
Trivium�

Christophe De Cannière1,2 and Bart Preneel1

1 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC and IBBT,
Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium

2 Département d’Informatique École Normale Supérieure,
45, rue d’Ulm, F-75230 Paris cedex 05

christophe.decanniere@{esat.kuleuven.be,ens.fr}

Abstract. In this chapter, we propose a new stream cipher construction
based on block cipher design principles. The main idea is to replace
the building blocks used in block ciphers by equivalent stream cipher
components. In order to illustrate this approach, we construct a very
simple synchronous stream cipher which provides a lot of flexibility for
hardware implementations, and seems to have a number of desirable
cryptographic properties.

1 Introduction

In the last few years, widely used stream ciphers have started to be systematically
replaced by block ciphers. An example is the A5/1 stream cipher used in the
GSM standard. Its successor, A5/3, is a block cipher. A similar shift took place
with wireless network standards. The security mechanism specified in the original
IEEE 802.11 standard (called ‘wired equivalent privacy’ or WEP) was based on
the stream cipher RC4; the newest standard, IEEE 802.11i, makes use of the
block cipher AES.

The declining popularity of stream ciphers can be explained by different fac-
tors. The first is the fact that the security of block ciphers seems to be better
understood. Over the last decades, cryptographers have developed a rather clear
vision of what the internal structure of a secure block cipher should look like.
This is much less the case for stream ciphers. Stream ciphers proposed in the
past have been based on very different principles, and many of them have shown
weaknesses. A second explanation is that efficiency, which has been the tradi-
tional motivation for choosing a stream cipher over a block cipher, has ceased
to be a decisive factor in many applications: not only is the cost of comput-
ing power rapidly decreasing, today’s block ciphers are also significantly more
efficient than their predecessors.

Still, as pointed out by the eSTREAM Stream Cipher Project, it seems that
stream ciphers could continue to play an important role in those applications
� The work described in this chapter has been partly supported by the European

Commission under contract IST-2002-507932 (ECRYPT), by the Fund for Scientific
Research – Flanders (FWO), and the Chaire France Telecom pour la sécurité des
réseaux de télécommunications.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 244–266, 2008.
� Springer-Verlag Berlin Heidelberg 2008

Trivium 245

where high througput remains critical and/or where resources are very restricted.
This poses two challenges for the cryptographic community: first, restoring the
confidence in stream ciphers, e.g., by developing simple and reliable design cri-
teria; secondly, increasing the efficiency advantage of stream ciphers compared
to block ciphers.

In this chapter, we try to explore both problems. The first part of this chapter
reviews some concepts which lie at the base of today’s block ciphers (Sect. 3), and
studies how these could be mapped to stream ciphers (Sects. 4–5). The design
criteria derived this way are then used as a guideline to construct a simple and
flexible hardware-oriented stream cipher in the second part (Sect. 6).

2 Security and Efficiency Considerations

Before devising a design strategy for a stream cipher, it is useful to first clearly
specify what we expect from it. Our aim in this chapter is to design hardware-
oriented binary additive stream ciphers which are both efficient and secure. The
following sections briefly discuss what this implies.

2.1 Security

The additive stream cipher which we intend to construct takes as input a k-bit
secret key K and a v-bit IV. The cipher is then requested to generate up to
2d bits of key stream zt = SK(IV, t), 0 ≤ t < 2d, and a bitwise exclusive OR
of this key stream with the plaintext produces the ciphertext. The security of
this additive stream cipher is determined by the extent to which it mimics a
one-time pad, i.e., it should be hard for an adversary, who does not know the
key, to distinguish the key stream generated by the cipher from a truly random
sequence. In fact, we would like this to be as hard as we can possibly ask from
a cipher with given parameters k, v, and d. This leads to a criterion called
K-security [1], which can be formulated as follows:

Definition 1. An additive stream cipher is called K-secure if any attack against
this scheme would not have been significantly more difficult if the cipher had been
replaced by a set of 2k functions SK : {0, 1}v×{0, . . . , 2d−1} → {0, 1}, uniformly
selected from the set of all possible functions.

The definition assumes that the adversary has access to arbitrary amounts of
key stream, that he knows or can choose the a priory distribution of the secret
key, that he can impose relations between different secret keys, etc.

Attacks against stream ciphers can be classified into two categories, depending
on what they intend to achieve:

– Key recovery attacks, which try to deduce information about the secret key
by observing the key stream.

– Distinguishing attacks, the goal of which is merely to detect that the key
stream bits are not completely unpredictable.

246 C. De Cannière and B. Preneel

Owing to their weaker objective, distinguishing attacks are often much easier
to apply, and consequently harder to protect against. Features of the key stream
that can be exploited by such attacks include periodicity, dependencies between
bits at different positions, non-uniformity of distributions of bits or words, etc.
In this chapter we will focus in particular on linear correlations, as it appeared
to be the weakest aspect in a number of recent stream cipher proposals such
as Sober-tw [2] and Snow 1.0 [3]. Our first design objective will be to keep
the largest correlations below safe bounds. Other important properties, such as
a sufficiently long period, are only considered afterwards. Note that this ap-
proach differs from the way LFSR or T-function based schemes are constructed.
The latter are typically designed by maximizing the period first, and only then
imposing additional requirements.

2.2 Efficiency

In order for a stream cipher to be an attractive alternative to block ciphers, it
must be efficient. In this chapter, we will be targeting hardware applications,
and a good measure for the efficiency of a stream cipher in this environment is
the number of key stream bits generated per cycle per gate.

There are two ways to obtain an efficient scheme according to this measure.
The first approach is illustrated by A5/1, and consists in minimizing the number
of gates. A5/1 is extremely compact in hardware, but it cannot generate more
than one bit per cycle. The other approach, which was chosen by the designers of
Panama [4], is to dramatically increase the number of bits per cycle. This allows
to reduce the clock frequency (and potentially also the power consumption)
at the cost of an increased gate count. As a result, Panama is not suited for
environments with very tight area constraints. Similarly, designs such as A5/1
will not perform very well in systems which require fast encryption at a low clock
frequency. One of the objectives of this chapter is to design a flexible scheme
which performs reasonably well in both situations.

3 How Block Ciphers Are Designed

As explained above, the first requirement we impose on the construction is that
it generates key streams without exploitable linear correlations. This problem
is very similar to the one faced by block cipher designers. Hence, it is natural
to attempt to borrow some of the techniques used in the block cipher world.
The ideas relevant to stream ciphers are briefly recapitulated in the following
sections.

3.1 Block Ciphers and Linear Characteristics

An important problem in the case of block ciphers is that of restricting linear cor-
relations between input and output bits in order to thwart linear cryptanalysis.

Trivium 247

x1 x2 x3 x4

S S S S

S S S S

y1 y2 y3 y4

M

Fig. 1. Three layers of a block cipher

More precisely, let P be any plaintext block and C the corresponding ciphertext
under a fixed secret key, then any linear combination of bits

ΓT
P · P + ΓT

C · C ,

where the column vectors ΓP and ΓC are called linear masks, should be as
balanced as possible. That is, the correlation (or imbalance)

c = 2 · |{P | Γ
T
P · P = ΓT

C · C}|
|{P}| − 1

has to be close to 0 for any ΓP and ΓC . The well-established way to achieve
this consists in alternating two operations. The first splits blocks into smaller
words which are independently fed into nonlinear substitution boxes (S-boxes);
the second step recombines the outputs of the S-boxes in a linear way in order to
‘diffuse’ the nonlinearity. The result, called a substitution-permutation network,
is depicted again in Fig. 1.

In order to estimate the strength of a block cipher against linear cryptanalysis,
one will typically compute bounds on the correlation of linear characteristics. A
linear characteristic describes a possible path over which a correlation might
propagate through the block cipher. It is a chain of linear masks, starting with a
plaintext mask and ending with a ciphertext mask, such that every two successive
masks correspond to a nonzero correlation between consecutive intermediate
values in the cipher. The total correlation of the characteristic is then estimated
by multiplying the correlations of all separate steps (as dictated by the Piling-up
Lemma).

3.2 Branch Number

Linear diffusion layers, which can be represented by a matrix multiplication
Y = M · X , do not by themselves contribute in reducing the correlation of a
characteristic. Clearly, it suffices to choose ΓX = MT · ΓY , where MT denotes
the transpose of M , in order to obtain perfectly correlating linear combinations
of X and Y :

248 C. De Cannière and B. Preneel

ΓT
Y · Y = ΓT

Y ·MX = (MTΓY)T ·X = ΓT
X ·X .

However, diffusion layers play an important indirect role by forcing characteris-
tics to take into account a large number of nonlinear S-boxes in the neighboring
layers (called active S-boxes). A useful metric in this context is the branch num-
ber of M .

Definition 2. The branch number of a linear transformation M is defined as

B = min
ΓY �=0

[wh(ΓY) + wh(MTΓY)] ,

where wh(Γ) represents the number of nonzero words in the linear mask Γ .

The definition above implies that any linear characteristic traversing the struc-
ture shown in Fig. 1 activates at least B S-boxes. The total number of active
S-boxes throughout the cipher multiplied by the maximal correlation over a
single S-box gives an upper bound for the correlation of the characteristic.

The straightforward way to minimize this upper bound is to maximize the
branch number B. It is easy to see that B cannot exceed m + 1, with m the
number of words per block. Matrices M that satisfy this bound (known as the
Singleton bound) can be derived from the generator matrices of maximum dis-
tance separable (MDS) block codes.

Large MDS matrices are expensive to implement, though. Therefore, it is often
more efficient to use smaller matrices, with a relatively low branch number, and
to connect them in such a way that linear patterns with a small number of active
S-boxes cannot be chained together to cover the complete cipher. This was the
approach taken by the designers of Rijndael [5].

4 From Blocks to Streams

In this section, we try to adapt the concepts described above to a system where
the data is not processed in blocks, but rather as a stream.

Since the data stream enters the system one word at a time, each layer of
S-boxes in Fig. 1 can be replaced by a single S-box which substitutes individual
words as they arrive. A general mth-order linear filter can take over the task of
the diffusion matrix. The new system is represented in Fig. 2, where D denotes
the delay operator (usually written as z−1 in signal processing literature), and
f and g are linear functions.

4.1 Polynomial Notation

Before analyzing the properties of this construction, we introduce some nota-
tions. First, we adopt the common convention to represent streams of words
x0, x1, x2, . . . as polynomials with coefficients in the finite field:

x(D) = x0 + x1D + x2D
2 +

Trivium 249

. . . , x4, x3 S D D D D S y3, y2, . . .

f

g

Fig. 2. Stream equivalent of Fig. 1

. . . , 0, 0, 1 0 0 1 0 y

Fig. 3. A 4th-order linear filter

The rationale for this representation is that it simplifies the expression for the
input/output relation of the linear filter, as shown in the following equation:

y(D) =
f(D)
g(D)

· [x(D) + x0(D)
]
+ y0(D) . (1)

The polynomials f and g describe the feedforward and feedback connections of
the filter. They can be written as

f(D) = Dm · (fmD−m + · · ·+ f1D
−1 + 1

)
,

g(D) = 1 + g1D + g2D
2 + · · ·+ gmDm .

The Laurent polynomials x0 and y0 represent the influence of the initial state s0,
and are given by x0 = D−m · (s0 · g mod Dm

)
and y0 = D−m · (s0 · f mod Dm

)
.

Example 1. The 4th-order linear filter depicted in Fig. 3 is specified by the poly-
nomials f(D) = D4 · (D−2 +1) and g(D) = 1+D3 +D4. Suppose that the delay
elements are initialized as shown in the figure, i.e., s0(D) = D. Knowing s0, we
can compute x0(D) = D−3 and y0(D) = D−1. Finally, using (1), we find the
output stream corresponding to an input consisting, for example, of a single 1
followed by 0’s (i.e., x(D) = 1):

y(D) =
D−1 + D + D2 + D4

1 + D3 + D4
+ D−1

= D + D3 + D5 + D6 + D7 + D8 + D12 + D15 + D16 + D18 + . . .

250 C. De Cannière and B. Preneel

4.2 Linear Correlations

In order to study correlations in a stream-oriented system we need a suitable way
to manipulate linear combinations of bits in a stream. It will prove convenient
to represent them as follows:

Tr
[
[γx(D−1) · x(D)]0

]
.

The operator [·]0 returns the constant term of a polynomial, and Tr(·) denotes the
trace to GF(2).1 The coefficients of γx, called selection polynomial, specify which
words of x are involved in the linear combination. In order to simplify expressions
later on we also introduce the notation γ∗(D) = γ(D−1). The polynomial γ∗ is
called the reciprocal polynomial of γ.

As before, the correlation between x and y for a given pair of selection poly-
nomials is defined as

c = 2 · |{(x, s0) | Tr[[γ∗
x · x]0] = Tr[[γ∗

y · y]
0
]}|

|{(x, s0)}| − 1 ,

where deg x ≤ max(deg γx, deg γy).

4.3 Propagation of Selection Polynomials

Let us now analyze how correlations propagate through the linear filter. For each
selection polynomial γx at the input, we would like to determine a polynomial
γy at the output (if it exists) such that the corresponding linear combinations
are perfectly correlated, i.e.,

Tr[[γ∗
x · x]0] = Tr[[γ∗

y · y]
0
], ∀x, s0 .

If this equation is satisfied, then this will still be the case after replacing x by
x′ = x+x0 and y by y′ = y+y0, since x0 and y0 only consist of negative powers,
none of which can be selected by γx or γy. Substituting (1), we find

Tr[[γ∗
x · x′]0] = Tr[[γ∗

y · f/g · x′]
0
], ∀x, s0 ,

which implies that γ∗
x = γ∗

y ·f/g. In order to get rid of negative powers, we define
f� = Dm · f∗ and g� = Dm · g∗ (note the subtle difference between both stars),
and obtain the equivalent relation

γy = g�/f� · γx . (2)

Note that neither of the selection polynomials γx and γy can have an infinite
number of nonzero coefficients (if it were the case, the linear combinations would
be undefined). Hence, they have to be of the form

γx = q · f�/ gcd(f�, g�) and γy = q · g�/ gcd(f�, g�) , (3)

with q(D) an arbitrary polynomial.

1 The trace from GF (2n) to GF (2) is defined as Tr(a) = a + a2 + a4 + · · · + a2n−1
.

Trivium 251

Example 2. For the linear filter in Fig. 3, we have that f�(D) = 1 + D2 and
g�(D) = D4 · (D−4 + D−3 + 1). In this case, f� and g� are coprime, i.e.,
gcd(f�, g�) = 1. If we arbitrarily choose q(D) = 1 + D, we obtain a pair of
selection polynomials

γx(D) = 1 + D + D2 + D3 and γy(D) = 1 + D2 + D4 + D5 .

By construction, the corresponding linear combinations of input and output bits
satisfy the relation

Tr(x0 + x1 + x2 + x3) = Tr(y0 + y2 + y4 + y5), ∀x, s0 .

4.4 Branch Number

The purpose of the linear filter, just as the diffusion layer of a block cipher,
will be to force linear characteristics to pass through as many active S-boxes as
possible. Hence, it makes sense to define a branch number here as well.

Definition 3. The branch number of a linear filter specified by the polynomials
f and g is defined as

B = min
γx �=0

[wh(γx) + wh(g�/f� · γx)]

= min
q �=0

[wh(q · f�/ gcd(f�, g�)) + wh(q · g�/ gcd(f�, g�))] ,

where wh(γ) represents the number of nonzero coefficients in the selection poly-
nomial γ.

From this definition we immediately obtain the following upper bound on the
branch number

B ≤ wh(f�) + wh(g�) ≤ 2 · (m + 1) . (4)

Filters for which this bound is attained can be derived from MDS convolutional
(2, 1, m)-codes [6]. For example, one can verify that the 4th-order linear filter
over GF(28) with

f(D) = D4 · (02xD−4 + D−3 + D−2 + 02xD−1 + 1
)

,

g(D) = 1 + 03xD + 03xD2 + D3 + D4 ,

has a branch number of 10. The example uses the same field polynomial as
Rijndael, i.e., x8 + x4 + x3 + x + 1. Note that in the next sections, we will not
try to maximize the branch number, but use much sparser linear filters instead.

5 Constructing a Key Stream Generator

In the previous section, we introduced S-boxes and linear filters as building
blocks, and presented some tools to analyze how they interact. Our next task is to
determine how these components can be combined into a key stream generator.
Again, block ciphers will serve as a source of inspiration.

252 C. De Cannière and B. Preneel

5.1 Basic Construction

A well-known way to construct a key stream generator from a block cipher is to
use the cipher in output feedback (OFB) mode. This mode of operation takes
as input an initial data block (called initial value or IV), passes it through the
block cipher, and feeds the result back to the input. This process is iterated and
the consecutive values of the data block are used as key stream. We recall that
the block cipher itself typically consists of a sequence of rounds, each comprising
a layer of S-boxes and a linear diffusion transformation.

By taking the very same approach, but this time using the stream cipher
components presented in Sect. 4, we obtain a construction which, in its simplest
form, might look like Fig. 4(a). The figure represents a key stream generator
consisting of two ‘rounds’, where each round consists of an S-box followed by a
very simple linear filter. Data words traverse the structure in clockwise direction,
and the output of the second round, which also serves as key stream, is fed back
to the input of the first round.

While the scheme proposed above has some interesting structural similarities
with a block cipher in OFB mode, there are important differences as well. The
most fundamental difference comes from the fact that linear filters, as opposed
to diffusion matrices, have an internal state. Hence if the algorithm manages to
keep this state (or at least parts of it) secret, then this eliminates the need for a
separate key addition layer (another important block cipher component, which
we have tacitly ignored so far).

5.2 Analysis of Linear Characteristics

As stated before, the primary goal in this chapter is to construct a scheme which
generates a stream of seemingly uncorrelated bits. More specifically, we would

S

S

z

(a)

S

S

z

(b)

Fig. 4. Two-round key stream generators

Trivium 253

like the adversary to be unable to detect any correlation between linear combi-
nations of bits at different positions in the key stream. In the following sections,
we will see that the study of linear characteristics provides some guidance on
how to design the components of our scheme in order to reduce the magnitude
of these correlations.

Applying the tools from Sect. 4 to the construction in Fig. 4(a), we can easily
derive some results on the existence of low-weight linear characteristics. The
term ‘low-weight’ in this context refers to a small number of active S-boxes.
Since we are interested in correlations which can be detected by an adversary,
we need both ends of the characteristic to be accessible from the key stream. In
order to construct such characteristics, we start with a selection polynomial γu

at the input of the first round, and analyze how it might propagate through the
cipher.

First, the characteristic needs to cross an S-box. The S-box preserves the po-
sitions of the non-zero coefficients of γu, but might modify their values. For now,
however, let us only consider characteristics for which the values are preserved
as well. Under this assumption and using (2), we can compute the selection
polynomials γv and γw at the input and the output of the second round:

γv = g�
1/f�

1 · γu and γw = g�
2/f�

2 · γv .

Since all three polynomials γu, γv, and γw need to be finite, we have that

γu = q · f�
1 f�

2 /d , γv = q · g�
1f�

2 /d , and γw = q · g�
1g�

2/d ,

with d = gcd(f�
1 f�

2 , g�
1f�

2 , g�
1g�

2) and q an arbitrary polynomial. Note that since
both γu and γw select bits from the key stream z, they can be combined into a
single polynomial γz = γu + γw.

The number of S-boxes activated by a characteristic of this form is given by
W = wh(γu) + wh(γv). The minimum number of active S-boxes over this set of
characteristics can be computed with the formula

Wmin = min
q �=0

[wh(q · f�
1 f�

2 /d) + wh(q · g�
1f�

2 /d)] ,

from which we derive that

Wmin ≤ wh(f�
1 f�

2) + wh(g�
1f�

2) ≤ wh(f�
1) · wh(f�

2) + wh(g�
1) · wh(f�

2) .

Applying this bound to the specific example of Fig. 4(a), where wh(f�
i) =

wh(g�
i) = 2, we conclude that there will always exist characteristics with at most

8 active S-boxes, no matter where the taps of the linear filters are positioned.

5.3 An Improvement

We will now show that this bound can potentially be doubled by making the
small modification shown in Fig. 4(b). This time, each non-zero coefficient in
the selection polynomial at the output of the key stream generator needs to

254 C. De Cannière and B. Preneel

propagate to both the upper and the lower part of the scheme. By constructing
linear characteristics in the same way as before, we obtain the following selection
polynomials:

γu = q · f
�
1 f�

2 + f�
1 g�

2

d
, γv = q · f

�
1 f�

2 + g�
1f�

2

d
, and γz = q · f

�
1 f�

2 + g�
1g

�
2

d
,

with d = gcd(f�
1 f�

2 + f�
1 g�

2 , f�
1 f�

2 + g�
1f

�
2 , f�

1 f�
2 + g�

1g�
2). The new upper bounds

on the minimum number of active S-boxes are given by

Wmin ≤ wh(f�
1 f�

2 + f�
1 g�

2) + wh(f�
1 f�

2 + g�
1f

�
2)

≤ 2 · wh(f�
1) · wh(f�

2) + wh(f�
1) · wh(g�

2) + wh(g�
1) ·wh(f�

2) ,

or, in the case of Fig. 4(b), Wmin ≤ 16. In general, if we consider extensions of
this scheme with r rounds and wh(f�

i) = wh(g�
i) = w, then the bound takes the

form:
Wmin ≤ r2 · wr . (5)

This result suggests that it might not be necessary to use a large number of
rounds, or complicated linear filters, to ensure that the number of active S-
boxes in all characteristics is sufficiently large. For example, if we take w = 2 as
before, but add one more round, the bound jumps to 72.

Of course, since the bound we just derived is an upper bound, the minimal
number of active S-boxes might as well be much smaller. First, some of the
product terms in f�

1 f�
2 + f�

1 g�
2 or f�

1 f�
2 + g�

1f
�
2 might cancel out, or there might

exist a q �= d for which wh(γu) + wh(γv) suddenly drops. These cases are rather
easy to detect, though, and can be avoided during the design. A more important
problem is that, by fixing the behavior of S-boxes, we have limited ourselves to
a special set of characteristics, which might not necessarily include the one with
the minimal number of active S-boxes. However, if the feedback and feedforward
functions are sparse, and the linear filters sufficiently large, then the bound is
increasingly likely to be tight. On the other hand, if the state of the generator is
sufficiently small, then we can perform an efficient search for the lowest-weight
characteristic without making any additional assumption.

This last approach allows to show, for example, that the smallest instance of
the scheme in Fig. 4(b) for which the bound of 16 is actually attained, consists
of two 11th-order linear filters with

f�
1 (D) = 1 + D10 , g�

1(D) = D11 · (D−3 + 1) ,

f�
2 (D) = 1 + D9 , g�

2(D) = D11 · (D−8 + 1) .

5.4 Linear Characteristics and Correlations

In the sections above, we have tried to increase the number of active S-boxes
of linear characteristics. We now briefly discuss how this number affects the
correlation of key stream bits. This problem is treated in several papers in the
context of block ciphers (see, e.g., [5]).

Trivium 255

We start with the observation that the minimum number of active S-boxes
Wmin imposes a bound on the correlation cc of a linear characteristic:

c2
c ≤ (c2

s)
Wmin

,

where cs is the largest correlation (in absolute value) between the input and the
output values of the S-box. The squares c2

c and c2
s are often referred to as linear

probability, or also correlation potential. The inverse of this quantity is a good
measure for the amount of data that the attacker needs to observe in order to
detect a correlation.

What makes the analysis more complicated, however, is that many linear
characteristics can contribute to the correlation of the same combination of key
stream bits. This occurs in particular when the scheme operates on words, in
which case there are typically many possible choices for the coefficients of the
intermediate selection polynomials describing the characteristic (this effect is
called clustering). The different contributions add up or cancel out, depending
on the signs of cc. If we now assume that these signs are randomly distributed,
then we can use the approach of [5, Appendix B] to derive a bound on the
expected correlation potential of the key stream bits:

E(c2) ≤ (c2
s)

Wmin−n
. (6)

The parameter n in this inequality represents the number of degrees of freedom
for choosing the coefficients of the intermediate selection polynomials.

For the characteristics propagating through the construction presented in
Sect. 5.3, one will find, in non-degenerate cases, that the values of n = r ·
(r − 1) · wr−1 non-zero coefficients can be chosen independently. Hence, for ex-
ample, if we construct a scheme with w = 2 and r = 3, and if we assume that it
attains the bound given in (5), then we expect the largest correlation potential
to be at most c2·48

s . Note that this bound is orders of magnitude higher than
the contribution of a single characteristic, which has a correlation potential of
at most c2·72

s .

Remark 1. In order to derive (6), we replaced the signs of the contributing linear
characteristics by random variables. This is a natural approach in the case of
block ciphers, where the signs depend on the value of the secret key. In our case,
however, the signs are fixed for a particular scheme, and hence they might, for
some special designs, take on very peculiar values. This happens for example
when r = 2, w is even, and all non-zero coefficients of fi and gi equal 1 (as in
the example at the end of the previous section). In this case, all signs will be
positive, and we obtain a significantly worse bound:

c2 ≤ (c2
s)

Wmin−2·n
.

6 Trivium’s Design

We now present an experimental 80-bit key stream cipher based on the approach
outlined above. In this section, we concentrate on the basic design ideas behind

256 C. De Cannière and B. Preneel

the scheme. The complete specifications of the cipher, which was submitted to
the eSTREAM Stream Cipher Project under the name Trivium, can be found
in Sect. 7.

6.1 A Bit-Oriented Design

The main idea of Trivium’s design is to turn the general scheme of Sect. 5.3 into
a bit-oriented stream cipher. The first motivation is that bit-oriented schemes
are typically more compact in hardware. A second reason is that, by reducing the
word-size to a single bit, we may hope to get rid of the clustering phenomenon
which, as seen in the previous section, has a significant effect on the correlation.

Of course, if we simply apply the previous scheme to bits instead of words, we
run into the problem that the only two existing 1×1-bit S-boxes are both linear.
In order to solve this problem, we replace the S-boxes by a component which,
from the point of view of our correlation analysis, behaves in the same way: an
exclusive OR with an external stream of unrelated but biased random bits (see
Fig. 5). Assuming that these random bits equal 0 with probability (1+ cs)/2, we
will find as before that the output of this component correlates with the input
with correlation coefficient cs.

The introduction of this artificial 1× 1-bit S-box greatly simplifies the corre-
lation analysis, mainly because of the fact that the selection polynomial at the
output of an S-box is now uniquely determined by the input. As a consequence,
we neither need to make special assumptions about the values of the non-zero
coefficients, nor to consider the effect of clustering: the maximum correlation in
the key stream is simply given by the relation

cmax = cWmin
s . (7)

S

S

z z

rand. bits with bias 1/4

Fig. 5. How to design 1-bit S-boxes?

Trivium 257

The obvious drawback, however, is that the construction now relies on exter-
nal streams of random bits, which have to be generated somehow. Trivium
attempts to solve this problem by interleaving three identical key stream gen-
erators, where each generator obtains streams of biased bits (with cs = 1/2) by
ANDing together state bits of the two other generators.

6.2 Specifying the Parameters

Let us now specify suitable parameters for each of those three identical ‘sub-
generators’. Our goal is to keep all parameters as small and simple as possible,
given a number of requirements.

1. The first requirement we impose is that the correlations in the key stream
do not exceed 2−40. Since each sub-generator will be fed with streams of
bits having correlation coefficient cs = 1/2, we can derive from (7) that a
minimum weightWmin of at least 40 is needed. The smallest values of w and
r for which this requirement could be satisfied (with a fairly large margin,
in fact) are w = 2 and r = 3.

2. Now that w and r are fixed, we raise our requirements and impose that the
minimum weight actually reaches the upper bound of (5). In this case, this
translates to the conditionWmin = 72, which is fulfilled if wh(γu)+wh(γv)+
wh(γw) ≥ 72 for all q �= 0, where

γu = q · f
�
1 f�

2 f�
3 + f�

1 f�
2 g�

3 + f�
1 g�

2g�
3

d
, γv = . . . , etc.

3. Although the preceding sections have almost exclusively focused on linear
correlations, other security properties such as periodicity remain important.
Controlling the period of the scheme is difficult because of the non-linear
interaction between the sub-generators, but we can try to decrease the prob-
ability of short cycles by maximizing the periods of the individual sub-
generators after turning off the streams feeding their 1× 1-bit S-boxes. The
connection polynomial of these (completely linear) generators is given by
f�
1 f�

2 f�
3 + g�

1g
�
2g�

3 , and ideally, we would like this polynomial to be primitive.
Our choice of w prevents this, though: for w = 2, the polynomial above is
always divisible by (D + 1)3. Therefore, we just require that the remaining
factor is primitive, and rely on the initialization of the state bits to avoid
the few short cycles corresponding to the factor (D + 1)3 (see Sect. 8.2).

4. Finally, we also impose some efficiency requirements. The first is that state
bits of the sub-generators should not be used for at least 64/3 iterations,
once they have been modified. This will provide the final scheme with the
flexibility to generate up to 64 bits in parallel. Secondly, the length of the
sub-generators should be as short as possible and a multiple of 32.

We can now exhaustively run over all possible polynomials f�
1 , . . . , g�

3 in order
to find combinations for which all previous requirements are fulfilled simultane-
ously. Surprisingly enough, it turns out that the solution is unique:

258 C. De Cannière and B. Preneel

f�
1 (D) = 1 + D9 , g�

1(D) = D31 · (D−23 + 1) ,

f�
2 (D) = 1 + D5 , g�

2(D) = D28 · (D−26 + 1) ,

f�
3 (D) = 1 + D15 , g�

3(D) = D37 · (D−29 + 1) .

In order to construct the final cipher, we interleave three of these sub-generators
and interconnect them through AND-gates. Since the reasoning above does not
suggest which state bits to use as inputs of the AND-gates, we simply choose to
minimize the length of the wires. The resulting scheme is shown in Fig. 6. The 96
state bits s1, s4, s7, . . . , s286 belong to the first sub-generator, s2, s5, s8, . . . , s287

to the second one, etc.

zi

s1

s
6
6

s 9
4

s162

s
178

s 2
4
3

s288

Fig. 6. Trivium

7 Specifications of Trivium

In this section, we give the complete specifications of Trivium. The synchronous
stream cipher is designed to generate up to 264 bits of key stream from an 80-
bit secret key and an 80-bit initial value (IV). As for most stream ciphers, this

Trivium 259

Table 1. Parameters of Trivium

Parameters

Key size: 80 bit
IV size: 80 bit
Internal state: 288 bit

process consists of two phases: first the internal state of the cipher is initialized
using the key and the IV, then the state is repeatedly updated and used to
generate key stream bits. We first describe this second phase.

7.1 Key Stream Generation

The proposed design contains a 288-bit internal state denoted by (s1, . . . , s288).
The key stream generation consists of an iterative process which extracts the
values of 15 specific state bits and uses them both to update 3 bits of the state
and to compute 1 bit of key stream zi. The state bits are then rotated and the
process repeats itself until the requested N ≤ 264 bits of key stream have been
generated. A complete description is given by the following simple pseudo-code:

for i = 1 to N do
t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

We remind the reader that here, as in the rest of this chapter, the ‘+’ and
‘·’ operations stand for addition and multiplication over GF(2) (i.e., XOR and
AND), respectively. A graphical representation of the key stream generation
process is given in Fig. 6.

7.2 Key and IV Setup

The algorithm is initialized by loading an 80-bit key and an 80-bit IV into
the 288-bit initial state, and setting all remaining bits to 0, except for s286,
s287, and s288. Then, the state is rotated over 4 full cycles, in the same way as
explained above, but without generating key stream bits. This is summarized in
the pseudo-code below:

260 C. De Cannière and B. Preneel

(s1, s2, . . . , s93)← (K80, . . . , K1, 0, . . . , 0)
(s94, s95, . . . , s177)← (IV80, . . . , IV1, 0, . . . , 0)
(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)
for i = 1 to 4 · 288 do

t1 ← s66 + s91 · s92 + s93 + s171

t2 ← s162 + s175 · s176 + s177 + s264

t3 ← s243 + s286 · s287 + s288 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

7.3 Alternative Description

Alternatively, Trivium’s key stream generation algorithm can also be written
in the following recursive way, proposed by Bernstein [7]:

for i = 1 to N do
ai = ci−66 + ci−111 + ci−110 · ci−109 + ai−69

bi = ai−66 + ai−93 + ai−92 · ai−91 + bi−78

ci = bi−69 + bi−84 + bi−83 · bi−82 + ci−87

zi = ci−66 + ci−111 + ai−66 + ai−93 + bi−69 + bi−84

end for

This notation is often more convenient when describing attacks against the
stream cipher.

8 Security

In this section we briefly discuss some of the cryptographic properties of Triv-
ium. The security requirement we would like to meet is that any type of cryp-
tographic attack should not be significantly easier to apply to Trivium than to
any other imaginable stream cipher with the same external parameters (i.e., any
cipher capable of generating up to 264 bits of key stream from an 80-bit secret
key and an 80-bit IV). Unfortunately, this requirement is not easy to verify, and
the best we can do is to provide arguments why we believe that certain common
types of attacks are not likely to affect the security of the cipher. A summary of
the results discussed in the next sections is given in Table 2.

8.1 Correlations

When analyzing the security of a synchronous stream cipher, a cryptanalyst will
typically consider two different types of correlations The first type are corre-
lations between linear combinations of key stream bits and internal state bits,
which can potentially lead to a complete recovery of the state. The second type,

Trivium 261

Table 2. Cryptanalytical results

Attack Time Data Reference

Linear distinguisher 2144 2144 Sect. 8.1
Guess-and-determine attack 2195 288 Sect. 8.3
Guess-and-determine attack 2135 288 [8]
Guess-and-determine attack 290 261 [9]
Solving system of equations 2164 288 [10]

Exhaustive key search 280 80

exploited by distinguishing attacks, are correlations between the key stream bits
themselves.

Obviously, linear correlations between key stream bits and internal state bits
are easy to find, since zi is simply defined to be equal to s66 + s93 + s162 + s177 +
s243+s288. However, as opposed to LFSR based ciphers, Trivium’s state evolves
in a nonlinear way, and it is not clear how the attacker should combine these
equations in order to efficiently recover the state.

An easy way to find correlations of the second type is to follow linear charac-
teristics through the cipher and to approximate the outputs of all encountered
AND gates by 0. However, as explained in the previous section, the positions
of the taps in Trivium have been chosen in such a way that any characteristic
of this specific type is forced to approximate at least 72 AND gate outputs. An
example of a correlated linear combination of key stream bits obtained this way
is

z1 + z16 + z28 + z43 + z46 + z55 + z61 + z73

+ z88 + z124 + z133 + z142 + z202 + z211 + z220 + z289 .

If we assume that the correlation of this linear combination is completely ex-
plained by the specific characteristic we considered (i.e., the contributions of
other characteristics to the correlation of this linear combination can be ne-
glected), then it would have a correlation coefficient of 2−72. Detecting such a
correlation would require at least 2144 bits of key stream, which is well above
the security requirement.

Other more complicated types of linear characteristics with larger correlations
might exist in principle, but given the size of the state and the sparseness of the
feedback and feedforward functions, the linear combination given above has a
good chance to be optimal, and hence, it seems unlikely that the correlations of
other characteristics will exceed 2−40. The preliminary results given by Maximov
and Biryukov [9] seem to confirm this.

8.2 Period

Because of the fact that the internal state of Trivium evolves in a nonlinear
way, its period is hard to determine. Still, a number of observations can be made.
First, if the AND gates are omitted (resulting in a completely linear scheme),

262 C. De Cannière and B. Preneel

one can show that any key/IV pair would generate a stream with a period of at
least 296−3 − 1. This has no immediate implications for Trivium itself, but it
might be seen as an indication that the taps have been chosen properly.

Secondly, Trivium’s state is updated in a reversible way, and the initialization
of (s178, . . . , s288) prevents the state from cycling in less than 111 iterations. If
we believe that Trivium behaves as a random permutation after a sufficient
number of iterations, then all cycle lengths up to 2288 would be equiprobable,
and hence the probability for a given key/IV pair to cause a cycle smaller than
280 would be 2−208.

8.3 Guess and Determine Attacks

In each iteration of Trivium, only a few bits of the state are used, despite
the general rule-of-thumb that sparse update functions should be avoided. As a
result, guess and determine attacks are certainly a concern. A straightforward
attack would guess (s25, . . . , s93), (s97, . . . , s177), and (s244, . . . , s288), 195 bits in
total, after which the rest of the bits can immediately be determined from the
key stream.

More sophisticated attacks can significantly reduce this number, though. A
first idea, proposed by Khazaei [8], is to guess ai−109, bi−91, and ci−82 for i =
0, 2, . . . , 88 (we use here the alternative description of Sect. 7.3). Once these
135 bits are fixed, it can easily be verified that each key stream bit ti with
0 ≤ i ≤ 90+66 is reduced to a linear function in 288−135 unknowns. By solving
this linear system for all 2135 guesses, the attacker will eventually recover the
complete internal state.

A considerably improved guess-and-determine attack is presented by Maximov
and Biryukov [9]. Instead of guessing one out of two bits of a, b, and c over a
certain interval, the authors propose to guess every third bit. In order to get
a solvable linear system, they additionally assume that all three AND gates
produce zero bits at every third step over a number of consecutive cycles. This
assumption is only fulfilled with a small probability, and the attack will therefore
have to be repeated for different positions in the stream. With some additional
tricks, and given about 261 bits of known key stream, the attack complexity can
be reduced to an estimated 290 key setups.

8.4 Algebraic Attacks

Trivium seems to be a particularly attractive target for algebraic attacks. The
complete scheme can easily be described with extremely sparse equations of low
degree. However, its state does not evolve in a linear way, and hence the efficient
linearization techniques [11] used to solve the systems of equations generated by
LFSR based schemes will be hard to apply. Other techniques might be applicable,
though, and their efficiency in solving this particular system of equations needs
to be investigated.

Recently, some interesting research has been conducted on this topic by several
cryptanalysts. In [10], Raddum presents a new technique to solve systems of

Trivium 263

equations associated with Trivium. His attack has a very high complexity of
O(2164) when applied to the full cipher, but breaks Bivium-A, a key stream
generator similar to the one shown in Fig. 4(a), in a day. This same variant is
also analyzed by McDonald et al. [12], who show that its state can be recovered
in seconds using off-the-shelve satisfiability solvers. While these experiments are
useful to test new techniques, it is important to note that the final remark of
Sect. 5.2, combined with the use of 1-bit S-boxes, indeed implies a fundamental
weakness of two-round ciphers such as Bivium-A.

Finally, Fischer and Meier [13] analyze Trivium in the context of algebraic
attacks based on augmented functions. They show that Trivium’s augmented
function can easily be analyzed, and conclude that Trivium seems to be resistant
against this particular type of algebraic attacks.

8.5 Resynchronization Attacks

A last type of attacks are resynchronization attacks, in which the adversary is
allowed to manipulate the value of the IV, and tries to extract information about
the key by examining the corresponding key stream. Trivium tries to preclude
this type of attacks by cycling the state a sufficient number of times before pro-
ducing any output. It can be shown that each state bit depends on each key and
IV bit in a nonlinear way after two full cycles (i.e., 2 · 288 iterations). We expect
that two more cycles will suffice to protect the cipher against resynchronization
attacks. So far, this seems to be confirmed (or at least not contradicted) by the
analysis of Turan and Kara [14], Vielhaber [15], and Fischer et al. [16].

9 Implementation Aspects

We conclude this chapter with a discussion of some implementation aspects of
Trivium.

9.1 Hardware

As stated in Sect. 2.2, our aim was to design a cipher which is compact in
environments with restrictions on the gate count, power-efficient on platforms
with limited power resources, and fast in applications that require high-speed
encryption. In Trivium, this flexibility is achieved by ensuring that state bits
are not used for at least 64 iterations after they have been modified. This way,
up to 64 iterations can be computed at once, provided that the 3 AND gates
and 11 XOR gates in the original scheme are duplicated a corresponding number
of times. This allows the clock frequency to be divided by a factor 64 without
affecting the throughput.

Based on the figures stated in [18] (i.e., 12 NAND gates per Flip-flop, 2.5 gates
per XOR, and 1.5 gates per AND), we can compute a first estimation of the gate
count for different degrees of parallelization. The actual results found by Good
and Benaissa [17] for 0.13�m Standard Cell CMOS show that these estimations
are rather pessimistic, however. Both figures are compared in Table. 3.

264 C. De Cannière and B. Preneel

Table 3. Gate counts of 1-bit to 64-bit hardware implementations

Components 1-bit 8-bit 16-bit 32-bit 64-bit

Flip-flops: 288 288 288 288 288
AND gates: 3 24 48 96 192
XOR gates: 11 88 176 352 704

Estimated NAND gates: 3488 3712 3968 4480 5504
NAND gates, 0.13 �m CMOS [17] 2599 2801 3185 3787 4921

The hardware efficiency of Trivium has been independently evaluated by
several other research teams. Güerkanyak et al. [19] report a 64-bit implementa-
tion in 0.25�m 5-metal CMOS technology with a throughput per area ratio of
129Gbit/s ·mm2, three times higher than for any other eSTREAM candidate.
Gaj et al. [20] come to similar conclusions, and also note that Trivium is per-
ceived to be the easiest eSTREAM candidate to implement amongst students
following an introductory course on VHDL at the George Mason University.
FPGA implementations of Trivium are independently studied by Bulens et
al. [21], Good et al. [22], and Rogawski [23]. The general conclusion, here as
well, is that Trivium offers a very good trade-off between throughput and area.
Finally, Feldhofer [24] analyzes implementations of Trivium for RFID tags, and
shows that the power consumption is reduced to one fourth compared to a low-
power AES implementation.

9.2 Software

Despite the fact that Trivium does not target software applications, the cipher
is still reasonably efficient on a standard PC. The measured performance of the
reference C-code on a 1 700MHz Pentium M processor can be found in Table 4.

Table 4. Measured performance on an Intel� Pentium� M CPU 1700 MHz

Operation

Stream generation: 5.3 cycles/byte
Key setup: 51 cycles
IV setup: 774 cycles

10 Conclusion

In this chapter we have presented a simple synchronous stream cipher called
Trivium, which seems to be particularly well suited for applications requiring
a flexible hardware implementation. The design is based on the study of the
propagation of linear characteristics, and shows that the effect of a few small
non-linear components can be amplified considerably by a carefully designed
linear structure.

Trivium 265

References

1. Daemen, J.: Cipher and hash function design. Strategies based on linear and dif-
ferential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven (1995)

2. Hawkes, P., Rose, G.G.: Primitive specification and supporting documentation for
SOBER-tw submission to NESSIE. In: Proceedings of the First NESSIE Workshop,
NESSIE (2000)

3. Ekdahl, P., Johansson, T.: SNOW – A new stream cipher. In: Proceedings of the
First NESSIE Workshop, NESSIE (2000)

4. Daemen, J., Clapp, C.S.K.: Fast hashing and stream encryption with PANAMA.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 60–74. Springer, Heidelberg
(1998)

5. Daemen, J., Rijmen, V.: The Design of Rijndael: AES — The Advanced Encryption
Standard. Springer, Heidelberg (2002)

6. Rosenthal, J., Smarandache, R.: Maximum distance separable convolutional codes.
Applicable Algebra in Engineering, Communication and Computing 10(1), 15–32
(1999)

7. Bernstein, D.J.: Re: A reformulation of TRIVIUM. Posted on the eSTREAM Fo-
rum (2006), http://www.ecrypt.eu.org/stream/phorum/read.php?1,448

8. Khazaei, S.: Re: A reformulation of TRIVIUM. Posted on the eSTREAM Forum
(2006), http://www.ecrypt.eu.org/stream/phorum/read.php?1,448

9. Maximov, A., Biryukov, A.: Two trivial attacks on Trivium. eSTREAM, ECRYPT
Stream Cipher Project, Report 2007/003 (2007),
http://www.ecrypt.eu.org/stream

10. Raddum, H.: Cryptanalytic results on TRIVIUM. eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/039 (2006), http://www.ecrypt.eu.org/stream

11. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

12. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2007/040 (2007),
http://www.ecrypt.eu.org/stream

13. Fischer, S., Meier, W.: Algebraic immunity of S-boxes and augmented functions. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 366–381. Springer, Heidelberg
(2007)

14. Turan, M.S., Kara, O.: Linear approximations for 2-round Trivium. eSTREAM,
ECRYPT Stream Cipher Project, Report 2007/008 (2007),
http://www.ecrypt.eu.org/stream

15. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an algebraic IV differential at-
tack. Cryptology ePrint Archive, Report 2007/413 (2007),
http://eprint.iacr.org/

16. Fischer, S., Khazaei, S., Meier, W.: Key recovery with probabilistic neutral bits.
Presented at the Echternach Symmetric Cryptography Seminar (2008)

17. Good, T., Benaissa, M.: Hardware results for selected stream cipher candidates.
eSTREAM, ECRYPT Stream Cipher Project, Report 2007/023 (2007),
http://www.ecrypt.eu.org/stream

18. Lano, J., Mentens, N., Preneel, B., Verbauwhede, I.: Power analysis of synchronous
stream ciphers with resynchronization mechanism. In: ECRYPT Workshop, SASC
– The State of the Art of Stream Ciphers, pp. 327–333 (2004)

http://www.ecrypt.eu.org/stream/phorum/read.php?1,448
http://www.ecrypt.eu.org/stream/phorum/read.php?1,448
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream

266 C. De Cannière and B. Preneel

19. Gürkaynak, F.K., Luethi, P., Bernold, N., Blattmann, R., Goode, V., Marghitola,
M., Kaeslin, H., Felber, N., Fichtner, W.: Hardware evaluation of eSTREAM can-
didates: Achterbahn, Grain, MICKEY, MOSQUITO, SFINKS, TRIVIUM, VEST,
ZK-Crypt. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/015 (2006),
http://www.ecrypt.eu.org/stream

20. Gaj, K., Southern, G., Bachimanchi, R.: Comparison of hardware performance
of selected Phase II eSTREAM candidates. eSTREAM, ECRYPT Stream Cipher
Project, Report 2007/027 (2007), http://www.ecrypt.eu.org/stream

21. Bulens, P., Kalach, K., Standaert, F.X., Quisquater, J.J.: FPGA implementa-
tions of eSTREAM Phase-2 focus candidates with hardware profile. eSTREAM,
ECRYPT Stream Cipher Project, Report 2006/024 (2007),
http://www.ecrypt.eu.org/stream

22. Good, T., Chelton, W., Benaissa, M.: Review of stream cipher candidates from a
low resource hardware perspective. eSTREAM, ECRYPT Stream Cipher Project,
Report 2006/016 (2006), http://www.ecrypt.eu.org/stream

23. Rogawski, M.: Hardware evaluation of eSTREAM candidates: Grain, Lex,
Mickey128, Salsa20 and Trivium. eSTREAM, ECRYPT Stream Cipher Project,
Report 2007/025 (2007), http://www.ecrypt.eu.org/stream

24. Feldhofer, M.: Comparison of low-power implementations of Trivium and Grain.
eSTREAM, ECRYPT Stream Cipher Project, Report 2007/027 (2007),
http://www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

	Trivium
	Introduction
	Security and Efficiency Considerations
	Security
	Efficiency

	How Block Ciphers Are Designed
	Block Ciphers and Linear Characteristics
	Branch Number

	From Blocks to Streams
	Polynomial Notation
	Linear Correlations
	Propagation of Selection Polynomials
	Branch Number

	Constructing a Key Stream Generator
	Basic Construction
	Analysis of Linear Characteristics
	An Improvement
	Linear Characteristics and Correlations

	Trivium's Design
	A Bit-Oriented Design
	Specifying the Parameters

	Specifications of Trivium
	Key Stream Generation
	Key and IV Setup
	Alternative Description

	Security
	Correlations
	Period
	Guess and Determine Attacks
	Algebraic Attacks
	Resynchronization Attacks

	Implementation Aspects
	Hardware
	Software

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

