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Abstract. A new family of stream ciphers, Grain, is proposed. Two
variants, a 80-bit and a 128-bit variant are specified, denoted Grain and
Grain-128 respectively. The designs target hardware environments where
gate count, power consumption and memory are very limited. Both vari-
ants are based on two shift registers and a nonlinear output function.
The ciphers also have the additional feature that the speed can be easily
increased at the expense of extra hardware.

When designing a cryptographic primitive there are many different properties
that have to be addressed. These include e.g., speed and security. Comparing
several ciphers, it is likely that one is faster on a 32-bit processor, another is faster
on an 8 bit processor and yet another one is faster in hardware. The simplicity of
the design is another factor that has to be taken into account. While the software
implementation can be very simple, the hardware implementation might be quite
complex.

There is a need for cryptographic primitives that have very low hardware
complexity. A radio-frequency identification (RFID) tag is a typical example of
a product where the amount of memory and power is very limited. These are
microchips capable of transmitting an identifying sequence upon a request from
a reader. Forging an RFID tag can have devastating consequences if the tag is
used e.g., in electronic payments and hence, there is a need for cryptographic
primitives implemented in these tags. Today, a hardware implementation of e.g.,
AES on an RFID tag is not feasible due to the large number of gates needed.
The Grain family of stream ciphers is designed to be very easy and small to
implement in hardware.

Several recent LFSR based stream cipher proposals, see e.g., [1,2] and their
predecessors, are based on word oriented LFSRs. This allows them to be efficiently
implemented in software but it also allows them to increase the throughput since
words instead of bits are output. In hardware, a word oriented cipher is likely to be
more complex than a bit oriented one. In the Grain ciphers, this issue has been
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addressedbybasingthedesignonbitorientedshift registerswiththeextra featureof
allowing an increase in speed at the expense of more hardware.The user can decide
the speed of the cipher depending on the amount of hardware available. This
property is not explicitly found in most other stream ciphers.

The proposed designs, denoted Grain (or more formally Grain Version 1 or
Grain V1) and Grain-128, are bit oriented synchronous stream ciphers. The
designs are based on two shift registers, one with linear feedback (LFSR) and
one with nonlinear feedback (NFSR). The LFSR guarantees a minimum period
for the keystream and it also provides balancedness in the output. The NFSR,
together with a nonlinear output function introduces nonlinearity to the cipher.
The input to the NFSR is masked with the output of the LFSR so that the state
of the NFSR is balanced. Hence, we use the notation NFSR even though this
is actually a filter. What is known about cycle structures of nonlinear feedback
shift registers cannot immediately be applied here.

The first, unpublished, version of the cipher is denoted version 0. This version
was cryptanalyzed in [3,4,5]. The design of version 0 will not be given in this
paper but the attack will be discussed in Section 3.1.

The paper is organized as follows. Section 1 provides a detailed description of
the Grain and Grain-128 designs. The possibility to easily increase the through-
put is discussed in Section 2. The security of Grain is discussed in Section 3
together with a motivation for the different design parameters. Section 4 con-
cludes the paper.

1 Design Specifications

This section specifies the details of the designs of both Grain and Grain-128. Both
ciphers follow the same design principle. They consist of three main building
blocks, namely an LFSR, an NFSR and an output function. The contents of
the two shift registers represent the state of the cipher and their sizes are |K|
bits each, where K is the key. In the following, the content of the LFSR is
denoted St = st, st+1, . . . , st+|K|−1 and the content of the NFSR is denoted
Bt = bt, bt+1, . . . , bt+|K|−1. The output function, denoted H(Bt, St) consists of
two parts. A nonlinear Boolean function h(x) and a set of linear terms added to
h(x). The output of H(Bt, St) is the keystream bit zt. A general overview of the
design is given in Fig. 1.

1.1 Grain - Design Parameters

The keysize of Grain is |K| = 80 bits and the cipher supports an IV of size
|IV | = 64 bits. The feedback polynomial of the LFSR, denoted f(x) is a primitive
polynomial of degree 80. It is defined as

f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80. (1)

To remove any possible ambiguity we also define the update function of the
LFSR as

st+80 = st+62 ⊕ st+51 ⊕ st+38 ⊕ st+23 ⊕ st+13 ⊕ st. (2)
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Fig. 1. Overview of the different design blocks in the Grain family of stream ciphers

The feedback polynomial of the NFSR, g(x), is defined as

g(x) = 1 + x18 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x66+
+x71 + x80 + x17x20 + x43x47 + x65x71 + x20x28x35+
+x47x52x59 + x17x35x52x71 + x20x28x43x47 + x17x20x59x65+
+x17x20x28x35x43 + x47x52x59x65x71 + x28x35x43x47x52x59.

(3)

Again, to remove any possible ambiguity we also write the update function of
the NFSR. Note that the bit st which is masked with the input is included in
the update function below.

bt+80 = st ⊕ bt+62 ⊕ bt+60 ⊕ bt+52 ⊕ bt+45 ⊕ bt+37 ⊕ bt+33 ⊕ bt+28⊕
⊕bt+21 ⊕ bt+14 ⊕ bt+9 ⊕ bt ⊕ bt+63bt+60 ⊕ bt+37bt+33⊕
⊕bt+15bt+9 ⊕ bt+60bt+52bt+45 ⊕ bt+33bt+28bt+21⊕
⊕bt+63bt+45bt+28bt+9 ⊕ bt+60bt+52bt+37bt+33⊕
⊕bt+63bt+60bt+21bt+15 ⊕ bt+63bt+60bt+52bt+45bt+37⊕
⊕bt+33bt+28bt+21bt+15bt+9 ⊕ bt+52bt+45bt+37bt+33bt+28bt+21.

(4)

From the two registers, 5 variables are taken as input to a Boolean function,
h(x). This filter function is chosen to be balanced, correlation immune of the
first order and has algebraic degree 3. The nonlinearity is the highest possible
for these functions, namely 12. The function is defined as

h(x) = h(x0, x1, . . . , x4) =

=x1⊕x4⊕x0x3⊕x2x3⊕x3x4⊕x0x1x2⊕x0x2x3⊕x0x2x4⊕x1x2x4⊕x2x3x4

(5)
where the variables x0, x1, x2, x3 and x4 correspond to the tap positions st+3,
st+25, st+46, st+64 and bt+63 respectively. The output function H(Bt, St) is given
by

zt = H(Bt, St) =
⊕

j∈A
bt+j ⊕ h(st+3, st+25, st+46, st+64, bt+63) (6)

where A = {1, 2, 4, 10, 31, 43, 56}.
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Cipher Initialization: Before any keystream is generated the cipher must be
initialized with the key and the IV. Let the bits of the key, K, be denoted
ki, 0 ≤ i ≤ 79 and the bits of the IV be denoted IVi, 0 ≤ i ≤ 63. The
initialization of the key is done as follows. First the NFSR and LFSR are loaded
with key and IV bits as

{
bi = ki, 0 ≤ i ≤ 79,

si = IVi, 0 ≤ i ≤ 63.
(7)

The remaining bits of the LFSR are filled with ones, si = 1, 64 ≤ i ≤ 79. Then
the cipher is clocked 160 times without producing any keystream. Instead the
output function is fed back and xored with the input, both to the LFSR and to
the NFSR, see Fig. 2.

g(x) f(x)

NFSR LFSR

h(x)

Fig. 2. Overview of the key initialization

1.2 Grain-128 — Design Parameters

Grain-128 supports a keysize of |K| = 128 bits, as suggested by the name. The
size of the IV is specified to be |IV | = 96 bits. The feedback polynomial of the
LFSR, f(x), is a primitive polynomial of degree 128. It is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128. (8)

To remove any possible ambiguity we also give the corresponding update function
of the LFSR as

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96. (9)

The nonlinear feedback polynomial of the NFSR, g(x), is the sum of one linear
and one bent function. It is defined as

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125 + x63x67+
+x69x101 + x80x88 + x110x111 + x115x117. (10)
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Again, we also write the corresponding update function of the NFSR. In the
update function below, note that the bit st which is masked with the input to
the NFSR is included, while omitted in the feedback polynomial.

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67⊕
⊕bt+11bt+13 ⊕ bt+17bt+18 ⊕ bt+27bt+59⊕
⊕bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84.

(11)

From the state, nine variables are taken as input to a Boolean function, h(x).
Two inputs to h(x) are taken from the NFSR and seven are taken from the
LFSR. This function is of degree deg(h(x)) = 3 and very simple. It is defined as

h(x) = h(x0, x1, . . . , x8) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x6x7 ⊕ x0x4x8 (12)

where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 correspond to the tap
positions bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79 and st+95 respec-
tively. The output function H(Bt, St) is defined as

zt = H(Bt, St) =
⊕

j∈A
bt+j ⊕ h(x) ⊕ st+93, (13)

where A = {2, 15, 36, 45, 64, 73, 89}.

Cipher Initialization: The initialization is very similar to the initialization of
the 80-bit variant of the cipher. The bits of the key K, denoted ki, 0 ≤ i ≤ 127,
and the bits of the IV, denoted IVi, 0 ≤ i ≤ 95, are loaded into the NFSR and
LFSR respectively as {

bi = ki, 0 ≤ i ≤ 127,

si = IVi, 0 ≤ i ≤ 95.
(14)

The last 32 bits of the LFSR are filled with ones, si = 1, 96 ≤ i ≤ 127. After
loading key and IV bits, the cipher is clocked 256 times without producing any
keystream. The output function is fed back and xored with the input, both to
the LFSR and to the NFSR.

2 Throughput Rate

It is possible to increase the throughput rate of the Grain ciphers by adding
some additional hardware. This is an important feature of the Grain family of
stream ciphers compared to many other stream ciphers. Increasing the speed can
very easily be done by just implementing the feedback functions, f(x) and g(x),
and the output function several times. In order to simplify this implementation,
the last 15 bits in Grain and the last 31 bits in Grain-128 of the shift registers
are not used in the feedback functions or in the input to the output function.
I.e., si, 65 ≤ i ≤ 79 and bi, 65 ≤ i ≤ 79 in Grain and si, 97 ≤ i ≤ 127 and
bi, 97 ≤ i ≤ 127 in Grain-128 are not used in the three functions. This allows
the speed to be easily multiplied by up to 16 for Grain and 32 for Grain-128 if
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NFSR LFSR

zt zt+1

Fig. 3. Implementation of Grain which outputs 2 bits/clock

a sufficient amount of hardware is available. An overview of the implementation
when the speed is doubled can be seen in Fig. 3. Naturally, the shift registers
also need to be implemented such that each bit is shifted δ steps instead of one
when the speed is increased by a factor δ. Since, in the key initialization, the
cipher is clocked 160 times (Grain) or 256 times (Grain-128), the possibilities to
increase the speed is limited to factors that are divisors of 160 or 256 respectively.
The number of clockings needed in the key initialization phase is then 160/δ or
256/δ. Since the output and feedback functions are small, it is quite feasible to
increase the throughput in this way.

3 Security and Design Choices

In this section we give a security analysis of the construction and motivate the
different design choices.

3.1 Linear Approximations

Attacking Grain using linear approximations of the two nonlinear functions
turned out to be successful on the first version of Grain, (version 0). This attack
was discovered by several independent researchers and the details can be found
in [3,4,5]. Some design choices in the current versions are influenced by this at-
tack. In this subsection, we temporarily switch to the notation s(t) instead of st

as previously used to denote a value at time t. We also use the notation x
p
= y

meaning that Pr(x = y) = p.
With a slight abuse of notation, let us rewrite the update function of the

NFSR as
0 = g(Bt) ⊕ s(t). (15)
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Let the weight of a binary linear function �, denoted w(�), be the number of
terms in the function. I.e., if � =

⊕n
i=0 cixi, then

w(�) = |{i ∈ 0..n : ci = 1}| . (16)

Assume that we have found a linear approximation �g(t) of g(Bt) i.e.,

�g(t) =
w(�g)−1⊕

i=0

b(t+ φi), (17)

where φ0, φ1, . . . , φw(�g)−1 denote the positions in the NFSR that are present in
the linear approximation. The bias of �g(t) is denoted εg, i.e.,

Pr(�g(t) = g(Bt)) = Pr(�g(t) = s(t)) =
1
2
(1 + εg), 0 < |εg| ≤ 1. (18)

Similarly, a linear approximation �H(t) of the output function H(Bt, St) can be
found. Let wN (�) and wL(�) be the number of terms from the NFSR and from
the LFSR respectively. Then �H(t) can be written as

�H(t) =
wN (�H)−1⊕

i=0

b(t+ ξi) ⊕
wL(�H)−1⊕

i=0

s(t+ ψi), (19)

where ξ0, ξ1, . . . , ξwN (�H)−1 and ψ0, ψ1, . . . , ψwL(�H)−1 determine the location of
the taps in the NFSR and LSFR used in the linear approximation. The bias
of (19) is denoted εH , i.e.,

Pr(�H(t) = z(t)) =
1
2
(1 + εH), 0 < |εH | ≤ 1. (20)

Now, sum up the keystream bits determined by φi in (17),

z(t+ φ0) ⊕ z(t+ φ1) ⊕ . . .⊕ z(t+ φw(�g)−1)
p
=

�H(t+ φ0) ⊕ �H(t+ φ1) ⊕ . . .⊕ �H(t+ φw(�g)−1).
(21)

Using the piling-up lemma, the relation (21) holds with probability p = 1/2(1+
ε

w(�g)
H ). The terms on the right hand side of (21) will consist of wN (�H) · w(�g)

terms from the NFSR and wL(�H) ·w(�g) terms from the LFSR. All terms from
the NFSR can now be approximated using (17) resulting in a relation involving
only keystream bits and LFSR bits as

w(�g)−1⊕

i=0

z(t+ φi)
p′
=

w(�g)−1⊕

i=0

wL(�H)−1⊕

j=0

s(t+ φi + ψj) ⊕
wN (�H)−1⊕

i=0

s(t+ ξi), (22)

which holds with probability p′ = 1/2(1 + εtot) with

εtot = εwN (�H)
g · εw(�g)

H . (23)
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From this point there are several possibilities for attacks. By finding a multiple
of the LFSR feedback polynomial of weight 3, a distinguishing attack can be
mounted. The expected degree of this multiple would be around 2|K|/2 (see
e.g., [6]). Combining the keystream bits given by the multiple and using the
approximation that 1/ε2 samples are needed in the distinguisher, about

N = 2|K|/2 +
1
ε6tot

(24)

keystream bits are required in the attack.
Another approach is to try to recover the state of the LFSR. An obvious way

of doing this is to exhaustively search the state and determine which state gives
the bias in (23). In this case, only about

N =
|K| · 2 ln 2

ε2tot

(25)

keystream bits are needed. This expression can be derived from the capacity of
a binary symmetric channel, see e.g. [7]. Since the size of the LFSR is the same
as the key size, this method is obviously more expensive than exhaustive key
search. A faster algorithm was given in [4], where they generate more equations
of the form (22). By only using equations of a certain form, and by using the
Fast Walsh Transform, the attack complexity could be made significantly lower.
We refer to [4] for more details on this attack.

Due to this attack, the parameters of the original version of Grain were
changed. A higher resiliency was added to the NFSR feedback function, increas-
ing w(�g) and several linear terms from the NFSR were added to the output
function, increasing wN (�H).

The design of Grain-128 is inspired by the analysis in this section. Thus, the
NFSR feedback function should satisfy the following three criteria

– High resiliency, implying many terms in the linear approximation (high
w(�g)). This can be achieved by adding several linear terms to the func-
tion. Each linear term will increase the resiliency by one.

– High nonlinearity, implying small bias of the linear approximations (small
εg). This can be achieved by using a bent function, i.e., a function with
maximum nonlinearity.

– Small hardware implementation, implying that the design is attractive in
low-cost implementations.

A well-known n-variable bent function is the function x1x2⊕x3x4⊕. . .⊕xn−1xn.
This function is also very small in hardware. Using n = 14 and adding 5 linear
terms gives a 4-resilient Boolean function with nonlinearity 260096. The best
linear approximations have bias εg = 2−7 and w(�g) ≥ 5.

The output function has the same design criteria as the NFSR feedback func-
tion. However, to increase the algebraic degree it has a term of degree 3. It has
nonlinearity 61440 and resiliency 7. The best linear approximations have bias
εH = 2−4 and wN (�H) ≥ 7.
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3.2 Time-Memory Tradeoff Attacks

It is well known that the state of a stream cipher must be at least twice the key
size in order to prevent time-memory tradeoff attacks [8,9,10]. Both the LFSR
and NFSR are of size |K| bits, and thus the state is exactly twice the key size.
Since Grain is designed to be as small as possible in hardware, no extra state
bits are added to the design. The state is relatively expensive to implement in
hardware and it is important to keep it as small as possible. In [11] it was noted
that the initialization process of a stream cipher could be seen as a one-way
function i.e., the function taking the key K and the IV IV as input and outputs
the first |K|+|IV | bits of the keystream. In this case the search space is 2|K|+|IV |

and new data is generated by repeated initializations of the cipher. If we allow
a preprocessing time P that is higher than exhaustive key search 2|K|, then it is
possible to have an attack with real time complexity lower than exhaustive key
search. Table 1 gives attack complexities for Grain and Grain-128 in the time-
memory tradeoff setting of [11] i.e., N2 = TM2D2 and P = N/D, where N is
the search space, T the computational complexity in the realtime phase, D the
number of initializations, M the amount of memory and P the computational
complexity in the preprocessing phase. If |IV | < 1

2 |K| then it is possible to have
the preprocessing time also smaller than exhaustive key search. In this case we
need to initialize with several different keys and we will only retrieve one of
these keys in the real time phase. In the Grain ciphers |IV | > 1

2 |K| so this is
not applicable here.

Table 1. Time-Memory tradeoff attack with real time complexity T , D initializations,
M memory words and preprocessing time P

Attack Complexities

T D M P

Grain
280 240 264 2104

272 236 272 2108

Grain-128
2128 264 296 2160

2112 256 2112 2168

3.3 Algebraic Attacks

Algebraic attacks can be very successful on nonlinear filter generators. Espe-
cially if the output function is of very low degree. Grain is very similar to a
nonlinear filter. However, the introduction of the NFSR in the design will defeat
all algebraic attacks known today. Since the update function of the NFSR is
nonlinear, the later state bits of the NFSR as a function of the initial state bits
will have varying but large algebraic degree. As the output function has several
inputs from the NFSR, the algebraic degree of the keystream bits expressed as
functions of key bits will be large in general. This will defeat known algebraic
attacks.
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3.4 Chosen-IV Attacks

A necessary condition for defeating differential-like or statistical chosen-IV at-
tacks is that the initial states for any two chosen IV’s (or sets of IV’s) are
algebraically and statistically unrelated. The number of cycles in key initial-
ization has been chosen so that the Hamming weight of the differences in the
full initial 160-bit state for two IV’s after initialization is close to random. This
should prevent chosen-IV attacks.

It may be tempting to improve the efficiency of the key initialization by just
decreasing the number of initial clockings. Considering the 80-bit variant of
Grain, after only 80 clocks, all bits in the state will depend on both the key and
the IV. However, in a chosen-IV attack it is possible to reinitialize the cipher
with the same key but with an IV that differs in only one position from the
previous IV. Consider the case when the number of initial clockings is 80 and
the last bit of the IV is flipped i.e., s63 is flipped. This is the event that occurs
if the IV is chosen as a sequence number. Looking at the difference of the states
after initialization it is clear that several positions will be predictable. The bit
s63 is not used in the feedback or in the filter function, hence, the first register
update will be the same in both cases. Consequently, the bit s0 will be the same
in both initializations. In the next update, the flipped bit will be in position s62.
This position is used in the linear feedback of the LFSR, and consequently the
bit s1 will always be different for the two initializations. Similar arguments can
be used to show that the difference in the state will be deterministic in more
than half of the 160 state bits. This deterministic difference in the state can be
exploited in a distinguishing attack. Let x be the input variables to the output
function, H , after the first initialization and let xΔ be the input variables to the
output function after the second initialization. Now, compute the distribution
of Pr(x,xΔ). If this distribution is biased, it is possible1 that the distribution of
the difference in the first output bit,

Pr(H(x) ⊕H(xΔ)), (26)

is biased. Assume that

Pr(H(x) ⊕H(xΔ) = 0) = 1/2(1 + ε), 0 < |ε| ≤ 1. (27)

then the number of initializations we need will be in the order of 1/ε2. This
attack can be optimized by calculating which output bit will give the highest
bias since it is not necessarily the bits in the registers corresponding to the
input bits of H(x) that have deterministic difference after the initializations.
This attack shows that it is preferred that the probability that any state bit is
the same after initialization with two different IVs should be close to 0.5. As
with the case of 80 initialization clocks, it is easy to show that after 96, 112 and
128 there are also state bits that will always be the same or that will always
differ.
1 It is possible, but maybe not very likely. One unbiased linear variable is enough to

make the output unbiased.
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It is possible to reduce the required number of initial clockings by loading
the NFSR and LFSR differently. If each entry of the registers is loaded with the
xor of a few key and IV bits and each key and IV bit influences the loading of
several entries, differences in the IV will propagate faster. The reason for not
doing this is mainly that all the extra xors needed would make the cipher larger
in hardware.

3.5 Fault Attacks

Amongst the strongest attacks conceivable on any cipher, are fault attacks. Fault
attacks against stream ciphers have been initiated in [12], and have shown to be
efficient against many known constructions of stream ciphers. This suggests that
it is hard to completely defeat fault attacks on stream ciphers. In the scenario
in [12] it is assumed that the attacker can apply some bit flipping faults to one
of the two feedback registers at his will. However he has only partial control
over their number, location, and exact timing, and similarly on what concerns
his knowledge. A stronger assumption one can make, is that he is able to flip a
single bit (at a time instance, and thus at a location, he does not know exactly).
In addition, he can reset the device to its original state and then apply another
randomly chosen fault to the device. We adapt the methods in [12] to the present
cipher. Thereby, we make the strongest possible assumption (which may not be
realistic) that an attacker can induce a single bit fault in the LFSR, and that
he is somehow able to determine the exact position of the fault. The aim is
to study input-output properties for H(Bt, St), and to derive information on
the inputs. As long as the difference induced by the fault in the LFSR does
not propagate to position bt+63 in Grain or bt+95 in Grain-128, the difference
observed in the output of the cipher is coming from inputs of H(Bt, St) from
the LFSR alone. If an attacker is able to reset the device and to induce a single
bit fault many times and at different positions that he can correctly guess from
the output difference, we cannot preclude that he will get information about a
subset of the state bits in the LFSR. Such an attack seems more difficult under
the (more realistic) assumption that the fault induced affects several state bits at
(partially) unknown positions, since in this case it is more difficult to determine
the induced difference from output differences.

Likewise, one can consider faults induced in the NFSR alone. These faults do
not influence the contents of the LFSR. However, faults in the NFSR propagate
nonlinearly and their evolution will be harder to predict. Thus, a fault attack
on the NFSR seems more difficult.

4 Conclusions

In this paper we introduced the Grain family of stream ciphers. Two different
versions, denoted Grain and Grain-128, have been specified. The designs target
hardware environments where small area is of high importance. The basic imple-
mentation is very small but outputs only one bit/clock. An important feature in
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the Grain ciphers is the possibility to easily increase the throughput by adding
some extra hardware. This is done by simply implementing the relatively small
feedback and output functions several times. This flexibility makes the Grain
ciphers attractive for a wide range of applications spanning from the most de-
manding in terms of small hardware area to applications requiring a very high
throughput.
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