
Alternating-Time Stream Logic for Multi-agent Systems

Sascha Klüppelholz and Christel Baier�

Technische Universität Dresden, Institut für Theoretische Informatik, Germany
{klueppel,baier}@tcs.inf.tu-dresden.de

Abstract. Constraint automata have been introduced to provide a compositional,
operational semantics for the exogenous coordination language Reo, but they
can also serve interface specification for components and an operational model
for other coordination languages. Constraint automata have been used as basis
for equivalence checking and model checking temporal logical properties. The
main contribution of this paper is to reason about the local view and interac-
tion and cooperation facilities of individual components or coalitions of compo-
nents by means of a multi-player semantics for constraint automata. We introduce
a temporal logic framework that combines classical features of alternating-time
logic (ATL) for concurrent games with special operators to specify the observable
data flow at the I/O-ports of components. Since constraint automata support any
kind of synchronous and asynchronous peer-to-peer communication, the result-
ing game structure is non-standard and requires a series of nontrivial adaptations
of the ATL model checking algorithm.

1 Introduction

In the last decade several models and specification languages for formal reasoning about
the middle-ware layer of software have been developed. Such coordination models con-
sist of ad-hoc libraries of functions providing higher-level inter-process communication
support in parallel and especially distributed applications. They aim at a clean separa-
tion between individual software components and their interactions within their overall
software organization. Our approach is inspired by the coordination language Reo [2],
which provides the glue-code to coordinate components in an exogenous manner. In
this paper we use constraint automata, which have been introduced as an operational
semantics for Reo [6]. Constraint automata provide a specification formalism for both,
the glue-code (e.g. given as a (Reo) network, or another (channel-based) coordination
mechanism) and the behavioral interfaces of components, and can serve to formalize the
overall behavior of the composite system. Constraint automata capture any kind of syn-
chronous and asynchronous peer-to-peer communication including data-dependencies
of I/O-operations. The syntax of constraint automata is similar to ordinary labeled tran-
sition systems and related models, such as timed port automata [15], I/O-automata [20],
and interface automata [10]. The differences are mainly based on the fact that constraint
automata support any kind of channel-based communication. An extensive discussion
on the differences and similarities can be found in [6].

� The authors are supported by the DFG-NWO project SYANCO and the EU project CREDO.

D. Lea and G. Zavattaro (Eds.): COORDINATION 2008, LNCS 5052, pp. 184–198, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Alternating-Time Stream Logic for Multi-agent Systems 185

The purpose of this paper is to provide a multi-agent semantics for constraint au-
tomata and an alternating-time temporal logic to specify and verify the components
considered as individual players of a multi-agent game. The connected components are
the individual players and the network sets up the rules how those players interact with
each other. The glue-code might be seen as a complex set of social laws [13,24] the
players have to stick to. Constraint automata, interpreted as multi-player game struc-
tures, are a special type of concurrent games. The specific challenges of an alternating
time approach are caused by the very special mixture of asynchrony and synchrony,
mutual dependencies of I/O-operations and data-dependencies. In each state, several
concurrent I/O-operations can be enabled, but only some of them might be available
once a player refuses some synchronization or declares conditions on the data values
accepted on his input ports or on his pending write operations. Furthermore, constraint
automata can contain some internal nondeterminism, which yields a rather complex
and nonstandard concurrent game structure. We are not aware of any other paper that
treats alternating-time aspects for such concurrent games, where the enabledness and
also the effect of a concurrent I/O-operation highly depends on the choices of the other
players. Our approach allows us to check whether or not some coalition of agents has
a strategy to achieve a common goal, no matter how the opponents behave, or which
internal nondeterministic choices were made. In contrast to standard concurrent games,
see e.g. [1,9], in our approach a coalition’s strategy may select sets of I/O-operations or
even refuse any I/O-operations.

For specifying and analyzing the local views and interaction possibilities of (coali-
tions of) agents, we introduce an alternating-time logic, called alternating-time stream
logic (ASL). The logic ASL is a CTL-like branching-time logic which combines the fea-
tures of standard ATL [1] with the operators of BTSL [18]. The logic BTSL has been
introduced as a temporal logic for reasoning about (Reo) networks. Beside the standard
modalities of CTL [8], BTSL supports the specification of the observable data flow at the
I/O-ports of channels and components by means of regular expressions. The focus of
ATL is to ask for the existence (and absence) of a coalition’s strategy to achieve (avoid
respectively) a specific temporal goal once the behavior for each of the components is
specified.

For a simple example, we regard a ticket vending machine, which consists of a num-
ber of components (e.g. I/O-device, clock, destination, price, payment, and printer). The
exact behavior of the components might be specified in terms of constraint automata.
ASL can be used to formalize the property stating that the user (possibly together with
some other component like the clock) can find a way to trick the other players and get a
ticket without paying. A dual ASL property would state that no matter what strategy the
opponents use, the coalition of opponents will not have a chance to avoid that sending
the cancel signal always resets all components to their initial configuration.

As a first step we assume perfect recall on the systems history and perfect informa-
tion on the global state of the system. This interpretation of constraint automata as a
multi-player game is consistent with the standard semantics of ATL and adequate if the
strategies are viewed as a central control that is aware of all activities in the system.

Our approach differs from other ATL-like approaches for concurrent multi-player
games in various aspects. First, our nonstandard game structure (see explanations above)

186 S. Klüppelholz and C. Baier

requires a revised notion of strategies for (coalitions of) components. Second, since
components may refuse any further interaction from some moment on, the concept of
finite runs and fairness plays a crucial role in the logic ASL. To reason about liveness
properties we need an adaption of the standard notion of strong (process) fairness. Our
notion of fairness is not a requirement for strategies, but formalizes the ability of certain
strategies of a component C to enforce infinite data flow at the I/O-ports of C. Third,
ASL provides special operators to reason about the observable data flow at the I/O-ports
of the components and the nodes of the given network. To the best of our knowledge,
such operators have not yet been investigated in the context of alternating-time game
models.

Organization. Section 2 gives a brief introduction to constraint automata. In section 3
we provide the multi-player semantics for constraint automata and introduce the notion
of a strategy and its runs. Section 4 introduces the temporal logic ASL and presents
corresponding model checking algorithms. Section 5 introduces fairness assumptions
to ASL model checking, before section 6 concludes the paper. An extended technical
report including the proofs and other technical material is available on the web [19].

2 Constraint Automata (CA)

This section summarizes the main concepts of CA. We slightly depart from the syntax
of CA as introduced in [6] and deal with transitions q

c−→ p, where c is a concurrent
I/O-operation, i.e., c consists of a (possibly empty) node-setN⊆ N together with data
items for each A ∈N that are written or received at node A. In the moment where c is
executed there is no data flow at the nodes A ∈ N\N.

Concurrent I/O-operations and I/O-streams. Let N be a finite, nonempty set of nodes.
We define a concurrent I/O-operation as a function c : N → Data∪ {⊥}, where the sym-
bol ⊥ means “undefined”. We write Nodes(c) for the set of nodes A ∈ N such that
c(A) ∈ Data, where Data is the data domain. For technical reasons, we also allow the
empty concurrent I/O-operation c∅ with Nodes(c∅) = ∅. It represents any internal step
of some component or a non-observable step, where data flow appears at some hid-
den (invisible) nodes only. We refer to CIO as the set of all concurrent I/O-operations
(including c∅). As we suppose N and Data to be finite, the set CIO of concurrent I/O-
operations is finite as well. When reasoning about the data flow in a Reo network we
will also need a special symbol

√
that indicates that data flow has stopped. CIO√ stands

for CIO∪ {
√

}.

Definition 1 (Constraint automata [6]). A constraint automaton (CA) is a tuple

A = 〈Q,N,−→,Q0,AP,L〉,

whereQ is a finite and nonempty set of states, N a finite set of nodes, −→ is a subset of
Q×CIO×Q called the transition relation of A,Q0 ⊆Q a nonempty set of initial states,
AP a finite set of atomic propositions, and L : Q→ 2AP a labeling function. We write
q

c−→ p instead of (q,c,p) ∈−→. Furthermore, we define the set of all I/O-operations
enabled in q as CIO(q)

def
=

{
c ∈ CIO : q

c−→ p for some p ∈Q
}

.

Alternating-Time Stream Logic for Multi-agent Systems 187

Intuitively, the nodes correspond to the I/O-ports of the components. For the pictures of
CAs we shall use symbolic representations of the transition relation by combining tran-
sitions with the same starting and target state. For this purpose, we use I/O-constraints,
i.e., propositional formulas in positive normal form that stand for sets of concurrent
I/O-operations. The I/O-constraints may impose conditions on the nodes that may or
may not be involved and on the data items written on or read from them.

I/O-constraints (IOC). The abstract syntax of I/O-constraints is given by the grammar:

ioc ::= tt
∣
∣ ff

∣
∣ A

∣
∣ ¬A

∣
∣ (dA1 , . . . ,dAk

) ∈D
∣
∣ ioc1 ∧ ioc2

∣
∣ ioc1 ∨ ioc2

whereA∈ N,A1, . . . ,Ak are pairwise distinct nodes in N andD⊆ Datak. The meaning
of an I/O-constraint ioc is a subset CIO(ioc) of CIO defined in the obvious way. We
often use simplified notations for the IOCs of the form (dA1 , . . . ,dAk

) ∈ D. E.g., the
notation dA = dB is a shorthand for (dA,dB) ∈ {(d1,d2) ∈ Data2 : d1 = d2}, while
A∧ (dB ∈ P) stands for the set {c ∈ CIO : {A,B} ⊆ Nodes(c) ∧ c(B) ∈ P}.

Example 1 (CA). The following two CAs realize possible implementations for the des-
tination component with node set ND = {E,I,K,O,R} and price component with node
set NP = {F,J,M,T ,V ,W} of the ticket vending machine. Both components are allowed
to operate if and only if some data flow occurs on their synchronization ports E and F
respectively. In the picture below we use a parameterized representation for states.

dK = cancel

Dest0
(dI > μ) ∧

E ∧ (dR = ”unkn”)

E ∧ (dI = i)∧
(dR = dO = desti)

F ∧ (dT = desti)∧

(dJ = cancel) ∨ (dM = pi,j)

Pricepi,jPrice0

dJ = cancel

(dV = typej) ∧ (dW = pi,j)

The destination component simultaneously reads some destination id (variable i) on its
input port I and writes the destination string (variable desti) to the I/O-device using
port R and its output portO. If the destination number given is too large, i.e., it exceeds
a certain maximum μ, the I/O-device gets a message that the selected destination is
unknown. The price component receives two integer values at its input ports T and
V for the destination (variable desti) and ticket type (variable typej) and sends the
corresponding price (variable pi,j) first to the I/O-device using port W and in a second
step to the payment component using port M. Both automata accept a cancel signal at
any state and reset to their initial configuration.

Terminal States. A state q is called terminal if data flow may stop in state q. This is
the case if all enabled concurrent I/O-operations require some activity of a component
connected to a sink or source node. Formally, state q is said to be terminal if for all
concurrent I/O-operations c that are enabled in state q, the node-set Nodes(c) is non-
empty. Stated differently, state q is terminal iff c∅ /∈ CIO(q). Note that data flow does
not need to stop in terminal states. Instead data flow continues if there is an enabled
concurrent I/O-operation c where the involved components agree on interacting with
each other by means of performing the write and read operation specified by c. For each

188 S. Klüppelholz and C. Baier

non-terminal node q, an invisible transition is enabled, i.e., we have c∅ ∈ CIO(q). This
I/O-operation does not require any interaction with the components that are connected
to the sink and source nodes and will fire, unless another transition is taken.

Executions, Completeness, Paths, I/O-streams. An execution in A is a finite or infinite
sequence built by instances of consecutive transitions: η = q0

c1−→ q1
c2−→ . . .

where q0,q1, . . . ∈Q, c1,c2, . . . ∈ CIO, and qi
ci+1−−−→ qi+1 for all i� 0.

To reason about “maximal” behaviors of CAs we introduce the notions of complete
executions and paths. An execution is said to be complete if it is either infinite or it is
finite and ends in a terminal state. A path of A is either an infinite execution or arises
from a finite complete execution by adding a special transition symbol

√
to denote

termination. More precisely, the finite paths have the form π = q0
c1−→ . . .

cn−→ qn

√
−→ qn

where qn is terminal. In the sequel, we shall use the symbol η for executions and the
symbol π to range over paths. We write Paths(q) to denote the set of all paths starting in
q and Execfin(q) for the set of all finite executions starting in q. The length |π| of a pathπ
is the total number of transitions taken in π (including the pseudo-transition with label√

). Thus, the length of an infinite path is ∞, while the length of a finite path π as above

is n+1. Let π=q0
c1−→q1

c2−→ . . . be a path and 0 �n< |π|. Then π ↓n denotes the prefix

of path π with length n, i.e., π ↓n def
= q0

c1−→ . . .
cn−→ qn is an execution, while forn= |π|

we have that π ↓n = π is still a path. The I/O-stream ios(η) of a finite execution η is the
word over CIO that is obtained by taking the projection to the labels of the transitions.

That is, if η = q0
c1−→ . . .

cn−→ qn then ios(η)
def
= c1 . . .cn. Similarly, the associated I/O-

stream for a finite path π = q0
c1−→ . . .

cn−→ qn

√
−→ qn is defined by ios(π)

def
= c1 . . .cn

√
.

Let IOS = CIO∗ ∪CIO∗√ denote the set of all I/O-streams.

3 Constraint Automata as Multi-player Games

In this section we introduce a game-theoretical interpretation for CA. The players are
the individual components using (a)synchronous peer-to-peer communication. Each of
the players has control over his I/O-behavior at its interface nodes. A player might
refuse some or even any synchronization operation with other players. As in ordinary
ATL, players might build arbitrary coalitions to achieve a certain common goal includ-
ing a specific temporal behavior. A coalition of players induces a set of controllable
nodesN⊆ N, the union of all controllable coalition nodes, for which the players might
try to develop a common strategy to achieve their objective(s). Intuitively, anN-strategy
takes the history of the system formalized by a finite execution as input, (i.e., we sup-
pose here perfect recall) and declare the conditions under which theN-agents (members
of the coalition) are willing to cooperate with each other and their opponents. For in-
stance, an N-strategy might offer to write data value 0 at a source node A ∈ N, but
refuse to write data value 1. The general notion of N-strategies also permits to couple
such constraints for the offered I/O-operations at the N-nodes with conditions on the
IOCs at the nodes in N\N. Furthermore, an N-strategy might suggest the N-agents to

Alternating-Time Stream Logic for Multi-agent Systems 189

refuse any participation in concurrent I/O-operations. The special symbol stop will be
used for this purpose.

Definition 2 (Strategy). Let A be a CA as before and let N be a node-set such that
N⊆ N. AnN-strategy is a function

S : Execfin(A) → 2CIO∪ {stop},

assigning to any finite execution η a set S(η) consisting of I/O-operations c ∈ CIO or
the special symbol stop such that if c ∈ CIO and Nodes(c)∩N = ∅ then c ∈ S(η).

The intuitive meaning of the condition required for an N-strategy asserts that the N-
nodes are not in the position to refuse an I/O-operation c where none of the N-nodes
is involved. In particular, invisible I/O-operations (i.e., concurrent I/O-operations with
the empty node-set) cannot be ruled out by an N-strategy. A possible refinement for
the notion of a strategy would be to allow components to restrict their write opera-
tions only and not to cut down any input provided at their boundary nodes. Given an
N-strategy S, the S-paths are those paths in A, where each of the I/O-operations per-
formed is accepted at any time by theN-nodes and their strategy S.

Notation 3 (S-executions, S-completeness, S-paths). Let S be an N-strategy and
η = q0

c1−→ q1
c2−→ . . . a finite or infinite execution in A. Then, η is called a S-execution

if for any position i ∈ N with i < |η| we have ci+1 ∈ S(η ↓ i). A finite S-execution η
of length n is called S-complete if the last state qn of η is terminal and at least one of
the following two conditions holds:

(i) stop ∈ S(η) or (ii) there is no c ∈ CIO(qn)∩S(η ↓ n) such that Nodes(c) ⊆N

The first condition indicates that refusing any data flow on the N-nodes is a potential
behavior under strategy S, while the second indicates the possibility for the opponents
to do the same on their part (i.e. refusing any synchronization on the N \N nodes).
Furthermore, each infinite S-execution is said to be S-complete. A S-path denotes

any infinite S-execution or any finite path π = q0
c1−→ . . .

cn−→ qn

√
−→ qn, where π ↓ n is

a S-complete S-execution. We write Paths(q,S) to denote all S-paths starting in q.
Similarly, Execfin(q,S) denotes the set of all finite S-executions from q.

Notation 4 (Memoryless, finite-memory strategies). AnN-strategy S is called mem-
oryless if S(η) = S(η ′) for all finite executions η and η ′ that end in the same state.
Memoryless strategies can be seen as functions S :Q→ 2CIO∪ {stop}. Obviously, mem-
oryless strategies are special instances of finite-memory strategies, i.e., strategies that
make their decisions on the basis of a finite automaton rather than the full history.

4 Alternating-Time Stream Logic (ASL)

To reason about the components from a game-theoretic point of view, we introduce
alternating-time stream logic (ASL) which is inspired by alternating-time temporal logic

190 S. Klüppelholz and C. Baier

(ATL) [1]. ASL extends BTSL [18] to state the possibility for components to cooperate
in such way that a certain temporal property or property on the observable data flow
holds. ASL is a branching time logic with state and path formulas. The state formula
fragment is as in ATL, but adapted to the CA framework where the alternating-time
quantifiers range over the strategies of certain node-sets. Intuitively, these node-sets
stand for the interface nodes of one or more components. The existential quantifier
EN is used to indicate that the components with sink and source nodes in N have a
strategy ensuring a certain condition, no matter how the other components connected
to the nodes in N \N behave. The universal quantifier AN is dual and serves to state
that the components providing the write and read actions at the N-nodes cannot avoid
that a certain condition holds. The syntax of the ASL path formulas is the same as
in BTSL and uses the standard until- and release operator, but replaces the standard
next modality © with special operators 〈〈α〉〉 and [[α]] to impose conditions on the
I/O-streams of finite executions. In path formulas of the type 〈〈α〉〉Φ or [[α]]Φ, the for-
mula Φ is a state formula while α is a regular expression that stands for a regular
language over the alphabet CIO√. This type of formulas is inspired by propositional
dynamic logic [12], extended temporal logic [23], and timed scheduled data stream
logic [3].

4.1 Syntax and Standard Semantics of ASL

In the sequel, we assume a fixed, non-empty and finite node-set N. Furthermore, let AP
be non-empty and finite set of atomic propositions, which can be viewed as conditions
on the states of the automaton. In case of the CA modeling a FIFO-channel an atomic
proposition might state that all buffer cells are empty or that the first buffer cell contains
a value d in some set P ⊆ Data.

Regular I/O-stream Expressions. The abstract syntax of regular I/O-stream expres-
sions, briefly called stream expressions, is given by the following grammar:

α ::= ioc
∣
∣
∣

√ ∣
∣
∣ α∗

∣
∣
∣ α1;α2

∣
∣
∣ α1 ∪α2

where ioc ranges over all IOCs. Any stream expression represents a regular set of I/O-
streams. The formal definition of the regular languages IOS(α) ⊆ IOS is defined by
structural induction. IOS(ioc) is the set consisting of the I/O-streams of length 1 given
by ioc, i.e., IOS(ioc)

def
= CIO(ioc). Similarly, IOS(

√
) is the singleton set consisting of the

I/O-stream
√

. Union (∪) has its standard meaning: IOS(α1 ∪α2)
def
= IOS(α1)∪IOS(α2),

while Kleene star (∗) and concatenation (;) have to ensure that the special termination
symbol

√
can only appear at the end of an I/O-stream:

IOS(α∗) def
= {ε}∪

⋃

n�1
{σ1 . . . σn : σi ∈ IOS(α)∩CIO∗, i= 1, . . . ,n−1,σn ∈ IOS(α)}

IOS(α1;α2)
def
= {σ1

√
: σ1

√
∈ IOS(α1)} ∪ {σ1σ2 : σ1 ∈ IOS(α1)∩CIO∗,σ2 ∈ IOS(α2)}

Alternating-Time Stream Logic for Multi-agent Systems 191

Syntax of ASL. State-formulas (denoted by capital greek letters Φ, Ψ) and path-
formulas (denoted by small greek lettersϕ,ψ) of ASLare built by the following grammar:

Φ ::= true
∣
∣
∣ a

∣
∣
∣ Φ1 ∧Φ2

∣
∣
∣ ¬Φ

∣
∣
∣ ∃ϕ

∣
∣
∣ ENϕ

ϕ ::= 〈〈α〉〉Φ
∣
∣
∣ [[α]]Φ

∣
∣
∣ Φ1UΦ2

∣
∣
∣ Φ1RΦ2

where N ⊆ N, a ∈ AP and α is a regular I/O-stream expression. The quantifier ∃ in
the syntax of ASL state formulas is the standard existential path quantifier of CTL and
ranges over all paths, while the operator EN corresponds an existential quantification
over all N-strategies. The dual operator ANϕ stating that no strategy for the nodes in
N can avoid ϕ to hold is defined by:

AN〈〈α〉〉Φ def
= ¬EN[[α]]¬Φ

AN[[α]]Φ
def
= ¬EN〈〈α〉〉¬Φ

AN(Φ1UΦ2)
def
= ¬EN(¬Φ1R¬Φ2)

AN(Φ1RΦ2)
def
= ¬EN(¬Φ1U¬Φ2)

In an analogous way, the universal CTL-path quantifier ∀ can be derived by duality
from ∃. (Alternatively, ∀ϕ can be defined by E∅ϕ.) Other boolean connectives, like
disjunction or implication, are obtained in the obvious way. In the following we shortly
write EAϕ for E{A}ϕ and AAϕ for A{A}ϕ.

ASL path formulas are interpreted over paths in a CA. The modalities U and R denote
the ordinary until-operator and release-operator, respectively. The eventually and al-
ways operator are obtained in the usual way by ♦Φ def

= (trueUΦ) and �Φ def
= (falseRΦ).

The intended meaning of 〈〈α〉〉Φ is that it holds for a path π iff π has a finite prefix
generating an α-stream and Φ holds for the state reached afterwords. [[α]]Φ is the dual
operator of 〈〈α〉〉Φ and holds for a path π iff for all finite prefixes of π generating an
α-stream, formula Φ holds for the last state of the prefix. The standard next opera-
tor is derived from the path formula ©Φ def

= 〈〈tt〉〉Φ, which asserts the occurrence for
some (non-observable) data flow. Recall that IOS(tt) = CIO(tt) = CIO. Thus, ©Φ
holds for all paths where the underlying execution has at least one transition and Φ
holds afterwords. The presence of some observable data flow can be expressed by
〈〈A1 ∨ . . . ∨An〉〉true, where N = {A1, . . . ,An}. The path formula [[tt∗;

√
]]false is char-

acteristic for the infinite paths, while 〈〈tt∗;
√

〉〉true holds exactly for the finite paths. The
terminal states are characterized by the state formula ∃〈〈

√
〉〉true, while ∀〈〈

√
〉〉true is sat-

isfied in exactly those states where no concurrent I/O-operation is enabled. ASL state
formulas are the same as in BTSL except for the EN-operator (and its dual).

For an intuitive example, consider a FIFO-channel with source node A and sink
node B. Then the ASL state formulas EA�empty, EA�(buffer �= 0), AB♦empty and
AB�empty do hold, where (buffer �= 0) states that either the buffer is empty or con-
tains a data value different from zero. In case of the ticket vending machine we may ask
whether the user (possibly in coalition with other components) controlling three bound-
ary nodesN= {C,D,P} (for the cancel signal, data items, and payment) has a strategy to
get a ticket without paying, i.e. if state formula E{C,D,P}〈〈¬pay∗〉〉ticket printed holds.
A dual ASL property states that all components except the user respect the cancel signal
and reset to their initial configuration. This can be expressed by AN\N[[tt∗;C]]initconf.

192 S. Klüppelholz and C. Baier

Standard Semantics of ASL. Let A be a CA and π a path in A. The satisfaction rela-
tion |= for ASL state formulas is defined by structural induction as shown below:

q |= true
q |= a iff a ∈ L(q)
q |=Φ1 ∧Φ2 iff q |=Φ1 and q |=Φ2

q |= ¬Φ iff q �|=Φ
q |= ∃ϕ iff there exists π ∈ Paths(q) such that π |=ϕ
q |= ENϕ iff there is anN-strategy S such that:

for all π ∈ Paths(q,S) : π |=ϕ

The satisfaction relation |= for ASL path-formuls and the path π in A as follows:

π |= 〈〈α〉〉Φ iff there exists n ∈ N such that 0 � n� |π| and
ios(π ↓ n) ∈ IOS(α) and qn |=Φ

π |= [[α]]Φ iff for all n ∈ N such that 0 � n� |π| we have:
ios(π ↓ n) ∈ IOS(α) implies qn |=Φ

π |=Φ1UΦ2 iff there exists n ∈ N such that 0 � n < |π| where
qn |=Φ2 and qi |=Φ1 for 0 � i < n

π |=Φ1RΦ2 iff at least one of the following conditions (i) or (ii) holds:
(i) for all n ∈ N with 0 � n < |π| we have: qn |=Φ2

(ii) there exists some n ∈ N with 0 � n� |π| such that:
qn |=Φ1 and qi |=Φ2 for 0 � i� n

Given a state q and a ASL path formula ϕ, an N-strategy S is called winning for
the tuple 〈q,ϕ〉 if ϕ holds for all S-paths starting in q. Thus, q |= ENϕ iff there
exists a winning N-strategy for 〈q,ϕ〉. For the derived operator AN we get that q |=
ANϕ iff for all N-strategies S there exists π ∈ Paths(q,S) such that π |=ϕ, i.e. there
is no winning strategy for 〈q,ϕ〉.

Example 2 (ASL state formulas). The CA with node set N = {A,B} depicted below ful-
fills the following state formula AA♦¬∃©true, stating that an agent controllingA only
cannot avoid that a terminal state qt will eventually be reached.

¬A ∧ ¬B

¬A ∧ B

A ∧ ¬Bq0

q1

qt

¬A ∧ ¬B

The multi-player game associated with a CA and an ASL path formula is not deter-
mined. In fact, there are path formulasϕ such that neither theN-agents have a winning
strategy for ϕ nor does the opponents (i.e., the N \N-agents) have a strategy to en-
sure that ϕ does not hold. The reason for this is that the internal nondeterminism can
yield the possibility to generate paths where ϕ holds and paths where ϕ does not hold.

Alternating-Time Stream Logic for Multi-agent Systems 193

In particular, the ASL state formulas ENϕ and AN\Nϕ are not equivalent1 and q |=
ENϕ implies q |= AN\Nϕ holds for all states q ∈ Q, but not vice versa. A simple
example illustrating this fact is the following CA with node-set N = {A,B}.

Example 3 (Internal nondeterminism).

A A

dB = 0 dB = 1

q0q1 q2

{a} ∅

Assume that a ∈ AP is an atomic proposition which holds in q1 only, i.e. L(q1) = {a}

and L(q2) = ∅. Since the internal nondeterminism decides whether q1 or q2 will be
selected as successor state of q0 when A fires, neither A can enforce nor B can avoid
that q1 will be entered in the next step. Thus, we have q0 |= AB©a and q0 �|= EA©a.

4.2 ASL Model Checking

The model checking problem for ASL asks whether, for a given CA A and ASL state
formula Φ, all initial states q0 of A satisfy Φ. The main procedure for ASL model
checking follows the standard approach for CTL-like branching-time logics [8] and re-
cursively calculates the satisfaction sets Sat(Ψ) = {q ∈Q : q |=Ψ} for all sub-formulas
Ψ ofΦ. The treatment of the BTSL-fragment of ASL is the same as for BTSL (see [18]).
The only interesting part is how to calculate Sat(ENϕ) for an ASL path formulasϕ and
node-setN⊆ N. The essential ingredient for this is the predecessor operator Pre(P,N)
which is defined as the set of all states q ∈ Q such that the N-nodes have a strategy
which guarantees to move within one step to a state in P.

Definition 5 (Predecessors). Let P ⊆ Q and N ⊆ N a node-set. Then, Pre(P,N) de-
notes the set of all states q ∈Q such that the following two conditions hold:

(i) for all c ∈ CIO(q) such that Nodes(c)∩N = ∅ we have Post[c](q) ⊆ P
(ii) there exists a c ∈ CIO(q) such that Nodes(c) ⊆N and Post[c](q) ⊆ P

where Post[c](q)
def
= {p ∈Q : q

c−→ p}.

Condition (i) is needed to ensure that no uncontrollable transition (from the view of the
N-agents) leads to a state outside of P, while condition (ii) asserts the existence of at
least one concurrent I/O-operation that can be enforced by the N-agents and certainly
leads to a state in P. In fact we have Pre(P,N) =

{
q ∈Q : q |= EN©P

}
.

As for standard CTL (and ATL), the semantics of the until and release operator have
a fixed point characterization. The set Sat(EN(Φ1UΦ2)) is the least fixpoint, while the
set Sat(EN(Φ1RΦ2)) is the greatest fixpoint of the following operators 2Q → 2Q:

P �→ Sat(Φ2)∪ (Pre(P,N)∩Sat(Φ1)) (until)
P �→ Sat(Φ2)∩ (Pre(P,N)∪Sat(Φ1)) (release)

1 The same observation holds for ATL∗ interpreted over concurrent games, but for other reasons.

194 S. Klüppelholz and C. Baier

Hence, in ASL with the standard semantics we have the following expansion laws:

EN(Φ1UΦ2) ≡ Φ2 ∨ (Φ1 ∧EN©EN(Φ1UΦ2)) (1)

EN(Φ1RΦ2) ≡ Φ2 ∧ (Φ1 ∨EN©EN(Φ1RΦ2)) (2)

where ≡ denotes equivalence of ASL state formulas. On the basis of (1) and (2), we
obtain that for winning objectives formalized by ASL path formulas ϕ of the form
(Φ1UΦ2) or (Φ1RΦ2), memoryless strategies are sufficient and the satisfaction set
Sat(ENϕ) can be computed by means of the standard procedures to compute least and
greatest fixed points of monotonic operators. The algorithms for until and release in-
cluding the proof of correctness can be found in the technical report [19]. For ASL state
formulas of the form EN〈〈α〉〉Φ or EN[[α]]Φ, we follow an automata-theoretic approach
which resembles the standard automata-based LTL model checking procedure and relies
on a representation of α by means of a finite automaton Z and a graph analysis of the
product A �� Z. As α is roughly an ordinary regular expression, we can apply standard
methods to generate a deterministic finite automata Z over the alphabet CIO√ such that
the accepted language of Z agrees with IOS(α).

Let Z = (Z,CIO√,δ,Z0,ZF), i.e., Z stands for the state space, z0 the initial state,
ZF for the set of final (accept) states and δ : Z× CIO√ → Z for the transition function.
In fact, beside the special

√
-transitions, Z can be viewed as a CA where the set ZF

plays the role of the labeling function which separates the final states from the non-
final states. Due to the special role of the symbol

√
(which can only appear at the

end of a word in IOS(α)), we can assume that there are special states zaccept ∈ ZF and
zreject ∈ Z \ZF such that each

√
-transition leads to one of the states zaccept or zreject

and that the states zaccept or zreject cannot be entered via any other symbol. Given A

and Z, we built the product A �� Z, similar to the product of finite automata and the
join operator for CAs [6], but with a special treatment of the pseudo-transitions with
label

√
. In fact, the product construction we use here differs from those used in the

BTSL model checking procedure [18] since in the context of the EN-operator we have
to incorporate the possibilities of the N-agents to enforce termination. Formally, we
define the CA A ��N,Φ Z as follows:

A ��N,Φ Z
def
= (S,N∪ {Astop},−→,S0,AP ′,L ′).

The state space S isQ×Z andAstop is a new node-name (not contained in N). This new
node is supposed to be controllable. (Thus, for A ��N,Φ Z we will ask for (N∪ {Astop})-
strategies rather thanN-strategies.) The initial states are given by

S0 =
{

〈q,z0〉 : q ∈Q0
}

.

The atomic propositions and labeling function in A ��N,Φ Z are given by the set AP ′ =
{aΦ,accept}, where aΦ ∈ L ′(〈q,z〉) iff q |=Φ and accept ∈ L ′(〈q,z〉) iff z ∈ ZF. The
transitions in A ��N,Φ Z are obtained by the following synchronization rule for concur-
rent I/O-operations c ∈ CIO (i.e., c �= √

), state q in A, and state z ∈ Z\ {zaccept,zreject}:

q
c−→A q

′ ∧ z
c−→Z z

′

〈q,z〉 c−→ 〈q ′,z ′〉
(3)

Alternating-Time Stream Logic for Multi-agent Systems 195

where we use the subscript A for the transition relations in A. In addition, we have the
following rules for each terminal state q in A and state z ∈ Z \ {zaccept,zreject} where
cstop is a concurrent I/O-operation with Nodes(cstop) = {Astop} and cstop(Astop) is an
arbitrary element from the data domain Data:

¬∃c ∈ CIO(q) s.t. Nodes(c) ⊆N ∧ c∅ /∈ CIO(q)

〈q,z〉 c∅−→ 〈q,δ(z,
√

)〉
(4)

∃c ∈ CIO(q) s.t. Nodes(c)∩N �= ∅ ∧ c∅ /∈ CIO(q)

〈q,z〉 cstop−−→ 〈q,δ(z,
√

)〉
(5)

Rule (4) formalizes the fact that if q is terminal (i.e., c∅ /∈ CIO(q)) and there is no
c ∈ CIO(q) such that Nodes(c) ⊆ N then the opponents of the N-agents may refuse
any write or read operation and can therefore enforce data flow to stop. This is modeled
in the product by a transition with the label c∅. Rule (5) stands for the fact that whenever
q is a terminal node for which some concurrent I/O-operation c is enabled where the
N-nodes are involved then the N-agents might decide not to participate in any further
I/O-operation. This is modeled in the product by a transition with the label cstop where
the new nodeAstop is supposed to be controllable. We obtain the following two lemmas
for ASL state formulas of the form EN〈〈α〉〉Φ and EN[[α]]Φ.

Lemma 1. Let A be a CA, Z = (Z,CIO√,δ,Z0,ZF) a DFA for α, q in A, node-sets
N⊆ N and ASL state formulasΦ. Then, the following statements are equivalent:

(a) q |= EN〈〈α〉〉Φ
(b) 〈q,z0〉 |= EN∪{Astop}♦(aΦ ∧ accept)
(c) There exists a finite-memoryN-strategy S for A that is winning for 〈q,〈〈α〉〉Φ〉

Lemma 2. Let A be a CA, Z = (Z,CIO√,δ,Z0,ZF) a DFA for α, q in A, node-sets
N⊆ N and ASL state formulasΦ. Then, the following statements are equivalent:

(a) q |= EN[[α]]Φ

(b) 〈q,z0〉 |= EN∪{Astop}�(accept → aΦ)

(c) there exists a finite memoryN-strategy S which is winning for 〈q, [[α]]Φ〉

Thanks to lemmas 1 and 2 the satisfaction sets Sat(EN〈〈α〉〉Φ) and Sat(EN[[α]]Φ) can
be computed by means of a reduction to the model checking problem for the EN-
operator in combination with the eventually- and always-modalities. More precisely,
we first have to construct a DFA Z for α, then built the product A ��N,Φ Z and finally
apply the algorithm for until and release respectively, to compute the satisfaction sets
for EN∪{Astop}♦(aΦ∧accept) and EN∪{Astop}�(accept →aΦ) in the product. Further-
more the memoryless (N∪ {Astop})-strategies for the product yield finite-memory win-
ningN-strategies in A for the objectives 〈〈α〉〉Φ and [[α]]Φ, respectively.

Assuming that Sat(Φ) has already been computed the time complexity for comput-
ing Sat(EN〈〈α〉〉Φ) and Sat(EN[[α]]Φ) is linear in the size of CA A and the DFA Z

for α (which can be exponential in the length of α). However, when restricting to the
ATL-fragment of ASL which just uses the standard path modalities U , R and ©, but

196 S. Klüppelholz and C. Baier

not 〈〈α〉〉 or [[α]], then the worst complexity of the ASL model checking algorithm is the
same as for standard ATL, i.e., linear in the size of A and the length of the formula.

We conclude this section by a simple observation concerning the case that α is a√
-free expression (i.e., does not contain a subexpression of the form β;

√
). In fact, for√

-free expressions, the “best” strategy for the N-agents to ensure [[α]]Φ is to stop the
data flow whenever possible. This is formalized in the following lemma.

Lemma 3 (Winning strategies for
√

-free expressions). Let Sstop be the memoryless
N-strategy given by Sstop(q) = {stop}∪ {c ∈ CIO : Nodes(c)∩N = ∅} for all states q.
Then, for each

√
-free stream expression α and state q we have:

q |= EN[[α]]Φ iff Sstop is winning for 〈q, [[α]]Φ〉.

Thus, ifα is
√

-free then the set Sat(EN[[α]]Φ) can be computed by considering the sub-
automaton A ′ of A that results by the memoryless strategy Sstop and then computing
the satisfaction set for SatA ′(∀[[α]]Φ) in A ′. This can be done by means of a BTSL
model checker [18].

5 ASL with Fairness

The concept of fairness serves to rule out pathological behaviors, where certain liveness
properties are violated, although they are supposed to hold [14]. The nondeterminism
within our multi-player setting demand for some ASL fairness assumptions. To illustrate
the need for some fairness assumptions, we reuse the deadlock example (2). One would
expect that the ASL state formula EB♦¬∃©true would be fulfilled, since the memory-
less strategy S, which tries to write on B whenever q0 is reached during an execution
should be winning for 〈q0,♦¬∃©true〉. But

π= q0
c1−→ q1

c2−→ q0
c1−→ . . . ∈ Paths(q0,S) and π �|= ¬∃©true.

The goal of this section is to introduce some fairness assumptions to exclude such un-
desirable behaviors from our observations.

Definition 6 (〈N,S〉-fairness). Let A = 〈Q,N,−→,Q0,AP,L〉 be a CA, N ⊆ N a

node-set, S an N-strategy, and π = q0
c1−→ q1

c2−→ . . . a S-path in A. Then π is called
(strongly) 〈N,S〉-fair if either π is finite or for all c ∈ CIO we have:

∞
∃ i� 0. c ∈ CIO(qi)∩S(π ↓ i) and Nodes(c) ⊆N implies

∞
∃ i� 0. ci = c,

where
∞
∃ i means ”there exists infinitely many i”. We write FairPaths〈N,S〉(q) for all

〈N,S〉-fair paths starting in q and FairPaths〈N,S〉(A) for the set of 〈N,S〉-fair paths.

In the above example, π = q0
c1−→ q1

c2−→ q0
c1−→ . . . �∈ FairPaths〈{B},S〉(q0) because S

is willing to write infinitely often on B, but no write operation is ever executed. The
semantics of the fair ASL path formulas is the same as for ASL without fairness (see
section 4.1).

Alternating-Time Stream Logic for Multi-agent Systems 197

The semantics for fair ASL state formulas also corresponds to the one without fair-
ness except for:

q |=fair ENϕ iff there is anN-strategy S s.t. for all π ∈ FairPaths〈N,S〉(q) : π |=ϕ

The underlying model checking algorithms need to be modified and now rely on the
bottom up computation of the sets Satfair(Ψ) = {q∈Q | q |=fair Ψ} for all subformulasΨ.
The computation for Satfair(EN(Φ1RΦ2)) does not involve any modification at all, as
shown in the following lemma.

Lemma 4 (Release with fairness). Let A be a CA,N⊆ N a node-set, q ∈Q a state in
A andΦ1, Φ2 ASL state formulas. Then q |=fair EN(Φ1RΦ2) iff q |= EN(Φ1RΦ2).

The computation of Satfair(EN(Φ1UΦ2)) relies on an iterative SCC-calculation in sub-
graphs of A. The following lemma emerges that the remaining fair computation of
Satfair(EN〈〈α〉〉Φ) and Satfair(EN[[α]]Φ) can be reduced to eventually and always in the
product A �� Z.

Lemma 5 (Fairness for ASL I/O-stream expression formulas). Let A be a CA,
N⊆ N a node-set, α a regular I/O-stream expression, Z a deterministic CA for α, and
let Φ be ASL state formula. Then, the following observation holds for all states q ∈Q.

i) q |=fair EN〈〈α〉〉Φ in A iff 〈q,z0〉 |=fair EN∪{Astop}♦(accept∧aΦ) in A �� Z.
ii) q |=fair EN[[α]]Φ iff 〈q,z0〉 |=fair EN∪{Astop}�(accept → aΦ) in A �� Z.

6 Conclusion and Future Work

This paper introduces a framework to verify alternating-time properties for a multi-
player games derived from CA. The introduced concurrent game semantics captures
any complex behavior caused by synchronous and asynchronous peer-to-peer com-
munication, mutual dependencies of I/O-operations and also data-dependencies. Since
this game structure is non-standard it takes numerous nontrivial adaptations of the ATL
model checking algorithm. In future work we will drop our assumption on perfect infor-
mation and perfect recall to switch to a more realistic view for exogenous coordination
taking the local view [5,7,16,17,21,11,22] into account. In future work we will consider
observation-based strategies in case of incomplete information.

Apart from asking for the existence or absence of a winning strategy for a temporal
property the question might raise, if there is a way of connecting the components to
make this property hold. This directly leads to the controller synthesis problem where
if possible a controlling CA is put in parallel with the other components to ensure the
intended behavior. One step further we would like to build the Reo network which glues
those components the intended way by using the synthesis approach described in [4].

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 49, 672–713 (2002)

2. Arbab, F.: Reo: A channel-based coordination model for component composition. Mathe-
matical Structures in Computer Science 14(3), 329–366 (2004)

198 S. Klüppelholz and C. Baier

3. Arbab, F., Baier, C., de Boer, F., Rutten, J.J.M.M.: Models and temporal logics for timed
component connectors. In: Proc. of SEFM, pp. 198–207. IEEE CS Press, Los Alamitos
(2004)

4. Arbab, F., Baier, C., de Boer, F., Rutten, J.J.M.M., Sirjani, M.: Synthesis of Reo circuits for
implementation of component connector automata specifications. In: Jacquet, J.-M., Picco,
G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, Springer, Heidelberg (2005)

5. Azhar, S., Peterson, G.L., Reif, J.H.: On multiplayer non-cooperative games of incomplete
information: Part 1&2. Technical report, Durham, NC, USA (1991)

6. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in Reo
by constraint automata. In: Science of Computer Programming 61, pp. 75–113 (2006)

7. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Algorithms for omega-regular games
with imperfect information. CoRR, abs/0706.2619 (2007)

8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM TOPLAS 8(2), 244–263 (1986)

9. de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: Proc. of LICS, pp.
141–154 (January 2000)

10. de Alfaro, L., Henzinger, T.A.: Interface automata. In: FSE Proc., pp. 109–120. ACM Press,
New York (2001)

11. de Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect in-
formation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 153–168.
Springer, Heidelberg (2006)

12. Fischer, M.J., Ladner, R.J.: Propositional dynamic logic of regular programs. Journal of
Computer and System Science 8, 194–211 (1979)

13. Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: minimality and
simplicity. Artif. Intell. 119(1-2), 61–101 (2000)

14. Francez, N.: Fairness. Springer, Heidelberg (1986)
15. Grosu, R., Rumpe, B.: Concurrent timed port automata. Technical Report TUM-I9533,

Techn. Univ. München (1995),
http://www4.informatik.tu-muenchen.de/reports/

16. Hoek, W.v.d., Roberts, M., Wooldridge, M.: Knowledge and social laws. In: AAMAS, pp.
674–681 (2005)

17. Hoek, W.v.d., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-time temporal
epistemic logic and its applications. Studia Logica 75(1), 125–157 (2003)

18. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component connec-
tors. In: Proc. of FOCLASA 2006. ENTCS, vol. 175(2), pp. 19–37 (2007)

19. Klüppelholz, S., Baier, C.: Alternating-Time Stream Logic for Multi-Agent Systems. Tech-
nical report, Technical University Dresden (2008),
http://wwwtcs.inf.tu-dresden.de/∼klueppel/ASLKB2008.pdf

20. Lynch, N., Tuttle, M.R.: An introduction to input/output automata. CWI Quarterly 2(3), 219–
246 (1989)

21. Reif, J.H.: The complexity of two-player games of incomplete information. J. Comput. Syst.
Sci. 29(2), 274–301 (1984)

22. Schobbens, P.Y.: Alternating-time logic with imperfect recall. In: Proc. of LCMAS. ENTCS,
vol. 85(2), pp. 1–12 (2004)

23. Wolper, P.: Specification and synthesis of communicating processes using an extended tem-
poral logic. In: Proc. of POPL, pp. 20–33 (1982)

24. Wooldridge, M.: Social laws in alternating time. In: Lomuscio, A., Nute, D. (eds.) DEON
2004. LNCS (LNAI), vol. 3065, p. 2. Springer, Heidelberg (2004)

http://www4.informatik.tu-muenchen.de/reports/
http://wwwtcs.inf.tu-dresden.de/~klueppel/ASLKB2008.pdf

	Alternating-Time Stream Logic for Multi-agent Systems
	Introduction
	Constraint Automata (CA)
	Constraint Automata as Multi-player Games
	Alternating-Time Stream Logic (ASL)
	Syntax and Standard Semantics of ASL
	ASL Model Checking

	ASL with Fairness
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

