of the vector fields and that any reaction forces lie within the
span of the input vector fields. That is,

〈
Y σ

i : Y σ
j

〉
∈ span{Yi|i = 1, . . . ,m} ∀ i, j, σ (3)

V σ
β ∈ span{Yi|i = 1, . . . ,m} ∀ β, σ (4)

Notice that this need only hold for each σ, so the calculation is a purely
algebraic one, despite the fact that our system is nonsmooth. That is, even with
the nonunique solutions these systems can have, one may test for each model
independently (i.e., holding σ constant) whether a system is kinematic.

3.2 Uncertainty Representations

The main point of this paper comes from noting that the contact state enters solely
in the σ dynamics in Eq. (1) and (2). Hence, the uncertainty for the full dynamic
system depends on both σ and other uncertainties that drive σ, such as parametric
uncertainties, choice of friction model governing the contact interaction, etcetera.
However, the uncertainty in the kinematic model only includes σ, which means
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that the abstraction to the kinematic model reduces the representation of the un-
certainty to a hybrid, discrete-valued structure (rather than a continuous one like
that typically addressed in the robust control community). It is important to note
that because of this the only assumption made regarding friction in a kinematic
model is that it creates stick/slip effects. In the context of this paper, no other as-
sumptions are necessary. However, when using such an abstraction, one must have
confidence that the backstepping algorithm employed is robust with respect to the
uncertainties that are left over, in our case model uncertainties and parametric
uncertainties. Fortunately, motor controllers are known to be quite robust when
following a desired reference velocity. Accordingly, we assume that we can track
a desired velocity for the rest of this paper, ignoring transient behavior and cou-
pling. If for some reason asymptotic tracking is not achieved, then an additional
layer of analysis will be necessary. This reduced representation of uncertainty is
what we will use in designing a stabilizing control for a mechanical manipulation
system, and the online estimation of σ will in particular play a significant role in
the stability results.

4 Stability Conditions

Now suppose we want to drive a (multiple-model, multi-point contact) mechan-
ical system to a desired state. Then we have, for every choice of σ, a smooth
system that must be stabilized (since a perfectly valid choice of σ is to have it
be constant for all time). Moreover, because σ is uncertain, it must be thought
of as an exogenous disturbance (albeit a discrete-valued one). Now, one could
try to create a control law that is stable for all possible signals σ (in fact, one
would have to do so if σ is not observable), but this is often impossible from a
practical perspective. In fact, in the case of stabilizing the SE(2) configuration
of the object in Section 2, it is provably impossible [15]. Therefore, the question
becomes one of estimation, the online estimation of the contact state σ (the
abstracted uncertain variable) based on available outputs and the incorporation
of this estimate into the controller. This latter part is important because the
classical separation principle found in undergraduate controls textbooks is not
valid for nonlinear or nonsmooth systems.

First, we need to know that σ is observable (i.e., different models can be
distinguished based on available feedback). Although there are formal methods
for determining this (see [19]), we will see in Section 5 that it is occasionally
possible to see that σ is observable by inspection. If it is observable, there are
generally two methods (and variations thereof) for determining the value of σ
at any given time. The first is to directly compare predicted velocities (for every
model indexed by σ) to the sensed velocity. This involves differentiating outputs,
but may be an acceptable approach if only one derivative of the output is needed.
(This is particularly true if the cardinality of values σ can take is small. That
is, if the total number of models is small, so the models are relatively easy to
distinguish from each other, then even with noisy data we should be able to
distinguish them.) If differentiating outputs is not acceptable, then one may
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alternatively integrate the equations of motion for every model and compare
these to the measured output. Either choice is an acceptable choice of estimator
from a theoretical perspective because we are only interested in distinguishing
different models from each other.

The stability results that are useful for the problems of interest here are from
the adaptive control community, particularly multiple model adaptive control
[6, 1, 5]. Suppose that we have a family of plants indexed by p ∈ P, all of which
are stabilized by a control law with Lyapunov function Vp. (For the moment, we
ignore the design and implementation of these controllers. We will revisit this
in Section 5.) Switching between plants is governed by the switching signal σ.
In the case of a multiple contact system, σe encodes the externally determined
contact state of the system, that is, which contacts are sticking and which are
slipping. Moreover, σc encodes the current estimate of σe, and particularly tells
us which controller is being used at any given time. Ideally, σc = σe, but there
may be latencies that cause this not to be the case. Such systems can be written
as:

ẋ = Fσ(x,t)(x, t) σ(x, t) ∈ P (5)

where P is an index over the set of all admissible plants. We assume that the Fp

satisfy the following standard Lyapunov criteria; that there exist for all p ∈ P

differentiable functions Vp : R
n → R, positive constants λ0, γ and class K∞ [8]

functions α, α satisfying:

V̇p =
∂Vp

∂x
Fq ≤ −2λ0Vp for p = q, (6)

V̇p =
∂Vp

∂x
Fq ≤ 2λF ′Vp for p �= q, (7)

α(‖x‖) ≤ Vp(x) ≤ α(‖x‖), (8)
Vp ≤ γVq, (9)

for all x ∈ R
n and p, q ∈ P. These are relatively standard requirements for

Lyapunov functions [8], except for the condition in Eq.(7) (which requires that
whenever the plant and the controller are not matched the resulting instability
is bounded by some growth rate λF ′).

Switching signals σ are assumed to be a piecewise continuous (and therefore
measurable) function coming from a family of functions S. We say that Eq.(5)
is uniformly exponentially stable over S if there exist positive constants c and λ
such that for any σ ∈ S we have

‖Φσ(t, τ)‖ ≤ ce−λ(t−τ) ∀t ≥ τ ≥ 0.

Here Φσ(t, τ) denotes the flow (given σ) of Eq.(5). For such a system we say that
λ is its stability margin.

To characterize and distinguish different families of functions S, we employ
the following definitions (from [6]). Given σ ∈ S, we define Nσ(t, τ) to be the
(integer) number of switches or discontinuities in σ in the interval (t, τ). Given
two numbers τAD and N0, called the average dwell time and chatter bound re-
spectively, we say that Save[τAD, N0] is the set of all switching signals satisfying
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Nσ(t, τ) ≤ N0 + t−τ
τAD

. Lastly, let Save[τAD, N0] be the set of all switching signals
for which Nσ(t, τ) ≤ N0 + τ−t

τAD
. We will assume for the rest of the present work

that switching signals σe (the external switching determining the contact state)
can be characterized in this way.

Assumption 4.1. Assume σe switching satisfies

Nσe(t, τ) ≤ Ne
0 +

t− τ

τe
AD

for some Ne
0 > 0 and τe

AD.

We can similarly require that the signal σc (the switching signal that dictates
the current controller) also satisfy dwell-time requirements (i.e., Nσc(t, τ) ≤
N c

0 + t−τ
τc

AD
) to ensure that the control switching does not destabilize the system.

It is well known that switching between a set of stable linear systems may well
yield an unstable system [7]. This means that even in the most moderate case,
where estimation of the contact state is perfect (i.e., σc = σe) and there are no
latencies in sensing or actuation, our multiple contact system can in principle
be destabilized by switching contact state. Our purpose in this section is to ap-
ply some results from the theory of switching systems to understand physically
meaningful conditions that will guarantee stability for a multiple model system
(even those without a common Lyapunov function). In particular, we will char-
acterize such a condition in terms of the average dwell time as it was described
above.

Due to space considerations, proofs of the following theorems are not presented
here and the reader is directed to the conference proceeding [12, 13] where these
technical results are presented in a theorem/proof format. First, the following
result from [6] will be helpful. It states that for a collection of stable plants
as Eq.(5) a bound on the average dwell time can be determined such that the
hybrid system is stable with any desired stability margin.

Lemma 1 ([6]). Given a system of the form in (10) such that all the Fp satisfy
Eqs. (6), (8), and (9) hold, there is a finite constant τ∗AD such that Eq.(5) is
uniformly exponentially stable over Save[τD, N0] with stability margin λ < λ0 for
any average dwell time τAD ≥ τ∗AD and any chatter bound 0 < N0.

In particular, the average dwell time must satisfy τAD > log γ
2(λ−λ0) . Note that

if we have a common Lyapunov function, then γ = 1 ⇒ log γ = 0 ⇒ τAD =
0 satisfies the stability requirements. Hence, common Lyapunov functions are
highly desirable, if they can be found. A corollary of this result relevant to the
multiple point contact example is Corollary 1 (proven in [12]).

Corollary 1. If each contact state σe for a multi-point manipulation system
is stabilized with a quadratic Lyapunov function Vp, if σe ∈ Save[ log γ

2(λ−λ0) , N0]
for some N0, and if σc = σe (i.e., the observer is perfect), then Eq. (1) or
Eq. (2) (depending on whether the representation used is dynamic or kinematic)
is exponentially stable with stability margin λ.



368 T.D. Murphey

Note that this result, and the results that follow, are equally applicable to both
dynamic and kinematic systems. What does Corollary 1 mean for a multiple
model system where there are external signals determining the switching, such
as is the case in a multiple contact system? It means that so long as there are no
latencies, no errors in estimation, and no noise in the sensors, the multiple model
system is stable so long as the external switching signals σe are kept sufficiently
slow on the average. How slow depends on how the controllers for each plant
are designed and, more importantly, how they are related to each other. The
closer γ can be kept to 1 (i.e., the closer we are to having a common Lyapunov
function), the more quickly σe may switch without destabilizing the system.

What happens if there are noise sources, latencies, and time delays causing
the controller switching σc to not coincide with the environmental switching
σe? Most of these issues are adequately addressed in [1, 5]. However, if σc �=
σe, instabilities due to temporary mismatch between controllers and plants can
occur. The basic consequence of this is roughly that the longer the mismatch, the
slower the external switching must be in order to maintain stability. To address
this issue, assume we have equations of motion of the following form:

ẋ =
{

F ′
qx on [ti, ti + dσ)

Fpx on [ti + dσ, ti+1)
(10)

where (for each p) ẋ = Fp(x) is asymptotically stable and (for each q) ẋ = F ′
q is

potentially unstable but has a bound on the rate of growth λF ′ . Note that our
example system in Section 2 satisfies these requirements because all the Fp are
stable by design.

It is now useful to state an extension of Thm. 1 (also proven in [12]) to
accommodate dσ. The resulting trade-off is not surprising–the larger dσ becomes,
the more slowly σe is allowed to switch. In particular, if we can bound dσ below
by d∗ then we find that choosing

τe
AD >

log γ
2 + 2λF ′dσ

(λ0 − λ)
(11)

results in a stable system, as seen in the following Lemma.

Lemma 2. Given a system of the form in (10) such that all the Fp satisfy
Eqs. (6), (7), (8), and (9), there is a finite constant τ∗AD and a finite constant
d∗σ such that Eq.(10) is uniformly exponentially stable over Save[τAD, N0] with
stability margin λ, for any average dwell time τAD ≥ τ∗AD, any chatter bound
0 < N0, and any dσ ≤ d∗σ.

With this, one may prove the following corollary.

Corollary 2. If each contact state for a multi-point manipulation system is sta-
bilized with a quadratic Lyapunov function Vp, and if τe

AD and dσ satisfy Eq.(11),
then for any N0 the state output is exponentially stable.

Proposition 2 indicates that if the contact states change slowly enough (i.e., τe
AD

is large) and the estimator is fast enough (i.e., dσ is small), then the system
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is stable. Among other things, this means that one does not have to concern
oneself with the friction model to establish where switching occurs. Instead, the
contact states can change arbitrarily, so long as they do so sufficiently slowly on
the average and their effect is observable in the state output.

5 Example

Consider the eight degree of freedom manipulator in Fig. 2. This figure has
four point contact actuators (corresponding to the inputs u1, . . . , u4) located
at (1, 1), (−1, 1), (−1,−1), (1,−1) respectively (in the simulation), all oriented
towards the origin. For each contact there are two independent constraints, a
nonslip constraint in each direction tangent to the surface of the contact. Hence,
there are 22·4 = 28 = 256 possible combinations of stick and slip for the four point
contact system. If one uses a symbolic software package such as Mathematica to
compute the dynamic equations of motion for every possible contact state as
in Eq. (1), one can exhaustively verify that all possible models are kinematic,
so long as the contact interfaces are dissipative when slipping is occurring (i.e.,
the reaction force is nonzero and in the opposite direction of the slipping). This
represents an extremely broad set of frictional interfaces, and the statement
is proven in a non-exhaustive manner in [13]. Additionally, all the nontrivial,
non-overconstrained kinematics are of one of the four forms in Table 5. There
do exist σe with trivial kinematics (i.e., actuator velocities do not make the
supported object move at all), however, and these correspond to constraints with
no actuation. An example of this is a table with wheels that are all razor thin,
so that spinning the wheels exerts very little force against an object, but sliding
orthogonally to the wheel is very difficult. In such an example, no movement
whatsoever occurs, and such a situation must be either be avoided through
mechanical design or avoided online, but this is beyond the scope of what we
discuss here.

For each of the four models in Table 5 a control law is calculated from the
Lyapunov function k(x2 + y2 + θ2) by solving V̇ = −V for ui, where k is some
constant to be chosen during implementation. Moreover, by virtue of the design
methodology, there is a common Lyapunov function (i.e., γ = 1 in Eq. (9)).
Hence, chattering may occur (particularly near the planar origin), but will not
affect stability. Things to note include the following.

1. The system is not smoothly locally controllable (since there are two con-
stant input vector fields and three configuration variables to be controlled).
However, all of the states are stabilizable to the the origin of SE(2).

2. Note that these control laws are not only nonlinear, they are not even
smooth. In fact, they have discontinuities at the origin.

3. The four models are distinguishable (e.g., based on state output, one can
distinguish each model from the next) given nonzero inputs. This will be
how we estimate σe in the simulations.

4. The four models are, in fact, distinguishable based entirely on θ output (i.e.,
one may construct a “reduced-order” hybrid observer).
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Table 1. The four actuator manipulation surface shown in Fig 2 has all kinematic
states, many of which are redundant. This figure shows the four distinct equations of
motion that can occur in different contact states. Note that so long as u1 (= −u3) and
u2 (= −u4) are nonzero, the four states can be distinguished from state output. In fact,
just observation of θ is sufficient for distinguishing the states. Moreover, measurements
of x and y are not helpful because the x and y dynamics are identical in all four models.

Equations of Motion Control Law

q̇ =

⎡

⎣
−1
−1

0

⎤

⎦ u1 +

⎡

⎣
1

−1
1

⎤

⎦ u2
u1 =

−kθ (θ+x−y)+k (θ2+x2+y2)
x+y

u2 = −kθ

q̇ =

⎡

⎣
−1
−1
−1

⎤

⎦ u1 +

⎡

⎣
1

−1
0

⎤

⎦ u2
u1 = kθ

u2 =
kθ (θ+x+y)−k (θ2+x2+y2)

x−y

q̇ =

⎡

⎣
−1
−1

0

⎤

⎦ u1 +

⎡

⎣
1

−1
−1

⎤

⎦ u2
u1 =

kθ (θ−x+y)+k (θ2+x2+y2)
x+y

u2 = kθ

q̇ =

⎡

⎣
−1
−1

1

⎤

⎦ u1 +

⎡

⎣
1

−1
0

⎤

⎦ u2
u1 = −kθ

u2 =
−kθ (−θ+x+y)−k (θ2+x2+y2)

x−y

Figure 3 shows a simulation of the four actuator system using k = 1. We
simulate the kinematic system rather than the dynamic one, but we are cur-
rently making a dynamic simulation to explicitly incorporate various modeling
choices (particularly of friction) in the simulation. In either case, the control
design should be done at the kinematic level to allow for the abstraction of un-
certainty we are advocating. We use crossing from one quadrant to another as
the way to drive σe in the simulation (which is motivated by minimizing the
power dissipation, see [15]), but estimate σe online in the simulation. The actua-
tors can only push in one direction for a short amount of space before reaching a
kinematic singularity, so they are reset occasionally (this effect shows up in the
estimation of σe). The object is indicated by a rectangle, but the reader should
note that although the rectangle is illustrated as being small, the actual body it
represents is in contact with all four actuators at all times, which are denoted
in the figure by Nodes 1-4. Their range of motion is depicted by a dark line
next to Node X. The initial condition is {x0, y0, θ0} = {.5, 2, π

2 }, and progress in
time is denoted by the lightening of the object. The three plots beneath the XY
plot are X , Y , and θ versus time, respectively. This, and the other simulations,
were all done in Mathematica, using Euler integration in order to avoid numeri-
cal singularities when crossing contact state boundaries. In Fig. 3, the object is
stabilized to (0, 0, 0) with no difficulty (and did so reliably over many simulation
runs not depicted here). Moreover, this trajectory is qualitatively very similar
to the trajectories found experimentally in [15].

The simulation is structured as follows. Depending on which quadrant the cen-
ter of mass of the object is in, σe is chosen to be one of the four models in Table 5.
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Fig. 3. Simulation of multi-point manipulation when σc = σe. The rectangle represents
the center of the object which is actually in contact with all four of the actuators (Nodes
1-4). The time history progresses from dark rectangles at time 0 to the light rectangles
at time 10. The three plots are plots of the X,Y , and θ coordinates against time.

Then, all four models are integrated with respect to time while applying an ini-
tial control value of u1 = 0, u2 = 0.1 (it doesn’t matter what this initial control
is, so long as it is nonzero). Based on this, σe can be immediately determined by
looking at the evolution of θ. We did this rather than directly comparing veloci-
ties so that we are not differentiating the output. In any case, this then determines
σc. Knowing σc, we ask the actuator tips to follow the velocities ui based on the
control laws in Table 5. These are implemented with an inverse Jacobian, except
for when the actuator tip reaches one of its limits, in which case we reset it to the
other end of its range (the dark lines in the figure). We can add noise to the sensed
state variables and time delays to the estimated σc.

If σc is a bad estimate of σe, then performance degrades but stability is not
lost, as seen in Fig. 4, where a time delay of one tenth of a second is introduced.
(Note that the amount of time delay in a kinematic system is scalable by virtue
of changing the gain on the controller.) Adding a small amount of noise to the
sensed outputs has roughly the same effect as a small time delay, as we would
expect. If the time delay for a given gain is made sufficiently large, the system
becomes unstable. This indicates, at least in simulation, that the interpretation
and application of the stability theorems in Section 4 are appropriate here, and
that performance degrades reasonably gracefully as σc becomes less and less of
a good estimate of σe until eventually the system destabilizes.



372 T.D. Murphey

Fig. 4. Simulation of multi-point manipulation when σc �= σe (i.e., the estimated
contact state is delayed). The object is only barely stabilized to the origin. (As in
Fig. 3, the three plots are plots of the X,Y , and θ coordinates against time.)

6 Conclusions

In this paper we have described methods applicable to the modeling and control
of mechanical manipulation problems, including those that experience uncer-
tain stick/slip phenomena. The particular contribution of this work is to point
out that the use of an abstraction, in this case a kinematic reduction, not only
reduces the computational complexity but additionally simplifies the represen-
tation of uncertainty in a system. Moreover, this simplified representation may
be directly used in a stabilizing control law. The end result of this is two-fold.
First, modeling for purposes of control is made more straight-forward by getting
rid of some dependencies on low-level mechanics (in particular, the details of
friction modeling). Second, the online estimation of the relevant uncertain vari-
ables is much more elegant and easily implementable than the online estimation
of the full model and its associated uncertainties. For instance, online friction
system identification is quite complex and is not feasible for many applications.
However, the presentation here assumes that all feasible states for the system
are indeed kinematically reducible. If they are not, then one must switch back to
a full analysis of the uncertainty. Moreover, enumeration of the kinematic states
can be computationally challenging because in principle the number of kinematic
states can go up exponentially in the number of contacts. We expect to be able
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to address this by more formally using the discrete symmetry properties that
allowed us to reduce to only four states in Table 5.

We stabilize the system using techniques from multiple model adaptive control
as developed in [1, 5, 7]. We demonstrate in simulation that this technique works
well in the context of a simple example (based on experimental work seen in
Fig. 2). Moreover, the model/controller presented in the context of this example
does not include any explicit model of friction, making the proposed techniques
applicable to cases where an unstructured environment makes it unlikely that
one can model frictional interactions accurately. Instead, one moves some of the
robustness requirements to the backstepping algorithm employed, hence reducing
the uncertainty representation with which the high-level controller must contend.

Ultimately, the analytical techniques presented here should be extended to
the more geometric setting of grasping and manipulation in the presence of
gravitational forces. In particular, examples where a common Lyapunov does
not exist should be examined in depth using the analytical techniques developed
here. In the meantime, these results will be implemented both in a dynamic
simulation environment we are developing and on a second generation version of
the experiment discussed in Section 2 and seen in Fig. 2.
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Summary. In this paper, we generate gaits for mixed systems, that is, dynamic sys-
tems that are subject to a set of non-holonomic constraints. What is unique about
mixed systems is that when we express their dynamics in body coordinates, the mo-
tion of these system can be attributed to two decoupled terms: the geometric and
dynamic phase shifts. In our prior work, we analyzed systems whose dynamic phase
shift was null by definition. Purely mechanical and principally kinematic systems are
two classes of mechanical systems that have this property. We generated gaits for these
two classes of systems by intuitively evaluating their geometric phase shift and relating
it to a volume integral under well-defined height functions.

One of the contributions of this paper is to present a similar intuitive approach
for computing the dynamic phase shift. We achieve this, by introducing a new scaled
momentum variable that not only simplifies the momentum evolution equation but
also allows us to introduce a new set of well-defined gamma functions which enable us
to intuitively evaluate the dynamic phase shift. More specifically, by analyzing these
novel gamma functions in a similar way to how we analyzed height functions, and by
analyzing the sign-definiteness of the scaled momentum variable, we are able to ensure
that the dynamic phase shift is non-zero solely along the desired fiber direction.

Finally, we also introduce a novel mechanical system, the variable inertia snakeboard,
which is a generalization of the original snakeboard that was previously studied in the
literature. Not only does this general system help us identify regions of the base space
where we can not define a certain type of gaits, but also it helps us verify the generality
and applicability of our gait generation approach.

1 Introduction

In our prior work, we generated geometric gaits for two classes of mechanical sys-
tems, purely mechanical in [16] and principally kinematic systems in [14]. These
two systems seemingly belong at the two ends of a spectrum, that is, purely
mechanical systems are systems whose motion is governed solely by the con-
servation of momentum while principally kinematic systems are systems whose
motion is governed solely by the existence of a set of independent non-holonomic
constraints that fully constrain the systems velocity. In this paper we generate
gaits for the full range of this spectrum. Specifically, we generate gaits for dy-
namic systems with non-holonomic constraints (also known as mixed systems)

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 375–390, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. A schematic of the variable inertia snakeboard in (a) and original snakeboard
in (b) depicting their configuration variables

that is, systems whose motion is governed by both a non-holonomic set of con-
straints and generalized momentum being constrained by a set of differential
equations.

In this paper, we generate gaits for a novel mechanical system, the variable
inertia snakeboard, shown in Fig. 1(a). This system is a generalization of the orig-
inal snakeboard, (Fig. 1(b)), which was extensively studied in the literature and
which we analyzed in [15]. Both snakeboards belong to the mixed type systems,
that is, the non-holonomic constraints do not fully span the fiber space. Thus,
the generalized non-holonomic momentum must be instantaneously conserved
along certain directions which for the above snakeboards are rotations about
the wheel axes intersections. However, the inertia of the original snakeboard is
independent of the base variables1 which greatly simplifies the gait generation
analysis. Thus, we consider the variable inertia snakeboard, which as its name
suggests, has a non-constant inertia, to verify the generality and applicability of
our gait analysis techniques.

Our gait generation techniques will allow us translate and rotate the variable
inertia snakeboard in the plane by designing curves in the actuated base space
which represents the internal degrees of freedom of the robot. In other words,
we will generate gaits by using the actuated base variables to control the un-
actuated variables of the fiber space which denote the “position” of the system
with respect to a fixed inertial frame. Thus, our goal is to design cyclic curves
in the base space, which after a complete cycle, produce a desired motion along
a specified fiber direction, hence, effectively moving the robot to a new position.

2 Prior Work

Gait generation has been extensively studied in the literature, next we present
three approaches which are most relevant to our work.

1 Changing the base variables, rotor and wheel axes angles, in Fig. 1(b) will not change
the position of the system’s center of mass.
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Sinusoidal inputs: Ostrowski et. al. expressed the dynamics of a mechanical
system in body coordinates and were able to represent it as an affine non-linear
control system. Then by taking recourse to control theory, they were able to
design sinusoidal gaits and specify the gait frequencies. Nonetheless, the gait
amplitudes were empirically derived [12]. Ostrowski et. al. used their gait gen-
eration analysis to generate gaits for the original snakeboard (Fig. 1(b)) [11].
Moreover, Chitta et. al. developed several unconventional locomoting robots,
such as the robo-trikke and the rollerblader, [4, 13], then used Ostrowski’s tech-
niques to generate sinusoidal gaits for these novel locomoting robots. Prior work
related to Ostrowski’s can also be found in [1, 8, 17].

Kinematic reduction: The work done by Bullo et. al. in [3] on kinematic
reduction of simple mechanical systems is closely related to our work. They
define a kinematic reduction for simple mechanical systems, or in other words,
reduce the dynamics of a system so that it can be represented as a kinematic
system. Then they study the controllability of these reduced systems and for
certain examples, they were able to generate gaits for these systems. In fact,
Bullo et. al. have designed gaits for the original snakeboard (Fig. 1(b)) which we
analyzed in [15]. In this paper, we introduce one type of gait, a purely kinematic
gait, which is structurally similar to gaits proposed by Bullo et. al. in [2]; however,
we have a different way of generating these gaits.

Integration approach: We generated gaits for two classes of systems, purely
mechanical and principally kinematic systems in [16] and [14]. For both systems,
we were able to relate position change to a volume integral under a well-defined
height function. This allowed us to define a variational problem to optimize gaits
but more importantly it allowed us to generate gaits by intuitively designing
curves in the base space. Finally, it is worth mentioning that Mukherjee et. al.
in [7, 9, 10] and Yamada in [18] have done similar work where they generated
gaits for specific systems. The fiber space of the systems they studied had an
Abelian group structure which simplified their analysis.

3 Background Material

Here we present a rather abbreviated introduction to Lagrangian mechanics,
introduce mixed systems, and finally we present several mechanics of locomotion
results which we shall utiliize to generate gaits for mixed systems.

Lagrangian mechanics: The configuration space of a mechanical system, usu-
ally denoted by Q, is a trivial principal fiber bundle; that is, Q = G×M where
G is the fiber space which has a Lie group structure and M is the base space.
In this paper we assume the Lagrangian of a mechanical system to be its kinetic
energy. Moreover, we assume that the non-holonomic constraints that are acting
on the mechanical system can be written in a Pfaffian from, ω(q) · q̇ = 0, where
ω(q) is a k× n matrix describing the constraints and q̇ represents an element in
the tangent space of the n-dimensional configuration manifold Q.
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Associated with the Lie group structure of the fiber space, G, we can define
the action, Φg, and the lifted action, TgΦg, which act on the entire configuration
manifold, Q, and tangent bundle, TQ, respectively. Since we can verify that both
the Lagrangian and non-holonomic constraints are invariant with respect to these
action, we can express the system’s dynamics at the Lie group identity2 as was
shown in [5]. In other words, we eliminate the dependence on the placement of
the inertial frame. This invariance allows us to compute the reduced Lagrangian,
l(ξ, r, ṙ), which according to [11] will have the form shown in (1) and the reduced
non-holonomic constraints shown in (2) as we demonstrated in [14].

l(ξ, r, ṙ) =
1
2

(
ξ
ṙ

)T

M̃

(
ξ
ṙ

)
=

1
2

(
ξ
ṙ

)T (
I(r) I(r)A(r)

AT (r)IT (r) m̃(r)

)(
ξ
ṙ

)
(1)

ω̄(r)
(

ξ
ṙ

)
=
(
ω̄ξ(r) ω̄r(r)

) ( ξ
ṙ

)
= 0 (2)

Here M̃ is the reduced mass matrix, A(r) is the local form of the mechanical
connection, I(r) is the local form of the locked inertia tensor, that is, I(r) =
I(e, r)3, and m(r) is a matrix depending only on base variables. Finally, recall
that ξ is an element of the Lie algebra and is given by ξ = TgLg−1 ġ, where
TgLg−1 is the lifted action acting on a tangent space element ġ.

Mixed systems: Such systems are a general type of dynamic mechanical system
that are subject to a set of non-holonomic constraints which are invariant with
respect to the Lie group action. Hence, a mechanical system whose configuration
space has a trivial principal fiber structure, Q = G ×M , and is subjected to k
non-holonomic constraints, ω(q) · q̇ = 0, is said to be mixed if

• 0 < k < l (number of constraints less than the dimension of fiber space),
• det(ω(q)) �= 0 (linear independence), and
• ω(q) · q̇ = ω(Φg(q)) · TgΦg(q̇) = 0 (invariance).

Mechanics of locomotion: Now we borrow some well-known results from the
mechanics of locomotion, [6], upon which we shall build our own gait generation
techniques. For a mixed system, according to [11] the system’s configuration
velocity expressed in body coordinates, ξ, is given by the reconstruction equation
shown in (3), where A(r) is an l×m matrix denoting the local form of the mixed
non-holonomic connection, Γ (r) is an l× (l−k) matrix, and p is the generalized
non-holonomic momentum. We can compute this momentum variable by p =
∂l
∂ξ Ω̄

T where Ω̄T is a basis of N (ω̄ξ), the null space of ω̄ξ. Then using (1) we
compute the expression for p as shown in (4).

ξ = −A(r)ṙ + Γ (r)pT (3)

pT = Ω̄
∂l

∂ξ
= Ω̄ (Iξ + IAṙ) =

(
Ω̄I Ω̄IA

) ( ξ
ṙ

)
(4)

2 Note that the elements of the tangent space at the fiber space identity form a Lie
algebra which is usually denoted by g.

3 e is the Lie group identity element.
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Moreover, for systems with a single generalized momentum variable4, its evo-
lution is governed by a first order differential equation5 shown in (5), where the
σ’s are matrices of appropriate dimensions whose components depend solely on
the base variables. Later in the paper, we will utilize both (3) and (5) and rewrite
them in appropriate forms that will help us generate gaits.

ṗ = pT σpp(r)p + pT σpṙ(r)ṙ + ṙT σṙṙ(r)ṙ (5)

Example: Now we introduce our example system, the variable inertia snake-
board, which is composed of three rigid links that are connected by two actuated
revolute joints as shown in Fig. 1(a). The outer two links have mass, m, con-
centrated at the distal ends and an inertia, j, while the middle link is massless.
Moreover, attached to the distal ends of the outer two links is a set of passive
wheels whose axes are perpendicular to the robot’s links. The no sideways slip-
page of these two sets of wheels provide the two non-holonomic constraints which
act on the system.

We attach a body coordinate frame to the middle of the center link and align
its first axis along that link. The location of the origin of this body attached frame
is represented by the configuration variables (x, y) while its global orientation is
represented by the variable θ. The two actuated internal degrees of freedom are
represented by the relative angle between the links (α1, α2).

Hence, the variable inertia snakeboard has a five-dimensional, (n = 5), config-
uration space Q = G×M , where the associated Lie group fiber space denoting
the robot’s position and orientation in the plane is G = SE(2), the special
Euclidean group. The base space denoting the internal degrees of freedom is
M = S × S. The Lagrangian of the variable inertia snakeboard in the absence
of gravity is computed using L(q, q̇) = 1

2

∑3
i=1(miẋ

T
i ẋi + jiθ̇

2
i ). Let 2L and R

be the length of the middle link and the outer links, respectively. Moreover, to
simplify some expressions we assume that the mass and inertia of the two distal
links are identical, that is, mi = m and ji = j = mR2. Given that the fiber
space has an SE(2) group structure, we can compute the group lifted action as
shown in (6).

ξ =

⎛

⎝
ξ1

ξ2

ξ3

⎞

⎠ = TgLg−1 ġ =

⎛

⎝
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎞

⎠

⎛

⎝
ẋ
ẏ

θ̇

⎞

⎠ (6)

I = mR

⎛

⎜⎝

2
R

0 − sin(α1) + sin(α2)
0 2

R
cos(α1) − cos(α2)

− sin(α1) + sin(α2) cos(α1) − cos(α2) L2+2R2

R/2 + cos(α1)+cos(α2)
1/2L

⎞

⎟⎠ (7)

IA = mR

⎛

⎝
− sin(α1) sin(α2)
cos(α1) − cos(α2)

2R + L cos(α1) 2R + L cos(α2)

⎞

⎠ and m̃ = mR

(
2R 0
0 2R

)
(8)

4 For systems with more than one momentum variables, (5) will be a systems of
differential equations involving tensor operations as was shown in [1, 5].

5 Recall that these equations are the dynamic equations of motion along the fiber
variables expressed using the generalized momentum variables.
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ω̄ξ =
(

− sin(α1) cos(α1) R + L cos(α1)
sin(α2) − cos(α2) R + L cos(α2)

)
and ω̄r =

(
R 0
0 R

)
(9)

p =
m
(
pξ1ξ1 + pξ2ξ2 + pξ3ξ3 + pα(α̇1 + α̇2)

)

2 sin(α1 − α2)
(10)

The lifted action allows us to verify the Lagrangian invariance and to com-
pute the reduced Lagrangian. Thus, the components of the reduced mass ma-
trix as is shown in (1) are given in (7) and (8). Note that the reduced mass
matrix is not constant as was the case for the original snakeboard [15] but it
depends solely on the base variables, α1 and α2. Similarly we can write the non-
holonomic constraints in body coordinates for the variable inertia snakeboard
where the components of (2) are given in (9). Moreover, note that the variable
inertia snakeboard has a three-dimensional fiber space, SE(2), and it has two
non-holonomic constraints, one for each wheel set. We have verified that these
constraints are invariant with respect to the group action and we know that
these non-holonomic constraints are linearly independent away from singular
configurations. Thus, we conclude that the variable inertia snakeboard a mixed
type system.

Next, using (4) we compute the generalized non-holonomic momentum for
the variable inertia snakeboard as shown in (10), where pξi and pα are analytic
functions of the base variables. For the sake of brevity, we will not present the
explicit structure of these functions. As for the reconstruction equation, (3), we
can easily compute it by solving for ξ from the system of equations in (2) and
(4). Again, we will omit presenting the components of the mixed connection,
but, it will be an l ×m matrix.

4 Scaled Momentum

Now we manipulate (5) to a more manageable form which allows us to intuitively
evaluate the dynamic phase shift. At this point we will limit ourselves to systems
that have one less velocity constraint than the dimension of the fiber space, i.e.,
l − k = 1. This leaves us with only one generalized momentum variable and
forces the term σpp(r) = 0 in (5) as was explained in [11]. Moreover, first order
differential equation theory confirms that an integrating factor, h(r), exists for
(5). Thus, we define the scaled momentum as ρ = h(r)p and rewrite (3) and (5)
to arrive at

ξ = −A(r)ṙ + Γ̄ (r)ρ, and (11)

ρ̇ = ṙT Σ̄(r)ṙ, (12)

where Γ̄ (r) = Γ (r)/h(r) and Σ̄(r) = h(r)σṙṙ(r). Now that we have written
the reconstruction and momentum evolution equations in our simplified forms
shown in (11) and (12), we are ready to generate gaits by studying and analyzing
the three terms, A(r), Γ̄ (r), and Σ̄(r). In fact, we will use A(r) and Γ̄ (r) to
respectively construct the height and gamma functions while we use Σ̄(r) to
study the sign definiteness of the scaled momentum.
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5 Gait Evaluation

In this section, we equate the position change due to any closed base-space curve
to two decoupled terms. Then, we present how to design curves in such a way
to exclusively ensure that any of these terms is non-zero along a specified fiber
direction, that is, effectively synthesizing two types of gait associated with the
each of the decoupled terms. In the next section, we will define a partition on
the space of allowable gaits such that we can generate gaits by relating position
change to either one of the decoupled terms or both. For the first case, we
exclusively use the gait synthesis tools presented in this section while for the
second case we define another type of gaits that simultaneously utilizes both
gait synthesis tools.

We define a gait as a closed curve, φ, in the base space, M , of the robot. We
require that our gaits be cyclic and continuous curves. Having written the body
representation of a configuration velocity in a simplified manner as seen in (11),
we solve for position change by integrating (11). Defining ζ as the integral of ξ
and then integrating each row of (11) with respect to time we get

Δζi =
∫ t1

t0

ζ̇idt =
∫ t1

t0

ξidt =
∫ t1

t0

(
−

m∑

j=1

Ai
j(r)ṙ

j +
l−k∑

j=1

Γ̄ i
j (r)ρj

)
dt

=
∫ ∫

Φ

m∑

o,j=1,o<j

Āi
oj(r)drodrj

︸ ︷︷ ︸
IGEO

+
∫ l−k∑

j=1

(
Γ̄ i

j (r)
∫ (

ṙT Σ̄(r)ṙ
)j

dt

)
dt

︸ ︷︷ ︸
IDY N

(13)

Note that the first term can be written as a line integral and then by using
Stokes’ theorem we equate it to a volume integral. As for the second term we
just substitute for the scaled momentum, ρ, using (12). Hence, we equated po-
sition change to two integrals, IGEO which computes the geometric phase shift
and IDY N which computes the dynamic phase shift. Next, we analyze how to
synthesize gaits using the two independent phase shifts.

5.1 Synthesizing Geometric Gaits

For simplicity, we limit ourselves to two-dimensional base spaces, that is, (m =
2). This allows us to equate the geometric position change contribution, IGEO,
due to any gait, φ, by computing the volume integral

∫ ∫
φ
F i(r1, r2)dr1dr2, where

F i = ∂Ai
2

∂r1
− ∂Ai

1
∂r2

’s are the well-defined height function associated with the fiber
velocity ξi. Then, we generate geometric gaits by studying certain properties of
the height functions:

• Symmetry: to study smaller portions of the base space.
• Signed regions: to control the orientation of the designed curves as well as

the magnitude of the the geometric phase shift.
• Unboundedness: to identify singular configurations of the robot.
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Fig. 2. The three height functions, (F1, F2, F3), and three gamma functions,
(G1, G2, G3), corresponding to the three fiber directions in body representation,
(ξ1, ξ2, ξ3), for the variable inertia snakeboard are depicted in (a) through (f). The
darker colors indicate the positive regions which are separated by solid lines from the
lighter colored negative regions.

By inspecting the above properties of the height functions we are able to
easily design curves that only envelope a non-zero volume under a desired height
function while it encloses zero volume under the rest of the height functions.
Again we remind the reader of some simple rules that are helpful in designing
such curves:

• Closed non-self-intersecting curves that stay in a single signed region are
guaranteed to enclose a non-zero volume.

• Closed self-intersecting curves that span two regions with opposite signs and
that change orientation as they pass from one region to another are also
guaranteed to enclose a non-zero volume.

• Closed non-self-intersecting curves that are symmetric about odd points are
guaranteed to have zero volume.

• Closed self-intersecting curves that are symmetric about even points are guar-
anteed to have zero volume.

Note that these rules do not impose any additional constraints on the shape
of the input curves.
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5.2 Synthesizing Dynamic Gaits

Now, we will analyze the second term in (13), to propose gaits that ensure
that IDY N is non-zero along a desired fiber direction. Note that for each fiber
direction the integrand of IDY N in (13) is composed of the product of two
terms, the gamma function, Γ̄ i(r), and the scaled momentum variable, ρ. Thus,
by analyzing the Σ̄ matrix in (13) we propose families gaits that ensure that
the scaled momentum variable is sign-definite. Then, we analyze the the gamma
functions in a similar way to how we analyze the height functions, that is, we
study their symmetry, signed regions, and unbounded regions. Thus, by picking
gaits that are located in a same signed region of Γ̄ i(r), we ensure the integrand
of IDY N is non-zero along a desired fiber direction.

Example: Now we compute the height and gamma functions for the variable
inertia snakeboard. The expressions for this particular system are rather com-
plicated and we will not present them here; however, we depict the graphs of
the three height and gamma functions in Fig. 2(a) − (c) and (d) − (f), respec-
tively. These functions have the following properties which we will utilize later
to generate gaits.

• F2 = G2 = 0 for α1 = −α2,
• F3 = G3 = 0 for α1 = α2,
• F1 and G1 are even about both lines α1 = α2 and α1 = −α2,
• F2 and G2 are even about α1 = α2 and odd about α1 = −α2,
• F3 and G3 are odd about α1 = α2 and even about α1 = −α2.

6 Gait Generation for Mixed System

In this section, we utilize our geometric and dynamic gait synthesis to generate
gaits for mixed systems. Next, we define a partition on the allowable gait space
which allows us to independently analyze IGEO and IDY N and generate gaits
using our synthesis tools. We respectively label the two families of gaits as purely
kinematic and purely dynamic gaits. Moreover, we propose a third type of gait
that simultaneously utilizes both shifts, IGEO and IDY N , to produce motions
with relatively larger magnitudes. We label this family of gaits as kino-dynamic
gaits.

6.1 Purely Kinematic Gaits

Purely kinematic gaits are gaits whose motions is solely due to IGEO, that is,
IDY N = 0 for all time. A solution for such a family of gaits is to set ρ = 0 in (13)
which sets the integrand of IDY N to zero. Thus, we define purely kinematic gaits
as gaits for which ρ = 0 for all time. Note that for purely mechanical systems
p = ρ = 0 by definition and for principally kinematic systems IDY N = 0 since
p = ∅. Hence, any gait for these two types of systems is necessarily purely
kinematic. However, for mixed systems, we generate purely kinematic gaits by
the following two step process:
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• Solving the scaled momentum evolution equation, (12), for which ρ = ρ̇ = 0.
This step defines vector fields over the base space whose integral curves are
candidate purely kinematic gaits.

• Using our geometric gait synthesis analysis on the above candidate gaits to
concatenating parts of integral curves that enclose a non-zero volume under
the desired height functions.

Sometimes, purely kinematic gaits are referred to as geometric gaits, since the
produced motion is solely due to the generated geometric phase as defined in [1].
Moreover, purely kinematic gaits are structurally similar to gaits proposed by
Bullo in his kinematic reduction of mechanical systems in [3]. The vector fields
defined above essentially serve the same purpose of the de-coupling vector fields
presented in Bullo’s work.

Example: For the variable inertia snakeboard, we can easily design purely kine-
matic gaits by solving for the right hand side of (12) equal to zero. Since the
right hand side of (12) is a quadratic in the base velocites6, we ensure that the
term Δρ(α1, α2) = Σ̄2

1Σ̄
2
1 − Σ̄1

1Σ̄
2
2 ≥ 0. A plot of a Δρ/max(Δρ) is shown in

Fig. 3(a). The light colored regions indicate that Δρ(α1, α2) < 0, that is, we can
never compute any velocities for which ρ̇ = 0. In other words, we should avoid
these regions of the base space while designing purely kinematic gaits.

Away from the negative regions of Δρ(α1, α2), we design purely kinematic
gaits for the variable inertia snakeboard. The right hand side of (12) has four
unknowns, (α1, α2, α̇1, α̇2). Thus, at each point in the base space, that is, fixing
(α1, α2), we need to solve the velocities (α̇1, α̇2) for which the right hand side is
zero. Since, we have two unknowns and one equation, we solve for the ratios, α̇1

α̇2

and α̇2
α̇1

for which the right hand side is zero. Thus, ignoring the magnitudes of
the base velocities, the two ratios α̇1

α̇2
and α̇2

α̇1
define the slopes of vectors at each

point in the base space which we use to define vector fields over the entire base
space as depicted in Fig. 3(b). Hence, any part of an integral curve of the above
vector fields is necessarily a purely kinematic gait. For example, the families of
lines, l1 = {α2 = α1 + kπ, k ∈ Z} and l2 = {α2 = −α1 + 2kπ, k ∈ Z} are
the simplest integral curves we could define whose velocities exactly match the
above vector fields.

To design a purely kinematic gait that will move the variable inertia snake-
board along say the ξ1 direction, we pick and closed integral curve that will
enclose a non-zero volume solely under the first height function. Using the above
lines, we know that the polygon given in the first row of the first column of Ta-
ble 1 and depicted in Fig. 3(b) will move the snakeboard along the ξ1 direction.
Similarly we construct two other polygons shown in the second and third rows
of the first column of Table 1 as depicted in Fig. 3(b) to respectively locomote
the snakeboard along the ξ2 and ξ3 directions.

6 For the original snakeboard, we verified in [15] that the right hand side of the scaled
momentum evolution equation is not a quadratic. This simplified the generation of
purely kinematic gaits and mislead us into believing that purely kinematic gaits
could be defined everywhere on the base space.
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Fig. 3. (a) Plot indicating the negative regions (lighter colored regions) of the base
space where Δρ < 0. (b) Two vector fields defined over the base space whose integral
curves are purely kinematic gaits. The solid lines are integral curves of the vector fields
which we will utilize to generate purely kinematic gaits. The solid dots indicate the
negative regions of Δρ where the vector fields are not defined.

Inspecting the above polygonal gaits, we found out that they pass through the
snakeboard’s singular configurations, (α1, α2) = {(π

2 ,−
π
2 ), (−π

2 ,
π
2 )}, (Fig. 2(a)−

(c)). So rather than solving numerically for other integral curves of the vector
fields and solve for other possible gaits which is a tedious process, we simply
shrunk the above proposed gaits around the center of the base space as shown
in Fig. 3(b). These curves closely, but not exactly, match the vector fields. So
we shall expect a change in the scaled momentum value as we traverse these
gaits since they are an approximate solution. The motions of the variable inertia
snakeboard due to these gaits are depicted in Fig. 4(a) − (c). Note, the small
magnitudes of motion due to the small volumes under the height functions.
However, we can clearly see that the gaits move the variable inertia snakeboard
along the x and y directions in Fig. 4(a) and Fig. 4(b), respectively, and rotate
the snakeboard in Fig. 4(c).

Finally, recall that, our analysis is done in body coordinates, ξi’s, which are
related by the map TgLg−1 to the fiber variables, ġi’s. Since, the fiber space for
the variable inertia snakeboard is SE(2) which is not Abelian, the map TgLg−1

is non-trivial; hence, one should not expect a direct correspondence between say
ξ1 and ẋ. This explains the non-pure fiber motions in Fig. 4(a), where motion
along ξ1 transforms to major motion along x and minor motion along the y axis.

6.2 Purely Dynamic Gaits

As the name suggests, purely dynamic gaits are gaits that produce motion solely
due to the dynamic phase shift, that is, IGEO = 0 while IDY N �= 0. These gaits
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Table 1. Three proposed gaits of each family for the variable inertia snakeboard

Purely Kinematic Purely Dynamic Kino-dynamic
Polygon
ACEGA

α1 = π
4 (1 − sin(t) − 2 sin2(t))

α2 = π
4 (1 + sin(t) − 2 sin2(t))

α1 = − 1√
2

(
π
2 sin(t) + π

4 cos(t)
)

α2 = 1√
2

(
−π

2 sin(t) + π
4 cos(t)

)

Polygon
ABFECBFGA

α1 = π
10 (2 sin(3t) − 5)

α2 = π
6 (sin(t) − 3)

α1 = 1√
2

(
π
2 sin(2t) + π

4 sin(t)
)

α2 = − 1√
2

(
π
2 sin(2t) − π

4 sin(t)
)

Polygon
ACDHGEDHA

α1 = π
4 (2 sin(t) + 1)

α2 = π
4 (2 sin(t) − 1)

α1 = 1√
2

(
π
3 sin(2t) + π

3 sin(t)
)

α2 = 1√
2

(
−π

3 sin(2t) + π
3 sin(t)

)

are relatively easy to design since these are gaits that enclose no “volume” in
the base space. Note that all systems that have only one base variables have
gaits that are necessarily purely dynamic, since setting m = 1 in (13) will yield
IGEO = 0. For example, all the gaits for robo-Trikke robot which was studied
by Chitta et. al. in [4] are necessarily purely dynamic since there exists only one
base variable. As for systems with more than one base space variable, it is still
relatively easy to construct purely dynamic gaits. Such gaits should not enclose
any area in the base space. A simple solution would be to ensure that a gait
retraces the same curve in the second half cycle of the gait but in the opposite
direction.

Thus, we propose the following purely dynamic families of gaits: {r1, r2} =
{
∑n

i=0 ai (f(t))i , f(t)}, where f(t) = f(t + τ) is a periodic real function and
ai’s are real numbers. We can verify that these gaits will have zero area in the
base space (r1, r2). Moreover, we can verify that for the above family of gaits,
the scaled momentum variable is sign-definite, that is, ρ ≤ 0 or ρ ≥ 0 for all
time. Then, generating purely dynamic gaits reduces to the following simple
procedure:

• Select gaits from the above described family and check the sign of the scaled
momentum variable ρ.

• Analyze the gamma functions depicted in (11) and (13) to pick the gait that
ensures that the integrand of IDY N is non-zero for the desired fiber direction.

Example: For the variable inertia snakeboard, we construct three purely dy-
namic gaits depicted in the second column of Table 1. The motion due to these
gaits are respectively shown in Fig. 4(d) − (f). For instance, we designed the
first gait in the second column of Table 1 such that ρ ≤ 0 for all time. The
gait is located close to the center of the base space and is symmetric about the
line α1 = −α2; moreover, only the first gamma function is non-zero and even
about the line α1 = −α2 while the second and third gamma functions is odd
about this line. Thus we expect a non-zero IDY N only along the ξ1 direction.
This motion, is largely transformed to motion along the x direction as shown
in Fig. 4(d). Similarly, we designed the other two gaits to move the variable
inertia snakeboard along the y direction, (Fig. 4(e)) and to rotate it along the θ
direction, (Fig. 4(f)).
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Fig. 4. The actual motion that the variable inertia snakeboard will follow as the base
variables follow the three purely kinematic depicted in the first column of Table 1 shown
respectively in a, b, and c; three purely dynamic gaits depicted in the second column
of Table 1 shown respectively in d, e, and f ; and three kino-dynamic gaits depicted
in the third column of Table 1 shown respectively in g, h, and i. The initial and final
configurations for each gait are shown in gray and black colors, respectively, while the
dotted line depicts the trace of the origin of the body-attached coordinate frame.

6.3 Kino-Dynamic Gaits

Finally, we have the third type of gaits which we term as kino-dynamic gaits.
These gaits have both IGEO and IDY N not equal to zero, that is, the motion
of the system is due to both the geometric phase shift as well as the dynamic
phase shift which are associated with IGEO and IDY N , respectively. We design
kino-dynamic gaits in a two step process.
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• First we do the volume integration analysis on IGEO to find a set of candidate
gaits that move the robot in the desired direction.

• The second step it to compute IDY N for the candidate gaits and verify that
the effect of IDY N actually enhances the desired motion.

Essentially, kino-dynamic gaits are variations of purely kinematic gaits. In
a sense, we start by generating a purely kinematic gait but by neglecting the
constraints that the gaits has to be an integral curve of the vector fields that
prescribes the purely kinematic gaits. Thus, we know that scaled momentum is
not necessarily zero for all time, that is, IDY N �= 0. Then, we pick the gaits
for which the magnitude of IDY N additively contribute to that of IGEO, hence,
effectively producing fiber motions with bigger magnitudes.

Example: For the variable inertia snakeboard, we can generate kino-dynamic
gaits by using the volume integration analysis to produce candidate gaits. For
example, to generate a gait that rotates the variable inertia snakeboard in place,
we start by designing a curve in the base space that envelopes a non-zero vol-
ume only under the third height function of the variable inertia snakeboard
(Fig. 2(c)). A figure-eight type curve with each of its loops having opposite ori-
entation and lying on the opposite side of the line α1 = α2, will envelope non-zero
volume only under the third height function. This curve is the last curve in the
third column of Table 1. We simulated this proposed gaits and indeed it does ro-
tate the variable inertia snakeboard along the θ direction as shown in (Fig. 4(i)).
Similarly, we designed two other curves depicted in the first and second rows of
the last column of Table 1 to move the variable inertia snakeboard along the x
direction, (Fig. 4(g)), and the y direction ,(Fig. 4(h)).

In this section we have generated three of each type of gaits that moved the
variable inertia snakeboard in any specified global direction. Moreover, we have
the freedom to choose from several of the types of gaits that we have proposed
earlier. It is worth noting that the purely kinematic and purely dynamic gaits
were the easiest to design since we are exclusively analyzing either IKIN or
IDY N and not both at the same time as is the case for kin-dynamic gaits.

7 Conclusion

In this paper, we studied mixed non-holonomic systems and designed three fam-
ilies of gaits, purely kinematic, purely dynamic, and kino-dynamic gait, to move
such systems along specified fiber directions. This work is a generalization over
our prior work where we used one type of the gaits defined here to analyze
two other systems, purely mechanical and principally kinematic. Moreover, our
technique has better control over all parameters of the suggested gaits, which
reduces the need for deeper intuition to manually set these parameters and our
technique eliminated sinusoidal restrictions.

One of the contributions of this paper is the introduction of the scaled mo-
mentum variable which greatly simplified our gait generation analysis. This new
variable allowed us to rewrite both the reconstruction as well as the momentum
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evolution equation in simpler forms that are suitable for our gait generation
techniques.

Another contribution is the introduction of the novel mechanical system, the
variable inertia snakeboard. This system is similar enough to the original snake-
board that we can relate our results to this well known system, but at the same
time it did not over simplify the gait generation problem. In fact, through an-
alyzing the variable inertia snakeboard, we identified regions in the base space
where purely kinematic gaits are not possible. There are no such regions for the
original snakeboard.

This paper constitutes a first step towards developing an algorithmic gait
synthesis technique. Ideally, we would like to develop an algorithm whose inputs
are the system’s configuration space structure, its Lagrangian, and the set of non-
holonomic constraint acting on the system. The algorithm would automatically
generate gaits that will move the system along a desired global direction with a
desired magnitude. However, we still need to develop several additional tools to
complete this gait generating algorithm.
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Abstract. In this paper, we present a sampling-based verification algorithm for con-
tinuous dynamic systems with uncertainty due to adversaries, unmodeled disturbance
inputs, unknown parameters, or initial conditions. The algorithm attempts to find
inputs (and resulting trajectories) that falsify the specifications of the system thus
providing examples of bad inputs to the system. The system is said to be verified if
the algorithm cannot find falsifying inputs.

The main contribution of the paper is the analysis of the effects of discretization of
the state and input spaces that are inherent to sampling-based techniques. We derive
conditions that guarantee resolution completeness. These provide sufficient, although
conservative, conditions for verifying Lipschitz continuous (but possibly non smooth)
dynamic systems without known analytical solutions. We analyze the effects of trans-
formations of the input and state space on these conditions. The main results of this
paper are illustrated with several simple examples.

1 Introduction

Software-enabled control of dynamical systems finds applications not only in
robotics, but also in manufacturing, fly-by-wire systems, air-traffic control, med-
ical instrumentation, and biotechnology. There is currently no systematic ap-
proach to verifying controllers for systems with continuous input and state spaces
except for a very special class of simple systems for which analytical solutions
are readily available. Indeed, if we exclude this special class of systems, the
verification problem is generally undecidable [1].

The falsification problem is similar to the motion planning problem. In the
former, one tries to find the disturbance or adversarial inputs that result in
trajectories which violate system specifications, for example, safety. In the later,
we find inputs that guide the system to a state that satisfies specifications for
the goal set. In our approach, the verification problem is solved by showing the
absence of falsifying inputs or trajectories. Thus, a system is said to be verified
if there are no falsifying inputs. Analogously, in motion planning, one can try to
prove no motion plans exist to reach the goal set.

Because general verification problems are undecidable, semi-decidable approx-
imation algorithms have been designed. Most of these algorithms [2, 8, 18] over-
approximate the reachable set to check the safety. However such algorithms are

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 391–406, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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limited in their ability to handle complex dynamics in high dimensions. Recently,
motivated by the successful application of sampling-based techniques in motion
planning [6, 11, 17, 15, 14, 16] and the strong similarity between motion plan-
ning and falsification, researchers have developed algorithms [4, 9, 12] that use
sampled controls to under-approximate the continuous search space to quickly
find counter examples to show that the system is not safe. However, there is no
principled way to verify system properties.

The paper presents a sampling-based verification algorithm for Lipschitz con-
tinuous but possibly non smooth systems. The verification is achieved by us-
ing sampling-based falsification algorithms, which iteratively construct solutions
with sampled controls to falsify the given safety specification. Similar approaches
have been proposed for linear systems [10] and for hybrid systems [5]. Because
sampling-based control algorithms discretize the input and state spaces and ap-
proximate the set of trajectories (and therefore the reachable space), it is nec-
essary to establish a relationship between the discretization of these spaces and
the approximation of the reachable set, and quantify the confidence level asso-
ciated with the falsification or verification result. The main goal of this paper
is a set of conditions that establishes this connection. The basic result is that a
proper choice of sampling dispersion (in input and state spaces) and an appro-
priate sampling algorithm will ensure that every falsifying control with a finite
time horizon will be approximated within a desired level of fidelity by sampled
controls in finite time.

This work is closely connected to previous work in which conditions for res-
olution completeness of sampling-based motion planning with differential con-
straints were established for the first time [7]. It is showed [7] that solutions to
motion planning problems for dynamic systems will always be approximated by
sample controls in finite time. Of course, no guarantees are offered for problems
for which no solutions exist. The key idea is to use Lipschitz conditions on motion
equations to develop resolution-complete algorithms. The proof for resolution-
completeness relies on establishing that the reachable state set is densely covered
by the states reached by sample controls.

In the same spirit, we introduce a relaxed problem, in which the safety speci-
fication is relaxed with a given tolerance to enlarge the set of falsifying controls.
A resolution-complete (RC) falsification algorithm is designed to approximate
falsifying controls for the relaxed problem. If no solutions are found for the re-
laxed problem, then there exist no falsifying controls for the original problem
and the system is verified. This is illustrated schematically in Fig. 1. The shaded
region represents the unsafe set for the original problem. The unsafe set of the
relaxed problem shown as the set inside the dashed line includes all points which
are in the ε neighborhood of the unsafe set of the original problem. All falsifying
controls for the original problem turn into falsifying controls with violation ε for
the relaxed problem. If all trajectories {x̃i} constructed from the RC falsification
algorithm are outside of unsafe set of the relaxed problem, then the system is
said to be verified.



Sampling-Based Falsification and Verification 393

0)~(xg

)~(xg

1
~x kx~

2
~x

Fig. 1. Verification by falsification. x̃ denotes the system trajectory and the function
g(x̃) defines the specification set or the unsafe set. Tolerance ε defines the relaxed
problem. A trajectory is said to be falsifying for the relaxed problem if g(x̃) < ε.

The organization of this paper is as follows. First, we formally define the
dynamic system and the falsification and verification problems in Section 2.
Section 3 provides a framework for sampling-based falsification and discusses the
complexity of the algorithms. In Section 4, we present the verification algorithm
through RC falsification and analyze the effects of scaling and transformation
on RC conditions. Several examples are used to illustrate the application of the
proposed algorithm in Section 5.

2 Falsification and Verification Problems

In this section, we formally define the dynamic systems of interest, the basic
assumptions, and the falsification and verification problems. We use standard
notation found in most books on systems theory (see, e.g., [13]).

The dynamic system is described as follows:

ẋ =
dx

dt
= f(x, u), x ∈ X,u ∈ U, (1)

in which X ⊂ �n is the state space and U ⊂ �m is the input space. We assume
that x and u are nondimensionalized. X and U are given the structure of a
metric space using the infinity norm. We will assume that these sets are bounded
and there exist Du and Dx such that ‖u − u′‖ < Du for any u, u′ ∈ U and
‖x− x′‖ < Dx for any x, x′ ∈ X . We assume that the motion equation satisfies
the Lipschitz condition with respect to state and input. There exist positive
constants Lx and Lu such that:

‖f(x, u)− f(x′, u′)‖ ≤ Lx‖x− x′‖+ Lu‖u− u′‖ (2)

for any x, x′ ∈ X and u, u′ ∈ U . There also exists real constant Df > 0 such
that ‖f(x, u)‖ < Df for any x ∈ X and u ∈ U .

The control space U (a function space) is assumed to include all piecewise
constant controls ũ : [0, tf ] → U . We will also assume that each input is only
applied over a constant interval, δt, and there is a positive integer, k, such that
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tf = kδt. Both these assumptions are for simplicity. The extension to more
general function spaces is described in [7].

Given a control ũ : [0, tf ] → U and a state x0 ∈ X , the trajectory of the
control from x0 is

x̃(ũ, x0, t) = x0 +
∫ t

0
f(x̃(τ), ũ(τ))dτ. (3)

x̃(ũ, x0) is also used to denote the trajectory from x0 as a function of time. The
set Xinit includes all possible initial states of the system. The trajectory space
X̃ for the problem is a function space defined by:

X̃ = {x̃(ũ, x) | ũ ∈ U , x ∈ Xinit}, (4)

which could be generalized to the trajectory space for the system by replacing
Xinit with X . Assume that x̃ : [0, t1] → X and x̃′ : [0, t2] → X are two trajectories
in X̃ and t2 ≥ t1, the metric for the trajectory space is

ρx(x̃, x̃′) = |t1 − t2|+ max
(

max
t∈[0,t1]

‖x̃(t)− x̃′(t)‖, max
t∈[t1,t2]

‖x̃′(t)− x̃(t1)‖
)
. (5)

This metric can be easily shown to satisfy the standard metric axioms.
The unsafe set or the specification set is characterized by a continuous function

g : X̃ → R. If there exists x̃(ũ, x) ∈ X̃ such that g(x̃) < 0, then the system is
unsafe. Note that both spatial and temporal constraints can be incorporated in
such functions. The function g(x̃) is assumed to be Lipschitz continuous with
respect to x̃. For any x̃, x̃′ ∈ X̃

|g(x̃)− g(x̃′)| ≤ Lbρx(x̃, x̃′). (6)

Finally, we will only consider problems with finite time horizons. Further we
require this time horizon, DT , to be a integer multiple of δt. In other words,
DT = Kδt for some positive integer K. We are now in a position to define the
verification and falsification problems.

Definition 1. Falsification problem: Find a falsifying control ũ ∈ U and a
state x0 ∈ Xinit such that g(x̃(ũ, x0)) < 0.

Definition 2. Verification problem: Verify that there does not exist any
falsifying controls ũ ∈ U with a state x0 ∈ Xinit such that g(x̃(ũ, x0)) < 0.

Definition 3. Falsifying control with violation ε: A falsifying control ũ ∈ U
and a state x0 ∈ Xinit such that g(x̃(ũ, x0)) < −ε for some ε > 0.

To facilitate the proof in Section 4, we will define relaxed version of the falsifi-
cation problem below.

Definition 4. ε-relaxed falsification problem Find a falsifying control ũ ∈ U
and state x0 ∈ Xinit such that its trajectory x̃(ũ, x0) satisfies g(x̃(ũ, x0)) < ε.
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3 Sampling-Based Falsification Algorithm

Because our verification algorithm is achieved through falsification, we will first
describe a sampling-based falsification algorithm, which will be converted into a
verification algorithm by RC conditions in Section 4.1. There are many sampling-
based motion planning algorithms that can be used to design falsification algo-
rithms. However, because our goal is to use the falsification algorithm for verifi-
cation, we will only use the most basic algorithm and focus instead on its use for
verification and not describe the different variants and heuristics of sampling-
based algorithms.

3.1 The Basic Falsification Algorithm

To solve the falsification problem described in Section 2, we will assume that we
are given a state sampling dispersion bound αx, and an input sampling dispersion
bound αu. Dispersion is the radius of the largest empty ball in a given sample
point set [19]. A finite sample state set Sx ⊂ Xinit is chosen with dispersion
less than the given αx and a finite sample input set Su ⊂ U is determined
with dispersion less than αu. These bounds are illustrated in Figure 2, in which
dashed lines show the largest empty balls for the infinity norms, and small dots
in (a) and (b) represent sample states in Sx and sample inputs in Su respectively.
The algorithm iteratively constructs a search graph using sample inputs in Su

setstateinitial:initX spaceinput:U

(a) (b)

x

u

Fig. 2. The given dispersion bounds αx and αu are used to determine Sx and Su

from sample states in Sx. The search graph is a directed graph. Every node
n corresponds to a state x(n) ∈ X . If a sample input ul ∈ Su is applied for a
duration δt from a node, nk, to generate a control ũ ∈ U , resulting in a trajectory
segment x̃(ũ, x(nk)), then this input ul is said to have been applied for the node
nk. If all inputs in Su have been applied for a node, then that node is called
expanded.

For a problem with the unsafe set described by g(x̃) < 0, the sampling-based
falsification algorithm is as follows.

1. Initialize the algorithm: Initialize the search graph by associating each state
in Sx with a new node. There are no edges in the graph.
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2. Select an unexpanded node in the search graph: If every node in the search
graph is expanded, then the algorithm returns.

3. Generate a trajectory segment with an unapplied sampled input: Choose
an unapplied input from Su for the selected node. Apply the sample input
on the selected node to generate a trajectory segment. Evaluate the function
g(x̃) with respect to the current trajectory.

4. Update the search graph: If g(x̃) ≥ 0 and the search depth is no larger than
K (described in Section 2), then the final state is associated with a new node
in the search graph and a new edge is inserted from the selected node to the
new node; otherwise, a falsifying control is returned.

5. Iterate from Step 2 until no node is selected.

3.2 The Falsification Algorithm with State Space Discretization

In many algorithms, such as [3], state space discretization is used to decrease the
computational complexity of the algorithm by restricting the maximal number
of nodes in the search graph.

The discretization is governed by the dispersion bound αx. The state space X
is discretized into a finite number of non overlapping sets so that the maximal
distance between any two states in a set is less than αx. Every set allows at
most one node in the search graph. If it contains one node, it is called occupied;
otherwise, it is called empty. Thus before inserting a node for a new state at the
end of the trajectory segment of duration δt, a check is performed to see if the
discrete set in which the new state is in, is occupied or not. If it is occupied by
an existing node, then no new nodes are added. However, a new edge must still
be inserted from the selected node to the existing node.

State space discretization directly affects the computations that need to be
performed for falsification. Because one input is applied on one unexpanded node
in each iteration, the upper bound on the number of computations will be the
product of the maximal number of nodes in the search graph and the number of
sample inputs in Su. The size of Su is |Su| = O ([Du/αu]m) .

If we do not discretize the state space, every sample input from a node in
the search graph can potentially generate a new node. Therefore, the number
of nodes in a search graph starting from a node in K steps is bounded by
summing a geometric series: O

(
(|Su|K+1 − 1)/(|Su| − 1)

)
. Potentially we can

have |Sx| = O([Dx

αx
]n) disjointed search graphs. Thus the number of iterations of

the basic algorithm without discretizing the state space is:

O
(
[Dx/αx]n [Du/αu]m(K+1)

)
. (7)

If we do discretize the state space, the number of nodes in the search graph
is bounded by the number of non overlapping sets in the partition. The number
of sets is O([Dx

αx
]n) and the number of iterations of the algorithm is

O ( [Du/αu]m [Dx/αx]n) . (8)

Thus state space discretization greatly reduces the upper bound on the num-
ber of iterations.
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4 A Resolution Complete Algorithm for Verification

In this section, the falsification algorithm in Section 3 is first converted into a
verification algorithm by adapting RC conditions for motion planning with dif-
ferential constraints in Section 4.1. The choice of dispersion bounds with respect
to the computation budget, the effects of state and input space transformation
on algorithm parameters are respectively provided in Sections 4.2 and 4.3.

We will first define ε-resolution completeness.

Definition 5. ε-ResolutionComplete (ε-RC) falsificationalgorithmGiven
a falsification problem, if there exists a falsifying control ũ with violation ε > 0, then
an ε-RC falsification algorithm will find a falsifying control ũ′ in finite time.

In other words, if there exists ũ and x0 ∈ Xinit such that g(x̃(ũ, x0)) < −ε, then
an ε-RC falsification algorithm will find a control ũ′ and x′

0 ∈ Xinit such that
g(x̃(ũ′, x′

0)) < 0.

4.1 Verification through RC Falsification

To solve the verification problem, we simply run the algorithms in Sections 3.1
and 3.2 on the ε-relaxed falsification problem. It will be shown in the following
that if αx and αu are appropriately chosen, then all falsifying controls for the
original falsification problem will be approximated and returned as solutions of
the relaxed problem. If no solution is returned, then the system is verified.

Note: The function describing the unsafe set for the ε-relaxed falsification
problem is g′(x̃) = g(x̃) − ε < 0. Therefore, if g′(x̃) = g(x̃) − ε < 0 in Step 4 of
the algorithm in Section 3.1, a falsifying control will be returned.

Theorem 1. For a given ε > 0, if an ε-RC algorithm does not find a solution
with respect to the ε-relaxed falsification problem in finite time, then the system
in the original problem is verified.

Proof. Every falsifying control for the original problem is a falsifying control with
violation ε for the ε-relaxed problem, which will be approximated and returned as
a solution to the relaxed problem in finite time by an ε-RC algorithm. Conversely,
if no solution is returned for ε-relaxed problem, then the system is verified. 

Recall αx and αu are the dispersion bounds for sampling in X and U . The
following theorem provides the choice of algorithm parameters to ensure that
the falsification algorithm in Section 3 is ε-resolution complete.

Theorem 2. If the dispersion bounds satisfy the RC inequality λαx + γαu < σ
with

σ =
ε

Lb
, λ =

eLxδt(K+1) − 1
eLxδt − 1

, γ = Luδte
Lxδt e

LxδtK − 1
eLxδt − 1

, (9)

then the falsification algorithms in Section 3 are ε-RC falsification algorithms.
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Proof. The proof will show that under the conditions in the above theorem, every
falsifying control ũ with violation ε will be approximated and returned by the
algorithm. The proof follows a similar reasoning as in [7]. Instead of presenting
the proof, we present the main intuition behind the idea.

As shown in Fig. 3, sampling in the control space means only an approximate
solution ũ′ of a falsifying control ũ can be returned from our sampling-based
algorithm (see (a)). Furthermore, the state space discretization and state sam-
pling in Xinit result in discontinuities in the trajectories x̂(ũ′, x′

0) in our search
graph. There is a discontinuity in (c) because xnew and x(ne) are not the same
point and the initial state x0 is approximated by x′

0 in (b). The main observation
is that the dispersion bounds αx and αu bound the variation of initial states,
the trajectory discontinuities, and the control mismatches. Because the system
is Lipschitz continuous and the time horizon is finite, for any ũ and x0 ∈ Xinit
there always exist (adapted from Theorem 2.5 in [13]) ũ′ and x′

0 ∈ Xinit such
that

ρx(x̃(ũ, x0), x̂(ũ′, x′
0)) < λαx + γαu, (10)
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Fig. 3. The intuition of RC conditions

in which λ and γ are given as above. Recall from (6) the function g has a
Lipschitz constant Lb. Therefore, if there exists a falsifying trajectory x̃(ũ, x0)
with violation ε, an approximation x̃(ũ′, x′

0) that satisfies

ρx(x̃, x̃′) < ε/Lb, (11)

will be a falsifying control. The conditions in the theorem immediately follow by
requiring the right side of (10) be less than the right side of (11). 

4.2 Choice of Dispersion Bounds

The computational burden is determined by first determining an upper bound
Titer on running time for each iteration and the upper bound on the number of
iterations. Since the later directly depends on the dispersion bounds αx and αu

(see (8)), the RC inequality in Theorem 2 indirectly determines the computations
required for the ε-relaxed falsification problem.
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This is illustrated in Fig. 4 (a) for a simple example, in which Du = Dx = 1,
m = 1, n = 2, λ = 0.278, and γ = 1.43. For a given Titer , the solid lines
are iso-cost curves representing a fixed computational cost for different choices
of dispersion bounds. The closer the iso-cost lines are to the origin, the higher
the required computational cost. The straight dashed lines represents the RC
inequality in Theorem 2 for different choices of relaxation ε. The closer the
lines are to the origin, the smaller the relaxation ε. For a given computational
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Fig. 4. (a) Selection of algorithm parameters with respect to computational resources
(b) Comparison of different RC inequalities

budget we can, in principle, find the minimally relaxed falsification problem, for
which the RC inequality line will be tangent to the iso-cost curve with the given
computational budget allowing us to determine the dispersion bounds.

4.3 Transformations on X and U

We have assumed that the underlying spaces are metric spaces. Often it is nec-
essary to introduce scaling transformations to non dimensionalize the system so
that we are not affected by using non homogeneous coordinates (for example,
Cartesian coordinates and angles) and inputs (for example, torques and forces).
But one can also imagine transforming the underlying spaces to take advantage
of dimensions along which the dynamic system may evolve slowly (slow time
scale) and focus instead on dimensions along which changes happen more rapidly
(fast time scale). In what follows, we will explore the effects of transformations
allowing for general transformation of X and U .

Consider the following transformation: x = Txx̄, u = Tuū, and t = Tct̄, in
which Tx and Tu are full rank square matrices, and Tc is a positive real number.
The state space X and input space U are respectively transformed into X̄ and
Ū . If Tx = βI, Tu = βI, and Tc = β for some real constant β > 0, then the
transformation is called a uniform scaling transformation.

The transformed motion equation is

˙̄x =
dx̄

dt̄
= f̄(x̄, ū) = TcT

−1
x f(Txx̄, Tuū). (12)
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The Lipschitz constants with respect to the state and input for (1) are

Lx = sup
x,u

∥∥∥∥
∂f

∂x
(x, u)

∥∥∥∥ , Lu = sup
x,u

∥∥∥∥
∂f

∂u
(x, u)

∥∥∥∥ , (13)

and for (12) are:

Lx̄ = Tc sup
x,u

∥∥∥∥T
−1
x

∂f

∂x
(x, u)Tx

∥∥∥∥ , Lū = Tc sup
x,u

∥∥∥∥T
−1
x

∂f

∂u
(x, u)Tu

∥∥∥∥ . (14)

Because matrix multiplication does not commute, Lx is different from Lx̄ for
general transformations.

RC inequalities under transformation.

Theorem 3. The RC inequality after the transformation has

σ =
ε

Lb
, λ = max(Tc, ‖Tx‖∞)‖T−1

x ‖∞
eLx̄δ̄t(K̄+1) − 1

eLx̄δ̄t − 1
, (15)

and

γ = max(Tc, ‖Tx‖∞)‖T−1
u ‖∞Lūδ̄te

Lx̄δ̄t e
Lx̄δ̄tK̄ − 1
eLx̄δ̄t − 1

. (16)

Proof. With the given transformation, we have

ρx(x̃, x̃′) ≤ max(Tc, ‖Tx‖∞)ρx(˜̄x, ˜̄x′). (17)

The given algorithm parameters εx̄ and εū are described with respect to the
new spaces. With these algorithm parameters, for any falsifying control ˜̄u and
initial state x̄0, there exists an approximation ˜̄u and state x̄′

0 such that

ρx(˜̄x(˜̄u, x̄0), ˆ̄x(˜̄u′
, x̄′

0)) < εx̄
eLx̄δ̄t(K̄+1)−1

eLx̄δ̄t−1
+ εūLūδ̄te

Lx̄δ̄t eLx̄δ̄tK̄−1
eLx̄δ̄t−1

(18)

With infinity norms on the state and input space, it can be verified that

εx̄ ≤ ‖T−1
x ‖∞εx, εū ≤ ‖T−1

u ‖∞εu. (19)

Substituting the above inequalities into (18) and requiring the right side of
(17) be less than ε/Lb will complete the proof. 

Corollary 1. The RC inequality is invariant for any uniform scaling.

Proof. With any uniform scaling, it can be verified that max(Tc, ‖Tx‖∞) =
1/‖T−1

x ‖∞ = 1/‖T−1
u ‖∞, K = K̄, δt = δ̄t, Lx = Lx̄/β, and Lu = Lū/β. There-

fore, the same RC inequality coefficients in Theorem 2 will always be derived by
substituting these equalities into the RC inequality coefficients in Theorem 3. 
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Comparison of RC conditions with different transformations

From the above description, we can see that the derived RC inequality might not
be invariant for non-uniform scaling, such as transformation Tx = βI, Tu = βI,
and Tc = ξ > β. Assume that λi, γi, and σi are coefficients of the derived RC
inequality, which are obtained from Transformation i. Let

Ei = {(αx, αu) | αxλi + αuγi < σi, αx > 0, αu > 0}. (20)

The inequalities and setEi are shown in Fig. 4 (b). For Transformations i, j, and k,
Transformation i is said to be superior to Transformation j if Ej ⊂ Ei. If Ei �⊂ Ek

and Ek �⊂ Ei, then Transformation i is neither better nor worse than Transforma-
tion k. A transformation can be said to be “optimal” from the standpoint of reso-
lution completeness if the set defined by αxλ

∗ +αuγ
∗ < σ∗ is not the subset of Ei

for all other transformations. Again this “optimal” transformation will generate
dispersion bounds that are larger so that the maximal number of nodes, the size
of Su, and therefore the computational cost will be smaller.

5 Examples

In this section we illustrate the sampling-based falsification and verification
methodology, the use of ε-relaxation, and transformation of state and input
spaces. We choose several simple verification problems that allow easy interpre-
tation. The first problem has parametric uncertainty in inputs while the second
problem has parametric uncertainty in the initial state. The third problem incor-
porates uncertainty in the form of disturbance input functions. The final problem
presents an analysis of control policies for pursuit evasion.

5.1 Verification Problems

Problem 1: Verification of a system with an uncertain parameter Con-
sider a point mass which moves freely on a plane with constant but unknown
external force, u, along the y-axis (see Fig. 5 (a)). The state x of the system
includes (px, vx, py, vy) in X = [0, 15] × [1, 3] × [−1, 1] × [−1, 2], which denote
the position and velocity along x and y axes respectively. Its motion equation is
ṗx = vx, v̇x = 0, ṗy = vy, and v̇y = u, in which u ∈ U = [5, 15] is the system
parameter determining the magnitude of the constant input. The system has
initial state x0 = (0.0, 2.0, 0.0, 1.0). The system is safe if the trajectory of the
point mass from initial state x0 always stays outside of an unsafe region (shown
shaded in Fig. 5 (a)), which is a square of width d = 0.5 with its center at point
(10, 0). The function defining the unsafe set1 is

g(x̃(ũ, x0)) = min
t

(‖x̃(ũ, x0, t)− [10, 0]T‖)− 0.5 < 0.

It can be verified that g(x̃) satisfies (6) with Lipschitz constant Lb = 1.
1 Recall that we are considering X as a metric space with the infinity norm.
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The verification problem is to check whether the system is safe for all inputs.
There is a natural choice for the finite time horizon, DT . For t > 0.7, py can
be shown to be less than −0.5 and decreasing. Therefore, we choose DT = 0.7.
Because analytical solutions are available for this simple system, it is straightfor-
ward to show that the system is safe. We will verify this using a sampling-based
algorithm in the next subsection.

0
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2d

u

Unsafe region
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Original unsafe set at t= 10
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Nominal pursuer trajectory

Nominal evader trajectory

(a) (b)

Fig. 5. Simple verification problems

Problem 2: Verification of a system with an uncertain initial state
Consider the autonomous system with no control: ẏ = 0.2y sin t2 and ṫ = 1.
We define the extended state x = [y, t]T ∈ X = [0, 2]× [0, 10]. The initial state
is unknown, but restricted to lie in the set Xinit = [0, 0.1] × 0. The system is
considered to be safe if at t = 9 seconds, ‖y(t)− 1.0‖ > 0.5. Again the Lipschitz
constant Lb for the function g is 1. The time horizon is DT = 9 seconds. We
consider ε-relaxed problems with ε = 0.5 first and then 0.05.

Problem 3: Verification of a system under input disturbances Consider
the kinematic model of a UAV whose nominal inputs are constant but are subject
to bounded disturbances. The dynamics is characterized as ẋ = (v0 + v) cos θ,
ẏ = (v0 +v) sin θ, and θ̇ = w0 +w, in which v0 = 1 and w0 = 0.1 are the nominal
inputs for the system, x ∈ [0, 10], y ∈ [0, 5], and θ ∈ [0, 2π] are position and
orientation, v ∈ [−0.01, 0.01] and w ∈ [−0.001, 0.001] denote the disturbances.
The system starts from the initial state (0, 0, 0) at time 0. See Fig. 6 (a). The
question is whether the system will stay in the 1.0-neighborhood of the goal
position [xg, yg]T = [8.41, 4.60]T under the input disturbance at time 10 seconds.
Thus, the system is said to be unsafe if 2 ‖[x, y]T − [xg, yg]T ‖ > 1.0 at t = 10.
Again, the Lipschitz constant Lb = 1. The disturbance control space consists of
piecewise-constant controls with δt = 2 seconds. We will consider ε relaxation
with ε = 0.5.

Problem 4: Verification of a control policy for the pursuer Consider
the UAV in Problem 3 as an evader and a point mass model for a pursuer with
position px and py. The pursuer captures the evader if

2 The infinity norm is used here.
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Fig. 6. Verification of the system under input disturbances

‖[x(t), y(t)]T − [px(t), py(t)]T ‖ < 1.0

for some t in a finite time horizon of DT = 10 seconds. The UAV has a given
nominal control input but with bounded disturbance in the input. An open-
loop trajectory (px(t) = 8.61 and py(t) = 0.46t) is computed for the pursuer
according to the nominal trajectory to achieve capture (see Fig. 5 (b)). The
pursuer trajectory is verified if the pursuer can capture the evader over any
disturbance from its nominal control. Again, the Lipschitz constant Lb = 1. The
disturbance control space consists of piecewise-constant controls with δt = 2
seconds. We will consider ε relaxation with ε = 0.5.

5.2 RC Inequalities under Scaling and Transformation

The transformation is achieved with following diagonal matrices

Tx = Diag(a11, a22, · · · , ann), Tu = Diag(b11, b22, · · · , bmm). (21)

Problem 1: Because the control is constant, the control space is U = {ũ | ũ(t) =
c, c ∈ U}. Because the algorithm without state space discretization is used and
the initial state is a point, RC inequality will be in form γαu < σ. We use the
ε-relaxed falsification problem with ε = 0.2. With this ε, the ε-RC inequalities
after four different transformations are listed in Table 1. It can be seen that the
RC inequalities are the same for the uniform scaling transformation between 1
and 2 (see Table 1).

Problem 2: Because input space sampling does not exist, RC inequality for this
problem will be in form λαx < σ. RC inequalities are calculated in Table 2 (a)
for a fixed Tc = 1.

Problem 3: The ε-RC inequalities are calculated in Table 2 (b) with Tc = 1 and
Tu equal to an identity matrix. The algorithm with state space discretization is
used for falsification and verification.

Problem 4: The same ε-RC inequalities are obtained as for Problem 3.
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Table 1. RC inequalities under different transformations

No. a11 a22 a33 a44 b11 Tc Lx̄ Lū γi σi

1 1 1 1 1 1 1 1 1 1.41 0.2
2 10 10 10 10 10 10 10 10 1.41 0.2
3 10 1 10 1 1 1 0.1 1 7.51 0.2
4 10 100 10 100 1 100 1000 1 767.64 0.2

Table 2. RC inequalities under different transformations

No. a11 a22 Lx̄ λi σi

1 1.0 1.0 8.2 1.12e32 0.5
2 10.0 1.0 1.0 8.10e4 0.5
3 100.0 1.0 0.28 1.34e3 0.5
4 1000.0 1.0 0.208 7.50e3 0.5

a11 a22 a33 Lx̄ Lū λi γi σi

1 1 1 1.01 1 2.81e4 5.61e4 0.5
10 10 1 1.01e-1 1 105.4 190.88 0.5
100 100 1 1.01e-2 1 631.5 1.06e3 0.5
1000 1000 1 1.01e-3 1 6.03e3 1.01e4 0.5

(a) (b)

5.3 Simulation Results

Problem 1: Under Transformation 1 in Table 1, we choose αu = 0.141. A
sample input set Su with this dispersion bound is {5, 5.28, 5.56, · · · , 15}. The
system was verified because no solution was returned.

Problem 2: From Table 2 (a), we can see that Transformation 3 yields the
best RC inequality in terms of the lowest λ (highest dispersion). The dispersion
bound αx is chosen to be 3.7×10−4 to satisfy this inequality. Sample states from
Xinit are {0, 7.0× 10−4, 1.4 × 10−3, · · · , 0.0994, 0.1} are used for simulation. As
shown in Fig. 7 (a), the final state of the trajectory from y = 0.05 and t = 0
is returned by the ε-RC falsification problem with ε = 0.5, and therefore, the
system is not verified.

In order to investigate this problem further, the relaxation tolerance ε is re-
duced to 0.05. For the same transformation, the state sampling dispersion bound
αx is calculated to be 2.5 × 10−5. Now all the final states of the approximated
trajectories are outside of the 0.05-relaxed unsafe set. Therefore, the system is
verified. Three sample trajectories are illustrated in Fig. 7 (b).

Problem 3: From Table 2(b), we can see that Transformation 2 has the best
RC inequality. We chose dispersion bounds αx = 1.1 × 10−3 and αu = 2.01 ×
10−3 which satisfy this inequality. The chosen sample input (v, w) with the
specified input dispersion is in {−0.01,−0.006,−0.002, 0.002, 0.006, 0.01}×{0.0}.
As shown in Fig. 6 (b) and (c), since the final states of all constructed trajectories
do not enter the unsafe region, the system is verified.

Problem 4: The verification algorithm runs with the same choice of the sample
input set as in Problem 3. The pursuer trajectory is verified because no distur-
bance input for the evader is a falsifying control for the relaxed problem. Note
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Fig. 7. Trajectories computed by the verification algorithm for ε-relaxed problems

that the complexity of the proposed verification for this problem depends only
on the state and input space of the evader. Increasing the number of pursuers
does not change the computational cost.

6 Conclusion

In this paper, we proposed a sampling-based verification algorithm based on
resolution complete falsification, which involves the iterative construction of so-
lutions that falsify the given safety specification with sampled controls. We derive
sufficient conditions for the discretization of the state and input spaces to guar-
antee that we can find approximations to any falsifying control inputs, if they
exist. Thus the paper provides a novel and systematic approach to verifying
controllers for continuous dynamic systems.

While the paper presents sufficient conditions for resolution completeness,
these conditions are conservative and require a high resolution sampling in state
and input spaces for most practical problems. This is because the verification
problem is extremely hard. (Recall that the path planning problem (without
dynamics) is NP-hard.) We provide a partial solution to this problem by pursuing
transformations of input and state spaces that might allow a lower resolution
while guaranteeing resolution completeness. This continues to be an area of
ongoing research.

Of course heuristics can improve performance by several orders. As shown in
the RC inequality in Theorem 2, the complexity of the verification algorithm
increases exponentially with the time horizon, and dimension of the state space
and input spaces. Thus it is important to prune the search space based on domain
knowledge. Our preliminary work in this direction is discussed in [9].

Acknowledgements. We gratefully acknowledge support from NSF grant CNS-
0410514 and ONR grant FA8650-04-C-7133.
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Summary. Consider a network of nodes in the plane whose locations are unknown
but which establish communication links based on proximity. We solve the following
problems: given a node in the network, (1) determine if a given cycle surrounds the
node; and (2) find some cycle that surrounds the node. The only localization capabili-
ties assumed are unique IDs with binary proximity measure, and, in some cases, cyclic
orientation of neighbors. We give complete algorithms for finding and verifying sur-
rounding cycles when cyclic orientation data is available. We also provide an efficient
but non-complete algorithm in the case where angular data is not available.

1 Introduction

It is increasingly important to analyze networked collections of sensors, robots,
communication devices, or other local agents which coordinate to solve global
problems. A similar problem arose in mathematics a century ago — how to
extract global properties of a space built from local, combinatorially defined
pieces, or simplices. It is not a coincidence that the techniques developed to solve
such mathematical problems (algebraic topology) provide perspectives and tools
applicable to this latest incarnation of the problem.

This paper considers a network version of a simple classical problem in al-
gebraic/differential topology. Given a point x0 in the plane R

2 and a simple
closed curve, determine whether or not the curve surrounds the point — that is,
whether the winding number of the curve about x0 is nonzero (Fig. 1[left]). In
the topological setting, this problem is very easily solved using simple topologi-
cal methods [10]. In a network-theoretic version of the problem, x0 is a node in
a network graph Γ whose vertices represent non-localized sensors in the plane
and whose edges encode proximity; and L is an abstract cycle in this graph
(Fig. 1[right]).

Several such problems about winding numbers have very natural motivations,
and are especially challenging when the nodes are not localized. Consider as
an example, a networked collection of sensors (e.g., accelerometers or acoustic

� Supported by DARPA HR0011-05-1-0008 and NSF PECASE DMS-0337713 [RG,DL]
and by NSF CCR-0120778, CNS-0520305, and IIS-0133947 [SP,GS].

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 409–424, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. [left] Is the node inside the curve or outside? For a network without localization
[right], this can be challenging

sensors) which are distributed in a 2-d domain. Given a certain node x0 which
registers an important reading (an alarm), one problem relevant to security ap-
plications is to determine whether the detection has occurred within a region
of particular importance whose perimeter is defined by a cycle in the network.
Similarly, it an alarm goes off at a node, one might wish to find a small sub-
collection L of sensors whose sensing domains are guaranteed to ‘surround’ the
node x0 in the plane: thus, the embedding of the cycle L in the plane is a curve
which surround x0.

If one has sufficient data to localize nodes, then all such problems about wind-
ing numbers are trivial to solve and computationally efficient solutions exist in
the computer graphics literature under various simplifying assumptions. The
assumption of localized nodes is natural for any number of systems involving
stationary nodes placed intentionally, e.g., video cameras. However, in the case
of nodes which are distributed in an unpredictable and non-uniform manner,
or in which the nodes are mobile, then localized nodes are no longer a priori
natural. Robotics, in particular, presents a natural setting in which mobile de-
vices communicating via an ad hoc wireless network can provide localization
challenges.

1.1 Related Work

There is a substantial and growing literature on geometric properties of ad hoc
networks in which localization is weakened or not assumed at all. The recent work
on routing without localization initiated by [14] uses a heat-flow to determine
virtual coordinates for a non-localized network for applications to weighted rout-
ing problems. In many cases [14, 7] a set of known landmarks is used to estimate
system geometry. All these methods are effective, but, with a few exceptions [11]
non-rigorous. Recent work of Fekete et al. [8] gives a distributed algorithm for
rigorous topology exploration, boundary detection, and surrounding cycles: the
algorithm is complete when the nodes are sufficiently dense.
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There is a large body of work on coarse distance estimation in ad hoc networks
augmented with angular data in the form of the angle of separation between a
node’s neighbors. This arises in the the paper [6], which uses a network graph
along with exact angular measures of neighbors to detect holes in the physical
network and perform routing. The work detailed in [13] gives criteria for ensuring
coverage in a sensor network using bounds on separation angles among neighbors.

Very recently, algebraic topology has been recognized as a novel tool for prob-
lems in sensor and ad hoc networks. The papers [3, 4, 5] present algebraic topo-
logical criteria for coverage in sensor networks. Recent unpublished results of Y.
Baryshnikov relating to hole-detection in networks with randomly distributed
nodes uses Betti numbers to perform boundary detection.

As a problem in computational geometry, networks with no localization and
proximity measurements arise in the literature on unit disc graphs: abstract
graphs whose vertices correspond to a set of nodes in the plane and whose edges
are determined by nodes within unit distance. Clearly, not all graphs are realiz-
able as a unit disc graph. Recognizing whether a graph is a realizable unit disc
graph is NP-complete [1]. It follows that finding some embedding of an abstract
unit disc graph into the plane for which the graph is the unit disc proximity
network is also NP hard. Even finding an ‘approximate’ embedding which re-
alizes a unit disc graph up to local errors is NP hard [12]. But, using angular
data, [2] gives an algorithm for finding a realization of a spanner of the unit disc
graph, which enables one to compute virtual coordinates and approximate some
locations.

1.2 Innovations

The perspective that guides our techniques is that of topology, more specifically,
winding numbers [10]. Recall that the winding number of a planar cycle L about
a point x ∈ R

2 is, roughly speaking, the number of times the cycle wraps around
the point. It can be computed in a number of ways: analytically, via integrating a
tangent vector about L; topologically, via computing the homology class of L in
the complement of x0 ∈ R

2; or combinatorially, via computing the intersection
number of L with a ray based at x in R

2. We develop an approach to computing
winding numbers which is adapted to networks and differs from all three above.

In §3, we solve a separation problem: to compute whether a given node x0 is
surrounded by the image of a given cycle L. In §4, we solve an isolation problem
of determining whether a given node x0 is surrounded by some cycle L and
constructing an explicit cycle. The algorithms we present can be implemented
in systems as a distributed local computation, in which nodes are assumed to
have a limited amount of memory and simple processing abilities. We present
results of simulations in §7. In §5 we deal with managing uncertainty in cyclic
orientation data, and in §6 we present an algorithm for systems which possess no
cyclic orientation data whatsoever. In both these cases, as in [8], non-complete
algorithms exist which provide certificates.
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2 Problem Formulation

2.1 Assumptions

Throughout this paper, we consider networks which satisfy some or all of the
following assumptions.

P (Planar) Nodes with unique labels lie in the Euclidean plane R
2.

N (Network) Nodes form the vertices of a connected unit disc network graph
Γ of sufficiently large diameter.

O (Ordering type) Each node can determine the clockwise cyclic ordering of
its neighbors in the plane.

There are no coordinates, no node localization, and no assumptions about node
density or distribution other than sufficient extent. Assumptions P and N will
be in force for the remainder of this paper. Assumption O will sometimes not
be imposed.

Assumption P and N imply that nodes can broadcast their unique IDs and
these can be detected by any neighboring nodes within unit distance. This creates
a network graph whose vertices correspond to the labeled nodes and whose edges
correspond to communication links. There is no metric information encoded in
an edge beyond the coarse datum that the distance between the nodes in the
plane is no more than one.

Assumption O means that each node can perform a clockwise “sweep” of its
neighborhood and determine the order in which neighbors appear. More specif-
ically, there is a cyclic total ordering � on the neighbors of a node x0 which
defines the counterclockwise (CCW) order in which they appear. There is no
“compass” and thus ordering is known only up to a cyclic permutation. There is
also no angular data assigned to the ordering: an oriented pair of neighbors may
form an arbitrary (nonzero) angle with x0 without changing the angular order-
ing. This type of coarse angular data is not too uncommon in robotics contexts.
Cyclic orientation data is natural in, e.g., primitive landmark vision systems,
radar networks, and robots with gap sensors.

Definition: Let x0 be a node and {xi}3
1 be a triple of distinct neighbors of x0.

Define the index

Ix0(x1;x2, x3) :=
{

+1 : x1 � x2 � x3 � x1
−1 : x1 � x2 � x3 � x1

(1)

Geometric interpretation: The pair of rays in R
2 from x0 passing through

x2 and x3 join at x0 to form an bent line that divides the plane. Orient this bent
line using the ordering (x2 → x0 → x3). The index Ix0(x1;x2, x3) = −1 iff x1
lies to the left of this line, and Ix0(x1;x2, x3) = +1 iff x1 lies to the right of it.

The limit in which two neighbors have angle zero with x0 leads naturally to the
problem of uncertainty in angular ordering. When the angle between neighbors
is so small as to interfere with the orientation type, the data is weaker and the
problems more subtle. For the present, we assume that nodes are in a ‘general
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position’ so as to possess a positive lower bound on angles. This is, of course,
completely unrealistic in practice. Later, in §6 we consider this more carefully
and allow for nodes to be unable to distinguish the angular ordering of certain
neighbors. For most (but not all) networks, there is a surprisingly large tolerance
for angular ordering blindness. A complete analysis of this situation is presented
in [9].

The input data for the problem is the network graph Γ . When Assumption
O is in place, the graph has vertices augmented with the cyclic ordering type of
its immediate neighbors.

2.2 Problem Statements

Definition: The projection map Γ �→ Γ ⊂ R
2 maps vertices of Γ to the position

of the corresponding node in the Euclidean plane and edges of Γ to the line
segment connecting the nodes. These line segments all have length bounded
above by one. We solve two problems concerning winding numbers of cycles:

Separation: Given a cycle L in the network graph Γ and a node
x0 ∈ V (Γ ) which is disjoint from the nodes of L, determine whether
the projected cycle L surrounds x0.

The image of the cycle L in the plane is a closed piecewise-linear curve. If the
curve is simple (that is, non-self-intersecting), then the Jordan Curve Theorem
implies that the cycle separates the plane into two connected components, only
one of which is bounded. We will restrict attention to simple cycles, using network
criteria to satisfy this condition (Corollary 1).

Our second problem is a constructive version of the previous.

Isolation: Given a node x0 ∈ X , find a cycle L in the network graph Γ
whose projection L surrounds x0 or determine that no such cycle exists.

For reasons of robustness with respect to error, we desire a cycle L which
is not too close to x0. An interesting generalization of this problem relevant to
security applications is to construct a sequence of concentric cycles which isolate
the target node x0 and form ‘moats’ in R

2 to ring x0.

3 Separation

3.1 Restrictions

We consider the separation problem for a network satisfying Assumptions P, N,
and O. Namely, given a node x0 and an oriented cycle L = (xi)N

1 of cyclically
connected nodes distinct from x0, determine whether the projected cycle L sur-
rounds the node x0. Let d denote the ”hop” distance function on Γ . We assume
that d(x0,L) > 1, meaning that the shortest path from x0 to a vertex of L in Γ
requires more than one ”hop” or edge.
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Both Assumption O and the bound on d(x0,L) are necessary. A critical exam-
ple is illustrated in Fig. 2, which gives two labeled graphs in R

2 with isomorphic
network graphs and identical cyclic orientation data. The target node x0 lies on
opposite sides of the cycles illustrated. It is much easier to construct examples
of unit disc graphs which can be realized in ways which change winding numbers
of cycles.

Fig. 2. Two examples of embedded network graphs with identical network and cyclic
orientation data

The problem makes the most sense when the projected cycle L is a simple
closed curve in R

2. The easiest way to guarantee such a cycle is to choose a cycle
which is ‘minimal’ with respect to communication between nodes.

Definition: For any subgraph Δ ⊂ Γ , let 〈Δ〉 denote the maximal subgraph
of Γ spanned by the vertices of Δ. Say that Δ is chord-free if 〈Δ〉 = Δ. The
simplest criterion for a cycle L to have a simple projection to the plane is that
〈L〉 = L. The following lemma is both trivial and well-known [8, 3, 9].

Lemma 1. If the projections of two edges of a unit disc graph Γ intersect in
R

2, then these span a subgraph of Γ containing a cycle of three edges.

Corollary 1. Any path (or cycle) P in a unit disc graph Γ satisfying 〈P〉 = P
has image P a non-intersecting (closed) curve in R

2.

3.2 Algorithm

In differential topology, the way one decides whether a loop in the plane encloses
a point is to choose a path from the point which terminates sufficiently far from
the starting point as to be definitely outside the loop. For a ‘generic’ choice
of such a path, the path and the loop intersect without tangencies, and the
number of intersection points counted mod 2 is zero if and only if the loop does
not surround the point [10].

The obvious generalization of this strategy is to choose any path P in Γ
from x0 to a terminal point which is sufficiently far away from L to guarantee
that it is outside the cycle in R

2, and then court intersections. However, this
counting is not always easy or even possible. The inspiration for our method is
nearly opposite to that coming from differential topology. Instead of trying to
force intersections to be a discrete set of points, one thinks of manipulating the



Surrounding Nodes in Coordinate-Free Networks 415

path so as to maximize the amount of intersection with the cycle with the result
of having a single connected component in the intersection. Then, one could
compute whether the endpoints of P lie on the same side of L. This last step is
what we do, using the orientation data in a crucial manner.

Fix an orientation for the cycle L in Γ and order the nodes (	i) of L cyclically.
Choose a node x∞ sufficiently far from L in Γ . Generate chord-free paths P0
and P∞ from x0 and x∞ respectively to points on L. The projection of these
paths to R

2 are not self-intersecting, and can only intersect L at most once at
the last segment of the path.

The crucial step is to determine whether the paths P0 and P∞ lie on the
same side of L or different sides. In the simplest configuration, the final point on
a path is connected to L in Γ by only one edge, as in Fig. 3[left]. The angular
orientation data then suffices to determine on which side of L the path lies.
However, the situation may be complicated, as in Fig. 3[right]. A more subtle
analysis is required in this case: see Algorithm IndexCheck.

Fig. 3. Determining whether an oriented path with terminal node xn approaches the
projected oriented cycle L from the left or from the right can be simple [left] or compli-
cated [right] depending on the number of communication links between xn and L

3.3 Proofs

Lemma 2. If L is a cycle in Γ with 〈L〉 = L and x ∈ V (Γ ) with d(x,L) >

2|L|2/π2, then x is not in the region of R
2 bounded by L.

Proof. The Isoperimetric Inequality says that the area A enclosed by the sim-
ple closed curve L in R

2 is bounded above by 1/(4π) times the square of the
perimeter of L. This perimeter is bounded above by |L|. Let P be a chord-free
path. By placing a ball of radius 1

2 about every other vertex of P , one obtains
disjoint balls of total area 1

8π|P|. Such a path P from x to L of length at least
2|L|2/π2 violates the area constraint: the endpoint is thus not surrounded by L.

Better constants are possible, but the lower bound must be quadratic in |L|, since
a chord-free path in the interior of L can fill up the area bound by L, which is
quadratic in the perimeter. The following lemmas are critical for turning local
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Algorithm 1. I = IndexVertexLoop(x,L, Γ )
Require: Γ = (V, E) is a graph satisfying P, N, and O
Require: x ∈ V (Γ ), L = (�i) is an oriented cycle of Γ , 〈L〉 = L, and d(x,L) > 1.
1: choose a path P = (xi)n

0 in G with x0 = x, 〈P〉 = P , and d(xi, L) = 1 iff i = n.
2: if at xn, for some j, either �j � xn−1 � �j+1 or �j+1 � xn−1 � �j and no other �i

separates xn−1 from these neighbors in � then
3: return I ⇐ I�j (�j−1; �j+1, xn) · I�j+1(�j+2; xn, �j) · I�xn

(xn−1; �j , �j+1)
4: else
5: if for some j, d(xn, �j) = d(xn, �j+1) = 1 then
6: return I ⇐ I�j (�j−1; �j+1, xn) · I�j+1(�j+2; xn, �j) · I�xn

(xn−1; �j , �j+1)
7: else
8: choose any �j with d(�j , xn) = 1.
9: return I ⇐ I�j (xn; �j−1, �j+1)

10: end if
11: end if

Algorithm 2. I = IndexCheck(x0,L, Γ )
Require: Γ = (V, E) is a graph satisfying P, N, and O
Require: x0 ∈ V (Γ ), L is an oriented cycle of Γ , 〈L〉 = L, and d(x0, L) > 1
1: choose x∞ ∈ V (Γ ) with d(x∞, L) > 2|L|2/π2

2: return I ⇐ IndexVertexLoop(x0, L, Γ ) − IndexVertexLoop(x∞, L, Γ )

cyclic orientation data into global cyclic orientation data. These can be proved
by direct enumeration, but an approach which is both more elegant and more
easily generalized is to use simple algebraic topology (homology theory): see [9]
for detailed proofs.

Lemma 3. Consider a graph Δ having one oriented cycle (x1, x2, x3), with each
inner node xi connected to an outer node yi. If this graph has planar image Δ
as in Fig. 4, then the cyclic orientation of the outer nodes (yi)31 with respect to
any point in their convex hull is equal to

3∏

i=1

Ixi(yi;xi−1, xi+1) (2)

under the convention −1=CW and +1=CCW, and where the subscript indices
are cyclic (computed mod 3).

Lemma 4. Consider a graph Y having one central node x0 attached to an or-
dered triple of non-colinear points (yi)31. Then, for any i, Ix0(yi; yi−1, yi+1) is
equal to the cyclic orientation of the ordered triple (yj)31 in R

2 about x0, under
the convention −1=CW and +1=CCW.
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Fig. 4. The cyclic orientation of the outer nodes can be derived from the indices of
the inner nodes in the above cases by computing the product of indices

Theorem 1. In any network satisfying Assumptions P, N, and O, let L be a
cycle satisfying 〈L〉 = L and x0 a node with d(x0,L) > 1. Algorithm IndexCheck
returns I = 0 iff the winding number of L about the node x0 ∈ R

2 vanishes.

Proof. Corollary 1 implies that L is embedded in R
2. This simple closed curve

separates the plane in two connected components, thanks to the Jordan Curve
Theorem. Fixing an orientation on L induces an (unknown) orientation on L.

Choose a chord-free path P0 = {xi}n
0 from x0 to xn with d(xi,L) = 1 iff

i = n. Via Corollary 1, the image of this path, P0, is simple and the restriction
of this path to the subpath between nodes x0 and xn−1 lies entirely on one side
of L in R

2. The edge from xn−1 to xn may or may not cross L.
If there do not exist consecutive cycle nodes 	j , 	j+1 incident to xn, then

choose any 	j incident to xn. In this case, the ‘Y’ graph connecting 	j to xn,
	j−1, and 	j+1 has no additional connections between outer nodes, and the index
I�j (xn; 	j−1, 	j+1) shows on which side of L the node xn (hence x0) lies.

If, however, consecutive cycle neighbors exist, one argues that the subgraph Δ
consisting of the cycle (xn, 	j , 	j+1) and the connections of these inner nodes to
respective outer nodes (xn−1, 	j−1, 	j+2) has image Δ as in Fig. 4. A more com-
plicated embedding cannot appear thanks to repeated application of Lemma
1. Thanks to Lemma 3, the product of the three indices I�j (	j−1; 	j+1, xn),
I�j+1(	j+2;xn, 	j), and I�xn

(xn−1; 	j , 	j+1) gives the cyclic orientation of the
ordered triple (xn−1, 	j+2, 	j−1) of outer nodes. Via Lemma 4, this tells whether
xn−1 (and thus x0) lies to the ‘left’ or to the ‘right’ of the embedded segment
(	i)

j+2
j−1 of L. However, it is possible that L doubles back and crosses the segment

between xn−1 and xn, as in Fig. 3[right]. In this case, one needs to be sure to use
the subgraph Δ generated by consecutive nodes (	i)

j+2
j−1 where, from the vantage

of xn, 	j � xn−1 � 	j+1 or 	j+1 � xn−1 � 	j , and no other 	i separates.
There is an ambiguity in I resulting from the fact that we do not know if the

orientation on L is clockwise or counterclockwise; thus we do not know which
sign for I (i.e., the ‘left’ or the ‘right’ side of L) corresponds to the bounded
component of R

2 − L. To determine this, choose a node x∞ with d(x∞,L) >

2|L|2/π2. From Lemma 2, x∞ lies within the unbounded component of R
2 −L.

That one can choose such a node and a chord-free path P∞ from L to x∞ is



418 R. Ghrist et al.

possible thanks to Assumption N. Computing the index of x∞ with respect to
L and comparing it to that of x0 as in IndexCheck determines whether x0 and
x∞ are on the same or different sides of L.

4 Isolation

We consider the isolation problem for a network satisfying Assumptions P, N,
and O. Given a node x0, determine whether there exists a cycle L which sur-
rounds x0 and construct one if it exists. We restrict the location of the cycle we
search for by specifying a lower Rα and upper Rω bound on the hop distance to
x0. We search for surrounding cycles within the subgraph whose vertices satisfy
both bounds.

4.1 Algorithm

The first algorithm we give to solve this problem is similar is spirit to the Bound-
Hole algorithm of [6], in that it relies on angular ordering to perform a depth-first
search with constraints. The algorithm of [6] was intended to find holes in a net-
work at a known boundary (or ‘stuck’) point assuming known exact pairwise
angles between neighbors.

To solve the Isolation problem, we choose a chord-free path P in Γ from x0
to some terminal point x∞ which is more than Rω hops from x0. Truncate the
graph Γ to Γ ′, the subgraph generated by nodes within Rα and Rω hops of x0.
The path P restricts to a path P ′ = {pi}N

1 in Γ ′.
Beginning with the first node p1 of P ′, construct a path L by performing a

depth-first search of Γ ′ with the following conditions (Algorithm SweepCycle).

1. The depth-first search augments the path L by choosing the next available
node of Γ ′ which is clockwise (CW) from the prior edge of L.

2. The search backtracks whenever there is no available CW node, or when the
path L has endpoint in the 1-hop neighborhood of P approaching from the
‘right’ side.

3. If the search backtracks all the way to the starting point of L, this starting
point is changed to be the next point on P .

4. If the path L has endpoint in the 1-hop neighborhood of P on the ‘left’ side,
then L is completed to a cycle in Γ ′ by connecting the ends along P .

The justification for this algorithm is that any cycle in Γ ′ whose image in R
2

has winding number ±1 about x0 must intersect P ′
(since the path is chord-free

and thus embedded). Thus, constructing any path which approaches P ′ from
each side once is automatically a path which encircles x0.

4.2 Proofs

Theorem 2. For any system satisfying Assumptions P, N, and O, Algorithm
SweepCycle returns a cycle L in Γ ′ whose image L encloses x0 in R

2 if and only
if such a cycle exists.
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Algorithm 3. L = SweepCycle(x0, Rα, Rω, Γ )
Require: Γ satisfies P, N, and O
Require: Rω > Rα > 1
1: let P be a chord-free path from x0 to x∞ with d(x0, x∞) > Rω

2: truncate P → P ′ = (pi), Γ → Γ ′ with distance to x0 between Rα and Rω

3: split 1-hop neighborhood of P ′ into two sides P ′
+, P ′

− using orientation data
4: while (�j) has endpoint not in P ′

− do
5: while (�j) does not have endpoint in P ′

+ and interior point not in P ′
+ do

6: augment (�j) via CW depth-first search of Γ ′ − (P ′ ∪ P ′
+)

7: end while
8: �1 ⇐ pi, the next available node of P ′

9: end while
10: return L ⇐ ∅ if search is exhausted, else return L = (�j) union segment of P ′

connecting ends of (�j)

Proof. The image of the truncated graph Γ ′ lies in a topological annulus A ⊂ R
2,

whose boundary components are connected by the embedded path P. Any simple
closed curve in A which consists of a segment of P and a segment in A−P which
approaches P from both sides surrounds x0 in R

2 (this is proved using, e.g.,
homology theory). Thus, if Algorithm SweepCycle returns a non-empty cycle L,
then its image L surrounds x0.

The Jordan Curve Theorem applied to A implies that any simple closed curve
in A which surrounds x0 must intersect P . If L is any cycle of Γ ′ whose image
surrounds x0, then there are at least two nodes of L within the 1-hop neigh-
borhood of P ′, thanks to Lemma 1. Choose two such nodes on opposite sides of
P ′ and such that no further nodes of L are within the 1-hop neighborhood of
P ′ In a search of Γ ′, Algorithm SweepCycle will eventually hit one of these two
nodes. The depth first search the algorithm performs cannot exhaust Γ ′ without
sweeping through L.

5 Angles and Uncertainty

As a step toward removing angular orientation data, we modify Assumption O
to account for uncertainty in angular orientation types.

U (Ordering type with Uncertainty) Each node can determine the clockwise
cyclic ordering of any neighbors separated by angles of at least α0.

That is, any triple of neighbors can be cyclically ordered if none of the three
pairwise angles is below the threshold α0. We do not assume that the cyclic order-
ing measurement always fails whenever an angle is below α0, but rather that the
reading either returns a true angular reading or an empty (i.e., uncertain) reading.

The surprising fact is that for α0 as large as π/3, it is often possible to rig-
orously determine winding numbers. Some choices of Γ and L present too much
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uncertainty, but criteria for knowing when you can compute winding numbers
are possible. We outline this procedure in the setting of the Separation Problem
as an example.

Consider a network satisfying Assumptions P, N, and U, with α0. Let L be
a cycle satisfying 〈L〉 = L and x0 a node with d(x0,L) > 1. In the simplest
case where xn is not within 1-hop of a consecutive pair of cycle nodes, choose
any isolated incident cycle node 	j of L. That L is chord-free implies all three
angles at 	i to xn, 	i−1, and 	i+1 are greater than π/3 and thus α0. Therefore I
is well-defined here and yields winding information.

In the more complicated case where there is a subgraph of the form in Fig. 4,
then some of the indices at the three inner nodes may be undefined. Since the
angles of a triangle sum to π, at least one angle in the interior triangle is no less
that π/3. We consider cases based on how many of these three interior nodes
admit a well-defined cyclic orientation of neighbors.

Case 1: If all three indices exist, we are obviously done.
Case 2: If only one index exists, we claim that this single index is equal to

the full index of P with respect to L. This breaks into two cases, according to
Fig. 4. In the case on the left, each vertex has the same index, and choosing
any one yields the same as their product. In the case on the right, if only one
index exists, a brief argument involving plane geometry shows that the angle out
of which the bisector of the inner triangle emanates is the largest of the three
angles; thus, if only one index is well-defined, it is this one. This node always
has index equal to the product of the three inner node indices.

Case 3: In the case where only two indices exist, they either have the same
sign or different sign. If they have the same sign, then, using the ‘largest angle’
result of Case 2, we know that Δ has no self-intersections in R

2. Thus, the
index of this path with respect to L is equal to the index of either of the two
well-defined nodes.

Case 4: If two indices only are defined and the two computed indices differ,
then we are certainly in the case where Δ is not embedded in the plane. How-
ever, if it is not possible to compute the third index and it is not possible to
determine which of the two nodes has the larger subtended angle, then there is
no information by which the index of this path can be determined. One may
attempt to modify either P or L locally to remove the ambiguity, but there is
no guarantee that this is possible for every Γ .

Indeed, with this model of uncertainty, it is not possible to solve the separation
problem. See [9] for examples, along with an alternate uncertainty model which
does allow for a complete algorithm.

6 Isolation without Cyclic Orientation Data

For systems which do not satisfy Assumption O, no solutions are possible which
apply to arbitrary networks: very sparse graphs can be embedded in the plane
as a unit disc graph in inequivalent ways. However, there are non-complete al-
gorithms which, upon successful termination, return rigorous winding number
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information. The ‘flower’ graphs of [8] provide one example of rigorous contain-
ment certificate. We briefly present a different approach which uses a modifica-
tion of Assumption P as follows.

P’ There is a simply-connected domain D ⊂ R
2 which partitions the nodes by

membership in D and yields an ‘interior’ graph Γ o of all nodes in D which
satisfies Γ o ⊂ D.

It is not necessary to know the precise geometry of D (cf. [3]). Algorithm
TriPath performs the following operations. From x0, choose three chord-free paths
{Pi}3

1 from x0 to the ‘exterior’ graph Γ − Γ o such that the 1-hop neighborhood
of each Pi is disjoint from Pi−1 ∪ Pi+1 outside an Rα-hop neighborhood of
x0. (The existence of such paths is of course not guaranteed for all networks.)
The algorithm searches within Γ o for a sequence of arcs connecting Pi to Pi+1
avoiding Pi−1 for each i. Chaining these arcs together yields a cycle in Γ o: see
Fig. 6[left].

A proof analogous to that of Theorem 2 implies that this cycle surrounds
x0 in R

2. Assumption P’ implies that there is a topological annulus A ⊂ R
2

whose outer boundary is ∂D and whose inner boundary is a simple closed curve
surrounding x0. The three paths {Pi} intersect A in three pairwise-disjoint
arcs, each connecting the inner boundary of A to the outer boundary of A.
A simple homological argument reveals that any loop in A whose intersections
with the P i are cyclically ordered must surround the inner hole of A and thus
surround x0.

We repeat that should Algorithm TriPath fail to construct a surrounding cycle,
it does not indicate the non-existence of such a cycle.

Algorithm 4. L = TriPath(x0, Rα, Γ, Γ o)
Require: Γ satisfies P’ and N
Require: x0 ∈ Γ o

1: search for chord-free paths {Pi}3
1 in Γ from x0 to Γ − Γ o with d(Pi, Pj �=i) > 1

outside an Rα neighborhood of x0.
2: search for paths {Li}3

1 in Γ o from Pi to Pi+1 with d(Li, Pi−1) > 1.
3: if either search fails then
4: L ⇐ ∅
5: else
6: L ⇐cycle in ∪iPi ∪i Li

7: end if
8: return L

7 Simulations

Algorithm IndexCheck is easily implemented, However, as it produces no output
except for a winding number that is easily seen when the graph is illustrated,
we waste no space illustrating test runs of this algorithm.
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Fig. 5. Results of Algorithm SweepCycle on a dense [left] and sparse [right] randomly
generated network. In both cases, the algorithm successfully produces a chord-free
surrounding cycle outside of the 2-hop neighborhood of the encircled node.

Fig. 6. Algorithm TriPath applied to a randomly generated network: [left] a network
for which TriPath is successful. Three disjoint paths exist to ‘infinity’ and a loop which
cyclically connects these paths generates a surrounding cycle. [right] The algorithm fails
to find a surrounding cycle about the highlighted node, even though a surrounding cycle
exists. The algorithm cannot find three disjoint paths from the node to the boundary.
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Algorithm SweepCycle has been implemented [in C] for randomly generated
sets of nodes with node density, input node, and the radius Rα as user-defined
parameters. Examples of networks which are relatively dense and sparse are
illustrated in Fig. 5. This algorithm inherits the time- and space-complexity of
a depth-first search on the truncated graph.

Algorithm Tripath has likewise been implemented [in Java] with randomly
generated sets of nodes. Fig. 6[left] displays a typical output, with the three
paths (Pi)31 in bold and the cycle L marked. Depending on the exact form of Γ ,
it may be impossible to find three such paths (Pi)31 which are properly separated.
Fig. 6[right] illustrates such an example, and reinforces the result that this algo-
rithm does not always find a surrounding cycle. This algorithm is distributed and
local: both the operation of finding (Pi) and the connecting segments between
them are distributed in this software.

8 Concluding Remarks

The challenge of localization in an unknown environment is significant across
many areas of robotics and sensor networks, and has generated an impressive
array of techniques and perspectives. We demonstrate that localization is not
a prerequisite to solving problems about winding numbers in a planar network.
For many systems, the unit disc graph possesses sufficient information to find
separating cycles about a node. We also demonstrate that an angular ordering
of neighbors suffices to solve winding number problems for all possible networks.
Absolute angles are not needed, and large uncertainty in the angular ordering
data may be tolerated. As with many problems in manipulation, localization,
mapping, etc., the amount of sensory information needed to solve the problem
is sometimes far below what one would expect.
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Abstract. This paper describes an intuitive geometric algorithm for the localization
of mobile nodes in networks of sensors and robots using range-only or angle-only mea-
surements. The algorithm is a minimalistic approach to localization and tracking when
dead reckoning is too inaccurate to be useful. The only knowledge required about the
mobile node is its maximum speed. Geometric regions are formed and grown to account
for the motion of the mobile node. New measurements introduce new constraints which
are propagated back in time to refine previous localization regions. The mobile robots
are passive listeners while the sensor nodes actively broadcast making the algorithm
scalable to many mobile nodes while maintaining the privacy of individual nodes. We
prove that the localization regions found are optimal–that is, they are the smallest
regions which must contain the mobile node at that time. We prove that each new
measurement requires quadratic time in the number of measurements to update the
system, however, we demonstrate experimentally that this can be reduced to constant
time.

1 Introduction

Localization is a critical issue for many field robotics applications. In open out-
door environments, differential GPS systems can provide precise positioning in-
formation. There are many applications, however, in which GPS cannot be used,
such as indoor, underwater, extraterrestrial, or urban environments. For situa-
tions when GPS is unavailable, dead reckoning may provide an alternative. Dead
reckoning, however, is subject to accumulated error over time and is insufficient
for many tasks. Most current localization methods make use of range or angle
measurements to other nodes (pre-deployed beacons or other robots) to constrain
dead reckoning error growth [4, 7, 14, 15, 19, 20].

In this paper, we present a localization algorithm for mobile agents for situa-
tions in which dead reckoning capabilities are poor, or simply unavailable. This
includes the important case of passively tracking a non-cooperative target. The
method is also applicable to low cost underwater robots, such as AMOUR [25],
and other non-robotic mobile agents, such as animals [2] and people [10].

Our approach is based on a field of statically fixed nodes that communicate
within a limited distance and are capable of estimating either ranges (in one

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 425–440, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



426 C. Detweiler et al.

case) or angles (in the other case) to neighbors. These agents are assumed to
have been previously localized by a static localization algorithm (e.g. [18]). A
mobile node moves through this field, passively obtaining ranges (respectively
angles) to nearby fixed nodes and listens to broadcasts from the static nodes.
Based on this information, and an upper bound on the speed of the mobile
node, our method recovers an estimate of the path traversed. As additional
measurements are obtained, this new information is propagated backwards to
refine previous location estimates. We prove that our algorithm finds optimal
localization regions–that is, the smallest regions that must contain the mobile
node.

Our algorithm allows for significant delays between measurements which
makes traditional trilateration or triangulation approaches impossible. The algo-
rithm is scalable to any number of mobile nodes as the mobile nodes are passive.
The passivity of listeners also maintains the privacy of the mobile nodes.

This paper is organized as follows. We first introduce the intuition behind the
range-only and angle-only versions of the algorithm. We then present the general
algorithm, which can be instantiated with either range or angle information, and
prove that it is optimal. Finally, we discuss an implementation of the range-
only and angle-only algorithms, present experimental results of the range-only
algorithm, and discuss extensions to the algorithm.

2 Related Work

A wide variety of strategies have been pursued for representing uncertainty in
robot localization. Many approaches employ probabilistic state estimation to
compute a posterior for the robot trajectory, based on assumed measurement and
motion models. A variety of filtering methods have been employed for localization
of mobile robots, including EKFs [7, 14, 15], Markov methods [3, 14], Monte
Carlo methods [6, 7, 14] and batch techniques [4, 14, 15, 16]. Much of this recent
work falls into the broad area of simultaneous localization and mapping (SLAM),
in which the goal is to concurrently build a map of an unknown environment
while localizing the robot.

Our approach assumes that the robot operates in a static field of nodes whose
positions are known a priori. We assume only a known velocity bound for the
vehicle, in contrast to the more detailed motion models assumed by modern
SLAM methods. Most current localization algorithms assume an accurate model
of the vehicle’s uncertain motion. If a detailed probabilistic model is available,
then a state estimation approach will likely produce a more accurate trajectory
estimate for the robot. There are numerous real-world situations, however, that
require localization algorithms that can operate with minimal proprioceptive
sensing, poor motion models, and/or highly nonlinear measurement constraints.
In these situations, the adoption of a bounded error representation, instead of a
representation based on Gaussians or particles, is justified.

In previous work, Smith et al. also explored the problem of localization of
mobile nodes without dead reckoning [22]. They compare the case where the
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mobile node is a passive listener verses actively pinging to obtain range estimates.
In the passive listening case an EKF is used. However, the inherent difficulty of
(re)initializing the filter leads them to conclude a hybrid approach is necessary.
The mobile node remains passive until it detects a bad state. At this point
it becomes active. In our work we maintain a passive state. Additionally, our
approach introduces a geometric approach to localization which can stand alone,
as we demonstrate experimentally in Section 6, or be post-processed by a Kalman
filter or other filtering methods.

Our approach represents uncertainty using bounded regions that are com-
puted based on worst-case assumptions of dead-reckoning and measurement
errors. This can be contrasted with the conventional assumption of Gaussian
errors in EKF approaches, or the representation of uncertainty with sets of par-
ticles in Markov Chain Monte Carlo state estimation [24]. Previous work adopt-
ing a bounded region representation of uncertainty includes Meizel et al. [17],
Briechle and Hanebeck [1], Spletzer and Taylor [23], and Isler and Bajcsy [12].
Meizel et al. investigated the initial location estimation problem for a single
robot given a prior geometric model based on noisy sonar range measurements.
Briechle and Hanebeck [1] formulated a bounded uncertainty pose estimation
algorithm given noisy relative angle measurements to point features. Doherty et
al. [9] investigated localizations methods based only on wireless connectivity,
with no range estimation. Spletzer and Taylor developed an algorithm for multi-
robot localization based on a bounded uncertainty model [23]. Finally, Isler
and Bajscy examine the sensor selection problem based on bounded uncertainty
models [12].

The robot localization problem bears similarities with the classical problem
of robot motion planning with uncertainty. In the seminal work of Erdmann
bounded sets are used for forward projection of possible robot configurations.
These are restricted by the control uncertainty cone [11]. In our work the step
to compute the set of feasible poses for a robot moving through time is similar
to Erdmann’s forward projection step.

Our approach differs from all these approaches by incorporating a dynamic
motion component for the robot. By assuming a worst-case model for robot
motion, in terms of a maximum allowable speed, we are able to develop a bounded
region localization algorithm that can handle the trajectory estimation problem
given non-simultaneous measurements. This scenario is particularly important
for underwater acoustic tracking applications, where significant delays between
measurements are common due to the speed of sound.

3 Algorithm Intuition

This section formally describes the localization problem we solve and the intu-
ition behind the range-only version and angle-only version of the localization
algorithms. The generic algorithm is presented in section 4.
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3.1 Problem Formulation

We will now define a generic formulation for the localization problem. This setup
can be used to evaluate range-only, angle-only, and other localization problems.
We start by defining a localization region.

Definition 1. A localization region at some time t is the set of points in which
a node is assumed to be at time t.

We will often refer to a localization region simply as a region. It is useful to
formulate the localization problem in terms of regions as the problem is typically
under-constrained, so exact solutions are not possible. Probabilistic regions can
also be used, however, we will use a discrete formulation. In this framework
the localization problem can be stated in terms of finding optimal localization
regions.

Definition 2. We say that a localization region is optimal with respect to a set of
measurements at time t if at that time it is the smallest region that must contain
the true location of the mobile node, given the measurements and the known
velocity bound. A region is individually optimal if it is optimal with respect to a
single measurement.

For example, for a range measurement the individually optimal region is an
annulus and for the angle case it is a cone. Another way to phrase optimality is
if a region is optimal at some time t, then the region contains the true location
of the mobile node and all points in the region are reachable by the mobile node.

Suppose that from time 1 · · · t we are given regions A1 · · ·At each of which
is individually optimal. The times need not be uniformly distributed, however,
we will assume that they are in sorted order. By definition, at time k region Ak

must contain the true location of the mobile node and furthermore, if this is the
only information we have about the mobile node, it is the smallest region that
must contain the true location. We now want to form regions, I1 · · · It, which are
optimal given all the regions A1 · · ·At and an upper bound on the speed of the
mobile node which we will call s. We will refer to these regions as intersection
regions as they will be formed by intersecting regions.

3.2 Range-Only Localization and Tracking

Figure 1 shows critical steps in the range-only localization of mobile Node m.
Node m is moving through a field of localized static nodes (Nodes a, b, c) along
the trajectory indicated by the dotted line.

At time t Node m passively obtains a range to Node a. This allows Node m
to localize itself to the circle indicated in Figure 1(a). At time t+1 Node m has
moved along the trajectory as shown in Figure 1(b). It expands its localization
estimation to the annulus in Figure 1(b). Node m then enters the communication
range of Node b and obtains a ranging to Node b (see Figure 1(c)). Next, Node
m intersects the circle and annulus to obtain a localization region for time t+ 1
as indicated by the bold red arcs in Figure 1(d).
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Example of the range-only localization algorithm

The range taken at time t+ 1 can be used to improve the localization at time
t as shown in Figure 1(e). The arcs from time t + 1 are expanded to account
for all locations the mobile node could have come from. This is then intersected
with the range taken at time t to obtain the refined location region illustrated
by the bold blue arcs. Figure 1(f) shows the final result. Note that for times
t and t + 1 there are two possible location regions. This is because two range
measurements do not provide sufficient information to fully constrain the system.
Range measurements from other nodes will quickly eliminate this.

3.3 Angle-Only Localization and Tracking

Consider Figure 2. Each snapshot shows three static nodes that have self-
localized (Nodes a, b, c). Node m is a mobile node moving through the field
of static nodes along the trajectory indicated by the dotted line. Each snapshot
shows a critical point in the angle-only location and trajectory estimation for
Node m.

At time t Node m enters the communication range of Node a and passively
computes the angle to Node a. This allows Node m to estimate its position to
be along the line shown in Figure 2(a). At time t + 1 Node m has moved as
shown in Figure 2(b). Based on its maximum possible speed, Node m expands
its location estimate to that shown in Figure 2(b). Node m now obtains an angle
measurement to Node b as shown in Figure 2(c). Based on the intersection of
the region and the angle measurement Node m can constrain its location at time
t + 1 to be the bold red line indicated in Figure 2(d).
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Example of the angle-only localization algorithm

The angle measurement at time t+1 can be used to further refine the position
estimate of the mobile node at time t as shown in Figure 2(e). The line that Node
m was localized to at time t + 1 is expanded to represent all possible locations
Node m could have come from. This is region is then intersected with the original
angle measurement from Node a to obtain the bold blue line which is the refined
localization estimate of Node m at time t. Figure 2(f) shows the two resulting
location regions. New angle measurements will further refine these regions.

4 The Localization Algorithm

4.1 Generic Algorithm

The localization algorithm follows the same idea as in Section 3. Each new
region computed will be intersected with the grown version of the previous region
and the information gained from the new region will be propagated backwards.
Algorithm 1 shows the details.

Algorithm 1 can be run online by omitting the outer loop (lines 4-6 and 11)
and executing the inner loop whenever a new region/measurement is obtained.

The first step in Algorithm 1 (line 3), is to initialize the first intersection
region to be the first region. Then we iterate through each successive region.

The new region is intersected with the previous intersection region grown to
account for any motion (line 6). Finally, the information gained from the new
region is propagated back by successively intersecting each optimal region grown
backwards with the previous region, as shown in line 9.
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Algorithm 1. Localization Algorithm
1: procedure Localize(A1 · · · At)
2: s ← max speed
3: I1 = A1 � Initialize the first intersection region
4: for k = 2 to t do
5: �t ← k − (k − 1)
6: Ik =Grow(Ik−1, s�t) ∩ Ak � Create the new intersection region
7: for j = k − 1 to 1 do � Propagate measurements back
8: �t ← j − (j − 1)
9: Ij =Grow(Ij+1, s�t) ∩ Aj

10: end for
11: end for
12: end procedure

4.2 Algorithm Details

Two key operations in the algorithm which we will now examine in detail are
Grow and Intersect. Grow accounts for the motion of the mobile node over
time. Intersect produces a region that contains only those points found in
both localization regions being intersected.

Fig. 3. Growing a region by s. Acute angles, when grown, turn into circles as illus-
trated. Obtuse angles, on the other hand, are eventually consumed by the growth of
the surroundings.

Figure 3 illustrates how a region grows. Let the region bounded by the black
lines contain the mobile node at time t. To determine the smallest possible region
that must contain the mobile node at time t+1 we Grow the region by s, where s
is the maximum speed of the mobile node. The Grow operation is the Minkowski
sum [8] (frequently used in motion planning) of the region and a circle with
diameter s.

Notice that obtuse corners become circle arcs when grown, while everything
else “expands.” If a region is convex, it will remain convex. Let the complexity of
a region be the number of simple geometric features (lines and circles) needed to
describe it. Growing convex regions will never increase the complexity of a region
by more than a constant factor. This is true as everything just expands except
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for obtuse angles which are turned into circles and there are never more than a
linear number of obtuse angles. Thus, growing can be done in time proportional
to the complexity of the region.

A simple algorithm for Intersect is to check each feature of one region for
intersection with all features of the other region. This can be done in time pro-
portional to the product of the complexities of the two regions. While better
algorithms exist for this, for our purposes this is sufficient as we will always en-
sure that one of the regions we are intersecting has constant complexity as shown
in Sections 5.2 and 5.3. Additionally, if both regions are convex, the intersection
will also be convex.

4.3 Correctness and Optimality

We now prove the correctness and optimality of Algorithm 1. We will show that
the algorithm finds the location region of the node, and that this computed lo-
cation region is the smallest region that can be determined using only maximum
speed. We assume that the individual regions given as input are optimal, which
is trivially true for both the range and angle-only cases.

Theorem 1. Given the maximum speed of a mobile node and t individually op-
timal regions, A1 · · ·At, Algorithm 1 will produce optimal intersection regions
I1 · · · It.

Without loss of generality assume that A1 · · ·At are in time order. We will prove
this theorem inductively on the number of range measurements for the online
version of the localization algorithm. The base case is when there is only a single
range measurement. Line 3 implies I1 = A1 and we already know A1 is optimal.

Now inductively assume that intersection regions I1 · · · It−1 are optimal. We
must now show that when we add region At, It is optimal and the update of
I1 · · · It−1 maintains optimality given this new information. Call these updated
intersection regions I ′1 · · · I ′t−1.

First we will show that the new intersection region, I ′t, is optimal. Line 6 of
the localization algorithm is

I ′t = Grow(It−1, s�t) ∩At. (1)

The region Grow(It−1) contains all possible locations of the mobile node at
time t ignoring the measurement At. The intersection region I ′t must contain
all possible locations of the mobile node as it is the intersection of two regions
that constrain the location of the mobile node. If this were not the case, then
there would be some point p which was not in the intersection. This would imply
that p was neither in It−1 nor At, a contradiction as this would mean p was not
reachable. Additionally, all points in I ′t are reachable as it is the intersection of
a reachable region with another region. Therefore, I ′t is optimal.

Finally we will show that the propagation backwards, line 9, produces optimal
regions. The propagation is given by

I ′j = Grow(I ′j+1, s�t) ∩Aj (2)
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for all 1 ≤ j ≤ t−1. The algorithm starts with j = t−1. We just showed that I ′t
is optimal, so using the same argument as above It−1 is optimal. Applying this
recursively, all It−2 · · · I1 are optimal. Q.E.D.

5 Complexity

5.1 General Complexity

Algorithm 1 has both an inner and outer loop over all regions which suggests
an O(n2) runtime, where n is the number of input regions. However, Grow and
Intersect also take O(n) time as proven later by Theorem 2 and 3 for the range
and angle only cases. Thus, overall, we have an algorithm which runs in O(n3)
time. We show, however, that we expect the cost of Grow and Intersect will be
O(1), which suggests O(n2) runtime overall.

The runtime can be further improved by noting that the correlation of the
current measurement with the past will typically decrease rapidly as time in-
creases. This implies that information need only be propagated back a fixed
number of steps, eliminating the inner loop of Algorithm 1. Thus, we can reduce
the complexity of the algorithm to O(n).

5.2 Range-Only Complexity

The range-only instantiation of Algorithm 1 is obtained by taking range mea-
surements to the nodes in the sensor fields. Let A1 · · ·An be the circular regions
formed by n range measurements. A1 · · ·An are individually optimal and as such
can be used as input to Algorithm 1. We now prove the complexity of localiza-
tion regions is worst case O(n). Experimentally we find they are actually O(1)
leading to an O(n2) runtime.

Theorem 2. The complexity of the regions formed by the range-only version of
the localization algorithm is O(n), where n is the number of regions.

The algorithm intersects a grown intersection region with a regular region. This
will be the intersection of some grown segments of an annulus with a circle (as
shown in the Figure 4). Let regions that contain multiple disjoint sub-regions be
called compound regions. Since one of the regions is always composed of simple
arcs, the result of an intersection will be a collection of circle segments. We will
show that each intersection can at most increase the number of circle segments
by two, implying linear complexity in the worst case.

Consider Figure 4. At most the circular region can cross the inner circle of
the annulus that contains the compound region twice. Similarly, the circle can
cross the outer circle of the annulus at most twice. The only way the number
of sub-regions formed can increase is if the circle enters a sub-region, exits that
sub-region, and then reenters it as illustrated in the figure. If any of the entering
or exiting involves crossing the inner or outer circles of the annulus, then it must
cross at least twice. This means that at most two regions could be split using
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Fig. 4. An example compound intersection region (in blue) and some new range mea-
surement in red. With each iteration it is possible to increase the number of regions in
the compound intersection region by at most two.

this method, implying a maximum increase in the number of regions of at most
two.

If the circle does not cut the interior or exterior of the annulus within a sub-
region then it must enter and exit though the ends of the sub-region. But notice
that the ends of the sub-regions are grown such that they are circular, so the
circle being intersected can only cross each end twice. Furthermore, the only
way to split the subregion is to cross both ends. To do this the annulus must be
entered and exited on each end, implying all of the crosses of the annulus have
been used up. Therefore, the number of regions can only be increased by two
with each intersection proving Theorem 2.

In practice it is unlikely that the regions will have linear complexity. As seen
in Figure 4 the circle which is intersecting the compound region must be very
precisely aligned to increase the number of regions (note that the bottom circle
does not increase the number of regions). In the experiments described in Section
6 we found some regions divided in two or three (e.g. when there are only two
range measurements, recall Figure 1). However, there were none with more than
three sub-regions. Thus, in practice the complexity of the regions is constant
leading to O(n2) runtime.

5.3 Angle-Only Region Complexity

Algorithm 1 is instantiated in the angle-only case by taking angle measurements
θ1 · · · θt with corresponding bounded errors e1 · · · et to the field of sensors. These
form the individually optimal regions A1 · · ·At used as input to Algorithm 1.
These regions appear as triangular wedges as shown in Figure 5(a). We now show
the complexity of the localization regions is at worst O(n) letting us conclude
an O(n3) algorithm (in practice, the complexity is O(1) implying a runtime of
O(n2) see below).
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Fig. 5. (a)An example of the intersecting an angle measurement region with another
region. Notice that the bottom line increases the complexity of the region by one, while
the top line decreases the complexity of the region by two. (b)Growth in complexity of
a localization region as a function of the number of Grow and Intersect operations.

Theorem 3. The complexity of the regions formed by the angle-only version of
the localization algorithm is O(n), where n is the number of regions.

Examining the Algorithm 1, each of the intersection regions I1 · · · In are formed
by intersecting a region with a grown intersection region n times. We know
growing a region never increases the complexity of the region by more than a
constant factor. We will now show that intersecting a region with a grown region
will never cause the complexity of the new region to increase by more than a
constant factor.

Each of these regions is convex as we start with convex regions and Grow and
Intersect preserve convexity. Assume we are intersecting Grow(Ik) with Ak−1.
Note that Ak−1 is composed of two lines. As Grow(Ik) is convex, each line of
Ak−1 can only enter and exit Grow(Ik) once. Most of the time this will actually
decrease the complexity as it will “cut” away part of the region. The only time
that it will increase the complexity is when the line enters a simple feature and
exits on the adjacent one as shown in Figure 5(a). This increases the complexity
by one. Thus, with the two lines from the region Ak−1 the complexity is increased
by at most two.

In practice the complexity of the regions is not linear, rather it is constant.
When a region is intersected with another region there is a high probability that
some of the complex parts of the region will actually be removed, simplifying the
region. Figure 5(b) illustrates the results of a simulation where the complexity of
a region was tracked over time. In the simulation a single region was repeatedly
grown and then intersected with a region formed by an angle measurement from
a randomly chosen node from a field of 30 static nodes. Figure 5(b) shows that
increasing the number of intersections does not increase the complexity of the
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region. The average complexity of the region was 12.0. Thus, the complexity of
the regions is constant so the angle-only localization algorithm runs in O(n2).

6 Experimental Results

We implemented the range-only version of Algorithm 1 and tested it on a dataset
created by Moore et al. [18]. Range measurements were obtained from a static
network of six MIT Crickets [21] to one mounted on a mobile robot. The robot
moved within a 2.0 by 1.5 meter space. Ground truth was collected by a video
capture system with sub-centimeter accuracy [18].

Figure 6(a) shows the static nodes (green), the arcs recovered by the localiza-
tion algorithm (orange), and a path generated by connecting the mid-points of
the arcs (green). Figure 6(b) shows the same recovered trajectory (green) along
with ground truth data (red). Inset in Figure 6(b) is an enlarged view showing a
location where an error occurred due to a lack of measurements while the robot
was making a turn.

The mean absolute error from the ground truth was 7.0cm with a maximum
of 15.6cm. This was computed by taking the absolute error from the ground
truth data at each point in the recovered path. This compares well with the 5cm

(a) (b)

Fig. 6. (a)The arcs found by the range-only implementation of Algorithm 1 and the
path reconstructed from these. Orange arcs represent the raw regions, while the green
line connects the midpoints of these arcs. (b)Ground truth (red) and recovered path
(green). Inset is an enlarged portion illustrating error caused by a lack of measurements
during a turn of the robot.
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of measurement error inherent to the Crickets [18]. Figure 7 shows the absolute
error as a function of time.

The algorithm handles the error intrinsic to the sensors well. One reason
for this is the robot did not always travel at its maximum speed in a straight
line. This meant the regions were larger than if the robot were traveling at its
maximum speed in a straight line, making up for measurement error. In most
applications this will be the case, however, to be conservative the maximum speed
could be increased slightly to account for error in the sensors. Most sensors also
have occasional large non-Gaussian errors. To account for these, measurements
which have no intersection with the current localization region are rejected as
outliers.

This implementation only propagates information back to 5-8 localization re-
gions. We did not find it sensitive to the exact number. We also never encountered
a region with a complexity higher than three. These two facts gives an overall
runtime of O(n), or O(1) for each new range measurement.

7 Discussion

The propagation of the information gained from new measurements back to pre-
vious measurements can take a significant amount of time. In the experiments
presented in Section 6 we found that we only had to propagate the information
back through a small, fixed, period of time. This led to a significant reduction
in the runtime. There are, however, cases where further propagation may be
needed. For instance, the localization of a mobile node traveling in a straight
line at maximum speed could be improved by propagating the measurements
back far. An adaptive system that decides at runtime how far to propagate in-
formation back may improve localization results while maintaining the constant
time update.

Additional knowledge about the motion characteristics of the mobile node can
also be added to the system to further refine localization. Maximum acceleration
is likely to be known in most physical systems. With a bound on acceleration the
regions need only be grown in the current estimate of the direction of travel and
directions that could be achieved by the bounded acceleration. In many systems
this would significantly reduce the size of the localization regions.

With real sensors there are some pathological cases which will cause the al-
gorithm to fail. If the maximum speed has not been increased sufficiently to
account for sensor errors then a number of consecutive erroneous measurements
could produce a region which does not contain the true location of the mobile
node. This situation can be detected as subsequent measurements will have no
intersection with the current localization region. At this point the algorithm
could be restarted or the previous regions could be modified to allow for a larger
error.

Our algorithm can be used with a variety of different sensors. Many are passive
in nature which allows for the scaling of our algorithm to any number of mobile
nodes. On land we have used MIT Crickets [21] to obtain range measurements.
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Fig. 7. Absolute error in the recovered position estimates in centimeters as a function
of time

Range measurements are obtained passively by taking the difference in time
of flight of a radio and ultrasonic pulse. Angle measurements can be obtained
passively using an omnidirectional camera [4]. Underwater, acoustic ranging can
be done passively using synchronized clocks [5]. Angle measurements can be
obtained by listening to sounds using an acoustic array [13].

The accuracy of the produced localization regions depends on a number of
factors in addition to the properties of the sensors. One of the most important is
the time between measurements. The more frequent the measurements the more
precise the localization regions will be. Additionally, the selection of the static
nodes to be used in measurements is important. For instance, taking consecutive
measurements to nodes that are close together will yield poor results. Thus, a
selection algorithm, such as that presented by Isler et al. [12], will improve results
by choosing the best nodes for measurements.

We have implemented this algorithm on our underwater robot AMOUR and
underwater sensor network [25], and plan to collect data at the Gump research
station in Moorea in June 2006. This system and many other underwater systems
have poor dead-reckoning. We expect to enhance the localization and tracking
of our robot using the algorithm presented in this paper.
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Abstract. In this paper, we develop a suite of motion planning strategies suitable for large-scale
sensor networks. These solve the problem of reconfiguring the network to a new shape while min-
imizing either the total distance traveled by the nodes or the maximum distance traveled by any
node. Three network paradigms are investigated: centralized, computationally distributed, and
decentralized. For the centralized case, optimal solutions are obtained in O(m) time in practice
using a logarithmic-barrier method. Key to this complexity is transforming the Karush-Kuhn-
Tucker (KKT) matrix associated with the Newton step sub-problem into a mono-banded system
solvable in O(m) time. These results are then extended to a distributed approach that allows the
computation to be evenly partitioned across the m nodes in exchange for O(m) messages in
the overlay network. Finally, we offer a decentralized, hierarchical approach whereby follower
nodes are able to solve for their objective positions in O(1) time from observing the headings
of a small number (2-4) of leader nodes. This is akin to biological systems (e.g. schools of fish,
flocks of birds, etc.) capable of complex formation changes using only local sensor feedback. We
expect these results will prove useful in extending the mission lives of large-scale mobile sensor
networks.

1 Introduction

Consider the initial deployment of a wireless sensor network (WSN). Ideally, the WSN
is fully connected with a topology to facilitate coverage, sensing, localization, and data
routing. Unfortunately, since deployment methods can vary from aerial to manual, the
initial configuration could be far from ideal. As a result, the WSN may be congested,
disconnected, and incapable of localizing itself in the environment. Node failures in
established networks could have similar effects. Such limitations in static networks have
lead to an increased research interest into improving network efficiency via nodes that
support at least limited mobility [2].

Also of fundamental importance to WSN research is resource management, and (per-
haps most importantly) power management. Energy consumption is the most limiting
factor in the use of wireless sensor networks, as service life is limited by onboard bat-
tery capacity. This constraint has driven research into power sensitive routing protocols,
sleeping protocols, and even network architectures for minimizing data traffic [1, 13].
It would seem only natural to develop motion planning strategies with similar perfor-
mance objectives.

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 441–456, 2008.
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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In this vein, we propose a set of motion planning strategies that allow a mobile net-
work to reconfigure to a new geometry while minimizing the total distance the nodes
must travel, or the maximum distance that any node must travel. We believe a suite of
strategies is critical due to the proliferation of non-standard sensor network architec-
tures which are often implementation specific. As such, we provide centralized, com-
putationally distributed, and decentralized approaches suitable for use with large-scale
sensor network architectures. Each is computationally efficient, and without onerous
communication overhead.

2 Related Work

Changes to the environment, mission objectives, and node failures are all factors that
can contribute to need for reconfiguring a sensor network. However, topology changes
can also be driven by performance objectives. For example, Cortes et al applied op-
timization based techniques to motion planning for improving network coverage [7].
Similarly, Zhang and Sukhatme investigated using motion to control node density [20].
The work of Hidaka et al investigated deployment strategies for optimizing localization
performance [16], while the work of Butler and Rus was motivated by event mon-
itoring using constrained resources [6]. Also worth noting is work in the areas of
formation control [21], conflict resolution [17], and cooperative control [3]. A recent
survey/tutorial outlining additional relevant work within each of these areas can be
found in [11].

In contrast to these efforts, the focus of our work is efficient motion planning strate-
gies suitable for large-scale networks. Given initial and objective network geometries,
we determine how to optimally reposition each node in order to achieve the objective
configuration while minimizing the distances that the nodes must travel. The objective
positions can then be fed to appropriate controllers to drive the nodes to their desired
destinations. When servo/actuator costs dominate the power budget, such approaches
can dramatically improve the network mission life. We also emphasize applicability to
large-scale systems. Our methods scale well in terms of both computational and mes-
sage complexity to ensure that advantages gained through efficient motion planning are
not compromised by excessive computation or routing requirements. Finally, we pro-
vide centralized, computationally distributed, and decentralized models to support the
diverse array of WSN architectures.

3 The Motion Planning Problem

In developing our motion planning strategies, we consider the problem of having a
multi-agent team transition to a new shape formation while minimizing either the to-
tal distance or maximum distance metric. For our purposes, we adopt the traditional
definition of shape that is often employed in statistical shape analysis [10]:

Definition 1. The shape of a formation is the geometrical information that remains
when location, scale, and rotational effects are removed.
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Thus, formation shape is invariant under the Euclidean similarity transformations of
translation, rotation and scale [10].

For brevity, in this paper we only consider operations in SE(2) and refer the reader
to [9] for details on obtaining optimal solutions in R

3. Letting Q = [q1, . . . , qm]T ∈
R

m×2 denote the concatenated coordinates of the objective shape formation with re-
spect to some world frame W and letting S = [s1, . . . , sm]T ∈ R

m×2 denote an in-
stance (or an icon) of our objective shape with respect to some local frame F , the shape
of a robot formation can be represented as the set of equality constraints:

qx
i − qx

1 = α (sx
i cos θ − sy

i sin θ)
qy
i − qy

1 = α (sx
i sin θ + sy

i cos θ) (1)

for i = 2, . . . ,m. In this formulation, α ∈ R+ and θ respectively denote the scale and
orientation of the formation, while the (x, y) superscripts denote the specific Euclidean
coordinate.

Without loss of generality, we can define the objective formation scale and orienta-
tion respectively as:

α =
‖ q2 − q1 ‖
‖ s2 − s1 ‖

=
‖ q2 − q1 ‖
‖ s2 ‖

θ = arctan
qy
2 − qy

1

qx
2 − qx

1
(2)

The former equalities hold as we choose s1
�
= OF . From the latter, we obtain:

cos θ =
qx
2 − qx

1

‖ q2 − q1 ‖
sin θ =

qy
2 − qy

1

‖ q2 − q1 ‖
(3)

Given these definitions, the non-convex constraints in (1) can be restated as the follow-
ing set of linear equalities:

‖ s2 ‖ (qx
i − qx

1 )− (sx
i , s

y
i )

T (q2 − q1) = 0, i = 3, . . . ,m
‖ s2 ‖ (qy

i − qy
1 )− (sy

i , s
x
i )T (q2 − q1) = 0, i = 3, . . . ,m (4)

These constraints are now convex, and they define the equivalence class of the full
set of similarity transformations of the formation. Thus, if an objective shape Q and an
icon S satisfy these constraints, the two shapes are equivalent under the Euclidean simi-
larity transformations of translation, rotation and scaling. So, given an initial formation
position P = [p1, . . . , pm]T ∈ R

m×2 , and an objective shape icon S, the problem
becomes finding the set of objective positions Q ∼ S such that

1. max ‖ qi − pi ‖ is minimized for i = 1, . . . ,m OR

2.
k∑

i=1
‖ qi − pi ‖ is minimized.

In other words, if the network were given an objective icon S, it must determine the
objective positions for each node that minimizes the chosen metric, while ensuring the
final shape formation Q ⊂W is equivalent to S.

As the constraints are linear in Q, the problems can be modeled as the respective
second-order cone programs (SOCPs)
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min
q,t1

t1 min
q,t

m∑
i=1

ti

s.t. ‖ qi − pi ‖2≤ t1 s.t. ‖ qi − pi ‖2≤ ti
Aq = 0 Aq = 0

(5)

for i = 1, . . . ,m. Since the SOCPs are convex, a local minimum corresponds to a
global minimum. This allows optimal solutions to be obtained through a variety of
methods such as descent techniques or (more efficiently) by interior point methods
(IPMs). While primal-dual IPMs represent perhaps the most efficient algorithms, we
employ a simpler barrier IPM. It provides good computational complexity in practice,
and as we shall see lends itself to a computationally distributed implementation.

Finally, in the interest of brevity, the results presented in this paper largely focus on
the mini-max distance problem as defined in Equation 5 (left). It should be noted that
similar results have been obtained for the total distance variation [9].

4 A Centralized Approach

Centralized approaches are appropriate for hierarchical network architectures such as
the TENET [13]. For the motion planning problem, “master” nodes acting as cluster-
heads would calculate the objective positions for the cluster and communicate these to
supporting nodes in the network. While simple in design, the hierarchy requires that
algorithms scale well computationally with the size of the network.

To address this, we solve the motion planning problem by adapting the logarith-
mic penalty-barrier approach outlined in [4]. Like other IPMs, the complexity is largely
defined by solving a linear system of equations. In this case, Equality-constrained New-
ton’s method (ENM) is used for internal minimization and the linear system is in KKT
form. As solving this system provides a solution to the Newton step sub-problem, we
accordingly refer to it as the “Newton KKT system.” We show that by reformulating
the SOCP, we can band the coefficient matrix to solve the system in O(m) time via
algorithms that exploit knowledge of matrix bandwidth. Furthermore, we show empir-
ically that the total number of iterations required to reduce the duality gap to a desired
tolerance is O(1). The result is a simple IPM that in practice solves the motion planning
(and similar) problems in O(m) time.

4.1 Reformulating the Motion Planning Problem

The original mini-max motion planning problem can be restated in a relaxed form suit-
able for solving via the barrier approach. Conversion requires augmenting the objective
function given in (5) with log-barrier terms corresponding to the problem’s conic con-
straints as follows:

min
q,t1

τkt1 −
m∑

i=1
log (t21 − (qi − pi)T (qi − pi))

s. t. Aq = 0
(6)

where τk is the inverse log-barrier scaler for the kth iteration. Essentially, solving our
SOCPs reduces to solving a sequence of convex optimization problems of this form,
where after each iteration τk+1 is chosen such that τk+1 > τk.
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4.2 Banding the Newton KKT System

During each iteration of the log-barrier approach, we aim to minimize the second-order
Taylor approximation of our objective function as a function of the Newton step, δx,
subject to Aδx = 0. As a result, obtaining δx is equivalent to analytically solving the
KKT conditions associated with this equality-constrained sub-problem. In other words,
we must solve the following linear system of equations [4]:

[
H AT

A 0

] [
δx
w

]
=
[
−g
0

]
(7)

where H and g respectively denote the evaluated Hessian and gradient of the objective
function given in (6) at x, w is the corresponding dual variable for δx, and A is as
previously defined. Solving (7) is the bottleneck of the algorithm; however, we will
show that it can be solved very efficiently (i.e. in O(m) time) by simply reposing the
problem given in (6).

Noting that the coefficient matrix of (7) is symmetric indefinite, we employ Gaussian
elimination with non-symmetric partial pivoting. The performance of this technique suf-
fers significantly when the linear system in question features dense rows and/or columns
due to fill-in [19]. In particular, the algorithm could yield a worst-case performance of
O(m3) when solving an instance of (7) associated with the nominal problem formu-
lation given in (6). To illustrate this point, we include Figure 1 (left) which shows the
corresponding non-zero sparsity structure (a.k.a. the dot-plot) of the Newton KKT sys-
tem. As the rows of system are permuted during reduction, the dense rows and columns
respectively located in the upper-right and lower-left quadrants of (7) could introduce a
solid sub-block of order m×m, which itself would require O(m3) basic operations to
reduce. Such a workload is highly impractical, especially when considering large-scale
configurations that inherently feature 1000’s of decision variables.

To address this issue, we present the following auxiliary formulation of (6) that fa-
cilitates transforming the Newton KKT system into a mono-banded form:

min
q,t

τk

m

m∑
i=1

ti −
m∑

i=1
log (t2i − (qi − pi)T (qi − pi))

s. t. ‖ s2 ‖ (qx
i − dx

j )− (sx
i , s

y
i )T (dj+1 − dj) = 0, i = 3, . . . ,m

‖ s2 ‖ (qy
i − dy

j )− (sy
i , s

x
i )T (dj+1 − dj) = 0, i = 3, . . . ,m

ti+1 = ti, i = 1, . . . ,m− 1
d2i+1 = d2i−1, i = 1, . . . ,m− 3
d2(i+1) = d2i, i = 1, . . . ,m− 3
di = qi, i ∈ {1, 2}

(8)

where j = 2(i− 3) + 1.
Notice that the objective has changed from (6); however, we see that both forms are

equivalent since:

τk

m

m∑

i=1

ti =
τk

m

m∑

i=1

t1 =
(τk

m

)
mt1 = τkt1 (9)

where the first equality holds due to the equality constraints placed on ti.
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Fig. 1. (left) The nominal Newton KKT system sparsity structure for the mini-max motion plan-
ning problem in SE(2). (center) Augmented Newton KKT system sparsity structure. (right) The
banded system with lower and upper bandwidths of 8.

Given this augmented formulation, our claim is that the system can be made mono-
banded. To show this, we begin by defining the nominal solution vector for the coeffi-
cient structure of (7) as follows:

[
δηT

1 , δηT
2 , δκT

1 , . . . , δκT
(m−2), μ

T
]T

(10)

δηi =
[
δqi

δti

]
δκi =

⎡

⎣
δd2(i−1)+1
δd2(i−1)+2
δη(i+2)

⎤

⎦ μ =

⎡

⎢⎣
w1
...

w7m−13

⎤

⎥⎦

where the δ variables correspond to the primal Newton step components associated with
each of the respective system variables.

Given the new objective, (9), and assuming the shape problem’s solution vector per-
mutation corresponds with (10), the Hessian for our problem is now

H =

⎡

⎢⎢⎢⎢⎣

ψ1 . . . . . . 0
... ψ2

...
...

. . .
...

0 . . . . . . ψm

⎤

⎥⎥⎥⎥⎦

ψi = �2φ(ui, ti), i ∈ {1, 2}

ψi =
[

04×4 04×3
03×4 �2φ(ui, ti)

]
, i ∈ {3, . . . ,m}

(11)

where �2φ(ui, ti) is defined as in [14] with ui = qi − pi. Notice that this Hessian is
block-diagonal and separable. This differs from the its nominal form, which features a
dense row and column corresponding to the variable, t1. This is evident by observing
the upper-left quadrant (defined by H) of the KKT matrix given in Figure 1 (left).

Similarly, we can eliminate the dense columns and rows in A (and AT ) by intro-
ducing 2(m − 2) auxiliary dj variables along with their associated 4(m − 3) equality
constraints. Doing so allows us to rewrite (4) as the first two constraint sets given in
(8). By reformulating the linear shape constraints in this fashion, we are now able to
construct A as a pseudo-banded system. We say pseudo-banded, because the matrix is
non-square and exhibits a band-like structure.
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To show this, we begin by stating the constraint/row permutation that yields A in
pseudo-banded form. We define the constraints associated with q1 and q2 as:

"1 � qx
1 = dx

1
"2 � qy

1 = dy
1

"3 � t1 = t2

"4 � qx
2 = dx

2
"5 � qy

2 = dy
2

(12)

Similarly, for 3 ≤ i ≤ (m− 1), we define the constraints associated with qi as:

ϕi1 � ‖ s2 ‖ (qx
i − dx

j ) = (sx
i , s

y
i )T (dj+1 − dj)

ϕi2 � ‖ s2 ‖ (qy
i − dy

j ) = (sy
i , s

x
i )T (dj+1 − dj)

ϕi3 � ti = ti−1

ϕi4 � dx
j+2 = dx

j

ϕi5 � dy
j+2 = dy

j

ϕi6 � dx
j+3 = dx

j+1
ϕi7 � dy

j+3 = dy
j+1

(13)

where j is as previously defined.
With qm, we associate the remaining three constraints:

ϕm1 � ‖ s2 ‖ (qx
m − dx

j ) = (sx
m, sy

m)T (dj+1 − dj)
ϕm2 � ‖ s2 ‖ (qy

m − dy
j ) = (sy

m, sx
m)T (dj+1 − dj)

ϕm3 � tm = tm−1

(14)

where j is as previously stated with i = m.
Given these definitions, we provide the following row permutation for A, which

yields the pseudo-banded form that appears in the lower-left (and upper-right) quadrant
of Figure 1 (center): [

ϑT ,κT
1 , . . . ,κT

(m−1), ς
T
]T

(15)

ϑ =

⎡

⎢⎢⎢⎣

"1
"2
...
"5

⎤

⎥⎥⎥⎦ κi =

⎡

⎢⎢⎢⎣

ϕ(i+2)1
ϕ(i+2)2

...
ϕ(i+2)7

⎤

⎥⎥⎥⎦ ς =

⎡

⎣
ϕm1

ϕm2

ϕm3

⎤

⎦

Notice that all of the primal constraints defined in (8) have been included.
Given the definitions of A and H , the mono-banded form of (7) can now be con-

structed. Symmetrically applying the permutation that yields the following Newton
KKT system solution vector ordering:

[
λT , ξT

1 , . . . , ξT
(m−3), χ

T
]T

(16)

λ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δq1
δt1
w1
...

w5
δq2
δt2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δd2(i−1)+1
δd2(i−1)+2
w6+7(i−1)

...
w12+7(i−1)
δq(i+2)
δt(i+2)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

χ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

δd2m−5
δd2m−4
w7m−15
w7m−14
w7m−13
δqm

δtm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦
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produces a mono-banded coefficient structure having a total bandwidth of 17. Simply
using the standard Reverse Cuthill-McKee (RCM) reordering algorithm [8] would yield
a bandwidth 47% larger than that obtained with our approach.

In Figure 1 (center), we show the “augmented” Newton KKT system constructed
from the Hessian given by (11) and the linear constraint set given in (8). The latter is
permuted according to (15). Taking the coefficient structure of (7) in this form and sym-
metrically permuting its rows and columns according to (16) yields the mono-banded
system appearing in Figure 1 (right). The system corresponds to a team of 25 agents
dispersed in SE(2). It can now be solved in O(m) using a band-diagonal LU -based
solver [18].

4.3 Total Complexity

Assuming a fixed duality gap reduction, the iteration complexity of the barrier approach
grows as O(

√
m) [4]. Noting that the per-iteration complexity is defined by solving

the mono-banded Newton KKT system as well as computing banded matrix-vector
products, the total number of basic operations required to achieve optimality grows
only as O(m1.5). The generality of this result should not go overlooked as the bound
applies to any SOCP that yields a mono-banded Newton KKT system. This includes
regulated cases of the motion planning problem in R

3 [9].

4.4 Performance in Practice

To gauge the performance of the framework in practice, we assumed both a fixed duality
gap reduction and barrier parameter μ as suggested in [4]. A total of 5,000 random
instances of the motion planning problem were solved using an implementation of the
barrier algorithm. The objective was to minimize the total distance traveled by the team.
Values of m were considered between 10 and 1000 at intervals of 10, where m denotes
configuration size. Our implementation was validated by comparing obtained solutions
against those of the MOSEK industrial solver [15]. All problems were solved using a
standard desktop PC having a 3.0 GHz Pentium 4 processor and 2.0 GB of RAM.

Figure 2 (left) shows the results of these trials. Each data point corresponds to the
mean of 50 samples with the error bars corresponding to a single standard deviation.
The trend indicates that the total number of Newton iterations remains constant (for
m � 170). This result in tandem with the linear per-iteration complexity established
earlier shows that in practice the motion planning problem is solvable in O(m) time.

These results are associated with the simple barrier method outlined in [4]; however,
it should be noted that empirical results show that similar performance can be achieved
using more sophisticated solvers. Figure 2 (right) shows the CPU time required by the
MOSEK industrial solver for configuration sizes having up to 2000 nodes. Each point
corresponds to the mean obtained from solving 50 randomly generated motion planning
SOCPs (total distance metric). This data shows that for a configuration of 2000 nodes
in SE(2) an optimal solution can be obtained in only 0.28 seconds. Furthermore, the
CPU time clearly scales as O(m) with linear regression analysis revealing r2 = 0.9869,
where r is the associated correlation coefficient. Results obtained using the solver also
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Fig. 2. (left) The mean number of Newton iterations required to solve the motion planning prob-
lem (total distance metric) as a function of configuration size, m. For m � 170 the number of
iterations appears constant using the log-barrier approach. Error bars signify a single standard
deviation. (right) The mean CPU-utilization time required to solve the motion planning problem
using the MOSEK solver. The trend is strongly linear, with r2 = 0.9869.

indicate that an optimal solution can typically be found in less than 12 iterations -
regardless of configuration size.

5 A Computationally Distributed Approach

Our centralized solution features both a band-diagonal linear system as well as a separa-
ble objective function (w.r.t. the variables each node introduces). We shall leverage these
characteristics to distribute the computational workload evenly across the network. The
resulting O(1) expected per-node workload will enable our approach to be employed
by a significantly less sophisticated class of processors, or to significantly larger-scale
networks. We now define a hierarchical, cluster-based architecture for achieving this
objective.

5.1 Architectural Overview

Our paradigm solves convex optimization problems in the context of a cluster-based
network architecture under the direction of some root node(s). The root is responsible
for orchestrating the solve process; thus, it maintains a global state reflecting the status
of the distributed computation. It is responsible for performing such tasks as initializing
the network and determining when the solve is complete. Although the root maintains
a “global perspective”, its data view is primarily limited to that which affects the com-
putation of its associated decision variables. The only exception is when it requests
data needed to manage the IPM solve process. For instance, when it requests Newton
decrement data.

At the root’s disposal are the remaining nodes in the network, which we term the
secondary peers. These nodes are considered secondary, because they serve only as a
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distributed memory pool and a computational engine for the root during the solve pro-
cess; individually, they lack a global view of the solver and only manage data relevant
to their computations. They wait until a data request is received originating from the
root before transitioning into a new state of computation.

To reduce the communication overhead, we define the architecture to have a hierar-
chical scheme based upon network clusters. The role of clusterheads is to ensure that
each request of the root is satisfied at the lowest level. Sub-nodes treat their clusterhead
as a local accumulator and forward the requested information to that node where it is
aggregated before being passed up the hierarchy, ultimately to the root. The result is
that the root (and all clusterheads) only need to send a constant number of messages
with each data request.

5.2 Distributing and Solving the Newton KKT System

Given the objective function and Hessian are separable, implementing a distributed
Newton decrement and line search computation (see [4]) reduces to having each node
pass its contribution to the greater value up the cluster hierarchy at request. For this
reason, along with the fact that the per-iteration complexity is defined by solving the
Newton KKT system, we focus our discussion on distributing the LU solver. As will be
seen, we can effectively distribute the process while providing per-node computation,
storage, and overlay message complexities of O(1).

To distribute the Newton KKT system, K ∈ R
y×y , among m nodes, we make the as-

sumption that the system is band-diagonal with respective upper and lower bandwidths
of bu and bl. Additionally, we assume the matrix is represented in its equivalent compact
form, Kc, where Kc ∈ R

y×(bl+bu+1) [18]. We respectively denote the corresponding
right-hand-side and permutation vectors as b ∈ R

y and p ∈ Z
y
+.

Adopting this representation for K , we adapt the LU -based solver with partial pivot-
ing outlined in [18]. Distributing this algorithm, we begin by assigning the ith node, ni,
a sub-block Ki

c ⊂ Kc. Additionally, each ni manages the corresponding sub-vectors
bi ⊂ b and pi ⊂ p. To illustrate the decomposition, we provide Figure 3, which shows
the distribution of Kc for a team of 5 nodes in SE(2) solving the total distance prob-
lem. Given the dependencies between the equations in the linear system, devising a
completely concurrent solution is not feasible. Thus, we assume the decomposition and
subsequent solves are done one node at a time in a “pass-the-bucket” fashion, where
node ni decomposes Ki

c and then hands the process off to node ni+1. This process
continues iteratively until decomposition is complete.

Decomposition

During decomposition, the algorithm employs partial pivoting by searching at most bl

sub-diagonal elements in order to identify one with greater magnitude. This implies
that a node in our WSN that is performing its respective decomposition may only need
information pertaining to at most bl rows, which can be buffered at one or more peers.
In the worst case scenario, where each node only manages a single row, node ni may
have to query up to bl of its peers. With this result in mind, we offer the following
theorem:
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Fig. 3. A non-zero dot-plot illustrating the decomposition of the compact Newton KKT system
(i.e. Kc) for a configuration of 5 nodes in SE(2) minimizing the total distance metric. For this
problem, bl = bu = 7. Notice that the middle (m − 3) nodes (i.e. n3 and n4) are assigned
sub-blocks with identical structure.

Theorem 1. Let i ∈ I = {1, . . . ,m} and let Kj
c ∈ R

uj×(bl+bu+1), uj ∈ Z+ for
j = 1, . . . ,m. Define ψ(i) : I → Z+ as a mapping to the number of nodes that have
to be contacted by ni during the decomposition of Ki

c. The following holds:

ψ(i) ≤ φ(bl, u1, . . . , um) =

⎡

⎢⎢⎢⎢⎢

bl(
min

i∈{1,...,m}
ui

)

⎤

⎥⎥⎥⎥⎥

Proof. By contradiction.
Assume ψ(i) > φ(bl, u1, . . . , um). Choosing ui = 1, ∀i ∈ {1, . . . ,m}, we see:

ψ(i) >

⌈
bl

1

⌉
= bl

However, it must hold that ψ(i) ≤ bl, since ni will only ever require data about bl rows
during the decomposition of Ki

c. →←

Using the data it acquired from its ψ(i) ≤ φ supporting peers (in particular, ni+1, . . . ,
ni+ψ(i)), ni performs standard LU decomposition on Ki

c. Upon completion, it sends
an update to each of the supporting nodes. The update contains the modified row(s)
information and the adjusted permutation vectors corresponding to the changes it made
with respect to the data the recipient provided. This allows each supporting node to
update its cache before the process is handed off to ni+1.

Forward and Backward Substitution

Similar to decomposition, both forward and backward substitution are done in an it-
erative manner. In both cases, the active node, ni, will have to communicate with a
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small (bounded) number of its peers. During forward substitution, it will have to ac-
quire information from each of the ψ(i) nodes that provided it with data during the
decomposition. This differs from the backward substitution phase, which may require
ni to communicate with up to 2φ nodes. The additional messaging is introduced via the
upper triangular factor, U , having a bandwidth now constrained by (bu + bl +1), which
is latent to the use of partial pivoting [12]. Since nm is the last node to perform both
decomposition and forward substitution, it is responsible for signaling the start of a new
phase in the LU -solver process.

Message and Storage Complexity

For simplicity, the assumption is made that whenever ni requests information from any
node, the data is received in a single message. This assumption is reasonable, because
the amount of information (including row data) that has to be shared between any two
nodes is a function of bu and bl, which are both independent of configuration size. As
such, the number of messages required to transmit said data is also constant. Noting
that information is delivered upon request, the total number of messages sent by ni is:

O(2ψ(i) + 2ψ(i) + 4ψ(i) + γ(i)) ≡ O(8φ + 3) ≡ O(1) (17)

where γ(i) ≤ 3 is a mapping to the number of hand-off/signal messages sent by ni.
As all nodes send O(1) messages during the solve, the aggregate message complexity

for the distributed LU process is O(m). Recalling that the number of Newton iterations
will be O(1) in practice, we expect that no more than O(m) messages will be generated
in the overlay network. Furthermore, since ni manages some fixed-size Ki

c, bi, pi, and
row data received by as many as 2φ peers, per-node storage is O(1).

5.3 Experimental Results

To demonstrate our approach, we implemented the distributed framework on a team
of six Sony Aibos and charged the team with transitioning to a delta formation. The

Fig. 4. (left) An initial dispersion of 6 Aibos, along with overlaid lines/points mapping each to
its computed optimal position. (right) The Aibos after reconfiguring to the desired delta shape
formation. All computations were done in a distributed fashion, with each dog being responsible
for computing its optimal position and local control inputs.
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objective was to minimize the total distance traveled by team members. Each Aibo was
outfitted with a unique butterfly pattern [5] that was tracked via an overhead camera
system serving as an indoor “GPS”. Figure 4 (left) shows the initial configuration, along
with lines mapping each to its computed optimal position, while Figure 4 (right) shows
the Aibos after transitioning to the optimal shape configuration.

6 A Decentralized Hierarchical Approach

For our decentralized approach, we assume a hierarchical model whereby a small num-
ber of leader nodes acting as exemplars solve the motion planning problem. This allows
the remaining follower nodes to infer their objective positions through local observa-
tions. Such a model is attractive to not only hierarchical network architectures [13], but
also models where minimizing data communication is a primary objective [1]. For our
decentralized approach, we make the following assumptions.

1. Each node knows the objective shape icon S for the network.
2. Leader nodes (individually or collectively) know the current network shape.
3. Follower nodes have no knowledge of the current network shape.
4. Follower nodes can identify their neighbors and measure their relative position.
5. Follower nodes can observe the relative heading of their immediate neighbors.

6.1 An O(1) Decentralized Solution

Key to this approach is the realization that although the optimization problem in (5) in-
cludes 2m decision variables (corresponding to the m robot positions), the feasible set
is constrained to the equivalence class of the full set of similarity transformations for the
objective formation shape. More concisely: there are only 4 degrees of freedom in de-
termining a node’s objective position on the plane which correspond to the translation,
rotation, and scale of the objective shape.

As the leader nodes have knowledge of the current and objective shapes, they can
solve for their objective positions using either of the approaches outlined in Sec-
tions 4-5. Follower nodes have more constrained knowledge, and as a result are in-
capable of estimating their objective positions. However, an observation of the heading
ωl of leader l introduces an additional constraint on the objective shape of the form
(ql − pl)T (sinωl,− cosωl) = 0 where all measurements are relative to the follower’s
coordinate frame F . If the headings of 4 leader nodes can be observed, the motion
planning problem becomes fully constrained via the equality constraints in (4). Per-
haps more significant is that the problem can now be solved by the follower nodes in a
decentralized fashion, and in O(1) time regardless of formation size.

To see this, recall that in addition to this heading constraint, each robot imposes two
additional equality constraints on the objective network shape as shown in (4). With
4 leader nodes and 1 follower node, this corresponds to a total of 4 bearing and 10
shape constraints over 14 decision variables. However, noting that the shape index (not
coordinate) assignments are arbitrary, the follower node can designate itself as the first
index corresponding to the 3-tuple {p1, q1, s1} and associate one of the observed leaders
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with {p2, q2, s2}. This eliminates the associated shape constraints for these two nodes,
and reduces the set to

(ql − pl)T (sinωl,− cosωl) = 0, l = 2, . . . , 5
‖ s2 − s1 ‖ (qx

l − qx
1 )− (sx

l , s
y
l )T (q2 − q1) = 0, l = 3, . . . , 5

‖ s2 − s1 ‖ (qy
l − qy

1 )− (sy
l , s

x
l )T (q2 − q1) = 0, l = 3, . . . , 5

(18)

where l ∈ {2 . . . 5} now corresponds to the set of observed leaders. The constraint set is
linear in q, and can be written in the form Aq̂ = b, where the solution vector q̂ ⊂ q is the
objective positions of follower and 4 observed leader nodes. It is a linear system of 10
equations in 10 unknowns, and is readily solvable via Gaussian elimination techniques.

Thus, each follower node can solve for its objective position (as well as its neigh-
bors) so long as the relative position and headings of 4 neighbors can be observed. This
is akin to biological systems (e.g. schools of fish, flocks of birds, etc.) capable of com-
plex formation changes using only local sensor feedback. Furthermore, the solution is
obtained from solving an O(1) sized (10 × 10) linear system of equations - regardless
of the number of nodes in the network. The assumption of knowledge of the objective
shape does however require O(m) storage for each node.

It should also be noted that after solving for its objective position, each follower is
“promoted” to leader status. As it migrates to its objective position, its heading can be
observed by other follower nodes to solve their own decentralized problem. So, while
in practice the actual number of leader nodes will be a function of the sensor network
topology, in theory only 4 are necessary. This is illustrated in Figure 5.

6.2 Simulation Results

Figure 5 models the initial deployment of a sensor network. The objective configu-
ration was a {4,4} tessellation on the plane with a tiling size of 10 meters. Unfortu-
nately, positional errors introduced during deployment - modeled as Gaussian noise
∼ N(0, σx = σy = 7.5) - result in a significantly different geometry (Figure 5a). To
compensate for these errors, four leader nodes (red circles) solve the motion planning
problem, and begin migrating to their objective positions. Relative sensor measure-
ments allow the remaining follower nodes (blue triangles) to solve for their objective
positions in decentralized fashion. The propagation of decentralized solutions through
the network is reflected in Figure 5b. The decentralized trajectories that minimize the
maximum distance that any node must travel, and the optimal network configuration
achieving the desired shape are shown in Figures 5c-d. It was assumed that the sensing
range of each node was 25 meters.

Note that in this case, the orientation of the shape was not constrained. If a fixed
orientation was desired (e.g., orthogonal to the x−y axes), the number of degrees of
freedom would be reduced to 3 - as would the number of observations required to solve
the decentralized problem. Fixing the scale would simplify the problem even further,
requiring only 2 observations for each decentralized node solution. We should also em-
phasize that although in this example the decentralized solution was able to propagate
through the entire network using the minimum number of leader nodes, this will not
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Fig. 5. Decentralized Motion Planning: (a) The initial network configuration with leader (red
circle) and follower (blue triangle) nodes. (b) Evolution of the decentralized solution. (c) Node
trajectories (d) Final network configuration achieving the desired {4,4} tessellation.

typically be the case. More than likely, a small number of leader nodes will be associ-
ated with disjoint clusters in the network.

7 Discussion

In this paper, we developed a set of motion planning strategies suitable for large-scale
sensor networks. These solve the problem of reconfiguring the network to a new shape
while minimizing either the total distance traveled by the nodes or the maximum dis-
tance traveled by any node. The centralized approach runs in O(m) time in practice
through banding the Newton KKT system. The distributed approach reduces the ex-
pected per-node workload to O(1) in exchange for O(1) messages per-node in the
overlay network. Finally, we derived a decentralized, hierarchical approach whereby
follower nodes are able to solve for their objective positions in O(1) time from observ-
ing the headings of a small number of leader nodes.

We are currently extending these results to a more general motion planning frame-
work. To achieve this, issues such as collision/obstacle avoidance will have to be
addressed. The latter is a particularly challenging task, as the presence of obstacles in-
troduces concave constraints on the feasible set, and the resulting problem is no longer
solvable as a SOCP. We hope that randomization and convex restriction techniques will
still allow the problem to be solved for real-time applications.
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Abstract. Self-reconfigurable robots are composed of many individual modules that
can autonomously move to transform the shape and structure of the robot. In this
paper we present a kinodynamically optimal algorithm for the following “x-axis to y-
axis” reconfiguration problem: given a horizontal row of n modules, reconfigure that
collection into a vertical column of n modules. The goal is to determine the sequence
of movements of the modules that minimizes the movement time needed to achieve the
desired reconfiguration of the modules. Prior work on self-reconfigurable (SR) robots
assumed a constant velocity bound on module movement and so required time linear
in n to solve this problem.

In this paper we define an abstract model that assumes unit bounds on various phys-
ical properties of modules such as shape, aspect ratio, mass, and the maximum mag-
nitude of force that an individual module can exert. We also define concrete instances
of our abstract model similar to those found in the prior literature on reconfigurable
robots, including various examples where the modules are cubes that are attached and
can apply forces to neighboring cubes. In one of these concrete models, the cube’s
sides can contract and expand with controllable force, and in another the cubes can
apply rotational torque to their neighbors. Our main result is a proof of tight Θ(

√
n)

upper and lower bounds on the movement time for the above reconguration problem
for concrete instances of our abstract model.

This paper’s analysis characterizes optimal reconfiguration movements in terms of
basic laws of physics relating force, mass, acceleration, distance traveled, and movement
time. A key property resulting from this is that through the simultaneous application
of constant-bounded forces by a system of modules, certain modules in the system
can achieve velocities exceeding any constant bounds. This delays modules with the
least distance to travel when reconfiguring in order to accelerate modules that have
the farthest to travel. We utilize this tradeoff in our algorithm for the x-axis to y-axis
problem to achieve an O(

√
n) movement time.

1 Introduction

This paper develops efficient algorithms by treating reconfiguration as a kin-
odynamic planning problem. Kinodynamic planning refers to motion planning
problems subject to simultaneous kinematic and dynamics constraints [2]. To
that end, in this paper we define an abstract model for modules in SR robots.

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 457–472, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. The x-axis to y-axis problem: transforming a row of modules into a column.
Our algorithm uses an intermediate step of forming a square.

This extends the definitions of previous models [3, 4] by setting fixed unit bounds
on a module’s shape, aspect ratio, mass, and the force it can apply, among other
requirements.

To exhibit the significance of these bounds we consider the following “x-axis
to y-axis” reconfiguration problem. Given a horizontal row of n modules, recon-
figure that collection into a vertical column of n modules. This simple problem,
illustrated in Figure 1, provides a worst-case example in that Ω(n) modules must
move Ω(n) module lengths to reach any position in the goal configuration re-
gardless of that goal column’s horizontal placement. Any horizontal positioning
of the vertical column along the initial row configuration is deemed acceptable
in our treatment of the problem in this paper.

We define the movement time of a reconfiguration problem to be the time
taken for a system of n modules to reconfigure from an initial configuration to
a desired goal configuration. Modules are assumed to be interchangeable so the
exact placement of a given module in the initial or goal configuration is irrelevant.
An implicit assumption in various prior papers on reconfiguring robotic motion
planning [3, 5, 6] is that the modules are permitted only a fixed unit velocity. This
assumption is not essential to the physics of these systems and has constrained
prior work in the area.

For the x-axis to y-axis problem, if only one module in the SR robot is permit-
ted to move at a given time and with only a fixed unit velocity, a lower bound of
Ω(n2)-time is clear [5]. Allowing concurrent movement of modules, a movement
time of O(n) is possible while still keeping all modules connected to the system
and keeping unit velocities. However, we observe that faster reconfiguration is
possible if we do not restrict modules to move at a fixed, uniform pace.

Another major principle that we use, and that has seen use in prior reconfig-
uration algorithms [1, 7], is what we refer to as the principle of time reversal.
This principle is simply that executing reconfiguration movements in reverse is
always possible, and they take precisely the same movement time as in the for-
ward direction. This is, of course, ignoring concerns such as gravity. Otherwise
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an example of rolling a ball down a hill would require less time or less force
than moving that ball back up the hill. We ignore gravity and use this principle
extensively in work of this paper.

Before continuing further, it will be useful to define some notation that we
will use throughout the remainder of this paper. As given above, let n denote
the number of modules in the SR robot undergoing reconfiguration. In the initial
row configuration of the x-axis to y-axis problem, let the modules be numbered
1, . . . , n from left to right. Let xi(t) be the x-axis location of module i at time
t. Similarly, let vi(t) and ai(t) be the velocity and acceleration, respectively, of
module i at time t. For simplicity, the analysis in our examples will ignore aspects
such as friction or gravity. The effect is similar to having the reconfiguration take
place with ideal modules while lying flat on a frictionless planar surface.

In the following Section 2, we differentiate between different styles of self-
reconfigurable robots and survey related work in the field. We begin introducing
the work of this paper in Section 3 by giving our abstract model for SR robot
modules. Given the bounds set by this model, Section 4 references physics equa-
tions that govern the movement of modules and define what reconfiguration
performance is possible. To explain our algorithm, in Section 4 we also begin
with a 1-dimensional case of n masses represented as a row of n points with a
separation of 1 unit between adjacent points, for some unit of distance measure.
The points will then contract so that they have only 1/2 unit separation. After
showing that this contraction takes O(

√
n) movement time while still satisfying

the bounds of our abstract model, we then immediately extend this result to a
matching example using a known physical architecture for modules.

Section 5 will then extend the result to a contraction/expansion case in 2
dimensions while maintaining the same time bound. This will then lead to a
O(
√
n) movement time algorithm for the x-axis to y-axis reconfiguration prob-

lem. This algorithm recursively uses the 1-dimensional contraction operation
and uses the reversible process of transforming the initial n module row into
an intermediate stage

√
n ×

√
n cube. The process is then reversed to go from

the cube to the goal column configuration. Section 6 then matches this with
a Ω(

√
n) lower bound for the 1-dimensional example and the x-axis to y-axis

problem, showing both cases to be Θ(
√
n). Finally, the conclusion in Section 7

summarizes the results of this paper. Some proofs are omitted due to length
requirements. A version of this paper including all proofs can be found at:
www.cs.duke.edu/~sgs/publications/reifsleeWAFR06.pdf .

2 Related Work

When developing models and algorithmic bounds for self-reconfigurable (SR)
robots (also known as metamorphic robots [8, 4, 5]) it is important to note the
style of SR robot we are dealing with. Two of the main types of SR robots
are closed-chain style robots and lattice style robots. Closed-chain SR robots
are composed of open or closed kinematic chains of modules. Their topology is
described by one-dimensional combinatorial topology. [1] To reconfigure these
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modules are required to swing chains of other modules to new locations. One
such implementation of this design by Yim et al. has had several demonstrations
of locomotion [9].

For the other major style, lattice or substrate SR robots attach together only
at discrete locations to form lattice-like structures. Individual modules typically
move by walking along the surfaces formed by other modules. The hardware
requirements for this style of module are more relaxed than those for closed-
chain style systems. Here individual modules need only be strong enough to
move themselves or one or two neighbors. Closed-chain style modules typically
must be strong enough to swing long chains of other modules. The models and
algorithms presented in this paper are meant for lattice style modules.

Previous work by several research groups has developed abstract models for
lattice style SR robots. One of the most recent is the sliding cube model pro-
posed by Rus et al. [3]. As the name implies, this model represents modules as
identical cubes that can slide along the flat surfaces created by lattices of other
modules. In addition, modules have the ability to make convex or concave tran-
sitions to other orthogonal surfaces. In this abstraction, a single step action for
a module would be to detach from its current location and then either transition
to a neighboring location on the lattice surface, or make a convex or concave
transition to another orthogonal surface to which it is next. Transitions are only
made in the cardinal directions (no diagonal movements) and for a module to
transition to a neighboring location that location must first be unoccupied. Most
architectures for lattice style SR robots satisfy the requirements of this model.

One such physical implementation is the compressible unit or expanding cube
design [6, 7]. Here an individual module can expand from its original size to
double its length in any given dimension, or alternatively compress to half its
original length. Neighbor modules are then pushed or pulled by this action to
generate movement and allow reconfiguration. This particular module design is
relevant because it provides a good visual aide for the algorithms we present
in this paper. For this purpose we also add the ability for expanding cubes
to slide relative to each other. Otherwise a single row of these modules can
only exert an expanding or contracting force along the length of that row and is
unable to reconfigure in 2 dimensions. Prior work has noted that while individual
expanding cube modules do not have this ability, it can be approximated when
groups of modules are treated as atomic units [6, 7].

3 Abstract Model

We now begin introducing our results for this paper by defining our abstract
model for SR robot modules. It generalizes many of the requirements and prop-
erties of reconfigurable robots and in particular, the properties of the sliding
cube model and the expanding cube hardware design described in the previous
section. Our abstract model explicitly states bounds on physical properties such
as the size, mass, and force exerted for each module. These properties will be
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utilized by the algorithms and complexity bounds that later follow. The require-
ments of our model are described by the following set of axioms.

• Each module is assumed to be an object in 3D with either (i) fixed shape
and size or (ii) a limited set of geometric shapes that it can acquire. In either
case, the module also has a constant bound on its total volume and the aspect
ratio of its shape.

• Each module can latch onto or grip adjacent modules and apply to these
neighboring modules a force or torque.

• Generally, modules are all connected either directly or indirectly at any time.
• For each module there is a constant bound on its mass.
• There is a constant bound on the magnitude of the force and/or torque that

a module may apply to those modules with which it is in contact.
• The motion of modules is such that they never collide with a velocity above

a fixed constant magnitude.
• For modules in direct contact with each other, the magnitude of the differ-

ence in velocity between these contacting modules is always bounded by a
constant.

• Each module, when attached (or latched) to other modules, can dynamically
set the stiffness of the attachment. This in addition to the ability of the
module to apply contraction/expansion or rotational forces at its specified
attachments.

Note: The axiom on the stiffness of the attachments to neighboring modules is
required to ensure that forces (external to the module) are transmitted through
it to neighboring modules. We add this since contraction and/or rotational forces
along a chain of modules can accumulate to amounts more than the unit maxi-
mum applied by any one module, and may need to be transfered from neighbor
to neighbor. Note also that we assume idealized modules that act in synchro-
nized movements under centralized control. This reduces analysis difficulties for
cases when many sets of modules operate in parallel.

While the axioms given above state important module requirements, more
concrete models are necessary for algorithm design and analysis. The sliding
cube model and the expanding cube hardware design described in the previous
section satisfy the axioms of our abstract model so long as bounds on the physical
abilities of modules are implied. In particular, for these modules the “stiffness”
requirement means that the transmitted forces are translational. The exact use
of this will become apparent in our first 1-dimensional example with expanding
cube modules.

Finally, while not used in this paper, we note two other useful abilities for
physical modules: the ability to push and the ability to tunnel. The ability to
push requires one module exerting enough force to push a second module in
front of it while sliding along a surface in a straight line. The tunneling ability
would allow modules to transition through the interior of a lattice structure in
addition to moving along external surfaces.
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4 1D Force Analysis

All analysis of movement planning in this paper is based on the physical limita-
tions of individual modules stated in the last section. Given this abstract model,
we can now make use of the elementary equations of Newtonian physics govern-
ing the modules’ movement in space and time. For these equations we use the
notation first mention in Section 1. Let xi(t) be the distance traveled by object
i during movement time t. Similarly, vi(t) is its velocity after time t. Finally,
given an object i with mass mi, let Fi be the net force applied to that object
and ai be the resulting constant acceleration. Although the relevant equations
are basic, we state them here so that they can be referred to again later in the
paper:

Fi = miai (1)

xi(t) = xi(0) + vi(0)t +
1
2
ait

2 (2)

vi(t) = vi(0) + ait . (3)

In the first equation we get that a net force of Fi is required to move an
object with mass mi at a constant acceleration with magnitude ai. In the second
equation, an object’s location xi(t) after traveling for a time t is given by it’s
initial position xi(0), it’s initial velocity vi(0) multiplied by the time, and a
function of a constant acceleration ai and the time traveled squared. Similarly,
the third equation gives the velocity after time t, vi(t), to be the initial velocity
vi(0) plus the constant acceleration ai multiplied by the time traveled.

All modules in the examples that follow are assumed to have unit mass m = 1
and sides with unit length 1. Our algorithms all require 2 stages of motion:
one stage to begin motion and a second stage to slow it and ensure zero final
velocity. So, we assume that each module is capable of producing a unit amount
of force 1 once for each stage. This still keeps within the constant-bounded force
requirement of our abstract model. For an expanding cube module this unit force
is capable of contracting or expanding it in unit time while pulling or pushing
one neighbor module. Also, since the module has unit mass, by equation (1)
we get a bound on its acceleration a ≤ 1 given the force applied in just a single
motion stage. Again, all concerns for friction or gravity (or a detailed description
of physical materials to ensure the proper stiffness of modules) are ignored to
simplify calculations.

Before tackling the x-axis to y-axis reconfiguration problem, we first begin
by analyzing a simpler 1-dimensional case which we will refer to as the Point
Mass Contraction problem. Here a row of n point masses will contract from a
total length of n units, to a length of n/2. Although these point masses are not
connected and do not grip each other, they otherwise satisfy the axioms of our
model. After showing this reconfiguration to take O(

√
n) movement time, we

will show that same result holds for a case with expanding-cube style modules
instead of point masses. This 1-dimensional contraction case, which we refer to
as the Squeeze problem, will be a recursive step in our algorithm for the x-axis
to y-axis reconfiguration problem.
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We assume the initial configuration consists of an even number n of point
masses arranged in a row on the x-axis, each initially having 0 velocity. For
i = 1, . . . , n the ith point initially at time t = 0 has x-coordinate xi(0) =
i − (n + 1)/2. We assume each point has unit mass and can move in the x-
direction with acceleration magnitude upper bounded by 1. For simplicity, we
assume no friction nor any gravitational forces. Our goal configuration at the
final time T is the point masses arranged in a row on the x-axis with 0 final
velocity, each distance 1/2 from the next in the x-axis direction, so that for
i = 1, . . . , n the ith point at the final time T has x-coordinate

xi(T ) =
xi(0)

2
=

i

2
− n + 1

4
.

To differentiate notation, we’ll use parentheses to denote a function of time,
such as xi(t), and square brackets to denote order of operations, such as
2 ∗ [3 − 1] = 4. Furthermore, we require that the velocity difference between
consecutive points is at most 1, and that consecutive points never get closer
than a distance of 1/2 from each other. Given this, our goal is to find the mini-
mal possible movement time duration from the initial configuration at time 0 to
final configuration at time T .

Lemma 1. The Point Mass Contraction problem requires at most total move-
ment time T =

√
n− 1.

Proof: Fix T =
√
n− 1. For each point mass i = 1, . . . , n at time t, for 0 ≤ t ≤ T ,

let xi(t) be the x-coordinate of the ith point mass at time t and let vi(t), ai(t)
be its velocity and acceleration, respectively, in the x-direction (our algorithm
for this Point Mass Contraction Problem will provide velocity and acceleration
only in the x-direction).

For i = 1, . . . , n the ith point mass needs to move from initial x-coordinate
xi(0) = i− (n+1)/2 starting with initial velocity vi(0) = 0 to final x-coordinate
xi(T ) = xi(0)/2 = i/2−(n+1)/4 ending with final velocity vi(T ) = 0. To ensure
the velocity at the final time is 0, during the first half of the movement time the
ith point mass will be accelerated by an amount αi in the intended direction,
and then during the second half of the movement time the ith point mass will
accelerate by −αi (in the reverse of the intended direction). For i = 1, . . . , n, set
that acceleration as:

αi =
n + 1− 2i

n− 1
.

Note that the maximum acceleration bound is unit, since |αi| ≤ 1, satisfying
the requirement of our abstract model. During the first half of the movement
time t, for 0 ≤ t ≤ T/2, by equations (3) and (2) we get that the velocity at
time t is vi(t) = vi(0) + αit which implies vi(t) = αit and the x-coordinate is
given by:

xi(t) = xi(0) + vi(0)t +
αi

2
t2

xi(t) = i− n + 1
2

+
αi

2
t2 .
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At the midway point T/2, this gives the ith point mass velocity vi(T/2) = αiT/2
and x-coordinate

xi(T/2) = i− n + 1
2

+
αi

2

[
T

2

]2

xi(T/2) = i− n + 1
2

+
aiT

2

8
.

During the second half of the movement time t, for T/2 < t ≤ T , we will set the
ith point mass acceleration at time t to be ai(t) = −αi. By equation (3) we get
that the velocity at time t during the second half of the movement time is

vi(t) = vi (T/2)− αi

[
t− T

2

]

vi(t) = αi

[
T

2

]
− αi

[
t− T

2

]

vi(t) = αi[T − t] .

and the x-coordinate given by equation (2) is

xi(t) = xi(T/2) + vi(T/2)
[
t− T

2

]
− αi

2

[
t− T

2

]2

xi(t) =
[
i− n + 1

2
+

αiT
2

8

]

+
αiT

2

[
t− T

2

]
− αi

2

[
t− T

2

]2
.

This implies that at the final time T , the ith point mass acceleration has
velocity vi(T ) = αi(T − T ) = 0 and x-coordinate

xi(T ) =
[
i− n + 1

2
+

αiT
2

8

]

+
αiT

2

[
T − T

2

]
− αi

2

[
T − T

2

]2

xi(T ) =
[
i− n + 1

2
+

αiT
2

8

]
+

αiT
2

4
− αiT

2

8

xi(T ) = i− n + 1
2

+
αiT

2

4
.

Recalling that we initially set αi = n+1−2i
n−1 and T =

√
n− 1 we get:

xi(T ) = i− n + 1
2

+
n + 1− 2i

4

xi(T ) =
i

2
− n + 1

4

xi(T ) =
xi(0)

2
.
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So we get that xi(T ) = xi(0)/2 as required. Moreover, the time any consec-
utive points are closest is the final time T , and at that time they are distance
1/2 from each other, as required in the specification of the problem.

It is easy to verify that the velocity difference between consecutive points
masses i and i+1 is maximized at time T/2, and at that time the the magnitude
of the velocity difference is

|vi(T/2)− vi+1(T/2)| = |αi − αi+1|T/2

≤ 2
n− 1

√
n− 1
2

≤ 1

as required in the specification of the problem. Thus, we have shown it possible
to complete this problem in time T =

√
n− 1 while still satisfying the axioms

of our abstract model (excluding connectivity and gripping). �

The Squeeze Problem. With this result proved for the Point Mass Contrac-
tion problem, the same reconfiguration using expanding cube modules can be
solved by directly applying Lemma 1. We refer to this reconfiguration task as
the Squeeze problem and define it as follows. Assume an even number of n mod-
ules, numbered i = 1, . . . , n from left to right as before. Keeping the modules
connected as a single row, our goal is to contract the modules from each having
length 1 to each having length 1/2 for some unit length in the x-axis direction.
This reconfiguration task is shown in Figure 2. Given the bounds on the mod-
ule’s physical properties required by our abstract model, the goal is to perform
this reconfiguration in the minimum possible movement time T .

Fig. 2. The Squeeze problem: Expanding cube modules in (a), each of length 1, contract
to each have length 1/2 and form the configuration in (b)

Similarly, we define the Reverse Squeeze problem as the operation that undoes
the first reconfiguration. Given a connected row of n contracted modules, each
with length 1/2 in the x-axis direction, expand those modules to each have
length 1 while keeping the system connected as a single row. Since this problem
is exactly the reverse of the original Squeeze problem, steps for an algorithm
solving the Squeeze problem can be run in reverse order to solve the Reverse
Squeeze problem in the same movement time with the same amount of force.

We first perform the force analysis for the case of solving the Squeeze
problem. At the initial time t = 0 cube i’s center x-coordinate has location
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xi(0) = i− (n+ 1)/2. Recall that each cube is assumed to have unit mass 1, can
grip its adjoining cubes, and can exert expanding or contracting forces against
those neighbors. Furthermore, a unit upper bound is assumed on the magnitude
of this force, which as stated earlier also causes an acceleration bound ai ≤ 1 for
all modules. We wish to contract the center x-coordinates of the modules from
location xi(0) to xi(0)/2 = i/2− [n + 1]/4 as before in the contraction example
with point masses. Again, we wish to find the minimum possible movement time
for contraction from the initial configuration at time 0 to the goal configuration
at time T .

Lemma 2. The Squeeze problem requires at most total movement time T =√
n− 1.

The proof is omitted here to meet space requirements.
Given that the above problem requires at most T =

√
n− 1 time to be solved,

we get the same result for the Reverse Squeeze problem.

Corollary 1. The Reverse Squeeze problem requires at most movement time T =√
n− 1.

Note that all of the operations performed in solving the Squeeze problem can
be done in reverse. The forces and resulting accelerations used to contract mod-
ules can be performed in reverse to expand modules that were previously con-
tracted. Thus, we can reverse the above Squeeze algorithm in order to solve
the Reverse Squeeze problem in exactly the same movement time as the original
Squeeze problem. (Note: Although the forces are reversed in the Reverse Squeeze
problem, the stiffness settings remain the same. It is important to observe that
without these stiff attachments between neighboring modules, the accumulated
expansion forces would make the entire assembly fly apart.)

5 2D Reconfiguration

The above analysis of the 1-dimensional Squeeze problem has laid the ground-
work for reconfiguration in 2 dimensions. This includes the x-axis to y-axis re-
configuration problem which we will provide an algorithm for at the end of
this section. We build to that result by first looking at a simpler example of
2-dimensional reconfiguration that will serve as an intermediate step in our final
algorithm. We continue to use the same expanding cube model here as was used
in the previous section.

In that previous section a connected row of an even number of n expanding
cube modules was contracted from each module having length 1 in the x-axis
direction to each having length 1/2. We now begin with that contracted row and
reconfigure it into two stacked rows of n/2 contracted modules. Modules begin
with 1

2 × 1 width by height dimensions and then finish with 1 × 1
2 dimensions.

This allows pairs of adjacent modules to rotate positions within a bounded 1×1
unit dimension square.We denote this reconfiguration task as the confined cubes
swapping problem.
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The process that we use to achieve reconfiguration is shown in Figure 3. We
begin with a row of modules, each with dimension 1

2 × 1. Here motion occurs
in two parts. First, fix the bottom edge of odd numbered modules so that edge
does not move. Do the same for the top edge of even numbered modules. Then
contract all modules in the y direction from length 1 to length 1/2. Note that
to achieve this two counterbalancing forces are required: (1) a force within each
module to contract it, and (2) sliding forces between adjacent modules in the
row to keep the required top/bottom edges in fixed locations as described earlier.
This process creates the “checkered” configuration in part (c) of Figure 3.

We can then reverse the process, but execute it in the x direction instead, to
expand the modules in the x direction and create 2 stacked rows of modules,
each with dimension 1 × 1

2 . Note that requiring certain edges to stay in fixed
locations had an important byproduct. This results in pairs of adjacent modules
moving within the same 1×1 square at all times during reconfiguration. This also
means that the bounding box of the entire row does not change as it reconfigures
into 2 rows. This trait will be of great significance when this reconfiguration is
executed in parallel on an initial configuration of several stacked rows.

Fig. 3. Expanding cube modules contracting vertically (a - c), then expanding hori-
zontally (d - f). Here the scrunched arrow represents contraction and the 3 piece arrow
denotes expansion.

Again, number modules i = 1, . . . , n from left to right and assume modules
have unit mass 1, can grip each other, and can apply contraction, expansion and
sliding forces. In this problem we will only use a unit force 1 total per module
for both stages of motion. This means a force of 1/2 applied in each motion
stage and, by the physics equations in Section 4, an acceleration upper bounded
by 1/2 in each stage as well. Finally, concerns for gravity or friction are again
ignored for the sake of simplicity. Given these bounds, our goal is to find the
minimum reconfiguration time for this confined cubes swapping problem.

Lemma 3. The confined cubes swapping problem described above requires T =
O(1) movement time for reconfiguration.

The proof is omitted here to meet space requirements.



468 J.H. Reif and S. Slee

Fig. 4. Horizontal contraction from stage a to b. Vertical expansion from state e to f .
Note that the dimensions of the array remain unchanged through stages b - e.

Extending this analysis, we now consider the case of an m×n array of normal,
unit-dimension modules. That is, we have m rows with n modules each. We wish
to transform this into a 2m × n

2 array configuration. All of the same bounds
on the physical properties of modules hold and gravity and friction are still
ignored. Once more we wish to find the minimum movement time T for this
reconfiguration.

Lemma 4. Reconfiguring from an m×n array of unit-dimension modules to an
array of 2m× n

2 unit-dimension modules takes O(
√
m +

√
n) movement time.

The proof is omitted here to meet space requirements.
The problem just analyzed may now be used iteratively to solve the x-axis to

y-axis reconfiguration problem. By repeatedly applying the above array recon-
figuration step, we double the height and halve the width of the array each time
until we progress from a 1× n to an n× 1 array of modules.

This process will take O(lg2 n) such steps, and so there would seem to be
a danger of the reconfiguration problem requiring an extra lg2 n factor in its
movement time. This is avoided because far less time is required to reconfigure
arrays in intermediate steps. Note that the O(

√
m +

√
n) time bound will be

dominated by the larger of the two values m and n. For the first �(lg2 n)/2� steps
the larger value will be the number of columns n, until an array of �

√
n�×�

√
n�

dimensions is reached. In the next step a �
√
n� × �

√
n� array of modules is

created, and from that point on we have more rows than columns and the time
bound is dominated by m.
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The key aspect is that the movement time for each reconfiguration step is
decreased by half from the time we begin until we reach an intermediate array
of dimensions about

√
n×

√
n. By the principle of time reversal it should take us

the same amount of movement time to go from a single row of n modules to an√
n×

√
n cube as it does to go from that cube to a single column of n modules.

This tactic is now used in our analysis to find the minimum reconfiguration time
for the x-axis to y-axis problem.

Lemma 5. The x-axis to y-axis reconfiguration problem only requires movement
time O(

√
n).

Proof: For simplicity, let n be even and let n = p2 for some integer p > 0. Let
r(i) and c(i) be the number of rows and columns, respectively, in the module
system after i reconfiguration steps. From the previous Lemma 4 in this section
we have that a single step of reconfiguring an m × n array of modules into a
2m× n

2 array requires time O(
√
m +

√
n). Initially, assuming a large initial row

length, then c(0) = n, n � 1, and the reconfiguration step takes O(
√
n) time.

For subsequent steps we still have c(i) � r(i), but c(1) = n/2, c(2) = n/4, etc.
while r(1) = 2, r(2) = 4, etc. In general c(i) = n/2i and r(i) = 2i. Eventually,
we get c(i′) = r(i′) =

√
n at i′ = (lg2 n)/2. Up until that point the time for each

reconfiguration stage i+1 is O(
√

c(i)). So, the total reconfiguration time to that
point is given by the following summation.

(lg2 n)/2∑

i=0

√
c(i) =

(lg2 n)/2∑

i=0

√
n

2i

≤
√
n

∞∑

i=0

(
1√
2

)i

=
√
n

1− (1/
√

2)
= O(

√
n) .

Thus we have that reconfiguration from the initial row of n modules to the
intermediate

√
n ×

√
n square configuration takes O(

√
n) movement time. Re-

configuring from this cube to the goal configuration is just the reverse operation:
we are simply creating a “vertical row” now instead of a horizontal one. This
reverse operation will then take the exact same movement time using the same
amounts of force as the original operation, so it too takes O(

√
n) movement time.

Thus, we have that while satisfying the requirements of our abstract model the
x-axis to y-axis problem takes O(

√
n) movement time. �

6 Lower Bounds

In Section 4 we showed that the 1-dimensional Point Mass Contraction Problem,
reconfiguring a row of n point masses with unit separation to have 1/2 distance
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separation, could be solved in time T =
√
n− 1. We now show a matching

lower bound for this problem. Again, the same assumptions about the physical
properties of the point masses are held and concerns for friction or gravity are
ignored.

Lemma 6. The Point Mass Contraction Problem requires at least total move-
ment time T =

√
n− 1.

Proof: Consider the movement of the 1st point mass which needs to move from
initial x-coordinate x1(0) = 1−[n+1]/2 = 1/2−n/2 starting with initial velocity
v1(0) = 0 to final x-coordinate x1(T ) = x1(0)/2 = 1/4 − n/4 and ending with
final velocity v1(T ) = 0. The total distance this point mass needs to travel is
x1(T )− x1(0) = [n− 1]/4.

Taking into consideration the constraint that the final velocity is to be 0, it
is easy to verify that the time-optimal trajectory for point mass i = 1 is an ac-
celeration of 1 in the positive x-direction from time 0 to time T/2, followed by a
reverse acceleration of the same magnitude in the negative x-direction. The total
distance traversed in each of the two stages is at most [a1/2]t2 = 1 ∗ [T/2]2/2.
So, the total distance traversed by the 1st point mass is at most [T/2]2 = T 2/4
which needs to be [n− 1]/4. Hence, T 2/4 ≥ [n− 1]/4 and so T ≥

√
n− 1. �

Hence, we have shown:

Theorem 1. The lower and upper bound for the total movement time for the
Point Mass Contraction Problem is exactly T =

√
n− 1.

As in Section 4, we can use an extension of this lower bound argument to prove
the following lemma.

Lemma 7. The Squeeze problem requires total movement time Ω(
√
n).

The proof is omitted here to meet space requirements.
Hence, we have also shown:

Theorem 2. The total movement time for the Squeeze problem is both upper
and lower bounded by Θ(

√
n).

By the same argument, we can also get a bound on the x-axis to y-axis problem.

Corollary 2. The x-axis to y-axis reconfiguration problem requires total move-
ment time Ω(

√
n).

Proof: Given the initial row configuration and the goal column configuration,
pick the end of the row farthest away from the goal column configuration’s
horizontal placement. Select the n/c cubes at this end of the row, for some real
number greater than 2. Among these n/c cubes we can again find some ith
cube that must have an acceleration at most ai ≈ c/2 and that it must travel a
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distance ≥ n[1/4− 1/[2c]] + 1/4. This again leads to the movement time being
bounded as T = Ω(

√
n). �

7 Conclusion

In this paper we have presented a novel abstract model for self-recongurable
(SR) robots that provides a basis for kinodynamic motion planning for these
robots. Our model explicitly requires that SR robot modules have unit bounds
on their size, mass, magnitude of force or torque they can apply, and the rela-
tive velocity between directly connected modules. The model allows for feasible
physical implementations and permits the use of basic laws of physics to derive
improved reconguration algorithms and lower bounds.

In this paper we have focused on a simple and basic reconguration problem.
Our main results were tight upper and lower bounds for the movement time for
this problem. Our recursive Squeeze algorithm recongures a horizontal row of n
modules into a vertical column in O(

√
n)-time. This result significantly improves

on the running time of previous reconguration algorithms. Our algorithm satisfies
the restrictions imposed by our abstract model and we also show that it is
kinodynamically optimal given the assumptions of that model.

While carefully using the forces produced by modules, our analysis ignored
forces caused by gravity and friction. Addressing these concerns is a topic for
future work as the algorithm is brought closer to physical implementation. Also,
the algorithm given was a centralized planner and only solved a simple example
to demonstrate how faster reconfiguration algorithms were possible. Yet the mul-
tipart nature of SR robots makes distributed algorithms a necessity. Extending
our lower-bound analysis to more complex analysis, and developing distributed
algorithms to match those bounds, is a topic of future work.
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Summary. This paper presents an algorithm for a visibility-based pursuit-evasion
problem in which bounds on the speeds of the pursuer and evader are given. The
pursuer tries to find the evader inside of a simply-connected polygonal environment,
and the evader in turn tries actively to avoid detection. The algorithm is at least
as powerful as the complete algorithm for the unbounded speed case, and with the
knowledge of speed bounds, generates solutions for environments that were previously
unsolvable. Furthermore, the paper develops a characterization of the set of possible
evader positions as a function of time. This characterization is more complex than
in the unbound-speed case, because it no longer depends only on the combinatorial
changes in the visibility region of the pursuer.

1 Introduction

Consider a robot in a search-and-rescue operation, such as firefighting inside a
building. Victims have to be located before they can receive proper aid. The
objective of this robot, called here the pursuer, is to find each person inside the
building. In the worst-case, the robot should plan as if a person, called an evader,
is actively hiding. However, the pursuer can make some safe assumptions about
each evader. For example, a person does not move at more than 12m/s. This
paper studies the search taking into consideration such speed bounds.

We consider a version of the visibility-based pursuit-evasion problem, in which
bounds on the speed of the pursuer, and the evader are given. This yields a major
complication for describing the set of possible positions where the evader might
be. Perhaps surprisingly, describing the possible positions of the evader with
unbounded speed is much easier; they depend only on the combinatorial changes
in the visibility region of the pursuer. This is no longer true in the bounded speed
case, because the set of possible evader positions is also a function of time.

Determining the set of possible evader’s positions as a function of time, called
the reachable set of the evader has been previously studied in [2, 7, 14]. Even in
the absence of obstacles, the exact computation of the reachable set is compu-
tational intractable, since it involves finding a solution to the Hamilton-Jacobi-
Bellman equation [6]. The present paper is the first attempt to describe the set
of evader’s position inside a polygonal environment. Whereas this description is
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made exact, it is rather used to prove that an approximation to the reachable
set that is easier to compute is conservative. This approximation is then used
together with the combinatorial changes in the visibility of the robot, enlarging
the class of environments that can be searched by a single pursuer. Thus, even
though knowing speed bounds makes the problem easier to the pursuer, since
evader capabilities are decreased, the design of a complete algorithm becomes
much more complicated. This is one of the reasons of why the speed bounds
have been ignored for visibility-based pursuit-evasion.

The visibility-based pursuit-evasion problem was proposed in [15]. The un-
bounded speed case has been discussed extensively in the literature. A complete
algorithm for a pursuer with an omnidirectional field of view was presented
in [4]. A solution for a limited pursuer’s field of view was presented in [3]. For
pursuers moving on the boundary of the environment, having a single ray of
visibility, a complete algorithm was presented in [12]. For the same problem, an
finite state automaton was designed in [10]. A randomized solution for a pur-
suer moving under polyhedral kinematic constraints was described in [8], based
on a randomized strategy presented in [9]. The randomized algorithm gives an
arbitrarily high probability of evader detection, even when the environment is
not searchable with one pursuer by the complete algorithm in [4]. Minimal sens-
ing solutions, in which the environment is unknown to the pursuer, have been
presented in [5, 13].

This paper formalizes the problem of pursuit-evasion with bounded speed. We
give a description of the set of evader possible positions, contaminated regions, in
the form of an information state. This information state takes advantage of the
combinatorial structure studied in previous approaches to compute the worst-
case contamination of a region. Contaminated regions are not kept explicitly, but
are computed selectively as the pursuer needs them. Assuming a pursuer that
moves in piecewise-linear paths, we present a search algorithm that uses the
description of the contaminated regions as a function of the evader speed. This
algorithm is as powerful as any complete algorithm for the unbounded speed
case. The movement of the pursuer presents a challenging optimization problem
[7, 17, 18, 19]; thus, moving the pursuer in piecewise-linear paths may not lead to
a complete algorithm. However, by taking into account the speed bounds defined
in the problem, this algorithm solves many instances of pursuit-evasion tasks in
environments for which no solution exists in the unbounded speed case.

2 Problem Formulation

The pursuer and the evader are modeled as points moving in an open setR ⊂ R
2.

It is assumed that R is simply-connected, with a polygonal boundary ∂R. Let
e(t) ∈ R denote the position of the evader at time t ≥ 0. It is assumed that
e : [0,∞) →R is a continuous function. Let Ve(t) be the speed of the pursuer
at time t. The mapping Ve : [0,∞) → [0, ve] may not be continuous, but sets a
maximum speed for the evader at ve. Similarly, let p(t) ∈ R denote the position
of the pursuer at time t ≥ 0. It is assumed that p : [0,∞) → R is continuous
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and piecewise-differentiable. The pursuer moves with a maximum speed of vp

according to the speed map Vp : [0,∞) → [0, vp], which may not be continuous.
Since dynamics is disregarded, the implication of the speed bounds are better
understood if the position mappings are parametrized as a function of their
arclength s. For example, if the length of the path from e(t0) to e(tf ) is s, then
s ≤ ve(tf − t0), for any t0, tf ∈ [0,∞), t0 ≤ tf .

For a point q ∈ R, let V (q) denote the set of all points in R that are
visible from q (i.e., the line segment joining q and any point in V (q) lies in
R). The set V (q) is called the visibility region at q. A mapping p(t) is called
a solution strategy if for every continuous path e : [0,∞) → R subject to
arclength(e(t0), e(t)) ≤ ve(t− t0), ∀t0, t ∈ [0,∞), there exists a time tc ∈ [0,∞)
such that e(tc) ∈ V (p(tc)). The time tc is called the time of capture for the
strategy p(t). Thus, the position of the evader remains unknown to the pursuer
until tc. The pursuer’s task is to find a p(t) solution strategy with a finite time
of capture. A complete algorithm reports such a solution strategy if it exits, or
reports that evader remains undetected for the given speed bounds.

It is clear that the particular values of speeds of the pursuer and evader are
not as important as the ratio ve/vp between them. For each simple polygon and
each evader speed, a pursuer speed can be found such that a solution strategy
exists:

Proposition 1. Given a simply-connected polygonal environment R and a max-
imum evader speed ve, a speed of a pursuer vp can be found such that a solution
strategy exists.

Proof. Compute the visibility graph of R and find the edge with the smallest
length lmin. Set vp = lRve/lmin, in which lR is the length of ∂R. If the pursuer
transverses ∂R at such speed, any evader is detected. This is because the evader
can only hide from reflex vertex to reflex vertex (bitangents), but the pursuer
sees all such paths before the evader can transverse them.  !

Proposition 1 motivates the study of visibility pursuit-evasion with bounds on the
speed. Rather than declaring the problem unsolvable, bounds on the speed may
be found such that a strategy exists. An interesting question considers finding
the maximum ve/vp for which there exists a solution. If the maximum ve/vp

approaches infinity, then R can be searched assuming an evader with unbounded
speed. Likewise, if it approaches 0, then the search looks like a visibility coverage
problem. An upper bound for this ratio can be found with a binary search using
the strategy presented in this paper.

2.1 The Model

The pursuer has perfect information about its position and orientation with
respect to R. It has two sensors, a clock and a visibility sensor. The clock reports
a positive real number that indicates the time elapsed from the beginning of the
pursuing task. The visibility sensor V : R → pow(R) reports the visibility
region from the current position of the pursuer. An observation space is defined
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as Y = [0,∞) × pow(R). It can be interpreted as visibility regions together
with a timestamp. Let ỹt be the history (sequence) of observations up to time
t, and let p̃t be the history of all the pursuer positions up to time t. Also, let
x = (p(t), e(t)) be the state of the pursuit-evasion task. This leads to a state
space X = R

2 × R
2 = R

4. Consider the history information state (η0, p̃t, ỹt),
in which the initial condition η0 = (p(0),R) reflects the fact that at t = 0
the position of the pursuer is known, but the evader can be anywhere in R.
Let X(η0, p̃t, ỹt) ⊆ X be the smallest set of states in which the pursuit-evasion
task might be, as it is deduced from (η0, p̃t, ỹt). Each ηt = X(η0, p̃t, ỹt) is an
information state of the nondeterministic information space Indet = pow(X)
(see [11]). The information state ηt is represented as ηt = (p(t), E(t)), in which
the set E(t) ⊂ R is the set of all positions in which the evader might be at time
t. Consider the maximal connected sets of points in E(t). Each of these sets is
referred to as a contaminated region of R. Each of the maximal connected sets
of points in R\E(t) is referred to as a cleared region of R. When a contaminated
region becomes cleared and later it becomes contaminated again, such region is
referred to as recontaminated. An equivalent way to describe a solution strategy
is to find the mapping p(t) such that the state (p, e) is known. In other words, the
task is completed when E(t) contains a single point (the location of the evader),
or it is the null set (no evader is in R).

Let yt′ ∈ Y be the observation made at time t′. The information transition
equation is defined as ηt′ = fI(ηt, p(t′), yt′). The main complication of determin-
ing fI lies in describing how E(t) changes. The next section describes the changes
in E(t) as a function of time and the pursuer movements. This description is
used later to find a solution strategy.

3 Describing Contaminations

The edges of a visibility polygon V (p) alternate between being part of ∂R or
crossing the interior of R. The latter ones are collinear with p, and are referred
to as gaps. A label of contaminated or of cleared is assigned to each gap. The
label indicates whether the maximal connected region in R\V (p) for which the
gap is an edge might contain the evader. As the pursuer moves, V (p) changes
combinatorially. For the unbounded speed case, E(t) depends uniquely on the
gaps changes. If gap α appears, the region behind α is cleared, and α is la-
beled accordingly. If a cleared gap α merges with a contaminated gap β to form
gap γ, then the whole region behind α gets recontaminated, and γ is labeled
as contaminated. Gap changes occur when the pursuer crosses inflection rays
(appearances and disappearances), or when it crosses bitangent complements
(merges and splits). For a deeper discussion of gap changes the reader is referred
to [16].

These conditions no longer hold when bounds on the speed are present. A
gap does not have to disappear and appear again to mark the whole region
behind it as cleared. Likewise, when two gaps merge, a cleared region does not
contaminate immediately. Before modeling contaminations, we introduce some
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gap terminology. A gap that can disappear is called primitive. Otherwise, if it
can split, it is called nonprimitive. For a gap α starting at reflex vertex aα, let
lv and ln be the edges of ∂R that intersect at aα. As shown in Figure 1, lv is the
edge that is (perhaps partially) visible from p, while ln is completely hidden. Let
θ(t) be the angle between α and ln at time t. If θ(t) increases, α is said to move
in the positive direction. The length of α at time t is denoted by λ(t). Let iα and
in be the ray extensions of α and ln respectively, until an edge of ∂R is hit. If α
is primitive, in is the inflection ray that, if crossed, forces α to disappear. Also,
let α(r, θ(t)) be the point on α at r distance from aα when α is at the angular
position θ(t). Finally, let b(t) = α(λ(t), θ(t)) be the intersection point of α with
∂R. Thus, α is the line segment [aα, b(t)].

θ

lvln

p

in

iα

α

aα

Fig. 1. Gap description. The gap α starts at reflex vertex aα. It has an angular position
of θ, as measured from the edge ln. The rays iα, and in, extend from aα in the direction
of α and ln respectively, until they hit an edge of the polygon.

3.1 A Recontamination Fan

Let α be a gap currently visible for which the region behind it is completely
contaminated at time t = 0. Assume that from t = 0 to t = tf , α does not
disappear, split or merge. The region between α at θ(0), and α at θ(tf ) is called
the recontamination fan of α, or α-fan. Recontamination inside the α-fan is de-
scribed next. If α moved in the negative direction, that is θ(0) > θ(tf ), the whole
region behind α is still contaminated and no more computations are needed. For
the positive direction the angular velocity ω(t) of α is needed. Assume that the
vertex aα is placed at the origin of the plane, and that the pursuer position is
given by p = (px(t), py(t)). Let p be the position vector of p, and let n be its unit
normal vector. Also, let vp = [dpx/dt, dpy/dt] be the velocity of the pursuer.
We have:

ω(t) =
vp · n
|p| =

px
dy

dt
− py

dx

dt

p2
x + p2

y

(1)
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Assume that ω(t) has a single maximal value at ω(tmax) = ωmax. The general
case, when ω(t) has several critical points is discussed later in this section.

Recontamination from t = 0 to t = tmax

Consider an evader arbitrarily close to α(r, θ(0)). If the evader is to remain
arbitrarily close to α(r, θ(t)) during t ∈ [0, tmax], then ωmax ≤ ve/r. Let
rn = ve/ωmax. Any evader at distance less than or equal to rn from aα can
follow exactly the angular motion described by α. Thus, the evader could be
anywhere along this arc and such region remains contaminated (see Figure 2.a).
Consider now rb = ve/ω(0). Any evader arbitrarily close to α(rb, θ(0)) cannot
follow the angular motion described by α. This is true for positions on the gap
with r ≥ rb. Their recontamination regions can be described with a circular sec-
tion with radius vetmax, centered at the original position of the evader, as shown
in Figure 2.b. The circular sections do not grow towards aα. This is because ei-
ther the positions reachable are already considered by a radius of smaller length,
or because the evader would otherwise cross α. The latter is better exemplify
if w(t) remains constant at w(0). In this case, rn and rb coincide. The region
after the arc at rn is bounded by the involute of a circle (see Figure 2.b). These
circular sections cannot intersect α at any time before tmax, since w(t) never
decreases. Adding all the circular sections for radii larger than rb makes the
portion of α starting at rb and ending at b(0) sweep perpendicularly by vetmax

(see Figure 2.b). As α moves, its length λ(t) may change. If λ(t) decreases, the
vetmax sweep is done as described, but eliminating the part that intersects with
the polygon. If λ(t) increases, a contamination region grows as a circular section,
with radius vetmax and center b(0). This circular section is also present when
rn > λ(0). In this case, the region of the circular section crossing (above) α is
eliminated.

For r ∈ (rn, rb), let tr be the smallest time for which ve ≥ w(t)r does not hold.
This time is referred to as the breaking time of r. Before tr, an evader placed
arbitrarily close to α(r, θ(t)) follows the arc described by α. From tr to tmax, the
evader could be anywhere in a growing circular section centered at the last point
of contact with α at θ(tr), and bounded by α at θ(t). When adding the effect
of such contamination regions, a sweep similar to the one described before takes
place. The difference is that, per radius r, the sweep length is ve(tmax − tr) and
the evader travels perpendicularly to α at θ(tr).

Recontamination from t = tmax to t = tf

Since w(t) is now decreasing, positions for which a breaking time existed may be
able to intersect α in the sweep ve(tf − tmax). Suppose the sweep intersects α at
α(rm, θ(tf )), and rm is the maximum radius for all such intersections. Then the
circular section with radius rm and center aα, bounded by α at θ(0) and θ(tf ),
is completely contaminated. This circular section is added to the contamination
sweep that did not intersect α, namely the sweep of the radii after rm. In general,
the contamination boundary consists of:
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rn

aα
e

θ(tf )

e

α

rb rn θ(0)

(a) (b)

Fig. 2. Recontamination fan. (a) Gap α moved from θ(0) to θ(tf ). Any evader before
rn follows exactly the angular motion of α. Any evader after rb can be anywhere inside a
circular section of radius vetf . The net effect is a line segment sweeping perpendicularly
to the original position. (b) For w(t) constant, the contamination region between the
vertical dashed line and the dashed arc is bounded by the involute of a circle.

1. A line segment from aα to α(rm, θ(tf ))
2. A curve function of p(t) from α(rm, θ(tf )) to the point (rb, vetf ),
3. A line segment [(rb, vetf ), (b(0), vetf )], parallel to α at θ(0).
4. A circular section, with center b(0) and radius vetf .

For some values of rm some elements may not be present. Note that the region
between α at θ(tf ) and the contamination boundary is cleared, In the unbounded
speed case, the whole region behind α would be marked as contaminated. When
w(t) has more than one maximum, the concepts before described are applied as
follows. Find all the local minima of ω(t) in [0, tf ]. Assume the local minima
occur at t1, t2, ..., tn. The recontamination fan is computed by parts, from t = 0
to t1, from the gap at θ(0) to θ(t1), and so on. At each step, new breaking times
should be computed, and the sweep of vet should be checked for intersection.
Note that the contamination boundary may contain two or more elements of the
same type. This is because the breaking times would change for each radius at
each period of time. Particularly, we can consider the line segment up to rm of
the previous time period as a gap, for which a recontamination fan is computed.

Piecewise-Linear Approximation

While a complete algorithm should compute the contamination boundary ex-
actly, a piecewise linear approximation is easily computed. Let rn′ = vetf/ tan
(θ(tf )− θ(0)). An evader traveling vetf from α(rn′ , θ(0)) and perpendicularly to
α at θ(0), intersects α at α(rm′ , θ(tf )), with r2

m′ = r2
n′ + (vet)2. The approxima-

tion is a line segment from aα to α(rm′ , θ(tf )), and a line segment α(rm′ , θ(tf ))
parallel to α at θ(0) that extends until an edge of ∂R is hit (see Figure 3). Note
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rn

e

θ(tf )

e

α

rb rn

rm′

θ(0)
p

Fig. 3. Piecewise-linear approximation. Instead of computing the exact contamination
boundary, an approximation is easily generated by ignoring the angular velocity of the
gap, considering only its final angular position.

that rm′ > rm, because traveling from rm′ did not have to wait for a break-
ing time to intersect α. Thus, this approximation is conservative and may be
preferred over the exact one in real robotic implementations given its simplicity.

Fan Contamination for a Pursuer Moving in a Piecewise-Linear Path

As an example of a fan recontamination, consider a pursuer that moves in a
piecewise-linear path with constant velocity vp. To simplify the example, assume
that the pursuer moves in a vertical line at a distance x0 of the y-axis. From
Equation 1:

ω(t) =
x0vp

x2
0 + p2

y

=
x0vp

x2
0 + (tvp − y0)2

(2)

Equation 2 has a maximum at ω(y0/vp) = vp/x0. Thus, rn = vex0/vp, the
last radius for which an evader can follow exactly the angular motion of α. Based
on Equation 2, an expression for the breaking time of each radius can be found
using ω(t)r = ve:

t(r) =
1
vp

(
y0 +

√
rxovp

ve
− x2

o

)
(3)

Note that t(r) for r < rn generates complex solutions. This means, as ex-
pected, that such breaking times do not exist. Figure 4 shows a computed ex-
ample of the fan recontamination for two different speeds of the evader.

3.2 Merges Spreading Contamination

When two gaps merge, contamination spreads in the regions behind them. For
two or more consecutive reflex vertices in ∂R, a merge is also considered when one
of them occludes the others. While this is not entirely true, since a bitangent
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Fig. 4. Recontamination fan computed example for a pursuer linear motion. The gap
start at θ(0) = 0◦, and ends at θ(1) = 45◦. The thick line on the bottom-right represents
an edge of R. The evolution of the contamination is shown for times between [0, 1].

does not exists, it simplifies the description of contamination. Particularly, a
primitive gap is assigned to the first occluded vertex, while a nonprimitive gap
is assigned to each of the remaining consecutive reflex vertices. The split only
generates one gap. To describe the recontamination between gaps, the following
lemma is proposed:

Lemma 1. Let α and β be two gaps that merge into gap γ. When γ splits, α and
β appear at the same angular position at the time of the merge, independently
from the pursuer motion.

Proof. Merges and splits occur when the pursuer crosses a bitangent complement
of ∂R. Thus α, β, and γ are aligned with the bitangent at the split or the merge.
This is independent from where the bitangent complement is crossed.  !

Lemma 1 provides a tool to encode the contamination of cleared regions. If α is
a gap for which the region behind is completely cleared, the angular position of
α before a merge (i.e., when it was last seen) is recorded. The merge may allow a
path between α and a contaminated gap β that the evader can transverse without
being detected. Assume that the merge occurs at time t = 0, and contamination
should be determined for time tf . Further, assume that γ splits at time ts ∈
[t0, tf ]. If the evader does not cross γ by the time ts, it cannot contaminate α
anymore. The worst-case contamination of α has two general cases, function of
whether α is visible from the position of the evader or not.

First, assume that α is completely visible from the current position of the
evader, which is at h distance from aα. For clarity, we disregard the effect of
the recontamination fans for now. The evader should move as to maximize the
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contamination of the region behind α. If vetf > h, then the worst-case appears
when the evader moves to aα. This forces the pursuer to cross the inflection ray
in to completely clear the region again. If vetf ≤ h, the evader cannot reach
aα, but recontamination may still exist. Imagine the evader moves towards some
point in α. When the evader reaches this point and keeps moving, allow α and
its extension ray iα to move with the evader around aα. We said that the evader
is pushing the gap. When the evader reaches a point in ln, the rays in and
iα coincide (see Figure 5). If the pursuer crosses iα before the evader gets to
ln, the evader is detected. Since at the moment of the merge iα is collinear
with the pursuer, the worst-case pushes iα as far as possible from the pursuer.
Thus, in the worst-case, the evader pushes α as to minimize θ(tf ), as any other
movement would make its detection easier. The following lemma provides the
optimal movement for the evader:

Lemma 2. Let α be a cleared gap, let l = vetf , and consider an evader standing
at distance h from aα, with t = 0 and α completely visible from the evader
position. If l > h, then the optimal strategy for the evader is to move to aα. If
l ≤ h, then it should move in a straight line, with an angle of φ = arccos(l/h) as
measured from a parallel line to α, passing through the position of the evader.

Proof. When l ≥ h, moving to aα makes iα coincide with in. When l < h,
assume the optimal strategy is not straight line. Such strategy has an endpoint
b, which can be joined with the position of the evader by a line segment, reaching
b faster, a contradiction. To find the angle φ, consider the angle σ = θ(0)−θ(tf ),
in which θ(0) and θ(tf ) are the positions of the gap before the evader pushed it.
To maximize σ, consider the triangle (see Figure 5) with angles φ, σ and π−φ−σ.
Now, σ is maximized when π−φ−σ = π/2, from which σ = arctan

(
l/
√
h2 − l2

)
,

and φ = arccos(l/h) follows.

If α is partially visible from the evader position, and the path found in Lemma 2
intersects ∂R, then the evader should move to the last reflex vertex obstructing
the path. Once reached, a new path from Lemma 2 should be computed, taking
into account the time elapsed. This can be extended for the case when α is com-
pletely hidden. The evader moves in a shortest-path, until α is visible. Consider
now that the evader is presented with two choices: either, to start at time ts1
at distance h1 from aα, or to start at time ts2 at distance h2 from aα, with the
inequalities ts1 < ts2, and h1 > h2. Given the expression for σ in Lemma 2, ts1 is
the better choice when l21/l

2
2 > (h2

1− l21)/(h
2
2− l22), for li = vetsi. Thus, given the

time tf , the best path for the evader when α is not visible can be determined.
The recontamination fans alter the computation of the paths, since a shortest-

path may cross a gap visible to the pursuer. A recontamination fan is computed
for every gap that merges, assuming that the region behind the original position
of the gap is completely contaminated. If a path is completely contained inside
the contamination regions defined by the fans, no further modification to the
path is required. Otherwise, the amount of time spent crossing the region between
a contamination boundary and the next merge is added to the path.
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Fig. 5. Pushing a gap. The evader travels on l at angle φ as to maximize the angle σ,
thus maximizing contamination. As the evader moves, the gap moves with it, and so
does the gap extension ray iα. In the extreme case, iα coincides with in. If the pursuer
crosses iα, the evader is detected.

(a) (b)

Fig. 6. Clearing equivalent an polygon. The pursuer considers the gap extension ray
in (a) as the actual inflection ray. This is equivalent as clearing the polygon in (b).

Clearing an Equivalent Polygon

From the pursuer perspective, the gap extension ray iα is a real inflection ray.
When the pursuer crosses iα, it clears an equivalent polygon in which α is one
of the edges (see Figure 6). At the extreme case, α will coincide with ln and
the pursuer clears the original polygon. This holds also when the gap γ is a
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nonprimitive gap. As γ moves, iγ aligns with a bitangent complement. From the
pursuer perspective, crossing iγ before the alignment is like clearing a polygon
in which γ is one of the edges, and for a pursuer strategy this polygon is equiv-
alent to the original one. Since contamination paths are computed in a pairwise
manner, this simplifies the contamination computation when the evader force a
gap to split. When γ splits, say in gaps α and β, the evader could have reached
α and β already, by the triangle inequality. In fact, γ will coincide with one of
α or β, the one originated by the same reflex vertex. Thus the pursuer should
consider, at the same time, the worst positions for α, β, and γ, since the evader
may be pushing any of them.

4 The Pursuit Status

Up to now, we have described how the set E(t) of contaminated regions changes
as a function of time and the pursuer movements. In this section we provide an
appropriate representation for the information state ηt = (p(t), E(t)). As seen
in the previous section, a structure that provides the gap relations is needed.
Namely, we need to know which gap will split in which other gaps. This gap
hierarchy is represented with a shortest-path tree T , rooted at the pursuer po-
sition. Except the root, there is a one-to-one correspondence between the reflex
vertices of ∂R, and the nodes in T . Thus the gaps of the corresponding vertex are
assigned to each node. The gap’s angular position recorded at the node depends
on the gap’s current contamination status:

• The gap is cleared. If it is visible, the angle is set to the current angu-
lar position. Otherwise, it is set to the angle that aligns the gap with the
bitangent complement of the merge when it was last seen.

• The evader is pushing the gap. The angle recorded is the one that min-
imizes θ(t), for the period the contamination was allowed.

• The gap has a recontamination fan. The angle is set to 0.

Note that even if a contaminated gap is currently visible, the angle recorded
depends on the status of its contamination. The combinatorial structure of T
changes as the pursuer moves. In fact, it changes in exactly the same places as
gaps do [1, 16]. When T changes combinatorially, together with each merge and
split the time t of the event is recorded. The value of t is necessary to compute
how far the evader could have moved since the last state (i.e., in fan recon-
tamination and pushing of gaps). The tree is modified every time a bitangent
complement is crossed, an inflection ray is crossed, and when the gap extension
ray of a gap being pushed is crossed. Note that if there exists a path in T be-
tween a clear gap and a contaminated one, and this path does not visit the root,
then there is a contamination path between the two gaps.
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(a)

(b)

Fig. 7. Example. The path of the pursuer is shown, from the initial position marked
as a black circle. (a) ve � vp. Note that the room at the upper-left does not get
contaminated. (b) ve = vp. The upper-left room gets recontaminated, and the clearing
path is longer. This example cannot be solved without bounding the speed of the
evader. The algorithm presented here also finds a solution for each problem solvable
without bounding the speed of the evader.

5 An Improved Pursuit Strategy

Once the representation of an information state has been defined, a search in
the information space Indet can be performed to find a pursuit strategy. The
search starting node is η0 ∈ Indet, which has all gaps labeled as contaminated.
An information state ηtc ∈ Indet is a search goal if it has all its gaps labeled
as cleared, and no gap is being pushed. The search strategy is similar to the
unbounded speed case in [4]. The visibility-cell decomposition is computed as in
the unbounded speed case. The center of each cell is computed. For ηt ∈ Indet,
a set of actions Uηt is defined. An action uβ ∈ Uηt takes the pursuer to a
neighboring cell through a straight line. Thus, the paths are restricted to be
piece-wise linear. A state is a candidate to add to the search queue when T is
modified combinatorially, or when a gap extension ray is crossed, as the states
are expanded with Uηt . The candidate is accepted if it has at least one gap in
which progress to clear it is better than in any previous state. Progress here is
defined as: either the gap is cleared, or if the gap is being pushed, the angular
position of the gap is bigger than in any other state.
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The pursuer strategy is not complete. Nevertheless, there is an important
guarantee to its performance. It is at least as powerful as any strategy for the
unbounded speed case. In the unbounded speed case, there are no breaking
times in the recontamination fans and the evader can move arbitrarily close to
any point in the gap. When merges occur, the evader is able to transverse any
shortest-path in arbitrarily small time. Finally, when it sees a gap, it can travel
arbitrarily fast to the vertex that produces it. Thus, the information state cor-
rectly encodes the recontaminations for the unbounded speed case. Crossing gap
extension rays becomes immediately crossing inflection rays, and the search is
performed as presented originally in [4]. Figure 7 presents examples for two dif-
ferent speeds of the evader. These examples cannot be solved without bounding
the speed of the evader.

6 Future Work

We are currently investigating the optimal strategy for the pursuer based on the
description of contamination state presented in this paper. The main practical
difficulty is the description of the contamination boundary of the fans. The piece-
wise linear approximation may be a useful tool for providing better paths for the
pursuer since it is simpler to analyze. Finding the pursuers movements presents
interesting challenges in optimization. For example, since the pursuer has some
control in the contamination inside a fan, it can control to some extent the op-
timal positions for the evader once it reached a cleared gap. It may be possible
to model such scenario as a zero-sum game in which the evader tries to max-
imize recontamination. Other interesting questions remain to be explored. For
example, given that contamination travels in shortest paths, we conjecture that
environments with the same shortest-path graph will require the same pursuer
speed. Our future work considers the study of these questions.
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Abstract. Planning corridors among obstacles has arisen as a central problem in
game design. Instead of devising a one-dimensional motion path for a moving entity, it
is possible to let it move in a corridor, where the exact motion path is determined by
a local planner. In this paper we introduce a quantitative measure for the quality of
such corridors. We analyze the structure of optimal corridors amidst point obstacles and
polygonal obstacles in the plane, and propose an algorithm to compute approximations
for optimal corridors according to our measure.

1 Introduction

The task of planning a natural path for a moving entity that avoids obstacles
plays an important role in robotics, as well as in game design. The problem
is often solved by constructing a graph that discretizes the environment, and
extracting a collision-free path from this graph. The nodes of such a graph may
be the cells of a uniform grid (see, e.g., [17]), or — according to Probabilistic
Roadmap (Prm) paradigm [1, 5] — free configurations that are randomly chosen,
attempting to capture the connectivity of the free configuration space.

A common drawback of the above methods is that they output a fixed path in
response to a query. This is often not the ideal solution for motion planning, as
it lacks flexibility to avoid local hazards (such as small obstacles, other moving
entities, etc.) that are encountered during the motion. It also leads to predictable,
and possibly unrealistic motions, which are not suitable for some applications,
such as computer games. One approach for tackling these problems is a potential-
field planner, in which the moving entity is attracted to its goal configuration,
and repelled by obstacles, or other moving entities (see, e.g., [6]). However, this
approach is prone to get stuck in local minima of the potential field; while there
are methods that help in resolving such situations (see, e.g., [7]), they may still
not yield valid motions at all.
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We would therefore like to indicate the global direction of movement for the
moving entity, while leaving enough flexibility for some local planner to avoid
local hazards. An ideal solution for this is to use corridors, which have recently
been introduced in the game design field [15]. Corridors are defined as a union
of balls whose center points lie along a backbone path. The radius of the balls is
determined by the clearance (i.e., the distance to the nearest obstacle) along the
backbone path. The more restricted task of locally planning the motion around
the backbone path can be successfully performed by potential-field methods. In
order to guarantee that the local planner operates on a restricted environment,
the radii of the balls are upper bounded by some predetermined value.1 As a
result, rather than moving along a fixed path, the moving entity moves within
a corridor around the backbone path. This gives a strict global direction of
movement, yet provides the local flexibility we look for.

Planning within corridors has many applications. It has been used to plan
motions for coherent groups of entities, where the backbone path provides the
global motion of the group [3]. The interactions between entities of the group
are locally controlled by a social potential-field method [16]. Corridors have also
been used to plan the motion of a camera that follows a moving character (a
guide) [12]. If the guide moves along the backbone path, the corridor gives the
flexibility for the camera to swerve if necessary. Another advantage of corridors
is that they allow for non-holonomic and kinodynamic planning, if the motion
of a single entity (or multiple entities) is planned using a potential field method
within the corridor [4]. This is very difficult to achieve and incorporate into
a fixed path. A common property of the applications of corridors is that the
moving entity is small compared to the scale of the environment. In many fields
(open field robotic navigation, games, etc.) this is indeed the case.

The problem we consider in this paper is how to plan a good corridor. A good
corridor is short, avoiding unnecessary detours, and at the same time it should
be wide (up to some prescribed maximum) to provide local maneuvering space.
These requirements often contradict. Given start and goal configurations and
a set of obstacles, the shortest collision-free path is contained in the visibility
graph of the obstacles; see, e.g., [9]. However, such a path is incident to obstacle
boundaries and cannot serve as a backbone path of a valid corridor. If one is only
concerned with clearance, allowing paths that are as long as needed, then such
paths are easily found using the Voronoi diagram of the given obstacles [14]. It
is also possible to consider interpolates of these two structures, named visibility–
Voronoi diagrams, as suggested in [19]. Indeed, a good corridor makes a good
trade-off between length and clearance.

In this paper we introduce a measure for the quality of corridors, and present
methods to plan corridors that are (nearly) optimal with respect to this measure
amidst point obstacles or polygonal obstacles in the plane.

The rest of this paper is organized as follows. In Section 2 we formally define
corridors and introduce the quality measure. Section 3 discusses properties of

1 The fact that the radii of the balls are bounded is also a major difference between a
corridor and the medial axis transform of the free workspace.
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optimal corridors amidst point obstacles in the plane, and in Section 4 we gen-
eralize our results to polygonal obstacles. We give some concluding remarks and
future-work directions in Section 5.

2 Measuring Corridors

A corridor C = 〈γ(t), w(t), wmax〉 in a d-dimensional workspace (typically d = 2
or d = 3) is defined as the union of a set of d-dimensional balls whose center
points lie along the backbone path of the corridor, which is given by the contin-
uous function γ : [0, L] −→ R

d, where L is the length of γ. The radii of the balls
along the backbone path are given by the function w : [0, L] −→ (0, wmax]. Both
γ and w are parameterized by the length of the backbone path. In the following,
we will refer to w(t) as the width of the corridor at point t. The width is positive
at any point along the corridor, and does not exceed wmax, a prescribed desired
width of the corridor.

Given a corridor C = 〈γ(t), w(t), wmax〉 of length L in R
d, the interior of the

corridor is thus defined by
⋃

t∈[0,L] B (γ(t);w(t)), where B(p; r) is an open d-
dimensional ball with radius r that is centered at p. In typical motion-planning
applications we are given a set of obstacles O that the moving entities should
avoid. The interior of the corridor should be disjoint from the interior of the
given obstacles, otherwise it is an invalid corridor. In this paper we study the
problem of computing valid corridors amidst obstacles in the plane.

2.1 The Weighted Length Measure

As we have already indicated, a good corridor must be short — namely its
backbone path should avoid unnecessarily long detours — and its width should
be as wide as some predefined maximum in order to allow maximal flexibility
for the motion within the corridor. The corridor should contain narrow passages
only if they allow considerable shortcuts.

If we examine the intersection of the corridor C = 〈γ(t), w(t), wmax〉 with
an orthogonal (d − 1)-dimensional hyperplane at γ(t), the volume of the cut is
proportional to wd−1(t). Thus, in order to combine the two desired properties of
the corridor as discussed above, we define the weighted length L∗(C) of a corridor
C = 〈γ(t), w(t), wmax〉 to be:

L∗(C) =
∫

γ

(
wmax

w(t)

)d−1

dt . (1)

We wish to minimize the weighted length by either shortening the backbone
path or by extending the corridor’s width (up to wmax). Given a start position
s ∈ R

d and a goal position g ∈ R
d, a corridor C = 〈γ(t), w(t), wmax〉 satisfying

γ(0) = s and γ(L) = g is optimal if for any other valid corridor C′ connecting
the two endpoints we have L∗(C) ≤ L∗(C′).

Our weighting scheme can be directly applied for extracting backbone paths
from Prms that contain cycles [11, 13], where instead of considering the Eu-
clidean length we try to minimize the weighted length of the backbone path we
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compute, in order to obtain a better corridor. However, for some sets of obstacles
we can actually devise a complete scheme for computing an optimal corridor, as
we show in the rest of this paper.

2.2 Properties of an Optimal Corridor

Observation 1. If for some portion of the backbone path γ of a corridor C,
we have w(t) < min{c(γ(t)), wmax} for t ∈ [t0, t0 + τ ] (τ > 0), where c(p) is
the clearance of the point p, namely its distance to the nearest obstacle, we can
improve the quality of the corridor by letting w(t) ←− min{c(γ(t)), wmax} for
each t ∈ [t0, t0 + τ ].

Given a set of obstacles and a wmax value, we can associate the bounded clearance
measure ĉ(p) with each point p ∈ R

d, where ĉ(p) = min{c(p), wmax}. Using
the observation above, it is clear that the width function of an optimal path
C = 〈γ(t), w(t), wmax〉 is simply w(t) = ĉ(γ(t)). Note that ĉ(γ(t)) is a continuous
function along any path γ.

Lemma 2. Given a set of obstacles and wmax, the backbone path of the optimal
corridor connecting any given start position s with any goal position g is smooth.

Proof. We have already observed that the weight function of the optimal corridor
connecting s and g is the bounded clearance function of the backbone path
and it is a continuous function. Assume that γ contains a sharp turn (a C1-
discontinuity). Let us shortcut the sharp turn using a circular arc of radius r (as
r approaches 0 the approximation is tighter). Let 	1 be the length of the original
path segment we shortcut and let 	2 be the length of the circular arc. It is easy
to show that there exist r̂ > 0 and some constants A1 > A2 > 0 such that for
each 0 < r < r̂ we have 	1 ≥ A1r and 	2 = A2r. If the maximal width w∗ along
the original path segment is obtained at some point p∗, then as the distance of
any point p along the circular arc from p∗ is bounded by Kr, where K is some
constant, and as the weight function is continuous, we can write w∗−w(p) < Mr
for some positive constant M . Let L∗

1 be the weighted length of the original path
segment and let L∗

2 be the weighted length of the circular arc. We can write:

L∗
1

L∗
2
≥

wmax
w∗ l1

wmax
w∗−Mr l2

=
w∗ −Mr

w∗ · A1

A2
.

As A1 > A2, we can choose 0 < r < min
{

w∗

M

(
1− A2

A1

)
, r̂
}

such that the entire
expression above is greater than 1. We thus have L∗

1 > L∗
2, and we managed to

decrease the weighted length of the corridor, in contradiction to its optimality.
We conclude that γ(t) must be a smooth function.  !

At several places in this paper we apply infinitesimal analysis, where we assume
that the bounded clearance measure (hence the weight function) is not continu-
ous. Assume that we have some hyperplane H in R

d that separates two regions,
such that in one region the bounded clearance is w1 and in the other it is w2.
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Minimizing the weighted length between two endpoints that are separated by
H is equivalent to applying Fermat’s principle, stating that the actual path be-
tween two points taken by a beam of light is the one which is traversed in the
least time. The optimal backbone thus crosses the separating hyperplane once,
such that the angles α1 and α2 it forms with the normal to H obey Snell’s Law
of refraction,2 with w1 and w2 playing the role of the “speed of light” in the
respective regions:

w2 sinα1 = w1 sinα2 . (2)

3 Optimal Corridors Amidst Point Obstacles

In this section we consider planar environments cluttered with point obstacles
p1, . . . , pn ∈ R

2 and a preferred corridor width wmax. Given two endpoints s, g ∈
R

2, we show how to compute a (near-)optimal corridor that connects s and g.

3.1 A Single Point Obstacle

Let us assume we have a single point obstacle p. Without loss of generality we
assume p is located at the origin. We start with computing an optimal corridor
between two endpoints whose distance from p is smaller than or equal to wmax.
Note that the width of such a corridor at γ(t) along its backbone is ‖γ(t)‖.

We first approximate the optimal backbone by a polyline: for any Δr > 0, if
we look at the circles of radii Δr, 2Δr, 3Δr, . . . that are centered at the origin,
each two neighboring circles define an annulus; since Δr is small we assume
that the distance from p of all points in the kth annulus is constant and equals
kΔr. Consider the scenario depicted in Figure 1(a), where γ enters one of the
annuli at some point A, where ‖A‖ = r1, and leaves this annulus at B, where
‖B‖ = r2 = r1 +Δr. The angles that the backbone path forms with pA and pB
are α1 and β1, respectively. When entering the annulus we have w1 = r1 and
w2 = r2, so applying Equation (2) we can express the refracted angle α2, using
sinα2 = r2

r1
sinα1. By applying the Law of Sines on the triangle �pAB, we get

r2
sin(π−α2)

= r1
sin β1

, therefore:

sinβ1 =
r1

r2
sin(π − α2) =

r1

r2
sinα2 = sinα1 .

Thus β1 = α1. Taking Δr −→ 0, we obtain a smooth curve γ, such that the
angle that ∇γ(t) forms with

−−−→
pγ(t) is a constant ψ. It is possible to show that a

curve that has this property must be segment of a logarithmic spiral (also named
an equiangular spiral)3 whose polar equation is given by r(t) = aebθ(t), where a
is a constant and b = cotψ. See, e.g., [2] for a proof of this latter fact.

2 See, e.g., http://scienceworld.wolfram.com/physics/SnellsLaw.html for the de-
tails and for a detailed proof. See also Mitchell and Papadimitriou [10], who used
this observation in a similar setting of the problem.

3 http://www-groups.dcs.st-and.ac.uk/∼history/Curves/Equiangular.html
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Fig. 1. Analysis of the optimal backbone path in the vicinity of a single obstacle:
(a) near a point obstacle p = (0, 0), (b) near a line segment supported by x = 0

Proposition 3. Given a single point obstacle located at the origin, a start po-
sition s = rse

iθs and a goal position g = rge
iθg (in polar coordinates), where

rs, rg ≤ wmax, the backbone of the optimal corridor connecting s and g is a spi-
ral arc supported by the logarithmic spiral r = a∗eb∗θ. Since both s and g lie on
this spiral, we have (assuming θs �= θg, otherwise the optimal backbone path is
simply a line segment):

a∗ = rg

θs
θs−θg · rs

− θg
θs−θg , b∗ =

1
θg − θs

· ln rg

rs
. (3)

We now consider the case where the clearance of the two endpoints exceeds
wmax, namely the two endpoints of our path lie outside the closure of the disc
B(p;wmax). There are two possible scenarios: (i) The straight line segment sg
does not intersect B(p;wmax); in this case, this segment is the backbone of
the optimal corridor. (ii) sg intersects B(p;wmax). In this latter case the op-
timal backbone path is a bit more involved. Consider some backbone path
γ connecting s and g. It is clear that the intersection of γ with B(p;wmax)

p
s

s′

s∗

wmax

g
g∗

g′

comprises a single component, so we denote the
point where the path enters the disc by s′ and the
point where it leaves the disc by g′ (see the illustra-
tion to the right). As s′ and g′ lie on the disc bound-
ary, their polar representation is s′ = wmaxe

iθs′ and
g′ = wmaxe

iθg′ , so we use Equation (3) and ob-
tain a∗ = wmax and b∗ = 0. The optimal path
between s′ and g′ therefore lies on the degener-
ate spiral r = wmax, namely the circle that forms
the boundary of B(p;wmax). We conclude that the
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optimal backbone path between s and g must contain a circular arc on the
boundary of B(p;wmax). As according to Lemma 2 this path must be smooth, it
should comprise two line segments ss∗ and g∗g that are tangent to the disc and
a circular arc that connects the two tangency points s∗ and g∗ (see the dashed
path in the figure above). Note that as there are two possible smooth paths from
s to g we select the shortest one.

3.2 Multiple Well-Separated Point Obstacles

Let us now go back to our original setting, where we are given a set of
point obstacles O = {p1, . . . , pn}, along with a preferred width wmax, and
wish to compute the optimal corridor from s to g, where we assume that
c(s) = mini ‖s− pi‖ ≥ wmax and c(g) = mini ‖g − pi‖ ≥ wmax.

In case the points are well separated — that is, for each i �= j the discs
B(pi;wmax) and B(pj ;wmax) are disjoint in their interiors (implying that ‖pi −
pj‖ ≥ 2wmax), we can follow the same arguments we used above for a single ob-
stacle and conclude that the optimal backbone is either the straight line segment
sg (in case it is free, namely its interior does not intersect the interior of any of
the discs), or it comprises circular arcs and line segments that connect them.

We can therefore construct the visibility graph of the dilated obstacles and
use it to construct optimal paths. The vertices of this graph are the endpoints
of the free bitangents to two dilated obstacles, which in turn are represented
as graph edges. In addition, each two neighboring tangency points on a disc
B(pi;wmax) are connected by a circular arc. Given a path-planning query, namely
two endpoints s and g, we treat s and g as vertices and add all free tangents
from s and from g to the discs as graph edges. If the segment sg is free, we add
it to the graph as well. We then perform Dijkstra’s algorithm from s to find the
shortest path to g in the resulting graph. The weight ω(e) given to each graph
edge e is its weighted length, which simply equals its length in this case.

Proposition 4. Given a set O of n point obstacles in the plane that are well-
separated with respect to wmax, and two endpoints s and g with clearance at
least wmax, it is possible to compute the optimal corridor connecting s and g in
O(E logn) time using the visibility graph of the dilated obstacles, where E is the
number of visibility edges in this graph.

3.3 Corridors Amidst Point Obstacles: The General Case

We now consider the case where the endpoints s and g have arbitrary clearance,
namely the dilated obstacles B(p1;wmax), . . . , B(pn;wmax) are not necessarily
pairwise disjoint in their interiors. The boundary of M =

⋃n
i=1 B(pi;wmax)

comprises whole circles and circular arcs, such that a common endpoint of two
arcs is a reflex vertex. We now construct V , the Voronoi diagram of the points,
and compute the intersection V ∩M, namely the portions of the Voronoi edges
contained within the union of the dilated obstacles. Note that reflex vertices are
equidistant to two point obstacles, so they serve as the connection points between
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p1
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p2

p4

p5

p6

p3

the Voronoi edges and the boundary arcs
of M. We will refer to the Voronoi edges
in V ∩M, together with the circular arcs
that form the boundary of M, as the
bounded Voronoi diagram of the point set
O = {p1, . . . , pn}, which we denote V̂(O).
The figure to the right shows the bounded
Voronoi diagram of six points; the bound-
ary of M is drawn is solid lines and the
Voronoi edges are dotted.

Note that V̂(O) partitions the plane
into two-dimensional cells of two types: Voronoi regions of the point obstacles,
and regions where the clearance is larger than wmax. Given two points s′ and g′

that belong to the same cell κ, we know that:

• If κ is a cell whose clearance is greater than wmax, the optimal backbone
path between s′ = (x1, y1) and g′ = (x2, y2) is the straight line segment σ
that connects them, provided that σ does not intersect any feature of V̂(O).
The weighted length of this segment simply equals the Euclidean distance
‖g′ − s′‖ =

√
(x2 − x1)2 + (y2 − y1)2.

• If κ is a Voronoi cell of a point obstacle pi, the optimal backbone path between
s′ and g′ is a spiral arc σ centered at pi, provided that σ does not intersect
any feature of V̂(O). If s′ = r1e

iθ1 and g′ = r2e
iθ2 are the polar coordinates of

the endpoints with respect to pi, the weighted length of σ is given by (recall
that from Equation (3) we have b = 1

θ2−θ1
· ln r2

r1
):

L∗(σ) =
∫ θ2

θ1

wmax

r(θ)

√
r2(θ) +

(dr
dθ

)2(θ) dθ =
∫ θ2

θ1

wmax

aebθ

√
1 + b2aebθ dθ =

=
∫ θ2

θ1

wmax

√
1 + b2 dθ = wmax

√
1 + b2(θ2 − θ1) =

= wmax
√

(θ2 − θ1)2 + (ln r2 − ln r1)2 .

In addition, the features of V̂(O) are also locally optimal, namely they can serve
as backbone paths of optimal corridors (see Figure 2(a)). We already know that
portions of the circular arcs that form the boundary of M are locally optimal,
and that the weighted length of such a circular arc simply equals its length.
The Voronoi edges are also locally optimal: given s′ and g′ on the same Voronoi
edge, the optimal backbone path that connects them is simply the straight line
segment s′g′ which coincides with the Voronoi edge.

Following the construction of the visibility graph of the dilated point obstacles
(Section 3.2), it is possible to add visibility edges to the bounded Voronoi dia-
gram, namely to consider every free bitangent of two circular arcs, every free line
segment from a reflex vertex tangent to a circular arc and every free line segment
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Fig. 2. (a) The spiral arc connecting q1 and q2 (dashed) crosses the Voronoi edge v1v2;
the optimal backbone path between q1 and q2 therefore comprises two spiral arcs that
shortcut v1 and v2 (solid arrows) and portions of Voronoi edges. (b) Shortcutting two
adjacent Voronoi vertices v1 and v2 by a single spiral arc. (c) Shortcutting two Voronoi
vertices by a cross-cell curve, which is a smooth concatenation of two spiral arcs. Both
arcs have a common tangent y = αx + b, which crosses the Voronoi edge v1v2 at q′.

between two reflex vertices.4 However, a path extracted from such a graph may
pass through Voronoi vertices and reflex vertices, thus it may contain sharp
turns. According to Lemma 2, such a path cannot serve as a backbone to an
optimal corridor. We can try and rectify this problem by introducing a shortcut
edge between each pair of Voronoi edges that are incident to a common Voronoi
vertex (see Figure 2(a) for an illustration), and between each pair consisting of
a Voronoi edge and a visibility edge that are both incident to a common reflex
vertex. However, this is not sufficient. We can show that it is sometimes possible
to shortcut two Voronoi vertices v1 and v2 at once by connecting two Voronoi
edges that are separated by another edge using a single curve. This curve may be
contained in a single Voronoi cell, as in the example depicted in Figure 2(b), or
it may cross the Voronoi edge v1v2 at some point q′ (see Figure 2(c)). We should
continue and examine the possibility of shortcutting k > 2 Voronoi vertices by
considering sequences of (k + 1) contiguous Voronoi edges and trying to locate
an endpoint q1 on the first edge and q2 on the last edge that are connected by a
smooth curve comprising spiral arcs. This operation is not trivial, and requires
solving a system of low-degree polynomial equations with 2(Nc + 1) unknowns,
where Nc is the number of crossings between the shortcut curve and the Voronoi
diagram. In some scenarios it may be possible to construct shortcuts to Θ(n)
Voronoi vertices by considering sequences of Θ(n) contiguous Voronoi edges,
thus the size of the augmented diagram may blow up exponentially.

We therefore devise an approximation algorithm based on the structure of the
bounded Voronoi diagram V̂(O) and the planar partition it induces. Given ε > 0,
we subdivide the line segments and the circular arcs that form the features of

4 The resulting construct is the visibility–Voronoi diagram of the obstacles; see [19]
for more details.
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V̂(O) into small intervals of length c(I)
wmax

ε (as ε is small, we consider the clearance
of an interval I to be constant and denote it c(I)). Notice that the intervals are
shorter in regions where the clearance is smaller, and that each interval has
weighted length ε. Hence, if Λ is the total weighted length of the features of
V̂(O), then there are Λ

ε intervals in total. Let us now define a graph D whose
set of nodes equals the set of intervals I. Each interval is incident to two of the
cells defined by the bounded Voronoi diagram, and we connect I1, I2 ∈ I by
an edge if and only if they are incident to a common cell. This edge is a line
segment in a cell where the clearance is larger than wmax, a spiral segment in a
Voronoi region of one of the point obstacles, a circular arc on the boundary of
a dilated obstacle, or a straight line segment on a Voronoi edge. In addition, an
edge should not cross any of the features of V̂(O). Using a brute-force algorithm
that checks each candidate edge versus the O(n) diagram features, D can be
constructed in O

(
Λ2

ε2 n
)

time.
Given two endpoints s and g, we can connect them to the graph and use

Dijkstra’s algorithm to compute a near-optimal backbone connecting s and g in
O
(

Λ2

ε2

)
time. Let γ∗ be the backbone path of the optimal corridor between s

and g, which comprises k = O(n) segments γ1, . . . , γk (a path segment may be
a straight line segment, a spiral arc, a portion of a circular arc or a portion of
a Voronoi edge). We next show that each such segment is approximated by an
edge in the graph D we have constructed.

Lemma 5. For each segment γi of the optimal backbone path γ∗, there exists an
edge e in D such that L∗(e) < L∗(γi) + 2

√
2ε.

Proof. Let us denote the endpoints of the path segment γi by q1 and q2, and let
I1 and I2 be the intervals that contain these endpoints, respectively.

In case γi is a straight line segment in a cell κ whose clearance is greater than
wmax, then its weighted length simply equals ‖q2 − q1‖, the Euclidean distance
between its endpoints. In the graph D there exists an edge connecting I1 and I2,
and we denote its endpoints by q̃1 and q̃2. By the construction of the intervals,
we know that ‖qj − q̃j‖ ≤ c(Ij)

wmax
ε = ε (for j = 1, 2), hence:

‖q̃2 − q̃1‖ < ‖q2 − q1‖+ 2ε .

Similar arguments hold when γi is a circular arc with clearance wmax.
In case γi is a segment on a Voronoi edge, the graph D contains a segment

q̃1q̃2 that in the worst case extends c(q1)
wmax

ε to one side of q1 and c(q2)
wmax

ε to the
other side of q2. Since the contribution of each of these extensions is wmax

c(qj)
times

its length (for j = 1, 2), the weighted length of q̃1q̃2 is at most 2ε more than
L∗(γi).

The case where γi is a spiral arc contained in a Voronoi cell of a point ob-
stacle pi is a bit more involved. Let q1 = r1e

iθ1 and q2 = r2e
iθ2 be the po-

lar coordinates of γi’s endpoints with respect to pi, then we have L∗(γi) =
wmax

√
(θ2 − θ1)2 + (ln r2 − ln r1)2. D contains a spiral arc connecting I1 and

I2, and we denote its endpoints by q̃j = r̃je
iθ̃j ∈ Ij (for j = 1, 2). As c(qj) = rj ,
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we know that the length of each of these two intervals is ‖Ij‖ = rj

wmax
ε. If we

denote Δθj = θj − θ̃j , we can write:

sin
(
Δθj

2

)
<

1
2‖Ij‖
rj

=
ε

2wmax
.

As for small angles sinφ ≈ φ, we conclude that |Δθj | < ε
wmax

. At the same time,
|Δrj | = |rj − r̃j | < εrj

wmax
, thus we have:

|ln r̃j − ln rj | <
∣∣∣∣ln
(
rj

(
1 +

ε

wmax

))
− ln rj

∣∣∣∣ = ln
(

1 +
ε

wmax

)
.

As ln(1 + x) ≈ x for small x values, we conclude that | ln r̃j − ln rj | < ε
wmax

. The
length of the approximated spiral arc contained in D can therefore be at most
L∗(γi) + 2

√
2ε.  !

Corollary 6. For each two endpoints s and g, it is possible to use the graph D
and compute a near-optimal backbone path γ̃ connecting s and g in O

(
Λ2

ε2

)
time,

such that L∗(γ̃) < L∗(γ∗) + O(n)ε.

4 Optimal Corridors Amidst Polygonal Obstacles

In this section we generalize the data structures introduced in Section 3 to com-
pute optimal corridors amidst polygonal obstacles. As we did in case of point
obstacles, we first examine how an optimal backbone path looks like in the vicin-
ity of a single obstacle. Note that the polygon P can be viewed as a collection
of points (vertices) and line segments (edges), such that the distance of a point
q ∈ R

2 to P is attained on a polygon vertex or in the interior of an edge. We
can thus subdivide the plane into regions, such that the identity of the closest
polygon feature is the same for all points in any of the regions. Using the analysis
we performed in Section 3.1 we already know that the optimal backbone path
in a region closest to a polygon vertex is an arc of a logarithmic spiral. We now
study the case of two points that lie in a region closest to a polygon edge.

Without loss of generality, we shall assume that the polygon edge we consider
is an arbitrarily long segment of the vertical line x = 0, and analyze the optimal
backbone path γ between two points s and g, whose distance from this line is
less than wmax (see Figure 1(b) for an illustration). Note that the width of the
corridor at γ(t) = (x(t), y(t)) simply equals |x(t)|.

We begin by approximating the backbone path by a polyline. Assume that
γ(t) passes through a point p0 = (x0, 0) and forms an angle α0 with the line y = 0
perpendicular to the obstacle. For any Δx > 0 we can define the lines x = x0, x =
x0 + Δx, x = x0 + 2Δx, . . ., where each two neighboring lines define a vertical
slab; since Δx is small we assume that the distance of all points in the slab from
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the obstacle is constant and equals x0 + kΔx. We can now use Equation (2)
and write: sinα1 = x0+Δx

x0
sinα0, sinα2 = x0+2Δx

x0+Δx sinα1 = x0+2Δx
x0

sinα0, . . .,
sinαk = x0+kΔx

x0
sinα0. If we examine the kth slab we can write x = x0 + kΔx,

so we have:

Δyk = Δx tanαk = Δx · sinαk√
1− sin2 αk

= Δx · x sinα0√
x2

0 − x2 sin2 α0

. (4)

Letting Δx tend to zero we obtain a smooth curve. We can use Equation (4) to
express the derivative of the curve and we obtain:

y′(x) = lim
Δx−→0

Δyk

Δx
=

x sinα0√
x2

0 − x2 sin2 α0

, (5)

y(x) = − 1
sinα0

√
x2

0 − x2 sin2 α0 + K . (6)

As the point (x0, 0) lies on the curve, it is easy to see that the constant K equals
x0 cotα0.

Observe that y(x) is defined only for x < x0
sin α0

. When x = x0
sin α0

the path is
reflected from the vertical wall and starts approaching the obstacle. We note that
squaring and re-arranging Equation (6) we obtain that x2 + (y − x0 cotα0)2 =(

x0
sin α0

)2
, thus we conclude that γ is a circular arc, whose supporting circle is

centered at C = (0, x0 cotα0) and its radius is x0
sin α0

.

Proposition 7. Given a start position s = (xs, ys) and a goal position g =
(xg, yg) in the vicinity of a segment supported by x = 0 and with 0 < xs, xg ≤
wmax, the backbone of the optimal corridor between these two endpoints is a
circular arc supported by a circle of radius r∗ that is centered at (0, y∗), where
(we assume that ys �= yg, otherwise the optimal backbone path is simply the line
segment sg):

y∗ =
ys + yg

2
+

x2
g − x2

s

2(yg − ys)
, (7)

r∗ =

√
1
2
(x2

s + x2
g) +

1
4
(yg − ys)2 +

(x2
g − x2

s)2

4(yg − ys)2
. (8)

4.1 Moving Amidst Multiple Polygons

We are given a set P = {P1, . . . , Pk} of polygonal obstacles having n vertices in
total, along with a preferred corridor width wmax.

We first mention that if the polygons are well-separated, namely the distance
between each Pi and Pj (1 ≤ i < j ≤ k) is more than 2wmax, we can use the
visibility graph of the dilated polygons to plan optimal backbone paths. The
dilated obstacles in this case are Minkowski sums of the polygonal obstacles
with a disc of radius wmax and their boundary comprises line segments, which
correspond to dilated polygon edges, and circular arcs, which correspond to
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dilated vertices. Visibility edges in this case correspond to line segments tangent
to two circular arcs. Proving that the visibility graph indeed contains optimal
backbone paths is done exactly the same as we did in Section 3.2 for point
obstacles.

In case there exist narrow passages between the obstacles, we generalize the
construction detailed in Section 3.3 to polygons, and introduce the bounded
Voronoi diagram of the set of polygons P . Note that in this case we have Voronoi
chains that are sequences of Voronoi edges. A Voronoi edge may be induced by
two polygon vertices or by two polygon edges, in which case it is a line segment,
or by a polygon vertex and an edge of another polygon, in which case it is a
parabolic arc. Thus, the Voronoi chains are smooth curves that are piecewise
linear or piecewise parabolic and are equidistant to two nearest polygons; see,
e.g., [8] for more details. The bounded Voronoi diagram V̂(P) also contains
edges that separate the Voronoi cells of adjacent polygon features, namely a
polygon edge and a vertex incident to this edge. These edges are line segments
perpendicular to the obstacles (see Figure 3 for an illustration).

Observe that if we are given two points on the same Voronoi chain, then the
locally optimal backbone path between them is simply the segment of the chain
they define. This is clear in case of point obstacles, as the edges are straight
line segments. In case of chains that separate Voronoi cells of polygons and may
contain parabolic arcs this fact is less obvious. However, we are able to prove that
parabolic arcs are also locally optimal — namely, it is not possible to shortcut
such an arc by choosing a shorter route that is closer to one of the polygons, as
such a route always has a larger weighted length. This proof is rather technical
and we refer the reader to [18] for its details.
V̂(P) subdivides the plane into cells of three types: regions where the clear-

ance is larger than wmax, Voronoi cells of polygon vertices, and Voronoi cells of
polygon edges. We have already encountered cells of the first two types in the
bounded Voronoi diagram of a set of points (Section 3.3). We also know from
Proposition 7 that if we have two points in the Voronoi cell of a polygon edge,
the optimal backbone path connecting them is a circular arc whose center lies
on this edge. Assume, without loss of generality, that the obstacle edge lies on
the line y = 0 and that the center of the circular arc a is the origin, and let
r∗eiθ1 and r∗eiθ2 be the arc endpoints. The weighted length of the circular arc
is therefore given by (note that r(θ) = r∗):

L∗(a) =
∫ θ2

θ1

wmax

r∗ sin θ

√
r2(θ) +

(dr
dθ

)2(θ) dθ =
∫ θ2

θ1

wmax

sin θ
dθ =

= wmax

(
ln

1− cos θ
sin θ

)∣∣∣∣
θ2

θ1

= wmax

(
ln tan

θ2

2
− ln tan

θ1

2

)
.

The approximation algorithm given in Section 3.3 can also be extended to
handle polygonal obstacles. In this case we also consider intervals that lie on
Voronoi edges that separate the Voronoi cell of each polygon into simple regions
— thus, each region is induced by a polygon vertex, a polygon edge, or correspond
to regions where the clearance is above wmax. We can show that Lemma 5 also
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g s

wmax

(a) (b)

Fig. 3. (a) A near-optimal backbone path (dashed) amidst polygonal obstacles, over-
layed on top of the the bounded Voronoi diagram of the obstacles. Boundary edges are
drawn in light solid lines, Voronoi chains between polygons are dotted, and Voronoi
edges that separate cells of adjacent polygon features are drawn in a light dashed line.
The bounded Voronoi diagram was computed using the software described in [19]. The
backbone path was computed using an A∗ algorithm on a fine grid discretizing the
environment. (b) Zooming on a portion of the path; notice the shortcuts that the path
takes.

applies for the circular arcs inside a Voronoi cell of a polygon edge: Let γi be
such a circular arc and let I1 and I2 be the intervals containing its endpoints
q1 and q2, receptively. D contains a circular arc σ connecting I1 and I2, and we
denote its endpoints q̃j = r̃je

iθ̃j ∈ Ij (for j = 1, 2). As c(qj) = r∗ sin θj , we know
that the length of each interval is ‖Ij‖ = r∗ sin θj

wmax
ε. If we denote Δθj = θj − θ̃j ,

we can write:

sin
(
Δθj

2

)
<

1
2‖Ij‖
r∗

=
ε

2wmax
sin θj .

As for small angles sinφ ≈ φ, we conclude that |Δθj | < ε
wmax

sin θ. If we use the
fact that f(x + Δx) ≈ f(x) + f ′(x)Δx (for small Δx) with f(x) = ln tan x

2 , we
can bound the weighted length of σ (recall that f ′(x) = 1

sin x in our case):

L ∗(σ) = wmax

(
ln tan

θ2 + Δθ2

2
− ln tan

θ1 + Δθ1

2

)
<

wmax

(
ln tan

θ2

2
+

ε sin θ2

wmax
· 1
sin θ2

− ln tan
θ1

2
+

ε sin θ1

wmax
· 1
sin θ1

)
= L∗(γi) + 2ε .

Corollary 8. Given a set of polygonal obstacles P having n vertices in total,
let Λ be the total weighted length of the bounded Voronoi diagram V̂(P) with
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respect to a given wmax value. Given ε > 0, we can construct a graph D over
the intervals of V̂(P) in O

(
Λ2

ε2 n
)

time, such that for each two endpoints s and
g it is possible to use D and compute a near-optimal backbone of a corridor C
connecting s and g. L∗(C) is at most O(n)ε more than the weighted length of
the optimal corridor connecting s and g.

5 Conclusions and Future Work

In this paper we have introduced a measure for the quality of corridors and
studied the structure of optimal corridors amidst point obstacles and polygonal
obstacles in the plane. We have devised an approximation algorithm for comput-
ing near-optimal corridors amidst obstacles. We are also investigating methods
to speed up our approximation algorithm, as well as design simple practical
methods to compute good corridors. We are interested in extending our result
to corridors in three dimensions as well.

In some applications having a winding backbone path decreases the qual-
ity of the corridor. We can therefore augment the weighted length function by
considering the curvature of the backbone path γ as follows:

L∗
μ(C) =

∫

γ

(
wmax

w(t)

)d−1

dt + μ

∫

γ

w(t)κ(t)dt , (9)

where κ(t) is the curvature of γ(t), and 0 < μ ≤ 1 is the weight we give to the
curvature measure. We are able to show that in case of well-separated obstacles,
optimal corridors under the L∗

μ measure are still contained in the visibility graph
of the obstacles dilated by wmax. We are still exploring methods of computing
optimal corridors in the case of denser scenes.
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Abstract. This paper presents a method of computing efficient and natural-looking
motions for humanoid robots walking on varied terrain. It uses a small set of high-
quality motion primitives (such as a fixed gait on flat ground) that have been generated
offline. But rather than restrict motion to these primitives, it uses them to derive
a sampling strategy for a probabilistic, sample-based planner. Results in simulation
on several different terrains demonstrate a reduction in planning time and a marked
increase in motion quality.

1 Introduction

In this paper we present a method of planning efficient and natural-looking mo-
tions for humanoid robots on varied terrain. One thing that makes this problem
difficult is that although humanoids have many degrees of freedom (dof), we do
not know in advance which of these dof are actually useful, nor which contacts
may be needed. On easy terrain like flat ground or stairs of fixed height, the
motion of a humanoid is lightly constrained, most of its dof are redundant,
and only feet need contact the ground. On hard terrain like steep rock or urban
rubble, the motion of a humanoid is highly constrained, most of its dof are es-
sential, and additional contacts (hands, knees, shoulders) might be required for
balance. On varied terrain, the number of relevant dof and the types of required
contacts may change from step to step.

Consequently, planners that simplify the problem by considering a subset
of the robot’s dof work well on easy terrain, but are not flexible enough to
handle varied terrain. For example, one strategy for a humanoid on mostly flat
ground is to precompute a library of feasible steps [22]. Each step is a continuous
trajectory that places one foot in a new location relative to the other. Motions are
constructed as a sequence of these steps. Because this only requires searching a
graph, rather than a high-dimensional configuration space, it can be done quickly.
More importantly, because the steps are precomputed, the resulting motion is
efficient and robust, and looks natural. However, when the ground is not flat –
in particular, when hands are required for balance – this approach may not be
able to find a feasible motion.

S. Akella et al. (Eds.): Algorithmic Foundation of Robotics VII, STAR 47, pp. 507–522, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Conversely, planners that consider all of the robot’s dof work well on hard
terrain, but do not generate efficient or natural-looking motions (when this is
possible) on varied terrain. For example, one strategy for a humanoid on severely
uneven ground (based on earlier work for a free-climbing robot [5]) begins by
identifying a number of potentially useful contacts [16]. Each mapping of hands
or feet to contacts is a stance, associated with a (possibly empty) set of feasi-
ble configurations that satisfy all motion constraints. The robot can take a step
from one stance to another if they differ by a single contact and if they share
a feasible configuration, called a transition. The planner proceeds in two stages:
first, it generates a candidate sequence of contacts by finding transitions between
stances; then, it refines this sequence into a feasible, continuous trajectory by
finding paths between subsequent transitions. Probabilistic, sample-based algo-
rithms are used to find both transitions and paths. This approach is fast on
irregular and steep terrain, because in this situation the robot’s motion is most
constrained just as it makes or breaks a contact. But when the ground is flat, this
approach takes longer than the one of [22], and may generate needless motions
of the arms or other dof that are not required for balance. These motions are
hard to eliminate in post-processing.

Rather than select one approach or the other, our planner combines the
strengths of both. First, we generate a small set of high-quality motion prim-
itives (similar to [22]), that might include a single step on flat ground, or an
arm movement that places a hand on a wall for balance. Here, these primitives
are produced by a lengthy off-line precomputation, but they might also be de-
signed by hand or even captured or learned from examples of human motion.
We record each motion primitive as a nominal path through the robot’s con-
figuration space (a joint-angle trajectory). Then, we use the two-stage strategy
of [5, 16] to plan motions of the humanoid on-the-fly. But instead of sampling
across all of configuration space to find transitions between stances and paths be-
tween transitions, we sample in a growing distribution around the nominal path
associated with a chosen motion primitive. Although still preliminary, our sim-
ulation results demonstrate a reduction in planning time and a marked increase
in motion quality1 for a humanoid walking on varied terrain.

2 Related Work

Motion primitives and other types of maneuvers have been applied widely to
robotics and digital animation. Four general strategies have been used:

Record and playback. This strategy restricts motion to a library of maneuvers.
Natural-looking humanoid locomotion on mostly flat ground can be planned as
a sequence of precomputed feasible steps [22]. Robust helicopter flight can be
planned as a sequence of feedfoward control strategies (learned by observing

1 Exactly how motion quality should be measured is an open question, beyond the
scope of this paper. Here, we define quality as inversely proportional to a linear
combination of path length and sum-squared distance from an upright posture.
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skilled human operators) to move between trim states [10, 11, 12, 31]. Robotic
juggling can be planned as a sequence of feedback control strategies [8]. The
motion of peg-climbing robots can be planned as a sequence of actions like
“grab the nearest peg” [3]. In these applications, a reasonably small library of
maneuvers is sufficient to achieve most desired motions. For humanoid robots
on varied terrain, such a library may grow to impractical size.

Warp, blend, or transform. Widely used for digital animation, this strategy also
restricts motion to a library of maneuvers, but allows these maneuvers to be
superimposed or transformed to better fit the task at hand. For example, cap-
tured motions of human actors can be “warped” to allow characters to reach
different footfalls [40] or “retargetted” to control characters of different mor-
phologies [13]. Of course, for a digital character it is most important to look
good while for a humanoid robot it is most important to satisfy hard motion
constraints. So although some techniques have been proposed to transform ma-
neuvers while maintaining physical constraints [34,39], this strategy seems better
suited for animation than robotics.

Model reduction. This strategy plans overall motion first, following this mo-
tion with a concatenation of primitives. For example, another way to generate
natural-looking humanoid locomotion on flat ground is to approximate the robot
as a cylinder, plan a 2-d collision-free path of this cylinder, and follow this path
with a fixed gait [21, 19, 32, 20]. A similar method is used to plan the motion
of nonholonomic wheeled vehicles [24, 23]. A related strategy plans the motion
of key points on a robot or digital actor (such as the center of mass or related
ground reference points [33]), tracking these points with an operational space
controller [38]. These approaches work well when it does not matter much where
a robot or digital actor contacts its environment. When the choice of contact
location is critical, as is often the case for humanoids on varied terrain, it makes
more sense to compute a sequence of footfalls first.

Bias inverse kinematic solutions. Like model reduction, this strategy first plans
the motion of key points on a robot or digital actor, such as the location of hands
or feet. But instead of a fixed controller, a search algorithm is used to compute
a pose of the robot or actor at each instant that tracks these points (an inverse
kinematic solution). One approach is to choose an inverse kinematic solution
according to a probability density function learned from high-quality example
motions [41, 15, 28, 29]. The set of examples give the resulting pose a particular
“style.” In fact, we take a similar approach in this paper, planning steps for a
humanoid by sampling waypoints in a growing distribution around high-quality
nominal paths.

3 Background

Our planner extends a similar one for humanoid robots [16], which was based on
earlier work for a free-climbing robot [5]. Here, we summarize our basic approach
and describe the limitations we address by using motion primitives.
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(a) (b)

Fig. 1. (a) The humanoid robot hrp-2 [18]. (b) Example of varied terrain.

3.1 Motion Constraints

We consider the humanoid hrp-2 (Fig. 1(a)). A configuration q consists of 6
parameters defining the position and orientation of the torso and a list of 30
revolute joint angles. The set of all such q is the configuration space, denoted Q,
of dimensionality 36. We consider terrain that might include a mixture of flat,
sloped, or rocky ground (Fig. 1(b)). We assume that this terrain and all robot
links are perfectly rigid. We also assume that we are given in advance a set
of links (such as hands, feet, or knees) that are allowed to touch the terrain.
We call the placement of a link on the terrain a contact, and fix the position
and orientation of the link while the contact is maintained. We call a set of
simultaneous contacts a stance, denoted by σ. Consider a stance σ with n ≥ 1
contacts. The feasible space Fσ is the set of all feasible configurations of the
robot at σ. To be in Fσ, a configuration q must satisfy several constraints:

Contact. The n contacts form a linkage with multiple closed-loop chains, so q
must satisfy inverse kinematic equations. Let Qσ ⊂ Q be the set of all configu-
rations q that satisfy these equations. This set is a possibly empty sub-manifold
of Q of dimensionality 36− 6n, which we call the stance manifold.

Equilibrium. To balance at a fixed stance σ, hrp-2 must apply forces at contacts
in σ that compensate for gravity without slip. For valid forces to exist, hrp-2’s
center of mass (cm) must lie above its support polygon. On varied terrain, this
polygon does not always correspond to the base of hrp-2’s feet [7, 5, 6]. So
we model each contact as a set of frictional points, and compute the support
polygon as in [16, 6]. When the cm lies above this polygon, we also check that
joint torques achieving the required contact forces are within bounds.

Collision. In addition to satisfying joint angle limits, the robot must avoid col-
lision with the environment (except at contacts) and with itself [14, 37].

3.2 Motion Planning

We assume hrp-2 moves from one place to another by taking a sequence of
steps. Each step is a continuous motion at a fixed stance that ends by making
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or breaking a single contact. In particular, suppose the robot begins at a config-
uration q ∈ Fσ at a stance σ. A single step from q consists of three parts: first,
a contact that is made or broken to move from σ to a new stance σ′; second, a
configuration q′ ∈ Fσ ∩ Fσ′ , which we call a transition, that is feasible at both σ
and σ′; third, a feasible path in Fσ from q to q′.

Following the approach of [16, 5], we make these three choices hierarchically.
To find a contact, we randomly sample potential placements of the robot’s links
in the terrain (or select a placement in σ to release). We use heuristics to de-
cide which placement is most likely to lead toward the goal. To find a transition
given σ′, we randomly sample configurations in Qσ (or in Qσ′ if σ ⊂ σ′) and
reject them if they are not in Fσ ∩ Fσ′ . We use the combination of a bounding-
volume technique similar to [9] and an iterative Newton-Raphson method to sam-
ple configurations in Qσ (which has zero measure in Q). To find a path given q′,
we use a variant of the probabilistic roadmap (prm) algorithm called sbl [36].
This algorithm is bidirectional (growing trees, as in [25], from both q and q′) and
lazy (delaying the creation of local paths until a candidate sequence of milestones
is found).

3.3 Current Limitations

Our search strategy postpones finding one-step paths (a costly computation)
until after finding transitions and contacts [16, 5]. It works well for hrp-2 on
irregular and steep terrain because in this situation, the robot’s motion is most
constrained just as it makes or breaks a contact. In particular, we have observed
in our experiments that if q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′ exist, then a path
between q and q′ in Fσ likely also exists.

However, because we randomly sample each transition and use prm to plan
each one-step path, the motions we generate are feasible (given an accurate
terrain model) but not necessarily high-quality. For example, when hrp-2 walks
on terrain that is not irregular and steep, its motion is lightly constrained. Each
step we generate might contain strange or erratic motions of the arms and legs.
These motions are difficult to eliminate in post-processing.

Also, because we randomly sample each contact, we might end up trying
difficult steps when simpler ones would have led to the goal as well. For example,
the robot might reach a stance σ associated with a feasible space Fσ containing
a narrow passage. With only a small perturbation of the contacts at σ, this
narrow passage is likely to disappear [17]. So although additional steps might
still be possible, they would be easier to compute if we had made a better choice
of contacts at σ.

4 Generating Motion Primitives

We address the limitations of our planner by using a library of motion primitives.
Each primitive is a single step of very high quality. In this section, we describe
how we generate primitives. In the following section, we will describe how they
guide our selection of paths, transitions, and contacts.
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(a)

(b)

Fig. 2. Two primitives on flat ground, to (a) place a foot and (b) remove a foot. The
support polygon – here, just the convex hull of supporting feet – is shaded blue.

Currently, it is the responsibility of the user to decide which primitives to
include in the library. First, we need to identify a small but representative set
of steps to be learned and to specify start and goal stances (differing by a single
contact) for each one. These steps should be both important (often repeated)
and broadly applicable (similar to a wide variety of other steps). For example,
we might choose to include several consecutive steps on flat ground, each placing
or removing a foot (Fig. 2). Next, we need to define a weighted set of criteria to
judge the quality of each step. For example, we might choose to minimize path
length, torque, energy, or the amount of deviation from an upright posture.
Finally, we need to decide whether to accept or reject a candidate primitive,
because we are not guaranteed that our optimization criteria correspond to our
aesthetic notion of what is “natural.”

It is the responsibility of the planner to actually compute each primitive.
First, we generate an initial trajectory between the given start and goal stances
by randomly sampling a feasible transition and creating a path to reach it us-
ing prm, as in [16, 5]. Then, we optimize this trajectory with respect to the
given objective function using a standard nonlinear optimization package [26].
This entire process is an off-line precomputation; several hours were required to
generate the two example primitives in Fig. 2.

The generation of motion primitives has not been the main focus of our work
(this paper concerns their application to planning), so many improvements may
be possible. For example, we expect better results to be obtained by using the
method of optimization proposed by [4]. Likewise, we might use a learned clas-
sifier to decide (without supervision) whether candidate primitives look natural,
as in [35]. Finally, we might automate the selection of primitives to include in our
library by learning a statistical model of importance (similar to location-based
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activity recognition [27]) or applicability after perturbation (similar to prm plan-
ning with model uncertainty [30]).

We record each primitive in our library as a nominal path

u : t ∈ [0, 1] → u(t) ∈ Q

in configuration space that does one of two things:

• Adds a contact. For some σ and σ′ such that σ ⊂ σ′, u is a feasible path
in Fσ from u(0) ∈ Fσ to u(1) ∈ Fσ ∩ Fσ′ .

• Removes a contact. For some σ and σ′ such that σ ⊃ σ′, u is a feasible path
in Fσ from u(0) ∈ Fσ to u(1) ∈ Fσ ∩ Fσ′ .

We will denote the start and goal stances for each primitive u by σu and σ′
u,

respectively. In general, u will only define a feasible step between σu and σ′
u, but

we will see in the next section that it can still be used to help guide our choice
of path, transition, and contact to reach other stances.

5 Using Primitives for Planning

We use motion primitives to help our planner generate each step. We do this
at three levels: finding a path (given a transition and a final stance), finding a
transition (given only the final stance), and finding a contact (in order to define
the final stance). In each case, first we transform the primitive to better match
the step we are trying to plan, then we apply the transformed primitive to bias
the sampling strategy used by our planner.

5.1 Finding Paths

Consider the robot at an initial configuration qinitial ∈ Fσ at an initial stance σ.
Assume that we are given a final stance σ′ and a transition qfinal ∈ Fσ ∩ Fσ′

(recall qfinal is a configuration feasible at both σ and σ′). Also assume that we
are given an appropriate primitive u ⊂ Q (as described in Section 4). We want
to use u to guide our search for a path from qinitial to qfinal in Fσ. As before,
we use sbl (a variant of prm) to grow trees from root configurations [36]. But
rather than root these trees only at qinitial and qfinal, we root them at additional
configurations (similar to [1]) sampled according to the primitive u.

Transforming the primitive to match qinitial and qfinal. Although we assume u
is similar to the step we are trying to plan, it will not be identical. So first, we
transform u so that it starts at qinitial and ends at qfinal. We have chosen to use
an affine transformation of the form

û(t) = A (u(t)− u(0)) + qinitial (1)

that maps the straight-line segment between u(0) and u(1) to the segment be-
tween qinitial and qfinal. In other words,



514 K. Hauser et al.

qinitial

qfinal

u(0)

u(1)

nominal path u

transformed path û

(a)

q1 (qinitial)

q5 (qfinal)

q2

q3

q4

q̂4

(b)

q1

q5

q2

q3

q4

(c) (d)

Fig. 3. Using a primitive to guide path planning. (a) Transforming a motion primitive
to start at qinitial and end at qfinal. (b) Sampling root milestones in Fσ near equally
spaced waypoints along û. (c) Growing trees to connect neighboring roots. (d) The
resulting path, which if possible is close to û (dotted).

û(0) = A (u(0)− u(0)) + qinitial û(1) = A (u(1)− u(0)) + qinitial

= 0 + qinitial = (qfinal − qinitial) + qinitial

= qinitial = qfinal

In particular, we select A closest to the identity matrix, minimizing

min
A

∑

i,j

(Aij − δi,j)2 such that A (u(1)− u(0)) = qfinal − qinitial

where δij = 1 if i = j and 0 otherwise. We compute A in closed form as

A = I +
((qfinal − qinitial)− (u(1)− u(0))) (u(1)− u(0))T

‖u(1)− u(0)‖2
2

.

We can visualize this transformation as in Fig. 3(a). First, u is translated to
start at qinitial. Then, the farther we move along u (the more we increase t), the
closer û is pushed toward the segment from qinitial to qfinal.
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Sampling root milestones. Let q1, . . . , qn be configurations evenly distributed
along û from qinitial to qfinal (Fig. 3(b)). For each i = 1, . . . , n, we test if qi ∈ Fσ.
If so, we add qi as a root milestone in our roadmap. If not, we repeatedly sample
other configurations in a growing neighborhood of qi until we find some feasi-
ble q′i ∈ Fσ, which we add as a root instead of qi.
Connecting neighboring roots with sampled trees. For i = 1, . . . , n− 1, we check
if the root milestone qi can be connected to its neighbor qi+1 with a feasible local
path (as in [16]). If not, we add the pair of roots (qi, qi+1) to a list R. Then,
we apply prm to grow trees between every pair in R. For example, in Fig. 3(c)
we add (q2, q3) and (q4, q5) to R and grow trees to connect both q2 with q3
and q4 with q5. We process all trees in parallel. So at every iteration, for each
pair (qi, qi+1) ∈ R, we first add m milestones to the trees at both qi and qi+1 (in
our experiments, we set m = 5). Then, we find the configurations q connected
to qi and q′ connected to qi+1 that are closest. If q and q′ can be connected
by a local path, we remove (qi, qi+1) from R. When we connect all neighboring
roots, we return the resulting path; if this does not happen after a fixed number of
iterations, we return failure. Just like our original implementation, this approach
will find a path between qinitial and qfinal whenever one exists (given enough
time). However, since we seed our roadmap with milestones that are close to u,
we expect the resulting motion to be similar (and of similar quality) to this
primitive whenever possible (Fig. 3(d)), deviating significantly from it only when
necessary.

5.2 Finding Transitions

Again consider the robot at a configuration qinitial ∈ Fσ at a stance σ. But now,
assume that we are only given a final stance σ′, so we use a primitive u to guide
our search for a transition before we plan a path to reach it.
Transforming the primitive to match σ and σ′. Since we do not know qfinal,
we can not use the same transformation (1) that we used for planning paths.
Instead, we choose a rigid-body transformation of the form

û(t) = Au(t) + b (2)

that maps the nominal stances σu and σ′
u (associated with the primitive u) as

closely as possible to the stances σ and σ′.
Recall that a stance consists of several contacts, each placing a link of the

robot on the terrain. If we model the surface of the terrain and all robot links as
a triangular mesh, then we can define the location of each placement by a finite
number of points ri ∈ R

3. For example, the face-face contact between a foot and
the ground might be defined by the vertices r1, r2, and r3 of a triangle. We
consider these points to be attached to the robot, so if the foot is placed against
a different face in the terrain, the points r1, r2, and r3 move in R

3 but remain
in the same location relative to the foot. We will use these points to define our
mapping between stances.

In particular, let ri ∈ R
3 for i = 1, . . . ,m be the set of all points defining the

contacts in both σu and σ′
u, and let si ∈ R

3 for i = 1, . . . ,m be the set of all
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points defining the contacts in both σ and σ′. (We assume u has been chosen so
that both sets have the same number of points.) Then we choose the rotation
matrix A and translation b in (2) that minimize

min
A,b

∑

i

‖Ari + b− si‖2
2.

We can compute A and b in closed form [2]. But, we only consider rotations A
about the gravity vector to avoid tilting the robot into an unstable orientation.

Sampling a transition. As before, we sample configurations q ∈ Qσ, keeping
them if q ∈ Fσ ∩ Fσ′ . But rather than sample configurations completely at ran-
dom, we sample them in a growing neighborhood of û(1). We expect a well-chosen
transition to further improve the quality of the path to reach it.

5.3 Finding Contacts

Once more, consider the robot at a configuration qinitial ∈ Fσ and a stance σ.
But now, assume we are given neither a final stance nor a transition, but only a
primitive u. If u removes a robot link from the terrain, we immediately generate
a final stance σ′ by removing the corresponding contact from σ. But if u places
a link in the terrain, we use it to guide our search for a new contact.

Transforming the primitive to match σ. We use the same transformation (2) to
construct û as for finding transitions. But here, we compute A and b to map
only σu to σ, since we do not know σ′. We use this transformation to adjust
the placement of the new contact given by u. Let ri ∈ R

3 for i = 1, . . . ,m be
the set of points defining this contact. Then the transformed contact is given
by r̂i = Ari + b for i = 1, . . . ,m.

Sampling a contact. We define a sphere of radius δ, centered at (1/m)
∑

i r̂i.
We increase δ until the intersection of this sphere with the terrain is non-empty
(initially, we set δ approximately the size of hrp-2’s foot). We randomly sample
a placement of the points r̂i on the surface of the terrain inside the sphere, by
first sampling a position of their centroid s ∈ R

3 on the surface, then sampling a
rotation of r̂i about the surface normal at s. We check that the contact defined
by this placement has similar properties (normal vector, friction coefficient) to
the contact defined by u. If so, we add it to σ to form σ′. If not, we reject it and
sample another placement.

5.4 Deciding Which Primitive to Use

It only remains to decide which primitive u should be used, given an initial
stance σ and configuration qinitial. We have experimented with a variety of heuris-
tics. For example, we might pick the primitive that most closely matches σu

with σ (in other words, that minimizes the error in a transformation of the
form (2)). Likewise, we might pick the primitive that most closely matches σ′

u

with the actual terrain. However, the best approach is still not clear, and this
issue remains an important area for future work.
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6 Results

An example of climbing a single stair. With each additional part of a step that
we compute using a primitive, we add to the quality of the result. For example,
consider the motion of hrp-2 in Fig. 4 to climb a single stair of height 0.3m (just
below the knee). This motion was planned from scratch, by randomly sampling
contacts and transitions and by using prm to generate paths. The robot does
not look natural – its arm and leg motions are erratic, and its step over the
stair is needlessly long. To improve this motion, we applied the two primitives
shown in Fig. 2 (steps on flat ground). Fig. 5 shows the result of using these
primitives to plan each path. Some erratic leg motions are eliminated, such as
the backward movement of the leg in the second frame. The erratic arm motions
remain, however, because the transition in the fourth frame is the same (still
randomly sampled). Fig. 6 shows the result of using primitives to adjust this
transition as well as to plan paths, eliminating most of the erratic arm motions.
Finally, Fig. 7 shows the result of using primitives to select contacts well as
plan transitions and paths. The chosen contact resulted in a much easier step,
eliminating the extreme lean in the fifth frame.

Planning time and motion quality for stairs of different heights. In our exper-
iments, we have observed that planning time remains low and motion quality
remains high even when we use a primitive to plan a step that is quite different.
For example, we adapted the same two primitives in Fig. 2 to stairs of height
0.2m and 0.4m as well as 0.3m. Fig. 8 shows the results, averaged over five runs.
Quality is measured by an objective function that penalizes both path length
and deviations from an upright posture (lower values indicate higher quality).
For comparison, we report the minimum objective value achieved after a lengthy
off-line optimization. These results demonstrate that our use of primitives pro-
vides a modest reduction in planning time but significantly improves motion
quality. Note also that both time and quality degrade gracefully as the step we
are planning deviates further from the primitive.

A variety of other examples. We have tested our planner in many other example
environments. Fig. 9 shows hrp-2 on uneven terrain (using the primitives in
Fig. 2), in which the highest and lowest point differ by 0.5m. Fig. 10 shows hrp-2

climbing a ladder with rungs that have non-uniform spacing and that deviate
from horizontal by up to 15◦. The primitives for this example were generated on
a ladder with horizontal, uniformly spaced rungs. Fig. 11 shows hrp-2 making
several sideways steps among boulders, using the hands for support. Here, the
primitives were generated by stepping sideways on flat ground while pushing
against a vertical wall. Fig. 12 shows hrp-2 traversing very rough terrain with
slopes up to 40◦. This motion was generated with a larger set of primitives
(including steps of several heights, a pivot step, and a high step using the hand
for support). In all of these examples, contacts were sampled on-the-fly (using
motion primitives), not placed by hand. Planning for the first three examples
took about one minute on a 1.8 GHz pc. The fourth took example about eight
minutes.
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Fig. 4. Stair step planned entirely from scratch

Fig. 5. Primitives guide path planning, reducing unnecessary leg motions

Fig. 6. Primitives guide transition sampling, reducing unnecessary arm motions

Fig. 7. Primitives guide the choice of contact, resulting in an easier step



Using Motion Primitives in Probabilistic Sample-Based Planning 519

Stair From scratch Adapt primitive Optimal
height Time Objective Time Objective objective
0.2m 8.61 5.03 5.42 3.04 2.19
0.3m 10.3 4.67 4.08 2.31 2.17
0.4m 12.2 5.15 10.8 3.27 2.55

Fig. 8. Planning time and objective function values for stair steps, averaged over 5
runs

Fig. 9. A planar walking primitive adapted to slightly uneven terrain

Fig. 10. A ladder climbing primitive adapted to a new ladder with uneven rungs
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Fig. 11. A side-step primitive using the hands for support, adapted to a terrain with
large boulders. Hand support is necessary because the robot must walk on a highly
sloped boulder.

Fig. 12. A motion on steep and uneven terrain generated from a set of several primi-
tives. A hand is being used for support in the third configuration.

7 Conclusion

In this paper we described a method of computing efficient and natural-looking
motions for humanoids walking on varied terrain. We used a set of motion primi-
tives, generated offline, to derive a sampling strategy for a probabilistic, sample-
based planner. Our experimental results on several different examples demon-
strated a reduction in planning time and a marked increase in motion quality.
However, much work remains to be done. For example, our heuristics for decid-
ing which primitives to generate and for choosing primitives appropriate to each
step could be improved. One might even consider the use of several primitives
concurrently, or the use of a primitive that encodes several steps rather than just
a single step. Finally, even though primitives increase motion quality, a better
method of post-processing would improve our results.
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9. Cortés, J., Siméon, T., Laumond, J.-P.: A random loop generator for planning the
motions of closed kinematic chains using prm methods. In: IEEE Int. Conf. Rob.
Aut., Washington (2002)

10. Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for non-
linear systems with symmetries. IEEE Trans. Robot. 25(1), 116–129 (2002)

11. Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile au-
tonomous vehicles. AIAA J. of Guidance, Control, and Dynamics 25(1), 116–129
(2002)

12. Gavrilets, V., Frazzoli, E., Mettler, B., Peidmonte, M., Feron, E.: Aggressive ma-
neuvering of small autonomous helicopters: A human-centered approach. Int. J.
Rob. Res. 20(10), 795–807 (2001)

13. Gleicher, M.: Retargetting motion to new characters. In: SIGGRAPH, pp. 33–42
(1998)

14. Gottschalk, S., Lin, M., Manocha, D.: OBB-tree: A hierarchical structure for rapid
interference detection. In: ACM SIGGRAPH, pp. 171–180 (1996)

15. Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kine-
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