

Lecture Notes in Computer Science 4986
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Matthew Robshaw Olivier Billet (Eds.)

New
Stream Cipher
Designs

The eSTREAM Finalists

13

Volume Editors

Matthew Robshaw
Olivier Billet
Orange Labs
38–40 rue du Général Leclerc, 92794 Issy-les-Moulineaux CEDEX 9, France
E-mail: {matt.robshaw, olivier.billet}@orange-ftgroup.com

Library of Congress Control Number: 2008927529

CR Subject Classification (1998): E.3, F.2.1-2, G.2.1, D.4.6, K.6.5, C.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-68350-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68350-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12273416 06/3180 5 4 3 2 1 0

Preface

The question “Stream ciphers: dead or alive?” was posed by Adi Shamir. Intended
to provoke debate, the question could not have been better, or more starkly, put.
However, it was not Shamir’s intention to suggest that stream ciphers themselves
were obsolete; rather he was questioning whether stream ciphers of a dedicated
design were relevant now that the AES is pervasively deployed and can be used as
a perfectly acceptable stream cipher.

To explore this question the eSTREAM Project was launched in 2004, part
of the EU-sponsored ECRYPT Framework VI Network of Excellence. The goal
of the project was to encourage academia and industry to consider the “dead
stream cipher” and to explore what could be achieved with a dedicated design.
Now, after several years of hard work, the project has come to a close and the
16 ciphers in the final phase of eSTREAM are the subject of this book.

The designers of all the finalist ciphers are to be congratulated. Regardless
of whether a particular algorithm appears in the final portfolio, in reaching the
third phase of eSTREAM all the algorithms constitute a significant milestone in
the development of stream ciphers.

However, in addition to thanking all designers, implementers, and cryptan-
alysts who participated in eSTREAM, this is a fitting place to offer thanks to
some specific individuals.

The international and collaborative nature of the project was only possible
with a good supporting infrastructure and many thanks are due to Joe Lano
who got eSTREAM off to such a good start. His role was passed to Hongjun
Wu and then to Orr Dunkelman, who both kept things moving seamlessly. Many
experts dedicated their time by serving on the eSTREAM internal evaluation
committee. Together they have helped the project navigate its way through some
very difficult and sensitive decisions:

Steve Babbage Vodafone, UK
Christophe De Cannière K.U.Leuven, Belgium and ENS, France

Anne Canteaut INRIA, France
Carlos Cid Royal Holloway, UK

Henri Gilbert Orange Labs, France
Thomas Johansson University of Lund, Sweden

Joe Lano K.U.Leuven, Belgium
Christof Paar University of Bochum, Germany

Matthew Parker University of Bergen, Norway
Bart Preneel K.U.Leuven, Belgium

Vincent Rijmen K.U.Leuven, Belgium and T.U. Graz, Austria
Hongjun Wu K.U.Leuven, Belgium

The eSTREAM project depended on events and workshops so that ideas could
be presented and debated. These were, without exception, highly successful and

VI Preface

for their help as General or Program Chairs, or in chairing discussions, special
thanks are extended to Steve Babbage, Christophe De Cannière, Anne Canteaut,
Orr Dunkelman, Thomas Johansson, Lars Knudsen, Joe Lano, Kerstin Lemke-
Rust, and Bart Preneel. Throughout, the administrational support extended by
K.U.Leuven was outstanding and special thanks are due to Péla Noë.

Finally, the most important contributors to eSTREAM have been all the
cipher designers, the implementers, and the analysts. We are very grateful for
all the work that went into preparing a submission and to all those who crypt-
analyzed, implemented, and commented on the candidates. While some will be
disappointed that their algorithm was not advanced from the earlier stages of
eSTREAM or that it is not included in the final portfolio, we would like to ac-
knowledge all the contributions made to eSTREAM and to thank all submitters
for collectively advancing the field of stream ciphers by a very significant margin.

April 2008 M.J.B. Robshaw

This work has been supported by the European Commission through the IST
Programme under Contract IST-2002-507932 ECRYPT. The information in this
document is provided as is, and no guarantee or warranty is given or implied
that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

Table of Contents

The eSTREAM Project . 1
Matthew Robshaw

CryptMT3 Stream Cipher . 7
Makoto Matsumoto, Mutsuo Saito, Takuji Nishimura, and
Mariko Hagita

The Dragon Stream Cipher: Design, Analysis and Implementation
Issues . 20

Ed Dawson, Matt Henricksen, and Leonie Simpson

The Stream Cipher HC-128 . 39
Hongjun Wu

Design of a New Stream Cipher—LEX . 48
Alex Biryukov

Specification for NLSv2 . 57
Philip Hawkes, Cameron McDonald, Michael Paddon,
Gregory G. Rose, and Miriam Wiggers de Vries

The Rabbit Stream Cipher . 69
Martin Boesgaard, Mette Vesterager, and Erik Zenner

The Salsa20 Family of Stream Ciphers . 84
Daniel J. Bernstein

Sosemanuk, a Fast Software-Oriented Stream Cipher 98
Côme Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois,
Henri Gilbert, Louis Goubin, Aline Gouget, Louis Granboulan,
Cédric Lauradoux, Marine Minier, Thomas Pornin, and Hervé Sibert

eSTREAM Software Performance . 119
Christophe De Cannière

Decimv2 . 140
Côme Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois,
Blandine Debraize, Henri Gilbert, Louis Goubin, Aline Gouget,
Louis Granboulan, Cédric Lauradoux, Marine Minier,
Thomas Pornin, and Hervé Sibert

The Stream Cipher Edon80 . 152
Danilo Gligoroski, Smile Markovski, and Svein Johan Knapskog

VIII Table of Contents

F-FCSR Stream Ciphers . 170
François Arnault, Thierry Berger, and Cédric Lauradoux

The Grain Family of Stream Ciphers . 179
Martin Hell, Thomas Johansson, Alexander Maximov, and
Willi Meier

The MICKEY Stream Ciphers . 191
Steve Babbage and Matthew Dodd

The Self-synchronizing Stream Cipher Moustique 210
Joan Daemen and Paris Kitsos

Cascade Jump Controlled Sequence Generator and Pomaranch Stream
Cipher . 224

Cees J.A. Jansen, Tor Helleseth, and Alexander Kholosha

Trivium . 244
Christophe De Cannière and Bart Preneel

ASIC Hardware Performance . 267
Tim Good and Mohammed Benaissa

Author Index . 295

The eSTREAM Project

Matthew Robshaw

Orange Labs
38–40 rue du Général Leclerc

92794 Issy les Moulineaux, Cedex 9, France

1 Introduction

The origins of eSTREAM can be traced back to the 2004 RSA Data Secu-
rity Conference. There, as part of the Cryptographer’s Panel, Adi Shamir made
some insightful comments on the state of stream ciphers. In particular, with
AES [8] deployment being so wide-spread, Shamir wondered whether there re-
mained a need for a stream cipher of dedicated design. As arguments against,
one might observe that for most applications, the use of the AES in an appropri-
ate stream cipher mode [9] frequently offers a perfectly adequate solution. Some
also doubt our understanding of how best to design a dedicated stream cipher, a
view somewhat supported by the lack of surviving stream ciphers in the NESSIE
project [1]. However, as counter-arguments Shamir went on to identify two areas
where a dedicated stream cipher might conceivably offer some advantage over
block ciphers: (1) where exceptionally high throughput is required in software
and (2) where exceptionally low resource consumption is required in hardware.

Shamir’s comments were widely reported and, to help explore the state of
stream ciphers, ECRYPT launched the eSTREAM project [2] later the same
year. The primary goal of eSTREAM was to help the community develop its
know-how of stream cipher analysis and design. The project began with the
first of a series of workshops entitled The State of the Art of Stream Ciphers.
During an initial study period, which included input from industry, it became
clear that one of the best ways to promote research in stream ciphers would
be for eSTREAM to make a call for new proposals. These new stream ciphers
could be either synchronous or self-synchronising and they would then be subject
to several years of analysis in a process co-ordinated by ECRYPT. The final
outcome would be a small portfolio of promising stream cipher designs. To aid
designers, and reflecting Shamir’s comments, two specific goals or stream cipher
Profiles were identified:

– Profile 1: Stream ciphers for software applications with high throughput.
– Profile 2: Stream ciphers for hardware applications with highly restricted

resources.

Some experts also emphasized the importance of providing an authentication
method along with encryption and so two further profiles were proposed:

– Profile 1A: Stream ciphers satisfying Profile 1 with an associated authenti-
cation method.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 1–6, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Robshaw

– Profile 2A: Stream ciphers satisfying Profile 2 with an associated authenti-
cation method.

As is common with stream ciphers, designs were required to use an initiali-
sation vector as well as a secret key. For Profiles 1A and 2A the authentication
method would provide an authentication tag and, it was suggested that any au-
thentication mechanism should allow for what is termed associated data; that is
auxiliary data that might be authenticated but not necessarily encrypted.

To give designers as much design space as possible there were few restrictions.
The target security levels were set by the must-satisfy values for the length of the
keys. However several designers submitted algorithms that had greater flexibility
than this single value implies. The lengths of the initialisation vector (IV) and
authentication tag were also given though designs that offered greater flexibility
without performance penalty were welcomed.

key length (bits) IV length (bits) tag length (bits)
Profile 1 128 64 and 128 -
Profile 1A 128 64 and 128 32, 64, 96, or 128
Profile 2 80 32 and 64 -
Profile 2A 80 32 and 64 32 or 64

Over the course of eSTREAM the most significant evaluation criteria were

1. security,
2. performance when compared to the AES in an appropriate mode,
3. performance when compared to other submissions,
4. justification and supporting analysis,
5. simplicity and flexibility, and
6. completeness and clarity of submission.

Clearly security takes precedence. To assess software performance a range of
environments were considered over the course of eSTREAM. The development
of a software testing framework by Christophe De Cannière was a particular
success and it has since been used by other researchers outside of eSTREAM. For
hardware performance, the results for both FPGA and ASIC implementations
were of interest though, as we will see in a later chapter, it is not always easy to
isolate the most relevant metric when judging hardware performance. For both
profiles, a candidate cipher was compared to its companion submissions and
to existing primitives. In particular a submission needed to be demonstrably
superior to the AES in at least one significant aspect, where it was assumed that
the AES would be used in an appropriate, e.g. counter mode.

The original call for proposals generated considerable interest and 34 ciphers
were submitted by the deadline of April 29, 2005. Many were presented at the
SKEW workshop [3] in the same year. The submissions are listed in Table 1 where
they are separated into the different profiles. While many designers naturally
strived to design an algorithm with both profiles in mind, it is notable that
no finalist algorithm is considered to be simultaneously suitable for both the
software and hardware profile.

The eSTREAM Project 3

Table 1. The candidates to the first round of eSTREAM. Ciphers offering an authen-
tication mechanism are indicated with a letter A.

Profile 1 Profile 1 and 2 Profile 2

ABC F-FCSR Achterbahn
CryptMT/Fubuki Hermes8 DECIM

DICING LEX Edon-80
DRAGON MAG Grain
Frogbit A NLS A MICKEY
HC-256 Phelix A MOSQUITO
Mir-1 Polar Bear SFINKS A
Py POMARANCH Trivium

SOSEMANUK Rabbit TSC-3
SSS A VEST A

TRBDK3 YAEA WG
Yamb ZK-Crypt

Salsa20

2 eSTREAM: Phase 1

The difficulty of stream cipher design was soon made clear and after a year more
than half the initial proposals had a demonstrated weakness. However at the start
of eSTREAM the administrators had decided on a flexible first round and all
designers had the option to tweak their designs at the end of this first phase. This
was even allowed if substantial cryptographic flaws had been discovered. This
flexibility in the process reflected the concern that the cryptographic community
might lose out on a good design idea if a cipher were rejected because of a careless
oversight. While this flexibility generated many administrational difficulties, the
result was much stronger candidates later in the project.

By considering the public discussions at SASC 2006 [5], postings on the discus-
sion forum [2] and all available analysis, the internal committee decided which
algorithms would be advanced to the second phase. The algorithms Frogbit,
MAG, Mir-1, SFINKS , SSS, TRBDK3 YAEA, and Yamb were archived. These
were ciphers for which no tweaks were proposed despite substantial deficiencies
in security or performance, or for which updated code and documentation had
not been received.

3 eSTREAM: Phase 2

The algorithms moved forward to the second phase of eSTREAM are listed in
Table 2. It is immediately clear that there was only a small reduction in the
number of candidates under consideration. This was a side-product of allowing
substantial tweaks and the number of algorithms in the second phase was a point
of some concern given the limited cryptanalysis time available.

After another opportunity for the submission of optimised code along with
many new results on cryptanalysis and implementation, the SASC 2007 work-
shop [6] provided the starting point for the final round of eSTREAM. Sub-
missions with identified security issues such as (partial) key or state recovery

4 M. Robshaw

Table 2. Algorithms that were advanced to the second phase of eSTREAM. Ciphers
offering an authentication mechanism are indicated with a letter A. For tweaked ciphers
we use the version-numbers provided by the authors or the mark (P2) to indicate the
version considered in the second phase. Note that some ciphers took keys of different
sizes; the reader is referred to the text.

Profile 1 Profile 2

ABC v3 Achterbahn-128/80
CryptMT v3 DECIM v2
DICING (P2) Edon-80

DRAGON Grain v1
HC-128 (-256) F-FCSR-H (-16)

LEX Hermes8
NLS v2 A LEX
Phelix A MICKEY v2

Polar Bear v2 MICKEY-128 v2
Py MOUSTIQUE

Rabbit NLS v2 A
Salsa20 Phelix A

SOSEMANUK Polar Bear v2
POMARANCH v3

Rabbit
Salsa20
Trivium
TSC-4

VEST (P2) A
WG (P2)

Zk-Crypt (P2) A

attacks could not be advanced. And looking to the final stage of eSTREAM, the
clear presentation of a cipher that welcomes independent analysis was a very
compelling factor. Our final decision for the end of the second phase was com-
pletely independent of the IP status of any cipher and depended on the usual
eSTREAM criteria. We were also able to gauge the opinion of the broader com-
munity since voting forms were distributed to attendees of SASC 2007. While
we were not bound by the vote, our final decisions were roughly in line with
attendee preference which provided broad confirmation for the final choices.

4 eSTREAM: Phase 3

The ciphers advanced to the final phase of eSTREAM are listed in Table 3. For
Profile 1 the focus was on stream ciphers that offered a high throughput for
software applications and all the finalists showed sufficient potential, in one way
or another, to be a promising alternative to the AES in counter mode. While the
focus remained on versions that used 128-bit keys, companion versions support-
ing 256-bit keys were also considered. The algorithm NLS v2 was moved forward
as encryption-only since the authentication component performed poorly.

For Profile 2 the focus was on hardware applications with restricted resources.
The primary criteria at this stage of eSTREAM (after security) was the space
an implementation might require. There needed to be good evidence that the
algorithm could be implemented in at least one configuration that occupied

The eSTREAM Project 5

Table 3. Algorithms that were advanced to the final phase of eSTREAM. Some of the
ciphers had variants that allowed keys of different sizes; however we list the 128- and
80-bit key versions for Profile 1 and 2 respectively.

Profile 1 Profile 2

CryptMT v3 DECIM v2
DRAGON Edon-80
HC-128 F-FCSR-H
LEX Grain v1

NLS v2 MICKEY v2
Rabbit MOUSTIQUE
Salsa20 POMARANCH v3

SOSEMANUK Trivium

less space than the AES. However it seemed likely that the finalists would also
permit a range of implementation trade-offs, and this was something that would
be explored further in the third phase. While the focus of eSTREAM remained
on 80-bit keys for Profile 2 ciphers, companion versions that supported 128-bit
keys were also advanced.

The ciphers in the final phase of eSTREAM are the subject of this book. In
the chapters that follow they are fully specified in turn. We will also provide
two implementation surveys, one for each profile. It goes without saying that
all the designers of all the finalist ciphers are to be congratulated. Regardless
of whether a particular algorithm appears in the final portfolio, in reaching the
third phase of eSTREAM all the algorithms in this book have made a significant
advance in the development of stream ciphers.

The eSTREAM Portfolio

The eSTREAM project formally closes with the publication of the eSTREAM
portfolio. For the portfolio the committee will select the most promising software
and hardware-oriented candidates from among those described in this book. Of
course the decisions reflected in the portfolio are based on a snap-shot of a
field that will continue to develop long after eSTREAM itself has ended. After
only a few years of analysis all the designs are somewhat immature and future
cryptanalysis may well have a significant impact. With this in mind the portfolio
will be published on the eSTREAM web-pages [2] and these web-pages will be
maintained for the foreseeable future. In this way the eSTREAM portfolio can be
updated if circumstances dictate and it will continue to reflect our understanding
of what appear to be some very promising new stream cipher designs.

References

1. New European Schemes for Signatures, Integrity, and Encryption (NESSIE),
http://www.cosic.esat.kuleuven.be/nessie/

2. ECRYPT. The eSTREAM project, http://www.ecrypt.eu.org/stream/

http://www.cosic.esat.kuleuven.be/nessie/
http://www.ecrypt.eu.org/stream/

6 M. Robshaw

3. eSTREAM. SKEW - Symmetric Key Encryption Workshop (May 26-27, 2005),
http://www.ecrypt.eu.org

4. eSTREAM. SASC - The State of the Art of Stream Ciphers (October 14-15, 2004),
http://www.ecrypt.eu.org/stvl/sasc/

5. eSTREAM. SASC 2006 - Stream Ciphers Revisited (February 2-3, 2006),
http://www.ecrypt.eu.org/stvl/sasc2006/

6. eSTREAM. SASC 2007 - The State of the Art of Stream Ciphers (January 31 -
February 1, 2007), http://sasc.crypto.rub.de

7. eSTREAM. SASC 2008 - The State of the Art of Stream Ciphers (February 13-14,
2008), http://www.ecrypt.eu.org/stvl/sasc2008/

8. National Institute of Standards and Technology. FIPS 197: Advanced Encryption
Standard (November 2001), http://csrc.nist.gov

9. National Institute of Standards and Technology. SP800-38A: Recommendation for
Block Cipher Modes of Operation (December 2001), http://csrc.nist.gov

http://www.ecrypt.eu.org
http://www.ecrypt.eu.org/stvl/sasc/
http://www.ecrypt.eu.org/stvl/sasc2006/
http://sasc.crypto.rub.de
http://www.ecrypt.eu.org/stvl/sasc2008/
http://csrc.nist.gov
http://csrc.nist.gov

CryptMT3 Stream Cipher�

Makoto Matsumoto1, Mutsuo Saito2, Takuji Nishimura3, and Mariko Hagita4

1 Dept. of Math., Hiroshima University,
m-mat@math.sci.hiroshima-u.ac.jp

2 Dept. of Math., Hiroshima University,
saito@math.sci.hiroshima-u.ac.jp

3 Dept. of Math. Sci., Yamagata University,
nisimura@sci.kj.yamagata-u.ac.jp

4 Dept. of Info. Sci., Ochanomizu University,
hagita@is.ocha.ac.jp

Abstract. CryptMT version 3 (CryptMT3) is a stream cipher obtained
by combining a large LFSR and a nonlinear filter with memory using in-
teger multiplication. Its period is proved to be no less than 219937−1, and
the 8-bit output sequence is at least 1241-dimensionally equidistributed.
It is one of the fastest stream ciphers on a CPU with SIMD operations,
such as Intel Core 2 Duo.

1 Introduction

In this article, we discuss pseudorandom number generators (PRNGs) for stream
ciphers. We assume that the PRNG is implemented in software, and the platform
is a 32-bit CPU with enough memory and fast integer multiplication.

Our proposal [5][6] is to combine a huge state linear generator (called the
mother generator) and a filter with memory, as shown in Figure 1.

Fig. 1. Combined generator = linear generator + filter with memory

� CryptMT is proposed to eSTREAM Project http://www.ecrypt.eu.org/stream/.
The reference codes are available there. This work is supported in part by JSPS
Grant-In-Aid #16204002, #18654021, #18740044, #19204002 and JSPS Core-to-
Core Program No.18005.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 7–19, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

8 M. Matsumoto et al.

Definition 1. (Generator with a filter with memory.) Let X be a finite set (typ-
ically the set of the word-size integers). The mother generator G generates a
sequence x0, x1, x2, . . . ∈ X. Let Y be a finite set, which is the set of the possible
states of the memory in the filter. We take a y0 ∈ Y . Let f : Y × X → Y be
the state transition function of the memory of the filter, that is, the content yi

of the memory is changed by the recursion

yi+1 := f(yi, xi).

The output at the i-th step is given by g(yi), where g : Y → O is the output
function which converts the content of the memory to an output symbol in O.

In a previous manuscript [5], we chose the mother generator to be Mersenne
Twister [4], which generates a sequence of 32-bit integers by an F2-linear recur-
sion. The filter is given by

f(y, x) := y × (x|1) mod 232, g(y) := 8 MSBs of y (1)

where (x|1) denotes x with LSB set to 1, and 8 MSBs mean the 8 most signifi-
cant bits of the integer y. Initially, the memory is set to an odd integer y0. This
is CryptMT version 1 (CryptMT1). There has been no attacks reported to this
generator (even non-practical attacks). We introduced CryptMT version 2 [7]
and version 3 [8], not to improve the security, but to improve the speed of ini-
tialization and generation. This manuscript is based on [8]. Theoretical analysis
of this type of generators is developed in [9], where the quasigroup property of
the filter plays the role of “balanced filter”.

2 CryptMT3: A New Variant Based on 128-Bit
Operations

Modern CPUs often have single-instruction-multiple-data (SIMD) operations.
Typically, a quadruple of 32-bit registers is considered as a single 128-bit register.
CryptMT3 proposed here is a modification of the CryptMT version 1, so that it
fits to the high-speed SIMD operations.

2.1 Notation

Let us fix the notations for 128-bit integers. A bold italic letter x denotes a
128-bit integer. It is a concatenation of four 32-bit registers, each of which is
denoted by x[3],x[2],x[1],x[0], respectively, from MSB to LSB.

The notation x[3][2] denotes the 64-bit integer obtained by concatenating the
two 32-bit integers x[3] and x[2], in this order. Similarly, x[0][3][2][1] denotes the
128-bit integer obtained by permuting (actually rotating) the four 32-bit integers
in x. Thus, for example, x = x[3][2][1][0] holds.

An operation on 128-bit registers that is executed for each 32-bit integer is
denoted with the subscript 32. For example,

x +32 y := [(x[3] + y[3]), (x[2] + y[2]), (x[1] + y[1]), (x[0] + y[0])],

CryptMT3 Stream Cipher 9

that is, the first 32-bit part is the addition of x[3] and y[3] modulo 232, the second
32-bit is that of x[2] and y[2] (without the carry from the second 32-bit part to
the first 32-bit part, differently from the addition of 128-bit integers). The outer
most [] in the right hand side is to emphasize that they are concatenated to
give a 128-bit integer.

Similarly, for an integer S,

x >>32 S := [(x[3] >> S), (x[2] >> S), (x[1] >> S), (x[0] >> S)]

means the shift right by S bits applied to each of the four 32-bit integers, and

x >>64 S := [(x[3][2] >> S), (x[1][0] >> S)]

means the shifts applied to each of the two 64-bit integers.
In the following, we often use functions such as

x �→ x⊕ (x[2][1][0][3] >>32 S),

which we call perm-shift. Here ⊕ means the bit-wise exclusive-or. The permu-
tation [2][1][0][3] may be an arbitrary permutation, and the shift may be to the
left. A function of the form

x �→ x[i3][i2][i1][i0]⊕ (x >>32 S)

is also called a perm-shift, where i3i2i1i0 is a permutation of 3, 2, 1, 0. A perm-
shift is an F2-linear transformation, and if S ≥ 1 then it is a bijection. (Since
its representation matrix is an invertible triangular matrix times a permutation
matrix, under a suitable choice of the basis.)

Let n be a positive integer, and x be a 32-bit integer. The n most significant
bits of x are denoted by MSBn(x). Similar notation LSBn(x) is also used. For a
128-bit integer x, we define

MSBn
32(x) := [MSBn(x[3]), MSBn(x[2]), MSBn(x[1]), MSBn(x[0])],

which is a (n× 4)-bit integer.
A function f : Y ×X → Z is bi-bijective if for any fixed x ∈ X , the mapping

Y → Z, y �→ f(y, x) is bijective, and for any fixed y ∈ Y , the mapping X →
Z, x �→ f(y, x) is bijective. It is necessary that the cardinalities coincide: #(X) =
#(Y) = #(Z).

2.2 SIMD Fast MT

CryptMT3 adopts the following mother generator, named SIMD-oriented Fast
Mersenne Twister (SFMT) [10].

Let N be an integer, and x0,x1, . . . ,xN−1 be N 128-bit integers given as the
initial state. A version of SFMT used here is to generate a sequence of 128-bit
integers by the following F2-linear recursion:

xN+j := (xN+j−1 & 128-bit MASK)⊕
(xM+j >>64 S)⊕ (xM+j [2][0][3][1])⊕ (xj [0][3][2][1]). (2)

10 M. Matsumoto et al.

Fig. 2. The mother generator: SIMD Fast Mersenne Twister.
permute: y �→ y[0][3][2][1].
perm-shift: y �→ y[2][0][3][1] ⊕ (y >>64 3).
bit-mask: ffdfafdf f5dabfff ffdbffff ef7bffff

Here, & denotes the bit-wise-and operation, so the first term is the result of
the bit-mask of xN+j−1 by a constant 128-bit MASK. The second term is the
concatenation of two 64-bit integers (xM+j [3][2] >> S) and (xM+j [1][0] >> S),
as explained above. The third term is a permutation of four 32-bit integers in
xM+j , and the last term is a rotation of those in xj . Thus, the SFMT is based on
the N -th order linear recursion over the 128-dimensional vectors F2

128. Figure 2
describes the SFMT.

By a computer search, we found the parameters N = 156, M = 108, S = 3,
and MASK = ffdfafdf f5dabfff ffdbffff ef7bffff in the hexa-decimal
notation. Such a mask is necessary to break the symmetry (i.e., without such
asymmetry, if each 128-bit integer xi in the initial state array satisfies xi[3] =
xi[2] = xi[1] = xi[0], then this equality holds ever after). We selected a mask
with more 1’s than 0’s, so that we do not lose the information so much.

We proved that, if x0[3] = 0x4d734e48, then the period of the generated
sequence of the SFMT is a multiple of the Mersenne prime 219937 − 1, and the
output is 155-dimensionally equidistributed, using the method described in [10].

These operations are chosen to fit SIMD instructions in modern CPUs such
as Intel Core 2 Duo. We note that even for CPUs without SIMD, computation
of such a recurring formula is fast since it fits the pipeline processing.

2.3 A New Filter

The previously proposed filter (1) uses integer multiplication in the ring Z/232
Z.

To avoid the degenerations, we restrict the multiplication to the set of odd
integers in Z/232

Z, by setting the LSB to be 1 in (1).

CryptMT3 Stream Cipher 11

In CryptMT3, we use the following binary operation ×̃ on Z/232
Z instead of

×: for x, y ∈ Z/232
Z, we define

x×̃y := 2xy + x + y mod 232,

which is essentially the multiplication of 33-bit odd integers. Let S be the set
of odd integers in Z/233

Z. By regarding Z/232
Z = {0, 1, . . . , 232− 1}, we have a

bijection
ϕ : Z/232

Z→ S, x �→ 2x + 1.

Then, ×̃ above is defined by

x×̃y := ϕ−1(ϕ(x) × ϕ(y)),

where × denotes the multiplication in S. Thus, ×̃ is given by looking at the
upper 32 bits of multiplications in S. Consequently, ×̃ is bi-bijective.

Most of modern CPUs have 32-bit integer multiplication but not 64-bit nor
128-bit multiplication. Thus, a simplest parallelization of (1) would be the fol-
lowing: X = Y = (Z/232

Z)4, and

f(y,x) := y×̃32x,

(that is, f(y,x)[i] := y[i]×̃x[i] for i = 3, 2, 1, 0), and

g(y) := MSB8
32(x)

is the output of (8× 4)-bit integers (for notations, see §2.1).
In CryptMT3, we adopted a modified filter (see Figure 3) as follows. For a

given pair of 128-bit integers x,y, we define

f(y,x) := (y ⊕ (y[0][3][2][1] >>32 1))×̃32x. (3)

The operation applied to y in the right hand side is a perm-shift (see §2.1),
hence is bijective. Since ×̃ is bi-bijective, so is f . The purpose to introduce the

Fig. 3. Filter of CryptMT3.
perm-shift3: y �→ y ⊕ (y[0][3][2][1] >>32 1).
perm-shift4: y �→ y ⊕ (y >>32 16).
×̃: multiplication of 33-bit odd integers.

12 M. Matsumoto et al.

perm-shift is to mix the information among four 32-bit memories in the filter,
and to send the information of the upper bits to the lower bits. This supplements
the multiplication, which lacks this direction of transfer of the information.

The output function is

g(y) := LSB16
32(y ⊕ (y >>32 16)). (4)

Thus, the new filter has 128-bit of memory, receives a 128-bit integer, and output
a (16 × 4)-bit integer. The compression ratio of this filter is (128:64), which is
smaller than (32:8) in the previously proposed filter. This change of the ratio is
for the speed, but might weaken the security. To compensate, the output function
takes the exclusive-or of the 16 MSBs and the 16 LSBs of y[i], i = 3, 2, 1, 0.

2.4 Conversion to 8-Bit Integers

Since the outputs of the filter are (16 × 4)-bit integers and the specification
required is 8-bit integer outputs, we need to dissect them into 8-bit integers.
Because of the nature of the 128-bit SIMD instructions, the following strategy
is adopted for the speed. Let

LOWER16 := (0x0000ffff, 0x0000ffff, 0x0000ffff,0x0000ffff)
UPPER16 := (0xffff0000, 0xffff0000, 0xffff0000,0xffff0000)

be the 128-bit masks.
Let y0,y1, . . . ,y2i,y2i+1, . . . be the content of the memory in the filter at

every step, i.e., generated by yi+1 := f(yi,xi) in (3). Then, y2i and y2i+1 are
used to generate the i-th 128-bit integer output zi, by the formula

zi := [(y2i ⊕ (y2i >>32 16))&LOWER16] | [(y2i+1 ⊕ (y2i+1 <<32 16))&UPPER16]

where | denotes the bit-wise-or. Then, zi is separated into 16 of 8-bit integers
from the lower bits to the upper bits, and used as the 8-bit integer outputs.

2.5 A New Booter for the Initialization

SFMT in §2.2 requires N = 156 of 128-bit integers as the initial state. We need
to expand the key and IV to an initial state at the initialization, but this is
expensive when the message length is much less than N ×128 bits. Our strategy
introduced in [7] is to use a smaller PRNG called the booter. Its role is to expand
the key and IV to a sequence of 128-bit integers. The output of the booter is
passed to the filter discussed above to generate the pseudorandom integer stream,
and at the same time, used to fill the state of SFMT. Once the state of SFMT
is filled up, then the generation is switched from the booter to SFMT.

The booter we adopted here is described in Figure 4. We choose an integer
H later in §2.6 according to the sizes of the Key and IV. The state space of the
booter is a shift register consisting of H 128-bit integers. We choose an initial
state x0,x1, . . . ,xH−1 and the initial value a0 of the accumulator (a 128-bit

CryptMT3 Stream Cipher 13

Fig. 4. Booter of CryptMT3.
perm-shift1: x �→ (x[2][1][0][3]) ⊕ (x >>32 13).
perm-shift2: x �→ (x[1][0][2][3]) ⊕ (x >>32 11).
×̃: multiplication of (a quadruple of) 33-bit odd integers.

memory) as described in the next section. Then, the state transition is given by
the recursion

aj := (aj−1 ×̃32 perm-shift2(xH+j−1))
xH+j := perm-shift1(xj +32 xH+j−2)−32 aj ,

where
perm-shift1(x) := (x[2][1][0][3])⊕ (x >>32 13)
perm-shift2(x) := (x[1][0][2][3])⊕ (x >>32 11).

Similarly to the notation +32 (§2.1), −32 denotes the subtraction modulo 232 for
each of the four 32-bit integers. The output of the j-th step is xj +32 xH+j−2.

As described in Figure 4, the booter consists of an automaton with three
inputs and two outputs of 128-bit integers, with a shift register. In the imple-
mentation, the shift register is taken in an array of 128-bit integers with the
length 2H + 2 + N . This redundancy of the length is for idling, as explained
below.

2.6 Key and IV Set-Up

We assume that both the IV and the Key are given as arrays of 128-bit integers,
of length from 1 to 16 for each. Thus, the Key-size can be flexibly chosen from
128 bits to 2048 bits, as well as the IV-size. We claim the security level that is
the same with the minimum of the Key-size and the IV-size.

In the set-up of the IV and the Key, these arrays are concatenated and copied
twice to an array, as described in Figure 5. To break the symmetry, we add a

14 M. Matsumoto et al.

Fig. 5. Key and IV set-up. The IV-array and Key-array are concatenated and copied
to an array twice. Then, a constant is added to the bottom of the second copy of the
key to break a possible symmetry. The automaton is described in Figure 4.

constant 128-bit integer (846264, 979323, 265358, 314159) (denoting four 32-bit
integers in a decimal notation) to the bottom row of the second copy of the key
(add means +32 modulo 232). Now, the size H of the shift register in the booter
is set, to be:

2× (IV-size + Key-size (in bits))/128,

namely, the twice of the number of 128-bit integers contained in the IV and
the Key. For example, if the IV-size and the Key-size are both 128 bits, then
H = 2 × (1 + 1) = 4. The automaton in the booter described in Figure 4 is
equipped on this array, as shown in Figure 5. The accumulator of the booter-
automaton is set to

(the top row of the key array) | (1, 1, 1, 1),

that is, the top row is copied to the accumulator and then the LSB of each of
the 32-bit integers in the accumulator is set to 1.

At the first generation, the automaton reads three 128-bit integers from the
array, and write the output 128-bit integer at the top of the array. The feedback
to the shift register is written into the (H +1)-st entry of the array. For the next
generation, we shift the automaton downwards by one, and proceed in the same
way.

For idling, we iterate this for H + 2 times. Then, the latest modified row in
the array is the (2H + 2)-nd row, and it is copied to the 128-bit memory in the
filter. We discard the top H +2 entries of the array. This completes the Key and
IV set-up. Figure 6 shows the state after the set-up.

After the set-up, the booter produces 128-bit integer outputs at most N times.
Let L be the number of 8-bit integers in the message. If L × 8 ≤ N × 64, then

CryptMT3 Stream Cipher 15

Fig. 6. After the Key and IV set-up

we do not need the mother generator. We generate the necessary number of
128-bit integers by the booter, and pass them to the filter to obtain the required
outputs. If L× 8 ≥ N × 64, then, we generate N 128-bit integers by the booter,
and pass them to the filter to obtain N 64-bit integers, which are used as the
first outputs. At the same time, these N 128-bit integers are recorded in the
array, and they are passed to SFMT as the initial state.

To eliminate the possibility of shorter period than 219937 − 1, we set the
32 MSBs of the first row of the state array of SFMT to the magic number
0x4d734e48 in the hexadecimal representation, as explained in §2.2. This is
illustrated in Figure 7. That is, we start the recursion (2) of SFMT with x0,
x1, . . . , xN−1 being the array of length N indicated in Figure 7, and produces
xN ,xN+1, Since xN might be easier to guess because of the constant part in
the initial state, we skip it and pass the 128-bit integers xN+1,xN+2, . . . to the
filter.

3 Resistance of CryptMT3 to Standard Attacks

The cryptanalysis developed in §4 in [6] for CryptMT is also valid for version 3.
We list some properties of the SFMT (§2.2) required in the following cryptanal-
ysis. Algorithms to check these are described in [10].

Proposition 1. SFMT is an automaton with the state space S being an array
of 128-bit integers of the length 156 (hence having 19968 = 128× 156 bits).

1. The state-transition function h of SFMT is an F2-linear bijection, whose
characteristic polynomial is factorized as

χh(t) = χ19937(t)× χ31(t),

16 M. Matsumoto et al.

Fig. 7. Initialization of the SFMT mother generator

where χ19937(t) is a primitive polynomial of degree 19937 and χ31(t) is a
polynomial of degree 31.

2. The state S is uniquely decomposed into a direct sum of h-invariant subspaces
of degrees 19937 and 31

S = V19937 + V31,

where the characteristic polynomial of h restricted to V19937 is χ19937(t).
3. From any initial state s0 not contained in V31, the period P of the state

transition is a multiple of the 24th Mersenne Prime 219937− 1, namely P =
(219937 − 1)q holds for some 1 ≤ q ≤ 231 − 1 (q may depend on s0). The
period of the output sequence is also P .

In this case, in addition, the output sequence of 128-bit integers of SFMT
is at least 155-dimensionally equidistributed with defect q, in the sense of [6,
§4.4].

4. Let s0 be the initial state of the SFMT, i.e., an array of 128-bit integers of
length 156. If the 32 MSBs of the first 128-bit integer in s0 is 0x4d734e48,
then s0 /∈ V31 (cf. §2.2). In the initialization of SFMT, the corresponding 32
bits in s0 is set to this (cf. §2.6).

5. χh(t) has 8928 nonzero terms (which is much larger than 135 in the case of
MT19937), and χ19937(t) has 9991 nonzero terms.

3.1 Period

Proposition 2. Any bit of the 8-bit integer stream generated by CryptMT3 has
a period that is a multiple of 219937 − 1.

Proof. Put Q := 219937 − 1. Assume the converse, so there exists one bit among
the 8 bits whose period is not a multiple of Q, which we call a short-period bit.

CryptMT3 Stream Cipher 17

Let us denote by h0, h1, h2, . . . the output 8-bit integer sequence of CryptMT3.
If we consider CryptMT3 as a 64-bit integer generator (see §2.4), then its outputs
z0, z1, z2, . . . determine h0, h1, h2, . . . by

z0 = (h13, h12, h9, h8, h5, h4, h1, h0)
z1 = (h15, h14, h11, h10, h7, h6, h3, h2)
z2 = (h29, h28, h25, h24, h21, h20, h17, h16)
z3 = (h31, h30, h27, h26, h23, h22, h19, h18)

...

(5)

From this, we see that the bits in z0, z2, z4, . . . that corresponds to the short-
period bit (there are 8 bits for each) has a period not a multiple of Q (since it is
obtained by taking every 16-th h’s). This implies that each of the corresponding
8 bits in z0, z1, z2, z3, . . . have a period not a multiple of Q.

We use Theorem A.1 in [6] (or equivalently Theorem 1 in [9]) to show that any
two bits among the 64 bits in zi have a period that is a multiple of Q (as a 2-bit
integer sequence), which proves this proposition. We consider CryptMT3 as a
64-bit integer stream generator. Then it satisfies the conditions in the theorem,
with n = 155, Q = 219937 − 1, q < 231, and Y = F2

128. If we define the mapping
g : Y → B in Theorem A.1 by setting B := F2

2 and

g : y �→ any fixed two bits in LSB16
32(y ⊕ (y >>32 16)),

then r = 1/4 and the inequality

r−156 = 2312 > q ×#(Y)2 (< 231 × 2256)

implies that any pair of bits in the 64 bits has period of a multiple of Q, by
Theorem A.1.

3.2 Time-Memory-Trade-off Attack

A naive time-memory-tradeoff attack consumes the computation time of roughly
the square root of the size of the state space, which is O(

√
219968+128)=O(210048)

for CryptMT3.

3.3 Dimension of Equidistribution

Proposition 1 shows that SFMT satisfies all conditions in §4.2–§4.3 of [6], with
period P = (219937 − 1)q (1 ≤ q < 231) and n = 155-dimensional equidistri-
bution with defect d = q. Proposition 4.4 in [6] implies that the output 64-bit
integer sequence of CryptMT3 is 156-dimensionally equidistributed with defect
q · 2128 < 2159, and hence 1241-dimensionally equidistributed as 8-bit integers.
(The argument here appears also in §2.1 of [9].)

3.4 Correlation Attacks and Distinguishing Attacks

By Corollary 4.7 in [6], if we consider a simple distinguishing attack to CryptMT3
of order ≤ 155, then its security level is 219937×2, since P/d = 219937 − 1.

Because of the 156-dimensional equidistribution property, correlation attacks
seem to be non-applicable. See §4.5 of [6] for more detail.

18 M. Matsumoto et al.

3.5 Algebraic Degree of the Filter

Proposition 4.11 in [6] is about the multiplicative filter, so it is not valid for
CryptMT3 as it is. However, since the filter of CryptMT3 introduces more bit-
mixing than the original multiplicative filter, we guess that each bit of the output
of CryptMT3 would have high algebraic degree, close to the upper bound coming
from the number of variables. Algebraic attacks and Berlekamp-Massey attacks
would be infeasible, by the same reasons stated in §4.9 and §4.10 of [6].

3.6 Speed Comparison

Comparison of the speed of generation for stream ciphers is a delicate problem:
it depends on the platform, compilers, and so on. Here we compare the number
of cycles consumed per byte, by CryptMT3, HC256, SOSEMANUK, Salsa20,
Dragon (these are the five candidates in eSTREAM software cipher phase 3 per-
mitting 256-bit Key), SNOW2.0 [3] and AES (counter-mode), in three different
CPUs: Intel Core 2 Duo, AMD-Athlon X2, and Motorola PowerPC G4, using
eSTREAM timing-tool [2]. The data are listed in Table 1. Actually, they are
copied from Bernstein’s page [1]. The number of cycles in Key set-up and IV
set-up are also listed.

CryptMT3 is the fastest in generation in Intel Core 2 Duo CPU, reflecting
the efficiency of SIMD operations in this newer CPU. CryptMT3 is slower in
Motorola PowerPC. This is because AltiVec (SIMD of PowerPC) lacks 32-bit
integer multiplication (so we used non-SIMD multiplication instead). Note that
PowerPC is replaced with Intel CPUs in the present version of Mac PCs.

Table 1. Summary from eSTREAM benchmark by Bernstein[1]

Core 2 Duo AMD Athlon 64 X2 Motorola PowerPC G4
Primitive Stream Key setup IV setup Stream Key IV Stream Key IV
CryptMT3 2.95 61.41 514.42 4.73 107.00 505.64 9.23 90.71 732.80

HC-256 3.42 61.31 83805.33 4.26 105.11 88726.20 6.17 87.71 71392.00
SOSEMANUK 3.67 848.51 624.99 4.41 1183.69 474.13 6.17 1797.03 590.47

SNOW-2.0 4.03 90.42 469.02 4.86 110.70 567.00 7.06 107.81 719.38
Salsa20 7.12 19.71 14.62 7.64 61.22 51.09 4.24 69.81 42.12
Dragon 7.61 121.42 1241.67 8.11 120.21 1469.43 8.39 134.60 1567.54

AES-CTR 19.08 625.44 18.90 20.42 905.65 50.00 34.81 305.81 34.11

4 Conclusion

We modified the mother generator, the filter, and the initialization of CryptMT
and CryptMT2 so that they fit to the parallelism of modern CPUs, such as
single-instruction-multiple-data operations and pipeline processing.

The proposed CryptMT3 is 1.8 times faster than the first version (faster than
SNOW2.0 on Core 2 Duo and AMD Athlon platform), while the astronomical
period ≥ 219937 − 1 and the 1241-dimensional equidistribution property (as a
8-bit integer generator) are guaranteed. The Key-size and the IV-size can be
flexibly chosen from 128 bits to 2048 bits for each. The size of the state and
the length of the period makes time-memory-trade-off attacks infeasible, and

CryptMT3 Stream Cipher 19

the high non-linearity introduced by the integer multiplication would make the
algebraic attacks and Berlekamp-Massey attacks impossible. CryptMT has no
look-up tables, and hence has resistance to the cache-timing attacks.

A shortcoming of CryptMT3 might be in the size of consumed memory (nearly
2.6KB), but it does not matter in usual computers (of course it does matter in
some applications, though).

5 Intellectual Property Status

CryptMT is patent-pending. Its property owners are Hiroshima University and
Ochanomizu University. However, the inventors (i.e., the authors of this manu-
script) had the following permission from the owners:
– CryptMT is free for non-commercial use.
– If CryptMT survives in the final portfolio of the stream ciphers in eSTREAM

competition, then it is free even for commercial use.

The inventors’ wish is that this algorithm be freely and widely used in the
community, similarly to Mersenne Twister PRNG [4] invented by the first and
the third authors.

References

1. Bernstein, D.J. http://cr.yp.to/streamciphers/timings.html
2. eSTREAM – The ECRYPT Stream Cipher Project – Phase 3,

http://www.ecrypt.eu.org/stream/index.html
3. Ekdahl, P., Johansson, T.: A New Version of the Stream Cipher SNOW, Se-

lected Areas in Cryptography. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 47–61. Springer, Heidelberg (2003)

4. Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Model-
ing and Computer Simulation 8, 3–30 (1998)

5. Matsumoto, M., Nishimura, T., Saito, M., Hagita, M.: Cryptographic Mersenne
Twister and Fubuki stream/block cipher, http://eprint.iacr.org/2005/165,
This is an extended version of Mersenne Twister and Fubuki stream/block cipher
in, http://www.ecrypt.eu.org/stream/cryptmtfubuki.html

6. Matsumoto, M., Saito, M., Nishimura, T., Hagita, M.: Cryptanalysis of CryptMT:
Effect of Huge Prime Period and Multiplicative Filter. In: SASC 2006 Conference
Volume (2006), http://www.ecrypt.eu.org/stream/cryptmtfubuki.html

7. Matsumoto, M., Saito, M., Nishimura, T., Hagita, M.: CryptMT Version 2.0: a
large state generator with faster initialization. In: SASC 2006 Conference Volume
(2006), http://www.ecrypt.eu.org/stream/cryptmtfubuki.html

8. Matsumoto, M., Saito, M., Nishimura, T., Hagita, M.: CryptMT Stream Cipher
Version 3. In: SASC 2007 Conference Volume (2007),
http://www.ecrypt.eu.org/stream/cryptmtp3.html

9. Matsumoto, M., Saito, M., Nishimura, T., Hagita, M.: A Fast Stream Cipher with
Huge State Space and Quasigroup Filter for Software. In: Proceedings of SAC 2007.
LNCS, vol. 4876, pp. 245–262 (2007)

10. Saito, M., Matsumoto, M.: SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseu-
dorandom Number Generator. Monte Carlo and Quasi-Monte Carlo Methods 2006,
pp. 607–622. Springer, Heidelberg (2008)

http://cr.yp.to/streamciphers/timings.html
http://www.ecrypt.eu.org/stream/index.html
http://eprint.iacr.org/2005/165
http://www.ecrypt.eu.org/stream/cryptmtfubuki.html
http://www.ecrypt.eu.org/stream/cryptmtfubuki.html
http://www.ecrypt.eu.org/stream/cryptmtfubuki.html
http://www.ecrypt.eu.org/stream/cryptmtp3.html

The Dragon Stream Cipher: Design, Analysis,

and Implementation Issues

Ed Dawson1, Matt Henricksen2, and Leonie Simpson1

1 Information Security Research Centre, Queensland University of Technology,
GPO Box 2434, Brisbane Qld 4001, Australia
{e.dawson,lr.simpson}@qut.edu.au
2 Institute for Infocomm Research,

A*STAR, Singapore
mhenricksen@i2r.a-star.edu.sg

Abstract. Dragon is a word-based stream cipher. It was submitted to
the eSTREAM project in 2005 and has advanced to Phase 3 of the soft-
ware profile. This paper discusses the Dragon cipher from three perspec-
tives: design, security analysis and implementation. The design of the
cipher incorporates a single word-based non-linear feedback shift regis-
ter and a non-linear filter function with memory. This state is initialized
with 128- or 256-bit key-IV pairs. Each clock of the stream cipher pro-
duces 64 bits of keystream, using simple operations on 32-bit words. This
provides the cipher with a high degree of efficiency in a wide variety of
environments, making it highly competitive relative to other symmetric
ciphers. The components of Dragon were designed to resist all known at-
tacks. Although the design has been open to public scrutiny for several
years, the only published attacks to date are distinguishing attacks which
require keystream lengths greatly exceeding the stated 264 bit maximum
permitted keystream length for a single key-IV pair.

1 Introduction

The word-based stream cipher Dragon was first presented at ICISC in 2004 [5].
It was also submitted as a candidate to the ECRYPT stream cipher project
eSTREAM [12] in April 2005 and has advanced to Phase 3 in the software pro-
file. The objective of eSTREAM is to identify stream ciphers that are suitable
for widespread adoption for software applications with high throughput require-
ments. This paper discusses the Dragon cipher from three perspectives: design,
security analysis and implementation.

Stream cipher design has traditionally focussed on bit-based linear feedback
shift registers (LFSRs), as these are well studied and produce sequences which
satisfy common statistical criteria. Non-linearity is introduced into the keystream
of these ciphers either by a non-linear combining function or filter function,
or by irregular clocking, or both. When implemented in hardware, bit-based
stream ciphers can generate high-throughput keystream, but they are notoriously
slow in software. LFSR-based ciphers that use sparse feedback functions may be

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 20–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Dragon Stream Cipher: Design, Analysis, and Implementation Issues 21

vulnerable to attack, but increasing the number of feedback taps decreases the
efficiency of the cipher. Finally, the security of some ciphers with linear state
update functions is threatened by algebraic attacks [8].

Word-based stream ciphers may exceed the performance of bit-based ciphers
in both software and hardware. They produce many times the amount of
keystream per iteration than ciphers built using bit-based LFSRs. In software
they can outperform even fast block ciphers like the Advanced Encryption Stan-
dard [19] by almost an order of magntiude. Although it is easy to assess the
speed of these word based stream ciphers, it is difficult to precisely quantify the
security they provide.

Dragon was designed with both security and efficiency in mind. It uses a
word based non-linear feedback shift register (NLFSR) in conjunction with a
non-linear filter to produce keystream as 64-bit words. Dragon has a throughput
of gigabits per second and requires little more than four kilobytes of memory,
so is suitable for use in many environments including those that are resource-
constrained. Not only is Dragon an efficient keystream generator, it is also key
agile, making it especially suitable for mobile applications and wireless commu-
nications.

Section 2 of this paper presents the specification for Dragon, while Section 3
describes the design decisions behind the algorithm. Sections 4 and 5 provide
an analysis of the security related properties of Dragon and discuss the appli-
cation of current cryptanalytic techniques. Section 6 discusses the performance
of Dragon in both software and hardware, and associated implementation is-
sues. Finally, we draw conclusions regarding the security provided by the cipher
against all currently known attacks, including both distinguishing and key/state
recovery attacks.

2 Dragon Design Specification

Dragon can be used with a 128-bit key and 128-bit IV, or with a 256-bit key and
256-bit IV. We term the former version Dragon-128, and the latter Dragon-256.
Keystream generation for both versions is identical, but key initialization differs
slightly.

Both versions of Dragon are constructed using a single 1024-bit word based
NLFSR and 64-bit memory M , giving a state size of 1088 bits. The initial state is
populated using the key and IV in conjunction with the state’s update function
F . The update function is also used in keystream generation.

2.1 Dragon’s State Update Function (F Function)

Dragon-128 and Dragon-256 both use the same F function. As shown in Fig-
ure 1, F is an invertible mapping from 192 to 192 bits: it takes 6 × 32 bits
as input (denoted a, b, c, d, e, f) and produces 6 × 32 bits as output (denoted
a′, b′, c′, d′, e′, f ′). The network consists of three layers: a initial mixing layer, an
s-box layer, and a final mixing layer. The mixing layers use addition modulo 232

22 E. Dawson, M. Henricksen, and L. Simpson

a b c d e f

a′ b′ c′ d′ e′ f ′

�

�

�

�� �

� � �

� �
�

G1

G2

G3

H2H1 H3

� � � � � �

� � �
� �

�

�

�

�

� � �

�
�

�
� �

�

Fig. 1. F function

(�) and binary addition (⊕). The s-box layer contains G and H functions which
in turn contain multiple 8× 32 s-boxes.

G and H functions. The G and H functions are highly non-linear virtual
32× 32 s-boxes, constructed from two 8× 32-bit s-boxes. These smaller s-boxes,
S1 and S2, are fully specified in Appendix B. The output of G and H is calculated
as described below, where the 32-bit input x is broken into four bytes, x =
x0‖x1‖x2‖x3, where a ‖ b denotes the concatenation of a and b.

G1(x) = S1(x0)⊕ S1(x1)⊕ S1(x2)⊕ S2(x3)

G2(x) = S1(x0)⊕ S1(x1)⊕ S2(x2)⊕ S1(x3)

G3(x) = S1(x0)⊕ S2(x1)⊕ S1(x2)⊕ S1(x3)

H1(x) = S2(x0)⊕ S2(x1)⊕ S2(x2)⊕ S1(x3)

H2(x) = S2(x0)⊕ S2(x1)⊕ S1(x2)⊕ S2(x3)

H3(x) = S2(x0)⊕ S1(x1)⊕ S2(x2)⊕ S2(x3)

2.2 Initialization

For key initialization the NLFSR is partitioned into eight 128-bit words, labelled
W0 to W7. Dragon-128 and Dragon-256 have simple two-phase initialization
strategies that differ only in the first phase.

The Dragon Stream Cipher: Design, Analysis, and Implementation Issues 23

Phase 1: populating the cipher state. In the first phase, the initial 1024-bit
NLFSR state and the 64-bit memory M are populated using a key (K) and
(IV).

Dragon-128 takes a 128-bit key and 128-bit IV and populates the NLFSR
state such that (W0 ‖ ... ‖ W7) = (K ‖ K ′ ⊕ IV ′ ‖ IV ‖ K ⊕ IV ′ ‖ K ′ ‖ K ⊕
IV ‖ IV ′ ‖ K ′ ⊕ IV), where x′ denotes the swapping of the upper and lower
64-bit halves of x.

Dragon-256 takes a 256-bit key and 128-bit IV and populates the NLFSR
state such that W0 ‖ ... ‖ W7 = K ‖ K ⊕ IV ‖ K ⊕ IV ‖ IV (256-bit), where
where x denotes the complement of x.

In both cases, the 64-bit memory M is loaded with the constant value
0x0000447261676F6E , an ASCII representation of ‘Dragon’.

Phase 2: mixing the cipher state. In the second phase, the state update
function is iterated sixteen times to mix the contents of the NLFSR and the
64-bit memory M , as shown in Figure 2. The update function provides the F
function with a 128-bit input formed from the linear combination of three of the
NLFSR’s words, and a 64-bit input directly from M . Specifically,

a ‖ b ‖ c ‖ d = (W0 ⊕W6 ⊕W7)
e ‖ f = M

128 128 128 128

64

64128

�

�

�

W0 W4 W6 W7

F M

�

�

� ����

�

�

�

Fig. 2. Dragon: initialisation state update function

After each application of the F function, the NLFSR is updated. The internal
state is clocked such that W7 at time t is discarded and W t+1

i = W t
i−1, 1 ≤ i ≤ 7.

The 128-bit NLFSR feedback word which forms the contents of W t+1
0 is formed

by adding W t
4 to (a′ ‖ b′ ‖ c′ ‖ d′) using binary addition. The remaining two 32-

bit output words are concatenated and used to update the memory, M = e′ ‖ f ′.
The initialization algorithm is given in Table 1.

To protect against attacks that require large amounts of keystream and against
unknown future attacks, a maximum of 264 bits of keystream should be produced
for any pairing of a specific key and IV.

24 E. Dawson, M. Henricksen, and L. Simpson

Table 1. Dragon key initialization algorithm

Input = { K, IV }
1. M = 0x0000447261676F6E
2. W0 ‖ ... ‖ W7 =

128-bit key and IV
K ‖ K′ ⊕ IV ′ ‖ IV ‖ K ⊕ IV ′ ‖ K′ ‖ K ⊕ IV ‖ IV ′ ‖ K′ ⊕ IV

256-bit key and IV

K ‖ K ⊕ IV ‖ K ⊕ IV ‖ IV
Perform steps 3-8 16 times

3. a ‖ b ‖ c ‖ d = (W0 ⊕W6 ⊕W7)
4. e ‖ f = M
5. {a′, b′, c′, d′, e′, f ′} = F (a, b, c, d, e, f)
6. t = (a′ ‖ b′ ‖ c′ ‖ d′)⊕W4

7. Wi = Wi−1, 1 ≤ i ≤ 7
8. W0 = t
9. M = e′ ‖ f ′

Output = { W0 ‖ ... ‖ W7 }

2.3 Keystream Generation

During keystream generation, the 1024-bit NLFSR state is divided into thirty-
two 32-bit words Bi, 0 ≤ i ≤ 31. Keystream generation also makes use of the F
function to update the state.

During each iteration, four 32-bit inputs to F are taken from the NLFSR
at stages B0, B9, B16, and B19. The remaining two 32-bit inputs are formed
from the binary addition of B30 and B31 with ML and MR, respectively, where
M = ML ‖MR.

The NLFSR is shifted by two stages, and B0 and B1 are filled with feedback
from the F function output words b′ and c′ respectively. The 64-bit keystream
word z is formed from the concatenation of a′ and e′. The remaining two output
words of F , d′ and f ′ are discarded. The 64-bit memory M acts as a counter
during keystream generation and is incremented at the end of every cycle. Table 2
outlines one iteration of the keystream generation process.

Table 2. Dragon’s keystream generation process

Input = { B0 ‖ ... ‖ B31, M }
1. (ML ‖ MR) = M
2. a = B0, b = B9, c = B16, d = B19, e = B30⊕ML, f = B31⊕MR

3. (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f)
4. Bi = Bi−2, 2 ≤ i ≤ 31
5. B0 = b′, B1 = c′

6. M = M + 1
7. z = a′ ‖e′

Output = { z, B0 ‖ ... ‖ B31, M }

The Dragon Stream Cipher: Design, Analysis, and Implementation Issues 25

3 Design Principles of Dragon

Dragon is designed to provide efficient and secure encryption for confidentiality.

3.1 Design of the F Function

The Dragon F function updates the internal state during both initialization and
keystream generation. The reuse of a component for multiple tasks in a cipher
both simplifies analysis and increases implementation efficiency by decreasing
the size of the code footprint.

The F function consists of three successive layers, as shown in Table 3. Each
of the three layers – pre-mixing, s-box, and post-mixing – of the F function
is designed to allow parallelisation, giving Dragon its speed. Each of steps 1
through 6 of Table 3 consists of three operations. Each set of three operations
can be performed in parallel. Dependencies exist between, but not within, steps.

Table 3. Dragon’s three-layered F Function

Input = { a, b, c, d, e, f }
Pre-mixing Layer:

1. b = b⊕ a; d = d⊕ c; f = f ⊕ e;
2. c = c � b; e = e � d; a = a � f ;

S-box Layer:
3. d = d⊕G1(a); f = f ⊕G2(c); b = b⊕G3(e);
4. a = a⊕H1(b); c = c⊕H2(d); e = e⊕H3(f);

Post-mixing Layer:
5. d′ = d � a; f ′ = f � c; b′ = b � e;
6. c′ = c⊕ b; e′ = e⊕ d; a′ = a⊕ f ;

Output = { a′, b′, c′, d′, e′, f ′ }

During keystream generation, both keystream and feedback words are de-
pendent on all input words, both at the bit level and word level. A single bit
change in any of the six input words results in completely different keystream
and feedback words.

Design of the G and H Functions. The G and H functions are non-linear
mappings of 32-bit inputs to 32-bit outputs. Storing a 32 × 32 s-box requires
sixteen gigabytes, which is inefficient. Virtual 32-bit s-boxes that retain good
properties and use small amounts of memory can be constructed from 8 × 32
32 s-boxes. Therefore the G and H functions are constructed from two 8 × 32
s-boxes, S1 and S2. These s-boxes were designed to provide a range of important
security related properties.

Both s-boxes were designed to have balanced component Boolean functions
with:

– best known non-linearity of 116,
– optimum algebraic degree 6 or 7 according to Siegenthaler’s tradeoff [22],

26 E. Dawson, M. Henricksen, and L. Simpson

– low autocorrelation,
– distinct equivalence classes,
– all XOR pairs satisfying:
• better than random non-linearity with 102 minimum,
• almost balanced (the imbalance is not more than 16),
• distinct equivalence classes,
• same optimal degree as the components.

A standard notation (n, t, d, x, y) is used to describe boolean function prop-
erties; where n is the number of variables, t is the order of resiliency (where
t = 0 indicates a balanced function), d is the algebraic degree, x is the non-
linearity and y is the largest magnitude in the autocorrelation function. All the
component functions of S1 are (8, 1, 6, 116, y) where 32 ≤ y ≤ 48 which is con-
sidered sufficiently low. S1 functions achieve the highest non-linearity possible
for resilient functions. All the component functions of S2 are (8, 0, 7, 116, 24).
Note that the achieved autocorrelation of 24 is the lowest currently known for
balanced functions of this size.

The s-boxes were created using heuristic techniques. Existing methods [18]
were adopted to generate individual boolean functions. These were compared
to the existing s-box functions and the above-listed requirements were checked
for the XOR pairs. Acceptable candidate functions were appended to the s-box.
Otherwise, the function was discarded and another function created and tested.

The simple construction of the G and H functions (shown in Section 2.1)
allows the non-linearity of the boolean functions producing the output bits of G
and H to be calculated exactly from S1 and S2. The Dragon virtual s-boxes G
and H have higher non-linearity (at 116) than sboxes such as the SBOX/MIXCOL
operation from AES [19] and Mugi [23], which use functions with a non-linearity
of 112. The Dragon s-boxes also avoid the linear redundancy weakness that
is intrinsic to finite field operation based s-boxes [13] which are used in the
international standard ciphers AES [19] and Camellia [2].

3.2 Design of the Key Initialisation Process

The initialisation and keystream generation processes of Dragon both use the
F function to optimize implementation and ease of analysis. However, the state
update functions during the initialization process and during keystream genera-
tion have three main differences. These relate to the use of the 64-bit component
M , the size of the feedback word and the FPDS selection.

The component M is used as memory during initialisation: the contents are
used as input to F and M is updated with outputs from F . During keystream
generation, there is no feedback to M from F : M is an independent counter.

During initialization, the 1024-bit NLFSR state is partitioned into words of
128 bits, and during each iteration is updated with a new word formed by four
32-bit outputs of the F function. During keystream generation, the NLFSR is
partitioned into words of 32 bits, and updated with two new word formed from
two 32-bit outputs of F .

The Dragon Stream Cipher: Design, Analysis, and Implementation Issues 27

A different FPDS is chosen for the initialization process because of the change
in the size of the feedback. The taps from the internal state, {0,4,6,7}, form a
FPDS both in the forward and reverse direction. This is designed to frustrate
the cryptanalysis of key setup by guess and determine techniques.

The use of the large word size during the initialization process results in an
effective mix of the key and initialization vector in a minimum number of it-
erations. A smaller number of iterations during initialisation translates directly
into high rekeying performance. This makes Dragon very competitive for prac-
tical applications that require frequent rekeying, such as mobile and wireless
transmissions that usually use the frame number as the IV .

From Section 3.1, F is a reversible mapping, and the design of the initialisation
network uses this property of F to produce a bijective process. For any unique
(key, IV) pair, the procedure initialises the NLFSR and M to unique values.
Dragon-128 and Dragon-256 are designed to have very similar initialization pro-
cesses so that rekeying speeds are identical. However, another important design
consideration is the use of 128-bit and 256-bit (key, IV) pairs. We ensured that
no pair of 256-bit (K, IV) initialises Dragon to the same state as any arbitrary
128-bit (K, IV) pair. This avoids the cryptanalyst reducing the search space in
a brute force attack from 256-bit to 128-bit.

4 Cipher Analysis

Necessary, but not suficient, conditions for cryptographically useful pseudo-
random binary sequences are good statistical properties and a large period. The
design of the Dragon cipher aims to produce sequences to meet these conditions.

4.1 Statistical Tests

Statistical tests provided by the CRYPT-X [10] package were performed on
keystream produced by the Dragon cipher. The frequency, binary derivative,
change point, subblock and runs tests were executed with thirty streams of
Dragon output, each eight megabits in length. The sequence and linear com-
plexity tests were executed for the thirty streams with two hundred kilobits
each. Dragon passed all pertinent statistical tests.

4.2 Period Length

The expected period for the sequence produced by a 1024-bit NLFSR is 2512, as-
suming the sequence is pseudo-random [4]. However, when producing sequences
for cryptographic use, a lower bound rather than an expected value for the pe-
riod is critical. During keystream generation, each iteration of Dragon is under
the influence of a 64-bit counter, M . Since the counter M has a period of 264,
this provides a lower bound for the period of the keystream sequence produced.
Taken together, the NLFSR and the counter M give Dragon an expected period
of 2576.

28 E. Dawson, M. Henricksen, and L. Simpson

In the specification of Dragon (Section 2.2) the maximum amount of key-
stream produced by a unique (key, IV) pair is limited to 264 bits. This does
not exceed the lower bound on the period, and is a very small fraction of the
expected period, so therefore avoids the possibility of keystream collision attacks.
In many applications the actual keystream required is much smaller than this,
so this limitation should not restrict the applications for which Dragon may be
used.

4.3 Weak Keys

Weak keys are those keys that bypass some operations of the cipher. That is,
for weak keys these operations have no effect in the calculation of the feedback
or the output keystream. Dragon is designed to avoid weak keys. The use of a
NLFSR removes the restriction against the use of the all zero state which must
be applied to LFSRs. The state update functions of Dragon are designed to avoid
fixed points.

Although it is easy to bypass the pre-mixing phase of the F function when
considering a single iteration (for example, by having repetitive inputs such as
all zeros or all ones), this is only possible for the first of the 16 iterations of F
performed during initialisation. In any case, during initialisation, selected values
are limited to the first four inputs of the F function, as the last two inputs take
the value of M . The network of G and H functions ensures that the initial states
which bypass the pre-mixing phase cannot bypass any later operations in F . We
believe that the above design features provide a strong guarantee that there are
no weak keys for Dragon.

5 Cryptanalysis of Dragon

Although good statistical properties and a large period are necessary conditions
for cryptographically useful pseudo-random binary sequences, they are not suf-
ficient. An acceptable cipher should also be resistant to all known attacks. In
this section we discuss the resistance provided by Dragon against known attack
types. These attacks can be broadly grouped, based on their objective, as either
distinguishing attacks or key/state recovery attacks.

5.1 Distinguishing Attacks

The objective of a distinguishing attack is to successfully distinguish between the
output sequence of a stream cipher and a truly random binary sequence. To date,
the only published attacks on Dragon have been distingushing attacks [11,6],
although in both cases the keystream requirements greatly exceed the permitted
maximum keystream length of 264 bits. They do not consistute a security breach,
but do highlight some interesting observations about the Dragon cipher.

In [11], Englund and Maximov describe a distinguishing attack for Dragon-256
which requires 2155 keystream words produced from a single key-initialisation

The Dragon Stream Cipher: Design, Analysis, and Implementation Issues 29

vector pair. There are two variants of the attack, one with a complexity of
2187 operations and memory requirements of 232 words, and the other with a
complexity of 2155 operations and a memory requirement of 296 words. The
attacks are based upon empirical measurements of biases in the G and H s-
boxes. Even disregarding the excessive keystream requirements, neither of these
attacks can be applied to distinguish the keystream of Dragon-128 any faster
than exhaustive search. Also, the attacks cannot be extended to permit state or
key recovery.

In [6], Cho and Pieprzyk describe a distinguishing attack against Dragon
which requires 2150.6 keystream words and has a memory requirement of 259.
The attack arises as a result of three separate aspects of the Dragon cipher:

1. for particular input and output masks, the 8 × 32 s-boxes S1 and S2 have
biases as strong as 2−2.09 rather than the expected optimal value of 2−3.

2. the outputs of the 8×32 s-boxes are combined linearly to produce the 32×32
s-box, which may have a bias as great as 2−8.58. This contradicts the state-
ment in our original specification paper that the greatest affine approxima-
tion has a bias no greater than 2−14.66.

3. the choice of FPDS indices permits one 32-bit output word to be associated
with another output word fifteen cycles later.

Although this attack is an improvement on the distinguisher presented in [11],
the authors of [6] conclude that it is of theoretical interest only, due to the
excessive keystream requirements. The requirements of the attack can be further
exacerbated by improving any of the three aspects noted above.

5.2 Key/State Recovery Attacks

The objective of many attacks on keystream generators for stream ciphers is to
recover either the internal state of the cipher at a specified time, or to recover
the secret key. Where the state is recovered, but not the secret key, it is possible
to produce the remainder of the keystream for that session, but the attack must
be repeated when the cipher is rekeyed. If the secret key can be determined,
then the attacker is able to reproduce keystream sequences for all keystreams
even after rekeying with a new initialisation vector.

Key/state recovery attacks may be conducted where the attacker has access to
a single keystream, or where an attacker has access to multiple keystreams gener-
ated from multiple key-initialisation vector pairs which are related in some way.
For example, there may be multiple keystreams produced using the same secret
key but multiple known initialisation vectors. In this section we consider possible
attacks where either multiple keystreams are known, or single keystreams.

Related Key and IV Attacks. The use of an initialisation process to combine
a secret master key with a known initialisation vector provides a means for
reusing keys without generating identical keystreams. The Dragon initialisation
and rekeying strategy is simple, and prevents related key and IV attacks by

30 E. Dawson, M. Henricksen, and L. Simpson

mixing each bit of the key and the initialisation vector into all words of the initial
state. This comprehensive mixing is accomplished by performing 16 iterations of
the initialisation state update function, which makes use of the highly non-linear
F function.

Of the six 32-bit inputs to the F function, four words are taken directly from
the NLFSR, and the remaining two are taken from a 64-bit memory M . The
contents of M are initially known, since they are determined by a published
constant. As this value is not variable, it can not be manipulated by an attacker.
Two outputs from the F function form the new value for M , making its value
hard to determine after the first iteration. All output words of F are affected
by the value of M , increasing the difficulty that an attacker faces in controlling
inputs to F in subsequent iterations.

In each iteration, four of the six 32-bit outputs of F are used to update 128
bits of the 1024 bit NLFSR. Thus, after eight iterations, all of the initial key
material in the internal state has been replaced by highly nonlinear combinations
of the key and IV values obtained as outputs from the F function.

Differential attacks. One attack strategy is to observe how differences in
inputs affect the output of a cipher. For a fixed key, a number of different initial-
isation vectors can be chosen so that the initial internal states are similar, and
differences in the keystreams can be used to determine information about the
key bits. For Dragon, an attacker may observe multiple keystreams, but must
allow for the initialisation process when computing differentials.

Even a single iteration of the Dragon F function prevents high probability
differentials due to its use of the G and H functions, and high diffusion. A
single input difference is propagated to differences in each of the outputs. The F
function consists of three layers: pre-mixing, confusion through s-box application,
and post-mixing. Using the notation from Section 2.1, only inputs a, b, c and
d can be initially and indirectly controlled by an attacker, since e and f come
from internal and inaccessible memory.

An attacker may try to use the fact that b and d are mixed with only one
other word in the pre-mixing phase, while a and c are mixed with two others.
For the input −(e ⊕ f), b,−(b ⊕ e ⊕ f),−(b ⊕ e ⊕ f), e, e ⊕ f) the pre-mixing
stage produces the output (0, b ⊕ −(e ⊕ f), 0, 0, e, e ⊕ f). For difference input
Δb, this produces the difference (0, Δb, 0, 0, 0, 0) since e and f are at this stage
constants. This bypasses the G row of s-boxes and activates a single s-box in
the second row to produce the post-mixing input (ΔH1(Δb), Δb, 0, 0, 0, 0). The
post-mixing output is (ΔH1(Δb), Δb, Δb, (ΔH1(Δb), 0, 0)). At this stage, all of
the feedback words to the NLFSR are non-zero but the difference in the feedback
to the NLFSR is still zero. This fact cannot be exploited by the attacker since
the input differences to this iteration are not reproducible in later iterations, and
thus the difference of the internal memory cannot be maintained.

The initialisation and rekeying procedure for Dragon is designed so that after
12 iterations, an initial difference of a single word in the NLFSR is propagated
to all words in the NLFSR (see Table 4). As 16 iterations of the state update
function are performed during initialisation, an attacker is unlikely to be able

The Dragon Stream Cipher: Design, Analysis, and Implementation Issues 31

Table 4. Propagation of non-zero difference in internal state of the rekeying

1 0 ΔA 0 0 0 0 0 0
2 0 0 ΔA 0 0 0 0 0
3 0 0 0 ΔA 0 0 0 0
4 0 0 0 0 ΔA 0 0 0
5 ΔA 0 0 0 0 ΔA 0 0
6 ΔB ΔA 0 0 0 0 ΔA 0
7 ΔC ΔB ΔA 0 0 0 0 ΔA
8 ΔD ΔC ΔB ΔA 0 0 0 0
9 ΔE ΔD ΔC ΔB ΔA 0 0 0
10 ΔF ΔE ΔD ΔC ΔB ΔA 0 0
11 ΔG ΔF ΔE ΔD ΔC ΔB ΔA 0
12 ΔH ΔG ΔF ΔE ΔD ΔC ΔB ΔA

determine useful relationships between the NLFSR contents after rekeying. The
speed of this diffusion is aided by the fact that the first word of the NLFSR is
used as input to the F function, and the output of the F function is used to
replace that word. Consequently related key attacks on Dragon based on finding
differentials do not seem to be any more efficient than a brute force search of
the 128 or 256-bit key.

Time-Memory Tradeoff Attacks. Time-Memory tradeoff attacks [3] rely on
pre-computation to reduce the effort required for a key recovery attack on a
keystream. The attack comprises two steps. The first, the preprocessing step,
sees the attacker calculating a table of keys or internal states and corresponding
keystream prefixes. The table is ordered upon the prefix. The second step involves
observing keystreams and attempting to match each against a prefix in the table.
If the match is successful, then with some likelihood the internal state is known
by reading the opposing entry in the table. When the internal state is recovered,
some further effort may be applied to recover the key. The difficulty of performing
key recovery from a known state depends on the initialisation process.

The parameters in an attack are time (T), memory (M), and amount of data
(D). Generally, T ×M2×D2 = S2 where S is the state space of the cipher, and
D2 ≤ T [3]. The pre-computation time P is equal to S ÷D.

Dragon has an internal state space of 1088 bits (consisting of the 1024 bit
NLFSR and the 64-bit M). For Dragon-256, the time-memory tradeoff attack to
recover the internal state is infeasible: for a brute-force equivalent attack, with
T = 2256, the limitation on maximum keystream length of 264 bits results in a
lower bound on required memory for the attack of 2896 bits. A TMD attack to
recover the internal state of Dragon-128 is similarly infeasible.

Guess and Determine Attacks. The indices {0, 9, 16, 19, 30, 31} of the
NLFSR stages used as inputs to Dragon’s state update function form a full
positive difference set. This design decision is a deliberate attempt to prevent
guess and determine attacks [14] on the cipher.

32 E. Dawson, M. Henricksen, and L. Simpson

During keystream generation, guessing six inputs (192 bits) to F in an it-
eration allows an attacker to calculate the feedback words b′ and c′ and the
keystream words a′ and e′. This knowlege can be used to discard many incorrect
guesses. At this point the attacker has knowledge of the contents of the NLFSR
stages at indices {0, 1, 10, 17, 20} and some information about the value of B31

and M . However, the FPDS selection of the internal state means that to obtain
the next pair of keystream words, guessing a further five inputs (160 bits) is
necessary. The attacker can attempt to jump ahead to a future keystream word
pair, but again the FPDS means that the attacker needs to guess five inputs.
This rapid increase in the number of possible guess pathways makes the attack
infeasible. In addition, the interplay of B30, B31 and M means there will be more
than one set of possible values for these three elements for a unique pair of e
and f . This further complicates any guess and determine attack.

An attacker is also unable to reduce the complexity of a guess and determine
attack by guessing bytes rather than words of the NLFSR state contents. The
use of large s-boxes (G and H functions are effectively 32× 32 s-boxes) means
that guessing three of the four input bytes is insufficient to deduce any byte of
the s-box output.

To calculate keystream words from two iterations of Dragon, the attacker is
required to guess more than 256 bits of the internal state. This is worse than
exhaustive key search on Dragon-256, and makes guess and determine attacks
on Dragon infeasible. Similarly, for Dragon-128, the attack is infeasible, as the
approach required guessing the contents of three NLFSR words (192 bits), which
is worse than exhaustive key search. The feedback and keystream words rely on
all six inputs, consequently there is no way for the attacker to use even a single
keystream word to verify guesses using fewer bits than this.

Algebraic Attacks. Successful algebraic attacks on keystream generators [8]
have so far been restricted mainly to LFSR based generators. The general attack
model consists of the internal state S, the linear update function L and the
output function f . Let S0 denote the internal state at time t = 0, and Lt(S0)
denote the internal state at time t. The attacker constructs a system of equations
relating the initial internal state bits with the observed keystream bits, where
zt = f(Lt(S0)) at time t. The attacker can set up a large number of equations
in terms of the initial state values by merely collecting keystream bits, since the
internal state at time t can easily be derived from the initial internal state due
to the linear nature of LFSRs.

Dragon’s nonlinear state update function prevents the application of algebraic
attacks. Let N denote the non-linear update function. Then the kestream output
at time t is zt = f(N t(S0)). When constructing the system of equations relating
the initial internal state to the keystream ouput for Dragon, the degree of the
equations grows exponentially as t increases. This is easy to see as any output
of G or H is a degree 7 function of the inputs since S2 has algebraic order 7.
If we approximate � with ⊕, we can then write equations of degree 72 = 49
that maps the 192 input bits to the first 64 output keystream bits. However, the
feedback is used immediately in the production of the next 64 bits of keystream,

The Dragon Stream Cipher: Design, Analysis, and Implementation Issues 33

and results in equations of degree 74 = 2, 401. Note that at this point, the inputs
consist of only 352 bits, and therefore the equations would be limited to degree
352. The degree of the equations would grow to the full 1024 bits of the internal
state after 8 iterations of the F function, or 512 bits of keystream have been
produced.

The use of a nonlinear update function provides the resistance to algebraic
attacks. Note that the nonlinear state update function N has a poor linear
approximation of 2−73.3. Using the technique published in [9] to describe the
8 × 32 s-boxes of Dragon using quadratic equations results in 565 quadratic
equations in 256 monomials for each s-box (identical to the analysis of CAST [1]).
Again, let us approximate � with ⊕, then after 8 iterations of F , the system
of equations has degree 1,024 as well. This is to say, even if there existed some
annihilators [17] that reduce Dragon’s Boolean functions right down to quadratic,
the degree of the overall equations would still grow to unmanageable sizes.

It is clear that the system of equations relating the internal state of Dragon
and the keystream bits will be very difficult to solve, if it is solvable at all. Fur-
thermore, it will require far more effort than exhaustive key search since solving
techniques all have complexities exponential in the degree of the equations. It is
interesting to note that in the above analysis modular addition was replaced by
XOR, and thus resulting in a weaker version of Dragon. With the modular addi-
tion in place, it will be even more difficult for algebraic attacks to succeed against
Dragon (see similar example of the effect of modular addition in CAST [1]).

6 Implementation and Performance

Dragon is designed to be efficient in both software and hardware, in terms of
throughput and a small implementation footprint. Its 32-bit word size is chosen
to match that of the ubiquitous Intel Pentium family, since this leads to the
best software efficiency on that platform. Note that the results presented in this
Section apply to both Dragon-128 and Dragon-256.

6.1 Software

Dragon is very efficient in software. Most operations are expected to perform with
latencies of 1

2 or 1 cycles on modern processors, such as the Intel Pentium family.
There is some pressure generated by the need to trade security and efficiency.
For example, Dragon relies heavily upon consecutive and serial invocations of
s-boxes, which by depending upon a single type of operation do not fully utilize
the superscalar nature of processors.

On an Intel Pentium 4, an optimized implementation of Dragon produces one
byte of keystream every 6.74 clock cycles, and 1,395 cycles per rekeying oper-
ation. On a 3.2GHz Pentium 4, the throughput of Dragon is 3.8Gbps. This is
competitive with many of its peers, including SNOW 2 (5.5 cycles/byte), Turing
(6.1 cycles/byte) and RC4 (7.1 cycles/byte). When used with the eSTREAM
API, the performance figures of Dragon are more conservative but remain com-
petitive.

34 E. Dawson, M. Henricksen, and L. Simpson

Storage requirements include 2,048 bytes to store Dragon’s two 8×32 s-boxes,
1,024 bits (128 bytes) for the internal state, and a further 8 bytes for the 64-bit
counter. Including temporary variables and an object code size of 2,810 bytes,
Dragon has memory requirements totalling 4,994 bytes. This is suitable for even
very constrained environments.

6.2 Hardware

The design of Dragon allows high degree of parallelisation in hardware. The op-
erations on the six inputs of the F function can be divided into three groups,
each operating on two inputs. The pre-mixing and the post-mixing are imple-
mented using 32-bit modular adders. The G and H functions are implemented
using look-up tables and XOR operations. The hardware complexity is about
6,524 gates and 196,672 bits of memory. On Samsung 0.13um ASIC running at
2.6GHz, the minimum delay is 2.774ns with a throughput of 23Gbps.

The speed in hardware can be improved by using m-parallel-structure proposed
in [16]. This hardware implementation strategy applies to all shift registers, and
achieves an m times increase in efficiency with m times increase in hardware
complexity. On Altera FPGA/CPLD running at 16.67MHz, an implementation of
Dragon achieves a throughput of 1.06Gbps with 16 times hardware complexity.

7 Conclusion

Dragon is a word based stream cipher constructed using a word based non-
linear feedback shift register. It was first presented at ICISC in 2004 [5] and
later submitted as a candidate to eSTREAM, where it is currently one of the
Phase 3 focus ciphers. In this paper the Dragon cipher is discussed from three
perspectives: design, security analysis and implementation.

Dragon may be used with two possible key and initialisation vector sizes: the
key and initialisation vector are 128 bits for Dragon-128 and 256 bits for Dragon-
256. The cipher was designed with both security and implementation efficiency in
mind. To date, the only published attacks on Dragon are distinguishing attacks
which require amounts of keystream greatly exceeding the specified maximum
keystream length. Thus the cipher may be considered secure for all practical
applications.

References

1. Adams, C.: Designing Against the ‘Overdefined System of Equations’ Attack (May
2004), http://eprint.iacr.org/2004/110/

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design
and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

3. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

http://eprint.iacr.org/2004/110/

The Dragon Stream Cipher: Design, Analysis, and Implementation Issues 35

4. Chambers, W.: On Random Mappings and Random Permutations. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 22–28. Springer, Heidelberg (1995)

5. Chen, K., Millan, W., Fuller, J., Simpson, L., Dawson, E., Lee, H., Moon, S.:
Dragon: A Fast Word Based Stream Cipher. In: Park, C.-s., Chee, S. (eds.) ICISC
2004. LNCS, vol. 3506, pp. 33–50. Springer, Heidelberg (2005),
http://www.ecrypt.eu.org/stream/dragonp3.html

6. Cho, J., Pieprzyk, J.: An improved distinguisher for Dragon (Date accessed:
September 28, 2007), http://eprint.iacr.org/2007/108.pdf

7. Coppersmith, D., Halevi, S., Jutla, C.: Cryptanalysis of Stream Ciphers with Lin-
ear Masking. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 515–532.
Springer, Heidelberg (2002)

8. Courtois, N.: Higher Order Correlation Attacks, XL Algorithm and Cryptanalysis
of Toyocrypt. In: Lee, P., Lim, C. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 182–199.
Springer, Heidelberg (2003)

9. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

10. Dawson, E., Clark, A., Gustafson, G., May, L.: CRYPT-X 1998 User Manual (1999)
11. Englund, H., Maximov, A.: Attack the Dragon. ECRYPT eSTREAM submission

(submitted, September 2005),
http://www.ecrypt.eu.org/stream/papersdir/062.pdf

12. eSTREAM, the ECRYPT Stream Cipher Project,
http://www.ecrypt.eu.org/stream

13. Fuller, J., Millan, W.: Linear Redundancy in S-Boxes. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 74–86. Springer, Heidelberg (2003)

14. Hawkes, P., Rose, G.: Guess-and-Determine Attacks on SNOW. In: Nyberg, K.,
Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 37–46. Springer, Heidelberg(2003)

15. Kam, J., Davida, G.: Structured Design of Substitution-Permutation Encryption
Networks. IEEE Transactions on Computers 28(10), 747–753 (1979)

16. Lee, H., Moon, S.: Parallel Stream Cipher for Secure High-Speed Communications.
Signal Processing 82(2), 137–143 (2002)

17. Meier, W., Pasalic, E., Carlet, C.: Algebraic Attacks and Decomposition of Boolean
Functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

18. Millan, W., Fuller, J., Dawson, E.: New Concepts in Evolutionary Search for
Boolean Functions in Cryptology. In: The 2003 Congress on Evolutionary Compu-
tation, 2003. CEC 2003, vol. 3, pp. 2157–2164. IEEE, Los Alamitos (2003)

19. National Institute of Standards and Technology. Federal Information Processing
Standards Publication 197 (2001)

20. Rose, G., Hawkes, P.: Turing: A Fast Stream Cipher. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 290–306. Springer, Heidelberg (2003)

21. Seberry, J., Zhang, X., Zheng, Y.: Nonlinearly Balanced Boolean Functions and
Their Propagation Characteristics. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS,
vol. 773, pp. 49–60. Springer, Heidelberg (1994)

22. Siegenthaler, T.: Correlation Immunity of Nonlinear Combining Functions for
Cryptographic Applications. IEEE Transactions on Information Theory 30(5), 776–
780 (1984)

23. Watanabe, D., Furuya, S., Yoshida, H., Takaragi, K., Preneel, B.: A New Keystream
Generator MUGI. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365,
pp. 179–194. Springer, Heidelberg (2002)

http://www.ecrypt.eu.org/stream/dragonp3.html
http://eprint.iacr.org/2007/108.pdf
http://www.ecrypt.eu.org/stream/papersdir/062.pdf
http://www.ecrypt.eu.org/stream

36 E. Dawson, M. Henricksen, and L. Simpson

A Test Vectors

128-BIT KEY AND IV

KEY:

00001111 22223333 44445555 66667777

IV:

00001111 22223333 44445555 66667777

KEYSTREAM:

99B3AA14 B63BD02F E14358A4 54950425 F4B0D3FD 8BA69178 E0392938 A718C165

2E3BEB1E 11613D58 9EABB9F5 43A1C51C 73C1F227 9D1CAEA8 5C55F539 BAFD3C59

ECAC88BD 17EB1C9D A28DD63E 9093C913 3032D918 3A9B33BC 2933A79D 75669827

20EF3004 C53B0253 7A1BE796 29F8D9A3 8DC1FD31 ED9D1100 B07DFFB1 AC75EB31

KEY:

00112233 44556677 8899AABB CCDDEEFF

IV:

00112233 44556677 8899AABB CCDDEEFF

KEYSTREAM:

98821506 0E87E695 EB7AEF36 313FF910 E6C7312F 30357424 4922043D 98146EE2

202D4D49 6C602ECC 937DD3F4 E39BE26C 849DB415 F04C540E 88588C7A A3C65A31

E2156229 1E86028B 3F5A21B9 4A94C135 B3A01527 747E6521 FFEE14F0 FA1FCC73

74C8B204 4009F57D 1D63007E F1D8D221 E429EBA8 60F56098 45891D74 716694B2

256-BIT KEY AND IV

KEY:

00001111 22223333 44445555 66667777 88889999 AAAABBBB CCCCDDDD EEEEFFFF

IV:

00001111 22223333 44445555 66667777 88889999 AAAABBBB CCCCDDDD EEEEFFFF

KEYSTREAM:

BC020767 DC48DAE3 14778D8C 927E8B32 E086C6CD E593C008 600C9D47 A488F622

3A2B94D6 B853D644 27E93362 ABB8BA21 751CAAF7 BD316595 2A37FC1E A3F12FE2

5C133BA7 4C15CE4B 3542FDF8 93DAA751 F5710256 49795D54 31914EBA 0DE2C2A7

8013D29B 56D4A028 3EB6F312 7644ECFE 38B9CA11 1924FBC9 4A0A30F2 AFFF5FE0

KEY:

00112233 44556677 8899AABB CCDDEEFF 00112233 44556677 8899AABB CCDDEEFF

IV:

00112233 44556677 8899AABB CCDDEEFF 00112233 44556677 8899AABB CCDDEEFF

KEYSTREAM:

8D3AB9BA 01DAA3EB 5CBD0F6D E3ECFCAB 619AF808 CF9C4A42 E2877766 6D2D7037

EE6F94AC 29D1EEE5 340DB047 8E91A679 480D8D88 2367CE2A 31C96AD4 49E70756

815EBEB2 290DBA7A 3CCB76A2 257BD122 2B0B7AED 917FAFFF 6B58B2B2 B05F24F6

E271A016 9E897BEF F5C22451 DA6F9E40 52B78BE5 6C97C1A5 C6F8E791 0F7B9C98

The Dragon Stream Cipher: Design, Analysis, and Implementation Issues 37

B Dragon’s S-Boxes

sbox1[256]={

0x393BCE6B,0x232BA00D,0x84E18ADA,0x84557BA7,0x56828948,0x166908F3,

0x414A3437,0x7BB44897,0x2315BE89,0x7A01F224,0x7056AA5D,0x121A3917,

0xE3F47FA2,0x1F99D0AD,0x9BAD518B,0x99B9E75F,0x8829A7ED,0x2C511CA9,

0x1D89BF75,0xF2F8CDD0,0x2DA2C498,0x48314C42,0x922D9AF6,0xAA6CE00C,

0xAC66E078,0x7D4CB0C0,0x5500C6E8,0x23E4576B,0x6B365D40,0xEE171139,

0x336BE860,0x5DBEEEFE,0x0E945776,0xD4D52CC4,0x0E9BB490,0x376EB6FD,

0x6D891655,0xD4078FEE,0xE07401E7,0xA1E4350C,0xABC78246,0x73409C02,

0x24704A1F,0x478ABB2C,0xA0849634,0x9E9E5FEB,0x77363D8D,0xD350BC21,

0x876E1BB5,0xC8F55C9D,0xD112F39F,0xDF1A0245,0x9711B3F0,0xA3534F64,

0x42FB629E,0x15EAD26A,0xD1CFA296,0x7B445FEE,0x88C28D4A,0xCA6A8992,

0xB40726AB,0x508C65BC,0xBE87B3B9,0x4A894942,0x9AEECC5B,0x6CA6F10B,

0x303F8934,0xD7A8693A,0x7C8A16E4,0xB8CF0AC9,0xAD14B784,0x819FF9F0,

0xF20DCDFA,0xB7CB7159,0x58F3199F,0x9855E43B,0x1DF6C2D6,0x46114185,

0xE46F5D0F,0xAAC70B5B,0x48590537,0x0FD77B28,0x67D16C70,0x75AE53F4,

0xF7BFECA1,0x6017B2D2,0xD8A0FA28,0xB8FC2E0D,0x80168E15,0x0D7DEC9D,

0xC5581F55,0xBE4A2783,0xD27012FE,0x53EA81CA,0xEBAA07D2,0x54F5D41D,

0xABB26FA6,0x41B9EAD9,0xA48174C7,0x1F3026F0,0xEFBADD8E,0x387E9014,

0x1505AB79,0xEADF0DF7,0x67755401,0xDA2EF962,0x41670B0E,0x0E8642F2,

0xCE486070,0xA47D3312,0x4D7343A7,0xECDA58D0,0x1F79D536,0xD362576B,

0x9D3A6023,0xC795A610,0xAE4DF639,0x60C0B14E,0xC6DD8E02,0xBDE93F4E,

0xB7C3B0FF,0x2BE6BCAD,0xE4B3FDFD,0x79897325,0x3038798B,0x08AE6353,

0x7D1D20EB,0x3B208D21,0xD0D6D104,0xC5244327,0x9893F59F,0xE976832A,

0xB1EB320B,0xA409D915,0x7EC6B543,0x66E54F98,0x5FF805DC,0x599B223F,

0xAD78B682,0x2CF5C6E8,0x4FC71D63,0x08F8FED1,0x81C3C49A,0xE4D0A778,

0xB5D369CC,0x2DA336BE,0x76BC87CB,0x957A1878,0xFA136FBA,0x8F3C0E7B,

0x7A1FF157,0x598324AE,0xFFBAAC22,0xD67DE9E6,0x3EB52897,0x4E07E855,

0x87CE73F5,0x8D046706,0xD42D18F2,0xE71B1727,0x38473B38,0xB37B24D5,

0x381C6AE1,0xE77D6589,0x6018CBFF,0x93CF3752,0x9B6EA235,0x504A50E8,

0x464EA180,0x86AFBE5E,0xCC2D6AB0,0xAB91707B,0x1DB4D579,0xF9FAFD24,

0x2B28CC54,0xCDCFD6B3,0x68A30978,0x43A6DFD7,0xC81DD98E,0xA6C2FD31,

0x0FD07543,0xAFB400CC,0x5AF11A03,0x2647A909,0x24791387,0x5CFB4802,

0x88CE4D29,0x353F5F5E,0x7038F851,0xF1F1C0AF,0x78EC6335,0xF2201AD1,

0xDF403561,0x4462DFC7,0xE22C5044,0x9C829EA3,0x43FD6EAE,0x7A42B3A7,

0x5BFAAAEC,0x3E046853,0x5789D266,0xE1219370,0xB2C420F8,0x3218BD4E,

0x84590D94,0xD51D3A8C,0xA3AB3D24,0x2A339E3D,0xFEE67A23,0xAF844391,

0x17465609,0xA99AD0A1,0x05CA597B,0x6024A656,0x0BF05203,0x8F559DDC,

0x894A1911,0x909F21B4,0x6A7B63CE,0xE28DD7E7,0x4178AA3D,0x4346A7AA,

0xA1845E4C,0x166735F4,0x639CA159,0x58940419,0x4E4F177A,0xD17959B2,

0x12AA6FFD,0x1D39A8BE,0x7667F5AC,0xED0CE165,0xF1658FD8,0x28B04E02,

0x1FA480CF,0xD3FB6FEF,0xED336CCB,0x9EE3CA39,0x9F224202,0x2D12D6E8,

0xFAAC50CE,0xFA1E98AE,0x61498532,0x03678CC0,0x9E85EFD7,0x3069CE1A,

0xF115D008,0x4553AA9F,0x3194BE09,0xB4A9367D,0x0A9DFEEC,0x7CA002D6,

0x8E53A875,0x965E8183,0x14D79DAC,0x0192B555};

sbox2[256]={

0xA94BC384,0xF7A81CAE,0xAB84ECD4,0x00DEF340,0x8E2329B8,0x23AF3A22,

0x23C241FA,0xAED8729E,0x2E59357F,0xC3ED78AB,0x687724BB,0x7663886F,

38 E. Dawson, M. Henricksen, and L. Simpson

0x1669AA35,0x5966EAC1,0xD574C543,0xDBC3F2FF,0x4DD44303,0xCD4F8D01,

0x0CBF1D6F,0xA8169D59,0x87841E00,0x3C515AD4,0x708784D6,0x13EB675F,

0x57592B96,0x07836744,0x3E721D90,0x26DAA84F,0x253A4E4D,0xE4FA37D5,

0x9C0830E4,0xD7F20466,0xD41745BD,0x1275129B,0x33D0F724,0xE234C68A,

0x4CA1F260,0x2BB0B2B6,0xBD543A87,0x4ABD3789,0x87A84A81,0x948104EB,

0xA9AAC3EA,0xBAC5B4FE,0xD4479EB6,0xC4108568,0xE144693B,0x5760C117,

0x48A9A1A6,0xA987B887,0xDF7C74E0,0xBC0682D7,0xEDB7705D,0x57BFFEAA,

0x8A0BD4F1,0x1A98D448,0xEA4615C9,0x99E0CBD6,0x780E39A3,0xADBCD406,

0x84DA1362,0x7A0E984B,0xBED853E6,0xD05D610B,0x9CAC6A28,0x1682ACDF,

0x889F605F,0x9EE2FEBA,0xDB556C92,0x86818021,0x3CC5BEA1,0x75A934C6,

0x95574478,0x31A92B9B,0xBFE3E92B,0xB28067AE,0xD862D848,0x0732A22D,

0x840EF879,0x79FFA920,0x0124C8BB,0x26C75B69,0xC3DAAAC5,0x6E71F2E9,

0x9FD4AFA6,0x474D0702,0x8B6AD73E,0xF5714E20,0xE608A352,0x2BF644F8,

0x4DF9A8BC,0xB71EAD7E,0x6335F5FB,0x0A271CE3,0xD2B552BB,0x3834A0C3,

0x341C5908,0x0674A87B,0x8C87C0F1,0xFF0842FC,0x48C46BDB,0x30826DF8,

0x8B82CE8E,0x0235C905,0xDE4844C3,0x296DF078,0xEFAA6FEA,0x6CB98D67,

0x6E959632,0xD5D3732F,0x68D95F19,0x43FC0148,0xF808C7B1,0xD45DBD5D,

0x5DD1B83B,0x8BA824FD,0xC0449E98,0xB743CC56,0x41FADDAC,0x141E9B1C,

0x8B937233,0x9B59DCA7,0xF1C871AD,0x6C678B4D,0x46617752,0xAAE49354,

0xCABE8156,0x6D0AC54C,0x680CA74C,0x5CD82B3F,0xA1C72A59,0x336EFB54,

0xD3B1A748,0xF4EB40D5,0x0ADB36CF,0x59FA1CE0,0x2C694FF9,0x5CE2F81A,

0x469B9E34,0xCE74A493,0x08B55111,0xEDED517C,0x1695D6FE,0xE37C7EC7,

0x57827B93,0x0E02A748,0x6E4A9C0F,0x4D840764,0x9DFFC45C,0x891D29D7,

0xF9AD0D52,0x3F663F69,0xD00A91B9,0x615E2398,0xEDBBC423,0x09397968,

0xE42D6B68,0x24C7EFB1,0x384D472C,0x3F0CE39F,0xD02E9787,0xC326F415,

0x9E135320,0x150CB9E2,0xED94AFC7,0x236EAB0F,0x596807A0,0x0BD61C36,

0xA29E8F57,0x0D8099A5,0x520200EA,0xD11FF96C,0x5FF47467,0x575C0B39,

0x0FC89690,0xB1FBACE8,0x7A957D16,0xB54D9F76,0x21DC77FB,0x6DE85CF5,

0xBFE7AEE9,0xC49571A9,0x7F1DE4DA,0x29E03484,0x786BA455,0xC26E2109,

0x4A0215F4,0x44BFF99C,0x711A2414,0xFDE9CDD0,0xDCE15B77,0x66D37887,

0xF006CB92,0x27429119,0xF37B9784,0x9BE182D9,0xF21B8C34,0x732CAD2D,

0xAF8A6A60,0x33A5D3AF,0x633E2688,0x5EAB5FD1,0x23E6017A,0xAC27A7CF,

0xF0FC5A0E,0xCC857A5D,0x20FB7B56,0x3241F4CD,0xE132B8F7,0x4BB37056,

0xDA1D5F94,0x76E08321,0xE1936A9C,0x876C99C3,0x2B8A5877,0xEB6E3836,

0x9ED8A201,0xB49B5122,0xB1199638,0xA0A4AF2B,0x15F50A42,0x775F3759,

0x41291099,0xB6131D94,0x9A563075,0x224D1EB1,0x12BB0FA2,0xFF9BFC8C,

0x58237F23,0x98EF2A15,0xD6BCCF8A,0xB340DC66,0x0D7743F0,0x13372812,

0x6279F82B,0x4E45E519,0x98B4BE06,0x71375BAE,0x2173ED47,0x14148267,

0xB7AB85B5,0xA875E314,0x1372F18D,0xFD105270,0xB83F161F,0x5C175260,

0x44FFD49F,0xD428C4F6,0x2C2002FC,0xF2797BAF,0xA3B20A4E,0xB9BF1A89,

0xE4ABA5E2,0xC912C58D,0x96516F9A,0x51561E77};

The Stream Cipher HC-128

Hongjun Wu

Katholieke Universiteit Leuven, ESAT/SCD-COSIC and IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

wu.hongjun@esat.kuleuven.be

Abstract. We present the 128-bit version of the stream cipher HC-256.

1 Introduction

The stream cipher HC-128 is a simplified version of HC-256 [15] for 128-bit
security. HC-128 is a simple, secure, software-efficient cipher1 and it is freely-
available. HC-128 consists of two secret tables, each one with 512 32-bit elements.
At each step we update one element of a table with non-linear feedback function.
All the elements of the two tables get updated every 1024 steps. At each step,
one 32-bit output is generated from the non-linear output filtering function. HC-
128 is suitable for the modern (and future) super-scalar microprocessors. The
dependency between operations in HC-128 is very small: three consecutive steps
can be computed in parallel; at each step, the feedback and output functions
can be computed in parallel. The high degree of parallelism allows HC-128 to
run efficiently on modern processors. We implemented HC-128 in C, and the
encryption speed of HC-128 reaches 3.05 cycles/byte on the Intel Pentium M
processors.

HC-128 is very secure. Our analysis shows that recovering the key of HC-128 is
as difficult as exhaustive key search. To distinguish the keystream from random,
we expect that more than 264 keystream bits are required (our current analysis
shows that about 2151 outputs are needed in the distinguishing attack). This
report is organized as follows. We introduce HC-128 in Section 2. The security
analysis of HC-128 is given in Section 3 and Section 4. Section 5 discusses the
implementation and performance of HC-128. Section 6 concludes this report.

2 Cipher Specifications

In this section, we describe the stream cipher HC-128. From a 128-bit key and
a 128-bit initialization vector, it generates keystream with length up to 264 bits.

1 This description of the cipher was prepared by the editor using the version available
at http://www.ecrypt.eu.org/stream/ as a source. Any transcription errors are
the fault of the editor and the reader is recommended to consult the original.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 39–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

40 H. Wu

2.1 Operations, Variables, and Functions

The following operations are used in HC-128:

+ x + y means x + y mod 232, where 0 ≤ x < 232 and 0 ≤ y < 232

� x � y means x− y mod 512
⊕ bit-wise exclusive OR
|| concatenation

>> right shift operator: x >> n means x being right shifted n bits
<< left shift operator: x << n means x being left shifted n bits

>>> right rotation operator: x >>> n means ((x >> n)⊕ (x << (32− n)),
where 0 ≤ n < 32, 0 ≤ x < 232

<<< left rotation operator: x <<< n means ((x << n)⊕ (x >> (32− n)),
where 0 ≤ n < 32, 0 ≤ x < 232

Two tables P and Q are used in HC-128. The key and the initialization vector
of HC-128 are denoted as K and IV. We denote the keystream being generated
as s.

P a table with 512 elements of 32-bits denoted by P [i] for 0 ≤ i ≤ 511
Q a table with 512 elements of 32-bits denoted by Q[i] for 0 ≤ i ≤ 511
K the 128-bit key of HC-128
IV the 128-bit initialization vector of HC-128
s the keystream being generated from HC-128; The 32-bit output of the

ith step is denoted as si. Then s = s0||s1||s2|| · · ·

There are six functions being used in HC-256. f1(x) and f2(x) are the same as
the σ256

0 (x) and σ256
1 (x) being used in the message schedule of SHA-256 [14]. For

h1(x), the table Q is used as S-box. For h2(x), the table P is used as S-box.

f1(x) = (x >>> 7)⊕ (x >>> 18)⊕ (x >> 3) ,

f2(x) = (x >>> 17)⊕ (x >>> 19)⊕ (x >> 10) ,

g1(x, y, z) = ((x >>> 10)⊕ (z >>> 23)) + (y >>> 8) ,

g2(x, y, z) = ((x <<< 10)⊕ (z <<< 23)) + (y <<< 8) ,

h1(x) = Q[x0] + Q[256 + x2] ,

h2(x) = P [x0] + P [256 + x2] ,

where x = x3||x2||x1||x0, x is a 32-bit word, x0, x1, x2, and x3 are four bytes.
The bytes x3 and x0 respectively denote the most and least significant byte of x.

2.2 Initialization Process (Key and IV Setup)

The initialization process of HC-128 consists of expanding the key and initializa-
tion vector into P and Q (similar to the message setup in SHA-256) and running
the cipher 1024 steps (with the outputs being used to update P and Q).

The Stream Cipher HC-128 41

The initialization process is as follows:

– Let K = K0||K1||K2||K3 and IV = IV0||IV1||IV2||IV3, where each Ki and
IVi denotes a 32-bit value. Let Ki+4 = Ki, and IVi+4 = IVi for 0 ≤ i < 4.
The key and IV are expanded into an array Wi (0 ≤ i ≤ 1279) as:

Wi =

⎧
⎨

⎩

Ki 0 ≤ i ≤ 7
IVi−8 8 ≤ i ≤ 15
f2(Wi−2) + Wi−7 + f1(Wi−15) + Wi−16 + i 16 ≤ i ≤ 1279

– Update the tables P and Q with the array W :

P [i] = Wi+256 for 0 ≤ i ≤ 511
Q[i] = Wi+768 for 0 ≤ i ≤ 511

– Run the cipher 1024 steps and use the outputs to replace the table elements
as follows (‘�’ denotes ‘−’ modulo 512):
for i = 0 to 511, do

P [i] = (P [i] + g1(P [i � 3], P [i � 10], P [i � 511]))⊕ h1(P [i � 12]);

for i = 0 to 511, do
Q[i] = (Q[i] + g2(Q[i � 3], Q[i � 10], Q[i � 511]))⊕ h2(Q[i � 12]);

The initialization process completes and the cipher is ready to generate keystream.

2.3 The Keystream Generation Algorithm

At each step, one element of a table is updated and one 32-bit output is gener-
ated. Each S-box is used to generate only 512 outputs, then it is updated in the
next 512 steps. The keystream generation algorithm of HC-128 is given below
(“�” denotes “-” modulo 512, si denotes the output of the i-th step).

i = 0;
repeat until (enough keystream bits are generated)
{

j = i mod 512;
if (i mod 1024) < 512
{

P [j] = P [j] + g1(P [j � 3], P [j � 10], P [j � 511]);
si = h1(P [j � 12])⊕ P [j];

}
else
{

Q[j] = Q[j] + g2(Q[j � 3], Q[j � 10], Q[j � 511]);
si = h2(Q[j � 12])⊕Q[j];

}
i = i + 1;

}

42 H. Wu

3 Security Analysis of HC-128

The security analysis of HC-128 is similar to that of HC-256. The output and
feedback functions of HC-128 are non-linear, so it is impossible to apply the fast
correlation attacks [12,9,13,5,11] and algebraic attacks [1,6,7,8] to recover the
secret key of HC-128. The large secret S-box of HC-128 is updated during the
keystream generation process, so it is very difficult to develop linear relations
linking the input and output bits of the S-box.

In this section, we will analyze the period of HC-128, the security of the
secret key and the security of the initialization process. The randomness of the
keystream will be analyzed separately in Section 4.

3.1 Period

The 32778-bit state of HC-128 ensures that the period of the keystream is ex-
tremely large. But the exact period of HC-128 is difficult to predict. The average
period of the keystream is estimated to be much more than 2256. The large num-
ber of states also eliminates the threat of the time-memory-data tradeoff attack
on stream ciphers [4] (also [2,10]).

3.2 Security of the Secret Key

We note that the output function and the feedback function of HC-128 are non-
linear. The non-linear output function leaks small amount of partial information
at each step. The non-linear feedback function ensures that the secret key can
not be recovered from those leaked partial information.

3.3 Security of the Initialization Process (Key/IV Setup)

The initialization process of the HC-128 consists of two stages, as given in Sub-
section 2.2. We expand the key and IV into P and Q. At this stage, every bit
of the key/IV affects all the bits of the two tables and any difference in the
related keys/IVs results in uncontrollable differences in P and Q. Note that the
constants in the expansion function at this stage play significant role in reducing
the effect of related keys/IVs. After the expansion, we run the cipher 1024 steps
and using the outputs to update the P and Q. After the initialization process, we
expect that any difference in the keys/IVs would not result in biased keystream.

3.4 Randomness of the Keystream

Our initial analysis shows that the distinguishing attack on HC-128 requires
more than 2128 outputs. The analysis is given below.

Recall that if, at the i-th step, (i mod 1024) < 512, table P is updated as:

P [i mod 512] = P [i mod 512] + g1(P [i � 3], P [i � 10], P [i � 511])

The Stream Cipher HC-128 43

We know that si = h1(P [i � 12])⊕ P [i mod 512]. For 10 ≤ (i mod 1024) < 511,
this feedback function can be written alternatively as:

si ⊕ h1(zi) = (si−1024 ⊕ h′
1(zi−1024)) +

g1(si−3 ⊕ h1(zi−3), si−10 ⊕ h1(zi−10), si−1023 ⊕ h′
1(zi−1023)) (1)

where h1(x) and h′
1(x) indicate two different functions since they are related to

different S-boxes; zj denotes P [j � 12] at the j-th step.
We note that there are two ‘+’ operations in the feedback function. We will

first investigate the least significant bits in the feedback function since they are
not affected by the ‘+’ operations. Denote the i-th least significant bit of a as ai.
From (1), we obtain that for 10 ≤ (i mod 1024) < 511,

s0
i ⊕ s0

i−1024 ⊕ s10
i−3 ⊕ s8

i−10 ⊕ s23
i−1023 = (h1(zi))0 ⊕

⊕ (h′
1(zi−1024))0 ⊕ (h1(zi−3))10 ⊕ (h1(zi−10))8 ⊕ (h′

1(zi−1023))23 (2)

Similarly, for 1024× α + 10 ≤ i, j < 1024× α + 511 and j �= i, we obtain:

s0
j ⊕ s0

j−1024 ⊕ s10
j−3 ⊕ s8

j−10 ⊕ s23
j−1023 = (h1(zj))0 ⊕

⊕ (h′
1(zj−1024))0 ⊕ (h1(zj−3))10 ⊕ (h1(zj−10))8 ⊕ (h′

1(zj−1023))23 (3)

For the left sides of (2) and (3) to be equal, i.e., for the following equation:

s0
i ⊕ s0

i−1024 ⊕ s10
i−3 ⊕ s8

i−10 ⊕ s23
i−1023 =

s0
j ⊕ s0

j−1024 ⊕ s10
j−3 ⊕ s8

j−10 ⊕ s23
j−1023 (4)

to hold, we require that:

(h1(zi))0 ⊕ (h′
1(zi−1024))0 ⊕ (h1(zi−3))10 ⊕ (h1(zi−10))8 ⊕ (h′

1(zi−1023))23 =
(h1(zj))0 ⊕ (h′

1(zj−1024))0 ⊕ (h1(zj−3))10 ⊕ (h1(zj−10))8 ⊕ (h′
1(zj−1023))23 (5)

Approximate (5) as
H(x1) = H(x2) (6)

where H denotes a random secret 80-bit to 1-bit S-box, x1 and x2 are two 80-bit
random inputs, x1 = z̄i||z̄i−3||z̄i−10||z̄i−1023||z̄i−1024 and x2 = z̄j||z̄j−3||z̄j−10||
z̄j−1023||z̄j−1024, where z̄ indicates the concatenation of the least significant byte
and the second most significant byte of z. The following theorem gives the col-
lision rate of the outputs of H(x).

Theorem 1. Let H be an m-bit to n-bit S-box and all those n-bit elements are
randomly generated, where m ≥ n. Let x1 and x2 be two m-bit random inputs
to H. Then H(x1) = H(x2) with probability 2−m + 2−n − 2−m−n.

Proof. If x1 = x2, then H(x1) = H(x2). If x1 �= x2, then H(x1) = H(x2) with
probability 2−n · x1 = x2 with probability 2−m and x1 �= x2 with probability
1− 2−m. The probability that H(x1) = H(x2) is 2−m + (1− 2−m) · 2−n.

44 H. Wu

According to Theorem 1, (6) holds with probability 1
2 +2−81. So (4) holds with

probability 1
2 + 2−81. After testing the validity of 2164 equations (4), the output

of the cipher can be distinguished from random signal with success rate 0.9772
(with false negative rate and false positive rate as 0.0228). Note that only about
217 equations (4) can be obtained from every 512 outputs, this distinguishing
attack requires about 2156 outputs.

We note that the attack above only deals with the least significant bit in (1).
It may be possible to consider the rest of the 31 bits bit-by-bit. But due to the
effect of the two ‘+’ operations in the feedback function, the attack exploiting
those 31 bits is not as effective as that exploiting the least significant bit. Thus
more than 2151 outputs are needed in this distinguishing attack.

It may be possible that the distinguishing attack against HC-128 can be im-
proved in the future. However, it is very unlikely that our security goal can be
breached since the security margin is extremely large. We thus conjecture that it
is computationally impossible to distinguish 264 bits keystream of HC-128 from
random.

4 Implementation and Performance of HC-128

The optimized implementation of HC-128 is similar to that of HC-256. On the
Pentium M processor, the speed of HC-128 reaches 3.05 cycles/bye, while the
speed of HC-256 is about 4.4 cycles/byte.

4.1 The Optimized Implementation of HC-128

In the optimized code, loop unrolling is used and only one branch decision is
made for every 16 steps. The details of the implementation are given below. The
feedback function of P is given as:

P [i mod 512] = P [i mod 512] + P [i � 10] + g1(P [i � 3], P [i � 511]).

A register X containing 16 elements is introduced for P . If (i mod 1024) < 512
and i mod 16 = 0, then at the beginning of step i, X [j] = P [(i−16+j) mod 512]
for j = 0, 1, . . . , 15, i.e. X contains the values P [i � 16], P [i � 15], . . . , P [i � 1].
During the 16 steps starting from step i, the P and X are updated as:

P [i] = P [i] + g1(X [13], X [6], P [i + 1]);
X [0] = P [i];

P [i + 1] = P [i + 1] + g1(X [14], X [7], P [i + 2]);
X [1] = P [i + 1];

P [i + 2] = P [i + 2] + g1(X [15], X [8], P [i + 3]);
X [2] = P [i + 2];

P [i + 3] = P [i + 3] + g1(X [0], X [9], P [i + 4]);
X [3] = P [i + 3];

The Stream Cipher HC-128 45

...
P [i + 14] = P [i + 14] + g1(X [11], X [4], P [i + 15]);

X [14] = P [i + 14];
P [i + 15] = P [i + 15] + g1(X [12], X [5], P [(i + 1) mod 512]);

X [15] = P [i + 15];

Note that at step i, two elements of P [i�10] and P [i�3] can be obtained directly
from X . Also for the output function si = h1(P [i � 12]) ⊕ P [i mod 1024], the
value P [i�12] can be obtained from X . In this implementation, there is no need
to compute i � 3, i � 10, and i � 12.

A register Y with 16 elements is used in the implementation of the feedback
function of Q in the same way as that given above.

4.2 The Performance of HC-128

Encryption Speed. We use the C codes submitted to the eSTREAM to mea-
sure the encryption speed. The processor used in the measurement is the Intel
Pentium M (1.6 GHz, 32 KB Level 1 cache, 2 MB Level 2 cache).

Using the eSTREAM performance testing framework, the highest encryption
speed of HC-128 is 3.05 cycles/byte with the compiler gcc (there are three
optimization options leading to this encryption speed: k8 O3-ual-ofp, prescott
O2-ofp, and athlon O3-ofp). Using the Intel C++ Compiler 9.1 in Windows XP
(SP2), the speed is 3.3 cycles/byte. Using the Microsoft Visual C++ 6.0 in
Windows XP (SP2), the speed is 3.6 cycles/byte.

Initialization Process. The key setup of HC-128 requires about 27,300 clock
cycles. There are two large S-boxes in HC-128. In order to eliminate the threat
of related key/IV attack, the tables should be updated with the key and IV
thoroughly and this process requires a lot of computations. It is thus undesirable
to use HC-128 in the applications where key (or IV) is updated very frequently.

5 Conclusion

In this report, a software-efficient stream cipher HC-128 is illustrated. Our analy-
sis shows that HC-128 is very secure. However, the extensive security analysis
of any new cipher requires a lot of efforts from many researchers. We encourage
the readers to analyze the security of HC-128.

References

1. Armknecht, F., Krause, M.: Algebraic Attacks on Combiners with Memory. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Heidelberg
(2003)

2. Babbage, S.: A Space/Time Tradeoff in Exhaustive Search Attacks on Stream Ci-
phers. In: European Convention on Security and Detection, IEE Conference pub-
lication, May 1995, vol. 408 (1995)

46 H. Wu

3. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

4. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

5. Chepyzhov, V.V., Johansson, T., Smeets, B.: A Simple Algorithm for Fast Correla-
tion Attacks on Stream Ciphers. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978,
pp. 181–195. Springer, Heidelberg (2001)

6. Courtois, N.: Higher Order Correlation Attacks, XL algorithm and Cryptanalysis
of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
182–199. Springer, Heidelberg (2003)

7. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

8. Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)

9. Golić, J.D.: Towards Fast Correlation Attacks on Irregularly Clocked Shift Regis-
ters. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921,
pp. 248–262. Springer, Heidelberg (1995)

10. Golić, J.D.: Cryptanalysis of Alleged A5 Stream Cipher. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

11. Johansson, T., Jönsson, F.: Fast Correlation Attacks through Reconstruction of
Linear Polynomials. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp.
300–315. Springer, Heidelberg (2000)

12. Meier, W., Staffelbach, O.: Fast Correlation Attacks on Certain Stream Ciphers.
Journal of Cryptography 1(3), 159–176 (1989)

13. Mihaljević, M., Fossorier, M.P.C., Imai, H.: A Low-Complexity and High- Perfor-
mance Algorithm for Fast Correlation Attack. In: Schneier, B. (ed.) FSE 2000.
LNCS, vol. 1978, pp. 196–212. Springer, Heidelberg (2001)

14. National Institute of Standards and Technology, Secure Hash Standard (SHS),
Federal Information Processing Standards Publication (FIPS), 180–182,
http://csrc.nist.gov/publications/ps/

15. Wu, H.: A New Stream Cipher HC-256. In: Roy, B., Meier, W. (eds.) FSE 2004.
LNCS, vol. 3017, pp. 226–244. Springer, Heidelberg (2004),
http://eprint.iacr.org/2004/092.pdf

A Test Vectors of HC-128

Let K = K0||K1|| · · · ||K7 and IV = IV0||IV1|| · · · ||IV7. The first 512 bits of
keystream are given for different values of key and IV. Note that for each 32-bit
output given below, the least significant byte leads the most significant byte in
the keystream. For example, if S and T are 32-bit words, and S = s3||s2||s1||s0,
T = t3||t2||t1||t0, where each si and ti is one byte, and s0 and t0 denote the
least significant bytes, then the keystream S, T is related to the keystream
s0, s1, s2, s3, t0, t1, t2, t3.

http://csrc.nist.gov/publications/ps/
http://eprint.iacr.org/2004/092.pdf

The Stream Cipher HC-128 47

1. The key and IV are set as 0:

73150082 3bfd03a0 fb2fd77f aa63af0e
de122fc6 a7dc29b6 62a68527 8b75ec68
9036db1e 81896005 00ade078 491fbf9a
1cdc3013 6c3d6e24 90f664b2 9cd57102

2. The key is set as 0, the IV is set as 0 except that IV0 = 1:

c01893d5 b7dbe958 8f65ec98 64176604
36fc6724 c82c6eec 1b1c38a7 c9b42a95
323ef123 0a6a908b ce757b68 9f14f7bb
e4cde011 aeb5173f 89608c94 b5cf46ca

3. The IV is set as 0, the key is set as 0 except that K0 = 0x55:

518251a4 04b4930a b02af931 0639f032
bcb4a47a 5722480b 2bf99f72 cdc0e566
310f0c56 d3cc83e8 663db8ef 62dfe07f
593e1790 c5ceaa9c ab03806f c9a6e5a0

4. Let Ai =
⊕0xfffff

j=0 s16j+i for i = 0, 1, . . . , 15, i.e. set a 512-bit buffer as 0
and encrypt it repeatedly for 220 times. Set the key and IV as 0, the value
of A0||A1|| · · · ||A15 is given below:

a4eac026 7e491126 6a2a384f 5c4e1329
da407fa1 55e6b1ae 05c6fdf3 bbdc8a86
7a699aa0 1a4dc117 63658ccc d3e62474
9cf8236f 0131be21 c3a51de9 d12290de

Design of a New Stream Cipher—LEX

Alex Biryukov

University of Luxembourg, FSTC,
6, rue Richard Coudenhove-Kalergi,

L-1359 Luxembourg-Kirchberg Luxembourg

Abstract. In this paper we define a notion of leak extraction from a
block cipher. We demonstrate this new concept on an example of AES.
A result is LEX: a simple AES-based stream cipher which is at least 2.5
times faster than AES both in software and in hardware.

1 Introduction

In this paper we suggest a simple notion of a leak extraction from a block cipher.
The idea is to extract parts of the internal state at certain rounds and give them
as the output key stream (possibly after passing an additional filter function).
This idea applies to any block cipher but a careful study by cryptanalyst is
required in each particular case in order to decide which parts of the internal
state may be given as output and at what frequency. This mainly depends on
the strength of the cipher’s round function and on the strength of the cipher’s
key-schedule. For example, ciphers with good diffusion might allow to output
larger parts of the internal state at each round than ciphers with weak diffusion.

In this paper we describe our idea on an example of 128/192/256 bit key
AES. Similar approach may be applied to the other block-ciphers, for exam-
ple to Serpent. Interesting lessons learnt from LEX so far are that: LEX setup
and resynchronization which are just a single AES key-setup and a single AES
encryption are much faster than for most of the other stream ciphers (see per-
formance evaluation of eSTREAM candidates [8]). This is due to the fact that
many stream ciphers aimed at fast encryption speed have a huge state which
takes very long time to initialize. Also, the state of the stream ciphers has to be
at least double of the keysize in order to avoid tradeoff attacks, but on the other
hand it does not have to be more than that. Moreover unlike in a typical stream
cipher, where the whole state changes with time, in LEX as much as half of the
state does not need to be changed or may evolve only very slowly.

2 Description of LEX

In this section we describe a 128-bit key stream cipher LEX (which stands for
Leak EXtraction, and is pronounced “leks”). In what follows we assume that the
reader is familiar with the Advanced Encryption Standard Algorithm (AES) [7].
The LEX design is very simple and is using AES in a natural way: at each

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 48–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Design of a New Stream Cipher—LEX 49

IV AES

K K K

AES AES AES
128−bit

128−bit

K

Output stream

320−bit 320−bit 320−bit

128−bit 128−bit 128−bit

Fig. 1. Initialization and stream generation

AES round we output certain four bytes from the intermediate state. The AES
with all three different key lengths (128, 192, 256) can be used. The difference
with AES is that the attacker never sees the full 128-bit ciphertext but only
portions of the intermediate state. Similar principle can be applied to any other
block-cipher.

In Fig. 1 we show how the cipher is initialized and chained1. First a standard
AES key-schedule for some secret 128-bit key K is performed. Then a given
128-bit IV is encrypted by a single AES invocation: S = AESK(IV). The 128-
bit result S together with the secret key K constitute a 256-bit secret state of
the stream cipher.2 S is changed by a round function of AES every round and
K is kept unchanged (or in a more secure variant is changing every 500 AES
encryptions).

The most crucial part of this design is the exact location of the four bytes of
the internal state that are given as output as well as the frequency of outputs
(every round, every second round, etc.). So far we suggest to use the bytes
b0,0, b2,0, b0,2, b2,2 at every odd round and the bytes b0,1, b2,1, b0,3, b2,3 at every
even round. We note that the order of bytes is not relevant for the security but is
relevant for the fast software implementation. The order of bytes as given above
allows to extract a 32-bit value from two 32-bit row variables t0, t2 in just four
operations (that can be pipelined):

out32 = ((t0&0xFF00FF) << 8)⊕ (t2&0xFF00FF),

while each round of AES uses about 40 operations. Here ti is a row of four bytes:
ti = (bi,0, bi,1, bi,2, bi,3). So far we do not propose to use any filter function and
output the bytes as they are. The choice of the output byte locations (see also
Fig. 2) is motivated by the following: both sets constitute an invariant subset of
1 There is a small caveat: we use full AES to encrypt the IV, but we use AES with

slightly modified last round for the stream generation, as will be explained further
in this section.

2 In fact the K part is expanded by the key-schedule into ten 128-bit subkeys.

50 A. Biryukov

b
0,0

b
1,0

b

b b b b

bbb

b

b b b
0,1 0,2 0,3

1,1
b

0,0
b

1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

b
0,0

b
1,0

b b b b

bb

b

b b
0,1 0,3

1,1
b

0,0
b

1,3

2,1 2,3

3,0 3,1 3,2 3,3

b
1,0

b

b b b b

bbb

b

b b b
0,1 0,2 0,3

1,1
b

0,0
b

1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 0,2

b
2,0

b
2,2

bb

Odd rounds Even rounds

Fig. 2. The positions of the leak in the even and in the odd rounds

the ShiftRows operation (the first row is not shifted and the third is rotated by
two bytes). By alternating the two subsets in even and odd rounds we ensure
that the attacker does not see input and output bytes that are related by a
single SubBytes and a single MixColumn. This choice ensures that the attacker
will have to analyze two consecutive rounds. The two rounds of AES have full
diffusion thus limiting divide-and-conquer capabilities of the attacker. Note also
that in AES the 10th round differs from the rest, there is no MixColumn and
there is a XOR of the last (11th) subkey. In LEX there is no need to make the
10th round different from any other round. Any LEX encryption round consists
of:

Round(State, i)
{ SubBytes(State);
ShiftRows(State);
MixColumns(State);
AddRoundKey(State, ExpandedKey[i mod N_r]);

}

Here Nr is the number of rounds and is equal to 10 for 128-bit key AES. The
full T iterations of LEX would then look like:

LEX(State, SecretKey)
{
AESKeyExpansion(SecretKey, ExpandedKey);
State = AESEncrypt(IV, ExpandedKey);
AddroundKey(State, ExpandedKey[0]);
for (i=1; i < T; i++){
Round(State, i);
Output[i] = LeakExtract(State, i mod 2);

}
}

It is advisable to change the SecretKey at least every 232 IV setups, and to
change the IV every T = 500 iterations.

Design of a New Stream Cipher—LEX 51

Note also that IV setup is performed by full AES encryption and the subtle
difference in the last round of AES and absence of such difference in encryption
rounds of LEX is crucial to break similarity which otherwise could be exploited
by slide attacks [5, 11] (see Section 3.8 for a discussion).

The speed of this cipher is more than 2.5 times faster than 128-bit key AES,
3 times faster than 192-bit key AES, and 3.5 times faster than 256-bit key AES.
So far there are no weaknesses known to the designers as well as there are no
hidden weaknesses inserted by the designers.

3 Analysis of LEX

In this section we analyze resistance of LEX to various attacks.

3.1 Period of the Output Sequence

The way we use AES is essentially an Output Feedback Mode (OFB), in which
instead of using the ciphertexts as a key-stream we use the leaks from the inter-
mediate rounds as a key-stream. The output stream will eventually cycle when
we traverse the full cycle of the AES-generated permutation. If one assumes
that AES is indistinguishable from a random permutation for any fixed key, one
would expect the cycle size to be of the order O(2128) since the probability of
falling into one of the short cycles is negligible3.

3.2 Tradeoff Attacks

For a stream cipher to be secure against time-memory and time-memory-data
tradeoff attacks [1, 9, 4] the following conditions are necessary: |K| = |IV | =
|State|/2. This ensures that the best tradeoff attack has complexity roughly
the same as the exhaustive key-search. The IV’s may be public, but it is very
important that full-entropy IV’s are used to avoid tradeoff-resynchronization
attacks [3, 10]. In the case of LEX |K| = |IV | = |Block| = 128 bits, where
Block denotes an intermediate state of the plaintext block during the encryption.
Internal state is the pair (IV, K) at the start and (Block, Key) during the stream
generation, and thus |K|+ |IV | = |K|+ |S| = 256 bits which is enough to avoid
the tradeoff attacks. Note that if one uses LEX construction with larger key
variants of AES this might be a ”problem”. For example for 192-bit key AES the
state would consist of 128-bit internal variable and the 192-bit key. This would
allow to apply a time-memory-data tradeoff attack with roughly 2160 stream,
memory and time. For 256-bit key AES it would be 2192 stream, memory and
time. Such attack is absolutely impractical but may be viewed as a certificational
weakness.

3 A random permutation over n-bit integers typically consists of only about O(n)
cycles, the largest of them spanning about 62% of the space.

52 A. Biryukov

3.3 Algebraic Attacks

Algebraic attack on stream ciphers [6] is a recent and a very powerful type of
attack. Applicability of these to LEX is to be carefully investigated. If one could
write a non-linear equation in terms of the outputs and the key – that could
lead to an attack. Re-keying every 500 AES encryptions may help to avoid such
attacks by limiting the number of samples the attacker might obtain while target-
ing a specific subkey. We expect that after the re-keying the system of non-linear
equations collected by the attacker would become obsolete. Shifting from AES
key-schedule to a more robust one might be another precaution against these at-
tacks. Note also that unlike in LFSR-based stream ciphers we expect that there
do not exist simple relations that connect internal variables at distances of 10 or
more steps. Such relations if they would exist would be useful in cryptanalysis
of AES itself.

3.4 Differential, Linear, or Multiset Resynchronization Attacks

If mixing of IV and the key is weak the cipher might be prone to chosen or known
IV attacks similar to the chosen plaintext attacks on the block-ciphers. However
in our case this mixing is performed via a single AES encryption. Since AES
is designed to withstand such differential, linear or multiset attacks we believe
that such attacks pose no problem for our scheme either.

3.5 Potential Weakness — AES Key-Schedule

There is a simple way to overcome weaknesses in AES key-schedule (which is
almost linear) and which might be crucial for our construction. One might use
ten consecutive encryptions of the IV as subkeys, prior to starting the encryption.
This method will however loose in key agility, since key-schedule time will be 11
AES encryptions instead of one. If better key-agility is required a faster dedicated
key-schedule may be designed.

If bulk encryption is required then it might be advisable to replace the static
key with a slowly time-varying key. One possibility would be to perform an addi-
tional 10 AES encryptions every 500 AES encryptions and to use the 10 results
as subkeys. This method is quite efficient in software but might not be suitable
for small hardware due to the requirement to store 1280 bits (160 bytes) of the
subkeys. The overhead of such key-change is only 2% slowdown, while it might
stop potential attacks which require more than 500 samples gathered for a spe-
cific subkey. An alternative more gate-efficient solution would be to perform a
single AES encryption every 100 steps without revealing the intermediate values
and use the result as a new 128-bit key. Then use the keyschedule of AES to
generate the subkeys. Note, that previously by iterating AES with the same key
we explored a single cycle of AES, which was likely to be of length O(2128) due
to the cipher being a permutation of 2128 values. However by doing intermediate

Design of a New Stream Cipher—LEX 53

key-changes we are now in a random mapping scenario. Since state size of our
random mapping is 256 bits (key + internal state), one would expect to get into
a “short cycle” in about O(2128) steps, which is the same as in the previous case
and poses no security problem.

3.6 No Weak Keys

Since there are no weak keys known for the underlying AES cipher we believe that
weak keys pose no problem for this design either. This is especially important
since we suggest frequent rekeying to make the design more robust against other
cryptanalytic attacks.

3.7 Dedicated Attacks

An obvious line of attack would be to concentrate on every 10th round, since it
reuses the same subkey, and thus if the attacker guesses parts of this subkey he
still can reuse this information 10t, t = 1, 2, . . . rounds later. Note however that
unlike in LFSR or LFSM based stream ciphers the other parts of the intermediate
state have hopelessly changed in a complex non-linear manner and any guesses
spent for those are wasted (unless there is some weakness in a full 10-round
AES).

3.8 The Slide Attack

In [11] a slide attack [5] on resynchronization mechanism of LEX (as it was
described for the eSTREAM project) is shown. The attack requires the ability
to perform 261 resynchronizations and uses 275 bytes of output stream data
produced under a single key and different IVs, which need to be stored and
sorted in 275 bytes of memory. This attack is comparable in complexity to time-
memory-key tradeoff attacks which are applicable to any block cipher in popular
modes of operation like ECB, CBC (time-memory-data complexity of O(264) for
any 128-bit cipher) [2, 3]4 This attack thus does not make LEX weaker than
128-bit key AES.

However the observation leading to the attack is of interest since it can be
easily generalized and would apply to any leak-extraction cipher in which resyn-
chronization and encryption are performed by the same function. The idea of the
attack is simple: iterations of LEX explore a cycle of the size about 2128 starting
from IV. Random IV selections would sample random points on this cycle. If the
IV setup is performed by the same function as the subsequent stream generation

4 One may argue that attack on a single key is more interesting than the tradeoff
attack that breaks one key out of 264. Firstly we think that it is subjective and
depends on the appliation. Secondly, if we limit the amount of stream produced per
key to 232 as is typical for many other stream-ciphers, this argument will not be
valid any more. The slide attack will have 296 complexity and will need to try the
same amount of keys as the tradeoff attack – 264, before it succeeds.

54 A. Biryukov

then one may pick an IV which is equal to the block-state just after the IV setup
of another sample. This causes the attacker to know the full block input of the
cipher and the result of the leak one round later, which clearly leaks lots of in-
formation about the secret subkey of that round. In order to find such colliding
block-states the attacker needs at least 265 block samples stored and sorted in
memory. The attack assumes the ability to perform about 264 resynchronizations
for the same key.

A natural way to increase resistance against the attack would be to require a
change of keys every 232 IV’s. There would still remain a chance of 2−64 to find
colliding block-states in a collection of 232 IV samples. However the complexity of
the attack would increase to 296 and the attacker would need to try the attack
for 264 different keys – the same number as in the tradeoff attack. Such high
complexity should be a sufficient protection for most of the practical purposes.
In addition, in order to completely get rid of the sliding property one should use
two different functions for the resynchronization and the encryption. Moreover
even a small difference between the two would suffice. For example, if one uses the
full AES with the XOR of the last subkey for the IV setup and AES without the
XOR of this subkey for the encryption – this is enough to break the similarities
used by sliding.

4 Implementation

As one may observe from software performance test done by ECRYPT [8], LEX
holds to its promise and runs 2.5 times faster than 128-bit key AES. We expect
that the same holds for hardware implementations. It is also somewhat pleas-
antly surprising that LEX is one of the fastest ciphers out of the 32 candidates
on many of the platforms: 6th on Intel Pentium M, 1700MHz; 4th on Intel Pen-
tium 4, 2.40GHz; 6th on AMD Athlon 64 3000+, 1.80GHz; 7th on PowerPC G4
533MHz; 6th on Alpha EV5.6, 400MHz; 5th on HP 9000/785, 875MHz; 5th on
UltraSPARC-III, 750MHz). It is also one of the best in terms of agility of the
key-setup, the IV-setup, and the combined Internet packet metric IMIX. LEX
is thus very well suited for the short packet exchanges typical for the Internet
environment.

Since LEX could reuse existing AES implementations it might provide a sim-
ple and cheap speedup option in addition to the already existing base AES
encryption. For example, if one uses a fast software AES implementation which
runs at 14-15 clocks per byte we may expect LEX to be running at about 5-6
clocks per byte. The same leak extraction principle naturally applies to 192 and
256-bit AES resulting in LEX-192 and LEX-256. LEX-192 should be 3 times
faster than AES-192, and LEX-256 is 3.5 times faster than AES-256. Note that
unlike in AES the speed penalty for using larger key versions is much smaller in
LEX (a slight slowdown for a longer keyschedule and resynchronization but not
for the stream generation).

Design of a New Stream Cipher—LEX 55

5 Strong Points of the Design

Here we list some benefits of using this design:

– AES hardware/software implementations can be reused with few simple
modifications. The implementors may use all their favorite AES implemen-
tation tricks.

– The cipher is at least 2.5 times faster than AES. In order to get an idea
of the speed of LEX divide cycles-per-byte performance figures of AES by
a factor 2.5. The speed of key and IV setup is equal to the speed of AES
keyschedule followed by a single AES encryption. In hardware the area and
gate count figures are essentially those of the AES.

– Unlike in the AES the key-setup for encryption and decryption in LEX are
the same.

– The cipher may be used as a speedup alternative to the existing AES imple-
mentation and with only minor changes to the existing software or hardware.

– Security analysis benefits from existing literature on AES.
– The speed/cost ratio of the design is even better than for the AES and

thus it makes this design attractive for both fast software and fast hardware
implementations. The design will also perform reasonably well in restricted
resource environments.

– Since this design comes with explicit specification of IV size and resynchro-
nization mechanism it is secure against time-memory-data tradeoff attacks.
This is not the case for the AES in ECB mode or for the AES with IV’s
shorter than 128-bits.

– Side-channel attack countermeasures developed for the AES will be useful
for this design as well.

6 Summary

In this paper we have suggested a new concept of conversion of block ciphers
into stream ciphers via leak extraction. As an example of this approach we have
described efficient extensions of AES into the world of stream ciphers, which
we called LEX. We expect that (if no serious weaknesses would be found) LEX
may provide a very useful speedup option to the existing base implementations
of AES. We hope that there are no attacks on this design faster than O(2128)
steps. The design is rather bold and of course requires further study.

Acknowledgment

This paper is a result of several inspiring discussions with Adi Shamir. We would
like to thank Christophe De Cannière, Joseph Lano, Ingrid Verbauwhede and
other cosix for the exchange of views on the stream cipher design. We also
would like to thank anonymous reviewers for comments that helped to improve
this paper.

56 A. Biryukov

References

[1] Babbage, S.: Improved “exhaustive search” attacks on stream ciphers. In: Bab-
bage, S. (ed.) ECOS 1995 (European Convention on Security and Detection). IEE
Conference Publication, vol. 408 (May 1995)

[2] Biham, E.: How to decrypt or even substitute DES-encrypted messages in 228

steps. Information Processing Letters 84, 117–124 (2002)
[3] Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved Time-Memory Trade-offs

with Multiple Data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006)

[4] Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

[5] Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

[6] Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) Advances in Cryptology – EUROCRYPT 2003. LNCS,
pp. 345–359. Springer, Heidelberg (2003)

[7] Daemen, J., Rijmen, V.: The design of Rijndael: AES — The Advanced Encryp-
tion Standard. Springer, Heidelberg (2002)

[8] eSTREAM, eSTREAM Optimized Code HOWTO (2005),
http://www.ecrypt.eu.org/stream/perf/

[9] Golic, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

[10] Hong, J., Sarkar, P.: Rediscovery of time memory tradeoffs (2005),
http://eprint.iacr.org/2005/090

[11] Wu, H., Preneel, B.: Attacking the IV Setup of Stream Cipher LEX. In: Robshaw,
M.J.B. (ed.) FSE 2006. LNCS, vol. 4047. Springer, Heidelberg (2006)

http://www.ecrypt.eu.org/stream/perf/
http://eprint.iacr.org/2005/090

Specification for NLSv2

Philip Hawkes, Cameron McDonald, Michael Paddon, Gregory G. Rose,
and Miriam Wiggers de Vries

Qualcomm Australia
Level 3, 230 Victoria Rd

Gladesville NSW 2111, Australia
Tel.: +61-2-9817-4188; Fax: +61-2-9817-5199

{phawkes,cameronm,mwp,ggr,miriamw}@qualcomm.com

1 Introduction

NLSv2 is a synchronous stream cipher with message authentication function-
ality, submitted to the ECrypt Network of Excellence call for stream cipher
primitives, profile 1A. NLSv2 is an updated version of NLS [19]. The minor
change between NLS and NLSv2 increases resistance to attacks utilizing large
amounts of keystream. NLS stands for Non-Linear SOBER, and the NLS ciphers
are members of the SOBER family of stream ciphers [12],[16],[23] and [24].

NLSv2 is a synchronous stream cipher designed for a secret key that may be
up to 128 bits in length. The cipher outputs the key stream in 32-bit blocks.
NLSv2 is a software-oriented cipher based on simple 32-bit operations (such
as 32-bit XOR and addition modulo 232), and references to small fixed arrays.
Consequently, NLSv2 is at home in many computing environments, from smart
cards to large computers. Source code for NLSv2 is freely available and use of this
source code, or independent implementations, is allowed free for any purpose.

NLSv2 includes a facility for simple re-synchronization without the sender and
receiver establishing new secret keys through the use of a nonce (a number used
only once). This facility does not always need to be used. For example, NLSv2
may be used to generate a single encryption keystream of arbitrary length. In
this mode it would be possible to use NLSv2 as a replacement for the commonly
deployed RC4 cipher in, for example, SSL/TLS. In this mode, no nonce is neces-
sary. In practice though, much communication is done in messages where multi-
ple encryption keystreams are required. NLSv2 achieves this using a single secret
key for the entire (multi-message) communication, with a nonce distinguishing
individual messages. NLSv2 is intended to provide security under the condition
that no nonce is ever reused with a single key, that no more than 280 words
of data are processed with one key, and that no more than 248 words of data
are processed with one key/nonce pair. There is no requirement that nonces be
random; this allows use of a counter, and makes guaranteeing uniqueness much
easier.

This document is arranged as follows. Section 2 introduces the history of
NLSv2 and some of the design principles used in the construction. Section 5
contains a complete description of NLSv2. An analysis of the security character-
istics, and corresponding design rationale of NLSv2 is found in Section 6.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 57–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

58 P. Hawkes et al.

2 Design Considerations

2.1 Heritage

Much of the design of NLSv2 can be traced back through the line of SOBER
stream ciphers to the original SOBER [23] stream cipher, proposed by Rose in
1998. The algorithm for SOBER is based on 8-bit operations, versus the 32-
bit operations used in NLSv2. SOBER was superseded by SOBER-II [24] when
various weaknesses were found in the original design. S16 was proposed as 16-bit
extension of SOBER-II: S16 copies the structure of SOBER-II and uses 16-bit
operations.

However, there were opportunities for strengthening SOBER-II and S16 that
could not be ignored. Consequently, replacements for SOBER-II, S16 and a 32-
bit version were created. These replacements were called the t-class of SOBER
ciphers [12]. The t-class contains three ciphers based on 8-bit, 16-bit and 32-
bit operations. The ciphers SOBER-t16 and SOBER-t32 were submitted to the
NESSIE program [21]; SOBER-t16 as a stream cipher with 128-bit key strength
and SOBER-t32 as a stream cipher with 256-bit key strength. SOBER-t16 and
SOBER-t32 proved to be among the strongest stream cipher submissions to
NESSIE. However, both ciphers were found to fall short of the stringent NESSIE
requirements.

Turing [16] is an adventurous stream cipher proposal that evolved from
SOBER-t32. In comparison to other SOBER ciphers, Turing produces five words
of output for each internal state update, which is five times more than other
SOBER ciphers. The key setup of Turing was found to be lacking [20], but oth-
erwise the design appears strong. However, SOBER proposals since the Turing
cipher have returned to the original approach of producing one word of output
for each internal state update.

SOBER-128 [17] uses the internal state update function from Turing, but
with a very conservative output filter function. SOBER-128 also included an
innovative (and flawed [25]) message integrity functionality. Mundja [18], a mes-
sage integrity primitive based on SHA-256 designed to cooperate with a stream
cipher, was developed to rectify the flawed message integrity of SOBER-128.

All these ciphers (SOBER through to SOBER-128) utilize a Linear Feedback
Shift Register (LFSR) to produce a changing internal state, with a Non-Linear
Filter (NLF) applied to the internal state to produce a word of NLF output.
The LFSR provided an internal state with guaranteed cycle period but, on the
other hand, the use of an LFSR also enhanced a range of attacks against the
ciphers. This suggested that there may be an advantage to replacing the LFSR
with a nonlinear feedback shift register. This resulted in NLS [19]: an improved
version of SOBER-128 that is based on a nonlinear feedback shift register instead
of an LFSR, and with a simplified and more efficient filter function. NLS also
incorporates the Mundja primitive for message integrity. NLS was then submit-
ted to the eSTREAM project. NLS was subsequently found to be susceptible to
distinguishing attack [5].

Specification for NLSv2 59

As a result, NLS was tweaked to become NLSv2. The only change from NLS
is the inclusion of periodic updating of the Konst variable (in NLS, Konst is
a key-dependent variable that remains constant for the duration of keystream
generation), to resist the distinguishing attack on NLS [5]. NLSv2 was chosen as
a Phase III finalist for the eSTREAM project, but only in “encrypt-only” mode
(that is, without the message integrity functionality of the Mundja primitive).
This paper discusses only on the encryption functionality of NLSv2. The reader
is directed to [18] for more details on Mundja.

3 Notation

– A 32-bit block is called a word.
– f16 is the 16th Fermat number, 216 + 1 = 65537.
– a ≪ b(resp. ≫) means rotation of the word a to the left (respectively

right) by b bits.
– ⊕ is simply exclusive-or of words.
– + is addition modulo 232.

For NLSv2, conversion between 4-byte chunks and 32-bit words is done in “little-
endian” fashion irrespective of the byte ordering of the underlying machine.

4 Design Considerations

4.1 Similarities with Preceding SOBER Designs

In updating NLSv2 from SOBER-128, there were various features of SOBER-128
that were desirable to maintain:

Word Size: A word size of 32-bits was suitable for a variety of implementations.
This word size also allowed the f function of SOBER-128 to be utilized in NLSv2.

Choice of Filter and Feedback taps: The position of the words (within the
internal state) used in the feedback function and the output filter function has
been common to the last few generations of SOBER ciphers. This choice was
optimized (during development of the t-class SOBER ciphers) to give maximum
resistance to Guess and Determine attacks [2,15]: the best Guess and Determine
attacks appear to have complexity greater than 2256. This aspect of the design
is considered a strength and is used in NLSv2.

The non-linear f function from SOBER-128: This function is a combina-
tion of the Skipjack [22] S-box (called “F-table” in the definition of Skipjack) and
an S-box tailor-designed by the Information Security Research Centre (ISRC) at
the Queensland University of Technology [9]. The Skipjack S-box has no known
weaknesses. The ISRC S-box has been used in SOBER-stream ciphers dating
back to the t-class SOBER ciphers, and also has no known weaknesses. The
designers saw no need to generate a new non-linear function for NLSv2, so the
existing function is utilized.

60 P. Hawkes et al.

Choice of Operations: Timing attacks and power attacks can exploit data-
dependent rotations and other data-dependent conditional executions. In Turing
and SOBER-128 there is no data-dependent conditional execution after initial
keying. Instructions that commonly take a variable amount of time, such as data-
dependent shifts, or which are difficult to implement in hardware or often not
implemented on low-end microprocessors, such as integer multiplication, have
been avoided. NLS continues this design philosophy.

Key loading: The LoadKey() function (employed in loading the key and/or
nonce) also dates back to the t-class ciphers. This function was extensively an-
alyzed during development of the t-class ciphers to ensure that (after all key
material has been included), the following properties hold:

– Every bit of the initial state is a non-linear function of every bit of the key
and nonce [10].

– No initial state word is algebraically related to any subset of other words.
– The key/nonce length is included to prevent equivalent secret keys/nonces.
– No two secret keys (up to 128-bits in length) can result in the same initial

key state. Also, given a key state, no two nonces (up to 128-bits in length)
can result in the same initial state.

– There is no initial state of the registers that is known to be weak in any
sense, so it follows that there are no known weak keys.

We believe that these properties ensure that the key loading cannot be exploited.

4.2 Changes from Preceding SOBER Designs

Stuttering: Prior to the Turing cipher, SOBER ciphers applied irregular deci-
mation to the NLF outputs to produce the keystream (this was called stuttering).
The stuttering did not appear to provide significant resistance to attacks, and
slowed the output rate of the ciphers. In evolving from the t-class ciphers to
Turing, the SOBER designs stopped using stuttering.

Non-linear Feedback Function: The linear feedback functions of the preced-
ing SOBER cipher have some weaknesses. First, every word of internal state
is always a linear function of the initial state, which enhances the effect of al-
gebraic attacks [8] and Correlation-based attacks [4]. Second, there is always
a linear relationship between corresponding bits of internal state which can be
exploited using linear distinguishers [7]. To counter these attacks, it was decided
that the NLSv2 internal state should be updated using a non-linear function
that incorporated the non-linear f function.

Reducing the Non-linearity of the Output Filter: The linear feedback
function of the preceding SOBER cipher necessitated a strongly non-linear fil-
ter function to resist the aforementioned attacks. Using a non-linear feedback
function in NLSv2 reduced the requirement for such a strong non-linearity. To in-
crease the speed of NLSv2 compared to SOBER-128, it was decided that only one
S-box look up would be allowed. This lookup was already used in the feedback
function, so the non-linear filter chosen for NLSv2 had to rely only on addition

Specification for NLSv2 61

and XOR operations. The resulting function is significantly less non-linear than
preceding non-linear filters, but the NLSv2 non-linear filter is significantly faster.

Incorporating a Counter into the Internal State: One advantage of the
linear feedback functions in earlier SOBER ciphers is that the cycle length can
be predicted. For NLS, the cycle length is no longer guaranteed. The designers
wished to guarantee a minimum cycle length for NLSv2. This is achieved using
a counter that increments with every word generated, and every (216−1) words,
the value of this counter is added to one of the internal state words. This ensures
that the internal state (and thus the output stream) has a minimum cycle length
of C = 248 + 232, and any cycle must be a multiple of this value. We have no
reason to believe that there are a significant number of cycles of length less than
280. Our studies with the inclusion of the counter value disabled (thus removing
any minimum cycle length) have been unable to demonstrate any cycle. Algebraic
methods for constructing such a cycle have eluded us.

Updating Konst: A final change is the periodic updating of the Konst, as a
measure against a distinguishing attack found on NLS [5].

5 Description

5.1 Summary of Keystream Generation

NLSv2’s stream generator is constructed from a non-linear feedback shift register
(NLFSR) and a non-linear filter (NLF), with assistance from a counter. The
vector σt = (rt[0], . . . , rt[16]) of words is known as the state of the register
at time t, and the state σ0 = (r0[0], . . . , r0[16]) is called the initial state. The
key state and a 32-bit, key-dependent word called Konst are initialized from the
secret key by the key loading. If a nonce is being used, then the key state is further
perturbed by the nonce loading process to form the initial state, otherwise the
key state is used directly as the initial state. During nonce-loading, the stream
generator performs a new calculation of Konst, in order to make Konst dependent
on both the key and the nonce. Once initialized, the stream generator produces
32-bit keystream words denoted vj that combine to form the keystream {vj}.

5.2 Generating Output

The NLFSR (described below) transforms state σt into state σt+1. Successive
states σt from the NLFSR are fed through the non-linear filter to produce 32-bit
output words denoted outt. Each output word outt is obtained using the NLF as

outt = NLF (σt) = (rt[0] + rt[16])⊕ (rt[1] + rt[13])⊕ (rt[6] + Konst).

When t ≡ 0(modulo f16), then outt is used as a new value for Konst and the
value of outt is not output as keystream. Otherwise, outt is used directly as
keystream. The mapping to keystream words {vj} from output words {outt} is
vj = outj−(j div f16) where (j div f16) denotes the integer part of (j ÷ f16).

62 P. Hawkes et al.

The NLFSR uses the following process to transform state σt into state σt+1:

1. rt+1[i] = rt[i + 1], for 0 ≤ i ≤ 15.
2. rt+1[16] = f((rt[0] ≪ 19) + (rt[15] ≪ 9) + Konst)⊕ rt[4].
3. rt[0] is abandoned.
4. If t ≡ 0(modulo f16), then the following special actions are applied:

(a) rt+1[2] is modified by adding t (modulo 232);
(b) outt+1 = NLF (σt+1) is computed,
(c) Konst is changed to the resulting value of outt+1; and
(d) the state σt+1 is transformed into σt+2 prior to producing outt+2, as in

steps 1 to 3.

The nonlinear function f is defined in section 5.3 below.
NLSv2 allows for encryption/decryption of plaintext of any length, but most

of the operations are designed to act on 32-bit blocks of plaintext or transmission
message. If the last portion of the plaintext (or the last portion of the transmis-
sion message bits) does not form a full 32-bit word, then the generated keystream
word vj is truncated to a keystream of suitable length.

5.3 The S-Box Function f

Notation: The most significant 8 bits of 32-bit word a is denoted aH .
The function f employs XOR, and an 8 × 32-bit substitution box (S-box)

denoted SBox. For a 32-bit value a, the function is f(a) = SBox[aH]⊕ a.

32-bit Input

8 bits 24 bits

Partition the input

SBOX

Skipjack
S-box

ISRC, QUT
 S-box

8 bits 24 bits

32-bit Output

Fig. 1. The structure of the function f used in NLSv2

Specification for NLSv2 63

The S-box is a combination of the Skipjack [22] S-box (called “F-table” in the
definition of Skipjack) and an S-box tailor-designed by the Information Security
Research Centre (ISRC) at the Queensland University of Technology [9]. The
ISRC S-box was constructed as 24 mutually uncorrelated, balanced and highly
non-linear single bit functions. Suppose that the S-box has the input aH . The
eight most significant bits (MSBs) of the output of the S-box, XORed with
aH , are equal to the output of the Skipjack S-box, given the input aH . The 24
least significant bits (LSBs) of the output of the S-box are the output of the
S-box constructed by the ISRC, given the input aH . The entire S-box is given
in Appendix A of this document. (Note: the NLSv2 f yields the same output as
the SOBER-t32 f , but does not require a masking operation. The SBox table
differs only in the high byte of each word.)

Thus, the eight most significant bits of the output of f is the output of the
Skipjack S-box, while the 24 LSBs are obtained by XORing the 24 bits of the
output of the ISRC S-box with the 24 LSBs of the input (see Figure 1). The
function f is defined this way to ensure that it is one-to-one and highly non-
linear, while using only a single, small S-box. The function f also serves to
transfer the non-linearity from the high bits of its input to the low bits of its
output.

5.4 Key and Nonce Loading

NLSv2 is keyed and re-keyed using operations that transform the values in
the register under the influence of key material. Two principle operations are
employed:

– Include(X): this operation adds the word X to r[15] modulo 232.
– Diffuse(): this operation clocks the NLFSR, obtains the output v of the NLF

and replaces the value of r[4] with the value of (r[4]⊕ v).

The main function used to load the key and nonce is the Loadkey(k[], keylen)
operation, where k[] is an array containing the keylen bytes of the key with one
byte stored in each entry of k[]. The Loadkey() operation uses the values in k[]
to transform the current state of the register. All keys must be a multiple of 4
bytes in length; keylen is the length of the key in bytes.

Algorithm for Loadkey(k[], keylen)

1. Convert k[] into kwl = keylen/4 words and store in an array kw[] of kwl
“little-endian” words

2. For each i, 0 ≤ i ≤ (kwl − 1): Include(kw[i]) and apply Diffuse().
3. Include(keylen).
4. Apply Diffuse() 17 more times. �

The 17 applications of Diffuse() are designed to ensure that every bit of input
affects every bit of the resulting register state in a nonlinear fashion, as discussed
in Section 4.1. Including keylen ensures that keys and nonces of different lengths
result in distinct initial states.

64 P. Hawkes et al.

NLSv2 is keyed using a secret, t-byte session key K[0], . . . , K[t − 1] (and
optional m-byte nonce nonce[0], . . . , nonce[m− 1]) as follows:

Algorithm for Keying

1. The 17 words of state information are initialized to the first 17 Fibonacci
numbers by setting R[0] = R[1] = 1, and computing R[i] = R[i−1]+R[i−2],
for 2 ≤ i ≤ 16. The value of Konst is set to the word 0x6996c53a (called
INITKONST).

2. The cipher applies Loadkey(K[],t) which includes the key bytes and key
length into the register, and diffuses the information through the register.

3. The NLFSR is clocked and the NLF output is calculated and Konst is then
set to the resulting value.

4. If the cipher is going to be used for multiple messages, then the 17 word
state of the register, (R[0], . . . , R[16]), (which we call the key state) can be
saved at this point for later use, and the key discarded. However, for shorter
keys, the key could be saved and the keying procedure repeated as necessary,
trading additional computation time for some extra memory.

5. If the cipher is not being used with nonces, then the cipher produces a
key stream with the register starting in the key state. That is, the key
state is used as the initial state. However, if the application uses nonces,
then the cipher first resets the register state to the initial key state and
resets Konst to INITKONST. The cipher then loads the m-byte nonce
nonce[0], . . . , nonce[m−1] using Loadkey(nonce[],m). The NLFSR is clocked
and the NLF output is calculated and Konst is then set to the resulting
value. The resulting state of the register is taken as the initial state r0[i],
0 ≤ i ≤ 16, and the cipher produces a key stream with the register starting
in this state. Note that a zero-length nonce is allowed, and is distinct from
all other nonces and also distinct from the key state.

6 Security Analysis of NLSv2

NLSv2 is intended to provide 128-bit security, although we believe it provides
significantly more than that. NLSv2 is believed to be susceptible only to dis-
tinguishing attacks, which we address below. Otherwise, all other attacks on
NLSv2 are believed to either require the owner of the secret key(s) to generate
more than 280 key stream words, or the computational complexity of the attack
is equivalent to the attacker rekeying the cipher 2128 times and generating at
least 5 words of output each time. This claim is subject to the condition that no
key/nonce pair is ever reused.

6.1 Heuristic Analysis of NLSv2

Most of the components of NLSv2 have been subjected to scrutiny when they
appeared in earlier members of the SOBER family of stream ciphers. The two

Specification for NLSv2 65

major changes that we now address briefly are (1) the effect of making the
feedback function non-linear and (2) the effect of making the output function
less non-linear.

The feedback function of the stream cipher is highly nonlinear, through use
of the SBox. Rotation of the words used in the feedback function inputs ensures
that all bits in the register have nonlinear effect on the register contents quite
rapidly (within 26 words of output). The nonlinear effects also compound quite
rapidly. Since the register employs nonlinear feedback, little can be proven about
its cycle length, so a regular modification of the state is used to guarantee a min-
imum cycle length in excess of 248. This should be more than ample in practice.
In the absence of any reason to believe that the feedback function behaves in
a significantly non-random fashion, the average cycle length is approximately
2542.

The output filter function is quite simple, and serves mostly to ensure that no
exploitable combination of input words appears before many applications of the
nonlinear SBox have been applied. The nonlinearity of the feedback function,
and the selection of the taps for the output filter function, should adequately
disguise any short-distance correlations. The regular modification of the state
should enhance this effect for long-distance correlations.

6.2 Distinguishing Attacks and NLSv2

The Crossword Puzzle distinguisher attack [5] on the first version of NLS relies
on detecting a Konst -dependent bias in a linear combination of keystream bits.
The attack has a complexity of around 260 keystream observations. For some
values of Konst the bias tends towards the linear combination equaling zero,
while for other values of Konst the bias tends towards the linear combination
equaling one. When averaged over Konst, these biases cancel out and the average
bias is zero (or very close to zero).

In the attack on the first version of NLS, the attacker can rely on getting a
large amount of keystream generated from a single value of Konst for which the
linear combinations of keystream bits will all have the same bias. In considering
the same attack on NLSv2, since Konst changes periodically in NLSv2, the
attacker is unable to find enough keystream with the identical values of Konst.
The attacker must use keystream generated from multiple values of Konst. The
resulting overall bias in the linear combination of keystream bits will (on average)
tend to zero.

However, Cho [6] has shown since that it is possible to form other distinguish-
ing equations for NLSv2 in which the bits of Konst can be canceled out so that
Konst has no effect on the bias. Cho also obtained more accurate estimations of
the bias, and showed that distinguisher appears to have a bias of around 2−37

and a complexity of around 274 keystream observations, which is less than the
limit of 280 keystream observations imposed by the designers.

66 P. Hawkes et al.

References

1. Babbage, S., De Cannière, C., Lano, J., Preneel, B., Vandewalle, J.: Cryptanalysis
of SOBER-t32. In: Pre-proceedings of Fast Software Encryption FSE2003, pp. 119-
136 (February 1999)

2. Blackburn, S., Murphy, S., Piper, F., Wild, P.: A SOBERing Remark. Information
Security Group, Royal Holloway University of London, Egham, Surrey TW20 0EX,
U. K (1998) (unpublished report)

3. De CanniÃre, C.: Guess and Determine Attack on SOBER. NESSIE Public Doc-
ument NES/DOC/SAG/WP5/010/a (November 2001) See [21]

4. Chepyzhov, V., Smeets, B.: On a fast correlation attack on certain stream ciphers.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 176–185. Springer,
Heidelberg (1991)

5. Cho, J., Pieprzyk, J.: Crossword Puzzle Attack on NLS, IACR Cryptology ePrint
Archive, http://eprint.iacr.org/2006/049.pdf

6. Cho, J., Pieprzyk, J.: Multiple Modular Additions and Crossword Puzzle Attack
on NLSv2. IACR Cryptology ePrint Archive (2007),
http://eprint.iacr.org/2007/038.pdf

7. Coppersmith, D., Haveli, S., Jutla, C.: Cryptanalysis of stream ciphers with lin-
ear masking. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 515–532.
Springer, Heidelberg (2002)

8. Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback.
Awaiting publication, http://www.minrank.org/∼courtois/myresearch.html

9. Dawson, E., Millan, W., Burnett, L., Carter, G.: On the Design of 8*32 S-boxes. By
the Information Systems Research Centre, Queensland University of Technology
(1999) (unpublished report)

10. Dichtl, M., Schafheutle, M.: Linearity Properties of the SOBER-t32 Key Loading.
NESSIE Public Document NES/DOC/SAG/WP5/046/1 (November 2001) See [21]

11. Ekdahl, P., Johansson, T.: Distinguishing Attacks on SOBER-t16 and t32. In:
Daemen, J., Rijmen, V. (eds.) Fast Software Encryption Workshop (FSE) 2002.
LNCS, vol. 1976, pp. 210–224. Springer, Heidelberg (2002)

12. Hawkes, P., Rose, G.: The t-class of SOBER stream ciphers. Technical report,
QUALCOMM Australia (1999), http://www.qualcomm.com.au

13. Hawkes, P., Rose, G.: Primitive Specification and Supporting Documentation for
SOBER-t16 Submission to NESSIE (submitted, 2000) See [21]

14. Hawkes, P., Rose, G.: Primitive Specification and Supporting Documentation for
SOBER-t32 submission to NESSIE (submitted, 2000) See[21]

15. Hawkes, P., Rose, G.: Exploiting multiples of the connection polynomial in word-
oriented stream ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
pp. 303–316. Springer, Heidelberg (2000)

16. Hawkes, P., Rose, G.: Turing, a Fast Stream Cipher. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 290–306. Springer, Heidelberg (2003)

17. Hawkes, P., Rose, G.: Primitive Specification for SOBER-128, 2003. IACR Cryp-
tology ePrint Archive, http://eprint.iacr.org/2003/081.pdf

18. Hawkes, P., Paddon, M., Rose, G.: The Mundja Streaming MAC. IACR Cryptology
ePrint Archive (2004), http://eprint.iacr.org/2004/271.pdf

19. Hawkes, P., Paddon, M., Rose, G., Wiggers de Vries, M.: Primitive Specification
for NLS (2005), www.ecrypt.eu.org/stream/nls.html

20. Joux, A., Muller, F.: A Chosen IV Attack Against Turing. In: Matsui, M., Zuc-
cherato, R. (eds.) SAC 2003. LNCS, vol. 3006, pp. 194–207. Springer, Heidelberg
(2004)

http://eprint.iacr.org/2006/049.pdf
http://eprint.iacr.org/2007/038.pdf
http://www.minrank.org/~courtois/myresearch.html
http://www.qualcomm.com.au
http://eprint.iacr.org/2003/081.pdf
http://eprint.iacr.org/2004/271.pdf
www.ecrypt.eu.org/stream/nls.html

Specification for NLSv2 67

21. NESSIE: New European Schemes for Signatures, Â Integrity, and Encryption,
http://www.cryptonessie.org

22. National Institute of Standards and Technology, FIPS 185- Escrowed Encryption
Standard (EES), Federal Information Processing Standards 185,
http://www.itl.nist.gov/fipspubs/fip185.htm

23. Rose, G.: A Stream Cipher based on Linear Feedback over GF(28). In: Boyd, C.
(ed.) Proc. Australian Conference on Information Security and Privacy. Springer,
Heidelberg (1998)

24. Rose, G.: SOBER: A Stream Cipher based on Linear Feedback over GF(28). Un-
published report, QUALCOMM Australia (1998), http://www.qualcomm.com.au

25. Watanabe, D., Furuya, S.: A MAC forgery attack on SOBER-128. In: Proc. Fast
Software Encryption 2004. Springer, Heidelberg (2004)

7 Appendix

7.1 The S-Box

The entries in the NLF S-box are given below in hexadecimal form.

unsigned long SBox[256] = {
0xa3aa1887, 0xd65e435c, 0x0b65c042, 0x800e6ef4,
0xfc57ee20, 0x4d84fed3, 0xf066c502, 0xf354e8ae,
0xbb2ee9d9, 0x281f38d4, 0x1f829b5d, 0x735cdf3c,
0x95864249, 0xbc2e3963, 0xa1f4429f, 0xf6432c35,
0xf7f40325, 0x3cc0dd70, 0x5f973ded, 0x9902dc5e,
0xda175b42, 0x590012bf, 0xdc94d78c, 0x39aab26b,
0x4ac11b9a, 0x8c168146, 0xc3ea8ec5, 0x058ac28f,
0x52ed5c0f, 0x25b4101c, 0x5a2db082, 0x370929e1,
0x2a1843de, 0xfe8299fc, 0x202fbc4b, 0x833915dd,
0x33a803fa, 0xd446b2de, 0x46233342, 0x4fcee7c3,
0x3ad607ef, 0x9e97ebab, 0x507f859b, 0xe81f2e2f,
0xc55b71da, 0xd7e2269a, 0x1339c3d1, 0x7ca56b36,
0xa6c9def2, 0xb5c9fc5f, 0x5927b3a3, 0x89a56ddf,
0xc625b510, 0x560f85a7, 0xace82e71, 0x2ecb8816,
0x44951e2a, 0x97f5f6af, 0xdfcbc2b3, 0xce4ff55d,
0xcb6b6214, 0x2b0b83e3, 0x549ea6f5, 0x9de041af,
0x792f1f17, 0xf73b99ee, 0x39a65ec0, 0x4c7016c6,
0x857709a4, 0xd6326e01, 0xc7b280d9, 0x5cfb1418,
0xa6aff227, 0xfd548203, 0x506b9d96, 0xa117a8c0,
0x9cd5bf6e, 0xdcee7888, 0x61fcfe64, 0xf7a193cd,
0x050d0184, 0xe8ae4930, 0x88014f36, 0xd6a87088,
0x6bad6c2a, 0x1422c678, 0xe9204de7, 0xb7c2e759,
0x0200248e, 0x013b446b, 0xda0d9fc2, 0x0414a895,
0x3a6cc3a1, 0x56fef170, 0x86c19155, 0xcf7b8a66,
0x551b5e69, 0xb4a8623e, 0xa2bdfa35, 0xc4f068cc,
0x573a6acd, 0x6355e936, 0x03602db9, 0x0edf13c1,
0x2d0bb16d, 0x6980b83c, 0xfeb23763, 0x3dd8a911,

http://www.cryptonessie.org
http://www.itl.nist.gov/fipspubs/fip185.htm
http://www.qualcomm.com.au

68 P. Hawkes et al.

0x01b6bc13, 0xf55579d7, 0xf55c2fa8, 0x19f4196e,
0xe7db5476, 0x8d64a866, 0xc06e16ad, 0xb17fc515,
0xc46feb3c, 0x8bc8a306, 0xad6799d9, 0x571a9133,
0x992466dd, 0x92eb5dcd, 0xac118f50, 0x9fafb226,
0xa1b9cef3, 0x3ab36189, 0x347a19b1, 0x62c73084,
0xc27ded5c, 0x6c8bc58f, 0x1cdde421, 0xed1e47fb,
0xcdcc715e, 0xb9c0ff99, 0x4b122f0f, 0xc4d25184,
0xaf7a5e6c, 0x5bbf18bc, 0x8dd7c6e0, 0x5fb7e420,
0x521f523f, 0x4ad9b8a2, 0xe9da1a6b, 0x97888c02,
0x19d1e354, 0x5aba7d79, 0xa2cc7753, 0x8c2d9655,
0x19829da1, 0x531590a7, 0x19c1c149, 0x3d537f1c,
0x50779b69, 0xed71f2b7, 0x463c58fa, 0x52dc4418,
0xc18c8c76, 0xc120d9f0, 0xafa80d4d, 0x3b74c473,
0xd09410e9, 0x290e4211, 0xc3c8082b, 0x8f6b334a,
0x3bf68ed2, 0xa843cc1b, 0x8d3c0ff3, 0x20e564a0,
0xf8f55a4f, 0x2b40f8e7, 0xfea7f15f, 0xcf00fe21,
0x8a6d37d6, 0xd0d506f1, 0xade00973, 0xefbbde36,
0x84670fa8, 0xfa31ab9e, 0xaedab618, 0xc01f52f5,
0x6558eb4f, 0x71b9e343, 0x4b8d77dd, 0x8cb93da6,
0x740fd52d, 0x425412f8, 0xc5a63360, 0x10e53ad0,
0x5a700f1c, 0x8324ed0b, 0xe53dc1ec, 0x1a366795,
0x6d549d15, 0xc5ce46d7, 0xe17abe76, 0x5f48e0a0,
0xd0f07c02, 0x941249b7, 0xe49ed6ba, 0x37a47f78,
0xe1cfffbd, 0xb007ca84, 0xbb65f4da, 0xb59f35da,
0x33d2aa44, 0x417452ac, 0xc0d674a7, 0x2d61a46a,
0xdc63152a, 0x3e12b7aa, 0x6e615927, 0xa14fb118,
0xa151758d, 0xba81687b, 0xe152f0b3, 0x764254ed,
0x34c77271, 0x0a31acab, 0x54f94aec, 0xb9e994cd,
0x574d9e81, 0x5b623730, 0xce8a21e8, 0x37917f0b,
0xe8a9b5d6, 0x9697adf8, 0xf3d30431, 0x5dcac921,
0x76b35d46, 0xaa430a36, 0xc2194022, 0x22bca65e,
0xdaec70ba, 0xdfaea8cc, 0x777bae8b, 0x242924d5,
0x1f098a5a, 0x4b396b81, 0x55de2522, 0x435c1cb8,
0xaeb8fe1d, 0x9db3c697, 0x5b164f83, 0xe0c16376,
0xa319224c, 0xd0203b35, 0x433ac0fe, 0x1466a19a,
0x45f0b24f, 0x51fda998, 0xc0d52d71, 0xfa0896a8,
0xf9e6053f, 0xa4b0d300, 0xd499cbcc, 0xb95e3d40,
};

The Rabbit Stream Cipher

Martin Boesgaard1, Mette Vesterager1, and Erik Zenner2

1 Cryptico A/S
info@cryptico.com

2 Technical University of Denmark
e.zenner@mat.dtu.dk

Abstract. The stream cipher Rabbit was first presented at FSE 2003
[3], and no attacks against it have been published until now. With a
measured encryption/decryption speed of 3.7 clock cycles per byte on a
Pentium III processor, Rabbit does also provide very high performance.
This paper gives a concise description of the Rabbit design and some of
the cryptanalytic results available.

Keywords: Stream cipher, fast, non-linear, coupled, counter.

1 Introduction

Rabbit was first presented at the Fast Software Encryption workshop in 2003
[3]. Since then, an IV-setup function has been designed [18], and additional
security analysis has been completed [16,2], but no cryptographical weaknesses
have been revealed. The cipher is currently amongst the finalists of the stream
cipher project eSTREAM.

The Rabbit algorithm can briefly be described as follows. It takes a 128-bit
secret key and a 64-bit IV (if desired) as input and generates for each iteration
an output block of 128 pseudo-random bits from a combination of the internal
state bits. Encryption/decryption is done by XOR’ing the pseudo-random data
with the plaintext/ciphertext. The size of the internal state is 513 bits divided
between eight 32-bit state variables, eight 32-bit counters and one counter carry
bit. The eight state variables are updated by eight coupled non-linear functions.
The counters ensure a lower bound on the period length for the state variables.

Rabbit was designed to be faster than commonly used ciphers and to justify
a key size of 128 bits for encrypting up to 264 blocks of plaintext. This means
that for an attacker who does not know the key, it should not be possible to
distinguish up to 264 blocks of cipher output from the output of a truly random
generator, using less steps than would be required for an exhaustive key search
over 2128 keys.

1.1 Organization and Notation

In Section 2, we describe the design of Rabbit in detail. We discuss the crypt-
analysis of Rabbit in Section 3, and in Section 4 the performance results are
presented.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 69–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

70 M. Boesgaard, M. Vesterager, and E. Zenner

We use the following notation: ⊕ denotes logical XOR, � and � denote left
and right logical bit-wise shift, ≪ and ≫ denote left and right bit-wise rotation,
and � denotes concatenation of two bit sequences. A[g..h] means bit number g
through h of variable A. When numbering bits of variables, the least significant
bit is denoted by 0. Hexadecimal numbers are prefixed by ”0x”. Finally, we use
integer notation for all variables and constants. Note that the description below
is specified for little-endian processors (e.g. most Intel processors).

2 The Rabbit Stream Cipher

The internal state of the stream cipher consists of 513 bits. 512 bits are divided
between eight 32-bit state variables xj,i and eight 32-bit counter variables cj,i,
where xj,i is the state variable of subsystem j at iteration i, and cj,i denotes
the corresponding counter variable. There is one counter carry bit, φ7,i, which
needs to be stored between iterations. This counter carry bit is initialized to
zero. The eight state variables and the eight counters are derived from the key
at initialization.

2.1 Key Setup Scheme

The algorithm is initialized by expanding the 128-bit key into both the eight state
variables and the eight counters such that there is a one-to-one correspondence
between the key and the initial state variables, xj,0, and the initial counters, cj,0.

The key, K [127..0], is divided into eight subkeys: k0 = K [15..0], k1 = K [31..16],
. . . , k7 = K [127..112]. The state and counter variables are initialized from the
subkeys as follows:

xj,0 =

{
k(j+1 mod 8) � kj for j even

k(j+5 mod 8) � k(j+4 mod 8) for j odd
(1)

and

cj,0 =

{
k(j+4 mod 8) � k(j+5 mod 8) for j even

kj � k(j+1 mod 8) for j odd.
(2)

The system is iterated four times, according to the next-state function defined
in section 2.3, to diminish correlations between bits in the key and bits in the
internal state variables. Finally, the counter variables are modified according to:

cj,4 = cj,4 ⊕ x(j+4 mod 8),4 (3)

for all j, to prevent recovery of the key by inversion of the counter system.

2.2 IV Setup Scheme

Let the internal state after the key setup scheme be denoted the master state,
and let a copy of this master state be modified according to the IV scheme. The

The Rabbit Stream Cipher 71

IV setup scheme works by modifying the counter state as function of the IV.
This is done by XORing the 64-bit IV on all the 256 bits of the counter state.
The 64 bits of the IV are denoted IV [63..0]. The counters are modified as:

c0,4 = c0,4 ⊕ IV [31..0] c1,4 = c1,4 ⊕ (IV [63..48] � IV [31..16])

c2,4 = c2,4 ⊕ IV [63..32] c3,4 = c3,4 ⊕ (IV [47..32] � IV [15..0])

c4,4 = c4,4 ⊕ IV [31..0] c5,4 = c5,4 ⊕ (IV [63..48] � IV [31..16]) (4)

c6,4 = c6,4 ⊕ IV [63..32] c7,4 = c7,4 ⊕ (IV [47..32] � IV [15..0]).

The system is then iterated four times to make all state bits non-linearly depen-
dent on all IV bits. The modification of the counter by the IV guarantees that
all 264 different IVs will lead to unique keystreams.

2.3 Next-State Function

The core of the Rabbit algorithm is the iteration of the system defined by the
following equations:

xj,i+1 =

{
gj,i + (gj−1 mod 8,i ≪ 16) + (gj−2 mod 8,i ≪ 16) for j even
gj,i + (gj−1 mod 8,i ≪ 8) + gj−2 mod 8,i for j odd

(5)

gj,i =
(
(xj,i + cj,i)2 ⊕ ((xj,i + cj,i)2 � 32)

)
mod 232, (6)

where all additions are modulo 232. This coupled system is illustrated in Fig. 1.
Before an iteration the counters are incremented as described below.

2.4 Counter System

The dynamics of the counters is defined as follows:

c0,i+1 =

{
c0,i + a0 + φ7,i mod 232 for j = 0
cj,i + aj + φj−1,i+1 mod 232 for j > 0,

(7)

where the carry φj,i+1 is given by

φj,i+1 =

⎧
⎪⎨

⎪⎩

1 if c0,i + a0 + φ7,i ≥ 232 ∧ j = 0
1 if cj,i + aj + φj−1,i+1 ≥ 232 ∧ j > 0
0 otherwise,

(8)

Furthermore, the aj constants are defined as:

a0 = a3 = a6 = 0x4D34D34D,

a1 = a4 = a7 = 0xD34D34D3, (9)
a2 = a5 = 0x34D34D34.

72 M. Boesgaard, M. Vesterager, and E. Zenner

x
0,i

x
1,i

x
7,i

x
6,i

x
5,i

x
2,i

x
3,i

x
4,i

c
1,i

c
0,i

c
2,i

c
3,i

c
4,i

c
7,i

c
6,i

c
5,i

<<<16

<<<8<<<

<<<8<<<

<<<8<<<

<<<8<<<

<<<16

<<<16

<<<16

<<<16

<<<16 <<<16

<<<16

Fig. 1. Graphical illustration of the next-state function

2.5 Extraction Scheme

After each iteration, four 32-bit words of pseudo-random data are generated as
follows:

s
[15..0]
j,i = x

[15..0]
2j,i ⊕ x

[31..16]
2j+5 mod 8,i, (10)

s
[31..16]
j,i = x

[31..16]
2j,i ⊕ x

[15..0]
2j+3 mod 8,i.

where sj,i is word j at iteration i. The four pseudorandom words are then XOR’ed
with the plaintext/ciphertext to encrypt/decrypt.

3 Security Analysis

In this section we first discuss the key setup function, IV setup function, and
periodic properties. We then present an algebraic analysis of the cipher, ap-
proximations of the next-state function, differential analysis, and the statistical
properties.

3.1 Key Setup Properties

Design Rationale: The key setup can be divided into three stages: Key expansion,
system iteration, and counter modification.

The Rabbit Stream Cipher 73

– The key expansion stage guarantees a one-to-one correspondence between
the key, the state and the counter, which prevents key redundancy. It also
distributes the key bits in an optimal way to prepare for the the system
iteration.

– The system iteration makes sure that after one iteration of the next-state
function, each key bit has affected all eight state variables. It also ensures
that after two iterations of the next-state function, all state bits are affected
by all key bits with a measured probability of 0.5. A safety margin is provided
by iterating the system four times.

– Even if the counters are presumed known to the attacker, the counter mod-
ification makes it hard to recover the key by inverting the counter system,
as this would require additional knowledge of the state variables. It also
destroys the one-to-one correspondence between key and counter, however,
this should not cause a problem in practice (see below).

Attacks on the Key Setup Function: After the key setup, both the counter bits
and the state bits depend strongly and highly non-linearly on the key bits. This
makes attacks based on guessing parts of the key difficult. Furthermore, even
if the counter bits were known after the counter modification, it is still hard
to recover the key. Of course, knowing the counters would make other types of
attacks easier.

As the non-linear map in Rabbit is many-to-one, different keys could poten-
tially result in the same keystream. This concern can basically be reduced to the
question whether different keys result in the same counter values, since different
counter values will almost certainly lead to different keystreams1. Note that key
expansion and system iteration were designed such that each key leads to unique
counter values. However, the counter modification might result in equal counter
values for two different keys. Assuming that after the four initial iterations, the
inner state is essentially random and not correlated with the counter system,
the probability for counter collisions is given by the birthday paradox, i.e. for all
2128 keys, one collision is expected in the 256-bit counter state. Thus, counter
collisions should not cause a problem in practice.

Another possibility for related key attacks is to exploit the symmetries of the
next-state and key setup functions. For instance, consider two keys, K and K̃
related by K [i] = K̃ [i+32] for all i. This leads to the relation, xj,0 = x̃j+2,0 and
cj,0 = c̃j+2,0. If the aj constants were related in the same way, the next-state
function would preserve this property. In the same way this symmetry could
lead to a set of bad keys, i.e. if K [i] = K [i+32] for all i, then xj,0 = xj+2,0 and
cj,0 = cj+2,0. However, the next-state function does not preserve this property
due to the counter system as aj �= aj+2.

1 The reason is that when the periodic part of the functional graph has been reached,
the next-state function, including the counter system, is one-to-one on the set of
points in the period.

74 M. Boesgaard, M. Vesterager, and E. Zenner

3.2 IV Setup Properties

Design Rationale: The security goal of the IV scheme of Rabbit is to justify an
IV length of 64 bits for encrypting up to 264 plaintexts with the same 128-bit
key, i.e. by requesting up to 264 IV setups, no distinguishing from random should
be possible. There are two stages: IV addition and system iteration.

– The IV addition modifies the counter values in such a way that it can be
guaranteed that under an identical key, all 264 possible different IVs will
lead to unique keystreams. Note that each IV bit will affect the input of
four different g-functions in the first iteration, which is the maximal possible
influence for a 64-bit IV. The expansion of the bits also takes the specific
rotation scheme of the g-functions into account, preparing for the system
iteration.

– The system iteration guarantees that after just one iteration, each IV bit has
affected all eight state variables. The system is iterated four times in total
in order to make all state bits non-linearly dependent on all IV bits.

A full security analysis of the IV setup is given in [10]. It concludes that the
good diffusion and non-linearity properties (see below) of the Rabbit next-state
function seem to prevent all known attacks against the IV setup scheme.

3.3 Period Length

A central property of counter assisted stream ciphers [19] is that strict lower
bounds on the period lengths can be provided. The counter system adopted in
Rabbit has a period length of 2256 − 1 [3]. Since it can be shown that the input
to the g-functions has at least the same period, a very pessimistic lower bound
of 2215 can be guaranteed on the period of the state variables [18].

3.4 Partial Guessing

Guess-and-Verify Attack: Such attacks become possible if output bits can be
predicted from a small set of inner state bits. The attacker will guess the rele-
vant part of the state, predict the output bits and compare them with actually
observed output bits, thus verifying whether his guess was correct.

In [3], it was shown that the attacker must guess at least 2 ·12 input bytes for
the different g-functions in order to verify against one byte. This is equivalent
to guessing 192 bits and is thus harder than exhaustive key search. It was also
shown that even if the attacker verifies against less than one byte of output,
the work required is still above exhaustive key search. Finally, when replacing
all additions by XORs, all byte-wise combinations of the extracted output still
depend on at least four different g-functions (see section 3.6). To conclude, it
seems to be impossible to verify a guess of fewer than 128 bits against the output.

Guess-and-Determine Attack: The strategy for this attack is to guess a few of the
unknown variables of the cipher and from those deduce the remaining unknowns.

The Rabbit Stream Cipher 75

The system is then iterated a few times, producing output that can be compared
with the actual cipher output, verifying the guess.

In the following, we sketch an attack based on guessing bytes, with the coun-
ters being considered as static for simplicity. The attacker tries to reconstruct
512 bit of inner state, i.e. he observes 4 consecutive 128-bit outputs of the cipher
and proceeds as follows:

– Divide the 32-bit counter and state variables into 8-bit variables.
– Construct an equation system that models state transition and output. For

each of the 4 outputs, he obtains 8 ·2 = 16 equations. For each of the 3 state
transitions, he obtains 8 · 4 = 32 equations. Thus, he has an overall of 160
equations and 160 variables (4 · 32 state and 32 counter variables).

– Solve this equation system by guessing as few variables as possible.

The efficiency of such a strategy depends on the amount of variables that must be
guessed before the determining process can begin. This amount is lower bounded
by the 8-bit subsystem with the smallest number of input variables. Neglecting
the counters, the results of [3] illustrate that each byte of the next-state function
depends on 12 input bytes. When the counters are included, each output byte of
a subsystem depends on 24 input bytes. Consequently, the attacker must guess
more than 128 bits before the determining process can begin, thus making the
attack infeasible. Dividing the system into smaller blocks than bytes results in
the same conclusion.

3.5 Algebraic Attacks

Known Algebraic Attacks: The algebraic attacks on stream ciphers discussed in
the literature [1,5,6,4,7] target ciphers whose internal state is mainly updated in
a linear way, with only a few memory bits having a nonlinear update function.
This, however, is not the case for Rabbit, where 256 inner state bits are updated
in a strongly nonlinear fashion. In the following, we will discuss in some detail
the nonlinearity properties of Rabbit, demonstrating why the known algebraic
attacks are not applicable against the cipher.

The Algebraic Normal Form (ANF) of the g-function: A convenient way of rep-
resenting Boolean functions is through its algebraic normal form (see, e.g., [17]).
Given a Boolean function f : {0, 1}n → {0, 1}, the ANF is the representation of
f as a multivariate polynomial (i.e., a sum of monomials in the input variables).
Both a large number of monomials in the ANF and a good distribution of their
degrees are important properties of nonlinear building blocks in ciphers.

For a random Boolean function in 32 variables, the average total number
of monomials is 231, and the average number of monomials including a given
variable is 230. If we consider 32 such random functions, then the average num-
ber of monomials that are not present in any of the 32 functions is 1 and the
corresponding variance is also 1. For more details, see [8].

For the g-function of Rabbit, the ANFs for the 32 Boolean subfunctions have
an algebraic degree of at least 30. The number of monomials in the functions

76 M. Boesgaard, M. Vesterager, and E. Zenner

0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

Degree

lo
g 2(#

 m
on

om
ia

ls
)

Fig. 2. The number of monomials of each degree in each of the 32 Boolean functions
of the g-function. The thick solid line and the two dashed lines denote the average and
variance for an ideal random function.

range from 224.5 to 230.9, where for a random function it should be 231. The
distribution of monomials as function of degree is presented in Fig. 2. Ideally
the bulk of the distribution should be within the dashed lines that illustrate
the variance for ideal random functions. Some of the Boolean functions deviate
significantly from the random case, however, they all have a large number of
monomials of high degree.

Furthermore, the overlap between the 32 Boolean functions that constitute
the g-function was investigated. The total number of monomials that only occur
once in the g-function is 226.03, whereas the number of monomials that do not
occur at all is 226.2. This should be compared to the random result which has a
mean value of 1 and a variance of 1.

To conclude, the results for the g-function were easily distinguishable from
random. However, the properties of the ANFs for the output bits of the g-
function are highly complex, i.e. containig more than 224 monomials per output
bit, and with an algebraic degree of at least 30. Furthermore, no obvious ex-
ploitable structure seems present.

The Algebraic Normal Form (ANF) of the full cipher: It is clearly not feasible to
calculate the full ANF of the output bits for the complete cipher. But reducing
the word size from 32 bits to 8 bits makes it possible to study the 32 output
Boolean functions as function of the 32-bit key.

For this scaled-down version of Rabbit, the setup function for different num-
bers of iterations was investigated. In the setup of Rabbit, four iterations of
next-state are applied, plus one extra before extraction. We have determined
the ANFs after 0+1, 1+1, 2+1, 3+1 and 4+1 iterations, where the +1 denotes
the iteration in the extraction.

The results were much closer to random than in the case of the g-function.
For 0+1 iterations, we found that the number of monomials is very close to

The Rabbit Stream Cipher 77

231 as expected for a random function. Already after two iterations the result
seems to stabilize, i.e. the amount of fluctuations around 231 does not change
when increasing the number of iterations. We also made an investigation of
the number of missing monomials for all 32 output bits. It turned out that for
the 0+1, 1+1, 2+1, 3+1 and 4+1 iterations, the numbers were 0, 1, 2, 3 and 1,
respectively. This seems in accordance with the mean value of 1 and variance of 1
for a random function. So after a few iterations, basically all possible monomials
are present in the full cipher output functions.

Concluding, for the down-scaled version of the full cipher, no non-random
properties were identified. For full details of the analysis, including statistical
data, the reader may refer to [8].

Overdefined Equation Systems in the State: For simplicity, we ignore the coun-
ters and consider only the 256 inner state bits. Furthermore, we replace all
arithmetical additions by XOR and omit the rotations. The use of XOR is a
severe simplification as this will guarantee that the algebraic degree of the com-
plete cipher will never exceed 32 for one iteration (but, of course, grow for more
iterations).

With the inner state consisting of 256 bit, we need the output of at least two
(ideally consecutive) iterations, giving us a non-linear system of 256 equations
in 256 variables. Note that in the modified Rabbit design, everything is linear
with the exception of the g-functions. Thus, we can calculate the number of
monomials when expressing the output as a function of the state bits as follows:

– The output of the first iteration can be modelled as a linear function in the
inner state, according to Equ. (10). Thus, we obtain 128 very simple linear
equations, containing all 256 monomials of degree 1.

– In order to generate the output of the next iteration, however, the inner
state bits are run through the g-functions. Remember that 232−226.2 ≈ 231.97

monomials (are contained in the output of each g-functions. Thus, the second
set of equations contains approximately 8 · 231.97 = 234.97 monomials.

In particular, this means that the non-linear system of equations is neither
sparse, nor is it of low degree. Linearizing it increases the number of variables
to about 235, and in order to solve it, an extra 235 − 28 equations are required.
These can not be obtained by using further iterations, because this way, the
number of monomials increases beyond 2128. Analysis conducted in [8] indicates
that they can not be obtained by using implicit equations, either. If, however,
it would be possible to find such equations, the non-linear additions and the
counter system would most likely destroy their benefit. Thus, we do not expect
a algebraic attack using the inner state bits as variables to be feasible.

Overdefined Equation Systems in the Key: An algebraic attack targeting the key
bits is even more difficult, since there are at least five rounds iterations of the
non-linear layer before the first output bits can be observed (nine rounds if IV
is used). Thus, the ANF of the full cipher has to be considered. Remembering
that for the 8-bit version of the cipher, the ANF of the cipher is equivalent to a

78 M. Boesgaard, M. Vesterager, and E. Zenner

random function after just two iterations, it becomes obvious that the number
of monomials in the equation system would be close to the maximum of 2128.
Solving such a system of equations would be well beyond a brute force search
over the key space.

3.6 Correlation Attacks

Linear Approximations: In [3], at thorough investigation of linear approxima-
tions by use of the Walsh-Hadamard Transform [17,11] was made. The best
linear approximation between bits in the input to the next-state function and
the extracted output found in this investigation had a correlation coefficient of
2−57.8.

In a distinguishing attack, the attacker tries to distinguish a sequence gener-
ated by the cipher from a sequence of truly random numbers. A distinguishing
attack using less than 264 blocks of output cannot be applied using only the best
linear approximation because the corresponding correlation coefficient is 2−57.8.
This implies that in order to observe this particular correlation, output from
2114 iterations must be generated [13].

The independent counters have very simple and almost linear dynamics.
Therefore, large correlations to the counter bits may cause a possibility for a
correlation attack (see e.g. [14]) for recovering the counters. It is not feasible to
exploit only the best linear approximation in order to recover a counter value.
However, more correlations to the counters could be exploited. As this requires
that there exist many such large and useable correlations, we do not believe such
an attack to be feasible2.

Second Order Approximations: However, it was found that truncating the ANFs
of the g-functions after second order terms proposes relatively good approxima-
tions under the right circumstances.

We denote by f [j] the functions that contain the terms of first and second
order of the ANF of g[j]. Measurements of the correlation between f [j] and
g[j] revealed correlation coefficients of less than 2−9.5, which is relatively poor
compared to the corresponding linear approximations. However, the XOR sum
of two neighbor bits, i.e. g[j]⊕g[j+1] was found to be correlated with f [j]⊕f [j+1]

with correlation coefficients as large as 2−2.72. This could indicate that some
terms of higher degree vanish when two neighbor bits are XOR’ed.

These results can be applied to construct second order approximations of
the cipher. The best one is correlated to the real function with a correlation
coefficient of 2−26.4, and a number of approximations with correlation coeffi-
cients of similar size. Preliminary investigations were made with other XOR
sums. In general, sums of two bits can be approximated significantly better
than single bits. The sum of neighboring bits does, however, seem to be the best

2 Knowing the values of the counters may significantly improve both the Guess-and-
Determine attack, the Guess-and-Verify attack as well as a Distinguishing attack
even though obtaining the key from the counter values is prevented by the counter
modification in the setup function.

The Rabbit Stream Cipher 79

approximation. Preliminary investigations show that approximations of sums of
more than two bits have relatively small correlation coefficients.

It is not trivial to use second-order relations in linear cryptanalysis, and even
the improved correlation values are not high enough for an attack as we know it.
In an attack it would be necessary to include the counter, and set up relations
between two consecutive outputs. We expect this to seriously complicate such
an attack and make it infeasible.

3.7 Differential Analysis

Difference scheme: Given two inputs x′ and x′′, and their corresponding outputs
y′ and y′′ (all in {0, 1}n), the following difference schemes were used:

– The subtraction modulus input and output differences are defined by Δx =
x′ − x′′ mod 2n and Δy = y′ − y′′ mod 2n, respectively.

– The XOR difference scheme is defined by Δx = x′ ⊕ x′′ and Δy = y′ ⊕ y′′.

Other differences are in principle possible, however, none of them were found to
be better than the above ones.

Differentials of the g-function: Differentials of the g-function are investigated
in [9]. While in principle, it would be necessary to calculate the probabilities
of all 264 possible differentials (which is not feasible given standard equipment),
valuable insights can be gained by considering smaller versions of the g-functions.
This way, 8-, 10-, 12-, 14-, 16- and 18-bit g-functions were considered.

For the XOR difference operator, the investigation of reduced g-functions
revealed a simple structure of the most likely differential that persisted for all
sizes. The input differences were characterized by a block of ones of size of
approximately 3

4 of the word length3. Making the reasonable assumption that
these properties will be maintained in the 32-bit g-function, all input differences
constituted by single blocks of ones were considered. The largest probability,
and most likely the largest of all, found in this investigation was 2−11.57 for the
differential (0x007FFFFE, 0xFF001FFF).

For the subtraction modulus difference, no such clear structure was observed,
so the differentials with the largest probabilities could not be determined for
the 32-bit g-function. However, the probabilities scale nicely with word length.
Assuming that this scaling continues to 32-bit, the differential with the largest
probability is expected to be of the order 2−17. The probabilities are significantly
lower compared those available for the XOR difference operator.

Higher order differentials were also briefly investigated, but due to the huge
complexity, only g-functions with very small word length could be examined.
This revealed that in order to obtain a differential with probability 1, the dif-
ferential has to be of order equal to the word length, meaning that the non-
linear order of the g-function is maximal, for the small word length g-functions
examined.
3 Other structural properties are also present, they are described in [8] in more detail.

80 M. Boesgaard, M. Vesterager, and E. Zenner

Differentials of the full cipher: The differentials of the full cipher were extensively
investigated in [8]. It was shown that any characteristic will involve at least 8
g-functions4.

From analyzing the transition matrices for smaller word length g-functions
it was found that after about four iterations of those, there resulted a steady
state distribution of matrix elements close to uniform for both the XOR and
subtraction modulus difference schemes. Using this and that the probability for
the best characteristic, Pmax, satisfies Pmax < 2−11.57·8 � 2−64, we do not expect
any exploitable differential.

For a very simplified version of Rabbit, without rotations and with the XOR
operation in the g-function replaced by an addition mod 232, higher order dif-
ferentials can be used to break the IV setup scheme even for a relatively large
number of iterations. If we consider another simplified version, with rotations,
third order differential still has a high probability for one round. However, for
more iterations, the security increases very quickly. Finally, using the XOR in
the g-function completely destroys the applicability of higher order differentials
based on modular subtraction and XOR.

3.8 Statistical Tests

The statistical tests on Rabbit were performed using the NIST Test Suite [15], the
DIEHARD battery of tests [12] and the ENT test [20]. Tests were performed on the
internal state as well as on the extracted output. Furthermore, we also conducted
various statistical tests on the key setup function. Finally, we performed the same
tests on a version of Rabbit where each state variable and counter variable was
reduced to 8 bit. No weaknesses were found in any of these cases.

4 Performance

4.1 Software Performance

Encryption speeds for the specific processors were obtained by encrypting 8 kilo-
bytes of data stored in RAM and measuring the number of clock cycles passed.
For convenience, all 513 bits of the internal state are stored in an instance struc-
ture, occupying a total of 68 bytes. The presented memory requirements show
the amount of memory allocated on the stack related to the calling convention
(function arguments, return address and saved registers) and for temporary data.
Memory for storing the key, instance, ciphertext and plaintext has not been in-
cluded. All performance results, code size and memory requirements are listed
in Table 1 below.

Intel Pentium Architecture: The performance was measured on a 1.0 GHz Pen-
tium III processor and on a 1.7 GHz Pentium 4 processor. The speed-optimized

4 probably it can be shown that 16 g-functions are the true minimum.

The Rabbit Stream Cipher 81

Table 1. Performance (in clock cycles or clock cycles per byte), code size and memory
requirements (in bytes) for encryption / key setup / IV setup.

Processor Performance Code size Memory

Pentium III 3.7/278/253 440/617/720 40/36/44
Pentium 4 5.1/486/648 698/516/762 16/36/28
ARM7 9.6/610/624 368/436/408 48/80/80
MIPS 4Kc 10.9/749/749 892/856/816 40/32/32

version of Rabbit was programmed in assembly language (using MMX instruc-
tions) inlined in C and compiled using the Intel C++ 7.1 compiler. A memory-
optimized version can eliminate the need for memory, since the entire instance
structure and temporary data can fit into the CPU registers.

ARM7 Architecture: A speed optimized ARM implementation was compiled and
tested using ARM Developer Suite version 1.2 for ARM7TDMI. Performance was
measured using the integrated ARMulator.

MIPS 4Kc Architecture: An assembly language version of Rabbit has been writ-
ten for the MIPS 4Kc processor5. Development was done using The Embedded
Linux Development Kit (ELDK), which includes GNU cross-development tools.
Performance was measured on a 150 MHz processor running a Linux operating
system.

8-bit Processors: The simplicity and small size of Rabbit makes it suitable for
implementations on processors with limited resources such as 8-bit microcon-
trollers. Multiplying 32-bit integers is rather resource demanding using plain 32-
bit arithmetics. However, squaring involves only ten 8-bit multiplications which
reduces the workload by approximately a factor of two. Finally, the rotations in
the algorithm have been chosen to correspond to simple byte-swapping.

4.2 Hardware Estimates

ASIC Performance: The toughest operation from a hardware point of view is the
32-bit squaring. If no separate squaring unit is available, the nature of squaring
allows for some simplification over an ordinary 32 × 32 multiplication. It can
be implemented as three 16 × 16 multiplications followed by addition. Being
the most complex part of the algorithm, it determines the overall speed and
contributes significantly to the gate count.

The eight internal state and counter words can be computed using between 1
and 8 parallel pipelines. Estimates for different versions are given in Table 2, giv-
ing gate count, die area and performance on a .18 micron technology. If greater

5 The MIPS 4Kc processor has a reduced instruction set compared to other MIPS 4K
series processors, which decreases performance.

82 M. Boesgaard, M. Vesterager, and E. Zenner

Table 2. Hardware estimates for Rabbit on .18 micron technology

Pipelines Gate count Die area Performance

1 28K 0.32 mm2 3.7 GBit/s
2 35K 0.40 mm2 6.2 GBit/s
4 57K 0.66 mm2 9.3 GBit/s
8 100K 1.16 mm2 12.4 GBit/s

speed is needed and if the gate count is of less importance, more advanced mul-
tiplication methods can be used. The gate count and die area numbers include
key and IV setup.

FPGA Performance: When implementing Rabbit in an FPGA, the challenges
will be similar to those in an ASIC implementation. Again the squaring opera-
tion will be the most complex element. Several FPGA families have dedicated
multiplication units available (e.g., Xilinx Spartan 3 or Altera Cyclone II). In
these architectures the latencies of the multiplier units are given to be 2.4 and
4.0 ns respectively. Based on a 2-pipeline design using 6 muliplier units, this
will give us decryption performance of 8.9 Gbit/s and 5.3 Gbit/s respectively.
If more multipliers are available, the number of pipelines can be increased, and
throughputs of 17.8 Gbit/s and 10.7 Gbit/s will be achievable.

5 Conclusion

The stream cipher Rabbit was first presented at FSE 2003 [3], and no attacks
against it have been published until now. With a measured encryption/
decryptionspeedof3.7 clockcyclesperbyteonaPentiumIIIprocessor,Rabbitdoes
also provide very high performance. In this paper, we gave a concise description of
the Rabbit design and some of the cryptanalytic results available.

Acknowledgements

The authors would like to thank Thomas Pedersen, Ove Scavenius, Jesper Chris-
tiansen, and Thomas Christensen for their contributions to the development,
cryptanalysis, and implementation of the cipher Rabbit. In addition, we would
like to thank Vincent Rijmen for several ideas and suggestions, and Ivan
Damgaard and Tomas Bohr for many helpful inputs.

References

1. Armknecht, F., Krause, M.: Algebraic attacks on combiners with memory. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Hei-
delberg (2003)

2. Aumasson, J.-P.: On a bias of Rabbit. In: Proc. SASC (2007),
http://www.ecrypt.eu.org/stream/papersdir/2007/033.pdf

http://www.ecrypt.eu.org/stream/papersdir/2007/033.pdf

The Rabbit Stream Cipher 83

3. Boesgaard, M., Vesterager, M., Pedersen, T., Christiansen, J., Scavenius, O.: Rab-
bit: A new high-performance stream cipher. In: Johansson, T. (ed.) FSE 2003.
LNCS, vol. 2887, pp. 307–329. Springer, Heidelberg (2003)

4. Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)

5. Courtois, N.: Higher order correlation attacks, XL algorithm and cryptoanalysis
of toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
182–199. Springer, Heidelberg (2003)

6. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer,
Heidelberg (2003)

7. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287.
Springer, Heidelberg (2002)

8. Cryptico A/S. Algebraic analysis of Rabbit. white paper (2003),
http://www.cryptico.com

9. Cryptico A/S. Differential properties of the g-function. white paper (2003),
http://www.cryptico.com

10. Cryptico A/S. Security analysis of the IV-setup for Rabbit. white paper (2003),
http://www.cryptico.com

11. Daemen, J.: Cipher and hash function design strategies based on linear and differ-
ential cryptanalysis. PhD thesis, KU Leuven (March 1995)

12. Masaglia, G.: A battery of tests for random number generators (1996),
http://stat.fsu.edu/∼geo/diehard.html

13. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

14. Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer, Heidelberg
(1988)

15. National Institute of Standards and Technology. A statistical test suite for the
validation of random number generators and pseudo random number generators
for cryptographic applications. NIST Special Publication 800–822 (2001),
http://csrc.nist.gov/rng

16. Rijmen, V.: Analysis of Rabbit (September 2003),
http://www.cryptico.com/Files/filer/security report.pdf

17. Rueppel, R.: Analysis and Design of Stream Ciphers. Springer, Heidelberg (1986)
18. Scavenius, O., Boesgaard, M., Pedersen, T., Christiansen, J., Rijmen, V.: Periodic

properties of counter assisted stream cipher. In: Okamoto, T. (ed.) CT-RSA 2004.
LNCS, vol. 2964, pp. 39–53. Springer, Heidelberg (2004)

19. Shamir, A., Tsaban, B.: Guaranteeing the diversity of number generators. Infor-
mation and Computation 171(2), 350–363 (2001)

20. Walker, J.: A pseudorandom number sequence test program (1998),
http://www.fourmilab.ch/random

http://www.cryptico.com
http://www.cryptico.com
http://www.cryptico.com
http://stat.fsu.edu/~geo/diehard.html
http://csrc.nist.gov/rng
http://www.cryptico.com/Files/filer/security_report.pdf
http://www.fourmilab.ch/random

The Salsa20 Family of Stream Ciphers

Daniel J. Bernstein�

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago

Chicago, IL 60607–7045
snuffle6@box.cr.yp.to

Abstract. Salsa20 is a family of 256-bit stream ciphers designed in 2005
and submitted to eSTREAM, the ECRYPT Stream Cipher Project.
Salsa20 has progressed to the third round of eSTREAM without any
changes. The 20-round stream cipher Salsa20/20 is consistently faster
than AES and is recommended by the designer for typical cryptographic
applications. The reduced-round ciphers Salsa20/12 and Salsa20/8 are
among the fastest 256-bit stream ciphers available and are recommended
for applications where speed is more important than confidence. The
fastest known attacks use ≈ 2153 simple operations against Salsa20/7,
≈ 2249 simple operations against Salsa20/8, and ≈ 2255 simple operations
against Salsa20/9, Salsa20/10, etc. In this paper, the Salsa20 designer
presents Salsa20 and discusses the decisions made in the Salsa20 design.

1 Introduction

A sender and receiver share a short secret key. They use the secret key to encrypt
a series of messages. A message could be short, just a few bytes, but it could be
much longer, perhaps gigabytes. The series of messages could be short, just one
message, but it could be much longer, perhaps billions of messages.

The sender and receiver encrypt messages using an encryption function: a
function that produces the first ciphertext from the key and the first plaintext,
that produces the second ciphertext from the key and the second plaintext, etc.

An encryption function has to be fast. Many senders have to encrypt large
volumes of data in very little time using limited resources. Many receivers are
faced with even larger volumes of data—not just the legitimate messages but
also a flood of forgery attempts. A slow encryption function can satisfy some
senders and receivers, but my focus is on encryption functions suitable for a
wider range of applications.

An encryption function also has to be secure. Many users are facing, or at
least think that they are facing, years of cryptanalytic computations by well-
funded attackers equipped with millions of fast parallel processors. Some users
� Permanent ID of this document: 31364286077dcdff8e4509f9ff3139ad. Date of this

document: 2007.12.25. This work was supported by the National Science Foundation
under grants CCR–9983950 and ITR–0716498, and by the Alfred P. Sloan Founda-
tion.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 84–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Salsa20 Family of Stream Ciphers 85

Table 1. Salsa20 software speeds; measured by the official eSTREAM benchmarking
framework; sorted by final column. “576” means single-core cycles/byte to encrypt a
576-byte packet; “long” means single-core cycles/byte to encrypt a long stream.

Cycles/byte
Salsa20 Salsa20/8 Salsa20/12 Salsa20/20

Arch MHz Machine software long 576 long 576 long 576

amd64 3000 Xeon 5160 (6f6) amd64-xmm6 1.88 2.07 2.80 3.25 3.93 4.25
amd64 2137 Core 2 Duo (6f6) amd64-xmm6 1.88 2.07 2.57 2.80 3.91 4.33
ppc32 533 PowerPC G4 7410 ppc-altivec 1.99 2.14 2.74 2.88 4.24 4.39
x86 2137 Core 2 Duo (6f6) x86-xmm5 2.06 2.28 2.80 3.15 4.32 4.70
amd64 2000 Athlon 64 X2 (15,75,2) amd64-3 3.47 3.65 4.86 5.04 7.64 7.84
ppc64 2000 PowerPC G5 970 ppc-altivec 3.28 3.48 4.83 4.87 7.82 8.04
amd64 2391 Opteron (f5a) amd64-3 3.78 3.96 5.33 5.51 8.42 8.62
amd64 2192 Opteron (f58) amd64-3 3.82 4.18 5.35 5.73 8.42 8.78
x86 2000 Athlon 64 X2 (15,75,2) x86-1 4.50 4.78 6.27 6.55 9.80 10.07
x86 900 Athlon (622) x86-athlon 4.61 4.84 6.44 6.65 10.04 10.24
ppc64 1452 POWER4 merged 6.83 7.00 8.35 8.51 11.29 11.47
hppa 1000 PA-RISC 8900 merged 5.82 5.97 7.68 7.85 11.39 11.56
amd64 3000 Pentium D (f64) amd64-xmm6 5.38 5.87 7.19 7.84 10.69 11.73
x86 1300 Pentium M (695) x86-xmm5 5.30 5.53 7.44 7.70 11.70 11.98
x86 3000 Xeon (f26) x86-xmm5 5.30 5.86 7.41 8.21 11.64 12.55
x86 3200 Xeon (f25) x86-xmm5 5.30 5.84 7.40 8.15 11.63 12.59
x86 2800 Xeon (f29) x86-xmm5 5.33 5.95 7.44 8.20 11.67 12.65
x86 3000 Pentium 4 (f41) x86-xmm5 5.76 6.92 8.12 9.33 11.84 13.40
x86 1400 Pentium III (6b1) x86-mmx 6.37 6.79 8.88 9.29 13.88 14.29
sparc 1050 UltraSPARC IV sparc 6.65 6.76 9.21 9.33 14.34 14.45
x86 3200 Pentium D (f47) x86-athlon 7.13 7.66 9.90 10.31 15.29 15.94
ia64 1500 Itanium II merged 8.49 8.87 12.42 12.62 18.07 18.27
ia64 1400 Itanium II merged 8.28 8.65 12.56 12.76 18.21 18.40

are satisfied with lower levels of security, but again my focus is on encryption
functions suitable for a wider range of applications.

There is a conflict between these desiderata. One can reasonably conjecture,
for example, that every function that encrypts data in 0.5 Core-2 cycles/byte
is breakable. One can also conjecture that almost every function that encrypts
data in 5 Core-2 cycles/byte is breakable. On the other hand, several unbroken
submissions to eSTREAM, the ECRYPT Stream Cipher Project, encrypt data
in fewer than 5 Core-2 cycles/byte.

In particular, my 20-round stream cipher Salsa20/20 encrypts data in 3.93
Core-2 cycles/byte. (For comparison: Matsui and Nakajima recently reported
9.2 Core-2 cycles/byte for 10-round AES using a pre-expanded 128-bit key. See
[18].) The fastest known attack against Salsa20/20 is a 256-bit brute-force search.
I recommend Salsa20/20 for encryption in typical cryptographic applications.

Reduced-round ciphers in the Salsa20 family are attractive options for users
who value speed more highly than confidence. The 12-round stream cipher
Salsa20/12 encrypts data in 2.80 Core-2 cycles/byte; the fastest known attack
against Salsa20/12 is a 256-bit brute-force search. The 8-round stream cipher

86 D.J. Bernstein

Salsa20/8 encrypts data in 1.88 Core-2 cycles/byte; as discussed in Section 5,
papers by several cryptanalysts have culminated in an attack against Salsa20/8
taking “only” 2249 operations, but this is far beyond any computation that will
be carried out in the foreseeable future. Perhaps better attacks will be developed,
but competing ciphers at similar speeds seem to be much more easily broken!

I hadn’t heard of the Core 2 when I designed Salsa20. I was aiming for high
speed on a wide variety of platforms; I don’t find it surprising that Salsa20 is able
to take advantage of a new platform. Table 1 shows Salsa20’s software speeds
on various CPUs.

This paper defines Salsa20 and explains the decisions that I made in the
Salsa20 design. Section 2 discusses the selection of low-level operations used
in Salsa20—a deliberately limited set, in particular with no S-boxes. Section 3
discusses the high-level data flow in Salsa20—again quite limited, in particular
with no communication across blocks aside from a simple block counter. Section
4 discusses the middle-level structure of Salsa20. Section 5 reviews known attacks
on Salsa20.

2 Low Level: Which Operations Are Used?

2.1 What Does Salsa20 Do?

The Salsa20 encryption function is a long chain of three simple operations on
32-bit words:

• 32-bit addition, producing the sum a + b mod 232 of two 32-bit words a, b;
• 32-bit exclusive-or, producing the xor a⊕ b of two 32-bit words a, b; and
• constant-distance 32-bit rotation, producing the rotation a <<< b of a 32-bit

word a by b bits to the left, where b is constant.

On occasion I encounter the superstitious notion that these operations are
“too simple.” In fact, these operations can easily simulate any circuit, and are
therefore capable of reaching the same security level as any other selection of
operations. The real question for the cipher designer is whether a different mix
of operations could achieve the same security level at higher speed.

2.2 Should There Be Integer Multiplications?

Some popular CPUs can quickly compute xy mod 264, given x, y. Some ciphers
are designed to take advantage of this operation. Sometimes one of x, y is a
constant; sometimes x, y are both variables.

The basic argument for integer multiplication is that the output bits are
complicated functions of the input bits, mixing the inputs more thoroughly than
a few simple integer operations.

The basic counterargument is that integer multiplication takes several cycles
on the fastest CPUs, and many more cycles on other CPUs. For comparison, a
comparably complex series of simple integer operations is always reasonably fast.

The Salsa20 Family of Stream Ciphers 87

Multiplication might be slightly faster on some CPUs but it is not consistently
fast.

I do like the amount of mixing provided by multiplication, and I’m impressed
with the fast multiplication circuits included (generally for non-cryptographic
reasons) in many CPUs, but the potential speed benefits don’t seem big enough
to outweigh the massive speed penalty on other CPUs. Similar comments apply
to 64-bit additions, to 32-bit multiplications, and to variable-distance (“data-
dependent”) rotations.

A further argument against integer multiplication is that it increases the risk
of timing leaks. What really matters is not the speed of integer multiplication,
but the speed of constant-time integer multiplication, which is often much slower.

Example: On the Motorola PowerPC 7450 (G4e), a fairly common general-
purpose CPU, the mull multiplication instruction usually takes 2 cycles (with
4-cycle latency), but it takes only 1 cycle (with 3-cycle latency) if “the 15 msbs
of the B operand are either all set or all cleared.” See [1, page 6.45]. The same is
true for the 8641D, the newest CPU in the same family. It is possible to eliminate
the timing leak on these CPUs by, e.g., using the floating-point multiplier, but
moving data back and forth to floating-point registers costs CPU cycles, not to
mention extra programming effort.

2.3 Should There Be S-Box Lookups?

An S-box lookup is an array lookup using an input-dependent index. Most
ciphers are designed to take advantage of this operation. For example, typical
high-speed AES software has several 1024-byte S-boxes, each of which converts
8-bit inputs to 32-bit outputs.

The basic argument for S-boxes is that a single table lookup can mangle its
input quite thoroughly—more thoroughly than a chain of a few simple integer
operations taking the same amount of time.

The basic counterargument is that a simple integer operation takes one or
two 32-bit inputs rather than one 8-bit input, so it effectively mangles several
8-bit inputs at once. It is not obvious that a series of S-box lookups—even with
rather large S-boxes, as in AES, increasing L1 cache pressure on large CPUs
and forcing different implementation techniques for small CPUs—is faster than
a comparably complex series of integer operations.

A further argument against S-box lookups is that, on most platforms, they are
vulnerable to timing attacks. NIST’s statement to the contrary in [19, Section
3.6.2] (table lookup is “not vulnerable to timing attacks”) is erroneous. It is
extremely difficult to work around this problem without sacrificing a tremendous
amount of speed. See my paper [5] for much more information on this topic,
including an example of successful remote extraction of a complete AES key.

For me, the timing-attack problem is decisive. For any particular security
level, I’m not sure whether adding S-box lookups would gain speed, but I’m sure
that adding constant-time S-box lookups would not gain speed.

Salsa20 is certainly not the first cipher without S-boxes. The Tiny Encryption
Algorithm, published by Wheeler and Needham in [23], is a classic example of a

88 D.J. Bernstein

reduced-instruction-set cipher: it is a long chain of 32-bit shifts, 32-bit xors, and
32-bit additions. IDEA, published by Lai, Massey, and Murphy in [17], is even
older and almost as simple: it is a long chain of 16-bit additions, 16-bit xors, and
multiplications modulo 216 + 1.

2.4 Should There Be Fewer Rotations?

Rotations account for about 1/3 of the integer operations in Salsa20. If rotations
are simulated by shift-shift-xor (as they are on the UltraSPARC and with XMM
instructions) then they account for about 1/2 of the integer operations in Salsa20.
Replacing some of the rotations with a comparable number of additions might
achieve comparable diffusion in less time.

The reader may be wondering why I used rotations rather than shifts. The
basic argument for rotations is that one xor of a rotated quantity provides as
much diffusion as two xors of shifted quantities. There does not appear to be
a counterargument. Rotate-xor is faster than shift-shift-xor-xor on many CPUs
and is never slower.

3 High Level: How Do Blocks Interact?

3.1 What Does Salsa20 Do?

Salsa20 expands a 256-bit key and a 64-bit nonce (unique message number) into
a 270-byte stream. It encrypts a b-byte plaintext by xor’ing the plaintext with
the first b bytes of the stream and discarding the rest of the stream. It decrypts
a b-byte ciphertext by xor’ing the ciphertext with the first b bytes of the stream.
There is no feedback from the plaintext or ciphertext into the stream.

Salsa20 generates the stream in 64-byte (512-bit) blocks. Each block is an
independent hash of the key, the nonce, and a 64-bit block number; there is no
chaining from one block to the next. The Salsa20 output stream can therefore
be accessed randomly, and any number of blocks can be computed in parallel.

There are no hidden preprocessing costs in Salsa20. In particular, Salsa20
does not preprocess the key before generating a block; each block uses the key
directly as input. Salsa20 also does not preprocess the nonce before generating
a block; each block uses the nonce directly as input.

3.2 Should Encryption and Decryption Be Different?

The most common model of a stream cipher is that each ciphertext block is the
xor of the plaintext block and the stream block at the same position. Each stream
block is determined by its position, the nonce, the key, and the previous blocks
of plaintext—equivalently, the previous blocks of ciphertext. Salsa20 follows this
model, as does any block cipher in counter mode, OFB mode, CFB mode, et al.

Some ciphers mangle plaintext in a more complicated way. Consider, for ex-
ample, AES in CBC mode: the nth plaintext block pn is converted into the nth
ciphertext block cn by the formula cn = AESk(cn−1 ⊕ pn).

The Salsa20 Family of Stream Ciphers 89

The popularity of CBC appears to be a historical accident. I have found very
few people arguing for CBC over counter mode, and none of the arguments are
even marginally convincing. On occasion I encounter the superstitious notion
that encryption by xor is “too simple”; but a one-time pad (in conjunction with,
for example, a Gilbert/MacWilliams/Sloane authenticator) provably achieves
perfect secrecy (and any desired level of integrity), so there is obviously nothing
wrong with xor.

There are several clear arguments against CBC. One disadvantage of CBC is
that it requires different code for encryption and decryption, increasing costs in
many contexts. Another disadvantage of CBC is that the extra communication
from the cryptanalyst into the cipher state is a security threat; regaining the
original level of confidence means adding rounds, taking additional time.

There is a security proof for CBC. How, then, can I claim that CBC is less
secure than counter mode? One answer is that CBC’s security guarantee assumes
that the block cipher outputs for attacker-controlled inputs are indistinguishable
from uniform, whereas counter mode applies the block cipher to highly restricted
inputs, with many input bits forced to be 0. There are many examples in the
literature of block ciphers for which CBC has been broken but counter mode is
unbroken.

3.3 Should the Stream Depend on the Plaintext?

A more restricted model of a stream cipher is that ciphertext is plaintext xor
stream, where the stream is determined by the nonce and the key. The plaintext
and ciphertext do not affect the stream. Salsa20 follows this model, as does any
block cipher in counter mode.

Some stream ciphers violate this model: they produce a stream that depends
on the plaintext. One example is Helix, published in [13] by Ferguson, Whiting,
Schneier, Kelsey, Lucks, and Kohno. The tweaked cipher Phelix was submitted
to eSTREAM by Whiting, Schneier, Lucks, and Muller.

The basic argument for incorporating plaintext into the stream (specifically,
incorporating plaintext blocks into subsequent blocks of the stream) is that this
allows message authentication “for free.” After encrypting the plaintext, one can
generate a constant number of additional stream blocks and output those blocks
as an authenticator of the plaintext.

One counterargument is that “free” is a wild exaggeration. Incorporating the
plaintext into the stream takes time for every block, and generating an authen-
ticator takes time for every message.

Another counterargument is that the incorporation of plaintext, being extra
communication from the cryptanalyst into the cipher state, is a security threat.
Regaining the original level of confidence means adding rounds, which takes
additional time for every block.

Another counterargument is that state-of-the-art 128-bit authenticators can
be computed in just a few cycles per byte. This may exceed the cost of “free”
authentication for legitimate packets, but it is much less expensive than “free”
authentication for forged packets, because it skips the cost of decryption.

90 D.J. Bernstein

For me, the cost of rejecting forged packets is decisive. Consider a denial-
of-CPU-service attack in which an attacker floods a CPU with forged packets
through a large network. In this situation, a traditional authenticator, such as
Poly1305 from [4], is capable of handling a substantially larger flood than a
“free” authenticator. See [9] for a new strategy to compute authenticators at
even higher speeds.

The idea of incorporating plaintext into the stream clearly deserves further
study for users who value authenticated-encryption performance more highly
than forgery-rejection performance. In [8] I reported speed measurements for
many authenticated-encryption methods; Phelix provided impressive speeds for
authenticated encryption and verified decryption. Phelix was later eliminated
from eSTREAM for reasons I consider frivolous, namely an “attack” against
users who have trouble counting 1, 2, 3, . . .; I have no idea why this “attack”
should eliminate an attractive option for users who are able to count 1, 2, 3,

3.4 Should There Be More State?

Salsa20 carries minimal state between blocks. Each block of the stream is a
separate hash of the key, the nonce, and the block counter.

Most stream ciphers use a larger state, reusing portions of the first-block
computation as input to the second-block computation, reusing portions of the
second-block computation as input to the third-block computation, etc.

The argument for a larger state is that one does not need as many cipher
rounds to achieve the same conjectured security level. Copying state across blocks
seems to provide just as much mixing as the first few cipher rounds. A larger
state therefore saves some time after the first block.

One counterargument is that a larger state reduces the number of communica-
tion channels that can be handled simultaneously by limited hardware. Ciphers
that chain between blocks typically use 64 or more bytes for each channel. With
Salsa20, each channel uses just 32 bytes for a key (less if several channels share
a key), at most 8 bytes for a nonce, and at most 8 bytes for a block counter.

Another counterargument is that reuse forces serialization. Chaining between
blocks prohibits random access to the stream (unless the stream is precomputed
and saved, consuming memory). Chaining between blocks means that one cannot
take advantage of extra hardware to reduce the latency of computing a long
stream.

For me, the serialization problem is decisive. Inability to exploit parallelism
is often a disaster. A few extra rounds are often undesirable but are never a
disaster.

Case study (due to Wei Dai): As discussed in Section 4, there are 4 parallel
32-bit operations in each step of computing a Salsa20 block. The Core 2 CPU
has more parallelism than this: it can carry out (in each core) 12 parallel 32-bit
arithmetic operations. Fortunately, thanks to the lack of chaining, there are 16
parallel 32-bit operations in each step of computing 4 consecutive Salsa20 blocks.

The Salsa20 Family of Stream Ciphers 91

3.5 Should Blocks Be Larger Than 64 Bytes?

Salsa20 hashes its key, nonce, and block counter into a 64-byte block. Similar
structures could easily produce a larger block.

The basic argument for a larger block size, say 256 bytes, is that one does
not need as many cipher rounds to achieve the same conjectured security level.
Using a larger block size, like copying state across blocks, seems to provide just
as much mixing as the first few cipher rounds. A larger state therefore saves
time.

The basic counterargument is that a larger block size also loses time. On
most CPUs, the communication cost of sweeping through a 256-byte block is
a bottleneck; CPUs are designed for computations that don’t involve so much
data.

Another way that a larger block size loses time is by increasing the overhead
for inconvenient message sizes. Expanding a 300-byte message to 512 bytes is
much more expensive than expanding it to 320 bytes.

3.6 Should Keys Be Smaller Than 256 Bits?

The original eSTREAM call for submissions asked for 128-bit software ciphers
and 80-bit hardware ciphers. Salsa20 is a 256-bit cipher; it allows smaller keys
as options, but I recommend 256-bit keys.

Larger keys are more expensive than smaller keys, especially in hardware. Are
they necessary for security?

The basic argument for 128-bit keys is that they will never be found by a
brute-force attack. If checking about 220 keys per second requires a CPU costing
about 26 euros, then searching 2128 keys in a year will cost an inconceivable 289

euros.
The basic counterargument is that 128-bit keys will be found by a brute-force

attack. Here are three reasons that 289 euro-years is a wild exaggeration, even
without any improvements in computer technology:

• The attacker can succeed in far fewer than 2128 computations. He reaches
success probability p after just 2128p computations.
• More importantly, each key-checking circuit costs far less than 26 euros, at

least in bulk: 210 or more key-checking circuits can fit into a single chip,
effectively reducing the attacker’s costs by a factor of 210.
• Even more importantly, if the attacker simultaneously attacks (say) 240 keys,

he can effectively reduce his costs by a factor of 240.

One can counter the third cost reduction by putting extra randomness into
nonces, but putting the same extra randomness into keys is less expensive. See
[7] for a much more detailed discussion of these issues.

I predict that future cryptographers will settle on 256-bit keys as providing
a comfortable security level. They will regard 80-bit keys as a silly historical
mistake, and 128-bit keys as uncomfortably risky.

92 D.J. Bernstein

4 Medium Level: How Is a Block Generated?

4.1 What Does Salsa20 Do?

The goal of the Salsa20 core, as discussed in Section 3, is to produce a 64-byte
block given a key, nonce, and block counter. The tools available to the Salsa20
core, as discussed in Section 2, are addition, xor, and constant-distance rotation
of 32-bit words.

The Salsa20 core builds an array of 16 words containing the constant word
0x61707865, the first 4 key words, the constant word 0x3320646e, the 2 nonce
words, the 2 block-counter words, the constant word 0x79622d32, the remaining
4 key words, and the constant word 0x6b206574. Strings are always interpreted
in little-endian form. (Most current CPUs take extra time for big-endian accesses,
while big-endian CPUs generally have good support for little-endian accesses.)

For example, here is the starting array for key (1, 2, 3, 4, 5, . . . , 32), nonce
(3, 1, 4, 1, 5, 9, 2, 6), and block 7:

0x61707865, 0x04030201, 0x08070605, 0x0c0b0a09,

0x100f0e0d, 0x3320646e, 0x01040103, 0x06020905,

0x00000007, 0x00000000, 0x79622d32, 0x14131211,

0x18171615, 0x1c1b1a19, 0x201f1e1d, 0x6b206574.

The diagonal constants are the same for every block, every nonce, and every
32-byte key. As an extra (non-recommended) option, Salsa20 can use a 16-byte
key, repeated to form a 32-byte key; in this case the diagonal constants change to
0x61707865, 0x3120646e, 0x79622d36, 0x6b206574. Salsa20 can also use a 10-
byte key, zero-padded to form a 16-byte key; in this case the diagonal constants
change to 0x61707865, 0x3120646e, 0x79622d30, 0x6b206574.

Salsa20 now modifies each below-diagonal word as follows: add the diagonal
and above-diagonal words, rotate left by 7 bits, and xor into the below-diagonal
words. The result is the following array:

0x61707865, 0x04030201, 0x08070605, 0x95b0c8b6,

0xd3c83331, 0x3320646e, 0x01040103, 0x06020905,

0x00000007, 0x91b3379b, 0x79622d32, 0x14131211,

0x18171615, 0x1c1b1a19, 0x130804a0, 0x6b206574.

The underlined words were added, and the next word was modified.
Salsa20 then modifies each below-below-diagonal word as follows: add the

diagonal and below-diagonal words, rotate left by 9 bits, and xor into the below-
below-diagonal words. The result is the following array:

0x61707865, 0x04030201, 0xdc64a31d, 0x95b0c8b6,

0xd3c83331, 0x3320646e, 0x01040103, 0xa45e5d04,

0x71572c6d, 0x91b3379b, 0x79622d32, 0x14131211,

0x18171615, 0xbb230990, 0x130804a0, 0x6b206574.

The Salsa20 Family of Stream Ciphers 93

Salsa20 continues down each column, rotating left by 13 bits:

0x61707865, 0xcc266b9b, 0xdc64a31d, 0x95b0c8b6,

0xd3c83331, 0x3320646e, 0x95f3bcee, 0xa45e5d04,

0x71572c6d, 0x91b3379b, 0x79622d32, 0xf0a45550,

0xf3e4deb6, 0xbb230990, 0x130804a0, 0x6b206574.

Salsa20 then modifies the diagonal words, this time rotating left by 18 bits:

0x4dfdec95, 0xcc266b9b, 0xdc64a31d, 0x95b0c8b6,

0xd3c83331, 0xe78e794b, 0x95f3bcee, 0xa45e5d04,

0x71572c6d, 0x91b3379b, 0xf94fe453, 0xf0a45550,

0xf3e4deb6, 0xbb230990, 0x130804a0, 0xa272317e.

Salsa20 finally transposes the array:

0x4dfdec95, 0xd3c83331, 0x71572c6d, 0xf3e4deb6,

0xcc266b9b, 0xe78e794b, 0x91b3379b, 0xbb230990,

0xdc64a31d, 0x95f3bcee, 0xf94fe453, 0x130804a0,

0x95b0c8b6, 0xa45e5d04, 0xf0a45550, 0xa272317e.

That’s the end of one round.
In the second round, Salsa20 performs exactly the same modifications, with

the same rotation counts, again starting with the below-diagonal words and
finishing with the diagonal words, and finally transposing the array:

0xba2409b1, 0x1b7cce6a, 0x29115dcf, 0x5037e027,

0x37b75378, 0x348d94c8, 0x3ea582b3, 0xc3a9a148,

0x825bfcb9, 0x226ae9eb, 0x63dd7748, 0x7129a215,

0x4effd1ec, 0x5f25dc72, 0xa6c3d164, 0x152a26d8.

That’s the end of two rounds. Note that implementors can eliminate the trans-
poses and perform the second round on rows instead of columns.

Salsa20/r continues for a total of r rounds, modifying each word r times. For
example, Salsa20/20 produces the following array:

0x58318d3e, 0x0292df4f, 0xa28d8215, 0xa1aca723,

0x697a34c7, 0xf2f00ba8, 0x63e9b0a1, 0x27250e3a,

0xb1c7f1f3, 0x62066edc, 0x66d3ccf1, 0xb0365cf3,

0x091ad09e, 0x64f0c40f, 0xd60d95ea, 0x00be78c9.

After these r rounds, Salsa20 adds the final 4×4 array to the original array to
obtain its 64-byte output block. For example, here is the 64-byte output block
for Salsa20/20:

94 D.J. Bernstein

0xb9a205a3, 0x0695e150, 0xaa94881a, 0xadb7b12c,

0x798942d4, 0x26107016, 0x64edb1a4, 0x2d27173f,

0xb1c7f1fa, 0x62066edc, 0xe035fa23, 0xc4496f04,

0x2131e6b3, 0x810bde28, 0xf62cb407, 0x6bdede3d.

4.2 Should Key Words and Nonce Words Be Separated?

Salsa20 puts its key k and its nonce/counter n into a single array. It uses the k
words to modify the k words, the k words to modify the n words, the n words to
modify the n words, and the n words to modify the k words. After a few rounds
there is no reasonable distinction between the k parts of the array and the n
parts of the array. Both the k words and the n words are used as output. The
final addition prevents the cryptanalyst from inverting the computation.

For comparison, a “block cipher” uses the k words to modify the k words,
the k words to modify the n words, and the n words to modify the n words;
but it never uses the n words to modify the k words. The k words are kept
separate from the n words through the entire computation. Only the n words
are used as output. The omission of k prevents the cryptanalyst from inverting
the computation.

The basic argument for a block cipher—for keeping the k words independent of
the n words—is that, for fixed k, it is easy to make a block cipher be an invertible
function of n. But this feature seems to be of purely historical interest. Invertible
stream generation is certainly not necessary for encryption.

The basic disadvantage of a block cipher is that the k words consume valuable
communication resources. A 64-byte block cipher with a 32-byte key would need
to repeatedly sweep through 96 bytes of memory (plus a few bytes of temporary
storage) for its 64 bytes of output; in contrast, Salsa20 repeatedly sweeps through
just 64 bytes of memory (plus a few bytes of temporary storage) for its 64 bytes
of output.

I also see each use of a k word as a missed opportunity to spread changes
through the n words. The time wasted is not very large—in AES, for example,
80% of the table lookups and most of the xor inputs are n-dependent—and can be
reduced by precomputation in contexts where the cost of memory is unnoticeable;
but dropping the barrier between k and n achieves the same conjectured security
level at higher speed.

4.3 Should There Be More Code?

Salsa20 can be implemented as a loop of identical rounds, where each round
modifies each word once and then transposes the result. Or it can be implemented
as a loop of identical double-rounds, where each double-round modifies each word
twice, without any transposition. Either way, the Salsa20 code is very short.

Some ciphers have more code: e.g., using different structures for the first and
last rounds, or even using different code in every round. MARS, published by

The Salsa20 Family of Stream Ciphers 95

Burwick et al. in [10], has about one third of its operations in initial and final
rounds that look quite different from the remaining rounds.

The basic argument for using two different kinds of rounds is the idea that
attacks will have some extra difficulty passing through the switch from one kind
to another. This extra difficulty would allow the cipher to reach the same security
level with fewer rounds.

The basic counterargument is that extra code is expensive in many contexts.
It increases pressure on a CPU’s L1 cache, for example, and it increases the
minimum size of a hardware implementation.

Even if larger code were free, I wouldn’t feel comfortable reducing the number
of rounds. The cryptanalytic literature contains a huge number of examples of
how extra rounds increase security; it’s much less clear how much benefit is
obtained from switching round types.

4.4 Should There Be Faster Diffusion Among Words?

During the first round of Salsa20, there is no communication between words in
different columns; each column has its own chain of 12 operations modifying
the words in that column. During the second round, there is no communication
between words that were in different rows; each (transposed) row has its own
chain of 12 operations modifying the words in that row. Et cetera.

There are pairs (i, j) such that a change in word i has no opportunity to
affect word j until the third round. A different communication structure would
allow much faster diffusion of changes through all 16 words. On the other hand, it
doesn’t appear to be possible to achieve much faster diffusion of changes through
all 512 bits.

The current communication structure has speed benefits on CPUs that do not
have many fast registers. For example, my software for the Pentium III relies on
the ability to operate locally within 4 words for a little while.

4.5 Should There Be Modifications Other Than Xor-a-Rotated-
Sum?

There are many plausible ways to modify each word in a column using other
words in the same column. I settled on “xor a rotated sum” as bouncing back
and forth between incompatible structures on the critical path. I chose “xor a
rotated sum” over “add a rotated xor” for simple performance reasons: the x86
architecture has a three-operand addition (LEA) but not a three-operand xor.

4.6 Should There Be Other Rotation Distances?

I chose the Salsa20 rotation distances 7, 11, 13, 18 as doing a good job of spreading
every low-weight change across bit positions within a few rounds. The exact
choice of distances doesn’t seem very important.

My software uses SIMD vector operations for the Pentium 4, the Core 2, et al.
These operations rely on the fact that each column uses the same sequence of
distances.

96 D.J. Bernstein

5 Cryptanalysis

This section briefly reviews the history of third-party cryptanalysis of Salsa20.
2005.05 [6]: I presented Salsa20 at the ECRYPT Symmetric-Key Encryption

Workshop in Aarhus. I offered a $1000 prize for the most interesting Salsa20
cryptanalysis made public that year.

2005.10 [11]: Crowley posted a 2165-operation attack on Salsa20/5. Crowley
received the $1000 prize and presented his attack at the 2006.02 ECRYPT State
of the Art of Stream Ciphers workshop in Leuven. The attack works forwards
from a small known input difference to a biased bit 3 rounds later, and works 2
rounds backwards from an output after guessing 160 relevant key bits.

2006.12 [14]: Fischer, Meier, Berbain, Biasse, and Robshaw reported a 2177-
operation attack on Salsa20/6 (and a much faster attack on Salsa20/5, clearly
breaking Salsa20/5) at the Indocrypt conference in Calcutta. The attack works
forwards from a small known input difference to a biased bit 4 rounds later, and
works 2 rounds backwards from an output after guessing 160 relevant key bits.

2007.01 [22]: Tsunoo, Saito, Kubo, Suzaki, and Nakashima reported a 2184-
operation attack on Salsa20/7 (and a much faster attack on Salsa20/6, clearly
breaking Salsa20/6) at the ECRYPT State of the Art of Stream Ciphers work-
shop in Bochum. The attack works forwards from a small known input difference
to a biased bit 4 rounds later, and works 3 rounds backwards from an output
after guessing 171 highly relevant key bits.

2007.12 [2]: Aumasson, Fischer, Khazaei, Meier, and Rechberger reported a
2249-operation attack on Salsa20/8 and a 2153-operation attack on Salsa20/7.
The Salsa20/8 attack works forwards from a small known input difference to a
biased bit 4 rounds later, and works 4 rounds backwards from an output after
guessing 228 extremely relevant key bits.

References

1. MPC7450 RISC microprocessor family reference manual, Freescale Semiconductor
(2005),
http://www.freescale.com/files/32bit/doc/refmanual/MPC7450UM.pdf

2. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features
of Latin dances: analysis of Salsa, ChaCha, and Rumba (2007),
http://eprint.iacr.org/2007/472

3. Barua, R., Lange, T. (eds.): INDOCRYPT 2006. LNCS, vol. 4329. Springer, Hei-
delberg (2006) See [14]

4. Bernstein, D.J.: The Poly1305-AES message-authentication code in [15], pp. 32–49
(2005) (ID 0018d9551b5546d97c340e0dd8cb5750),
http://cr.yp.to/papers.html#poly1305

5. Bernstein, D.J.: Cache-timing attacks on AES (2005)
(ID cd9faae9bd5308c440df50fc26a517b4),
http://cr.yp.to/papers.html#cachetiming

6. Bernstein, D.J.: The Salsa20 stream cipher, slides of talk. In: ECRYPT STVL
Workshop on Symmetric Key Encryption (2005),
http://cr.yp.to/talks.html#2005.05.26

http://www.freescale.com/files/32bit/doc/refmanual/MPC7450UM.pdf
http://eprint.iacr.org/2007/472
http://cr.yp.to/papers.html#poly1305
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/talks.html#2005.05.26

The Salsa20 Family of Stream Ciphers 97

7. Bernstein, D.J.: Understanding brute force. In: Workshop Record of ECRYPT
STVL Workshop on Symmetric Key Encryption, eSTREAM report 2005/036
(2005) (ID 73e92f5b71793b498288efe81fe55dee),
http://cr.yp.to/papers.html#bruteforce

8. Bernstein, D.J.: Cycle counts for authenticated encryption. In: Workshop Record
of SASC 2007: The State of the Art of Stream Ciphers, eSTREAM report 2007/015
(2007) (ID be6b4df07eb1ae67aba9338991b78388),
http://cr.yp.to/papers.html#aecycles

9. Bernstein, D.J.: Polynomial evaluation and message authentication (2007) (ID
b1ef3f2d385a926123e1517392e20f8c), http://cr.yp.to/papers.html#pema

10. Burwick, C., Coppersmith, D., D’Avignon, E., Gennaro, R., Halevi, S., Jutla, C.,
Matyas Jr., S.M., OĆonnor, L., Peyravian, M., Safford, D., Zunic, N.: MARS: a
candidate cipher for AES (1999), www.research.ibm.com/security/mars.pdf

11. Crowley, P.: Truncated differential cryptanalysis of five rounds of Salsa20. In: Work-
shop Record of SASC 2006: Stream Ciphers Revisted, eSTREAM technical report
2005/073 (2005), http://www.ecrypt.eu.org/stream/papers.html

12. Davies, D.W. (ed.): EUROCRYPT 1991. LNCS, vol. 547. Springer, Heidelberg
(1991) See [17]

13. Ferguson, N., Whiting, D., Schneier, B., Kelsey, J., Lucks, S., Kohno, T.: Helix:
fast encryption and authentication in a single cryptographic primitive, in [16], pp.
330–346 (2003), http://www.macfergus.com/helix/

14. Fischer, S., Meier, W., Berbain, C., Biasse, J.-F., Robshaw, M.J.B.: Non-
randomness in eSTREAM candidates Salsa20 and TSC-4, in [3], pp. 2–16 (2006)

15. Gilbert, H., Handschuh, H. (eds.): FSE 2005. LNCS, vol. 3557. Springer, Heidelberg
(2005), See [4]

16. Johansson, T. (ed.): FSE 2003. LNCS, vol. 2887. Springer, Heidelberg (2003), See
[13]

17. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis,
in [12], pp. 17–38 (1991)

18. Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel Core2
Processor, in [20], pp. 121–134 (2007)

19. Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, J., Roback, E.:
Report on the development of the Advanced Encryption Standard (AES). Journal
of Research of the National Institute of Standards and Technology 106 (2001),
http://nvl.nist.gov/pub/nistpubs/jres/106/3/cnt106-3.htm

20. Paillier, P., Verbauwhede, I. (eds.): CHES 2007. LNCS, vol. 4727. Springer, Hei-
delberg (2007) See [18]

21. Preneel, B. (ed.): FSE 1994. LNCS, vol. 1008. Springer, Heidelberg (1995) See [23]
22. Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T., Nakashima, H.: Differential crypt-

analysis of Salsa20/8. In: Workshop Record of SASC 2007: The State of the Art of
Stream Ciphers, eSTREAM report 2007/010 (2007),
http://www.ecrypt.eu.org/stream/papers.html

23. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm, in [21], pp.
363–366 (1995)

http://cr.yp.to/papers.html#bruteforce
http://cr.yp.to/papers.html#aecycles
http://cr.yp.to/papers.html#pema
www.research.ibm.com/security/mars.pdf
http://www.ecrypt.eu.org/stream/papers.html
http://www.macfergus.com/helix/
http://nvl.nist.gov/pub/nistpubs/jres/106/3/cnt106-3.htm
http://www.ecrypt.eu.org/stream/papers.html

Sosemanuk, a Fast Software-Oriented Stream

Cipher�

Côme Berbain1, Olivier Billet1, Anne Canteaut2, Nicolas Courtois3,
Henri Gilbert1, Louis Goubin4, Aline Gouget5, Louis Granboulan6,

Cédric Lauradoux2, Marine Minier7, Thomas Pornin8, and Hervé Sibert9

1 Orange Labs, France,
{come.berbain,olivier.billet,henri.gilbert}@orange-ftgroup.com

2 INRIA-Rocquencourt, projet CODES, France
{anne.canteaut,cedric.lauradoux}@inria.fr

3 University College of London, UK
n.courtois@ucl.ac.uk

4 Université de Versailles, France
louis.goubin@prism.uvsq.fr

5 Gemalto, France
aline.gouget@gemalto.com

6 EADS, France
louis.granboulan@eads.net

7 INSA de Lyon, France
marine.minier@insa-lyon.fr

8 Cryptolog International, France
thomas.pornin@cryptolog.com
9 NXP Semiconductors, France

herve.sibert@nxp.com

Abstract. Sosemanuk is a new synchronous software-oriented stream
cipher, corresponding to Profile 1 of the ECRYPT call for stream cipher
primitives. Its key length is variable between 128 and 256 bits. It ac-
commodates a 128-bit initial value. Any key length is claimed to achieve
128-bit security. The Sosemanuk cipher uses both some basic design
principles from the stream cipher SNOW 2.0 and some transformations
derived from the block cipher SERPENT. Sosemanuk aims at improv-
ing SNOW 2.0 both from the security and from the efficiency points of
view. Most notably, it uses a faster IV-setup procedure. It also requires
a reduced amount of static data, yielding better performance on several
architectures.

1 Introduction

This paper presents a proposal for a new synchronous software-oriented stream
cipher, named Sosemanuk. The Sosemanuk cipher uses both basic design prin-
ciples from the stream cipher SNOW 2.0 [12] and transformations derived from
� Work partially supported by the French Ministry of Research RNRT Project “X-

CRYPT” and by the European Commission via ECRYPT network of excellence
IST-2002-507932.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 98–118, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sosemanuk, a Fast Software-Oriented Stream Cipher 99

the block cipher SERPENT [3]. For this reason, its name should refer both to
SERPENT and SNOW. However, it is well-known that snow snakes do not exist
since snakes either hibernate or move to warmer climes during the winter.Instead
Sosemanuk is a popular sport played by the Eastern Canadian tribes. It con-
sists in throwing a wooden stick along a snow bank as far as possible. Its name
means snowsnake in the Cree language, since the stick looks like a snake in the
snow. Kwakweco-cime win is a variant of the same game but does not sound
like an appropriate cipher name. More details on the Sosemanuk game and a
demonstration can be found in [19] and [24].

The Sosemanuk stream cipher is a new synchronous stream cipher dedicated
to software applications. Its key length is variable between 128 and 256 bits. Any
key length is claimed to achieve 128-bit security. It is inspired by the design of
SNOW 2.0 which is very elegant and achieves a very high throughput on a
Pentium 4. Sosemanuk aims at improving SNOW 2.0 from two respects. First,
it avoids some structural properties which may appear as potential weaknesses,
even if the SNOW 2.0 cipher with a 128-bit key resists all known attacks. Second,
efficiency is improved on several architectures by reducing the internal state
size, thus allowing for a more direct mapping of data on the processor registers.
Sosemanuk also requires a reduced amount of static data; this lower data cache
pressure yields better performance on several architectures. Another strength of
Sosemanuk is that its key setup procedure is based on a reduced version of the
well-known block cipher SERPENT, improving classical initialization procedures
both from an efficiency and a security point of view.

2 Specification

2.1 SERPENT and Derivatives

SERPENT [3] is a block cipher proposed as an AES candidate. SERPENT op-
erates over blocks of 128 bits which are split into four 32-bit words, which are
then combined in so-called “bitslice” mode. SERPENT can thus be defined as
working over quartets of 32-bit words. We number SERPENT input and output
quartets from 0 to 3, and write them in the order: (Y3, Y2, Y1, Y0). Y0 is the least
significant word, and contains the least significant bits of the 32 4-bit inputs to
the SERPENT S-boxes. When SERPENT output is written into 16 bytes, the
Yi values are written following the little-endian convention (least significant byte
first), and Y0 is output first, then Y1, and so on.

From SERPENT, we define two primitives called Serpent1 and Serpent24.

Serpent1. A SERPENT rounds consist of, in that order:

– a subkey addition, by bitwise exclusive or;
– S-box application (which is expressed as a set of bitwise combinations be-

tween the four running 32-bit words, in bitslice mode);
– a linear bijective transformation (which amounts to a few XORs, shifts and

rotations in bitslice mode), see Appendix A.2.

100 C. Berbain et al.

Serpent1 is one round of SERPENT, without the key addition and the linear
transformation. SERPENT uses eight distinct S-boxes (see A.1 for details), num-
bered from S0 to S7 on 4-bit words. We define Serpent1 as the application of
S2, in bitslice mode. This is the third S-box layer of SERPENT. Serpent1 takes
four 32-bit words as input, and provides four 32-bit words as output.

Serpent24. Serpent24 is SERPENT reduced to 24 rounds, instead of the full
version of SERPENT which counts 32 rounds. Serpent24 is equal to the first
24 rounds of SERPENT, where the last round (the 24th) is a complete one and
includes a complete round with the linear transformation and an XOR with the
25th subkey. In other words, the 24th round of Serpent24 is thus equivalent to
the thirty-second round of SERPENT, except that it contains the linear trans-
formation and that the 24th and 25th subkeys are used (32nd and 33rd subkeys
in SERPENT). Thus, the last round equation on Page 224 in [3] is

R23(X) = L
(
Ŝ23(X ⊕ K̂23)

)
⊕ K̂24 .

Serpent24 uses only 25 128-bit subkeys, which are the first 25 subkeys pro-
duced by the SERPENT key schedule. In Sosemanuk, Serpent24 is used for
the initialization step, only in encryption mode. Decryption is not used.

2.2 The LFSR

Underlying finite field. Most of the stream cipher internal state is held in a
LFSR containing 10 elements of F232 , the field with 232 elements. The elements of
F232 are represented exactly as in SNOW 2.0. We recall this representation here.
Let F2 denote the finite field with 2 elements. Let β be a root of the primitive
polynomial:

Q(X) = X8 + X7 + X5 + X3 + 1

on F2[X]. We define the field F28 as the quotient F2[X]/Q(X). Each element in
F28 is represented using the basis (β7, β6, ...β, 1). Since the chosen polynomial is
primitive, then β is a multiplicative generator of all invertible elements of F28 :
every non-zero element in F28 is equal to βk for some integer k (0 ≤ k ≤ 254).
Any element in F28 is identified with an 8-bit integer by the following bijection:

φ : F28 → {0, 1, . . . , 255}
x =

∑7
i=0 xiβ

i �→ ∑7
i=0 xi2i

where each xi is either 0 or 1. For instance, β23 is represented by the integer
φ(β23) = 0xE1 (in hexadecimal).Therefore, the addition of two elements in F28

corresponds to a bitwise XOR between the corresponding integer representations.
The multiplication by β is a left shift by one bit of the integer representation,
followed by an XOR with a fixed mask if the most significant bit dropped by the
shift equals 1.

Let α be a root of the primitive polynomial

P (X) = X4 + β23X3 + β245X2 + β48X + β239

Sosemanuk, a Fast Software-Oriented Stream Cipher 101

on F28 [X]. The field F232 is then defined as the quotient F28 [X]/P (X), i.e., its
elements are represented with the basis (α3, α2, α, 1). Any element in F232 is
identified with a 32-bit integer by the following bijection:

ψ : F232 → {0, 1, . . . , 232 − 1}
y =

∑3
i=0 yiα

i �→ ∑3
i=0 φ(yi)28i

Thus, the addition of two elements in F232 corresponds to a bitwise XOR be-
tween their integer representations. This operation will hereafter be denoted by
⊕. Sosemanuk also uses multiplications and divisions of elements in F232 by α.
Multiplication of z ∈ F232 by α corresponds to a left shift by 8 bits of ψ(z), fol-
lowed by an XOR with a 32-bit mask which depends only on the most significant
byte of ψ(z). Division of z ∈ F232 by α is a right shift by 8 bits of ψ(z), followed
by an XOR with a 32-bit mask which depends only on the least significant byte
of ψ(z).

Definition of the LFSR. The LFSR operates over elements of F232 . The initial
state, at t = 0, entails the ten 32-bit values s1 to s10. At each step, a new value
is computed, with the following recurrence:

st+10 = st+9 ⊕ α−1st+3 ⊕ αst, ∀t ≥ 1

and the register is shifted (see Figure 1 for an illustration of the LFSR).

Fig. 1. The LFSR

The LFSR is associated with the following feedback polynomial:

π(X) = αX10 + α−1X7 + X + 1 ∈ F232 [X]

Since the LFSR is non-singular and since π is a primitive polynomial, the se-
quence of 32-bit words (st)t≥1 is periodic and has maximal period (2320 − 1).

2.3 The Finite State Machine

The Finite State Machine (FSM) is a component with 64 bits of memory, cor-
responding to two 32-bit registers R1 and R2. At each step, the FSM takes as

102 C. Berbain et al.

inputs some words from the LFSR state; it updates the memory bits and pro-
duces a 32-bit output. The FSM operates on the LFSR state at time t ≥ 1 as
follows:

FSMt : (R1t−1, R2t−1, st+1, st+8, st+9) �→ (R1t, R2t, ft)

where

R1t = (R2t−1 + mux(lsb(R1t−1), st+1, st+1 ⊕ st+8)) mod 232 (1)
R2t = Trans(R1t−1) (2)

ft = (st+9 + R1t mod 232)⊕R2t (3)

where lsb(x) is the least significant bit of x, mux(c, x, y) is equal to x if c = 0,
or to y if c = 1. The internal transition function Trans on F232 is defined by

Trans(z) = (M × z mod 232)<<<7

where M is the constant value 0x54655307 (the hexadecimal expression of the
first ten decimals of π) and <<< denotes bitwise rotation of a 32-bit value (by
7 bits here).

2.4 Output Transformation

The outputs of the FSM are grouped by four, and Serpent1 is applied to each
group; the result is then combined by XOR with the corresponding dropped
values from the LFSR, to produce the output values zt:

(zt+3, zt+2, zt+1, zt) = Serpent1 (ft+3, ft+2, ft+1, ft)⊕ (st+3, st+2, st+1, st)

Four consecutive rounds of Sosemanuk are depicted in Figure 2.

2.5 Sosemanuk Workflow

The Sosemanuk cipher combines the FSM and the LFSR to produce the output
values zt. Time t = 0 designates the internal state after initialization; the first
output value is z1. Figure 3 gives a graphical overview of Sosemanuk.

At time t ≥ 1, we perform the following operations:

– The FSM is updated: R1t, R2t and the intermediate value ft are computed
from R1t−1, R2t−1, st+1, st+8 and st+9.

– The LFSR is updated: st+10 is computed, from st, st+3 and st+9. The value
st is sent to an internal buffer, and the LFSR is shifted.

Once every four steps, four output values zt, zt+1, zt+2 and zt+3 are pro-
duced from the accumulated values ft, ft+1, ft+2, ft+3 and st, st+1, st+2, st+3.
Thus, Sosemanuk produces 32-bit values. We recommend encoding them into
groups of four bytes using the little-endian convention, because it is faster on the
most widely used high-end software platform (x86-compatible PC), and because
SERPENT uses that convention.

Sosemanuk, a Fast Software-Oriented Stream Cipher 103

Fig. 2. The output transformation on four consecutive rounds of Sosemanuk

Therefore, the first four iterations of Sosemanuk are as follows.

– The LFSR initial state contains values s1 to s10; no value s0 is defined. The
FSM initial state contains R10 and R20.

– During the first step, R11, R21 and f1 are computed from R10, R20, s2, s9

and s10.
– The first step produces the buffered intermediate values s1 and f1.

104 C. Berbain et al.

Fig. 3. An overview of Sosemanuk

– During the first step, the feedback word s11 is computed from s10, s4 and
s1, and the internal state of the LFSR is updated, leading to a new state
composed of s2 to s11.

– The first four output values are z1, z2, z3 and z4, and are computed using
one application of Serpent1 over (f4, f3, f2, f1), whose output is combined
by XORs with (s4, s3, s2, s1).

2.6 Key Initialization and IV Injection

The Sosemanuk initialization process is split into two steps:

– the key schedule, which processes the secret key but does not depend on the
IV; and

– the IV injection, which uses the output of the key schedule and the IV. This
initializes the stream cipher internal state.

Key schedule. The key setup corresponds to the Serpent24 key schedule, which
produces 25 128-bit subkeys, as 100 32-bit words. These 25 128-bit subkeys are
identicaltothefirst25128-bitsubkeysproducedbytheplainSERPENTkeyschedule.

SERPENT accepts any key length from 1 to 256 bits; hence, Sosemanuk may
work with exactly the same keys. However, since Sosemanuk aims at 128-bit
security; its key length must then be at least 128 bits. Therefore, 128 bits is the
standard key length. Any key length from 128 bits to 256 bits is supported. But,
the security level still corresponds to 128-bit security. In other words, using a
longer secret key does not guarantee to provide the security level usually expected
from such a key.

Sosemanuk, a Fast Software-Oriented Stream Cipher 105

IV injection. The IV is a 128-bit value. It is used as input to the Serpent24
block cipher, as initialized by the key schedule. Serpent24 consists of 24 rounds
and the outputs of the 12th, 18th and 24th rounds are used. We denote those
outputs as follows:

– (Y 12
3 , Y 12

2 , Y 12
1 , Y 12

0): output of the 12th round;
– (Y 18

3 , Y 18
2 , Y 18

1 , Y 18
0): output of the 18th round;

– (Y 24
3 , Y 24

2 , Y 24
1 , Y 24

0): output of the 24th round.

The output of each round consists of the four 32-bit words just after the
linear transformation, except for the 24th round, for which the output is taken
just after the addition of the 25th subkey.

These values are used to initialize the Sosemanuk internal state, with the
following values:

(s7, s8, s9, s10) = (Y 12
3 , Y 12

2 , Y 12
1 , Y 12

0)
(s5, s6) = (Y 18

1 , Y 18
3)

(s1, s2, s3, s4) = (Y 24
3 , Y 24

2 , Y 24
1 , Y 24

0)
R10 = Y 18

0

R20 = Y 18
2

3 Design Rationale

3.1 Key Initialization and IV Injection

Underlying principle. A first property of the initialization process is that it is
split into two distinct steps: the key schedule which does not depend on the IV,
and the IV injection which generates the initial state of the generator from the
IV and from the output of the key schedule. Then, the IV setup for a fixed key
is less expensive than a complete key setup, improving the common design since
changing the IV is more frequent than changing the secret key.

A second characteristic of Sosemanuk is that the IV setup is derived from
the application of a block cipher over the IV. If we consider the function FK

which maps a n-bit IV to the first n bits of output stream generated from the
key K and the IV, then FK must be computationaly indistinguishable from a
random function over F

n
2 . Hence, the computation of FK cannot “morally” be

faster than the best known PRF over n-bit blocks. It so happens that the fastest
known PRF use the same implementation techniques that the fastest known
Pseudo-Random Permutations (which are block ciphers), and amount to the
equivalent performance.

Since Sosemanuk stream generation is very fast, the generation of n stream
bits takes little time compared to a computation of a robust PRP over a block of
n bits. Following this path of reasoning, we decided to use a block cipher as the
fundation of the IV setup for Sosemanuk: the IV setup itself cannot be much
faster than the application of a block cipher, and the security requirements for
that step are much similar to what is expected from a block cipher.

106 C. Berbain et al.

Choice of the block cipher. The block cipher used in the IV setup is derived from
SERPENT for the following reasons:

– SERPENT has been thoroughly analyzed during the AES selection process
and its security is well-understood.

– SERPENT needs no static data tables, and hence adds little or no data cache
pressure.

– The SERPENT round function is optimized for operation over data repre-
sented as 32-bit words, which is exactly how data is managed within Sose-
manuk. Using SERPENT implies no tedious byte extraction from 32-bit
words, or recombinations into such words.

– We needed a block cipher for the key schedule and IV injection; using some-
thing other else than AES seems good for “biodiversity”.

Design of Serpent24. The IV injection uses a reduced version of SERPENT
because SERPENT aimed at 256-bit security, whereas Sosemanuk is meant for
128-bit security. The best linear bias and differential bias for a 6-round version
of SERPENT are 2−28 and 2−58 respectively [3]. Thus, 12 rounds should pro-
vide appropriate security. Twelve more rounds are added in order to generate
enough data (three 128-bit words are needed for initializing Sosemanuk), hence
24 rounds for Serpent24. We rely on the Sosemanuk core itself to provide some
security margins (the output of Serpent24 is not available directly to the at-
tacker). Two consecutive outputs of data are spaced with six inner rounds in
order to prevent the existence of relations between the bits of the initial state
and the secret key bits which could be used in an attack.

3.2 LFSR

The SNOW 2.0 LFSR contains 16 elements, which means 512 bits of internal
state. Since we aim only at 128-bit security, we can accommodate a shorter
LFSR. To defeat time-memory-data trade-off attacks, 256 bits of internal state
at least should be used; we wanted some security margin, hence an LFSR length
a bit more than six words.

LFSR length. The LFSR length n must be as small as possible: the bigger the
state, the more difficult it is to map the state values on the processor registers.
Ideally, the total state should fit in the 16 general-purpose registers that the new
AMD64 architecture offers.

For efficient LFSR implementation, the LFSR must not be physically shifted;
moving data around contributes nothing to actual security, and takes time. If
n is the LFSR length, then kn steps (for some integer k) must be “unrolled”,
so that at each step only one LFSR cell is modified. Moreover, since Serpent1
operates over four successive output values, kn corresponds to lcm(4, n) and it
should be kept as small as possible, since a higher code size increases code cache
pressure.

These considerations led us to n = 8 or 10. But, an LFSR of length eight
presents potential weaknesses which may be exploited in a guess-and-determine

Sosemanuk, a Fast Software-Oriented Stream Cipher 107

attack (see Section 4.3). Therefore, a LFSR of length 10 is a suitable choice: the
384-bit internal state length should be enough; only 20 steps need to be unrolled
for an efficient implementation. The total internal state fits in 12 registers, which
should map fine on the new AMD64 architecture.

Feedback polynomial. The design criteria for the feedback polynomial are similar
to those used in SNOW 2.0. Since the feedback polynomial must be as sparse as
possible, we chose as in SNOW 2.0 a primitive polynomial of the form

π(X) = c0X
10 + caXn−a + cbX

n−b + 1 ,

where 0 < a < b < 10. The coefficients c0, ca and cb preferably lie in {1, α, α−1}
which are the elements corresponding to an efficient multiplication in F232 . More-
over, {c0, ca, cb} must contain at least two distinct non-binary elements; other-
wise, a multiple of π with binary coefficients can be easily constructed [11,16],
providing an equation which holds for each single bit position.

We also want a and b to be coprime with the LFSR length. Otherwise, for
instance if d = gcd(a, 10) > 1, the corresponding recurrence relation

st+10 = cbst+b + cast+a + c0st

involves three terms of a decimated sequence (sdt+i)t>0 (for some integer i),
which can be generated by an LFSR of length n/d [23]. These conditions led
us to a = 3 and b = 9. Since a and b are not coprime, ca and cb must be
different; otherwise, some simplified relations may be exhibited by manipulating
the feedback polynomial as shown in [16,9]. The values c0 = α, c3 = α−1 and
c9 = 1 correspond to a suitable primitive polynomial that fulfills all previously
mentioned conditions.

3.3 FSM

The Trans function. The Trans function is chosen according to the following
implementation criteria: no static data tables in order to reduce the cache pres-
sure and the function must be fast on modern processors. For these reasons,
the Trans function is composed of a 32-bit multiplication and a bitwise rotation
which are both very fast. The 32-bit multiplication provides excellent “data mix-
ing” compared to the number of clock cycles it consumes. The bitwise rotation
avoids the existence of a linear relation between the least-significant bits of the
inputs and the output of the FSM.

The operations involved in the Trans functions are incompatible with the
other operations used in the FSM (addition over Z232 , XOR operation). Actually,
mixing operations on the ring and on the vector space disables associativity and
commutativity laws. For instance,

(M × (R2t−1 + st+1 mod 232) mod 232)<<<7

	=
(M × (R2t−1) mod 232)<<<7 + (M × (st+1) mod 232)<<<7 mod 232.

108 C. Berbain et al.

The mux operation. The mux operation aims at increasing the complexity of fast
correlation and algebraic attacks, since it decimates the FSM input sequence in
an irregular fashion. Moreover, this operation can be implemented efficiently with
either control bit extension and bitwise operations, or an architecture specific
“conditional move” opcode. Modern C compilers know how to perform those
optimizations when compiling the C conditional ternary operator “?:”. This
multiplexer is quite fast and requires no jump.

It is fitting that both LFSR elements st+c and st+d (with c ≤ d) in the mux
operation are not involved in the recurrence relation. Otherwise the complexity
of guess-and-determine attacksmight be reduced. The distance (d − c) between
those elements must be coprime with the LFSR length since they must not
be expressed as a decimated sequence with a lower linear complexity. Here, we
choose d − c = 7. Finally, it must be impossible for the inputs of the mux
operation at two different steps correspond to the same element in the LFSR
sequence. For this reason, the mux operation outputs either st+c or st+c⊕st+d. If
st+c⊕st+d is the input of the FSM at time t, the possible inputs at time (t+d−c)
are st+d and st+d⊕ st+2d−c, which do not match any previous input. It is worth
noticy that this property does not hold anymore if the mux outputs either st+c

or st+d.

3.4 The Output Transformation

The output transformation derived from Serpent1 aims at mixing four successive
outputs of the FSM in a nonlinear way. As a consequence, any 32-bit keystream
word produced by Sosemanuk depends on four consecutive intermediate values
ft. As a result, recovering any single output of the FSM, ft, in a guess-and-
determine attack requires the knowledge of at least four consecutive words from
the LFSR sequence, st, st+1, st+2, st+3 (see Section 4.3 for details).

The following properties have also been taken into account in the choice of
output transformation.

– Both nonlinear mixing operations involved in Sosemanuk (the Trans oper-
ation and the Serpent1 used in bitslice mode) do not provide any correlation
probability or linear property on the least significant bits that could be used
to mount an attack (see Section 4.4 for further details).

– From an algebraic point of view, those operations are combined to produce
nonlinear equations (see Section 4.6).

– No linear relation can be directly exploited on the least significant bit of the
values (ft, ft+1, ft+2, ft+3), only quadratic equations with more variables
than the number of possible equations (see Section 4.4).

– The linear relation between st and Serpent1 (ft, ft+1, ft+2, ft+3) prevents
Sosemanuk from SQUARE-like attacks.

Finally, the fastest SERPENT S-box (S2) has been chosen in Serpent1 from an
efficiency point of view [22]. But, S2 also guarantees that there is no differential-
linear relation on the least significant bit (the “most linear” one in the output
of the FSM).

Sosemanuk, a Fast Software-Oriented Stream Cipher 109

4 Resistance Against Known Attacks

Our stream cipher Sosemanuk offers a 128-bit security, based on the following
security model.

4.1 Security Model

The attacker is a probabilistic Turing Machine with access to a black box (oracle)
that accepts the following three instructions: Reset, Init with a 128-bit input,
GetStream with a 1-bit output. The attacker’s goal is to distinguish with
probability 2/3 between a black box that generates random output, and a black
box that implements the stream cipher, where Reset generates a random key,
Init initializes the internal state of the stream cipher with a new chosen IV, and
GetStream generates the next bit of keystream. The attacker is allowed to do
2128 elementary operations, an instruction to the black box being an elementary
operation.

This security model falls under remarks made by Hong and Sarkar [18], be-
cause the precomputation time is not bounded by our model. Therefore our
claim is that the 256-bit key variant of Sosemanuk provide a 128-bit security.
We do not know of a formal security model that restricts the precomputation
time, i.e. that only allows the attacker one of the probabilistic Turing machines
that can be built in a reasonable time from the current content of today’s com-
puters. Therefore, our claim is that the 128-bit key variant of Sosemanuk, and
all variants with larger keys, provide a 128-bit security against an attacker that
is not allowed to benefit from large precomputation.

The following sections focus on the security of Sosemanuk against known
attacks. It is important to note that the secret key of the cipher cannot be
easily recovered from the initial state of the generator. Once the initial state
is recovered, the attacker is only able to generate the output sequence for a
particular key and a given IV. Recovering the secret key or generating the output
for a different IV additionally requires the cost of an attack on Serpent24 with
a certain number of plaintext/ciphertext pairs.

4.2 Time-Memory-Data Tradeoff Attacks

Due to the choice of the length of the LFSR (more than twice the key length),
the time-memory-data tradeoff attacks described in [2,14,5] are impracticable.
Moreover, since these TMDTO attacks aim at recovering the internal state of
the cipher, recovering the secret key requires the additional cost of an attack
against Serpent24. The best time-memory data tradeoff attack is the Hellman’s
one [17] which aims at recovering a pair (K, IV). For a 128-bit secret key and
a 128-bit IV, its time complexity is equal to 2128 cipher operations (see [18] for
further details).

4.3 Guess and Determine Attacks

The main weaknesses of SNOW 1.0 are related to this type of attacks (two
at least have been exhibited [16], [9]). They essentially exploit a particular

110 C. Berbain et al.

weakness in the linear recurrence equation. This does not hold anymore for
the new polynomial choice in SNOW 2.0 and for the polynomial used in Sose-
manuk which involve non-binary multiplications by two different constants. The
first attack [16] also exploited a “trick” coming from the dependence between
the values R1t−1 and R1t. This trick is avoided in SNOW 2.0 (because there is
no direct link between those two register values anymore) and in Sosemanuk.

The best guess and determine attack we have found on Sosemanuk is the
following.

– Guess at time t, st, st+1, st+2, st+3, R1t−1 and R2t−1 (6 words).
– Compute the corresponding outputs of the FSM (ft, ft+1, ft+2, ft+3).
– Compute R2t = Trans(R1t−1) and R1t from Equation (1) if lsb(R1t−1) = 1

(this can be done only with probability 1/2).
– From ft = (st+9 + R1t mod 232)⊕R2t, compute st+9.
– Compute R1t+1 from the knowledge of both st+2 and st+9; compute R2t+1.

Compute st+10 from ft+1, R1t+1 and R2t+1.
– Compute R1t+2 from st+3 and st+10; compute R2t+2. Compute st+11 from

ft+2, R1t+2 and R2t+2. Now, st+4 can be recovered due to the feedback
relation at time t + 1:

α−1st+4 = st+11 ⊕ st+10 ⊕ αst+1 .

– Compute R1t+3 from st+4 and st+11; compute R2t+2. Compute st+12 from
ft+3, R1t+3 and R2t+3. Compute st+5 by the feedback relation at time t+2:

α−1st+5 = st+12 ⊕ st+11 ⊕ αst+2 .

At this point, the LFSR words st, st+1, st+2, st+3, st+4, st+5, st+9 are known.
Three elements (st+6, st+7, st+8) remain unknown. To complete the full 10 words
state of the LFSR, we need to guess 2 more words, st+6 and st+7 since each ft+i,
4 ≤ i ≤ 7, depends on all 4 words st+4, st+5, st+6 and st+7. Therefore, this attack
requires the guess of 8 32-bit words, leading to a complexity of 2256.

Note that in [1] and in [25] the authors respectively proposed two guess and
determine attacks against Sosemanuk that have a complexity approximatively
equal to 2226 and 2224 computations. However, as stated in paragraphs 2.6, 3.2
and 4.1, we never intended to have more than 128-bit security. The internal
state of Sosemanuk is 384-bit long, which would be bad practice if we aimed
at 256-bit security. Therefore, those guess-and-determine attacks, while being
interesting theoretical studies, do not compromise the security of Sosemanuk.

4.4 Correlation Attacks

In order to find a relevant correlation in Sosemanuk, the following questions
can be addressed:

– does there exist a linear relation at bit level between some input and output
bits?

Sosemanuk, a Fast Software-Oriented Stream Cipher 111

– does there exist a particular relation between some input bit vector and some
output bit vector?

In the first case, two linear relations could be exhibited at the bit level. In
the first, the least significant bit of st+9 was “conserved”, since the modular
addition over Z232 is a linear operation on the least significant bit. The second
linear relation induced by the FSM concerns the least significant bit of st+1

or of st+1 ⊕ st+8 (used to compute R1t) or the seventh bit of R2t computed
from st or of st ⊕ st+7. We here use that R2t = Trans(R1t−1) and R1t−1 =
R2t−2 + (st or (st ⊕ st+7)) mod 232.

No linear relation holds after applying Serpent1 and there are too many
unknown bits to exploit a relation on the outputs words due to the bitslice
design. Moreover, a fast correlation attack seems to be impracticable because the
mux operation prevents certainty in the dependence between the LFSR states
and the observed keystream.

4.5 Distinguishing Attacks

A distinguishing attack by D. Coppersmith, S. Halevi and C. Jutla (see [10])
against the first version of SNOW used a particular weakness of the feedback
polynomial built on a single multiplication by α. This property does not hold
for the choice of the new polynomial in SNOW 2.0 and for the polynomial used
in Sosemanuk where multiplication by α−1 is also included.

In [26], D. Watanabe, A. Biryukov and C. De Cannire have mounted a new
distinguishing attack on SNOW 2.0 with a complexity about 2225 operations
using multiple linear masking method. They construct 3 different masks Γ1 = Γ ,
Γ2 = Γ · α and Γ3 = Γ · α−1 based on the same linear relation Γ .

The linear property deduced from the masks Γi (i = 1, 2 or 3) must hold
with a high probability on the both following quantities: Γi · S′(x) = Γi · x and
Γi · z ⊕ Γi · t = Γi · (z � t) for i=1,2 and 3, where S′ is the transition function
of the FSM in SNOW 2.0. In the case of SNOW 2.0, the hardest hypothesis to
satisfy is the first one defined on y = S′(x). In the case of Sosemanuk, we need
Pr(Γi · Trans(x) = Γi · x)i=1,2,3 to be high. But, we also need that ∀i = 1, 2, 3,
the relation

(Γ ′
i , Γ

′
i , Γ

′
i , Γ

′
i) · (x1, x2, x3, x4) = Serpent1 ((Γi, Γi, Γi, Γi) · (x1, x2, x3, x4)) .

for some Γ ′
i ∈ F

32
2 , holds with a high probability.

Due to the bitslice design chosen for Serpent1, it seems very difficult to find
such a mask. Therefore, the attack described in [26] could not be applied directly
on Sosemanuk.

4.6 Algebraic Attacks

Let us consider, as in [4], the initial state of the LFSR at bit level:

(s10, · · · , s1) = (s31
10, · · · , s0

10, · · · , s31
1 , · · · , s0

1)

112 C. Berbain et al.

Then, the outputs of Sosemanuk at time t ≥ 1 could be written:

F t((s10
31, · · · , s1

0)) = (zt, zt+1, zt+2, zt+3)

where F is a vectorial Boolean function from F
320
2 into F

128
2 that could be seen

as 128 Boolean functions Fj , ∀j ∈ [0..127] from F
320
2 into F2.

Let us study the degree of an Fj function depending on a particular bit of
the output or on a linear combination of output bits because it is not possible
to directly compute the algebraic immunity of each function Fj due to the very
large number of variables (320 input bits). We think that the following remarks
prevent the existence of low degree relations between the inputs and the outputs
of Fj .

– The output bit i after the modular addition on Z232 is of degree i + 1 (as
described in [6]).

– The output bit i after the Trans mapping is of degree i+1−7 mod 32, ∀i 	= 6
and equal to 32 for i = 6 (as described in [6]).

– The mux operation does not enable to determine with probability one the
exact number of bits of the initial state involved in the algebraic relation.

– The algebraic immunity of the SERPENT S-box S2 at 4-bit word level is
equal to 2 (see [21] for a definition of the algebraic immunity and more
details).

Under those remarks, we think that an algebraic attack against Sosemanuk
is intractable.

5 Implementation

The reference C implementation is also an optimized implementation. When
compiled with the SOSEMANUK_VECTOR macro defined, it is a full program (with
its own main() function) which outputs two detailed test vectors. Since the
LFSR length is ten, we unroll the C code on 20 rounds (see 3.2 for details); each
test vector contains:

– A copy of the secret key (a sequence of bytes, expressed in hexadecimal).
– The expanded secret key, as described by the SERPENT specification: the

key is expanded to 256 bits, then read as a 256-bit number with the little
endian convention. The test vector outputs that key as a big hexadecimal
number, with some digit grouping.

– The 25 Serpent24 subkeys, each of them consisting of four 32-bit words (in
the (K3, K2, K1, K0) order).

– The 128-bit IV, as a sequence of 16 bytes.
– The IV, once transformed into four 32-bit words, in the (I3, I2, I1, I0) order.
– The initial LFSR state (s1 to s10, in that order).
– The initial FSM state (R10 and R20).
– Ten times the following data:

Sosemanuk, a Fast Software-Oriented Stream Cipher 113

• Four times the following:
∗ the new FSM state (R1t and R2t);
∗ the new LFSR state, after the update (the dropped value st is also

output);
∗ the intermediate output ft.

• The Serpent1 input.
• The Serpent1 output.
• 16 bytes of Sosemanuk output.

– The total stream output (160 bytes).

6 Performance

6.1 Software Implementation

This section is devoted to the software performance of Sosemanuk. It compares
the performance of Sosemanuk with the other candidates selected in the Phase
3 (Software Profile), SNOW 2.0 and AES-CTR using the eSTREAM testing
framework and the provided reference C implementations [7]. The three tables
Table 1, Table 2 and Table 3 sum up the results (for the keystream generation,
the IV setup and the key setup) given in [8] for three different architectures: an
Intel Pentium 4 (CISC target), an AMD Athlon64 X2 4200+ (CISC target) and
an Alpha EV6 (RISC target).

All the results presented for Sosemanuk have been computed using the sup-
plied reference C implementation.

Code size. The main unrolled loop implies a code size between 2 and 5 KB
depending on the platform and the compiler. Therefore, the entire code fits in
the L1 cache.

Static data. The reference C implementation uses static data tables with a total
size equal to 4 KB. This amount is 3 times smaller than the size of static data
required in SNOW 2.0, leading to a lower date cache pressure.

Key setup. We recall that the key setup (the subkey generation given by Ser-
pent24) is made once and that each new IV injection for a given key corresponds
to a small version of the block cipher SERPENT.

The performance of the key setup and of the IV setup in Sosemanuk are
directly derived from the performance of SERPENT [13]. Due to intellectual
property aspects, our reference implementation does not re-use the best imple-
mentation of SERPENT. However, the performance given in [20] (i.e., computed
on the Gladman’s code written in assembly language [13]) leads to the following
results on a Pentium 4:

– key setup � 900 cycles;
– IV setup � 480 cycles.

These estimations for the IV setup (resp. key setup) performance corresponds
to about 3/4 of the best published performance for SERPENT encryption (resp.
for SERPENT key schedule).

114 C. Berbain et al.

Performance results. Table 1, Table 2 and Table 3 present the performance of
the keystream generation (using four performance measures), the agility, the IV
setup and the key setup to test the most relevant implementation properties.
The four elementary tests for keystream generation are: the encryption rate for
long streams by ciphering a long stream in chunks of about 4Kb; the packet
encryption rate for three packet lengths (40, 576 and 1500 bytes) including an
IV setup; the agility test initiates a large number of sessions (filling 16MB of
RAM), and then encrypts streams of plaintexts in short blocks of around 256
bytes, each time jumping from one session to another.

Table 1. Number of CPU cycles for the stream ciphers using a Pentium 4 at 2.80GHz,
Model 15/2/9

cycles/byte cycles/key cycles/IV

Algo. IV Stream 40 bytes 576 bytes 1500 bytes agility Key setup IV setup

AES CTR 128 17.81 29.19 18.35 18.04 20.77 393.45 76.16

SNOW v2.0 128 5.04 35.60 6.92 5.92 7.95 85.44 1000.54

CryptMT v3 128 5.27 39.12 12.09 11.55 11.35 53.71 849.25

DRAGON 128 11.37 74.09 26.07 23.23 15.00 256.04 1925.54

HC-128 128 3.76 1458.58 104.86 42.64 19.02 78.81 56929.45

HC-256 128 4.39 2596.20 184.25 73.59 26.27 76.66 104341.33

LEXv1 128 9.46 20.78 10.88 10.01 12.30 486.57 449.00

NLSv2 128 6.64 38.94 8.52 6.97 12.10 823.74 704.68

Rabbit 64 9.46 34.45 11.77 10.76 12.89 984.27 825.55

Salsa20 64 16.61 42.21 17.63 18.57 18.71 90.32 78.19

SOSEMANUK 64 5.81 52.37 12.52 9.62 7.40 1287.55 1245.71

Table 2. Number of CPU cycles for the stream ciphers using an AMD Athlon 64 X2
4200+ at 2.20GHz, Model 15/75/2

cycles/byte cycles/key cycles/IV

Algo. IV Stream 40 bytes 576 bytes 1500 bytes agility Key setup IV setup

AES CTR 128 13.39 18.09 13.39 13.35 15.03 152.81 15.58

SNOW v2.0 128 4.83 23.18 5.77 5.34 6.46 43.37 528.04

CryptMT v3 128 4.65 19.26 8.47 7.64 8.82 25.47 384.33

DRAGON 128 7.76 60.20 25.90 24.31 10.01 89.90 1449.74

HC-128 128 2.86 587.00 43.19 18.43 13.07 37.85 23308.78

HC-256 128 4.72 1420.99 103.10 42.83 21.13 41.31 56725.89

LEXv1 128 6.84 14.19 7.78 7.20 9.19 226.41 268.31

NLSv2 128 10.69 53.24 13.45 11.48 14.13 453.35 1293.15

Rabbit 64 4.98 14.60 5.55 5.25 6.34 288.21 292.38

Salsa20 64 7.64 16.10 7.74 7.91 8.93 24.57 14.29

SOSEMANUK 64 4.07 25.26 7.20 6.10 5.12 759.06 560.63

Sosemanuk, a Fast Software-Oriented Stream Cipher 115

Table 3. Number of CPU cycles for the stream ciphers using an Alpha EV6 at 500MHz,
Model 21264

cycles/byte cycles/key cycles/IV

Algo. IV Stream 40 bytes 576 bytes 1500 bytes agility Key setup IV setup

AES CTR 128 15.53 24.63 15.94 15.82 17.80 633.65 37.58

SNOW v2.0 128 5.17 23.74 6.11 5.73 6.37 69.00 489.35

CryptMT v3 128 6.90 24.74 11.64 11.75 12.86 37.49 422.17

DRAGON 128 8.46 74.94 41.89 40.52 10.13 234.33 1542.46

HC-128 128 3.90 1029.93 77.41 31.59 14.80 54.67 42130.00

HC-256 128 5.18 2414.77 171.48 69.34 23.53 52.96 95937.00

LEXv1 128 7.99 16.87 9.15 8.44 9.53 198.49 334.58

NLSv2 128 5.93 24.26 6.44 5.59 7.94 530.39 421.66

Rabbit 64 5.27 14.49 5.69 5.53 6.32 318.57 280.63

Salsa20 64 13.61 39.93 13.77 14.34 14.46 33.60 20.16

SOSEMANUK 64 4.63 28.80 7.66 6.26 5.32 1301.09 692.71

As shown in these tables, Sosemanuk remains among the fastest algorithms
on several platforms due to a good design for the mappings of data on the
processor registers and a low data cache pressure.

6.2 Hardware Implementation

In [15], the authors propose hardware implementations and performance metrics
for several stream cipher candidates and especially Sosemanuk. They remark
that even if the design of Sosemanuk is a little bit complex to implement, it
leads to an impressive performance. The required number of gates for designing
Sosemanuk on 0.13 μm Standard Cell CMOS with a key of length 256 bits
is 18819 considering that 32 bits are outputted at each cycle. Moreover, the
corresponding leakage power is 33.55 μW for a total power at 10MHz equal to
812.47 μW. The authors also derive the metrics for maximum clock frequency
and for an output rate at 10 Mbps (estimated typical future wireless LAN). In
this last case, the corresponding clock frequency is equal to 0.313 MHz for a
Power-Area-Time equal to 564.8 nJ-um2. In conclusion, they recommend Sose-
manuk for WLAN applications with a key length equal to 256 bits. They say
that “with regard to Sosemanuk, the utility as a hardware cipher is clear thus
in our opinion requires adding to the hardware focus profile.”

7 Strengths and Advantages of Sosemanuk

The new synchronous stream cipher Sosemanuk based upon the SNOW 2.0
design improves it from several points of view. From a security point of view,
Sosemanuk avoids some potential weaknesses as the distinguishing attack pro-
posed in [26] due to the particular use of Serpent1 in bitslice mode. The chosen
LFSR is designed to eliminate all potential weaknesses (particular decimation

116 C. Berbain et al.

properties, linear relations,...). The mappings used in the Finite State Machine
have been carefully designed in the following way:

– The Trans function guarantees good properties of confusion and diffusion for
a low cost in software. Moreover, this mapping prevents Sosemanuk from
algebraic attacks.

– The mux operation, that could be efficiently implemented, protects Sose-
manuk from fast correlation attacks and algebraic attacks.

The Serpent1 output transformation, very efficient in bitslice mode, provides
nonlinear equations, a good diffusion and it improves the resistance to guess-
and-determine attacks.

The new design chosen for the key setup and the IV injection allows to split
the initialization procedure into two distinct parts, without any loss of security.
It leads to a much faster resynchronization mechanism.

From an efficiency point of view, due to a reduced amount of static data and a
reduced internal state size, the exploitation of the processor registers is enhanced
and the data cache pressure is improved on several platforms, especially on RISC
architectures.

Acknowledgments. The authors would like to thank Matt Robshaw for valuable
comments.

Note that this work has been performed while the 4th author was affiliated
to Axalto/Gemalto (France), the 7th and the 12th authors were affiliated to
France Télécom R&D/Orange Labs (France), the 8th author was affiliated to
the École Normale Supérieure (France), the 10th author was affiliated to INRIA
Rocquencourt (France).

References

1. Ahmadi, H., Eghlidos, T., Khazaei, S.: Improved guess and determine attack on
SOSEMANUK. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/085
(2005), http://www.ecrypt.eu.org/stream

2. Babbage, S.: A space/time trade-off in exhaustive search attacks on stream ciphers.
In: European Convention on Security and Detection, vol. 408. IEEE Conference
Publication (1995)

3. Biham, E., Anderson, R., Knudsen, L.: SERPENT: A new block cipher proposal. In:
Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg
(1998)

4. Billet, O., Gilbert, H.: Resistance of SNOW 2.0 against algebraic attacks. In:
Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 19–28. Springer, Heidel-
berg (2005)

5. Biryukov, A., Shamir, A.: Cryptanalytic time-memory-data trade-offs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–14.
Springer, Heidelberg (2000)

6. Braeken, A., Semaev, I.: The ANF of the composition of × and + mod 2n with a
Boolean function. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557,
pp. 112–125. Springer, Heidelberg (2005)

http://www.ecrypt.eu.org/stream

Sosemanuk, a Fast Software-Oriented Stream Cipher 117

7. De Cannière, C.: estream optimized code HOWTO. eSTREAM, ECRYPT Stream
Cipher Project (2005), http://www.ecrypt.eu.org/stream/perf/

8. De Cannière, C.: Software performance of the phase 3 candidates. eSTREAM,
ECRYPT Stream Cipher Project (2007),
http://www.ecrypt.eu.org/stream/phase3perf.html

9. De Cannière, C.: Guess and determine attack on SNOW - NESSIE public reports
(2001), https://www.cosic.esat.kuleuven.ac.be/nessie/reports/

10. Coppersmith, D., Halevi, S., Jutla, C.: Cryptanalysis of stream ciphers with linear
masking. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442. Springer, Heidelberg
(2002)

11. Ekdahl, P., Johannson, T.: Distinguishing attacks on SOBER. In: Daemen, J.,
Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 210–224. Springer, Heidelberg
(2002)

12. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Kuich,
W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 47–61.
Springer, Heidelberg (2002)

13. Gladman, B.: SERPENT performance,
http://fp.gladman.plus.com/cryptography technology/serpent/

14. Golić, J.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

15. Good, T., Benaissa, M.: Hardware results for selected stream cipher candidates.
eSTREAM, ECRYPT Stream Cipher Project, SASC, Report 2007/023 (2007),
http://www.ecrypt.eu.org/stream

16. Hawkes, P., Rose, G.: Guess-and-determine attacks on SNOW. In: Nyberg, K.,
Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 37–46. Springer, Heidelberg
(2003)

17. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Transactions on In-
formation Theory 26(4), 401–406 (1980)

18. Hong, J., Sarkar, P.: Rediscovery of time memory tradeoffs (2005),
http://eprint.iacr.org/2005/090.ps

19. Howard, K.: Snow snake demonstration gives history lesson, http://www.

turtletrack.org/Issues01/Co02102001/CO 02102001 Snowsnake.htm

20. Matsui, M., Fukuda, S.: How to maximize software performance of symmetric
primitives on Pentiums. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS,
vol. 3557, pp. 398–412. Springer, Heidelberg (2005)

21. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

22. Osvik, D.: Speeding up SERPENT. In: Second AES Candidate Conference (2000),
http://www.ii.uib.no/∼osvik/

23. Rueppel, R.A.: Analysis and Design of stream ciphers. Springer, Heidelberg (1986)
24. The story of Snowsnake,

http://www.members.shaw.ca/dmacauley/story of snowsnake.htm

25. Tsunoo, Y., Saito, T., Shigeri, M., Suzaki, T., Ahmadi, H., Eghlidos, T., Khaz-
aei, S.: Evaluation of SOSEMANUK with regard to guess-and-determine at-
tacks. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/009 (2005),
http://www.ecrypt.eu.org/stream

26. Watanabe, D., Biryukov, A., De Cannière, C.: A distinguishing attack of SNOW
2.0 with linear masking method. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003.
LNCS, vol. 3006, pp. 222–233. Springer, Heidelberg (2004)

http://www.ecrypt.eu.org/stream/perf/
http://www.ecrypt.eu.org/stream/phase3perf.html
https://www.cosic.esat.kuleuven.ac.be/nessie/reports/
http://fp.gladman.plus.com/cryptography_technology/serpent/
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/2005/090.ps
http://www.turtletrack.org/Issues01/Co02102001/CO_02102001_Snowsnake.htm
http://www.turtletrack.org/Issues01/Co02102001/CO_02102001_Snowsnake.htm
http://www.ii.uib.no/~osvik/
http://www.members.shaw.ca/dmacauley/story_of_snowsnake.htm
http://www.ecrypt.eu.org/stream

118 C. Berbain et al.

A Specifications of SERPENT

In this appendix, a recall on the specifications of SERPENT given in [3] is made.
First, the S-boxes definition is given and the linear part is also defined again.

A.1 S-Boxes Definitions

The eight SERPENT S-boxes act on 4-bit words and are defined as permutations
of Z16:

S0 : 3, 8, 15, 1, 10, 6, 5, 11, 14, 13, 4, 2, 7, 0, 9, 12
S1 : 15, 12, 2, 7, 9, 0, 5, 10, 1, 11, 14, 8, 6, 13, 3, 4
S2 : 8, 6, 7, 9, 3, 12, 10, 15, 13, 1, 14, 4, 0, 11, 5, 2
S3 : 0, 15, 11, 8, 12, 9, 6, 3, 13, 1, 2, 4, 10, 7, 5, 14
S4 : 1, 15, 8, 3, 12, 0, 11, 6, 2, 5, 4, 10, 9, 14, 7, 13
S5 : 15, 5, 2, 11, 4, 10, 9, 12, 0, 3, 14, 8, 13, 6, 7, 1
S6 : 7, 2, 12, 5, 8, 4, 6, 11, 14, 9, 1, 15, 13, 3, 10, 0
S7 : 1, 13, 15, 0, 14, 8, 2, 11, 7, 4, 12, 10, 9, 3, 5, 6

A.2 Linear Part of SERPENT Round Function

The linear part of a one round version of SERPENT acts on 4 32-bit words
(X3, X2, X1, X0) where X0 is the least significant word and is defined as follows:

X0 = X0 <<<13
X2 = X2 <<<3
X1 = X1 ⊕X0 ⊕X2

X3 = X3 ⊕X2 ⊕ (X0 <<<3)
X1 = X1 <<<1
X3 = X3 <<<7
X0 = X0 ⊕X1 ⊕X3

X2 = X2 ⊕X3 ⊕ (X1 <<<7)
X0 = X0 <<<5
X2 = X2 <<<22

eSTREAM Software Performance�

Christophe De Cannière1,2

1 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC and IBBT,
Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium

2 Département d’Informatique École Normale Supérieure,
45, rue d’Ulm, F-75230 Paris cedex 05

christophe.decanniere@{esat.kuleuven.be,ens.fr}

Abstract. In order to evaluate their performance in software, all Pro-
file 1 candidates were subjected to benchmark tests. This chapter briefly
describes the testing framework developed by eSTREAM for this pur-
pose, and summarizes the results of the performance tests conducted on
the eight Profile 1 finalists.

1 Introduction

One of the requirements imposed on all eSTREAM stream cipher submissions
was that they should demonstrate the potential to be superior to the AES in
at least one significant aspect. An aspect which is particularly significant for
Profile 1 candidates is software performance.

Software performance can be measured in many different ways, and in order
to make comparisons as fair as possible, eSTREAM decided to develop a testing
framework. The framework had two objectives:

1. assuring that all stream cipher proposals were submitted to the same tests
under the same circumstances

2. automating the test procedure as much as possible such that new optimized
implementations, new testing platforms, and new tests (statistical tests, for
instance) could be included with as little effort as possible.

2 The Testing Framework

The eSTREAM testing framework consists of a collection of shell scripts and
C-code which test three aspects of the submitted code: API compliance, correct-
ness, and performance. Many of these tests were inspired by the NESSIE Test
Suite.
� The work described in this chapter has been partly supported by the European

Commission under contract IST-2002-507932 (ECRYPT), by the Fund for Scientific
Research – Flanders (FWO), and the Chaire France Telecom pour la sécurité des
réseaux de télécommunications.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 119–139, 2008.
� Springer-Verlag Berlin Heidelberg 2008

120 C. De Cannière

2.1 API Compliance

The eSTREAM API is specified in the files ecrypt-sync.h and ecrypt-sync-
ae.h, which can be downloaded from the eSTREAM web page. The framework
verifies whether the code complies to this API by performing the following tests:

1. It checks that the code provides the necessary interfaces, i.e., that it compiles
and links correctly with the test code (ecrypt-test.c).

2. It checks that the ECRYPT_KEYSIZE(i) and ECRYPT_MAXKEYSIZE macros al-
low key sizes to be enumerated as specified by the API. Idem for IV and
MAC sizes.

3. It checks that calls to the same functions with the same parameters produce
the same results, no matter how they are interleaved. When this test fails,
this is often an indication that the code stores data in static variables, or
that it uses uninitialized variables.

4. It checks that the incremental encryption functions ECRYPT_encrypt_blocks
and ECRYPT_encrypt_bytesproduce the same ciphertext as ECRYPT_encrypt
_packetwhen fed with the same plaintext. It also verifies that this ciphertext
decrypts to the original plaintext.

2.2 Correctness

The correctness of the code on different platforms is verified by generating and
comparing test vectors. For convenience, eSTREAM has chosen to use the same
format as the NESSIE test vectors.

2.3 Performance

Stream ciphers can be deployed in various situations, each imposing specific
requirements on the efficiency of the primitive. Hence, defining a small set of
performance criteria which reflects all relevant implementation properties of a
stream cipher is not an easy task. In the final version of the framework, eS-
TREAM has limited itself to four performance measures. More detailed tests
can be found in [2], though.

1. Encryption rate for long streams. This is where stream ciphers have
the biggest potential advantage over block ciphers, and hence this figure is
likely to be the most important criterion in many applications. The test-
ing framework measures the encryption rate by encrypting a long stream
in chunks of about 4KB using the ECRYPT_encrypt_blocks function. The
encryption speed, in cycles/byte, is calculated by measuring the number of
bytes encrypted in 250�sec. Note that the time to setup the key or the IV
is not considered in this test.

2. Packet encryption rate. While a block cipher is likely to be a better
choice when encrypting very short packets, it is still interesting to determine
at which length a stream cipher starts to take the lead. Moreover, stream

eSTREAM Software Performance 121

ciphers whose encryption speeds do not deteriorate too much for small pack-
ets could have a distinct advantage in applications which use a wide range
of packet sizes. The packet encryption rate is measured by applying the
ECRYPT_encrypt_packet function to packets of different lengths. Each call
to ECRYPT_encrypt_packet includes a separate IV setup and, if authenti-
cated encryption is supported, a MAC finalization step. The packet lengths
(40, 576, and 1500 bytes) were chosen to be representative for the traffic seen
on the Internet [1].

3. Agility. When an application needs to encrypt many streams in parallel
on a single processor, its performance will not only depend on the encryp-
tion speed of the cipher, but also on the time spent switching from one
session to another. This overhead is typically determined by the number of
bytes of ECRYPT_ctx that need to be stored or restored during each context
switch. In order to build a picture of the agility of the different submissions,
the testing framework performs the following test: it first initiates a large
number of sessions (filling 16MB of RAM with ECRYPT_ctx structures), and
then encrypts streams of plaintext in short blocks of around 256 bytes using
ECRYPT_encrypt_blocks, each time jumping from one session to another.

4. Key and IV setup (+ MAC generation). The last test in the testing
framework separately measures the efficiency of the key setup (ECRYPT_key
setup) and the IV setup (ECRYPT_ivsetup). Given that each call to ECRYPT_
AE_ivsetup comes together with a call to ECRYPT_AE_finalize, both func-
tions are benchmarked together in case of authenticated stream ciphers. This
is probably the least critical of the four tests, considering that the efficiency
of the IV setup is already reflected in the packet encryption rate, and that
the time for the key setup will typically be negligible compared to the work
needed to generate and exchange the key.

3 Platforms

The eSTREAM testing framework has been run on a large number of platforms
(see [2] and [3]), but in this chapter we limit ourselves to two little-endian 32-bit
platforms (Pentium 4 and Pentium M), two little-endian 64-bit platforms (Intel
Core 2 Duo and AMD Athlon 64), and a (somewhat outdated) big-endian 64-bit
platform (HP 9000). The specifications of these platforms are listed in Table 1.

Table 1. Selected test platforms

CPU Model Clock frequency Architecture

Intel Pentium 4 15/ 2 /9 2.80 GHz x86
Intel Pentium M 6/ 9 /5 1.70 GHz x86
Intel Core 2 Duo E6550 6/15/11 2.33 GHz AMD64
AMD Athlon 64 X2 4200+ 15/75/2 2.20 GHz AMD64
HP 9000/785 J6750 875 MHz PA-RISC 2.0

122 C. De Cannière

4 Results

The detailed results of all performance tests can be found on the eSTREAM
web page. In this chapter, we restrict ourselves to a series of graphs showing the
relative performance of the candidates.

4.1 Profile 1 Candidates with 128-Bit Keys

We first focus on the performance of the eight Profile 1 finalists with standard
128-bit key sizes. For comparison, we also include three benchmark ciphers (AES
in counter mode, RC4, and SNOW2.0), and a number of Profile 2 candidates
(with 80-bit keys). The complete list is shown in Table 2.

Table 2. List of considered stream ciphers

Cipher Profile Key IV MAC

CryptMT-v3 1 128 128 -
Dragon 1 128 128 -
HC-128 1 128 128 -
HC-256 1 128 128 -
LEX-v2 1 128 128 -
NLS-v2 1 128 64 -
NLS-v2 1 128 64 64
Rabbit 1 128 64 -
Salsa20 1 128 64 -
Salsa20/12 1 128 64 -
Salsa20/8 1 128 64 -
SOSEMANUK 1 128 64 -

AES-CTR - 128 128 -
RC4 - 128 - -
SNOW-2.0 - 128 128 -

DECIM-v2 2 80 64 -
Edon80 2 80 64 -
Grain-v1 2 80 64 -
MICKEY-v2 2 80 64 -
TRIVIUM 2 80 80 -

The graphs in Figs. 1–10 show the relative speed of the different stream ciphers
on different platforms, both for long streams and for short (40-byte) packets. The
next series of graphs (Figs. 11–21), consider each finalist separately, and show
how each of them performs for each individual test on each platform. The radii
of the disks represent the performance of the ciphers compared to the fastest
cipher for each specific test.

eSTREAM Software Performance 123

∞

4

6

8

10

20

40

H
C

-1
2
8

3
.8

0

H
C

-2
5
6

4
.4

1

S
N

O
W

-2
.0

5
.2

0

S
a
ls
a
2
0
/
8

5
.3

1

C
ry

p
tM

T
-v

3
5
.3

6

N
L
S
-v

2
5
.7

2

S
O

S
E

M
A

N
U

K
6
.5

2

S
a
ls
a
2
0
/
1
2

7
.4

1

R
a
b
b
it

7
.5

7

T
R

IV
IU

M
8
.2

9

L
E

X
-v

2
9
.9

4

S
a
ls
a
2
0

1
1
.6

4

D
ra

g
o
n

1
2
.3

9

R
C

4
1
3
.1

0

N
L
S
-v

2
1
4
.6

1

A
E

S
-C

T
R

1
7
.7

9

G
ra

in
-v

1
5
7
.8

0

M
IC

K
E

Y
-v

2
1
1
6
1
.7

6

E
d
o
n
8
0

5
2
2
5
.7

8

D
E

C
IM

-v
2

1
4
3
8
7
.2

1

Fig. 1. Pentium4, encryption speed (in cycles/byte) for long streams

∞

20

30

40

100

200

L
E

X
-v

2
2
1
.3

6

S
a
ls
a
2
0
/
8

2
5
.5

2

A
E

S
-C

T
R

2
6
.8

7

S
a
ls
a
2
0
/
1
2

3
0
.5

8

S
N

O
W

-2
.0

3
4
.1

9

C
ry

p
tM

T
-v

3
3
5
.7

7

R
a
b
b
it

3
8
.4

8

S
a
ls
a
2
0

4
1
.1

2

T
R

IV
IU

M
4
4
.9

2

N
L
S
-v

2
5
8
.7

6

S
O

S
E

M
A

N
U

K
6
2
.3

0

D
ra

g
o
n

8
7
.3

4

G
ra

in
-v

1
1
0
0
.6

8

N
L
S
-v

2
1
4
7
.8

6

R
C

4
4
7
0
.7

5

H
C

-1
2
8

1
4
1
1
.1

9

M
IC

K
E

Y
-v

2
2
0
5
2
.6

4

H
C

-2
5
6

2
1
9
9
.4

9

E
d
o
n
8
0

9
6
4
3
.0

0

D
E

C
IM

-v
2

2
4
0
0
7
.3

0

Fig. 2. Pentium4, encryption speed (in cycles/byte) for 40-byte packets

124 C. De Cannière

∞

4

6

8

10

20

40

H
C

-1
2
8

3
.5

2

R
a
b
b
it

3
.9

4

S
N

O
W

-2
.0

4
.7

4

C
ry

p
tM

T
-v

3
4
.7

6

H
C

-2
5
6

5
.0

9

N
L
S
-v

2
5
.2

1

S
a
ls
a
2
0
/
8

5
.3

0

T
R

IV
IU

M
5
.5

2

S
O

S
E

M
A

N
U

K
5
.6

0

S
a
ls
a
2
0
/
1
2

7
.4

3

L
E

X
-v

2
9
.2

4

S
a
ls
a
2
0

1
1
.7

0

N
L
S
-v

2
1
2
.4

5

R
C

4
1
2
.9

0

D
ra

g
o
n

1
3
.4

0

A
E

S
-C

T
R

1
5
.9

7

G
ra

in
-v

1
5
6
.0

5

M
IC

K
E

Y
-v

2
9
4
3
.0

4

E
d
o
n
8
0

4
9
0
4
.7

5

D
E

C
IM

-v
2

1
2
9
7
4
.9

5

Fig. 3. PentiumM, encryption speed (in cycles/byte) for long streams

∞

20

30

40

100

200

S
a
ls
a
2
0
/
8

1
8
.2

4

L
E

X
-v

2
1
8
.9

5

C
ry

p
tM

T
-v

3
1
9
.6

8

S
a
ls
a
2
0
/
1
2

2
2
.0

7

R
a
b
b
it

2
2
.6

9

A
E

S
-C

T
R

2
2
.7

3

N
L
S
-v

2
2
5
.7

0

T
R

IV
IU

M
2
8
.0

4

S
N

O
W

-2
.0

2
8
.6

3

S
a
ls
a
2
0

2
9
.3

0

S
O

S
E

M
A

N
U

K
3
6
.0

2

D
ra

g
o
n

8
3
.2

0

G
ra

in
-v

1
8
5
.9

3

N
L
S
-v

2
9
3
.5

6

R
C

4
3
4
8
.3

8

H
C

-1
2
8

7
6
7
.7

2

M
IC

K
E

Y
-v

2
1
6
3
5
.5

1

H
C

-2
5
6

1
6
6
0
.7

2

E
d
o
n
8
0

6
5
0
4
.3

5

D
E

C
IM

-v
2

2
1
3
9
3
.3

0

Fig. 4. PentiumM, encryption speed (in cycles/byte) for 40-byte packets

eSTREAM Software Performance 125

∞

2

3

4

5

10

20

S
a
ls
a
2
0
/
8

1
.8

7

H
C

-1
2
8

2
.3

4

R
a
b
b
it

2
.3

4

S
a
ls
a
2
0
/
1
2

2
.5

5

C
ry

p
tM

T
-v

3
2
.7

1

H
C

-2
5
6

3
.5

2

S
O

S
E

M
A

N
U

K
3
.5

3

T
R

IV
IU

M
3
.6

7

S
a
ls
a
2
0

3
.8

7

S
N

O
W

-2
.0

3
.9

2

N
L
S
-v

2
4
.1

2

L
E

X
-v

2
6
.4

3

R
C

4
7
.2

8

D
ra

g
o
n

7
.3

3

N
L
S
-v

2
8
.4

3

A
E

S
-C

T
R

1
2
.6

0

G
ra

in
-v

1
2
7
.9

0

M
IC

K
E

Y
-v

2
7
0
0
.6

3

E
d
o
n
8
0

4
6
9
4
.9

3

D
E

C
IM

-v
2

5
6
4
9
.8

6

Fig. 5. Core 2 Duo, encryption speed (in cycles/byte) for long streams

∞

10

15

20

50

100

S
a
ls
a
2
0
/
8

1
0
.6

2

C
ry

p
tM

T
-v

3
1
1
.3

4

L
E

X
-v

2
1
2
.9

9

S
a
ls
a
2
0
/
1
2

1
3
.6

0

S
a
ls
a
2
0

1
7
.1

3

R
a
b
b
it

1
7
.7

7

N
L
S
-v

2
1
7
.9

5

A
E

S
-C

T
R

1
8
.7

1

T
R

IV
IU

M
1
9
.1

9

S
N

O
W

-2
.0

2
0
.7

3

S
O

S
E

M
A

N
U

K
2
4
.2

1

N
L
S
-v

2
4
5
.6

1

G
ra

in
-v

1
4
7
.0

2

D
ra

g
o
n

4
8
.5

2

R
C

4
1
3
3
.9

3

H
C

-1
2
8

4
9
9
.5

2

M
IC

K
E

Y
-v

2
1
2
5
9
.6

7

H
C

-2
5
6

2
3
0
1
.4

5

E
d
o
n
8
0

6
2
0
3
.8

4

D
E

C
IM

-v
2

8
6
2
4
.3

5

Fig. 6. Core 2 Duo, encryption speed (in cycles/byte) for 40-byte packets

126 C. De Cannière

∞

2

3

4

5

10

20

H
C

-1
2
8

2
.5

9

R
a
b
b
it

2
.8

6

S
a
ls
a
2
0
/
8

3
.4

6

H
C

-2
5
6

4
.0

4

S
O

S
E

M
A

N
U

K
4
.0

6

T
R

IV
IU

M
4
.0

8

N
L
S
-v

2
4
.2

5

S
N

O
W

-2
.0

4
.2

8

C
ry

p
tM

T
-v

3
4
.6

3

S
a
ls
a
2
0
/
1
2

4
.8

6

L
E

X
-v

2
6
.5

3

S
a
ls
a
2
0

7
.6

4

D
ra

g
o
n

7
.7

6

N
L
S
-v

2
9
.9

6

R
C

4
1
2
.5

1

A
E

S
-C

T
R

1
3
.3

9

G
ra

in
-v

1
3
3
.3

8

M
IC

K
E

Y
-v

2
6
2
8
.5

9

D
E

C
IM

-v
2

5
1
6
3
.9

7

E
d
o
n
8
0

6
9
5
1
.1

1

Fig. 7. AMD64, encryption speed (in cycles/byte) for long streams

∞

10

15

20

50

100

S
a
ls
a
2
0
/
8

1
0
.1

7

S
a
ls
a
2
0
/
1
2

1
1
.8

2

L
E

X
-v

2
1
3
.3

4

S
a
ls
a
2
0

1
6
.2

3

C
ry

p
tM

T
-v

3
1
6
.5

5

A
E

S
-C

T
R

1
8
.1

0

T
R

IV
IU

M
1
9
.6

8

N
L
S
-v

2
2
1
.7

0

R
a
b
b
it

2
1
.8

2

S
O

S
E

M
A

N
U

K
2
4
.0

0

S
N

O
W

-2
.0

2
4
.2

1

N
L
S
-v

2
5
1
.8

7

G
ra

in
-v

1
5
4
.4

3

D
ra

g
o
n

6
0
.2

9

R
C

4
3
3
4
.1

6

H
C

-1
2
8

5
7
7
.8

6

M
IC

K
E

Y
-v

2
1
1
5
9
.1

0

H
C

-2
5
6

2
4
0
9
.2

7

D
E

C
IM

-v
2

7
9
3
2
.7

3

E
d
o
n
8
0

9
2
3
1
.0

0

Fig. 8. AMD64, encryption speed (in cycles/byte) for 40-byte packets

eSTREAM Software Performance 127

∞

2

3

4

5

10

20

H
C

-1
2
8

2
.7

5

T
R

IV
IU

M
2
.8

4

H
C

-2
5
6

4
.1

9

S
N

O
W

-2
.0

4
.5

2

S
a
ls
a
2
0
/
8

5
.2

1

L
E

X
-v

2
5
.9

2

S
O

S
E

M
A

N
U

K
6
.1

0

D
ra

g
o
n

6
.1

8

N
L
S
-v

2
6
.2

5

S
a
ls
a
2
0
/
1
2

6
.8

8

R
C

4
7
.0

9

R
a
b
b
it

7
.2

0

S
a
ls
a
2
0

1
0
.0

8

N
L
S
-v

2
1
1
.7

9

C
ry

p
tM

T
-v

3
1
2
.1

0

A
E

S
-C

T
R

1
7
.5

7

M
IC

K
E

Y
-v

2
5
9
1
.3

0

G
ra

in
-v

1
1
8
9
8
.7

3

E
d
o
n
8
0

6
3
7
1
.0

7

D
E

C
IM

-v
2

2
2
4
2
2
.7

5

Fig. 9. PA-RISC, encryption speed (in cycles/byte) for long streams

∞

10

15

20

50

100

L
E

X
-v

2
1
3
.3

6

T
R

IV
IU

M
1
4
.5

4

S
a
ls
a
2
0
/
8

1
9
.4

4

S
a
ls
a
2
0
/
1
2

2
2
.1

3

S
N

O
W

-2
.0

2
3
.7

7

R
a
b
b
it

2
4
.5

8

A
E

S
-C

T
R

2
5
.8

9

N
L
S
-v

2
2
6
.8

8

S
a
ls
a
2
0

2
7
.4

6

S
O

S
E

M
A

N
U

K
3
0
.5

7

C
ry

p
tM

T
-v

3
3
8
.7

5

D
ra

g
o
n

5
8
.5

1

N
L
S
-v

2
6
1
.0

8

R
C

4
9
6
.8

4

H
C

-1
2
8

5
0
5
.4

7

M
IC

K
E

Y
-v

2
1
0
3
1
.5

3

H
C

-2
5
6

1
2
9
4
.3

9

G
ra

in
-v

1
2
8
8
0
.8

0

E
d
o
n
8
0

7
9
7
4
.2

0

D
E

C
IM

-v
2

3
6
0
3
9
.5

0

Fig. 10. PA-RISC, encryption speed (in cycles/byte) for 40-byte packets

128 C. De Cannière

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 11. CryptMT-v3 () vs. AES-CTR ()

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 12. Dragon () vs. AES-CTR ()

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 13. HC-128 () vs. AES-CTR ()

eSTREAM Software Performance 129

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 14. HC-256 () vs. AES-CTR ()

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 15. LEX-v2 () vs. AES-CTR ()

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 16. NLS-v2 () vs. AES-CTR ()

130 C. De Cannière

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 17. Rabbit () vs. AES-CTR ()

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 18. Salsa20 () vs. AES-CTR ()

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 19. Salsa20/12 () vs. AES-CTR ()

eSTREAM Software Performance 131

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 20. Salsa20/8 () vs. AES-CTR ()

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 21. SOSEMANUK () vs. AES-CTR ()

4.2 Profile 1 Candidates with 256-Bit Keys

In addition to the initial target key length of 128 bit (or 80 bit in Profile 2),
several eSTREAM finalists were designed to support longer keys as well. The
stream ciphers for which this feature was implemented are listed in Table 3.
Their performance is compared in Figs. 22–37.

132 C. De Cannière

Table 3. List of considered stream ciphers

Cipher Profile Key IV MAC

CryptMT-v3 1 256 128 -
Dragon 1 256 128 -
HC-256 1 256 128 -
Salsa20 1 256 64 -
Salsa20/12 1 256 64 -
SOSEMANUK 1 256 128 -

AES-CTR - 256 128 -
RC4 - 256 - -
SNOW-2.0 - 256 128 -

F-FCSR-16 2 128 128 -
Grain-128 2 128 96 -
MICKEY-128-v2 2 128 64 -

∞

4

6

8

10

20

40

H
C

-2
5
6

4
.4

0

S
N

O
W

-2
.0

5
.2

1

C
ry

p
tM

T
-v

3
5
.3

6

S
O

S
E

M
A

N
U

K
6
.5

2

S
a
ls
a
2
0
/
1
2

7
.4

1

S
a
ls
a
2
0

1
1
.6

4

D
ra

g
o
n

1
2
.3

9

R
C

4
1
3
.1

2

A
E

S
-C

T
R

2
6
.8

6

G
ra

in
-1

2
8

3
5
.8

9

F
-F

C
S
R

-1
6

6
8
.0

5

M
IC

K
E

Y
-1

2
8

1
3
7
0
.7

8

Fig. 22. Pentium4, encryption speed (in cycles/byte) for long streams

eSTREAM Software Performance 133

∞

20

30

40

100

200

S
a
ls
a
2
0
/
1
2

3
0
.5

9

S
N

O
W

-2
.0

3
5
.0

3

A
E

S
-C

T
R

3
8
.6

5

C
ry

p
tM

T
-v

3
3
9
.2

9

S
a
ls
a
2
0

4
1
.1

2

S
O

S
E

M
A

N
U

K
5
4
.0

7

G
ra

in
-1

2
8

7
3
.1

8

D
ra

g
o
n

8
6
.2

2

R
C

4
4
7
2
.4

9

F
-F

C
S
R

-1
6

7
1
7
.9

8

H
C

-2
5
6

2
1
8
8
.3

3

M
IC

K
E

Y
-1

2
8

3
3
2
6
.0

8
Fig. 23. Pentium4, encryption speed (in cycles/byte) for 40-byte packets

∞

4

6

8

10

20

40

S
N

O
W

-2
.0

4
.7

4

C
ry

p
tM

T
-v

3
4
.7

6

H
C

-2
5
6

5
.0

9

S
O

S
E

M
A

N
U

K
5
.6

0

S
a
ls
a
2
0
/
1
2

7
.4

3

S
a
ls
a
2
0

1
1
.7

0

R
C

4
1
2
.9

0

D
ra

g
o
n

1
3
.4

0

A
E

S
-C

T
R

2
5
.0

4

G
ra

in
-1

2
8

3
1
.8

7

F
-F

C
S
R

-1
6

6
3
.9

9

M
IC

K
E

Y
-1

2
8

1
0
6
1
.4

1

Fig. 24. PentiumM, encryption speed (in cycles/byte) for long streams

134 C. De Cannière

∞

20

30

40

100

200

S
a
ls
a
2
0
/
1
2

2
2
.0

1

C
ry

p
tM

T
-v

3
2
2
.8

5

S
N

O
W

-2
.0

2
9
.1

4

S
a
ls
a
2
0

2
9
.3

0

S
O

S
E

M
A

N
U

K
3
3
.3

6

A
E

S
-C

T
R

3
4
.4

9

G
ra

in
-1

2
8

5
9
.5

4

D
ra

g
o
n

8
3
.3

9

R
C

4
3
4
8
.3

8

F
-F

C
S
R

-1
6

7
3
2
.8

7

H
C

-2
5
6

1
6
6
1
.5

1

M
IC

K
E

Y
-1

2
8

2
2
1
1
.0

1
Fig. 25. PentiumM, encryption speed (in cycles/byte) for 40-byte packets

∞

2

3

4

5

10

20

S
a
ls
a
2
0
/
1
2

2
.5

5

C
ry

p
tM

T
-v

3
2
.7

1

H
C

-2
5
6

3
.5

2

S
O

S
E

M
A

N
U

K
3
.5

3

S
a
ls
a
2
0

3
.8

8

S
N

O
W

-2
.0

3
.9

2

R
C

4
7
.2

9

D
ra

g
o
n

7
.3

2

G
ra

in
-1

2
8

1
1
.7

5

A
E

S
-C

T
R

1
7
.7

6

F
-F

C
S
R

-1
6

4
3
.5

7

M
IC

K
E

Y
-1

2
8

8
2
1
.4

1

Fig. 26. Core 2 Duo, encryption speed (in cycles/byte) for long streams

eSTREAM Software Performance 135

∞

10

15

20

50

100

S
a
ls
a
2
0
/
1
2

1
2
.9

6

C
ry

p
tM

T
-v

3
1
3
.6

9

S
a
ls
a
2
0

1
6
.1

7

S
N

O
W

-2
.0

2
1
.1

0

S
O

S
E

M
A

N
U

K
2
4
.0

7

A
E

S
-C

T
R

2
4
.6

6

G
ra

in
-1

2
8

2
4
.6

9

D
ra

g
o
n

4
9
.5

4

R
C

4
1
1
0
.6

1

F
-F

C
S
R

-1
6

5
1
1
.2

8

M
IC

K
E

Y
-1

2
8

1
7
0
4
.7

6

H
C

-2
5
6

2
3
0
0
.9

0
Fig. 27. Core 2 Duo, encryption speed (in cycles/byte) for 40-byte packets

∞

4

6

8

10

20

40

H
C

-2
5
6

4
.0

4

S
O

S
E

M
A

N
U

K
4
.0

6

S
N

O
W

-2
.0

4
.2

8

C
ry

p
tM

T
-v

3
4
.6

3

S
a
ls
a
2
0
/
1
2

4
.8

6

S
a
ls
a
2
0

7
.6

4

D
ra

g
o
n

7
.7

6

G
ra

in
-1

2
8

1
1
.2

4

R
C

4
1
2
.5

1

A
E

S
-C

T
R

1
8
.6

2

F
-F

C
S
R

-1
6

4
0
.1

8

M
IC

K
E

Y
-1

2
8

7
2
4
.0

8

Fig. 28. AMD64, encryption speed (in cycles/byte) for long streams

136 C. De Cannière

∞

10

15

20

50

100

S
a
ls
a
2
0
/
1
2

1
1
.8

2

S
a
ls
a
2
0

1
6
.2

3

C
ry

p
tM

T
-v

3
1
9
.1

7

S
O

S
E

M
A

N
U

K
2
3
.2

1

G
ra

in
-1

2
8

2
3
.9

9

S
N

O
W

-2
.0

2
4
.4

7

A
E

S
-C

T
R

2
5
.1

6

D
ra

g
o
n

6
0
.4

0

R
C

4
3
3
4
.1

8

F
-F

C
S
R

-1
6

4
7
6
.9

1

M
IC

K
E

Y
-1

2
8

1
6
1
9
.1

8

H
C

-2
5
6

2
4
1
0
.1

5
Fig. 29. AMD64, encryption speed (in cycles/byte) for 40-byte packets

∞

4

6

8

10

20

40

H
C

-2
5
6

4
.1

9

S
N

O
W

-2
.0

4
.5

2

S
O

S
E

M
A

N
U

K
6
.1

1

D
ra

g
o
n

6
.1

7

S
a
ls
a
2
0
/
1
2

6
.8

8

R
C

4
7
.0

8

S
a
ls
a
2
0

1
0
.0

8

C
ry

p
tM

T
-v

3
1
2
.1

0

A
E

S
-C

T
R

2
2
.1

9

F
-F

C
S
R

-1
6

4
1
.5

1

M
IC

K
E

Y
-1

2
8

6
9
0
.0

0

G
ra

in
-1

2
8

4
9
1
6
.8

9

Fig. 30. PA-RISC, encryption speed (in cycles/byte) for long streams

eSTREAM Software Performance 137

∞

20

30

40

100

200

S
a
ls
a
2
0
/
1
2

2
2
.1

2

S
N

O
W

-2
.0

2
3
.9

6

S
a
ls
a
2
0

2
7
.4

6

S
O

S
E

M
A

N
U

K
2
9
.7

7

A
E

S
-C

T
R

3
2
.0

7

C
ry

p
tM

T
-v

3
4
2
.5

2

D
ra

g
o
n

5
8
.4

5

R
C

4
9
6
.2

1

F
-F

C
S
R

-1
6

4
1
5
.8

4

H
C

-2
5
6

1
2
9
6
.6

7

M
IC

K
E

Y
-1

2
8

1
4
2
4
.6

8

G
ra

in
-1

2
8

8
9
0
2
.7

0

Fig. 31. PA-RISC, encryption speed (in cycles/byte) for 40-byte packets

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 32. CryptMT-v3 () vs. AES-CTR ()

138 C. De Cannière

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 33. Dragon () vs. AES-CTR ()

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 34. HC-256 () vs. AES-CTR ()

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 35. Salsa20 () vs. AES-CTR ()

eSTREAM Software Performance 139

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 36. Salsa20/12 () vs. AES-CTR ()

∞ 1500 576 40 Imix Agility

Pentium 4

Pentium M

Core 2 Duo

AMD64

PA-RISC

Fig. 37. SOSEMANUK () vs. AES-CTR ()

References

1. Agilent Technologies, Mixed Packet Size Throughput, Insight Edition 1 (08/2001),
http://advanced.comms.agilent.com/n2x/docs/insight/2001-08/

2. Bernstein, D.J.: Notes on the ECRYPT Stream Cipher Project (eSTREAM). Soft-
ware Timings, http://cr.yp.to/streamciphers/timings.html

3. De Cannière, C.: eSTREAM Optimized Code HOWTO,
http://www.ecrypt.eu.org/stream/perf/

http://advanced.comms.agilent.com/n2x/docs/insight/2001-08/
http://cr.yp.to/streamciphers/timings.html
http://www.ecrypt.eu.org/stream/perf/

Decimv2

Côme Berbain1, Olivier Billet1, Anne Canteaut2, Nicolas Courtois3,
Blandine Debraize4,5, Henri Gilbert1, Louis Goubin4,5, Aline Gouget4,

Louis Granboulan6, Cédric Lauradoux2, Marine Minier7,
Thomas Pornin8, and Hervé Sibert9

1 Orange Labs, France
{come.berbain,olivier.billet,henri.gilbert}@orange-ftgroup.com

2 INRIA Rocquencourt, France
{anne.canteaut,cedric.lauradoux}@inria.fr
3 University College of London, United Kingdom

n.courtois@ucl.ac.uk
4 Gemalto, France

{blandine.debraize,aline.gouget}@gemalto.com
5 Université de Versailles, France
louis.goubin@prism.uvsq.fr

6 EADS, France
louis.granboulan@eads.net

7 INSA Lyon, France
marine.minier@insa-lyon.fr

8 Cryptolog International, France
thomas.pornin@cryptolog.com
9 NXP Semiconductors, France

herve.sibert@nxp.com

Abstract. In this paper, we present Decimv2, a stream cipher hardware-
oriented selected for the Phase 3 of the ECRYPT stream cipher project
eSTREAM. As required by the initial call for hardware-oriented stream
cipher contribution, Decimv2 manages 80-bit secret keys and 64-bit pub-
lic initialization vectors. The design of Decimv2 combines two filtering
mechanisms: a nonlinear Boolean filter over a LFSR, followed by an irreg-
ular decimation mechanism called the ABSG. Since designers have been
invited to demonstrate flexibility of their design by proposing variants
that take 128-bit keys, we also present a 128-bit security version of Decim
called Decim-128.

1 Introduction

Decimv2 is a hardware-oriented stream cipher selected for the Phase 3 of the
ECRYPT Stream Cipher Project [1]. Decimv2 is the tweaked version of the
original submission Decim [3]. Decimv2 manages 80-bit secret keys and 64-bit
public initialization as required by the initial eSTREAM call for contribution for
the hardware-oriented profile. Decimv2 has been developed around the ABSG
mechanism [9, 12] which provides a method for irregular decimation of pseu-
dorandom sequences. The ABSG mechanism consists of compressing the input

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 140–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Decimv2 141

sequence in a very simple way and it operates a highly nonlinear transforma-
tion. Being an irregular decimation, it prevents algebraic attacks and some fast
correlation attacks.

The general running of Decimv2 consists first in generating a binary sequence
y in a regular way from a Linear Feedback Shift Register (LFSR) which is fil-
tered by a Boolean function. Next, the sequence y is filtered by the ABSG
mechanism. Wu and Preneel found two weaknesses [15] in the original design
of Decim that have been fixed in Decimv2. Note that the attacks presented
in [15] do not question the main ideas behind Decim, namely, to filter and then
decimate the output of an LFSR using the ABSG mechanism. Since designers
have been invited to demonstrate flexibility of their design by proposing vari-
ants that take 128-bit keys, we present a 128-bit security version of Decim called
Decim-128.

The outline of the paper is as follows. In Section 2, we give an overview of
Decimv2 and we detail the differences between Decim and Decimv2. In Sec-
tion 3, we provide a full description of Decimv2. In Section 4, we explain the
design rationale. In Section 5, we discuss the hardware implementation. Section 6
is dedicated to the description of Decim-128. Finally, we conclude in Section 7.

2 Overview of Decimv2

In accordance with the requirements given by the ECRYPT stream cipher project,
Decimv2 takes as an input a 80-bit secret key and a 64-bit public initialization
vector.

2.1 Keystream Generation

The size of the inner state of Decimv2 is 192 bits. The keystream generation
mechanism is described in Figure 1. The bits of the internal state of the LFSR
are numbered from 0 to 191, and they are denoted by (x0, . . . , x191).

The Boolean function f is a 13-variable quadratic symmetric function which is
balanced. The whole filter F is a 14-variable Boolean function. The output of the
function F at time t is denoted by yt. The ABSG takes as an input the sequence
y = (yt)t≥0. The sequence output by the ABSG is denoted by z = (zt)t≥0.
The buffer mechanism guarantees a constant throughput for the keystream; we
choose a 32 bit-length buffer and the buffer outputs one bit for every four shifts
by one position of the LFSR.

2.2 Key/IV Setup

The Key/IV setup mechanism consists in clocking 4×192 = 768 times the LFSR
using the nonlinear feedback described in Figure 2.

142 C. Berbain et al.

Fig. 1. Decimv2 keystream generation

Fig. 2. Key/IV setup mechanism

2.3 Differences between Decim and Decimv2

We do not recall in this paper the full description of the original design of Decim
(see [3] for details). However, we briefly describe the two flaws in Decim found by
Wu and Preneel [15], and we explain how Decimv2 fixed these two weaknesses.

The first flaw lies in the initialization stage, i.e. the computation of the initial
inner state for starting the keystream generation. In Decim, at each clock of
the initialization process, one of two 7-variables permutations π1 and π2 was
applied over the internal state in order to break the linearity of the process faster.
However, this mechanism could be exploited to retrieve the key. In Decimv2, we
use an initialization procedure that is both simpler and more secure than the
one of Decim. In particular, the permutations are removed in Decimv2 (we
refer to [5] for more details). Moreover, the number of clocks of the register
during the initialization phase is increased in Decimv2 in order to ensure that
the nonlinearity of the initialization stage is sufficient.

The second flaw lies in the keystream generation algorithm. More precisely,
there is a flaw in Decim in the generation of the sequence y which is the output

Decimv2 143

of the filter (the sequence y is next decimated by the ABSG mechanism). This
flaw is due to the fact that the sequence y is directly the output of a symmetric
Boolean function. Indeed, the outputs of the function associated to two input
vectors which have one element in common are correlated. It was then shown
in [11] that the filter criterion to avoid such correlation is the quasi-immunity
criterion. The choice of the filter in Decimv2 takes this design criterion into
account.

3 Specification

In this section, we describe each component of Decimv2.

3.1 The Filtered LFSR

This section describes the filtered LFSR that generates the sequence y (the
sequence y is the input of the ABSG mechanism).

The LFSR. The underlying LFSR is a maximum-length LFSR of length 192
over F2. It is defined by the following primitive feedback polynomial:

P (X) = X192 + X189 + X188 + X169 + X156 + X155 + X132 + X131

+X94 + X77 + X46 + X17 + X16 + X5 + 1 .

The sequence of the linear feedback values of the LFSR is denoted by s = (st)t≥0

and the recursion that corresponds to P for the LFSR is

s192+n = s187+n ⊕ s176+n ⊕ s175+n ⊕ s146+n ⊕ s115+n ⊕ s98+n ⊕ s61+n

⊕ s60+n ⊕ s37+n ⊕ s36+n ⊕ s23+n ⊕ s4+n ⊕ s3+n ⊕ sn .

The filter. The filter function is the 14-variable Boolean function defined by:

F : F
14
2 −→ F2; a1, . . . , a14 �→ f(a1, . . . , a13)⊕ a14

where f is the symmetric quadratic Boolean function defined by:

f(a1, . . . , a13) =
⊕

1≤i<j≤13

aiaj

⊕

1≤i≤13

ai

The tap positions of the filter are:

191− 186− 178− 172− 162− 144− 111− 104− 65− 54− 45− 28− 13− 1

and the input of the ABSG at the stage t is:

yt = f(st+191, st+186, st+178, st+172, st+162, st+144,
st+111, st+104, st+65, st+54, st+45, st+28, st+13)⊕ st+1 .

144 C. Berbain et al.

3.2 Decimation

We now describes how the keystream sequence z is obtained from the sequence y.
The action of the ABSG on y consists in splitting y into subsequences of the

form (b, bi, b), with i ≥ 0 and b ∈ {0, 1}; b denotes the complement of b in {0, 1}.
For every subsequence (b, bi, b), the output bit is b for i = 0, and b otherwise.
The ABSG algorithm is given in Figure 3.

Input: (y0, y1, . . .)
Set: i← 0; j ← 0;
Repeat the following steps:

1. e← yi, zj ← yi+1;
2. i← i + 1;
3. while (yi = e) i← i + 1;
4. i← i + 1;
5. output zj ;
6. j ← j + 1;

Fig. 3. ABSG Algorithm

3.3 Buffer Mechanism

The rate of the ABSG mechanism is irregular and therefore we use a buffer in
order to guarantee a constant throughput. We choose a buffer of length 32 and
for every 4 bits that are input into the ABSG, the buffer is supposed to output
one bit exactly. With these parameters, the probability that the buffer is empty
while it has to output one bit is less than 2−89.

If the ABSG outputs one bit when the buffer is full, then the newly computed
bit is not added into the queue, i.e. it is dropped. The initial filling of the buffer
is part of the initialization process detailed in 3.4.

3.4 Key/IV Setup

This subsection describes the computation of the initial inner state for starting
the keystream generation. Notice that the ABSG mechanism is not used during
the initialization stage.

Initial filling of the LFSR. The secret key K is a 80-bit key denoted by
K = K0, . . . , K79 and the initialization vector IV is a 64-bit IV denoted by
IV0, . . . , IV63. The initial filling of the LFSR is done as follows:

xi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ki 0 ≤ i ≤ 79,

Ki−80 ⊕ IVi−80 80 ≤ i ≤ 143,

Ki−80 ⊕ IVi−144 ⊕ IVi−128 ⊕ IVi−112 ⊕ IVi−96 144 ≤ i ≤ 159,

IVi−160 ⊕ IVi−128 ⊕ 1 160 ≤ i ≤ 191.

The number of possible initial values of the LFSR state is 280+64 = 2144.

Decimv2 145

Update of the LFSR state. The LFSR is clocked 4× 192 = 768 times using
a nonlinear feedback relation. Let yt denote the output of f at time t and let lvt

denote the linear feedback value at time t > 0. Then, the value of x191 at time t
is computed using the equation:

x191 = lvt ⊕ yt .

Notice that there is no bit of the LFSR state output during this step.

Initial filling of the buffer. After the previous step, the buffer has to be
filled before starting keystream generation. In order to fill the buffer, we repeat
the keystream generation process until the buffer is full. During this step, the
buffer is not shifted. In particular, the buffer does not output any bit until it is
completely filled. Then, the buffer is filled on average after 96 steps, and it is
filled after 234 steps with probability bigger than 1− 2−80. Thus, if a constant
duration initialization process is required, one can choose to execute 234 steps
and throw away the ABSG output bits when the buffer is full.

4 Design Rationale

In this section, we give the rationale for every component of Decimv2.

4.1 The Filtered LFSR

The LFSR. The length of the LFSR, which corresponds to the size of the internal
state of the cipher, must be at least 160 in order to avoid time-memory-date
trade-off attacks [13, 6]. Nevertheless, we add a security margin to the LFSR
length in order to deal with a reduction of the size of the potential initial state
due to the initialization procedure (see Section 4.3). Therefore, we choose a
192-bit LFSR.

The choice of the primitive feedback polynomial P must be made in accor-
dance with the following constraints. The differences between two consecutive
positions of the inputs of the feedback polynomial are pairwise coprime. Further-
more, the weight of P must be large enough in order to prevent the existence
of sparse multiples with low degree that could be exploited in fast correlation
attacks or in distinguishing attacks. However, we do not want the weight of P
to be too large, in order to reduce both the overall computational time of the
cipher and its hardware size.

The feedback polynomial has been chosen carefully, i.e. it has not low Ham-
ming weight multiples at least for the first 240 next degrees. However, we mention
the possibility of a distinguishing attack similar to the distinguishing attack on
the Self-Shrinking Generator given in [8].

The filtering function. An important property for the filter is that the output of
the filter must be uniformly distributed. Moreover, the filtering function must
satisfy some other well-known cryptographic properties. Indeed, it is expected to

146 C. Berbain et al.

be far from an affine function (using the Hamming distance). Moreover, the at-
tack presented by Wu and Preneel against Decim [15] revealed that the filtering
function must also fulfil the quasi-immunity criterion [11], which is a criterion
weaker than being correlation-immune of order 1.

Since Decimv2 is a hardware-oriented cipher, the Boolean filtering function
must have a low-cost hardware implementation. In order to get an efficient com-
putation of the function, the Boolean function f has been chosen to be symmet-
ric, i.e. the value of f only depends on the Hamming weight of the input.

The symmetric Boolean functions that best fulfils the previous mentioned
criteria are quadratic and have an odd number of input variables. The whole filter
F of Decimv2, constructed from a balanced 13-variable symmetric function, is
balanced and correlation-immune of order 1.

The tap positions: filter and feedback polynomial. Assuming knowledge of the
keystream z, an attacker will have to guess some bits of the sequence y in order
to attack the function f . The knowledge of the bits of y directly yields equations
in the bits of the initial state of the LFSR. Thus, the number of monomials in
the bits of the initial state of the LFSR that are involved in these equations has
to be maximized. Moreover, this number has to grow quickly during the first
clocks of the LFSR. This implies the following two conditions:

1. Each difference between two positions of bits that are input to f should
appear only once;

2. Some inputs of f should be taken at positions near the one of the feedback
bit (which means that some inputs should be leftmost on Figure 1).

Finally, the tap positions of the inputs of the Boolean function f and the inputs
of the feedback relation should be independent.

4.2 Decimation

The ABSG mechanism was first presented at the ECRYPT Workshop State of
the art of stream ciphers [9] and next published in [12]. The ABSG is a scheme
that, like the Shrinking Generator (SG) [7] and the Self-Shrinking Generator
(SSG) [14], provides a method for irregular decimation of pseudorandom se-
quences. The ABSG has the advantage on the one hand over the SG that it
operates on a single input sequence instead of two and on the other hand over
the SSG that it operates at a rate 1/3 instead of 1/4 (i.e. producing n bits of
the output sequence requires on average 3n bits of the input sequence instead
of 4n bits).

The best known attack on the ABSG filtering a single maximum-length LFSR
[12, 10] is based on a guess of the most favorable case. Such a guess requires �
output bits in order to guess 2� inputs bits. The guess is correct with probability
1
2� . In order to check the correctness of his guess, the attacker should try to
solve the equations in the bits of the initial state of the LFSR that arise from
the bits of y he has guessed. This attack can be used in order to reconstruct 2L
consecutive bits of the sequence y from L consecutive bits of the sequence z; it
costs O(2

L
2) and requires O(L2

L
2) bits of z.

Decimv2 147

Let Λ(y) denote the linear complexity of y. Then, the minimal length of
a linear feedback shift register which generates the sequence y is Λ(y). The
previous attack can be used to reconstruct the initial state of the equivalent
LFSR that generates the sequence y. Then, this attack costs O(2

Λ(y)
2) to recover

Λ(y) consecutive bits of y.
We have checked that the linear complexity of y is the best linear complex-

ity expected according to the choice of the Boolean function and the primitive
polynomial, that is, Λ(y) = 18528.

4.3 Key/IV Setup

The components of the keystream generation are re-used for the key/IV setup;
we do not introduce new components.

By using a 80-bit key and a 64-bit IV, the number of possible initial states
is at most 2144 which is the case in Decimv2. The key schedule includes a non-
linear feedback mechanism that is repeated L times, where L is the length of the
register. Thus, in order to deal with the reduction of the potential internal state
of the register during this phase, and considering that this non-linear feedback
behaves randomly, we chose L = 192 to ensure that the final internal state is at
least twice the key length, that is, 160.

4.4 The Buffer Mechanism

The buffer mechanism guarantees a constant throughput for the keystream. How-
ever, the buffer must have a reasonable length since the keystream generation
process starts when the buffer is full.

Recall that for every α bits that are input into the ABSG, the buffer is sup-
posed to output one bit exactly. The output rate of the ABSG is 1/3 in average.
Then, the value of α is greater than 3. For α = 4 and a buffer of length 32, the
probability that the buffer is empty while it has to output one bit is less than
2−89 (the analysis of the buffer mechanism is detailed in [3]).

Timing measurements at the output of the keystream generator is useless since
a buffer is used and the throughput is constant. However, if the attacker gets
timing information from the internal keystream generator, then timing attacks
apply.

5 Hardware Implementation

There is a trade-off between the size of the hardware implementation and the
throughput of the cipher. Indeed, the 32-bit length of the buffer has been chosen
to ensure that the buffer is ready with probability (1− 2−89) to output one bit
every 4 bits entered into the ABSG.

Since each LFSR clock contributes one bit to the sequence entering the ABSG
mechanism, one solution is to clock four times the LFSR before outputting one
bit. The number of gates involved in an hardware implementation can be es-
timated as follows, based on the estimation for elementary components given

148 C. Berbain et al.

in [2], i.e., 12 gates for a flip-flop, 2.5 gates for an XOR, 1.5 gates for an AND
and 5 gates for a MUX.

– LFSR: 2339 gates corresponding to 192 flip-flops and 14 XORs.
– Filtering function: 86.5 gates corresponding to 6 Full Adders and 7 XORs

(details on the hardware implementation of quadratic symmetric functions
are given in [3]).

– 1-input ABSG, as described in Figure 4: 67 gates corresponding to 2 MUX,
3 XORs, 1 AND, and 4 flip-flops.

1

1
0

0
1

Fig. 4. Hardware implementation of the ABSG

Moreover, the throughput of the generator can be doubled at a low imple-
mentation cost by using a simple speed-up mechanism. This can be done with
a circuit which computes two feedback bits for the LFSR, simultaneously, as
described in [3]. This LFSR with doubled clock rate can be implemented within
192 flip-flops and 28 XORs. One additional copy of the filtering function is also
required, and a 2-input ABSG mechanism must be used.

6 Decim-128

In this section, we describe Decim-128 which is an adaptation of the design of
Decimv2 to get 128-bit security (we refer to [4] for more details).

Decim-128 takes as input a 128-bit secret key and a 128-bit public initializa-
tion vector. The keystream generation mechanism is similar as the one described
in Figure 1 and the Key/IV setup mechanism is similar as the one described in
Figure 2 except that the LFSR has length 288.

6.1 The Filtered LFSR

The underlying LFSR is a maximum-length LFSR of length 288 (instead of 192)
over F2. It is defined by the following primitive feedback polynomial:

P (X) = X288 + X285 + X284 + X247 + X204 + X185 + X154 + X125

+X124 + X123 + X82 + X35 + X18 + X5 + 1

Decimv2 149

The filter function is the same as in Decimv2. The only difference between
Decimv2 and Decim-128 is a different choice of tap positions1:

287, 276, 263, 244, 236, 203, 187, 159, 120, 73, 51, 39, 21, 1

The sequence y produced by the filter is of maximal nonlinear complexity,
namely equal to 288×289

2 = 41616.

6.2 The Buffer Mechanism

For Decim-128, we choose a buffer of 64 bits instead of 32. Since the buffer
outputs one bit exactly for every 4 bits that are input into the ABSG, the
probability that the buffer is empty while it has to output one bit is less than
2−178 at each step.

6.3 Key/IV Setup

The secret key K is a 128-bit key denoted by K = K0, . . . , K127 and the ini-
tialization vector IV is a 128-bit IV denoted by IV = IV0, . . . , IV127. The initial
filling of the LFSR is done as follows.

xi =

{
Ki 0 ≤ i ≤ 127
Ki−128 ⊕ IVi−128 128 ≤ i ≤ 255

We complete the register with x256 . . . x287 = 0x55555555. The number of pos-
sible initial values of the LFSR is 2256.

This step slightly differs from the injection in Decimv2. Namely, it is simpler,
partly due to the fact that the key and the IV have the same size.

The update of the LFSR is done in the same way as for Decimv2. The number
of clocks performed is also four times the length of the LFSR, so here 4× 288 =
1152 times. After this step, the buffer has to be filled in the same way like for
Decimv2, i.e. by performing the same steps as for keystream generation without
shifting the buffer and outputting bits, until the buffer is full. Nevertheless, the
buffer is filled with probability bigger than 1− 2−128 after 432 steps, which can
be used if a constant initialization time is required.

7 Conclusion

We have presented the stream cipher Decimv2 selected in the Phase 3 of the
eSTREAM call for stream cipher Profile 2, and the 128-bit security version of
Decimv2 called Decim-128.
1 In the original version of Decim-128 [4], the choice of taps for the filtering function

does not fulfil the claim that “each difference between two positions of bits that are
input to f should appear only once”. The difference between the original version of
Decim-128 and the latest version presented in this paper is that tap 227 has been
replaced by tap 236, and then the claim above is fulfilled.

150 C. Berbain et al.

Decimv2 and Decim-128 are especially suitable for hardware applications
with restricted resources such as limited storage or gate count. Design choices
influence the miniaturization of the cipher system:

– the ABSG mechanism has low-cost hardware implementation,
– the filtering function f only depends on the Hamming weight of its input in

order to reduce the cost in hardware implementation,
– the IV injection/key schedule re-uses the main components of the keystream

generation mechanism.

For applications requiring higher throughputs, speed-up mechanisms can be used
to accelerate Decimv2 and Decim-128 at the expense of a higher hardware
complexity. Finally, the security of Decimv2 and Decim-128 mainly relies on the
security of the ABSG, and there is no identified attack better than exhaustive
search.

Acknowledgement

This work was partially supported by the French Ministry of Research RNRT
Project X-CRYPT and by the European Commission via the ECRYPT Network
of Excellence IST-2002-507932. Note that this work was done while the 4th
author was affiliated to Axalto/Gemalto (France), the 8th and the 13th authors
were affiliated to France Télécom R&D/Orange Labs (France), the 9th author
was affiliated to the École Normale Supérieure (France), the 11th author was
affiliated to INRIA Rocquencourt (France).

References

1. eStream, Stream cipher project of the European Network of Excellence in Cryp-
tology ECRYPT, http://www.ecrypt.eu.org/stream/

2. Batina, L., Lano, J., Örs, S.B., Preneel, B., Verbauwhede, I.: Energy, perfomance,
area versus security trade-offs for stream ciphers. In: The State of the Art of Stream
Ciphers: Workshop Record, Brugge, Belgium, October 2004, pp. 302–310 (2004)

3. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Debraize, B., Gilbert, H.,
Goubin, L., Gouget, A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T.,
Sibert, H.: Decim– A new Stream Cipher for Hardware applications. In: ECRYPT
Stream Cipher Workshop SKEW 2005 (2005),
http://www.ecrypt.eu.org/stream/

4. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Debraize, B., Gilbert, H.,
Goubin, L., Gouget, A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T.,
Sibert, H.: Decim-128 (2007), http://www.ecrypt.eu.org/stream/

5. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Debraize, B., Gilbert, H.,
Goubin, L., Gouget, A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T.,
Sibert, H.: Decimv2. In: ECRYPT Stream Cipher Workshop SASC (2007),
http://www.ecrypt.eu.org/stream/

6. De Cannière, C., Lano, J., Preneel, B.: Comments on the rediscovery of Time
Memory Data Tradeoffs (2005), http://www.ecrypt.eu.org/stream/TMD.pdf

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/TMD.pdf

Decimv2 151

7. Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)

8. Ekdahl, P., Johansson, T., Meier, W.: Predicting the shrinking generator with
fixed connections. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
345–359. Springer, Heidelberg (2003)

9. Gouget, A., Sibert, H.: The Bit-Search Generator. In: The State of the Art of
Stream Ciphers: Workshop Record, Brugge, Belgium, October 2004, pp. 60–68
(2004)

10. Gouget, A., Sibert, H.: How to strengthen pseudo-random generators by using
compression. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
129–146. Springer, Heidelberg (2006)

11. Gouget, A., Sibert, H.: Revisiting correlation-immunity in filter generators. In:
Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876. Springer,
Heidelberg (2007)

12. Gouget, A., Sibert, H., Berbain, C., Courtois, N., Debraize, B., Mitchell, C.: Anal-
ysis of the Bit-Search Generator and sequence compression techniques. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 196–214. Springer, Hei-
delberg (2005)

13. Hong, J., Sarkar, P.: Rediscovery of Time Memory Tradeoffs (2005),
http://eprint.iacr.org/2005/090.ps

14. Meier, W., Staffelbach, O.: The self-shrinking generator. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995)

15. Wu, H., Preneel, B.: Cryptanalysis of the stream cipher decim. In: Robshaw, M.J.B.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 30–40. Springer, Heidelberg (2006)

http://eprint.iacr.org/2005/090.ps

The Stream Cipher Edon80

Danilo Gligoroski1, Smile Markovski2, and Svein Johan Knapskog1

1 Centre for Quantifiable Quality of Service in Communication Systems,
Norwegian University of Science and Technology,

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway
{Danilo.Gligoroski,Svein.J.Knapskog}@q2s.ntnu.no

2 “Ss Cyril and Methodius” University
Faculty of Natural Sciences and Mathematics, Institute of Informatics

P.O. Box 162, 1000 Skopje, Macedonia
smile@ii.edu.mk

Abstract. Edon80 is a hardware binary additive synchronous stream
cipher. It’s properties are: 1.) The internal structure is highly pipelined;
2.) It is highly parallelizable, making it scalable from the speed of pro-
cessing point of view; 3.) Its design principles offer possibilities to achieve
significant speed asymmetry — it belongs to a family of stream ciphers
that in hardware can have a constant speed of one bit per clock cycle, but
in software implementation on popular modern CPUs can be made as
slow as needed. Since its first description in 2005, it has been analyzed by
several cryptographers, have been implemented in a more compact way
and a MAC functionality have been added. We give a full description of
Edon80 including latest developments and updates.

Keywords: hardware, synchronous stream cipher, Latin square, quasi-
group, quasigroup string transformations.

1 Introduction

Edon80 was submitted to the eSTREAM project [1] as a hardware stream cipher
under the Profile 2. It was designed by Gligoroski, Markovski, Kocarev, and
Gusev and its original description is given in [2]. It has a unique design among
known stream cipher designs: it concatenates 80 basic building blocks derived
from four small quasigroups of order 4.

Since its first publication it has been analyzed by several cryptographers and
a new knowledge has been gained that deepened the understanding of Edon80.
First Hong [3,4] observed that there is a small probability, for the period of the
keystream sequence to be quite short. That provoked the designers to investigate
further the issue of the periodicity of the keystream sequences in [5] and later
also in the paper [6]. The result of that was a decision that Edon80 will stay un-
changed entering the Phase 2 of eSTREAM project, but the keystream sequence
was restricted to 248 bits [7]. Vojvoda et. al [8] have investigated algebraic prop-
erties of quasigroups used in Edon80 and showed that they are isotopic with the
quasigroup of modular subtraction of order 4. Bjørstad [9] have examined the

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 152–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Stream Cipher Edon80 153

structure of Edon80 quasigroup permutation, viewed as an S-box or a pair of
Boolean functions. He found some interesting relations but has not been able to
apply these relations to attack the full cipher. So far, the best attack on Edon80
have been done by Hell and Johansson [10] that have used the analysis of the
periods of the keystream sequences of Edon80 in [6] to mount an attack that
can recover the key after using 272 so called “simple operations”. We will give
additional comments about the total computational cost of that attack further
in this text.

From the implementation point of view Kasper et. al have shown in [11] that
Edon80 can be implemented using less than 3000 gates. On top of that work,
Gligoroski and Knapskog [12] have introduced “MAC Edon80” — the stream
cipher that is using the internal structure of Edon80 thus producing keystream
same as Edon80 but that can compute also a 160 bit Message Authentication
Code for the encrypted/decrypted messages.

Our work. This is an extended version of the initial paper [2] updated with
the latest analysis of Edon80, latest information about the hardware implemen-
tations and information about the possibility to have a MAC functionality in
Edon80.

The paper is organized as follows: In Section 2 we discuss the initial design
goals for Edon80, in Section 3 we give the mathematical definition and prelim-
inaries, then in Section 4 we describe Edon80 from algorithmic point of view,
next in Section 5 we describe Edon80 from functional perspective (hardware
point of view), in Section 6 we discuss the security of the cipher, in Section 7
we discuss Edon80 hardware implementations, and we conclude the paper with
conclusions.

2 Design Goals for Edon80

Edon80 is a binary additive synchronous stream cipher. The designers of Edon80
set several goals that are common for a design of a modern hardware stream
cipher:

1. To have small number of gates (and thus to have small power consumption);
2. To be fast;
3. To be secure (with as much as possible mathematical analytical ground for

its security);
4. To be easily scalable i.e. parallelizable.

An additional goal of Edon80 design was Edon80 to have significant Speed
Asymmetry: Superior performances when implemented in hardware (from both
speed and cost perspective), and in the same time to have very pour performances
when realized in software on modern CPUs. Moreover, the goal was to have
a design that can be easily extensible, with possibilities to stretch the Speed
Asymmetry as much as is needed, but not on the cost of reducing the security
or introducing new uninvestigated design parts. The reasons for this design goal
were that having a solid, strong and very fast stream cipher in hardware, while

154 D. Gligoroski, S. Markovski, and S.J. Knapskog

in the same time to be inappropriate to simulate it efficiently on modern CPUs,
can be useful for industrial applications. One possible application would be for
example in the entertainment industry where protection and reproduction of
multimedia content is always challenged by pirate users which “rip” and then
reproduce qualitatively the multimedia materials on modern computer systems
with fast CPUs. As a support for this standing we can mention the very well
known fiasco of DVD hardware (and software) protection as well as the latest
stories of the cracking of AACS encryption scheme used by both HD-DVD and
Blu-Ray video discs.

3 Preliminaries: Basic Mathematical Terms, Definitions,
and Theorems Used for Edon80

We will briefly mention the definition of the synchronous stream ciphers as it
is defined in [13], pp.193–194. A synchronous stream cipher is one in which the
keystream is generated independently of the plaintext message and of the cipher-
text. The encryption process of a synchronous stream cipher can be described
by the equations:

σi+1 = f(σi, k), zi = g(σi, k), ci = h(zi, mi),

where σ0 is the initial state and may be determined from the key k, f is the
next-state function, g is the function which produces the keystream zi, and h is
the output function which combines the keystream and plaintext mi to produce
ciphertext ci. A binary additive stream cipher is a synchronous stream cipher in
which the keystream, the plaintext and the ciphertext digits are binary digits,
and the output function h is the XOR function.

By the definition of Edon80, we conclude that it is a binary additive syn-
chronous stream cipher. It is defined by using quasigroup operations and quasi-
group string transformations and here we give a brief overview of these notions
(more detailed explanation the reader can find in [14,15]).

A quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃! x, y ∈ Q) u ∗ x = v & y ∗ u = v. (1)

We use only finite quasigroups, i.e Q is a finite set. Closely related combinatorial
structures to finite quasigroups are the so called Latin squares: A Latin square
L on a finite set Q of cardinality |Q| = n is an n× n-matrix with elements from
Q such that each row and each column of the matrix is a permutation of Q.

To any finite quasigroup (Q, ∗) given by its multiplication table it is associated
a Latin square L, consisting of the matrix formed by the main body of the table,
and each Latin square L on a set Q define a quasigroup (Q, ∗). The set of Latin
squares of order n can be lexicographically ordered by concatenating the rows:
first row|| second row|| . . . || n− th row. Thus, for the quasigroups Nr. 61 and
Nr. 241 from Table 2 we have:

0213||2130||1302||3021 < 1302||0123||2031||3210

The Stream Cipher Edon80 155

There are 576 quasigroups of order 4, and for Edon80 designs, by our experi-
ments, most suitable are the following 64 (given by their lexicographic numbers):
12, 19, 23, 30, 32, 58, 59, 61, 74, 76, 85, 90, 115, 117, 134, 136, 143, 149, 155,
158, 162, 167, 173, 177, 188, 190, 204, 205, 226, 231, 241, 255, 265, 286, 319, 320,
339, 350, 358, 362, 366, 384, 386, 391, 394, 404, 413, 419, 424, 428, 446, 459, 487,
493, 496, 503, 512, 513, 519, 530, 541, 558, 562, 564.

Next we define the method of quasigroup string transformations. Consider an
alphabet (i.e. a finite set) Q, and denote by Q+ the set of all nonempty words (i.e.
finite strings) formed by the elements of Q. The elements of Q+ will be rather
denoted by a1a2 . . . an than (a1, a2, . . . , an), where ai ∈ Q. Let ∗ be a quasigroup
operation on the set Q, i.e. consider a quasigroup (Q, ∗). For each a ∈ Q we define
the function ea,∗ : Q+ −→ Q+ as follows. Let ai ∈ Q, α = a1a2 . . . an. Then

ea,∗(α) = b1b2 . . . bn ⇐⇒ b1 = a ∗ a1, b2 = b1 ∗ a2, . . . , bn = bn−1 ∗ an,

i.e. bi+1 = bi ∗ ai+1 for each i = 0, 1, . . . , n− 1, where b0 = a. The function ea,∗
is called an e-transformation of Q+ based on the operation ∗ with leader a, and
their graphical representation is shown on Figure 1.

a1 a2 . . . an−1 an

a b1 b2 . . . bn−1 bn
�

���
�

���
�

���
�

���
�

���� � � �

Fig. 1. Graphical representation of the transformation ea,∗

Several quasigroup operations can be defined on the set Q and let ∗1, ∗2,
. . . , ∗k be a sequence of (not necessarily distinct) such operations. We choose
also leaders l1, l2, . . . , lk ∈ Q (not necessarily distinct either), and then the
composition of functions

Ek = El1...lk = el1,∗1 ◦ el2,∗2 ◦ · · · ◦ elk,∗k
,

is said to be an E-transformation of Q+. The function Ek has many interesting
properties, and for our purposes the most important ones are the following:

Theorem 1. ([15]) The transformations Ek are permutation of Q+.

Theorem 2. ([15]) Consider an arbitrary string α = a1a2 . . . an ∈ Q+, where
ai ∈ Q, and let β = Ek(α). If n is large enough integer then, for each l : 1 ≤
l ≤ k, the distribution of substrings of β of length l is uniform. (We note that
for l > k the distribution of substrings of β of length l may not be uniform.)

We say that a string α = a1a2 . . . an ∈ Q+, where ai ∈ Q, has a period p if p
is the smallest positive integer such that ai+1ai+2 . . . ai+p = ai+p+1ai+p+2 . . .
. . . ai+2p for each i ≥ 0. The following property holds:

156 D. Gligoroski, S. Markovski, and S.J. Knapskog

Theorem 3. ([15]) Let α = a1a2 . . . an ∈ Q+, ai ∈ Q, and let β = Ek(α),
where Ek = Eaa...a, a ∈ A and a ∗ a �= a. Then the periods of the string β is
increasing at least linearly by k.

We should note that the increasing of the periods depends of the number of
quasigroup transformations k, and for some of them it is exponential, i.e. if α
has a period p, then β = Ek(α) may have period greater than p 2c k, where c
is some constant. (Concerning Theorem 3, we notice that there are quasigroups
(Q, ∗) with a ∗ a = a, a ∈ Q, that produce string β = Ek(α) with large period,
if α = a1a2 . . . an ∈ Q+ is such that a1 �= a.)

4 Algorithmic Description of Edon80

4.1 Keystream Mode

We will start the description of Edon80 by description of the Keystream mode
that is presented at the Table 1. In the first row of that table we place a periodic
(potentially infinite) string that has shape: 01230123 · · ·0123 · · · . The next 80
rows in the table describe 80 e-transformations of that string by using the values
ai (obtained from IVSetup mode) and by the quasigroups ∗i (determined in
KeySetup mode). The recurrence equations for these transformations are:

⎧
⎪⎪⎨

⎪⎪⎩

a0,0 = a0 ∗0 0
a0,j = a0,j−1 ∗0 (j mod 4) 1 ≤ j
ai,0 = ai ∗i ai−1,0 1 ≤ i ≤ 79
ai,j = ai,j−1 ∗i ai−1,j 1 ≤ i ≤ 79, 1 ≤ j

(2)

The output of the stream cipher is every second value of the last e-transformation
i.e. the Keystream can be described as:

Keystream = a79,1 a79,3 a79,5 . . . a79,2k−1 . . . , k = 1, 2, . . .

Table 1. Representation of quasigroup string e-transformations of Edon80 during
Keystream mode

∗i 0 1 2 3 0 1 2 3 0 . .

∗0 a0 a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 a0,8 . .
∗1 a1 a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 . .
.
∗79 a79 a79,0 a79,1 a79,2 a79,3 a79,4 a79,5 a79,6 a79,7 a79,8 . .

��

��

��

��

��

��

��

��

4.2 KeySetup Mode

According to the values of the bits in the key in this mode we will make assign-
ments of four predefined quasigroups of order 4 to the working 80 quasigroups.
The working quasigroups will perform the e-transformations in the i-th row both

The Stream Cipher Edon80 157

Table 2. Quasigroups used for our design of Edon80

Nr. 61 (q = 2.6680) Nr. 241 (q = 2.4880) Nr. 350 (q = 2.4380) Nr. 564 (q = 2.3780)

•0 0 1 2 3

0 0 2 1 3
1 2 1 3 0
2 1 3 0 2
3 3 0 2 1

•1 0 1 2 3

0 1 3 0 2
1 0 1 2 3
2 2 0 3 1
3 3 2 1 0

•2 0 1 2 3

0 2 1 0 3
1 1 2 3 0
2 3 0 2 1
3 0 3 1 2

•3 0 1 2 3

0 3 2 1 0
1 1 0 3 2
2 0 3 2 1
3 2 1 0 3

Table 3. Representation of quasigroup string e-transformations of Edon80 during
IVSetup mode

∗i K0 K1 · · · K39 υ0 υ1 · · · υ39

∗0 υ39 t0,0 t0,1 · · · t0,39 t0,40 t0,41 · · · t0,79

∗1 υ38 t1,0 t1,1 · · · t1,39 t1,40 t1,41 · · · t1,79

.
∗38 υ1 t38,0 t38,1 · · · t38,39 t38,40 t38,41 · · · t38,79

∗39 υ0 t39,0 t39,1 · · · t39,39 t39,40 t39,41 · · · t39,79

∗40 K39 t40,0 t40,1 · · · t40,39 t40,40 t40,41 · · · t40,79

∗41 K38 t41,0 t41,1 · · · t41,39 t41,40 t41,41 · · · t41,79

.
∗78 K1 t78,0 t78,1 · · · t78,39 t78,40 t78,41 · · · t78,79

∗79 K0 t79,0 t79,1 · · · t79,39 t79,40 t79,41 · · · t79,79

in IVSetup and in Keystream mode, as described in Table 3 and Table 1. Those
four predefined quasigroups are described in Table 2.

It is known that there are 576 quasigroups of order 4. By our investigations 384
of them are suitable, and 64 of them are very suitable for our purposes. The list
of those 64 quasigroups and the reasons why they are suitable for construction
of Edon80 stream cipher are given in Section 3. In Table 2, Nr. denotes the
lexicographic number of the quasigroup, and q denotes the projected period of
the string 012301230123... after 80 e-transformations with that quasigroup.

The assignment of the working quasigroups is done by the following formula:

(Q, ∗i)←
{

(Q, •Ki) 0 ≤ i ≤ 39
(Q, •Ki−40) 40 ≤ i ≤ 79 (3)

where Key as a vector of 80 bits is represented as a concatenation of 40 2-bit
variables Ki i.e. Key = K0K1 · · ·K39.

4.3 IVSetup Mode

IVSetup mode in fact defines the initial values of the internal states a0, . . . , a79,
from the values of initial vector IV . The initial vector IV of length 64 bits
is padded by 16 constant bits 1110010000011011, represented as the string
32100123 of 2-bits. Thus, the padded initial vector IV is a concatenation of

158 D. Gligoroski, S. Markovski, and S.J. Knapskog

40 2-bit variables IV = υ0υ1 · · · υ313 2 1 0 0 1 2 3 = υ0υ1 · · · υ39. Then we
perform 80 e-transformations on IV as described in the Table 3. All of those
transformations can be described by the following recurrence equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t0,0 = υ39 ∗0 K0

t0,j = t0,j−1 ∗0 Kj 1 ≤ j ≤ 39
t0,j = t0,j−1 ∗0 υj−40 40 ≤ j ≤ 79
ti,0 = υ39−i ∗i ti−1,0 1 ≤ i ≤ 39
ti,0 = K79−i ∗i ti−1,0 40 ≤ i ≤ 79
ti,j = ti,j−1 ∗i ti−1,j 1 ≤ i ≤ 79, 1 ≤ j ≤ 79

(4)

After all 80 e-transformations are performed, the values of a0, . . . , a79 are ini-
tialized by the following assignments:

ai ← t79,i , i = 0, . . . , 79. (5)

5 Functional Description of Edon80

Edon80 is a binary additive stream cipher. On Figure 2 we give a global schematic
presentation of Edon80 as a binary additive stream cipher.

Schematic and behavioral description of Edon80 is given on Figure 3. Edon80
works in three possible modes: 1) KeySetup, 2) IVSetup and 3) Keystream mode.
For its proper work Edon80 beside the core (that will be described later) has
the following additional resources:

1. One register Key of 80 bits to store the actual secret key;
2. One register IV of 80 bits to store padded initialization vector;
3. One internal 2-bit counter Counter as a feeder of Edon80 Core in Keystream

mode;
4. One 7 bit SetupCounter that is used in IVSetup mode;
5. One 4× 4 = 16 bytes ROM bank where 4 quasigroups (i.e. Latin squares) of

order 4, indexed from (Q, •0) to (Q, •3), are stored.

The structure of the Edon80 Core is described in the next two figures. The in-
ternal structure of Edon80 can be seen as pipelined architecture of 80 simple 2-bit
transformers called e-transformers. The schematic view of a single e-transformer
is shown on Figure 4.

iv �

k �

Edon80 as

keystream

generator

�zi ⊕�

Input stream
mi or ci

�ci or mi

Output stream

Fig. 2. Graphical representation of Edon80 as binary additive stream cipher

The Stream Cipher Edon80 159

Fig. 3. Edon80 components and their relations

Fig. 4. Schematic representation of a single e-transformer of Edon80

The structure that performs the operation ∗i in e-transformers is a quasigroup
operation of order 4. We refer an e-transformer by its quasigroup operation ∗i.
For the definition of quasigroup string transformations and some of their proper-
ties see Appendix A. So, in Edon80 we have 80 of this e-transformers (the index i
varies from 0 to 79), cascaded in a pipeline, one feeding another. The two 2-bit
registers inside every e-transformer (pi and ai) are used as two operands by which
the new value of ai is determined according to the defined quasigroup operation

160 D. Gligoroski, S. Markovski, and S.J. Knapskog

Fig. 5. Edon80 core of 80 pipelined e-transformers

∗i for that e-transformer. For different e-transformers there is possibility differ-
ent quasigroup operations to be defined, out of a set of 4 predefined quasigroups
of order 4. More on the principles of choosing quasigroups for Edon80 is writ-
ten in Section 2. Every e-transformer has one tag-bit Ti which controls whether
the e-transformer will compute the next value of ai or do nothing. All of this
80 e-transformers work in parallel to calculate their new value of ai (if the tag
permits that) and then pass that new value ai to the right neighboring register
pi+1. If the tag forbids the calculation of ai, the only value that is transferred to
the neighboring element is the value of the tag Ti. Figure 5 shows the pipelined
core of Edon80.

Next, we give a description how Edon80 parts works in the three different
modes.

5.1 KeySetup Mode

When working in KeySetup mode, after transferring 80 bits in the register Key,
the key is virtually divided into 40 2-bit consecutive values. That means we
represent Key as Key = K0K1 · · ·K39, where each Ki consists of 2 bits, and
thus it can have a value from 0 to 3. According to this values, in the KeySetup
mode every working quasigroup operation ∗i, i = 0, 1, 2, . . . , 79, is assigned by
the Equation 3.

5.2 IVSetup Mode

In IVSetup mode, after transferring 64 bits in the register IV , we pad the IV
with 16 constant bits 1110010000011011, whose interpretation as a concatenation
of 2-bit variables gives the string: 32100123. We represent the padded IV as
concatenation of 40 2-bit variables υi i.e. IV = υ0υ1 · · · υ31 3 2 1 0 0 1 2 3, where
υ0υ1 · · · υ31 are the transferred 2-bits. IVSetup has the following steps:

– Initialization: Make the following assignments:
⎧
⎨

⎩

Ti ← 0 i = 0, ..., 79
a39−i ← υi i = 0, ..., 39
a79−i ← Ki i = 0, ..., 39

– Cycle 0: Set the tag T0 to 1 and feed the register p0 by the value of K0.
Recall that the value of a0 is assigned to υ0 by the initialization, so the new
value of a0 will be υ0 ∗0 K0.

The Stream Cipher Edon80 161

– Cycle 1: The new values of a0 and T0 are then send to the second e-
transformer ∗1 and the register p0 is feeded by K1. In such a way we have
the assignments p0 ← K1, p1 ← a0, T1 ← T0.

– Cycles 2–79: In the next 78 cycles we feed the register p0 of Edon80 Core
in order by the following values: K2, K3, . . . , K39 and after that by υ0,
υ1, . . . , υ39. Thus consecutively each of the e-transformers ∗2, . . . , ∗79 will
start working.

– Cycle 80: Set the tag T0 to 0, and feed the content of the register a79 into
the register a0. Notice that after this cycle the e-transformer ∗0 will stop
and the value of the register a0 will be preserved. (That value is in fact the
starting internal state of the register a0 for the Keystream mode.)

– Cycle 81–159: In the next 79 cycles all of the e-transformers ∗1, . . . , ∗79 will
stop consecutively. When the register ∗i stops, the content of the register
a79 will be feeded into the register ai. (Notice that the values of the registers
a0, a1, . . . , a79 are starting internal states for the Keystream mode.)

For concrete realization of all cycles in IVSetup mode we use the internal 7 bit
register SetupCounter and a related logic that will control its values (when it
reaches the value 80, to set it again to 0).

5.3 Keystream Mode

To start the Keystream mode we just reset the value of Counter to 0 and set
the value of T0 to 1.

In the Keystream mode we feed the Edon80 Core by the values in the regis-
ter Counter which increases its value every cycle. After a latency of 80 cycles,
keystream starts to flow from the last e-transformer i.e. from the 2-bit register
a79. We have to stress here that the most important part for the security of the
stream cipher is that the keystream consist of every second value that comes out
from a79.

5.4 Reference C Code Implementation and Test Vectors

The Reference C code implementation and test vectors are given at eSTREAM
web pages [1].

6 Security of Edon80

The internal state of Edon80 has two parts:

1. Assign working quasigroups ∗i, i = 0, . . . , 39, which can be done in 440 ways;
2. Actual values of ai, i = 0, . . . , 79, which has a space of 480 possibilities.

So, it follows that the total internal space of Edon80 is 440×480 = 2240. Thus
we can conclude that a simple attack by searching the state space is much more
worst then the exhaustive search attack on the key, which is 280. We will show
that an exhaustive search attack on the key is the best attack on Edon80.

162 D. Gligoroski, S. Markovski, and S.J. Knapskog

6.1 Security on Related Key Attack

Related key attack is attempt to find two different keys that will produce the
same keystream. Edon80 uses initial values for a0, . . . , a79 obtained by IVSetup
where every bit of the key is involved in highly correlated and nonlinear way.
Additionally, since computation of the initial values for a0, . . . , a79 is done by
involvement of 64 bit vector of IV , the search for keys that will produce a same
keystream (related or unrelated) should be done in the space of proportions
280× 264 = 2144. From the last estimation, it is expected that by birthday para-
dox, finding a combination of Key and IV that would give the same keystream
would take 272 attempts. However, it is possible only under the assumption that
collisions exist and they are easy to find. We have designed the IVSetup proce-
dure to act as a one-way and collision resistant function, and that is the basis
of the resistance of Edon80 on related key attack.

6.2 Security of IVSetup Mode

We would consider that the adversary would jeopardize the security of the sys-
tem if, by knowing the initialization vector IV , she/he can gain some knowledge
about the internal states of the cipher. The internal states are loaded into the
registers a0, . . . , a79 from the last e-transformer in Edon80 core (i.e. from the
corresponding values of t79,j , j = 0, . . . , 79, given in Table 3). Thus, the adver-
sary should obtain the values from t79,j, j = 0, . . . , 79, and for this aim she/he
can use the recursively defined equation (4) or the Table 3. By supposing that
the IV , i.e. the values υ0, . . . , υ39, are known to the adversary it is clear that
t79,j , j = 0, . . . , 39, depends of 40 unknown variables K0, . . . , K39, in a highly
nonlinear way determined by the 4 quasigroups of order 4. From algebraic point
of view those 4 quasigroups has very small number of algebraic properties: they
are not groups, not semigroups, and they are not commutative. In the current
development of the algebraic theory of quasigroups, there is not known method-
ology to solve such huge and complex systems of quasigroup equations, except
the simple combinatorial approach by examining all the possibilities. There are
440 = 280 possible choices of the key, and 480 = 2160 possible assignments of the
registers a0, . . . , a79. Thus, the best choice for an adversary is to guess the key.

If Edon80 is used in combination with a protocols that will transmit IV
secretely, then the adversary has 264 × 280 × 2160 = 2304 cases to examine and
to find internal state of the cipher.

From algebraic point of view, we can see the IVSetup mode as a function
that maps {0, 1}64 → {0, 1}160. To be more specific, given the key K0, . . . , K39,
a function ivs : {0, 1}64 → {0, 1}160 can be defined by the equation (4) or
the Table 3, such that ivs maps (υ0 . . . υ31) into (a0 . . . a79). The function ivs
act as a one-way function, since it is computationally infeasible to find the value
(υ0 . . . υ31), given (a0 . . . a79). We can make a fairly assumption that the distribu-
tion of the images ivs(υ0 . . . υ31) in the space 2160 is uniform, having in mind the
Theorems 1 and 2 in Section 3. Thus, we can take that the probability of obtain-
ing a collision ivs(υ0 . . . υ31) = ivs(υ′

0 . . . υ′
31) for some (υ0 . . . υ31) �= (υ0 . . . υ31)

The Stream Cipher Edon80 163

is very small, about 264/2160 = 2−96. So, the adversary cannot apply a chosen
initial vector attack.

6.3 Guess-and-Verify Attack

In this attack, the attacker will guess a part of the internal states of the cipher,
and then will try to predict the outcome of the next bits.

The nature of the design of Edon80 is such that according to the values of the
Key, appropriate quasigroups are chosen to perform e-transformations. So, in
order to try to predict the outcome of the cipher, she/he has to have at least the
assumption about the last quasigroup operation ∗79 and the last actual value
of the internal variable a79. The total number of guesses for this situation is in
fact not very big. Only 16 possible situations can be guessed for ∗79 and a79.
However, for predicting the next output value from the stream cipher, important
part is the input that comes from 78-th e-transformer. By the Theorems 1 and 2
(in Section 3) it follows that the probability for every 4 values {0, 1, 2, 3} to come
from the 78-th e-transformer is 1

4 . Since the 79-th e-transformation is done by
a quasigroup, it follows that the outcome from the last 79-th e-transformation
would have the probability of 1

4 again for every value {0, 1, 2, 3}. Thus, the
attacker has to have a knowledge about the actual value of a78 as well as the
type of ∗78 e-transformation in order to achieve better prediction of the outcome
of the stream cipher. That implies that additional 16 guesses have to be made.

The above reasoning can be repeated at least 80 times, implying that the total
number of guesses to make in order to have significant success of the guesses is
rapidly increasing to the value of 1680 = 2320. So, again, the exhaustive attack
on the key is better then this attack.

6.4 Projected Period of the Keystream

In the initial submission of Edon80 it was projected that the period of the
Keystream after applying 80 e-transformation is ≈ 2103 bits.

However, after Hong’s attack [4] the designers did a much detailed analysis
in [5,6] and posted a note [7] to eSTREAM before entering the Phase 2. The
result is that now Edon80 as a stream cipher has one of the best understood and
elaborated mathematical models that describe the distribution of the periods of
its produced keystream. We present here some parts of [7].

The attack presented in [3] is based on analyzing (key, state) pairs (concrete
assignment of working quasigroups ∗i and initial values for ai) that give small
periods. Hong experimentally counted all possible (key, state) pairs for periods
4, 8, and 16, with the number d of rows from 5 to 18 and summarized the results
in Table 1 of [3]. These numbers were then extrapolated for the value d = 40 in
Table 2 of [3]. Then, by repeating the sequence of obtained working quasigroups
∗i from the first 40 e-transformations to the last 40 e-transformations (as it is
done in Edon80) and by giving a freedom of 80 bits for choosing the leaders for
those transformations ai, i = 39, 40, . . . , 79 he computed that the probabilities
of obtaining periods with the lengths in the range 253 − 255 are in the range

164 D. Gligoroski, S. Markovski, and S.J. Knapskog

Table 4. Summary table from [3] with the projections of the probabilities for obtaining
streams with the lengths shorter then indicated in the first column

Stream length
less than

Probability

220 ?
253 2−88

254 2−78

255 2−71

261 2−75

262 2−66

263 2−60

from 2−88 − 2−71. By reducing the initial extrapolation not to the 40-th row,
but to the 34-th row, he computed the probabilities of obtaining periods in the
range 261− 263 with even much higher values in the range 2−75− 2−60. He even
mentioned the possibility of the existence of a (key, state) pair that will give a
very short period of only 220 but does not give the projection of the probability
for obtaining that period. The summary of his findings are given in Table 4.

In [6] we treated the situation of finding (key, state) pairs that will produce
short keystreams as a weak key attack on Edon80. Further on, we derived a
precise formula for the distribution of the lengths of Edon80 keystreams as well
as for the whole family Edon-(2m, 2k) of stream ciphers with different key lengths

40 47 50 60 70 80 90
Keystream length

75

80

85

90

95

100

T
Weak key attack curve for Edon80 �Log Log plot with base 2.�

Intersection point

Fig. 6. Log-Log plot of the weak key curve for Edon80. The intersection with the
security limit of 280 is for the keystreams with length slightly larger than 247 2-bit
letters i.e. of length 248 bits.

The Stream Cipher Edon80 165

of 2k bits and internal pipelines of length 2m. The distribution is given by the
following expression:

FY2m(y) =
1
2

(

1 + erf

(
1.00777 (ln(2y)− 1.535086 m)√

m

))

, 0 < y <∞, (6)

and from there for the Edon80 stream cipher (which renamed would be Edon-
(80,80)) the concrete distribution is:

FY80(y) =
1
2

(

1 + erf

(
1.00777 (ln(2y)− 61.4034)√

40

))

, 0 < y <∞. (7)

In the same paper [6] (in Lemma 2) a criterion for the weak keys attack have
been given and can be expressed by the following expression:

min
m

(
y

FY2m(y)
≥ 22m, ∀y > 0

)

.

If we put T (y) = y
FY2m (y) then one possible way for achieving T (y) ≥ 22m

is by increasing the length of internal pipeline 2m. That possible tweak for
Edon80 was mentioned in [6]. Namely, simple increasing of the internal pipeline
from 80 to 84 elements eliminates the weak key attack and meets the criterion
of Lemma 2. However, there is another possible tweak that would need not
intervention in the original submission of Edon80. That is the tweak in which
the mode of operation of Edon80 is such that it needs reinitialization with new
IV after every 248 produced bits of the keystream. From the equation (7) we can
compute that the probability a period of a keystream to be less than 248 bits is
2−33.01.

According to our analysis in [5,6] and the remarks given in [7] it was decided
for entering Phase 2 of eSTREAM: The original design, source code and test
vectors for Edon80 to remain unchanged; Edon80 should be reinitialized after
maximum 248 produced keystream bits.

6.5 Key Recovery Attack of Hell and Johansson

Recently Hell and Johansson [10] have used the analysis of the periods of the
keystream sequences of Edon80 in [6] to mount an attack that can recover the
key after using 272 so called “simple operations”. Their attack is based on ex-
ploiting the periodicity inside the generator. Using the fact that some elements
will repeat with larger probability, than the others, they built a test for finding
the correct values of the key bits. This leads to a key recovery attack, where by
varying some parameters as a trade-off between required length of the received
key stream and the computational complexity, they constructed an attack that
is performing 272 simple operations for recovering the key with the probabil-
ity 1

2 . We think that so far, this is the most advanced attack on Edon80, with a
concrete setup that shows how to recover the secret key. Further advancement
in this line of research will deepen our knowledge for the number of rounds in

166 D. Gligoroski, S. Markovski, and S.J. Knapskog

Edon80. However, is the attack in its latest status better than the brute force
attack? Being a hardware stream cipher, we know how to build “efficient” hard-
ware for brute force attack on Edon80. It will consist of a pipelined set of 80
simple e-transformers (full hardware implementation) that will need: 160 cycles
for the IVSetup and additional 80 cycles for obtaining the first 80 keystream
bits, i.e. in total around 28 cycles to obtain the first 80 keystream bits (per key).
So by checking 279 keys × 28 cycles i.e. after approximately 287 circuit cycles,
we will find the secret key with the probability 1

2 .
Now, what is the cost of Hell-Johansson attack? What is the cost of those

272 simple operations expressed as number of cycles? Is the attack faster than
brute force attack? Our opinion is that it is not faster! Here are the arguments:
As described in the paper [10] one simple operation consists of even simpler
operations (on the sets X1 and X2 described in the paper) — seen as assembly
instructions:

1. Retrieving elements of X1;
2. Sorting elements of X1;
3. Retrieving elements of X2;
4. Sorting elements of X2;
5. Preparation for intersection;
6. Operations of intersection;
7. Retrieving the results from the intersection;
8. Storing the results in temp memory.

All these operations can take more than 215 cycles. Now, the cost of the attack
expressed as number of basic circuit cycles is bigger than 272× 215 = 287 cycles.
This analysis naturally points out to the following idea: How efficient (and costly)
would be to implement Hell-Johansson attack in a hardware circuit?

7 Hardware Implementation, Simulations and
Performances

We have programmed Edon80 in VHDL language using free web edition of Xilinx
ISE 7.1i application and then mapped the algorithm in several Xilinx FPGAs.
Our VHDL implementation is far from optimal, but here we give several quan-
tities that we achieved by our VHDL implementation. An equivalent encoding
of the above algorithm programmed in VHDL gives total amount of equivalent
gates count around 7500.

On simulated mapping on several Xilinx FPGA platforms (from Spartan 2
to Virtex 4) the projected speed of Edon80, and achieved total equivalent gate
count are given in Table 5.

The speed of processing of Edon80 is obtained from the speed of the FPGA
chip, since the output of the cipher is every second cycle, and in every second
cycle Edon80 produces 2 keystream bits. In the last column we give potential
full usage of the capacities of the mentioned FPGA platforms, when Edon80 is
parallelized several times.

The Stream Cipher Edon80 167

Table 5. Projected characteristics of Edon80 on different FPGA platforms

FPGA type MHz Speed Gates
Logic
Utilization

Max Speed /
Gates

Spartan 2
Target Device : xc2s50
Target Package : fg256
Target Speed : -5

92.30 92.3
Mbps

7,562
Slice Flip Flops: 472/1,536
4 input LUTs: 592/1,536

277 Mbps /
23K

Spartan 3
Target Device : xc3s200
Target Package : fg256
Target Speed : -5

157.37 157.37
Mbps

7,169
Slice Flip Flops: 472/3,840
4 input LUTs: 584/3,840

944 Mbps /
43K

Virtex 2
Target Device : xc2v250
Target Package : fg256
Target Speed : -6

220.75 220.75
Mbps

7,149
Slice Flip Flops: 426/3,072
4 input LUTs: 586/3,072

1.1 Gbps /
35K

Virtex 4
Target Device : xc4vlx25
Target Package : sf363
Target Speed : -12

318.07 318.07
Mbps

7,160
Slice Flip Flops: 427/21,504
4 input LUTs: 585/21,504

9.54 Gbps /
215K

We have to mention the following remark about the way of parallelizing of
Edon80. Parallelizing of Edon80 can be done in two ways:

1. The first one is the standard way of sending different IV to parallel instances
of Edon80. In this way we can share one ROM of 16 bytes where we can store
four initial quasigroups.

2. The second one is a little more costly: Every instance of Edon80 to have
different and disjoint sets of four appropriate quasigroups of order 4.

In 2007, Kasper et. al [11] realized Edon80 in ASIC, with an area of 2922
equivalent gates (which is less than the area of the smallest AES implementation)
and with throughput of 2.18 Mbit/s at 175 MHz. They have concluded that the
hardware resources required for the implementation of Edon80 can be further
reduced to less than 1850 equivalent gates if a micro-controller is available to
input the initialization sequence.

7.1 Adding MAC Functionality to Edon80

In 2007, Gligoroski and Knapskog [12] inspired by the work of Kasper et. al [11]
have introduced “MAC Edon80”. That stream cipher is using the internal struc-
ture of Edon80 (thus producing keystream same as Edon80) but it can compute
also a 160 bit Message Authentication Code for the encrypted/decrypted mes-
sages. The way how they achieved the MAC upgrade of Edon80 was by adding
two-bit registers into the e-transformers of Edon80 core, an additional 160-bit
shift register and by putting additional communication logic between neighbor-
ing e-transformers of the Edon80 pipeline core. The upgrade does not change
the produced keystream from Edon80 and they projected that in total it will
need not more then 1500 gates.

7.2 Stretching the Speed Asymmetry of Edon80

As we mentioned in the Section 2, one of the design goals for Edon80 was
the stream cipher to manifest significant speed asymmetry when realized in

168 D. Gligoroski, S. Markovski, and S.J. Knapskog

hardware and software, and that asymmetry to be extensible and flexible. We
have prepared a summary table of the averaged speed of all 7 synchronous hard-
ware stream ciphers that are finalists in the eSTREAM project [16], as well as
their hardware speeds and the asymmetry coefficient expressed as

speed asymmetry =
software speed
hardware speed

.

From Table 6 we can see that Edon80 has the biggest speed asymmetry.
Moreover, the analysis performed on the family of stream ciphers Edon-(2m, 2k)
in [6] and the flexibility and extensibility that has been concluded by Kasper et.
al in [11] gives opportunities to define stream ciphers from the same family that
can have asymmetry coefficient as big as needed.

Table 6. Speed asymmetry of seven synchronous hardware stream ciphers of the
eSTREAM project

Name SW cycles/byte HW cycles/byte Asymmetry

Edon80 5806.99 8.000 725.87
DECIM v2 12070.04 32.000 502.92
Pomaranch v3 2222.16 8.000 277.77
Grain v1 1078.66 8.000 134.83
MICKEY 2.0 724.98 8.000 90.62
F-FCSR-H v2 54.13 1.000 54.13
Trivium 4.48 0.125 35.86

8 Conclusions

Edon80 is a binary additive synchronous stream cipher characterized by its flex-
ibility and mathematical provability of many of its components. It offers 80 bits
cryptographic primitive and can be implemented with hardware resources from
3000 to 7,500 electronic gates. If the needs for security bits have to be increased
to arbitrary value, or the speed asymmetry have to be increased, than it can
be done with a simple addition of a basic components called e-transformers. In
that case, the speed of the cipher in the hardware would not be affected at all
(except initialization phases), but its speed in software would be significantly
decreased. The size of IV can be also easily changed, without affecting the speed
of the cipher. It is easily parallelizable. It can be easily and cheaply upgraded to
become a stream cipher with authentication.

References

1. eSTREAM: ECRYPT Stream Cipher Project,
http://www.ecrypt.eu.org/stream

2. Gligoroski, D., Markovski, S., Kocarev, L., Gusev, M.: Edon80, eSTREAM [1],
Report 2005/007 (2005)

http://www.ecrypt.eu.org/stream

The Stream Cipher Edon80 169

3. Hong, J.: Remarks on the Period of Edon80, eSTREAM [1], Report 2005/041 (June
18, 2005)

4. Hong, J.: Period of Stream Cipher Edon80. In: Maitra, S., Veni Madhavan, C.E.,
Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 23–34. Springer,
Heidelberg (2005)

5. Gligoroski, D., Markovski, S., Kocarev, L., Gusev, M.: Understanding periods in
Edon80, eSTREAM [1], Report 2005/054 (2005)

6. Gligoroski, D., Markovski, S., Knapskog, S.J.: On periods of Edon-(2m, 2k) fam-
ily of stream ciphers. In: State of the Art of Stream Ciphers, Workshop Record,
SASC 2006, Leuven, Belgium (2006)

7. Gligoroski, D., Markovski, S., Kocarev, L., Gusev, M.: Status of Edon80 in the
second phase of eSTREAM, eSTREAM [1] (2006),
http://www.ecrypt.eu.org/stream/p2ciphers/edon80/edon80 p2note.pdf

8. Vojvoda, M., Sýs, M., Jókay, M.: A note on algebraic properties of quasigroups in
Edon80, eSTREAM [1], Report 2007/032 (2007)

9. Bjørstad, T.E.: A note on the Edon80 S-box, eSTREAM [1], Report 2007/043
(2007)

10. Johansson, T., Hell, M.: A Key Recovery Attack on Edon80. In: Kurosawa, K.
(ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 568–581. Springer, Heidelberg (in
print, 2007)

11. Kasper, M., Kumar, S., Lemke-Rust, K., Paar, C.: A Compact Implementation of
Edon80, eSTREAM [1], Report 2006/057 (2006)

12. Gligoroski, D., Knapskog, S.J.: Adding MAC functionality to Edon80, Report
2007/031, [1] (2007)

13. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Inc., Boca Raton (1997)

14. Dénes, J., Keedwell, A.D.: Latin Squares and their Applications. English Univer.
Press Ltd. (1974)

15. Markovski, S., Gligoroski, D., Bakeva, V.: Quasigroup String Processing: Part 1.
Maced. Acad. of Sci. and Arts, Sc. Math. Tech. Scien. XX 1-2, 13–28 (1999)

16. eSTREAM Pase 3, Software Performance Figures,
http://www.ecrypt.eu.org/stream/phase3perf.html

http://www.ecrypt.eu.org/stream/p2ciphers/edon80/edon80_p2note.pdf
http://www.ecrypt.eu.org/stream/phase3perf.html

F-FCSR Stream Ciphers

François Arnault1, Thierry Berger1, and Cédric Lauradoux2

1 XLIM DMI, Université de Limoges, France
{arnault,thierry.berger}@unilim.fr

2 INRIA Rocquencourt, France
cedric.lauradoux@inria.fr

1 Introduction

Feedback with Carry Shift Registers (FCSRs) are a promising alternative to
Linear Feedback Shift Registers (LFSRs) for the design of stream ciphers. The
main difference between these two automata lies in the computation of the feed-
back. While LFSRs use simple bitwise addition, FCSRs use addition with car-
ries. Hence, the transition function of an FCSR is non-linear, more precisely
quadratic. Since FCSRs were introduced by Goresky and Klapper [11], the prop-
erties of the sequences generated by an FCSR are now considered well mastered
from a mathematical point of view.

FCSR can help to solve the problem which is always raised when using LFSR.
In LFSR-based stream ciphers, a filtering or combining Boolean function must
be used to break the linearity of LFSR. With FCSR-based stream ciphers, this
issue is directly solved by the intrinsic non-linearity of the FCSR. Thus, a linear
filter can be used to extract the keystream from the internal state. Moreover,
sequences obtained from an FCSR have the same suitable statistical properties of
LFSR sequences: known period, balancedness, equal distribution of patterns. . .

We present in this chapter two designs based on filtered FCSR (F-FCSR)
which are dedicated to hardware applications. F-FCSR-H is our first proposition
which fulfill the requirement of eSTREAM profile 2: 80 bits of key and 80 bits
of IV. A second proposition, F-FCSR-16, is similar to F-FCSR-H, but uses larger
keys and IVs (128 bits for the key and 128 bits for the IV).

2 Background on FCSR Automata

2.1 FCSR vs LFSR

The underlying mathematical model for LFSRs is rational series in the ring
GF (2)[[x]]. For FCSRs, the model is provided by rational 2-adic numbers (cf.
[7,13]). In practice, those two theories lead to very similar analysis. However, the
transition function of an LFSR is linear while it is quadratic for an FCSR. The
main advantage of this quadratic transition function is the intrinsic resistance
to algebraic attacks and to correlation attacks, which are the main weaknesses
of LFSR-based stream ciphers. However, it has a drawback: the implementation

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 170–178, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

F-FCSR Stream Ciphers 171

Table 1. Comparison between LFSRs and FCSR for equivalent parameters

LFSR FCSR

Register Flip-Flops n n

Carry Flip-Flops 0 k − 1

xor Gates k − 1 4(k − 1)

and Gates 0 k − 1

of an FCSR costs more than the one of an LFSR. Table 1 compares the imple-
mentation of LFSR and FCSR for equivalent size of parameters, i.e. a feedback
polynomial Q(X) of degree n and Hamming weight k for the LFSR, and a con-
nection integer q of bitlength n +1 and weight k for the FCSR. We assume here
that the addition with carries propagation is computed using full-adders which
consists in four xor gates and one and gate.

As for LFSRs, FCSR sequences are predictable and therefore not suitable for
a direct use in cryptography. An attacker can synthesize the FCSR given a small
amount of keystream using the algorithms described in [1, 12]. This is why we
need to filter the internal state of a FCSR to generate the keystream.

2.2 FCSR in Galois Mode

There exists two forms of LFSR circuits: the Galois setup and Fibonacci setup.
These two forms also exist for FCSR [7]. In the Fibonacci setup of an FCSR,
the feedback bit obtained by combining some bit of the internal state and the
content of a k-bit memory using a parallel count (Hamming weight) and a k-bit
adder. In the Galois setup of an FCSR, the feedback is combined with some bits
of the internal state using a full-adder with a forward carry. Then, it appears that
the Galois setup is more suitable for hardware applications than the Fibonacci
setup since it offers more parallelism.

The Galois setup of an FCSR is an automaton which computes the binary
expansion of the quotient of an integer p by a fixed odd integer q following the
ascending order of the powers of 2. The integer q is called the connection integer
of the FCSR, while the integer p depends on the initial state of the FCSR. To
avoid non purely periodic sequences, we choose q to be a negative odd integer and
p satisfying 0 < p < |q|. We suppose that the size of the binary representation
of |q| requires n + 1 bits, i.e. 2n < −q < 2n+1. Let be d = (1 − q)/2 and put
d =

∑n−1
i=0 di2i, with di ∈ {0, 1} (and dn−1 = 1). For a fixed q, the 2-adic rational

number p/q can be computed by a FCSR automaton for any p, 0 ≤ p < |q|.
An FCSR automaton is composed of a main register M and of a carry reg-

ister C. The main register M is composed of n binary cells where each bit is
denoted by mi(t) (0 ≤ i ≤ n− 1). The integer m(t) =

∑n−1
i=0 mi(t)2i represents

the content of M . The carry register C consists in � cells where � + 1 is the
Hamming weight of the binary expansion of d. We denote ci(t) the content of
each carry cell. A carry cell ci is present only if di = 1 and i < n− 1. Otherwise,
we put ci(t) = 0 for all t. The integer c(t) =

∑n−2
i=0 ci(t)2i is called the content

172 F. Arnault, T. Berger, and C. Lauradoux

of C. The Hamming weight of the binary expansion of c(t) is at most �. We
say that an FCSR automaton is in state (m, c) when the integers m and c are
respectively the contents of M and C.

Let consider a state (m, c) at time t = t0 of the automaton, i.e. m = m(t0) and
c = c(t0), then the observed sequence in the last cell (m0(t0 + i))i∈N

is the 2-adic
expansion of p/q, with p = m + 2c. Moreover, for every cell of the main register,
there exists an integer p(j) such that the observed sequence (mj(t0 + i))i∈N

is
the 2-adic expansion of p(j)/q. This number p(j) can be explicitly computed from
the knowledge of m and c. The reader can refer to [4, 5] for more details. The
following circuit represents the Galois setup of an FCSR for q = −347, and so
d = 174 = (10101110)2.

m(t)

1 1 1 1 10 0d

c(t) 0 0 0c1c2c3c5

m7 m5 m4 m3 m2 m1 m0m6

0

Fig. 1. A Galois FCSR for q = −347, d = 174 = (10101110)2 , n = 8 and � = 4

Here the symbol � represents addition with carry. More precisely it consists
of a full adder with a carry cell, as represented below. The carry part of the
output is delayed and given back in input at the next transition:

��

��
�a
�b
�ci−1

� s=a⊕b⊕ci−1

ci=ab⊕aci−1⊕bci−1

�

2.3 Choice of the Connection Integer q

The connection integer q determines the period of the sequences generated by
an FCSR [11, 13]. We usually choose the connection integer according to the
following criterions:

1. q is a (negative) prime of bitsize n + 1.
2. The order of 2 modulo q is |q| − 1.
3. T = (|q| − 1)/2 is also prime.
4. Set d = (1 + |q|)/2. The Hamming weight W (d) of the binary expansion of

d is not too small. Typically, W (d) is about n/2 or slighty greater.

Condition 1 was already discussed (n is the size of the main register). Condi-
tion 2 is similar to the choice of a primitive polynomial in the case of LFSR.
Here, it ensures that the period of the sequences output by the FCSR automaton

F-FCSR Stream Ciphers 173

equals |q| − 1. Such sequences of maximal period are called �-sequences [11, 13].
Condition 3 is used for filtered sequences (see below) : when xoring several
sequences of period |q| − 1 we get a sequence of period T or 2T except in degen-
erated cases. The last condition ensures that the transition function has a large
nonlinear part and that the feedback bit has a good diffusion.

3 Filtering and IV Setup Procedure

3.1 Filtering

The choice of a filter function is critical in LFSR-based stream ciphers. The
filter must achieve a high non-linearity, a high resiliency and a high resistance
to algebraic attacks. In the case of the filtered FCSR, the situation is different
since the transition provides the non-linearity and the resistance to algebraic
attacks. It is well-known that linear functions achieve the best resiliency. This is
why our designs are based on linear filters. A bit-filter function is defined by a
mask of n bits (f0, . . . , fn−1). One bit k of keystream is obtained in the following
way:

k =
n−1⊕

i=0

fimi.

In our designs, we extract more than one bit from the main register of the
FCSR. In the case of F-FCSR-H, we extract one byte while we extract two bytes
in the case of F-FCSR-16. For that we need word-filter functions which consists
respectively of eight and sixteen bit-filters.

When there is no feedback bit between two consecutive cells mi and mi+1

(i.e. di = 0), the two observed sequences in these cells are derived each other by
just a shift of one step. When there is a feedback the two sequences are much
different. They are derived each other by a large shift, depending on the initial
state of the FCSR. So we use, in each filter, only cells that are separated each
other by at least one feedback.

An n bit word can define a filter which outputs a word of bitsize s as follows:

bit j of output word =
n/s−1⊕

i=0

dsi+jmsi+j .

3.2 IV Setup

The design of the IV setup procedure is a difficult task in view of chosen IV
attacks. Some previous propositions of F-FCSR stream ciphers [5, 3] suffered
from a slow diffusion of changes in the initial state of a FCSR. This has been
exploited in a resynchronization attack by Jaulmes and Muller [9,10]. Taking in
account the lessons learned from our previous mistakes, we initialize the internal
state of F-FCSR-H and F-FCSR-128 using the following procedure:

174 F. Arnault, T. Berger, and C. Lauradoux

1. the main register M is initialized with the concatenation of the IV and the
secret key K i.e. M = (IV ||K), and all the carries are set to zero.

2. The device is clocked 20 times for F-FCSR-H and 16 times for F-FCSR-16.
Using the filter, we obtain respectively 20× 8 = 160 bits for F-FCSR-H and
16 × 16 = 256 bits for F-FCSR-16. These bits are used to re-initialize the
main register of F-FCSR-H and F-FCSR-16 (also the carries are reset to
zero).

3. The automaton is clocked n + 2 times before using the keystream to ensure
a good diffusion of all bits in the main register.

4 Description of F-FCSR Stream Ciphers

4.1 F-FCSR-H

According to the Profile 2 requirements, the size of the secret key is 80 bits and
the size of the IV is 80 bits (after padding if needed). In order to resist to TMD
attacks, we have choosen a FCSR of length n = 160. Its connection integer is:

q = −1993524591318275015328041611344215036460140087963.

The carry register contains � = 82 cells, which are present at the positions
matching the ones (except of the leading one) in the binary expansion of d =
(|q|+1)/2. This binary expansion is the following 160 bits string (it has Hamming
weight 83):

d = (AE985DFF 26619FC5 8623DC8A AF46D590 3DD4254E)16.

As described in Section 3.1, at each iteration of the FCSR automaton, the output
S(t) is the byte (s0(t), . . . , s7(t)) which is defined by sj(t) =

∑19
i=0 d8i+jm8i+j(t)

where mi(t) is the content of the cell mi at time t.
The Key+IV setup procedure is:

– Input a key K of length k = 80 and an IV of length v ≤ 80
– Initialize the main and carry registers:

M := (080−v‖IV‖K) C := 0.

– Clock the FCSR 20 times and compute S(t) for t := 1 to 20.
– M := (S(20), . . . , S(1)).
– Clock the FCSR 162 times (output is discarded in this step).

Then, to obtain N pseudo-random bytes, repeat N times the following oper-
ations:

– Clock the FCSR;
– Use the byte-filter to extract one byte S(t).

F-FCSR Stream Ciphers 175

4.2 F-FCSR-16

F-FCSR-16 differs from F-FCSR-H by the size of the key which is 128 bits the
size of the IV which is also 128 (after padding if needed). It differs also by its
length which is n = 256 and by the filter which extracts a 16 bits word. The
connection integer is

q = −18397144084561947112986916180934413
1658298317655923135753017128462155618715019

and the positions of the � = 130 carry cells are given by the binary expansion of
d = (|q|+ 1)/2 which as weight 131:

d = (CB5E129F AD4F7E66 780CAA2E C8C9CEDB
2102F996 BAF08F39 EFB55A6E 390002C6)16.

At each iteration of the FCSR automaton, the output S(t) is the 16-bits word
(s0(t), . . . , s15(t)) defined by sj(t) =

∑16
i=0 d16i+jms16i+j(t).

The key+IV setup procedure is:

– Input a key K of length k = 128 and an IV of length v ≤ 128
– Initialize the main and carry registers:

M := (0128−v‖IV‖K) C := 0.

– Clock the FCSR 16 times and compute S(t) for t from 1 to 16.
– M := (S(16), . . . , S(1)).
– Clock the FCSR 258 times (output is discarded in this step).

Then, to obtain 2N pseudo-random bytes, repeat N times the following steps:

– Clock the FCSR.
– Use the word-filter to get two bytes S(t).

5 Security Analysis

in this section, we give a security analysis of F-FCSR schemes. First, we establish
the resistance of F-FCSRs against the state of the art of cryptanalysis. Then,
we describe some dedicated attacks.

5.1 Resistance to Generic Attacks

Statistical properties. There is not any known statistical bias on the pseudo-
random sequences output by our filtered FCSR. We have check that they pass
the Statistical Test Suite of the NIST.

176 F. Arnault, T. Berger, and C. Lauradoux

Linear complexity. Since the FCSR automaton has a quadratic transition func-
tion and has a 2-adic structure, we can expect that the linear complexity of the
generated pseudo-random sequences satisfies the same distribution law as the
one observed for a random sequence of period |q|−1 > 2n. Experiments we have
done support this assumption.

2-adic complexity. The 2-adic structure is broken by the linear filter function.
Hence, we can expect that the 2-adic complexity of the generated pseudo-random
sequences is high, as it is the case for random sequences of period |q| − 1 > 2n.
We have also done experiments which support this assumption.

Algebraic cryptanalysis. The transition function of a FCSR automaton is quadra-
tic and the filter function F� is linear. The algebraic equations the attacker has
to solve are of the form F�(T i

q(x)) = si. At each iteration the degree of the
equations is increasing. It becomes computationally infeasible to obtain these
equations for i ≥ 12. To solve this system, we need at least n iterations.

Correlation attack. There are two major obstacles to the adaptation of this
attack on a filtered FCSR:

– the filtering function is linear with � inputs. Then, such a function is �− 1
resilient, i.e. balanced and without correlation between its output and any
sum of at most � − 1 of its inputs. In that situation, the attack is more
difficult than an exhaustive research.

– the dependencies between the cells of an FCSR are nonlinear, since the
transition function is quadratic. Thus, it seems difficult to obtain linear
dependencies.

Time-Memory-Data tradeoff attacks. The size of the registers has been chosen
in order the stream cipher to be resistant to these attacks.

Distinguishing attacks. Distinguishing attacks can be based on the existence of
linear relations between some internal states of the automaton which occur with
a biased probability. Due to the presence of carry cells, the existence of such
relations seems unlikely. We did not find any of them and we think that there
are none.

5.2 Dedicated Attacks

Some dedicated attacks against older versions of F-FCSR have been proposed
in [2, 3, 5, 6, 9, 10]. Most of them use the fact that the diffusion of a difference
between two states remains local as soon as this difference does not affect the
feedback bit. For an FCSR of length n, we need in the worst case n iterations
of the automaton before a full diffusion. Jaulmes and Muller [9, 10] used this
property to mount some distinguishing and resynchronization attacks. In [6],
T. Berger and M. Minier used a very small number of iterations in the IV setup
procedure of an older version of F-FCSR to design an algebraic attack. All these
attacks are avoided if the FCSR is clocked n times after a change of IV.

F-FCSR Stream Ciphers 177

A more specific attack on weak filters was presented in [2]. It worked only
when the number � of inputs of the filter is less than 3 or when all of them
are located in a small part of the register. We have chosen the filter in F-FCSR
schemes to avoid this weakness.

5.3 Weak Keys

A null key must not be used. Using it with a null IV produces a null keystream.
There are no other weak keys. If the key is non null, an FCSR is initialized to a
non zero state. In this case, the FCSR does not return to its initial state before
|q| − 1 transitions.

6 Conclusion

We described FCSRs in Galois mode and how it is possible to filter them to
obtain a keystream. We discussed the choice of the connection prime and the
design of IV-setup. Then we presented the F-FCSR-H and F-FCSR-16 stream
ciphers which have been selected to enter in Phase 3 of the eSTREAM project
with Profile 2. We considered different kinds of attacks that could be effective
on stream ciphers. According to the current knowledge, none of them breaks any
of these two stream ciphers.

7 Future Directions

Some further work has to be done in some directions. First, we need to complete
the study of transition graphs of FCSR automata to obtain stronger assurance
for the security of F-FCSR. Secondly, we would like to design a fast software
FCSR based stream cipher, especially suited for constrained environment. At
the moment, known software filtered FCSRs suffer from a relative slowness.
Also, while the presence of carry cells makes the parallelization of FCSR not
so easy, we think it should be possible and we expect to obtain a speed up in
hardware.

References

1. Arnault, F., Berger, T.P., Necer, A.: Feedback with Carry Shift Registers synthesis
with the Euclidean Algorithm. IEEE Trans. Inform. Theory 50(5), 910–917 (2004)

2. Arnault, F., Berger, T.P.: Design of new pseudo random generators based on a
filtered FCSR automaton. In: SASC, State of the Art of Stream Ciphers Workshop,
Bruges, Belgium, October 2004, pp. 109–120 (2004)

3. Arnault, F., Berger, T.P.: F-FCSR: design of a new class of stream ciphers. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 83–97. Springer,
Heidelberg (2005)

4. Arnault, F., Berger, T.P., Minier, M.: On the security of FCSR-based pseudoran-
dom generators. In: ECRYPT Network of Excellence - SASC Workshop (2007),
http://sasc.crypto.rub.de/files/sasc2007 179.pdf

http://sasc.crypto.rub.de/files/sasc2007_179.pdf

178 F. Arnault, T. Berger, and C. Lauradoux

5. Arnault, F., Berger, T.P.: Design and properties of a new pseudorandom generator
based on a filtered FCSR automaton. IEEE Trans. Computers 54(11), 1374–1383
(2005)

6. Berger, T.P., Minier, M.: Two algebraic attacks against the F-FCSRs using the IV
mode. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT
2005. LNCS, vol. 3797, pp. 143–154. Springer, Heidelberg (2005)

7. Goresky, M., Klapper, A.: Fibonacci and Galois representation of feedback with
carry shift registers. IEEE Trans. Inform. Theory 48, 2826–2836 (2002)

8. Goresky, M., Klapper, A.: Periodicity and distribution properties of combined
FCSR sequences. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA
2006. LNCS, vol. 4086, pp. 334–341. Springer, Heidelberg (2006)

9. Jaulmes, E., Muller, F.: Cryptanalysis of ecrypt candidates F-FCSR-8 and F-
FCSR-H. ECRYPT Stream Cipher Project Report 2005/046 (2005),
http://www.ecrypt.eu.org/stream

10. Jaulmes, E., Muller, F.: Cryptanalysis of the F-FCSR stream cipher family. In:
Preneel, B., Tavares, S.E. (eds.) SAC 2005. LNCS, vol. 3897, pp. 20–35. Springer,
Heidelberg (2006)

11. Klapper, A., Goresky, M.: 2-adic shift registers. In: Anderson, R. (ed.) FSE 1993.
LNCS, vol. 809, pp. 174–178. Springer, Heidelberg (1994)

12. Klapper, A., Goresky, M.: Cryptanalysis based on 2-adic rational approximation.
In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 262–273. Springer,
Heidelberg (1995)

13. Klapper, A., Goresky, M.: Feedback Shift Registers, 2-Adic Span, and Combiners
with Memory. Journal of Cryptology 10, 111–147 (1997)

http://www.ecrypt.eu.org/stream

The Grain Family of Stream Ciphers

Martin Hell1, Thomas Johansson1, Alexander Maximov2, and Willi Meier3,�

1 Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{martin,thomas}@eit.lth.se
2 Ericsson AB, Lund, Sweden

alexander.maximov@ericsson.com
3 FHNW, CH-5210 Windisch, Switzerland

willi.meier@fhnw.ch

Abstract. A new family of stream ciphers, Grain, is proposed. Two
variants, a 80-bit and a 128-bit variant are specified, denoted Grain and
Grain-128 respectively. The designs target hardware environments where
gate count, power consumption and memory are very limited. Both vari-
ants are based on two shift registers and a nonlinear output function.
The ciphers also have the additional feature that the speed can be easily
increased at the expense of extra hardware.

When designing a cryptographic primitive there are many different properties
that have to be addressed. These include e.g., speed and security. Comparing
several ciphers, it is likely that one is faster on a 32-bit processor, another is faster
on an 8 bit processor and yet another one is faster in hardware. The simplicity of
the design is another factor that has to be taken into account. While the software
implementation can be very simple, the hardware implementation might be quite
complex.

There is a need for cryptographic primitives that have very low hardware
complexity. A radio-frequency identification (RFID) tag is a typical example of
a product where the amount of memory and power is very limited. These are
microchips capable of transmitting an identifying sequence upon a request from
a reader. Forging an RFID tag can have devastating consequences if the tag is
used e.g., in electronic payments and hence, there is a need for cryptographic
primitives implemented in these tags. Today, a hardware implementation of e.g.,
AES on an RFID tag is not feasible due to the large number of gates needed.
The Grain family of stream ciphers is designed to be very easy and small to
implement in hardware.

Several recent LFSR based stream cipher proposals, see e.g., [1,2] and their
predecessors, are based on word oriented LFSRs. This allows them to be efficiently
implemented in software but it also allows them to increase the throughput since
words instead of bits are output. In hardware, a word oriented cipher is likely to be
more complex than a bit oriented one. In the Grain ciphers, this issue has been
� Supported by Hasler Foundation http://www.haslerfoundation.ch under project

number 2005.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 179–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

180 M. Hell et al.

addressedbybasingthedesignonbitorientedshift registerswiththeextra featureof
allowing an increase in speed at the expense of more hardware.The user can decide
the speed of the cipher depending on the amount of hardware available. This
property is not explicitly found in most other stream ciphers.

The proposed designs, denoted Grain (or more formally Grain Version 1 or
Grain V1) and Grain-128, are bit oriented synchronous stream ciphers. The
designs are based on two shift registers, one with linear feedback (LFSR) and
one with nonlinear feedback (NFSR). The LFSR guarantees a minimum period
for the keystream and it also provides balancedness in the output. The NFSR,
together with a nonlinear output function introduces nonlinearity to the cipher.
The input to the NFSR is masked with the output of the LFSR so that the state
of the NFSR is balanced. Hence, we use the notation NFSR even though this
is actually a filter. What is known about cycle structures of nonlinear feedback
shift registers cannot immediately be applied here.

The first, unpublished, version of the cipher is denoted version 0. This version
was cryptanalyzed in [3,4,5]. The design of version 0 will not be given in this
paper but the attack will be discussed in Section 3.1.

The paper is organized as follows. Section 1 provides a detailed description of
the Grain and Grain-128 designs. The possibility to easily increase the through-
put is discussed in Section 2. The security of Grain is discussed in Section 3
together with a motivation for the different design parameters. Section 4 con-
cludes the paper.

1 Design Specifications

This section specifies the details of the designs of both Grain and Grain-128. Both
ciphers follow the same design principle. They consist of three main building
blocks, namely an LFSR, an NFSR and an output function. The contents of
the two shift registers represent the state of the cipher and their sizes are |K|
bits each, where K is the key. In the following, the content of the LFSR is
denoted St = st, st+1, . . . , st+|K|−1 and the content of the NFSR is denoted
Bt = bt, bt+1, . . . , bt+|K|−1. The output function, denoted H(Bt, St) consists of
two parts. A nonlinear Boolean function h(x) and a set of linear terms added to
h(x). The output of H(Bt, St) is the keystream bit zt. A general overview of the
design is given in Fig. 1.

1.1 Grain - Design Parameters

The keysize of Grain is |K| = 80 bits and the cipher supports an IV of size
|IV | = 64 bits. The feedback polynomial of the LFSR, denoted f(x) is a primitive
polynomial of degree 80. It is defined as

f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80. (1)

To remove any possible ambiguity we also define the update function of the
LFSR as

st+80 = st+62 ⊕ st+51 ⊕ st+38 ⊕ st+23 ⊕ st+13 ⊕ st. (2)

The Grain Family of Stream Ciphers 181

g(x) f(x)

zt

NFSR LFSR

h(x)

�

Fig. 1. Overview of the different design blocks in the Grain family of stream ciphers

The feedback polynomial of the NFSR, g(x), is defined as

g(x) = 1 + x18 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x66+
+x71 + x80 + x17x20 + x43x47 + x65x71 + x20x28x35+
+x47x52x59 + x17x35x52x71 + x20x28x43x47 + x17x20x59x65+
+x17x20x28x35x43 + x47x52x59x65x71 + x28x35x43x47x52x59.

(3)

Again, to remove any possible ambiguity we also write the update function of
the NFSR. Note that the bit st which is masked with the input is included in
the update function below.

bt+80 = st ⊕ bt+62 ⊕ bt+60 ⊕ bt+52 ⊕ bt+45 ⊕ bt+37 ⊕ bt+33 ⊕ bt+28⊕
⊕bt+21 ⊕ bt+14 ⊕ bt+9 ⊕ bt ⊕ bt+63bt+60 ⊕ bt+37bt+33⊕
⊕bt+15bt+9 ⊕ bt+60bt+52bt+45 ⊕ bt+33bt+28bt+21⊕
⊕bt+63bt+45bt+28bt+9 ⊕ bt+60bt+52bt+37bt+33⊕
⊕bt+63bt+60bt+21bt+15 ⊕ bt+63bt+60bt+52bt+45bt+37⊕
⊕bt+33bt+28bt+21bt+15bt+9 ⊕ bt+52bt+45bt+37bt+33bt+28bt+21.

(4)

From the two registers, 5 variables are taken as input to a Boolean function,
h(x). This filter function is chosen to be balanced, correlation immune of the
first order and has algebraic degree 3. The nonlinearity is the highest possible
for these functions, namely 12. The function is defined as

h(x) = h(x0, x1, . . . , x4) =

=x1⊕x4⊕x0x3⊕x2x3⊕x3x4⊕x0x1x2⊕x0x2x3⊕x0x2x4⊕x1x2x4⊕x2x3x4

(5)
where the variables x0, x1, x2, x3 and x4 correspond to the tap positions st+3,
st+25, st+46, st+64 and bt+63 respectively. The output function H(Bt, St) is given
by

zt = H(Bt, St) =
⊕

j∈A
bt+j ⊕ h(st+3, st+25, st+46, st+64, bt+63) (6)

where A = {1, 2, 4, 10, 31, 43, 56}.

182 M. Hell et al.

Cipher Initialization: Before any keystream is generated the cipher must be
initialized with the key and the IV. Let the bits of the key, K, be denoted
ki, 0 ≤ i ≤ 79 and the bits of the IV be denoted IVi, 0 ≤ i ≤ 63. The
initialization of the key is done as follows. First the NFSR and LFSR are loaded
with key and IV bits as

{
bi = ki, 0 ≤ i ≤ 79,

si = IVi, 0 ≤ i ≤ 63.
(7)

The remaining bits of the LFSR are filled with ones, si = 1, 64 ≤ i ≤ 79. Then
the cipher is clocked 160 times without producing any keystream. Instead the
output function is fed back and xored with the input, both to the LFSR and to
the NFSR, see Fig. 2.

g(x) f(x)

NFSR LFSR

h(x)

Fig. 2. Overview of the key initialization

1.2 Grain-128 — Design Parameters

Grain-128 supports a keysize of |K| = 128 bits, as suggested by the name. The
size of the IV is specified to be |IV | = 96 bits. The feedback polynomial of the
LFSR, f(x), is a primitive polynomial of degree 128. It is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128. (8)

To remove any possible ambiguity we also give the corresponding update function
of the LFSR as

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96. (9)

The nonlinear feedback polynomial of the NFSR, g(x), is the sum of one linear
and one bent function. It is defined as

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125 + x63x67+
+x69x101 + x80x88 + x110x111 + x115x117. (10)

The Grain Family of Stream Ciphers 183

Again, we also write the corresponding update function of the NFSR. In the
update function below, note that the bit st which is masked with the input to
the NFSR is included, while omitted in the feedback polynomial.

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67⊕
⊕bt+11bt+13 ⊕ bt+17bt+18 ⊕ bt+27bt+59⊕
⊕bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84.

(11)

From the state, nine variables are taken as input to a Boolean function, h(x).
Two inputs to h(x) are taken from the NFSR and seven are taken from the
LFSR. This function is of degree deg(h(x)) = 3 and very simple. It is defined as

h(x) = h(x0, x1, . . . , x8) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x6x7 ⊕ x0x4x8 (12)

where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 correspond to the tap
positions bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79 and st+95 respec-
tively. The output function H(Bt, St) is defined as

zt = H(Bt, St) =
⊕

j∈A
bt+j ⊕ h(x)⊕ st+93, (13)

where A = {2, 15, 36, 45, 64, 73, 89}.

Cipher Initialization: The initialization is very similar to the initialization of
the 80-bit variant of the cipher. The bits of the key K, denoted ki, 0 ≤ i ≤ 127,
and the bits of the IV, denoted IVi, 0 ≤ i ≤ 95, are loaded into the NFSR and
LFSR respectively as {

bi = ki, 0 ≤ i ≤ 127,

si = IVi, 0 ≤ i ≤ 95.
(14)

The last 32 bits of the LFSR are filled with ones, si = 1, 96 ≤ i ≤ 127. After
loading key and IV bits, the cipher is clocked 256 times without producing any
keystream. The output function is fed back and xored with the input, both to
the LFSR and to the NFSR.

2 Throughput Rate

It is possible to increase the throughput rate of the Grain ciphers by adding
some additional hardware. This is an important feature of the Grain family of
stream ciphers compared to many other stream ciphers. Increasing the speed can
very easily be done by just implementing the feedback functions, f(x) and g(x),
and the output function several times. In order to simplify this implementation,
the last 15 bits in Grain and the last 31 bits in Grain-128 of the shift registers
are not used in the feedback functions or in the input to the output function.
I.e., si, 65 ≤ i ≤ 79 and bi, 65 ≤ i ≤ 79 in Grain and si, 97 ≤ i ≤ 127 and
bi, 97 ≤ i ≤ 127 in Grain-128 are not used in the three functions. This allows
the speed to be easily multiplied by up to 16 for Grain and 32 for Grain-128 if

184 M. Hell et al.

NFSR LFSR

zt zt+1

Fig. 3. Implementation of Grain which outputs 2 bits/clock

a sufficient amount of hardware is available. An overview of the implementation
when the speed is doubled can be seen in Fig. 3. Naturally, the shift registers
also need to be implemented such that each bit is shifted δ steps instead of one
when the speed is increased by a factor δ. Since, in the key initialization, the
cipher is clocked 160 times (Grain) or 256 times (Grain-128), the possibilities to
increase the speed is limited to factors that are divisors of 160 or 256 respectively.
The number of clockings needed in the key initialization phase is then 160/δ or
256/δ. Since the output and feedback functions are small, it is quite feasible to
increase the throughput in this way.

3 Security and Design Choices

In this section we give a security analysis of the construction and motivate the
different design choices.

3.1 Linear Approximations

Attacking Grain using linear approximations of the two nonlinear functions
turned out to be successful on the first version of Grain, (version 0). This attack
was discovered by several independent researchers and the details can be found
in [3,4,5]. Some design choices in the current versions are influenced by this at-
tack. In this subsection, we temporarily switch to the notation s(t) instead of st

as previously used to denote a value at time t. We also use the notation x
p
= y

meaning that Pr(x = y) = p.
With a slight abuse of notation, let us rewrite the update function of the

NFSR as
0 = g(Bt)⊕ s(t). (15)

The Grain Family of Stream Ciphers 185

Let the weight of a binary linear function �, denoted w(�), be the number of
terms in the function. I.e., if � =

⊕n
i=0 cixi, then

w(�) = |{i ∈ 0..n : ci = 1}| . (16)

Assume that we have found a linear approximation �g(t) of g(Bt) i.e.,

�g(t) =
w(�g)−1⊕

i=0

b(t + φi), (17)

where φ0, φ1, . . . , φw(�g)−1 denote the positions in the NFSR that are present in
the linear approximation. The bias of �g(t) is denoted εg, i.e.,

Pr(�g(t) = g(Bt)) = Pr(�g(t) = s(t)) =
1
2
(1 + εg), 0 < |εg| ≤ 1. (18)

Similarly, a linear approximation �H(t) of the output function H(Bt, St) can be
found. Let wN (�) and wL(�) be the number of terms from the NFSR and from
the LFSR respectively. Then �H(t) can be written as

�H(t) =
wN (�H)−1⊕

i=0

b(t + ξi)⊕
wL(�H)−1⊕

i=0

s(t + ψi), (19)

where ξ0, ξ1, . . . , ξwN (�H)−1 and ψ0, ψ1, . . . , ψwL(�H)−1 determine the location of
the taps in the NFSR and LSFR used in the linear approximation. The bias
of (19) is denoted εH , i.e.,

Pr(�H(t) = z(t)) =
1
2
(1 + εH), 0 < |εH | ≤ 1. (20)

Now, sum up the keystream bits determined by φi in (17),

z(t + φ0)⊕ z(t + φ1)⊕ . . .⊕ z(t + φw(�g)−1)
p
=

�H(t + φ0)⊕ �H(t + φ1)⊕ . . .⊕ �H(t + φw(�g)−1).
(21)

Using the piling-up lemma, the relation (21) holds with probability p = 1/2(1+
ε

w(�g)
H). The terms on the right hand side of (21) will consist of wN (�H) · w(�g)

terms from the NFSR and wL(�H) ·w(�g) terms from the LFSR. All terms from
the NFSR can now be approximated using (17) resulting in a relation involving
only keystream bits and LFSR bits as

w(�g)−1⊕

i=0

z(t + φi)
p′
=

w(�g)−1⊕

i=0

wL(�H)−1⊕

j=0

s(t + φi + ψj)⊕
wN (�H)−1⊕

i=0

s(t + ξi), (22)

which holds with probability p′ = 1/2(1 + εtot) with

εtot = εwN (�H)
g · εw(�g)

H . (23)

186 M. Hell et al.

From this point there are several possibilities for attacks. By finding a multiple
of the LFSR feedback polynomial of weight 3, a distinguishing attack can be
mounted. The expected degree of this multiple would be around 2|K|/2 (see
e.g., [6]). Combining the keystream bits given by the multiple and using the
approximation that 1/ε2 samples are needed in the distinguisher, about

N = 2|K|/2 +
1

ε6
tot

(24)

keystream bits are required in the attack.
Another approach is to try to recover the state of the LFSR. An obvious way

of doing this is to exhaustively search the state and determine which state gives
the bias in (23). In this case, only about

N =
|K| · 2 ln 2

ε2
tot

(25)

keystream bits are needed. This expression can be derived from the capacity of
a binary symmetric channel, see e.g. [7]. Since the size of the LFSR is the same
as the key size, this method is obviously more expensive than exhaustive key
search. A faster algorithm was given in [4], where they generate more equations
of the form (22). By only using equations of a certain form, and by using the
Fast Walsh Transform, the attack complexity could be made significantly lower.
We refer to [4] for more details on this attack.

Due to this attack, the parameters of the original version of Grain were
changed. A higher resiliency was added to the NFSR feedback function, increas-
ing w(�g) and several linear terms from the NFSR were added to the output
function, increasing wN (�H).

The design of Grain-128 is inspired by the analysis in this section. Thus, the
NFSR feedback function should satisfy the following three criteria

– High resiliency, implying many terms in the linear approximation (high
w(�g)). This can be achieved by adding several linear terms to the func-
tion. Each linear term will increase the resiliency by one.

– High nonlinearity, implying small bias of the linear approximations (small
εg). This can be achieved by using a bent function, i.e., a function with
maximum nonlinearity.

– Small hardware implementation, implying that the design is attractive in
low-cost implementations.

A well-known n-variable bent function is the function x1x2⊕x3x4⊕. . .⊕xn−1xn.
This function is also very small in hardware. Using n = 14 and adding 5 linear
terms gives a 4-resilient Boolean function with nonlinearity 260096. The best
linear approximations have bias εg = 2−7 and w(�g) ≥ 5.

The output function has the same design criteria as the NFSR feedback func-
tion. However, to increase the algebraic degree it has a term of degree 3. It has
nonlinearity 61440 and resiliency 7. The best linear approximations have bias
εH = 2−4 and wN (�H) ≥ 7.

The Grain Family of Stream Ciphers 187

3.2 Time-Memory Tradeoff Attacks

It is well known that the state of a stream cipher must be at least twice the key
size in order to prevent time-memory tradeoff attacks [8,9,10]. Both the LFSR
and NFSR are of size |K| bits, and thus the state is exactly twice the key size.
Since Grain is designed to be as small as possible in hardware, no extra state
bits are added to the design. The state is relatively expensive to implement in
hardware and it is important to keep it as small as possible. In [11] it was noted
that the initialization process of a stream cipher could be seen as a one-way
function i.e., the function taking the key K and the IV IV as input and outputs
the first |K|+|IV | bits of the keystream. In this case the search space is 2|K|+|IV |

and new data is generated by repeated initializations of the cipher. If we allow
a preprocessing time P that is higher than exhaustive key search 2|K|, then it is
possible to have an attack with real time complexity lower than exhaustive key
search. Table 1 gives attack complexities for Grain and Grain-128 in the time-
memory tradeoff setting of [11] i.e., N2 = TM2D2 and P = N/D, where N is
the search space, T the computational complexity in the realtime phase, D the
number of initializations, M the amount of memory and P the computational
complexity in the preprocessing phase. If |IV | < 1

2 |K| then it is possible to have
the preprocessing time also smaller than exhaustive key search. In this case we
need to initialize with several different keys and we will only retrieve one of
these keys in the real time phase. In the Grain ciphers |IV | > 1

2 |K| so this is
not applicable here.

Table 1. Time-Memory tradeoff attack with real time complexity T , D initializations,
M memory words and preprocessing time P

Attack Complexities

T D M P

Grain
280 240 264 2104

272 236 272 2108

Grain-128
2128 264 296 2160

2112 256 2112 2168

3.3 Algebraic Attacks

Algebraic attacks can be very successful on nonlinear filter generators. Espe-
cially if the output function is of very low degree. Grain is very similar to a
nonlinear filter. However, the introduction of the NFSR in the design will defeat
all algebraic attacks known today. Since the update function of the NFSR is
nonlinear, the later state bits of the NFSR as a function of the initial state bits
will have varying but large algebraic degree. As the output function has several
inputs from the NFSR, the algebraic degree of the keystream bits expressed as
functions of key bits will be large in general. This will defeat known algebraic
attacks.

188 M. Hell et al.

3.4 Chosen-IV Attacks

A necessary condition for defeating differential-like or statistical chosen-IV at-
tacks is that the initial states for any two chosen IV’s (or sets of IV’s) are
algebraically and statistically unrelated. The number of cycles in key initial-
ization has been chosen so that the Hamming weight of the differences in the
full initial 160-bit state for two IV’s after initialization is close to random. This
should prevent chosen-IV attacks.

It may be tempting to improve the efficiency of the key initialization by just
decreasing the number of initial clockings. Considering the 80-bit variant of
Grain, after only 80 clocks, all bits in the state will depend on both the key and
the IV. However, in a chosen-IV attack it is possible to reinitialize the cipher
with the same key but with an IV that differs in only one position from the
previous IV. Consider the case when the number of initial clockings is 80 and
the last bit of the IV is flipped i.e., s63 is flipped. This is the event that occurs
if the IV is chosen as a sequence number. Looking at the difference of the states
after initialization it is clear that several positions will be predictable. The bit
s63 is not used in the feedback or in the filter function, hence, the first register
update will be the same in both cases. Consequently, the bit s0 will be the same
in both initializations. In the next update, the flipped bit will be in position s62.
This position is used in the linear feedback of the LFSR, and consequently the
bit s1 will always be different for the two initializations. Similar arguments can
be used to show that the difference in the state will be deterministic in more
than half of the 160 state bits. This deterministic difference in the state can be
exploited in a distinguishing attack. Let x be the input variables to the output
function, H , after the first initialization and let xΔ be the input variables to the
output function after the second initialization. Now, compute the distribution
of Pr(x,xΔ). If this distribution is biased, it is possible1 that the distribution of
the difference in the first output bit,

Pr(H(x) ⊕H(xΔ)), (26)

is biased. Assume that

Pr(H(x)⊕H(xΔ) = 0) = 1/2(1 + ε), 0 < |ε| ≤ 1. (27)

then the number of initializations we need will be in the order of 1/ε2. This
attack can be optimized by calculating which output bit will give the highest
bias since it is not necessarily the bits in the registers corresponding to the
input bits of H(x) that have deterministic difference after the initializations.
This attack shows that it is preferred that the probability that any state bit is
the same after initialization with two different IVs should be close to 0.5. As
with the case of 80 initialization clocks, it is easy to show that after 96, 112 and
128 there are also state bits that will always be the same or that will always
differ.
1 It is possible, but maybe not very likely. One unbiased linear variable is enough to

make the output unbiased.

The Grain Family of Stream Ciphers 189

It is possible to reduce the required number of initial clockings by loading
the NFSR and LFSR differently. If each entry of the registers is loaded with the
xor of a few key and IV bits and each key and IV bit influences the loading of
several entries, differences in the IV will propagate faster. The reason for not
doing this is mainly that all the extra xors needed would make the cipher larger
in hardware.

3.5 Fault Attacks

Amongst the strongest attacks conceivable on any cipher, are fault attacks. Fault
attacks against stream ciphers have been initiated in [12], and have shown to be
efficient against many known constructions of stream ciphers. This suggests that
it is hard to completely defeat fault attacks on stream ciphers. In the scenario
in [12] it is assumed that the attacker can apply some bit flipping faults to one
of the two feedback registers at his will. However he has only partial control
over their number, location, and exact timing, and similarly on what concerns
his knowledge. A stronger assumption one can make, is that he is able to flip a
single bit (at a time instance, and thus at a location, he does not know exactly).
In addition, he can reset the device to its original state and then apply another
randomly chosen fault to the device. We adapt the methods in [12] to the present
cipher. Thereby, we make the strongest possible assumption (which may not be
realistic) that an attacker can induce a single bit fault in the LFSR, and that
he is somehow able to determine the exact position of the fault. The aim is
to study input-output properties for H(Bt, St), and to derive information on
the inputs. As long as the difference induced by the fault in the LFSR does
not propagate to position bt+63 in Grain or bt+95 in Grain-128, the difference
observed in the output of the cipher is coming from inputs of H(Bt, St) from
the LFSR alone. If an attacker is able to reset the device and to induce a single
bit fault many times and at different positions that he can correctly guess from
the output difference, we cannot preclude that he will get information about a
subset of the state bits in the LFSR. Such an attack seems more difficult under
the (more realistic) assumption that the fault induced affects several state bits at
(partially) unknown positions, since in this case it is more difficult to determine
the induced difference from output differences.

Likewise, one can consider faults induced in the NFSR alone. These faults do
not influence the contents of the LFSR. However, faults in the NFSR propagate
nonlinearly and their evolution will be harder to predict. Thus, a fault attack
on the NFSR seems more difficult.

4 Conclusions

In this paper we introduced the Grain family of stream ciphers. Two different
versions, denoted Grain and Grain-128, have been specified. The designs target
hardware environments where small area is of high importance. The basic imple-
mentation is very small but outputs only one bit/clock. An important feature in

190 M. Hell et al.

the Grain ciphers is the possibility to easily increase the throughput by adding
some extra hardware. This is done by simply implementing the relatively small
feedback and output functions several times. This flexibility makes the Grain
ciphers attractive for a wide range of applications spanning from the most de-
manding in terms of small hardware area to applications requiring a very high
throughput.

References

1. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Heidelberg
(2003)

2. Hawkes, P., Rose, G.: Primitive specification for SOBER-128. Cryptology ePrint
Archive, Report 2003/081 (2003), http://eprint.iacr.org/

3. Maximov, A.: Cryptanalysis of the Grain family of stream ciphers. In: Lin, F.,
Lee, D., Lin, B., Shieh, S., Jajodia, S. (eds.) ACM Symposium on Information,
Computer and Communications Security (ASIACCS 2006), pp. 283–288. ACM,
New York (2006)

4. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: Robshaw,
M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 15–29. Springer, Heidelberg (2006)

5. Khazaei, S., Hassanzadeh, M., Kiaei, M.: Distinguishing attack on Grain. eS-
TREAM, ECRYPT Stream Cipher Project, Report2005/071 (2005),
http://www.ecrypt.eu.org/stream

6. Golić, J.: Computation of low-weight parity-check polynomials. Electronic Let-
ters 32(21), 1981–1982 (1996)

7. Hell, M.: On the design and analysis of stream ciphers. PhD thesis, Lund University
(2007)

8. Babbage, S.: A space/time tradeoff in exhaustive search attacks on stream ciphers.
In: European Convention on Security and Detection. IEE Conference Publication,
vol. 408 (1995)

9. Golić, J.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

10. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

11. Hong, J., Sarkar, P.: New applications of time memory data tradeoffs. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 353–372. Springer, Heidelberg
(2005)

12. Hoch, J., Shamir, A.: Fault analysis of stream ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004)

http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream

The MICKEY Stream Ciphers

Steve Babbage1 and Matthew Dodd2

1 Vodafone Group R&D, Newbury, UK
steve.babbage@vodafone.com

2 Independent consultant
matthew@mdodd.net

Abstract. The family of stream ciphers MICKEY (which stands for
Mutual Irregular Clocking KEYstream generator) is aimed at resource-
constrained hardware platforms. It is intended to have low complexity
in hardware, while providing a high level of security. It uses irregular
clocking of shift registers, with some novel techniques to balance the
need for guarantees on period and pseudorandomness against the need
to avoid certain cryptanalytic attacks.

1 Introduction and Overview

The MICKEY family of algorithms was designed in response to the ECRYPT
‘Call for Stream Cipher Primitives’ in 2005, and directed at ‘Profile 2’ — stream
ciphers intended for use on resource-constrained hardware platforms. Specifically,
it is intended to have low complexity in hardware, while providing a high level
of security. In fact, two variants of the algorithm have been defined: MICKEY,
with an 80-bit key, and MICKEY-128, with a 128-bit key.

‘MICKEY’ is an abbreviation of ‘Mutual Irregular Clocking KEYstream gen-
erator’, and this encapsulates the original design concept, illustrated in Figure 1.
The algorithm is based around two registers R and S, each of which has two
modes of clocking selected by a control bit. With this as a starting point, we were
lead to design a clocking rule for the ensemble (R, S), in which the control bit
for each register is formed from combination of bits dependent on both registers.

It was also intended from the outset that R should clock as a Galois-stepping
feedback shift register either 1 or J times, given that J steps can be implemented
efficiently in a single clock cycle by taking advantage of an idea introduced by
Jansen [14]. This is discussed in detail in section 2.1 below.

The register S, on the other hand, was intended to clock non-linearly, in two
different ways. Successive bits of keystream are formed by combining bits from
the registers R and S. Broadly speaking, the idea was that the linearity of R
would ensure good statistical properties and guarantees about period, whilst the
non-linearity of S would protect against attacks that might be mounted against
a linear system.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 191–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 S. Babbage and M. Dodd

Register R

Controls R
feedback

Controls S
feedback

Register S

Keystream bit

Register R

Controls R
feedback

Controls S
feedback

Register S

Keystream bit

Fig. 1. MICKEY algorithm structure

2 Design Principles

In this section we describe the design, and the choices behind it, in further
detail. Note that complete formal specifications of MICKEY and MICKEY-128
are provided in appendices A and B.

This section applies equally to both variants of the cipher, and we introduce
the parameter n so that we can discuss both at the same time; n = 100 for
MICKEY and n = 160 for MICKEY-128. Thus n is the length of register R,
and, equally, the length of register S. As stipulated in sections A.2 and B.2,
keystream sequences are limited to 2|K|/2 bits, and at most 2|K|/2 sequences
may be produced from different IV values with a single key; here |K| denotes
the key length.

When used in accordance with the rules set out in sections A.2 and B.2, both
MICKEY variants are intended to resist any attack faster than exhaustive key
search. The designers have not deliberately inserted any hidden weaknesses in
the algorithms.

The designers of MICKEY family of algorithms do not claim any IPR over it,
and make it freely available for any purpose. To the best of our knowledge no
one else has any relevant IPR either.

2.1 The Variable Clocking of R: What It Does

Register R has a set of feedback taps RTAPS , and clocks in one of two ways
according to the value of a control bit CONTROL BIT R. When the value of

The MICKEY Stream Ciphers 193

r0 r1 r2 r3 r96 r97 r98 r99

INPUT_BIT_R

r0 r1 r2 r3 r96 r97 r98 r99

INPUT_BIT_R

Fig. 2. Clocking the R register with CONTROL BIT R = 0

r0 r1 r2 r3 r96 r97 r98 r99

INPUT_BIT_R

r0 r1 r2 r3 r96 r97 r98 r99

INPUT_BIT_R

Fig. 3. Clocking the R register with CONTROL BIT R = 1

CONTROL BIT R = 0, the clocking of R is a standard linear feedback shift
register clocking operation (with Galois-style feedback, according to the primi-
tive characteristic polynomial CR(x) = xn +

∑
i∈RTAPS xi, with INPUT BIT R

XORed into the feedback). This is shown in Figure 2 for the case n = 100.
If we represent elements of the field GF (2n) as polynomials

∑n−1
i=0 rix

i, modulo
CR(x), then shifting the register corresponds to multiplication by x in the field.

When CONTROL BIT = 1, as well as shifting each bit in the register to the
right, we also XOR it back into the current stage, as shown in Figure 3. This
corresponds to multiplication by x + 1 in the same field.

The characteristic polynomial CR(x) has been chosen so that CR(x) | xJ+x+1
where J = 250 − 157 for MICKEY and J = 280 − 255 for MICKEY-128 . Thus,
clocking the register with CONTROL BIT R = 1 is equivalent to clocking the
register J times.

This technique — a simple operation, related to the standard linear register
clocking operation but equivalent to making the register ‘jump’ by clocking it
J times — is due to Cees Jansen [14]. In [14], Jansen presents the technique
applied to LFSRs with Fibonacci-style clocking, but it is clear that the same
approach is valid with Galois-style clocking.

This observation is elaborated in [6], where we describe a technique, repro-
duced below, for finding suitable characteristic polynomials. Suppose first that
C(x) is a polynomial of even degree n over GF(2) that divides xJ +x+1, where
J = 2n/2 − δ for a small positive integer δ. Since C(x) | xJ + x + 1,

C(x) | x2n/2
+ xδ+1 + xδ

194 S. Babbage and M. Dodd

Hence, if we denote congruence mod C(x) by ≡,

x2n

+ x =
(
x2n/2

)2n/2

+ x

≡ (
xδ+1 + xδ

)2n/2

+ x

=
(
x2n/2

)δ+1

+
(
x2n/2

)δ

+ x

≡ (
xδ+1 + xδ

)δ+1
+

(
xδ+1 + xδ

)δ
+ x

If moreover C(x) is primitive, then x2n

+ x ≡ 0, so the polynomial

Gδ(x) =
(
xδ+1 + xδ

)δ+1
+

(
xδ+1 + xδ

)δ
+ x

of degree (δ + 1)2 must have C(x) as a factor.
To find suitable characteristic polynomials for the MICKEY family of algo-

rithms, we can therefore apply the following algorithm, starting at δ = �√n�−1:

– Construct Gδ(x), and see if it has any factor F (x) of degree n
– If it does, check whether F (x) is primitive
– If it is, then check whether F (x) really does divide x2n/2−δ + x + 1
– If it does, set C(x) = F (x) and stop
– Otherwise, increment δ and start again

The following variant may be slightly more efficient:

– Compute gcd(Gδ(x), x2n/2−δ + x + 1) and factorise it
– If there is any factor F (x) of degree n, check whether F (x) is primitive
– If a primitive factor F (x) is found, set C(x) = F (x) and stop
– Otherwise, increment δ and start again

Notice, from the considerations above, that any factor of gcd(Gδ(x), x2n/2−δ +
x + 1) is also a factor of x2n

+ x.

2.2 Motivation for the Variable Clocking

Stream ciphers making use of variable clocking often lend themselves to statisti-
cal attacks, in which the attacker guesses how many times the register has been
clocked at a particular time. There are a number of characteristics of a cipher
design that may make such attacks possible.

To illustrate these possible characteristics, let us consider the stream cipher
LILI-128 [9]. LILI-128 uses two LFSRs, of length 39 and 89; the 89-stage register
is clocked 1, 2, 3 or 4 times at each clock of the overall generator, based on two
control bits from the 39-stage register. Attacks based on guessing a likely number
of clocks of the 89-stage register may be possible because:

1. Clocking the 89-stage register r times and then s times gives the same result
as clocking s times and then r times. For instance, clocking twice and then

The MICKEY Stream Ciphers 195

three times gives the same result as clocking three times and then twice. The
different possible clocking operations commute. So for instance the attacker
may guess that, after ten clocks of the overall generator, the 89-stage register
has had two single-clocks, three double-clocks, three triple-clocks and two
quadruple-clocks; she doesn’t need to guess the order in which the different
clockings occurred.

2. Furthermore, clocking once and then four times gives the same end result as
clocking twice and then three times. There are lots of combinations that give,
for example, 25 clocks of the register after 10 clocks of the overall generator;
the attacker can assign a single overall probability to this event, without
having to distinguish between the many different clocking combinations that
could have led to it. This further improves the efficiency of a statistical
attack.

3. Finally, 25 clocks of the 89-stage register may have occurred after ten genera-
tor clocks, or after nine generator clocks, or after eleven generator clocks,
Again, this can be used to make attacks more efficient — see [10,15] for an
example.

The principles behind the design of the MICKEY algorithms are:

– to take all of the benefits of variable clocking, in protecting against many
forms of attack;

– to guarantee period and local randomness;
– subject to those, to reduce the susceptibility to statistical attacks as far as

possible.

Specifically, taking points 1 to 3 in turn:

1. does apply to register R (because clockJ ◦ clock1 = clock1 ◦ clockJ), but does
not apply to register S, whose different clocking operations do not commute.

2. does not apply to either register. In the case of R, for any given values
t ≤ 2|K|/2 and u, there is at most one possible pair of values n1 and nJ such
that 0 ≤ n1, nJ ≤ t; n1 + nJ = t; and n1 + nJJ = u. (n1 and nJ represent
the number of times that R is clocked once and J times respectively.)

3. does not apply to either register. In the case of R, since J > 2|K|/2 (for
either MICKEY variant), it is true that for any given value u, there is as
most one triple of values t, n1 and nJ such that t ≤ 2|K|/2; 0 ≤ n1, nJ ≤ t;
n1 + nJ = t; and n1 + nJJ = u.

In the MICKEY family of stream ciphers, the register R acts as the ‘engine’,
ensuring that the state of the generator does not repeat within the generation
of a single keystream sequence, and ensuring good local statistical properties.
The influence of R on the clocking of S also prevents S from becoming stuck
in a short cycle. If the ‘jump index’ J < 2n−|K|/2, then the state of R will
not repeat during the generation of a maximum length

(
2|K|/2

)
-bit keystream

sequence; and if J > 2|K|/2, then property 3 above is satisfied. We chose the
‘jump index’ J to have the largest possible value subject to J < 2n/2; then
indeed both J < 2n−|K|/2 and J > 2|K|/2.

196 S. Babbage and M. Dodd

2.3 Selection of Clock Control Bits

We deliberately chose the clock control bits for each register to be derived from
both registers, in such a way that knowledge of either register state is not suffi-
cient to tell the attacker how either register will subsequently be clocked. This
helps to guard against ‘guess and determine’ or ‘divide and conquer’ attacks.

2.4 The S Register Feedback Function

The clocking rule for register S is specified in sections A.3 and B.3. Figure 4
illustrates the principle by showing the updating of the particular cell s56 in
MICKEY. In general, the new value of a cell si is formed from the exclusive-or
of the following:

– si−1, if 1 ≤ i ≤ n− 1;
– the product of si ⊕ COMP0 i and si+1 ⊕ COMP1 i, if 1 ≤ i ≤ n − 2, for

predefined bit values COMP0 i and COMP1 i;
– sn−1 ⊕ INPUT BIT S , for certain predefined values of i which depend also

on the value of the clock control bit.

For any fixed value of CONTROL BIT S , the clocking function of S is invert-
ible (so that the space of possible register values is not reduced by clocking S).

Our design goal for the clocking function of S can be stated as follows. Assume
that the initial state of S is randomly selected, and that the sequence of values
of CONTROL BIT S applied to the clocking of S are also randomly selected.
Then consider the sequence (s0(i))i=0,1,2,.... (By s0(i) we mean the contents of
s0 after the generator has been clocked i times.) We want to avoid any strong
affine relations in that sequence — that is, we do not want there to exist a set I
such that the value p =

∑
i∈I s0(i) is especially likely to be equal to 0 (or to 1)

as the initial state and CONTROL BIT S range over all possible values.
The reason for this design goal is to avoid attacks based on establishing a

probabilistic linear model (i.e. a set I as described above) that would allow a

s55 s56 s57

INPUT_BIT_S

s99

FB0i FB1i

CONTROL_BIT_S = 0 1

s55 s56 s57

INPUT_BIT_S

s99

FB0i FB1i

CONTROL_BIT_S = 0 1

Fig. 4. Clocking the S register

The MICKEY Stream Ciphers 197

linear combination of keystream bits to be strongly correlated to a combination of
bits only from the (‘linear’, ‘weaker’) R register. We are thinking here especially
of distinguishing attacks.

It is not straightforward to meet this design goal in an optimum sense (even if
we defined it more precisely than we have done), but we do have some reason to
believe that we have met it pretty well. At least, earlier proposals we considered
for S were weaker in this regard. We modelled a number of constructions on a
scaled down version of S, and looked for the strongest linear relations holding
over relatively short sequences (s0(i)), and we found that the construction we
have chosen performed well.

In particular, our construction preserves local randomness, in the sense that,
if the initial state is uniformly random, then a sequence of n successive bits s0(i)
will also be uniformly random. So no sum of fewer than n + 1 successive bits
s0(i) will be equal to 0 with probability distinct from 1/2. From our empirical
analysis, we believe that the strongest bias will come from a combination selected
from precisely n + 1 successive bits s0(i).

We should be honest, though, and say that we would ideally have liked more
time to analyse possible constructions. There is probably some scope for further
improvement.

2.5 Key Loading

We use a non-linear loading mechanism to protect against resynchronisation
attacks.

2.6 Algebraic Attacks

Algebraic attacks usually become possible when the keystream is correlated to
one or more linearly clocking registers, whose clocking is either entirely pre-
dictable or can be guessed.

We have taken care that the attacker cannot eliminate the uncertainty about
the clocking of either register by guessing a small set of values. (By illustrative
contrast, some attacks on LILI-128 [9] were possible because the state of the
39-stage register could be guessed, and then the clocking of the 89-stage register
became known.)

Furthermore, each keystream bit produced by MICKEY is not correlated to
the contents of either one register (so in particular not to the ‘linear register’ R).

2.7 Output Function

MICKEY uses a very simple output function (r0 ⊕ s0) to compute keystream
bits from the register states.

We considered more complex alternatives, e.g. of the form r0⊕ g(r1 . . . r79)⊕
s0 ⊕ h (s1 . . . s79) for some Boolean functions g and h. Although these might
increase the security margin against some types of attack, we preferred to keep
the output function simple and elegant, and rely instead on the mutual irregular
clocking of the registers.

198 S. Babbage and M. Dodd

3 Register Sizes

In this section we consider the choice of the parameter n.
Initially, n was chosen to be the same as the key length, and this choice

was retained in the first, version 1, proposals for MICKEY and MICKEY-128
to ECRYPT [2,3]. Subsequently this decision was revised [4,5] in the current
(version 2.0) MICKEY algorithms, so that n became 1.25 times the key length.

This change was made in response to the work of Jin Hong and Woo-Hwan
Kim [12]. They considered three areas of (arguable) vulnerability, which are all
addressed by this new choice for the parameter n. We explain the details in the
following sections.

3.1 Time-Memory-Data (TMD) Tradeoff, with or without BSW
Sampling

Let N be the size of the keystream generator state space (so 2160 for MICKEY
version 1). Let X be the set of all possible keystream generator states. Let
f : X → Y be the function that maps a generator state to the first log2 N
bits of keystream produced. Suppose the attacker has harvested a large number
of log2 N -bit keystream sequences yi ∈ Y , and wants to identify a keystream
generator state x ∈ X such that f(x) = yi for some i.

BS tradeoff. The Biryukov-Shamir TMD [7] algorithm succeeds with high
probability if the following conditions are satisfied:

TM2D2 = N2 and 1 ≤ D2 ≤ T

where T is the online time complexity, M is the memory requirement, and D is
the number of keystream sequences available to the attacker. The offline time
complexity is P = N/D.

BSW sampling. When we say that we can perform BSW sampling [8] with a
sampling factor W , we mean that:

– there is a subset X ′ ⊆ X with cardinality N/W , and it is easy to generate
elements of X ′; and

– if Y ′ is the image of X ′ under f , then it is easy to recognise elements of Y ′.

Our attacker may consider only those keystream sequences that are elements
of Y ′, and apply the BS tradeoff to the problem of inverting the restricted
function f ′ : X ′ → Y ′. If the total number of keystream sequences available to
the attacker is D, only roughly D/W of these will fall in Y ′ and so be usable;
on the other hand, the size of the set of preimages is now N/W instead of N .
The conditions for success become

TM2

(
D

W

)2

=
(

N

W

)2

and 1 ≤
(

D

W

)2

≤ T

The MICKEY Stream Ciphers 199

i.e.
TM2D2 = N2 and W 2 ≤ D2 ≤ TW 2

and the offline time complexity remains P = (N/W)
(D/W) = N/D. Also, very impor-

tantly, the number of table lookups in the online attack is reduced by a factor
W , which greatly reduces the actual time it takes.

TMD tradeoff against MICKEY version 1. Hong and Kim [12] show that
BSW sampling can be performed on MICKEY version 1 with a sampling factor
W = 227. This allows a TMD tradeoff attack to be performed with the following
complexity, for instance:

– unfiltered data complexity D = 260, e.g. 220 keystream sequences each of
length roughly 240 bits; filtering these by BSW sampling means that the at-
tack is performed against a reduced set of D/W = 233 keystream sequences;

– search space of reduced size N/W = 2133;
– time complexity T = 266;
– memory complexity M = 267;
– offline time complexity P = 2100.

So we have an attack whose online time, data and memory complexities are
all less than the key size of 280. However, the one-off precomputation time com-
plexity is greater than 280. Other parameter values are possible, but the precom-
putation time is always greater than 280.

There is no consensus as to whether this constitutes a successful attack. Some
authors seem to ignore precomputation time completely, and consider only online
complexity to matter; others would say that an attack requiring overall complex-
ity greater than exhaustive search is of no practical significance. Although we
incline more towards the second view, we recognise that some will deem the
cipher less than fully secure if such attacks exist.

MICKEY 2.0. In MICKEY 2.0, the state size N = 2200. Thus, for any BS
tradeoff attack, with or without BSW sampling, if TM2D2 = N2 then at least
one of T , M or D must be at least 280. So no attack is possible with online
complexity faster than exhaustive key search.

Earlier papers (e.g. [1]) have recommended that the state size of a keystream
generator should be at least twice the key size, to protect against what is now
usually called the Babbage-Golić TMD attack. By making the state size at least
2.5 times the key size, we also provide robust protection against the Biryukov-
Shamir TMD attack, with or without BSW sampling1. This rather simple ob-
servation has not appeared in previous literature, as far as we have been able to
discover.

1 We refer here only to TMD attacks to invert the function mapping keystream gen-
erator state to keystream. We are not talking about the function mapping key and
IV to keystream, as discussed by Hong and Sarkar in [13].

200 S. Babbage and M. Dodd

BSW sampling of MICKEY 2.0. It is still possible to perform BSW sampling
on MICKEY 2.0. We have made no attempt to prevent this — we see no reason
to do so that would justify an additional complication to the cipher design.

3.2 State Entropy Loss and Keystream Convergence

It is fundamental to the design of the MICKEY algorithm family that the
keystream generator is subject to variable clocking under control of bits from
within the generator. This results in a reduction of the entropy of the overall
generator state: some generator states after clocking have two or more possible
preimages, and some states have no possible preimages. The fact that the control
bit for each register is derived by XORing bits from both registers, and hence
is uncorrelated to the state of the register it controls, is crucial: it means that
clocking the overall generator does not reduce the entropy of either one register
state.

However, for MICKEY version 1, Hong and Kim [12] show that the overall
entropy loss can result in the convergence of distinct keystream sequences within
the parameters of legitimate use of the cipher. For example, if V keystream
sequences of length 240 are generated from different (K, IV) pairs, then for large
enough V there will be state collisions — and of course, once identical states are
reached, subsequent keystream sequences are identical. An exact analysis seems
difficult, but it appears that V may not have to be much larger than 222 before
collisions will begin to occur.

This uncomfortable property holds because, after the generator has been run
for long enough to produce a 240-bit sequence, the state entropy will have reduced
by nearly 40 bits, from the initial 2160 to only just over 2120. Because 120 is less
than twice the key size, we begin to see collisions within an amount of data less
than the key size.

In MICKEY 2.0, the state size is 200 bits, and the maximum permitted length
of a single keystream sequence is 240 bits. After the generator has been run for
long enough to produce a 240-bit sequence, the entropy will still be just over 160
bits. This is twice the key size, and so we no longer have a problem.

3.3 Weak Keys

There is an obvious ‘lock-up’ state for the register R: if the key and IV loading
and initialisation leaves R in the all zeroes state, then it will remain permanently
in that state. For MICKEY version 1 we reasoned as follows:

It is clear that, if an attacker assumes that this is the case, she can readily
confirm her assumption and deduce the remainder of the generator state
by analysing a short sequence of keystream. But, because this can be
assumed to occur with probability roughly 2−80 — the same probability
for any guessed secret key to be correct — we do not think it necessary
to prevent it (and so in the interests of efficiency we do not do so).

The MICKEY Stream Ciphers 201

Hong and Kim [12] point out that, for MICKEY version 1, there is also a
lock-up state for the register S. If the key and IV loading and initialisation
leaves S in this particular state, then it will remain permanently in that state,
irrespective of the values of the clock control bits. The probability of a ‘weak
state’ in MICKEY version 1 is thus roughly 2−79. And 2−79 is greater than
2−80

It is undoubtedly much easier to try two candidate secret keys, with a success
probability of 2−79, than to mount an attack based on these possible weak states.
So we would still argue that it is not necessary to guard against their occurrence.
But anyway, with MICKEY 2.0 the increased register lengths mean that the
probability of a weak state goes down to roughly 2−99, which is clearly too small
to concern us.

4 Performance of the Algorithm

The MICKEY cipher family is not designed for notably high speeds in software,
although it is straightforward to implement it reasonably efficiently. Our own
reasonably efficient (but not turbo-charged) implementations generated 108 bits
of keystream in 3.81 seconds for MICKEY, and in 4.81 seconds for MICKEY-
128, using a PC with a 3.4GHz Pentium 4 processor. There may be scope for
more efficient software implementations that produce several bits of keystream
at a time, making use of look-up tables to implement the register clocking and
keystream derivation.

Further information on the performance of MICKEY and MICKEY-128 in
software — on various platforms — and hardware can be found via [11].

5 Afterthoughts

So how is MICKEY looking now, compared to the other eSTREAM candidates?

5.1 Security Against Classical Cryptanalysis

In terms of security against classical cryptanalysis, we believe that MICKEY is
standing up very well. The observations of Hong and Kim [12] on the MICKEY
version 1 ciphers are all fully addressed in the current versions. No other threat-
ening analysis has emerged, despite the efforts of some very good cryptanalysts.

5.2 Security Against Side Channel Attacks

If security against side channel attacks is required, then MICKEY is perhaps
not optimal. The main area of susceptibility is the variable clocking of the linear
register R. When CONTROL BIT R = 1, the additional XORs will consume
more power in a näıve implementation.

By contrast, the eSTREAM submission Pomaranch also uses the “jumping”
idea, but in such a way that half of the cells in a register have an XOR when

202 S. Babbage and M. Dodd

the control bit takes one value, and the other half do when the control bit takes
the other value. So the overall power consumption is likely to be the same. A
similar approach could have been taken with MICKEY, and would give readier
protection against power analysis attacks.

Having said that, we think that side channel attacks are largely irrelevant
in the great majority of real world stream cipher applications. The legitimate
user of an encrypting device has no motivation to extract their own encryption
key (whereas they may, for instance, be motivated to clone their own SIM card
or Pay-TV card). And if an outsider has close enough access to the encrypting
device to carry out attacks of this kind, then there are more obvious bad things
that she can do. It is possible to think up use cases in which side channel attacks
on a stream cipher might matter, but they are not typical.

5.3 Performance

MICKEY’s main performance goal is to run at very low power, or with very few
logic gates, in resource-constrained hardware. As such, it compares very well
with other eSTREAM submissions; it is indeed one of the very smallest.

Some other submissions have been designed to allow faster operation than
MICKEY, by allowing a much greater degree of pipelining. Trivium is the most
extreme example. The variable clocking approach taken in MICKEY does not
lend itself well to pipelining.

So overall we think that MICKEY is a good choice where power or gate count
are the prime performance considerations; less so where the highest speeds are
required.

6 Conclusion

The evidence so far from the eSTREAM process is that MICKEY is a high
security cipher, well suited to stream cipher applications where very low power
or gate count are required.

References

1. Babbage, S.: Improved Exhaustive Search Attacks on Stream Ciphers. In: European
Convention on Security and Detection, IEE Conference Publication, vol. 408, pp.
161–166. IEE (1995)

2. Babbage, S.H., Dodd, M.W.: The stream cipher MICKEY (version 1), Algorithm
specification Issue 1.0. In: ECRYPT stream cipher submission, in the proceedings
of the SKEW Workshop, Århus (May 2005),
http://www.ecrypt.eu.org/stream/ciphers/mickey/mickey.pdf

3. Babbage, S.H., Dodd, M.W.: The stream cipher MICKEY-128 (version 1), Algo-
rithm specification Issue 1.0. In: ECRYPT stream cipher submission, in the pro-
ceedings of the SKEW Workshop, Århus (May 2005),
http://www.ecrypt.eu.org/stream/ciphers/mickey128/mickey128.pdf

http://www.ecrypt.eu.org/stream/ciphers/mickey/mickey.pdf
http://www.ecrypt.eu.org/stream/ciphers/mickey128/mickey128.pdf

The MICKEY Stream Ciphers 203

4. Babbage, S.H., Dodd, M.W.: The stream cipher MICKEY 2.0, revised ECRYPT
stream cipher submission,
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickeyp3.pdf

5. Babbage, S.H., Dodd, M.W.: The stream cipher MICKEY-128 2.0, revised
ECRYPT stream cipher submission,
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey128 p3.pdf

6. Babbage, S.H., Dodd, M.W.: Finding Characteristic Polynomials with Jump In-
dices, http://eprint.iacr.org/2006/010

7. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

8. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001)

9. Dawson, E., Clark, A., Golić, J., Millan, W., Penna, L., Simpson, L.: The LILI-
128 Keystream Generator, NESSIE submission. In: proceedings of the First Open
NESSIE Workshop, Leuven (November 2000), http://www.cryptonessie.org

10. Ekdahl, P., Johansson, T.: Another attack on A5/1. IEEE Transactions on Infor-
mation Theory 49(1), 284–289 (2003)

11. Algorithm performance pages on the eStream web site:
http://www.ecrypt.eu.org/stream/sw.html

http://www.ecrypt.eu.org/stream/hw.html

12. Hong, J., Kim, W.: TMD-Tradeoff and State Entropy Loss Considerations of
Streamcipher MICKEY. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 169–182. Springer, Heidelberg (2005),
http://eprint.iacr.org/2005/257

13. Hong, J., Sarkar, P.: Rediscovery of Time Memory Tradeoffs,
http://eprint.iacr.org/2005/090

14. Jansen, C.J.A.: Streamcipher Design: Make your LFSRs jump!, presented at
the ECRYPT SASC (State of the Art in Stream Ciphers) workshop. In: the
workshop record, Bruges (October 2004), http://www.isg.rhul.ac.uk/research/
projects/ecrypt/stvl/sasc-record.zip

15. Maximov, A., Johansson, T., Babbage, S.: An Improved Correlation Attack on
A5/1. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
1–18. Springer, Heidelberg (2004)

A Specification of the Cipher MICKEY

In this appendix, we provide a full specification of the stream cipher MICKEY
(version 2.0).

A.1 Input and Output Parameters

MICKEY takes two input parameters:

– an 80-bit secret key K, whose bits are labelled k0 . . . k79;
– an initialisation variable IV , anywhere between 0 and 80 bits in length,

whose bits are labelled iv0 . . . ivIVLENGTH−1.

http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickeyp3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey128_p3.pdf
http://eprint.iacr.org/2006/010
http://www.cryptonessie.org
http://www.ecrypt.eu.org/stream/sw.html
http://www.ecrypt.eu.org/stream/hw.html
http://eprint.iacr.org/2005/257
http://eprint.iacr.org/2005/090
http://www.isg.rhul.ac.uk/research/projects/ecrypt/stvl/sasc-record.zip
http://www.isg.rhul.ac.uk/research/projects/ecrypt/stvl/sasc-record.zip

204 S. Babbage and M. Dodd

The keystream bits output by MICKEY are labelled z0, z1, Ciphertext is
produced from plaintext by bitwise XOR with keystream bits, as in most stream
ciphers.

A.2 Acceptable Use

The maximum length of keystream sequence that may be generated with a single
(K, IV) pair is 240 bits. It is acceptable to generate 240 such sequences, all from
the same K but with different values of IV . It is not acceptable to use two
initialisation variables of different lengths with the same K. And it is not, of
course, acceptable to reuse the same value of IV with the same K.

A.3 Components of the Keystream Generator

The registers. The generator is built from two registers R and S. Each register
is 100 stages long, each stage containing one bit. We label the bits in the registers
r0 . . . r99 and s0 . . . s99 respectively.

Broadly speaking, we think of R as ‘the linear register’ and S as ‘the non-linear
register’.

Clocking the register R. Define a set of feedback tap positions for R:

RTAPS = {0, 1, 3, 4, 5, 6, 9, 12, 13, 16, 19, 20, 21, 22, 25, 28, 37, 38,
41, 42, 45, 46, 50, 52, 54, 56, 58, 60, 61, 63, 64, 65, 66, 67,
71, 72, 79, 80, 81, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97}

We define an operation CLOCK R (R, INPUT BIT R, CONTROL BIT R) as
follows:

– Let r0 . . . r99 be the state of the register R before clocking, and let r′0 . . . r′99
be the state of the register R after clocking.

– FEEDBACK BIT = r99 ⊕ INPUT BIT R
– For 1 ≤ i ≤ 99, r′i = ri−1; r′0 = 0
– For 0 ≤ i ≤ 99, if i ∈ RTAPS , r′i = r′i ⊕ FEEDBACK BIT
– If CONTROL BIT R = 1:
• For 0 ≤ i ≤ 99, r′i = r′i ⊕ ri

Clocking the register S. Define four sequences (COMP0 i)98i=1, (COMP1 i)98i=1,
(FB0 i)99i=0 and (FB1 i)99i=0 according to Table 1.

We define an operation CLOCK S (S, INPUT BIT S , CONTROL BIT S)
as follows:

– Let s0 . . . s99 be the state of the register S before clocking, and s′0 . . . s′99 be
the state of the register after clocking. We will also use ŝ0 . . . ŝ99 as interme-
diate variables to simplify the specification.

– FEEDBACK BIT = s99 ⊕ INPUT BIT S

The MICKEY Stream Ciphers 205

Table 1. S register tables for MICKEY

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

COMP0 i 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1

COMP1 i 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0

FB0 i 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1

FB1 i 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1

i 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

COMP0 i 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0

COMP1 i 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0

FB0 i 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1

FB1 i 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0

i 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

COMP0 i 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1

COMP1 i 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0

FB0 i 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1

FB1 i 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1

i 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

COMP0 i 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1

COMP1 i 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0

FB0 i 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0

FB1 i 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

COMP0 i 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1

COMP1 i 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0

FB0 i 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0

FB1 i 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1

– For 1 ≤ i ≤ 98, ŝi = si−1 ⊕ ((si ⊕ COMP0 i) . (si+1 ⊕ COMP1 i)); ŝ0 = 0;
ŝ99 = s98.

– If CONTROL BIT S = 0:
• For 0 ≤ i ≤ 99, s′i = ŝi ⊕ (FB0 i . FEEDBACK BIT)

– If instead CONTROL BIT S = 1:
• For 0 ≤ i ≤ 99, s′i = ŝi ⊕ (FB1i . FEEDBACK BIT)

Clocking the overall generator. We define an operation CLOCK KG (R, S,
MIXING, INPUT BIT) as follows:

– If MIXING = TRUE ,
• CLOCK R (R, INPUT BIT R = INPUT BIT ⊕s50, CONTROL BIT

R = s34 ⊕ r67)
– If instead MIXING = FALSE ,
• CLOCK R (R, INPUT BIT R = INPUT BIT , CONTROL BIT R =

s34 ⊕ r67)
– CLOCK S (S,INPUT BIT S = INPUT BIT , CONTROL BIT S = s67 ⊕

r33)

206 S. Babbage and M. Dodd

A.4 Key Loading and Initialisation

The registers are initialised from the input variables as follows:

– Initialise the registers R and S with all zeros.
– (Load in IV .) For 0 ≤ i ≤ IVLENGTH − 1:
• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = ivi)

– (Load in K.) For 0 ≤ i ≤ 79:
• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = ki)

– (Preclock.) For 0 ≤ i ≤ 99:
• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = 0)

A.5 Generating Keystream

Having loaded and initialised the registers, we generate keystream bits z0 . . .
zL−1 as follows:

– For 0 ≤ i ≤ L− 1:
• zi = r0 ⊕ s0

• CLOCK KG (R, S, MIXING = FALSE , INPUT BIT = 0)

B Specification of the Cipher MICKEY-128

In this appendix, we provide a full specification of the stream cipher MICKEY-
128 (version 2.0).

B.1 Input and Output Parameters

MICKEY-128 takes two input parameters:

– a 128-bit secret key K, whose bits are labelled k0 . . . k127;
– an initialisation variable IV , anywhere between 0 and 128 bits in length,

whose bits are labelled iv0 . . . iv IVLENGTH−1.

The keystream bits output by MICKEY-128 are labelled z0, z1, Ciphertext is
produced from plaintext by bitwise XOR with keystream bits, as in most stream
ciphers.

B.2 Acceptable Use

The maximum length of keystream sequence that may be generated with a single
(K, IV) pair is 264 bits. It is acceptable to generate 264 such sequences (time
permitting!), all from the same K but with different values of IV . It is not
acceptable to use two initialisation variables of different lengths with the same
K. And it is not, of course, acceptable to reuse the same value of IV with the
same K.

The MICKEY Stream Ciphers 207

B.3 Components of the Keystream Generator

The registers. The generator is built from two registers R and S. Each register
is 160 stages long, each stage containing one bit. We label the bits in the registers
r0 . . . r159 and s0 . . . s159 respectively.

Broadly speaking, we think of R as ‘the linear register’ and S as ‘the non-linear
register’.

Clocking the register R. Define a set of feedback tap positions for R:

RTAPS = {0, 4, 5, 8, 10, 11, 14, 16, 20, 25, 30, 32, 35, 36, 38, 42, 43, 46, 50,
51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 69, 73, 74, 76, 79, 80,
81, 82, 85, 86, 90, 91, 92, 95, 97, 100, 101, 105, 106, 107, 108,
109, 111, 112, 113, 115, 116, 117, 127, 128, 129, 130, 131, 133,
135, 136, 137, 140, 142, 145, 148, 150, 152, 153, 154, 156, 157}

We define an operation CLOCK R (R, INPUT BIT R, CONTROL BIT R) as
follows:

– Let r0 . . . r159 be the state of the register R before clocking, and let r′0 . . . r′159
be the state of the register R after clocking.

– FEEDBACK BIT = r159 ⊕ INPUT BIT R
– For 1 ≤ i ≤ 159, r′i = ri−1; r′0 = 0
– For 0 ≤ i ≤ 159, if i ∈ RTAPS , r′i = r′i ⊕ FEEDBACK BIT
– If CONTROL BIT R = 1:

• For 0 ≤ i ≤ 159, r′i = r′i ⊕ ri

Clocking the register S. Define four sequences (COMP0 i)158i=1, (COMP1 i)158i=1,
(FB0 i)159i=0 and (FB1 i)159i=0 according to Table 2.

We define an operation CLOCK S (S, INPUT BIT S , CONTROL BIT) as
follows:

– Let s0 . . . s159 be the state of the register S before clocking, and s′0 . . . s′159
be the state of the register after clocking. We will also use ŝ0 . . . ŝ159 as
intermediate variables to simplify the specification.

– FEEDBACK BIT = s159 ⊕ INPUT BIT S
– For 1 ≤ i ≤ 158, ŝi = si−1 ⊕ ((si ⊕ COMP0 i) . (si+1 ⊕ COMP1 i)); ŝ0 = 0;

ŝ159 = s158.
– If CONTROL BIT S = 0:

• For 0 ≤ i ≤ 159, s′i = ŝi ⊕ (FB0 i . FEEDBACK BIT)

– If instead CONTROL BIT S = 1:

• For 0 ≤ i ≤ 159, s′i = ŝi ⊕ (FB1i . FEEDBACK BIT)

208 S. Babbage and M. Dodd

Table 2. S register tables for MICKEY-128

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

COMP0 i 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0

COMP1 i 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1

FB0 i 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1

FB1 i 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0

i 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

COMP0 i 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0

COMP1 i 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1

FB0 i 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0

FB1 i 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1

i 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

COMP0 i 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1

COMP1 i 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1

FB0 i 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1

FB1 i 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0

i 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

COMP0 i 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0

COMP1 i 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1

FB0 i 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0

FB1 i 1 1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

COMP0 i 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0

COMP1 i 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0

FB0 i 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0

FB1 i 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0

i 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

COMP0 i 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 1

COMP1 i 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0

FB0 i 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0

FB1 i 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0

i 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

COMP0 i 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 0

COMP1 i 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1

FB0 i 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1

FB1 i 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0

i 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

COMP0 i 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0

COMP1 i 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1

FB0 i 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1

FB1 i 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0

The MICKEY Stream Ciphers 209

Clocking the overall generator. We define an operation CLOCK KG (R, S,
MIXING, INPUT BIT) as follows:

– If MIXING = TRUE ,
• CLOCK R (R, INPUT BIT R = INPUT BIT ⊕s80, CONTROL BIT

R = s54 ⊕ r106)
– If instead MIXING = FALSE ,
• CLOCK R (R, INPUT BIT R = INPUT BIT , CONTROL BIT R =

s54 ⊕ r106)
– CLOCK S (S, INPUT BIT S = INPUT BIT , CONTROL BIT S = s106⊕

r53)

B.4 Key Loading and Initialisation

The registers are initialised from the input variables as follows:

– Initialise the registers R and S with all zeros.
– (Load in IV .) For 0 ≤ i ≤ IVLENGTH − 1:
• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = ivi)

– (Load in K.) For 0 ≤ i ≤ 127:
• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = ki)

– (Preclock.) For 0 ≤ i ≤ 159:
• CLOCK KG (R, S, MIXING = TRUE , INPUT BIT = 0)

B.5 Generating Keystream

Having loaded and initialised the registers, we generate keystream bits z0 . . .
zL−1 as follows:

– For 0 ≤ i ≤ L− 1:
• zi = r0 ⊕ s0

• CLOCK KG (R, S, MIXING = FALSE , INPUT BIT = 0)

The Self-synchronizing Stream Cipher

Moustique

Joan Daemen1 and Paris Kitsos2

1 STMicroelectronics Belgium
joan.daemen@st.com

2 Hellenic Open University, Patras, Greece and Dept. of Computer Science and
Technology, University of the Peloponnese, Tripoli, Greece

pkitsos@eap.gr

Abstract. We present a design approach for hardware-oriented self-
synchronizing stream ciphers and illustrate it with a concrete design
called Moustique. The latter is intended as a research cipher: it proves
that the design approach can lead to concrete results and will serve as a
target for cryptanalysis where new attacks may lead to improvements in
the design approach such as new criteria for the cipher building blocks.

1 Introduction

This chapter is an abridged version of the two documents [6] and [8], both
submitted to eSTREAM as documentation material for the ciphers Mosquito
and its tweaked version Moustique. Most of the ideas were already presented in
[3] and some of them even earlier in [2] as an alternative to the design approach
as proposed by Ueli Maurer in [1]. We refer to [6] for a discussion on the latter
design approach and alternative modes of operation of Mosquito (and similarly
Moustique), such as using it as a MAC function or for authenticated encryption
and synchronous stream encryption.

Single-bit self-synchronizing stream encryption has a unique advantage: in
providing an existing communication system with encryption, it can be ap-
plied without the need for additional synchronization or segmentation. Actu-
ally, single-bit self-synchronizing stream encryption can be performed by using
a block cipher in (single-bit) CFB mode. Still, we see two reasons for designing
dedicated single-bit self-synchronizing stream ciphers.

First, the attainable encryption speed is a factor nb slower than the encryption
speed of the underlying block cipher implementation, with nb the block length.
For high-speed applications they may not be fast enough and a dedicated self-
synchronizing stream cipher is required.

Second, a dedicated self-synchronizing stream cipher is a primitive different
from both synchronous stream ciphers and block ciphers and is therefore theo-
retically interesting. Up to date, only a handful of dedicated self-synchronizing
stream ciphers have been published and all except one (being the recent pro-
posal Moustique) have been broken. In our opinion, only the availability of

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 210–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Self-synchronizing Stream Cipher Moustique 211

concrete targets for cryptanalysis may lead to a better insight in the design of
self-synchronizing stream ciphers.

The following of this document is structured as follows. After introducing
self-synchronizing stream encryption and its security properties in Section 2, we
present the architecture underlying the design of Moustique in Section 3. In
Section 4 we specify Moustique and we motivate the design choices in Sec-
tion 5. Finally, Section 6 discusses the performance and resource usage of field
programmable gate array implementations of Moustique.

2 Self-synchronizing Stream Encryption

In this section we define self-synchronizing stream encryption, propose a pair of
security claims and deduce from that some criteria for the cipher function that
stem from differential and linear cryptanalysis.

2.1 Definition

In stream encryption operating at the bit level, each plaintext bit mt is encrypted
by adding a keystream bit zt modulo two resulting in a ciphertext symbol ct:

ct = mt ⊕ zt . (1)

Decryption is:
mt = ct ⊕ zt . (2)

In single-bit self-synchronizing stream encryption, the keystream symbol zt is
the result of applying a cipher function fc to a window of the ciphertext stream
with index range [t− nm, t− (bs + 1)] and a cipher key K of nk bits:

zt = fc[K](ct−nm . . . ct−(bs+1)) . (3)

nm is called the input memory and we call bs the cipher function delay. A block
diagram of self-synchronizing stream encryption is given in Fig. 1.

For the encryption of the first nm bits of the plaintext, there are no ciphertext
bits available. The place of these bits are taken by an initialization vector that
must be shared between sender and receiver and that may be public:

c−nm . . . c0 = initialization vector (IV) . (4)

In general, encrypting a plaintext with a key using different IV values results
in different ciphertexts. However, one should be careful. If the IV values only
differ in the first � bits, the probability that the two ciphertexts are equal is 2−�.
Additionally, if the IV values only differ in the last bs − � bits, the � first bits of
the ciphertext will be the same with certainty.

Despite their name, self-synchronizing stream ciphers are more similar to block
ciphers than to synchronous stream ciphers, where the keyed cipher function
takes the place of the keyed permutation in a block cipher. An attacker can
query the output of the cipher function (keystream symbols) for chosen values
of its input: a series of nm ciphertext symbols. We call the latter an input vector.

212 J. Daemen and P. Kitsos

mt mtctzt zt

�

fc

�⊕ �

fc

�⊕ �

K · · ·

� �
· · ·
�

· · · K

��
· · ·

�

� �

Fig. 1. Self-synchronizing stream encryption

2.2 Security Claims

The claimed security properties of a self-synchronizing stream cipher may be ex-
pressed in terms of its cipher function. In our opinion, the following two security
claims are reasonable.

Claim 1. The probability of success of an attack not involving key recovery,
that guesses the output of the cipher function corresponding to � input vectors
Ci while given the cipher function output corresponding to any set of (adaptively)
chosen input vectors not containing any of the Ci, is 2−�.

Claim 2. There are no key recovery attacks faster than exhaustive key search,
i.e. with an expected complexity less than 2nk cipher function executions.

Note that these claims do not include resistance against so-called related-key
attacks. One may extend the claims to include related-key attacks. In our at-
tack model, the attacker has no knowledge about the key whatsoever. It is the
responsibility of the application developer to employ key management functions
ensuring the adversary has no knowledge about the key. If the same key is used
for encrypting different sequences and if one fears ciphertext collisions leaking
information on the plaintext, one should use unique IV values to diversify the
ciphertexts.

Additionally, these claims do not cover resistance against attackers that have
access to (part of) the internal state or that can disrupt the proper operation
of an implementation of the cipher function. While such attack scenarios may
be realistic in the context of side-channel attacks, we do not consider that these
problems should be tackled in the cipher design but rather in its implementation.
For a discussion on how a hardware implementation of Mosquito (and likewise
Moustique) can be made with a high resistance against side channel attacks,
we refer to [6].

2.3 Differential Cryptanalysis

A class of attacks that can be very powerful when applied to self-synchronizing
stream ciphers is differential cryptanalysis.

For every pair of nm-bit (ciphertext) input vectors with a specific difference
a′, fc returns a pair of keystream bits. The probability that the keystream bits
are different is denoted by DP(a′, 1). The usability in differential cryptanalysis

The Self-synchronizing Stream Cipher Moustique 213

of DP(a′, 1) is determined by its bias from 1/2. If this probability is (1± �−1)/2,
the number of input pairs needed to detect this bias is approximately �2.

Consequently, a cipher function should not have differentials with probabilities
that deviate significantly more than 2−(nm−bs)/2 from 1/2. The input differences
a′ with the highest biases should depend in a complex way on the cipher key.

Differential attacks can be generalized in several ways. One generalization that
proved to be powerful in the cryptanalysis of some weak proprietary designs can
be labeled as second order differential cryptanalysis. Here the inputs to the ci-
pher function are applied in 4-tuples. The 4 inputs denoted by a0, a1, a2 and a3

have differences a′ = a0 + a1 = a2 + a3 and a′′ = a0 + a2 = a1 + a3. By examin-
ing the 4 corresponding output bits it can be observed whether complementing
certain input bits (a′′) affects the propagation of a difference (a′). This can be
used to determine useful internal state bits or even key bits. Typically these
attacks exploit properties very specific to the design under analysis. This can be
generalized to even higher order DC in a straightforward way.

2.4 Linear Cryptanalysis

The number of inputs needed to detect a correlation C of the keystream bit with a
linear combination of input bits is C−2. It follows that a cipher function should
not have input-output correlations significantly larger than 2−(nm−bs)/2. The
selection vectors va with the highest correlations should depend in a complex way
on the cipher key. By imposing a number � of affine relations on the input bits,
the cipher function is effectively converted to a Boolean function in nm − bs − �
variables. These functions should have no correlations significantly larger than
2−(nm−bs−�)/2 for any set of affine relations.

A special case of a selection vector is the zero vector. An output function that
is correlated to the constant function is unbalanced. A correlation of C to the
constant function gives rise to an information leakage of approximately C2/ln2
bits per encrypted bit for C < 2−2.

3 Cipher Function Architecture

We address the problem of realizing a cipher function providing high resistance
against cryptanalysis and high speed in dedicated hardware by combining two
structures: pipelining and conditional complementing shift registers.

3.1 Pipelining

We can realize a cipher function as a number of bs stages Gi. In hardware, every
stage can be implemented by a combinatorial circuit and a register storing the
intermediate result. This pipelined approach is illustrated in Figure 2. As the
encryption speed is limited by the critical path (largest occurring gate delay), the
stages should have small gate delay and hence be relatively simple. This approach
impacts the general dependency relations of the self-synchronizing stream cipher:
the implementation of the cipher function in bs stages causes the keystream bit

214 J. Daemen and P. Kitsos

ct−1 ct−i ct−(nm+bs) shift register. . .�

� �
Gi

� K stage i

� �. . .

� �
Gbs

zt

stage bs� K

ct

⊕

mt

Fig. 2. Self-synchronizing stream cipher with a cipher function consisting of stages

zt to depend on the contents of the shift register bs time steps ago. The pipelining
increases the input memory nm of the cipher by bs symbols. However, the number
of input symbols in the cipher function remains the same, as a keystream symbol
zt is independent of the ciphertext symbols ct−bs to ct−1. Therefore we call the
quantity bs the cipher function delay.

3.2 Machines with Finite Input Memory

The input to the first stage of the pipelined structure consists of the last nm− bs

ciphertext bits, contained in a shift register. This construction guarantees that
the keystream bit zt only depends on the cipher key K and ciphertext bits
ct−nm to ct−(bs+1).

Replacing the shift register by a finite state machine with finite input memory
nm can improve the propagation properties without violating this dependence
restriction. If the gate delay of this finite state machine is not larger than the
critical path, the maximum encryption speed of a hardware implementation is
not impacted.

A finite state machine with finite input memory has specific propagation prop-
erties. Let q be the internal state and G the state-updating transformation. Then

qt+1 = G(qt, ct) , (5)

with ct the ciphertext bit at time t.
One can associate with every component of the internal state q an input

memory, i.e., the number of past ciphertext bits that it depends on. The internal
state, confined to the components with input memory j is denoted by qj , with
qj
i its ith component. While not a part of the internal state, c can be considered

as the component with input memory zero: q0. The input memory of the finite
state machine is equal to the largest occurring component input memory.

Clearly, qj
i at time t + 1 must be independent of all q� with � ≥ j at time t

and must depend on qj−1 at time t. From this, it follows that the input memory

The Self-synchronizing Stream Cipher Moustique 215

partitions the components of the internal state into non-empty subsets with input
memory 1 to nm− bs. The components of the state-updating transformation are
of the form:

qj
i

t+1
= G[K]ji (c

t, q1t
, . . . , qj−1t

) , (6)

for 0 < j ≤ nm − bs.

3.3 Conditional Complementing Shift Registers

An important potential problem in a finite state machine with finite memory is
the existence of high-probability extinguishing differentials. An extinguishing dif-
ferential is a difference in the (ciphertext) input vector leading to a zero difference
in the internal state. This may lead to exploitable differentials in the cipher func-
tion. Assume that for the function corresponding with the stages DP(q′, 0) = 1/2
for all nonzero difference patterns q′. In that case if the CCSR has an extinguish-
ing differential (a, 0) with high probability DP(a, 0) = p, the differential (a, 0)
in the cipher function will have a high bias from 1/2: DP(a, 0) ≈ (1 + p)/2. The
existence of extinguishing differentials can be prevented by imposing (partial)
linearity on the components of the state-updating transformation. For simplicity
we impose the preliminary restriction that all qj have only one component, i.e.,
that there is only one bit for every input memory value. The components of the
state-updating transformations are of the form

qjt+1
= qj−1t

+ E[K]j(qj−2t
, . . . , q1t

, ct) . (7)

Since the new value of qj is equal to the bitwise sum of the old value of qj−1 and
some Boolean function, we call this type of finite state machine a conditional
complementing shift register (CCSR).

A finite state machine with finite input memory � realizes a mapping from a
length-� sequence of ciphertext bits ct−�, . . . , ct−1 to an internal state qt. For a
CCSR we have the following result.

Proposition 1. The mapping from ct−�, . . . , ct−1 to the internal state qt of a
CCSR is an injection.

Proof: We show how to reconstruct ctq1t
. . . qj−1t from q1t+1

. . . qjt+1. The com-
ponents are reconstructed starting from c and finishing with qj−1. For q1 Equa-
tion (7) becomes

q1t+1
= q0t

+ E[K]1 = ct + E[K]1 ,

since E[K]1() depends only on K. From this we can calculate ct. The values of
qk−1t for k from 2 to j can be calculated iteratively from the previously found
values by

qk−1t
= qkt+1

+ E[K]j(qk−2t
, . . . , q1t

, ct) .

ct−� . . . ct−1 can be calculated uniquely from q1t
. . . q�t by iteratively applying

the described algorithm. ��

216 J. Daemen and P. Kitsos

It follows that a nonzero difference in ct−� . . . ct−1 must give rise to a nonzero
difference in qt. Therefore in a CCSR there are no extinguishing differentials
between the input vector and its state.

The CCSR has the undesired property that a difference in c−�−t propagates
to q�t with a probability of 1. This can be avoided by “expanding” the high
input memory end of the CCSR, i.e., taking more than a single state bit per
input memory value near memory value �.

3.4 The Pipelined Stages Revisited

In our architecture, the cipher function consists of a CCSR followed by a number
of pipelined stages. The stages are similar to the rounds in a block cipher but
are less restricted.

A round of an iterated block cipher must be a permutation, and its inverse
must be easily implementable. The stages do not have this restriction and the
length of their outputs can be different from that of their inputs. The output
of the last stage is a Boolean function of the components of the state q some
cycles ago. An imbalance in this function leads to an imbalance in the cipher
function. This Boolean function can be forced to be balanced by imposing that
all the stage functions are semi-invertible. We call an n-bit to m-bit mapping
b = f(a) semi-invertible if there exists an n-bit to (n−m)-bit mapping b′ = f ′(a)
so that a is uniquely determined by the couple (b, b′). In that case the output
bit may have figured as a component of the output of an invertible function of
the state q.

The last round of an iterated block cipher must be followed by a key appli-
cation or include a key dependence. This is necessary for preventing the crypt-
analyst calculating an intermediate encryption state thereby making the last
round useless. For the cipher function the calculation of intermediate values is
impossible since only a single output bit zt is given per input. Therefore, key
dependence is not a strict requirement for the stage functions.

4 The Moustique Cipher Function

Moustique is a single-bit self-synchronizing stream cipher with:

– : Key size nk: 96
– : Input memory nm: 105
– : cipher function delay bs: 9

4.1 The Moustique Internal State

Moustique consists of a conditional complementing shift register (CCSR) and
a number of pipelined stages. The Moustique CCSR has 128 bits that are

The Self-synchronizing Stream Cipher Moustique 217

Table 1. Number of bits per cell

Range of j nj

1 − 88 1
89 − 92 2
93 − 94 4
95 8
96 16

i
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0· · ·

j 88 89 90 91 92 93 94 95 96

88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104

105 106 107 108

109 110 111 112

113 114

115 116

117 118

119 120

121

122

123

124

125

126

127

128

Fig. 3. Expansion of the CCSR in the high memory region. q indexing at the right and
bottom, a0 indexing inside the boxes.

partitioned in 96 cells denoted by qj . The index j ranges from 1 to 96. The
number of bit per cells depends on the value of j and is denoted by nj. The
values of nj are specified in Table 1.

The bits within a cell qj are denoted by qj
i with 0 ≤ i < nj. We index the bits

of the CCSR in two ways: we use qj
i in the specification of the updating function

of the CCSR itself, and a0
i in the specification of of the updating function of the

first stage. Figure 3 shows the expansion of the CCSR at the high input memory
end and the two ways of indexing.

The Moustique internal state has 8 stage registers denoted by ai, including
the CCSR:

– a0 is the CCSR and has a length of 128.
– a1 to a5 have length 53.
– a6 has length 12.
– a7 has length 3.

The bits of the registers a1 to a7 are indexed starting from 0, those of a0 start
from 1. The cipher key k consists of 96 bits: k0 . . . k95.

218 J. Daemen and P. Kitsos

4.2 The Moustique State Updating Function

For all bits in the internal state, the value of a bit at time t is a simple function
of bits of the internal state, possibly a key bit and possibly the ciphertext bit at
time t− 1. We distinguish three Boolean functions, defined in terms of addition
and multiplication in the field GF(2):

g0(a, b, c, d) = a + b + c + d (8)
g1(a, b, c, d) = a + b + c(d + 1) + 1 (9)
g2(a, b, c, d) = a(b + 1) + c(d + 1) . (10)

Figure 4 gives combinatorial circuits of these functions.

a b

⊕

c d

⊕

⊕

g0(a, b, c, d)

a b

⊕

c d

◦
◦⊕

g1(a, b, c, d)

a b

◦
◦

c d

◦
◦⊕

g2(a, b, c, d)

Fig. 4. The three functions used in the state-updating transformation

For the bits of the CCSR we have:

qj
i ⇐ gx(qj−1

i mod nj−1
, kj−1, q

v
i mod nv

, qw
i mod nw

) , (11)

with 0 ≤ v, w < j − 1. The values of x, v and w for all combinations (i, j) are
specified in Table 2, except those for j ≤ 2 and those with j = 96 and i > 1. In
this table a 0 in columns v or w denotes the bit at the input to the CCSR.

Table 2. Function and v and w values for equation 11

Index Function v w

(j − i) mod 3 = 1 g0 2(j − i − 1)/3 j − 2
(j − i) mod 3 = 2 g1 j − 4 j − 2
(j − i) mod 6 = 3 g1 0 j − 2
(j − i) mod 6 = 0 g1 j − 5 0

For j ≤ 2, the qv and qw entries are taken to be 0. The 15 bits q96
i with i > 0

are specified by:

q96
i ⇐ g2(q95

i mod 8, q
95−i
0 , q94

i mod 4, q
94−i
1 mod n94−i

) . (12)

The bit updating functions for the stages are specified in Table 3. In this table,
if a lower index in the right-hand side of the equations is out of the specified
range, the corresponding bit is taken to be 0, e.g., a3

53 = 0.

The Self-synchronizing Stream Cipher Moustique 219

Table 3. Bit updating function for the stages

Output Equation Input

a1
i , 0 ≤ i < 53 a4i mod 53 ⇐ g1(a128−i, ai+18, a113−i, ai+1) a0

i , 1 ≤ i < 128

a2
i , 0 ≤ i < 53 a4i mod 53 ⇐ g1(ai, ai+3, ai+1, ai+2) a1

i , 0 ≤ i < 53

a3
i , 0 ≤ i < 53 a4i mod 53 ⇐ g1(ai, ai+3, ai+1, ai+2) a2

i , 0 ≤ i < 53

a4
i , 0 ≤ i < 53 a4i mod 53 ⇐ g1(ai, ai+3, ai+1, ai+2) a3

i , 0 ≤ i < 53

a5
i , 0 ≤ i < 53 a4i mod 53 ⇐ g1(ai, ai+3, ai+1, ai+2) a4

i , 0 ≤ i < 53

a6
i , 0 ≤ i < 12 ai ⇐ g1(a4i, a4i+3, a4i+1, a4i+2) a5

i , 0 ≤ i < 53

a7
i , 0 ≤ i < 3 ai ⇐ g0(a4i, a4i+1, a4i+2, a4i+3) a6

i , 0 ≤ i < 12

The keystream bit is given by

z = a7
0 + a7

1 + a7
2 . (13)

This yields:
p⇐ g0(c, a7

0, a
7
1, a

7
2) . (14)

and
c⇐ g0(p, a7

0, a
7
1, a

7
2) . (15)

4.3 Putting It Together

Figure 5 shows the Moustique self-synchronizing stream cipher. Its critical path
delay is 2 XOR gates, equal to the gate delay of the state-updating transforma-
tion. Building a circuit that can perform both encryption and decryption while
maintaining this path delay necessitates the introduction of extra intermediate
storage cells, denoted in Figure 5 by boxes containing a d. In the encryptor this
cell is located between the encryption and the input of the CCSR. For correct
decryption this necessitates a double delay at the input of the CCSR.

C
C
S
R

�K K�
C
C
S
R

�
d�

�
2d� �

⊕

�⊕ �⊕ � d ��

⊕

��⊕ �⊕ � d �mt ct ct−1 mt−1 mt−2

at−1 at−1

Fig. 5. Encryption and decryption with Moustique

220 J. Daemen and P. Kitsos

5 Design Rationale

In this section we discuss the structure of the components in Moustique. Actu-
ally, the design of Moustique goes back to KNOT [2], that was improved to be-
come ΥΓ [3]. We submitted ΥΓ to eSTREAM [5] under the name Mosquito[6].
ΥΓ and Mosquito have the same cipher function but the cipher function delay
bs has increased from 8 in ΥΓ to 9 in Mosquito. After Mosquito was broken
in [7], we tweaked it and called the new version Moustique.

5.1 The CCSR

The CCSR of Moustique is a tweaked version of the one in Mosquito to
address the attack in [7] that in turn is a tweaked version of the one in KNOT
due to our discovery of extinguishing differentials.

The CCSR is designed to prevent differentials from ct−96 . . . ct−1 to Qt with
a probability larger than 2−15, while keeping the gate delay very small and
the description simple. Observe that the 15 components G96

i with i > 0 are
unbalanced functions resulting in a bias in the corresponding components q96

i .
In KNOT, the component G96

0 was also an imbalanced function, resulting in
extinguishing differentials from the input vector to the CCSR state. For this
reason, we replaced this component function from KNOT to ΥΓ by a balanced
function. The extinguishing differentials in the CCSR of KNOT were later ex-
ploited to break it in [4].

In all versions of the CCSR, an input difference diffuses immediately to com-
ponents all over q. This is a consequence of the fact that ct is not only injected
in q1, but in many components at once. These are represented by the zero v
and w entries in Table 2 (keep in mind that q0 = c). For j − i a multiple of 3,
depending on the value of qj−2

0 , a difference in c propagates to either qj
0 or qj+3

0 .
Since there are more than 15 of these “double injections”, the probabilities are
below 2−15. In subsequent iterations this pattern is subject to the nonlinearity
of the CCSR state-updating transformation.

In the CCSR of Moustique, the components qj
i with j− i−1 a multiple of 3

are updated according to the linear function g0 while for the CCSR of Mosquito
and KNOT, all components qj

i with j < 96 used the nonlinear function g1.
This modification was due to the attack on Mosquito in [7] shortly described
hereafter.

If the first � bits of the key are (assumed to be) known, the propagation of
a difference applied at the input can be controlled up to q�. The attacker can
apply a difference in the ciphertext that leads at time t = 1 to a difference equal
to 1 in cell q1 and 0 in cells q2 to q�. He then iterates the CCSR � times, while
ensuring that the difference in q1 at time t = 1 propagates to a difference in
only qi at time t = i, and nowhere else in the complete CCSR. Due to the fact
that the worst-case diffusion inside the CCSR is very small, the attacker can
easily enforce this by choosing the appropriate ciphertext bits. At time t = �,
the difference in the cells q1 to q� is a single 1 in q� and zero elsewhere.

Consider now the cells q�+1 and higher. At time t = 1, the attacker has no
knowledge of the difference in this section. However, at time t = i, the difference

The Self-synchronizing Stream Cipher Moustique 221

in cells q�+1 up to q�+i−1 is zero. If the input memory of the SSSC is 2� or
smaller, at time t = � the difference in the CCSR is 1 in cell q� and zero else-
where. The stages realise some confusion in the mapping from the CCSR state
to the output bit, but clearly not sufficient to such a powerful differential. They
have been designed assuming that an attacker cannot construct high probability
differentials in the CCSR. The authors of [7] proved this assumption to be wrong
and showed that guessing about half of the key and decrypting some chosen ci-
phertext pairs suffices to find the remaining part of the key, thereby breaking
the cipher.

In the design of the CCSR of Mosquito care was taken to have high dif-
fusion from its input bit to the cells by injecting the input bit in at least 15
positions. However, the attack exploits the low worst-case diffusion within the
CCSR. Actually, the attack exploits this low diffusion in combination with two
other properties of Mosquito: the insufficient confusion realised by the stages
and the fact that guessing part of the cipher key gives access to the first part of
the CCSR. A tweak should therefore address at least one of these three prop-
erties. In our choice of the tweak, we also considered that the efficiency of the
cipher in dedicated hardware should not degrade too much: the area and the
critical path delay should not change significantly with respect to Mosquito.
This rules out the introduction of a key schedule, the augmentation of the num-
ber of stages or their width or an increase of the width of cells of the CCSR.
Only the CCSR updating function remains.

The worst-case diffusion in the CCSR is dramatically improved by using for
about one third of the bits the function g0 instead of g1. The indexing ensures
that differences in the low-end part of the CCSR propagate much faster to dif-
ferences in the high-end part of the CCSR. This makes containment of single-bit
differences in the first cells of the CCSR to a small number of cells during a sig-
nificant number of iterations infeasible. Therefore, we believe chosen-ciphertext
key-guessing attacks as in [7] cannot be mounted for Moustique. Clearly, re-
placing the nonlinear function g1 by the linear function g0 for one third of the
bits of the CCSR may introduce new weaknesses and possibly lead to new at-
tacks. It remains to be seen whether there will appear attacks that manage to
exploit this.

5.2 The Pipelined Stages

The input to the first stage consists of the state bits of the CCSR. Special care
has been taken with respect to difference patterns restricted to the high-memory
region and those resulting from a difference in the most recent cipher bit. The
purpose of stages 〈1〉 to 〈6〉 is the elimination of low-weight linear and differential
trails. The components of these stage functions combine diffusion, nonlinearity
and dispersion respectively in the linear term, in the quadratic term and in the
arrangement of inputs and outputs. Their effectiveness is reinforced by the dif-
fusion in stage 〈7〉 and the output function that computes the keystream bit as
the bitwise addition of all 12 bits of a〈6〉 to the output. During the writing of [3],

222 J. Daemen and P. Kitsos

we discovered that the output function of KNOT had a detectable imbalance.
This problem was solved in ΥΓ by modifying the stages to be semi-invertible.

6 Hardware Performance and Implementation Aspects

Moustique has been designed with dedicated hardware implementations in
mind and does not lend itself to software implementations at all. Therefore we
only give performance results for dedicated hardware implementations.

We have implemented a Moustique encryption/decryption circuit with gate
delay of 2 XOR gates as described in [6] using Field Programmable Gate Array
(FPGA). We designed and coded the hardware implementation in VHSIC Hard-
ware Description Language (VHDL) with structural description logic and verified
the resulting implementation using the Mentor Graphics ModelSim simulation
environment, with test vectors returned by the software implementation. We
synthesized the circuit using Mentor Graphics LeonardoSpectrum tool in both
Xilinx [9] and Altera [10] FPGAs.

The synthesis results and performance analysis are shown in Table 4 indi-
cating the number of D Flip-Flops (DFFs), Configurable Logic Blocks (CLBs)
and Function Generators (FGs) for Xilinx FPGAs and the number of D Flip-
Flops (DFFs) and Logic Cells (LCs) in cases of Altera FPGAs. The indicated
throughput is that for encryption/decryption, after the initialization phase.

Table 4. Moustique synthesis results and performance numbers

FPGA Device # DFF # FG/LC # CLB Speed
total used total used total used Mb/sec

Xilinx Virtex (V50BG256) 1536 503 1536 405 768 252 228
Xilinx Virtex-E (V50EPQ240) 2010 503 1536 405 768 252 263
Xilinx Virtex-II (2V80FG256) 1384 503 1024 405 512 252 369
Altera Apex (EP20K200RC208) - - 8320 503 - - 336
Altera Flex (EPF10K70RC240) 4096 503 3744 503 - - 146
Altera Max (EPM3512AQC208) 512 503 512 503 - - 167

Almost in all the cases, both for Xilinx and Altera, we used the smallest
FPGA devices with low hardware resources utilization for each FPGA family.
A circuit with fully parallel key loading has 103 I/Os, one with single-bit serial
key loading has only 8 I/Os.

The experimental delay measurements (critical path delay, 1/Freq.) are very
close to the expected values produced by the theoretical expression (critical path
delay = 2∗ tXOR). The slight differences between the experimental and the theo-
retical values are due to the fact that in the theoretical values the FPGA internal
interconnection wires delays, D flip flop or buffer transfer delays are not calcu-
lated. All in all the cipher achieves a low level of FPGA utilization and is suitable
for hardware implementation. In [6] we have compared our implementations of
Mosquito with that of block ciphers operating in single-bit CFB mode and
show that they are an order of magnitude faster and more efficient.

The Self-synchronizing Stream Cipher Moustique 223

Acknowledgements

We would like to thank Joe Lano for stimulating us to submit Mosquito to
eSTREAM and Sanand Sule, Ralf-Philipp Weinmann and Sean O’Neal for re-
porting problems with the reference implementation in Mosquito and draft
versions of Moustique. Finally we would like to thank Frédéric Muller and An-
toine Joux for doing the effort to cryptanalyze KNOT and Mosquito, which
have led to Moustique.

References

1. Maurer, U.M.: New Approaches to the Design of Self-Synchronizing Stream Ci-
phers. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 458–471.
Springer, Heidelberg (1991)

2. Daemen, J., Govaerts, R., Vandewalle, J.: On the Design of High Speed Self-
Synchronizing Stream Ciphers. In: Kam, P.Y., Hirota, O. (eds.) Singapore
ICCS/ISITA 1992 Conference Proceedings, pp. 279–283. IEEE, Los Alamitos
(1992)

3. Daemen, J.: Cipher and hash function design strategies based on linear and differ-
ential cryptanalysis. Doctoral Dissertation, K.U.Leuven (March 1995)

4. Joux, A., Muller, F.: Loosening the KNOT. In: Johansson, T. (ed.) FSE 2003.
LNCS, vol. 2887, pp. 87–99. Springer, Heidelberg (2003)

5. http://www.ecrypt.eu.org/stream/

6. Daemen, J., Kitsos, P.: Submission to ECRYPT call for stream ciphers: the self-
synchronizing stream cipher Mosquito: eSTREAM documentation, version 2 (De-
cember 8, 2005), http://www.ecrypt.eu.org/stream/

7. Joux, A., Muller, F.: Chosen-Ciphertext Attacks against MOSQUITO. In: Rob-
shaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 390–404. Springer, Heidelberg
(2006)

8. Daemen, J., Kitsos, P.: Submission to ECRYPT call for stream ciphers: the self-
synchronizing stream cipher Moustique (June 30, 2006),
http://www.ecrypt.eu.org/stream/

9. Xilinx Virtex FPGA Data Sheets (2005), URL: http://www.xilinx.com
10. Altera FPGA Data Sheets (2005), URL: http://www.altera.com

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.xilinx.com
http://www.altera.com

Cascade Jump Controlled Sequence Generator

and Pomaranch Stream Cipher

Cees J.A. Jansen1, Tor Helleseth2, and Alexander Kholosha2

1 DeltaCrypto BV
Jv. Riebeeckstr. 10

5684 EJ Best, The Netherlands
2 The Selmer Center

Department of Informatics, University of Bergen
P.O. Box 7800, N-5020 Bergen, Norway

cja@iae.nl, {Tor.Helleseth,Alexander.Kholosha}@uib.no

Abstract. Jump registers have been proposed as building blocks for
stream ciphers. In this paper, a construction based on these principles
is described. The proposed encryption primitive is a synchronous stream
cipher accommodating a key of 128 bits and an IV of 64 up to 162 bits, or
an 80-bit key and 32 to 108 bit IV. The stream cipher is particularly de-
signed to resist side-channel attacks and can be efficiently implemented
in hardware for a wide range of target processes and platforms.

Keywords: stream cipher, Pomaranch, jump register.

1 Introduction

Linear feedback shift registers (LFSR’s) are known to allow fast implementation
and produce sequences with a large period and good statistical properties (if
the feedback polynomial is chosen appropriately). But the inherent linearity of
these sequences results in susceptibility to algebraic attacks. That is the prime
reason why LFSR’s are not used directly for key-stream generation. A well-
known method for increasing the linear complexity, preserving at the same time
a large period and good statistical properties is to apply clock control, i.e., to
irregularly step an LFSR through successive states. Key-stream generators based
on regularly clocked LFSR’s are susceptible to basic and fast correlation attacks.
Use of irregular clocking limits the possibilities for mounting classical correlation
attacks.

Due to the multiple clocking, key-stream generators that use clock-controlled
LFSR’s have decreased rates of sequence generation since such generators are
usually stepped a few times to produce just one bit of the key-stream. The
efficient way to let an LFSR move to a state that is more than one step further
but without having to step though all the intermediate states (so called, jumping)
was suggested in [1]. Further, in Section 2 we give a brief description of the this
technique.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 224–243, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

CJCSG and Pomaranch Stream Cipher 225

The extremely serious weakness found in key-stream generators that use ir-
regular clocking is their vulnerability to timing, power and other side-channel
attacks. This was one of the reasons why stream ciphers such as SOBER-t16 and
SOBER-t32 did not pass the security evaluation and were not included into the
NESSIE [2] portfolio of strong cryptographic primitives. Using jump registers
instead of the traditional clock-controlled ones allows to build efficient counter-
measures against the side-channel attacks while preserving all the advantages of
irregular clocking.

Pomaranch is a stream cipher that follows a classical design of synchronous
bit-oriented stream ciphers and consists of a key-stream generator producing a
secure sequence of bits that is further XORed with the plain text previously
converted into bits. The key-stream generator of Pomaranch is called Cascade
Jump Controlled Sequence Generator (CJCSG) and is primarily intended for
hardware implementation. Along with providing an appropriate security level it
can be used in a wide range of hardware platforms included those having very
limited computing and memory resources (see Section 4). However, our current
generator can hardly reach the bit generation rate achieved by word-oriented
algorithms especially designed for software implementation. Therefore, the soft-
ware use of the bit-oriented CJCSG is mostly interesting from the academic
point of view. Word-oriented stream cipher designs based on the ideas of jump
control have been investigated. The theoretical basis for such an arrangement,
referred to as “jumping in extension fields”, has been developed (see [3,4]). This
will be implemented in future versions of the CJCSG.

The original version of Pomaranch turned out to be vulnerable to correlation
attacks which will be discussed in Section 6. Because of that, the cipher has
undergone two stages of tweaking and the latest version that is presented in this
paper is often referred to as Version 3.

2 Jumping Technique

The ideas presented in this section are well described in [1,5,6,3] and were pre-
sented at SASC 2004, the Benelux Information Theory Symposium 2005 and
earlier at RECSI 2002 and EIDMA Cryptography Working Group meeting in
February 2003.

Consider an autonomous Linear Finite State Machine (LFSM), not necessarily
an LFSR, defined by the transition matrix A of size L over GF(2) with a primitive
characteristic polynomial f(x) = det(xI + A), where I is the identity matrix. It
is well known that A is similar to the companion matrix S(f) of f(x), i.e., there
exists a nonsingular matrix M such that M−1AM = S(f). Let zt (t = 0, 1, 2, . . .)
denote the inner state of the LFSM at time t. Then zt = z0A

t = z0MS(f)tM−1

and ztM = (z0M)S(f)t. Thus, LFSMs defined by A and S(f) are equivalent up
to a linear coordinate transformation.

Take a matrix representation of the elements of the finite field GF(2L). Since
f(S(f)) = 0 and f(x) is primitive, S(f) can play the role of a root of f that is a
primitive element in GF(2L). Then S(f)+I being an element of GF(2L) is equal

226 C.J.A. Jansen, T. Helleseth, and A. Kholosha

to S(f)J for some power J and, thus, AJ = MS(f)JM−1 = MS(f)M−1 + I =
A+I. Note that identity S(f)J = S(f)+I is equivalent to xJ ≡ x+1 (mod f(x))
and, therefore, such a value of J is called the jump index of f . It is important to
observe here that changing the transition matrix of the LFSM from A to A + I
results in making J steps through the state space of the original LFSM.

Let f⊥(x) denote the characteristic polynomial of the modified transition
matrix A+I that is equal to f⊥(x) = det(xI+A+I) = f(x+1). The polynomial
f⊥(x) is called the dual of f(x). It is easy to see that f(x) is irreducible if and
only if f⊥(x) is irreducible (however, this equivalence does not hold for being
primitive). It can also be shown (see [6, Theorem 2]) that if the dual polynomial
f⊥ is primitive (the jump index of f⊥, naturally, exists) then the jump index of
f is coprime with λ = 2L − 1 and J⊥ ≡ J−1 (mod λ).

The transition matrix A that defines the LFSM used in the CJCSG has a very
special form, namely,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dL 0 0 · · · 0 1
1 dL−1 0 · · · 0 tL−1

0 1 dL−2
. . .

...
...

0 0
. 0

...
...

...
. . . 1 d2 t2

0 0 · · · 0 1 d1 + t1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1)

This is the companion matrix of a polynomial of degree L (L is even) with
some corrections made on the main diagonal, where half of the di’s are equal
to 0 and another half are equal to 1. The characteristic polynomial of A can be
determined directly as

C(x) = 1 +
L−1∑

i=0

ti

L∏

j=i+1

(dj + x) ,

where t0 = 1 is introduced for simplicity of the formula. Taking the aforemen-
tioned restrictions on the di’s into account and assuming only tn1 , tn2 and tn3

for n3 > n2 > n1 are nonzero with k1 nonzero di in the range i = {1, . . . , n1},
k2 nonzero di in the range i = {n1 + 1, . . . , n2} and k3 nonzero di in the range
i = {n2 + 1, . . . , n3} one arrives at

C(x) = 1 + x
L
2 +k1+k2+k3−n3(x + 1)

L
2 −k1−k2−k3 + x

L
2 +k1+k2−n2(x + 1)

L
2 −k1−k2

+ x
L
2 +k1−n1(x + 1)

L
2 −k1 + x

L
2 (x + 1)

L
2 . (2)

The parameters are chosen in such a way that the characteristic polynomial
C(x) is primitive and is neither self-reciprocal nor self-dual nor dual-reciprocal,
i.e., belongs to a primitive S6 set, that is a set of six primitive polynomials which
are each others reciprocals and duals (for the details, see [6]). Jump indices of
the polynomials in S6 are coprime with the period λ. In particular, this means

CJCSG and Pomaranch Stream Cipher 227

that the jump index of the characteristic polynomial satisfies gcd(J − 1, λ) = 1.
The latter property is required to guarantee the maximal period of the output
sequence as will be discussed further in Section 5. Choosing A to be of such a
form implies that the same number of XOR’s is used in the LFSM irrespective
of the value of the jump control signal that defines whether the LFSM is stepped
once or makes a jump.

3 Description of the CJCSG

The CJCSG is a generic binary one clock pulse cascade clock control sequence
generator that operates in the Initialization Value (IV) accommodation mode
comprising N jump registers. It is intended for hardware implementation and
comes as Pomaranch in two versions, i.e., with 128-bit or 80-bit keys. These
versions differ only in the number of jump register sections used, the number of
shift mode steps during the IV setup, and the key-stream output function. In the
128-bit version, the IV length is allowed arbitrary in the range from 64 to 162
bits. The 80-bit version accommodates the IV of 32 to 108 bits long. Hereafter,
take N = 9 for the 128-bit and N = 6 for the 80-bit version. Also denote the key
length as κ that can be equal to 128 or 80. The κ-bit key K is split into N − 1
16-bit subkeys k1 to kN−1. The most significant bit (msb) of K is the msb of k1,
and so on, the least significant bit (lsb) of K is the lsb of kN−1.

The generator consists of N − 1 complete sections plus the last, Nth section
that consists of the jump register only. The sections are numbered from 1 to
N and every odd numbered section is of type 1 (Fig. 2 (a)) and every even
numbered section is of type 2 (Fig. 2 (b)). All sections are combined in a cascade
construction in which registers jump depends on all previous jump registers.

3.1 Jump Register Section

Jump Registers (JR) implement an autonomous LFSM and are built on 18 mem-
ory cells, each of them acting either as a simple delay shift cell (S-cell) or feedback
cell (F-cell), depending on the value of the Jump Control (JC) bit (see Fig. 1).

� �
�

� � � � � � � � � � � �

�

Fig. 1. Jump Register Cell

228 C.J.A. Jansen, T. Helleseth, and A. Kholosha

	
������	 �	 		
	 �	 �	 	 �	 �	 �

�
�

� ����� ���� ����� ���

� � � � � � � � � � � �

�

�
�

� � � � � � �

� � � � � � � � � � �
�

� � � � � � � � � � �
�

(a) type 1 - odd i

	
������	 �	 		
	 �	 �	 	 �	 �	 �

�
�

�� � ��� ���� ���� � ���

� � � � � � � � � � � �

�

�
�

� � � � � � �

� � � � � � � � � � �
�

� � � � � � � � � � �
�

(b) type 2 - even i

Fig. 2. Jump Register Section

At any moment, half of the cells in each register are S-cells, while the others
are F-cells which is seen as an important feature against power and side-channel
attacks. The LFSM implemented by every JR is defined by the binary transi-
tion matrix A shown in (1) with L = 18, where t1, . . . , tL−1 correspond to the
positions of feedback taps and nonzero d1, . . . , dL – to the positions of F-cells in
the register. Transition matrix A is applied if the JC value is zero, otherwise,
all cells are switched to the opposite mode which is equivalent to changing the
transition matrix to A + I with I being the identity matrix.

There are two different types of JR sections that differ by their cell config-
urations and feedback taps. Fig. 2 (a) and (b) shows the configuration of cells
that corresponds to the zero value of the JC-bit for the odd and even numbered
sections respectively. When JC is one then all the cells are switched to the op-
posite mode. The JR of the odd numbered sections is a feedback shift register
with the tap positions located at cells 3, 8, 16 and 18 that gives n1 = 3, n2 = 8
and n3 = 16. For this configuration and choosing k1 = 1, k2 = 0, k3 = 7, the
characteristic polynomial of the LFSM (see (2)) is primitive with a jump index
of 84074. The JR of the even numbered sections is a feedback shift register with
the tap positions located at cells 6, 8, 14 and 18 that gives n1 = 6, n2 = 8
and n3 = 14. For this configuration and choosing k1 = 1, k2 = 1, k3 = 6, the
characteristic polynomial of the LFSM (see (2)) is primitive with a jump index
of 27044. Let Rt

i denote the state of the register Ri in section i at time t ≥ 0.
Then

Rt+1
i = Rt

i(Ai + JCt
i · I) (i = 1, . . . , N) ,

where JCt
i denotes the jump control bit for Ri at time t and Ai is the transition

matrix (1) which concrete form is defined by whether i is even or odd.
The current state of the registers R1 to RN−1 is nonlinearly filtered using a

function (Key Map) that involves the corresponding subkey ki (i = 1, . . . , N−1).
These functions together provide an output of N − 1 bits ct

1 to ct
N−1 which are

CJCSG and Pomaranch Stream Cipher 229

used to produce the bits JCt
2 to JCt

N controlling the registers R2 to RN at time
t as follows

JCt
i = ct

1 ⊕ . . .⊕ ct
i−1 (i = 2, . . . , N) .

In the key-stream generation mode, the jump control bit JC1 of register R1 is
permanently set to zero. The two complete jump register sections are shown in
Fig. 2. Section N consists of the JR only and does not have the Key Map.

The 9-bit input vectors for the Key Map are composed of the cells numbered
1, 2, 4, 5, 6, 7, 9, 10, 11 of the type 1 jump register and 1, 2, 3, 4, 5, 7, 9, 10, 11
of the type 2 jump register. These 9-bit vectors are considered as the numbers
(denoted as v) in the range from 0 to 29−1 with the bit from cell 1 being the least
significant and from cell 11 the most significant in v. Next, the 9 least significant
bits of the subkey are bitwise XORed to v with the lsb of v XORed with the
lsb of the subkey. The sum (considered as a 9-bit number) is substituted by the
9-to-7 bit S-box, for which a lookup table is provided in Appendix A. The result
(denoted as w) is taken as a 7-bit vector and is bitwise XORed to the 7 most
significant bits of the subkey with the msb of w XORed with the msb of the
subkey. The resulting 7-bit sum is fed into the Boolean function F , for which
a lookup table is also provided in Appendix A. The output of F obtained from
section i = {1, . . . , N − 1} at time t is denoted ct

i.

3.2 Modes of Operation

Key-stream generation mode is shown in Fig. 3. The key-stream bit rt generated
at time t is obtained by applying Boolean function H of N variables to the bits
tapped from the register states Rt

1 to Rt
N , so rt = H(zt

1, . . . , z
t
N) and

H(zt
1, . . . , z

t
9) = zt

1 ⊕ . . .⊕ zt
9 in the 128-bit version ,

H(zt
1, . . . , z

t
6) = G(zt

1, . . . , z
t
5)⊕ zt

6 in the 80-bit version ,

where G is a Boolean function with the lookup table provided in Appendix A.
zt
1 becomes the msb bit in the integer indexing the table for G. All the taps are

taken from the cell 17 of the jump registers.
Shift mode is shown in Fig. 4 This mode is used during the initialization and

IV setup of the CJCSG. In this mode, the bit ct
i (the Key Map output) of section

i (i = 1, . . . , N − 1) is added to the feedback of the Ri+1. The tap from cell 1 in
the RN is added to the feedback of the R1 and this closes “the big loop”. The
configuration of the jump registers does not change in the shift mode, they all
operate as if the JC bit was constantly zero.

The shift mode is used to make the register contents depend on all initial con-
tent bits and all key bits. This mode defines a key dependent one-to-one mapping
of the set of all (18 ·N)-bit states onto itself. Indeed, if Rt

i = (rt
i,18, . . . , r

t
i,1) then

the following equations define the shift mode:

Rt+1
1 = Rt

1A1 ⊕ (0, . . . , 0, rt
N,1)

Rt+1
i = Rt

iAi ⊕ (0, . . . , 0, ct
i−1) (i = 2, . . . , N) .

230 C.J.A. Jansen, T. Helleseth, and A. Kholosha

�
�

�
� � �

�
�

�
�

	
� � � �

	
� �

	
� �

�
�

�
�

�
� � �

�
� �

�

� �
� � �

� �
�

�
�

�
�

�
�

�
� � �

� ���
�
�� � � � �

�
� � ���

� � �

�� � � � �
� � �

� �
�

����� � � � �
�

����� �
�

����

�

Fig. 3. Key-Stream Generation Mode

�
�

�
� � �

�
�

�
�

	
� � � �

	
� �

	
� �

�
�

�
�

�
� � �

� ���
�
� � ���

� � �

� �
�

���� �
�

����

Fig. 4. Shift Mode

From the concrete form of matrices Ai applied in the shift mode it is clear that
rt+1
i,2 = rt

i,1 (1 ≤ i ≤ N). So the inverse of the above equations can be written as

Rt
1 =

(
Rt+1

1 ⊕ (0, . . . , 0, rt+1
N,2)

)
A−1

1

Rt
i =

(
Rt+1

i ⊕ (0, . . . , 0, ct
i−1)

)
A−1

i (i = 2, . . . , N)

and Rt
i can be found one after another starting from i = 1. This shows that shift

mode defines an invertible onto mapping which needs to be a bijection.
Also note that in shift mode, the worst case diffusion of all IV bits is achieved

after N + 23 + 2 · (N mod 2) steps, the respective number for IV-plus-key bits
diffusion is 2N + 23 + 2 · (N mod 2) steps.

CJCSG and Pomaranch Stream Cipher 231

3.3 Initialization

The initialization combines key setup, IV setup and the run-up. In the key setup,
firstly preset the state of the jump register i (i = 1, . . . , N) to the value of pi[i]
(see Appendix A) with the lsb of pi[i] coming in cell 1 of the register. Then run
the generator for 128 steps in the shift mode. Finally, save the 18-bit states of
all N jump registers (call it the Initialization Vector) for later use during the IV
setup.

The sequence of steps for the IV setup is the following:

1. The IV can have an arbitrary length in the range from 64 for the 128-bit
version (32 in the 80-bit) to 18 ·N = Q bits. If the IV length is less than Q
then extend the IV to the maximal length by cyclically repeating its bits.

2. XOR the Q-bit (extended) IV with the Initialization Vector saved after the
key setup and load the result into the N jump registers. The 18 most signif-
icant bits of the IV modify R1 (msb of the IV modifies the msb of R1), the
next 18 bits of the IV similarly modify R2 and so on.

3. Run the generator in the shift mode for S = 108 steps if N = 9 (128 key
bits) or for S = 88 steps if N = 6 (80 key bits).

4. If any of the N registers has the all-zero state then set its least significant
bit to 1.

5. Perform a run-up of 64 steps in the key-stream generation mode discarding
the output bits.

After the run-up, the CJCSG starts generating the key-stream in the key-stream
generation mode. Initialization of the CJCSG is done only once for a given key.
Therefore, using the Initialization Vector allows to achieve fast start of a new
IV session and re-synchronization. Since the shift mode defines a bijection, the
suggested IV setup procedure not only guarantees a key dependent diffusion of
the IV bits but also provides a different internal state before Step 4 for different
IV’s.

4 Lightweight Implementation of the S-Box

The CJCSG is ideally suited for hardware implementation since it requires stan-
dard components and has no complex circuits causing timing bottlenecks. The
80-bit version of the CJCSG consists of 6 sections with 5 of them containing the
Key Map. The linear shift register part (jump registers) uses 18 memory cells,
each with an XOR and a switch. Typically, this takes about 225 gates (two-input
equivalent). The 9-to-7 bit S-box in the Key Map is the most expensive real-
estate, followed by the 7-to-1 Boolean function and 16 XOR’s. Implementation
of these components by direct synthesis of the Boolean circuitry is estimated
at 1000 gates. No attempts have been made to optimize the footprint of these
circuits by means of a silicon compiler. For the complete design a total primary
estimate is obtained of 5 · 1000 + 6 · 225 ≈ 6300 gates. Reduction of the gate-
complexity of the S-box can lower this number substantially as can be seen from
the following.

232 C.J.A. Jansen, T. Helleseth, and A. Kholosha

First note that the 9-to-7 bit S-box presented in Appendix A is defined by the
inversion operation in the multiplicative group of GF(29) when the finite field is
defined by the irreducible polynomial f(x) = x9 + x + 1 of period 73. Further,
the most and the least significant bits (msb and lsb) of the result are truncated
to obtain a 7-bit value.

For an implementation in software, it suffices to define a table of 512 entries
of 7 bits. However, for hardware implementations such a table is not suitable,
as multiple copies (8 copies for the 128-bit version of Pomaranch) of the S-box
are needed. Moreover, straightforward hardware implementations, based on elec-
tronic circuit design programs, typically use input-output relations and therefore
result in too complex solutions, i.e., requiring a large number of Boolean gates.
In this section, we define a more efficient (having lower gate-complexity) im-
plementation of the inverse modulo f(x) as the inverse in the composite field
GF((23)3), i.e., modulo x3 + c1x

2 + c2x + c3 ∈ GF(23)[x].
This section is organized as follows. First, an optimal composite field repre-

sentation is derived. Further, the equations are produced that are involved in
taking the direct inverse and their solution is found. Finally, the resulting hard-
ware complexity is discussed and some detailed numerical examples to support
hardware implementation are provided.

4.1 The Composite Field Representation

The finite field GF(29) is commonly represented by the elements which are degree
eight polynomials. These polynomials are given by their nine binary constants
as 9-bit vectors. Addition and multiplication of elements are the component-
wise addition modulo 2 (the XOR), and the multiplication of degree-8 poly-
nomials modulo some degree-9 irreducible polynomial p1(x). The elements are
said to be represented in the polynomial basis B1 = (α8, α7, . . . , α, 1), where
α is a root of p1(x), so p1(α) = 0. Note that changing to a different basis
B2 = (β8, β7, . . . , β, 1), with β = αe and 1 < e < 511, merely results in a linear
transformation of basis, if the minimum polynomial of β has degree nine as well.
Consequently, changing the irreducible polynomial p1(x) into p2(x) of the same
degree, to do the modular multiplications, is realized by a linear transformation.

The field GF(29) can also be represented as GF((23)3), where the elements
are given as polynomials of degree at most 2 with coefficients from GF(23).
These field elements can be seen as comprising three times three bits. Addition
is again the bitwise modulo 2 addition, but multiplication now becomes the
multiplication of two polynomials of degree 2 modulo an irreducible polynomial
q(x) of degree three over GF(23).

Let α be a primitive element of GF(29) with p(α) = 0, then it is easy to see
(511 = 7 · 73) that powers of α73 comprise the subfield GF(23). Let γ = α73,
then the minimal polynomial of γ over GF(2) is given by

r(x) = (x + γ)(x + γ2)(x + γ4) = x3 + (γ + γ2 + γ4)x2 + (γ3 + γ5 + γ6)x + 1 .

CJCSG and Pomaranch Stream Cipher 233

Since there are only two irreducible polynomials of degree 3 over GF(2), r(x)
is either x3 + x2 + 1 or x3 + x + 1, depending on p(x). Similarly, the minimal
polynomial of α over GF(23) if given by

q(x) = (x+α)(x+α8)(x+α64) = x3+(α+α8+α64)x2+(α9+α65+α72)x+α73 .

The coefficients of x2 and x in q(x) are elements of GF(23) and, hence, if being
non-zero, can be expressed as powers of γ. The values of the coefficients depend
on the primitive polynomial p(x) chosen to define GF(29).

In the composite field representation, there are two bases involved in repre-
senting elements of GF(29). That is the basis (α2, α, 1) used to represent the
elements of GF(29) as vectors of three elements belonging to GF(23), and also
the basis (γ2, γ, 1), with γ = α73, to represent the elements of the subfield
GF(23) as vectors of three bits. This can be seen as a combined equivalent basis
Bc = (α148, α75, α2, α147, α74, α, α146, α73, 1) for GF(29). Again, a simple linear
transformation relates Bc to a polynomial basis B, once p(x) is known.

In general, for calculations involved in determining the inverse modulo some
irreducible polynomial it is advantageous to have as many binary values as pos-
sible for the coefficients of the polynomial. A simple search through the set
of primitive polynomials of degree nine over GF(2) identified the polynomial
x9 + x7 + x5 + x +1 as suitable. For if we take p(x) = x9 +x7 +x5 + x + 1, then
q(x) = x3 + x + γ and r(x) = x3 + x + 1. In this case, (α7)9 + α7 + 1 = 0, so
that α7 �→ α determines the linear transformation mapping polynomials modulo
x9 + x + 1 to polynomials modulo p(x). Suffice to give the resulting transform
matrix Mpom and its inverse, mapping vectors in GF(29) defined by x9 + x + 1
to vectors in GF((23)3) defined by p(x) and γ = α73. “Row vector times matrix”
notation is used.

Mpom =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 1 0 1 0
1 0 1 1 1 1 1 1 0
0 0 1 1 0 1 1 1 0
1 0 1 0 0 0 1 0 0
0 1 1 1 1 0 1 1 0
1 0 1 1 0 0 1 0 0
1 1 1 0 0 0 1 0 0
0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

M−1
pom =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1 0 0 0 1 0
0 0 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0 0
0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0
0 1 1 0 1 0 1 1 0
1 0 0 1 0 1 1 1 0
0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

4.2 Calculating the Inverse

Let a(x) and b(x) be polynomials of degree at most 2 with coefficients from
GF(23), and let b(x) = a(x)−1 mod (x3 +x+γ). Given any a(x), it is a straight-
forward exercise to calculate its inverse b(x): multiply a(x) and b(x) symbolically
and reduce the powers x4 and x3 modulo the irreducible polynomial. The re-
sulting polynomial must be equal to 1 and thus gives rise to a set of three linear
equations in three unknowns, that can be solved using Cramer’s rule.

234 C.J.A. Jansen, T. Helleseth, and A. Kholosha

1 = (a2x
2 + a1x + a0)(b2x

2 + b1x + b0) mod (x3 + x + γ)
= (a0b2 + a2b0 + a1b1 + a2b2)x2 + (a0b1 + a1b0 + a1b2 + a2b1 + a2b2γ)x +

+ a0b0 + (a1b2 + a2b1)γ

This yields: ⎛

⎝
a2 + a0 a1 a2

a2γ + a1 a2 + a0 a1

a1γ a2γ a0

⎞

⎠ ·
⎛

⎝
b2

b1

b0

⎞

⎠ =

⎛

⎝
0
0
1

⎞

⎠ .

Finally, we obtain:

D = (a2
2γ + a1a0)(a2γ + a1) + a0(a2 + a0)2 + a3

1γ ,

b2 = (a2
1 + a2(a2 + a0))D−1 ,

b1 = (a2
2γ + a1a0)D−1 ,

b0 = ((a2 + a0)2 + a1(a2γ + a1))D−1 .

The above results have been written in a form that allows reuse of calculated
intermediate values. The calculations are carried out in GF(23), with γ being a
primitive element, satisfying γ3 + γ + 1 = 0.

4.3 Hardware Implementation

All calculations are done in GF(23), where the elements are represented in the
polynomial basis (γ2, γ, 1). Hence, the field elements are (0, 1, γ, γ2, . . . , γ6), cor-
responding to the vectors (000, 001, 010, 100, 011, 110, 111, 101). This means that
all operations on single field elements are implemented as three Boolean func-
tions of three binary variables. The multiplication is realized with three Boolean
functions of six binary variables. Clearly, addition is realized with three XORs.
The following table shows the functions that are realized and their (2-input
Boolean) gate complexities (rightmost column).

y = x−1
y0 = x0 + (x1 ∨ x2)
y1 = x0x1 + x2

y2 = x1 + x0x2

6

y = x · γ
y0 = x2

y1 = x0 + x2

y2 = x1

1

y = x2
y0 = x0

y1 = x2

y2 = x1 + x2

1

y = x3 · γ
y0 = x0x1 + x2

y1 = (x0 ∨ x1) + x1x2

y2 = (x0 ∨ x1) + x0x2

7

z = x · y
z0 = x0y0 + x1y2 + x2y1

z1 = x0y1 + x1y0 + x1y2 + x2y1 + x2y2

z2 = x0y2 + x2y0 + x1y1 + x2y2

17

CJCSG and Pomaranch Stream Cipher 235

To calculate D, we need three multiplications, two squares, five additions, two
multiplications by γ and one x3 · γ operation, for a total of 77 Boolean gates.
Calculation of D−1 requires six gates. To calculate b2, b1, b0, another 38 + 17 +
37 = 92 gates are required, bringing the total number of gates to 175.

The linear transformation Mpom and its inverse also require XOR-gates. Their
complexity is small, however, if they are implemented by using partial sums, as
illustrated below:

Mpom :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = x8 + x2

p2 = x6 + x4

y8 = p1 + x7 + x5 + x3

y7 = p1 + x4

y6 = y8 + p2

y5 = y1 + x8 + x3

y4 = x7 + x4

y3 = x8 + x7 + x6 + x1

y2 = y6 + x8

y1 = y3 + x4

y0 = x0

M−1
pom :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p = y8 + y4

x8 = y6 + y2

x7 = x4 + y4

x6 = x4 + y8 + y6

x5 = x3 + p + y7

x4 = y3 + y1

x3 = x8 + y5 + y1

x2 = x8 + x4 + y7

x1 = p + y3 + y2

x0 = y0

.

The total number of gates for the linear transformations equals 29 when using
the illustrated implementation.

The fact that the msb and lsb of the output are not needed, reduces the
gate count by one XOR in the inverse linear transformation and four gates in
the final multiplication of b0. This brings the total number of gates for this
implementation of the Pomaranch S-box to 199 gates.

4.4 Numerical Examples

To facilitate implementation, two numerical examples are given.
First example.

x =̂ (000000010)
Mpom−→ (000101010) =̂ γ6x + γ

a2 = (000), a1 = (101), a0 = (010)

h1 = a2
2γ + a1a0 = 1 (001)

h2 = a2γ + a1 = γ6 (101)
h3 = a2 + a0 = γ (010)

D = h1h2 + a0h
2
3 + a3

1γ = γ6 + γ3 + γ5 = 1 (001) −→ D−1 = 1 (001)

b2 = (a2
1 + a2h3)D−1 = γ5 (111)

b1 = h1D
−1 = 1 (001)

b0 = (h2
3 + a1h2)D−1 = γ3 (011)

γ5x2 + x + γ3 =̂ (111001011)
M−1

pom−→ (100000001) =̂ x8 + 1

236 C.J.A. Jansen, T. Helleseth, and A. Kholosha

Second example.

x8 + x6 + x4 + x2 + 1 =̂ (101010101)
Mpom−→ (010010111) =̂ γx2 + γx + γ5

a2 = (010), a1 = (010), a0 = (111)

h1 = a2
2γ + a1a0 = γ4 (110)

h2 = a2γ + a1 = γ4 (110)
h3 = a2 + a0 = γ6 (101)

D = h1h2 + a0h
2
3 + a3

1γ = γ + γ3 + γ4 = γ5 (111) −→ D−1 = γ2 (100)

b2 = (a2
1 + a2h3)D−1 = γ (010)

b1 = h1D
−1 = γ6 (101)

b0 = (h2
3 + a1h2)D−1 = 0 (000)

γx2 + γ6x =̂ (010101000)
M−1

pom−→ (011011010) =̂ x7 + x6 + x4 + x3 + x

In the above examples, the leftmost and the rightmost bits of the results must
be discarded in order to obtain the corresponding Pomaranch S-box outputs.
Indeed, entry 2 of the S-box table contains the value 0 and entry 341 contains
the value 109.

To conclude this section, we again emphasize that the Pomaranch S-box can
be implemented with as few as 200 Boolean 2-input gates by applying the com-
posite field representation of the field GF(512). It should be noted that this
complexity might even be reduced by using normal basis representations. These
results should facilitate the hardware implementation of Pomaranch Version 3.
One section of this stream cipher can be realized with some 500 gates (225 for
the last section which has no S-box), bringing the total gate count to 4200 gates
for the 128-bit version and 2700 gates for the 80-bit version.

It should also be noted that this complexity has been determined analytically,
without the use of hardware design tools, and therefore we lack accurate data
about footprint and equivalent NAND-gate complexity. Such hardware synthesis
tools might be able to optimize the circuits, thereby further reducing the gate
count. Some information about the hardware design of Pomaranch for FPGA
and standard cell CMOS can be found in [20,21].

5 Period and Linear Complexity

The CJCSG consists of N sections. We will number the sections from 1 to N
starting with the rightmost section that is clocked regularly. Consider section
number i > 1 of the CJCSG. It consists of the LFSR of length L which clocking is
controlled by the binary Jump Control (JC) signal. A zero value in the JC signal
makes the LFSR shift c0 times and a one makes it shift c1 times. Assume that
the JC sequence cycles periodically with the period πi = λi−1 where λ = 2L− 1
and there are N0

i zeroes and N1
i ones in the period. Obviously, N0

i +N1
i = λi−1.

Denote Si = c0N
0
i + c1N

1
i that is equal to the total number of shifts the LFSR

CJCSG and Pomaranch Stream Cipher 237

makes when the JC sequence runs over its full period. Assume also that the
characteristic polynomial of the LFSR is primitive of degree L and order λ.

Consider the sequence of LFSR states obtained when the clocking is controlled
by the JC sequence and denote this sequence of states as u that is further called
the output. We assume that the initial LFSR state is nonzero which means that
the zero state will never be found in the output sequence. It is known (see, for
instance, [7, Chapter 3] and [8]) that the period of the output sequence divides

πiλ
gcd(Si,λ) and from [9, Lemma 1] it also follows that this period is a multiple

of π′
iλ

gcd(Si,λ) where π′
i is the product of all prime factors of πi, not necessarily

distinct, which are also factors of λ
gcd(Si,λ) . In particular, if every prime factor of

πi also divides λ
gcd(Si,λ) then the period of u reaches the maximal value πiλ

gcd(Si,λ) .
This will be the case if we provide gcd(Si, λ) = 1.

Now for i > 1 consider the gcd(Si, λ) with

Si = c0N
0
i + c1N

1
i = c0(N0

i + N1
i) + (c1 − c0)N1

i = c0λ
i−1 + (c1 − c0)N1

i .

By the appropriate selection of the jump indices we guarantee that gcd(c1 −
c0, λ) = 1 (in our case one of the ci is 1 and the other is J or J⊥). Then
gcd(Si, λ) = gcd((c1 − c0)N1

i , λ) = gcd(N1
i , λ). Recall that the JC sequence is

obtained as a sum of the Key Map output from the previous section and the
JC signal for the previous section. Exception is the second section where the JC
sequence is just the Key Map output from the first section.

Further we apply induction on i > 1 to prove that gcd(Si, λ) = 1. For i = 2
(the induction base) the JC sequence of the second section is the Key Map output
from the first section that is a filtered m-sequence of period λ. Since the filter
function (the Key Map) is balanced, then N1

2 is either equal to 2L−1 or 2L−1−1
depending on the value the filter function takes on the all-zero input vector. Thus,
gcd(S2, λ) = gcd(N1

2 , λ) = 1. Now assume that gcd(Si, λ) = gcd(N1
i , λ) = 1.

It is easy to see that any uniform πi-decimation of the output sequence u is a
uniform Si-decimation of the original LFSR sequence of states. If gcd(Si, λ) = 1
then the latter decimation has period λ and contains all the nonzero states of
the LFSR. We can write down the sequence u row-by-row in a matrix with πi

columns and λ rows that will contain the full period of u. Each column of the
matrix contains all the nonzero states of the LFSR. Let ν denote the number
of nonzero states of the LFSR producing a one when fed into the Key Map of
section number i. Since the Key Map is a balanced Boolean function, then ν
is either equal to 2L−1 or 2L−1 − 1 depending on the value the filter function
takes on the all-zero input vector. We can write down the JC sequence of period
πi that controls the section number i in another matrix of the same size. This
matrix will consist of N1

i columns containing only ones and N0
i = πi − N1

i

columns containing only zeros. Adding the matrices we get the full period of the
JC sequence for the next section with

N1
i+1 = (λ− ν)N1

i + ν(πi −N1
i) = λN1

i + νλi−1 − 2νN1
i

238 C.J.A. Jansen, T. Helleseth, and A. Kholosha

and
gcd(Si+1, λ) = gcd(N1

i+1, λ) = gcd(2νN1
i , λ) = gcd(N1

i , λ) = 1

by the induction hypothesis.
Therefore, provided primitive characteristic polynomials for all the sections

of the CJCSG, section number i generates the output sequence of the maximal
period λi. Note that if just the Key Map output from the previous section was
used to control the clocking then we would have

gcd(Si+1, λ) = gcd(N1
i+1, λ) = gcd(νλi−1, λ) = λ �= 1

for i > 1.
On the other hand, using [10, Theorem 2] we can evaluate the linear com-

plexity of the component sequences of the output u. In particular, if the LFSR
characteristic polynomial is primitive and gcd(Si, λ) = 1 then any component
sequence taken from the output of the section number i is a linear recurring
sequence with irreducible characteristic polynomial of degree λi−1L giving the
maximal linear complexity. In the 128-bit version, N = 9 component sequences
taken from the output of each section are XORed to produce the key-stream.
Characteristic polynomials of these component sequences are irreducible and
have different degrees λi−1L for i = 1, . . . , N which means that they are pairwise
coprime. Thus, by [11, Theorem 8.57], the linear complexity of the key-stream
sequence is equal to L(1 + λ + λ2 + . . . + λN−1) and, by [11, Theorem 8.59], the
period is equal to λN . In the 80-bit version, the maximal period is guaranteed
by the XOR of the output from section N = 6 having period λN to the output
from function G. The linear complexity is lower bounded by λN−1L.

Note that every component sequence taken from the output of the section
number i contains λi−1(2L−1 − 1) zeros and λi−12L−1 ones in the period. The
XOR (with nonlinear balanced function G for the 80-bit version) of output se-
quences allows to compensate for this imbalance.

6 Security Analysis of the Cipher

The most important aspect of a cipher security is its resistance to different
attacks. The goal is to make any attack at least as difficult as the exhaustive
search. Consider some general attacks on stream ciphers. We always assume the
known plain text scenario when the attacker knows the key-stream. No weak
keys have been identified.

Exhaustive Key Search. This is the most efficient key recovery attack against
the CJCSG. Searching through the whole key space gives the complexity of 2κ

with κ = 128 and κ = 80 for the two versions and corresponding key length.

Algebraic Attacks. The algebraic analysis of Pomaranch was undertaken in
[12]. The authors found annihilators and low degree multiples for both filter
functions F and G. More careful investigation is needed for finding out if an
algebraic approach can lead to any weaknesses.

CJCSG and Pomaranch Stream Cipher 239

Time-Memory Trade-off. Assume that the attacker knows the state of the
jump registers right before the generator starts producing the key-stream. Then
the kind of meet in the middle attack can be launched. The procedure is as
follows. Take all possible 216 keys that define the Key Map of section N − 1
(denote it K) and take all 2n binary sequences of length n as the jump control
for section N−1 (denote this a). For each combination generate the sequence of
length n that is the key-stream contribution from section N (denote it F (K, a)).
Put the vector (F (K, a), a, K) in a list sorted along (F (K, a), a). The value of
n is chosen to be minimal with the property that the multi-set

{(F (K, a), a) | K ∈ V216 , a ∈ V2n}
consists of different vectors. Then obviously, n ≥ 16 and assuming the random-
ness of the F mapping we can take n = 16.

Run the exhaustive search on the remaining κ− 16 bits of the key. Calculate
the sum of the key-stream contributions from sections 1 to N − 1, add it to the
key-stream (get n bits like that) and also calculate n bits of the jump control
sequence for section N − 1. If n is taken to be equal 16 then for each choice of
the remaining κ− 16 bits of the key we will find one match in the pre-computed
list. The final elimination of wrong keys is done by generating and matching
more bits in the jump control sequence for section N − 1 and the key-stream
contribution from section N .

The total computational complexity consists of O(216+n) in pre-computation
plus O(2κ−16) in the main phase. If κ = 128 then the lowest time complexity of
the attack is achieved if we start with trying 32 bits of the key (take the last
2 sections and not just one). Then we need O(232+n) bits of memory and the
computational complexity is O(232+n) in pre-computation plus O(296) in the
main phase. If n is equal 32 then the total complexity will have the order of
O(296). It can be concluded that if the internal state of the generator just before
it starts producing the key-stream is made secret then security against this type
of the attacks is achieved.

Correlation Attacks. A key-recovery attack [13,14] on the original Pomaranch
was built due to the spotted biases in the distribution of certain linear relations
of length L + 1 in the output sequence of a jump register section. The suggested
attack on the 128-bit version has the complexity O(287) and requires less than
272 bits of the key-stream. That became a primary reason for changing the
configuration of jump registers in Version 2 of the cipher where it was guaranteed
that no relation of length L + 1 has a large enough bias. However, the updated
configuration was also found to be insecure due to the new biased linear relation
of a larger length found in [15]. Using this relation, a feasible key-recovery attack
has the complexity O(294) requiring 274 bits of the key-stream for the 128-bit
key version and O(265) with 245 bits for the 80-bit key version. Distinguishing
attacks would have the same complexity but require less key-stream bits. By
increasing the length of the registers to 18 and choosing new configuration, we
bring the bias of the best linear relation (that we were able to compute which is
up to L + 11 = 29 bits long) for a separate register down to a level that brings

240 C.J.A. Jansen, T. Helleseth, and A. Kholosha

the complexity of the attack up to the level exceeding the one of the exhaustive
key search. Additionally, having jump register section of two different types and
adding their outputs also decreases the resulting bias.

Distinguishing Attacks. The distinguishing attack is assumed to succeed if
the attacker can distinguish the key-stream from the purely random sequence.
It is reasonable to assume that the needed key-stream length does not exceed
the total number of keys for the generator since the distinguishing attack should
not run longer than the exhaustive key search. The key-stream produced by the
CJCSG is obtained as a sum of linear recurring sequences and this makes any
statistical weaknesses in the key-stream unlikely. The alternative is to look for the
regularities during the initialization phase but we were not able to find any of this
kind. The distinguishing attack on Version 2 found in [15] was to be countered
by a new configuration of the jump registers. However, using the same approach
as in the best key-recovery attack [15], a new distinguisher for the latest version
of Pomaranch was built in [16]. It has the computational complexity O(2126) for
the 128-bit key version and O(271) for the 80-bit key version and requires the
amount of the key-stream bits that is equal to the corresponding complexity.

Recall that the key-stream in Pomaranch is obtained by applying Boolean
function to the bits tapped from the register states. For the 128-bit key version,
this function is an XOR. On the contrary, the nonlinear function is used in the
80-bit key version and this fact was essentially used in the attack. Replacing the
function with XOR will increase the complexity of the distinguishing attack to
O(284) and will simplify the design at the same time.

The distinguisher’s complexity of O(2126) for the 128-bit key version is a con-
sequence of our construction where we use nine 18-bit registers. A safety margin
can only be obtained by increasing the length and the number of registers which
will come at the cost of extra implementation complexity (gates or software) or
performance. However, O(2126) seems to be close enough to the exhaustive key
search complexity.

Another approach would be to consider a set of key-stream sequences gener-
ated with the same key but for different IV values trying to find some depen-
dencies between them that can not be found in the set of random independent
sequences. This is also related to differential attack considered next.

Differential Chosen IV Attacks. This type of attacks, that was initially in-
troduced for block ciphers, can also be applied to stream ciphers (see [17]). For
synchronous stream ciphers differential attacks can use the known difference in
the IV value. Moreover, usually it is assumed that the attacker can choose the
IV. Two chosen IV key-recovery attacks on the original 128-bit Pomaranch were
found in [18,19] and they exploit the weakness in the original IV setup proce-
dure. The attack in [18] allows to recover the 128-bit key with the complexity
O(265) or even faster, with O(252) if the escape from all-zero state feature in the
initialization is used. The attack in [19] has a higher complexity of O(273.5) and
is an extension of the correlation attack from [13]. This became the reason for
introducing a new IV setup procedure in Version 2 of the cipher that provides

CJCSG and Pomaranch Stream Cipher 241

good diffusion of IV bits. The updated versions are believed to be secure against
this type of attacks.

Square Root IV Attack. This new attack suggested in [16] can be applied
to any key-stream generator with the key size larger than half of the state size,
when the part of the state only affected by the key (like subkeys in Pomaranch)
is not considered. For Pomaranch, this means that the key is longer than half of
the total register length. In the attack scenario, the key is fixed and one assumes
to have a long key-stream section (262 bits for 80-bit and 288 bits for 128-bit
Pomaranch) stored in a table. Given short key-stream samples from many other
IVs (about 254 for 80-bit and 281 for 128-bit Pomaranch), one will find a collision
with the stored stream. When a collision is found, future key-stream bits can be
predicted. The key will not be recovered but this attack is still more powerful
than a distinguisher.

To protect against this attack, a reasonable limit on the number of IVs that
are allowed to be used with the same key has to be imposed. In our understand-
ing, this is a worthy limitation which allows to keep the internal state size in
Pomaranch small enough to result in a compact hardware implementation.

Timing, Power, and Side-Channel Attacks. Resistance against timing at-
tacks is inherent of the CJCSG and is achieved due to the use of jump control
instead of the traditional clock control. Power and side-channel attacks are ad-
ditionally countered by the important feature that the same number of XOR’s
are used in each section of the generator irrespective of the jump control signal.

Fault Analysis Attacks. These attacks are countered due to the nonlinear
functions in conditional jumping, accumulation of JC signals and accumulation
of key-stream outputs from individual LFSM’s.

References

1. Jansen, C.J.A.: Modern stream cipher design: A new view on multiple clocking
and irreducible polynomials. In: González, S., Mart́ınez, C. (eds.) Actas de la VII
Reunión Española sobre Criptoloǵıa y Seguridad de la Información. Volume Tomo
I. Servicio de Publicaciones de la Universidad de Oviedo, pp. 11–29 (2002)

2. NESSIE: New European Schemes for Signatures, Integrity, and Encryption (2000–
2003), https://www.cosic.esat.kuleuven.be/nessie/

3. Jansen, C.J.A.: Partitions of polynomials: Stream ciphers based on jumping shift
registers. In: Cardinal, J., Cerf, N., Delgrange, O., Markowitch, O. (eds.) 26th
Symposium on Information Theory in the Benelux, Enschede, Werkgemeenschap
voor Informatie- en Communicatietheorie, pp. 277–284 (2005)

4. Jansen, C.J.A.: Stream cipher constructions over binary extension fields. In: La-
gendijk, I., Weber, J.H. (eds.) 27th Symposium on Information Theory in the
Benelux, Enschede, Werkgemeenschap voor Informatie- en Communicatietheorie,
pp. 213–218 (2006)

5. Jansen, C.J.A.: Streamcipher design: Make your LFSRs jump! In: The State of
the Art of Stream Ciphers, Workshop Record, ECRYPT Network of Excellence in
Cryptology, pp. 94–108 (2004),
http://www.ecrypt.eu.org/stvl/sasc/sasc-record.zip

https://www.cosic.esat.kuleuven.be/nessie/
http://www.ecrypt.eu.org/stvl/sasc/sasc-record.zip

242 C.J.A. Jansen, T. Helleseth, and A. Kholosha

6. Jansen, C.J.A.: Stream cipher design based on jumping finite state machines. Cryp-
tology ePrint Archive, Report 2005/267 (2005),
http://eprint.iacr.org/2005/267/ .

7. Kholosha, A.: Investigations in the Design and Analysis of Key-Stream Generators.
PhD thesis, Technische Universiteit Eindhoven (2003),
http://alexandria.tue.nl/extra2/200410591.pdf

8. Kholosha, A.: Clock-controlled shift registers and generalized Geffe key-stream gen-
erator. In: Pandu Rangan, C., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247,
pp. 287–296. Springer, Heidelberg (2001)

9. Golić, J.D.: Periods of interleaved and nonuniformly decimated sequences. IEEE
Trans. Inf. Theory 44(3), 1257–1260 (1998)

10. Chambers, W.G.: Clock-controlled shift registers in binary sequence generators.
IEE Proceedings - Computers and Digital Techniques 135(1), 17–24 (1988)

11. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Ap-
plications, vol. 20. Cambridge University Press, Cambridge (1997)

12. Wong, K.K.H., Colbert, B.D., Batten, L.M., Al-Hinai, S.: Algebraic attacks on
clock-controlled cascade ciphers. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 32–47. Springer, Heidelberg (2006)

13. Khazaei, S.: Cryptanalysis of Pomaranch (CJCSG). eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/065 (2005),
http://www.ecrypt.eu.org/stream/papersdir/065.pdf

14. Helleseth, T., Jansen, C.J.A., Khazaei, S., Kholosha, A.: Security of jump con-
trolled sequence generators for stream ciphers. In: Gong, G., Helleseth, T., Song,
H.-Y., Yang, K. (eds.) SETA 2006. LNCS, vol. 4086, pp. 141–152. Springer, Hei-
delberg (2006)

15. Hell, M., Johansson, T.: On the problem of finding linear approximations and
cryptanalysis of Pomaranch version 2. In: Biham, E., Youssef, A.M. (eds.) SAC
2006. LNCS, vol. 4356, pp. 220–233. Springer, Heidelberg (2007)

16. Englund, H., Hell, M., Johansson, T.: Two general attacks on Pomaranch-like
keystream generators. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 274–
289. Springer, Heidelberg (2007)

17. Muller, F.: Differential attacks and stream ciphers. In: The State of the Art of
Stream Ciphers, Workshop Record, ECRYPT Network of Excellence in Cryptology,
pp. 133–146 (2004), http://www.ecrypt.eu.org/stvl/sasc/sasc-record.zip

18. Cid, C., Gilbert, H., Johansson, T.: Cryptanalysis of Pomaranch. IEE Proceedings
Information Security 153(2), 51–53 (2006)

19. Hasanzadeh, M.M., Khazaei, S., Kholosha, A.: On IV setup of Pomaranch. In:
SASC 2006, Stream Ciphers Revisited, Workshop Record, ECRYPT Network of
Excellence in Cryptology, pp. 7–12 (2006),
http://www.ecrypt.eu.org/stream/papersdir/082.pdf

20. Hwang, D., Chaney, M., Karanam, S., Ton, N., Gaj, K.: Comparison of FPGA-
targeted hardware implementations of eSTREAM stream cipher candidates. In:
SASC 2008, The State of the Art of Stream Ciphers, Workshop Record, ECRYPT
Network of Excellence in Cryptology, pp. 151–162 (2008),
http://www.ecrypt.eu.org/stvl/sasc2008/SASCRecord.zip

21. Good, T., Benaissa, M.: Hardware performance of eStream phase-III stream cipher
candidates. In: SASC 2008, The State of the Art of Stream Ciphers, Workshop
Record, ECRYPT Network of Excellence in Cryptology, pp. 163–173 (2008),
http://www.ecrypt.eu.org/stvl/sasc2008/SASCRecord.zip

http://eprint.iacr.org/2005/267/
http://alexandria.tue.nl/extra2/200410591.pdf
http://www.ecrypt.eu.org/stream/papersdir/065.pdf
http://www.ecrypt.eu.org/stvl/sasc/sasc-record.zip
http://www.ecrypt.eu.org/stream/papersdir/082.pdf
http://www.ecrypt.eu.org/stvl/sasc2008/SASCRecord.zip
http://www.ecrypt.eu.org/stvl/sasc2008/SASCRecord.zip

CJCSG and Pomaranch Stream Cipher 243

A Functions and Constants

S-box is defined by the inversion operation in the multiplicative group of GF(29)
when the finite field is defined by the irreducible polynomial f(x) = x9 + x + 1.

unsigned char S[512] = {
0,0,0,127,64,85,127,54,96,18,42,57,63,83,91,51,112,17,73,38,21,
103,92,49,95,122,105,113,45,104,25,61,120,107,8,112,100,89,19,39,
74,102,115,41,110,80,88,119,47,62,61,15,52,29,56,88,22,16,52,26,
12,125,94,93,124,75,53,14,4,77,120,84,114,2,44,112,73,9,19,19,
101,121,115,21,57,5,20,115,55,72,104,14,108,63,59,116,87,121,31,
89,94,80,7,91,90,98,14,33,92,84,44,72,75,82,72,82,90,85,13,48,70,
97,62,34,47,24,46,108,126,91,101,76,26,69,71,119,66,30,38,95,60,
97,106,117,57,82,65,78,86,78,56,82,100,111,4,34,73,65,9,51,50,94,
124,87,57,72,10,77,92,54,2,64,74,78,121,48,27,56,100,18,52,98,7,
51,54,84,31,94,93,31,122,12,43,29,60,70,79,5,108,110,111,76,40,
121,3,39,45,68,45,14,113,13,71,117,16,120,46,63,42,1,22,80,100,
76,37,44,105,13,36,2,41,21,109,125,106,71,70,122,88,23,35,84,48,
87,95,12,81,7,87,81,12,30,23,105,54,3,127,1,109,42,114,36,102,39,
77,34,98,79,99,117,123,81,97,86,79,51,83,77,111,33,30,125,48,59,
53,33,58,123,28,22,41,27,96,4,39,19,43,115,103,10,28,16,105,126,
50,114,55,32,66,69,17,41,36,37,96,43,68,66,89,49,25,55,111,11,62,
61,107,67,28,37,36,28,69,95,102,3,46,60,27,17,1,109,96,29,37,112,
103,68,60,40,24,62,13,59,92,11,114,24,9,79,26,29,113,106,3,127,25,
32,27,88,42,5,15,123,47,116,46,40,15,25,61,34,6,83,85,2,78,73,30,
68,35,107,103,45,66,26,118,122,119,67,55,44,38,9,20,102,124,32,65,
101,83,10,86,74,98,5,22,110,7,123,56,75,6,63,35,120,58,90,8,97,
124,81,23,119,31,49,85,58,64,126,11,49,104,118,50,80,38,69,18,4,
86,8,52,90,6,117,18,89,65,76,20,74,10,21,118,93,126,23,53,113,35,
67,99,110,125,116,108,99,11,33,17,8,106,53,24,50,43,20,47,59,6,99,
104,93,67,71,107,16,40,101,70,118,15,58,75,32,116,109,91,64,1,0};

Boolean function F of 7 variables is 2-resilient of degree 4 and nonlinearity 56.

unsigned char F[128] = {
0,1,1,1,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,
1,1,0,0,0,1,0,1,1,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,0,1,1,0,
1,0,1,0,1,1,0,0,0,0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,0,1,0,0,0,1,1,1,
0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0};

Boolean function G of 5 variables is 1-resilient of degree 3 and nonlinearity 12.

unsigned char G[32] =
{0,1,0,1,0,1,0,0,1,0,0,1,1,0,1,1,1,0,1,0,0,1,1,1,0,1,1,0,1,0,0,0};

Initial state of the jump registers.

unsigned long pi[9] = {
0x090FD, 0x2A888, 0x168C2, 0x0D313, 0x06628,
0x2E037, 0x01CD1, 0x0A409, 0x0E088};

Trivium�

Christophe De Cannière1,2 and Bart Preneel1

1 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC and IBBT,
Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium

2 Département d’Informatique École Normale Supérieure,
45, rue d’Ulm, F-75230 Paris cedex 05

christophe.decanniere@{esat.kuleuven.be,ens.fr}

Abstract. In this chapter, we propose a new stream cipher construction
based on block cipher design principles. The main idea is to replace
the building blocks used in block ciphers by equivalent stream cipher
components. In order to illustrate this approach, we construct a very
simple synchronous stream cipher which provides a lot of flexibility for
hardware implementations, and seems to have a number of desirable
cryptographic properties.

1 Introduction

In the last few years, widely used stream ciphers have started to be systematically
replaced by block ciphers. An example is the A5/1 stream cipher used in the
GSM standard. Its successor, A5/3, is a block cipher. A similar shift took place
with wireless network standards. The security mechanism specified in the original
IEEE 802.11 standard (called ‘wired equivalent privacy’ or WEP) was based on
the stream cipher RC4; the newest standard, IEEE 802.11i, makes use of the
block cipher AES.

The declining popularity of stream ciphers can be explained by different fac-
tors. The first is the fact that the security of block ciphers seems to be better
understood. Over the last decades, cryptographers have developed a rather clear
vision of what the internal structure of a secure block cipher should look like.
This is much less the case for stream ciphers. Stream ciphers proposed in the
past have been based on very different principles, and many of them have shown
weaknesses. A second explanation is that efficiency, which has been the tradi-
tional motivation for choosing a stream cipher over a block cipher, has ceased
to be a decisive factor in many applications: not only is the cost of comput-
ing power rapidly decreasing, today’s block ciphers are also significantly more
efficient than their predecessors.

Still, as pointed out by the eSTREAM Stream Cipher Project, it seems that
stream ciphers could continue to play an important role in those applications
� The work described in this chapter has been partly supported by the European

Commission under contract IST-2002-507932 (ECRYPT), by the Fund for Scientific
Research – Flanders (FWO), and the Chaire France Telecom pour la sécurité des
réseaux de télécommunications.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 244–266, 2008.
� Springer-Verlag Berlin Heidelberg 2008

Trivium 245

where high througput remains critical and/or where resources are very restricted.
This poses two challenges for the cryptographic community: first, restoring the
confidence in stream ciphers, e.g., by developing simple and reliable design cri-
teria; secondly, increasing the efficiency advantage of stream ciphers compared
to block ciphers.

In this chapter, we try to explore both problems. The first part of this chapter
reviews some concepts which lie at the base of today’s block ciphers (Sect. 3), and
studies how these could be mapped to stream ciphers (Sects. 4–5). The design
criteria derived this way are then used as a guideline to construct a simple and
flexible hardware-oriented stream cipher in the second part (Sect. 6).

2 Security and Efficiency Considerations

Before devising a design strategy for a stream cipher, it is useful to first clearly
specify what we expect from it. Our aim in this chapter is to design hardware-
oriented binary additive stream ciphers which are both efficient and secure. The
following sections briefly discuss what this implies.

2.1 Security

The additive stream cipher which we intend to construct takes as input a k-bit
secret key K and a v-bit IV. The cipher is then requested to generate up to
2d bits of key stream zt = SK(IV, t), 0 ≤ t < 2d, and a bitwise exclusive OR
of this key stream with the plaintext produces the ciphertext. The security of
this additive stream cipher is determined by the extent to which it mimics a
one-time pad, i.e., it should be hard for an adversary, who does not know the
key, to distinguish the key stream generated by the cipher from a truly random
sequence. In fact, we would like this to be as hard as we can possibly ask from
a cipher with given parameters k, v, and d. This leads to a criterion called
K-security [1], which can be formulated as follows:

Definition 1. An additive stream cipher is called K-secure if any attack against
this scheme would not have been significantly more difficult if the cipher had been
replaced by a set of 2k functions SK : {0, 1}v×{0, . . . , 2d−1} → {0, 1}, uniformly
selected from the set of all possible functions.

The definition assumes that the adversary has access to arbitrary amounts of
key stream, that he knows or can choose the a priory distribution of the secret
key, that he can impose relations between different secret keys, etc.

Attacks against stream ciphers can be classified into two categories, depending
on what they intend to achieve:

– Key recovery attacks, which try to deduce information about the secret key
by observing the key stream.

– Distinguishing attacks, the goal of which is merely to detect that the key
stream bits are not completely unpredictable.

246 C. De Cannière and B. Preneel

Owing to their weaker objective, distinguishing attacks are often much easier
to apply, and consequently harder to protect against. Features of the key stream
that can be exploited by such attacks include periodicity, dependencies between
bits at different positions, non-uniformity of distributions of bits or words, etc.
In this chapter we will focus in particular on linear correlations, as it appeared
to be the weakest aspect in a number of recent stream cipher proposals such
as Sober-tw [2] and Snow 1.0 [3]. Our first design objective will be to keep
the largest correlations below safe bounds. Other important properties, such as
a sufficiently long period, are only considered afterwards. Note that this ap-
proach differs from the way LFSR or T-function based schemes are constructed.
The latter are typically designed by maximizing the period first, and only then
imposing additional requirements.

2.2 Efficiency

In order for a stream cipher to be an attractive alternative to block ciphers, it
must be efficient. In this chapter, we will be targeting hardware applications,
and a good measure for the efficiency of a stream cipher in this environment is
the number of key stream bits generated per cycle per gate.

There are two ways to obtain an efficient scheme according to this measure.
The first approach is illustrated by A5/1, and consists in minimizing the number
of gates. A5/1 is extremely compact in hardware, but it cannot generate more
than one bit per cycle. The other approach, which was chosen by the designers of
Panama [4], is to dramatically increase the number of bits per cycle. This allows
to reduce the clock frequency (and potentially also the power consumption)
at the cost of an increased gate count. As a result, Panama is not suited for
environments with very tight area constraints. Similarly, designs such as A5/1
will not perform very well in systems which require fast encryption at a low clock
frequency. One of the objectives of this chapter is to design a flexible scheme
which performs reasonably well in both situations.

3 How Block Ciphers Are Designed

As explained above, the first requirement we impose on the construction is that
it generates key streams without exploitable linear correlations. This problem
is very similar to the one faced by block cipher designers. Hence, it is natural
to attempt to borrow some of the techniques used in the block cipher world.
The ideas relevant to stream ciphers are briefly recapitulated in the following
sections.

3.1 Block Ciphers and Linear Characteristics

An important problem in the case of block ciphers is that of restricting linear cor-
relations between input and output bits in order to thwart linear cryptanalysis.

Trivium 247

x1 x2 x3 x4

S S S S

S S S S

y1 y2 y3 y4

M

Fig. 1. Three layers of a block cipher

More precisely, let P be any plaintext block and C the corresponding ciphertext
under a fixed secret key, then any linear combination of bits

ΓT
P · P + ΓT

C · C ,

where the column vectors ΓP and ΓC are called linear masks, should be as
balanced as possible. That is, the correlation (or imbalance)

c = 2 · |{P | Γ
T
P · P = ΓT

C · C}|
|{P}| − 1

has to be close to 0 for any ΓP and ΓC . The well-established way to achieve
this consists in alternating two operations. The first splits blocks into smaller
words which are independently fed into nonlinear substitution boxes (S-boxes);
the second step recombines the outputs of the S-boxes in a linear way in order to
‘diffuse’ the nonlinearity. The result, called a substitution-permutation network,
is depicted again in Fig. 1.

In order to estimate the strength of a block cipher against linear cryptanalysis,
one will typically compute bounds on the correlation of linear characteristics. A
linear characteristic describes a possible path over which a correlation might
propagate through the block cipher. It is a chain of linear masks, starting with a
plaintext mask and ending with a ciphertext mask, such that every two successive
masks correspond to a nonzero correlation between consecutive intermediate
values in the cipher. The total correlation of the characteristic is then estimated
by multiplying the correlations of all separate steps (as dictated by the Piling-up
Lemma).

3.2 Branch Number

Linear diffusion layers, which can be represented by a matrix multiplication
Y = M · X , do not by themselves contribute in reducing the correlation of a
characteristic. Clearly, it suffices to choose ΓX = MT · ΓY , where MT denotes
the transpose of M , in order to obtain perfectly correlating linear combinations
of X and Y :

248 C. De Cannière and B. Preneel

ΓT
Y · Y = ΓT

Y ·MX = (MTΓY)T ·X = ΓT
X ·X .

However, diffusion layers play an important indirect role by forcing characteris-
tics to take into account a large number of nonlinear S-boxes in the neighboring
layers (called active S-boxes). A useful metric in this context is the branch num-
ber of M .

Definition 2. The branch number of a linear transformation M is defined as

B = min
ΓY �=0

[wh(ΓY) + wh(MTΓY)] ,

where wh(Γ) represents the number of nonzero words in the linear mask Γ .

The definition above implies that any linear characteristic traversing the struc-
ture shown in Fig. 1 activates at least B S-boxes. The total number of active
S-boxes throughout the cipher multiplied by the maximal correlation over a
single S-box gives an upper bound for the correlation of the characteristic.

The straightforward way to minimize this upper bound is to maximize the
branch number B. It is easy to see that B cannot exceed m + 1, with m the
number of words per block. Matrices M that satisfy this bound (known as the
Singleton bound) can be derived from the generator matrices of maximum dis-
tance separable (MDS) block codes.

Large MDS matrices are expensive to implement, though. Therefore, it is often
more efficient to use smaller matrices, with a relatively low branch number, and
to connect them in such a way that linear patterns with a small number of active
S-boxes cannot be chained together to cover the complete cipher. This was the
approach taken by the designers of Rijndael [5].

4 From Blocks to Streams

In this section, we try to adapt the concepts described above to a system where
the data is not processed in blocks, but rather as a stream.

Since the data stream enters the system one word at a time, each layer of
S-boxes in Fig. 1 can be replaced by a single S-box which substitutes individual
words as they arrive. A general mth-order linear filter can take over the task of
the diffusion matrix. The new system is represented in Fig. 2, where D denotes
the delay operator (usually written as z−1 in signal processing literature), and
f and g are linear functions.

4.1 Polynomial Notation

Before analyzing the properties of this construction, we introduce some nota-
tions. First, we adopt the common convention to represent streams of words
x0, x1, x2, . . . as polynomials with coefficients in the finite field:

x(D) = x0 + x1D + x2D
2 +

Trivium 249

. . . , x4, x3 S D D D D S y3, y2, . . .

f

g

Fig. 2. Stream equivalent of Fig. 1

. . . , 0, 0, 1 0 0 1 0 y

Fig. 3. A 4th-order linear filter

The rationale for this representation is that it simplifies the expression for the
input/output relation of the linear filter, as shown in the following equation:

y(D) =
f(D)
g(D)

· [x(D) + x0(D)
]
+ y0(D) . (1)

The polynomials f and g describe the feedforward and feedback connections of
the filter. They can be written as

f(D) = Dm · (fmD−m + · · ·+ f1D
−1 + 1

)
,

g(D) = 1 + g1D + g2D
2 + · · ·+ gmDm .

The Laurent polynomials x0 and y0 represent the influence of the initial state s0,
and are given by x0 = D−m · (s0 · g mod Dm

)
and y0 = D−m · (s0 · f mod Dm

)
.

Example 1. The 4th-order linear filter depicted in Fig. 3 is specified by the poly-
nomials f(D) = D4 · (D−2 +1) and g(D) = 1+D3 +D4. Suppose that the delay
elements are initialized as shown in the figure, i.e., s0(D) = D. Knowing s0, we
can compute x0(D) = D−3 and y0(D) = D−1. Finally, using (1), we find the
output stream corresponding to an input consisting, for example, of a single 1
followed by 0’s (i.e., x(D) = 1):

y(D) =
D−1 + D + D2 + D4

1 + D3 + D4
+ D−1

= D + D3 + D5 + D6 + D7 + D8 + D12 + D15 + D16 + D18 + . . .

250 C. De Cannière and B. Preneel

4.2 Linear Correlations

In order to study correlations in a stream-oriented system we need a suitable way
to manipulate linear combinations of bits in a stream. It will prove convenient
to represent them as follows:

Tr
[
[γx(D−1) · x(D)]0

]
.

The operator [·]0 returns the constant term of a polynomial, and Tr(·) denotes the
trace to GF(2).1 The coefficients of γx, called selection polynomial, specify which
words of x are involved in the linear combination. In order to simplify expressions
later on we also introduce the notation γ∗(D) = γ(D−1). The polynomial γ∗ is
called the reciprocal polynomial of γ.

As before, the correlation between x and y for a given pair of selection poly-
nomials is defined as

c = 2 · |{(x, s0) | Tr[[γ∗
x · x]0] = Tr[[γ∗

y · y]
0
]}|

|{(x, s0)}| − 1 ,

where deg x ≤ max(deg γx, deg γy).

4.3 Propagation of Selection Polynomials

Let us now analyze how correlations propagate through the linear filter. For each
selection polynomial γx at the input, we would like to determine a polynomial
γy at the output (if it exists) such that the corresponding linear combinations
are perfectly correlated, i.e.,

Tr[[γ∗
x · x]0] = Tr[[γ∗

y · y]
0
], ∀x, s0 .

If this equation is satisfied, then this will still be the case after replacing x by
x′ = x+x0 and y by y′ = y+y0, since x0 and y0 only consist of negative powers,
none of which can be selected by γx or γy. Substituting (1), we find

Tr[[γ∗
x · x′]0] = Tr[[γ∗

y · f/g · x′]
0
], ∀x, s0 ,

which implies that γ∗
x = γ∗

y ·f/g. In order to get rid of negative powers, we define
f� = Dm · f∗ and g� = Dm · g∗ (note the subtle difference between both stars),
and obtain the equivalent relation

γy = g�/f� · γx . (2)

Note that neither of the selection polynomials γx and γy can have an infinite
number of nonzero coefficients (if it were the case, the linear combinations would
be undefined). Hence, they have to be of the form

γx = q · f�/ gcd(f�, g�) and γy = q · g�/ gcd(f�, g�) , (3)

with q(D) an arbitrary polynomial.

1 The trace from GF (2n) to GF (2) is defined as Tr(a) = a + a2 + a4 + · · · + a2n−1
.

Trivium 251

Example 2. For the linear filter in Fig. 3, we have that f�(D) = 1 + D2 and
g�(D) = D4 · (D−4 + D−3 + 1). In this case, f� and g� are coprime, i.e.,
gcd(f�, g�) = 1. If we arbitrarily choose q(D) = 1 + D, we obtain a pair of
selection polynomials

γx(D) = 1 + D + D2 + D3 and γy(D) = 1 + D2 + D4 + D5 .

By construction, the corresponding linear combinations of input and output bits
satisfy the relation

Tr(x0 + x1 + x2 + x3) = Tr(y0 + y2 + y4 + y5), ∀x, s0 .

4.4 Branch Number

The purpose of the linear filter, just as the diffusion layer of a block cipher,
will be to force linear characteristics to pass through as many active S-boxes as
possible. Hence, it makes sense to define a branch number here as well.

Definition 3. The branch number of a linear filter specified by the polynomials
f and g is defined as

B = min
γx �=0

[wh(γx) + wh(g�/f� · γx)]

= min
q �=0

[wh(q · f�/ gcd(f�, g�)) + wh(q · g�/ gcd(f�, g�))] ,

where wh(γ) represents the number of nonzero coefficients in the selection poly-
nomial γ.

From this definition we immediately obtain the following upper bound on the
branch number

B ≤ wh(f�) + wh(g�) ≤ 2 · (m + 1) . (4)

Filters for which this bound is attained can be derived from MDS convolutional
(2, 1, m)-codes [6]. For example, one can verify that the 4th-order linear filter
over GF(28) with

f(D) = D4 · (02xD−4 + D−3 + D−2 + 02xD−1 + 1
)

,

g(D) = 1 + 03xD + 03xD2 + D3 + D4 ,

has a branch number of 10. The example uses the same field polynomial as
Rijndael, i.e., x8 + x4 + x3 + x + 1. Note that in the next sections, we will not
try to maximize the branch number, but use much sparser linear filters instead.

5 Constructing a Key Stream Generator

In the previous section, we introduced S-boxes and linear filters as building
blocks, and presented some tools to analyze how they interact. Our next task is to
determine how these components can be combined into a key stream generator.
Again, block ciphers will serve as a source of inspiration.

252 C. De Cannière and B. Preneel

5.1 Basic Construction

A well-known way to construct a key stream generator from a block cipher is to
use the cipher in output feedback (OFB) mode. This mode of operation takes
as input an initial data block (called initial value or IV), passes it through the
block cipher, and feeds the result back to the input. This process is iterated and
the consecutive values of the data block are used as key stream. We recall that
the block cipher itself typically consists of a sequence of rounds, each comprising
a layer of S-boxes and a linear diffusion transformation.

By taking the very same approach, but this time using the stream cipher
components presented in Sect. 4, we obtain a construction which, in its simplest
form, might look like Fig. 4(a). The figure represents a key stream generator
consisting of two ‘rounds’, where each round consists of an S-box followed by a
very simple linear filter. Data words traverse the structure in clockwise direction,
and the output of the second round, which also serves as key stream, is fed back
to the input of the first round.

While the scheme proposed above has some interesting structural similarities
with a block cipher in OFB mode, there are important differences as well. The
most fundamental difference comes from the fact that linear filters, as opposed
to diffusion matrices, have an internal state. Hence if the algorithm manages to
keep this state (or at least parts of it) secret, then this eliminates the need for a
separate key addition layer (another important block cipher component, which
we have tacitly ignored so far).

5.2 Analysis of Linear Characteristics

As stated before, the primary goal in this chapter is to construct a scheme which
generates a stream of seemingly uncorrelated bits. More specifically, we would

S

S

z

(a)

S

S

z

(b)

Fig. 4. Two-round key stream generators

Trivium 253

like the adversary to be unable to detect any correlation between linear combi-
nations of bits at different positions in the key stream. In the following sections,
we will see that the study of linear characteristics provides some guidance on
how to design the components of our scheme in order to reduce the magnitude
of these correlations.

Applying the tools from Sect. 4 to the construction in Fig. 4(a), we can easily
derive some results on the existence of low-weight linear characteristics. The
term ‘low-weight’ in this context refers to a small number of active S-boxes.
Since we are interested in correlations which can be detected by an adversary,
we need both ends of the characteristic to be accessible from the key stream. In
order to construct such characteristics, we start with a selection polynomial γu

at the input of the first round, and analyze how it might propagate through the
cipher.

First, the characteristic needs to cross an S-box. The S-box preserves the po-
sitions of the non-zero coefficients of γu, but might modify their values. For now,
however, let us only consider characteristics for which the values are preserved
as well. Under this assumption and using (2), we can compute the selection
polynomials γv and γw at the input and the output of the second round:

γv = g�
1/f�

1 · γu and γw = g�
2/f�

2 · γv .

Since all three polynomials γu, γv, and γw need to be finite, we have that

γu = q · f�
1 f�

2 /d , γv = q · g�
1f�

2 /d , and γw = q · g�
1g�

2/d ,

with d = gcd(f�
1 f�

2 , g�
1f�

2 , g�
1g�

2) and q an arbitrary polynomial. Note that since
both γu and γw select bits from the key stream z, they can be combined into a
single polynomial γz = γu + γw.

The number of S-boxes activated by a characteristic of this form is given by
W = wh(γu) + wh(γv). The minimum number of active S-boxes over this set of
characteristics can be computed with the formula

Wmin = min
q �=0

[wh(q · f�
1 f�

2 /d) + wh(q · g�
1f�

2 /d)] ,

from which we derive that

Wmin ≤ wh(f�
1 f�

2) + wh(g�
1f�

2) ≤ wh(f�
1) · wh(f�

2) + wh(g�
1) · wh(f�

2) .

Applying this bound to the specific example of Fig. 4(a), where wh(f�
i) =

wh(g�
i) = 2, we conclude that there will always exist characteristics with at most

8 active S-boxes, no matter where the taps of the linear filters are positioned.

5.3 An Improvement

We will now show that this bound can potentially be doubled by making the
small modification shown in Fig. 4(b). This time, each non-zero coefficient in
the selection polynomial at the output of the key stream generator needs to

254 C. De Cannière and B. Preneel

propagate to both the upper and the lower part of the scheme. By constructing
linear characteristics in the same way as before, we obtain the following selection
polynomials:

γu = q · f
�
1 f�

2 + f�
1 g�

2

d
, γv = q · f

�
1 f�

2 + g�
1f�

2

d
, and γz = q · f

�
1 f�

2 + g�
1g

�
2

d
,

with d = gcd(f�
1 f�

2 + f�
1 g�

2 , f�
1 f�

2 + g�
1f

�
2 , f�

1 f�
2 + g�

1g�
2). The new upper bounds

on the minimum number of active S-boxes are given by

Wmin ≤ wh(f�
1 f�

2 + f�
1 g�

2) + wh(f�
1 f�

2 + g�
1f

�
2)

≤ 2 · wh(f�
1) · wh(f�

2) + wh(f�
1) · wh(g�

2) + wh(g�
1) ·wh(f�

2) ,

or, in the case of Fig. 4(b), Wmin ≤ 16. In general, if we consider extensions of
this scheme with r rounds and wh(f�

i) = wh(g�
i) = w, then the bound takes the

form:
Wmin ≤ r2 · wr . (5)

This result suggests that it might not be necessary to use a large number of
rounds, or complicated linear filters, to ensure that the number of active S-
boxes in all characteristics is sufficiently large. For example, if we take w = 2 as
before, but add one more round, the bound jumps to 72.

Of course, since the bound we just derived is an upper bound, the minimal
number of active S-boxes might as well be much smaller. First, some of the
product terms in f�

1 f�
2 + f�

1 g�
2 or f�

1 f�
2 + g�

1f
�
2 might cancel out, or there might

exist a q �= d for which wh(γu) + wh(γv) suddenly drops. These cases are rather
easy to detect, though, and can be avoided during the design. A more important
problem is that, by fixing the behavior of S-boxes, we have limited ourselves to
a special set of characteristics, which might not necessarily include the one with
the minimal number of active S-boxes. However, if the feedback and feedforward
functions are sparse, and the linear filters sufficiently large, then the bound is
increasingly likely to be tight. On the other hand, if the state of the generator is
sufficiently small, then we can perform an efficient search for the lowest-weight
characteristic without making any additional assumption.

This last approach allows to show, for example, that the smallest instance of
the scheme in Fig. 4(b) for which the bound of 16 is actually attained, consists
of two 11th-order linear filters with

f�
1 (D) = 1 + D10 , g�

1(D) = D11 · (D−3 + 1) ,

f�
2 (D) = 1 + D9 , g�

2(D) = D11 · (D−8 + 1) .

5.4 Linear Characteristics and Correlations

In the sections above, we have tried to increase the number of active S-boxes
of linear characteristics. We now briefly discuss how this number affects the
correlation of key stream bits. This problem is treated in several papers in the
context of block ciphers (see, e.g., [5]).

Trivium 255

We start with the observation that the minimum number of active S-boxes
Wmin imposes a bound on the correlation cc of a linear characteristic:

c2
c ≤ (c2

s)
Wmin

,

where cs is the largest correlation (in absolute value) between the input and the
output values of the S-box. The squares c2

c and c2
s are often referred to as linear

probability, or also correlation potential. The inverse of this quantity is a good
measure for the amount of data that the attacker needs to observe in order to
detect a correlation.

What makes the analysis more complicated, however, is that many linear
characteristics can contribute to the correlation of the same combination of key
stream bits. This occurs in particular when the scheme operates on words, in
which case there are typically many possible choices for the coefficients of the
intermediate selection polynomials describing the characteristic (this effect is
called clustering). The different contributions add up or cancel out, depending
on the signs of cc. If we now assume that these signs are randomly distributed,
then we can use the approach of [5, Appendix B] to derive a bound on the
expected correlation potential of the key stream bits:

E(c2) ≤ (c2
s)

Wmin−n
. (6)

The parameter n in this inequality represents the number of degrees of freedom
for choosing the coefficients of the intermediate selection polynomials.

For the characteristics propagating through the construction presented in
Sect. 5.3, one will find, in non-degenerate cases, that the values of n = r ·
(r − 1) · wr−1 non-zero coefficients can be chosen independently. Hence, for ex-
ample, if we construct a scheme with w = 2 and r = 3, and if we assume that it
attains the bound given in (5), then we expect the largest correlation potential
to be at most c2·48

s . Note that this bound is orders of magnitude higher than
the contribution of a single characteristic, which has a correlation potential of
at most c2·72

s .

Remark 1. In order to derive (6), we replaced the signs of the contributing linear
characteristics by random variables. This is a natural approach in the case of
block ciphers, where the signs depend on the value of the secret key. In our case,
however, the signs are fixed for a particular scheme, and hence they might, for
some special designs, take on very peculiar values. This happens for example
when r = 2, w is even, and all non-zero coefficients of fi and gi equal 1 (as in
the example at the end of the previous section). In this case, all signs will be
positive, and we obtain a significantly worse bound:

c2 ≤ (c2
s)

Wmin−2·n
.

6 Trivium’s Design

We now present an experimental 80-bit key stream cipher based on the approach
outlined above. In this section, we concentrate on the basic design ideas behind

256 C. De Cannière and B. Preneel

the scheme. The complete specifications of the cipher, which was submitted to
the eSTREAM Stream Cipher Project under the name Trivium, can be found
in Sect. 7.

6.1 A Bit-Oriented Design

The main idea of Trivium’s design is to turn the general scheme of Sect. 5.3 into
a bit-oriented stream cipher. The first motivation is that bit-oriented schemes
are typically more compact in hardware. A second reason is that, by reducing the
word-size to a single bit, we may hope to get rid of the clustering phenomenon
which, as seen in the previous section, has a significant effect on the correlation.

Of course, if we simply apply the previous scheme to bits instead of words, we
run into the problem that the only two existing 1×1-bit S-boxes are both linear.
In order to solve this problem, we replace the S-boxes by a component which,
from the point of view of our correlation analysis, behaves in the same way: an
exclusive OR with an external stream of unrelated but biased random bits (see
Fig. 5). Assuming that these random bits equal 0 with probability (1+ cs)/2, we
will find as before that the output of this component correlates with the input
with correlation coefficient cs.

The introduction of this artificial 1× 1-bit S-box greatly simplifies the corre-
lation analysis, mainly because of the fact that the selection polynomial at the
output of an S-box is now uniquely determined by the input. As a consequence,
we neither need to make special assumptions about the values of the non-zero
coefficients, nor to consider the effect of clustering: the maximum correlation in
the key stream is simply given by the relation

cmax = cWmin
s . (7)

S

S

z z

rand. bits with bias 1/4

Fig. 5. How to design 1-bit S-boxes?

Trivium 257

The obvious drawback, however, is that the construction now relies on exter-
nal streams of random bits, which have to be generated somehow. Trivium
attempts to solve this problem by interleaving three identical key stream gen-
erators, where each generator obtains streams of biased bits (with cs = 1/2) by
ANDing together state bits of the two other generators.

6.2 Specifying the Parameters

Let us now specify suitable parameters for each of those three identical ‘sub-
generators’. Our goal is to keep all parameters as small and simple as possible,
given a number of requirements.

1. The first requirement we impose is that the correlations in the key stream
do not exceed 2−40. Since each sub-generator will be fed with streams of
bits having correlation coefficient cs = 1/2, we can derive from (7) that a
minimum weightWmin of at least 40 is needed. The smallest values of w and
r for which this requirement could be satisfied (with a fairly large margin,
in fact) are w = 2 and r = 3.

2. Now that w and r are fixed, we raise our requirements and impose that the
minimum weight actually reaches the upper bound of (5). In this case, this
translates to the conditionWmin = 72, which is fulfilled if wh(γu)+wh(γv)+
wh(γw) ≥ 72 for all q �= 0, where

γu = q · f
�
1 f�

2 f�
3 + f�

1 f�
2 g�

3 + f�
1 g�

2g�
3

d
, γv = . . . , etc.

3. Although the preceding sections have almost exclusively focused on linear
correlations, other security properties such as periodicity remain important.
Controlling the period of the scheme is difficult because of the non-linear
interaction between the sub-generators, but we can try to decrease the prob-
ability of short cycles by maximizing the periods of the individual sub-
generators after turning off the streams feeding their 1× 1-bit S-boxes. The
connection polynomial of these (completely linear) generators is given by
f�
1 f�

2 f�
3 + g�

1g
�
2g�

3 , and ideally, we would like this polynomial to be primitive.
Our choice of w prevents this, though: for w = 2, the polynomial above is
always divisible by (D + 1)3. Therefore, we just require that the remaining
factor is primitive, and rely on the initialization of the state bits to avoid
the few short cycles corresponding to the factor (D + 1)3 (see Sect. 8.2).

4. Finally, we also impose some efficiency requirements. The first is that state
bits of the sub-generators should not be used for at least 64/3 iterations,
once they have been modified. This will provide the final scheme with the
flexibility to generate up to 64 bits in parallel. Secondly, the length of the
sub-generators should be as short as possible and a multiple of 32.

We can now exhaustively run over all possible polynomials f�
1 , . . . , g�

3 in order
to find combinations for which all previous requirements are fulfilled simultane-
ously. Surprisingly enough, it turns out that the solution is unique:

258 C. De Cannière and B. Preneel

f�
1 (D) = 1 + D9 , g�

1(D) = D31 · (D−23 + 1) ,

f�
2 (D) = 1 + D5 , g�

2(D) = D28 · (D−26 + 1) ,

f�
3 (D) = 1 + D15 , g�

3(D) = D37 · (D−29 + 1) .

In order to construct the final cipher, we interleave three of these sub-generators
and interconnect them through AND-gates. Since the reasoning above does not
suggest which state bits to use as inputs of the AND-gates, we simply choose to
minimize the length of the wires. The resulting scheme is shown in Fig. 6. The 96
state bits s1, s4, s7, . . . , s286 belong to the first sub-generator, s2, s5, s8, . . . , s287

to the second one, etc.

zi

s1

s
6
6

s 9
4

s162

s
178

s 2
4
3

s288

Fig. 6. Trivium

7 Specifications of Trivium

In this section, we give the complete specifications of Trivium. The synchronous
stream cipher is designed to generate up to 264 bits of key stream from an 80-
bit secret key and an 80-bit initial value (IV). As for most stream ciphers, this

Trivium 259

Table 1. Parameters of Trivium

Parameters

Key size: 80 bit
IV size: 80 bit
Internal state: 288 bit

process consists of two phases: first the internal state of the cipher is initialized
using the key and the IV, then the state is repeatedly updated and used to
generate key stream bits. We first describe this second phase.

7.1 Key Stream Generation

The proposed design contains a 288-bit internal state denoted by (s1, . . . , s288).
The key stream generation consists of an iterative process which extracts the
values of 15 specific state bits and uses them both to update 3 bits of the state
and to compute 1 bit of key stream zi. The state bits are then rotated and the
process repeats itself until the requested N ≤ 264 bits of key stream have been
generated. A complete description is given by the following simple pseudo-code:

for i = 1 to N do
t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

We remind the reader that here, as in the rest of this chapter, the ‘+’ and
‘·’ operations stand for addition and multiplication over GF(2) (i.e., XOR and
AND), respectively. A graphical representation of the key stream generation
process is given in Fig. 6.

7.2 Key and IV Setup

The algorithm is initialized by loading an 80-bit key and an 80-bit IV into
the 288-bit initial state, and setting all remaining bits to 0, except for s286,
s287, and s288. Then, the state is rotated over 4 full cycles, in the same way as
explained above, but without generating key stream bits. This is summarized in
the pseudo-code below:

260 C. De Cannière and B. Preneel

(s1, s2, . . . , s93)← (K80, . . . , K1, 0, . . . , 0)
(s94, s95, . . . , s177)← (IV80, . . . , IV1, 0, . . . , 0)
(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)
for i = 1 to 4 · 288 do

t1 ← s66 + s91 · s92 + s93 + s171

t2 ← s162 + s175 · s176 + s177 + s264

t3 ← s243 + s286 · s287 + s288 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

7.3 Alternative Description

Alternatively, Trivium’s key stream generation algorithm can also be written
in the following recursive way, proposed by Bernstein [7]:

for i = 1 to N do
ai = ci−66 + ci−111 + ci−110 · ci−109 + ai−69

bi = ai−66 + ai−93 + ai−92 · ai−91 + bi−78

ci = bi−69 + bi−84 + bi−83 · bi−82 + ci−87

zi = ci−66 + ci−111 + ai−66 + ai−93 + bi−69 + bi−84

end for

This notation is often more convenient when describing attacks against the
stream cipher.

8 Security

In this section we briefly discuss some of the cryptographic properties of Triv-
ium. The security requirement we would like to meet is that any type of cryp-
tographic attack should not be significantly easier to apply to Trivium than to
any other imaginable stream cipher with the same external parameters (i.e., any
cipher capable of generating up to 264 bits of key stream from an 80-bit secret
key and an 80-bit IV). Unfortunately, this requirement is not easy to verify, and
the best we can do is to provide arguments why we believe that certain common
types of attacks are not likely to affect the security of the cipher. A summary of
the results discussed in the next sections is given in Table 2.

8.1 Correlations

When analyzing the security of a synchronous stream cipher, a cryptanalyst will
typically consider two different types of correlations The first type are corre-
lations between linear combinations of key stream bits and internal state bits,
which can potentially lead to a complete recovery of the state. The second type,

Trivium 261

Table 2. Cryptanalytical results

Attack Time Data Reference

Linear distinguisher 2144 2144 Sect. 8.1
Guess-and-determine attack 2195 288 Sect. 8.3
Guess-and-determine attack 2135 288 [8]
Guess-and-determine attack 290 261 [9]
Solving system of equations 2164 288 [10]

Exhaustive key search 280 80

exploited by distinguishing attacks, are correlations between the key stream bits
themselves.

Obviously, linear correlations between key stream bits and internal state bits
are easy to find, since zi is simply defined to be equal to s66 + s93 + s162 + s177 +
s243+s288. However, as opposed to LFSR based ciphers, Trivium’s state evolves
in a nonlinear way, and it is not clear how the attacker should combine these
equations in order to efficiently recover the state.

An easy way to find correlations of the second type is to follow linear charac-
teristics through the cipher and to approximate the outputs of all encountered
AND gates by 0. However, as explained in the previous section, the positions
of the taps in Trivium have been chosen in such a way that any characteristic
of this specific type is forced to approximate at least 72 AND gate outputs. An
example of a correlated linear combination of key stream bits obtained this way
is

z1 + z16 + z28 + z43 + z46 + z55 + z61 + z73

+ z88 + z124 + z133 + z142 + z202 + z211 + z220 + z289 .

If we assume that the correlation of this linear combination is completely ex-
plained by the specific characteristic we considered (i.e., the contributions of
other characteristics to the correlation of this linear combination can be ne-
glected), then it would have a correlation coefficient of 2−72. Detecting such a
correlation would require at least 2144 bits of key stream, which is well above
the security requirement.

Other more complicated types of linear characteristics with larger correlations
might exist in principle, but given the size of the state and the sparseness of the
feedback and feedforward functions, the linear combination given above has a
good chance to be optimal, and hence, it seems unlikely that the correlations of
other characteristics will exceed 2−40. The preliminary results given by Maximov
and Biryukov [9] seem to confirm this.

8.2 Period

Because of the fact that the internal state of Trivium evolves in a nonlinear
way, its period is hard to determine. Still, a number of observations can be made.
First, if the AND gates are omitted (resulting in a completely linear scheme),

262 C. De Cannière and B. Preneel

one can show that any key/IV pair would generate a stream with a period of at
least 296−3 − 1. This has no immediate implications for Trivium itself, but it
might be seen as an indication that the taps have been chosen properly.

Secondly, Trivium’s state is updated in a reversible way, and the initialization
of (s178, . . . , s288) prevents the state from cycling in less than 111 iterations. If
we believe that Trivium behaves as a random permutation after a sufficient
number of iterations, then all cycle lengths up to 2288 would be equiprobable,
and hence the probability for a given key/IV pair to cause a cycle smaller than
280 would be 2−208.

8.3 Guess and Determine Attacks

In each iteration of Trivium, only a few bits of the state are used, despite
the general rule-of-thumb that sparse update functions should be avoided. As a
result, guess and determine attacks are certainly a concern. A straightforward
attack would guess (s25, . . . , s93), (s97, . . . , s177), and (s244, . . . , s288), 195 bits in
total, after which the rest of the bits can immediately be determined from the
key stream.

More sophisticated attacks can significantly reduce this number, though. A
first idea, proposed by Khazaei [8], is to guess ai−109, bi−91, and ci−82 for i =
0, 2, . . . , 88 (we use here the alternative description of Sect. 7.3). Once these
135 bits are fixed, it can easily be verified that each key stream bit ti with
0 ≤ i ≤ 90+66 is reduced to a linear function in 288−135 unknowns. By solving
this linear system for all 2135 guesses, the attacker will eventually recover the
complete internal state.

A considerably improved guess-and-determine attack is presented by Maximov
and Biryukov [9]. Instead of guessing one out of two bits of a, b, and c over a
certain interval, the authors propose to guess every third bit. In order to get
a solvable linear system, they additionally assume that all three AND gates
produce zero bits at every third step over a number of consecutive cycles. This
assumption is only fulfilled with a small probability, and the attack will therefore
have to be repeated for different positions in the stream. With some additional
tricks, and given about 261 bits of known key stream, the attack complexity can
be reduced to an estimated 290 key setups.

8.4 Algebraic Attacks

Trivium seems to be a particularly attractive target for algebraic attacks. The
complete scheme can easily be described with extremely sparse equations of low
degree. However, its state does not evolve in a linear way, and hence the efficient
linearization techniques [11] used to solve the systems of equations generated by
LFSR based schemes will be hard to apply. Other techniques might be applicable,
though, and their efficiency in solving this particular system of equations needs
to be investigated.

Recently, some interesting research has been conducted on this topic by several
cryptanalysts. In [10], Raddum presents a new technique to solve systems of

Trivium 263

equations associated with Trivium. His attack has a very high complexity of
O(2164) when applied to the full cipher, but breaks Bivium-A, a key stream
generator similar to the one shown in Fig. 4(a), in a day. This same variant is
also analyzed by McDonald et al. [12], who show that its state can be recovered
in seconds using off-the-shelve satisfiability solvers. While these experiments are
useful to test new techniques, it is important to note that the final remark of
Sect. 5.2, combined with the use of 1-bit S-boxes, indeed implies a fundamental
weakness of two-round ciphers such as Bivium-A.

Finally, Fischer and Meier [13] analyze Trivium in the context of algebraic
attacks based on augmented functions. They show that Trivium’s augmented
function can easily be analyzed, and conclude that Trivium seems to be resistant
against this particular type of algebraic attacks.

8.5 Resynchronization Attacks

A last type of attacks are resynchronization attacks, in which the adversary is
allowed to manipulate the value of the IV, and tries to extract information about
the key by examining the corresponding key stream. Trivium tries to preclude
this type of attacks by cycling the state a sufficient number of times before pro-
ducing any output. It can be shown that each state bit depends on each key and
IV bit in a nonlinear way after two full cycles (i.e., 2 · 288 iterations). We expect
that two more cycles will suffice to protect the cipher against resynchronization
attacks. So far, this seems to be confirmed (or at least not contradicted) by the
analysis of Turan and Kara [14], Vielhaber [15], and Fischer et al. [16].

9 Implementation Aspects

We conclude this chapter with a discussion of some implementation aspects of
Trivium.

9.1 Hardware

As stated in Sect. 2.2, our aim was to design a cipher which is compact in
environments with restrictions on the gate count, power-efficient on platforms
with limited power resources, and fast in applications that require high-speed
encryption. In Trivium, this flexibility is achieved by ensuring that state bits
are not used for at least 64 iterations after they have been modified. This way,
up to 64 iterations can be computed at once, provided that the 3 AND gates
and 11 XOR gates in the original scheme are duplicated a corresponding number
of times. This allows the clock frequency to be divided by a factor 64 without
affecting the throughput.

Based on the figures stated in [18] (i.e., 12 NAND gates per Flip-flop, 2.5 gates
per XOR, and 1.5 gates per AND), we can compute a first estimation of the gate
count for different degrees of parallelization. The actual results found by Good
and Benaissa [17] for 0.13�m Standard Cell CMOS show that these estimations
are rather pessimistic, however. Both figures are compared in Table. 3.

264 C. De Cannière and B. Preneel

Table 3. Gate counts of 1-bit to 64-bit hardware implementations

Components 1-bit 8-bit 16-bit 32-bit 64-bit

Flip-flops: 288 288 288 288 288
AND gates: 3 24 48 96 192
XOR gates: 11 88 176 352 704

Estimated NAND gates: 3488 3712 3968 4480 5504
NAND gates, 0.13 �m CMOS [17] 2599 2801 3185 3787 4921

The hardware efficiency of Trivium has been independently evaluated by
several other research teams. Güerkanyak et al. [19] report a 64-bit implementa-
tion in 0.25�m 5-metal CMOS technology with a throughput per area ratio of
129Gbit/s ·mm2, three times higher than for any other eSTREAM candidate.
Gaj et al. [20] come to similar conclusions, and also note that Trivium is per-
ceived to be the easiest eSTREAM candidate to implement amongst students
following an introductory course on VHDL at the George Mason University.
FPGA implementations of Trivium are independently studied by Bulens et
al. [21], Good et al. [22], and Rogawski [23]. The general conclusion, here as
well, is that Trivium offers a very good trade-off between throughput and area.
Finally, Feldhofer [24] analyzes implementations of Trivium for RFID tags, and
shows that the power consumption is reduced to one fourth compared to a low-
power AES implementation.

9.2 Software

Despite the fact that Trivium does not target software applications, the cipher
is still reasonably efficient on a standard PC. The measured performance of the
reference C-code on a 1 700MHz Pentium M processor can be found in Table 4.

Table 4. Measured performance on an Intel� Pentium� M CPU 1700 MHz

Operation

Stream generation: 5.3 cycles/byte
Key setup: 51 cycles
IV setup: 774 cycles

10 Conclusion

In this chapter we have presented a simple synchronous stream cipher called
Trivium, which seems to be particularly well suited for applications requiring
a flexible hardware implementation. The design is based on the study of the
propagation of linear characteristics, and shows that the effect of a few small
non-linear components can be amplified considerably by a carefully designed
linear structure.

Trivium 265

References

1. Daemen, J.: Cipher and hash function design. Strategies based on linear and dif-
ferential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven (1995)

2. Hawkes, P., Rose, G.G.: Primitive specification and supporting documentation for
SOBER-tw submission to NESSIE. In: Proceedings of the First NESSIE Workshop,
NESSIE (2000)

3. Ekdahl, P., Johansson, T.: SNOW – A new stream cipher. In: Proceedings of the
First NESSIE Workshop, NESSIE (2000)

4. Daemen, J., Clapp, C.S.K.: Fast hashing and stream encryption with PANAMA.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 60–74. Springer, Heidelberg
(1998)

5. Daemen, J., Rijmen, V.: The Design of Rijndael: AES — The Advanced Encryption
Standard. Springer, Heidelberg (2002)

6. Rosenthal, J., Smarandache, R.: Maximum distance separable convolutional codes.
Applicable Algebra in Engineering, Communication and Computing 10(1), 15–32
(1999)

7. Bernstein, D.J.: Re: A reformulation of TRIVIUM. Posted on the eSTREAM Fo-
rum (2006), http://www.ecrypt.eu.org/stream/phorum/read.php?1,448

8. Khazaei, S.: Re: A reformulation of TRIVIUM. Posted on the eSTREAM Forum
(2006), http://www.ecrypt.eu.org/stream/phorum/read.php?1,448

9. Maximov, A., Biryukov, A.: Two trivial attacks on Trivium. eSTREAM, ECRYPT
Stream Cipher Project, Report 2007/003 (2007),
http://www.ecrypt.eu.org/stream

10. Raddum, H.: Cryptanalytic results on TRIVIUM. eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/039 (2006), http://www.ecrypt.eu.org/stream

11. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

12. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2007/040 (2007),
http://www.ecrypt.eu.org/stream

13. Fischer, S., Meier, W.: Algebraic immunity of S-boxes and augmented functions. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 366–381. Springer, Heidelberg
(2007)

14. Turan, M.S., Kara, O.: Linear approximations for 2-round Trivium. eSTREAM,
ECRYPT Stream Cipher Project, Report 2007/008 (2007),
http://www.ecrypt.eu.org/stream

15. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an algebraic IV differential at-
tack. Cryptology ePrint Archive, Report 2007/413 (2007),
http://eprint.iacr.org/

16. Fischer, S., Khazaei, S., Meier, W.: Key recovery with probabilistic neutral bits.
Presented at the Echternach Symmetric Cryptography Seminar (2008)

17. Good, T., Benaissa, M.: Hardware results for selected stream cipher candidates.
eSTREAM, ECRYPT Stream Cipher Project, Report 2007/023 (2007),
http://www.ecrypt.eu.org/stream

18. Lano, J., Mentens, N., Preneel, B., Verbauwhede, I.: Power analysis of synchronous
stream ciphers with resynchronization mechanism. In: ECRYPT Workshop, SASC
– The State of the Art of Stream Ciphers, pp. 327–333 (2004)

http://www.ecrypt.eu.org/stream/phorum/read.php?1,448
http://www.ecrypt.eu.org/stream/phorum/read.php?1,448
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream

266 C. De Cannière and B. Preneel

19. Gürkaynak, F.K., Luethi, P., Bernold, N., Blattmann, R., Goode, V., Marghitola,
M., Kaeslin, H., Felber, N., Fichtner, W.: Hardware evaluation of eSTREAM can-
didates: Achterbahn, Grain, MICKEY, MOSQUITO, SFINKS, TRIVIUM, VEST,
ZK-Crypt. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/015 (2006),
http://www.ecrypt.eu.org/stream

20. Gaj, K., Southern, G., Bachimanchi, R.: Comparison of hardware performance
of selected Phase II eSTREAM candidates. eSTREAM, ECRYPT Stream Cipher
Project, Report 2007/027 (2007), http://www.ecrypt.eu.org/stream

21. Bulens, P., Kalach, K., Standaert, F.X., Quisquater, J.J.: FPGA implementa-
tions of eSTREAM Phase-2 focus candidates with hardware profile. eSTREAM,
ECRYPT Stream Cipher Project, Report 2006/024 (2007),
http://www.ecrypt.eu.org/stream

22. Good, T., Chelton, W., Benaissa, M.: Review of stream cipher candidates from a
low resource hardware perspective. eSTREAM, ECRYPT Stream Cipher Project,
Report 2006/016 (2006), http://www.ecrypt.eu.org/stream

23. Rogawski, M.: Hardware evaluation of eSTREAM candidates: Grain, Lex,
Mickey128, Salsa20 and Trivium. eSTREAM, ECRYPT Stream Cipher Project,
Report 2007/025 (2007), http://www.ecrypt.eu.org/stream

24. Feldhofer, M.: Comparison of low-power implementations of Trivium and Grain.
eSTREAM, ECRYPT Stream Cipher Project, Report 2007/027 (2007),
http://www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

ASIC Hardware Performance

Tim Good and Mohammed Benaissa

Department of Electronic and Electrical Engineering,
University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK

{t.good,m.benaissa}@sheffield.ac.uk

Abstract. This chapter presents detailed hardware implementation re-
sults and performance metrics for the eSTREAM candidate stream ci-
phers remaining in the Phase 3 hardware profile. Performance assess-
ment has been made in accordance with the eSTREAM hardware testing
framework in terms of power, area and speed. An attempt has been made
to quantify the flexibility and scalability dimensions of performance. The
results are presented in tabular and graphical format together with sum-
marising the utility of the candidates against two notional applications:
one for 10Mbps wireless network and a second for 100kHz RFID. Where
applicable to a particular cipher, guidance on any limitations on the
choice of key or IV is given. The chapter concludes with a summary of
the performance of each of the candidates and some general guidance for
future low resource hardware stream cipher development.

1 Introduction

In 2004, a project under the Information Societies Technology (IST) Programme
of the European Commission ECRYPT Network of Excellence called eSTREAM
was started [1] tasked with seeking a strong stream cipher. Thirty-four candidate
ciphers were submitted to either a software or hardware profile. From initial
evaluations at SASC 2006 and SASC 2007, the commencement of Phase 3 saw
the eSTREAM candidates reduced to eight in the software profile and eight in
the hardware profile. There is no single cipher listed in both profiles. The aim of
this chapter is to document the hardware performance aspects of those ciphers
short-listed in the hardware profile.

A stream cipher, formally, is a symmetric cipher which generates a sequence
of cryptographically secure bits called the key stream which is then combined
with either the plaintext or ciphertext, at the bit level, using the exclusive-or
operation. The basic topology (Fig. 1) of a stream cipher consists of a register
to store the key and an initialisation vector (IV) together with a function for its
update (typically some sort of feedback shift register). This register forms the
current state of the cipher and is clocked for successive bits of the keystream.
The next component is a non-linear reduction function which takes part or all of
this state and combines the bits in a non-linear fashion normally to yield a single
bit of the keystream. This bit is then exclusive-or’ed with the plain / cipher text.
In a second form, the plain or cipher text may be incorporated into the state
update feedback function to effectively create a cipher-feedback mode.

M. Robshaw and O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, pp. 267–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

268 T. Good and M. Benaissa

FEEDBACK
FUNCTION

SHIFT REGISTER

REDUCTION
FUNCTION

CIPHERTEXT

KEY-IV

PLAINTEXT

>1-bit >1-bit

Fig. 1. Generic stream cipher

A vital function, in terms of security, is the period of the initial key and IV
mixing to prevent key recovery attacks. In this period, a cryptographically strong
feedback function is needed to operate upon the state for a number of iterations
(basically hashing). The reduction function used to output the keystream can
be somewhat weaker.

The same XOR per-bit property which does not change (permute) the cipher-
text/plain-text order and provides stream ciphers with their simplicity also leads
to an attack on all basic stream ciphers. This is the bit-flip attack where an
active attacker may change the state of bit of plaintext at any positions within
the ciphertext. The effectiveness of this attack depends on application and may
be prevented using a message authentication code.

The original eSTREAM call for cipher primitives [1] made provision for two
profiles, one for software, requiring equivalent security of 2128, and one for hard-
ware, requiring 80-bit (280) security. An extension to the basic cipher was also
defined for those wishing to supply a message authentication code (MAC). The
call recognised the importance of resource utilisation for both profiles in that the
deployed environments for stream ciphers often have very restricted resources
(eg smart cards). Subsequently, many of the hardware candidates have provided
128-bit key versions which have also been considered in this treatment.

Security analysis remains the overriding concern compared to hardware or
software performance analyses; however, performance is both a technical re-
quirement and economic imperative for any design including a cipher primitive.
Put at its simplest, in the context of hardware design, it is the cost for each
primitive in attaining the security. The aim of this chapter is to provide an in-
dependent set of hardware results for the promising candidates to further the
understanding of their relative merits and to focus cryptanalysis efforts on the
low resource candidates.

Hardware performance is multi-dimensional and the importance of the various
quantitiessuchasarea,throughputandpowerdependsonthespecificapplication.The
eSTREAM hardware testing framework [2] defines five dimensions: compactness,
throughput,power/energyconsumption,flexibilityandsimplicity.Itwasalsostated
that the Advanced Encryption Standard (AES) is to be used as the benchmark for
comparison and candidates should be smaller and faster than the AES.

ASIC Hardware Performance 269

Economics plays a crucial role in contemporary consumer electronics, this
leads designers to be concerned about design efficiency. Low-resource design is
an increasingly important area due to customer appetite for feature-rich hand-
held battery operated ICT devices. Typically, a system will have specified re-
quirements in terms of timeliness or throughput which the designer must meet.
The cost of achieving the required specification is measured broadly in terms
of design costs, device cost (proportional to area occupied by the design) and
energy consumption (battery life).

For any digital design the fundamental performance metrics are power, area
and time. From these many other metrics are derived (eg throughput versus area
ratio) the applicability of which depends on application. For this treatment two
representative applications are selected, a wireless LAN operating at 10Mbps
and a Radio Frequency Identification Device (RFID) operating at 100kHz clock.

2 Measuring Hardware Performance

For any digital design there is a small set of metrics which can be obtained from
the design flow together with some simulations. It is this primary set of metrics
which is used to calculate the other derived metrics which designers use as a
convenient method for comparing different designs. The definitions used in this
paper are given below:
Process: The fabrication technology used. The name normally indicates the
smallest feature size, library usage and gate construction (e.g. 0.13µm standard
cell CMOS).
Interface: Designs are invariably part of a larger system and thus require con-
nections (on or off chip) with other designs. All the designs in this paper use a
synchronous interface with handshaking and on-chip communication is assumed.
In this paper, the interfaces differ by their bus widths. Thus the bus width in
bits for I/O is included in the results.
Area: Amount of silicon used for the core design (excluding power rings and I/O
cells). This result is typically expressed in µm2 for a specified process. However,
the more usable process independent method of expressing the area is to calculate
the Gate Equivalence (GE) of the total area by dividing by the lowest power
two-input NAND gate’s area.
Load/Initialisation Cycles: The definition used here was from RESET going
inactive, through loading key and IV, until the validity of the first output bit is
signalled. Many would quote just the key/IV mixing cycles however this would
fail to account for the impact on interfacing decisions on the latency.
Bits per cycle (running): For the simplest stream ciphers this is the number
of bits of output keystream per clock cycle. However, many operate in a way that
produces batches of output (e.g. a block cipher in output feedback mode) thus
the definition has to include a second clause on sustainable output rate. Thus the
better definition is number of bits of output for all subsequent batches/blocks
of keystream divided by the number of cycles per batch/block.

270 T. Good and M. Benaissa

Design frequency: This is the clock rate selected by the designer and applied as
a constraint to the design tools. The tools will make decisions on driver strengths
to meet this requirement. Thus the higher the constraint the more area will be
consumed. For low resource design a modest rate must be selected.
Max. Clock frequency: Designs have many connections between inputs out-
puts and registers, each of these form a timing path (or arc). Simplistically, the
slowest arc in the design is the critical path and sets an upper bound on the
clock frequency. The design may be clocked at a significantly lower rate.
Power consumption: Ideally a chip would be manufactured and measurements
made for a large set of operations, however, this would be both time-consuming
and costly. The alternative is to use specialist tools which operate using esti-
mations of parasitic parameters (resistance and capacitance) from the physical
layout of a design together with switching activity from a set of random test
vectors. For CMOS there are two components to the power: the static power
(roughly proportional to area) and a second dynamic component proportional to
the switching activity (probability of a switching event occurring and frequency
of operation). Both components also depend on supply voltage. The typical core
voltage for the process should be used. At low frequency the static power is
significant whilst at the other extreme may be neglected. Power results can be
scaled with an acceptable margin of error to other frequencies if the static and
dynamic components are treated separately.

The primary metrics may be used to wholly describe a designs performance,
however, as can be seen there are many dimensions to performance so engineers
often use derived metrics to provide a single dimension for comparison. There is
no universal agreement on which metric is the best. The true requirement is to
meet all the application driven design constraints. The commonly used derived
metrics are given below:
Throughput: The rate at which new output is produced with respect to time,
typically expressed in bits-per-second. This definition is further clarified to be
the sustainable rate once initialisation is completed at a given operating clock
frequency. It is thus simply bits-per-cycle multiplied by the clock-frequency. The
maximum throughput will occur at the maximum clock frequency, however, re-
member that the design tools were given a slack timing constraint to favour
area so this metric must be used with care when considering low resource design
performance.
Area-Time product: The product of the time taken to produce each new
output bit and the area of the design. The reciprocal metric is presented as the
throughput-to-area ratio (TPAR). Either representation is frequently used
as a measure of design efficiency. However, once again, note that the metrics are
at their best at the maximum clock frequency.
Energy-per-bit: This is calculated by dividing the total power consumption by
the throughput. Care must be taken to ensure that the power and throughput
figures used are for the same clock frequency. At first this measure may appear to
be frequency independent, however, if modelled at a low frequency (eg 100kHz)

ASIC Hardware Performance 271

the static power will have a significant impact thus larger area designs will be
less efficient. Conversely, at higher frequencies designs with large amounts of
switching activity (including that from switching hazards to do path differences
in the large fields of XOR gates present in most crypto-primitives) dominates
the power.
Power-area-time product: This is the triple product formed from area-time
product and the power consumption. As with energy per bit, this is maximised
at the highest operating frequency due to the diminishing effect of the static
power.
Power-Time product: Specifically, the product of power and latency (total
time taken including initialisation and loading key and IV). This metric is par-
ticularly useful for measuring utility of a candidate in application such as RFID
where both the power consumption and timeliness of response are important.

As has been frequently stated hardware performance analysis is multidimen-
sional and application specific. Thus to resolve the impasse on which figures to
quote the decision is made here to quote the following:

1. The primary design results for designs prepared with a slack timing con-
straint of 10MHz clock.

2. ‘Best’ metrics: Performance metrics for the designs operating at their maxi-
mum frequency given the 10MHz constraint.

3. High-end wireless: Performance metrics for an output rate of 10Mbps, taken
as a typical estimate for future wireless LAN (proposed standards range
between 1-100Mbps).

4. Low-end wireless: Performance metrics for a clock rate of 100kHz, as the low
end of RFID/WSN tags which may be powered / clocked directly from the
interrogating RF field.

The first three performance dimensions: compactness, throughput and power
consumption may be readily compared quantitatively however the remaining
two of flexibility and simplicity are much more subjective. There is little quan-
titative guidance in the testing framework so some definitions are offered here;
admittedly the choice of metric is arbitrary but any scale is better than none.
Flexibility: It is assumed that a measure of the design space performance
trade-offs is required. Herein defined as the (dimensionless) ratio of the through-
put-to-area ratio for the maximum performance design variant (TPARmax) di-
vided by the corresponding ratio for a low-resource design operating at 100kHz
(TPAR100kHz)
Simplicity: It is assumed that the desired metric here is a measure of the
design time (unfortunately the design work had to be fitted around existing
work load thus this could not be reliably accounted for). There are a number of
software-engineering metrics which are generally used to describe the complexity
/ simplicity of a source file. Metrics vary in sophistication and applicability to
hardware design; one of the simplest, used here is the number of lines excluding
blank lines and comments for all the design source (VHDL) files.

272 T. Good and M. Benaissa

3 Candidate Ciphers

This section describes implementation specifics for the hardware design of the
candidate ciphers in alphabetical order. All the designs are complete in that
they contain a suitable finite state machine as controller and support usable
handshaking. Further, for candidate ciphers requiring any padding of key/IV or
specific initialisation constants these are performed within the architecture thus
included in the stated results. However, for brevity only the critical aspects of
the datapath are described.

3.1 Decimv2 and Decim-128

Decim has two variants for 80-bit and 128-bit key lengths. The datapath com-
prises four principle modules, a linear feedback shift register (LFSR), non-linear
filter (NLF), an irregular decimation mechanism ABSG and a first-in first out
(FIFO) buffer. The LFSR stores the internal state of the cipher, a total of 192
bits. The NLF combines 14 taps from the LFSR using the reduction XOR and
conventional addition to yield a single bit output. This output is fed back to the
LFSR during the mixing phase to produce non-linear feedback and in the running
phase feeds the ABSG. The ABSG produces bits in an irregular pattern of clock
cycles, thus the output and its control is feed to a FIFO which is read mono-
tonically to restore a regular clocking pattern for the output keystream. The
design of Decim permits up to ×4 parallelism by replicating the filter function
at the expense of an ABSG of exponentially increasing complexity, the simplest
solution being to use a lookup table for the ×4-ABSG. A compact circuit for the
×1 ABSG is shown in Fig. 2.

Din

CEin

Dout

CEout
CLK

P
D Q

CE

C
D Q

CE Q

n
D Q

CE

Fig. 2. Compact implementation of the Decim ABSG function

The initial internal state derived using arithmetic operations from the key (80-
bit) and IV (64-bit), initially appears complex, however may be implemented us-
ing only a few conditionally applied XOR gates. The padding sequence required
for Decim-128 may be conveniently generated using a toggle-flip-flop. The re-
quired circuit for the LFSR for both the 80-bit and 128-bit versions of Decim
are shown in Fig. 3 and Fig. 4.

The initial phase of mixing (4×192 cycles) is followed by a second phase,
of variable period, performed in multiples of 4 cycles, until the FIFO is full.

ASIC Hardware Performance 273

1

0

0

1

32-bit SHIFT REGISTER 144-bit SHIFT REGISTER16-bit SR
1

0

1

0

XOR of taps 187, 176, 175, 146, 115, 98, 61, 60, 37, 36, 23, 4, 3, 0

LD_IV32 LD_IV0 LD_IV0

LOAD

MIX

LOAD LOAD

191 159 143

64

160 144 1 0

KEY_IV

NLFOUT

Non-linear filter using taps 191,186,178,172,160,144,111,104,65,54,45,28,13,1

Fig. 3. Decim-80 LFSR supporting loading key, IV, padding, mixing and running
phases

1

0

0

1

32-bit SR 128-bit SHIFT REGISTER128-bit SHIFT REGISTER
1

0

1

0

XOR of taps 283, 270, 253, 206, 165, 164, 163, 134, 103, 84, 41, 4, 3, 0

LD_IV0

LOAD

MIX

LOAD LOAD

287 255 127256 128 1 0

KEY_IV

TFF

NLFOUT

Non-linear filter using taps 287,276,263,244,227*,203,187,159,120,73,51,39,21
17Dec07: proposed change tap 227 to 236

Fig. 4. Decim-128 LFSR supporting loading key, IV, padding, mixing and running
phases

The FIFO is 32-bits for Decim-80 and 64-bits for Decim-128. Its implementation
must support simultaneous or individual read/write operations inclusive of both
buffer empty and buffer full conditions. The Decim specification requires a buffer
refill mechanism, this halts the keystream output and refills the FIFO, however
such an event is highly improbable (would be a distinguisher for the cipher) and
would require the NLF to output a sequence buffer-length long of all zeros or all
ones. From a hardware perspective, this presents a practical verification problem
(finding a suitable test vector to test the buffer refill condition is improbable).
In normal operation, the FIFO drops excess bits from the ABSG once full,
incorrect implementation will appear as a single cycle misalignment of portions
of the keystream from known test vectors.

3.2 Edon80

Edon80 by design was intended as an 80-element pipeline. However, the simple
software definition for the initial mixing and running phases belies relatively
high hardware complexity for its implementation. The nature and direction of

274 T. Good and M. Benaissa

shifting between loading key, IV and padding, mixing phase and running phase
changes resulting in a significant number of additional multiplexers and a need
to duplicate the key register. The implementation (Fig. 6) requires an additional
80 cycles at the end of the initialisation phase to avoid requiring additional
pipelining of control lines (saves 160 FF). Edon80 (pipelined) is the largest design
in the hardware profile so a more iterative and lower area version was also
designed (Edon80×4). This comprises only four e-transformers rather than the
more usual 80, however, has relatively poor performance, thus only the pipelined
version is described in further detail.

The datapath is area is dominated by the 80 pipeline processing elements
each of which comprises several multiplexers and an e-transformer and two bits
of internal state storage. For clarity, it should be noted that the majority of
the values used in Edon80 comprise two bits. Due to correlative nature of the
initial mixing phase a second temporary copy of the internal state (160 bits),
the temporary register, is required. To meet the required different bit ordering
for load, mixing and running both the pipeline and temporary registers require
multiplexers to support shifting in either direction. The temporary register is
also used to provide key storage using suitable feedback, however, the key bits
are required to be cycled in both forward and reverse orders during mixing so
a second key register is also required. The key is 40×2-bit elements and used
consecutively to drive the 80 processing elements; this results in a conceptual

0 1

eTransformer
Q[K][R][C]

KM

ENL

SL

ENO

ENR

KR

SR

SO

0 1

0 1 0 1 0 1

LOAD

LOAD

RUN

CLK

CLK

RST

SHIFT

K R C

SHIFT

EN

D
RST

Q

CE

A
D

CE

Q

2

2 2

2

2 2

Fig. 5. An Edon-80 processing element (pipeline stage)

ASIC Hardware Performance 275

floorplan for the pipeline elements to be laid out around two revolutions of the
perimeter of a circle.

The datapath used accepts the loading of a key (80-bits) followed by an IV
(64-bits) and performs the necessary padding and bit-order reversal needed for
the mixing phase. A suitable design for each pipeline element is shown in Fig. 5.
A controller is used to generate the various control lines. For clarity, it should
be noted that when the load and run multiplexer select lines are both low then
mixing should be assumed.

The Edon80 reference code is written from a software efficiency perspective
and the stored state for each clock cycle, during mixing, for a pipelined archi-
tecture is not readily available. The following fragment of C provides a suitable
reference model for debugging such a hardware design:

#define mod80(x) (((x)+800)%80)
for (j=0;j<160; j++)
{

Enable[0] = (j<80) ? TRUE : FALSE;
NextState[0] = (Enable[0]==TRUE)

? ctx->Q[j%80][Temp[mod80(80-1-j)]][State[0]] : State[0];
for (k=1; k<80; k++)

NextState[k] = (Enable[k]==TRUE)
? ctx->Q[mod80(j-k)][State[k-1]][State[k]] : State[k];

PrintInternalState(j,State);
for (k=i-1; k>=0; k--) State[k] = NextState[k];
for (k=i-1; k> 0; k--) Enable[k] = Enable[k-1];

}

3.3 F-FCSR-16 and F-FCSR-H

There are two variants of the core F-FCSR design: F-FCSR-H supports an 80-bit
key and F-FCSR-16 a 128-bit key. Both are conveniently implemented using shift
registers for state storage. In comparison to many of the other designs, F-FCSR
has a non-linear shift register and a linear reduction filter. The state register
is updated according to a fixed polynomial, poly, which defines the inclusion of
non-linear carry units which act on the feedback term to modify the state update.
The key followed by the IV may be directly loaded into the state register with the
feedback suppressed. As part of the mixing process, the original initial state is
needed thus has to be stored in a second temporary shift register. This effectively
doubles the size of the internal state. A side effect is that in order to minimise the
cycles taken for mixing, the cipher needs to operate at the word level (8-bits for
F-FCSR-H and 16-bits for F-FCSR-16) during the second phase of mixing (often
convenient for key/IV loading too). However, due to the non-linear nature of the
feedback operates using single-bit shifts during both the first phase of mixing and
the running phase. This is performed in hardware using multiplexers between
the state register elements. A suitable datapath is shown in Fig. 7, the design for
F-FCSR-16 is similar except operates on 16-bit words and has a 256-bit internal
state. An additional shift register may be used to convert the key/IV input and
keystream output to/from serial format.

276 T. Good and M. Benaissa

0 1

C
O
U
N
TE
R

K
E
Y
_I
V

0

EN
L

S L
S O

EN
R

EN
O

K M

S RK R
1

EN
L

S L
S O

EN
R

EN
O

K M

S RK R
73
..7
8

EN
L

S L
S O

EN
R

EN
O

K M

S RK R
79

EN
L

S L
S O

EN
R

EN
O

K M

S RK R
72

EN
L

S L
S O

EN
R

EN
O

K M

S RK R
71

EN
L

S L
S O

EN
R

EN
O

K M

S RK R
2.
.7
0

EN
L

S L
S O

EN
R

EN
O

K M

S RK R

0

1

1 0

LO
AD

LO
AD

40
x2
-b
it
SH
IF
T
R
EG
IS
TE
R

8x
2-
bi
tS
R

0
72

39
79

40
x2
-b
it
SH
IF
T
R
EG
IS
TE
R

32
x2
-b
it
SH
IF
T
R
EG
IS
TE
R

40
71

0
39

LO
AD

R
U
N
/M
IX

LO
AD

M
IX

LO
AD

M
IX

K R
0…

...
.K
R
39

K R
40
…
...
K R
79

K M
1
K M
2.
...
..K

M
39
K M
40

K
M
41
K M
42
…
...
K M
79
K M
0

2 01

pa
dd
in
g

co
un
t

R
U
N

D
FF

2

2
2

2
2

2

‘1
’

PL
_E
N
AB
LE

LO
AD

2

U
SE
D
IN

R
U
N
N
IN
G

PH
AS
E

U
SE
D
IN

M
IX
IN
G

PH
AS
E

2-
BI
T

PA
R
/

SE
R
IA
L

K
S
O
U
T

0.
.7
9

EN
L

S L
S O

EN
R

EN
O

K M

S RK R

Fig. 6. A possible datapath architecture for pipelined Edon-80

ASIC Hardware Performance 277

1

0

x8
20x8-bit SHIFT
REGISTER

160-bit NON-LINEAR SHIFT REGISTER
1

0

MIX2
LOAD

159..153 0

KEY_IV

KS

LOAD

RUN/MIX

8BIT/SHIFT(LINEAR)

1BIT/SHIFT8

7

1

88

8

LINEAR FILTER

Feedback

Temporary storage for mixing

Fig. 7. Datapath for core of F-FCSR-H

S(i+1)

S(i+8)

S(i)

FEEDBACK

1
v
0

0

1

S(i)
D QC(i)

D Q

POLY(i)
CONSTANT LOAD OR

MIX2

Fig. 8. Schematic of F-FCSR-H non-linear shift register element including carry bit

Fig. 8 shows a construction for the elements of the non-linear shift register,
a virtual multiplexer (shaded and marked v) is shown to depict the presence of
the cell according to the specified (constant) polynomial.

The cautious implementer should detect the all zero internal state (will be
entered when both key and IV are all zero). If this state is entered it will persist
(keystream all zeros) and result in the unencrypted output of plaintext! One low-
resource solution is to detect the all zero IV and set the final bit to one. Without
such a test the cipher’s implementation would fail to demonstrate plaintext-
ciphertext segregation to an assessor. This can be done with a single flip-flop
and few combinatorial gates attached to the KEY/IV input.

3.4 Grain and Grain-128

Grain comes in two versions Grain-v1 for 80-bit key and Grain-128 for 128-bit
key. For clarity these are referred to in this chapter as Grain-80 and Grain-
128. Both support extensive parallelism at a cost of only replicating the filter
functions, ×16 is possible for Grain-80 and ×32 for Grain-128. This feature, in
common with Trivium, affords Grain a large and advantageous design space for
trading between speed, area and power.

278 T. Good and M. Benaissa

80-bit SHIFT REGISTER (N)

Filter-F
(XOR)

1

0

RUN

LOAD

LOAD

1 80

KEY_IV

KS

80-bit SHIFT REGISTER (L)
1 80

Filter-H
(NLF)

Filter-A
(XOR)

Filter-G
(NLF)

16

6 7
4

12

N(17)

Fig. 9. Block diagram of Grain-80 datapath

During initialisation, the shift registers for Grain-80 are loaded with key (80-
bits) and IV (64-bits) then padded with 16 ones. This padding may be done at
the same time the key & IV are loaded. The mixing phase is then carried out
for 160-bits of shifting before the cipher enters its running mode. The typical
architecture for Grain-80 is shown in Fig. 9.

3.5 Mickey

Mickey is based on a pair of shift registers and has versions for 80-bit and 128-
bit key and IV. One feature of the cipher is that the shift registers conditionally
jump this is typically implemented by including the previous state bit in the
feedback XOR sum and maintaining monotonic clocking. The two shift registers
are each 100-bits for Mickey-80 and 160-bits for Mickey-128. Prior to key loading
the state is initialised to zero, this is required as the feedback remains operative
during key and IV loading. A number of constant polynomials are used in the
description of Mickey to define the required feedback taps. In a hardware de-
scription language, conventional logic operations are used to define the required
functionality however these are essentially virtual-gates as being constant will be
removed during optimisation. Fig. 10 depicts a suitable datapath for Mickey-80
with the detailed composition of the shift registers in Fig. 11 in which virtual
gates are shaded and marked by the letter-v and those which conditionally form
inverters are marked inv. Mickey-128 is very similar except for the longer regis-
ters and different tap combinations used to form the control-bits. In the circuit
shown it is necessary to load the IV first followed by the key.

The cautious hardware designer may additionally wish to detect the all-zero
states in either the R or S registers. If either occurs it would be prudent to
disable the ciphertext output and signal an error state (this would result in a
distinguisher, but not of low complexity).

ASIC Hardware Performance 279

100-bit JUMP SHIFT REGISTER (“R”)
0 99

KEY_IV

KS

FeedbackBit-R

100-bit JUMP SHIFT REGISTER (“S”)
0 99

FeedbackBit-S

34 6733 67

CTRL CTRL

50

I/PI/P

RUN

LOAD
ControlBit-SControlBit-R

InputBit-R InputBit-S

Fig. 10. Datapath for Mickey-80

FeedbackBit-R

R(i)

ControlBit-R

v

R(i)

D Q

RMASK(i)
CONSTANT

R(i-1)

S(i-1)

FeedbackBit-S

S(i)
ControlBit-S inv

FB1(i)
CONST

S(i)

D Q

inv

inv

v

v

S(i+1)COMP0(i)
CONSTANT

COMP1(i)
CONSTANT

FB0(i)
CONST

Fig. 11. Schematic detail for performing jump control functions within Mickey’s shift
registers

3.6 Moustique

Moustique is a self-synchronising stream cipher, which for some communications
systems, is an advantageous property. The datapath compromises a 96-bit key
register, a 128-bit non-linear shift register (CCSR) and a seven stage pipelined
non-linear reduction filter. Three simple functions, g0, g1, g2, are used through-
out the CCSR and filter, g1 & g2 providing the non-linearity.

It has a small design space in that a number of the stages may be performed
iteratively to save area at the expense of latency. The key is contained in a static
register thus could support the use of a one-time-programmable memory for key
storage directly.

Once the 96-bit key has been entered, sequentially in this design, the 128-bit
IV may loaded into the CCSR or in its self-synchronising mode, prefixed by a
‘0’ and applied to the data-input along with ciphertext for decipherment. None
of the flip-flops in the key or CCSR require resetting. The only exception is the
flip-flop feeding the CCSR for encryption if the IV is not prefixed with a zero.

A suitable datapath is given in Fig. 12 which supports both enciphering and
self-synchronising deciphering operations. Although the design in terms of gates
would appear relatively simple, the permutative wiring within the stages results
in hardware architectures which are dominated by the routing.

In a typical application, a self-synchronising stream cipher operates on the
entire data stream, including synchonisation, header and framing bits. This is
the principal advantage which can be gained by having the self-synchronising

280 T. Good and M. Benaissa

0

1

KEY_IV
96-bit SHIFT REGISTER

FF 128-bit CCSR

DIN
DOUT

STAGE 1

7

STG6

STAGE 2..5

RUN

RUN
RUN

LD_KEY

DECRYPT

0 95

1 128RST
D Q

SR SRg*

KEYBIT
KEY

Fig. 12. Combined Moustique encipher/decipher datapath

property. There are a couple of circumstances that the cautious implementer
should prevent from occurring.

The use of the all-zero IV for encryption followed by a sequence of plaintext
zeros will result in all zero ciphertext irrespective of key. This may allow a poten-
tial attacker to gain some limited information and distinguish Moustique from
other ciphers. The all-zero IV also results in the first byte of ciphertext being un-
encrypted. The all-one IV has similar undesirable properties. It is recommended
that the cautious implementer prevent the use of IVs containing repeating se-
quences of low period.

The response of the decipher operation to an all-zero ciphertext, of N bits in
length, is to output a portion of constant plaintext N-104 bits long.

3.7 Pomaranch

Pomaranch has 80-bit and 128-bit versions and consist of 6 or 9 sections each
being an 18-bit jump-controlled linear feedback shift register (CJCSG), two dif-
ferent types defined, connected by non-linear function (Fig. 13). A jump-control
term is derived using a complex key-dependant non-linear function and passed
between the stages. This function is formed by the modulo-2 addition of 9 key
bits followed by inversion in GF(29), further mod-2 addition of another 7 key
bits to the middle 7-bits of the inversion result and finally a 7-bit reduction filter
(PNLBF) to yield a single jump-control output bit. The final stage does not re-
quire the JCout term this is depicted (Fig. 14) by a shaded (virtual) multiplexer
marked with the letter-v.

The ciphers authors provide the necessary field constructions for a composite
field equivalent in GF((23)3). Such construction is typically much more efficient
than a conventional ROM look-up table or typical optimisers random logic im-
plementation. However, only the middle 7-bits of the 9-bit inversions output are
required thus the ROM is approx. ×4 smaller than that needed to describe the
GF(29) inversion so the advantage of using composite field arithmetic in this

ASIC Hardware Performance 281

1

0

80-bit SHIFT REGISTER (KEY)

0

1

LOAD_IV

RUN

0..15 79

KEY_IV

KS

STAGE
1

KEY INIT

KS

JCIN JCOUT
STAGE
3..5

KEY INIT

KS

JCIN JCOUT
STAGE

2

KEY INIT

KS

JCIN JCOUT
0

1

RUN

0

1

RUN

(TYPE1) (TYPE2)RUN

STAGE
6

INIT

S16

JCIN S17

S0

16..31

INIT6
CONST

INITi
CONST

INIT2
CONST

INIT1
CONST

G

Fig. 13. Pomaranch-80 datapath architecture

INVERSION
GF(29) PNLBF

1
v
0

LAST
STAGE

CJCSG

INIT

S17

JCIN

S0

JCOUT

JCIN

INITKEY

S16S0

9 7
K0..8

K9..15

9 TAPS SELECTED
ACCORDING TO
TYPE-1 OR 2 STAGE

Fig. 14. Generic stage processing element for Pomaranch

JCIN

S16

S17

S0

F(0)
const

1

0

Linear Feedback, reduction XOR of S(i) AND FDK(i)

D Q

0

D Q

1

D Q

2..16

D Q

17

18-bit zero detection

FB_EN

RUN

FIX
ZEROS

FB_EN

RUN

F(1)
const

F(i)
const

F(17)
const

FB_EN FB_EN FB_EN

PRE/CLR PRE/CLR PRE/CLR PRE/CLR

INI0 INI1 INI2..16 INI17

Fig. 15. Pomaranch CJCSG detail

282 T. Good and M. Benaissa

instance is more marginal. The jump-control feedback between the sections frus-
trates attempts to roll the design into a single configurable stage supported by
a suitable memory.

The state contained in CJCSG’s must be initialised to a set of constants
and the feedback terms being defined by constant polynomials for each type of
CJCSG (Fig. 15). During IV loading the feedback must be disabled. To avoid
the all-zero state in any CJCSG a step is required during initialisation to condi-
tionally set the LSB. A second output from the CJCSG is one bit of the internal
state from each which are combined by a function, G, to yield a single bit of
keystream per cycle.

3.8 Trivium

The key feature of Trivium is its simplicity, it supports parallelism by replicating
the filter functions from ×1 to ×64 which gives a large design space for trading
between throughput, area and power. The internal state is 288-bits giving Grain
the edge in terms of lowest area, however, its superior parallelism and simplicity
give Trivium the edge in terms of throughput.

The datapath (Fig. 16) may be readily arranged with a few additional gates to
perform the required padding during the key/IV loading phase without resorting
to additional cycles. Many implementers will favour the ×8 design giving 8-bit
I/O, however even if serial output is desired working at say ×4 or ×8 and adding
an SR for serialising the I/O to give superior power-area-time performance and
reduce the initial mixing time. As an alternative the parallel input/output may
be used directly. For ×32 and ×64 variants, the padding between the key and
IV is most naturally input as part of the wider key/IV words.

OUTPUT
FILTER

1

0

LOAD

LOAD

LOAD

KEY_IV

KS

NLF t1

NLF t2

NLF t3

3-bit SR
288 287 286

108-bit SR
285 178264

80-bit SR
173 94171 162

13-bit SR
93 92 91 81

80-bit SHIFT REGISTER
80 169 66

0

1

LOAD

4-bit SR
177 176 175 174

P
E
R
M
U
T
A
T
I
O
N

243

LOAD

LOAD

Fig. 16. Block diagram of Trivium

ASIC Hardware Performance 283

4 Results

This section summarises the ASIC performance results for the authors’ hardware
designs for the various stream cipher candidates submitted to the State-of-the-
art stream ciphers conferences, SASC 2006 [3], SASC 2007 [4] and SASC 2008
[5]. The results include the complete set of Phase 3 candidates submitted to the
hardware profile including any clarfications.

All the designs have been implemented using the same design flow. The nat-
ural bus-width for interfacing to each design was selected rather than forcing
all designs to use the same bus-width in order to avoid skewing the results.
Cadence tools were used together with ModelSim. The process selected was the
same 0.13µm CMOS and standard cell library. Best-case worst-case timing anal-
ysis was carried out for a desired clock rate of 10MHz. The designs were taken
through to physical layout (including clock tree synthesis, placement and rout-
ing). The final core area was converted to gate-equivalents. The resulting par-
asitic values were extracted and the netlist back annotated and simulated with
known test vectors to validate the design. To estimate the power consumption,
random test vectors were applied to the back annotated netlist and simulated
to collect switching activity for a set of 100 different 1 kilobit keystream gener-
ations. The power modelling was done using the foundry typical values for the
process (1.2Vcore 25◦C), the total power and static component are quoted in
the results to permit scaling. The results (Tables 2, 3, 4 & 5) incorporate both
initialisation and operational phases of the design under test.

For the notional future wireless network application, battery life, meeting
throughput requirements and area are important to the designer. A good

Table 1. Flexibility and simplicity

Design Flexibility Simplicitya

TPARmax ÷
TPAR100k

VHDL
(bytes)

Comment
lines

Empty
lines

VHDL
code lines

Grain80 (×1 − 16) 39,472 5,415 31 10 158
Trivium (×1 − 64) 116,913 5.916 45 26 159
F-FCSR-H 3,922 4,923 22 33 152
Grain128 (×1 − 32) 58,224 4,703 21 29 138
Mickey128 4,132 6,399 41 34 127
F-FCSR-16 3,175 5,668 20 38 177
Mickey2(80) 4,545 5,645 20 37 149
Pomaranch80 1,245 23,378 71 156 578
Pomaranch128 1,049 23,378 71 156 578
Moustique 4,762 16,960 44 77 496

Decim80b 4,274 16,210 79 103 421

Decim128b 3,096 16,560 95 117 396
Edon80 (×4 − 80PL) 19,632 20,704 95 149 618
a Figures quoted for designer’s first validated draft.
b Decim with ×4 versions are possible but not implemented by these authors. However,

the estimated ‘best-case’ flexibility result will be less than 4 times the stated value.

284 T. Good and M. Benaissa

measure for comparing designs is to consider the trade off between the Energy
per bit and Throughput/Area metrics.

RFID applications place limits on power, area and latency directly, excesses
in any would make a candidate unsuitable for the application. RFID tags must
be fundamentally low cost thus low area. A good metric for performance would
be power-latency product versus area.

These results are presented graphically in Figures 17, 18, 19 & 20.

Table 2. Our design results for 0.13μm Standard Cell CMOS

Design K
ey

b
it
s

In
te

rf
a
ce

b
it
s

L
o
a
d
/
In

i
cy

cl
es

B
it
s/

C
y
cl

e
(r

u
n
n
in

g
)

M
a
x
.
cl

o
ck

fr
eq

.
M

H
z

A
re

a
N

A
N

D
G

E
,

g
a
te

s

L
ea

ka
g
e

p
ow

er
,

μ
W

T
o
ta

l
P
ow

er
@

1
0
M

H
z,

μ
W

Grain80 80 1 321 1 724.6 1294 2.224 109.4
Grain80×4 80 4 81 4 694.4 1678 3.243 126.6
Grain80×8 80 8 41 8 632.9 2191 4.634 150.7
Grain80×16 80 16 21 16 617.3 3239 7.399 200.5

Trivium 80 1 1314 1 327.9 2580 3.823 175.1
Trivium×2 80 2 660 2 574.7 2627 3.954 182.8
Trivium×4 80 4 332 4 473.9 2705 4.149 184.6
Trivium×8 80 8 168 8 471.7 2952 5.071 203.4
Trivium×16 80 16 86 16 467.3 3166 5.339 214.4
Trivium×32 80 32 45 32 350.9 3787 7.501 282.5
Trivium×64 80 64 24 64 348.4 4921 10.677 374.2

F-FCSR-H 80 8 225 8 392.2 4760 7.973 269.3
F-FCSR-16 128 16 308 16 317.5 8072 13.731 470.1

Grain128 128 1 513 1 925.9 1857 2.698 167.7
Grain128×4 128 4 129 4 584.8 2129 3.806 183.4
Grain128×8 128 8 65 8 581.3 2489 4.898 205.1
Grain128×16 128 16 33 16 540.5 3189 6.882 254.6
Grain128×32 128 32 17 32 452.5 4617 11.442 344.7

Mickey128 128 1 417 1 413.2 5039 8.144 310.7
Mickey2(80) 80 1 261 1 454.5 3188 5.195 196.5

Pomaranch80 80 1 472 1 124.5 5357 10.547 569.3
Pomaranch128 128 1 594 1 104.9 8039 16.185 878.4

Moustique 96 1 202 1 476.2 9607 16.078 464.0

Decim80 80 1 1012 0.25 427.3 2603 3.894 157.7
Decim128 128 1 1617 0.25 309.6 3819 6.052 242.2

Edon80×4 80 8 1869 0.0473 207.9 4969 7.775 280.1
Edon80pl 80 1 392 1 243.3 13010 20.467 478.9

AES [4] 128 32 50 2.37 131.2a 5398 - -
AES [5] 128 8 1016 0.124 80.0a 3400 - -

a Results are for different CMOS processes (Satoh 0.11, Feldhofer 0.35). Power cannot
be scaled reliably between different processes and libraries. The area can be scaled to
0.13μm for comparison.

ASIC Hardware Performance 285

Table 3. Derived metrics for maximum clock frequency

Design M
a
x

T
h
ro

u
g
h
p
u
t,

M
bp

s

E
st

im
a
te

d
P
ow

er
,

μ
W

E
n
er

g
y
/
b
it
,

p
J
/
bi

t

A
re

a
-T

im
e,

μ
m

2
−

μ
s

T
p
u
t/

A
re

a
,

k
bp

s/
μ
m

2

P
ow

er
-A

re
a
-T

im
e

n
J
−

μ
m

2

Grain80 724.6 7772 10.72 9.26 107.99 72.0
Grain80×4 2777.7 8569 3.08 3.13 319.33 26.8
Grain80×8 5063.2 9247 1.82 2.24 445.78 20.7
Grain80×16 9876.5 11929 1.20 1.70 588.26 20.3

Trivium 327.9 5618 17.14 40.79 24.51 229.2
Trivium×2 1149.4 10283 8.95 11.85 84.40 121.8
Trivium×4 1895.7 8559 4.51 7.40 135.17 63.3
Trivium×8 3773.6 9360 2.48 4.06 246.62 38.0
Trivium×16 7476.6 9777 1.31 2.20 455.50 21.5
Trivium×32 11228.0 9658 0.86 1.74 571.88 16.9
Trivium×64 22299.6 12677 0.56 1.14 874.13 14.5

F-FCSR-H 3137.2 10255 3.26 7.86 127.13 80.7
F-FCSR-16 5079.3 14503 2.85 8.23 121.38 119.5

Grain128 925.9 15283 16.50 10.39 96.20 158.9
Grain128×4 2339.1 10505 4.49 4.71 211.97 49.6
Grain128×8 4651.1 11646 2.50 2.77 360.52 32.3
Grain128×16 8648.6 13399 1.54 1.91 523.09 25.6
Grain128×32 14479.6 15093 1.04 1.65 604.92 24.9

Mickey128 413.2 12512 30.27 63.21 15.82 790.9
Mickey2(80) 454.5 8701 19.14 36.35 27.50 316.3

Pomaranch80 124.5 6969 55.96 223.01 4.48 1554.3
Pomaranch128 104.9 9063 86.37 397.15 2.51 3599.6

Moustique 476.2 21347 44.83 104.59 9.56 2232.7

Decim80 106.8 6577 61.55 126.28 7.91 830.6
Decim128 77.3 7316 94.52 255.80 3.90 1871.6

Edon80×4 9.8 5670 576.13 2617.43 0.38 14840.8
Edon80pl 243.3 11174 45.92 277.18 3.60 3097.3

AES [4] 311 - - 90.12 11.10 -
AES [5] 10 - - 1776.33 0.56 -

Better is: higher lower lower lower higher lower

286 T. Good and M. Benaissa

Table 4. Derived metrics for an output rate of 10 Mbps (estimated typical future
wireless LAN)

Design C
lo

ck
F
re

q
u
en

cy
,

M
H

z

E
st

im
a
te

d
P
ow

er
,

μ
W

E
n
er

g
y
/
b
it
,

p
J
/
bi

t

A
re

a
-T

im
e,

μ
m

2
−

μ
s

T
p
u
t/

A
re

a
,

k
bp

s/
μ
m

2

P
ow

er
-A

re
a
-T

im
e

n
J
−

μ
m

2

Grain80 10.00 109.45 10.94 671 1.490 73.4
Grain80×4 2.50 34.07 3.40 870 1.150 29.6
Grain80×8 1.25 22.88 2.28 1136 0.880 26.0
Grain80×16 0.63 19.47 1.94 1679 0.596 32.7

Trivium 10.00 175.06 17.51 1337 0.748 234.1
Trivium×2 5.00 93.38 9.34 1362 0.734 127.2
Trivium×4 2.50 49.27 4.93 1402 0.713 69.1
Trivium×8 1.25 29.86 2.99 1530 0.654 45.7
Trivium×16 0.63 18.41 1.84 1641 0.609 30.2
Trivium×32 0.31 16.09 1.61 1963 0.509 31.6
Trivium×64 0.16 16.35 1.63 2551 0.392 41.7

F-FCSR-H 1.25 40.63 4.06 2468 0.405 100.3
F-FCSR-16 0.63 42.25 4.22 4185 0.239 176.8

Grain128 10.00 167.72 16.77 962 1.039 161.4
Grain128×4 2.50 48.69 4.87 1104 0.906 53.7
Grain128×8 1.25 29.92 2.99 1290 0.775 38.6
Grain128×16 0.63 22.36 2.23 1653 0.605 37.0
Grain128×32 0.31 21.85 2.18 2394 0.418 52.3

Mickey128 10.00 310.72 31.07 2612 0.383 811.6
Mickey2(80) 10.00 196.49 19.65 1652 0.605 324.7

Pomaranch80 10.00 569.34 56.93 2777 0.360 1581.2
Pomaranch128 10.00 878.38 87.83 4167 0.240 3660.6

Moustique 10.00 464.02 46.40 4980 0.201 2311.0

Decim80 40.00 619.10 61.91 1349 0.741 835.3
Decim128 40.00 950.52 95.05 1980 0.505 1882.0

Edon80×4 211.25 5761.22 576.12 2576 0.388 14840.5
Edon80pl 10.00 478.88 47.88 6744 0.148 3229.7

AES [4] 4.22 - - 2798 0.357 -
AES [5] 80.63 - - 1763 0.567 -

Better is: lower lower lower lower higher lower

ASIC Hardware Performance 287

Table 5. Derived metrics operating at 100kHz clock (low-end RFID/WSN applica-
tions)

Design T
h
ro

u
g
h
p
u
t,

M
bp

s

E
st

im
a
te

d
P
ow

er
,

μ
W

E
n
er

g
y
/
B

it
,

p
J
/
bi

t

A
re

a
-T

im
e,

μ
m

2
−

μ
s

T
p
u
t/

A
re

a
,

k
bp

s/
μ
m

2

P
ow

er
-A

re
a
-T

im
e,

n
J
−

μ
m

2

L
a
te

n
cy

,
μ
s

P
ow

er
-A

re
a
-

L
a
te

n
cy

,
μ
J
−

μ
m

2

P
ow

er
-L

a
te

n
cy

,
n
J

Grain80 0.100 3.29 32.96 67,098 0.0149 221 3,210 70.99 10.58
Grain80×4 0.400 4.47 11.19 21,747 0.0460 97 810 31.54 3.62
Grain80×8 0.800 6.09 7.61 14,198 0.0704 86 410 28.38 2.49
Grain80×16 1.600 9.33 5.83 10,493 0.0953 97 210 32.89 1.95

Trivium 0.100 5.54 55.36 133,747 0.0075 740 13,140 972.87 72.74
Trivium×2 0.200 5.74 28.71 68,092 0.0147 391 6,600 516.14 37.90
Trivium×4 0.400 5.95 14.89 35,061 0.0285 209 3,320 277.22 19.77
Trivium×8 0.800 7.05 8.82 19,127 0.0523 135 1,680 181.35 11.85
Trivium×16 1.600 7.43 4.64 10,259 0.0975 76 860 104.88 6.39
Trivium×32 3.200 10.25 3.20 6,135 0.1630 62 450 90.56 4.61
Trivium×64 6.400 14.31 2.23 3,986 0.2509 57 240 87.62 3.43

F-FCSR-H 0.800 10.58 13.23 30,847 0.0324 326 2,250 587.78 23.81
F-FCSR-16 1.600 18.29 11.43 26,153 0.0382 478 3,080 2357.93 56.34

Grain128 0.100 4.34 43.48 96,250 0.0104 418 5,130 214.70 22.30
Grain128×4 0.400 5.60 14.00 27,588 0.0362 154 1,290 79.74 7.22
Grain128×8 0.800 6.90 8.62 16,127 0.0620 111 650 57.86 4.48
Grain128×16 1.600 9.36 5.85 10,333 0.0968 96 330 51.06 3.08
Grain128×32 3.200 14.77 4.61 7,480 0.1337 110 170 60.12 2.51

Mickey128 0.100 11.17 111.69 261,204 0.0038 2,917 4,170 1216.64 46.57
Mickey2(80) 0.100 7.10 71.08 165,249 0.0061 1,174 2,610 306.58 18.55

Pomaranch80 0.100 16.13 161.35 277,724 0.0036 4,481 4,720 2115.12 76.15
Pomaranch128 0.100 24.80 248.07 416,742 0.0024 10,338 5,940 6140.88 147.35

Moustique 0.100 20.56 205.58 498,044 0.0020 10,239 2020 2068.22 41.53

Decim80 0.025 5.43 217.28 539,689 0.0019 2,931 10,120 741.69 54.97
Decim128 0.025 8.41 336.54 791,977 0.0013 6,663 16,170 2693.63 136.04

Edon80×4 0.005 10.49 2217.91 5,441,651 0.0002 57,132 18,690 5054.66 196.22
Edon80pl 0.100 25.05 250.51 674,421 0.0015 16895 3,920 6622.82 98.20

AES [4] 0.237 - - 118,054 0.0085 - 500 - -
AES [5] 0.001 - - 1,421,064 0.0007 - 10,160 - -

Better is: higher lower lower lower higher lower lower lower lower

288 T. Good and M. Benaissa

10
-1

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

Energy per processed bit, pJ/bit

Th
ro
ug
hp
ut
:A
re
a
ra
tio
,b
ps
/u
m2 Grain80

Grain80x4

Grain80x8
Grain80x16Triviumx32

Triviumx64

F -FCS R -H Grain128

Grain128x4

Grain128x8
Grain128x16

Grain128x32

Mickey128

F -FCS R -16

Mickey80-v2

P omaranch80

Pomaranch128

Decim80

Decim128

E don80x4

E don80x80

Trivium

Triviumx2

Triviumx4

Triviumx8

Triviumx16

Mous tique

Fig. 17. 0.13μm Standard Cell CMOS design performance metrics at maximum
throughput, arrow shows improving performance

10
0

10
1

10
2

10
3

10
2

10
3

10
4

Energy per processed bit, pJ/bit

Th
ro
ug
hp
ut
:A
re
a
ra
tio
,b
ps
/u
m2

Grain80

Grain80x4

Grain80x8

Grain80x16
Triviumx32

Triviumx64 F -FCS R -H

Grain128
Grain128x4

Grain128x8

Grain128x16

Grain128x32
Mickey128

F -FCS R -16

Mickey80-v2

P omaranch80

Pomaranch128

Decim80

Decim128

Edon80x4

Edon80x80

Trivium
Triviumx2

Triviumx4
Triviumx8Triviumx16

Mous tique

Fig. 18. Performance metrics for notional Wireless-LAN at 10Mbps throughput, arrow
shows improving performance

ASIC Hardware Performance 289

10
3

10
4

10
5

10
0

10
1

10
2

10
3

Area, Equiv. NAND gates

P
ow
er
-L
at
en
cy
pr
od
uc
t,
nJ

Grain80

Grain80x4

Grain80x8
Grain80x16

Triviumx32

Triviumx64

F -FCS R -HGrain128

Grain128x4

Grain128x8

Grain128x16
Grain128x32

Mickey128
F -FCS R -16

Mickey80-v2

Pomaranch80

Pomaranch128

Decim80

Decim128

Edon80x4

Edon80x80

Trivium

Triviumx2

Triviumx4

Triviumx8

Triviumx16

Mous tique

Fig. 19. Performance for low-end RFID/WSN application at 100kHz clock, arrow
shows improving performance

10
2

10
3

10
3

10
4

10
5

Number of lines of VHDL code (excl comments and blank lines)

Th
ro
ug
hp
ut
:A
re
a
ra
tio
s
M
ax
Fr
eq
:1
00
kH
z
cl
oc
k

Grain80(x1-16)

Trivium(x1-64)

F -FCS R -H

Grain128 (x1-32)

Mickey128

F -FCS R -16

Mickey80v2

Pomaranch80
Pomaranch128

Mous tique
Decim80

Decim128

Edon80 (x4-80)

Fig. 20. Flexibility as Throughput: Area for MaxFreq:100kHz clock versus Simplicity
as lines of VHDL

290 T. Good and M. Benaissa

5 Require Even Lower Power?

For the primary set of results presented in this paper a typical general purpose
standard cell library was used on a 0.13µm process with standard process options
for all the designs. The previous section provides a set of readily comparable
results between all of the Phase 3 hardware candidates. This section is only
included to demonstrate the advantage to any hardware design by moving to a
specialist low power library, selecting low-leakage process options and moving
to a more advanced design flow significant power savings can be achieved at
the expense of considerable additional design effort. At relatively low clock rates
relative to the critical path the core voltage may be reduced accepting longer
propagation delays thus further reducing the power consumption. As an example,
Table 6 shows the results for Grain and Trivium.

Table 6. Results using a specialist low power library

Design Grain80×8 Grain128×16 Trivium×8

Interface bits 8 16 8
Core voltage, V 0.8 0.8 0.8
Area, NAND GE 2796 4057 3244
Clock for 10Mbps, MHz 1.25 0.625 1.25
Power (10Mbps), μW 10.710 8.761 15.108
Energy/Bit (10 Mbps), pJ/bit 1.071 0.876 1.511
Power-Area-Time, nJ − μm2 11.5 13.6 18.8
Power (100 kHz clk), μW 0.857 1.403 1.209
Power-Latency (100kHz clk), pJ 352 463 2056

At 100kHz Grain80×8 shows approximately a factor of 7 improvement in
power-latency product (for the same VHDL source) by changing the library,
process options and flow. These results have been included as a reminder that
comparison in absolute units between different designs must be made using the
same technology, libraries and process options and to demonstrate the low re-
source nature of stream ciphers using an advanced flow and process options for
those who wish to make absolute comparisons with other designs.

6 Evaluation ASIC for Stream Ciphers

At time of writing there has been little published work on the side-channel at-
tacks such as differential power analysis, differential EM-analysis and fault injec-
tion techniques. To assist this effort, prototype quantities of an ASIC containing
all the Phase 3 hardware candidates have been designed and submitted for fabri-
cation on 0.18µm CMOS (Fig. 21). All the designs share a common synchronous
serial interface (including handshaking) with multiplexers and clock-gating to
select the cipher for testing. A total of 15-designs are included as tabulated in
Table 7.

ASIC Hardware Performance 291

Table 7. Cipher implementations

1 Moustique 6 F-FCSR-H 11 Mickey128
2 Edon80 7 F-FCSR-16 12 Pomaranch80
3 Trivium 8 Grain80 13 Pomaranch128
4 Decim80 9 Grain128 14 Grain80 (×8 internally)
5 Decim128 10 Mickey2(80) 15 Trivium (×8 internally)

Fig. 21. Layout for eSCARGOt (European Stream Ciphers Are Ready (to) GO)

7 Conclusions

This treatment has considered the entire set of Phase 3 candidates in the hard-
ware profile. Using the two sample applications of a notional future wireless
network (WLAN) and low-end radio frequency identification tags / wireless sen-
sor network nodes (RFID/WSN). The table below provides the first documented
attempt to summarise quantifiable results for all the performance dimensions
specified in [2] for each of the candidate ciphers. The authors’ overall view rela-
tive to the AES is summarised by the left hand column.

And finally, from the results obtained, it is clear that the overall area is domi-
nated by the flip-flops used to store the internal state; this leads to the following
general guidance for the development of low-resource hardware stream ciphers:

– the internal state should be composed from key/IV with minimum padding
to prevent constant keystream cases,

– the internal state should be stored using a shift register composed of simple
D-type flip-flops (without reset/preset, etc),

– there should be a non-linear (filter) function which is trivial in terms of area,

292 T. Good and M. Benaissa

Table 8. Summary of comparative results

Power-Area-
Time

Power-Area-
Time

Power-Area-
Time

Flexibility Simplicity

Max. clock WLAN RFID/WSN (design space) (code lines)

� Trivium(×64) Grain80(×8) Grain80(×8) Trivium Mickey128

�̈

Grain80(×16) Grain128(×16) Grain128(×16) Grain128 Grain128
Grain128(×32) Trivium(×8−32) Trivium(×8−32) Grain80 Mickey2(80)
F-FCSR-H F-FCSR-H Grain80
F-FCSR-16 Trivium

F-FCSR-H
F-FCSR-16

−̈
Mickey2(80) F-FCSR-16 F-FCSR-H Edon80 Decim128
Mickey128 Mickey2(80) Mickey2(80) Decim80 Decim80
Moustiquea Decim80 Decim128 Moustiquea

Moustiquea

�̈

Decim80 Mickey128 Mickey128 F-FCSR-H Pomaranch80
Edon80 Decim80 Pomaranch80 F-FCSR-16 Pomaranch128
Pomaranch80 Pomaranch80 F-FCSR-16 Mickey2(80) Edon80
Decim128 Decim128 Moustiquea Mickey128
Pomaranch128 Pomaranch128 Decim128 Pomaranch80

Moustiquea Edon80 Pomaranch128
Edon80 Pomaranch128

aMoustique is the only self synchronising stream cipher so should be considered of
significant merit irrespective of other performance metrics.

– feedback tap selection for the SR should allow for replication of the filter
function(s) to permit a more parallel state update and output thus increasing
the available P-A-T tradeoffs,

– the trade-off between filter function complexity and mixing phase cycles
should be evaluated at an early stage of development, and

– any N-bit word S-boxes should be avoided as they are a significant consumer
of area and power.

Acknowledgement

The authors wish to thank the developers of the candidate ciphers for all their
commitment and effort in continuing to refine their submission and further for
their assistance in understanding and resolving minor discrepancies between the
descriptions and reference designs.

References

1. ECRYPT, Call for Stream Cipher Primitives (April 12, 2005),
http://www.ecrypt.eu.org/stream/call/

2. Batina, L., Kumar, S., Lano, J., Lemke, K., Mentens, N., Paar, C., Preneel, B.,
Sakiyama, K., Verbauwhede, I.: Testing Framework for eSTREAM Profile II Can-
didates. In: SASC (2006), www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream/call/
www.ecrypt.eu.org/stream

ASIC Hardware Performance 293

3. Good, T., Chelton, W., Benaissa, M.: Review of stream cipher candidates from a
low resource hardware perspective. In: SASC (2006), www.ecrypt.eu.org/stream

4. Good, T., Benaissa, M.: Hardware results for selected stream cipher candidates. In:
SASC (2007), www.ecrypt.eu.org/stream

5. Good, T., Benaissa, M.: Hardware performance of phase-III stream cipher candi-
dates. In: SASC (2008), www.ecrypt.eu.org/stream

6. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Nagi, K. (ed.) Transactional Agents.
LNCS, vol. 2249, pp. 230–254. Springer, Heidelberg (2001)

7. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of
Sand. IEE Proceedings on Information Security 152, 13–20 (2005)

www.ecrypt.eu.org/stream
www.ecrypt.eu.org/stream
www.ecrypt.eu.org/stream

Author Index

Arnault, François 170

Babbage, Steve 191
Benaissa, Mohammed 267
Berbain, Côme 98, 140
Berger, Thierry 170
Bernstein, Daniel J. 84
Billet, Olivier 98, 140
Biryukov, Alex 48
Boesgaard, Martin 69

Canteaut, Anne 98, 140
Courtois, Nicolas 98, 140

Daemen, Joan 210
Dawson, Ed 20
Debraize, Blandine 140
De Cannière, Christophe 119, 244
de Vries, Miriam Wiggers 57
Dodd, Matthew 191

Gilbert, Henri 98, 140
Gligoroski, Danilo 152
Good, Tim 267
Goubin, Louis 98, 140
Gouget, Aline 98, 140
Granboulan, Louis 98, 140

Hagita, Mariko 7
Hawkes, Philip 57
Hell, Martin 179
Helleseth, Tor 224
Henricksen, Matt 20

Jansen, Cees J.A. 224
Johansson, Thomas 179

Kholosha, Alexander 224
Kitsos, Paris 210
Knapskog, Svein Johan 152

Lauradoux, Cédric 98, 140, 170

Markovski, Smile 152
Matsumoto, Makoto 7
Maximov, Alexander 179
McDonald, Cameron 57
Meier, Willi 179
Minier, Marine 98, 140

Nishimura, Takuji 7

Paddon, Michael 57
Pornin, Thomas 98, 140
Preneel, Bart 244

Robshaw, Matthew 1
Rose, Gregory G. 57

Saito, Mutsuo 7
Sibert, Hervé 98, 140
Simpson, Leonie 20

Vesterager, Mette 69

Wu, Hongjun 39

Zenner, Erik 69

	Title Page
	Preface
	Table of Contents
	The eSTREAM Project
	Introduction
	eSTREAM: Phase 1
	eSTREAM: Phase 2
	eSTREAM: Phase 3
	References

	CryptMT3 Stream Cipher
	Introduction
	CryptMT3: A New Variant Based on 128-Bit Operations
	Notation
	SIMD Fast MT
	A New Filter
	Conversion to 8-Bit Integers
	A New Booter for the Initialization
	Key and IV Set-Up

	Resistance of CryptMT3 to Standard Attacks
	Period
	Time-Memory-Trade-off Attack
	Dimension of Equidistribution
	Correlation Attacks and Distinguishing Attacks
	Algebraic Degree of the Filter
	Speed Comparison

	Conclusion
	Intellectual Property Status
	References

	The Dragon Stream Cipher: Design, Analysis, and Implementation Issues
	Introduction
	Dragon Design Specification
	Dragon's State Update Function (F Function)
	Initialization
	Keystream Generation

	Design Principles of Dragon
	Design of the F Function
	Design of the Key Initialisation Process

	Cipher Analysis
	Statistical Tests
	Period Length
	Weak Keys

	Cryptanalysis of Dragon
	Distinguishing Attacks
	Key/State Recovery Attacks

	Implementation and Performance
	Software
	Hardware

	Conclusion
	References
	Test Vectors
	Dragon's S-Boxes

	The Stream Cipher HC-128
	Introduction
	Cipher Specifications
	Operations, Variables, and Functions
	Initialization Process (Key and IV Setup)
	The Keystream Generation Algorithm

	Security Analysis of HC-128
	Period
	Security of the Secret Key
	Security of the Initialization Process (Key/IV Setup)
	Randomness of the Keystream

	Implementation and Performance of HC-128
	The Optimized Implementation of HC-128
	The Performance of HC-128

	Conclusion
	References

	Design of a New Stream Cipher—LEX
	Introduction
	Description of LEX
	Analysis of LEX
	Period of the Output Sequence
	Tradeoff Attacks
	Algebraic Attacks
	Differential, Linear, or Multiset Resynchronization Attacks
	Potential Weakness --- AES Key-Schedule
	No Weak Keys
	Dedicated Attacks
	The Slide Attack

	Implementation
	Strong Points of the Design
	Summary
	References

	Specification for NLSv2
	Introduction
	Design Considerations
	Heritage

	Notation
	Design Considerations
	Similarities with Preceding SOBER Designs
	Changes from Preceding SOBER Designs

	Description
	Summary of Keystream Generation
	Generating Output
	The S-Box Function f
	Key and Nonce Loading

	Security Analysis of NLSv2
	Heuristic Analysis of NLSv2
	Distinguishing Attacks and NLSv2

	References
	Appendix
	The S-Box

	The Rabbit Stream Cipher
	Introduction
	Organization and Notation

	The Rabbit Stream Cipher
	Key Setup Scheme
	IV Setup Scheme
	Next-State Function
	Counter System
	Extraction Scheme

	Security Analysis
	Key Setup Properties
	IV Setup Properties
	Period Length
	Partial Guessing
	Algebraic Attacks
	Correlation Attacks
	Differential Analysis
	Statistical Tests

	Performance
	Software Performance
	Hardware Estimates

	Conclusion
	References

	The Salsa20 Family of Stream Ciphers
	Introduction
	Low Level: Which Operations Are Used?
	What Does Salsa20 Do?
	Should There Be Integer Multiplications?
	Should There Be S-Box Lookups?
	Should There Be Fewer Rotations?

	High Level: How Do Blocks Interact?
	What Does Salsa20 Do?
	Should Encryption and Decryption Be Different?
	Should the Stream Depend on the Plaintext?
	Should There Be More State?
	Should Blocks Be Larger Than 64 Bytes?
	Should Keys Be Smaller Than 256 Bits?

	Medium Level: How Is a Block Generated?
	What Does Salsa20 Do?
	Should Key Words and Nonce Words Be Separated?
	Should There Be More Code?
	Should There Be Faster Diffusion Among Words?
	Should There Be Modifications Other Than Xor-a-Rotated-Sum?
	Should There Be Other Rotation Distances?

	Cryptanalysis
	References

	Sosemanuk, a Fast Software-Oriented Stream Cipher
	Introduction
	Specification
	SERPENT and Derivatives
	The LFSR
	The Finite State Machine
	Output Transformation
	Sosemanuk Workflow
	Key Initialization and IV Injection

	Design Rationale
	Key Initialization and IV Injection
	LFSR
	FSM
	The Output Transformation

	Resistance Against Known Attacks
	Security Model
	Time-Memory-Data Tradeoff Attacks
	Guess and Determine Attacks
	Correlation Attacks
	Distinguishing Attacks
	Algebraic Attacks

	Implementation
	Performance
	Software Implementation
	Hardware Implementation

	Strengths and Advantages of Sosemanuk
	References
	Specifications of SERPENT
	S-Boxes Definitions
	Linear Part of SERPENT Round Function

	eSTREAM Software Performance
	Introduction
	The Testing Framework
	API Compliance
	Correctness
	Performance

	Platforms
	Results
	Profile 1 Candidates with 128-Bit Keys
	Profile 1 Candidates with 256-Bit Keys

	References

	Decimv2
	Introduction
	Overview of Decimv2
	Keystream Generation
	Key/IV Setup
	Differences between Decim and Decimv2

	Specification
	The Filtered LFSR
	Decimation
	Buffer Mechanism
	Key/IV Setup

	Design Rationale
	The Filtered LFSR
	Decimation
	Key/IV Setup
	The Buffer Mechanism

	Hardware Implementation
	Decim-128
	The Filtered LFSR
	The Buffer Mechanism
	Key/IV Setup

	Conclusion
	References

	The Stream Cipher Edon80
	Introduction
	Design Goals for Edon80
	Preliminaries: Basic Mathematical Terms, Definitions, and Theorems Used for Edon80
	Algorithmic Description of Edon80
	Keystream Mode
	KeySetup Mode
	IVSetup Mode

	Functional Description of Edon80
	KeySetup Mode
	IVSetup Mode
	Keystream Mode
	Reference C Code Implementation and Test Vectors

	Security of Edon80
	Security on Related Key Attack
	Security of IVSetup Mode
	Guess-and-Verify Attack
	Projected Period of the Keystream
	Key Recovery Attack of Hell and Johansson

	Hardware Implementation, Simulations and Performances
	Adding MAC Functionality to Edon80
	Stretching the Speed Asymmetry of Edon80

	Conclusions
	References

	F-FCSR Stream Ciphers
	Introduction
	Background on FCSR Automata
	FCSR vs LFSR
	FCSR in Galois Mode
	Choice of the Connection Integer q

	Filtering and IV Setup Procedure
	Filtering
	IV Setup

	Description of F-FCSR Stream Ciphers
	F-FCSR-H
	F-FCSR-16

	Security Analysis
	Resistance to Generic Attacks
	Dedicated Attacks
	Weak Keys

	Conclusion
	Future Directions
	References

	The Grain Family of Stream Ciphers
	Design Specifications
	Grain - Design Parameters
	Grain-128 --- Design Parameters

	Throughput Rate
	Security and Design Choices
	Linear Approximations
	Time-Memory Tradeoff Attacks
	Algebraic Attacks
	Chosen-IV Attacks
	Fault Attacks

	Conclusions
	References

	The MICKEY Stream Ciphers
	Introduction and Overview
	Design Principles
	The Variable Clocking of R: What It Does
	Motivation for the Variable Clocking
	Selection of Clock Control Bits
	The S Register Feedback Function
	Key Loading
	Algebraic Attacks
	Output Function

	Register Sizes
	Time-Memory-Data (TMD) Tradeoff, with or without BSW Sampling
	State Entropy Loss and Keystream Convergence
	Weak Keys

	Performance of the Algorithm
	Afterthoughts
	Security Against Classical Cryptanalysis
	Security Against Side Channel Attacks
	Performance

	Conclusion
	References
	Specification of the Cipher MICKEY
	Input and Output Parameters
	Acceptable Use
	Components of the Keystream Generator
	Key Loading and Initialisation
	Generating Keystream

	Specification of the Cipher MICKEY-128
	Input and Output Parameters
	Acceptable Use
	Components of the Keystream Generator
	Key Loading and Initialisation
	Generating Keystream

	The Self-synchronizing Stream Cipher Moustique
	Introduction
	Self-synchronizing Stream Encryption
	Definition
	Security Claims
	Differential Cryptanalysis
	Linear Cryptanalysis

	Cipher Function Architecture
	Pipelining
	Machines with Finite Input Memory
	Conditional Complementing Shift Registers
	The Pipelined Stages Revisited

	The Moustique Cipher Function
	The Moustique Internal State
	The Moustique State Updating Function
	Putting It Together

	Design Rationale
	The CCSR
	The Pipelined Stages

	Hardware Performance and Implementation Aspects
	References

	Cascade Jump Controlled Sequence Generator and Pomaranch Stream Cipher
	Introduction
	Jumping Technique
	Description of the CJCSG
	Jump Register Section
	Modes of Operation
	Initialization

	Lightweight Implementation of the S-Box
	The Composite Field Representation
	Calculating the Inverse
	Hardware Implementation
	Numerical Examples

	Period and Linear Complexity
	Security Analysis of the Cipher
	References
	Functions and Constants

	Trivium
	Introduction
	Security and Efficiency Considerations
	Security
	Efficiency

	How Block Ciphers Are Designed
	Block Ciphers and Linear Characteristics
	Branch Number

	From Blocks to Streams
	Polynomial Notation
	Linear Correlations
	Propagation of Selection Polynomials
	Branch Number

	Constructing a Key Stream Generator
	Basic Construction
	Analysis of Linear Characteristics
	An Improvement
	Linear Characteristics and Correlations

	Trivium's Design
	A Bit-Oriented Design
	Specifying the Parameters

	Specifications of Trivium
	Key Stream Generation
	Key and IV Setup
	Alternative Description

	Security
	Correlations
	Period
	Guess and Determine Attacks
	Algebraic Attacks
	Resynchronization Attacks

	Implementation Aspects
	Hardware
	Software

	Conclusion
	References

	ASIC Hardware Performance
	Introduction
	Measuring Hardware Performance
	Candidate Ciphers
	Decimv2 and Decim-128
	Edon80
	F-FCSR-16 and F-FCSR-H
	Grain and Grain-128
	Mickey
	Moustique
	Pomaranch
	Trivium

	Results
	Require Even Lower Power?
	Evaluation ASIC for Stream Ciphers
	Conclusions
	References

	Author Index

