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Preface

Modern information systems rely increasingly on combining concurrent, dis-
tributed, real-time, reconfigurable and heterogeneous components. New models,
architectures, languages, and verification techniques are necessary to cope with
the complexity induced by the demands of today’s software development. COOR-
DINATION aims to explore the spectrum of languages, middleware, services, and
algorithms that separate behavior from interaction, therefore increasing modu-
larity, simplifying reasoning, and ultimately enhancing software development.

This volume contains the proceedings of the 10th International Conference
on Coordination Models and Languages, COORDINATION 2008, held in Oslo,
Norway in June 2008, as part of the federated DisCoTec conference. COORDI-
NATION itself is part of a series whose proceedings have been published in LNCS
volumes 1061, 1282, 1594, 1906, 2315, 2949, 3454, 4038, and 4467. From the 61
submissions received from around the world, the Program Committee selected
21 papers for presentation and publication in this volume on the basis of orig-
inality, quality, and relevance to the topics of the conference. Each submission
received at least three reviews. As with previous editions, the paper submission
and selection processes were managed entirely electronically. This was accom-
plished using EasyChair, a free Web-based conference management system. In
addition to the technical paper presentations, COORDINATION 2008 hosted
an invited presentation by Matt Welsh from Harvard University.

We are grateful to all the Program Committee members who devoted much
effort and time to read and discuss the papers. Moreover, we acknowledge the
help of additional external reviewers who evaluated submissions in their area of
expertise.

Finally, we would like to thank the authors of all the submitted papers and the
conference attendees, for keeping this research community lively and interactive,
and ultimately ensuring the success of this conference series.

June 2008 Doug Lea
Gianluigi Zavattaro
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A Coordination Model for Service-Oriented

Interactions�

João Abreu and José Luiz Fiadeiro

Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{jpad2,jose}@mcs.le.ac.uk

Abstract. We present a formal model for the coordination of inter-
actions in service-oriented systems. This model provides a declarative
semantics for the language SRML that is being developed under the
FET-GC2 project SENSORIA for modelling and reasoning about com-
plex services at the abstract business level. In SRML, interactions are
conversational in the sense that they involve a number of correlated
events that capture phenomena that are typical of SOC like committing
to a pledge or revoking the effects of a deal. Events are exchanged across
wires that connect the parties involved in the provision of the service.

1 Introduction

One of the challenges raised by service-oriented computing (SOC) is to develop
a semantic model that is rich enough for capturing the new kinds of interac-
tions that it introduces but also abstract enough to support the modelling of
systems at the ”business level”, i.e. independently of the middleware program-
ming model. It is fair to say that the bulk of the research that is being published
in this area is directed to the languages and infrastructures that support Web
Services [2], which is understandable because this is the area where industry
has its most immediate interests. Our research is being developed within a FET
(Future Emerging Technologies) project — SENSORIA [17] — so as to provide
foundations for SOC as a paradigm and not just a technology.

In particular, we have been developing a reference modelling language (SRML)
through which we would like to support building systems with service-oriented
architectures in ”technology agnostic” terms. SRML is based on a semantic
model (discussed in this paper) that provides a layer of abstraction above the
languages in which services are programmed and the middleware that supports
the coordination of interactions [2]. In [7] we have shown that SRML is expressive
enough to accommodate orchestrations programmed in languages such as BPEL.
In previous papers we have provided an overview of the SRML language [10] and
of the algebraic semantics of service composition [11]. In this paper, we present

� This work was partially sponsored through the IST-2005-16004 Integrated Project
SENSORIA: Software Engineering for Service-Oriented Overlay Computers.

D. Lea and G. Zavattaro (Eds.): COORDINATION 2008, LNCS 5052, pp. 1–16, 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 J. Abreu and J.L. Fiadeiro

a formal model for the primitives that we are using for the coordination of
interactions in service-oriented systems.

SRML supports three different levels of ”coordination” in SOC. One concerns
the process of discovery of external services that may be required for a certain
computation. In SRML, this process is not programmed as part of the computa-
tional process performed by services but handled separately; one of the novelties
of SOC is precisely in the externalisation of discovery — see [6] for more de-
tails about the discovery and binding of new services in SRML. Another level
concerns the coordination (orchestration) of the various parties that, together,
deliver a complex service. In SRML, we adopt a ”classical” architectural ap-
proach in which this type of coordination is performed by connectors (in the
sense of REO [3]) that link together the different parties involved in the delivery
of the service. Other approaches adopt workflow models [16]. We have discussed
this level of coordination in [1] and, although briefly discussed in Section 2, it is
not the core of our paper.

Our main contribution in this paper is at the third level of coordination: the
one that needs to be established between the different events that are involved
in interactions. In our model, interactions are conversational in the sense that
they involve a number of correlated events between two parties. To the best of
our knowledge, this is the first formal model proposed for SOC that adopts a
rich ontology of interactions.

In section 2 we give an overview of the SRML approach to the specification of
service-oriented architectures and the intuitive semantics that is associated with
it; we illustrate it with examples taken from the specification of a travel booking
service. In section 3 we formalize the notions presented in section 2 by defining
our model of service-oriented architectures and computation, over which SRML
specifications should be interpreted. Finally, section 4 concludes and outlines
further work already being carried out.

2 Modelling Complex Services in SRML

2.1 The Compositional Model

Our approach to service-oriented specification follows recent proposals by the
Service Component Architecture (SCA) initiative — for a deeper discussion on
the relation between SRML and SCA refer to [10]. Like in SCA, the architectural
unit for specifying a complex service in SRML is the module. Modules specify
how a set of independent parties are interconnected and interact to provide the
behaviour of the service. A module consists of an architecture, i.e. the definition
of which pairs of parties are connected through wires, and a specification for
each of the parties and each of the wires. Figure 1 shows the structure of the
module TravelBooking, which models a service that manages the booking of a
flight and a hotel.

The service is assembled by connecting an internal component BookingAgent
to the external services PayAgent, HotelAgent and FlightAgent and the persis-
tent component (a database of users) UsrDB. The difference between the three
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Fig. 1. The structure of the module TravelBooking

kinds of entities is intrinsic to SOC: internal components are created each time
the service is invoked and killed when the service terminates; external services
are procured and bound to the other parties at run time; persistent components
are part of the business environment in which the service operates — they are not
created nor destroyed by the service, and they are not discovered but directly in-
voked as in component-based systems. Customer is the interface through which
service requesters interact with the TravelBooking service. In SRML, interac-
tions are peer-to-peer between pairs of entities connected through wires — CB,
CP , BP , BH , BF and BD are the wires in TravelBooking. Complex services
like TravelBooking establish multi-party collaborations by orchestrating their
interactions.

The specification of each of the parties contains a declaration of the inter-
actions the party can be involved in and a specification of the properties that
can be observed of these interactions during a session. If the party is an internal
component of the service, this specification is an orchestration given in terms
of state transitions — the language of business roles. If the party is the inter-
face of an external service or persistent component, the specification consists
of a set of temporal properties expressed in temporal logic — the language of
business protocols. Figure 2 shows part of the specification of the component
BookingAgent - the orchestration resorts to a set of locally declared variables
in order to define the state transitions the component is involved in. Figure 3
shows the specification of the business protocol that the hotel agent service is
expected to engage in — the language involves abbreviations of temporal logic
formulae. The use of temporal logic has also been adopted by workflow-based
approaches to SOC; in [16] constraint templates based on linear temporal logic
are used to capture common specification patterns for service flows. In order
to capture patterns of service-oriented interactions we use abbreviations of an
action/state branching time logic based on UCTL [12]. This new logic is being
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developed within SENSORIA together with our partners at ISTI-CNR (Pisa).
Details about this logic and on how it encodes the patterns of service-oriented
interactions used in SRML specifications will be presented in forthcoming pub-
lications.

The specification of each wire consists of a set of connectors [1] that are respon-
sible for binding and coordinating, through interaction protocols, the complex
interactions that are declared locally in the specifications of the two parties that
the wire connects (much in the sense of [14]). Figure 4 shows the specification of
the wire BH that connects BookingAgent to HotelAgent. The only interaction
that exist between these two parties is named bookHotel from the point of view
BookingAgent and is named lockHotel from the point of view of HotelAgent.
The reason that interactions can be named differently in the two parties is pre-
cisely due to the fact that complex services are put together at run time without
a-priori knowledge of the parties that will be involved. Because of this, we need
to rely on the interaction protocols of the wires to establish how these interac-
tions are related and coordinated. In this paper, we will not discuss interaction
protocols in any great length; see [1] instead. This is because such connector-
based coordination is by now well understood. The contribution of this paper is
in the coordination model that we propose for the different events that occur as
part of the interactions. The following sections will clarify the examples shown
in figures 2, 3 and 4 — in particular, the meaning of the icons and symbols that
are used will be explained.

2.2 Service-Oriented Interactions and Events

In service-oriented systems, typical interactions are of a conversational type and
cannot be modelled as simple state transitions because they involve a durative
asynchronous exchange of correlated events. In SRML, two-way interactions cap-
ture a pattern of dialogue that is prevalent in service-oriented systems: a party
sends a request to a co-party that replies either positively by making a pledge
to deliver a set of properties (i.e. it gives some kind of guarantee) or negatively,
in which case the interaction ends; if the answer is positive the party that made
the request can commit by accepting the pledge or refuse the pledge and cancel
the interaction. If and after the requester commits, a revoke may be available
that compensates for the effects of the pledge. One-way interactions are also
supported in SRML: they capture situations in which a party sends a single
event and does not expect a reply from the co-party. This type of interaction
has only this one event associated with it. The set of events associated with an
interaction a is shown in the following table:

a� The initiation-event of a.
aB The reply-event of a.
a� The commit-event of a.
a✗ The cancel-event of a.
a✞ The revoke-event of a.



A Coordination Model for Service-Oriented Interactions 5

BUSINESS ROLE BookingAgent is

INTERACTIONS

r&s bookTrip
from,to:airport; out,in:date
fconf:fcode; hconf:hcode; amount:moneyvalue

s&r bookFlight
from,to:airport; out,in:date; traveller:usrdata
fconf:fcode; amount:moneyvalue;
beneficiary:accountn; payService:serviceId

s&r payment
amount:moneyvalue; beneficiary:accountn
originator:usrdata; cardNo:paydata
proof:pcode

s&r bookHotel
checkin,checkout:date,
traveller:usrdata

 hconf:hcode
…

ORCHESTRATION

local
s:[START, LOGGED, QUERIED, FLIGHT_OK, HOTEL_OK,

CONFIRMED, END_PAYED, END_UNBOOKED, COMPENSATING,
END_COMPENSATED]; login:Boolean;
traveller:usrdata; travcard:paydata

transition Request
triggeredBy bookTrip ?
guardedBy s=LOGGED 
effects bookTrip .out>today  s’=QUERIED

 bookTrip .out today  s’=END_UNBOOKED 
sends bookTrip .out>today  bookFlight !

 bookFlight .from=bookTrip .from
 bookFlight .to=bookTrip .to
 bookFlight .out=bookTrip .out
 bookFlight .in=bookTrip .in
 bookFlight .traveller=traveller

bookTrip .out today bookTrip !
 bookTrip .Reply=False

transition TripCommit
triggeredBy bookTrip ?
guardedBy s=HOTEL_OK
effects s’=CONFIRMED
sends bookFlight !  bookHotel !  payment !

 payment .amount=bookFlight .amount
 payment .beneficiary=

bookFlight .beneficiary
 payment .originator=traveller
 payment .cardNo=travcard

Fig. 2. An extract from the specification of the component BookingAgent written in
the language of business roles. Some of the interactions in which BookingAgent is
involved in — bookTrip, bookF light, payment and bookHotel — are declared. A set of
local state variables is also declared and the specifications of transitions Request and
TripCommit are shown.

Associated with every positive reply there is a deadline, a.useBy, for the party
to reply within which the co-party offers a pledge. After the deadline is over there
is no guarantee that the co-party will interact with the party any longer. Figure 5
represents the intuitive semantics of a two-way interaction when the co-party
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BUSINESS PROTOCOL HotelAgent is

INTERACTIONS

r&s lockHotel
checkin,checkout:date; name:usrdata
hconf:hcode

BEHAVIOUR

initiallyEnabled lockHotel ?
lockHotel ? enables lockHotel ? until

 today < lockHotel .checkin

Fig. 3. The specification of the external interface HotelAgent written in the language
of business protocols. HotelAgent is involved in one interaction named lockHotel that
models the booking of a room in a hotel. Some properties of this interaction are spec-
ified: a room booking can be initiated once the service is instantiated and a room
reservation can be canceled up until the check-in date.

BA
BookingAgent

c3 BH d3
HA
HotelAgent

s&r bookHotel
checkin
checkout

      traveller
hconf

S
i1
i2
i3
o1

R
i1
i2
i3
o1

r&s lockHotel
checkin
checkout

      name
hconf

Fig. 4. The specification of the wire BH that connects BookingAgent to HotelAgent.
≡ denotes a straight interaction protocol [1] that binds interaction bookHotel (de-
clared in the specifications of BookingAgent) to interaction lockHotel (declared in the
specification of HotelAgent).

PartyA PartyB

useBy

Fig. 5. The intuitive semantics of two-way interactions
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replies positively. In the case on the left, the initiator commits to the pledge;
a revoke may occur later on, compensating the effects of the commit-event. In
the middle, there is a cancellation; in this situation, a revoke is not available.
In the case on the right, the deadline occurs without a commit or cancel having
occurred.

In specifications one-way interactions are typed by either snd or rcv to distin-
guish between the points of view of the sending party and the receiving co-party,
respectively. The equivalent types for two-way interactions are s&r (send and
receive) and r&s (receive and send). For instance, the specification of HotelA-
gent, shown in figure 3, declares a two-way interaction lockHotel typed with r&s
to mean that the co-party that engages with hotel agent in this interaction is
responsible for initiating it by requesting a hotel booking.

2.3 Asynchronous Coordination

Parties engage in interactions independently of their co-parties, i.e. the workflow
that determines when a party interacts, by publishing an event or processing it,
is independent of the way these events are transmited [1]. Wires are responsible
for establishing and coordinating interactions between parties; events are carried
from one party to the other by the wire that connects them. Associated with
each wire there is a delay that represents the maximum time that the wire takes
to deliver each event to the receiving party after it is sent. The delay of each
wire is set at run time as part of the service level agreement that is negotiated
when external services need to be procured [6].

We use e! to refer to the publishing of event e and e? to refer to its processing.
In the specification of component BookingAgent, shown in figure 2, there is
a transition named TripCommit that is triggered by the processing of event
bookT rip�. The effect of this transition is that of publishing events bookF light�,
bookHotel� and payment�.

It is also important to distinguish between the notion of processing an event
and that of executing it. Parties are not always in a state in which they are ready
to engage in a given interaction. For instance, in order for the processing of event
bookT rip� to have the effect described in transition TripCommit, shown in
figure 2, the BookingAgent needs to be in a state in which the local variable s is
set to HOTEL OK; we say that bookT rip� is enabled in such states. If the event
is processed in a state in which BookingAgent is not ready to execute it, then the
event is discarded. In the case of interaction lockHotel in HotelAgent, shown
in figure 3, the revoke-event lockHotel✞ becomes enabled by the execution of
the commit event lockHotel� that confirms a reservation, but it is enabled only
before the check-in - this is specified through the second property of HotelAgent.

3 The Semantic Model Underlying SRML

In this section we formalize the notions that were given informally in section
2. Throughout the rest of the paper we assume a fixed data signature Σ =
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〈D, F 〉, where D is a set of sorts and F is a D∗ × D-indexed family of sets of
operations. We further assume that time, boolean ∈ D are sorts that represent
the usual concepts of time and truth values. We also assume a fixed algebra U
for interpreting Σ.

3.1 Signatures

We use the notion of signature to characterize a service-oriented architecture
and as the basis for defining the models of behavior that are valid for that
architecture.

Definition 1 (SRML Interaction Signature)
A SRML interaction signature (signature for short) is a tuple 〈COMP,

WIRE, 2WAY, 1WAY 〉 where:

– 〈COMP, WIRE〉 is a simple graph (undirected, without self-loops or multi-
ple edges) where COMP is the set of nodes (the parties that form the service)
and WIRE is the set of edges (the wires that connect the parties).

– 2WAY and 1WAY are COMP × COMP -indexed families of mutually dis-
joint sets of names of asynchronous two-way and one-way interactions, re-
spectively, each taking place between a pair of parties; we use INT to refer
to 2WAY ∪ 1WAY .

– For every c, c′ ∈ COMP , INT〈c,c′〉 = ∅ if 〈c, c′〉 /∈ WIRE, i.e. there are no
interactions between components that are not connected by a wire.

The graph 〈COMP, WIRE〉 defines the set of parties that compose the service
and how they are interconnected by wires. The graph does not have multiple
edges, meaning that for every two parties there is either a single wire connecting
them or they are not directly connected. Also the graph does not have loops,
meaning that a party cannot be connected to itself. The graph is undirected
because wires do not have a direction associated with them; wires are able to
transmit events both ways. Interactions are directed: if interaction i belongs to
INT〈c,c′〉 this means that the interaction is initiated by party c. Obviously, in
this case, there needs to be a wire between parties c and c′ for the interaction
to take place; this is captured by the last condition of the definition.

Throughout the rest of the paper we will consider a fixed signature S =
〈COMP, WIRE, 2WAY, 1WAY 〉 over which all definitions will be given.

3.2 Events and Pledges

A signature defines which interactions are established between the parties of the
system. This information allows us to formalize the notion of event that was
introduced in 2.2. We do this by defining which events can be sent and received
by each of the parties.

Definition 2 (Events)
For every a ∈ INT and x ∈ COMP , the set Ex(a) of events associated with

interaction a that are received by a party x is defined as follows:
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If a ∈ 2WAY〈c,c′〉 then

Ec(a) = {aB}
Ec′(a) = {a�, a�, a✗, a✞}
Ec′′(a) = ∅ for any other c′′ ∈ COMP

If a ∈ 1WAY〈c,c′〉 then
Ec(a) = ∅
Ec′(a) = {a�}
Ec′′(a) = ∅ for any other c′′ ∈ COMP

We also define the following sets:

– Ec =
⋃

{Ec(a) : a ∈ INT } is the set of all events that can be received by
party c.

– E(a) = Ec(a) ∪ Ec′(a) where a ∈ INT〈c,c′〉 is the set of events associated
with interaction a.

– E〈c,c′〉 =
⋃

{E(a) : a ∈ INT〈c,c′〉 ∨ a ∈ INT〈c′,c〉} is the set of all events that
are carried by wire 〈c, c′〉.

– E =
⋃

{E(a) : a ∈ INT } is the set of all events that can happen in the
system.

We see E as a WIRE-indexed or a COMP -indexed family of sets when
convenient. Given EV ⊆ E we use EVw ⊆ Ew with w ∈ WIRE or EVc ⊆ Ec

with c ∈ COMP to refer to the members of those families.

Associated with every one-way interaction a there is one and only one event,
a�. Each two-way interaction a has associated with it the set of five events
{a�, aB, a�, a✗, a✞}. Each event has a direction associated with it; an event is
sent from one party to a co-party that receives it. For every two-way interaction
a between party c and party c′, the events a�, a�, a✗ and a✞ are sent by party c
and received by party c′, while the event aB is sent by c′ and received by c. As
it also described in 2.2, the events associated with a two-way interaction have
specific roles and are correlated to each other. This correlation will be formalized
further ahead. Also associated with the reply of two-way interactions there is a
pledge that is guaranteed to hold within the deadline.

Definition 3 (Pledges). The set PP of pledges is {a.pledge : a ∈ 2WAY }.

The reply of a two-way interaction can be either negative or positive. In the last
case there is a deadline before which the party that initiated the interaction can
commit or cancel. We capture this through the notion of reply interpretation.

Definition 4 (Reply interpretation). A reply interpretation RI assigns to
every interaction a ∈ 2WAY

– a parameter a.replyRI ∈ booleanU , indicating if the reply is positive.
– a deadline a.useByRI ∈ timeU for committing or cancelling.
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3.3 Computation States and Steps

As mentioned in 2.3, every wire has a time delay that defines the maximum time
that an event takes to be delivered.

Definition 5 (Wire interpretation). A wire interpretation Ψ assigns to every
w ∈ WIRE an element w.delayΨ ∈ timeU .

We will adopt a discrete state based model in which for every state of the system
there are several possible activities each leading to a different state.

Definition 6 (Computation state)
A computation state for S is a tuple

〈PND, INV, ENB, T IME, PLG, RI〉 where:

– PND ⊆ E is the set of events pending in that state, i.e. the events that are
waiting to be delivered by the corresponding wire.

– INV ⊆ E is the set of events invoked in that state, i.e the events that have
been delivered and are waiting to be processed.

– ENB ⊆ E is the set of events that are enabled in that state, i.e. the events
that will be executed if they are processed.

– TIME ∈ timeU is the time at that state.
– PLG ⊆ PP the set of pledges that hold in that state.
– RI is a reply interpretation.

In any state of the system there is a set of events that are pending in the wires,
i.e. events that have been published, but haven’t yet been delivered by the wires
to the corresponding parties; this is represented by the set PND. INV is the
set of events that were delivered by the wires and stored locally by each party
where they are waiting to be processed. In any given state there is a set ENB
of events that each party is ready to execute. Associated with each state there
is also a time instant TIME, the set of pledges that are true in that state PLG
and a reply interpretation for two-way events. The way the system changes from
one state to another is given by the notion of computation step.

Definition 7 (Computation step)
A computation step for S is a tuple 〈SRC, TRG, DLV, PRC〉S where:

– SRC and TRG are computation states
– DLV ⊆ PNDSRC is the set of events that are selected for delivery during

that step.
– PRC is a partial function that selects for each party c such that INV SRC

c 	= ∅
an element of this set, i.e. it’s the function that selects the event that will be
processed.

– There is a set of actually-delivered events ADLV ⊆ DLV such that for every
c ∈ COMP :

• If PRC(c) is defined then INV TRG
c = (INV SRC

c \ {PRC(c)})∪ADLVc

• If PRC(c) is undefined then INV TRG
c = INV SRC

c ∪ ADLVc
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– PNDTRG = (PNDSRC \ DLV ) 
 PUB where PUB ⊆ E, i.e. the events
that were selected for delivery will no longer be pending in the target state;
the new events that become pending in the target state are those that are
published during the step

For each step 〈SRC, TRG, DLV, PRC〉 we also define the following set:

– EXC = {PRC(c) : PRC(c) ∈ ENBSRC
c } are the events that are executed

during that step; those that are selected for processing and are enabled in the
source state.

The set of events that are pending in wires is updated during each computation
step by removing the events that the wire delivers during that step — DLV
— and adding the events that each party publishes — PUB. At each step,
parties may choose to process one of the events waiting to be processed; this is
captured by the function PRC. The fact each party can only process one event
at a time is justified by the assumption that the internal state of the parties is
not necessarily distributed and therefore no concurrent changes can be made to
their states. We assume that not all of the events that are delivered are actually
delivered to the receiving party; each wire may not be reliable, i.e. it may loose
some of these events. The subset of delivered events that are actually delivered is
given by ADLV . The set of events that are waiting to be processed in each party
is updated in each step by removing the event that is processed and adding the
events that are actually delivered to that party. The events that are executed on
a computation step — EXC — are those that are processed during that step
and are enabled in the source state.

Figure 6 is a graphical representation of the event flow during a computation
step from the point of view of parties A and B connected by a wire W. Events
e ∈ INVA and e′ ∈ INVB that are waiting to be processed in the source state
are selected for processing during the step (PRC(A) = e and PRC(B) = e′)
and therefore removed from these sets in the target state. The subset of pending
events that is selected for delivery during the step is shown in light grey; some of
these events are delivered to party A and enter the set INVA while the rest are
delivered to party B and enter INVB. The set of events that are published by
each party during the step is given by PUBA and PUBB; these events become
pending in the wire in the target state. The notion of reliability for wires is given
by the following definition:

Definition 8 (Reliable wire)
A wire w is said to be reliable for a computation step if DLVw = ADLVw.

The following property will necessarily hold for that step:

– DLVw = ADLVw = INV TRG
w \ INV SRC

w .

That is, a wire is said to be reliable for a computation step if no event is lost by
the wire on that step; each event in a reliable wire is either actually delivered to
the destination party or it remains pending in the wire.
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Fig. 6. A graphical representation of the event flow during a computation step from
the point of view of a wire w between a pair of parties A and B. The system changes
from state SRC to state TRG during the step.

3.4 Computation Trees

The different possible evolutions of a service-oriented system are given by a
computation tree. In this paper we will consider only computations for which all
wires are reliable for all steps.

Definition 9 (SRML tree)
A SRML tree for a signature S is of the form 〈N, R, q0, G〉 where N is the

set of nodes, R ⊆ N × N is the set of edges, q0 ∈ N is the root node and
G is a labelling function that assigns a computation state to every node and a
computation step to every edge. We use n −→ n′ to refer to an edge (n, n′) ∈ R.
Also, we use the following notation to refer to the elements of the labels:

– If n is a node we use the names PNDn, INV n, ENBn, T IMEn,
PLGn, RIn to refer to the elements of the computation state G(n) (in ac-
cordance with the names used in definition 6)

– If r is an edge we use the names SRCr, TRGr, DLV r, PRCr, EXCr,
PUBr to refer to the elements of the computation step G(r) (in accordance
with the names used in definition 7)

Also, for every node n ∈ N we define the set UNPUB(n) = {e ∈ E : there is
no r ∈ R such that r < n and e ∈ PUBr}, i.e. the events unpublished between
the root and node n. We use < as a partial order relation on the sets of nodes
and steps, N ∪R, based on the distance to the root node (e.g. n < n′ means that
there is a path from the root node to n′ that passes through n).
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Not all trees represent valid evolutions. Many of the properties of service-oriented
systems, described intuitively in section 2, like the sequence of events in a two-
way interaction, concern the evolution of the system across several states. The
definition of computation tree captures what are considered to be the valid
models of service-oriented computation in SRML.

Definition 10 (Computation tree)
A computation tree for a signature S and a wire interpretation Ψ is a SRML

tree 〈N, R, q0, G〉 that satisfies the following rules:

Time elapsion. For every edge n −→ n′, TIMEn < TIMEn′
(time moves

forward)
Single session. For every event e ∈ E if there is an edge r ∈ R such that

e ∈ PUBr, i.e. e is published in r, then there is no edge r′ < r such that
e ∈ PUBr′

(events cannot be published more than once during a session —
a computation tree models the evolution of a session).

Wire delay. For every event e ∈ Ew and edge r ∈ R, if e ∈ PUBr, i.e. if e
is published in r, then for every subsequent node n ∈ N such that r < n
and TIMESRCr

+ w.delayΨ < TIMEn, e /∈ PNDn, i.e. e is not pending
anymore in nodes where the time delay of the wire has elapsed (If an event
is published then it will be delivered with a maximum delay)

Event correlation. For every two-way interaction a ∈ 2WAY , every node n ∈
N and every edge r ∈ R the following properties hold:
1. aB∈ ENBn if there is r ∈ R such that r < n and a�∈ PUBr and there

is no r′ ∈ R such that r′ < n and aB∈ EXCr (the publication of the
initiation-event enables the execution of the reply-event)

2. a� ∈ EXCr iff for all r < r′ there is r′′ such that either:
– r′′ < r′ and aB∈ PUBr′′

or
– r′ < r′′ and aB∈ PUBr′′

(the reply-event of any interaction will be published after and only after
the initiation-event was executed)

3. If aB∈ PUBr then for every node n, n′, n′′ ∈ N such that r = n −→ n′

and n′ < n′′, RIn′
= RIn′′

(The value of the reply, either positive or
negative, and the associated deadline become fixed once the reply-event
is published)

4. a�and a✗ ∈ ENBn if:
– there is an edge r′ ∈ R such that r′ < n, aB∈ PUBr′

– a.replyRIn

= true
– there is no r′′ ∈ R such that r′′ < n and a�∈ EXCr′′

or a✗ ∈
EXCr′′

– TIMEn < a.useByRIn

(the publication of a positive reply-event guarantees that the execution of
the commit-event and the cancel-event becomes enabled until either one
of them is executed or the deadline expires)

5. a.pledge ∈ PLGn if the following conditions hold:
– there is an edge r′ ∈ R such that r′ < n and aB∈ PUBr′

– a.replyRIn

= true



14 J. Abreu and J.L. Fiadeiro

– there is no r′′ ∈ R such that r′′ < n and a�∈ EXCr′′
or a✗ ∈

EXCr′′

– TIMEn < a.useByRIn

(The pledge must be true from the moment a positive reply is published
until either the commit or the cancel are executed or the deadline expires)

6. If a�∈ PUBr where r = n −→ n′ then:
– there is r′ < r such that aB ∈ EXCr′

– a.replyRIn

= true
– there is no r′′ < r such that a✗ ∈ PUBr′′

(The commit-event can only be published if the reply-event was executed,
the reply was positive and the cancel-event was not published)

7. If a✗ ∈ PUBr where r = n −→ n′ then:
– a.replyRIn

= true
– there is r′ < r such that aB ∈ EXCr′

– there is no r′′ < r such that a� ∈ PUBr′′

(The cancel-event can only be published if the reply-event was executed,
the reply was positive and the commit-event was not published)

8. If a✞ ∈ ENBn then there is r ∈ R such that r < n and a�∈ EXCr and
there is no r′ ∈ R such that r′ < n and a✞ ∈ EXCr (the revoke-event
can only be enabled after the execution of the commit-event)

9. If a✞ ∈ PUBr then there is r′ < r such that a�∈ PUBr′
(The revoke-

event can only be published after the commit-event was published)

4 Concluding Remarks and Further Work

The primitives that we are proposing take into account proposals that have
been made for Web-Service Conversation [5], in other modelling languages such
as ORC [15], and in calculi such as Sagas [8]; they take into account that inter-
actions are stateful and provide first-class notions such as reply, commit, com-
pensation and pledge. The richness of the conversational model that we propose
is reflected in the computational model. On the one hand, we need to account
for the correlation that needs to be enforced among the different events involved
in an interaction. On the other hand, we need to reflect the fact that events are
transmitted through ”wires” that enforce the interaction protocols that coordi-
nate the joint behaviour of the parties involved in the delivery of the service.

The computational model we have defined captures the properties that are
common to all SRML service-oriented systems independently of their specifi-
cations and any other interpretation constraints. SRML specifications have the
role of defining the properties that are particular to a specific service-oriented
system, i.e. restricting the set of trees that represent valid computations for that
system. Further work is being carried out to give a complete formalization of
the syntax and semantics of the SRML specification languages: the language of
business roles, the language of business protocols and the language of interaction
protocols. In this paper we have presented the work we have done so far towards
formalising the semantic domain of these languages.
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In connection with the previous we are working on applying the UCTL branch-
ing time temporal logic to the SRML framework. UCTL is an action/state based
logic that was originally introduced to express the properties of UML statecharts
[12]. The formal power that is attained with an action/state logic is crucial in
order to reason about SRML models that, as we have seen in section 3, possess
information related to the state of the system and the behaviour that changes the
state. UCTL is also being used in other approaches to service-oriented comput-
ing: in [4] UCTL is used to reason about an asynchronous protocol for service-
oriented applications; in [9] the UCTL framework is adapted in order to reason
about a calculus for the orchestration of web services.

By defining the formal grounds over which UCTL can be applied to our mod-
els of service-oriented computation we accomplish several objectives. First we
can validate the soundness of our computational model by defining the tools
that allow us to reason about the model itself and axiomatize it. Second, these
same tools will allow reasoning about service-oriented architectures both using
proof strategies and automatic model-checking [12]. Finally, we lay the basis for
defining the language of business protocols that is used to specify the behaviour
of interfaces and that consists essentially of abbreviations of the UCTL temporal
logic.

We have introduced time as a property of states, but gave no further insight
into what kind of time model we will be using. We are currently investigating the
best way to integrate time in our service-oriented model of computation taking
into account the expressiveness, verifiability and model-checking requirements of
the SRML framework [13].
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Abstract. Recently, specific attention has been devoted to the development of
service oriented process calculi. Besides the foundational aspects, it is also in-
teresting to have prototype implementations for them in order to assess usability
and to minimize the gap between theory and practice. Typically, these implemen-
tations are done in Java taking advantage of its mechanisms supporting network
applications. However, most of the recurrent features of service oriented appli-
cations are re-implemented from scratch. In this paper we show how to imple-
ment a service oriented calculus, CaSPiS (Calculus of Services with Pipelines
and Sessions) using the Java framework IMC, where recurrent mechanisms for
network applications are already provided. By using the session oriented and
pattern matching communication mechanisms provided by IMC, it is relatively
simple to implement in Java all CaSPiS abstractions and thus to easily write the
implementation in Java of a CaSPiS process.

1 Introduction

Service-oriented computing is calling for novel computational models and languages
and recently specific attention has been devoted to the development of service oriented
process calculi that can lay the basis for analyzing and experimenting with compo-
nents interactions, safe service composition, and for formalizing and reasoning about
aspects of service level agreements. Recently, many calculi have been proposed and
most of them are based on process algebras enhanced with mechanisms for describing
safe client-service interactions and with operators for composing services. Besides the
foundational aspects, it is also interesting to have prototype implementations of these
calculi, in order to assess their practical usability and to minimize the gap between
theory and practice.

In this paper we show how to implement a service oriented calculus, CaSPiS (Calcu-
lus of Services with Pipelines and Sessions) [3] using a generic Java framework called
IMC (Implementing Mobile Calculi) where recurrent mechanisms for network appli-
cations are already provided. CaSPiS is the evolution of SCC (Serviced Centered Cal-
culus) [2], a calculus for services, that stemmed from a coordinated effort within the
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EU funded project SENSORIA [12] that aims at developing a novel, comprehensive ap-
proach to the engineering of software systems for service-oriented computing.

IMC was prompted by the growing number of experiments on process calculi and
by the need of easing the implementation phase and was used as a kind of middle-
ware for different distributed calculi [1]; it provides the necessary tools for imple-
menting the run-time system of new languages directly based on distributed calculi
(possibly with code mobility). The aim of IMC was to enable the implementer of
a new language to concentrate on the parts that are really specific of the considered
system, and to rely on the framework for standard mechanisms for distribution and
mobility.

IMC provides means for transparent code mobility, for building communication pro-
tocols by composing sub-components dynamically and for managing node topology. All
these mechanisms are rendered as abstract as possible to ease, e.g., switching from a
specific communication protocol to another, without modifying the other parts of an ap-
plication. IMC can be straightforwardly used if no specific advanced feature is needed;
but a user can customize parts of the framework by providing its own implementations
for the interfaces used in the package. Customizations can take advantage of design
patterns such as factory method, abstract factory, template method and strategy [7] that
are used throughout the packages.

CaSPiS [3] is a formalism useful for experimenting with service oriented calculi im-
plementations, with advanced features and a clear theoretical foundation. It is dataflow
oriented and makes use of a pipelining operator to model the exchange of informa-
tion between sessions (sequences of structured communications between two peers).
Services are seen as passive objects that can be invoked by clients and service defini-
tions can be seen as specific instances of input prefixed processes. The two endpoints
of a session can communicate by exchanging messages. A fresh shared name is used to
guarantee that messages are exchanged only between partners of the same session, so
that two instances of the same persistent service (that was invoked from two different
sessions) run separately and cannot interfere. The central role assigned to sessions and
the direct use of operators for modeling session interaction renders the logical structure
of programs clearer and leads to a well disciplined service specification language that
guarantees proper handling of session closures and in general simplifies reasoning on
the specified services. The idea of session is not new. Indeed, in [10,8] identifies a sim-
ple type-regulated interactions in π-like languages. The calculus makes use also of a
new policy for handling (unexpected or programmed) session closures that in the origi-
nal SCC calculus was somehow “rudimental”. Indeed, in SCC closed session as well as
nested subsessions are simply terminated and no information is sent to the counterpart.
In CaSPiS new primitives are introduced for handling session closure and for reacting
to an unexpected session closures.

The rest of the paper is organized as follows. Section 2 provides a brief overview
of CaSPiS, Section 3 presents IMC while in Section 4 the actual implementation of
CaSPiS is presented. Section 5 shows how the proposed implementation can be used for
developing simple services. The final section contains an example of a CaSPiS program
and some concluding remarks.
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P,Q ::= ∑i∈I πiPi Guarded Sum

| sk.P Service Definition

| sk.P Service Invocation

| P > Q Pipeline

| close Close

| k.P Listener

π ::= (F) Abstraction

| 〈V 〉 Concretion

| 〈V 〉↑ Return

| †(k) Signal

| r �k P Session

| � P Terminated Session

| P|Q Parallel Composition

| (νn)P Restriction

| !P Replication

F ::= u | ?x | f (F̃)

V ::= u | f (Ṽ )

Fig. 1. Syntax of full CaSPiS

2 CaSPiS

CaSPiS (Calculus of Services with Pipelines and Sessions) [3] is a core calculus
equipped with linguistic constructs for handling sessions and that relies on three main
concepts:

1. service definition/invocation
2. bi-directional sessioning as a means for structuring client-service interaction
3. pipelining as a means of composing services.

The syntax of CaSPiS is in Figure 1. In the following we will comment the main con-
structs of CaSPiS, skipping the standard process algebras operators (such as, e.g., non
deterministic choice ∑i∈I πiPi, restriction (νn)P, parallel composition P|Q and replica-
tion !P). Interested readers are referred to [3] for further details.

Within CaSPiS, service definitions and service invocations are rendered respectively
as sk1 .P and sk2 .Q where s is a service name, k is the handler used for managing session
closures while P and Q implement the service and the client protocols respectively.

A service definition sk1 .P and a service invocation sk2 .Q running in parallel can syn-
chronize with each other. As a result, a new, private, session r will be created. The
session has two ends, one at the client’s side where protocol Q is running and one at
the service’s side where protocol P is running. A value produced by a concretion at one
side can be consumed by an abstraction at the other side.

A concretion 〈V 〉P can evolve to P emitting value V . Dually, an abstraction (F)P is
a form of guarded command that relies on pattern-matching: (F)P can evolve to Pσ
retrieving value V , provided pattern F matches value V . Here, the pattern-matching
function match is defined as expected: match(F,V ) = σ , if σ is the (uniquely deter-
mined) substitution that permits identifying pattern F and values V .

The return primitive 〈V 〉↑P can be used to return a value outside of the current ses-
sion, if the enclosing environment is capable of consuming it. Sessions, service defi-
nitions and service invocations can of course be nested at arbitrary depth. No activity
can take place under the scope of a dynamic operator (service definition or invocation,
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guarded sum, right-hand side term of a pipeline and replication). On the contrary, when
considering non dynamic contexts, including sessions, concurrent activities can take
place at any level of session nesting. Sessions do not constrain in any way actions that
are not value production, consumption or return, that is, service invocation and silent
steps.

CaSPiS is equipped with primitives for handling session closure. These primitives
are useful to garbage-collect terminated sessions and, most importantly, to explicitly
program session termination in order to manage abnormal events or timeouts.

Upon creation of a session, one associates with the session a pair of names, (k1,k2),
identifying a pair of termination handlers services, one for each side. Then:

1. a session side is terminated when its protocol executes the command close ;
2. right after execution of close a signal †(k) is sent to the listener on k (such a listener

will have the syntactic form k.R) running at the opposite side of the session.
3. at the same time, the session side that has executed close will enter a special closing

state denoted by � P, where all subsessions of P will be gradually and automatically
closed.

Information about termination handlers to be used is exchanged by the two sides at
invocation time. Operational rules governing service synchronizations are the follow-
ing:

sk1 .P
s(r)

k2
k1−−−−→ r �k2 P sk2 .P

s(r)
k1
k2−−−−→ r �k1 P

P
s(r)k2

k1−−−−→ P′ Q
s(r)k1

k2−−−−→ Q′

P|Q τ−→ (νr)(P′|Q′)

Hence, process sk1 .Q|sk2 .P evolves to (νr)(r �k2 Q|r �k1 P). There, if Q terminates
with close , the termination handler k2 of the callee will be activated. Vice versa, if P
terminates with close the termination handler k1 of the caller will be activated:

P
close−−−→ P′

r �k P
τ−→ � P′|†(k)

� r �k P
τ−→ � P|†(k)

A typical behavior for a listener is that of closing the current session as soon as a signal
†(k) is received. This listener can be rendered as: k.close .

Processes can be composed by using the pipeline operator P > Q. Whenever P pro-
duces a value V that Q can consume, a reduction will trigger a new instantiation Q′ of
Q. After this reduction, Q is again ready to consume the next value produced by P, if
any:

P
〈V 〉−−→ P′ Q

(V )−−→ Q′

P > Q
τ−→ (P′ > Q) | Q′

2.1 A Small Example

In this section we will show how CaSPiS can be used for modeling a simple system
used for computing the basic arithmetic operations. In the example, and in the rest of
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this paper, we will sometime use standard programming language operators like selec-
tion (if − then − else) or iteration (while − do) that can be implemented as macros in
CaSPiS. Service calculator can be implemented in CaSPiS as follows:

!(νk)calculatork. !("sum",?x,?y)〈"result",x + y〉
| !("sub",?x,?y)〈"result",x − y〉
| !("mul",?x,?y)〈"result",x ∗ y〉
| !("div",?x,?y) if y = 0 then 〈"fail"〉 else 〈"result",x/y〉
| ("off")close
| k.close

after service calculator is invoked, processes for managing basic arithmetic opera-
tions and those for controlling session termination are installed in the established ses-
sion. The processes for arithmetic operations wait for tuples containing the operation
to be computed ("sum", "sub", "mul" and "div") and the two operands (x and y)
and then send to the callee the result. In case of a division operation, message "fail"
is sent to the callee when y is 0. Moreover, when message "off" is received the es-
tablished session is closed. Finally, listener k.close is used for managing unexpected
session closing by the client. To avoid interferences, name k is private. Since this ser-
vice is replicated, it is always available for the invocation.

Service calculator can be used, for instance, for computing Greatest Common Di-
visor between two integers using Euclid’s algorithm. Service gcd is defined as follows:

!gcd.(?x,?y)
if (y = 0) then 〈x〉
else

if (x < y) then gcd.〈y,x〉(?z)〈z〉↑
else P > (?u,?w)gcd.〈u,w〉(?z)〈z〉↑

where process P is defined as follows:

P
	
= (νk′)calculatork′ .〈"sub",x,y〉("result",?z)〈z,y〉↑〈"off"〉|k′.close

3 The IMC Framework

We now sketch the main functionalities and classes of the framework, for further de-
tails we refer to the IMC web page http://imc-fi.sf.net). IMC consists of three
main subpackages: protocols, mobility and topology that deal with communica-
tion protocols, code mobility and network topology, respectively. Since mobility is not
employed in CaSPiS, we will ignore this subpackage in the following description.

IMC provides tools to define customized protocol stacks, which are viewed as a flex-
ible composition of micro-protocols, and permits achieving adaptable forms of commu-
nication transparency, which are needed when implementing an infrastructure for global
computing. In IMC, a network protocol is viewed as an aggregation of protocol states: a
high-level communication protocol can indeed be described as a state automaton. Thus,
the programmer must simply provide the implementation of each state, put them in a
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protocol instance, and then start the protocol. The protocol states abstract away from
the specific communication layers. This permits re-using protocol implementations in-
dependently from the underlying communication means: the same protocol can then
be executed on a TCP socket, on UDP packets or even on streams attached to a file
(e.g., to simulate a protocol execution). This abstraction is implemented by specialized
streams: Marshaler (for writing) and UnMarshaler (for reading). These streams pro-
vide high-level and encoding-independent representations of information to be sent or
received.

The data in these streams can be “pre-processed” by some customized protocol lay-
ers that remove some information from the input and add some information to the out-
put: typically this information is a header removed from the input and added to the
output. The base class ProtocolLayer deals with these functionalities, and can be
specialized by the programmer to provide his own protocol layer. These layers are then
composed into a ProtocolStack object that ensures the order of preprocessing pass-
ing through all the layers in the stack. Each layer is independent and the composition
of layers in a protocol stack takes place at run-time. For instance, the programmer can
add a layer that removes a sequence number from an incoming packet and adds the
incremented sequence number into an outgoing packet.

In IMC a participant in a network is an instance of the class Node of the package
topology. A node is also a container of running processes that can be thought of as the
computational units. The framework provides all the means for a process to access the
resources contained in a node and to migrate to other nodes. A process is an instance
of a subclass of the class NodeProcess, and can be added to a node for execution with
the method addProcess of the class Node. A node keeps track of all the processes
that are currently in execution and handles their termination when the node itself is
terminated. The entry point of a NodeProcess is the abstract method execute that
must be implemented in subclasses of NodeProcess. Actually, a process can interact
with the node it is running on only through a NodeProxy, which ensures security by
restricting the node interface visibility to a subset.

The framework provides classes and protocols to deal with sessions, a base concept
of service calculi. The concept of session is logical, since it can then rely on a phys-
ical connection (e.g., TCP sockets) or on a connectionless communication layer (e.g.,
UDP packets). A SessionManager instance will keep track of all the sessions. This
can be used to implement several network topology structures. A Session instance is
identified by two SessionId objects, one indicating the local end and the other one
indicating the remote end. A SessionId contains information about the “location”
or “address” of a node; this concept depends on the specific communication medium:
for instance, for an IP communication it will be a string of the shape IP:port. More-
over, it contains information about the specific low level communication protocol. For
instance, "udp-myhost.com:9999" represents a UDP communication with the host
"myhost.com" on port 9999. Upon establishing a session, the SessionId is used to
determine the low level communication layer. Thus, switching from a communication
layer to another is only a matter of changing the SessionId, while all the other classes
in IMC are independent from this, and do not need to be changed. A Session can be
established by using the method connect, of class Node, specifying the SessionId of
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the remote end; a session request can be accepted by using the method accept, by spec-
ifying the local SessionId. These methods return a ProtocolStackobject (where the
lowest layer is already set as explained above); this can then be customized by adding
specific ProtocolLayer objects. Finally it can be passed to a Protocol instance that
will run upon it.

IMC provides an implementation of tuples, tuple spaces and the associated pattern
matching retrieval mechanism, thus, the programmer can use the generative and asyn-
chronous communication mechanisms typical of Linda [9]. Notice that the implemen-
tation of tuple spaces in IMC also provides extended operations such as non-blocking
retrieval operations, and retrieval operations that permit reading/removing any tuple
(without specifying its template). Furthermore, there is also a blocking version of the
out operation: this permits implementing a synchronous communication mechanism
still relying on pattern matching (this will be the case of the communication in CaSPiS,
Section 4).

Inside IMC inter-objects communication takes place via the event based functional-
ities provided by IMC. In particular, most classes of the framework are endowed with
event generation capabilities (e.g., ProtocolState,ProtocolLayer,Node, etc.). This
permits keeping the classes loosely coupled and communications among objects in the
framework highly flexible. It is then easy to intercept, e.g., new connection requests,
connection failures and session closures. With this respect, the framework notifies the
processes involved in a session about the closure of the session so that they can perform
finalization operations.

4 JCASPIS: CaSPiS Implementation in IMC

In this section we present JCASPIS: a Java framework that permits implementing ser-
vice oriented applications based on CaSPiS paradigm. Notice that, CaSPiS operators
like parallel composition and restrictions, can be directly implemented in Java. Indeed,
the former is implemented by using threads, while the latter is obtained by considering
the creation of new objects like, for instance, the instantiation of new services. Other
operators, like non deterministic choice and replication are implemented in JCASPIS
in a restricted way. Indeed, in JCASPIS we will consider only the choice between input
actions while replication will be available only on service definitions.

The implementation of other JCASPIS primitives requires more attention. Indeed, to
allow JCASPIS programs to interact with existing services, implementation of service
definitions, service invocations and sessions has to take into account existing protocols
and technologies for services. IMC provides the Java classes that can be easily used
for handling connections and disconnections among nodes over a network. JCASPIS
specializes these classes in order to handle Service Oriented Protocols. Two kinds of
connection protocols are considered: TCP and HTTP. The former is already provided
by IMC framework, while the latter has been implemented by using Simple Web Server
[13], a Java library, released under the GNU LGPL, providing an extensible HTTP
engine.
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Three protocols for services interactions have been developed: BYTE CODE, XML
and SOAP. The first one, is used when service interaction is implemented by serializing
Java objects. XML and SOAP protocols are used when service interaction is based on
XML and SOAP messages respectively. Thanks to the modularity of IMC, new service
interaction protocols, as well as new implementations of the one already available, can
be easily integrated within JCASPIS.

Provided protocols are implemented as new layers that permit marshaling/unmar-
shaling data as Java objects or within XML and SOAP messages respectively. BY-
TE CODE protocol is directly developed over the existing Java serialization mecha-
nisms while XML and SOAP implementations are based on two standard J2EE [5] li-
braries, Java API for XML Binding (JAXB) [6] and SOAP with Attachments API for Java
(SAAJ) [14].

Java API for XML Binding is a Java library that permits mapping Java classes to
XML representations. Indeed, by using JAXB Java objects can be marshaled into XML
and vice-versa. In other words, JAXB permits sending and receiving Java objects in
XML format, without the need to implement a specific set of XML loading and saving
routines for the program’s class structure. JAXB is one of the APIs in the Java EE
platform, and is part of the Java Web Services Development Pack (JWSDP). It is also
one of the foundations for WSIT. JAXB is part of SE version 1.6.

SOAP with Attachments API for Java (SAAJ) provides primitives for producing and
consuming messages conforming to the SOAP specification and with attachments. In-
deed, SAAJ automates many of the required steps for creating/analyzing SOAP mes-
sages.

In the following we will describe how key notions of CaSPiS are implemented within
IMC.

Services. Services are referenced by means of a Service object that contains service
name, the SessionId, which is used for identifying the connection protocol and the
address of the service, and the protocol used for service interaction. For instance, service
pair running at host test.unifi.it:8080based on XML messages is referenced as:

s = new Service(new IpSessionId("test.unifi.it", 8080), "pair", "xml");

When a service is invoked, a connection to the remote host providing the requested
service is established. Moreover, the protocol ProtocolStack implementing the re-
quired conversation protocol (i.e., IMC, XML or SOAP) is instantiated and stored
within an object instance of class Connection. This object, which abstracts from a
specific interaction protocol, is used for implementing service interactions.

Processes. CaSPiS processes are implemented by classes inherited by the abstract class
Process. The classes derived from Process must provide the implementation of the
entry point method execute, and can use all the methods for exchanging data through
a session and outside the session environment, and for publishing or invoking a ser-
vice. For instance, CaSPiS process (?x)(?y)〈x,y〉, that emits a pair containing two read
values, will be rendered in JCASPIS as follows:
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public class PairServiceProcess extends SessionProcess {
public void execute() throws IMCException {

Object first = inAction(); // accept any template
Object second = inAction(); // accept any template
send(new Tuple(first, second));

}
}

Similarly, the process (〈"a"〉|〈"b"〉|(?x)〈x〉↑), that sends two values, retrieves a pair
and emits it in the enclosing context, can be implemented as follows:

public static class PairClient extends ParallelProcess {
public void execute() throws IMCException {

outAction(new Tuple("a"));
outAction(new Tuple("b"));
Tuple t = (Tuple) inAction();
returnAction(t);

}
}

Each process can execute method runProcess(Process p) for activating the exe-
cution of process p.

Contexts. Process instances are executed within a Context. Abstract class Context
provides the following methods for:

– publishing services that will be invoked by remote partners (publish);
– invoking remote services and instantiating local processes implementing service

interactions (call);
– executing basic CaSPiS actions (inAction, outAction and returnAction), for

verifying whether an action can be executed (methods checkIn, checkOut and
checkReturn) and for closing the enclosing session (close).

Contexts can be nested. For this reason Context also keeps track of all its nested
components. By using the IMC mechanisms to react upon session closing, it automati-
cally forwards the session closing operation to all its nested Contexts.

Service Publication and Invocation. A service is published by invoking one of the
following methods on a context:

– publish(Service s, Process p)
– publish(Service s, Class<? extends Process> c)
– publish(Service s, Class<? extends Process> c, boolean per)

These methods publish a service within the current node. When a request for the pub-
lished service is received, process p (or an instance of class c) is activated. Boolean
parameter per is used for determining if the service is persistent, namely if the service
is still available after the first invocation.
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The following code permits publishing the service s defined above:

publish (s, PairServiceProcess.class, true)

A service can be invoked by executing one the following methods:

– call(Service s, Process p)
– call(Service s, Class<? extends Process> c)

when one of these methods is invoked, a connection to the remote host is opened and
a Session (described in the following) is installed within the actual context. Process p
(or an instance of class c) is executed within the new session.

To invoke service s, the following code is executed:

call (s, new PairClient(), true)

The implementation of publish and call methods in Context rely on abstract meth-
ods:

– Connection publish(ServiceName s)
– Connection call(ServiceName s)

The former waits for a request for service s, the latter establishes a connection with the
remote host providing service s. Both methods return an instance of Connection used
for interacting with the caller/callee. Hence, a new session is created and the obtained
object is used for interacting with the remote participant.

JCASPIS provides three implementations of abstract class Context: Execution-
Environment, Session and PipeLine. They define a top level context, a session and
a pipeline, respectively.

Class ExecutionEnvironment is also devoted to wait for incoming connections.
Indeed, its constructor is parametrized with respect to the Internet addresses used for
handling incoming TCP and HTTP connections. Moreover, ExecutionEnvironment
keeps track of the published services. These are stored within a ServiceRegistry.
When a connection request is received, this object is used for determining the process
that has to handle the received service request. Since the same service can be published
with different implementations, ServiceRegistry can be specialized for implement-
ing different service selection policies. At the moment, implementations of a service
are collected in a list, and the first available is selected.

Classes Session and PipeLine provide an implementation for CaSPiS sessions
and pipelines respectively. Sessions are installed within a context when a service is
invoked. Interactions with the remote participants are performed via an instance of
Connection that contains a reference to the ProtocolStack that is created once the
connection is established.

CaSPiS pipelines are implemented by means of PipeLine. This class contains a list
of Abstractions. These are processes parametrized with respect to a Template, i.e.,
an object that permits selecting received messages. Output actions executed by running
processes are intercepted in order to activate the processes corresponding to a matching
template.

In Figure 2 we report the class diagrams of JCASPIS classes described in this sec-
tion. Notice that Process, PipeLine and Session implement interface Activity.
This is the interface that characterize objects that can be executed within a Context.
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Activity

Context
activities:List<Activity>
running : boolean

ExecutionEnvironmentPipeline Session

Process
parent:Context

Fig. 2. JCASPIS: Class Diagram

Session Interactions. The communication mechanism in CaSPiS is based on struc-
tured values and pattern matching, thus, we will use the tuple space based communi-
cation provided by IMC. The retrieve operation can be performed using the method
inAction, that can also accept as a parameter a template, which extends abstract class
Template, specifying the data we are willing to receive; the write operation can be per-
formed using the method outAction, that takes as a parameter the message we want
to send. Finally, the method returnAction is used for sending a value just outside the
current session. This method is implemented by invoking method outAction of the
enclosing context.

Classes Session and PipeLine provide different implementations for inAction
and for outAction methods. Session sends and receives messages over the corre-
sponding service connection. PipeLine delegates input to the enclosing context while
catches output for activating a process that will handle the sent message.

A session is closed when method close is invoked. Afterwards, remote connec-
tion and all the nested sessions are closed. Notice that, each action performed within
a session that is terminating, or within one of its subsessions, leads to an exception.
Moreover, to handle unexpected connection closures, each session is equipped with a
termination handler. This is a process that is executed for handling proper session clo-
sure. Termination handler is associated to a session when service is invoked/published.
Indeed, there are methods call/publish described above that take as an extra param-
eter the process or the process class to use as termination handler.

Methods for session interactions cannot be invoked on a top level context or when
a session is closing. For this reason, Context also provides methods that can be used
for verifying whether an action can be executed: methods checkIn, checkOut and
checkReturn.
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5 Implementing Simple Services with JCASPIS

In this section we will show how JCASPIS can be used for implementing simple services.
In particular, we consider the implementation of the example presented in Section 2.1.

Service calculator. The first step for implementing a service in JCASPIS is to define
the messages used for interacting with it. In the case of calculator, we will consider
three classes for implementing the interaction messages:

– Operation, containing a reference to an operation (op) and the arguments (x and
y);

– Result, containing the operation result (result);
– Failure, containing a text indicating the occurred error;

in correspondence of these, we have also to implement the templates used for retrieving
expected messages1. The actual calculator service relies on:

– OperationTemplate, for matching Operation messages;
– ResultTemplate, for retrieving results;
– FailureTemplate, for intercepting computational failure.

The body of the service calculator can be rendered in JCASPIS as follows:

runProcess(new DivProcess());
runProcess(new SubProcess());
runProcess(new SumProcess());
runProcess(new MulProcess());
inAction(new StringTemplate("off"));
close();

This process first activates sub-processes for computing the arithmetic operations (Java
code for SumProcess and DivProcess is reported in Listing 1) and then waits for
a termination string ("off") for closing the actual session. This message is retrieved
using a StringTemplate. This is a template that matches only strings that are equal to
the one passed to the constructor.

Notice that in this case we do not install any handler for intercepting unexpected
session closure. Indeed, default termination handler is used. This is a process that auto-
matically closes current session as soon as the remote participant terminates.

Since service calculator is based on a persistent session (many messages can be ex-
changed over the established connection), service calculator is published by using TCP
as connection protocol and BYTE CODE as interaction protocol:

ExecutionEnvironment env = new ExecutionEnvironment(8080, 9000);
Service calc = new Service();
calc.setName("calculator");
calc.setSessionId(new IpSessionId("localhost", 8080));
calc.setLanguage("BYTE CODE");
env.publish (calc, CalculatorProcess.class, true);

1 Classes for implementing values exchanged after a service invocation and templates to be
used in the established session could be generated automatically from a standard XML textual
representation like, for instance, WSDL.
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public class SumProcess extends Process {
public void execute() throws InterruptedException {

while (true) {
Operation op = inAction(new OperationTemplate(Operation.Type.SUM));
outAction(new Result(op.getX()+op.getY()));

}
}

}

public class DivProcess extends Process {
public void execute() throws InterruptedException {

while (true) {
Operation op = inAction(new OperationTemplate(Operation.Type.DIV));
if (op.getY()==0) {

outAction(new Failure("Division by 0!"));
} else {

outAction(new Result(op.getX()/op.getY()));
}

}
}

}

Listing 1. Processes for handling sum and div operations

Greatest Common Divisor. Service calculator can be used for computing the Great-
est Common Divisor between two integers. This service, named gcd, operates on two
kinds of messages:

– Pair, which contains the values for which we want to compute GCD;
– Result, which contains the computed GCD.

Protocol of service gcd is implemented in JCASPIS as follows:

Pair p = inAction(new PairTemplate());
int x = p.getX();
int y = p.getY();
if (y==0) {

outAction(new Result(x));
}
if (x < y) {

call (gcd, new RequestResponseProcess(new Pair(y,x)));
} else {

Match m = new Match();
m.add(new IntegerTemplate(), GcdAbstraction.class);
pipeline(new CalculatorClient(new Operation(Operation.SUB, x, y)), m);

}

where RequestResponseProcess, which implements the standard request-response
service interaction pattern, is defined as follows:
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public class RequestResponseProcess extends Process {
Object request;
public RequestResponseProcess(Object message) {

this.request = message;
}
public void execute() throws InterruptedException {

outAction(request);
Object response = inAction();
returnAction(response);

}
}

while abstraction GcdAbstraction is defined as follows:

public class GcdAbstraction extends Abstraction {
public void execute() throws InterruptedException {

runProcess(new RequestResponseProcess(getActivationMessage()));
}

}

To guarantee interactions with existing web services, service gcd is developed over
HTTP and SOAP:

ExecutionEnvironment env = new ExecutionEnvironment(8080, 9000);
Service gcd = new Service();
gcd.setName("gcd");
gcd.setSessionId(new HttpSessionId("localhost", 8080));
gcd.setLanguage("SOAP");
gcd.setServicePackage("org.cmg.caspis.ex.gcdulator:org.cmg.caspis.ex.gcd");
env.publish (gcd, GcdProcess.class, true);

6 Conclusions

The implementation of a language based on a process calculus typically consists of a
run-time system (a sort of abstract machine) implemented in a high level language like
Java, and of a compiler that, given a program written in the programming language
based on the calculus, produces code that uses the run-time system above. In this pa-
per we have illustrated, by means of a case study, a possible methodology to accelerate
the development of prototype implementation of such a run-time system, by relying on
the IMC framework. In particular, we have described JCASPIS: the implementation of
CaSPiS, a calculus that has recently been proposed within the EU project SENSORIA.
The use of IMC has permitted accelerating the development of prototype implemen-
tations while concentrating only on the features that are specific of CaSPiS. Indeed,
JCASPIS composed only by 43 classes and about 1700 lines of code. These classes
provide 289 methods, and the average number of lines per method is 2.5.
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Implementing other session based calculi. JCASPIS can be easily extended to imple-
ment two other session based calculi that, like CaSPiS, have directly stemmed from
SCC [2], namely SSCC [11] and Conversation Calculus [4]. Notice that, implemen-
tation of SSCC and CC would completely reuse large part of the JCASPIS
framework.

SSCC is stream oriented with primitives for inserting/retrieving data in/from streams.
Streams have been easily implemented in IMC by using classes for handling tuple
spaces. The interface of Process and Context can be extended in order to consider
method feed that is used for inserting a value inside a stream. The new context Stream
has been introduced for collecting the values produced by the inner activities.

The Conversation Calculus (CC) has explicit and distinct message passing primi-
tives to model inter and intra session communication. These primitives are based on
communication directions (see [4]). To implement these primitives, Process as well as
Context have been extended to consider communication directions.

As a future work, we plan to develop a high level programming language that, in-
spired by CaSPiS, could be used for programming services and to orchestrate existing
ones. Given a program written in the programming language based on the calculus it
will be translated in a Java program that uses JCASPIS classes. One of the advantages
of this approach is that programs could be verified by using formal tools that are being
developed for CaSPiS.
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Abstract. Management is one of the main expenses of running the server farms
that implement enterprise services, and operator errors can be costly. Our goal
is to develop type-safe programming mechanisms for combining and managing
enterprise services, and we achieve this goal in the particular setting of farms of
virtual machines. We assume each server is service-oriented, in the sense that the
services it provides, and the external services it depends upon, are explicitly de-
scribed in metadata. We describe the design, implementation, and formal seman-
tics of a library of combinators whose types record and respect server metadata.
We describe a series of programming examples run on our implementation, based
on existing server code for a typical web application.

1 Introduction

Farms and Roles. Abstractly, a server farm is a collection of servers that runs one or
more (parallel) programs, such as hosting a website or running compute jobs. Servers in
a farm may have both local and remote dependencies. They may receive requests from
remote clients, such as a web browser. They may also send requests to remote servers,
to perform a credit card transaction, for example.

We assume each server boots off a disk image, such as the contents of a local hard
drive, or an image fetched over the network. Typically, each server plays a particular
role, such as web server, mail server, application server, and so on. The functionality
embodied in disk images is often referred to as business logic, as it codifies the steps
needed to enact various business processes—how to auction a wardrobe, for example.

Managing Server Farms in Software. Conventionally, operations staff manage server
farms using a mixture of command prompts, scripts, various graphical tools, and actual
physical configuration. Management includes provision and interconnection of servers,
as well as responding to events such as peaks and troughs in load, or failures of individ-
ual servers. Operator errors are a leading cause of service failures and there is a need
for increased automation and static validation of operator actions [Oppenheimer et al.,
2003; Nagaraja et al., 2004].

Technologies such as network booting [Intel 1999] and virtualization [Meyer and
Seawright, 1970] of commodity hardware [Barham et al., 2003; Wolf and Halter, 2005]
allow hardware resources to be dynamically allocated to server roles. Moreover, to elim-
inate physical configuration completely, virtual machines can even be rented on demand
over the web [Bavier et al., 2004; Hoykhet et al., 2004; Ama, 2006; Garfinkel, 2007].
These technologies reduce the need for human intervention and transform server farm
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management into a programming problem. The programming problem is to write oper-
ations logic: programs that codify the management actions of operators—to provision
and interconnect servers, for example.

Service Orientation. Let a procedure be some functionality exposed on a communi-
cation port via a protocol such as RPC-style request/response, and let a service be a
set of procedures. Server roles are increasingly service-oriented, in the sense that each
role is described as importing and exporting services. A role implements its exports,
and has dependencies on its imports. These imports and exports have explicit types that
describe message contents and message patterns.

For example, an enterprise order processing application (drawn from published server
code [Pallmann, 2005]) has an order entry role implementing a service (its export) con-
sisting of a single procedure SubmitOrder, and conforming to the IOrderEntry interface.
We give this and related interfaces below.

public interface IOrderEntry { string SubmitOrder(Order order); }
public interface IPayment { string AuthorizePayment(Payment payment); }
public interface IOrderProcessing { void SubmitOrder(Order order); }

The code for SubmitOrder needs to consult a remote site to make an authorization
decision. Hence, the order entry role has a dependency on the IPayment interface (its
import). After authorization, SubmitOrder fulfills the order by calling an order process-
ing procedure in the IOrderProcessing interface (its second import).

Service-oriented designs often use SOAP [Box et al., 2000] messages for requests
and responses, while service metadata, such as request and response types, is often
described using the Web Services Description Language (WSDL) [Christensen et al.,
2001]. SOAP and WSDL are platform-independent XML formats. There are many de-
velopment tools and software platforms for producing service-oriented disk images,
where the imports and exports are described with WSDL. In our example, the order
processing code is in C#. It relies on .NET communication libraries and tools to ex-
change SOAP messages and to map between C# interfaces and WSDL metadata.

Service Combinators for Farming Virtual Machines. If the server farm is the com-
puter, what is the program? Our proposal is that an application running on a server
farm consists of (1) a set of pre-existing disk images, (2) a set of URIs for the services
exported and imported by the program, and (3) a script for assembling the roles, inter-
connecting them (sometimes via intermediaries for tasks such as load balancing), and
managing the resulting system. The disk images implement the business logic of the
program, while the script implements the operations logic.

Application for a Server Farm = Disk Images + External URIs + Script

Our main goals are (1) to develop a typed combinator-based API for scripting opera-
tions logic, and (2) to develop a formal semantics to support reasoning about reachable
configurations. We treat service-oriented disk images as components to be intercon-
nected using standard networking protocols.

On the other hand, the tasks of writing business logic and of building disk images
are outside our scope—there are many existing tools for these purposes.
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In this paper, we describe the design and implementation of Baltic, a type-safe API
for expressing operations logic. Our API consists of a set of combinators for starting and
stopping server roles implemented as virtual machines (VMs), for importing and export-
ing SOAP web services described by WSDL metadata, and for managing the resulting
system. Concretely, the combinators are functions in the F# dialect of ML [Syme et al.,
2007]. These combinators allow an ML program to control a small-scale server farm,
which consists of a set of SOAP intermediaries interconnecting a set of VMs managed
by a Virtual Machine Monitor (VMM) on a single physical server. By intermediary,
we mean a service situated on the physical server, that performs simple tasks such as
forwarding SOAP messages between VMs and the external world, or acting as a load-
balancer in front of multiple servers. Our particular VMM is Virtual Server [Armstrong,
2007], running on dual processor hardware suitable for test automation or (modest) pro-
duction workloads.

The intended scope of this paper is relatively small farms of servers, such as those
that could be supported by a small number of VMMs. Our implementation is a re-
search prototype, but if engineered for production, we believe it would usefully support
small websites or test environments. We have not attempted to design a comprehensive
set of intermediaries, although we can easily add more. Further research on scalability
would be needed for our approach to apply to large-scale server farms used for parallel
data processing (see Dean and Ghemawat [2004], for example). Still, even if our prac-
tical implementation is on a small scale, we demonstrate for the first time scripts that
both (1) manipulate VMs and interconnect them with standard TCP/IP protocols, and
(2) have a formal semantics suitable for typechecking and static analysis.

Contributions. We propose a resource metadata format that describes the resources—
disk images, and imported and exported services—available in a server farm. We advo-
cate that operations logic for managing a server farm be scripted with respect to such
metadata. The main technical contributions of this work are the following.

– The idea that disk images should be seen as functions, with type signatures gener-
ated from service-oriented metadata, such as WSDL.

– The design and implementation of a library of service combinators for composi-
tional description of server farms and their operations logic.

– A formal semantics of these combinators by an encoding in a concurrent λ -calculus.
Via a type preservation result for our λ -calculus, we obtain type soundness for pro-
grams running against our API.

The main benefits of our approach, compared to the alternative, low-level scripting
languages [Wolf and Halter, 2005], are the following.

– Our method abstracts from networking details and automatically links together the
procedures imported and exported by machines and intermediaries.

– Our method catches construction errors by typechecking, rather than at some time
during execution. For example, if server metadata stipulates a dependency on a
service type, such as IPayment, we never supply a procedure with another type.

Contents of the Paper. Section 2 describes our software architecture. Section 3 intro-
duces service combinators by example. Section 4 reviews WSDL service descriptions,
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and describes our resource metadata format. Section 5 describes the implementation.
Section 6 describes the message safety property guaranteed by Baltic, and outlines the
underlying theory. Section 7 discusses related work and Section 8 concludes.

For the sake of brevity, this paper omits most formal definitions; a technical re-
port [Bhargavan et al., 2007] includes additional examples, all formal definitions and
proofs.

2 Architecture

The figure below depicts the Baltic architecture for managing a single physical
server. A remote client is a consumer of a service located at an address on the physical
server, while remote service is a service called by computations running on the physi-
cal server. The Baltic server implements the services exported by the physical server,
as well as SOAP intermediaries that are used to interconnect other services. The VMM
also runs on the physical server, under control of the Baltic server. (Our VMM is Virtual
Server; other VMMs implement management APIs similar to that of Virtual Server, and
hence could also support the Baltic API.) Files used by the VMM, such as disk images,
are held on disks mounted on the physical server. The Baltic server mediates all access
between VMs and the external world, and exports functions for managing the VMM
and the intermediaries.

The Baltic script is an executable, S.exe, compiled from an ML program; it manages
the Baltic server (and hence the VMM) using remote procedure calls, and hence may
run either on the physical server, or elsewhere. The Baltic script is linked agains the
libraries B.dll and Em.dll that implement the Baltic API described in the next section.

The VMM hosts a virtual network to which each VM is attached. The virtual net-
work is isolated from the external network. Hence, VMs can use TCP/IP over the vir-
tual network to call services on other VMs directly. VMs may also use TCP/IP to call
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intermediaries hosted by the Baltic Server, but cannot directly call remote services.
Remote clients can also call externally accessible intermediaries hosted by the Baltic
server, but not those hosted in VMs. Intermediaries hosted by the Baltic server can call
all three kinds of procedure: other intermediaries, remote services, or services exported
by a VM. As the diagram illustrates, Baltic scripts create and interconnect VMs and
intermediaries, but are not (generally) involved in the actual SOAP message flow.

3 Service Combinators by Example

We implement several variations of the enterprise order processing application intro-
duced in Section 1. First, we describe the resources available to the application and the
typed Baltic API. Then we present a series of examples that manage the application by
creating a different configuration of VMs and SOAP intermediaries.

Generating a Typed Interface to Resources. The resources available to an application
consist of the following: (1) disk images for each server role; (2) addresses of external
procedures that the application can use; and (3) addresses of procedures published by
the application. We propose a metadata format to describe these resources, with service
types being expressed in WSDL. The format is described in more detail in Section 4. (To
the best of our knowledge, there is no prior service-oriented metadata format for disk
images.) We show below an excerpt from the metadata m for our example application—
our implementation uses an XML format, but for the sake of readability we use an
equivalent ML syntax.

[VM {name = "OrderEntry"; disk = "OrderW2K3.vhd";
inputs = [payment ty; orderProc ty]; outputs = [orderEntry ty]};

Import {name = "Payment1"; binding = payment ty;
url = "http://creditagency1.com/CA/service.svc"};

Export {name = "OrderEntry"; binding = orderEntry ty;
url = "http://localhost:8080/OE/service.svc"};

...]

The first record specifies that the OrderEntry role is defined by the disk image in
the file OrderW2K3.vhd. The role takes two services as input, described by payment ty
and orderProc ty, which are the WSDL descriptions (or bindings) corresponding to the
C# interfaces IPayment and IOrderProcessing, given in Section 1. The role exports a
single service described by the binding orderEntry ty (corresponding to IOrderEntry).

The second and third records describe services imported and exported by the ap-
plication; the records include the actual URIs as well as their WSDL bindings. The
full metadata m for our example contains also records for the other roles and imported
services.

The table below lists the Baltic API for this example application. The Baltic API
consists of a basic interface, B.mli, which is general and fixed, plus an environment
interface, Em.mli, which depends on the resources described by m. (The notation Em.mli
denotes an interface that is a function of the metadata m.) The types in Em.mli are ML
representations of the request and response types in the WSDL bindings in m. The
functions provide typed access to the various resources. Given m we have a tool that
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compiles m to the interface Em.mli, and also to a module Em−c.ml implements the
interface. For compilation to succeed, the metadata must be well-formed in the sense
that it satisfies certain syntactic constraints.

The functions in the Baltic API manipulate procedures; a value of type (α ,β ) proc
represents a SOAP procedure that takes a requests of type α and returns responses of
type β . Section 5 describes the implementation and informal semantics of the API in
more detail. In the rest of this section, we illustrate its use by example.

Basic Interface: B.mli Environment Interface: Em.mli

type vm
type vm snapshot
type event = VM Crash | VM Shutdown |

VM Overload | VM Underload
type (α ,β ) proc
type (α ,β ) procref
val call : (α ,β ) proc →α→β
val eOr : (α ,β ) proc → (α ,β ) proc → (α ,β ) proc
val ePar : (α ,β ) proc → (α ,β ) proc → (α ,β ) proc
val eRef : (α ,β ) proc → ((α ,β ) proc × (α ,β ) procref)
val eRefUpdate : (α ,β ) procref → (α ,β ) proc →unit
val eVM : vm → (event →unit) →unit
val eDelete: (α ,β ) proc →unit
val shutdownVM: vm →unit
val snapshotVM : vm →vm snapshot
val restoreVM : vm snapshot →unit

type Payment
type Order
type tPayment=(Payment,string) proc
type tOrderEntry=(Order,string) proc
type tOrderProcessing=

(Order,unit) proc
val createOrderEntryRole:

tPayment →tOrderProcessing →
(vm × tOrderEntry)

val createOrderProcessingRole :
unit → (vm × tOrderProcessing)

val createPaymentRole :
unit → (vm × tPayment)

val importPayment1: unit →tPayment
val importPayment2: unit →tPayment
val exportOrderEntry:

tOrderEntry →tOrderEntry

Example 1: Creating an Isolated VM Farm. Our first example creates a simple in-
stance of the enterprise order processing application. The three server roles are imple-
mented by VMs that are isolated from the external environment, a configuration useful
during development and testing.

The script below calls createPaymentRole and createOrderProcessingRole to boot
VMs from the disk images of the payment and order processing roles. The disk image
is stored as an ordinary file, and a VMM can boot a VM off such a file. These calls
return the procedures ePay and eProc exported by these roles. Since these roles import
no procedures, the corresponding functions take no parameters. Finally, the third line
boots a VM for the order entry role, using ePay and eProc as inputs.

let (vm1,ePay) = createPaymentRole ()
let (vm2,eProc) = createOrderProcessingRole ()
let (vm3,eEntry) = createOrderEntryRole ePay eProc

A distinctive feature of our approach is that instead of presenting disk images as un-
typed files, we generate code, like createOrderEntryRole, that presents disk images as
functions manipulating typed procedures. Hence, typechecking catches interconnection
errors that would otherwise cause failures at run time, either during initial configuration
or later during reconfigurations.
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The following function, from B.mli, makes a call to a procedure. Given an (α ,β ) proc
and a request of type α, it serializes the request into a SOAP message, sends it to the
procedure, awaits and then deserializes the response, and returns the result.

val call: (α ,β ) proc →α→β

This function is useful for testing; for example, to test eEntry, we invoke it as follows:
(The function makeOrder generates a default Order for user Alice.)

let o:Order = makeOrder "Alice"
let result = call eEntry o

(The call function allows the Baltic script to send and receive SOAP messages; it is the
only exception to the general rule that the Baltic script only sends control messages.)

Example 2: Importing and Exporting Services. In our next example, rather than use
a local payment service (such as ePay above) to authorize orders, we rely on a remote
service. In addition, we export the internal eEntry procedure as a public service on the
Baltic server. The external addresses of the payment service and the exported service are
specified in the metadata m, and are named Payment1 and OrderEntry. These addresses
are embedded within the functions importPayment1 and exportOrderEntry in Em.mli.

The script below calls the function importPayment1 to create a SOAP forward-
ing intermediary (or forwarder) on the Baltic server, returning the internal procedure
ePay. Any request sent to ePay is forwarded to the external URI Payment1. The call
to the function exportOrderEntry with parameter eEntry creates another forwarder on
the Baltic server, listening at the URI OrderEntry located on the physical server. Any
request sent to this URI is forwarded to the internal procedure eEntry.

let ePay = importPayment1 ()
let (vm1,eProc) = createOrderProcessingRole ()
let (vm2,eEntry) = createOrderEntryRole ePay eProc
let eo = exportOrderEntry eEntry

Example 3: Load Balancing between Server Instances. If a server role becomes
a bottleneck, we can avoid overloading it by running multiple instances in parallel,
together with an intermediary that balances requests between them. The next example
runs two instances of the front-end order entry role, to better utilize the multi-processor
hardware on our server.

The script below calls createOrderEntryRole twice to create two VMs vm2 and
vm2’ that export the procedures eEntry and eEntry’, respectively. The function call
eOr eEntry eEntry’ then returns a procedure exported by a freshly created Or interme-
diary, which acts as a load balancer. Any request sent to this intermediary is forwarded
to either eEntry or eEntry’, chosen according to some strategy. (For now, we use a
random strategy, but a more expressive API could allow multiple strategies.) The new
procedure eor is then published at the external OrderEntry address as before.

let (vm2,eEntry) = createOrderEntryRole ePay eProc
let (vm2’,eEntry’) = createOrderEntryRole ePay eProc
let eor = eOr eEntry eEntry’
let eo = exportOrderEntry eor
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The Or intermediary switches between two procedures. More generally, we can pro-
gram derived combinators in ML; for example, orList creates a series of intermediaries
to switch between a list of procedures by using the fold operator to compose a list of
binary intermediaries.

let orList : (α ,β ) proc list → (α ,β ) proc = List.fold1 left eOr

Example 4: References, Updating References, and Events. In our previous exam-
ples, the communication topologies were fixed. Our next example introduces the idea
of changing the topology in response to an event.

The combinator eRef e returns a procedure exported by a freshly created Ref in-
termediary, together with an identifier r for the intermediary. Any request sent to this
intermediary is forwarded to e. Moreover, the intermediary r is mutable; a call to the
combinator eRefUpdate r e’ updates r to forward subsequent requests to e’.

A VMM, such as Virtual Server, can detect various events during the execution of
a VM, such as changes of VM state, the absence of a “heartbeat” (likely indicating a
crash), and so on. Baltic provides a simple event handling mechanism, to allow a script
to take action when an event is detected by the underlying VMM. The Baltic function
eVM vm h associates the handler function h with the machine named vm. The handler
function is of type event →unit where event is a datatype describing the event. (Our
present implementation only handles a few kinds of events, but is extensible.)

To illustrate these operators, consider the two VM instances of the order entry role,
vm2 and vm2’, in the previous example. If one of these VMs crashes, we should re-
configure our application to avoid sending messages to the crashed VM. The code in
the following script creates a Ref intermediary that initially forwards messages to the
eor procedure. If either VM crashes, an event handler updates the Ref intermediary to
forward messages to the procedure exported by the other VM.

let (eref,r) = eRef eor
let h other ev = match ev with VM Crash →eRefUpdate r other | → ()
let = eVM vm2 (h eEntry’)
let = eVM vm2’ (h eEntry)
let eo = exportOrderEntry eref

Example 5: Snapshots of VMs. The current state of a running VM consists of its
memory image plus the current contents of its virtual disk. Some VMMs, including
Virtual Server, allow this state to be saved to disk; typically, the memory image is di-
rectly stored in one file, while the contents of the virtual disk are efficiently represented
by a differencing disk, which records the blocks that have changed since the machine
started. We refer to this file system representation of a VM state as a snapshot. A snap-
shot can be saved, perhaps multiple times, and subsequently restored.

Baltic includes a simple facility for saving and restoring snapshots. If vm is the name
of a running VM, snapshotVM vm creates a snapshot, and returns a value ss of type
vm snapshot that points to the saved files. Conversely, the call restoreVM ss discards
the current state of vm, and replaces it by restoring the snapshot. (These combinators do
not allow two snapshots of the same VM to run at once, a restriction imposed by the un-
derlying VMM. However, the createnRole functions in Em.mli can be called repeatedly
to create multiple instances of any one role.)
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As a variation of the previous example, we record a snapshot of vm2 and vm2’ just
after booting and modify the event handler to restore the snapshot if the machine sub-
sequently crashes. Snapshots allow faster recovery then rebooting.

let svm1 = snapshotVM vm2
let svm1’ = snapshotVM vm2’
let h ss ev = match ev with VM Crash → restoreVM ss | → ()
let = eVM vm2 (h svm2)
let = eVM vm2’ (h svm2’)

The technical report [Bhargavan et al., 2007] has additional examples to illustrate
how to program an array of replicated VMs, where the number of replicas varies de-
pending on the load.

4 Metadata for Services and Resources

What we call resource metadata is a typed description of the disk images, imported
services, and exported services of an application. We gave an example of metadata at
the start of Section 3. The purpose of this section is to describe the general format. We
begin with metadata for services, and use this to define metadata for resources.

Service Metadata (WSDL). We assume that imported and exported services are de-
scribed in the WSDL metadata format [Christensen et al., 2001]. These WSDL files are
generated automatically when the interface for the service is compiled, and are typically
used to auto-generate proxy code for accessing the service.

A WSDL document describes a set of operations (procedures), and their input and
output types. Types are typically expressed in XML Schema, though other formats are
possible. We assume that the named types used within a WSDL document are captured
as a set of abstract type declarations in an ML interface Ity, and that these abstract types
have some concrete implementation Sty corresponding to the XML Schema definition.
There are several tools that map XML Schema descriptions to programming language
types. In our example, Ity consists of two abstract types Payment and Order.

The following grammar is an abstraction of the WSDL syntax.

WSDL Metadata for Services:

Treq,Tres type
n,a,d,u strings
O ::= {name = n,action = a,

request type = Treq, response type = Tres}
operation

Bd ::= {name = n,ops = [O1; . . . ;Om]} binding
P ::= {name = n,url = u,binding = Bd} port

We are using ML-style labelled records to represent the XML elements in a WSDL
document. For example, our operations, bindings, and ports represent the WSDL el-
ements named <operation>, <binding>, and <port>, respectively. For brevity, we
sometimes elide the record labels when they are clear from context.



42 K. Bhargavan, A.D. Gordon, and I. Narasamdya

An operation {n,a,Treq,Tres} describes a procedure, referred to as n; a SOAP request
to this procedure should have a header with SOAP action a and a body encoding a value
of type Treq, while a SOAP response from this procedure should have a body encoding
a value of type Tres.

A binding {n, [O1; . . . ;Om]} describes a service, referred to as n, with m procedures
described by O1, . . . , Om. For example, the payment ty binding used in our examples
is defined as follows:

let payment ty:binding =
{name = "Payment";
ops = [({name = "AuthorizePayment";

action = "http://EOP/IPayment/AuthorizePayment";
request type = "Payment";
response type = "string"}:operation)]}

The payment ty binding describes a service, called Payment, that exposes a procedure
AuthorizePayment, with a SOAP action http://EOP/IPayment/AuthorizePayment; the
procedure takes as input an argument of type Payment and returns a string result.

A port {n,u,Bd} describes a service, referred to as n; it is located at URI u and
implements the procedures described in Bd. For example, the following port describes
an external service Payment1 that implements the payment ty binding and is located at
the URI http://creditagency1.com/CA/service.svc.

{name = "Payment1";
url = "http://creditagency1.com/CA/service.svc";
binding = payment ty};

Resource Metadata. Having defined the WSDL format for services, we define a meta-
data formal for a complete server farm.

Metadata for Resources:

r ::= resource
VM{name = n,disk = d,

inputs = [Bd1
in; . . . ;Bdn

in],
outputs = [Bd1

out; . . . ;Bdm
out]}

virtual machine

Import P imported service
Export P exported service

m ::= (Ity,Sty, [r1; . . . ;rn]) metadata

Let rs be the record list at the start of Section 3; it is an example of a resource list.
Each VM record defines a role in terms of a VM name, a disk image file accessible

from the VMM, a list of imported bindings, and a list of exported bindings. In our
example, the OrderEntry, OrderProcessing, and Payment roles are defined by such
records.

Each Import record defines an external service port that we wish to use from within
the Baltic server. In our example, the Payment1 port is imported by such a record.

Each Export record defines an internal service port that we wish to make avail-
able externally. In our example, the OrderEntry port is published at the public URI
http://localhost:8080/OE/service.svc by such a record.
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Recall that Ity consists of the abstract types Payment and Order in our example.
Let Sty be an implementation of these two abstract types, for example, a couple of
record types. Then m = (Ity,Sty, rs) is the metadata for our examples. In general, the
ML interface Ity and corresponding ML implementation module Sty are present simply
to define types used in the resource list rs.

5 Implementation and Informal Semantics of the Baltic API

An implementation of the Baltic API consists of a module B−c.ml implementing the
basic interface B.mli and a module Em−c.ml implementing the metadata-specific envi-
ronment interface Em.mli. These modules are compiled to generate the libraries B.dll
and Em.dll respectively; ML programs linked with these libraries are compiled to as-
semble Baltic scripts that manage the Baltic server.

In addition to this concrete implementation, we also describe a symbolic implemen-
tation of the Baltic API, consisting of the modules B.ml and Em.ml. These symbolic
modules simulate the behaviour of the Baltic server in terms of local processes and
channel-based communications; as such, they constitute our executable semantics of
the API. An ML program compiled with these modules generates a symbolic executable
that can be used to trace and debug a Baltic script before deployment.

Basic Module: B−c.ml. The module B−c.ml implements the basic interface B.mli
by managing intermediaries and VMs on the Baltic server. To manage SOAP inteme-
diaries, we use the web services functionality provided by the Microsoft .NET Frame-
work API; to manage VMs we rely on functions in the Virtual Server API. We outline
our implementation of the types and functions in the B.mli below. The technical re-
port [Bhargavan et al., 2007] contains further details.

– A value of type vm is a VM identifier, as defined by the VMM.
– A value of type vm snapshot is the name of a directory containing a group of files

implementing a VM snapshot, together with a VM identifier.
– A value of type event is one of four events detected by the VMM: either a VM

has crashed, or shut down, or its processor is overloaded (running close to full
capacity), or its processor is underloaded.

– A value of type (α,β ) proc is a SOAP address, consisting of a URI and a SOAP
action, and located either on a VM or the physical server. The API generates a
value of this type only when there is a web service of the appropriate type listening
at the address.

– A value of type (α,β ) procref is a mutable variable on the physical server storing
the SOAP address of a procedure of type (α ,β ) proc.

– The function call call e a implements a remote procedure call: it takes a procedure
e of type (α,β ) proc and an argument a of type α; it sends a as a request to e and
returns the response.

– The function call eOr e1 e2 takes two procedures e1 and e2 and creates and returns
a fresh address e on the physical server; it starts an intermediary on the Baltic server
that listens for requests on e and forwards them either to e1 or to e2 (based on a
coin-toss); the intermediary waits for the corresponding response and returns it.
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– The function call ePar e1 e2 also takes two procedures e1 and e2 and creates and
returns a fresh address e on the physical server; it starts an intermediary on the
Baltic server that listens for requests on e and forwards them to both e1 and e2; the
intermediary waits for the first response and returns it.

– The function call eRef ei takes a procedure ei and creates and returns a fresh address
e on the physical server plus a new mutable variable r on the Baltic server that stores
the address of the procedure ei; it starts an intermediary on the Baltic server that
listens for requests on e and forwards them to the address currently stored in r.

– The function call eRefUpdate r e modifies the variable r on the Baltic server to
point to the procedure e.

– The function call eVM vm h takes a VM identifier vm and an event handler h; it
registers this handler at the Baltic server so that whenever the VMM detects an
event ev for the VM vm the handler h ev is executed.

– The function call shutdownVM vm shuts down the VM with identifier vm.
– The function call snapshotVM vm saves a snapshot of the current state of the run-

ning VM vm in a new directory d and returns a value of type vm snapshot contain-
ing d and vm.

– The function call restoreVM ss checks that ss contains a directory d containing a
valid snapshot of VM vm; it shuts down any running VM with identifier vm and
starts up a VM from the running state stored in d.

Environment Module: Em−c.ml. The module Em−c.ml which enables access to the
resources described in the metadata m. The technical report [Bhargavan et al., 2007]
describes a tool that compiles m to the interface Em.mli and to the module Em−c.ml.
Given metadata m = (Ity,Sty, rs), Em−c.ml is implemented as follows:

– It contains the type definitions Sty.
– For every VM record in rs with name N, disk image d, inputs of type s1, . . . ,sn

and outputs of type t1, . . . ,tm, the function call createNRole i1...in takes n services
i1...in (of type s1, . . . ,sn) as arguments, boots a new VM vm from the disk image d,
configures vm with the SOAP addresses of its inputs i1...in, and returns vm plus its
exported services o1...om (of type t1, . . . ,tm).
For example, the function call createOrderEntryRole ePay eProc takes two proce-
dures ePay and eProc as arguments; it then boots a new VM vm from the disk image
file "OrderW2K3.vhd", configures vm with the addresses of lsePay and eProc, and
returns vm and the address of the new order entry procedure exported by it.

– For every Import record in rs with name N and url U , the function call importN ()
creates and returns a fresh address e on the physical server; it starts an intermediary
on the Baltic server that listens for requests on e and forwards them to the external
url U , waits for the corresponding response, and returns it.

– For every Export record in rs with name N and url U , where U is an externally
accessible address on the physical server, the function call exportN e starts an in-
termediary on the Baltic server that listens for requests at U and forwards them to
the procedure e, waits for the corresponding response, and returns it.

Symbolic Modules: B.ml and Em.ml. The modules B.ml and Em.ml simulate the be-
haviour of the implementaion modules B−c.ml and Em−c.ml, but without contacting
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the Baltic server or the VMM and without sending any messages on the network. In-
stead, they model VMs and intermediaries as local processes spawned by the script,
and implement SOAP requests and responses as local channel-based communications
between processes.

A value of type (α ,β ) proc is modelled as a function that takes values of type α
and returns values of type β ; a value of type (α ,β ) procref is a mutable reference to
such a function. Hence, in B.ml, the function call eOr e1 e2 creates and returns a new
function f; when f is called with an argument v, it calls either e1 or e2 with v (based on
a coin-toss) and returns the result. The functions call, ePar, eRef, and eRefUpdate are
implemented similarly.

A VM is modelled as a partition: a named collection of processes sharing state in
the form of local communication channels. A value of type vm is a name of a partition
plus a channel on which events for the VM are triggered. Hence, in Em.ml, the function
call createNRole i1...in creates a new VM consisting of a partition a and a fresh channel
ev; a contains newly spawned processes that use the procedures in i1...in to implement
the exported procedures o1...om; the processes in a may also send events on ev. For
example, the function call createOrderEntryRole ePay eProc creates a partition a with
a single process that listens for order requests on a fresh local channel c, then calls the
payment procedure ePay and the order processing procedure eProc before returning a
response; createOrderEntryRole returns the partition name a and a fresh event channel
ev; it also returns an output procedure f that when given an argument v, sends v on
the channel c within a and returns the response. The function call eVM vm h spawns a
process that listens for events e on the event channel corresponding to vm and executes
h e. A VM snapshot contains the state of a partition; hence snapshotVM vm saves the
current values of all the channels and processes of the partition corresponding to vm;
restoreVM ss restores a saved partition.

Each imported service N in m is modelled as a process listening on a global channel
Nchan. For example, the external payment service Payment1 is modelled as a process lis-
tening for requests on the channelPayment1Chan. In Em.ml, the function call importN ()
returns a procedure that takes an argument v, forwards it on to Nchan, and returns the re-
sponse. Conversely, for each exported service N in m, the function call exportN e listens
for requests on a global channel Nchan and forwards them to the procedure e.

6 Message Safety

Since the APIs available to a Baltic script are strongly typed, any system of VMs and
intermediaries assembled by a Baltic script is well-typed by construction. In this sec-
tion, we give an informal description of message safety and its proof by typing. The
formal details are in a technical report [Bhargavan et al., 2007].

Let an entity be any source of a SOAP message; entities include remote clients and
servers, intermediaries on the Baltic server, VMs, and the Baltic script itself.

Let an entity respect a procedure of type (α,β ) proc if and only if

(1) each SOAP message sent by the entity to the procedure has type α; and
(2) each SOAP message sent by the entity in response to a message to the procedure

has type β .
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The desired property of a system generated by a Baltic script is the following.

Message Safety Property. For any metadata m, if
(1) the Baltic script is well-typed against Em.mli and B.mli
(2) all remote entities respect the procedures in m, and
(3) disk images respect the procedures they import and export
then all entities arising during a run respect all procedures.

Many interconnection errors, where servers or intermediaries are connected to the
wrong addresses, lead to entities not respecting procedures. Our safety property guar-
antees, by static type-checking, that such errors cannot arise.

Assuming points (1), (2), and (3) of the Message Safety Property, we can construct a
well-typed ML expression that represents the message-passing behaviour of a complete
Baltic system. To do so, we generate an ML interface Xm.mli consisting of typed ML
channels to represent each of the procedures exported and imported by m. In the case
of our running example, this interface is as follows:

val Payment1: (Payment ×string chan) chan
val Payment2: (Payment ×string chan) chan
val OrderEntry: (Order × string chan) chan

Our ML expression for the whole system is the composition B.ml Em.ml S.ml O.ml
of the following modules.

(1) B.ml is the symbolic implementation of the B.mli interface. It has no dependencies.
(2) Em.ml is the symbolic implementation of the Em.mli and Xm.mli interfaces. It de-

pends on the interface B.mli provided by B.ml.
(3) S.ml is the Baltic script. It depends on the interfaces B.mli and Em.mli provided by

B.ml and Em.ml.
(4) O.ml represents the remote entities, that is, the external clients and services. It de-

pends on the interface Xm.mli provided by Em.ml.

Since the dependencies of each of the modules in B.ml Em.ml S.ml O.ml are provided
by preceding members, the whole composition is well-typed. The message safety prop-
erty can then be obtained from type safety for ML.

We formalize this argument in the technical report [Bhargavan et al., 2007]. In fact,
to model VMs with snapshots we need to develop a concurrent λ -calculus, called the
partitioned λ -calculus. We prove type safety theorems for the partitioned λ -calculus.
By appeal to these theorems, we formalize the composition B.ml Em.ml S.ml O.ml as
a λ -calculus expression, and hence prove the Message Safety Property as a theorem
about the partitioned λ -calculus.

7 Related Work

Related Systems. Edinburgh LCFG [Anderson, 1994] is a well-developed system for
managing the configuration of large numbers of Unix-like machines. LCFG can con-
figure software within disk images, a task not addressed by the Baltic operators. On the
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other hand, LCFG does not support intermediaries, and uses an untyped scripting lan-
guage, while Baltic introduces the idea of representing server roles as typed functions.

HP SmartFrog [Goldsack et al., 2003] is a domain-specific language for describing
server components, together with an implementation for activating and managing them.
The original version worked with JVM-based components, but a more recent version
uses operating system virtualization. Like LCFG, SmartFrog can describe the structure
of server roles. SmartFrog has a type system, but is not service-oriented, in the sense of
treating a server role as importing and exporting typed procedures.

The AppLogic grid operating system [3TERA 2006] allows VM server farms to be
constructed and managed with a graphical editor. AppLogic grids are configurable using
conventional scripting languages.

HPorter [Huang et al., 2007] is another combinator library written in a functional
language for combining and reconfiguring software components written in lower-level
languages. HPorter is aimed at robotics applications, and manages pre-existing compo-
nents written in C and C++, that communicate over TCP/IP sockets. HPorter is written
in the pure functional language Haskell, and relies on Haskell’s higher-order type theory
to encapsulate imperative behaviour.

Like Baltic, PiDuce [Carpineti et al., 2006] is a language and implementation for
building SOAP web services, with a formal semantics. Unlike Baltic, PiDuce expresses
the behaviour of individual services directly, whereas Baltic relies on pre-existing disk
images to implement individual services, and concentrates on management.

Related Formalisms. We build both our actual implementation and our formal seman-
tics using the technique of dual concrete and abstract implementations of interfaces;
this technique was introduced by Bhargavan et al. [2006].

Our use of the λ -calculus with partitions as a semantics for combinations of vir-
tual machines is a refinement of an earlier proposal, by Gordon [2005], that operating
system virtualization can usefully be formalized using process calculi. There are other
process calculi with operators to snapshot, restore, and duplicate running locations, in-
cluding the Kell Calculus [Schmitt and Stefani, 2005; Lienhardt et al., 2007] and the
Seal Calculus [Castagna et al., 2005]. A great many formalisms—see Lapadula et al.
[2007], for example, and its bibliography—have been developed to represent orchestra-
tion, choreography, and dynamic discovery of web services. We do not address these
advanced topics, and instead focus on management of pre-existing systems using sim-
ple request/response patterns of SOAP messaging; such systems are the common case
in server farms today.

8 Conclusions and Future Work

We have described a set of combinators for assembling networks of virtual machines
that export SOAP services. A combination of typechecking together with automated al-
location of addresses prevents the troublesome configuration errors that may arise with
alternatives, such as untyped scripts. There is a semantics based on a typed concurrent
λ -calculus with partitions, and an implementation using Virtual Server with scripts in
ML. Our test scripts manage pre-existing components from a sample multi-tier web
application.



48 K. Bhargavan, A.D. Gordon, and I. Narasamdya

In future work, we intend to address some of the limitations in our present imple-
mentation. Our implementation does not consider security (we are essentially trust-
ing the code on disk images), or the control of multiple VMMs (for performance and
fault tolerance), or persistent state (any transient changes to disk images are discarded).
A lightweight mechanism to customize each instance of the same disk image would
be useful. Intermediaries are limited to SOAP request/responses and do not maintain
SOAP-level sessions. We support SOAP services but neither arbitrary webpages nor
database connections. On the basis of our formal semantics, we intend to develop tech-
niques for reasoning about operations logic expressed using our combinators.
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1 Dipartimento di Scienze, Università “G. D’Annunzio” di Chieti-Pescara, Italy
bista@sci.unich.it,cmeo@unich.it

2 Istituto di Informatica e Telematica (CNR), Pisa, Italy
stefano.bistarelli@iit.cnr.it, francesco.santini@iit.cnr.it

3 Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy
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Abstract. We propose a timed and soft extension of Concurrent Con-
straint Programming. The time extension is based on the hypothesis of
bounded asynchrony: the computation takes a bounded period of time
and is measured by a discrete global clock. Action prefixing is then con-
sidered as the syntactic marker which distinguishes a time instant from
the next one. Supported by soft constraints instead of crisp ones, tell and
ask agents are now equipped with a preference (or consistency) thresh-
old which is used to determine their success or suspension. In the paper
we provide a language to describe the agents behavior, together with
its operational and denotational semantics, for which we also prove the
compositionality and correctness properties. Agents negotiating Quality
of Service can benefit from this new language, by coordinating among
themselves and mediating their preferences.

1 Introduction

Time is a particularly important aspect of cooperative environments. In many
“real-life” computer applications, the activities have a temporal duration (that
can be even interrupted) and the coordination of such activities has to take into
consideration this timeliness property. The interacting actors are mutually in-
fluenced by their actions, meaning that A reacts accordingly to the timeliness
and “quality” of B’s behavior and vice versa. In fact, these interactions can be
often related to quantities to be measured or minimized/maximized, in order
to take actions depending from this result: consider, for example, some generic
communicating-agents that need to negotiate a desired Quality of Service (QoS).
In this case, they both need to coordinate through time-dependent decisions and
to quantify and publish their respective requirements. These agents can be in-
stantiated to concrete instances, such as web services, internet QoS architectures
and mechanisms that provide QoS, workflows and, in general, software agents.
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In [8] Timed Concurrent Constraint Programming (tccp), a timed extension
of the pure formalism of Concurrent Constraint Programming (ccp) [19], is in-
troduced. This extension is based on the hypothesis of bounded asynchrony (as
introduced in [20]): computation takes a bounded period of time rather than
being instantaneous as in the concurrent synchronous languages ESTEREL [1],
LUSTRE [12], SIGNAL [15] and Statecharts [13]. Time itself is measured by a dis-
crete global clock, i.e, the internal clock of the tccp process. In [8] they also
introduced timed reactive sequences which describe at each moment in time the
reaction of a tccp process to the input of the external environment. Formally,
such a reaction is a pair of constraints 〈c, d〉, where c is the input given by the
environment and d is the constraint produced by the process in response to c
(due to the monotonicity of ccp computations, c includes always the input).

Soft constraints [2,3] extend classical constraints to represent multiple consis-
tency levels, and thus provide a way to express preferences, fuzziness, and uncer-
tainty. The ccp framework has been extended to work with soft constraints [4],
and the resulting framework is named Soft Concurrent Constraint Programming
(sccp). With respect to ccp, in sccp the tell and ask agents are equipped with a
preference (or consistency) threshold which is used to determine their success,
failure, or suspension, as well as to prune the search; these preferences should
preferably be satisfied but not necessarily (i.e. over-constrained problems).

In this paper we introduce a timed and soft extension of ccp that we call Timed
Soft Concurrent Constraint Programming (tsccp), inheriting from both tccp and
sccp at the same time. In tccp, action-prefixing is interpreted as the next-time
operator and the parallel execution of agents follows the scheduling policy of
maximal parallelism. Additionally, tccp includes a simple new primitive which
allows to specify timing constraints. We adopt soft constraints (and the related
sccp) instead of crisp ones, since we are sure that classic constraints can show
evident limitations if applied to entities interactions, mainly because they do
not appear to be very flexible when trying to represent real-life scenarios, where
the knowledge is not completely available nor crisp. The introduced Timed Soft
Concurrent Constraint (tscc) language, together with its semantics, results in a
formal framework where it is possible to solve QoS related problems.

The agents use the centralized constraint store in order to ensure their com-
munity acts in a coherent manner, where “coherence” refers to how well a system
of agents behaves as a unit. With tccp, the agent coordination is enriched with
both timed and quantitative/qualitative aspects at the same time; this represents
the most important expressivity improvement w.r.t. related works (see Sec. 8).
One of the most straightforward applications is represented by the modelling of
negotiation and management of resources, since both time and preference are
naturally part of the problem. In Sec. 7 we show an example where we model an
auction process, which can be seen as a particular instance of negotiation.

In Sec. 2 we sum up the most important background notions and frame-
works from which tsccp derives, i.e. tccp and sccp. In Sec. 3 the tscc language
is presented for the first time. Then, Sec. 4 and Sec. 5 respectively describe the
operational and denotational semantics of the tscc agents. Section 6 outlines the
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proof of the denotational model correctness with the aid of connected reactive
sequences. At last, Sec. 7 shows an application example of the language and
Sec. 8 concludes by discussing related work and indicating future research.

2 Background

2.1 Soft Concurrent Constraint System

A semiring is a tuple 〈A, +, ×,0,1〉 such that: i) A is a set and 0,1 ∈ A; ii)
+ is commutative, associative and 0 is its unit element; iii) × is associative,
distributes over +, 1 is its unit element and 0 is its absorbing element. A c-
semiring is a semiring 〈A, +, ×,0,1〉 such that: + is idempotent, 1 is its absorbing
element and × is commutative. Let us consider the relation ≤S over A such that
a ≤S b iff a + b = b. Then it is possible to prove that (see [3]): i) ≤S is a
partial order; ii) + and × are monotone on ≤S ; iii) 0 is its minimum and 1 its
maximum; iv) 〈A, ≤S〉 is a complete lattice and, for all a, b ∈ A, a+ b = lub(a, b)
(where lub is the least upper bound). 〈A, ≤S〉 is a complete distributive lattice
and × its glb (greatest lower bound). Informally, the relation ≤S gives us a way
to compare semiring values and constraints: when we have a ≤S b, we will say
that b is better than a. In the following, when the semiring will be clear from the
context, a ≤S b will be often indicated by a ≤ b.

A soft constraint [2,3] may be seen as a constraint where each instantiation of
its variables has an associated preference. Given a semiring S = 〈A, +, ×,0,1〉
and a set of variables V over a finite domain D, a soft constraint is a function
which, given an assignment η : V → D of the variables, returns a value of the
semiring. Using this notation C = η → A is the set of all possible constraints
that can be built starting from S, D and V .

Any function in C involves all the variables in V , but we impose that it
depends on the assignment of only a finite subset of them. So, for instance, a
binary constraint cx,y over variables x and y, is a function cx,y : V → D → A,
but it depends only on the assignment of variables {x, y} ⊆ V (the support of
the constraint, or scope). Note that cη[v := d1] means cη′ where η′ is η modified
with the assignment v := d1. The partial order ≤ over A can be easily extended
among constraints by defining c1 � c2 ⇐⇒ c1η ≤ c2η.

Given the set C, the combination function ⊗ : C × C → C is defined as
(c1 ⊗ c2)η = c1η × c2η (see also [2,3,4]). Informally, performing the ⊗ between
two constraints means building a new constraint whose support involves all the
variables of the original ones, and which associates with each tuple of domain
values for such variables a semiring element which is obtained by multiplying the
elements associated by the original constraints to the appropriate sub-tuples.

Given a constraint c ∈ C and a variable v ∈ V , the projection [2,3,4] of c
over V − {v}, written c ⇓(V −{v}) is the constraint c′ s.t. c′η =

∑
d∈D cη[v := d].

Informally, projecting means eliminating some variables from the support. This
is done by associating with each tuple over the remaining variables a semiring
element which is the sum of the elements associated by the original constraint
to all the extensions of this tuple over the eliminated variables.
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To treat the hiding operator of the language, a general notion of existential
quantifier is introduced by using notions similar to those used in cylindric alge-
bras. Consider a set of variables V with domain D and the corresponding soft
constraint system C. For each x ∈ V the hiding function [2,4] is the function
(∃xc)η =

∑
di∈D cη[x := di].

To model parameter passing, for each x, y ∈ V a diagonal constraint [2,4]
is defined as dxy ∈ C s.t., dxyη[x := a, y := b] = 1 if a = b and dxyη[x :=
a, y := b] = 0 if a �= b. Now it is possible to define a constraint systems “a la
Saraswat” [4]. Consider the set C and the partial order �. Then an entailment
relation �⊆ ℘(C) × C is defined s.t. for each C ∈ ℘(C) and c ∈ C, we have
C � c ⇐⇒

⊗
C � c (see also [2,4]). Notice that in sccp, algebricity is not

required, since the algebraic nature of the structure C strictly depends on the
properties of the semiring [4].

If we consider a semiring S = 〈A, +, ×,0,1〉, a domain of the variables D, a
set of variables V , the corresponding structure C, then SC = 〈C, ⊗, 0̄, 1̄, ∃x, dxy〉1
is a cylindric constraint system [4].

2.2 Timed Concurrent Constraint Programming

When querying the store for some information which is not present (yet), a (s)ccp
agent will simply suspend until the required information has arrived. In timed
applications however often one cannot wait indefinitely for an event. Consider
for example the case of a connection to a web service providing some on-line
banking facility. In case the connection cannot be established, after a reasonable
amount of time an appropriate time-out message has to be communicated to
the user. A timed language should then allow us to specify that, in case a given
time bound is exceeded (i.e. a time-out occurs), the wait is interrupted and an
alternative action is taken.

In order to be able to specify this kind of timing constraints, in [20] and [8] the
authors introduced a different timed extension of ccp (the differences between
these two languages are explained in [8]). In particular, the timed ccp (tccp)
language defined in [8] introduces a discrete global clock and assumes that ask
and tell actions take one time-unit. Computation evolves in steps of one time-
unit, so called clock-cycles, which are syntactically separated by action prefixing.
Moreover maximal parallelism is assumed, that is at each moment every enabled
agent of the system is activated (this implies that parallel processes are executed
on different processors). Finally in tccp it is introduced a primitive construct of
the form now c then A else B which can be interpreted as follows: if the
constraint c is entailed by the store at the current time t then the above agent
behaves as A at time t, otherwise it behaves as B at time t. By using the now
construct one can express time-out, preemption and other timed programming
idioms. For example, the agent now c then A else ask(true) → (now c then
A else B) waits at most two time unit for the satisfaction of the guard c: If the

1 0̄ and 1̄ that represent respectively the constraints associating 0 and 1 to all the
assignment of domain values.
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guard is satisfied (in two time units) then the agent behaves as A, otherwise as
B. By using an inductive definition it is easy to define in terms of the now the
more general time-out agent (Σn

i=1ask(ci) −→ Ai) timeout(m)B which allows
to wait at most m time units for the satisfaction of one of the guards (see [8]).

3 Timed Soft Concurrent Constraint Programming

In this section we present the tscc language, which originates from both tccp
and sccp. To obtain tscc we extend the cc language by introducing constructs to
handle the cut level and constructs to handle temporal aspects. More precisely,
we inherit from sccp the tell and ask constructs enriched by a threshold, which
allows to specify when the agents have to succeed or to suspend. Moreover we de-
rive from tccp the timing construct now c then A else B previously mentioned.
However, differently from the case of tccp, the now operator here is modified by
using thresholds, analogously to the case of tell and ask.

Definition 1 (tscc Language). Given a soft constraint system 〈S, D, V 〉, the
corresponding structure C, any semiring value a and any constraint φ ∈ C, the
syntax of the tscc language is given by the following grammar:

P ::= F.A
F ::= p(x) :: A
A ::= success | tell(c) →Φ A | tell(c) →a A | E | A ‖ A | ∃xA | p(x) |

Σn
i=1Ei | nowΦ c then A else B | nowa c then A else B

E ::= ask(c) →Φ A | ask(c) →a A

where, as usual, P is the class of processes, F is the class of sequences of proce-
dure declarations (or clauses), A is the class of agents. The c is supposed to be a
soft constraint in C. A tsccp process P is then an object of the form F.A, where
F is a set of procedure declarations of the form p(x) :: A and A is an agent.

In the following, given an agent A, we denote by Fv(A) the set of the free
variables of A (namely, the variables which do not appear in the scope of the
∃ quantifier). As previously mentioned, differently from the original cc syntax
in tsccp we have a semiring element a and constraint φ to be checked whenever
an ask or tell operation is performed. Intuitively the level a (resp., φ) will be
used as a cut level to prune computations that are not good enough. These
levels, with an analogous meaning, are present also in the now c then A else
B construct, differently from all the previous cc like languages. The remaining
of the syntax is standard: Action prefixing is denoted by →, Σ denotes guarded
choice, ‖ indicates parallel composition and a notion of locality is introduced by
the agent ∃xA which behaves like A with x considered local to A, thus hiding
the information on x provided by the external environment. In the following we
also assume guarded recursion, that is we assume that each procedure call is in
the scope of either an ask or a tell construct.
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4 An Operational Semantics for tsccp Agents

The operational model of tscc agents can be formally described by a transition
system T = (Conf , −→) where we assume that each transition step takes exactly
one time-unit. Configurations (in) Conf are pairs consisting of a process and a
constraint in C representing the common store. The transition relation −→⊆
Conf × Conf is the least relation satisfying the rules R1-R17 in Fig. 1 and
characterizes the (temporal) evolution of the system. So, 〈A, γ〉 −→ 〈B, δ〉 means
that if at time t we have the process A and the store γ then at time t + 1 we
have the process B and the store δ. Let us now briefly discuss the rules in Fig. 1.

R1 (σ ⊗ c) ⇓∅ �< a
〈tell(c) →a A, σ〉 −→ 〈A, σ ⊗ c〉 V-tell

R2 σ ⊗ c �� φ
〈tell(c) →φ A, σ〉 −→ 〈A, σ ⊗ c〉 Tell

R3 σ � c σ ⇓∅ �< a
〈ask(c) →a A, σ〉 −→ 〈A, σ〉 V-ask

R4 σ � c σ �� φ
〈ask(c) →φ A, σ〉 −→ 〈A, σ〉 Ask

R5 〈A, σ〉 −→ 〈A′, σ ⊗ δ〉 〈B, σ〉 −→ 〈B′, σ ⊗ δ′〉
〈A ‖ B, σ〉 −→ 〈A′ ‖ B′, σ ⊗ δ ⊗ δ′〉 Parall1

R6 〈A, σ〉 −→ 〈A′, σ′〉 〈B, σ〉 �−→
〈A ‖ B, σ〉 −→ 〈A′ ‖ B, σ′〉
〈B ‖ A, σ〉 −→ 〈B ‖ A′, σ′〉

Parall2

R7 〈Ej , σ〉 −→ 〈Aj , σ
′〉 j ∈ [1, n]

〈Σn
i=1Ei, σ〉 −→ 〈Aj , σ

′〉 Nondet

R8 〈A, σ〉 −→ 〈A′, σ′〉 σ � c σ ⇓∅ �< a
〈nowa c then A else B, σ〉 −→ 〈A′, σ′〉 V-now1

R9 〈A, σ〉 �−→ σ � c σ ⇓∅ �< a
〈nowa c then A else B, σ〉 −→ 〈A, σ〉 V-now2

R10 〈B, σ〉 −→ 〈B′, σ′〉 (σ �� c or σ ⇓∅< a)
〈nowa c then A else B, σ〉 −→ 〈B′, σ′〉 V-now3

R11 〈B, σ〉 �−→ (σ �� c or σ ⇓∅< a)
〈nowa c then A else B, σ〉 −→ 〈B, σ〉 V-now4

R12 〈A, σ〉 −→ 〈A′, σ′〉 σ � c σ �� φ
〈nowφ c then A else B, σ〉 −→ 〈A′, σ′〉 Now1

R13 〈A, σ〉 �−→ σ � c σ �� φ
〈nowφ c then A else B, σ〉 −→ 〈A, σ〉 Now2

R14 〈B, σ〉 −→ 〈B′, σ′〉 (σ �� c or σ � φ)
〈nowφ c then A else B, σ〉 −→ 〈B′, σ′〉 Now3

R15 〈B, σ〉 �−→ (σ �� c or σ � φ)
〈nowφ c then A else B, σ〉 −→ 〈B, σ〉 Now4

R16 〈A[x/y], σ〉 −→ 〈B, σ′〉
〈∃xA, σ〉 −→ 〈B, σ′〉 Hide

R17 〈A, σ〉 −→ 〈B, σ′〉
〈p(x), σ〉 −→ 〈B, σ′〉 p(x ) :: A ∈ F P-call

Fig. 1. The transition system for tsccp

Valued-tell. The valued-tell rule checks for the a-consistency of the Soft Con-
straint Satisfaction Problem [2] (SCSP) defined by the store σ ⊗ c. A SCSP
P is a-consistent if blevel(P ) = a, where blevel(P ) = Sol(P ) ⇓∅, i.e. the best
level of consistency of the problem P is a semiring value representing the
least upper bound among the values yielded by the solutions. Rule R1 can
be applied only if the store σ ⊗ c is b-consistent with b �< a2. In this case the
agent evolves to the new agent A over the store σ ⊗ c. Note that different
choices of the cut level a could possibly lead to different computations. Fi-
nally note that the updated store σ ⊗ c will be visible only starting from the
next time instant since each transition step involves exactly one time-unit.

2 Notice that we use b �< a instead of b ≥ a because we can possibly deal with partial
orders. The same happens also in other transition rules with �� instead of .
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Tell. The tell action is a finer check of the store. In this case, a pointwise com-
parison between the store σ ⊗ c and the constraint φ is performed. The idea
is to perform an overall check of the store and to continue the computation
only if there is the possibility to compute a solution not worse than φ. As for
the valued tell, the updated store will be visible from the next time instant.

Valued-ask. The semantics of the valued-ask is extended in a way similar to
what we have done for the valued-tell action. This means that, to apply the
rule, we need to check if the store σ entails the constraint c and also if the
store is “consistent enough” w.r.t. the threshold a set by the programmer.

Ask. Similar to the tell rule, here a finer (pointwise) threshold φ is compared
to the store σ. Notice that we need to check σ �� φ because previous tells
could have a different threshold φ′ and could not guarantee the consistency
of the resulting store.

Nondeterminism. According to rule R7 the guarded choice operator gives rise
to global non-determinism: the external environment can affect the choice
since ask(cj) is enabled at time t (and Aj is started at time t + 1) if and
only if the store σ entails cj (and is compatible with the threshold), and σ
can be modified by other agents.

Parallelism. Rules R5 and R6 model the parallel composition operator in
terms of maximal parallelism: the agent A ‖ B executes in one time-unit all
the initial enabled actions of A and B. Considering rule R5, notice that the
ordering of the operands in σ ⊗ δ⊗ δ′ is not relevant, since ⊗ is commutative
and associative. Moreover, for the same two properties, if σ ⊗ δ = σ ⊗ γ and
σ ⊗ δ′ = σ ⊗ γ′, we have that σ ⊗ δ ⊗ δ′ = σ ⊗ γ ⊗ γ′. Therefore the resulting
store σ ⊗ δ ⊗ δ′ is independent from the choice of the constraint δ such that
〈A, σ〉 −→ 〈A′, σ′〉 and σ′ = σ ⊗ δ (analogously for δ′).

Hidden variables. The agent ∃xA behaves like A, with x considered local to
A. This is obtained by substituting the variable x for a variable y which we
assume to be new and not used by any other process (standard renaming
techniques can be used to ensure this); here A[x/y] denotes the process
obtained from A by replacing the variable x for the variable y.

Procedure calls. Rule R17 treats the case of a procedure call when the actual
parameter equals the formal parameter. We do not need more rules since,
for the sake of simplicity, here and in the following we assume that the set
F of procedure declarations is closed w.r.t. parameter names: that is, for
every procedure call p(y) appearing in a process F.A we assume that if the
original declaration for p in F is p(x) :: A then F contains also the declaration
p(y) :: ∃x(tell(dxy) ‖ A)3. Moreover, we assume that if p(x) :: A ∈ F then
Fv(A) ⊆ x.

Valued-Now. The rules R8-R11 show that the agent nowa c then A else B
behaves as A if c is entailed by the store and the store is “consistent enough”
w.r.t. the threshold a, and behaves as B otherwise. Note that, differently
from the case of the ask here the evaluation of the guard is instantaneous:

3 Here the (original) formal parameter is identified as a local alias of the actual pa-
rameter.
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if 〈A, σ〉 (〈B, σ〉) can make a transition at time t and the condition on the
store and the cut level are satisfied then the agent now c then A else B
can make the same transition at time t (and analogously for B). Moreover
observe that, due to rules R9 and R11, in any case the control is passed
either to A (if the conditions are satisfied) or to B (if not), also if A and B
cannot make any transition at the current time instant.

Now. The rules R12-R15 are similar to rules R8-R11 described before, with
the exception that here a finer (pointwise) threshold φ is compared to the
store σ, analogously to what happens with the Tell and Ask agents.

Using the transition system described by (the rules in) Fig. 1 we can now define
our notion of observables, which considers for each tsccp process P = F.A, the
results of successful terminating computations that the agent A can perform.

Definition 2 (Observables). Let P = F.A be a tsccp process. We define

Oio(P ) = {γ ⇓Fv(A)| 〈A, 1̄〉 −→∗ 〈Success, γ〉},

where Success is any agent which contains only occurrences of the agent success
and of the operator ‖.

5 The Denotational Model

In this section we define a denotational characterization of the operational se-
mantics obtained by following the construction in [8] and using timed reactive
sequences to represent tsccp computations. These sequences are similar to those
used in the semantics of dataflow languages [14], imperative languages [7] and
(timed) ccp [10,8].

The denotational model associates with a process a set of timed reactive se-
quences of the form 〈σ1, γ1〉 · · · 〈σn, γn〉〈σ, σ〉 where a pair of constraints 〈σi, γi〉
represents a reaction of the given process at time i: intuitively, the process trans-
forms the global store from σi to γi or, in other words, σi is the assumption
on the external environment while γi is the contribution of the process itself
(which entails always the assumption). The last pair denotes a “stuttering step”
in which the agent Success has been reached. Since the basic actions of tsccp
are monotonic and we can also model a new input of the external environ-
ment by a corresponding tell operation, it is natural to assume that reactive
sequences are monotonic. So in the following we will assume that each timed re-
active sequence 〈σ1, γ1〉 · · · 〈σn−1, γn−1〉〈σn, σn〉 satisfies the following condition:
γi � σi and σj � γj−1, for any i ∈ [1, n − 1] and j ∈ [2, n].

The set of all reactive sequences is denoted by S and its typical elements by
s, s1 . . ., while sets of reactive sequences are denoted by S, S1 . . . and ε indicates
the empty reactive sequence. Furthermore, · denotes the operator that concate-
nates sequences. In the following, Process denotes the set of tsccp processes.

Formally the definition of the semantics is as follows.
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Definition 3 (Processes Semantics). The semantics R ∈ Process → P(S)
is defined as the least fixed-point of the operator Φ ∈ (Process → P(S)) →
Process → P(S) defined by

Φ(I)(F .A) = {〈σ, δ〉 · w ∈ S | 〈A, σ〉 → 〈B , δ〉 and w ∈ I(F .B)}
∪
{〈σ, σ〉·w∈S | 〈A, σ〉 �→ and either A �=Success and w∈I(F.A)

or A = Success and w ∈ I(F.A) ∪ {ε}}.

The ordering on Process → P(S) is that of (point-wise extended) set-inclusion
and since it is straightforward to check that Φ is continuous, standard results
ensure that the least fixpoint exists (and it is equal to �n≥0Φ

n(⊥)).
Note that R(F.A) is the union of the set of all successful reactive sequences

which start with a reaction of P and the set of all successful reactive sequences
which start with a stuttering step of P . In fact, when an agent is blocked, i.e.
it cannot react to the input of the environment, a stuttering step is generated.
After such a stuttering step the computation can either continue with the further
evaluation of A (possibly generating more stuttering steps) or it can terminate,
if A is the Success agent. Note also that, since the Success agent used in
the transition system cannot make any move, an arbitrary (finite) sequence of
stuttering steps is always appended to each reactive sequence.

5.1 Compositionality of the Denotational Semantics for tsccp
Processes

In order to prove the compositionality of the denotational semantics we now
introduce a semantics [[F.A]](e) which is compositional by definition and where,
for technical reasons, we represent explicitly the environment e which associates
a denotation to each procedure identifier. More precisely, assuming that Pvar de-
notes the set of procedure identifier, Env = Pvar → P(S), with typical element
e, is the set of environments. Given e ∈ Env, p ∈ Pvar and f ∈ P(S), we denote
by e′ = e{f/p} the new environment such that e′(p) = f and e′(p′) = e(p′) for
each procedure identifier p′ �= p.

Given a process F.A, the denotational semantics [[F.A]] : Env → P(S) is
defined by the equations in Fig. 2, where μ denotes the least fixpoint w.r.t. subset
inclusion of elements of P(S). The semantic operators appearing in Fig. 2 are
formally defined as follows. Intuitively they reflect, in terms of reactive sequences,
the operational behavior of their syntactic counterparts4.

We first need the following definition. Let σ, φ and c be constraints in C and
let a ∈ A. We say that

– σ→̃a c, if (σ � c and σ ⇓∅ �< a) while σ→̃φ c, if (σ � c and σ �� φ).

Definition 4 (Semantic operators). Let S, Si be sets of reactive sequences,
c, ci be constraints and let →̃i be either of the form →̃ai or →̃φi . Then we define
the operators ˜tell,

∑̃
, ‖̃, ˜now and ∃̃x as follows:

4 In Fig. 2 the syntactic operator →i is either of the form →ai or →φi .
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The (valued) tell operator

˜tell
a
(c, S) = {s ∈ S | s = 〈σ, σ ⊗ c〉 · s′, σ ⊗ c ⇓∅ �< a and s′ ∈ S }.

˜tellφ(c, S) = {s ∈ S | s = 〈σ, σ ⊗ c〉 · s′, σ ⊗ c �� φ and s′ ∈ S }.

The guarded choice

∑̃n

i=1
ci→̃i Si = {s · s′ ∈ S | s = 〈σ1, σ1〉 · · · 〈σm, σm〉, σj �→̃i ci

for each j ∈ [1, m-1], i ∈ [1, n],
σm→̃h ch and s′ ∈ Sh for an h ∈ [1, n] }

The parallel composition. Let ‖̃ ∈ S × S → S be the (commutative and
associative) partial operator defined as follows:

〈σ1, σ1 ⊗ γ1〉 · · · 〈σn, σn ⊗ γn〉〈σ, σ〉 ‖̃ 〈σ1, σ1 ⊗ δ1〉 · · · 〈σn, σn ⊗ δn〉〈σ, σ〉 =
〈σ1, σ1 ⊗ γ1 ⊗ δ1〉 · · · 〈σn, σn ⊗ γn ⊗ δn〉〈σ, σ〉.

We define S1‖̃S2 as the point-wise extension of the above operator to sets.
The (valued) now operator

˜nowa(c, S1, S2) = {s ∈ S | s = 〈σ, σ′〉 · s′ and either σ→̃ac and s ∈ S1
or σ→̃ac does not hold and s ∈ S2 }.

˜nowφ(c, S1, S2) = {s ∈ S | s = 〈σ, σ′〉 · s′ and either σ→̃φ c and s ∈ S1
or σ→̃φ c does not hold and s ∈ S2 }.

The hiding operator. The semantic hiding operator can be defined as follows:

∃̃xS = {s ∈ S | there exists s′ ∈ S such that s = s′[x/y] with y new }

where s′[x/y] denotes the sequence obtained from s′ by replacing the variable x
for the variable y that we assume to be new5.

A few explanations are in order here. The semantic (valued) tell operator reflects
in the obvious way the operational behavior of the syntactic (valued) tell. Con-
cerning the semantic choice operator, a sequence in

∑̃n

i=1ci→̃i Si consists of an
initial period of waiting for a store which satisfies one of the guards. During this
waiting period only the environment is active by producing the constraints σj

while the process itself generates the stuttering steps 〈σj , σj〉. When the store is
strong enough to satisfy a guard, that is to entail a ch and to satisfy the condi-
tion on the cut level the resulting sequence is obtained by adding s′ ∈ Sh to the
initial waiting period. In the semantic parallel operator defined on sequences we
require that the two arguments of the operator agree at each point of time with
5 To be more precise, we assume that each time that we consider a new applications of

the operator ∃̃ we use a new, different y. As in the case of the operational semantics,
this can be ensured by a suitable renaming mechanism.
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E1 [[F .success]](e) = {〈σ1, σ1〉〈σ2, σ2〉 · · · 〈σn, σn〉 ∈ S | n ≥ 1}

E2 [[F .tell(c) →a A]](e) = ˜tell
a
(c, [[F .A]](e))

E3 [[F .tell(c) →φ A]](e) = ˜tellφ(c, [[F .A]](e))

E4 [[F .
∑n

i=1ask(ci) →i Ai ]](e) =
∑̃n

i=1ci→̃i [[F .Ai ]](e)

E5 [[F .nowa c then A else B ]](e) = ˜nowa(c, [[F .A]](e), [[F .B ]](e))

E6 [[F .nowφ c then A else B ]](e) = ˜nowφ(c, [[F .A]](e), [[F .B ]](e))

E7 [[F .A ‖ B ]](e) = [[F .A]](e) ‖̃ [[G.B ]](e)

E8 [[F .∃xA]](e) = ∃̃x[[F .A]](e)

E9 [[F .p(x)]](e) = μΨ where Ψ(f) = [[F \ {p}.A]](e{f/p}), p(x) :: A ∈ F

Fig. 2. The semantics [[F.A]](e)

respect to the contribution of the environment (the σi’s) and that they have
the same length (in all other cases the parallel composition is assumed being
undefined).

If F.A is a closed process, that is if all the procedure names occurring in A are
defined in F , then [[F.A]](e) does not depend on e and will be indicated as [[F.A]].
Environments in general allow us to define the semantics also of processes which
are not closed. The following result shows the correspondence between the two
semantics we have introduced and therefore the compositionality of R(F.A).

Theorem 1 (Compositionality). If F.A is closed then R(F.A) = [[F.A]] holds.

The proof of Theo. 1 is similar to the one proposed in [8] for the compositionality
property of the tccp denotational semantics.

6 Correctness

The observables Oio(P ) describing the input/output pairs of successful compu-
tations can be obtained from R(P ) by considering suitable sequences, namely
those sequences which do not perform assumptions on the store. In fact, notice
that some reactive sequences do not correspond to real computations: Clearly,
when considering a real computation no further contribution from the environ-
ment is possible. This means that, at each step, the assumption on the current
store must be equal to the store produced by the previous step. In other words,
for any two consecutive steps 〈σi, σ

′
i〉〈σi+1, σ

′
i+1〉 we must have σ′

i = σi+1. So we
are led to the following.

Definition 5 (Connected Sequences). Let s = 〈σ1, σ
′
1〉〈σ2, σ

′
2〉 · · · 〈σn, σn〉 be

a reactive sequence. We say that s is connected if σ1 = 1̄ and σi = σ′
i−1 for each

i, 2 ≤ i ≤ n.
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According to the previous definition, a sequence is connected if all the informa-
tion assumed on the store is produced by the process itself, apart from the initial
input. To be defined as connected, a sequence must also have 1̄ as the initial
constraint. A connected sequence represents a tsccp computation, as it will be
proved by the following theorem.

Theorem 2 (Correctness). For any process P = F.A we have

Oio(P ) = {σn ⇓Fv(A)| there exists a connected sequence s ∈ R(P ) such that
s = 〈σ1, σ2〉〈σ2, σ3〉 · · · 〈σn, σn〉}.

The proof of Theo. 2 is similar to the one proposed in [8] for the correctness
property of the tccp language.

7 Programming Idioms and an Auction Example

We can consider the primitives in Fig. 1 to derive the soft version of the pro-
gramming idioms in [8], which are typical of reactive programming.

Delay. The delay constructs tell(c) t−→φ A or ask(c) t−→φ A are used to delay
the execution of agent A after the execution of tell(c) or ask(c); t is the
number of the time-units of delay. Therefore, in addiction to a constraint
φ, in tsccp the transition arrow can have also a number of delay slots. This
idiom can be defined by induction: the base case is 0−→φ A ≡−→φ A and
the inductive step is n+1−→φ A ≡−→φ tell(1̄) n−→φ A. The valued version can
be defined in an analogous way.

Timeout. The timed guarded choice agent (Σn
i=1ask(ci) −→i Ai) timeout(m) B

waits at most m time-units (m ≥ 0) for the satisfaction of one of the guards;
notice that all the ask actions have a “soft” transition arrow, i.e. −→i is ei-
ther of the form −→φi or −→ai , as in Fig. 1. Before this time-out, the process
behaves just like the guarded choice: as soon as there exist enabled guards,
one of them (and the corresponding branch) is nondeterministically selected.
After waiting for m time-units, if no guard is enabled, the timed choice agent
behaves as B.

Watchdog. Watchdogs are used to interrupt the activity of a process on a signal
from a specific event. The idiom do (A ) watching(c) else (B ) behaves as
A, as long as c is not entailed by the store; when c is entailed, the process A
is immediately aborted. The reaction is instantaneous, in the sense that A
is aborted at the same time instant of the detection of the entailment of c.

Both Timeout and Watchdogs constructs can be assembled through the com-
position of several nowΦ c then A else B or nowa c then A else B prim-
itives, exactly as sketched in Section 2.2 and explained in detail in [8] (in
the soft version of the timeout, the else ask(true) in Sec. 2.2 must be re-
placed with else ask(1̄)). For example, do ( tell(c1) ) watching(c2) else B ≡
now c2 then B else tell(c1), where the now can be valued or not. Clearly, in
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tsccp all the constraints (e.g. c1 and c2) are soft. With this small set of idioms,
we have now enough expressiveness to describe complex interactions.

In Fig. 3 we model the negotiation and the management of a generic service
offered with a sort of auction: auctions, as other forms of negotiation, naturally
need both timed and qualitative/quantitative means to describe the interactions
among agents. The auctioneer (i.e. AUCTIONEER in Fig. 3) begins by offering
a service described with the soft constraint cA1 . We suppose that the cost asso-
ciated to the soft constraint is expressed in terms of computational capabilities
needed to support the execution: c1 � c2 means that the service described by c1
needs more computational resources than c2. By choosing the proper semiring,
this load can be expressed as a percentage of the CPU use, or in terms of money,
for example. We suppose that a constraint can be defined over three domains of
QoS features: availability, reliability and execution time. For instance, cA1 could
be availability > 95% ∧ reliability > 99% ∧ execution time < 3sec. Clearly,
providing a higher availability or reliability, and a lower execution time implies
raising the computational resources, thus worsening the preference of the store.

AUCTIONEER ::
INIT A −→
tell(cA1)

tsell−→ (Σn
i=1ask(bidderi = i) −→aA tell(winner = i) −→ CHECK) timeout(waitauct)

tell(cA2)
tsell−→ (Σn

i=1ask(bidderi = i) −→aA tell(winner = i) −→ CHECK) timeout(waitauct)

tell(cA3)
tsell−→ (Σn

i=1ask(bidderi = i) −→aA tell(winner = i) −→ CHECK) timeout(waitauct)
−→ success

CHECK ::
do ( (ask(service = end) −→ success) timeout(waitcheck ) tell(service = interrupt) )

watching(ccheck ) else (tell(service = interrupt) −→ STOPc)

BIDDERi ::
INIT Bi −→
do ( TASKi ) watching(cBi) else ask(1̄)

tbuyi−→ tell(bidderi = i) −→
( (ask(winner = i) −→ USEi) + (ask(winner �= i) −→ success) )

USEi ::
do ( USE SERV ICEi −→ tell(service = end) −→ success )

watching(service = interrupt) else (STOPi)

AUCTION&SUPERV ISE :: AUCTIONEER || BIDER1 || BIDDER2 || . . . ||BIDDERn

Fig. 3. An “auction and management” example for a generic service

After the offer, the auctioneer gives time to the bidders (each of them de-
scribed with a possibly different BIDDERi agent in Fig. 3) to make their offer,
since the choice of the winner is delayed by tsell time-units (as in many real-
world auction schemes). A level aA is used to effectively check that the global
consistency of the store is enough good, i.e. the computational power would not
be already consumed under the given threshold. After the winner is nondeter-
ministically chosen among all the bidders asking for the service, the auctioneer
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becomes a supervisor of the used resource by executing the CHECK agent. Oth-
erwise, if no offer is received within waitauct time-units, a timeout interrupts the
wait and the auctioneer improves the offered service by adding a new constraint:
for example, in tell(cA2), cA2 could be equivalent to execution time < 1sec,
thus reducing the latency of the service (from 3 to 1 seconds) and consequently
raising, at the same time, its computational cost (i.e. cA2 ⊗ σ � σ, we worsen
the consistency level of the store). The same offer/wait process is repeated three
times in Fig. 3. Each of the bidders in Fig. 3 is executing its own task (i.e.
TASKi), but as soon as the offered resource meets its demand of computational
power (i.e. cBi is satisfied by the store: σ � cBi), the bidder is interrupted and
then asks to use the service. The time needed to react and make an offer is
modeled with tbuyi : fast bidders will have more chances to win the auction, if
their request arrives before the choice of the auctioneer. If one bidder wins, then
it becomes a user of the resource, by executing USEi.

The USEi agent uses the service (with the USE SERV ICEi agent, left
generic in Fig. 3), but it stops (STOPi agent, left generic in Fig. 3) as soon as
the service is interrupted, i.e. as the store satisfies service = interrupt . On the
other side, the CHECK agent waits for the use termination, but it interrupts
the user if the computation takes too long (more than waitcheck time-units), or
if the user absorbs the computational capabilities beyond a given threshold, i.e.
as soon as the ccheck becomes implied by the store (i.e. σ � ccheck): in fact,
USE SERV ICEi could be allowed to ask for more power by “telling” some
more constraints to the store. To interrupt the service use, the CHECK agent
performs a tell(service = interrupt). All the INIT agents, left generic in Fig. 3,
can be used to initialize the computation.

In order to avoid a heavy notation in Fig. 3, we do not show the preference as-
sociated to constraints and the consistency check label on the transition arrows,
when they are not significative for the example description.

Many other real-life automated tasks can be modeled with the tscc language,
for example a quality-driven composition of web services: the agents that repre-
sent different web services can add to the store their functionalities (represented
by soft constraints) with tell actions; the final store models their composition.
The consistency level of the store sums up to a value the (for example) total
cost of the single obtained service, or a value representing the consistency of
the integrated functionalities: the reason is that when we compose the services
offered by different providers, we could not be sure how much they are com-
patible. Then, a client wishing to use the composed service can perform an ask
with threshold that prevents it from paying a high price or having an unreliable
service. Softness is useful also to model incomplete service specifications that
may evolve incrementally and, in general, non-functional aspects. Time sensitive-
ness is clearly needed too: all the most important orchestration/choreography
languages of today (e.g. BPEL4WS and WSCI) support timeouts, the raising of
events and delay activities [18].
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8 Related and Future Work

We have introduced the tscc language in order to join together the expressive
capabilities of soft constraints and timing mechanisms in a new programming
framework. The agents modeled with this language are now able to deal with
time and preference dependent decisions that can often be found during complex
interactions: an example can be represented by entities that need to negotiate a
satisfying QoS and manage generic resources. Mechanisms as timeout and inter-
rupt can be very useful when waiting for pending conditions or when triggering
some new necessary actions. All the tsccp rules have been formally described by
a transition system and then also with a denotational characterization of the
operational semantics obtained with the use of timed reactive sequences. The
resulting semantics has been proved to be compositional and correct.

Other timed extension of concurrent constraint programming have been pro-
posed in [16,17,20], however these languages, differently from tsccp, do not take
into account quantitative aspects; therefore, this achievement represents a very
important expressivity improvement w.r.t. related works. These have been con-
sidered by Di Pierro and Wiklicky who have extensively studied probabilistic
ccp (see for example [11]). This language provides a construct for probabilistic
choice which allows one to express randomness in a program, without assum-
ing any additional structure on the underlying constraint system. This approach
is therefore deeply different from ours. Recently stochastic ccp has been intro-
duced in [6] to model biological systems. This language is obtained by adding a
stochastic duration to the ask and tell primitives, thus differs from ours.

A first improvement of tsccp can be the inclusion of a fail agent in the syn-
tax given in Definition 1. The transition system we have defined considers only
successful computations. If this could be a reasonable choice in a don’t know in-
terpretation of the language it will lead to an insufficient analysis of the behavior
in a pessimistic interpretation of the indeterminism. A second extension for this
framework could be represented by considering interleaving (as in the classical
ccp) instead of maximal parallelism, which is the scheduling policy followed in
this paper when observing the parallel execution of agents. According to this
policy, at each moment every enabled agent of the system is activated, while in
the first paradigm an agent could not be assigned to a “free” processor.

Clearly, since we have dynamic process creation, a maximal parallelism ap-
proach has the disadvantage that in general it implies the existence of an un-
bound number of processes. On the other hand a naif interleaving semantic could
be problematic form the time viewpoint, as in principle the time does not pass
for enabled agent which are not scheduled. A possible solution, analogous to that
one adopted in [9], could be to assume that the parallel operator is interpreted
in terms of interleaving, as usual, however we must assume maximal parallelism
for actions depending on time. In other words, time passes for all the parallel
processes involved in a computation. To summarize, we could adopt maximal
parallelism for time elapsing (i.e. for evaluating a (valued) now agent) and an
interleaving model for basic computation steps (i.e. (valued) ask and (valued)
tell actions).
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At last, we would like to consider other time management strategies (as the
one proposed in [21]) and to study how timing and non-monotonic constructs [5]
can be integrated together.
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Abstract. Service oriented applications feature interactions among sev-
eral participants over the network. Mechanisms such as correlation sets
and two-party sessions have been proposed in the literature to sepa-
rate messages sent to different instances of the same service. This paper
presents a process calculus featuring dynamically evolving multiparty
sessions to model interactions that spread over several participants. The
calculus also provides primitives for service definition/invocation and for
structured communication in order to highlight the interactions among
the different concepts. Several examples from the SOC area show the
suitability of our approach.

1 Introduction

Service Oriented Computing (SOC, for short) envisages systems as a combination
of services, possibly provided by different organizations. Typically, a service can
be concurrently requested by many invokers (e.g., users or other services) so that
many service instances can be carried on at the same time (e.g., several customers
booking flights from the same airline). Hence, it is important to guarantee that
the interactions taking place in different instances do not interfere, and messages
are routed to the intended recipients.

Emerging standards like WS-BPEL [23] and WS-CDL [25] exploit the idea
of correlation sets, which allow messages to be routed to specific instances of
services depending on a pre-defined subset of the invocation parameters (e.g.,
requests are routed according to usernames). Though correlation sets guarantee
a good expressiveness, we argue that they make analysis harder because the
emerging patterns of interaction rely on data values. Also, unrelated sessions
can interfere with each other if they know (or use by chance) the “right” values.

Some formal methods [3,19,2,16,4,12] advocate the concept of session as an
abstraction mechanism for enclosing an arbitrarily complex interaction between
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two partners in order to guarantee e.g., that, during a conversation, messages
are routed as desired. As observed e.g. in [2], since modern distributed systems
rely on the TCP/IP stack, it is usually accepted that sessions involve only two
participants (usually according to the client/server architecture). Consider a
scenario where a customer c of a bank b wants to withdraw some money from
an ATM a; this can be modeled as c invoking the service a that in turn invokes
b, which closes the protocol by e.g., sending a text message on c’s mobile phone.
Usually, two different sessions, say s and s′, are used during the computation
(see, e.g., [2]): s is a session between c and a while s′ between a and b. Typically,
this forces the programmer to explicitly handle communication of s and s′ in
order to relate events occurring in the two sessions.

In this paper we propose μse (read “muse”, after “MUltiparty SEssion”), a
process calculus whose primitives are designed for easing the programming of
SOC systems using multiparty sessions, namely sessions to which more than
two actors can take part, as a high-level abstraction mechanism to coordinate
interactions among several participants. We also intend to highlight the relations
between sessions and the other main features of SOC: services, communication
protocols, sites, etc.

One of μse main design principles is that programmers should be relieved from
the explicit handling of session identifiers. The rationale being that, in our opin-
ion, SOC systems should be programmed by abstracting from the error-prone
activity of session handling. Rather, the language should support the implicit
creation and exchange of session identifiers. For instance, the previous ATM sce-
nario can be more easily programmed in μse by merging s and s′ into a session
delimiting exactly c, a and b; μse semantics then guarantees that interactions
among c, a and b are not disturbed by external processes (cf. Example 3). An-
other example can be an online game where a server provides the playing plat-
form and users can log into different games. While logged in, users “in the same
room” can interact according to a game-specific protocol without interference
from users in other rooms. This can be naturally modeled using a multiparty
session for each room that would avoid the complication of maintaining the asso-
ciation room/players required if two-party sessions (each containing player and
server) were used.

Another important design choice concerns μse communications, which can be
intra- or extra-session. More precisely, μse requires that participants on different
sites always use intra-session communications, namely they must be endpoints of
the same session. Instead, processes at the same site are allowed to communicate
also across sessions. Intuitively, co-located processes can exploit local resources
(e.g., databases, file systems, etc.) to interact, while remote processes must rely
on underlying middlewares (like TCP/IP, SOAP, . . . ).

To this end, μse systems consist of sites where services, sessions and processes
live. Services can be dynamically published, sessions are dynamically created,
new participants can join them at runtime and concurrent ongoing sessions can
be merged. We equip μse with a (weak) bisimilarity-based equivalence whose
appropriateness is illustrated by means of a small proxy scenario.
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Structure of the paper: The μse calculus is introduced in Section 2: Section 2.1
provides an informal description of the main elements of the calculus, while
Section 2.2 and Section 2.3 formally define the language. The coding of several
interaction patterns is given in Section 3. Section 4 proposes an observational
semantics for μse based on the standard notion of weak bisimulation. Related
work and final remarks are presented in Section 5.

2 The μse Calculus

This section introduces the μse calculus and its main features: (i) nested multi-
party and dynamically joinable sessions, (ii) intra-session and intra-site commu-
nications, (iii) dynamic service publication.

2.1 A μse Walkthrough

μse has been designed so to keep a clear conceptual distinction, even at the
syntax level, between different concerns distilled from the SOC paradigm. This
allows for an incremental presentation of the calculus that can serve to emphasize
also the interplay between the various features considered.

Services and multiparty sessions. The kernel syntax of μse includes ordinary op-
erators such as the nil process 0, parallel composition P |Q and name restriction
(νn)P , together with primitives for service definition, for service invocation, for
enclosing a process in a session and for dynamically installing new services.

Available services are written a ⇒ P , where a is the service name and P
is its body. Notably, services are one-shot and not persistent by default: an
invocation to a consumes its service definition. New services are dynamically
deployed using the prefix install[a ⇒ P ], that, combined with recursion, permits
to program persistent services (see Example 2 in Section 3), for which we use
the syntactic sugar

∗ a ⇒ P (1)

A session is a logical unit of work composed by different endpoints possibly
distributed across sites. Each endpoint is written r � Q, where r is the session
name and Q is one of the participants to session r. When the endpoint r � Q
invokes a (executing prefix invoke a), a new instance r � P of service a in (1)
is activated on the service site as a new partner of session r. In fact, r � P is a
service endpoint of session r.

Sessions can be nested at an arbitrary level of depth. Services are always
installed at the top level and can be invoked from any level of nesting; the
instance of the invoked service is opened, in the server context, as an endpoint
of the innermost session containing the invoker.

Different endpoints r � P1, ..., r � Pn within the same session can interact by
means of intra-session input and output prefixes (respectively written x(y) and
xw, reminiscent of π-calculus prefixes). The shared name r is used to guarantee
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that messages are exchanged only between partners of the same session. Hence,
two instances r1 � P and r2 � P of (1), invoked from two endpoints of two
different sessions r1 and r2, run separately and cannot interfere (unless r1 and
r2 are merged).

Sites. We envisage services as somehow analogous to methods of a class; there-
fore, a pool of services (and all their instances) may share some information
(e.g., the instances of an airline reservation service must query and update a
flights database). In μse this feature is realized by giving the possibility to group
processes into sites and by adding primitives for intra-site communication. We
write l :: P where l is the site name (also called location) and P is the process lo-
cated at l. Likewise sessions, sites are logical containers, not necessarily physical
(machine-related) ones.

Intra-site input and output prefix are respectively written x?(y) and x!w and,
as service invocation, they are executed regardless of the session hierarchy. We
could have also used local variables for intra-site communications, but we pre-
ferred message passing to follow the style of intra-session communications.

Merging sessions. The most advanced feature of μse is the possibility of merging
two distinct running sessions. This is possible only when two endpoints expose
the same entry point e via prefix mergep e, requiring to merge the respective
sessions. Merge prefixes mergep e are polarized with p ∈ {+, −}, with the obvious
meaning that complementary merge actions on the same entry point e (i.e.,
merge+ e and merge− e) can synchronize.

Merging of sessions is guided by entry points e which yield a control flow
mechanism for programming when processes can join sessions; for instance, using
different entry points it is possible to let processes enter a session at different
stages of the computation.

Technically, the merging of sessions is realized by explicit fusion of session
names: after their fusion, two names can be used interchangeably wherever
needed.

2.2 μse Syntax

We assume that countable pairwise disjoint sets of names are available for

– communication channels (ranged by x, y, . . . ),
– services (ranged by a, b, . . . ),
– entry points (ranged by e, f, . . . ),
– sessions (ranged by r, s, . . . ) and
– sites or locations (ranged by l, . . . ).

Channels, services and entry points are communicable values (which are ranged
over by v, w, . . . ) while sessions and locations cannot be communicated. We let
n, m, . . . range over all names but locations.

The syntax of μse is defined in Figure 1, where the last two productions for
processes account for recursion (X, Y, . . . stand for process variables; we assume
variables guarded by prefixes in the body of recursive definitions).
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S, T ::= l :: a ⇒ P Service definition
| l :: P Located process
| S|T Composition of systems
| (νn)S New name

P, Q ::= 0 Empty process
| xw.P Intra-session output
| x(y).P Intra-session input
| x!w.P Intra-site output
| x?(y).P Intra-site input
| install[a ⇒ P ].Q Service installation
| invoke a.P Service invocation
| mergep e.P Entry point
| r � P Endpoint
| P |Q Parallel composition
| (νn)P New name
| rec X.P Recursive process
| X Recursive call

Fig. 1. Syntax of systems and processes

Systems (ranged over by S, T, . . .) are parallel compositions of a finite number
of locations where services are published and processes executed. A location
where a service a is defined is meant to be the domain into which all instances
of a are executed upon invocation.

A μse process can be the empty process (we will drop trailing 0s), a process
prefixed by an action (discussed in the following), a process running in a ses-
sion (endpoint), the parallel composition of processes, a process under a name
restriction, a recursive process or a recursive invocation.

Processes (ranged over by P, Q, . . . ) communicate via channels very much like
e.g., π-calculus processes, according to two featured modalities: intra-session and
intra-site communication.

As outlined before, intra-session communications are used to let different end-
points of the same session to interact regardless their running sites. Hence, pro-
cesses located at different sites but sharing the same session can interact via
intra-session input and output. Conversely, intra-site communications allow dif-
ferent endpoints to communicate, provided that they are running in the same
site. This is used to model local communications and eases the programming of
activities that are independent of the specific session. For instance, a program
that counts the invocations to services defined at a given location can be pro-
grammed simply as a located process that increments a given variable when it
receives a service name via intra-site input on a given channel x; on invocation,
each service sends its name to the counter with an intra-site output on x.

Processes can install new service definitions in their running locations. Service
invocations enable processes to activate new endpoints on the service location.
Note that service invocation requires only the service name, not its location, thus
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Table 1. μse structural congruence

A|A′ ≡ A′|A A|0 ≡ A (A|A′)|A′′ ≡ A|(A′|A′′)

(νn)(A|A′′) ≡ A|(νn)A′′, if n �∈ fn(A)

(νn)(νm)A ≡ (νm)(νn)A (νn)A ≡ A, if n �∈ fn(A)

l :: P |l :: Q ≡ l :: (P |Q) l :: (νn)P ≡ (νn)(l :: P )

r � (νn)P ≡ (νn)(r � P ), if n �= r

r
·
= r ≡ 0 (νr)(r

·
= s) ≡ 0 r

·
= s|P ≡ r

·
= s|P{r/s} r

·
= s ≡ s

·
= r

r � (s
·
= t|P ) ≡ s

·
= t|r � P l :: (r

·
= s|P ) ≡ r

·
= s|l :: P

rec X.P ≡ P{rec X.P/X}

if many services with the same name are available one of them is chosen nonde-
terministically. Finally, a mechanism for letting processes join existing sessions
is given by the prefix mergep e.

Prefixes can be divided into two classes: session-dependent and session-
independent. Intuitively, the former are those whose execution is dependent of
and can be executed only within a session; while session independent prefixes do
not depend on sessions and can be executed also outside them. The distinction
will be clearer when the operational semantics is given, for the moment it suffices
to say that intra-session input/output, session merge and service invocation are
session-dependent, while intra-site input/output are session-independent.

Finally, usual process algebraic operators like parallel composition and name
restriction are introduced, the latter is one of the binders of μse. In fact, the
occurrences of y and n are bound in x(y).P , x?(y).P , (νn)P and (νn)S and the
typical definitions of set of free, bound and all names, respectively written as
fn( ), bn( ) and n( ), are assumed for systems and processes. As usual, bound
names can be safely alpha renamed.

2.3 μse Operational Semantics

The semantics of μse requires a structural congruence relation and an extended
syntax, namely explicit substitutions r

·= s of sessions. Note that explicit substi-
tutions are session-independent. Let A, B range over systems (including explicit
substitutions) and processes.

Definition 1 (μse structural congruence). The structural congruence over
μse systems (and processes) is the smallest equivalence relation satisfying the
axioms in Table 1 (where fn(A) is defined as expected).
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Table 2. Operational semantics

xv.P
xv−→ P x!v.P

x!v−−→ P

x(y).P
xv−→ P{v/y} x?(y).P

x?v−−→ P{v/y}

l :: a ⇒ P
r�a−−→ l :: r � P invoke a.P

⊥a−−→ P install[a ⇒ R].P
a[R]−−−→ P

mergep e.P
ep

−→ P

P
α−→ Q α ∈ {⊥a, xv, xv, ep}

r � P
r α−−→ r � Q

P
α−→ Q α /∈ {⊥a, xv, xv, ep}

r � P
α−→ r � Q

P
a[R]−−−→ Q

l :: P
τ−→ l :: Q | l :: a ⇒ R

P
α−→ Q α /∈ {a[R], x?(v), x!v}

l :: P
α−→ l :: Q

P
x!v−−→ P ′ Q

x?v−−→ Q′

P |Q τ−→ P ′|Q′
A α−→ A′ bn(α) ∩ fn(B) = ∅

A|B α−→ A′|B
A r xv−−−→ A′ B r xv−−−→ B′

A|B τ−→ A′|B′

A re+
−−→ A′ B se−

−−→ B′

A|B τ−→ A′|B′|s ·
= r

S
r�a−−→ S′ T

r⊥a−−→ T ′

S|T τ−→ S′|T ′

A α−→ A′ n /∈ n(α)

(νn)A α−→ (νn)A′
A α−→ A′ α ∈ {xw, x!w, r xw, r x!w}

(νw)A (w)α−−−→ A′

Structural congruence ≡ includes associativity, commutativity and identity over
0 for parallel composition and rules for scope extrusion. Also, ≡ gives the seman-
tics of recursion and r

·= s in terms of substitutions. Notice that any explicit
substitution r

·= s is persistent and can freely “float” in the term structure,
unless a restriction on r or s forbids its movements.

The operational semantics of μse is specified through a labeled transition
system (lts). We use α to range over labels. Bound variables occurring in labels
are in round parentheses, and functions fn( ), bn( ) and n( ) are extended in the
natural way to labels.

Definition 2 (μse semantics). The μse semantics is the least lts generated by
the inference rules in Table 2, closed under structural congruence.

The rules for prefixes simply execute them, moving the information to the tran-
sition label. As usual for early semantics, input prefixes guess the actual value
and immediately substitute it for the formal variable. Sessions are transpar-
ent to most of the actions, while a session name is added to the label in case
of session-dependent actions (intra-session communications, invoke and merge).
Notice that only the name of the innermost session is added. Service definitions
can produce sessions, and the session name is guessed in the early style. Install
requests are executed when the outermost level of the site is reached. Observe
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that sites are transparent to all actions but install and intra-site communica-
tions. Also, most of the synchronization rules can be applied both at the process
and at the system level. The only exceptions are (i) intra-site communication,
which is meaningful only at the process level, and (ii) service invocation, which
can be stated only at the system level since definitions are always at the top
level. Finally, restriction is dealt with by moving restrictions to the outermost
level using structural congruence, but the rule for extrusions is necessary for
interactions with the environment (and notably for bisimulation).

3 Programming in μse

This section illustrates the main features of μse by showing how it can be used to
program simple SOC applications. Example 1 introduces a trivial client-server
application, while Example 2 shows how persistent services can be programmed.
To illustrate how multiparty sessions can be easily used, more complex scenarios
are presented: Example 3 shows how a multiparty session can control interactions
among three participants; Example 4 models a multi-player game; and Example 5
gives the definition of a proxy, which is transparent to clients.

Example 1. Consider the simple system below

lc :: r � invoke inc.Pc | ls :: inc ⇒ Ps (2)

where the client running at lc in a session r invokes a service for incrementing
integers on another location; client and service adopt a request-response protocol
according to Pc = data v.ret(v′).P and Ps = data(w).ret w+1. Namely, Pc sends
the value v to the service, waits a result, and then continues executing as P ;
accordingly, Ps receives a value w and returns the successor of w (arithmetical
operators are assumed and they have precedence over other operators.)

The system (2) evolves as follows:

lc :: r � invoke inc.Pc | ls :: inc ⇒ Ps
τ−→

lc :: r � Pc | ls :: r � Ps
τ−→

lc :: r � ret(v′).P | ls :: r � ret v + 1 τ−→
lc :: r � P{v + 1/v′} | ls :: r � 0

In words, upon service invocation, Ps is executed as a new endpoint of session r
where intra-session communications let parameters to be passed around. �

Observe that neither the client nor the service of Example 1 deal with session
identifiers. Also, the definition of inc is consumed as soon as it is invoked. Nev-
ertheless, persistent service definitions can be programmed by using recursion,
as shown in the following example.

Example 2. A persistent inc service can be defined as follows

ls :: inc ⇒ rec X.(Ps | install[inc ⇒ X])

(which, by using the notation in (1), can be written as ls :: ∗inc ⇒ Ps).
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We consider now the case of two clients running in separate sessions (and in
separate sites) but executing analogous protocols:

l0 :: r0 � invoke inc.Pc | l1 :: r1 � invoke inc.Pc | ls :: ∗inc ⇒ Ps

The complete system may reduce (in several steps) to

l0 :: r0 � Pc | l1 :: r1 � Pc | ls :: ∗inc ⇒ Ps | ls :: (r1 � Ps|r0 � Ps)

where two instances of the service protocol Ps run on ls, but under different
sessions r0 and r1, while two instances of the client run on different sessions at
different sites. We remark that the session mechanism of μse will distinguish the
instances of channels data and ret used by sessions r0 and r1, and will allow
synchronizations only over channels belonging to the same session. �

Example 3. The ATM scenario described in Section 1 is shown. Consider

hiw :: r � C | (ν check , abort)(hiw :: ∗atm ⇒ A | branch :: ∗bank ⇒ B) (3)

where C, A and B are respectively the customer, ATM and bank code (de-
fined below); check and abort are private channels shared between A and B.
For simplicity, we assume to have basic types (as numerals or strings), tuples
(in angle brackets), nondeterministic choice, if statement and polyadic inputs
(though channels are not typed). We enclose output tuples in angle brackets.
The definition of C, A and B is as follows:

C = invoke atm.req〈c, m〉.(cash(x)|sms(y).display!y)

A = req(x, y).invoke bank .check 〈x, y〉.( checked().cash y + abort().cash 0 )

B = check (x, y).if ok (x, y) then checked .sms ok else abort .sms ko

After invoking the ATM, C requests to withdraw an amount of money m offering
some credentials c and waits for money and for an SMS confirmation. After
invoking B, A forwards the request to B and waits for B’s response either to
confirm or abort the transaction (in which case no money is dispensed).

If the customer’s credentials are valid, B confirms to A to proceed and notifies
C by sending the ok SMS, which is diplayed on C’s site. Observe that B enters
the session between A and C after the latter invokes the bank service, hence the
further interactions with C and A will not be messed up with possible concurrent
sessions of the bank service. If the customer’s credentials are invalid the bank
let the ATM abort and sends a failure notification to the customer. �

An interesting aspect to highlight in Example 3 is the fact that the interactions
between C and A or C and B are mediated by public channels and communi-
cations are hiddenly driven by sessions. More precisely, req , cash and sms can
be thought of as the known ports through which participants communicate, and
sessions avoid interferences among possible concurrent invocations of the ATM
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and bank services. Also, notice that exactly the same definition of the bank ser-
vice can be installed on other locations so modeling the existence of different
branches without affecting the customer.

In the next example we illustrate how entry points can be used for modeling
a distributed game scenario where the number of participants is unbounded.

Example 4. Let s be a service that waits for the connection of at least two
players. Whenever two players connect to the service, they share a session
and a match starts. New participants may later join. For simplicity, we let
Pp = start().P be the protocol that any player follows after invoking s. When s
signals the beginning of the match on the channel start, the players run as P ,
which codes the (unspecified) logic of the game.

The service has two different states that respectively generate an instance of
the following protocols

G1 = merge− e.start.rec X.merge− e.X, G2 = merge+ e.start

Intuitively, G1 stands for the protocol followed by s for handling the first con-
nection. Note that G1 will run in a session, say r, and it will wait a player to join
r over the entry point e. After the second player arrives, it sends to the player
the message start and will repeatedly wait for new arrivals. By contrast, G2
manages all subsequent invocations. In particular, G2 joins an existing session
over the entry point e and then it sends the message start to the player.

The game service is s ⇒ G where

G = G1 | install[∗s ⇒ G2]

Notice that the changes of the state of the service are modeled by using the
primitive install[. . .] for installing a new definition of the service.

Let us consider the following system

l0 :: r0 � invoke s.Pp | l1 :: r1 � invoke s.Pp | lg :: s ⇒ G (4)

composed by two players and a game service. After several steps, system (4) may
evolve to

l0 :: r0 � Pp | l1 :: r1 � Pp | lg :: ∗s ⇒ G2 | lg :: (r0 � G1 | r1 � G2)

and G1 and G2 can finally synchronize (over the entry point e) so that, after
their sessions are coalesced, they signal to the two players that the game starts.

r0
·= r1 | l0 :: r0 � Pp | l1 :: r0 � Pp |

lg :: ∗s ⇒ G2 | lg :: (r0 � start.rec X.merge− e.X | r0 � start)

Note that new invocations of s will create service sessions of the form r � G2.
These sessions will join the first created session r0, by merging over the entry
point e. �
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The gaming example serves to show a nice feature of μse: players protocol need
not to be aware of the order in which connections are established, i.e. any player
can invoke the gaming service regardless of the fact that a session has been
already started or not. Clearly, more complex game services may be written;
for instance, a service that allows only a bounded number of participants and
creates a new instance of the game when the bound is reached can be simply
implemented using freshly created entry points. Remarkably, the programming
of the counting mechanism can be straightforwardly achieved by using a local
shared counter and intra-site communications.

Our last example shows how proxies can be easily programmed and exploits
the intra-site communication of μse.

Example 5. Consider a set of different services s0, . . . , sn providing the same
functionality P , any of them running on a different site. Let us assume the
services to be persistent and defined as

Si = li :: ∗si ⇒ P

Moreover, we assume that each client wants to access the services in a transparent
way, i.e., by invoking a service s that acts as a proxy, and forwards the invocation
to one of the actual services.

As a first solution, we can model the proxy as a service that nondeterministi-
cally selects one of the available providers, as below

Ps =
∏

i

Avi | ∗ s ⇒ av?(x).invoke x

Any process Avi = rec X.av!si.X gives a persistent witness of the fact that
the service si is one of the available providers (in more complex situations,
the description of available services may take load balancing into account, ex-
ploiting e.g. a sequential list of invocations). The actual definition of the proxy
∗s ⇒ av?(x).invoke x states that once the proxy is invoked it uses intra-site
communication to select one of the available services, and then invokes it. If we
consider a client that invokes s and then continues like Q, the whole system
behaves as follows.

∏

i

Si | lp :: Ps | lc :: r � invoke s.Q
τ−→

∏

i

Si | lp :: Ps | r � av?(x).invoke x | lc :: r � Q
τ−→

∏

i

Si | lp :: Ps | r � invoke sk | lc :: r � Q
τ−→

∏

i�=k

Si | lk :: r � P | ∗ sk ⇒ P | lp :: Ps | r � 0 | lc :: r � Q

Note that, from this moment on, the client at site lc and the activated instance
of the selected service at site lk share the same session r. �
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4 Observational Semantics of μse

This section proposes an observational semantics of μse relying on the well-known
notion of bisimulation. We prefer to use weak bisimulation as it is more suitable
for reasoning on μse systems and, more generally, for giving coarser equivalence
relations amongst systems.

Let ⇒ be the reflexive and transitive closure of τ−→. Let us denote relation
composition as juxtaposition (e.g., ⇒ α−→ is the composition of relations ⇒ and
α−→). Let α⇒ be ⇒ α−→⇒ if α 	= τ and ⇒ if α = τ .

Definition 3 (Bisimilarity). A binary relation B on systems is a (weak) μse
bisimulation if it is symmetric and for any (S, T ) ∈ B

– for each S
α−→ S′ such that bn(α) ∩ fn(T ) = ∅, T

α⇒ T ′ with (S′, T ′) ∈ B.

Bisimilarity is the largest bisimulation.

Definition 3 instantiates the standard notion of weak bisimilarity for μse.
We will show here that bisimilarity can be used to analyze properties of ser-

vices, in particular to prove that an implementation of a service is compliant
(i.e., bisimilar) to a more abstract specification.

Let us consider a simple service a that computes some mathematical function
fun (such as the increment in Example 1, or even better some computationally
expensive function). We can write the specification as:

l :: ∗a ⇒ P with P = data(x).ret fun(x) (5)

The only possible transitions for this service are acceptance of invocations at a,
followed by a protocol in the created session composed by an input on data and
an output on ret.

Following the ideas in Example 5, a first implementation could ask another
service ai non-deterministically chosen from a pool a1, . . . , an to do the job:

l :: (νa1 . . . an)
(
(νav)(

n∏

i=1

rec X.av!ai.X | ∗ a ⇒ av?(u).invoke u) |
n∏

i=1

∗ai ⇒ P
)

where, instead of directly computing fun, upon invocation the service receives
(through an intra-site communication on the private channel av) the name of the
“private” local service ai that actually computes fun. Notice that these two last
transitions are just (non-observable) τ steps and such system is weak bisimilar
to system (5). Also, replacing the definitions of ai with ai ⇒ Pi still yields a
system weak bisimilar to the system (5) provided that each Pi is bisimilar to
P . On the contrary, removing e.g., the restriction on av breaks the bisimilarity,
since the implementation of a could then interact with another channel av in
the environment, while the specification does not allow this interaction.

In another possible implementation, a can merge with another session that
does the job. For simplicity, we consider just one such session (the case of a
nondeterministic choice among many equivalent sessions is analogous):

(νe)l :: a ⇒ rec Y.(merge+ e.install[a ⇒ Y ]) | rec X.(νr)r � merge− e.(P |X).
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In this case, the invocation in the specification is simulated by the invocation in
the implementation plus the merge. Notice that e should be bound to avoid other
sessions to come into play instead of the wanted one, and that the merge has
to be completed before a can be made available again. Similarly, r is restricted
to avoid different recursive calls to interfere. Notice that other instances create
further nested sessions, but session nesting is immaterial since only the most
internal one matters, e.g., r � r′ � P is bisimilar to r′ � P .

5 Related Work and Concluding Remarks

Multiparty sessions are increasingly attracting the attention of researchers in
distributed computing. We have introduced μse, a process calculus tailored to
handle multiparty sessions in service oriented scenarios. The presentation in-
cludes the full formalization of the operational semantics in the SOS style and
the definition of a bisimilarity-based abstract semantics.

μse builds on ideas emerged in recent works, but adds to them several original
elements. From a technical point of view, μse communication model is inspired
by π-calculus [22] and SOC features are based on the SCC [3,19,7,4] family of
calculi developed inside the Sensoria project [24]. Multiparty sessions are the
main novelty of μse with respect to SCC and they have a strong impact also on
other features. For instance, in binary sessions the intended recipient is always
understood (the other endpoint of the session), while in multiparty sessions
many recipients are possible, and an additional coordination mechanism, such
as μse channels, is needed. Also, μse and SCC differ on many design choices. For
example, the invocation of a service always opens a new session in SCC both on
the client and on the service side. In μse instead only the server session is freshly
generated. Another difference is that SCC offers more constrained forms of local
communication: pipelining [3,4] and data streaming [19]. In this respect μse is
more similar to [7], but its communication primitives exploit the site structure
instead of the session structure as the primitives in [7]. We think that this is an
important separation of concerns aspect.

In [2] multiparty sessions are considered, but they are required to include one
master endpoint and one or more slave endpoints, and direct communication is
allowed only between the master and any slave. Our setting is more general since
sessions have no predefined structure. The simpler setting of [2] allows a type sys-
tem based on session types to be defined [15,16,8,10,13]: developing a similar type
system for our generalized setting is more challenging, and is part of our plans for
future work. In this respect, also [17,19,1,20,6] offer a good starting point. Also,
[2] uses asynchronous communications, while we use synchronous ones.

The global calculus [8] allows for multiparty sessions, but, roughly speaking,
session identifiers are modeled just as pi-calculus channel names (freshly created
and distributed to participants during the initialization phase of the service pro-
tocol). In μse instead sessions offer a logical context for driving communication
on top of intra-session channel names. Moreover, entry points allow to dynami-
cally merge running sessions, an operation not possible in the global calculus.
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Recently, global types have been introduced in [17] in order to describe conver-
sations among several participants; provided that some conditions (e.g., linear-
ity) hold, global types can be projected on and checked against each participant.
Several results on disciplined use of global types show how processes reflect-
ing well designed multiparty choreographies enjoy progress properties (i.e., well
typed processes either terminate or can interact) and session fidelity (i.e., well
typed processes interactions mimic those specified in their global types). We con-
sider [17] a very inspiring work and we are currently trying to extend the progress
and fidelity results to the dynamic setting of μse. In fact, dynamic multiparty
sessions yield a main difference between μse and the behavioural model adopted
in [17] (where the number of participants in a multiparty session is fixed). Ac-
tually, safety and liveness properties of dynamic multiparty sessions pose many
challenging and interesting research questions. For instance, progress properties
should be revisited so that well typed processes should either terminate, interact
or eventually allow session merging that do not spoil further interactions.

The intra-session communication model of μse resembles the dyadic synchro-
nisation mechanism of the polyadic pi of [9]. Roughly, the μse process r � P
can be seen as the polyadic pi process obtained from P by substituting any oc-
curence of x(w) and yv respectively by r · x(w) and r · y〈v〉. In this respect, the
intra-session communication model of μse can be thought as a disciplined use
of dyadic synchronisations. An important difference is that μse sessions can be
merged via entry points, a feature that would require some form of name fusion
on top of [9]. We leave for future work the formal comparison of the two models.

A calculus with coordination mechanism based on event/notification, called
XSC, has been introduced in [12] and can model multiparty sessions through a
type system. In XSC, components can react to events according to their types
that provide a mechanism to associate sessions to events. Though sessions cannot
be merged in XSC, its type system permits to correlate events from different
sessions. We argue that XSC can be a valid candidate for translating μse in a
framework with mechanisms reminiscent of correlation sets.

We conclude by discussing some of the possible extensions of μse.

Closing sessions. We plan to extend μse with primitives for explicit session
closure, for which nesting of sessions plays a prominent role. In fact, sessions can
confine the effect of closure mechanisms so that the part of a running session
that must be terminated can be straightforwardly determined.

In the current version of μse, session nesting is only exploited as a mechanism
for controlling intra-session communication within the same party. For example,
P and Q can carry an intra-session interaction neither in r � (P |Q) nor in
r � (P |r � Q).

Sophisticated interactions. Communication mechanisms are somehow orthogonal
to sessions. In fact, while CCS-like communication [21] is the obvious choice when
only two-party sessions are considered, in the presence of multiparty sessions a
more natural and more sophisticated alternative would be some variant of mul-
ticast (like broadcast [11] or CSP-like interaction [14], or even some combination
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of different policies [5]). We contend that multiparty sessions as introduced in
μse provide a reasonable linguistic background for easily extending the calculus
with several sophisticated interaction mechanisms (similarly to what has already
been done for graphical languages [18]).

Acknowledgements. Authors thank Nobuko Yoshida for her valuable com-
ments and suggestions, particularly for highlighting some relationships among
μse and other proposals.
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Abstract. We propose and formalize HomeBPEL, a higher-order WS-
BPEL-like business process execution language where processes are first-
class values that can be stored in variables, passed as messages, and
activated as embedded sub-instances. A sub-instance is similar to a WS-
BPEL scope, except that it can be dynamically frozen and stored as a
process in a variable, and then subsequently be thawed when reactivated
as a sub-instance. We motivate HomeBPEL by an example of pervasive
health care where treatment guidelines are dynamically deployed as sub
processes that may be delegated dynamically to other workflow engines
and in particular stay available for disconnected operation on mobile
devices. We provide a formal semantics based on binding bigraphical
reactive systems implemented in the BPL Tool as part of the Bigraphical
Programming Languages project at ITU. The semantics is an extension
of a semantics given previously for a simplified subset of WS-BPEL and
exploits the close correspondence between bigraphs and XML to provide
a formalized run-time format very close to standard WS-BPEL syntax,
which also constitutes the representation of frozen sub-instances.

1 Introduction

Services implemented and orchestrated by processes written in languages such
as WS-BPEL are being put forward as a means to achieve loosely coupled and
highly flexible computer supported business and work processes. In the current
architectures, services are deployed and managed on web servers by meta-level
tools and cannot be replaced or moved during the life-time of a session with
an instance of the service. In the present paper we propose and formalize a
higher-order WS-BPEL-like language where processes are values that can be
stored in variables and dynamically instantiated as embedded sub-instances. A
sub-instance is similar to a WS-BPEL scope, except that it can be dynamically
frozen during a session and stored as a process in a variable. When frozen in a
variable, the process instance can be sent to remote services as any other content
of variables and dynamically re-instantiated as a local sub-instance continuing
its execution.
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We envisage a use of HomeBPEL where the necessary services or even active
instances can be dynamically moved to a local process engine running on a
mobile device and thereby allow for disconnected operation. We exemplify this
use by an example of pervasive health care, where treatment workflows are moved
between and executed locally on mobile devices belonging to either the doctor or
the patient, depending on whether the guideline requires actions by the doctor
or it prescribes actions carried out as self-treatment by the patient.

The investigation is part of the Computer Supported Mobile Adaptive Busi-
ness Processes (CosmoBiz) project [11], which aims to provide a fully formalized
runtime engine for a WS-BPEL-like business process language extended to allow
for mobile and adaptive processes. Our primary goals of the formalization is 1)
to be able to guarantee that the implemented engine actually conforms to the
semantics and 2) to form a basis for the development of type systems that can be
used to statically guarantee safe and reliable behavior. To achieve the first goal a
main concern is to limit the gap between the source language, its formalization,
and the implementation. A key element to achieve the second goal is to strive for
a compositional formalization supporting subsequent formalization of type rules
for the individual parts. We want to stress that it is not a main concern at this
point to provide techniques or principles for verification of processes, which has
been the main concern of most WS-BPEL formalizations so far. However, we do
hope that future reasoning techniques developed for bigraphs can be employed
also to support formal verification.

We build on and extend our previous work described in [12, 2] which exploits
the close correspondence between bigraphs and XML to provide a small step
rewrite semantics of non-trivial subsets of WS-BPEL using a representation of
the state of active process instances which is very close to the XML syntax of
WS-BPEL processes. We define the semantics in the BPL Tool1 developed in the
Bigraphical Programming Languages project which supports visualization and
simulation of the execution. The extensibility of bigraphical reactive systems
enables us to formalize HomeBPEL as an extension of a formalization of a WS-
BPEL subset, simply adding formalization of the syntax and semantics for the
new primitives for mobile, embedded sub-processes. The syntax and semantics
is inspired and guided by our work on the Homer process calculus of Higher-
order mobile embedded resources [10, 4, 3]. Not surprisingly, the new features
add to the complexity of the language and its formalization. Yet, the formal
approach ensures that they are completely unambiguously specified. Also, the
close relationship to semantics of process calculi such as Homer and the Mobile
Ambients gives a very succinct formalization of sub-process mobility. Indeed,
the serialized representation of a mobile process is just a process description.
In particular, this means that a future implementation could use the standard
XML format for serialized process instances.

The structure of the paper is as follows. In Sec. 2 we motivate HomeBPEL
by an example of pervasive health care. Sec. 3 briefly reviews the definition of
binding bigraphs and the BPL tool term language for such, and in Sec. 4 we

1 See 〈http://tiger.itu.dk:8080/bplweb/〉
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provide the formalization of higher-order mobile embedded sub-processes as it is
defined in the BPL tool. Finally, in Sec. 5 we conclude and propose future work.

Related Work. Sub-processes have been proposed by IBM and SAP in [15]
as an extension to WS-BPEL (called BPEL-SPE) to allow for modularization
and reuse of process fragments to ease the burden of designing large business
processes. As argued in [15] one could simulate some of the behavior of sub-
processes by invoking another process instead of invoking a sub-process. How-
ever, this makes it impossible to establish any coupling between the life-cycles
of the two process instance, e.g. enforcing that a sub-process exits if the super
process exists prematurely. The sub-processes we propose in this paper extends
the proposal in [15] in several aspects. First and foremost, BPEL-SPE requires
that the sole interaction of a sub-process is an initial receive activity, and a last
reply activity, basically making the sub-process act as a method or function call.
We allow that the sub-process can communicate unrestricted with the parent
process (and vice versa) using invoke-receive. Furthermore, we add facilities for
“freezing” and “thawing” sub-processes as well as (sub-)process mobility.

Higher order workflow models applied to health care processes have been con-
sidered in the context of Higher-Order (Petri) Nets [13], allowing sub-processes
(nets) as values (tokens), which may be dynamically composed. The approach
in [13] differs from ours in several ways: Firstly, the approach in [13] is based
on Petri Nets as opposed to process calculi, and has no direct relationship to
WS-BPEL nor service orchestration. Another central difference is that we exe-
cute sub-processes as sub-threads and they can themselves contain sub-processes,
whereas in [13] a sub-process is executed step-by-step by the super process and
cannot contain sub-processes itself. Finally, the model in [13] allows for dynamic
modification and composition of sub-processes, which is not yet supported in
our setting.

Our formalization of the core WS-BPEL subset relates to the WS-BPEL pro-
cess calculus given in [16]. An advantage to our approach is that we can reuse
the general theory developed for bigraphical reactive systems, instead of rede-
veloping an entire theory of a new process calculus. As in [16], we hope to be
able to equip our formalization with WSDL-like (or even richer) type systems.
As described above, our proposal of higher order mobile sub-processes relates
to our work on the higher-order process calculus Homer. The Homer calculus is
related to the process calculus of Mobile Ambients [5], the Seal calculus [6] and
the higher-order π-calculus (HOπ) [20]. Indeed, HomeBPEL shares with Seal
and HOπ the combination of name (link) and process passing.

2 Motivating HomeBPEL

In this section we motivate the use of HomeBPEL with a simplified example
of workflow management for pervasive health care. Each doctor is assumed to
run a workflow process, which is initiated when he/she is hired. Every new
treatment of a patient causes a new workflow process to be initiated, describing
the clinical guideline to be followed for the particular treatment of the patient.
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Fig. 1. Sequence diagram for the pervasive health care scenario

In a centralized solution, this process would be running as a separate workflow
on the workflow server and only be available when connected to the network. In
HomeBPEL business processes can be manipulated as first class values, so we
can let the doctor’s workflow process execute the treatment process as a sub-
process. By assuming that the doctor carries a mobile device running its own
HomeBPEL engine the treatment process can be executed independently of the
network. Moreover, if each patient is equipped with a mobile device running a
self-treatment workflow process, the doctor may delegate the treatment process
(or parts of it) by sending a sub-process to the patient’s workflow process.

A sequence diagram illustrating a simple example of this scenario is shown in
Fig. 1. The two large boxes represent the patient’s and the doctor’s PDA respec-
tively. The dotted continuation of the ”life-line” of the sub-process guideline
indicates that it is the same process continuing its execution at the patient’s
PDA. The BPMN diagram in Fig. 2 gives a more detailed view of the patient
process, with a group of guideline sub-processes indicated in the dashed box in
the middle. Fig. 3 shows the corresponding HomeBPEL process for the patient.
We have left out details related to the data-flow which are not relevant for this
example. The initial receive on the hospitalized operation is used to invoke
the patient process, as indicated by the createInstance attribute. We have only
formalized synchronous communication, so most receive operations are immedi-
ately followed by a ”dummy” reply. As also shown in the sequence and BPMN
diagrams, the following invoke instantiates a local user interface process running
on the patient’s PDA which we assume takes care of handling the task list of
the patient. It is followed by a WS-BPEL flow, which contains two while-loops
executing in parallel. The first while-loop (corresponding to the right-hand loop
in the BPMN diagram) allows for arbitrarily many self-treatment sub-processes
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Fig. 2. BPMN diagram of the patient workflow process

to be received and instantiated: The receive on the run operation waits for a
message containing a process and stores it in the input variable guideline. The
following activity thaw is part of the new features introduced in HomeBPEL
and it is used to create an instance of a process stored in a variable and execute
it as a sub-instance within the scope of the corresponding subLink (in the ex-
ample named subinsts) of the current running instance. The second while-loop
forwards messages received from the guideline sub-processes by the HomeBPEL
receiveSub activity to the user interface, and in turn forwards the answer back
to the sub-process by the HomeBPEL replySub activity.

The doctor’s workflow process shown in Fig. 4 also invokes a user interface
process, and contains an identical loop for forwarding messages from treatment
workflows to the user interface process (which we have omitted from the example
code to save space). However, different from the patient workflow, the first step
of the main loop of the doctor workflow is to receive a link (on the patient
operation) which is then dynamically assigned to the patient partner link by the
copy operation. Thereby the doctor workflow process can be dynamically linked
to different patient workflow processes during its lifetime. The following thaw
activity instantiates a treatment guideline as a sub-process from the variable
named guideline. Fig. 5 shows an outline of the treatment process consisting
of two phases: A consultation phase invoked explicitly by the doctor and carried
out within the doctor’s workflow, and a self-treatment phase carried out within
the patient’s workflow. To initiate the first part of the treatment, the operation
consultation is invoked from the doctor workflow by the action invokeSub.
The reply of this operation signals that the consultation is finished, and the
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<process name="patient">
<partnerLinks>

<partnerLink name="patient_client" />
<partnerLink name="task_list_UI" />

</partnerLinks>
<subLinks>

<subLink name="subinsts" />
</subLinks>
<variables>

<variable name="guideline" />
<variable name="task" />
<variable name="reply" />
...

</variables>
<sequence>

<receive partnerLink="patient_client" operation="hospitalized"
createInstance="yes" ... /><reply operation="hospitalized" ... />

<invoke partnerLink="task_list_UI" operation="init_UI" ... />
<flow>

<!-- Thaw-loop: Continually receives and executes sub-instances -->
<while>

<condition>...</condition>
<sequence>

<receive partnerLink="patient_client" operation="run"
variable="guideline" /><reply operation="run" ... />

<thaw subLink="subinsts" variable="guideline" />
<invokeSub subLink="subinsts" operation="resume" ... />

</sequence>
</while>
<!-- UI-loop: Continually receives tasks from sub-instances and

pass them on to the UI service -->
<while>

<condition>...</condition>
<sequence>

<receiveSub subLink="subinsts" operation="task" variable="task" />
<invoke partnerLink="task_list_UI" operation="add_task"

inputVariable="task" outputVariable="reply" />
<replySub subLink="subinsts" operation="task" variable="reply" />

</sequence>
</while>

</flow>
</sequence>

</process>

Fig. 3. Patient workflow process

treatment process is ready to be frozen (by the freeze action) and sent to the
patient’s workflow process.

Note that we have not specified the specific tasks for each phase in the treat-
ment, which in general could be part of an arbitrarily complex workflow. How-
ever, we have illustrated how tasks in each phase can be scheduled at the user
interface of the current super workflow by invoking the task operation by the
invokeSup action. This shows how context-dependent communication is elegantly
facilitated in HomeBPEL. One could easily imagine that the treatment processes
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<process name="doctor">
<partnerLinks>
<partnerLink name="hospital" />
<partnerLink name="patient" />
<partnerLink name="task_list_UI" />

</partnerLinks>
<subLinks><subLink name="treatment" /></subLinks>
<variables>
<variable name="guideline"><process name="guideline">...</process></variable>
<variable name="link" /><variable name="self_treatment" /> ...

</variables>
<sequence>
<receive partnerLink="hospital" operation="doctor_hired"

createInstance="yes" ... /><reply operation="doctor_hired" ... />
<invoke partnerLink="task_list_UI" operation="init_UI" ... />
<flow>
<while>
<condition>...</condition>
<sequence>
<receive partnerLink="hospital" operation="patient"

variable="link" /><reply operation="patient" ... />
<assign><copy>

<from variable="link" /><to partnerLink="patient" />
</copy></assign>
<thaw subLink="treatment" variable="guideline" />
<invokeSub subLink="treatment" operation="consultation" ... />
<freeze subLink="treatment" variable="self_treatment" />
<invoke partnerLink="patient" operation="run"

inputVariable="self_treatment" ... />
</sequence>

</while>
<!-- while-loop forwarding tasks to the local user interface -->

</flow>
</sequence>

</process>

Fig. 4. Doctor workflow process

<process name="guideline">
...
<sequence>
<!-- Doctor initializes treatment -->
<receiveSup operation="consultation" ... />
<!-- Instruct doctor on how to perform consultation -->
<invokeSup operation="task" ... />
<replySup operation="consultation" ... />
<!-- Ready to be moved to patient -->
<receiveSup operation="resume" ... /><replySup operation="resume" ... />
<!-- Instruct patient how to perform self-treatment -->
<invokeSup operation="task" ... />

</sequence>
</process>

Fig. 5. Treatment guideline process
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could also access local information, e.g. special expertise of the doctor or relevant
characteristics of the patient.

The above example is of course still highly simplified. One would most likely
want more control over the behavior of sub-processes, i.e. to disallow malicious
processes from entering ones mobile device, to only allow processes from known,
trusted sources, etc. We expect to address these questions in future work. A
necessary first step is a formal semantics of the execution which will be provided
in the following sections.

3 Binding Bigraphs

In this section we briefly review the binding bigraphs of Milner and Jensen [14]
and introduce the syntactical representation of binding bigraphs as implemented
in the BPL Tool. For a complete introduction to bigraphs we refer to [14].

Binding Bigraphs. A binding bigraph is a pair of graphs: a place graph and
a link graph. The place graph is an n-tuple of finite, unordered trees. Except
for roots, every node is labelled by a control and has two finite ordered sets of
respectively free and binding ports. The link graph is essentially a hypergraph
connecting every free port of the nodes in the place graph to either a closed link,
a binding port, or a name in a finite set X of names. Jointly with a collection of
pairwise disjoint sets Xi ⊆ X of local names, one for each root in the bigraph,
the set X defines the (outer) interface of the link graph. The so-called scope
condition enforces that any binding port and any name in a set Xi is only
connected to ports nested strictly inside the node of the binding port and root
i respectively.

What we just described above is known as ground binding bigraphs. Intu-
itively, one may think of a ground binding bigraph as an ordered tuple of terms
of a process calculus up to structural congruence: Sibling nodes in the place
graph represent processes combined by an associative and commutative paral-
lel operator. Each node is a prefix, and each control denotes a distinct prefix
operation (e.g. send or receive in the π-calculus) with free and binding ports
representing names and name binders of the particular operation (e.g. for the
π-calculus, any node labelled by a send control would have 2 free ports, while
nodes labelled by a receive control would have one free and one binding port).
The link graph then maps each name in a prefix to either a local name (closed
link), a binder (i.e. a binding port) or a name in the interface.

A ground bigraph with a single root is also similar to the data model for XML,
with controls playing the role of the names of XML elements, ports playing the
role of attributes and the linking of ports playing the role of attribute values.
As we will see below, we exploit this similarity to give a bigraphical semantics
to HomeBPEL resembling closely the XML syntax.

A central ingredient of the theory of bigraphs is that bigraphs in general
are (multi-hole) contexts that can be composed: The place graph has a finite
ordered set of holes (referred to as sites in the usual bigraph terminology), each
associated as a child of a node. The link graph has a set of local names Yi for each
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hole. As for the outer interface, the sets Yi are pairwise disjoint and contained in
a finite set of names Y which jointly with the sets Yi forms the inner interface.
As the free ports, the names in Y are connected to either a closed link, a binding
port or a name in the outer interface.

Outer (resp. inner) interfaces of binding bigraphs are thus triples 〈n, �X, X〉,
where the width n is a finite ordinal representing the number of roots (resp.
sites), X is a finite set of names, and �X is an n-tuple of pairwise disjoint subsets
of X which declares some of the names in X as local to specific roots (resp.
sites). If x �∈ �X then x is said to be global, else it is local ; if an interface I has
no global names x, it is a local interface. We write G : I → J for the bigraph G
with inner interface I and outer interface J . The composition H ◦ G : I → J of
bigraphs G : I → I ′ and H : I ′ → J with compatible interfaces is obtained by
making the children of the ith root of G children of the (parent) node of the ith
site of H , discarding the roots of G and sites of H , and by coalescing links as
prescribed by the correspondence of H ’s inner and G’s outer names.

A binding bigraphical reactive system is defined with respect to a signature,
which declare the set of possible controls labelling nodes of the bigraph and for
each control K the number of binding and free ports of nodes in the bigraph
labelled with K. The signature also declares each control as either atomic, active
or passive. Only nodes with non-atomic controls can have children, and reactions
(as defined below) can only occur in sub-bigraphs nested solely within active
controls.

BPL Tool Term Language. Binding bigraphs are often visualized graphically.
However, binding bigraphs also admit a representation via a term language based
on the axiomatization of binding bigraphs [7]. This representation is exploited
in the BPL Tool to allow compact and compositional textual descriptions of
binding bigraphs and their reaction rules2.

In the present paper we will use the syntax of the term language as used in
the BPL Tool. The language consists of Standard ML constructs which allows
the user to write the terms directly in SML, at the cost of introducing a few
additional back quotes. (Future versions of the BPL Tool will also support a
clean input language stripped of SML artifacts.) The employed subset of the
language can be defined by the following grammar.

P ::= P o P | P || P | P ‘|‘ P | C

C ::= c | c[N?] | c[N?][NS ?] | -//[N ?] | n//[N ?] | ‘[N?]‘ | <->
N ? ::= ε | N N ::= n | n,N NS ? ::= ε | NS NS ::= [N?] | [N?],NS

where n ranges over strings representing names and c over strings representing
controls. C describes so-called ions which are bigraphs consisting of a single root
with a single node as child, having a control as defined in the signature. If the con-
trol is non-atomic the ion has a single hole inside. For instance, an ion with name

2 The representation is also exploited in the underlying formalization and implemen-
tation of matching used for the execution of reaction rules as described in [9].
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c and i free ports and j binding ports is written c[n1, . . . , ni][NS1, . . . ,NS j]
where the NSk is the set of names bound to the kth binding port.

We use the double bars || to separate roots in the place graph and the single
bar ‘|‘ as a separator between sibling nodes. The symbol o denotes composition
as defined above (the tool checks that the interfaces of the bigraphs match). The
terms -//[N ?] and n//[N ?] denote a bigraph with an empty place graph (i.e.
no roots) and a link graph mapping the names in the list N ? to respectively each
their closed link and to the name n. The term ‘[]’ denotes a hole and the term
‘[n1, . . . , nk]‘ denotes a hole with local names n1, . . . , nk. Finally, the term <->
denotes a bigraph just consisting of a single empty root. As an example, we may
define two binding bigraphs as follows.

val R = If[id] o (Condition o False ‘|‘ Then o ‘[]‘ ‘|‘ Else o ‘[]‘)
|| Running[id]

val R’ = ‘[]‘ || Running[id]

The bigraphs R and R’ both have two roots. The first root of R has a single
node as child with the control If and a single free port linked to the name id.
The node has three nodes as children, labelled respectively with the controls
Condition, Then and Else. The first node has a single node as child labelled
with the atomic control False. The two latter nodes both have a hole as a child.
The holes in a bigraph term are ordered from left to right, i.e. the hole below
the Then is indexed 0 and the hole below the Else is indexed 1. The second
root of R has a single node as child labelled with the atomic control Running
and a single free port linked to the name id. The bigraph R’ has simply a hole
below its first root and the atomic Running control below its second root. The
two bigraphs in fact form respectively the redex and reactum of a reaction rule,
as defined below, defining the meaning of an if-then-else construct in the case
where the condition has been evaluated to false.

Reactions. The dynamics of bigraphical reactive systems is defined in terms
of a reaction relation generated from a set of reaction rules R. Such rules are
generally parametric, and may discard and also duplicate their parameters.

A rule, written "rule name" ::: R --�̄--|> R’, consists of two bigraphs:
the redex R : I → J and the reactum R’ : I ′ → J , where both I and I ′ are local
interfaces, and a parameter mapping �̄. The mapping �̄ indicates for each site in
the reactum from which site in the redex the parameter is copied.

The expression "if false" ::: R --[0 |-> 1]--|> R’ is a reaction rule
for executing an If activity with a false condition. During a reaction, the first
tree of R (the if-then-else construct) is replaced by the first tree the reactum R’.
Since the second tree of R and R’ are identical it simply means that a node with
the Running control (and the correct id link) must be present in the context—
this is used to ensure that rewrites are only performed on running instances
which are ready to execute a step. The mapping [0 |-> 1] specifies that the
hole in the reactum (site 0) should contain the contents of the hole in the Else-
branch (site 1), while the contents of the hole in the Then-branch is discarded
as it is not mentioned in the mapping.
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In general parameters may have local names, thus the mapping �̄ must also
define how the local names of a parameter is mapped to local names in the hole
of the reactum. For instance, [0&[x1] |--> 0&[x], 1&[x2] |--> 0&[x]] is a
mapping which (a) maps site 0 of the reactum and its local name x1 to site 0 of
the redex and its local name x, and (b) also maps site 1 of the reactum and its
local name x2 to site 0 of the redex and its local name x.

A rule matches an agent a if a = C o (idZ || R) o d for some identity
linking idZ and active context C (i.e., no site of C is nested within a passive
node); the linking idZ connects all non-local names in the outerface of d to C. In
this case reaction produces a new agent a’ = C o (idZ || R’) o d’, where
d’ is computed from d as prescribed by �̄. When duplicating parts of the agent
(by letting �̄ map several reactum sites to a single redex site), local links in d
are copied to each copy in d’, while free links are shared between the copies.
Binding ports thus enforce a notion of scope and locality on a bigraph’s links,
resembling the usual notion of binders in the λ- and the π-calculus. This feature
of binding bigraphs is crucial in our formalization of WS-BPEL to create fresh
id and scope links when new instances or scopes are created.

4 Formalizing HomeBPEL

The formalization of HomeBPEL as a binding bigraphical reactive system in
the BPL Tool is given by a signature, determining the allowed controls and
the ports for each type of control, and a set of reaction rules, determining the
run-time semantics. As described in the introduction, we utilize the extensibility
of bigraphs to extend and adapt the previous formalization of WS-BPEL given
in [1]. For brevity we do not provide the signature. Instead we present the controls
via a grammar in Table 1 which shows the valid nesting of controls in bigraphs
representing HomeBPEL processes in our formalization. In the grammar each
terminal (written in Typewriter typeface) represents a control in the signature, so
for instance Process and PartnerLinks are two of the controls in the signature.
(The grammar does not show ports of controls, i.e. the linking). We let i range
over the set {0, 1} which we use to index some of the productions to keep the
presentation succinct. We write prod? for indicating that the terminal or non-
terminal is optional and we write Link∗ to denote that there can be 0 or more
Link terminals.

Currently the formalization only supports the constants True and False and
variable references as expressions. But one can easily extend the semantics to
more expression types (e.g. XPath expressions), simply by adding rules describ-
ing how to evaluate them — without having to alter the current rules. Similarly,
values (i.e. value) are currently restricted to be either the constants True and
False, processes (higher-order values), or the content of a PartnerLink (akin to
name passing in the π-calculus). One could exploit the correspondence between
XML and bigraphs to represent any kind of XML-data.

As mentioned in the introduction, the key idea of the formalization is that
a process is represented by a bigraph very similar to the XML syntax for
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Table 1. Grammar for HomeBPEL

system ::= procs | state
procs ::= proc | . . . | proc
state ::= topinst | . . . | topinst
proc ::= Process(scopecontent 0)
partnerlinks ::= PartnerLinks(partnerlink | . . . | partnerlink)
partnerlink ::= PartnerLink(partnerlinkcontent )
partnerlinkcontent ::= CreateInstance? | link?
link ::= Link |message?
message ::= Message(value)
sublinks ::= SubLinks(SubLink(Link∗) | . . . | SubLink(Link∗))
vars ::= Variables(Variable(value) | . . . | Variable(value))
topinst ::= TopInstance(inst |(TopRunning | SubTransition))
insts ::= Instances(inst | . . . | inst)
inst ::= Instance(status | scopecontent 1)
status ::= Invoked | Running | Freezing | Stopped
act i ::= scope i | seq i | flow i | whilei | if i | assign | Invoke

| Receive | Reply | GetReply | Exit | InvokeSub | InvokeSup
| ReceiveSub | ReceiveSup | ReplySub | ReplySup | Thaw
| GetReplySub | GetReplySup | Freeze | FreezingSub

scope0 ::= Scope(scopecontent 0)
scope1 ::= ActiveScope(scopecontent 1) | Scope(scopecontent 0)
scopecontent i ::= partnerlinks | sublinks | insts | vars | act i?
seq i ::= Sequence(act i? | Next(act i?))
flow i ::= Flow(act i? | . . . | act i?)
whilei ::= While(Condition(expr) | act i?)
if i ::= If(Condition(expr ) | Then(act i?) | Else(act i?))
assign ::= Assign(Copy((From | FromPLink) |(To | ToPLink)))
value ::= True | False | proc | partnerlinkcontent
expr ::= True | False | VariableRef

WS-BPEL processes. Also, an active instance is represented almost exactly as
the process, except it has an outermost node labelled by an Instance control
and has an additional status node representing its current run-time status (e.g.
the node labelled by the Running control mentioned in the previous section).
Instances keep the current content of variables inside the variable node, and are
executed as in process calculi by rewriting the bigraph according to the set of
reaction rules to be described in the following section.

As an example, the process guideline from Sec. 2 is represented as a binding
bigraph in the BPL Tool as shown in Fig. 6. Looking at the representation,
it should be clear that the place graph corresponds closely to the nesting of
elements in the XML syntax, the ports of controls correspond to attributes, and
the link graph corresponds to shared values of attributes. However, already for
the formalization of the subset of WS-BPEL given in [1] we needed to introduce
some additional structure. For instance, a Next control is embedded in Sequence
controls to cope with the fact that children nodes in bigraph place graphs are
unordered while children nodes in XML are ordered (which is exploited in the
sequence construct of WS-BPEL). To facilitate the definition of reaction rules
in the semantics we also needed to add links representing instance and scope
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val guideline =
Process[guideline][[guideline_id]] o (

PartnerLinks o <-> ‘|‘ SubLinks o <-> ‘|‘ Instances o <->
‘|‘ Variables o ( Variable[x, guideline_id] o <->

‘|‘ Variable[y, guideline_id] o <->)
‘|‘ Sequence[guideline_id] o (

ReceiveSup[consultation, x, guideline_id, guideline_id]
‘|‘ Next o Sequence[guideline_id] o (

InvokeSup[task, x, guideline_id, y, guideline_id, guideline_id]
‘|‘ Next o Sequence[guideline_id] o (

ReplySup[consultation, x, guideline_id, guideline_id]
‘|‘ Next o Sequence[guideline_id] o (

ReceiveSup[resume, x, guideline_id, guideline_id]
‘|‘ Next o Sequence[guideline_id] o (

ReplySup[resume, x, guideline_id, guideline_id]
‘|‘ Next o (

InvokeSup[task, x, guideline_id, y, guideline_id, guideline_id]
)))))));

Fig. 6. BPL tool representation of the guideline process

identities. As mentioned above, an active instance is represented almost as the
process, except for a additonal node with a status control being either Invoked,
Running, Stopped or Freezing. The status node was introduced already in the
formalization of WS-BPEL given previously, because the semantics of Invoke
and Exit activities requires two consecutive reactions. The extension with mobile
sub-instances made it necessary to add the additional status control, Freezing,
since freezing an instance into a process in a variable cannot be done atomically
either. Also, we needed at top-level to introduce a status control indicating if
the top-instance or any of its (arbitrarily nested) sub-instances are allowed to
perform normal activities (by the control TopRunning) or if one of them are
performing a sub-transition (control SubTransition) as part of a non-atomic
activity. These aspects could most likely have been dealt with more elegantly if
bigraphical reactive systems had a notion of priority on the reaction rules. We
leave it for future work to study this.

4.1 Reaction Rules

In this section we present some of the new reaction rules used in the formaliza-
tion of HomeBPEL, namely the thaw sub rule used for thawing a sub-process,
and two of the rules responsible freezing an instance: freeze sub and freeze
complete. The full set of reaction rules (in BPL Tool syntax) is available in the
full paper [2] and via the online tool3. Also, [1] gives a detailed description of
some of the reaction rules covering the WS-BPEL subset.

The thaw sub rule is presented below. The Thaw activity in the redex refers
via its third port to the process inside the variable var. In the reactum the

3 See 〈http://tiger.itu.dk:8080/bplweb/index/20〉.
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Thaw activity has been removed (indicating it has been executed) and a new
running sub-instance has been inserted within the Instances control. The last
part (4&[inst id sub] |--> 0&[sub scope]]) of the instantiation map ensures
that the process body (contained in hole 0 in the redex) is copied and used as
body of the new sub-instance (hole 4 in the reactum). It also ensures that the
local bound link sub scope of the process body is renamed to inst id sub in
the new copy. Note also that we insert the status node Running in the new sub-
instance. Finally, the rule also insert a Link control within the SubLinks control.
The Link control points to the new sub-instance via its link inst id sub.

Thaw[sub_link, sub_link_scope, var, var_scope, inst_id_sup]
|| Variable[var, var_scope]

o Process[sub_name][[sub_scope]] o ‘[sub_scope (* hole 0 *) ]‘
|| ( SubLinks o (SubLink[sub_link, sub_link_scope] o ‘[(* hole 1 *)]‘

‘|‘ ‘[(* hole 2 *)]‘)
‘|‘ Instances o ‘[(* hole 3 *)]‘)

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3,
4&[inst_id_sub] |--> 0&[sub_scope]]--|>

<->
|| Variable[var, var_scope]

o Process[sub_name][[sub_scope]] o ‘[sub_scope (* hole 0 *)]‘
|| -//[inst_id_sub]

o ( SubLinks o ( SubLink[sub_link, sub_link_scope]
o (Link[inst_id_sub] ‘|‘ ‘[(* hole 1 *)]‘)

‘|‘ ‘[(* hole 2 *)]‘)
‘|‘ Instances

o ( ‘[(* hole 3 *)]‘
‘|‘ Instance[sub_name, inst_id_sub, active_scopes_sup]

o ( -//[active_scopes_sub]
o Running[inst_id_sub, active_scopes_sub, inst_id_top]

‘|‘ ‘[inst_id_sub (* hole 4 *)]‘)))
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

In general, when we thaw a process it may itself contain frozen sub-instances
frozen ”in place”, i.e. within the Instances control. An additional reaction rule
(thaw sub instance), which can be seen in the full paper [2], is thus included
for thawing frozen sub-instances.

Freezing a sub-instance requires several transitions, initiated by a Freeze ac-
tivity. The Freeze activity references a running sub-instance through its SubLink
and changes the status of the instance from Running to Freezing (thus ensuring
that the sub-instance will not execute anymore), at the same time the Freeze ac-
tivity is replaced by a FreezingSub activity, and the top-level status is changed
from TopRunning to SubTransition to indicate that we have started a multistep
reaction.
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Freeze[sub_link, sub_link_scope, var, var_scope, inst_id_sup]
|| ( SubLinks o ( SubLink[sub_link, sub_link_scope]

o (Link[inst_id_sub] ‘|‘ ‘[(* hole 0 *)]‘)
‘|‘ ‘[(* hole 1 *)]‘)

‘|‘ Instances
o ( Instance[sub_name, inst_id_sub, active_scopes_sup]

o (Running[inst_id_sub, active_scopes_sub, inst_id_top] ‘|‘
‘[(* hole 2 *)]‘) ‘|‘ ‘[(* hole 3 *)]‘))

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]

--[0 |-> 0, 1 |-> 1, 2 |-> 2, 3 |-> 3]--|>

FreezingSub[sub_link, sub_link_scope, var, var_scope, inst_id_sup]
|| ( SubLinks o ( SubLink[sub_link, sub_link_scope]

o (Link[inst_id_sub] ‘|‘ ‘[(* hole 0 *)]‘)
‘|‘ ‘[(* hole 1 *)]‘)

‘|‘ Instances
o ( Instance[sub_name, inst_id_sub, active_scopes_sup]

o (Freezing[inst_id_sub, active_scopes_sub, inst_id_top] ‘|‘
‘[(* hole 2 *)]‘) ‘|‘ ‘[(* hole 3 *)]‘))

|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| SubTransition[inst_id_top]

A freezing sub-instance cannot be frozen until all its active scopes and nested
sub-instances have been frozen. In the same manner an active scope can first
be frozen when all its nested scopes and sub-instances have been frozen. To this
end we need two additional rules which are described in [2]. When no more
sub-instances and scopes are connected to the “active scopes” link of the sub-
instance being frozen, meaning that all the sub-instances and scopes themselves
have been frozen, the sub-instance itself can be frozen and placed into the proper
variable denoted by var. To indicate that the multistep reaction is completed
we change the top-level status from SubTransition and back to TopRunning.

-//[inst_id_sub]
o ( FreezingSub[sub_link, sub_link_scope, var, var_scope, inst_id_sup]

|| Variable[var, var_scope] o ‘[(* hole 0 *)]‘
|| SubLink[sub_link, sub_link_scope] o (Link[inst_id_sub] ‘|‘ ‘[(* hole 1 *)]‘)
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| SubTransition[inst_id_top]
|| Instance[sub_name, inst_id_sub, active_scopes_sup]

o ( -//[active_scopes_sub]
o Freezing[inst_id_sub, active_scopes_sub, inst_id_top]

‘|‘ ‘[inst_id_sub (* hole 2 *)]‘))

--[0 |-> 2, 1 |-> 1]--|>

<->
|| Variable[var, var_scope]

o Process[sub_name][[inst_id_sub]] o ‘[inst_id_sub (* hole 0 *)]‘
|| SubLink[sub_link, sub_link_scope] o ‘[(* hole 1 *)]‘
|| Running[inst_id_sup, active_scopes_sup, inst_id_top]
|| TopRunning[inst_id_top]
|| <->
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5 Conclusion and Future Work

We have proposed the language HomeBPEL extending a WS-BPEL-like lan-
guage to allow processes as first-class values that can be stored in variables,
passed as messages, and activated as embedded sub-instances. We have formal-
ized HomeBPEL using binding bigraphical reactive systems implemented in the
BPL Tool developed at the IT University of Copenhagen. The formalization uti-
lizes the extensibility of bigraphs to extend and adapt a previous formalization
of WS-BPEL given in [1]. We exemplified the use of HomeBPEL by an example
of pervasive health care where treatment guidelines are dynamically deployed as
sub processes of personal workflow processes, may be delegated to patients, and
stay available for disconnected operation of mobile devices.

Future Work. In the CosmoBiz research project we are exploring the use of
HomeBPEL primitives for mobile disconnected operation of business applica-
tions as developed by Microsoft Development Center Copenhagen [17]. Another
interesting path for future research will be to examine different primitives for
management and manipulation of processes, such as sub-process reflection and
general manipulation, e.g. editing or joining of frozen sub-processes. This re-
lates to the work on Higher-Order (Petri) Nets and applications to workflow
studied in [13]. The addition of mobile embedded sub-instances also opens for a
study of type systems that can guarantee safe process mobility and manipula-
tion. We plan to examine the approaches done for Boxed Ambients [8] and for
the higher-order π-calculus [18] on the safe integration of higher-order mobility
and sessions. Hereto comes a detailed study of the expressiveness of HomeBPEL,
e.g. in relation to workflow patterns (e.g. [19]) and in relation to process calculi
for mobility such as Ambients, Seal and Homer. Finally, we would like to inves-
tigate the possibility of using HomeBPEL as a basis for a standardization of a
higher-order process extension of WS-BPEL.

Acknowledgements. We would like to thank the anonymous referees for their
numerous constructive comments.
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Abstract. Coordination languages are often used to describe open ended sys-
tems. This makes it challenging to develop tools for guaranteeing security of the
coordinated systems and correctness of their interaction. Successful approaches
to this problem have been based on type systems with dynamic checks; therefore,
the correctness properties cannot be statically enforced. By contrast, static anal-
ysis approaches based on Flow Logic usually guarantee properties statically. In
this paper we show how to combine these two approaches to obtain a static type
system for describing secure access to tuple spaces and safe process migration
for a dialect of the language K����.

1 Introduction

Coordination languages allow two or more components of an application to commu-
nicate, by reading�removing�adding data to a shared communication medium, in order
to accomplish shared goals. These languages are often being used to program appli-
cations in open ended systems, namely systems whose overall structure can change
dynamically in unpredictable ways because the entities involved can join and leave at
any time. This open nature exposes applications�systems to malicious accesses to their
data�resources. Also, when process mobility is permitted, one can easily conceive trojan
horses or viruses spawned at remote localities by malicious entities.

This scenario makes it challenging to develop tools for guaranteeing security of co-
ordinated components and correctness of their interaction. Discretionary access con-
trol mechanisms have been then designed based either on specifying the permitted
operations associated to the objects, or on specifying the capabilities that the di�er-
ent subjects have on the objects. The capability-based approach appears to be more
appropriate than the access-control one for open distributed systems (see e.g. [12]), be-
cause capabilities can be distributed to the subjects, rather than being attached to the
objects, and can be passed on. Moreover, their di�erent categories need not to be stati-
cally fixed.
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Di�erent techniques have also been devised to enforce access control (see e.g. [11]).
The most traditional one is based on a reference monitor that dynamically intercepts
each attempted access to a (critical) resource and determines whether the intended op-
erations should be allowed or denied. The main disadvantage of this approach is that
security properties can only be checked dynamically, thus lowering the performance of
systems. In order to limit these drawbacks, many static analysis techniques [8] have
been devised. These techniques originate from the work on compilers [1] where it is
imperative that all relevant behaviour of systems be determined statically. The result of
analysing a program is an analysis estimate that gives a global summary of the proper-
ties of interest. However, these approaches require a knowledge of the full system and
make the analysis more diÆcult.

To overcome all these limitations, hybrid approaches have been investigated that take
advantage of both static and dynamic checks. This is, e.g., the case of the capability-
based type systems for K���� (Kernel Language for Agents Interaction and Mobility,
[2]), an experimental language specifically designed to program distributed systems
made up of several mobile components. K���� has proved to be suitable for program-
ming a wide range of distributed applications with agents and code mobility. Its primi-
tives allow programmers to distribute�retrieve data and processes to�from the nodes of a
net and extend Linda’s notion of generative communication [4] through multiple shared
tuple spaces.

In the capability-based type systems for K���� (see e.g. [3,5]), capabilities are used to
specify the access control policies stating which operations (in, out, eval, ...) processes
are allowed to perform while running at a given node; type checking then determines
if processes comply with the policy of their hosting node. Access requests are mostly
checked statically, but some dynamic type check is used to deal with data communica-
tion and process migration. In the former case, the dynamic checks are needed because
no constraint is put on the kind of data inserted in tuple spaces; hence, withdrawal of
data must be type controlled to establish matching with the input pattern. In the latter
case, the type check has to be deferred to run-time because the target node of a process
migration, and, hence, its policy, could be statically unknown.

In this paper we show how to use ideas from the Flow Logic approach [10] to static
analysis to enhance K����’s type systems with means for giving a global account of
the behaviour of the system. Indeed, this seems necessary in order to deal with the
distributed nature of tuple spaces; furthermore, it allows us to develop a fully static
type system. On the other hand, the Flow Logic approach borrows from the type-based
approach in being compositional in axiomatising when analysis estimates are valid for
a given system (although the actual computation of the best, i.e. least, analysis estimate
requires global solution of a system of constraints [9]).

The rest of the paper is structured as follows. In Section 2 we introduce the syn-
tax and semantics of the dialect of K���� considered; we dispense with an operation
for creating new localities but instead use a primitive for accepting processes from the
environment. A Flow Logic for the language is developed in Section 3 and used as in-
spiration to design the fully static type system presented in Section 4. Our major results,
stated in Sections 3 and 4, prove that the two analysis techniques are in accordance. We
conclude in Section 5.
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2 A Dialect of K����

Syntax. The process calculus used here, like other members of the K���� family, con-
sists of three layers: nets, processes, and actions. Nets specify the overall structure of a
system, including where processes and tuple spaces are located. Processes are the actors
in this system and execute by performing actions. The syntax for all these components
is presented in the upper part of Figure 1, whereas in the lower part it is reported the
syntax of the capability-based types.

N���

N ::� l ::eÆ P process
� l :: �et� located tuple
� N1 � N2 net composition

P�	
�����
P ::� nil empty process

� ��P action prefixing
� P1 � P2 parallel composition
� �P replication

A
��	��

� ::� out(t)@� output
� in(T )@� input
� read(T )@� read
� eval(P : Æ)@� migration
� accept(Æ) admission

L	
�������
� ::� l locality constant

� self self
� u locality variable

T��������
T ::� � locality

� !u input variable
� �� T multiple fields
� !u�T multiple fields

T����
t ::� � element

� �� t multiple elements

E������� T����
et ::� l evaluated element

� l� et multiple evaluated elements

Capabilities
�o� i� r� e� a�

Policies
Æ : Loc � �self� 	 
(Capabilities)

EvaluatedPolicies
eÆ : Loc 	 
(Capabilities)

Fig. 1. Syntax of K����

A net consists of processes or tuples located at a locality l, or a composition of
two nets. Processes are built up from the special process nil, that does not perform
any action (and is often omitted), and from the basic actions by means of prefixing,
parallel composition and replication. hence, the actual building blocks of processes are
actions: out and in actions permit to produce�withdraw tuples to�from a possibly remote
tuple space; read is a non-destructive variant of in; eval models mobility by spawning
processes from a locality to another one, where it will be evaluated; accept allows
processes coming from the environment to get into the system. In fact, accept, first
introduced in [6], makes the language more suitable to model open systems.

As regards the tuples used for communication, we distinguish between tuples and
evaluated tuples. An evaluated tuple is a sequence of values, that in our case are ele-
ment of the set Loc of localities, and can be stored in tuple spaces. In contrast, tuples are
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match(l� l) � � match(!u� l) � [u �	 l]
match(T1� et1) � �1 match(T2� et2) � �2

match((T1�T2)� (et1� et2)) � �1 Æ �2

Fig. 2. Matching function

allowed to contain variables and self-references denoted by self. Tuples are used in pro-
cesses to compose data to be communicated. When inputting tuples from tuple spaces,
processes need to be able to select which tuple should be read or input. This filtering is
performed by means of templates, that are similar to tuples, but can also contain input
variables denoted as !u. In the latter case, u is bound in the continuation process and
will be used to retrieve information dynamically (u will be replaced with some locality
in the continuation process upon successful matching of the template against a tuple –
see function match in Figure 2). A variable that is not bound is called free.

Network nodes are equipped with a policy that expresses the discretionary access
control policy that should be enforced upon the system. As usual, a discretionary access
control policy states which subjects can access which objects using what capabilities.
Here we take subjects to be the localities where the action is executed, objects to be the
localities accessed (for example, placing a new evaluated tuple there, inputting or read-
ing an evaluated tuple, or spawning a new process), and capabilities to be indicators
of the access operation, i.e., elements of the set Capabilities representing the out-, in-,
read-, eval-, and accept-capability respectively. Policies are represented as capability
lists. Thus, a policy, placed at some locality ls, maps an object locality lo to the set of
capabilities with which the subject ls can access lo. Formally, we distinguish between
Policies and EvaluatedPolicies. They both are functions from localities to sets of ca-
pabilities and di�er only in whether they allow self to be used as a locality. Policies Æ
embedded in the syntax can use self, whereas (evaluated) policies eÆ placed at some
locality, written l ::eÆ � � �, may not.

Semantics. The semantics is an operational semantics in the form of a reduction se-
mantics. It makes use of the function match, defined in Figure 2, for performing the
variable bindings when reading or inputting. The matching proceeds by comparing a
template T componentwise with an evaluated tuple et. There are two possibilities for
the match to succeed. Either both the template and the tuple begin with the same local-
ity, or the template begins with an input variable. The result of a successful match is a
substitution1 that replaces the template’s input variables with the values that occurred
at corresponding positions in the evaluated tuple. In the sequel, we shall assume that
templates T are well-formed in the sense that they do not contain both u and !u, and do
not contain multiple occurrences of !u for the same locality variable u.

The reduction semantics operates on closed processes, i.e. processes without free
variables, but it still needs to take care of the occurrences of self. This is achieved by
two auxiliary functions that map tuples (without free locality variables) to evaluated

1 As usual, ‘�’ denotes the empty substitution and ‘Æ’ denotes composition of substitutions with
disjoint domains.
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N1 � N2 � N2 �N1 (N1 �N2) �N3 � N1 �(N2 �N3)

l ::eÆ P � l ::eÆ (P �nil) l ::eÆ (P1 � P2) � l ::eÆ P1 � l ::eÆ P2 l ::eÆ �P � l ::eÆ P � �P

Fig. 3. Structural Congruence

tuples, and policies to evaluated policies, respectively. They are both indexed with the
locality to be used instead of self and we shall allow to use the same syntax for both.

���l : (Loc � �self�) � Loc given by ���l �

�
l if � � self
l� if � � l� � Loc

���l : Policy � EvaluatedPolicy given by �Æ�l(l�) �
�
�Æ(�)� ���l � l��

The first function simply replaces any occurrence of self with the subscript, which is
supposed to denote the intended meaning of self. We trivially extend it from working on
single localities to working on sequences in a componentwise manner. We also trivially
extend it to work on templates (without free locality variables) by defining it to act as
the identity on input variables. The second function gives �Æ�l(l�) � Æ(l�) except when
l� � l in which case it gives �Æ�l(l) � Æ(l) � Æ(self) meaning that both the policies of l
and self are imposed.

Figure 4 shows the semantics for our calculus. In the reduction rules, we use L to
keep track of used localities and test if a given locality exists. The formulae of the form
RM[� � �] correspond to the checks that the (eventually superfluous) reference monitor
must perform and make the intentions of the security policy clear. As an example, for
the output action the formula RM[eÆ(l�) 	 o] is intended to ensure that the local policy,
eÆ, does indeed allow output to the locality l�. As usual, reductions are given composi-
tionally and up-to a (quite standard) structural congruence, defined in Figure 3.

The out action takes an evaluated tuple and outputs it at the tuple space identified
by �. Note that, as for all other actions, execution of the current subprocess is stuck if
the tuple is not fully evaluated, that is if it still contains variables. The in action takes
a template T and a locality �, and uses the judgement for match previously defined to
select a tuple from the tuple space at � by matching all tuples against T . As an e�ect
of the in action, the matched tuple is removed from the tuple space and the substitu-
tion � computed by match is applied to the rest of the process, thereby substituting
input variables in T by the values bound to them. The eval action sends its argument
Q for evaluation to the locality identified by �; the policy used is the evaluated version
of the one specified and our static analysis techniques will ensure that such a policy
conforms to the policy specified for the target node. The accept action admits into a
system new processes coming from the environment. In case of dynamic enforcement,
i.e. using reference monitors, this rule is as straightforward as the rest, since the be-
haviour of incoming processes is checked dynamically during their execution. In case
of static enforcement, as is the focus of the present paper, we need to ensure that a
new process, Q, is only admitted if it satisfies suÆciently strong guarantees that have
been used in validating the known part of the system. We use the formula RM[�acc] to
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���l � l�  L �t�l � et RM[eÆ(l�) � o]

L � l ::eÆ out(t)@��P �	 l ::eÆ P � l� :: �et�

���l � l� match(�T �l� et) � � RM[eÆ(l�) � i]

L � l ::eÆ in(T )@��P � l� :: �et� �	 l ::eÆ P�

���l � l� match(�T �l� et) � � RM[eÆ(l�) � r]

L � l ::eÆ read(T )@��P � l� :: �et� �	 l ::eÆ P� � l� :: �et�

���l � l�  L �Æ��l � eÆ� RM[eÆ(l�) � e]

L � l ::eÆ eval(Q : Æ�)@��P �	 l ::eÆ P � l� ::eÆ� Q

�Æ��l � eÆ� RM[eÆ(l) � a] RM[�acc]

L � l ::eÆ accept(Æ�)�P �	 l ::eÆ P � l ::eÆ� Q

L � N1 �	 N�
1

L � N1 �N2 �	 N�
1 �N2

N � N1 L � N1 �	 N2 N2 � N�

L � N �	 N�

Fig. 4. Operational Semantics of K����

express this. We will need to postpone the explanation of the formula �acc used until
after the two static analysis techniques have been developed. Intuitively, it will ensure
that the incoming process (viz., Q) respects the specified policy Æ� that, in turn, respects
the policy eÆ of the node where the action is performed (viz., l).

As we stated in the Introduction, there are two main approaches to enforce a given ac-
cess control policy on a system: one is to check it dynamically by means of a reference
monitor; the other is to develop a static analysis technique. Subsequently, we shall refer
to the reference monitor semantics by writing L � N 
�on N�. It is specified as in Fig-
ure 4 by letting RM[�] mean � and RM[�] mean true (and so can be removed). Similarly,
we shall refer to the semantics without reference monitors by writing L � N 
�off N�.
It is specified as in Figure 4 by letting RM[�] mean true (and so can be removed) and
RM[�] mean �.

Running Example. As a running example, throughout the paper we will consider a
scenario where a user wants to collect and elaborate some pieces of information, e.g.,
electronic books, scattered on network nodes. The user can exploit both remote oper-
ations and process migration, e.g., to deal with possible network failures. The K����

net modelling the scenario includes the user process (located at lU), a directory service
process (located at lD), and some data containers; for simplicity sake, we consider only
two data containers, located at lC1 and lC2. Moreover, in the example we assume that
some sort of primitive data, like e.g. strings, are available and can be used as fields of
data tuples. This is only for convenience, since all of the primitive data can be encoded
in terms of localities.

lU ::eÆU PU � lD ::eÆD PD � lC1 ::eÆC1 nil � lC2 ::eÆC2 nil
� lD :: �library� lC1 ��library� lC2 � lC1 :: �J�R�R� Tolkien�The Hobbit



106 R. De Nicola et al.

Each node hosts running processes that must obey a given access policy and�or contains
data tuples. The processes are defined as

PU � eval(P1 : Æ)@lD� � in(!source� !data)@lU � � elaborate data 	

P1 � �read(library� !u)@lD�eval(P2 : Æ)@u
P2 � read(J�R�R� Tolkien� !title)@self�out(self� title)@lU
PD � accept(Æa)

and use the policies

Æ � [lU �� �o�� lD �� �r�� lC1 �� �e� r�� lC2 �� �e� r�]
Æa � [lD �� �r�� lC1 �� �e� r�� lC2 �� �e� r�]

while the access policies of nodes are the following ones:

eÆU � [lU �� �i�� lD �� �e�]
eÆD � [lD �� �r� a�� lC1 �� �e�� lC2 �� �e�]
eÆC1 � [lC1 �� �r�� lU �� �o�]
eÆC2 � [lC2 �� �r�� lU �� �o�]

For completeness sake, we note that the example is intended to illustrate how the cal-
culus and, in later sections, the analysis and the type system work. It is not meant to
be a complete specification of a distributed system and therefore it does not include
modelling of, e.g., scheduling and similar concepts.

3 Flow Logic

We shall now develop an analysis that captures the behaviour of nets. The analysis
computes an over-approximation of the actual behaviour of a K���� net. We first present
the abstract domains underlying the analysis and next define the judgements for nets,
processes, actions and matchings. We conclude this section by analysing our running
example and presenting the theoretical properties of our approach.

Analysis Domains. We shall use the following analysis domains:

– T̂ � Loc � �(Loc�) is an abstract tuple space; it is an over-approximation of the
set of all tuples (of locality constants) that may at some point reside in the tuple
space of a given locality constant.

– �̂ � LocVar � �(Loc) is an abstract environment; it keeps a record of all locality
constants that a given locality variable might at some point be bound to. (This func-
tionality suÆces because the structural congruence does not contain 
-renaming of
bound variables.)

– � � AbstractPolicy � Loc � �(Capabilities) is an abstract policy somewhat like
the concrete policy Æ � Policy; however, it takes the union of possibilities rather
than the intersection because it is descriptive rather than prescriptive. Abstract poli-
cies form a lattice based on the natural ordering on partial functions, written �, i.e.
� � �� if and only if dom(�) � dom(��) and �(l) � ��(l), for every l � dom(�).
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(T̂ � 	� �̂) ���l�
P P : 
�� �� 
� ��l� eÆ � � 	(l) ��l� eÆ � � �� � �

(T̂ � 	� �̂) ��N l ::eÆ P : �

�et� � T̂ (l)

(T̂ � 	� �̂) ��N l :: �et� : �

(T̂ � 	� �̂) ��N N1 : � (T̂ � 	� �̂) ��N N2 : �

(T̂ � 	� �̂) ��N N1 �N2 : �

Fig. 5. Static Analysis of Nets

– � � Loc � AbstractPolicy is a record of policies for remotely evaluated processes.
–  � Loc � AbstractPolicy is a record of violations of policies. It records all the

actions that may have been performed during the evolution of the net and that were
not permitted by the local policy; the first argument is the subject locality where
the action was initiated, and the second argument is the object locality where the
action had e�ect, and the resulting set of capabilities are the o�ending ones. Hence
a program will only be acceptable if it can be analysed with  � �.

– � � �(Loc) is a set of localities of interest at a given point. In general, we shall
analyse processes at sets of localities (rather than a single locality) in order to ob-
tain a context insensitive analysis. A context sensitive analysis, i.e., a more precise
analysis, can be obtained by analysing processes at single localities.

Analysis of Nets. The judgement for the analysis of a net N has the form

(T̂ � �� �̂) ��N N : 

and is defined by the inference system of Figure 5. As is usual in Flow Logic, we
provide a componentwise definition.

To determine the potential violations of the policy for a located process, we use the
following auxiliary notation for “subtracting” two policies:

�1 �� �2 : Loc � AbstractPolicy

(�1 �� �2)(�s)(�o) �

�
�1(�o) � �2(�o) if �s � �

� otherwise

Analysis of Processes. The judgement for the analysis of a process P has the form

(T̂ � �� �̂) ���

P P : �� 

and is defined by the inference system of Figure 6. The intention is that when true, the
components T̂ , �, �̂, � and  correctly capture not only the behaviour of the process P
(when located at one of the localities � � �) but also the behaviour of all the processes
it may evolve into. Any violation encountered during analysis of the process is recorded
in , whereas � approximates the actual policy employed by the process. The definition
is fairly straightforward in that it inspects the components of a process in a structural
way making use of the judgement for actions to be introduced next.
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(T̂ � 	� �̂) ���P nil : 
� �
(T̂ � 	� �̂) ���P P1 : 
� � (T̂ � 	� �̂) ���P P2 : 
� �

(T̂ � 	� �̂) ���P P1 � P2 : 
� �

(T̂ � 	� �̂) ���P P : 
� �

(T̂ � 	� �̂) ���P �P : 
� �

(T̂ � 	� �̂) ���P P : 
� � (T̂ � 	� �̂) ���A � : 
� �

(T̂ � 	� �̂) ���P ��P : 
� �

Fig. 6. Static Analysis of Processes

�t��
�̂
� T̂ �����

�̂
� [����

�̂
	 �o� ] � 


(T̂ � 	� �̂) ���A out(t)@� : 
� �

�̂ ��
����

�̂

1 T : T̂ [����
�̂

] � Ŵ [����
�̂
	 �i� ] � 


(T̂ � 	� �̂) ���A in(T )@� : 
� �

�Æ�� � 
 [� 	 �a� ] � 


(T̂ � 	� �̂) ���A accept(Æ) : 
� �

�̂ ��
����

�̂

1 T : T̂ [����
�̂

] � Ŵ [����
�̂
	 �i� ] � 


(T̂ � 	� �̂) ���A read(T )@� : 
� �

(T̂ � 	� �̂) ��
����

�̂

P P :
��� �  ����
�̂

: �Æ�� � 	() 
������
�̂

�Æ�� � � [����
�̂
	 �e� ] � 


(T̂ � 	� �̂) ���A eval(P : Æ)@� : 
� �

Fig. 7. Static Analysis of Actions

Analysis of Actions. The judgement for the analysis of an action 
 has the form

(T̂ � �� �̂) ���A 
 : �� 

and is defined by the inference system of Figure 7.
To transform localities � � Loc � �self� � LocVar into the set of localities that they

denote, we make use of the auxiliary function

����
�̂

: Loc � �self� � LocVar � �(Loc)

����
�̂
�

���������
��� if � � Loc
� if � � self
�̂(�) if � � LocVar

This transformation is straightforward for locality constants, while it exploits the set
� of locality constants that self might stand for, in the case of self, and the abstract
environment �̂, in the case of locality variables. This operation is extended to tuples
t by taking the cartesian product of all components. For evaluated tuples et, we have
�et��

�̂
� �et�.
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To transform concrete policies into abstract policies, we make use of the auxiliary
function

�Æ�� : AbstractPolicy
�Æ��(�) �

�
�Æ(�)� � � ������ � � Loc � �self��

This operation is somewhat reminiscent of the way tuples were transformed into eval-
uated tuples. Since (concrete) policies are not defined on locality variables, it suÆces
using the empty abstract environment � in the conversion of localities. For evaluated
policies, we have �eÆ��(l) � eÆ(l).

To more easily express that the appropriate record of actions is captured by the policy
component �, we use the notation

[X � Y] : Loc � �(Capability)

[X � Y](�) �

�
Y if � � X
� otherwise

where � denotes the locality constant where the action might have e�ect and Y usually
is a singleton set. In the case of out, in, read and eval, we take X to be the set ����

�̂
; in

the case of accept, we take X to be the set � of current localities.
Since most of the rules need to take e�ect for any element in some set X of local-

ity constants, it is frequently necessary to write logical formulae using universal and
existential quantifiers. The resulting formulae tend to clutter the understanding of the
more subtle features of the Flow Logic specification and we have therefore decided to
introduce two notational shorthands so as to reduce the explicit use of quantifiers. The
notations are formally defined by:

� [X] �
�

x�X � (x) � �z � �x � X : z � � (x)�

��X �
�

x�X � (x) � �z � �x � X : z � � (x)�

It is worth pointing out that this permits to use them in inclusions and that they can be
expanded away using the following tautologies:

� [X] � Z �� �x � X:� (x) � Z

Z � ��X �� �x � X: Z � � (x)

As an example, in the rule for out(t)@� the premise �t��
�̂

� T̂ �����
�̂
 expresses that

all the values that t may evaluate to are included in all the tuple spaces that could be
associated with the locality �.

Analysis of Matching. The auxiliary judgement

�̂ ���

i T : Û � Ŵ

defined by the inference system of Figure 8 is used in the rules for in(T )@� and
read(T )@� in Figure 7 to ensure that the matching may succeed. The set of tuples
of interest are those of the tuple space of �, that is, T̂ [����

�̂
]. The judgement expresses

that matching should start at position i in the template T , Û contains the set of tuples
that we are matching against, Ŵ contains the tuples from Û that successfully match T
from position i and onwards, and �̂ records the appropriate bindings that need to be
performed. In the rules of Figure 7, �i(et) denotes the i’th component of the tuple et and
�i(V̂) is the componentwise extension of the operation to sets of tuples.
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�et  Û � �i(et)  ����
�̂
� �et� � i� � Ŵ

�̂ ���i � : Û � Ŵ

�et  Û � �et� � i� � Ŵ �i(Ŵ) � �̂(u)

�̂ ���i !u : Û � Ŵ

�et  Û � �i(et)  ����
�̂
� �et� � i� � V̂ �̂ ���i�1 T : V̂ � Ŵ

�̂ ���i �� T : Û � Ŵ

�et  Û � �et� � i� � V̂ �̂ ���i�1 T : V̂ � Ŵ �i(Ŵ) � �̂(u)

�̂ ���i !u�T : Û � Ŵ

Fig. 8. Static Analysis of Matching

Acceptable Programs. Before an external program can be accepted into a given net it
has to be analysed with respect to an access policy defined by the accepting process.
This ensures that the accepting process can control what access privileges it is willing
to pass onto programs that may be unknown a priori. For an accepting process, l ::eÆ

accept(Æ�)�P, willing to admit external programs, Q, that comply with policy Æ� this
check amounts to the following requirement on Q:

(T̂ � �� �̂) ���l�
P Q : �Æ���l���

The check guarantees that a process Q, when evaluated at locality l, will only perform
actions that do not violate the accepting policy, Æ�, as indicated by �Æ���l��� on the right
hand side of the colon. Here T̂ , � and �̂ should be considered “global constants” to be
used for an entire execution of a net; this will be clarified in Theorem 1 below. Thus we
may complete the semantics in Figure 4 by letting �acc � (T̂ � �� �̂) ���l�

P Q : �Æ���l���.

Analysis of the Running Example. For the running example, we have (T̂ � �� �̂) ��N N : �
for the following choice of T̂ , � and �̂:

T̂ : lU �	 ��lC1� ”The Hobbit”��
lD �	 ��library� lC1�� �library� lC2��

lC1 �	 ��J�R�R�Tolkien�The Hobbit��
lC2 �	 �

�̂ : u �	 �lC1� lC2�

title �	 �The Hobbit�
source �	 �lC1�

data �	 �The Hobbit�

	 : lU �	 �

lD �	 Æ

lC1 �	 Æ

lC2 �	 Æ

Properties of the Analysis. Consistency of the analysis is formalised as a subject-
reduction theorem.

Theorem 1 (Subject Reduction). If L � N 
�off N� and (T̂ � �� �̂) ��N N : �, then
(T̂ � �� �̂) ��N N� : �.

Proof. The proof is by induction on L � N 
�off N�, using a few auxiliary results:

– The analysis result is invariant under the structural congruence; that is, if N � N�

then (T̂ � �� �̂) ��N N :  if and only if (T̂ � �� �̂) ��N N� : .
– The analysis of matching is correct; that is, if match(�T �l� et) � �, l � �, et � Û,

and �̂ ���

1 T : Û � Ŵ , then et � Ŵ and �u � dom(�) : �(u) � �̂(u).
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Note that this result also holds with  in place of �, but it is more instructive to con-
sider executions where no security policy is violated; the result clearly does not hold if

�on is used (as any accepted process may violate the analysis and the security policy).
Overall correctness of the analysis is formalised as an adequacy result.

Theorem 2 (Adequacy). If L�N 
�off N� and (T̂ � �� �̂) ��N N : �, then L�N 
�on N�.

Proof. The proof is by induction on L � N 
�off N�, by inspecting Figures 5, 6, 7,
and 8.

More informally, we can show that if L � N 
�off N� and (T̂ � �� �̂) ��N N : , then all
o�ending actions performed are listed in . Finally, existence of best analysis estimates
is formalised as a Moore-family result:

Theorem 3 (Moore Family). For all nets N, the set � of analysis estimates
�(T̂ � �� �̂� ) � (T̂ � �� �̂) ��N N : � is a Moore Family; i.e., �Y � � : �Y � �.

Proof. The proof is by structural induction on N using that all constraints on (T̂ � �� �̂� )
occur in positive positions only.

Comparison with previous analyses of K����. The analysis presented in this paper is
an extension of a reworked version of the analysis specified in [6]. The main extension
being an added � component to give a record of the policies imposed by the local eval’s.
We have also reworked and rationalised the notation and introduced a number of auxil-
iary functions (most notably, �  and [ ]) to increase readability of the analysis. Finally,
we have added the � component (essentially allowing remotely evaluated processes to
be analysed only once rather than at each receiving locality as in [6]). Among other
things, this makes implementation easier.

4 A Static Type System

Typing approaches to K���� usually exploit dynamic checks; we now present a totally
static type system whose design has been inspired by the Flow Logic developed in the
previous section. We conclude this section by presenting the theoretical properties of
the type system and the analysis of our running example.

Types and Auxiliary Functions. We can get rid of dynamic checks by following the
philosophy underlying the Flow Logic approach. Indeed, it suÆces to associate to every
locality an upper bound of the tuples it can contain and a lower bound on its policy (like
functions T̂ and � did in Section 3); moreover, we should also provide an upper bound to
the set of localities that can instantiate every variable. Thus, types for localities are pairs
�� ; �, where � �fin Loc�. Intuitively, if �� ; � is the type of l, � is an upper bound
on the tuples that l can contain and � is a lower bound on l’s policy. Types for input
variables are, instead, just sets of localities; we can assign to u the type � �fin Loc,
meaning that � are the localities that u can assume. A typing environment � assigns
types to localities and variables.
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Given a typing environment �, we now define some functions that will be used in
the type system. First, we need to specify the values an identifier can assume. Thus,
����(l) � �l� and ����(u) � �(u); the definition of function ���� is extended to tuples
component-wise. In the type system, we shall frequently look at the possible tuples
a node can contain, at its policy or at the privileges it owns over the other nodes of
the net. These pieces of information are easily accessible when the node is specified
by a locality constant, thanks to the typing environment given. However, it can also
happen in the typing phase to have nodes specified by variables (take, e.g., process
in(!u)@l�eval(Q : Æ)@u�P, where Q must be typed at u). In this case, the information
must be extracted from � as follows.

The tuples that can appear at a node identified by a variable are obtained by consider-
ing the tuples that can appear at every node whose locality is associated to the variable.
However, from case to case, we need to know the tuples shared by all such nodes or all
the possible tuples; accordingly, we combine the tuples contained at the di�erent nodes
by intersection or union. The following functions perform these tasks:

��� �
�

l � ���� (�) �1(�(l)) �[�] �
	

l � ���� (�) �1(�(l))

To know the rights a policy grants over a node identified by a variable, we consider
the intersection of all the privileges over the localities that the variable can assume:

�����(�� �) �
�

l � ���� (�) �(l)

Similarly, the policy of a node identified by a variable is the greatest subset of access
rights present in the policy of every locality that the variable can assume:

����(�) �
�

l � ���� (�) �2(�(l))

where � denotes the greatest lower bound.
In the typing rules, we shall need to evaluate localities and policies to replace oc-

currences of self. In both cases, we extend the evaluation function for localities and
policies introduced when presenting the operational semantics to allow the subscript to
also be a variable (in the case in which the node where the evaluation takes place is
identified by a variable). This leads to notations ����� and �Æ��

�
; for the latter, we have

that �Æ��
�

(l) is Æ(l), if l � ����(�), and is Æ(l) � Æ(self), otherwise.
Finally, given a typing environment � and a template T used by a process running

at locality �, we need to check that � provides the right information on the variables
bound in T . Thus, we define the check of � with T at �, written check�(�� T ), as the
judgement:

�i��i(T ) � !u �

�i(�et � �[�] : �et� � �T � � � j � �1���T ��� � j(T ) � �� � � j(et) � ����(��)�) � �(u)

In particular, every variable bound in T will be associated to all the possible localities
that, at runtime, can be used to instantiate such a variable. The latters are obtained by
taking all the possible tuples (of the same length as T and that can match against it) that
can appear at � and consider their i-th projection, for every i such that the i-th field of T
is a variable.
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� � N1 � � N2

� � N1 � N2

et  �1(�(l))

� � l :: �et�

�2(�(l)) � eÆ �; eÆ �l P

� � l ::eÆ P

Fig. 9. Typing Nets

����� � ��� o  �����(
� ���) ����(�t��) � ������ �; 
 �� P

�; 
 �� out(t)@���P

����� � ��� e  �����(
� ���) �Æ��
�
� 
� � ����(���) �; 
� ���� Q �; 
 �� P

�; 
 �� eval(Q : Æ)@���P

����� � ��� i  �����(
� ���) check��� (�� �T ��) �; 
 �� P

�; 
 �� in(T )@���P

����� � ��� r  �����(
� ���) check��� (�� �T ��) �; 
 �� P

�; 
 �� read(T )@���P

a  �����(
� �) �Æ��
�
� 
 �; 
 �� P

�; 
 �� accept(Æ)�P

�; 
 �� P1 �; 
 �� P2

�; 
 �� P1 � P2

�; 
 �� P

�; 
 �� �P

Fig. 10. Typing Processes

Typing Rules. We are now ready to present the typing system. The typing rules for nets
are in Figure 9; they define judgements of the form �  N that should be read as: “net
N respects the constraints specified on its nodes by �”. The rules are simple: to type
a compound net we should type the components isolately; to type a located tuple, we
must ensure that the tuple is allowed by �; to type a located process, we must ensure
that the policy eÆ conforms to the policy specified by � and that the process respects eÆ.

The typing rules for processes are in Figure 10 and define judgements of the form
�; �  � P. Intuitively, such a judgement is needed to type under � a process P run-
ning at � (where, by construction of the typing system, � cannot be self) associated
with policy �. The key rules are for action prefixes. In all cases, it is verified that
the policy associated to the process provides a proper access right; moreover, to this
aim, if the action can take place remotely, a preliminary evaluation of the locality
target of the action is needed. For action out, the main thing to check is that the tu-
ples that the action can produce can appear at every possible target locality (thus, we
need here the intersection of all the possible tuple spaces, as calculated by ��); of
course, we also have to check that the continuation is well-typed. For action eval,
apart from checking that the continuation is well-typed, we have to check that the
specified policy conforms to the policy associated to the target and, in this case, that
the spawned process can run under the specified policy at the target locality. For ac-
tions in and read, we have to type the continuation in a typing environment obtained
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by extending the current environment with the possible values that variables bound in
the template can assume. Finally, for action accept, we only need to verify that the
specified policy conforms to the policy of the hosting node and that the continuation is
well-typed.

We can now complete the semantics in Figure 4 by using as � in the rule for the
accept action the judgement �; ��  l Q, where � is the typing environment used to type
the net containing l ::eÆ accept(Æ�)�P and �� � �Æ��l.

Soundness Results. A net N is typeable if there exists a � such that �  N. We now
prove that typeable nets are exactly the ones that can be accepted by the Flow Logic
without errors; as a corollary of Theorems 1 and 2, this result trivially entails that also
the type system enjoys subject reduction and adequacy.

Theorem 4. N is typeable if and only if (T̂ � �� �̂) ��N N : �.

Proof. (If) We first sketch how to prove that acceptable nets are typeable. To this aim,
given a triple (T̂ � �� �̂) and a net N such that (T̂ � �� �̂) ��N N : �, we define the typing
environment � as follows:

�(u) � �̂(u) for every u � LocVar
�(l) � �T̂ (l); �l for every l � Loc� where �l �



l::eÆP in N eÆ

where “l ::eÆP in N” means that N � l ::eÆ P � N�, for some N�. Then, the proof works
by induction on the length of the inference for (T̂ � �� �̂) ��N N : �, by exploiting two
lemmata:

1. If (T̂ � �� �̂) ���

P P : �1�� then �; �2  � P, whenever � � ����(�) and �1 � �2.
2. If match(�T �l� et) � �, l � �, et � Û and �̂ ���

1 T : Û � Ŵ, then et � Ŵ and � � �̂.

(Only if) We now sketch how to prove that typeable nets are acceptale. To this aim,
given a typing environment� and a net N such that �  N, we define the triple (T̂ � �� �̂)
as follows:

�̂(u) � �(u) for every u � LocVar
T̂ (l) � �1(�(l)) for every l � Loc

To define �, we first need to remove every occurrence of self occurring as target of
actions in N as follows (we only give the non-homomorphic cases):

�l ::eÆ P� � l ::eÆ �P�l �
�P�� � �
����P��

�out(t)@���� � out(t)@����� �eval(Q : Æ)@���� � eval(�Q������ : Æ)@�����

�in(T )@���� � in(T )@����� �read(T )@���� � read(T )@�����

Then, for every l � Loc, we let

�(l) �
�

eval(P:Æ)@� in �N� : l � ���� (�)

�Æ��l

The proof then works by induction on the length of the inference for �  N, by exploit-
ing two auxiliary lemmata:
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1. If �; �  � P and � � ����(�), then (T̂ � �� �̂) ���

P P : ��� and, for every
eval(Q : Æ)@�� in P, it holds that �Æ��l � �2(�(l)), for every l � ����(��).

2. Let l � � and assume that, for every et � Û � Ŵ, it holds that match(�T �l� et) � � �

�̂; then �̂ ���

1 T : Û � Ŵ.

Analysis of the Running Example. Thanks to the previous theorem, we know that the
running example can be typed; by looking at the proof of Theorem 4 (that shows how
to define a proper � out of T̂ , �̂ and the typed net N), we have that the following typing
environment makes the running example typeable:

�(lK) � �T̂ (lK); eÆK �(x) � �̂(x)

for every K � �U�D�C1�C2� and x � �u� title� source� data�.

Final Remarks. Notice that �2(�(l)) and �(l) are both used to statically analyze mi-
grations at l of a process labeled with a policy Æ, but are defined and used in di�erent
ways. The former is a lower bound on the policy of the receiving node and, hence, Æ
(properly evaluated) must be lower than �2(�(l)). The latter is an upper bound to the
policy specified for the migrating process and, hence, �(l) must be greater than Æ (prop-
erly evaluated). For this reason, �2(�(l)) is defined as the greatest lower bound of the
policies specified for nodes with address l; instead, �(l) is defined as the lowest upper
bound of the policies specified for migrations at l. In this way, if we have two migra-
tions at l (say, with policies Æ1 and Æ2) and the nodes l ::eÆ1 � � � and l ::eÆ2 � � �, the type
system checks that Æi � eÆ1 � eÆ2 � �2(�(l)), whereas the Flow Logic checks that
�(l) � Æ1 ! Æ2 � eÆ j. These two checks are equivalent, in that they are both equivalent
to Æi � eÆ j.

5 Conclusions and Further Work

We have considered a dialect of K����, an experimental language designed for modeling
and programming distributed systems with mobile components, and have presented an
operational semantics for it that, by taking advantage of a reference monitor, permits
controlling the kind of operations processes can perform at the di�erent localities. We
have then considered an alternative approach to access control based on Flow Logic that
permits statically checking absence of access violations. Finally, we have reconsidered
one of the type systems for access control previously developed that contained some
dynamic checks, and, by exploiting concepts already used in the Flow Logic section,
we have designed a fully static type system. To the best of our knowledge, this is the
first completely static type system for controlling accesses in the context of a tuple
space-based coordination language. We have also shown that both static approaches are
sound with respect to the dynamic one based on reference monitor and provide the same
analysis results.

We see this work just as an initial step towards understanding the relationships be-
tween static and dynamic approaches to access control and studying the relative merit
of type systems and Flow Logic specifications (expanding on [7]). In future work, we
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want to investigate the impact of extending the analysis to a language with a primi-
tive for dynamically creating new nodes with assigned policies (this is usually called
newloc in the K���� setting). Indeed, the semantics treatment of such a primitive would
require the policies of nodes to change dynamically. Clearly, making policies on nodes
much more dynamic, would entail a number of di�erences in the static analysis, that
was never conceived to cater for this possibility. We also want to study the relationships
between the global approach of type systems and Flow Logic and the more local one
of the more traditional type systems that may contain dynamic components. Finally, we
find it challenging to understand the relative expressive power of reference monitors
and the static analysis approaches also in light of the considerations of [11], where it
is claimed that the two approaches can capture di�erent properties and are somehow
incomparable. It would be interesting to understand what assumptions on the models
are necessary to guarantee relative soundness.

Acknowledgements. We thank the anonymous referees for their useful comments.
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Abstract. We present a novel approach for the sound orchestration of
services. It is based on Orcharts and Typecharts: a service orchestra-
tion language and an associated behavioural typing language. Sessions
play a pivotal role in this approach. Orcharts (orchestration charts) de-
fine session based services and Typecharts provide for session types with
complex interaction patterns that generalise the request/response inter-
action paradigm. We provide an algorithm for deciding behavioural well
typedeness. We claim that well typed service configurations have the
soudness property, i.e., any session that can be initiated in a well typed
configuration has its requestor and provider behave in mutual confor-
mance and potentially reach service completion.

1 Introduction

Behavioural type systems have been defined in recent years with the aim to be
able to check the compatibility of communicating components, not only regard-
ing data exchanged, but also regarding the matching of their respective behaviour
[14,8,13]. Recently, the focus moved from components to service-oriented archi-
tectures, and several calculi for service orchestration have been defined. Of them,
Orc [7] uses few simple orchestration mechanisms but shows a very interesting
expressive power. In this language, an invoked service provides a simple reply
which can be piped to trigger other invocations. Thus, interface compatibility
looses its interest because invocations which are not replied or replies which are
not listened at are simply lost, with no possible identification of error states.

Although Orc is able to encode most common workflow patterns [5], the sim-
plicity of the language is felt unsatisfactory for dealing with complex services in
which different invocations of a service can trigger complex interaction patterns
among several services. Often an interaction pattern constitute a session which
clearly identifies which are the message exchanges belonging to the session. Ses-
sion types, that is, behavioural types associated to sessions, have been studied
for protocols [6] and software components [15]. Service orchestration calculi in-
cluding the notion of session have also been defined [3,9].

A different approach can be chosen for relating messages of a complex interac-
tion pattern: message exchanges that are logically related among them are iden-
tified as sharing the same correlation data [10], as it occurs, for example, when a
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unique id related to a client is passed in any message referring to that client. In
both session-based and correlation based approaches, defining behavioural types
has often proved difficult: while sessions make simpler, with respect to correla-
tion approaches, to identify the interaction patterns that are to be typed, session
based calculi with higher order session communication, defined in a π-calculus
style, make typing non-trivial and not able to support automatic verification [4].

The aim of this paper is to investigate how we can maintain simple session
typing, and therefore automatic verification, by defining an ad hoc session based
service language which allows for an easy verification of the compatibility of in-
teractions between services. The designed language, orcharts, expressing graph-
ically data and control flows, allows for an easy traceabilty of sessions. This
allows a finite-state behaviour type to be associated to a session, so that stan-
dard verification tools can be used to check compatibility between the client
and the service. Indeed, our approach has been aimed at a language power-
ful enough to express common orchestration examples, but also simple enough
to meet the typability requirement. The typing algorithm is briefly presented
and the properties that can be verified over well typed services are
discussed.

2 Informal Introduction to Typecharts and Orcharts

2.1 Sessions

A service oriented architecture is constituted by a collection of interacting ser-
vices or sites (actually, in the following, we tend to use the word site to indicate
a named entity that provides a service, and the word service when we refer to its
behavioural aspects). Each site provides a service which may use services pro-
vided by other sites. Interactions between services occur by message exchange
and in the context of shared sessions. Before invoking a service, the requestor
creates a (unique) session name and attaches it to the name of the invoked service
(example - the creation of a new session s bound to service ServiceFoo is written
s@ServiceFoo). The session name is then used by the requestor in all subsequent
interactions with the server pertaining to the same session (at a given point in
time, a requestor may have many ongoing sessions with the same service). For
instance, s.m() denotes the sending of message m() in the context of session s and
hence s.m() is sent to ServiceFoo since s is bound to ServiceFoo. On the server
side, at the reception of a first invocation message pertaining to a new session, a
new session is started and a dialogue is initiated with the requestor in the con-
text of this session. This dialogue takes place in both directions and on two new
FIFO queues allocated for this purpose. In the present version of our approach
we consider that different sessions that are being concurrently executed on the
same server do not share information on that server. Sessions that are created
on the server side (in order to provide services to requestors) are referred to as
root sessions (root sessions are denoted by ρ).
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2.2 Defining Services

The template for service definition is given in figure 1, where one can distinguish
four main parts: Service name, Provides, Requires, and the defining Orchart. In
figure 2 we present two definitions of services, namely, QuickNews and Collect-
News, which revisit examples of News Services presented in [7]. Both services
require the services of two News Agencies, CNN and BBC, and provide each
a specific type of news service. The QuickNews service provides only one news
item based on the first reply from the news agencies. The CollectNews service
provides the news items collected from the two news agencies. The constructs
used in QuickNews and CollectNews are commented in more detail section 2.4.
Note that both required services, CNN and BBC, have the same required type-
chart, namely, NewsAgency-T. As can be seen in figure 3(a), NewsAgency-T is a
typechart with a single request/response interaction scheme.

Service
Provides
Requires

Required Services and their 
Typecharts

Name of provided service

Typechart of provided service

...

Orchart of provided service

...

...

Fig. 1. Template of a site service definition

getNews(date : date-t)

b.getPiece(date)    , c.getPiece(date)

b.newsPiece( p : newP-t )   | c.newsPiece( p : newsP-t )

News(p)

b, c, 

b@BBC, c@CNN, 

Service QuickNews
Provides QuickNews-T
Requires CNN:NewsAgency-T

BBC:NewsAgency-T

Service CollectNews
Provides CollectNews-T
Requires CNN:NewsAgency-T

BBC:NewsAgency-T

getNews(date : date-t)

b.getPiece(date)    , c.getPiece(date)

b.newsPiece(p1: newsP-t)    &   c.newsPiece(p2: newsP-t)

News(p1, p2)

b, c, 

b@BBC, c@CNN, 

Fig. 2. The two versions of News service, with comments
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2.3 Typecharts

Typecharts are a special kind of deterministic finite labelled transition systems
where labels represent messages with parameter types. Parameter types can be
data types (characterised by the -t suffix), or names of typecharts (characterised
by the -T suffix). The transition system of a typechart has an initial state and
one or more final states. States of a typechart are also partitioned in two sub-
sets: sending states and receiving states (initial and final states can only be
receiving states). Note that the typechart declared for a required service (e.g.
CNN:NewsAgency-T) can be different from the one declared as provided in the
service definition of this required service. For instance, 3(b) represents a possi-
ble provided typechart for the CNN and BBC services. This typechart allows
for repeatable request/response interactions with the requestor. QuickNews and
CollectNews do not exploit the possibility of reissuing a request in the same
session but still can soundly interact with the CNN and BBC services. The re-
lations between provided and required typecharts will be discussed in section
4.1. Note: we adopt a convention for typechart represntation which is to always
adopt server’s view. Hence, e.g, a sending state of a typechart has to be matched
by a sending state in the server and a receiving state in the invoker.

getPiece(date-t)

newsPiece(newsP-t)

a) Typechart NewsAgency-T

getPiece(date-t) newsPiece(newsP-t)

b) Typechart NewsAgencyBis-T

Marks state as initial Receiving state Sending state Final state

Fig. 3. Two typecharts of News Agency services

2.4 Orcharts

An Orchart is a finite directed acyclic graph where nodes can be of three types:
input nodes, output nodes and instantiation nodes, and where edges can be of
two types: data carrying edges and control edges.

Output Nodes. Figure 4 describes the input and output nodes. An output
node may contain one or more message emissions. Messages may carry values
that can be either simple data values or service names. Each message emission
refers also to its emission context, i.e., a session name. Informally, one may think
of output nodes as immediately executable: when the node receives control each
of its messages is inserted in the FIFO queue corresponding to its named session.

Input Nodes. have an Internal Structure: They Are Subduivided in capsules
(symbol | is used as a capsule separator). A capsule represents a possible branch-
ing from the output node. A capsule may contain one or more message receptions.
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s.m1(x )   , r.m2(y)s.m1(x : x-t)   &   r.m2(y : y-t)        s.m(z : z-t)               

capsules 

Capsule containing 
one reception: message
m in context of session s 

Capsule containing two receptions:
message m1 in context of session s and 

message m2 in context  of session r. 
Capsule is firable when both messages 

are received

Edges continuing 
flows from left capsule

Edges continuing 
flows from right capsule

Edge passing 
control to the node

Edges continuing 
flow from output node

Output node with two 
emissions: messqge m1 in context 

of session s and message m2 in context of 
session r. When output node receives 

control, it can immediately fire and thus 
both messages are sent

Edge passing 
control to node

a) Structure of an Input Node b) Stucture of an Output Node

Fig. 4. Structure of Input and Output Nodes

In capsules with multiple receptions, all messages should pertain to different
sessions. This constraint can be syntactically enforced. Capsules with multiple
receptions are in fact a shorthand that can be rewritten in single message cap-
sules. For lack of space, the details of this rewriting will not be addressed in this
paper and in the sequel we conisder capsules to contain a single message. As an
informal interpretation one may think of an input node to behave like a guarded
command. When an input node receives control, its capsules can consume mes-
sages that are awaiting in the FIFO queues. When one message in a capsule is
consumed this capsule is fired and the flow continues on all edges having their
sources at this capsule. When a capsule is fired, all other capsules of the same
input node (and their continuation flows) are discarded.

Data and Control Flow Edges. Nodes of an orchart can be joined with either
control edges (represented by dotted arrows) or data flow edges (represented by
solid line edges). Data flow edges in fact convey both control and data flow. Data
flow edges are the means for binding variables with values: a use occurence of
a variable can be bound with a binding occurence of this variable only if there
is a directed path made of data flow edges starting at the binding occurence
and ending at the use occurence. Moreover, variables are write-once, hence, in
the semantics, we will use the replacement of variables by their values. Flow
edges (control or data) can carry labels. These labels indicate the set of sessions
that are continued on the flow and/or the set of sessions created on the flow.
Examples of labelled flow edges are provided in the following sections.

2.5 Revisiting the QuickNews and CollectNews Examples

In figure 5 we describe the different constructs of the orcharts used in service
definitions of QuickNews and CollectNews introduced in section 2.2. For better
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getNews(date)

b.getPiece(date), c.getPiece(date)

b.newsItem(p)  |  c.newsItem(p)

News(p)

b, c, 

b@BBC, c@CNN, 

Service QuickNews
Provides QuickNews-T
Requires CNN:NewsAgency-T

BBC:NewsAgency-T

Service CollectNews
Provides CollectNews-T
Requires CNN:NewsAgency-T

BBC:NewsAgency-T

getNews(date)

b.getPiece(date), c.getPiece(date)

b.newsItem(p1)  & c.newsItem(p2)

News(p1, p2)

b, c, 

b@BBC, c@CNN, 

Input node with one capsule  containing one Input message

Message getNews initiates a 
root session

Continuation flow: 
sessions b and c 

are created for this flow; 
the root session,  is continued 

on this flow

Input node with one 
capsule containing the 
conjunction of two input 

messages  

Output node with two 
output messages, one 

sent is to BBC (in context of 
session b) and one to CNN 

(in context of session c)

Input node with 
two capsules containing  one 

input message each. Capusles 
are exclusive: only the first 

incoming message is 
consumed  

Two exclusive flows – they are 
exclusive because they are attached 

to two different capsules of the 
same input node. 

Flow continuing the capsule.
Session is continued. Sessions 

b and c are not continued
Output node continuing one of the two

exclusive flows. Hence, the argument of the output 
message will be bound through one of these two flows.

Fig. 5. The two versions of News service with comments

readability, we chose not to represent the types of the used data. The comments
in the picture follow the flow of the behaviour of the orcharts, explaining the
meaning of the various types of nodes and of the flow of session names and vari-
ables along the edges. Before being used for an interaction, session names must
be bound to a service name. Variables are given a value in an input message
(occuring in a capsule), which value is then used in ouput nodes. See for in-
stance how variable date acquires a value in the getNews message which is used
downstream in the getPiece output message.

2.6 Definition and Instantiation of Named Orcharts

In order to provide for recursion, orcharts use the classical approach of naming and
instantiating behaviours. In figure 6 we give the definition of a GetBestPrice service
which illustrates the use of a named orchart instantiation. Briefly, the GetBest-
Price service returns, for a given product item requested by the user, the name of
the shop that sells this item at the best price. The GetBestPrice service requires
the services of ShopsFinder which provides all shops selling a given item; and of
MinEval which provides the minimum of a set of values. The behaviour of this ser-
vice is as follows. A (root) service session is started with the input of getBestPrice
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message, then a session named sf (with ShopsFinder) is created then used to invoke
ShopsFinder. Then a session m bound to MinEval is created and the HARVEST or-
chart is instantiated with session parameters sf, m and ρ and value item. HARVEST
collects shops proposals coming from ShopsFinder and, for each response, invokes
the shop to get the price of the item and then sends the price to MinEval. When
HARVEST terminates, i.e., when its orchart reaches the exit node (exit nodes are
described in the sequel), a flow is continued in which MinEval is invoked to get
the shop having the best price. Finally, this information is returned to the user. It
is worth noting in this example how orcharts are named and instantiated. Named
Orcharts are defined within dotted rounded boxes and instantiated using solid line
rounded boxes. The name of the orchart is placed inside the box and is followed by
the session parameters (in square brackets) and value parameters (in parenthesis).
The definition of a named orchart starts with an initial input node and may have
exit nodes (zero or more) represented with small circles placed at the boundary of
the definition box (on the dotted line). At exit nodes, the sessions that are contin-
ued are given in square brackets whereas the values that are returned are given in
parenthesis (the HARVEST example only shows continued sessions). A syntactical
constraint is enforced that the sessions continued at an exit node must be a subset
of the session parameters. For instance, HARVEST has session parameters [sf, m,
ρ] but only [m, ρ] are continued from the exit node. In order to simplify the pre-
sentation, but without a loss of generality, we consider in the present paper that
named orcharts may have at most one exit node. To this exit node correspond
an exit point in the instantiation diagram of the named orchart (exit points are
also represented with a small circle). The dynamic semantics of instantiation is
defined through unfolding. When control reaches an instantiation, the instantia-
tion node is replaced by the definition of the named orchart. In this replacement,

Service GetBestPrice   
Provides   GetBestPrice-T
Requires ShopsFinder : ShopsFinder-T, MinEval : MyMinEval-T

sf.oneShop(sh:Shop-T)    |   sf.end()

s.getPrice(item)

HARVEST
[sf, m, ](item)

s.thePrice(x)

m.sample(sh,x)

sf, m, 

s@sh, m, 

s, m, 

m, 
m, 

m, 

HARVEST
[sf, m, ](item)

[m, 

[m, 

getBestPrice(item)

sf.getShops(item)

HARVEST
[sf, m, ](item)

m.getMin()

m.theMin(theShop:Shop-T, theMin)  | m.noSamples()

noShopsFound()theBestPrice(theShop, theMin)

m@MinEval, sf, 

sf@ShopsFinder, 

m, 
[m, 

Fig. 6. The Get Best Price Service Definition
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the edges in the definition orchart whose targets are at the exit node have their
target redirected to the successor node of the exit point in the instantiation.

2.7 Parallel Flows

The orchart defining HARVEST involves the use of parallel flows. For instance,
when message oneShop carrying a shop name sh is consumed, behaviour con-
tinues in two flows, the left flow is (re−)instantiation of HARVEST and the
right flow proceeds with invoking the shop sh and storing the obtained price
in MinEval. Note how sessions m and ρ are present in these two parallel flows
whereas session sf is only present in the left flow. Note the use, in the definition
of this named orchart, of flow control edges. The parallel flows feature allows for
the creation of an unbounded number of sessions. The fact that any definition of
a named orchart starts with an input node enforces that the creation of sessions
and flows is always guarded.

3 Formal Syntax and Semantics

In this section we give a formal definition of the Orchart language. To remain
within page limits, we simplify the syntax w.r.t. the one used in the examples, e.g.
by considering only one message emitted by an output node, and no conjunction
of messages inside a capsule. Indeed, both these constructs can be defined as
shorthands for orcharts employing the basic constructs considered in this section.

3.1 Syntax of Orchestration Charts (Orcharts)

The syntax of the language assumes the following:
r, r′, s, s′, . . . range over session names, ρ, σ, σ′ . . . over session values
w, w′ . . . over service names, a, a′ . . . over orchart names
m, m′ . . . over message names, G, G′ . . . over orcharts
n, n′ . . . over nodes, v, v′ . . . over values of any type
x, x′, y, y′, z, z′ . . . over (any type of) variables
An orchart can be defined as a sestuple (N, C, E, LN , LE , Exp) where:
– N is a set of nodes: N = IN � ON � InstN , where IN is the set of input

nodes, ON the set of output nodes, InstN the set of instantiation nodes;
– IN is defined as a partition of a set of capsules C: ∀n∈IN, n⊆C and ∀n, n′ ∈

IN, n �= n′ =⇒ n ∩ n′ = ∅.
– E is a set of edges connecting nodes: E ⊆ (C × N ∪ (ON ∪ InstN) × N),

that is, edges starting an input node are actually associated to a capsule.
Moreover, E is partitioned in DE, the set of data carrying edges, and CE,
the set of control carrying edges: E = DE � CE;

– LN is a labelling function that associates to each node a set of expressions,
whose number and syntax is depending on the type of node: LN : N → 2Exp;
in particular, this function is defined on input nodes by means of a function
LC that labels capsules: LC : C → Exp ;
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– LE is a labelling function that associates to each edge two sets of expressions,
namely the set of passed data (only for edges in DE) and the set of passed
sessions: LE : DE → 2Exp × 2Exp � CE → 2Exp;

– Exp is a domain of expression that are used to label nodes and edges: the
syntax of the expressions and their association to the various kinds of nodes
and edges is reported below.

Exp ::= CExp | OExp | SExp | DExp | SSExp CExp ::= s.m() | s.m(Xlist)
Xlist ::= x | Xlist,Xlist OExp ::= s.m() | s.m(DExp)
SExp ::= σ | s | SExp, SExp DExp ::= x | w | DExp,DExp
SSExp ::= σ | s | s@w | s@x | SSExp, SSExp

In this section, for brevity, we ignore the syntax of types of expressions. Indeed,
as shown in session 2, it is sufficient to consider typing expressions with the
standard notation x : T . Expressions are used to label edges and nodes:

– each capsule in an Input node is labelled with an expression in CExp;
– each Ouput node is labelled with an expression in OExp;
– each Control edge is labelled with an expression in SSExp;
– each Data edge is labelled with an expression in SSExp;
– each Instantiation node is labelled with an orchart name, followed by an

expression in SExp and an expression in DExp (respectively, actual session
and data parameters);

The following use the additional notations:
e, e′, . . . range over edges c, c′ . . . range over capsules

Given an orchart G = (N, C, E, LN , LE , Exp), with N = IN � ON � InstN ,
we also define:
Init(G) = {n ∈ N | � ∃e ∈ E, � ∃n′ ∈ N : e = (n′, n)}
Given n ∈ N : OutE(n) = {e ∈ E|∃n′ ∈ N : e = (n, n′)};
given c ∈ C : OutE(c) = {e ∈ E|∃n′ ∈ N : e = (c, n′)}
In particular, if n ∈ InstN, | OutE(n) |≤ 1 : this means that only one edge can
go from the exit point of an instantiation node.

A Named orchart DG is a quadruple: (a, FParms, FRParms, G) where a is a
name, FParms ⊆ 2SExp × 2DExp, FRParms ⊆ 2SExp × 2DExp are respectively
a set of formal parameters and a set of formal return parameters, G is an orchart
having a single initial node n (Init(G) = {n}), and a set of Nodes augmented
with an Exit Node r. That is, for such G : N = IN � ON � InstN � {r},
LN (r) = FRParms; OutE(r) = ∅ .

3.2 Static Constraints

Session names that label an edge departing from a node should be a subset of
the union of the session names that label its incoming edges.

A node can refer to a session (for input/ouput messages) only if it is in the
union of the session names that label its incoming edges.
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As usual, actual parameters of an instantiation node should correspond in
number, position and type to the formal parameters of the called definition. To
be more precise, session actual parameters should correspond to session formal
parameters, while data actual parameters should have the same type of the
corresponding actual parameter variables. The same should hold for the return
parameters. Session names used as actual parameters in an instantiation node
should be a subset of the union of the session names that label its incoming edges.
The union of the session names labelling the outcoming edges of an instantiation
node should be a subset of the session names used as actual return parameters.
The session names used as actual return parameters should be a subset of the
session names used as actual parameters (this enforces that sessions created
inside a named orchart are forgotten before reaching the exit node).

Any variable declaration in a capsule binds all use occurences of the same
variable that can be reached from the capsule using a path made of contiguous
data flow edges and not containing other binding occurence of the same variable
(i.e., the closest occurence is the binding occurence). In well defined orcharts
all use occurences must be bound. Furthermore, for a given use occurence of
a variable there may be more than one binding occurence. A static rule (not
detailed here) enforces that only one path from a binding to a bound occurence
can be executed, i.e., if a path leading to the use occurence is executed then all
the others have been discarded, and there is always one such path (there is no
execution that discards all the paths linking all binding occurences with a use
occurence). The same rules hold for binding sessions, with the particularity that
binding occurences are session creations (all other occurences are use occurences)
and the binding paths are made of any type of edges (control or data).

3.3 Informal Semantics of Orcharts and of Configurations of
Services

We recall that a service is constituted by:

– a service name, w,
– a provided typechart,
– a set of required service names with their typecharts,
– an orchart, Gw, with a single initial node, which is an input node. This

orchart can contain instantiation nodes that refer to named orcharts
– a set of definitions of named orcharts which are referred by the ”main”

orchart and which can refer each other, also in a recursive fashion.

Note: In the sequel, we consider that in definition orcharts, session name ρ is
explicitely added as a prefix to the appropriate input and output messages, i.e,
those with no session name prefix. Hence, occurence m(v) becomes ρ.m(v).

The dynamic semantics of orcharts is defined based on graph transformations
along with the execution of input and output interactions. Depending on the
type of the executed interaction, an orchart undergoes a series of transformation
steps. These are explicited hereafter.
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Message Output. This is the case where the orchart has one output node in
its set of initial nodes:
– the message contained in the output node is deposited in the appropriate

queue,
– the output node is removed, but its set of departing edges are kept (the edges

remain pending inward, i.e, with their sources unattached),
– for each session creation label (s@w) occurring on a pending edge:

• a unique session id, σ, is generated,
• an instance of the requested service (σ, Gw) is spawned and inserted at

the server site hence w(... | ...) becomes w(... | (σ, Gw) | ...) ,
• two empty FIFO queues (one for each direction) are added thus linking

the present orchart and the spawned service instance,
• all use occurences of s in the orchart that are bound to (s@w) are sub-

stituted with the created session id σ.
– when all the session creation labels of pending edges have been treated, all

pending edges are removed,
– all instantiations that appear as initial nodes in the resulting orchart are

replaced by their corresponding definition,
– the orchart is ready for considering another execution step.

Message Input. This is the case where the orchart has no output nodes and at
least one input node in its set of initial nodes (all output nodes must be executed
before considering the execution of input nodes). If the input node has one of
its capsules containing a reception that matches the frontmost message of the
corresponding queue:
– the message is removed from the queue,
– the variables declared in the reception are replaced with the corresponding

values in the received message,
– the substitution of the variables by their values is carried over all the bound

occurences in the orchart,
– the edges originating in the capsules other than the one that received the

message are discarded,
– the parts of the graph that are no more reachable from the initial nodes are

removed,
– the input node is removed, but its set of departing edges are kept (the edges

remain pending inward, i.e, with their sources unattached),
– session creations that label pending edges are treated in a way similar to the

message output case,
– when all the session creation labels of pending edges have been treated, all

pending edges are removed,
– all instantiations that appear as initial nodes in the resulting orchart are

replaced by their corresponding definitions,
– the orchart is ready for considering another execution step.

In the sequel, we proceed with the formalisation of the above steps. We need to
revisit the syntax of orcharts in order to include those elements that apppear
during execution steps. Thus an execution orchart is an extension of orcharts
that includes the possibility for nodes to have inward pending edges. The set of
such edges for a node n is named InE(n).
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3.4 Structure of Running Configurations of Services

We first define the structure of a running configuration of services then we pro-
vide the rules that govern its global behaviour based on the behaviour of its
service instances. A running configuration involves a set Σ of active session ids
ranged over by σ. Σ is endowed with two functions Req and Serv. Req(σ) al-
lows to retrieve the session id of the service instance that created σ and Serv(σ)
yields the name of the service that is responding to the request issued in the
context of σ. Hence, if (σ′, G) executes session creation s@w with session id be-
ing σ assigned to s, we will have Req(σ) = σ′ and Serv(σ) = w. Furthermore,
the execution of s@w creates also service instance (σ, Gw) which is dedicated
to the execution of service requests from (σ′, G) in the context of σ. A running
configuration is given by:

Conf = QRS | QSR | w1(S1) | · · · | wn(Sn) where :

– Si is a (possibly empty) set of instances of service wi. An element of Si is a
pair (σ, G) where G is the current execution orchart of the service instance
that is serving session σ,

– QRS and QRS are a pair of functions on session ids. QRS(σ) is the Queue
from Req(σ) to its provider and QSR(σ) is the dual queue.

The operational semantics of a running configuration of services is given by
reduction rules (section 3.5) that define possible execution steps. Configurations
can evolve either by an output move by a service instance which puts a message
in the proper queue (rules OUT-S and OUT-R define such a move for the two
cases, server to requestor and requestor to server, respectively); or an input
move of a service instance which removes a message from a queue (rules IN-S
and IN-R define such a move for the two cases, requestor to server and server to
requestor, respectively); or a creation of a new session by a requestor instance,
which adds a new (server) service instance to the configuration, and adds a pair
of empty queues to the set of queues, both bound to the requestor and server
service instances (this move is mirrored in rule CREATE). As can be seen from
the rules, there are many sources of non determinism in the execution of an
orchart that the user should be aware of: (i) in case of two parallel flows starting
each with the reception of the same message, (ii) in case of the same message
present in two different capsules of the same input node, (iii) in case where two
FIFO queues have their head messages ready to be received in different capsules
of the same node. Initially, a configuration which is made of an empty set of
queues and of no service instances cannot proceed. In fact, we need to designate
a ”main” client (not considered here for lack of space) in order to trigger the
behaviour and to animate the configuration.

3.5 Operational Semantics Rules

The operational semantics of a running configuration of services is given by re-
duction rules that define possible execution steps:
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OUT-S

nocreate(S1, . . . , Sn), (σ, G) ∈ Si, n ∈ OutN(G) ∩ Init(G)
LN (n) = ρ.m(v), G′ = rmnode(n, G)

QRS | QSR | w1(S1) | . . . wi(Si) | . . . wn(Sn) →
QRS | Q′

SR | w1(S1) | . . . wi(S′
i) | . . . wn(Sn)

where: S′
i = Si\(σ, G)�(σ, G′), Q′

SR = QSR\(σ, QSR(σ))�(σ, add(m(v), QSR(σ))

OUT-R

nocreate(S1, . . . , Sn), (σ′, G) ∈ Si, n ∈ OutN(G) ∩ Init(G)
LN (n) = σ.m(v), G′ = rmnode(n, G)

QRS | QSR | w1(S1) | . . . wi(Si) | . . . wn(Sn) →
Q′

RS | QSR | w1(S1) | . . . wi(S′
i) | . . . wn(Sn)

where: S′
i =Si\(σ′, G)�(σ′, G′), Q′

RS = QRS\(σ, QRS(σ))�(σ, add(m(v), QRS (σ))

IN-S

onlyin(S1, . . . , Sn), (σ, G) ∈ Si, n ∈ IN ∩ Init(G), c ∈ n
LC(c) = ρ.m(x), m(v) = head(QRS(σ)), G′ = rmcaps(n, c, G)[x/v]

QRS | QSR | w1(S1) | . . . wi(Si) | . . . wn(Sn) →
Q′

RS | QSR | w1(S1) | . . . wi(S′
i) | . . . wn(Sn)

where: S′
i = Si\(σ, G) � (σ, G′), Q′

RS = QRS \(σ, QRS(σ)) � (σ, tail(QRS(σ))

IN-R

onlyin(S1, . . . , Sn), (σ′, G) ∈ Si, n ∈ IN ∩ Init(G), c ∈ n
LC(c) = σ.m(x), m(v) = head(QSR(σ)), G′ = rmcaps(n, c, G)[x/v]

QRS | QSR | w1(S1) | . . . wi(Si) | . . . wn(Sn) →
QRS | Q′

SR | w1(S1) | . . . wi(S′
i) | . . . wn(Sn)

where: S′
i = Si\(σ′, G) � (σ′, G′), Q′

SR = QSR\(σ, QSR(σ)) � (σ, tail(QSR(σ))

CREATE

(σ, G) ∈ Si, n ∈ Init(G), s@wj ∈ InE(n)
G′ = rmlabel(s@wj, n, G)[s/σ′], σ′ fresh

QRS | QSR | w1(S1) | · · · | wi(Si) | · · · | wj(Sj) | · · · | wn(Sn) →
Q′

RS | Q′
SR | w1(S1) | · · · | wi(S′

i) · · · | wj(S′
j) | · · · | wn : Sn

where: S′
j = Sj �(σ′, Gwj ), S′

i = Si\(σ, G)�(σ, G′), Q′
SR = QSR �(σ′, ∅), Q′

RS =
QRS � (σ′, ∅)

The above rules are based on the use of some auxiliary functions, that allow
to work on the queues associated to sessions and on the execution graph itself,
or to give a priority to the application of the above rules. We present them here
informally for sake of brevity:
– add(m, queue), tail(queue), head(queue) - usual functions over a FIFO queue;
– rmnode(n, G) - removes the node n from G, with the following steps:

• cancel n from G, but retaining its outcoming edges from it
• if any retained edge hits an instantiation node, substitute it with its

definition
• if any retained edge is not labelled with a session creation (s@w), it is

cancelled
– rmcaps(n, c, G) - (here c is a capsule of n) removes the node n from G, with

the following steps:
• Given that OutE(n) = OutE(c) ∪ Excluded, if Excluded �= ∅: cancel

from G all the edges in Excluded, then cancel all the nodes which are
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no more reachable from nodes in Init(G), together with their outcoming
edges.

• apply rmnode(n, G)
– rmlabel(s@w, n, G) - removes label s@w from the edge pointing at n in G,

then proceeds with removing all edges in G having no session creation labels.
– nocreate(S1, . . . , Sn) is a predicate defined as: ∀i, σ, G : (σ, G) ∈ Si, n ∈

Init(G) : InE(n) = ∅
– onlyin(S1, . . . , Sn) is a predicatedefinedas:nocreate(S1, . . . , Sn) and∀i, σ, G :

(σ, G) ∈ Si, n ∈ Init(G) : n ∈ IN .

4 Type Verification and Properties

4.1 Behavioural Types

A typechart is a quintuple (S, s0, SF , Act, →) where:

– S is a finite set of states, defined as RS � SS, that is, a state is either a
receiving state or a sending state.

– s0 ∈ RS is the initial state
– SF ⊆ RS is the set of final states
– Act is a set of actions, which are in the form ?m(Type) (input message) or

!m(Type) (output message), where m is a message name and Type is either
a basic type or a reference to another typechart. Since in general messages
can carry more data values, we assume for simplicity that structured types
are included in basic types to cover such cases.

– →: S ×Act×S is the labelled transition relation, such that: s
?m(T )−−−−→ s′ =⇒

s ∈ RS, s
!m(T )−−−−→ s′ =⇒ s ∈ SS.

A session has two ends: the end of the client and the end of the service. Session
types differ for a session if seen from the two ends, in the fact that what is an
input on one side is an output on the other side. This is called type duality in
[15]. The type T as seen from the other end of the session is written Dual(T ). In
particular, subtyping of [15] can be expressed in a way resembling the classical
simulation relation typical of a process algebraic framework, by distinguishing
sending and receiving states (we abstract here from the exchanged messages, to
which a classical notion of subtyping could be applied as well):

T1is a subtype of T2 (T1 �T2) iff

{
T2

?m→ T ′
2 implies ∃T ′

1 : T1
?m→ T ′

1 and T ′
1 � T ′

2

T1
!m→ T ′

1 implies ∃T ′
2 : T2

!m→ T ′
2 and T ′

1 � T ′
2

which is read: T1 is a subtype of T2 if in any receiving state, T1 is able to receive
all the messages that T2 is able to receive, and in any sending state T2 is able
to send all the messages that T1 is able to send. Consequently, substitutability
and compatibility are defined, as in [15]:
– a session type T can safely substitute T ′ if T � T ′;
– a session type T is compatible with T ′ if T � Dual(T ′).
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That is, two type sessions are said compatible if any sending of one is matched
by a reception of the other one: hence, a session having at its two ends com-
patible types does not internally deadlock. The typecharts NewsAgency-T and
NewsAgencyBis-T shown in section 2.3 are defined so that NewsAgencyBis-T can
safely substitute NewsAgency-T.

4.2 A Well Typedness Algorithm

Herefater we present a well typedness algorithm, i.e., which verifies that an
orchart defining a site conforms to its provided and required typecharts. For the
sake of brevity, we limit its description to a brief sketch, sufficient in our opinion
to show that well-typedness of orcharts can be computed.

First, the provided and required typecharts need to be transformed. The pro-
vided typechart is transformed into its dual. Then its sending transitions are
prefixed with τ , i.e., every transition T

!m→ T ′ becomes T
τ→ • !m→ T ′ where • is a

new state with only one sending transition !m→. On the other hand, the typecharts
of the required services only undergo the τ prefixing transformation. The intro-
duction of τ transitions is meant to mimic the fact that the decision of sending
a message is taken autonomously by the sender.

The algorithm proceeds by discharging proof obligations. Discharging a proof
obligation either fails, in which case the whole algorithm immediately terminates
concluding a typing error, or produces a set of new proof obligations to be dis-
charged. When no more proof obligations are left to be discharged, the algorithm
terminates, establishing conformance. A trivial proof obligation, (e.g. the one in
which an empty orchart is compared against a terminal state of a typechart) is
immediately discharged producing no new proof obligations.

The initial proof obligation is (Gserv, s0 : Tprov) where Gserv is the orchart
of the service and Tprov the provided typechart (in this algorithm, we chose
to rename ρ by s0, which simplifies the presentation). From this initial proof
obligation we proceed with symbolic co-execution steps, where the orchart and
the associated typecharts are executed in a synchronised fashion. The format
of a running proof obligation is given by (G, s0 : T0, s1 : T1, . . . , sn : Tn) where
G is the current state of the orchart, T0 its current provided typechart and
s1 : T1, . . . , sn : Tn the set of active sessions and their associated typecharts. To
discharge a proof obligation (G, s0 :T0, s1 :T1, . . . , sn :Tn), which we assume for
the moment having no instantiation nodes, we perform the following steps:

– If some typechart has a τ transition:
• For each typechart Ti with a τ transition Ti

τ→ T ′ : create a new proof
obligation obtained by replacing Ti with T ′;

• Discharge proof obligation (G, s0 :T0, s1 :T1, . . . , sn :Tn);
– If no typechart has a τ transition and G’s initial nodes are only input:

• If G has no initial input capsule si.m that matches a transition Ti
!m→T ′

of its corresponding typechart Ti then the proof fails;
• For each initial capsule si.m matching one transition Ti

!m→ T ′ of its as-
sociated typechart Ti: a new proof obligation is produced, applying the
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execution step involving the capsule si.m, so obtaining an execution or-
chart G′, and advancing to T ′ the typechart of si. In this step the set of
active sessions is obtained by collecting the labels of the edges outcoming
from the capsule. This may involve the creation of new active sessions
produced from the labels having the s@serv format;

• When all initial capsules with matching typecharts are treated the cur-
rent proof obligation is discharged;

– If no typechart has a τ transition and G has initial output nodes:
• for each output node emitting si.m(), if Ti

?si.m−−−→ T ′, a new proof obliga-
tion is produced applying the execution step on that node, so obtaining
an execution Orchart G′, and advancing Ti to T ′ ;

• if for some output node there is no matching typechart, the proof fails;
– If no typechart has a τ transition and G is empty: if T0 is a terminal state

then the proof is discharged, otherwise the proof fails

Since an orchart is acyclic, the algorithm is guaranteed to terminate, since its
number of steps depends on static metrics (number of nodes and capsules, of
sessions, of alternative sendings in typecharts).

On top of this basic algorithm, orchart instantiation is addressed as follows.
If an instantiation of a named orchart is encountered for the first time, it is
replaced by its definition and the algorithm continues with the creation of a
proof obligation for the definition of this named orchart (parametrized with the
states of the active sessions). The created proof obligation is discharged when
the algorithm has explored, in the current orchart, the part that comes from
the definition orchart. Another condition has also to be checked which ensures
that in case of parallel flows, if a session is present in the instantiated part and
also in another parallel flow, the behaviour of its associated typechart is uniform
(i.e., roughly, the state of the typechart does not change) along all parallel flows
where the session is present.

4.3 Properties of Well Typed Configurations of Services

A configuration of services is well typed iff (i) each service is well typed (its
defining orchart conforms to its required and provided types as given in the
algorithm of section 4.2), and (ii) if a service in this configution requires a type
T1 and the partner service provides a type T2, then (T2 � T1). If we assume
that defining orcharts have a stubborn terminal output node (a node with no
outgoing edges and which is always reachable - this can be statically checked),
if we assume also that there is no invocation cycles (a typical cycle is when
service w1 invokes w2 and vice versa - this also can be statically checked) then
we claim that well typed configurations have the soundness property: any service
invocation potentially reaches a termination state. More precisely, let us consider
a sound configuration Conf = ( w0(G0), w1(), . . . , wn() ) where w0 is a client
(with behaviour given by orchart G0) ready to invoke service w1 with some
session σ, then for any run Conf

∗→ Conf ′, there exists a configuration, Conf ′′,
reachable from Conf ′ and such that Conf ′′ = ( w0(G′

0), w1(σ, G′), . . . , wn(. . .) )
and where G′

0 and G′ are empty.
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5 Future Work and Conclusions

We have presented an approach for verifying service composition based on be-
havioural typing, in which sessions play a pivotal role. In this work we sought
for a language powerful enough to express common service orchestration exam-
ples, but which is also simple enough to associate finite state behavioural types
to sessions. The first results about typing are encouraging: we can cite the fact
that the language, admitting parallel flows and recursion, allows infinite state
behaviours to be defined while also being typable, that is, to which finite state
session types can be associated. It is worth noting that the properties that are
claimed for in well typed orchart configurations are similar to those obtained for
object configurations in [12] with, however, two major improvements: (i) orcharts
are more expressive as they provide for parallel flows; and (ii) orcharts are less
constraining as they do not impose that services are always ready for all input
messages that are expected for by their current behavioural types. The precise
tradeoff between expressive power of orcharts and their finite typability has still
to be assessed. Moreover, several improvements to the language are planned,
for example in the treatment of abandoned sessions, with the introduction of
explicit and implicit abort of sessions.

Acknowledgments. This work has been partially supported by the ACI project
FIACRE and by the EU project FET-GC II IST-2005-16004 Sensoria.
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Abstract. Join patterns are an attractive declarative way to synchro-
nize both threads and asynchronous distributed computations. We ex-
plore joins in the context of extensible pattern matching that recently
appeared in languages such as F# and Scala. Our implementation sup-
ports join patterns with multiple synchronous events, and guards. Fur-
thermore, we integrated joins into an existing actor-based concurrency
framework. It enables join patterns to be used in the context of more
advanced synchronization modes, such as future-type message sending
and token-passing continuations.

Keywords: Concurrent Programming, Join Patterns, Chords, Actors.

1 Introduction

Recently, the pattern matching facilities of languages such as Scala and F#
have been generalized to allow representation independence for objects used in
pattern matching [6,20]. Extensible patterns open up new possibilities for im-
plementing abstractions in libraries which were previously only accessible as
language features. More specifically, we claim that extensible pattern matching
eases the construction of declarative approaches to synchronization in libraries
rather than languages. To support this claim, we show how a concrete declar-
ative synchronization construct, join patterns, can be implemented in Scala, a
language with extensible pattern matching.

Join patterns [8,9] offer a declarative way of synchronizing both threads and
asynchronous distributed computations that is simple and powerful at the same
time. They form part of languages such as JoCaml [7] and Funnel [14]. Join
patterns have also been implemented as extensions to existing languages [3,23].
Recently, Russo [17] and Singh [18] have shown that advanced programming
language features, such as generics or software transactional memory, make it
feasible to provide join patterns as libraries rather than language extensions.

We motivate that our implementation based on extensible pattern matching is
an interesting third way to provide join patterns in a library since it has a number
of desirable properties. More concretely, we make the following contributions:
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– We present a novel implementation technique for joins based on extensible
pattern matching. We show that it allows programmers to avoid certain kinds
of boilerplate code that are inevitable when using existing approaches.

– We discuss a concrete implementation of our approach in Scala. A complete
implementation that supports join patterns with multiple synchronous events
and a restricted form of guards is available on the web.1

– We integrate our library into an existing actor-based concurrency framework.
This enables expressive join patterns to be used in the context of more
advanced synchronization modes, such as future-type message sending and
token-passing continuations.

The rest of this paper is structured as follows. In the following section we briefly
highlight join patterns as a declarative synchronization abstraction, how they
have been integrated in other languages before, and how combining them with
pattern matching can improve this integration. Section 3 shows how to synchro-
nize both threads and actors using our new Scala Joins framework. In section 4
we discuss a concrete implementation of expressive join patterns in Scala. Section
5 discusses related work, and section 6 concludes.

2 Motivation

Background: Join Patterns. A join pattern consists of a body guarded by
a linear set of events. The body is executed only when all of the events in
the set have been signaled to an object. Threads may signal synchronous or
asynchronous events to objects. By signaling a synchronous event to an object,
threads may implicitly suspend. The simplest illustrative example of a join pat-
tern is that of an unbounded FIFO buffer. In Cω [3], it is expressed as follows:

public class Buffer {
public async Put(int x);
public int Get() & Put(int x) { return x; }

}

A detailed explanation of join patterns is outside the scope of this paper. For the
purposes of this paper, it suffices to understand the operational effect of a join
pattern. Threads may put values into a buffer b by invoking b.Put(v). They
may also read values from the buffer by invoking b.Get(). The join pattern
Get() & Put(int x) (called a chord in Cω) specifies that a call to Get may
only proceed if a Put event has previously been signaled. Hence, if there are no
pending Put events, a thread invoking Get is automatically suspended until such
an event is signaled.

The advantage of join patterns is that they allow a declarative specification
of the synchronization between different threads. Often, the join patterns cor-
respond closely to a finite state machine that specifies the valid states of an
object [3]. In the following, we explain the benefits of our new implementation
by means of an example.
1 See http://lamp.epfl.ch/˜phaller/joins/.
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Example. Consider the traditional problem of synchronizing multiple concur-
rent readers with one or more writers who need exclusive access to a resource.
In Cω, join patterns are supported as a language extension through a dedicated
compiler. With the introduction of generics in C# 2.0, Russo has made join
patterns available in a C# library called Joins [17]. In that library, a multiple
reader/one writer lock can be implemented as follows:

public class ReaderWriter {
public Synchronous.Channel Exclusive, ReleaseExclusive;
public Synchronous.Channel Shared, ReleaseShared;
private Asynchronous.Channel Idle;
private Asynchronous.Channel<int> Sharing;
public ReaderWriter() {
Join j = Join.Create(); ... // Boilerplate omitted
j.When(Exclusive).And(Idle).Do(delegate {});
j.When(ReleaseExclusive).Do(delegate{ Idle(); });
j.When(Shared).And(Idle).Do(delegate{ Sharing(1); });
j.When(Shared).And(Sharing).Do(delegate(int n) {
Sharing(n+1); });

j.When(ReleaseShared).And(Sharing).Do(delegate(int n) {
if (n==1) Idle(); else Sharing(n-1); });

Idle(); } }

In C# Joins, join patterns consist of linear combinations of channels and a
delegate (a function object) which encapsulates the join body. Join patterns are
triggered by invoking channels which are special delegates.

In the example, channels are declared as fields of the ReaderWriter class.
Channel types are either synchronous or asynchronous. Asynchronous channels
correspond to asynchronous methods in Cω (e.g. Put in the previous example).
Channels may take arguments which are specified using type parameters. For
example, the Sharing channel is asynchronous and takes a single int argument.
Channels are often used to model (parts of) the internal state of an object. For
example, the Idle and Sharing channels keep track of concurrent readers (if
any), and are therefore declared as private. To declare a set of join patterns,
one first has to create an instance of the Join class. Individual join patterns are
then created by chaining a number of method calls invoked on that Join instance.
For example, the first join pattern is created by combining the Exclusive and
Idle channels with an empty delegate; this means that invoking the synchronous
Exclusive channel (a request to acquire the lock in exclusive mode) will not
block the caller if the Idle channel has been invoked (the lock has not been
acquired).

Even though the verbosity of programs written using C# Joins is slightly
higher compared to Cω, basically all the advantages of join patterns are pre-
served. However, this code still has a number of drawbacks: first, the encod-
ing of the internal state is redundant. Logically, a lock in idle state can be
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represented either by the non-empty Idle channel or the Sharing channel in-
voked with 0.2

Note that it is impossible in C# (and in Cω) to use only Sharing. Consider
the first join pattern. Implementing it using Sharing instead of Idle requires a
delegate that takes an integer argument (the number of concurrent readers):

j.When(Exclusive).And(Sharing).Do(delegate(int n) {...}

Inside the body we have to test whether n > 0 in which case the thread invoking
Exclusive has to block. Blocking without reverting to lower-level mechanisms
such as locks is only possible by invoking a synchronous channel; however, that
channel has to be different from Exclusive (since invoking Exclusive does not
block when Sharing has been invoked) which re-introduces the redundancy.

Another drawback of the above code is the fact that arguments are passed
implicitly between channels and join bodies: in the third case, the argument n
passed to the delegate is the argument of the Sharing channel. Contrast this with
the Cω buffer example in which the Put event explicitly binds its argument x. Not
only are arguments passed implicitly, the order in which they are passed is merely
conventional and not checked by the compiler. For example, the delegate of a (hy-
pothetical) join pattern with two channels of type Asynchronous.Channel<int>
would have two int arguments. Accidentally swapping the arguments in the body
delegate would go unnoticed and result in errors.

In Scala Joins the join patterns of the above example are expressed as follows:

join {
case Exclusive() & Sharing(0) => Exclusive.reply()
case ReleaseExclusive() => Sharing(0); ReleaseExclusive.reply()
case Shared() & Sharing(n) => Sharing(n+1); Shared.reply()
case ReleaseShared() & Sharing(n) if n > 0 =>
Sharing(n-1); ReleaseShared.reply()

}

The internal state of the lock is now represented uniformly using only Sharing.
Moreover, two formerly separate patterns are unified (patterns 3 and 4 in the C#
example) and the if-else statement is gone. (Inside join bodies, synchronous
events are replied to via their reply method; this is necessary since, contrary
to C# and Cω, Scala Joins supports multiple synchronous events per pattern,
cf. section 3.) The gain in expressivity is due to nested pattern matching. In
the first pattern, pattern matching constrains the argument of Sharing to 0,
ensuring that this pattern only triggers when no other thread is sharing the
lock. Therefore, an additional Idle event is no longer necessary, which decreases
the number of patterns. In the last pattern, a guard (if n > 0) prevents invalid
states (i.e. invoking Sharing(n) where n < 0).
2 The above implementation actually ensures that an idle lock is always represented

as Idle and never as Sharing(0). However, this close relationship between Idle and
Sharing is not explicit and has to be inferred from all the join patterns.
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Joins for Actors. While join patterns have been successfully used to syn-
chronize threads, to the best of our knowledge, join patterns have not yet been
applied in the context of an actor-based concurrency model [1]. In Scala, actor-
based concurrency is supported by means of a library extension [11]. Because
we provide join patterns as a library as well, we have created the opportunity
to combine join patterns with the concurrency model offered by actors. We give
a more detailed explanation of this combination in section 3. However, in order
to understand this integration, we first briefly highlight how to write concurrent
programs using Scala’s actor framework.

Scala’s actors are largely inspired by Erlang’s model of concurrent processes
communicating by message passing [2]. New actors are defined as classes ex-
tending the Actor class. An actor’s life cycle is defined by its act method. The
following code shows how to implement the unbounded buffer as an actor:

class Buffer extends Actor {
def act() { loop(List()) }
def loop(buf: List[Int]) {
receive {
case Put(x) => loop(buf ::: List(x)) // append x to buf
case Get() if !buf.isEmpty =>

reply(buf.head); loop(buf.tail) }
} }

The receive method allows an actor to selectively wait for certain messages
to arrive in its mailbox. The actor processes at most one message at a time.
Messages that are sent concurrently to the actor are queued in its mailbox.
Interacting with a buffer actor occurs as follows:

val buffer = new Buffer; buffer.start()
buffer ! Put(42) // asynchronous send, returns nothing
println(buffer !? Get()) // synchronous send, waits for reply

Synchronous message sends make the sending process wait for the actor to re-
ply to the message (by means of reply(value)). Scala actors also offer more
advanced synchronization patterns such as futures [12,25]. actor !! msg de-
notes an asynchronous send that immediately returns a future object. In Scala,
a future is a nullary function that, when applied, returns the future’s computed
result value. If the future is applied before the value is computed, the caller is
blocked.

In the above example, the required synchronization between Put and Get is
achieved by means of a guard. The guard in the Get case disallows the processing
of any Get message while the buf queue is empty. In the implementation, all cases
are sequentially checked against the incoming message. If no case matches, or all
of the guards for matching cases evaluate to false, the actor keeps the message
stored in its mailbox and awaits other messages.

Even though the above example remains simple enough to implement, the
synchronization between Put and Get remains very implicit. The actual intention
of the programmer, i.e. the fact that an item can only be produced when the
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actor received both a Get and a Put message, remains implicit in the code.
Therefore, even actors can benefit from the added declarative synchronization
of join patterns, as we illustrate in section 3.

3 A Scala Joins Library

We discuss a Scala library (called Scala Joins) providing join patterns imple-
mented via extensible pattern matching. First, we explain how Scala Joins en-
ables declarative thread synchronization, postponing joins for actors until the
next section.

Joining Threads. Join patterns in Scala Joins are composed of synchronous
and asynchronous events. Events are strongly typed and can be invoked using
standard method invocation syntax. The FIFO buffer example is written in Scala
Joins as follows:

class Buffer extends Joins {
val Put = new AsyncEvent[Int]
val Get = new SyncEvent[Int]
join { case Get() & Put(x) => Get reply x }

}

To enable join patterns, a class inherits from the Joins class.3 Events are de-
clared as regular fields. They are distinguished based on their (a)synchrony and
the number and types of arguments they take. For example, Put is an asyn-
chronous event that takes a single argument of type Int. Since it is asynchronous,
no return type is specified (it immediately returns unit when invoked). In the
case of a synchronous event such as Get, the first type parameter specifies the
return type. Therefore, Get is a synchronous event that takes no arguments and
returns values of type Int.

Joins are declared using the join { ... } construct.4 This construct enables
pattern matching via a list of case declarations that each consist of a left-
hand side and a right-hand side, separated by =>. The left-hand side defines a
join pattern through the juxtaposition of a linear combination of asynchronous
and synchronous events. As is common in the joins literature, we use & as the
juxtaposition operator. Arguments of events are usually specified as variable
patterns. For example, the variable pattern x in the Put event can bind to any
value (of type Int). This means that on the right-hand side, x is bound to the
argument of the Put event when the join pattern matches. Standard pattern
matching can be used to constrain the match even further (see section 2).

The right-hand side of a join pattern defines the join body (an ordinary block
of code) that is executed when the join pattern matches. Like JoCaml, but
3 Actually, Joins is a trait that can be mixed into any class.
4 As explained in section 4, join is a method of the Joins class. In Scala, the body

of a class definition serves as the primary constructor of the class which allows this
freestanding call to join.
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unlike Cω and C# Joins, Scala Joins allows any number of synchronous events
to appear in a join pattern. Because of this, it is impossible to use the return
value of the body to implicitly reply to the single synchronous event in the join
pattern. Instead, the body of a join pattern explicitly replies to all synchronous
events that are part of the join pattern on the left-hand side. This is done by
invoking those events’ reply method, which wakes up the thread that originally
signaled that event.

Joining Actors. We now describe an integration of our joins library with
Scala’s actor framework. The following example shows how to re-implement the
unbounded buffer example using joins:

val Put = new Join1[Int]
val Get = new Join
class Buffer extends JoinActor {
def act() {
receive { case Get() & Put(x) => Get reply x }

} }

It differs from the thread-based bounded buffer using joins in the following ways:

– The Buffer class inherits from the JoinActor class to declare itself to be
an actor capable of processing join patterns.

– Rather than defining Put and Get as synchronous or asynchronous events,
they are all defined as join messages which may support both kinds of syn-
chrony (this is explained in more detail below).

– The Buffer actor defines act and awaits incoming messages by means of
receive. It is still possible for the actor to serve regular messages within
the receive block. Logically, regular messages can be regarded as unary join
patterns. However, they don’t have to be declared as joinable messages.

We illustrate below how the buffer actor can be used as a coordinator between
a consumer and a producer actor. The producer sends an asynchronous Put
message while the consumer awaits the reply to a Get message by invoking it
synchronously (using !?).

val buffer = new Buffer; buffer.start()
val prod = actor { buffer ! Put(42) }
val cons = actor { process(buffer !? Get()) }

By applying joins to actors, the synchronization dependencies between Get and
Put can be specified declaratively by the buffer actor. The actor receives Get and
Put messages by queuing them in its mailbox. Only when all of the messages
specified in the join pattern have been received is the body executed by the actor.
Before processing the body, the actor atomically removes all of the participating
messages from its mailbox. Replies may be sent to any or all of the messages
participating in the join pattern. This is similar to the way replies are sent to
events in the thread-based joins library described previously.
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Contrary to the way events are defined in the thread-based joins library, an ac-
tor does not explicitly define a join message to be synchronous or asynchronous.
We say that join messages are “synchronization-agnostic” because they can be
used in different synchronization modes between the sender and receiver actors.
However, when they are used in a particular join pattern, the sender and receiver
actors have to agree upon a valid synchronization mode. In the previous exam-
ple, the Put join message was sent asynchronously, while the Get join message
was sent synchronously. In the body of a join pattern, the receiver actor replied
to Get, but not to Put.

The disadvantage of making join messages synchronization-agnostic is that
it introduces the possibility for errors. For example, if a receiver does not re-
ply to a synchronously sent message, the sender remains blocked. However, the
advantage is that join messages may be used in many different synchronization
modes, including future-type message sending [25] or Salsa’s token-passing con-
tinuations [22]. Every join message has an associated reply destination which is
an output channel on which processes may listen for replies to the message. How
the reply to a message is processed is determined by the way the message was
sent. For example, if the message was sent purely asynchronously, the reply is
discarded; if it was sent synchronously, the reply awakes the sender. If it was
sent using a future-type message send, the reply resolves the future.

4 Integrating Joins and Extensible Pattern Matching

In this section we present a novel implementation that integrates joins into gen-
eral language-based pattern matching. We explain our technique using a con-
crete implementation in Scala. However, we expect that implementations based
on, e.g., the active patterns of F# [20] would not be much different.

In the following we first look at pattern matching in Scala; this provides
some terminology and background used in subsequent sections. After that we
review the essentials of Scala’s extensible patterns; the small set of necessary
concepts suggests that our approach is readily transferable to languages with
similar features. In section 4.1 we outline the core of an implementation of joins
that builds on extensible pattern matching. In section 4.2 we highlight how joins
have been integrated into Scala’s actor framework.

Partial Functions. In the previous section we used the join { ... } con-
struct to declare a set of join patterns. It has the following form:

join {
case pat1 => body1
...
case patn => bodyn

}

The patterns pati consist of a linear combination of events evt1& ... & evtm.
Threads synchronize over a join pattern by invoking one or several of the events
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listed in a pattern pati. When all events occurring in pati have been invoked,
the join pattern matches, and its corresponding join bodyi is executed.

In Scala, the pattern matching expression inside braces is treated as a first-
class value that is passed as an argument to the join function. The argument’s
type is an instance of PartialFunction, which is a subclass of Function1, the
class of unary functions. The two classes are defined as follows.

abstract class Function1[A, B] {
def apply(x: A): B }

abstract class PartialFunction[A, B] extends Function1[A, B] {
def isDefinedAt(x: A): Boolean }

Functions are objects which have an apply method. Partial functions are objects
which have in addition a method isDefinedAt which tests whether a function
is defined for a given argument. Both classes are parametrized; the first type pa-
rameter A indicates the function’s argument type and the second type parameter
B indicates its result type.

In Scala, each pattern matching expression

{ case p1 => e1; ...; case pn => en }

is compiled into a partial function whose methods are defined as follows.

– The isDefinedAt method returns true if one of the patterns pi matches the
argument, false otherwise.

– The apply method returns the value ei for the first pattern pi that matches
its argument. If none of the patterns match, a MatchError exception is
thrown.

Note that partial functions are not crucial for our implementation of joins. In
fact, Scala’s partial functions can be encoded using only higher-order functions as
follows. The idea is to define a partial function as a regular function that returns
an option;5 either the partial function is defined at the given value, in which
case it returns its body as a thunk (i.e. a function with an empty parameter
list) wrapped in Some. If the partial function is not defined, it returns None.
Operations for testing whether a partial function is defined at a given value, and
for applying it are defined accordingly:

type PartFun[A, R] = A => Option[() => R]
def isDefAt[A, R](fun: PartFun[A, R], arg: A) = fun(arg) match {
case Some(_) => true
case None => false }

def apply[A, R](fun: PartFun[A, R], arg: A) = fun(arg) match {
case Some(res) => res()
case None => error("PartFun not defined") }

5 The optional value is of parameterized type Option[T] that has the two subclasses
Some[T](x: T) and None.
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Using this encoding, the native Scala partial function

{ case x :: xs => println("head: "+x) }

can then be represented as follows:

(l: List[Int]) => l match {
case x :: xs => Some(() => println("head: "+x))
case _ => None }

Join Patterns as Partial Functions. Whenever a thread invokes an event, each
join pattern in which e occurs has to be checked for a potential match. There-
fore, events have to be associated with the set of join patterns in which they
participate. As shown before, this set of join patterns is represented as a partial
function. Invoking join(pats) associates each event occurring in the set of join
patterns with pats.

When a thread invokes an event, the isDefinedAt method of pats is used to
check whether any of the associated join patterns match. If yes, the corresponding
join body is executed by invoking the apply method of pats. A question remains:
what argument is passed to isDefinedAt and apply, respectively? To answer
this question, consider the simple buffer example from the previous section. It
declares the following join pattern:

join { case Get() & Put(x) => Get reply x }

Assume that no events have been invoked before, and a thread t invokes the
Get event to remove an element from the buffer. Clearly, the join pattern does
not match, which causes t to block since Get is a synchronous event (more on
synchronous events later). Assume that after thread t has gone to sleep, another
thread s adds an element to the buffer by invoking the Put event. Now, we want
the join pattern to match since both events have been invoked. However, the
result of the matching does not only depend on the event that was last invoked
but also on the fact that other events have been invoked previously. Therefore,
it is not sufficient to simply pass a Put message to the isDefinedAt method
of the partial function the represents the join patterns. Instead, when the Put
event is invoked, the Get event has to somehow “pretend” to also match, even
though it has nothing to do with the current event. While previous invocations
can simply be buffered inside the events, it is non-trivial to make the pattern
matcher actually consult this information during the matching, and “customize”
the matching results based on this information. To achieve this customization
we use extensible pattern matching.

Extensible Pattern Matching. Emir et al. [6] recently introduced extractors
for Scala that provide representation independence for objects used in patterns.
Extractors play a role similar to views in functional programming languages
[24,15] in that they allow conversions from one data type to another to be applied
implicitly during pattern matching. As a simple example, consider the following
object that can be used to match even numbers:
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object Twice {
def apply(x: Int) = x*2
def unapply(z: Int) = if (z%2 == 0) Some(z/2) else None }

Objects with apply methods are uniformly treated as functions in Scala.
When the function invocation syntax Twice(x) is used, Scala implicitly calls
Twice.apply(x). The unapply method in Twice reverses the construction in a
pattern match. It tests its integer argument z. If z is even, it returns Some(z/2).
If it is odd, it returns None. The Twice object can be used in a pattern match
as follows:

val x = Twice(21)
x match {
case Twice(y) => println(x+" is two times "+y)
case _ => println("x is odd") }

To see where the unapply method comes into play, consider the match against
Twice(y). First, the value to be matched (x in the above example) is passed
as argument to the unapply method of Twice. This results in an optional value
which is matched subsequently. The preceding example is expanded as follows:

val x = Twice.apply(21)
Twice.unapply(x) match {
case Some(y) => println(x+" is two times "+y)
case None => println("x is odd") }

Extractor patterns with more than one argument correspond to unapply meth-
ods returning an optional tuple. Nullary extractor patterns correspond to
unapply methods returning a Boolean.

In the following we show how extractors can be used to implement the match-
ing semantics of join patterns. In essence, we define appropriate unapply meth-
ods for events which get implicitly called during the matching.

4.1 Matching Join Patterns

As shown previously, a set of join patterns is represented as a partial function.
Its isDefinedAt method is used to find out whether one of the join patterns
matches. In the following we are going to explain the code that the Scala compiler
produces for the body of this method. Let us revisit the join pattern that we
have seen in the previous section:

Get() & Put(x)

In our library, the & operator is an extractor that defines an unapply method;
therefore, the Scala compiler produces the following matching code:

&.unapply(m) match {
case Some((Get(), Put(x))) => true
case None => false }
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We defer a discussion of the argument m that is passed to the & operator.
For now, it is important to understand the general scheme of the matching
process. Basically, calling the unapply method of the & operator produces a
pair of intermediate results wrapped in Some. Nested pattern matching matches
the two components of the pair against the Get and Put events. Only if both of
them match, the overall pattern matches. Since the & operator is left-associative,
matching more than two events proceeds by first calling the unapply methods of
all the & operators from right to left, and then matching the intermediate results
with the corresponding events from left to right.

Since events are objects that have an unapply method, we can expand the
code further:

&.unapply(m) match {
case Some((u, v)) =>
Get.unapply(u) match {
case true => Put.unapply(v) match {

case Some(x) => true
case None => false }

case false => false }
case None => false }

As we can see, the intermediate results produced by the unapply method of the &
operator are passed as arguments to the unapply methods of the corresponding
events. Since the Get event is parameter-less, its unapply method returns a
Boolean, telling whether it matches or not. The Put event, on the other hand,
takes a parameter; when the pattern matches, this parameter gets bound to a
concrete value that is produced by the unapply method.

The unapply method of a parameter-less event such as Get essentially checks
whether it has been invoked previously. The unapply method of an event that
takes parameters such as Put returns the argument of a previous invocation
(wrapped in Some), or signals failure if there is no previous invocation. In both
cases, previous invocations have to be buffered inside the event.

Firing join patterns. As mentioned before, executing the right-hand side of a
pattern that is part of a partial function amounts to invoking the apply method
of that partial function. Basically, this repeats the matching process, thereby
binding any pattern variables to concrete values in the pattern body. When firing
a join pattern, the events’ unapply methods have to dequeue the corresponding
invocations from their buffers. In contrast, invoking isDefinedAt does not have
any effect on the state of the invocation buffers. To signal to the events in
which context their unapply methods are invoked, we therefore need some way
to propagate out-of-band information through the matching. For this, we use
the argument m that is passed to the isDefinedAt and apply methods of the
partial function. The & operator propagates this information verbatim to its two
children (its unapply method receives m as argument and produces a pair with
two copies of m wrapped in Some). Eventually, this information is passed to the
events’ unapply methods.
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Implementation Details. Events are represented as classes that contain
queues to buffer invocations. The Event class is the super class of all synchronous
and asynchronous events:6

abstract class Event[R, Arg](owner: Joins) {
val tag = owner.freshTag()
val argQ = new Queue[Arg]
def apply(arg: Arg): R = synchronized {argQ += arg; invoke()}
def invoke(): R
def unapply(isDryRun: Boolean): Option[Arg] =
if (isDryRun && !argQ.isEmpty)
Some(argQ.front)

else if (!isDryRun)
Some(argQ.dequeue())

else None }

The Event class takes two type arguments R and Arg that indicate the result
type and parameter type of event invocations, respectively. Events have a unique
owner which is passed as argument of the primary constructor of the Event
class.7 An event can appear in several join patterns declared by its owner. The
tag field holds an identifier which is unique with respect to a given owner in-
stance; it is used to check the linearity of patterns (i.e. ensuring that an event
occurs at most once in a pattern).

Whenever the event is invoked via its apply method, we append the pro-
vided argument to the argQ. The abstract invoke method is used to run
synchronization-specific code; synchronous and asynchronous events differ mainly
in their implementation of the invoke method (we show a concrete implemen-
tation for synchronous events below). In the unapply method we test whether
matching occurs during a dry run. If it does not we dequeue an event invocation.

Synchronous events are implemented as follows:

abstract class SyncEvent[R, Arg] extends Event[R, Arg] {
val waitQ = new Queue[SyncVar[R]]
def invoke(): R = { val res = new SyncVar[R]
waitQ += res; owner.matchAndRun(); res.get }

def reply(res: R) = waitQ.dequeue().set(res) }

Synchronous events contain a logical queue of waiting threads, waitQ, which is
implemented using the implicit wait set of synchronous variables.8 The invoke
6 In our actual implementation the fact whether an event is parameter-less is factored

out for efficiency. Due to lack of space, we show a simplified class hierarchy.
7 To allow the short syntax for declaring events that we have seen before, the owner is

passed implicitly in the actual implementation. It is defined to be the current object
this of the pattern-declaring class that inherits from Joins. A detailed account of
implicit parameters in Scala is out of scope of this paper; the interested reader is
referred to the Scala language specification.

8 A SyncVar is an atomically updatable reference cell; it blocks threads trying to access
an uninitialized cell.
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method is run whenever the event is invoked. It creates a new SyncVar and
appends it to the waitQ. Then, the owner’s matchAndRun method is invoked to
check whether the event invocation triggers a complete join pattern. After that,
the current thread waits for the SyncVar to become initialized by accessing it. If
the owner detects (during owner.matchAndRun()) that a join pattern triggers,
it will apply the join, thereby re-executing the pattern match (binding variables
etc.) and running the join body. Inside the body, synchronous events are replied
to by invoking their reply method. Replying means dequeuing a SyncVar and
setting its value to the supplied argument. If none of the join patterns matches,
the thread that invoked the synchronous event is blocked (upon calling res.get)
until another thread triggers a join pattern that contains the same synchronous
event.

Thread-safety. Our implementation avoids races when multiple threads try
to match a join pattern at the same time; checking whether a join pattern
matches (and, if so, running its body) is an atomic operation. Notably, the
isDefinedAt/apply methods of the join set are only called from within the
synchronized matchAndRun method of the Joins class. The unapply methods
of events, in turn, are only called from within the matching code inside the
partial function, and are thus guarded by the same lock. The internal state of
individual events is updated consistently: the apply method is atomic, and the
reply method is called only from within join bodies which are guarded by the
owner’s lock. We don’t assume any concurrency properties of the argQ and waitQ
queues.

Optimization. Efficient join implementations represent patterns using bit
sets [3,17]. An event with tag n forms part of a pattern iff bit n is set in the
corresponding bit set. This representation allows one to efficiently check whether
an event invocation triggers a join pattern.

The above implementation cannot use such an optimization as is, since the
abstract PartialFunction class is the only way to interact with the set of join
patterns; for instance the number of patterns is not known a priori. However,
it is possible to gradually construct an efficient bit set representation during the
matching process. The idea is to keep track of event invocations while matching
a pattern. When a pattern matches, the tags of matched events give rise to a bit
set that uniquely represents the pattern. At the point where each pattern has
matched at least once, the bit sets are used to efficiently check for a match. If the
set of events with queued invocations is represented as a bit set ib, then invoking
an event with tag n triggers a pattern represented as pb iff pb ⊆ ib ∪ {n}.

To test the effectiveness of the above optimization, we compared the per-
formance of a bounded buffer implementation using our library without the
optimization with a second one using the optimized library. Concurrently read-
ing/writing 106 items from/to a bounded buffer of size 100 is about 28% faster
using the optimized library. However, this is only a first step towards an effi-
cient implementation. Further optimizations are a worthwhile topic for future
work.
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4.2 Implementation of Actor-Based Joins

Actor-based joins integrate with Scala’s pattern matching in essentially the same
way as the thread-based joins, making both implementations very similar. We
highlight how joins are integrated into the actor library, and how reply destina-
tions are supported.

In the Scala actors library, receive is a method that takes a
PartialFunction as a sole argument, similar to the join method defined pre-
viously. To make receive aware of join patterns, the abstract JoinActor class
overrides these methods by wrapping the partial function into a specialized par-
tial function that understands join messages. JoinActor also overrides send to
set the reply destination of a join message. When an actor executes a!msg, it
invokes the ! method of a. This method invokes a.send, implicitly passing the
reply channel of the sender actor as a second argument.

abstract class JoinActor extends Actor {
override def receive[R](f: PartialFunction[Any, R]): R =
super.receive(new JoinPatterns(f))

override def send(msg: Any, replyTo: OutputChannel[Any]) {
setReplyDest(msg, replyTo)
super.send(msg, replyTo) }

def setReplyDest(msg: Any, replyTo: OutputChannel[Any]) {...}}

JoinPatterns is a special partial function that detects whether its argument
message is a join message. If it is, then the argument message is transformed
to include out-of-band information that will be passed to the pattern matcher,
as is the case for events in the thread-based joins library. The boolean argu-
ment passed to the asJoinMessage method indicates to the pattern matcher
whether or not join message arguments should be dequeued upon successful pat-
tern matching. If the msg argument is not a join message, asJoinMessage passes
the original message to the pattern matcher unchanged, enabling regular actor
messages to be processed as normal.

class JoinPatterns[R](f: PartialFunction[Any, R])
extends PartialFunction[Any, R] {
def asJoinMessage(msg: Any, isDryRun: Boolean): Any =
...

override def isDefinedAt(msg: Any) =
f.isDefinedAt(asJoinMessage(msg, true))

override def apply(msg: Any) =
f(asJoinMessage(msg, false))

}

Recall from the implementation of synchronous events that thread-based joins
used constructs such as SyncVars to synchronize the sender of an event with the
receiver. Actor-based joins do not use such constructs. In order to synchronize
sender and receiver, every join message has a reply destination (which is an
OutputChannel, set when the message is sent in the actor’s send method) on
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which a sender may listen for replies. The reply method of a JoinMessage
simply forwards its argument value to this encapsulated reply destination. This
wakes up an actor that performed a synchronous send (a!?msg) or that was
waiting on a future (a!!msg).

5 Discussion and Related Work

Benton et al. [3] note that supporting general guards in join patterns is difficult
to implement efficiently as it requires testing all possible combinations of queued
messages to find a match. Side effects pose another problem. Benton et al. suggest
a restricted language for guards to overcome these issues. However, to the best of
our knowledge, there is currently no joins framework that supports a sufficiently
restrictive yet expressive guard language to implement efficient guarded joins.
Our current implementation handles (side-effect free) guards that only depend
on arguments of events that queue at most one invocation at a time.

Cω [3] is a language extension of C# supporting chords, linear combinations
of methods. In contrast to Scala Joins, Cω allows at most one synchronous
method in a chord. The thread invoking this method is the thread that eventually
executes the chord’s body. The benefits of Cω as a language extension over Scala
Joins are that chords can be enforced to be well-formed and that their matching
code can be optimized ahead of time. In Scala Joins, the joins are only analyzed
at pattern-matching time. The benefit of Scala Joins as a library extension is
that it provides more flexibility, such as multiple synchronous events. Russo’s C#
Joins library [17] exploits the expressiveness of C# 2.0’s generics to implement
Cω’s synchronization constructs. Piggy-backing on an existing variable binding
mechanism allows us to avoid problems with C# Joins’ delegates where the order
in which arguments are passed is merely conventional. Scala Joins extends both
Cω and C# Joins with nested patterns that can avoid certain redundancies by
generalizing events and patterns.

CCR [4] is a C# library for asynchronous concurrency that supports join pat-
terns without synchronous components. Join bodies are scheduled for execution
in a thread pool. Our library integrates with JVM threads using synchronous
variables, and supports event-based programming through its integration with
Scala Actors. Singh [18] shows how a small set of higher-order combinators
based on Haskell’s software transactional memory (STM) can encode expressive
join patterns. CML [16] allows threads to synchronize on first-class composable
events; because all events have a single commit point, certain protocols may not
be specified in a modular way (for example when an event occurs in several join
patterns). By combining CML’s events with all-or-nothing transactions, transac-
tional events [5] overcome this restriction but may have a higher overhead than
join patterns.

Synchronization in actor-based languages is a well-studied domain. Salsa [22]
is a Java language extension with support for actors. It introduces the notion of
a join continuation. However, join continuations are not to be mistaken with join
patterns: the former only allow an actor to synchronize on multiple replies to
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previously sent messages. Activation based on message sets [10] is more general
than joins since events/channels have a fixed owner, which enables important op-
timizations. Other actor-based languages allow for a synchronization style similar
to that supported by join patterns. For example, behavior sets in Act++ [13] or
enabled sets in Rosette [21] allow an actor to restrict the set of messages which it
may process. They do so by partitioning messages into different sets representing
different actor states. Joins do not make these states explicit, but rather allow
state transitions to be encoded in terms of sending messages. The novelty of
Scala Joins for actors is that such synchronization is integrated with the actor’s
standard message reception operation using extensible pattern matching. Recent
work by Sulzmann et al. [19] extends Erlang-style actors with receive patterns
consisting of multiple messages, which is very similar to our join-based actors.
The two approaches are complementary: their work focuses on providing a formal
matching semantics in form of Constraint Handling Rules whereas the emphasis
of our work lies on the integration of joins with extensible pattern matching;
Scala Joins additionally permits joins for standard (non-actor) threads that do
not have a mailbox.

6 Conclusion

We presented a novel implementation of join patterns based on extensible pattern
matching constructs of languages such as Scala and F#. The embedding into
general pattern matching provides expressive features such as nested patterns
and guards. The resulting programs are often as concise as if written in more
specialized language extensions. We implemented our approach as a Scala library
that supports join patterns with multiple synchronous events and guards and
furthermore integrated it with the Scala Actors concurrency framework without
changing the syntax and semantics of existing programs.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press, Cambridge (1986)

2. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

3. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C#.
ACM Trans. Program. Lang. Syst 26(5), 769–804 (2004)

4. Chrysanthakopoulos, G., Singh, S.: An asynchronous messaging library for C#. In:
Proc. SCOOL Workshop, OOPSLA (2005)

5. Donnelly, K., Fluet, M.: Transactional events. In: Proc. ICFP, pp. 124–135. ACM,
New York (2006)

6. Emir, B., Odersky, M., Williams, J.: Matching Objects with Patterns. In: Ernst,
E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 273–298. Springer, Heidelberg (2007)

7. Fournet, C., Le Fessant, F., Maranget, L., Schmitt, A.: JoCaml: A language for con-
current distributed and mobile programming. In: Jeuring, J., Jones, S.L.P. (eds.)
AFP 2002. LNCS, vol. 2638, pp. 129–158. Springer, Heidelberg (2003)



152 P. Haller and T. Van Cutsem

8. Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the join-
calculus. In: Proc. POPL, January 1996, pp. 372–385. ACM, New York (1996)

9. Fournet, C., Gonthier, G., Lévy, J.-J., Maranget, L., Rémy, D.: A Calculus of Mo-
bile Agents. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 406–421. Springer, Heidelberg (1996)

10. Frølund, S., Agha, G.: Abstracting interactions based on message sets. In: Cian-
carini, P., Nierstrasz, O., Yonezawa, A. (eds.) ECOOP-WS 1994. LNCS, vol. 924,
pp. 107–124. Springer, Heidelberg (1995)

11. Haller, P., Odersky, M.: Actors that unify threads and events. In: Murphy, A.L.,
Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 171–190. Springer,
Heidelberg (2007)

12. Halstead Jr., R.H.: Multilisp: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. 7(4), 501–538 (1985)

13. Kafura, D., Mukherji, M., Lavender, G.: ACT++: A Class Library for Concur-
rent Programming in C++ using Actors. J. of Object-Oriented Programming 6(6)
(1993)

14. Odersky, M.: Functional Nets. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782,
pp. 1–25. Springer, Heidelberg (2000)

15. Okasaki, C.: Views for Standard ML. In: Proc. SIGPLAN Workshop on ML (1998)
16. Reppy, J.H.: CML: A higher-order concurrent language. In: Proc. PLDI, pp. 293–

305. ACM Press, New York (1991)
17. Russo, C.V.: The Joins concurrency library. In: Proc. PADL, pp. 260–274 (2007)
18. Singh, S.: Higher-order combinators for join patterns using STM. In: Proc. TRANS-

ACT Workshop, OOPSLA (2006)
19. Sulzmann, M., Lam, E.S.L., Van Weert, P.: Actors with multi-headed message re-

ceive patterns. In: COORDINATION 2008. LNCS, vol. 5052. Springer, Heidelberg
(2008)

20. Syme, D., Neverov, G., Margetson, J.: Extensible pattern matching via a
lightweight language extension. In: Proc. ICFP, pp. 29–40. ACM Press, New York
(2007)

21. Tomlinson, C., Singh, V.: Inheritance and synchronization with enabled-sets. ACM
SIGPLAN Notices 24(10), 103–112 (1989)

22. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with
SALSA. ACM SIGPLAN Notices 36(12), 20–34 (2001)

23. von Itzstein, G.S., Kearney, D.: Join Java: An alternative concurrency semantic for
Java. Technical report, University of South Australia (2001)

24. Wadler, P.: Views: A way for pattern matching to cohabit with data abstraction.
In: Proc. POPL, pp. 307–313 (1987)

25. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented concurrent program-
ming in ABCL/1. In: Proc. OOPSLA, pp. 258–268 (1986)



Advice for Coordination

Chris Hankin1, Flemming Nielson2,
Hanne Riis Nielson2, and Fan Yang2

1 Department of Computing, Imperial College London
clh@imperial.ac.uk

2 Department of Informatics, Technical University of Denmark
{nielson,riis,fy}@imm.dtu.dk

Abstract. We show how to extend a coordination language with sup-
port for aspect oriented programming. The main challenge is how to
properly deal with the trapping of actions before the actual data have
been bound to the formal parameters. This necessitates dealing with
open joinpoints – which is more demanding than the closed joinpoints
in more traditional aspect oriented languages like AspectJ. The useful-
ness of our approach is demonstrated by mechanisms for discretionary
and mandatory access control policies, as usually expressed by reference
monitors, as well as mechanisms for logging actions.

1 Introduction

Motivation. Software development faces the challenge of guaranteeing the com-
pliance of software to security policies even when the software has been developed
without adequate considerations of security. This situation might arise due to
lack of skills of the application programmers, due to lack of trust in the applica-
tion programmers or even due to modifications of the security properties after
the original development of the sofware (e.g. to cater for new needs of the users).

Taking access control as an example, a number of schemes for discretionary
access control (e.g. based on capability lists or access control lists) and manda-
tory access control (e.g. the Bell LaPadula policy for confidentiality) have been
proposed for controlling the execution of software [13]. As an example, the at-
tempt to read from a file where the program has insufficient access rights should
not be successful. As another example, transferring data from a file with high
security classification to a file with low security classification should also not be
successful.

The traditional approach to enforcing such security policies is through a refer-
ence monitor [13] that dynamically tracks the execution of the program; it makes
appropriate checks on each basic operation being performed, either blocking the
operation or allowing it to proceed. In concrete systems this is implemented as
part of the operating system or as part of the interpreter for the language at hand
(e.g. the Java byte code interpreter); in both cases as part of the trusted com-
puting base. When modelled using operational semantics, a reference monitor
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is usually a side condition to an inference rule either preventing or allowing the
rule to be applicable. Sometimes it is found to be more cost effective to system-
atically modify the code so as to explicitly perform the checks that the reference
monitor would otherwise have imposed; the term inlined reference monitors [9]
has been coined for this.

An interesting approach to separation of concerns when programming sys-
tems is presented by the notion of aspect oriented programming [15,16]. The
enforcement of security policies is an obvious candidate for such separation of
concerns, e.g. because the security policy can be implemented by more skilled
or more trusted programmers, or indeed because security considerations can be
retrofitted by (re)defining advice to suit the (new) security policy. This requires
that a notion of aspects is supported by the programming language. The de-
tailed definition of the advice will then make decisions about how to possibly
modify the operation being trapped. In concrete systems this calls for a modified
language (like AspectJ [3] for Java) that supports the use of aspects. When mod-
elled using operational semantics a notion of trapping operations and applying
advice needs to be incorporated. Usually, it is found to be more cost effective to
systematically modify the code so as to explicitly perform the operations that
the advice would otherwise have imposed; the term weaving (e.g. [3]) has been
coined for this.

In many cases the aspect oriented approach provides a more flexible way to
deal with modifications in security policies [8,10,11,21,24] than the use of reference
monitors [20]. It facilitates to use frameworks for security policies that may be well
suited to the task at hand but that are perhaps not of general applicability and
therefore not appropriate for incorporating into a reference monitor. We should
like to refer to this process as internalising the reference monitor into a piece of
advice. An example would be the enforcement of policies related to information
flow or policies targeting the explicit needs of individuals; in particular this applies
to the modelling of discretionary and mandatory access control policies [13] as well
as mechanisms for logging actions. Since we do not offer priorities on advice we
shall assume that the provision of advices is a priviledged operation.

Contribution. Our main contribution is the integration of aspects into a coordi-
nation language that facilitates distribution of data, mobility of code, and the
ability to work with dynamically evolving, open systems. Rather than invent a
completely new language, we define a small kernel language for mobile agents
based on KLAIM [5,18,19]. We present this language in Section 2; as in KLAIM,
processes and action prefixes (LINDA’s read, in, and out) are located.

In our extension action prefixes are the potential joinpoints – the places where
execution can be interrupted by a piece of advice. We take the approach that
input actions should be trapped before a concrete tuple has been selected for
input. This is because we find that the alternative approach, to trap after a
concrete tuple has been selected for input, would constitute a covert channel
[12,13]; indeed, the presence or absence of a tuple in the tuple space might
either enable or prevent the advice to trap the action and this would amount to
visible behaviour bypassing the security policy.
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Trapping an input action before a concrete tuple has been selected for input
requires our ability to deal with joinpoints that contain constructs for binding
new variables – we shall call these open joinpoints. This is considerably more
challenging than the closed joinpoints of traditional aspect oriented language like
AspectJ [15]. To be more concrete, when we trap a method call in AspectJ we
trap the actual call, i.e. the method name with its actual parameters, rather than
the definition of the method, i.e. the method name with its formal parameters;
in other words AspectJ traps closed joinpoints rather than open joinpoints. We
show how to solve this challenge in Section 3 and provide a series of examples
in Section 4.

The design space for how to introduce advice into coordination languages
is quite broad. We have aimed for a modest approach being inspired by the
operations of reference monitors; they generally allow to block an action or to
let it proceed. A number of extensions can be foreseen – some of these are rather
straightforward whereas others pose considerable difficulties; as a case in point it
is nontrivial to add advice for ignoring or redirecting a given action. We discuss
parts of the design space in Section 5.

2 KLAIM

The syntax of our fragment of KLAIM is defined in Table 1. We restrict ourselves
to a core language for presentational purposes; it is straightforward to add the
actions newloc and eval but we will not need these for the examples. Despite
the rather modest selection of operations in our language it is still useful for
quite a variety of applications related to business processes and similar workflow
applications.

A net N is a parallel composition of located processes or located tuples. For
simplicity, components of tuples can be location constants only. Nets must be
closed, meaning that all variables must be in scope of a defining occurrence.

A process P is a parallel composition of processes, a guarded sum of action
prefixed processes, or a replication (indicated by the ∗ operator). The guarded
sum

∑
i ai.Pi is written 0 if the index set is empty.

A tuple can be output to a location, input from a location, or read from a
location (meaning that it is not removed). Parameters can be location constants
l, defining occurrences of location variables !u, and applied occurrences of a
location variable u. We use � for location expressions (i.e. location variables and
constants); and in patterns we use �λ which in addition to location expressions
also include defining occurrences of locations. The scope of a defining occurrence
is the entire process to the right of the occurrence.

Example 1. Assume that the location YP, for Yellow Pages, contains pairs of
values representing names and phone numbers and that the location DB, for the
database of a phone company, contains triples of values representing a particular
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Table 1. KLAIM Nets and Processes Syntax

N ∈ Net N ::= N1 || N2 | l :: P | l :: 〈 −→
l 〉

P ∈ Proc P ::= P1 | P2 |
∑

i ai.Pi | ∗P

a ∈ Act a ::= out(
−→
� )@� | in(

−→
�λ)@� | read(

−→
�λ)@�

�, �λ ∈ Loc � ::= u | l �λ ::= � | !u

phone call, that is, the phone number of the caller, the cost of the call and the
name of the recipient. Consider the process:

User :: read(!name, !telno)@YP.
read(telno, !val1, !val2)@DB.
out(val1)@name

Here User will first read a pair from the location YP and assign its two compo-
nents to the variables name and telno. Next the location DB is consulted to read
a triple whose first component equals the value of telno and the corresponding
second component is assigned to the variable val1 and the corresponding third
component is assigned to the variable val2. The final construct will write the
first value to the location associated with name.

Well-formedness of Locations and Actions. To express the well-formedness con-
ditions we shall introduce functions bv and fv for calculating the bound, resp.
free, variables of the various kinds of locations that may occur in actions. The def-
initions are standard, in particular, bv(l, u, !v) = {v} whereas fv(l, u, !v) = {u}.

An input action is well-formed if its sequence
−→
�λ = �1, · · · , �k (for k ≥ 0) of

locations is well-formed and this is the case when the following two conditions
are fulfilled:

∀i, j ∈ {1, · · · , k} : i �= j ⇒ bv(�λ
i ) ∩ bv(�λ

j ) = ∅ and

bv(
−→
�λ) ∩ fv(

−→
�λ) = ∅

The first condition demands that we do not use multiple defining occurrences
of the same variable in an action. The second condition requires that bound
variables and free variables cannot share any name in a single action. Thus we
shall disallow in(!u, u)@l as well as in(!u, !u)@l.

Semantics of KLAIM. The semantics is given by a one-step reduction relation
on nets and is defined in Table 3. We make use of the structural congruence
on nets; this is an associative and commutative (with respect to ||) equivalence
relation and the interesting cases are defined in Table 2.

The rule for out is rather straightforward; it uses the fact that the action
selected may be part of a guarded sum to dispense with any other alternatives.



Advice for Coordination 157

Table 2. KLAIM Structural Congruence

l :: P1 | P2 ≡ l :: P1 || l :: P2 l :: ∗P ≡ l :: P | ∗P

N1 ≡ N2

N || N1 ≡ N || N2

The rules for in and read only progress if the formal parameters
−→
�λ match the

candidate tuple
−→
l . The details of the matching operation are given in Table 4

(explained below); if the matching succeeds and produces a substution then
the rule applies; if no substitution is produced (due to a fail in part of the
computation) the rule does not apply.

The matching operation of Table 4 returns a substitution θ being a (poten-
tially empty) list of pairs of the form [l/u]; if the list is empty it is denoted by
id. Notice that the definition does not treat location variables because tuples in
the tuple space may only contain location constants and the reaction semantics
is restricted to closed nets.

Example 2. Continuing Example 1 we may consider the following net and some
steps of its execution:

YP :: 〈Alice, 55010〉 || YP :: 〈Bob, 58266〉
|| DB :: 〈55010, 100, Bob〉 || DB :: 〈58266, 1000, Alice〉
|| User :: ∗ read(!name, !telno)@YP. read(telno, !val1, !val2)@DB. out(val1)@name
→

YP :: 〈Alice, 55010〉 || YP :: 〈Bob, 58266〉
|| DB :: 〈55010, 100, Bob〉 || DB :: 〈58266, 1000, Alice〉
|| User :: read(55010, !val1, !val2)@DB. out(val1)@Alice

| ∗ read(!name, !telno)@YP. read(telno, !val1, !val2)@DB. out(val1)@name
→

YP :: 〈Alice, 55010〉 || YP :: 〈Bob, 58266〉
|| DB :: 〈55010, 100, Bob〉 || DB :: 〈58266, 1000, Alice〉
|| User :: out(100)@Alice

| ∗ read(!name, !telno)@YP. read(telno, !val1, !val2)@DB. out(val1)@name
→

YP :: 〈Alice, 55010〉 || YP :: 〈Bob, 58266〉
|| DB :: 〈55010, 100, Bob〉 || DB :: 〈58266, 1000, Alice〉
|| Alice :: 〈100〉
|| User :: ∗ read(!name, !telno)@YP. read(telno, !val1, !val2)@DB. out(val1)@name

In the first step User spawns a thread and reads the pair 〈Alice, 55010〉 from YP;
the bindings of the variables name and telno are reflected in the continuation of
the thread. In the second step it is only possible to read a triple from DB that
has 55010 as its first component; this results in binding val1 and val2 to 100 and
Bob, respectively. The last step will then complete the thread by outputting the
value 100 to Alice.
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Table 3. KLAIM Reaction Semantics (on closed nets)

ls :: out(
−→
l )@l0.P + · · · → ls :: P || l0 :: 〈−→l 〉

ls :: in(
−→
�λ)@l0.P + · · · || l0 :: 〈−→l 〉 → ls :: Pθ if match(

−→
�λ;

−→
l ) = θ

ls :: read(
−→
�λ)@l0.P + · · · || l0 :: 〈−→l 〉 → ls :: Pθ || l0 :: 〈−→l 〉 if match(

−→
�λ;

−→
l ) = θ

N1 → N ′
1

N1 || N2 → N ′
1 || N2

N ≡ N ′ N ′ → N ′′ N ′′ ≡ N ′′′

N → N ′′′

Table 4. KLAIM Pattern Matching of Templates against Tuples

match(〈〉; 〈〉) = id

match(〈�′λ1 , · · · , �′λk 〉; 〈l1, · · · , lk〉) = let θ = case �′λ1 of
l′1 : if l′1 = l1 then id else fail
!u : [l1/u]

in θ ◦ match(〈�′λ2 , · · · , �′λk 〉; 〈l2, · · · , lk〉)

Example 3. Returning to Example 1 we may want to impose the condition that
only some users are allowed to access the location DB containing secret data
whereas all users are allowed to read from the location YP containing only public
data. This can be expressed with discretionary access control using an access
control matrix DAC containing triples (s, o, a) identifying which subjects s can
perform which operations a on which objects o. We may thus equip the semantics
of KLAIM with a reference monitor that will consult DAC whenever an action is
executed; in particular, whenever User is performing a read action on a location
l it will check whether (User, l, read) ∈ DAC and only proceed if this is the case.
Similarly when performing an out action on some location l it will check whether
(User, l,out) ∈ DAC before proceeding.

A comparable policy can be imposed by a reference monitor based on manda-
tory access control. Here security levels are assigned to subjects and object. In the
simple case of just two security levels we may give DB the level high and YP the
level low. The Bell-LaPadula security policy will then impose that a low user can
only perform read actions on YP whereas out actions can be performed on any
location. A high user, on the other hand, will be able to perform read actions on
both YP and DB. The out action can only be performed on high locations unless
a notion of declassification is imposed that will lower the users’ security level.

3 AspectK

Syntax. The syntax of AspectK extends the syntax of KLAIM (Table 1) as
shown in Table 5. A system S consists of a net N prefixed by a sequence of
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Table 5. AspectK Syntax

S ∈ System S ::= let −→asp in N

asp ∈ Asp asp ::= A[cut] � body
body ∈ Advice body ::= case (cond) sbody ; body | sbody

sbody ::= as break | as proceed as
as ∈ Act∗ as ::= a.as | ε

cond ∈ BExp cond ::= test(
−→
�λ)@� | �1 = �2 | cond1 ∧ cond2 | ¬ cond

cut ∈ Cut cut ::= � :: a

�λ ∈ Loc �λ ::= � | !u | ?u

aspect declarations. An aspect declaration takes the form A[cut] � body, where
A is the name of the aspect, cut is the action to be trapped by A and body
specifies the way it should be handled.

The keyword break indicates that the original action is suppressed and pre-
vents the process from being further executed, whereas the keyword proceed
allows the original action to execute. In case of multiple aspects that trap an
action, all the before actions are executed in declaration order, then the original
action (in case of no break), and finally the after actions in reverse declaration
order. The keyword break takes precedence over the keyword proceed.

The cond is similar to a standard boolean expression, which will be evaluated
to true or false. The primitive test(

−→
�λ)@� will only be evaluated to true in case

that there is a tuple that matches
−→
�λ in the tuple space at location �.

A cutpoint cut is simply a cut action accompanied by location �. For the use
in cut actions we have extended the definition of �λ to incorporate a new location
expression ?u that is intended to trap both !u and l occurring in actions; this
will be made precise in the definition of the check function in Table 9.

Well-formedness of Cuts. We define cl(cut) that generates a list of entities in-
volved in a cut. For example:

cl(ls :: in(!x, y, ?z)@l0) = 〈ls, x, y, z, l0〉

In addition to the well-formedness conditions for KLAIM, we require that the
variables of cl(cut) are pairwise distinct. When !u or ?u is used in a cut pattern,
u should only occur in the after actions (actions that occur after proceed); in
particular u should neither be used in any before action nor in any conditionals.
No use of ?u will be allowed inside tests (use !u instead).

Semantics of AspectK. The semantics is given by a one-step reduction relation
on well-formed systems and nets. The interesting rules are defined in Table 6 –
the rule for reduction on nets and a congruence rule (see Table 3) are omitted –
and we also make use of the structural congruence on nets defined in Table 2.
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The rules for the three actions come in pairs, as is illustrated in Table 6. One
rule takes care of the action when no advice is allowed to interrupt it; this is
syntactically denoted by underlining.

The rules for the non-underlined actions all take the same shape and make
use of the function Φ defined in Table 7. The result of Φf (ΓA; � :: a) is a sequence
of actions trapping � :: a; ΓA is a global environment of aspects. The index f is

Table 6. Reaction Semantics (on closed nets)

N → N ′ (where globally ΓA = −→asp)

let −→asp in N → let −→asp in N ′

ls :: stop.P + · · · → ls :: 0

ls :: out(
−→
l )@l0.P + · · · → ls :: P || l0 :: 〈−→l 〉

ls :: in(
−→
�λ)@l0.P + · · · || l0 :: 〈−→l 〉 → ls :: Pθ if match(

−→
�λ;

−→
l ) = θ

ls :: read(
−→
�λ)@l0.P + · · · || l0 :: 〈−→l 〉 → ls :: Pθ || l0 :: 〈−→l 〉 if match(

−→
�λ;

−→
l ) = θ

ls :: Φproceed(ΓA; ls :: out(
−→
l )@l0).P → N

ls :: out(
−→
l )@l0.P + · · · → N

ls :: Φproceed(ΓA; ls :: in(
−→
�λ)@l0).P || N ′ → N

ls :: in(
−→
�λ)@l0.P + · · · || N ′ → N

ls :: Φproceed(ΓA; ls :: read(
−→
�λ)@l0).P || N ′ → N

ls :: read(
−→
�λ)@l0.P + · · · || N ′ → N

Table 7. Trapping Aspects: Step 1

Φf (A[cut] � body, ΓA; � :: a) = case trap(cut, � :: a) of fail : Φf (ΓA; � :: a)

θ : κΓA,�::a
f (body θ)

Φf (ε; � :: a) = case f of proceed : a
break : stop

Table 8. Trapping Aspects: Step 2

trap(cut, � :: a) = case (cut, � :: a) of

(�s :: out(
−→
� )@�0, ls :: out(

−→
l )@l0) : check(〈�s,

−→
� , �0〉, 〈ls,

−→
l , l0〉)

(�s :: in(
−→
�λ)@�0, ls :: in(

−→
�′λ)@l0) : check(〈�s,

−→
�λ, �0〉, 〈ls,

−→
�′λ, l0〉)

(�s :: read(
−→
�λ)@�0, ls :: read(

−→
�′λ)@l0) : check(〈�s,

−→
�λ, �0〉, 〈ls,

−→
�′λ, l0〉)

otherwise fail
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Table 9. Trapping Aspects: Step 3

check(〈〉, 〈〉) = id

check(〈�λ
1 , �λ

2 , · · · , �λ
k〉, 〈�′λ1 , · · · , �′λk 〉) = let θ = case (�λ

1 , �′λ1 ) of
(!u, !u′) : [u′/u]
(?u, !u′) : [u′/u]
(?u, l′) : [l′/u]
(u, l′) : [l′/u]
(l, l′) : if l = l′ then id else fail

otherwise fail
in θ ◦ check(〈�λ

2 , · · · , �λ
k〉, 〈�′λ2 , · · · , �′λk 〉)

Table 10. Trapping Aspects: Step 4

κΓA,�::a
f (case cond sbody ; body) = case B(cond) of tt : κΓA,�::a

f (sbody)

ff : κΓA,�::a
f (body)

κΓA,�::a
f (sbody) = case sbody of as1 proceed as2 : as1.Φf (ΓA; � :: a).as2

as break : as.Φbreak(ΓA; � :: a)

Table 11. Trapping Aspects: Step 5

B(test(
−→
�λ)@l) =

⎧
⎪⎨

⎪⎩

tt if there exists a tuple
−→
l at location l

such that match(
−→
�λ;

−→
l ) 
= fail

ff otherwise

B(l1 = l2) =

{
tt if l1 = l2
ff otherwise

B(cond1 ∧ cond2) =

{
tt if B(cond1) = tt and B(cond2) = tt
ff if B(cond1) = ff or B(cond2) = ff

B(¬cond) =

{
tt if B(cond) = ff
ff if B(cond) = tt

either proceed or break. In general f will be break if at least one “break”
advice applies, otherwise it will be proceed. In case of proceed the action a is
eventually emitted, otherwise it will be dispensed with and be replaced with the
stop action, killing all the subsequent actions. Recall that advice is searched in
the order of declaration and applies in a parenthesis-like fashion.

The function Φ uses an auxiliary function trap (see Table 8) to step through
the aspects in the aspects environment. In each case, trap checks whether the
cut matches the action; the check is accomplished by using a further auxiliary
function, check (see Table 9), which either fails or produces a substitution for the
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variables occurring in the cut. The check function is essentially an extension of
the match function (see Table 4) to accommodate the matching of cut patterns.
If a cut matches a normal action, we use κΓA,�::a

f (see Table 10) to recursively
search for further advices; body θ is computed in the obvious way.

The κΓA,�::a
f function processes the advice associated with a matching cut.

The first clause in the definition processes conditional advices using the function
B, displayed in Table 11, to evaluate the condition. The second clause deals
with non-conditional advices which are either proceed or break advices. In the
former case, the before actions and after actions sandwich a recursive call to
Φ to find further applicable aspects. In the latter case, the before actions are
performed and Φ is called recursively to find further applicable aspects taking
care to record the fact that a break has been encountered. Eventually, when
all aspects in the aspect environment have been considered, the second clause
of Φ is invoked (see Table 7). If no break has been encountered, the underlined
action is emitted, otherwise a stop is emitted. In the latter case, the program
will terminate after all of the before actions have been executed.

4 Example Programs

We now show a series of examples to illustrate how AspectK can be used to
encode various security policies.

Example 4. The discretionary access control of Example 3 can be imposed by
introducing a location DAC containing two kinds of triples

– 〈user, DB, read〉 for selected users, and
– 〈user, name,out〉 for the same selected users and all names.

The following aspect declarations will then impose the desired requirements:

Aread
DAC [u :: read(?x, ?y, ?z)@DB] � case(test(u, DB, read)@DAC)

proceed;
break

Aout
DAC[u :: out(z)@l] � case(test(u, l,out)@DAC)

proceed;
break

The first action read(!name, !key)@YP of User in Examples 1 and 2 will not be
trapped by any of the aspects so it will simply be performed resulting in binding
Alice to name and 55010 to telno as in Example 2.

The aspect Aread
DAC will trap the second action in Examples 1 and 2 which now is

read(55010, !val1, !val2)@DB

The resulting substitution is [User/u, 55010/x, val1/y, val2/z] and we are eval-
uating the condition test(User, DB, read)@DAC. If this test evaluates to false
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then the advice break is taken and terminates the execution. Alternatively, we
proceed and perform the action read(55010, !val1, !val2)@DB thereby giving rise
to the binding of 100 to val1 and Bob to val2.

Finally, the aspect Aout
DAC will trap the last action which is now out(100)@Alice;

also here the test will succeed and the proceed advice will be selected so that
the original out is executed.

Using aspects it is easy to modify the access control policy so as to allow a
user to access his own entries in DB even though he does not have access to the
complete database. We simply modify the aspect Aread

DAC to become

Aread
DAC−1[u :: read(!x, ?y, ?z)@DB]

� break

Aread
DAC−2[u :: read(x, ?y, ?z)@DB]

� case(test(u, DB, read)@DAC ∨ test(u, x)@YP)
proceed;
break

Example 5. To model the mandatory access control policy of Example 3 we
introduce a location MAC with the following pairs:

– 〈YP, low〉 reflecting that the phonebook has low security level,
– 〈DB, high〉 reflecting that the customer database has high security level,
– 〈s, low〉 for all users and names s with low security level, and
– 〈s, high〉 for all users and names s with high security level.

We now consider the Bell-LaPadula security policy in a setting where both sub-
jects and objects have fixed security levels. The first part of the policy states
that a subject is allowed to read or input data from any object provided that
the object’s security level dominates that of the object; this is captured by the
following aspects (which enforce no read-up):

Aread2
MAC [u :: read(?x, ?y)@l] � case(¬(test(u, low)@MAC ∧ test(l, high)@MAC))

proceed;
break

Aread3
MAC [u :: read(?x, ?y, ?z)@l] � case(¬(test(u, low)@MAC ∧ test(l, high)@MAC))

proceed;
break

The second part of the policy, the star property, allows a subject to write to
any object provided that the security level of the object dominates that of the
subject. This is captured by the following aspect (enforcing no write-down):

Aout
MAC[u :: out(z)@l] � case(¬(test(u, high)@MAC ∧ test(l, low)@MAC))

proceed;
break

With these aspects in place a user with low security level will only be able to
perform the action read(!name, !key)@YP; once he attempts doing the action
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read(key, !val1, !val2)@DB the advice break will stop the execution. A user
with high security level will be able to perform both of these actions but may be
stopped at the third action out(val)@name if the security level of the location
bound to name turns out to be low.

In order to allow a high user to write to a low name we may introduce declas-
sification of security levels. To keep things simple we may do so by introducing
a billing location that does not need to adhere to the security policy and replace
the process by:

User :: read(!name, !key)@YP.
read(key, !val1, !val2)@DB.
out(name, val1, val2)@Billing

|| Billing :: in(!n, !v1, !v2)@Billing. out(v1)@n

We add the pair 〈Billing, high〉 to the MAC location thereby allowing all high
users to output to Billing; we also modify the aspect for out actions to ensure
that they are always allowed to proceed at the Billing location:

Aout
MAC[u :: out(z)@l] � case(¬(test(u, high)@MAC ∧ test(l, low)@MAC)

∨(u = Billing))
proceed;
break

Example 6. As a final example, which illustrates the need for actions both before
and after proceed we define an aspect which maintains a log of read action on
DB:

ALOG[u :: read(?x, ?y, ?z)@DB] � in(sem)@semaphore
proceed
out(u, x, y, z)@logfile.
out(sem)@semaphore

We use a semaphore to ensure that the reads and the updating of the log file
are kept in lock step, meaning that at any time at most one read action has been
performed but still needs to be logged. The before action grabs the semaphore,
proceed allows the read to be performed and the parameters that are bound in
the read are recorded in the log file before the semaphore is released. In a similar
way we can log out actions.

5 Conclusion

Summary. We have shown how to extend a coordination language with support
for aspect oriented programming. While we have only performed the technical
development for a fragment of KLAIM we do believe that our approach and our
findings would apply to a larger class of coordination languages.

A distinguishing feature of coordination languages with respect to object ori-
ented languages and web service languages [7] is the need to deal with open
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joinpoints, i.e. joinpoints that contain mechanisms for binding variables. Sim-
ilar considerations would apply if we were to incorporate aspects into process
algebras that, like the π-calculus, allow a notion of open input (or input from
the environment) but would not be necessary for calculi without this feature
[1,6,14,22,23]. This calls for considerable care in designing a notion of advice
where input actions are trapped before a concrete tuple has been selected for in-
put. We argued in the Introduction that the more standard choice of trapping an
action after a concrete tuple has been selected would constitute a covert channel
in the presence of open joinpoints. Our technical solution to this challenge was
presented in Section 3 and we believe it to be applicable to open joinpoints in
general.

In our development we focused on just two types of basic advice, break and
proceed, together with actions performed before or after the advice (in order
to obtain some of the benefits of around advice). We showed by means of ex-
amples that our approach is sufficiently flexible for defining aspects for enforcing
discretionary and mandatory access control policies as well as mechanisms for
logging actions. As argued in the Introduction we find this to be both a more
flexible and less error-prone way of accomodating new security policies. Also we
only considered the possibility of fixed global advice applicable at all locations.

There are different views as to whether the actions generated by an advice
should also be subject to further advice. Throughout the development we have
taken the view that this is indeed desirable. But it is straightforward to modify
Table 10 to use underlined before and after actions so as to accommodate the
alternative view.

Similarly, the use of a global test is often considered hard to implement be-
cause of the need to synchronise the whole network [18]. In our examples we
have taken the view that we only perform tests on special persistent databases.

We now discuss the possibility of extending our design.

Types of advice. We did consider the incorporation of an ignore advice, as is
commonly expressible in aspect oriented object oriented languages, but some-
what surprisingly found this to be a challenging extension.

To illustrate the problems consider the following advice

AIGNORE[u :: read(!v)@lpriv] � ignore

for simply ignoring inputs from a private location lpriv. The problem with
this definition is that it might be trapping a read action occurring in the
following process l :: read(!w)@lpriv .out(w)@lprint which would then become
l : out(w)@lprint that contains a free variable; however, our semantics does not
ascribe meaning to such processes!

Even a somewhat more useful advice

AREDIRECT[u :: read(!v)@lpriv] � ignore u :: read(!v)@lsandbox

for redirecting inputs from a private location lpriv to a sandbox lsandbox is prob-
lematic. Once again consider the program l :: read(!w)@lpriv.out(w)@lprint that
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is intended to become l :: read(!w)@lsandbox.out(w)@lprint. The problem is that
our current notion of substitution does not achieve this effect: while we can bind
v to w to obtain the substitution [w/v], we would not normally let the substi-
tution change the defining occurrence !v in u :: read(!v)@lsandbox to !w so as to
yield the desired u :: read(!w)@lsandbox.

This can be solved by suitable extensions of our approach; in particular we
can introduce special variables, e.g. β, that can be substituted also in defining
occurrences and write

AREDIRECT[u :: read(!β)@lpriv ] � ignore u :: read(!β)@lsandbox

Then the program l :: read(!w)@lpriv.out(w)@lprint would correctly be trans-
formed to l :: read(!w)@lsandbox.out(w)@lprint.

Local or global advice. For simplicity we have taken an approach where all advice
is given in advance and is global in scope. It would be worthwhile to be able to
introduce new pieces of advice and to limit the scope of its applicability. Indeed,
it might be natural to consider the aspect environment to be distributed and
associated with locations. In that case it would be appropriate to extend the
syntax with a newloc(u : Γ ) construct with inference rule:

l ::Γ newloc(u : Γ ′).P → l ::Γ P [l′/u] || l′ ::Γ
′
0 with l′ fresh

This would constitute a static treatment of scoped advice unlike the dynamic
treatment in CaesarJ [2].

This would be useful when dealing with the eval action. Here we would extend
the syntax of processes with a process identifier X that could match an arbitrary
process. Then we might write an advice for executing a process in a sandbox as
follows:

ASANDBOX[u ::γ eval(X)@lsensitive] �
newloc(usandbox : γ[ABOXREAD[u ::γ

′
out(v)@w] � u ::γ

′
out(v)@usandbox])

ignore
u ::γ eval(X)@usandbox

When executing a program l ::Γ eval(P )@lsensitive.P
′ the advice transforms it

to a process that evaluates the process in a confined location and redirects all
outputs to a confined location.

Clearly a number of additional extensions can be contemplated. For example
we might want to have more powerful pointcut languages [4,17] allowing patterns
that bind over a number of parameters (in order to avoid having separate advice
for each arity of the operations) or giving priorities to advice. However, our goal
was to demonstrate both the need to, and the possibility of, dealing with open
joinpoints.
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Abstract. Reo is an exogenous coordination language based on a calcu-
lus of channel composition. Different formal models have been developed
for this language. In this paper, we present a new approach to modeling
and analysis of Reo connectors using Alloy which is a lightweight model-
ing language based on first-order relational logic. We provide a reusable
library of Reo channels in Alloy that can be used to create a model of
a Reo connector in Alloy. The model is simple and reflects the original
structure of the connector. Furthermore, the model of a connector can
be reused as a component for constructing more complex connectors.
Using the Alloy Analyzer tool, properties expressed as predicates can be
verified by automatically analyzing the execution traces of the Reo con-
nector. We handle the context-sensitive behavior of channels as well as
optional constraints on the interactions with environment. Our composi-
tional model can be used as an alternative to other existing approaches,
and is supported by a well known tool with a rich set of features such as
counterexample generation.

1 Introduction

The concept of “coordination” has resulted to a new class of models, formalisms
and mechanisms for describing concurrent and distributed computations. A co-
ordination language used to develop a coordination model is able to integrate
a set of possibly heterogeneous components together [15]. Reo is a coordination
language based on components and connectors [2]. It offers a way for composi-
tional construction of systems out of black-box components. To achieve this, Reo
provides a compositional mechanism to construct various connectors (commonly
known as Reo circuits). This is based on the notion of channel as primitive con-
nectors from which more complex ones are constructed. We will review basic
concepts of Reo in Sect. 3.1.
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As the main use of coordination languages is in modeling reactive and concur-
rent systems, the problem of verification of models becomes an important issue,
because in these systems correctness is much harder to verify manually, or with
testing. Our goal is to provide a method to model and analyze Reo connectors
using Alloy, which is a lightweight modeling language, based on first-order re-
lational logic [8]. It is supported by an efficient tool called Alloy Analyzer [1]
that will serve as the analysis tool in our method. We briefly review the Alloy
modeling language in Sect. 3.2.

The basic idea of our method is to model the behavior of a Reo connector
by the set of all execution traces of the connector. Each trace is a bounded
sequence of states. In our method, the structure of a Reo connector is constructed
compositionally, from smaller connectors (which are ultimately basic channels).
Each channel imposes a constraint on the states of the trace. Other constraints
are the facts that specify the behavior of the environment of the circuit. We
will explain our modeling method in more detail in Sect. 4. For the sake of
simplicity, our method ignores the values of data passed along Reo channels,
and just considers data flow, though it can be extended to handle data values
too.

The modular structure of Alloy allows us to separate the definitions of prim-
itive Reo constructs from the description of a circuit. We have provided the
definitions of a set of Reo connectors in a module named Relloy [16] that can be
used as a reusable library when modeling various circuits. In Sect. 5.1, we will
see how to describe a Reo circuit using our method. To analyze a Reo circuit,
the modeler provides the properties to be checked in terms of first-order predi-
cate logic formulas, and the Alloy Analyzer automatically checks the properties
using a SAT solver. This way of analysis is not “model checking” and is based on
checking all execution traces of at most a specified number of states. The traces
are generated automatically, satisfying the constraints imposed by the channels
and other facts in the model. Analyzing Reo circuits in our model will be more
elaborated in Sect. 5.2, with a case study on a round-robin dispatcher [17]. We
also address the context-sensitive behavior of connectors, by imposing maximal
progress property on the traces (Sect. 6).

The benefits of our method can be summarized in the following items:

Coverage of Semantics: As mentioned above, we handle all basic concepts of
Reo, as well as the aspects which are normally harder to address, such as
context-sensitive behavior and modeling environment. All of these are based
on the sound basis of relational logic.

Compositionality: The model of Reo connectors are constructed composition-
ally from smaller ones easily. Issues such as renaming are handled automat-
ically by the block structures of Alloy at language level.

Clarity: The description of a Reo connector in our model clearly represents the
original structure of the circuit. Since it does not involve complex mathe-
matical notations, it is more familiar to software engineers. As the syntax
of the description is textual, it is much easier to work with when modeling
large models.
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Tool Support: Alloy is a well-known language, with an efficient tool support.
It offers useful features such as counterexample generation and visualization
which can help the modeler to model and debug the connector in small
iterations.

As some of the benefits above are inherited from Alloy, our method has got
some of its limitations too. The main limitation is that our traces are bounded,
so if Alloy cannot find a counterexample, it does not mean there is none. The
assumption here is that most flaws can be discovered when considering all pos-
sible traces within small bounds exhaustively. Another problem is scalability,
as the analysis takes some time when the model becomes large. However, in an
ongoing work, we are trying to improve the efficiency by techniques that will be
mentioned later. In Sect. 2, we briefly review existing approaches to model Reo
semantics.

2 Related Work

Different formal semantics have been developed for Reo, including Timed Data
Streams (TDS) [3], Constraint Automata (CA) [4], Graph Coloring [5], and
Structural Operational Semantics (SOS) [14]. Timed Data Streams model the
possible flows of data on connector ports, assigning a time to each interaction
(input or output of a data element). The declarative and relational nature of this
semantics is one of its strengths; but there is no support for simulation or model
checking. Constraint automata is a compositional and operational semantics
for Reo. Constraint automata shall be extended with priorities to capture the
context sensitive behavior of connectors. Also, the interaction with environment
is not modeled and I/O requests are considered always available. A symbolic
model checker based on CA semantics is developed [11] and CTL-like properties
can be checked.

The idea of graph coloring semantics is marking data flow or its absence
by colors. A coloring table for a Reo connector actually describes the possible
behavior in a particular configuration of the connector, which includes the states
of channels, plus the presence or absence of I/O requests. A coloring corresponds
to a possible next step based on that configuration. Here, input and output
operations are considered as primitives as well as channels and nodes. A join
operation is then defined on coloring tables. To capture the context sensitive
behavior of connectors a third color shall be added to the semantics. The goal
of graph coloring is more to build a basis for distributed implementation of Reo
circuits despite of generating a semantics basis for analysis.

Based on the Structural Operational Semantics (SOS) of Reo a model checker
using Maude system [13] is developed.

Our approach is similar to CA in its simple way of modeling the Reo connectors
and similar to graph coloring in capturing the behavior by recognizing the block-
ing nodes and synchronous clusters, to obtain the transitions. Furthermore, our
method simply models the behavior of Reo connectors including context
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sensitive behavior and I/O requests of environment without additional complex-
ity. Also, it provides the support of the already-exist automated analyzer of Alloy.

3 Preliminaries

In this section, we briefly review basic concepts of Reo coordination language
and Alloy modeling language. Parts of our discussion on Reo are taken from [4]
and [2] and the overview of Alloy is mainly based on [9].

3.1 Reo

Reo is a coordination language based on components and connectors. As coor-
dination is the main point of concern, the emphasis of Reo is on connectors.
A connector is presented as a graph of nodes and edges where edges represent
channels and nodes are channel ends. Primitive connectors in Reo are called
channels which provide the basic communication mechanisms. A channel always
has two ends. There are two types of channel ends: source and sink. The source
end is the point where data enters into the channel. The sink end is the point
where data leaves the channel. Note that both channel ends may be of the same
type (both source or both sink). Channel ends are connected to each other via
nodes. If all channel ends adjacent to a node are source ends (resp. sink ends),
we call the node a source node (resp. sink node). If there are channel ends of
both types, then the node is called a mixed node.

Reo provides operations that enable components to perform I/O on nodes.
A component can write data items to a source node that it is connected to.
The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A component can obtain
data items from a sink node that it is connected to through destructive take
input operations. A take operation succeeds only if at least one of the (sink)
channel ends coincident on the node offers a suitable data item; if there are
more, one is selected nondeterministically. A mixed node combines the behavior
of a sink node and a source node.

There are several mixed node types in Reo as indicated in Fig. 1. The data
items simply flow through a flow through node. A merge node delivers a value out
of one of the incoming channels nondeterministically. A write on a replication
node succeeds only if all outgoing channels are capable of consuming the written
data. We say a node can be fired, if it can successfully pass the data according
to the mentioned rules.

There are different channel types in Reo. Each channel passes data in a pre-
defined direction. Structurally, each unidirectional channel has a source end that
receives data and a sink end that dispenses it. Bidirectional channels have either
two source ends, or two sink ends. There are no ‘fixed’ set of channel types in Reo,
and new ones can be defined freely with their own policy for synchronization,
buffering, computations, etc.
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(a) (b) (c)

Fig. 1. Three types of mixed nodes: (a) flow through, (b) nondeterministic merge, and
(c) replication

(a) (b) (c) (d)

Fig. 2. Channel notations: (a) Sync (b) SyncDrain (c) LossySync (d) FIFO1

Here, we define the channel types that have been used throughout the exam-
ples in this paper (Fig. 2). The definition for more channel types can be found in
[2]. Note that our reusable library of channels contain more channel types that
are presented in this paper and includes most widely used channels types.

The simplest channel is synchronous (Sync) channel that has a source and a
sink end, and no buffer. It accepts a data item through its source end if and
only if it can simultaneously dispense it through its sink. A synchronous drain
(SyncDrain) accepts data items from its both ends simultaneously and the data
values will be lost. A lossy synchronous (LossySync) channel is similar to a Sync
channel, except that it always accepts all data items through its source end. If
it is possible for it to simultaneously dispense the data item through its sink
the channel transfers the data item; otherwise the data item is lost. A FIFO1
channel represents an asynchronous channel with a buffer of capacity one. A
write operation on the source end succeeds only if the buffer is empty, and a
take operation on the sink end succeeds only if the buffer contains data. This
buffer may be initially empty or contain some data item.

3.2 Alloy

Alloy is a lightweight modeling language based on the first order relational logic
[10]. In an Alloy model, there are a number of signatures each defining a set
of atoms. The definition of a signature may contain a number of fields which
define relations between atoms of signatures. Signatures also serve as types, and
subtyping is possible through signature extension. There are also ways to define
constraints in the model, using constraint paragraphs. There are four kinds of
constraint paragraphs:

Fact: A constraint that always holds
Predicate: Named and parameterized formulas that can be used elsewhere
Function: Named and parameterized expressions that can be used elsewhere
Assertion: A constraint that is intended to follow from the facts of a model

Note that facts can be defined in two ways: either following a signature declara-
tion, or elsewhere in the model. In the first case, they are implicitly quantified
over all atoms of the signature.



174 R. Khosravi et al.

A model in Alloy means a collection of instances. Instances are binding of
values to variables. Alloy Analyzer finds instances of a model automatically by
assigning values to variables satisfying the constraints defined. Model analysis
involves constraint solving, and the analyzer embodies a SAT solver. It provides
visualization for making sense of solutions and counterexamples it finds [9].

Instructions to Alloy Analyzer to perform its analysis are called commands.
A run command causes the analyzer to search for an instance that witnesses the
consistency of a function or a predicate. A check command causes it to search
for a counterexample to show that an assertion does not hold. Searching for
instances is done within finite bounds, specified by the user as scope. So, when
the search fails, it does not mean that there is no instance satisfying the model
(i.e., the model is inconsistent). Alloy analysis is based on small scope hypothesis,
which says that if we consider all small instances, most flaws will be revealed
[10].

In this paper, when writing Alloy definitions and formulas, we sometimes use
common mathematical symbols instead of Alloy keywords (e.g. ∀ or ∈ symbols
instead of ‘all’ or ‘in’ keywords).

4 Modeling Basic Reo Constructs in Alloy

In this section, we show how primitive constructs in Reo, nodes, channels and
more complex connectors, are modeled in Alloy. We first see how Reo connectors
can be constructed from simpler ones structurally, and then study the behavioral
modeling of connectors. Note that we defer handling context-sensitive behavior
to Sect. 6.

4.1 Modeling Connector Structure

The basic goal of Reo is to formalize the concept of connectors which serve as the
pathways through which components communicate. A connector in turn, is com-
posed of simpler ones, which are ultimately composed of channels. A component
is connected to a connector through a number of externally visible nodes which
we call ports. The two basic concepts in the model are nodes and connectors that
are represented as two Alloy signatures as follows:

sig Node {}
abstract sig Connector {

conns : set Connector ,
ports : set Node

}

According to the above definitions, a node is an atomic concept, but con-
nectors may be constructed recursively from other connectors. The signature
Connector is marked abstract as concrete connectors will be defined as its sub-
signatures. For a connector c, c.conns represents the set of connectors that are
parts of c. This model of constructing connectors resembles the Composite de-
sign pattern [7]. The set c.ports is the set of nodes of c that are accessible from
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outside (i.e., the nodes of c that are not hidden). These nodes can be attached
to the ports of other connectors.

Note that in Alloy, a field of a signature is considered as a relation from that
signature to the type of the field. For example, conns is a relation that relates
each instance of Connector to a set of Connectors (its parts). So, the notations
c.conns and conns [c] are equivalent.

The simplest form of a connector is a channel, defined by the following signa-
ture:

abstract sig Channel extends Connector {
e1, e2 : one Node

}
{ (ports = e1 + e2) ∧ (conns = ∅) }

Each Channel has two fields e1 and e2, each of them is a reference to a single
Node. The signature is defined abstract, as it will be refined later into specific
channels, but common to all channel are two facts: they have two ports (as the
channel ends), and they are atomic connectors, so the conns field is the empty
set. The expression e1 + e2 denotes the set {e1, e2}. Each specific channel type
has a separate signature extending Channel. Normally, the channel types do
not add any ‘structural’ feature to the definition of abstract Channel. We will
consider the behavior of channels later.

sig Sync extends Channel {}
sig Drain extends Channel {}
sig Lossy extends Channel {}
sig Fifo extends Channel {}

Another simple connector defined is a Merger which is used to model merge
nodes with two inputs in Reo. A merger has references to two nodes i1 and i2
as its inputs and a third node o as its output node:

abstract sig Merger extends Connector {
disj i1, i2, o : one Node

}
{ (ports = i1 + i2 + o) ∧ (conns = ∅) }

To illustrate how a composite connector is constructed, we define a simple
connector composed of a FIFO1 channel attached to the end of a synchronous
channel (Fig. 3).

sig SyncFifo extends Connector {
a, b, d : one Node,
s : one Sync, f : one Fifo

} {
a = s.e1

d = f.e2

b = s.e2 ∧ b = f.e1

(conns = s + f) ∧ (ports = a + d)
}



176 R. Khosravi et al.

Note that there are three nodes in an instance of SyncFifo, but only two
of them (a and d) comprise the ports of the connector, and the other one (b)
is ‘hidden’. The SyncFifo connector defined above can be used in constructing
more complex connectors in turn. We will see an example in 5.1.

The above definitions do not constrain the instances to form valid Reo circuits.
A few more facts are required to ensure this. The first one states that a node
that is hidden in a connector cannot be referenced in the enclosing connectors:

fact { ∀ c : Connector | � n : hiddens [c] | n ∈ nodes [∧conns .c] }

The expression hiddens [c] denotes the set of all hidden nodes of c and
nodes [∧conns .c] is the set of all nodes in all connectors that are directly or
indirectly contain c (∧conns is the transitive closure of conns relation). We have
omitted the definition of the two functions hiddens and nodes for brevity.

The other facts constrain the composition of the connectors to form a rooted
tree. First, we define a singleton signature Circuit having a reference to one root
connector:

one sig Circuit { root : one Connector }

The first fact below states that the conns relation is acyclic, and the two
others define Circuit.root as the root of the tree:

fact {
� c : Connector | c ∈ c.∧conns
∀ c : Connector − Circuit .root | c ∈ Circuit .root .∧conns
� c : Connector | Circuit .root ∈ c.conns

}

4.2 Modeling Connector Behavior

To model the behavior of a Reo connector, we use traces of computation which is
a common technique in Alloy. For a Reo circuit, we define a trace of computation
as a sequence of states. In each state, we record the state of FIFO1 buffers as
well as the set of nodes that are to be fired to go to the next state:

sig State {
fire : set Node,
full : set Fifo

}

The set fire is the set of nodes that are to be fired at that state and full
denotes the set of FIFO1 channels with full buffer.

The notion of state in our method is close to the notion of state in constraint
automata. For example, in Fig. 3(a) and 3(b), a simple circuit and its corre-
sponding constraint automaton are shown. Figure 3(c) shows the first five states
of an execution trace as used in our method. Assuming the environment is al-
ways ready to perform write and take operations on nodes a and d respectively,
in states T1, T3, . . ., we have fire = {a, b}, full = {} and in states T2, T4, . . ., we
have fire = {d}, full = {f }.
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Fig. 3. (a) A simple Reo circuit (b) The corresponding constraint automaton with two
states C1 (empty buffer) and C2 (full buffer) (c) An execution trace of the circuit – the
states T2k+1 are corresponding to C1 and the states T2k are corresponding to C2

To model a trace in Alloy, we have reused a standard module util/ordering
which creates a single linear ordering over the atoms of the signature provided
as its input (in our case, State). We use the first and last symbols defined in
util/ordering to refer to the first and last states of a trace respectively. Note that
since Alloy searches for model instances within a bounded scope, the traces are
always bounded.

To model the behavior of each channel, we provide a fact that puts a constraint
on the behavior of the whole circuit. For example, the behavior of the three
simple (stateless) channels is modeled by the following three facts:

fact {
∀ s : State , c : Sync | c.e1 ∈ s.fire ⇔ c.e2 ∈ s.fire
∀ s : State , c : Drain | c.e1 ∈ s.fire ⇔ c.e2 ∈ s.fire
∀ s : State , c : Lossy | c.e2 ∈ s.fire ⇒ c.e1 ∈ s.fire

}

Note that since we have ignored the actual data values, the facts for Sync and
SyncDrain is the same.

The behavior of a merger connector is defined by the following fact:

fact {
∀ s : State , m : Merger | {

¬ (m.i1 ∈ s.fire ∧ m.i2 ∈ s.fire)
m.o ∈ s.fire ⇔ (m.i1 ∈ s.fire ∨ m.i2 ∈ s.fire)

}
}

The behavior of a FIFO1 channel relates two subsequent states of a trace
together. In the following fact, next [s] denotes the next state in the trace, and
last denotes the last state of the trace:

fact {
∀ s : State − last , c : Fifo | {

c.e2 ∈ s.fired ⇒ (c ∈ s.full ∧ c 	∈ next [s].full)
c.e1 ∈ s.fired ⇒ (c 	∈ s.full ∧ c ∈ next [s].full)
(c.e1 	∈ s.fired ∧ c.e2 	∈ s.fired) ⇒ (c ∈ s.full ⇔ c ∈ next [s].full)

}
}
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A primary task of Alloy Analyzer is to assign a value to the fire set for
each state such that the facts corresponding to the channels are satisfied. This
automatically handles nondeterminism in selecting merge inputs.

4.3 Modeling Environment

To analyze the behavior of the circuit, we must be able to specify the behavior of
the environment (i.e, the components attached to the ports of the root connec-
tor). To do this, we add a field env ready to State to specify if the environment
is ready to perform read/take operations on the ports of the root connector.

sig State {
· · ·
env ready : set Node

} {
env ready ⊆ Circuit .root .ports
fire ∩ ports ⊆ env ready

}

The first fact constrains the set env ready to contain only ports of the top-most
connector, and the second one states that only ready ports can be fired.

The modeler can now provide facts to specify how the environment behaves.
Alloy Analyzer automatically assigns values to the set env ready satisfying the
given facts when generating all possible traces.

5 Modeling and Analyzing Reo Circuits

In this section, we show the modeler’s view of our method, that is how a circuit
in Reo can be described and analyzed using the primitives explained in Sect.
4. The modular structure of Alloy allows us to define the basic Reo primitives
in a separate module (we call it Relloy), and let the modules containing circuit
descriptions import those definitions. This way, the circuit module only contains
the description of the circuit along with the properties to be analyzed.

5.1 Describing a Reo Circuit

A Reo circuit is modeled as a signature extending Connector, the same way as
defined SyncFifo in Sect. 4.1 In this section, we study how a complex circuit
can be composed of simpler connectors. Consider the circuit in Fig. 4(a) which
dispatches data from node a to nodes i, j, and k in a round-robin fashion.
Instead of directly modeling the circuit, we use three instances of a simpler part
connected together (Fig. 4(b)).

The complete description of the above connectors in our method is shown in
Fig. 5. The signature RRPart models the connector in Fig. 4(b) and RR models
the whole dispatcher.

The fact paragraph at the end contains two facts. The first fact states that the
circuit root to be analyzed is a connector of type RR. The second fact determines
the set of full FIFO1 channels in the initial state.
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Fig. 4. (a) A round-robin 3-dispatcher circuit (b) A connector used to construct round-
robin dispatcher

module RoundRobin
open Relloy

sig RRPart extends Connector {
disj a, b, c, d, e : one Node,
f : one Fifo,
r : one Drain,
l : one Lossy,
s : one Sync

} {
conns = f + r + s
ports = a + b + c + d
fifo[a, f, b]
drain[b, r, e]
lossy[d, l, e]
sync[e, s, c]

}
sig RR extends Connector {
disj a, b, i, j, k : one Node,
disj c1, c2, c3 : one RRPart,

s : one Sync
} {

c1.a = c3.b
c2.a = c1.b
c3.a = c2.b
c1.c = i
c2.c = j
c3.c = k
c1.d = b
c2.d = b
c3.d = b
sync[a, s, b]
conns = c1 + c2 + c3 + s
ports = a + i + j + k

}

fact {
Circuit.root in RR
first.full = Circuit.root.c1.f

}

Fig. 5. The description of a round-robin three-dispatcher connector in Alloy

5.2 Analyzing Circuits

To check the correctness of a circuit, we can express the desired properties in
terms of assertions to be checked by the Alloy Analyzer. To provide an assertion,
we can write formulas on the states of nodes and buffers in different states of
the execution trace. For example, to express that in every state, only one of the
buffers is full, we can write the following assertion (the # operator returns the
size of its operand):

assert one_full { all s : State | #s.full = 1 }

The following command makes Alloy Analyzer search for a counterexample
in all possible traces with maximum 10 states:

check one_full for 10 State

In this case, the response of Alloy Analyzer would be ‘No counterexamplefound.
Assertion may be valid.’ indicating the property holds for all traces of length at
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most 10. But if we mistakenly had c3.a = c1.b instead of c3.a = c2.b in the de-
scription of RR, we would get the response ‘Counterexample found. Assertion
is invalid.’. By inspecting the given counterexample, we can find out the source
of the flaw easily.

As another example, assume that we want to check that the data items written
to a are never lost. This means that if a is to be fired in a state, then one of i, j,
or k must be fired in the same state. This is expressed by the following assertion:

∀s : State | a ∈ s.fire ⇒ {i, j, k} ∩ s.fire 	= ∅

Again, we get a counterexample exposing a case in which the components
attached to the ports i, j, and k are slower than the component writing at a.
Hence, there is a state in which node a is ready while none of the three other ports
are ready. In that case, the data written to a will be lost by all three LossySync
channels. To fix this, we must replace the three LossySync channels with a three-
way exclusive router[4], connecting b to node e of RRPart connectors. We have
made this change, by defining a separate connector for exclusive router (and
removing the LossySync channel from RRPart) and has successfully checked the
above property. Due to lack of space, we do not present the Alloy descriptions
here.

6 Handling Context-Sensitive Behavior

In this section, we show how to extend our model to handle the behavior ex-
posed by channels like LossySync which is called context-sensitive behavior. An
example is shown in figure 6.

e

f

a

c

b

g

m d

Fig. 6. An example of a Reo circuit demonstrating context-sensitive behavior

Consider the situation in which the environment is ready to write to both
nodes e and f and is ready to take from b. Node e accepts the data item and
writes it into the buffer. Considering the LossySync f ��� c in isolation, it may
pass the data item to c or lose it. But, the maximal progress property of Reo
requires it to always pass the data, because nodes a and b cannot be fired, and
the merger input g can be fired. Note that the maximal progress is a global
property, and cannot be enforced by adding some constraints to the behavioral
description of the channel types locally.

To handle these cases, we find which nodes cannot be fired in a state, and
force every other node to be fired in that state. In each state, some nodes may
be locally detected as blocked, i.e., they cannot be fired. This may happen in
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four cases: the first endpoint of a full FIFO1, the second endpoint of an empty
FIFO1, the input of a merge that is not selected, and an external port that is
not ready.

pred blocked [s : State , n : Node] {
(∃ c : Fifo | (c ∈ s.full ∧ n = c.e1) ∨ (c 	∈ s.full ∧ n = c.e2)) ∨
(∃ m : Merger | (n = m.i1∨ n = m.i2) ∧ n 	∈ s.fire)
n ∈ Circuit .root .ports − s.env ready

}

As an example, in Fig. 6, and under the assumption that the environment
is ready to write into e and f and read from b, a is the only blocked node.
When a node is blocked, it may block other nodes from being fired, for example,
through channels with synchronous behavior. For each State we define a relation
can block : Node → Node, such that (m, n) ∈ can block means that in that state,
if m is blocked, then n is blocked too. This may be caused by the existence of
a channel with synchronous nature between m and n, like Sync, SyncDrain, or
LossySync. Another case happens between the output node of merger and its
selected input. It is important to not include this relation for the non-selected
input, as it may incorrectly block some other nodes in the circuit. This fact is
the reason for defining can block as a field of State, so that it is computed for
each state separately.

sig State {
fire : set Node,
full : set Fifo,
can block : Node → Node

} {
∀ m, n : Node | m → n ∈ can block ⇔ {

(∃ c : Sync | (c.e1 = m ∧ c.e2 = n) ∨ (c.e1 = n ∧ c.e2 = m)) ∨
(∃ c : Drain | (c.e1 = m ∧ c.e2 = n) ∨ (c.e1 = n ∧ c.e2 = m)) ∨
(∃ c : Lossy | (c.e1 = m ∧ c.e2 = n)) ∨
(∃ c : Merger | (m ∈ fire ∧ input [c, m] ∧ output [c, n]) ∨

(n ∈ fire ∧ input [c, n] ∧ output [c, m]))
}

}

In the above definition, input and output are two helper predicate to test if
node is an input, or is the output of a merger respectively. In our example, the re-
lation can block contains the tuples {(a, b), (b, a), (f, c), (c, g), (g, c), (m, g), (g, m),
(m, b), (b, m)}. Note that the relation is symmetric except for the tuple (f, c)
which is introduced by the LossySync f ��� c.

Now we can define when a node is enabled to be fired: if it is not blocked
itself, and cannot be blocked by any other blocked node in the circuit. This can
be easily checked by getting a transitive closure of can block:

pred enabled [s : State , n : Node] {
¬ blocked [s, n]
� m : Node | blocked [s, m] ∧ m → n ∈ ∧(s.can block)

}
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In the above example, the set of enabled nodes will be {e, f, c, g, m, d}.
Finally, the following fact imposes the maximal progress constraint on the

traces generated:

fact { ∀ s : State − last | s.fire = {n : Node | enabled [s, n]} }

We have implemented the above definitions and facts into the Relloy module,
and have successfully analyzed circuits with context-sensitive behavior (like the
one in the given example).

7 Conclusion and Future Work

We presented a method to model Reo circuits based on relational logic in Al-
loy. The resulting model preserves the original structure of the Reo circuit, and
no complex translation effort is needed. This also makes the circuit description
reasonably readable. Also, we have provided a library of different Reo channels
as an Alloy module that can be reused when describing circuits. Our method
handles basic channel types, compositional construction of more complex con-
nectors, constraints on the environment, and circuits exposing context-sensitive
behavior.

We can use Alloy Analyzer to verify properties on circuits. Properties are
defined in terms of first-order predicates on the state of nodes and buffers in
the execution traces of a circuit. As we can address states in our properties,
along with ‘next’ and ‘previous’ operators and quantifiers, we can verify tempo-
ral properties on the circuit. Because Alloy Analyzer checks the properties on
all possible traces, the properties are closely related to Linear Temporal Logic
(LTL)[12] formulas [10]. More work is needed to precisely evaluate how expres-
sive is this way to model temporal properties.

One can view our method as an implementation of Reo language in Alloy. But
another useful viewpoint is to abstract away Alloy syntax, and view our work
as a starting point to provide a formal semantics for Reo based on relational
logic. More work is needed to formally define the semantics and compare it to
the existing ones.

Our method currently ignores the actual values of data passed through the
channels. Although many ‘coordination’ properties of a circuit can be expressed
without explicitly modeling data values, adding this capability improves the
expressiveness of the model in general.

Another issue to be addressed is scalability. Using Alloy Analyzer, it takes
some time to analyze large connectors. An important observation here is that
the description of the connector structure yields in only one instance. On the
behavior side, once nondeterministic merge inputs are selected and the ready
ports are defined, one can easily compute the can block relation, its transitive
closure, and finally the set of enabled nodes easily. In all these cases, we do not
require solving SAT models. So, we can do parts of the computation in more
efficient languages like Java (like construction of the connector instance from
the description). The integration with Alloy can be done using Alloy API for
Java. This may lead to a big improvement in the performance of analysis.
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Currently, various tools on Reo have been implemented under the Eclipse
platform [6]. Integrating our method with the tool set is another direction in
which this work can be extended. This includes bi-directional transformation
of graphical representation of a circuit to our textual format as both forms are
necessary when working with models of different sizes.
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Abstract. Constraint automata have been introduced to provide a compositional,
operational semantics for the exogenous coordination language Reo, but they
can also serve interface specification for components and an operational model
for other coordination languages. Constraint automata have been used as basis
for equivalence checking and model checking temporal logical properties. The
main contribution of this paper is to reason about the local view and interac-
tion and cooperation facilities of individual components or coalitions of compo-
nents by means of a multi-player semantics for constraint automata. We introduce
a temporal logic framework that combines classical features of alternating-time
logic (ATL) for concurrent games with special operators to specify the observable
data flow at the I/O-ports of components. Since constraint automata support any
kind of synchronous and asynchronous peer-to-peer communication, the result-
ing game structure is non-standard and requires a series of nontrivial adaptations
of the ATL model checking algorithm.

1 Introduction

In the last decade several models and specification languages for formal reasoning about
the middle-ware layer of software have been developed. Such coordination models con-
sist of ad-hoc libraries of functions providing higher-level inter-process communication
support in parallel and especially distributed applications. They aim at a clean separa-
tion between individual software components and their interactions within their overall
software organization. Our approach is inspired by the coordination language Reo [2],
which provides the glue-code to coordinate components in an exogenous manner. In
this paper we use constraint automata, which have been introduced as an operational
semantics for Reo [6]. Constraint automata provide a specification formalism for both,
the glue-code (e.g. given as a (Reo) network, or another (channel-based) coordination
mechanism) and the behavioral interfaces of components, and can serve to formalize the
overall behavior of the composite system. Constraint automata capture any kind of syn-
chronous and asynchronous peer-to-peer communication including data-dependencies
of I/O-operations. The syntax of constraint automata is similar to ordinary labeled tran-
sition systems and related models, such as timed port automata [15], I/O-automata [20],
and interface automata [10]. The differences are mainly based on the fact that constraint
automata support any kind of channel-based communication. An extensive discussion
on the differences and similarities can be found in [6].
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The purpose of this paper is to provide a multi-agent semantics for constraint au-
tomata and an alternating-time temporal logic to specify and verify the components
considered as individual players of a multi-agent game. The connected components are
the individual players and the network sets up the rules how those players interact with
each other. The glue-code might be seen as a complex set of social laws [13,24] the
players have to stick to. Constraint automata, interpreted as multi-player game struc-
tures, are a special type of concurrent games. The specific challenges of an alternating
time approach are caused by the very special mixture of asynchrony and synchrony,
mutual dependencies of I/O-operations and data-dependencies. In each state, several
concurrent I/O-operations can be enabled, but only some of them might be available
once a player refuses some synchronization or declares conditions on the data values
accepted on his input ports or on his pending write operations. Furthermore, constraint
automata can contain some internal nondeterminism, which yields a rather complex
and nonstandard concurrent game structure. We are not aware of any other paper that
treats alternating-time aspects for such concurrent games, where the enabledness and
also the effect of a concurrent I/O-operation highly depends on the choices of the other
players. Our approach allows us to check whether or not some coalition of agents has
a strategy to achieve a common goal, no matter how the opponents behave, or which
internal nondeterministic choices were made. In contrast to standard concurrent games,
see e.g. [1,9], in our approach a coalition’s strategy may select sets of I/O-operations or
even refuse any I/O-operations.

For specifying and analyzing the local views and interaction possibilities of (coali-
tions of) agents, we introduce an alternating-time logic, called alternating-time stream
logic (ASL). The logic ASL is a CTL-like branching-time logic which combines the fea-
tures of standard ATL [1] with the operators of BTSL [18]. The logic BTSL has been
introduced as a temporal logic for reasoning about (Reo) networks. Beside the standard
modalities of CTL [8], BTSL supports the specification of the observable data flow at the
I/O-ports of channels and components by means of regular expressions. The focus of
ATL is to ask for the existence (and absence) of a coalition’s strategy to achieve (avoid
respectively) a specific temporal goal once the behavior for each of the components is
specified.

For a simple example, we regard a ticket vending machine, which consists of a num-
ber of components (e.g. I/O-device, clock, destination, price, payment, and printer). The
exact behavior of the components might be specified in terms of constraint automata.
ASL can be used to formalize the property stating that the user (possibly together with
some other component like the clock) can find a way to trick the other players and get a
ticket without paying. A dual ASL property would state that no matter what strategy the
opponents use, the coalition of opponents will not have a chance to avoid that sending
the cancel signal always resets all components to their initial configuration.

As a first step we assume perfect recall on the systems history and perfect informa-
tion on the global state of the system. This interpretation of constraint automata as a
multi-player game is consistent with the standard semantics of ATL and adequate if the
strategies are viewed as a central control that is aware of all activities in the system.

Our approach differs from other ATL-like approaches for concurrent multi-player
games in various aspects. First, our nonstandard game structure (see explanations above)



186 S. Klüppelholz and C. Baier

requires a revised notion of strategies for (coalitions of) components. Second, since
components may refuse any further interaction from some moment on, the concept of
finite runs and fairness plays a crucial role in the logic ASL. To reason about liveness
properties we need an adaption of the standard notion of strong (process) fairness. Our
notion of fairness is not a requirement for strategies, but formalizes the ability of certain
strategies of a component C to enforce infinite data flow at the I/O-ports of C. Third,
ASL provides special operators to reason about the observable data flow at the I/O-ports
of the components and the nodes of the given network. To the best of our knowledge,
such operators have not yet been investigated in the context of alternating-time game
models.

Organization. Section 2 gives a brief introduction to constraint automata. In section 3
we provide the multi-player semantics for constraint automata and introduce the notion
of a strategy and its runs. Section 4 introduces the temporal logic ASL and presents
corresponding model checking algorithms. Section 5 introduces fairness assumptions
to ASL model checking, before section 6 concludes the paper. An extended technical
report including the proofs and other technical material is available on the web [19].

2 Constraint Automata (CA)

This section summarizes the main concepts of CA. We slightly depart from the syntax
of CA as introduced in [6] and deal with transitions q

c−→ p, where c is a concurrent
I/O-operation, i.e., c consists of a (possibly empty) node-setN⊆ N together with data
items for each A ∈N that are written or received at node A. In the moment where c is
executed there is no data flow at the nodes A ∈ N\N.

Concurrent I/O-operations and I/O-streams. Let N be a finite, nonempty set of nodes.
We define a concurrent I/O-operation as a function c : N → Data∪ {⊥}, where the sym-
bol ⊥ means “undefined”. We write Nodes(c) for the set of nodes A ∈ N such that
c(A) ∈ Data, where Data is the data domain. For technical reasons, we also allow the
empty concurrent I/O-operation c∅ with Nodes(c∅) = ∅. It represents any internal step
of some component or a non-observable step, where data flow appears at some hid-
den (invisible) nodes only. We refer to CIO as the set of all concurrent I/O-operations
(including c∅). As we suppose N and Data to be finite, the set CIO of concurrent I/O-
operations is finite as well. When reasoning about the data flow in a Reo network we
will also need a special symbol

√
that indicates that data flow has stopped. CIO√ stands

for CIO∪ {
√

}.

Definition 1 (Constraint automata [6]). A constraint automaton (CA) is a tuple

A = 〈Q,N,−→,Q0,AP,L〉,

whereQ is a finite and nonempty set of states, N a finite set of nodes, −→ is a subset of
Q×CIO×Q called the transition relation of A,Q0 ⊆Q a nonempty set of initial states,
AP a finite set of atomic propositions, and L : Q→ 2AP a labeling function. We write
q

c−→ p instead of (q,c,p) ∈−→. Furthermore, we define the set of all I/O-operations
enabled in q as CIO(q)

def
=

{
c ∈ CIO : q

c−→ p for some p ∈Q
}

.
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Intuitively, the nodes correspond to the I/O-ports of the components. For the pictures of
CAs we shall use symbolic representations of the transition relation by combining tran-
sitions with the same starting and target state. For this purpose, we use I/O-constraints,
i.e., propositional formulas in positive normal form that stand for sets of concurrent
I/O-operations. The I/O-constraints may impose conditions on the nodes that may or
may not be involved and on the data items written on or read from them.

I/O-constraints (IOC). The abstract syntax of I/O-constraints is given by the grammar:

ioc ::= tt
∣
∣ ff

∣
∣ A

∣
∣ ¬A

∣
∣ (dA1 , . . . ,dAk

) ∈D
∣
∣ ioc1 ∧ ioc2

∣
∣ ioc1 ∨ ioc2

whereA∈ N,A1, . . . ,Ak are pairwise distinct nodes in N andD⊆ Datak. The meaning
of an I/O-constraint ioc is a subset CIO(ioc) of CIO defined in the obvious way. We
often use simplified notations for the IOCs of the form (dA1 , . . . ,dAk

) ∈ D. E.g., the
notation dA = dB is a shorthand for (dA,dB) ∈ {(d1,d2) ∈ Data2 : d1 = d2}, while
A∧ (dB ∈ P) stands for the set {c ∈ CIO : {A,B} ⊆ Nodes(c) ∧ c(B) ∈ P}.

Example 1 (CA). The following two CAs realize possible implementations for the des-
tination component with node set ND = {E,I,K,O,R} and price component with node
set NP = {F,J,M,T ,V ,W} of the ticket vending machine. Both components are allowed
to operate if and only if some data flow occurs on their synchronization ports E and F
respectively. In the picture below we use a parameterized representation for states.

dK = cancel

Dest0
(dI > μ) ∧

E ∧ (dR = ”unkn”)

E ∧ (dI = i)∧
(dR = dO = desti)

F ∧ (dT = desti)∧

(dJ = cancel) ∨ (dM = pi,j)

Pricepi,jPrice0

dJ = cancel

(dV = typej) ∧ (dW = pi,j)

The destination component simultaneously reads some destination id (variable i) on its
input port I and writes the destination string (variable desti) to the I/O-device using
port R and its output portO. If the destination number given is too large, i.e., it exceeds
a certain maximum μ, the I/O-device gets a message that the selected destination is
unknown. The price component receives two integer values at its input ports T and
V for the destination (variable desti) and ticket type (variable typej) and sends the
corresponding price (variable pi,j) first to the I/O-device using port W and in a second
step to the payment component using port M. Both automata accept a cancel signal at
any state and reset to their initial configuration.

Terminal States. A state q is called terminal if data flow may stop in state q. This is
the case if all enabled concurrent I/O-operations require some activity of a component
connected to a sink or source node. Formally, state q is said to be terminal if for all
concurrent I/O-operations c that are enabled in state q, the node-set Nodes(c) is non-
empty. Stated differently, state q is terminal iff c∅ /∈ CIO(q). Note that data flow does
not need to stop in terminal states. Instead data flow continues if there is an enabled
concurrent I/O-operation c where the involved components agree on interacting with
each other by means of performing the write and read operation specified by c. For each
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non-terminal node q, an invisible transition is enabled, i.e., we have c∅ ∈ CIO(q). This
I/O-operation does not require any interaction with the components that are connected
to the sink and source nodes and will fire, unless another transition is taken.

Executions, Completeness, Paths, I/O-streams. An execution in A is a finite or infinite
sequence built by instances of consecutive transitions: η = q0

c1−→ q1
c2−→ . . .

where q0,q1, . . . ∈Q, c1,c2, . . . ∈ CIO, and qi
ci+1−−−→ qi+1 for all i� 0.

To reason about “maximal” behaviors of CAs we introduce the notions of complete
executions and paths. An execution is said to be complete if it is either infinite or it is
finite and ends in a terminal state. A path of A is either an infinite execution or arises
from a finite complete execution by adding a special transition symbol

√
to denote

termination. More precisely, the finite paths have the form π = q0
c1−→ . . .

cn−→ qn

√
−→ qn

where qn is terminal. In the sequel, we shall use the symbol η for executions and the
symbol π to range over paths. We write Paths(q) to denote the set of all paths starting in
q and Execfin(q) for the set of all finite executions starting in q. The length |π| of a pathπ
is the total number of transitions taken in π (including the pseudo-transition with label√

). Thus, the length of an infinite path is ∞, while the length of a finite path π as above

is n+1. Let π=q0
c1−→q1

c2−→ . . . be a path and 0 �n< |π|. Then π ↓n denotes the prefix

of path π with length n, i.e., π ↓n def
= q0

c1−→ . . .
cn−→ qn is an execution, while forn= |π|

we have that π ↓n = π is still a path. The I/O-stream ios(η) of a finite execution η is the
word over CIO that is obtained by taking the projection to the labels of the transitions.

That is, if η = q0
c1−→ . . .

cn−→ qn then ios(η)
def
= c1 . . .cn. Similarly, the associated I/O-

stream for a finite path π = q0
c1−→ . . .

cn−→ qn

√
−→ qn is defined by ios(π)

def
= c1 . . .cn

√
.

Let IOS = CIO∗ ∪CIO∗√ denote the set of all I/O-streams.

3 Constraint Automata as Multi-player Games

In this section we introduce a game-theoretical interpretation for CA. The players are
the individual components using (a)synchronous peer-to-peer communication. Each of
the players has control over his I/O-behavior at its interface nodes. A player might
refuse some or even any synchronization operation with other players. As in ordinary
ATL, players might build arbitrary coalitions to achieve a certain common goal includ-
ing a specific temporal behavior. A coalition of players induces a set of controllable
nodesN⊆ N, the union of all controllable coalition nodes, for which the players might
try to develop a common strategy to achieve their objective(s). Intuitively, anN-strategy
takes the history of the system formalized by a finite execution as input, (i.e., we sup-
pose here perfect recall) and declare the conditions under which theN-agents (members
of the coalition) are willing to cooperate with each other and their opponents. For in-
stance, an N-strategy might offer to write data value 0 at a source node A ∈ N, but
refuse to write data value 1. The general notion of N-strategies also permits to couple
such constraints for the offered I/O-operations at the N-nodes with conditions on the
IOCs at the nodes in N\N. Furthermore, an N-strategy might suggest the N-agents to
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refuse any participation in concurrent I/O-operations. The special symbol stop will be
used for this purpose.

Definition 2 (Strategy). Let A be a CA as before and let N be a node-set such that
N⊆ N. AnN-strategy is a function

S : Execfin(A) → 2CIO∪ {stop},

assigning to any finite execution η a set S(η) consisting of I/O-operations c ∈ CIO or
the special symbol stop such that if c ∈ CIO and Nodes(c)∩N = ∅ then c ∈ S(η).

The intuitive meaning of the condition required for an N-strategy asserts that the N-
nodes are not in the position to refuse an I/O-operation c where none of the N-nodes
is involved. In particular, invisible I/O-operations (i.e., concurrent I/O-operations with
the empty node-set) cannot be ruled out by an N-strategy. A possible refinement for
the notion of a strategy would be to allow components to restrict their write opera-
tions only and not to cut down any input provided at their boundary nodes. Given an
N-strategy S, the S-paths are those paths in A, where each of the I/O-operations per-
formed is accepted at any time by theN-nodes and their strategy S.

Notation 3 (S-executions, S-completeness, S-paths). Let S be an N-strategy and
η = q0

c1−→ q1
c2−→ . . . a finite or infinite execution in A. Then, η is called a S-execution

if for any position i ∈ N with i < |η| we have ci+1 ∈ S(η ↓ i). A finite S-execution η
of length n is called S-complete if the last state qn of η is terminal and at least one of
the following two conditions holds:

(i) stop ∈ S(η) or (ii) there is no c ∈ CIO(qn)∩S(η ↓ n) such that Nodes(c) ⊆N

The first condition indicates that refusing any data flow on the N-nodes is a potential
behavior under strategy S, while the second indicates the possibility for the opponents
to do the same on their part (i.e. refusing any synchronization on the N \N nodes).
Furthermore, each infinite S-execution is said to be S-complete. A S-path denotes

any infinite S-execution or any finite path π = q0
c1−→ . . .

cn−→ qn

√
−→ qn, where π ↓ n is

a S-complete S-execution. We write Paths(q,S) to denote all S-paths starting in q.
Similarly, Execfin(q,S) denotes the set of all finite S-executions from q.

Notation 4 (Memoryless, finite-memory strategies). AnN-strategy S is called mem-
oryless if S(η) = S(η ′) for all finite executions η and η ′ that end in the same state.
Memoryless strategies can be seen as functions S :Q→ 2CIO∪ {stop}. Obviously, mem-
oryless strategies are special instances of finite-memory strategies, i.e., strategies that
make their decisions on the basis of a finite automaton rather than the full history.

4 Alternating-Time Stream Logic (ASL)

To reason about the components from a game-theoretic point of view, we introduce
alternating-time stream logic (ASL) which is inspired by alternating-time temporal logic
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(ATL) [1]. ASL extends BTSL [18] to state the possibility for components to cooperate
in such way that a certain temporal property or property on the observable data flow
holds. ASL is a branching time logic with state and path formulas. The state formula
fragment is as in ATL, but adapted to the CA framework where the alternating-time
quantifiers range over the strategies of certain node-sets. Intuitively, these node-sets
stand for the interface nodes of one or more components. The existential quantifier
EN is used to indicate that the components with sink and source nodes in N have a
strategy ensuring a certain condition, no matter how the other components connected
to the nodes in N \N behave. The universal quantifier AN is dual and serves to state
that the components providing the write and read actions at the N-nodes cannot avoid
that a certain condition holds. The syntax of the ASL path formulas is the same as
in BTSL and uses the standard until- and release operator, but replaces the standard
next modality © with special operators 〈〈α〉〉 and [[α]] to impose conditions on the
I/O-streams of finite executions. In path formulas of the type 〈〈α〉〉Φ or [[α]]Φ, the for-
mula Φ is a state formula while α is a regular expression that stands for a regular
language over the alphabet CIO√. This type of formulas is inspired by propositional
dynamic logic [12], extended temporal logic [23], and timed scheduled data stream
logic [3].

4.1 Syntax and Standard Semantics of ASL

In the sequel, we assume a fixed, non-empty and finite node-set N. Furthermore, let AP
be non-empty and finite set of atomic propositions, which can be viewed as conditions
on the states of the automaton. In case of the CA modeling a FIFO-channel an atomic
proposition might state that all buffer cells are empty or that the first buffer cell contains
a value d in some set P ⊆ Data.

Regular I/O-stream Expressions. The abstract syntax of regular I/O-stream expres-
sions, briefly called stream expressions, is given by the following grammar:

α ::= ioc
∣
∣
∣

√ ∣
∣
∣ α∗

∣
∣
∣ α1;α2

∣
∣
∣ α1 ∪α2

where ioc ranges over all IOCs. Any stream expression represents a regular set of I/O-
streams. The formal definition of the regular languages IOS(α) ⊆ IOS is defined by
structural induction. IOS(ioc) is the set consisting of the I/O-streams of length 1 given
by ioc, i.e., IOS(ioc)

def
= CIO(ioc). Similarly, IOS(

√
) is the singleton set consisting of the

I/O-stream
√

. Union (∪) has its standard meaning: IOS(α1 ∪α2)
def
= IOS(α1)∪IOS(α2),

while Kleene star (∗) and concatenation (;) have to ensure that the special termination
symbol

√
can only appear at the end of an I/O-stream:

IOS(α∗) def
= {ε}∪

⋃

n�1
{σ1 . . . σn : σi ∈ IOS(α)∩CIO∗, i= 1, . . . ,n−1,σn ∈ IOS(α)}

IOS(α1;α2)
def
= {σ1

√
: σ1

√
∈ IOS(α1)} ∪ {σ1σ2 : σ1 ∈ IOS(α1)∩CIO∗,σ2 ∈ IOS(α2)}
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Syntax of ASL. State-formulas (denoted by capital greek letters Φ, Ψ) and path-
formulas (denoted by small greek lettersϕ,ψ) of ASLare built by the following grammar:

Φ ::= true
∣
∣
∣ a

∣
∣
∣ Φ1 ∧Φ2

∣
∣
∣ ¬Φ

∣
∣
∣ ∃ϕ

∣
∣
∣ ENϕ

ϕ ::= 〈〈α〉〉Φ
∣
∣
∣ [[α]]Φ

∣
∣
∣ Φ1UΦ2

∣
∣
∣ Φ1RΦ2

where N ⊆ N, a ∈ AP and α is a regular I/O-stream expression. The quantifier ∃ in
the syntax of ASL state formulas is the standard existential path quantifier of CTL and
ranges over all paths, while the operator EN corresponds an existential quantification
over all N-strategies. The dual operator ANϕ stating that no strategy for the nodes in
N can avoid ϕ to hold is defined by:

AN〈〈α〉〉Φ def
= ¬EN[[α]]¬Φ

AN[[α]]Φ
def
= ¬EN〈〈α〉〉¬Φ

AN(Φ1UΦ2)
def
= ¬EN(¬Φ1R¬Φ2)

AN(Φ1RΦ2)
def
= ¬EN(¬Φ1U¬Φ2)

In an analogous way, the universal CTL-path quantifier ∀ can be derived by duality
from ∃. (Alternatively, ∀ϕ can be defined by E∅ϕ.) Other boolean connectives, like
disjunction or implication, are obtained in the obvious way. In the following we shortly
write EAϕ for E{A}ϕ and AAϕ for A{A}ϕ.

ASL path formulas are interpreted over paths in a CA. The modalities U and R denote
the ordinary until-operator and release-operator, respectively. The eventually and al-
ways operator are obtained in the usual way by ♦Φ def

= (trueUΦ) and �Φ def
= (falseRΦ).

The intended meaning of 〈〈α〉〉Φ is that it holds for a path π iff π has a finite prefix
generating an α-stream and Φ holds for the state reached afterwords. [[α]]Φ is the dual
operator of 〈〈α〉〉Φ and holds for a path π iff for all finite prefixes of π generating an
α-stream, formula Φ holds for the last state of the prefix. The standard next opera-
tor is derived from the path formula ©Φ def

= 〈〈tt〉〉Φ, which asserts the occurrence for
some (non-observable) data flow. Recall that IOS(tt) = CIO(tt) = CIO. Thus, ©Φ
holds for all paths where the underlying execution has at least one transition and Φ
holds afterwords. The presence of some observable data flow can be expressed by
〈〈A1 ∨ . . . ∨An〉〉true, where N = {A1, . . . ,An}. The path formula [[tt∗;

√
]]false is char-

acteristic for the infinite paths, while 〈〈tt∗;
√

〉〉true holds exactly for the finite paths. The
terminal states are characterized by the state formula ∃〈〈

√
〉〉true, while ∀〈〈

√
〉〉true is sat-

isfied in exactly those states where no concurrent I/O-operation is enabled. ASL state
formulas are the same as in BTSL except for the EN-operator (and its dual).

For an intuitive example, consider a FIFO-channel with source node A and sink
node B. Then the ASL state formulas EA�empty, EA�(buffer �= 0), AB♦empty and
AB�empty do hold, where (buffer �= 0) states that either the buffer is empty or con-
tains a data value different from zero. In case of the ticket vending machine we may ask
whether the user (possibly in coalition with other components) controlling three bound-
ary nodesN= {C,D,P} (for the cancel signal, data items, and payment) has a strategy to
get a ticket without paying, i.e. if state formula E{C,D,P}〈〈¬pay∗〉〉ticket printed holds.
A dual ASL property states that all components except the user respect the cancel signal
and reset to their initial configuration. This can be expressed by AN\N[[tt∗;C]]initconf.
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Standard Semantics of ASL. Let A be a CA and π a path in A. The satisfaction rela-
tion |= for ASL state formulas is defined by structural induction as shown below:

q |= true
q |= a iff a ∈ L(q)
q |=Φ1 ∧Φ2 iff q |=Φ1 and q |=Φ2

q |= ¬Φ iff q �|=Φ
q |= ∃ϕ iff there exists π ∈ Paths(q) such that π |=ϕ
q |= ENϕ iff there is anN-strategy S such that:

for all π ∈ Paths(q,S) : π |=ϕ

The satisfaction relation |= for ASL path-formuls and the path π in A as follows:

π |= 〈〈α〉〉Φ iff there exists n ∈ N such that 0 � n� |π| and
ios(π ↓ n) ∈ IOS(α) and qn |=Φ

π |= [[α]]Φ iff for all n ∈ N such that 0 � n� |π| we have:
ios(π ↓ n) ∈ IOS(α) implies qn |=Φ

π |=Φ1UΦ2 iff there exists n ∈ N such that 0 � n < |π| where
qn |=Φ2 and qi |=Φ1 for 0 � i < n

π |=Φ1RΦ2 iff at least one of the following conditions (i) or (ii) holds:
(i) for all n ∈ N with 0 � n < |π| we have: qn |=Φ2

(ii) there exists some n ∈ N with 0 � n� |π| such that:
qn |=Φ1 and qi |=Φ2 for 0 � i� n

Given a state q and a ASL path formula ϕ, an N-strategy S is called winning for
the tuple 〈q,ϕ〉 if ϕ holds for all S-paths starting in q. Thus, q |= ENϕ iff there
exists a winning N-strategy for 〈q,ϕ〉. For the derived operator AN we get that q |=
ANϕ iff for all N-strategies S there exists π ∈ Paths(q,S) such that π |=ϕ, i.e. there
is no winning strategy for 〈q,ϕ〉.

Example 2 (ASL state formulas). The CA with node set N = {A,B} depicted below ful-
fills the following state formula AA♦¬∃©true, stating that an agent controllingA only
cannot avoid that a terminal state qt will eventually be reached.

¬A ∧ ¬B

¬A ∧ B

A ∧ ¬Bq0

q1

qt

¬A ∧ ¬B

The multi-player game associated with a CA and an ASL path formula is not deter-
mined. In fact, there are path formulasϕ such that neither theN-agents have a winning
strategy for ϕ nor does the opponents (i.e., the N \N-agents) have a strategy to en-
sure that ϕ does not hold. The reason for this is that the internal nondeterminism can
yield the possibility to generate paths where ϕ holds and paths where ϕ does not hold.
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In particular, the ASL state formulas ENϕ and AN\Nϕ are not equivalent1 and q |=
ENϕ implies q |= AN\Nϕ holds for all states q ∈ Q, but not vice versa. A simple
example illustrating this fact is the following CA with node-set N = {A,B}.

Example 3 (Internal nondeterminism).

A A

dB = 0 dB = 1

q0q1 q2

{a} ∅

Assume that a ∈ AP is an atomic proposition which holds in q1 only, i.e. L(q1) = {a}

and L(q2) = ∅. Since the internal nondeterminism decides whether q1 or q2 will be
selected as successor state of q0 when A fires, neither A can enforce nor B can avoid
that q1 will be entered in the next step. Thus, we have q0 |= AB©a and q0 �|= EA©a.

4.2 ASL Model Checking

The model checking problem for ASL asks whether, for a given CA A and ASL state
formula Φ, all initial states q0 of A satisfy Φ. The main procedure for ASL model
checking follows the standard approach for CTL-like branching-time logics [8] and re-
cursively calculates the satisfaction sets Sat(Ψ) = {q ∈Q : q |=Ψ} for all sub-formulas
Ψ ofΦ. The treatment of the BTSL-fragment of ASL is the same as for BTSL (see [18]).
The only interesting part is how to calculate Sat(ENϕ) for an ASL path formulasϕ and
node-setN⊆ N. The essential ingredient for this is the predecessor operator Pre(P,N)
which is defined as the set of all states q ∈ Q such that the N-nodes have a strategy
which guarantees to move within one step to a state in P.

Definition 5 (Predecessors). Let P ⊆ Q and N ⊆ N a node-set. Then, Pre(P,N) de-
notes the set of all states q ∈Q such that the following two conditions hold:

(i) for all c ∈ CIO(q) such that Nodes(c)∩N = ∅ we have Post[c](q) ⊆ P
(ii) there exists a c ∈ CIO(q) such that Nodes(c) ⊆N and Post[c](q) ⊆ P

where Post[c](q)
def
= {p ∈Q : q

c−→ p}.

Condition (i) is needed to ensure that no uncontrollable transition (from the view of the
N-agents) leads to a state outside of P, while condition (ii) asserts the existence of at
least one concurrent I/O-operation that can be enforced by the N-agents and certainly
leads to a state in P. In fact we have Pre(P,N) =

{
q ∈Q : q |= EN©P

}
.

As for standard CTL (and ATL), the semantics of the until and release operator have
a fixed point characterization. The set Sat(EN(Φ1UΦ2)) is the least fixpoint, while the
set Sat(EN(Φ1RΦ2)) is the greatest fixpoint of the following operators 2Q → 2Q:

P �→ Sat(Φ2)∪ (Pre(P,N)∩Sat(Φ1)) (until)
P �→ Sat(Φ2)∩ (Pre(P,N)∪Sat(Φ1)) (release)

1 The same observation holds for ATL∗ interpreted over concurrent games, but for other reasons.
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Hence, in ASL with the standard semantics we have the following expansion laws:

EN(Φ1UΦ2) ≡ Φ2 ∨ (Φ1 ∧EN©EN(Φ1UΦ2)) (1)

EN(Φ1RΦ2) ≡ Φ2 ∧ (Φ1 ∨EN©EN(Φ1RΦ2)) (2)

where ≡ denotes equivalence of ASL state formulas. On the basis of (1) and (2), we
obtain that for winning objectives formalized by ASL path formulas ϕ of the form
(Φ1UΦ2) or (Φ1RΦ2), memoryless strategies are sufficient and the satisfaction set
Sat(ENϕ) can be computed by means of the standard procedures to compute least and
greatest fixed points of monotonic operators. The algorithms for until and release in-
cluding the proof of correctness can be found in the technical report [19]. For ASL state
formulas of the form EN〈〈α〉〉Φ or EN[[α]]Φ, we follow an automata-theoretic approach
which resembles the standard automata-based LTL model checking procedure and relies
on a representation of α by means of a finite automaton Z and a graph analysis of the
product A �� Z. As α is roughly an ordinary regular expression, we can apply standard
methods to generate a deterministic finite automata Z over the alphabet CIO√ such that
the accepted language of Z agrees with IOS(α).

Let Z = (Z,CIO√,δ,Z0,ZF), i.e., Z stands for the state space, z0 the initial state,
ZF for the set of final (accept) states and δ : Z× CIO√ → Z for the transition function.
In fact, beside the special

√
-transitions, Z can be viewed as a CA where the set ZF

plays the role of the labeling function which separates the final states from the non-
final states. Due to the special role of the symbol

√
(which can only appear at the

end of a word in IOS(α)), we can assume that there are special states zaccept ∈ ZF and
zreject ∈ Z \ZF such that each

√
-transition leads to one of the states zaccept or zreject

and that the states zaccept or zreject cannot be entered via any other symbol. Given A

and Z, we built the product A �� Z, similar to the product of finite automata and the
join operator for CAs [6], but with a special treatment of the pseudo-transitions with
label

√
. In fact, the product construction we use here differs from those used in the

BTSL model checking procedure [18] since in the context of the EN-operator we have
to incorporate the possibilities of the N-agents to enforce termination. Formally, we
define the CA A ��N,Φ Z as follows:

A ��N,Φ Z
def
= (S,N∪ {Astop},−→,S0,AP ′,L ′).

The state space S isQ×Z andAstop is a new node-name (not contained in N). This new
node is supposed to be controllable. (Thus, for A ��N,Φ Z we will ask for (N∪ {Astop})-
strategies rather thanN-strategies.) The initial states are given by

S0 =
{

〈q,z0〉 : q ∈Q0
}

.

The atomic propositions and labeling function in A ��N,Φ Z are given by the set AP ′ =
{aΦ,accept}, where aΦ ∈ L ′(〈q,z〉) iff q |=Φ and accept ∈ L ′(〈q,z〉) iff z ∈ ZF. The
transitions in A ��N,Φ Z are obtained by the following synchronization rule for concur-
rent I/O-operations c ∈ CIO (i.e., c �= √

), state q in A, and state z ∈ Z\ {zaccept,zreject}:

q
c−→A q

′ ∧ z
c−→Z z

′

〈q,z〉 c−→ 〈q ′,z ′〉
(3)
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where we use the subscript A for the transition relations in A. In addition, we have the
following rules for each terminal state q in A and state z ∈ Z \ {zaccept,zreject} where
cstop is a concurrent I/O-operation with Nodes(cstop) = {Astop} and cstop(Astop) is an
arbitrary element from the data domain Data:

¬∃c ∈ CIO(q) s.t. Nodes(c) ⊆N ∧ c∅ /∈ CIO(q)

〈q,z〉 c∅−→ 〈q,δ(z,
√

)〉
(4)

∃c ∈ CIO(q) s.t. Nodes(c)∩N �= ∅ ∧ c∅ /∈ CIO(q)

〈q,z〉 cstop−−→ 〈q,δ(z,
√

)〉
(5)

Rule (4) formalizes the fact that if q is terminal (i.e., c∅ /∈ CIO(q)) and there is no
c ∈ CIO(q) such that Nodes(c) ⊆ N then the opponents of the N-agents may refuse
any write or read operation and can therefore enforce data flow to stop. This is modeled
in the product by a transition with the label c∅. Rule (5) stands for the fact that whenever
q is a terminal node for which some concurrent I/O-operation c is enabled where the
N-nodes are involved then the N-agents might decide not to participate in any further
I/O-operation. This is modeled in the product by a transition with the label cstop where
the new nodeAstop is supposed to be controllable. We obtain the following two lemmas
for ASL state formulas of the form EN〈〈α〉〉Φ and EN[[α]]Φ.

Lemma 1. Let A be a CA, Z = (Z,CIO√,δ,Z0,ZF) a DFA for α, q in A, node-sets
N⊆ N and ASL state formulasΦ. Then, the following statements are equivalent:

(a) q |= EN〈〈α〉〉Φ
(b) 〈q,z0〉 |= EN∪{Astop}♦(aΦ ∧ accept)
(c) There exists a finite-memoryN-strategy S for A that is winning for 〈q,〈〈α〉〉Φ〉

Lemma 2. Let A be a CA, Z = (Z,CIO√,δ,Z0,ZF) a DFA for α, q in A, node-sets
N⊆ N and ASL state formulasΦ. Then, the following statements are equivalent:

(a) q |= EN[[α]]Φ

(b) 〈q,z0〉 |= EN∪{Astop}�(accept → aΦ)

(c) there exists a finite memoryN-strategy S which is winning for 〈q, [[α]]Φ〉

Thanks to lemmas 1 and 2 the satisfaction sets Sat(EN〈〈α〉〉Φ) and Sat(EN[[α]]Φ) can
be computed by means of a reduction to the model checking problem for the EN-
operator in combination with the eventually- and always-modalities. More precisely,
we first have to construct a DFA Z for α, then built the product A ��N,Φ Z and finally
apply the algorithm for until and release respectively, to compute the satisfaction sets
for EN∪{Astop}♦(aΦ∧accept) and EN∪{Astop}�(accept →aΦ) in the product. Further-
more the memoryless (N∪ {Astop})-strategies for the product yield finite-memory win-
ningN-strategies in A for the objectives 〈〈α〉〉Φ and [[α]]Φ, respectively.

Assuming that Sat(Φ) has already been computed the time complexity for comput-
ing Sat(EN〈〈α〉〉Φ) and Sat(EN[[α]]Φ) is linear in the size of CA A and the DFA Z

for α (which can be exponential in the length of α). However, when restricting to the
ATL-fragment of ASL which just uses the standard path modalities U , R and ©, but
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not 〈〈α〉〉 or [[α]], then the worst complexity of the ASL model checking algorithm is the
same as for standard ATL, i.e., linear in the size of A and the length of the formula.

We conclude this section by a simple observation concerning the case that α is a√
-free expression (i.e., does not contain a subexpression of the form β;

√
). In fact, for√

-free expressions, the “best” strategy for the N-agents to ensure [[α]]Φ is to stop the
data flow whenever possible. This is formalized in the following lemma.

Lemma 3 (Winning strategies for
√

-free expressions). Let Sstop be the memoryless
N-strategy given by Sstop(q) = {stop}∪ {c ∈ CIO : Nodes(c)∩N = ∅} for all states q.
Then, for each

√
-free stream expression α and state q we have:

q |= EN[[α]]Φ iff Sstop is winning for 〈q, [[α]]Φ〉.

Thus, ifα is
√

-free then the set Sat(EN[[α]]Φ) can be computed by considering the sub-
automaton A ′ of A that results by the memoryless strategy Sstop and then computing
the satisfaction set for SatA ′(∀[[α]]Φ) in A ′. This can be done by means of a BTSL
model checker [18].

5 ASL with Fairness

The concept of fairness serves to rule out pathological behaviors, where certain liveness
properties are violated, although they are supposed to hold [14]. The nondeterminism
within our multi-player setting demand for some ASL fairness assumptions. To illustrate
the need for some fairness assumptions, we reuse the deadlock example (2). One would
expect that the ASL state formula EB♦¬∃©true would be fulfilled, since the memory-
less strategy S, which tries to write on B whenever q0 is reached during an execution
should be winning for 〈q0,♦¬∃©true〉. But

π= q0
c1−→ q1

c2−→ q0
c1−→ . . . ∈ Paths(q0,S) and π �|= ¬∃©true.

The goal of this section is to introduce some fairness assumptions to exclude such un-
desirable behaviors from our observations.

Definition 6 (〈N,S〉-fairness). Let A = 〈Q,N,−→,Q0,AP,L〉 be a CA, N ⊆ N a

node-set, S an N-strategy, and π = q0
c1−→ q1

c2−→ . . . a S-path in A. Then π is called
(strongly) 〈N,S〉-fair if either π is finite or for all c ∈ CIO we have:

∞
∃ i� 0. c ∈ CIO(qi)∩S(π ↓ i) and Nodes(c) ⊆N implies

∞
∃ i� 0. ci = c,

where
∞
∃ i means ”there exists infinitely many i”. We write FairPaths〈N,S〉(q) for all

〈N,S〉-fair paths starting in q and FairPaths〈N,S〉(A) for the set of 〈N,S〉-fair paths.

In the above example, π = q0
c1−→ q1

c2−→ q0
c1−→ . . . �∈ FairPaths〈{B},S〉(q0) because S

is willing to write infinitely often on B, but no write operation is ever executed. The
semantics of the fair ASL path formulas is the same as for ASL without fairness (see
section 4.1).
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The semantics for fair ASL state formulas also corresponds to the one without fair-
ness except for:

q |=fair ENϕ iff there is anN-strategy S s.t. for all π ∈ FairPaths〈N,S〉(q) : π |=ϕ

The underlying model checking algorithms need to be modified and now rely on the
bottom up computation of the sets Satfair(Ψ) = {q∈Q | q |=fair Ψ} for all subformulasΨ.
The computation for Satfair(EN(Φ1RΦ2)) does not involve any modification at all, as
shown in the following lemma.

Lemma 4 (Release with fairness). Let A be a CA,N⊆ N a node-set, q ∈Q a state in
A andΦ1, Φ2 ASL state formulas. Then q |=fair EN(Φ1RΦ2) iff q |= EN(Φ1RΦ2).

The computation of Satfair(EN(Φ1UΦ2)) relies on an iterative SCC-calculation in sub-
graphs of A. The following lemma emerges that the remaining fair computation of
Satfair(EN〈〈α〉〉Φ) and Satfair(EN[[α]]Φ) can be reduced to eventually and always in the
product A �� Z.

Lemma 5 (Fairness for ASL I/O-stream expression formulas). Let A be a CA,
N⊆ N a node-set, α a regular I/O-stream expression, Z a deterministic CA for α, and
let Φ be ASL state formula. Then, the following observation holds for all states q ∈Q.

i) q |=fair EN〈〈α〉〉Φ in A iff 〈q,z0〉 |=fair EN∪{Astop}♦(accept∧aΦ) in A �� Z.
ii) q |=fair EN[[α]]Φ iff 〈q,z0〉 |=fair EN∪{Astop}�(accept → aΦ) in A �� Z.

6 Conclusion and Future Work

This paper introduces a framework to verify alternating-time properties for a multi-
player games derived from CA. The introduced concurrent game semantics captures
any complex behavior caused by synchronous and asynchronous peer-to-peer com-
munication, mutual dependencies of I/O-operations and also data-dependencies. Since
this game structure is non-standard it takes numerous nontrivial adaptations of the ATL
model checking algorithm. In future work we will drop our assumption on perfect infor-
mation and perfect recall to switch to a more realistic view for exogenous coordination
taking the local view [5,7,16,17,21,11,22] into account. In future work we will consider
observation-based strategies in case of incomplete information.

Apart from asking for the existence or absence of a winning strategy for a temporal
property the question might raise, if there is a way of connecting the components to
make this property hold. This directly leads to the controller synthesis problem where
if possible a controlling CA is put in parallel with the other components to ensure the
intended behavior. One step further we would like to build the Reo network which glues
those components the intended way by using the synthesis approach described in [4].
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Abstract. We introduce Blite, a lightweight language for web services orches-
tration designed around some of WS-BPEL peculiar features like partner links,
process termination, message correlation, long-running business transactions and
compensation handlers. Blite formal presentation helps clarifying some ambigu-
ous aspects of the WS-BPEL specification, which have led to engines imple-
menting di�erent semantics and, thus, have undermined portability of WS-BPEL
programs over di�erent platforms. We illustrate the main features of Blite by
means of many examples, some of which are also exploited to test and compare
the behaviour of three of the most known free WS-BPEL engines.

1 Introduction

There is an ever increasing acceptance of WS-BPEL (Web Services Business Process
Execution Language, [23]) as a standard language for service composition within and
across multiple enterprises. The fact that it has become an OASIS standard, however,
has not solved all the diÆculties of using the language. Indeed, WS-BPEL comes with-
out a formal semantics and its specification document [23], written in ‘natural’ lan-
guage, contains a fair number of acknowledged ambiguous aspects that may lead to
di�erent interpretations. For example, the relationship between WS-BPEL (multiple)
start activities and the mechanisms handling race conditions has not been fully ex-
plored; moreover, if suitable measures for ‘protecting’ such critical activities as fault
and compensation handlers are not taken into account, then subtle behaviours can arise
when implementing activities that cause immediate termination of other activities.

The design of WS-BPEL applications is diÆcult and error-prone also due to the
presence of such intricate features as concurrency and race conditions, forced termi-
nation, multiple instances and message correlation, long-running business transactions
and compensation handlers. It would thus benefit from the use of formal methods be-
cause these can provide a framework to precisely describe some aspects of an applica-
tion, to state and prove its properties, and to direct attention towards issues that might
otherwise be overlooked.

As a step in this direction, in this paper we introduce Blite, a ‘lightweight’ variant
of WS-BPEL designed around the above mentioned features. Blite, being obtained by
dropping redundant features from the full-fledged language, permits to focus on those
fragments of the design that are more challenging and need more attention. For example,
Blite clarifies the relationship between compensation activities and the control flow of
the originating process, and illustrates the mechanisms for service instance creation and

� This work has been supported by the EU project S�������, IST-2005-016004.

D. Lea and G. Zavattaro (Eds.): COORDINATION 2008, LNCS 5052, pp. 199–215, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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identification, and their interplay. Our study can also contribute to the many discussions
on compensation and correlation which have been reported by the WS-BPEL technical
committee [22] (see, e.g., discussions related to issues 66, 207 and 271).

Moreover, Blite’s formal presentation can help clarifying many ambiguous aspects
of the WS-BPEL specification and, thus, can be used prescriptively to drive implemen-
tations of future WS-BPEL engines. In fact, by means of several examples, we test and
compare three of the most known free BPEL engines, namely ActiveBPEL [1], Apache
ODE [2] and Oracle BPEL Process Manager [3]. As a matter of fact, the considered
engines exhibit quite di�erent behaviours and diverge from the WS-BPEL specifica-
tion in many important aspects. This is complicating the task of developing WS-BPEL
applications and undermining their portability across di�erent platforms.

We also believe that the formalization of WS-BPEL’s operational semantics, through
the introduction of Blite, can also enable tailoring proof techniques and analytical tools
typical of process calculi to the needs of WS-BPEL applications. Indeed, on the one
hand, alike other standards enabling the web services technology, WS-BPEL does not
provide support for guided forms of application development and analysis. On the other
hand, it has been shown that type systems, model checking and (bi)simulation analysis
provide adequate tools to address topics relevant to the web services technology (see
e.g. [21,26]). In the end, this ’proof technology’ can pave the way for the development
of (semi-)automatic property validation tools.

The rest of the paper is organized as follows. Section 2 presents Blite’s syntax and
operational semantics. Section 3 illustrates most of the language features at work on
modelling a shipping service scenario borrowed from the oÆcial WS-BPEL specifica-
tion. Section 4 presents many peculiar examples and the results of our experimenta-
tion with the three WS-BPEL engines mentioned above. Section 5 touches upon more
closely related work and directions for future work.

2 Blite: A ‘Lightweight’ Variant of WS-BPEL

The language Blite1 is a simplification of WS-BPEL designed around some of its pecu-
liar features like partner links, process termination, message correlation, long-running
business transactions and compensation handlers. Blite is the result of the usual tension
between handiness and expressiveness. Therefore, to keep the design of the language
manageable, we intentionally left out other important aspects, including timeouts, event
and termination handlers, flow graphs, and sophisticated forms of data handling.

Blite provides a formal description of service deployments by only retaining relevant
implementation details such as partner links, service definitions and correlation sets. For
example, the roles played by service partners in a service interaction are explicitly indi-
cated through partner links and partners, while such aspects as physical service binding
described in associated WSDL documents are abstracted away. In request-response in-
teractions, for example, partner links indicate two partners because the requesting part-
ner must provide a callback operation used by the receiving partner to send notifications.

1 We refer the interested reader to [18] for a deeper presentation of which aspects of WS-BPEL
are supported by Blite and their mapping.
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Table 1. Syntax of Blite

Basic activities b ::= inv � i o x̄ | rcv � r o x̄ | x := e invoke, receive, assign
| empty | throw | exit empty, throw, exit

Structured activities a ::= b | if(x){a1}{a2} | while(x) {a} basic, conditional, iteration
| a1 ; a2 | ∑ j∈J rcv � r

j o j x̄ j ; a j sequence, pick
| a1 | a2 | [a • a f � ac] parallel, scope

Start activities r ::= rcv � r o x̄ | ∑ j∈J rcv � r
j o j x̄ j ; a j receive, pick

| r ; a | r1 | r2 | [r • a f � ac] sequence, parallel, scope

Services s ::= [r • a f ] | μ � a | μ � a , s definition, instance, multiset

Deployments d ::= {s}c | d1‖ d2 deployment, composition

Instead, in one-way interactions a partner link indicates a single partner because one of
the parties provides all the invoked operations. Besides asynchronous invocation, WS-
BPEL also provides a construct for synchronous invocation of remote services. This
construct forces the invoker to wait for an answer by the invoked service, that indeed
performs a pair of operations receive-reply. In Blite, this behaviour is rendered in terms
of a pair of activities invoke-receive executed by the invoker and a pair of activities
receive-invoke executed by the invoked service.

An important aspect is that, in general, the information provided by partner links is
not enough to deliver messages to a service. Indeed, since services are instantiated to
serve the received requests, messages need to be delivered not only to the correct part-
ner, but also to the correct instance of the service that the partner provides. To achieve
this, WS-BPEL relies on the business data exchanged rather than on specific mech-
anisms, such as WS-Addressing [9] or low-level correlation methods based on SOAP
headers. Specifically, Blite exploits correlation variables that permit to declare the parts
of a message that are instance dependent, e.g. order number or client id, so that a mes-
sage can be routed to the correct service instance on the basis of the values of the
correlation variables it provides, independently of any routing mechanism.

Syntax. The syntax of Blite is given in Table 1. Services are structured activities built
from basic activities by exploiting operators for conditional choice if(�)������ , iteration
while(�) ��� , sequential composition � ; � , pick

�
j�J rcv � � � ; � (i.e., external choice with

the constraint that � J �� 1), parallel composition � � � and scope [� � � � �]. A scope
activity [a � a f � ac] groups a primary activity a together with a fault handling activity
a f and a compensation activity ac. Start activities r are structured activities that initially
can only execute receive activities.

In the sequel, we shall use � � � to abbreviate binary external choice. We let se-
quence have higher priority (i.e. bind more tightly) than parallel composition and ex-
ternal choice, i.e. a1 ; a2 � a3 ; a4 stands for (a1 ; a2) � (a3 ; a4) and a1 ; a2 � a3 stands for
(a1 ; a2) � a3. Moreover, we adopt the convention that fault and compensation activities
may be omitted from a scope construct, in which case they are intended to be throw and
empty, respectively.
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Data can be shared among di�erent activities through shared variables (ranged over
by x, x�, . . . ). The set of manipulable values (ranged over by v, v�, . . . ) is left unspecified;
however, we assume that it includes the set of partner names (ranged over by p, q, . . . )
and the set of operation names (ranged over by o, o�, . . . ). We use u to range over
partners and variables and w to range over values and variables. Expressions (ranged
over by e� e�� � � �) are left unspecified but contain, at least, values and variables.

Notation �̄ stands for tuples of objects, e.g. x̄ is a compact notation for denoting the
tuple of variables �x1� � � � � xh� (with h � 0). We assume that variables in the same tuple
are pairwise distinct. The special notation �̃ stands for tuples of one or two objects, e.g. p̃
denotes either �p1� p2� or �p1�. Tuples can be constructed using a concatenation operator
� : �, i.e. �p� u� : �x1� � � � � xh� returns �p� u� x1� � � � � xh�. We will write Z � W to assign a
symbolic name Z to the term W.

Partner links � r of receive activities can be either �p� u� or �p�, where p is the partner
providing the operation and u is a partner or variable used to send messages in reply.
Indeed, service partners used for receiving messages must be known at design-time,
while the partners used to send messages in reply may be dynamically determined.
Partner links � i within invoke activities can be either �u� p� or �u�, where u is the partner
providing the operation and, possibly, p is a partner used to receive messages in reply.
Like before, this latter partner must be statically known, thus it cannot be a variable.

Deployments are finite compositions of multisets of service instances � 	 a, contain-
ing at most one service definition [r � a f ] and associated to a correlation set c, namely
a (possibly empty) set of correlation variables. A service definition provides a ‘top-
level’ scope (i.e. a scope that cannot be compensated) and o�ers a choice of alternative
receives among multiple start activities. Each service instance � 	 a has its own (pri-
vate) state �. States are (partial) functions mapping variables to values and are written
as collections of pairs of the form �x 
� v�. The state obtained by updating � with ��,
written as � Æ ��, is inductively defined by: � Æ ��(x) � ��(x) if x � dom(��) (where
dom(�) denotes the domain of �) and �(x) otherwise. The empty state is denoted by .
In the sequel, we will only consider well-formed deployments, i.e. compositions where
the sets of partners used for handling requests within di�erent deployments are pairwise
disjoint. The rationale is that each service definition has its own partner names and all
its instances run within the same deployment where the definition resides.

Operational Semantics. The semantics is defined over an enriched syntax that also
includes protected activities �a�, unsuccessful termination stop, messages � p̃ : o : v̄�
and scopes of the form [a � a f � ac � ad]. The first three ‘auxiliary’ activities are used
to replace, respectively, unsuccessfully completed scopes (with their protected default
compensation), compulsorily or faultily terminated services (with stop), and invoke
activities (with the message they produced). Instead, such scopes as [a � a f � ac � ad]
are dynamically generated to store in ad the compensation activities of the immediately
enclosed scopes that have successfully completed, together with the order in which they
must be executed. In the sequel, empty, exit, throw, stop and messages will be called
short-lived activities and will be generically indicated by sh.

The operational semantics of Blite deployments is defined in terms of a structural
congruence and a reduction relation. The structural congruence, written �, identifies
syntactically di�erent terms which intuitively represent the same term. It is defined as
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Table 2. Structural congruence for Blite activities and deployments

a � empty � a empty ; a � a ; empty � a stop � stop � stop stop ; a � stop

��a�� � �a� �sh� � sh �� p̃ :o : v̄�� a� �� p̃ :o : v̄�� �a�

[a � a f � ac] � [a � a f � ac � empty] (� p̃ :o : v̄�� a1) ; a2 �� p̃ :o : v̄�� (a1 ; a2)

[� p̃ :o : v̄�� a � a f � ac � ad] �� p̃ :o : v̄�� [a � a f � ac � ad] if �a�throw

a � a� a f � a�
f ac � a�

c ad � a�
d

[a � a f � ac � ad] � [a� � a�
f � a�

c � a�
d]

r � r� a f � a�
f

	[r � a f ] � s
c � 	s � [r� � a�
f ]
c

a � a�

	� � a � s
c � 	s � � � a�
c

d1� d2 � d2� d1 (d1� d2) � d3 � d1� (d2� d3) 	� � empty � s
c � 	s
c

	� � stop � s
c � 	s
c 	� � empty
c� d � d 	� � stop
c� d � d

the least congruence relation induced by a given set of equational laws. In Table 2, we
explicitly show, in the upper part, the laws for empty, stop, protected activities, mes-
sages and scopes, and, in the lower part, the laws for services and deployments. Stan-
dard laws stating, e.g., that sequence is associative, parallel composition is commutative
and associative, are omitted. A few observations on the structural laws are in order. Ac-
tivity empty acts as the identity element both for sequence and parallel composition.
Multiple stop in parallel are equivalent to just one stop, moreover stop disables sub-
sequent activities. The protection operator is idempotent, and short-lived activities are
implicitly protected, thus messages can go in�out of the scope of a protection operator.
Default compensation is initially empty. Messages do not block subsequent activities
and scope completion, except when throw is active in the scope (this is checked by
predicate � �throw that will be explained later on). Structural congruence is extended to
scopes, instances and deployments in the obvious way. Moreover, the order in which
definition and instances occur within a deployment does not matter, and deployment
composition is commutative and associative. Instances like � 	 empty and � 	 stop are
terminated and, thus, can be removed. Similarly, deployments only containing termi-
nated instances are terminated too and can be removed.

The reduction relation over deployments, written ���, exploits a labelled transition

relation over structured activities, written
�

���, where � is generated by the grammar:

� ::� � � x � v � ! p̃ :o : v̄ � ? � r :o : x̄ � � � � � (a)

The meaning of labels is as follows: � indicates message productions, guard evaluations
for conditional and iteration or installation�activation of compensations; x � v indicates
assignment of value v to variable x; ! p̃ : o : v̄ and ? � r : o : x̄ indicate execution of invoke
and receive activities for operation o, where p̃ and v̄ match with � r and x̄, respectively;
� indicates forced termination of a service instance; � indicates production of a fault
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Table 3. Basic, auxiliary and structured activities

� � inv � i o x̄
�
���(� i) :o :�(x̄)� (inv) rcv � r o x̄

? � r :o:x̄
� empty (rec)

� � x :� e
x��(e)
� empty (asg) throw

�
� stop (thr)

exit
�

� stop (term) � p̃ :o : v̄�
! p̃:o:v̄
� empty (msg)

� � a
�
� a�

(prot)
� � �a�

�
� �a��

� � a1
�
� a�

1
(seq)

� � a1 ; a2
�
� a�

1 ; a2

�
j�J rcv � r

j o j x̄ j ; a j

? � r
h :oh :x̄h

� ah � h � J (pick)

a �

�
a1 if �(x) � tt
a2 if �(x) � ff

(if)
� � if(x)	a1
	a2


�
� a

a� �

�
a ; while(x) 	a
 if �(x) � tt
empty if �(x) � ff

(while)
� � while(x) 	a


�
� a�

� � a1
�
� a�

1 � � 	���
 �(a2 �throw� a2 �exit)
(par1)

� � a1 � a2
�
� a�

1 � a2

a1
�
� a�

1 � � 	���

(par2)

a1 � a2
�
� a�

1 � end(a2)

[empty � a f � ac � ad]
(ac)
� empty (done1) [stop � a f � ac � ad]

�
� �ad ; a f � (done2)

� � a
�
� a� � � 	�� (a��)


(exec)
� � [a � a f � ac � ad]

�
� [a� � a f � ac � ad]

a
(a�� )
� a�

(done3)
[a � a f � ac � ad]

�
� [a� � a f � ac � a�� ; ad]

a
�
� a�

(fault)
[a � a f � ac � ad]

�
� [a� � a f � ac � ad]

signal from inside a scope; (a) indicates successful completion of a scope that can be
compensated by the structured activity a.

The relation
�

��� is defined by the rules in Table 3 with respect to a state �, that is

omitted when unnecessary (writing a
�

��� a� instead of � 	 a
�

��� a�). Before com-
menting the rules, we introduce the auxiliary functions and predicates they exploit.
Specifically, the predicates a�exit and a �throw check the ability of a of performing exit
or throw, respectively. They are defined inductively on the syntax of activities and act as
an homomorphism in all cases, but for conditional choice and iteration for which they
hold false, and for the following cases

exit�exit throw�throw

a1�exit

a1 ; a2 �exit

a1�throw

a1 ; a2�throw

a�exit

[a � a f � ac � ad]�exit

The function end(�), given an activity a, returns the activity obtained by only retaining
short-lived and protected activities inside a. It is defined inductively on the syntax of
activities, the most significant cases being
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Table 4. Matching rules � Is there an active receive along p̃ and o matching v̄?

match(c� �� x� v) �

�
	x �� v
 if x � c � (x � c � x � dom(�))
� if x � c � 	x �� v
 � �

match(c� �� v� v) � �
match(c� �� w1� v1) � �� match(c� �� w̄2� v̄2) � ���

match(c� �� (w1� w̄2)� (v1� v̄2)) � �� Æ ���

�match(c� �� � r :o : x̄� p̃ :o : v̄) �� n

� � rcv � r o x̄ ; a�c�n
p̃:o:v̄

� h � J � �match(c� �� � r
h :oh : x̄h� p̃ :o : v̄) �� n

� �
�

j�J rcv � r
j o j x̄ j ; a j�

c�n
p̃:o:v̄

� � a1 �
c�n
p̃:o:v̄

� � a1 ; a2 �
c�n
p̃:o:v̄

� � a1 �
c�n
p̃:o:v̄ � � � a2�

c�n
p̃:o:v̄

� � a1 � a2 �
c�n
p̃:o:v̄

� � a�c�n
p̃:o:v̄

� � �a��c�n
p̃:o:v̄

� � a�c�n
p̃:o:v̄

� � [a � a f � ac � ad]�c�n
p̃:o:v̄

� � a�c�n
p̃:o:v̄ � s�c�n

p̃:o:v̄

� � a � s�c�n
p̃:o:v̄

end(sh) � sh end(�a�) � �a� end(a1 ; a2) � end(a1)

end([a � a f � ac � ad]) � [end(a) � a f � ac � ad]

where a1 may not be congruent to empty or to � p̃ :o : v̄�, or to parallel compositions
of them. In the remaining cases, end(�) returns stop, except for parallel composition for
which it acts as an homomorphism.

We now briefly comment on the rules in Table 3. Rules (inv) and (asg) state that
invoke and assign activities can proceed only if their arguments are closed expressions
(i.e. expressions without uninitialized variables) and can be evaluated (i.e. �(�) returns
a value). By rule (rec), a receive activity o�ers an invocable operation along a given
partner link. Rules (thr) and (term) report production of fault and forced termination
signals, respectively. Auxiliary activities behave as expected: a message can always be
delivered (rule (msg)) and the protected activity �a� behaves like a (rule (prot)). Rule
(seq) takes care of activities executed sequentially, while rule (pick) permits to choose
among alternative receive activities. Rules for conditional choice and iteration ((if) and
(while), resp.) are standard. Execution of parallel activities is interleaved (rules (par1)
and (par2)), except when a terminate�fault activity can be executed (rule (par2)), in which
case all parallel activities must immediately terminate except for short-lived activities
and protected fault�compensation handlers. In other words, termination activities throw
and exit are executed eagerly.

By rules (done1) and (done3), scope completions can be compensated according to
the WS-BPEL default compensation behaviour (i.e. in the reverse order of completion)
by the immediately enclosing scope. Notably, scopes like [empty � a f � ac � ad]
have not completed yet and when a scope completes, the default compensation ad

of inner scopes is not passed to the enclosing scope (rule (done1)). Rule (exec) permits to
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Table 5. Reduction rules for Blite deployments (where t1 � � r :o : x̄ and t2 � p̃ :o : v̄)

a1
? t1
� a�

1 a2
! t2
� a�

2 match(c1� �1� t1� t2) � ��1 � ( �1 � a1 � s1 �
c1 ���

�

1�

t2
)

(com)
	�1 � a1 � s1
c1� 	�2 � a2 � s2
c2 �� 	�1 Æ �

�
1 � a�

1 � s1
c1� 	�2 � a�
2 � s2
c2

[r � a f � empty]
? t1
� a1 a2

! t2
� a�

2 match(c1� �� t1� t2) � �1 � (s1 �
c1 ���1�
t2 )

(new)
	[r � a f ] � s1
c1� 	�2 � a2 � s2
c2 �� 	�1 � a1 � [r � a f ] � s1
c1� 	�2 � a�

2 � s2
c2

� � a
x�v
� a� match(c� �� x� v) � ��

(var)
	� � a � s
c �� 	� Æ �� � a� � s
c

d1 �� d�
1

(part)
d1� d2 �� d�

1� d2

� � a
�
� a� � � 	? t1� ! t2� x � v


(pass)
	� � a � s
c �� 	� � a� � s
c

d � d1 d1 �� d2 d2 � d�

(cong)
d �� d�

perform any action of the primary activity a except for fault emission and scope com-
pletion. In particular, inner forced terminations are propagated externally outside the
scope. Di�erently from forced termination, faults arising within a scope are managed
internally (rule (fault)), and the corresponding handler is installed when the main activ-
ity completes (rule (done2)). By rule (done2), default compensation is performed after
termination of the primary activity and before fault handling. Note that compensation
activities do not store any state with them: hence, if the state changes between the com-
pensation being stored and executed, the current state is used.

A few auxiliary functions are also used in the semantics of deployments defined in
Table 5. The rules for communication and updating of variables ((com), (new) and (var))
need a mechanism for checking if an assignment of some values v̄ to w̄ complies with
the constraints imposed by the given correlation set c and state � and, in case of success,
returns a state �� for the variables in w̄ that records the e�ect of the assignment. This
mechanism is implemented by the function match(�� �� �� �) defined through the rules in
the upper part of Table 4. Notice that match(�� �� �� �) is undefined when w̄ and v̄ have
di�erent length or when x � c and �x 
� v�� � � for some v�

� v (since the state �x 
� v�
does not comply with c and �). Rules (com) and (new) also use the auxiliary predicate
s�c�n

p̃:o:v̄, defined inductively on the syntax of s in the lower part of Table 4, that checks
the ability of s of performing a receive on the operation o exploiting the partner link
p̃, matching the tuple of values v̄ and generating a state with fewer pairs than n that
complies with c and the current state of the activity performing the receive.

Finally, we linger on the rules in Table 5. By rule (com), communication can take
place when two service instances perform matching receive and invoke activities com-
plying with the correlation set of the receiving instance. Notice that matching covers
both partner link p̃ and business data v̄. Communication generates a state that updates
the state of the receiving instance. If more than one matching receive activity is able to
process a given invoke, then only the more defined one (i.e. the receive that generates the
‘smaller’ state) progresses (predicate �����

� serves this purpose). This mechanism permits
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to correlate messages to di�erent service instances and to model the precedence of an
existing service instance over a new service instantiation (rule (new), see also the Mul-
tiple start and conflicting receive activities example in Section 4). In rules (com) and
(new), the assumption about well-formedness of deployments finds full employment,
because it avoids to check every single deployment for possible conflicting receive ac-
tivities. By rule (new), service instantiation can take place when a service definition and
a service instance perform matching receive and invoke activities, respectively. By rule
(var), correlation variables cannot be reassigned if the new value does not match with
the old one. Moreover, if an assignment takes place, its e�ect is global to the instance,
i.e. the state is updated. By rule (pass), execution of activities di�erent from communi-
cations or assignments can always proceed. If part of a larger deployment evolves, the
whole composition evolves accordingly (rule (part)) and, as usual, structural congruent
deployments have the same reductions (rule (cong)).

3 A Shipping Service Scenario

We consider an extended version of the shipping service described in the oÆcial speci-
fication of WS-BPEL [23] (Section 15.1). This example will allow us to illustrate most
of the language features, including correlation sets, shared variables, flow control struc-
tures, fault and compensation handling. We will see that, in particular, scope activities
are especially useful for modelling fault handling and compensation behaviours, while
exit activities are useful to exit from while loops and terminate the customer instance.

The shipping service handles the shipment of orders. From the service point of view,
orders are composed of a number of items. The service o�ers two types of shipment:
shipments where the items are held and shipped together and shipments where the items
are shipped piecemeal until the order is fulfilled. The service specification in Blite is

sship � [ rcv �pship� xcust� oreq �xid � xc� xitems� ;
if (xc) � inv �xcust� onotice �xid� xitems� � � [ aship � inv �xcust� oerr �xid� “sorry”� ] � ]

aship � [ apriceCalc � acomp ] ; xshipped :� 0 ;
while (xshipped 	 xitems) �

xcount :� rand() ;
if (xcount � 0) � xratio :� xshipped 
 xitems ; throw �

� inv �xcust� onotice �xid � xcount� ; xshipped :� xshipped � xcount � �

pship is the partner associated to the shipping service, oreq is the operation used to re-
ceive the shipping request, and �xid� xc� xitems� is the tuple of variables used for the re-
quest shipping message: xid stores the order identifier, that is used to correlate the ship
notice(s) with the ship order, xc stores a boolean indicating whether the order is to be
shipped complete or not, and xitems stores the number of items in the order. Shipping
notices and error messages to customers are sent using the partner stored in xcust and
the operations onotice and oerr, respectively. A notice message is a tuple composed of the
order identifier and the number of items in the shipping notice. When partial shipment
is acceptable, xshipped is used to record the number of items already shipped.

Our example extends that in [23] by allowing the service to generate a fault in case
the shipping company has ended the stock of items (this is modelled by function rand()
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returning an integer less than or equal to 0). The fault is handled by sending an error
message to the customer and by compensating the inner scope, that has already com-
pleted successfully. Function rand() returns a random integer number and represents an
internal interaction with a back-end system. For the sake of simplicity, we do not fur-
ther describe this interaction. Moreover, we do not show services apriceCalc and acomp.
Basically, the former calculates the shipping price according to the value assigned to
xitems and sends the result to the accounts department. The latter is the corresponding
compensation activity, that sends information about the non-shipped items to the ac-
counts department and sends a refund to the customer according to the ratio (stored
in xratio) between the shipped items (stored in xshipped) and the required ones (stored
in xitems). Now, consider the following composition of a deployment containing the
shipping service definition and a deployment containing a customer’s invocation of the
service

� sship ��xid�� ��cust 	 inv �pship� pcust� oreq �yid � yc� yitems� ; acust��yid�

where �cust � �yid 
� 123� yc 
� ff� yitems 
� 50� and acust is the following
term

yshipped :� 0 ; while (yshipped 	 yitems) �
rcv �pcust� onotice �yid� ycount� ; yshipped :� yshipped � ycount

� rcv �pcust� oerr �yid � yerr� ; exit �

In the first computational step, the customer’s invocation is consumed and an
instance of the shipping service is created. Thus the overall computation be-
comes

� sship � �ship 	 [ aship � inv �xcust� oerr �xid� “sorry”� ] ��xid�� ��cust 	 acust��yid�

where �ship is �xid 
� 123� xc 
� ff� xitems 
� 50� xcust 
� pcust�. The computation can
now go on, e.g., with the inner scope [apriceCalc � acomp] that successfully completes
while its continuation fails, e.g., rand() returns an integer less than or equal to 0.

4 Evaluations of BPEL Engines

We now present some illustrative examples and use them to test and compare the
behaviour of three well-known free WS-BPEL engines, namely Oracle BPEL Pro-
cess Manager [3], ActiveBPEL Engine [1], and Apache ODE [2] (the latter two are
open source projects, whereas Oracle BPEL is distributed under the Oracle Technol-
ogy Network Developer License). For our evaluation, we have taken into account
fundamental features of WS-BPEL that remained unchanged since its initial version.
Due to lack of space, we refer the interested reader to [18] for further details and
examples.

Example 1 (Message correlation). For our simplification purposes, tuples can be used
to represent XML messages by adopting the convention that the first field of each tuple
acts as a ‘tag’ (like originally proposed in the coordination language Linda [12]). Tuples
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plus correlation variables can be exploited to correlate, by means of their same contents,
di�erent service interactions logically forming a same ‘session’. For example, consider
the two uncorrelated receive activities of the following service definition:

� [rcv �p� o �x� ; rcv �p� o� �y� ; a] ��x�y�

The fact that the messages for operations o and o� are uncorrelated implies that, e.g., if
there are concurrent instances then successive invocations for the same instance can be
mixed up and be delivered to di�erent instances. If one thinks it right, this behavior can
be prevented simply by correlating consecutive messages by means of some correlation
data, e.g. the first received value as in the following modified service definition:

� [rcv �p� o �x� ; rcv �p� o� �x� y� ; a] ��x�y�

A particular case is when the two previous receives are identical, i.e. when we have:

� [rcv �p� o �x� ; rcv �p� o �x� ; a] ��x�

Note that the WS-BPEL specification permits to consecutively receive a same request
on a specific partner and operation ([23], Section 10.4), and does not mention that pos-
sible conflicting receives could arise. To illustrate, include a client process as follows:

� [rcv �p� o �x� ; rcv �p� o �x� ; a] ��x�� � �y 
� v� 	 inv �p� o �y� ; inv �p� o �y� ��

The client process performs two requests that, according to the semantics of Blite, trig-
ger only one instantiation of the service. Thus, the only possible evolution leads to

� [rcv �p� o �x� ; rcv �p� o �x� ; a] � �x 
� v� 	 [a] ��x�

Di�erently from Blite, when executing this example, Oracle BPEL creates two in-
stances, one for each received request. An important consequence, and an unexpected
side e�ect, is that the created instances are in conflict and, then, will never be executed.
Instead, ActiveBPEL and Apache ODE, just like Blite, exploit the received data to cor-
relate two consecutive receives and, thus, prevent creation of a new instance. However,
if the client performs a third invocation inv �p� o �y�, Apache ODE is not able to serve
this last request, while ActiveBPEL behaves properly.

Example 2 (Persistent messages). In service-oriented systems communication para-
digms are usually asynchronous (mainly for scalability reasons [5]), in the sense that
there may be an arbitrary delay between the sending and the receiving of a message, the
ordering in which messages are received may di�er from that in which they were pro-
duced, and a sender cannot determine if and when a sent message will be received. We
can guess from [23], Section 10.4, that this is also the case of WS-BPEL. To illustrate,
consider the following Blite term:

� [rcv �p� o1 �x� ; rcv �p� o2 �x� z� ; a] ��x�
� � �y1 
� v� y2 
� v�� 	 inv �p� o2 �y1� y2� ; inv �p� o1 �y1� ��

After the message ��p� :o2 : �v� v��� is produced by the first invoke activity, a service
instance is created as a result of consumption of the message produced by the second
invoke activity.
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� [rcv �p� o1 �x� ; rcv �p� o2 �x� z� ; a] ��x�
� � �y1 
� v� y2 
� v�� 	 ��p� :o2 :�v� v��� � inv �p� o1 �y1� �� ���
� [rcv �p� o1 �x� ; rcv �p� o2 �x� z� ; a]� �x 
� v�	 [rcv�p� o2 �x� z� ; a] ��x�
� � �y1 
� v� y2 
� v�� 	 ��p� :o2 :�v� v��� ��

Now, the first produced message is not considered expired and, thus, can be consumed
by the newly created service instance.

� [rcv �p� o1 �x� ; rcv �p� o2 �x� z� ; a]� �x 
� v� z 
� v��	 [a] ��x�
� � �y1 
� v� y2 
� v�� 	 empty ��

All the examined BPEL engines ‘tacitly’ agree with this communication paradigm, al-
though no explicit requirement is reported in the WS-BPEL specification.

Example 3 (Multiple start and conflicting receive activities). The WS-BPEL specifica-
tion permits to use multiple start activities ([23], Section 10.4), however it is not clear
how conflicting receive activities must be handled. The following example shows that
conflicting receive activities can be enabled when a service definition with multiple start
activities is instantiated. Consider the three composed deployments

� [ (rcv �p1� o �x� � rcv �p2� o �x� z� ) ; a] ��x�� � �y 
� v� 	 inv �p1� o �y� ��
� � �y1 
� v� y2 
� v�� 	 inv �p2� o �y1� y2� ��

After message � �p1� : o : �v� �, produced by invocation inv �p1� o �y�, has been pro-
cessed by rcv �p1� o �x�, the overall composition becomes

� [ (rcv �p1� o �x� � rcv �p2� o �x� z� ) ; a] � �x 
� v� 	 [rcv �p2� o �x� z� ; a] ��x�
� � �y1 
� v� y2 
� v�� 	 inv �p2� o �y1� y2� ��

Now, the definition and the instance of the service compete for receiving the same
message sent by the invoke activity inv �p2� o �y1� y2�. In cases like this, the WS-BPEL
specification requires that the invocation is only delivered to the existing instance, which
prevents creation of a new instance. In fact, in Blite the above term can only reduce to

� [ (rcv �p1� o �x� � rcv �p2� o �x� z� ) ; a] � �x 
� v� z 
� v�� 	 [a] ��x�

In case of conflicting receives, the WS-BPEL specification document prescribes to
raise the standard fault ��������	�
��
�����
��. For example, this situation readily
occurs when a service exploits multiple start activities, because of race conditions on
incoming messages among the service definition and the created instances. However, in
such cases, it does not seem fair to raise a fault because the correlation data contained
within each incoming message should be suÆcient to decide if the message has to be
routed to a specific instance or to the service definition. This is indeed a tricky question.
For example, Oracle BPEL raises the fault ��������	�
��
�����
�� also in these
situations. ActiveBPEL behaves di�erently and, just like Blite, exploits correlation to
restrict instantiation to one service instance, whereas multiple start activities are not
currently supported by Apache ODE.

Example 4 (Scheduling for parallel execution). While using the BPEL engines, we
have also experimented that they implement the parallel operator in a di�erent man-
ner. For example, in WS-BPEL, the expected behaviour of the following term:
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x1 :� v1 � x2 :� v2 � x3 :� v3

is that the three assignments are executed in an unpredictable order that may change in
di�erent executions. In fact, only Apache ODE implements this semantics, while the
other two engines execute the assignments in an order fixed in advance (that is from left
to right in case of ActiveBPEL and from right to left in case of Oracle BPEL).

Example 5 (Forced termination). The WS-BPEL specification ([23], Section 12.6)
says: “The ���������� and �	���� constructs must be terminated by terminating their
behavior and applying termination to all nested activities currently active within them”.
This definition is ambiguous because it is not clear what “nested activities currently
active” means in case of termination due to ���
�� or ������� activities. For example,
Oracle BPEL interprets the behaviour end(a1 ; a2) as it were a1 ; a2 if it is prompted by
activity ���
��, and as end(a1), if it is prompted by activity �������. ActiveBPEL is
more faithful to WS-BPEL and Blite for which all currently running activities are ter-
minated as soon as possible without any fault handling or compensation ([23], Section
10.10). But, di�erently from Blite, ActiveBPEL does not distinguish short-lived from
basic activities and makes them terminate in the same way. Finally, Apache ODE is
compliant with Blite, because function end(�) retains short-lived activities.

Example 6 (Eager execution of termination activities). As previously stated, in order
to be compliant with the WS-BPEL requirement stating that termination activities must
end immediately all currently running activities ([23], Section 10.10), in the semantics
of Blite activities throw and exit have higher priority than the remaining ones. E.g.,
consider the following structured activity:

a � throw � sh1 ; sh2 � rcv �p� o �x� ; a�

In Blite, by executing the activity throw, this term can only reduce to:

stop � end(sh1 ; sh2) � end(rcv �p� o �x� ; a�) � stop � sh1

While ActiveBPEL agrees with this requirement, Oracle BPEL and Apache ODE do
not implement any prioritized behavior for termination activities. Thus, for example,
the above term a can evolve by firstly performing the activity sh1 and then the activity
throw; this way, the activity sh2 is not terminated.

Example 7 (Protected handlers). The following structured activity consists of a top-
level scope with two inner parallel scopes, one of which being a sequence of two scopes.

a � [ ( [ [ a1 � throw � ac ] ; [ a2 � throw � empty ] � throw � empty ]
� [ a3 � throw � empty ] ) � empty ]

For the sake of presentation, suppose that a1 performs an assignment and completes,
say a1 � x1 :� v1, while both activities a2 and a3 perform an assignment and reduce
to the throw activity, say ai � xi :� vi ; throw for i � 2� 3. Now, consider a deployment
containing a service instance � 	 a such that variables x1, x2 and x3 are not in dom(�).
A possible computation is the following one
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�� 	 a�c �
(1)
���� ��1 	 [ ( [ [ empty � throw � ac ] ;

[ a2 � throw � empty ] � throw � empty � empty ]
� [ a3 � throw � empty ] ) � empty � empty ]�c

�
(2)
���� ��1 	 [ ( [ [ a2 � throw � empty ] � throw � empty � (ac ; empty) ]

� [ a3 � throw � empty ] ) � empty � empty ]�c

�
(3)
���� ��2 	 [ ( [ [ throw � throw � empty ] � throw � empty � ac ]

� [ a3 � throw � empty ] ) � empty � empty ]�c

�
(4)
���� ��2 	 [ ( [ [ stop � throw � empty ] � throw � empty � ac ]

� [ a3 � throw � empty ] ) � empty � empty ]�c

�
(5)
���� ��2 	 [ ( [ �throw� � throw � empty � ac ]

� [ a3 � throw � empty ] ) � empty � empty ]�c

�
(6)
���� ��2 	 [ ( [ �stop� � throw � empty � ac ]

� [ a3 � throw � empty ] ) � empty � empty ]�c

�
(7)
���� ��2 	 [ ( �ac ; throw� � [ a3 � throw � empty ] ) � empty � empty ]�c

�
(8)
���� ��3 	 [ ( �ac ; throw� � [ throw � throw � empty ] ) � empty � empty ]�c

�
(9)
���� ��3 	 [ ( �ac ; throw� � [ stop � throw � empty ] ) � empty � empty ]�c

�
(10)
���� ��3 	 [ ( �ac ; throw� � �throw� ) � empty � empty ]�c

�
(11)
���� ��3 	 [ ( end(�ac ; throw�) � �stop� ) � empty � empty ]�c

� ��3 	 [ ( �ac ; throw� � stop ) � empty � empty ]�c

where the reductions are labelled by numbers indicating the corresponding steps. When
a1 completes, the compensation handler ac is inserted into the default compensation
activities of its enclosing scope (1-2). When execution of a2 rises a fault, then the fault is
caught by the corresponding fault handler (3-7) that activates the default compensation
ac ; throw. This activity is protected, by using the auxiliary operator ���, from the e�ect
of the forced termination triggered by the parallel scope [ a3 � throw � empty ] (7-11).

We end by remarking two aspects of the compensation mechanism prescribed by the
WS-BPEL specification ([23], Sections 12.5 and 10.10). First, compensation handlers
of faultily terminated scopes should not be installed. Second, fault and compensation
handlers should not be a�ected by the activities causing the forced termination. How-
ever, both aspects are not faithfully implemented in Oracle BPEL, while ActiveBPEL
and Apache ODE meet these specific requirements and adhere to Blite semantics.

Evaluation Results. The results of our experiments, summarized in Table 6, point out
that the engines we have experimented with are not fully compliant with Blite, that, in
our opinion, faithfully represents the intended semantics of WS-BPEL. This is also a
consequence of the lack of a formal semantics for WS-BPEL, that would have disam-
biguated the intricate and complex features of the language. We believe that Blite, and
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Table 6. Blite compliance

Oracle BPEL ActiveBPEL Apache ODE
Message correlation (Ex. 1) � � �

Consecutive conflicting receives (Ex. 1)  � ��

Persistent messages (Ex. 2) � � �

Multiple start (Ex. 3)  � 

Parallel execution (Ex. 4)   �

Short-lived activities (Ex. 5) �  �

Function end(�) (Ex. 5)  � �

Eager execution (Ex. 6)  � 

Protected handlers (Ex. 7)  � �

Compensation handler installation (Ex. 7)  � �

works with similar goals, other than as a guide for the development of faithful imple-
mentations since the early stages, can be also used to make future versions of existing
implementations more compatible.

5 Concluding Remarks

We have introduced Blite, a significative and non-redundant fragment of WS-BPEL,
designed around some of its peculiar features like partner links, process termination,
message correlation, long-running business transactions and compensation handlers.
Our formal presentation of Blite helps clarifying some undefined�ambiguous aspects
of the WS-BPEL specification. For example, we have formalized the close relationship
between multiple start activities and race conditions. By means of several examples, we
have also pointed out that the behaviour of three of the most used free BPEL engines
(namely, ActiveBPEL, Apache ODE and Oracle BPEL Process Manager) di�ers from
each other and from the WS-BPEL specification in many important aspects.

Several formal semantics of WS-BPEL were proposed in the literature (for an
overview see [24]). Many of these e�orts aim at formalizing a complete semantics for
WS-BPEL using Petri nets [24,19], but do not cover such dynamical aspects as service
instantiation and message correlation. Other works [11,14] using process calculi focus
instead on small and relatively simple subsets of WS-BPEL. Another bunch of related
works [15,20] formalize the semantics of WS-BPEL by encoding parts of the language
into more foundational orchestration languages. Our work di�ers for the number of fea-
tures that are simultaneously modelled and for the fact that dynamical aspects are fully
taken into account. Recently, a very general and flexible framework for error recovery
has been introduced in [13]; this framework extends [14] with dynamic compensation,
modelling in particular the dependency between fault handling and the request-response
communication pattern.

Some other relevant related works are [7,6,4]. In the first two, the authors propose a
formal approach to model compensation in transactional calculi and present a detailed
comparison with [8]. The third is an extension of the asynchronous �-calculus with
long-running (scoped) transactions. The language has a scope construct which plays
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a role similar to the scope activity presented in our semantics, but it is not aimed at
capturing the order in which compensations should be activated. On the contrary, the
semantics we propose faithfully captures the intended semantics of WS-BPEL, thus for
example compensations are activated in the reverse order w.r.t. the order of completion
of the original scopes.

Our programme is to provide a framework for the design and the verification of
WS-BPEL applications that supports analysis of service orchestration. As a further step
in this direction, in [18] we have also defined an encoding from Blite to ���� [16],
a calculus for orchestration of web services that we recently proposed, and we have
formalized the properties enjoyed by the encoding. By relying on these results, we
plan to devise methods to analyze Blite specifications (and the WS-BPEL applications
they model) by exploiting the analytical tools already developed for ����, such as
the stochastic extension defined in [25] that enables quantitative reasoning on service
behaviours, the type system introduced in [17] that permits to check confidentiality
properties, and the logic and model checker presented in [10] that permits expressing
and checking functional properties of services.

Acknowledgements. We thank the anonymous referees for their useful comments.
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Abstract. The notion of session is fundamental in service oriented ap-
plications, as it separates interactions between different instances of the
same service, and it groups together basic units of work. Together with
sessions, session types were introduced to track the type of the values
exchanged in each session. In this paper we propose an algorithm to infer
a restricted form of session types and we show that the problem is not
directly related to the unification since we are in a context with duality in
interactions. The discussion is based on a SCC-like [3] calculus adapted
to fit session types. The calculus simplifies the discussion imposing strong
syntactic constraints, but the ideas and the proposed algorithm can be
adopted to study the type inference for other session oriented calculi.
Also an OCaml prototype of the algorithm has been developed to show
its feasibility.

1 Introduction

Sessions are used to structure interactions among parties resulting in a clearer
and bug free way to write communicating programs. Session oriented cal-
culi [13,14,20,12] were proposed to reason formally about communication pat-
terns that encompass the simple one-way remote procedure call [7,8,9,2] but
also allow for more sophisticated message exchanges.

Since the π-calculus is the lingua franca for expressing concurrent processes,
we can translate sessions in π-calculus, representing them like a freshly created
channel (a session channel) used by both the client and the particular service
instance (created to serve the client) as an exchanging context.

However, from the type system point of view no (interesting) session channel is
well typed under the simply typed π-calculus [17] which allows to transmit only
a single type of message over each channel. Thus, session types were introduced
to type session channels so as to describe both sequences (of input/output) and
choices (internal/external) taking place on a session side.

The duality of session types also changes the way to consider the type inference
problem which is no longer directly related to the unification as for the simply
typed π-calculus. In fact, in the simply typed π-calculus we consider both input
and output actions (which are dual) to reconstruct the channel sort, that is,
sorting says what kind of values each channel can input and output. For example,
the process xc | x5 uses the channel x to input values of an unknown type (the
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same as c), say α1, and to output an integer value. Here we can safely substitute
α1 with int and judge this channel of type chan(int); i.e. a channel used to
exchange integer values. However, in a dual interaction we independently need
the type of each side of the communication and, for example, the type of x
become ?(int) (input of an integer) for the first side of the parallel and !(int)
(output of an integer) for the second side. This separation easily allows to judge
that the interaction is safe, since each side performs the dual action with respect
to the other side. It is worth noticing that the substitution {α1 �→ int} still holds.
The reasoning can be iterated if we want to capture types expressing sequence
of inputs and outputs; e.g., xc.xc | x5.xy then we have both types ?(int).!(int)
and !(int).?(int) in which we unified the type of the first value exchanged in the
sequence and the type of the second value exchanged in the sequence. Similar
considerations are made for the type inference algorithm described in [10].

Furthermore, session types extend basic sequences of actions adding both ex-
ternal and internal choices which can be considered as a set of offered options
exposed by means of labels and as a selection among a set of options respectively.
Unfortunately, the expressivity introduced by choices makes the type inference
problem not directly related to the unification. First of all, the labels of each
choice are unordered and also we would accept the comparison between an in-
ternal choice that offers more options and its external choice counterpart; that
is, the “unification”could be possible if a part chooses only some of the options
offered by the dual part. Given this, one may argue that the problem is similar
to what is described in [19,18] for an object calculus and successfully solved by
means of kinds. However, we think that the use of kinds for session types is not
trivial since each session may offer multiple choices at different levels of nesting.

Instead, we tackle the problem by introducing another kind of constraints,
indicated by �, between two dual session types. Moreover, an algorithm is pro-
posed to solve this kind of constraints together with the simple equality (unifi-
able) equations.

To have a practical result, we apply the algorithm in the service oriented
architecture scenario for reconstructing the type of each service. Thus, we model
a system in which each service invocation creates a new session permitting both
the exchanging of correlated messages and the isolation from different instances
of the same service. As the possibility of different clients for a service, we assume
persistent services always available for client requests.

The algorithm is built on top of a language with SCC-like [3] syntax since its
syntactic constraints permits to focus our attention on at most two sessions us-
ages each time (the current session and the parent session) whilst it maintains the
expressivity to write interesting programs (such as factorial service) to test our re-
sults. Notwithstanding, the results can be adapted to any language, for example,
our language is a particular instance of the system studied in [20], constraining
the typing Δ to contain at most two session channels at the same time.

Outline of the paper. Section 2 fixes the syntax and the operational seman-
tics of our session calculus. Section 3 shows the classic nondeterministic typing
rules. Section 4 presents the type inference algorithm subdivided in two parts:
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P, Q ::= 0 (nil)
| s.P (service definition)
| v.Q (invocation)
| if v = v1 then P else Q (if-then-else)
| (x̃).P (tuple input)
| 〈ṽ〉.P (value output)
| Σn

i=1(li).Pi (label guarded sum)
| 〈l〉.P (label choice)
| return ṽ.P (value return)
| P |Q (parallel)
| (νs)P (service restriction)

v ::= f(ṽ) (external function call)
| x (variable)
| s (service)
| . . . , −1, 0, 1, . . . (integer)

Fig. 1. Syntax of our service calculus

a constraints extractor and a solving algorithm. We have also implemented all
the algorithms described [15] and Section 5 shows some examples of usage of our
tool.

2 A Session Oriented Calculus

Our processes are generated by the abstract syntax in Figure 1, where the meta-
variable x ranges over variables, s over service names and l over labels. Values
can be either a variable, a service, an integer or the result of an external function
call f.

As usual 0 identifies the inaction process (omitted in tail position), | is the
parallel composition of two processes and (νs) is the restriction of s. Service
definition s.P and service invocation v.Q are used to instantiate a new session,
i.e., a way to put in direct connection a service instance P with the body Q of
the invocation client. For each service invocation a fresh instance of the body is
generated to serve the client, in this manner the service is ready for another client
invocation. Once the service side and the client side are connected by means of
a session, both parties can communicate via dual operators. This means that if
one side performs an input (x̃).P , the other side can send a value tuple with
〈ṽ〉.P and if one side offers a choice Σn

i=1(li).Pi, the other side can select a label
with 〈l〉.P .

To logically connect client and service instance, we use a special session con-
struct r �P and r �Q which says that both, the service instance P and the client
invocation body Q agree on the private name r and they will use it as communi-
cation context. Sessions can be arbitrarily nested and the operator return ṽ.P
is used to output a value upward the parent session.
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Binders are (νs)P for s in P and (x̃).P for x̃ in P ; the former is the binder
for service names and the latter is the binder for variables. As usual processes
are considered up to alpha equivalence and the set of free names is defined in
the standard way. Moreover, the operation of substitution P [ṽ/x̃] is the standard
capture avoiding substitution of variables with values.

Differently from [4], we formalize the operational semantics of the
calculus by a one-step reduction relation →, up to the standard struc-
tural congruence ≡ plus the rule r � (νm)P≡(νm)(r�P) if r �= m, for ses-
sions handling, where m range over both session and service names.
(Inv) [[ [[s.P ]] | 1[[s.Q]]]] → [[(νr) [[r � P |r � Q]] | 1[[s.Q]]]] r /∈ fn( [[s.P ]]|Q)
(Com) [[r � (x̃).P |r � 〈ṽ〉.Q]] → [[r � P [ṽ/x̃]|r � Q]]
(Lcom) [[r � Σn

i=1(li).Pi|r � 〈lk〉.Q]] → [[r � Pk|r � Q]] (1 ≤ k ≤ n)
(Ret) [[r � (x̃).P |r � (r1 � return ṽ.Q|Q′)]] → [[r � P [ṽ/x̃] | r � (r1 � Q|Q′)]]
(IfT ) [[if v = v1 then P else Q]] → [[P ]] (v = v1) ↓ true
(IfF ) [[if v = v1 then P else Q]] → [[Q]] (v = v1) ↓ false
(Scop) P → P ′ ⇒ (νm)P → (νm)P ′

(Str) P ≡ P ′ P ′ → Q′ Q′ ≡ Q ⇒ P → Q
where , ::= [[·]] | |P | r �

Priority of the operators in order of increasing relevance is: | , � and ν so, for
example r � P |Q means (r � P )|Q and (νr)P |Q means ((νr)P )|Q.

Rule (Inv) shows how the invocation of a service creates a new session that
puts in direct communication an instance of the service with the client body;
now the two processes are able to communicate.

The rules (Com), (Lcom) show respectively how a tuple is transmitted be-
tween the two sides of a session and how the process Q can choose one of the
options offered by P . Rule (Ret) illustrates how a nested session r1 can output a
value, upward the parent session, which is read by P in the dual side of r. Both
the rules (Com) and (Ret) manage similar communication patterns to what is
defined in [5] which describes a variant of Mobile Ambients calculus [6].

As an example consider the following calc service

calc.(sum).(x, y).〈add(x, y)〉 + (inc).(x).〈add(x, 1)〉
which offers two options. Option sum reads (x, y) from the client and replies with
the result of the external function call add. The add function is only available
on one session side, directly implemented in some programming language (i.e.,
add = λ(x, y).x+y). Option inc only inputs a value and then emits the result.
One client that successful interacts with the service is:

calc.〈sum〉.(1, 1).(res).return res

After rules (Inv) and (Lcom) are applied, the parallel of the two processes above
become:

r � (x,y).〈add(x,y)〉 | r � (1, 1).(res).return res →
r � 〈add(1, 1)〉 | r � (res).return res →r � 0 | r � return 2

At the end of interaction, the client has the result in the res variable which is
returned to the parent session.
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wf(0, X) = X
wf(s.P, X) = wf(P, X \ s)
wf(v.P, X) = wf(P, X)
wf(if v = v1 then P else Q,X) = wf(Q,wf(P, X))
wf((x̃).P, X) ∧ wf(〈ṽ〉.P, X) = wf(P, X)
wf(Σn

i=1(li).Pi, X) = wf(Pn, wf(Pn−1, . . . wf(P1, X)) ∀i, j.li �= lj if i �= j
wf(〈l〉.P, X) ∧ wf(return ṽ.P, X) = wf(P, X)
wf(P |Q,X) = wf(Q,wf(P, X))
wf((νs)P,X) = wf(P, X ∪ {s})

Fig. 2. Definition of wf

3 Typing

3.1 Well Formedness

In this sub-section we discuss the notion of well-formed process. Since we are
in a context with duality each service restriction (νs) authorizes to use in its
scope both s as service declaration and s as service invocation. However, syntax
does not constrain programmers to insert a service declaration in the scope of
a restriction, and it can happen that a process has a service invocation without
the corresponding declaration. Thus, we require our processes to have at least
the service declaration for each service restriction. This requirement, besides to
be reasonable, is also crux to successfully solve the constraints generated with
the type inference algorithm (see Proposition 1).

The formal definition of well formedness is built from the function wf
(Figure 2) which takes a process with all bound and free names different, the set
of service names that should be declared and returns the set of names not still
declared.

Definition 1 (Well formedness). A process P is well formed if wf(P, ∅) = ∅

The definition ensures the process P declares every service annunciated by means
of restrictions (no matters where!). Moreover, all the labels of a choice must be
different.

From now on, all the processes we are going to handle are implicitly assumed
to satisfy Definition 1.

3.2 Typing Rules

The set of types is defined by the abstract syntax in Figure 3. Session types
(ranged over by T ,U) express sequences of typed tuples of input and output. Intu-
itively, types capture the actions performed in a side of a session; ?(S1, . . . , Sn).T
expresses the fact that a process performs an input within a session and then
behaves like T . Similar holds for !(S1, . . . , Sn).T in which an output action is
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T, U ::= end (no action)
| ?(S1, . . . , Sn).T (input of a tuple)
| !(S1, . . . , Sn).T (output of a tuple)
| &{l1 : T1, . . . , ln : Tn} (external choice)
| ⊕{l1 : T1, . . . , ln : Tn} (internal choice)

S ::= int (basic integers type)
| [T ] (session type)

Fig. 3. Syntax of types

performed, instead. The type of an external choice is a list of (offered) labels
with the corresponding subprocess usage. Also, the type of an internal choice
contains a list, because multiple choices may be performed at the same time.

Sorts S can be either the type of a service [T ] or an integer.
Our set of type judgments is in Figure 4. Type judgments for values take

the form Γ � v : S where the type environment Γ is a finite partial mapping
from variables, services and external function names to sorts and function types.
When x /∈ dom(Γ ) (same holds for s /∈ dom(Γ )) we write Γ, x : S for the type
environment obtained by extending Γ with the binding of x to S. First four rules
for values are standard and the signature of each used external function must
be inserted in the environment as functional type (rule (FuncV)) because they
are not bound by the process.

Type judgments for processes take the form Γ � P : T ; U where T is the type
of the current session, while the type U represents outputs of P towards the
parent session. The type of 0 in (Tzero) is end; end since no action is performed
neither in the current nor towards the parent session. The typing rule (Tnew)
infers the right type of a service inserting it in the environment. Rule (Tdef)
constraints the protocol of the service to be the same as the body type of the
process P and no return is allowed toward the parent session. This condition
is necessary, because we want that the service body does not interfere within
the client’s context. (Tinv) checks the service behaves in the dual manner with
respect to the current client. Here, the dual of T , written T is inductively defined
as:

?(S̃).T =!(S̃).T !(S̃).T ′ =?(S̃).T ′ end = end

&{l1 : T1, . . . , ln : Tn} = ⊕{l1 : T1, . . . , ln : Tn}
⊕{l1 : T1, . . . , ln : Tn} = &{l1 : T1, . . . , ln : Tn}

Rules (Tin), (Tout) and (Tret) insert the usage type in the correct place. Rule
(Tbranch) considers any subset of the branches while rule (Tchoice) can arbi-
trarily add some branches. The shape of the rule (Tchoice) is necessary since, the
if-then-else construct allows choosing between many branches at the same time
and also different clients can invoke the same service making their own choices.
When we have multiple paths, returns to the parent session must have the same
type U . The nondeterminism in the rules (Tbranch) and (Tchoice) is typical for
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(Ser)

Γ, s : S 	 s : S
(Var)

Γ, x : S 	 x : S
(IntV)

Γ 	 n : int

(FuncV)

Γ 	 v1 : S1 . . . Γ 	 vn : Sn

Γ, f : S1 × . . . × Sn → S′ 	 f(v1, . . . , vn) : S′

(Tzero)

Γ 	 0 : end; end

(Tnew)

Γ, s : S 	 P : T ; U

Γ 	 (νs)P : T ; U

(Tif)

Γ 	 P : T ; U Γ 	 Q : T ; U

Γ 	 if v = v1 then P else Q : T ; U

(Tdef)

Γ 	 P : T ; end Γ 	 s : [T ]

Γ 	 s.P : end; end

(Tinv)

Γ 	 P : T ; U Γ 	 v : [T ′] T = T ′

Γ 	 v.P : U ; end

(Tin)

Γ, x̃ : S̃ 	 P : T ; U

Γ 	 (x̃).P : ?(S̃).T ; U

(Tout)

Γ 	 P : T ; U Γ 	 ṽ : S̃

Γ 	 〈ṽ〉.P : !(S̃).T ; U

(Tret)

Γ 	 P : T ; U Γ 	 ṽ : S̃

Γ 	 return ṽ.P : T ; !(S̃).U

(Tbranch)

I ⊆ {1, . . . , n} ∀i ∈ {1, . . . , n} Γ 	 Pi : Ti; U

Γ 	 Σn
i=0(li).Pi : &{lj : Tj}j∈I ; U

(Tchoice)

l = li ∈ {l1, . . . , ln} Γ 	 P : Ti; U

Γ 	 〈l〉.P : ⊕{l1 : T1, . . . , ln : Tn}; U

(TparL)

Γ 	 P : T ; end Γ 	 Q : end; end

Γ 	 P |Q : T ; end

(TparR)

Γ 	 P : end; end Γ 	 Q : T ; end

Γ 	 P |Q : T ; end

Fig. 4. Typing rules

(TbranchSD)

∀i ∈ {1, . . . , n} Γ 	SD Pi : Ti; U

Γ 	SD Σn
i=0(li).Pi : &{li : Ti}i∈{1,...,n}; U

(TchoiceSD)

Γ 	SD P : T ;U

Γ 	SD 〈l〉.P : ⊕{l : T}; U

(TinvSD)

Γ 	SD P : T ; U Γ 	SD v : [T ′] T � T ′

Γ 	SD v.P : U ; end

(TifSD)

Γ 	SD P : T ;U Γ 	SD Q : T ′; U T ′′ = merge(T, T ′)

Γ 	SD if v = v1 then P else Q : T ′′; U

Fig. 5. Syntax directed typing rules

session type systems, and it is actually useful in subject reduction proofs (see [4]
for the subject reduction proof of the current framework).

The two rules for parallel composition (TparL) and (TparR) allow parallel
composition of two processes only if at least one does not make any action in
both the current session and the parent session, i.e., it has type end; end.

Now we show an example of typing,
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Example 1. Take the calculator example. The type !(int, int).?(int); !(int) ex-
presses the client usage after the sum choice: the output of two integers is fol-
lowed by the reading of the result and an integer is returned outside the session
(the type after semicolon always stands for a return action, that is, an output
out of the current session). Previous in-session usage is compared with the dual
session usage ?(int, int).!(int) to ensure the soundness of the invocation. Below
we report the typing proof, where we let Γ = calc : [&{sum :?(int, int).!(int)}]

Γ � return x : end; !(int)
(Tin)

Γ � (x).return x : ?(int); !(int)
(Tout)

Γ � 〈1, 1〉.(x).return x : !(int, int).?(int); !(int)
(Tchoice)

Γ � 〈sum〉.〈1, 1〉.(x).return x : ⊕{sum :!(int, int).?(int)}; !(int)
(Tinv)

Γ � calc.〈sum〉.〈1, 1〉.(x).return x : !(int); end

It is worth noticing that we are authorized to apply the rule (Tinv) because
Γ (calc) = [⊕ : {sum :!(int, int).?(int)]. Thus, the assumption about calc ig-
nores the option labeled with inc since it is useless for this particular client.

The main problem we are going to face in the algorithmic type inference is due
to the nondeterministic nature of the typing rules for choices. Relatively to the
previous example, it is not strictly necessary to discard the inc branch when
inserting the type of the calc service in the environment (rule (Tbranch)). In
fact, rule (Tchoice) would allow to correctly typecheck the client even if the inc
branch were not specified. Consequently, a client can arbitrarily discard unused
branches allowing to correctly typecheck other clients with different choices.

4 Type Inference

4.1 Syntax Directed Rules

Before introducing an algorithm for the type inference we need to solve the
nondeterminism of the type system (due to both rules (Tchoice) and (Tbranch))
replacing it with another set of syntax directed rules, shown in Figure 5 (only
different rules are reported). Next, we are able to show that the two set of rules
coincide so that we can use the syntax directed rules to formulate our algorithm.

The previous type system permits to arbitrarily add or remove the branches
of a choice until the rule (Tinv) holds. We factorize out the nondeterminism
building the type with all the currently available information, which is equiva-
lent to take all the branches in rule (TbranchSD) and only one branch in rule
(TchoiceSD). Also, the new rule (TifSD) needs a way to deterministically get
the correct type, and it uses the support function merge defined in Figure 6.
In other words, merge works as follow: if both P and Q are internal choices we
create a new type with those branches that are not within the intersection of
the two sets of labels plus the merge of those branches that are within the inter-
section. In fact, a compliant external choice should account for all the possible
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merge(end, end) = end

merge(!(S̃).T, !(S̃).T ′) = !(S̃).merge(T, T ′)
merge(?(S̃).T, ?(S̃).T ′) = ?(S̃).merge(T, T ′)
merge(⊕{l1 : T1, . . . , ln : Tn}, ⊕{l′1 : T ′

1, . . . , l
′
m : T ′

m}) = ⊕{∀i ∃j li=l′
j
li : merge(Ti, T

′
j) ,

∀i,j li �=l′j
li : Ti , ∀j,i l′j �=li

l′j : T ′
j}

merge(&{l1 : T1, . . . , ln : Tn}, &{l′1 : T ′
1, . . . , l

′
m : T ′

m}) = &{∀i ∃j li=l′
j
li : merge(Ti, T

′
j)}

Fig. 6. Merge for the if branches

end � end
⊕{l1 : T1, . . . , ln : Tn} � &{l′1 : T ′

1, . . . , l
′
m : T ′

m} = ∀i, j li = l′j → Ti � T ′
j ∧

{l1, . . . , ln} ⊆ {l′1, . . . , l
′
m}

?(S̃).T � !(S̃).T ′ = T � T ′

Fig. 7. Services Join

options the process could select during its evaluation. Instead, if we are merging
two branches of an external choice we are able only to guarantee options that
are within the intersection of the set of labels and additionally these branches
must be mergeable.

The problem is that, at this point, the standard syntactic equivalence is not
useful for the comparison of two types since the branches in internal choices are a
subset of the corresponding branches in external choices. The � relation reported
in Figure 7, combined with the symmetric cases, solves the above problem and
is used by (InvSD) to validate the client protocol (it is just a restricted form of
subtyping, written as a symmetric operator).

The next lemma shows that a typable process in � is also typable in �SD and
vice versa. In this manner, we can build our type inference algorithm on top of
the syntax directed rules throwing out nondeterminism.

Lemma 1. If Γ � P : T ; U then there exist Γ ′ and T ′ s.t. Γ ′ �SD P : T ′; U .
Conversely, if Γ �SD P : T ; U is derivable, so is, Γ � P : T ; U .

Proof. Straightforward induction on derivations of Γ � P : T ; U and Γ �SD P :
T ; U ��

4.2 Tree Unification

The inference algorithm relies on a unification algorithm unify among trees as
the one described in [16]. Nevertheless, in order to use this algorithm we need to
clarify how to build trees starting from our types. We first introduce the standard
set of type variables V , and a set of constants K = {end, int}. The meta variable
α ranges over the elements of V . A production for type variables is also added
to the syntax of sorts in Figure 3. A tree type is a partial function T from the
set of finite strings over the alphabet of positive integers (describing paths in the
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tree), to a ranked alphabet L = {[ ], . } ∪ V ∪ K ∪ {?i, !i, &i, ⊕i|i > 0} where
the rank of V ∪ K is 0, the rank of [ ] is 1 and the rank of {?i, !i, &i, ⊕i|i > 0}
is i. For example, if T (π) = [ ] then T (π · 1) is defined, which means, if in the
tree following the path as specified by the string π we find a [ ] then we can
use the string π · 1 to retrieve the service type.

Definition 2 (treeof). The function treeof translates types into trees and is
inductively defined as:

treeof(?(S1, . . . , Sn).T ) = ?n(treeof(S1), . . . , treeof(Sn)).treeof(T )
treeof(!(S1, . . . , Sn).T ) = !n(treeof(S1), . . . , treeof(Sn)).treeof(T )
treeof(&{l1 : T1, . . . , ln : Tn}) = &n{l′1 : treeof(T1), . . . , l′n : treeof(Tn)}
treeof(⊕{l1 : T1, . . . , ln : Tn}) = ⊕n{l′1 : treeof(T1), . . . , l′n : treeof(Tn)}
treeof(K) = K
treeof(α) = α

where (l′1, . . . , l
′
n) is an ordering of (l1, . . . , ln)

Trees follow the same structure as types but we need arity annotations and a
fixed ordering among the labels of each choice.

The substitution returned by unify is a mapping p : V → T . Given a substi-
tution p and a tree T , we obtain the tree pT as the result of the simultaneous
substitution of the tree pα for each occurrence of variable α in T . Standard
substitution composition is written as p · p′ if p and p′ are two substitutions.
Another subtle aspect is that valid substitutions returned by the unify must be
acyclic (this can be verified e.g., by using the so-called occur-check), because
(for simplicity) the current type system does not handle regular recursive types.
Recursive types would permit to typecheck process like (νa)(a.(x).x.〈x〉|a.〈a〉)
and could be handled by allowing a solution for cyclic substitutions. Hereafter,
we will use types and trees interchangeably, since they are isomorphic.

4.3 An Algorithm to Extract Constraints

The type inference is subdivided in two parts: the constraints extraction part
and the solving part. For the first part, the algorithm INF, depicted in Figure 8,
takes a process P and an environment Γ . Γ contains an entry for each service
and variable in P corresponding to either a type variable (meaning that we
rely on the algorithm to find out the type of a name) or a sort (if we simply
want typecheck). Moreover, Γ must contain the functional type of each external
function used as a value; environment Γ restricted with the set of free names of
P is denoted Γ↓fn(P ). The algorithm returns a triple: a set C of constraints, the
type T of actions in the current session and the type U of outputs upwards the
parent session. The set C of constraints contains equations of the form T = T ′

and T � T ′.
Basically, INF is extracted by reading the syntax directed rules (Figure 5) in a

bottom-up manner and generating an equality constraint when the rule requires
two types to be equal: e.g., in the if case of the algorithm we add an equation
that requires equality for the returned type of both P and Q since the rule
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(TifSD) requires two U ’s. It is worth noticing that, with an abuse of notation, we
use merge for indicating a slightly different function from that defined in Figure
6, the new one behaves like the original function but also returns an equality
constraint in each case the previous function requires syntactical equality. It is
not expressively annotated when the algorithm fails but it should be clear that an
error is generated each time the code does not match the algorithm expectation.
E.g., a subtle case is in the invocation when we directly read from Γ the type
of the value; we implicitly expect the value to be either a variable or a service
(neither a function nor an integer) bound in the environment.

Next theorem is fundamental for the soundness of our results and it shows
that if we have a substitution that solves the constraints set generated with
INF(P, Γ ) then such a substitution applied to Γ yields a correct typing for each
service and variable in P .

Theorem 1. Let INF(Q, Γ ) = (C1, T1, U1), Q ≡ (νs̃)P and p a substitution for
each type variable in C1 to a concrete type (a type without type variables). Then,
�pC1 holds if and only if (pΓ )↓fn(P ) �SD P : pT1; pU1.

Proof. The assumption on p is required for throwing out some valid solutions and
recover the soundness with respect to the syntax directed typing rules; we reserve
the problem of principal typing for further investigations. ⇒ By induction on
the first applied rule in the algorithm, we sketch some cases. If INF(s′.P ′, Γ ) the
respective case is applied. By inductive hypothesis �pC holds and (pΓ )↓fn(P ′) �SD

P ′ : pT ; end. Also if �p(C∪{Γ (s) = [T ]}) holds we can instantiate the premises of
the rule (TdefSD) to obtain the typing for (pΓ )↓fn(P ′), s : pT �SD s.P ′ : end; end.
In the case of rules that introduce binders pΓ is used to get the correct type.
For example, if INF((νs)P ′, Γ ) then (pΓ )↓fn(P ′)\s, s : pΓ (s) �SD P ′ : pT ; pU and
consequently (pΓ )↓fn((νs)P ′) �SD (νs)P ′ : pT ; pU . ⇐ By induction on the last
applied rule in the type system. For example if the last applied rule was (TinvSD)
we have that p(Γ↓fn(P ′))(v) = [T ′] and that T ′ � pT ′′ holds in the premises, where
pT ′′ is the typing of P ′ in v.P ′. Since by inductive hypothesis �pC holds then
�p(C ∪ {T ′ � T ′′}) holds too. ��

4.4 How to Solve the Constraints Set

At the end of the previous sub-section we show the fundamental role played
by the substitution p, solution of the constraints set; next we show how to
algorithmically get such a solution.

The algorithm in Figure 9, in OCaml like syntax, is used to find the solution
of the constraints set C (which is treated like an ordered list of constraints). If
the equation is a simple equality, it can be directly solved by unify, which returns
a substitution applied to both the environment and the tail of the constraints
list. If the constraint is a � equation we are comparing two dual sides of a
session and we cannot directly unify. In fact, as discussed in the introduction,
the information which can be unified is only that information on the types of
the trasmitted/received tuples since they should be the same for both sides.
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VALUEINF(x, Γ)= (∅, Γ (x))
VALUEINF(s, Γ)= (∅, Γ (s))
VALUEINF(n, Γ)= (∅, int)
VALUEINF(f(v1, . . . , vn), Γ)=

let (C1, S1)=VALUEINF(v1, Γ)......(Cn, Sn)=VALUEINF(vn, Γ)
Γ (f) = S1 × . . . ×Sn → S

in (C1 ∪ . . . ∪ Cn, S)
INF(s.P , Γ)=

let (C, T , U)=INF(P , Γ)
U = end
C1= C∪{Γ (s) = [T ]}

in (C1,end,end)
INF(v.P , Γ)=

let (C, T , U)=INF(P , Γ)
C1= C∪{Γ (v) � [T ]}

in (C1, U ,end)
INF((x1, . . . , xn).P , Γ)=

let (C, T , U)=INF(P , Γ)
in (C,?(Γ (x1), . . . , Γ (xn)).T , U)

INF(〈v1, . . . , vn〉.P , Γ)=
let (C, T , U)=INF(P , Γ)
(C1, S1)=VALUEINF(v1, Γ)......(Cn, Sn)=VALUEINF(vn, Γ)
in (C ∪ C1 ∪ . . . ∪ Cn,!(S1, . . . ,Sn).T , U)

INF(return v1, . . . , vn.P , Γ)=
let (C, T , U)=INF(P , Γ)
(C1, S1)=VALUEINF(v1, Γ)......(Cn, Sn)=VALUEINF(vn, Γ)
in (C ∪ C1 ∪ . . . ∪ Cn, T ,!(S1, . . . ,Sn).U)

INF(if v = v1 then P else Q, Γ)=
let (C, T , U)=INF(P , Γ)

(C1, T1, U1)=INF(Q, Γ)
(C2, T2)=merge(T , T1)
C2 = C2 ∪ {U = U1}

in (C ∪ C1 ∪ C2, T2, U)
INF((νs)P , Γ)=

let (C, T , U)=INF(P , Γ)
in (C, T , U)

INF(P |Q, Γ)=
let (C, T ,end)=INF(P , Γ)

(C1, T1,end)=INF(Q, Γ)
T = end ∨ T1 = end
if T==end then T2=T1

else if T1==end then T2=T
in (C ∪ C1, T2,end)

INF(Σn
i=1(li).Pi, Γ)=

let (C1, T1, U1)=INF(Pi, Γ)......(Cn, Tn, Un)=INF(Pn, Γ)
C′=

⋃
i{Ui = Ui+1} ∀ i ∈ 1 . . .n−1

in (C′ ∪ C1 ∪ . . . ∪ Cn,&{l1 : T1, . . . , ln : Tn},U1)
INF(〈l〉.P , Γ)=

let (C, T , U)=INF(P , Γ)
in(C,⊕{l : T},U)

Fig. 8. The algorithm to extract constraints



228 L.G. Mezzina

let solve C Γ=
match C with
[]->Γ
|T = T1 ::C′ -> let p=unify(T,T1) in solve(pC′,pΓ)
|α �T ::C′ -> solve(C′@[α �T], Γ)
|T �T1 ::C′ -> let p=compunify(T,T1) in solve(pC′,pΓ)

Fig. 9. An algorithm to solve the constraints set

compunify(end, end) = ε compunify([T ], [T ′]) = compunify(T , T ′)
compunify(?(S̃).T , !(S̃′).T ′) = unify(S̃, S̃′) · compunify(T , T ′)
compunify(&{l1 : T1, . . . , ln : Tn}, ⊕{l′1 : T ′

1, . . . , lm : T ′
m}) =

⋃
li=l′j

compunify(Ti, T
′
j)

{l′1, . . . , l
′
m} ⊆ {l1, . . . , ln}

Fig. 10. compunify

The compunify defined in Figure 10 (with symmetric cases) solves a � equation
by unifying the type of the tuples received and transmitted (· indicates the
composition of substitutions and ε the empty substitution); the other cases follow
the same pattern as their syntactic counterparts defined in Figure 7.

It is worth noticing that we cannot solve an equation of form α � T because
this kind of equation does not contain any information. In these cases, the algo-
rithm chooses to append the equation to the rest C′ since another iteration could
substitute the type variable with a more concrete type. The following proposi-
tion shows that this is always the case since sooner or later all service definitions
become available, thanks to the well-formedness of P .

Proposition 1. Let (C, , ) = INF(P, Γ ) and P a closed process with respect to
services and variables. For each constraint α � [T ] ∈ C, it is possible to find in
C a series of constraints that yields a substitution {α �→ T ′} and T ′ is not a type
variable.

Proof. Note that constraints α � [T ] are generated by the service invocation v.P
and α is the type of the value v used for invocation. Suppose we first solve from
C all the unification constraints. Consequently, we produce the new constraints
set C′. The remaining constraints α � [T ] in C′ are because α is introduced by
an input binder. In this case we have an usage of the form ?(α) to be compared
with an usage of the form !(T1) otherwise compunify fails. If T1 is not a type
variable compunify returns the substitution {α �→ T1}. Otherwise, if T1 = α1
is a type variable then it must exists (since P is closed and well formed) an
equation α1 � T2 and we can reiterate the reasoning to find out the desiderated
substitution. The reasoning terminates and it is bounded by the number of
service invocations in P .

Thanks to the previous Proposition we can show that even if there are unguarded
appends, solve terminates.
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Theorem 2. solve terminates.

Proof. The set of constraints decreases at each iteration except in the third case.
By Proposition 1 there must exist a substitution that returns the concrete form
of α in a finite number of steps. Let |C| be the total number of constraints in the
set and d the number of the � equations. The measure we are going to define is
|C| + d!, where d! denotes the factorial of d. In fact, we need at most |C| steps
to solve all the equality equations and at most all the permutations of d to find
the correct resolution order of the � equations. ��

5 Running Examples Extracted from the Tool

We developed the described algorithm in OCaml [15] and in this section we
show some examples of executions with the generated constraints set and the
relative solution. Consider that the algorithm makes some initial work to alpha
renaming the process in such a way that all bound and free names are different
as implicitly expected by the INF function.

Example 2. We start with a classical functional flavor, factorial service. Even if
this function is recursive, its typing does not require recursive types, as each
session is isolated from each other. A client invokes the service and returns
the result upwards. Furthermore, the example shows how nested services work.
(νfatt)

fatt.(n).
if n=1 then 〈1〉 else

(νutil)
util. fatt.〈sub(n,1)〉.(x).return x | util.(x1).return mul(x1,n)

| fatt.〈5〉.(res).return res

First of all we need to instruct the tool, linking in the environment Γ only the
types of the external functions; Γ = {sub : int × int → int, mul : int × int →
int}. Now running INF with the previous process and Γ ′ = Γ ∪ {fatt : α1, n :
α6, util : α3, x : α5, x1 : α4, res : α2} yields the following constraints:

α1 = [?(α6).!(int).end] α3 = [!(α5).end] α6 = int
α3 � [?(α4).end] α1 � [!(int).?(α5).end] α4 = int
α1 � [!(int).?(α2).end] int = int

The solving algorithm computes the right solution, fatt : [?(int).!(int).end], n :
int, x : int , x1 : int, res : int, util : [!(int).end].

Example 3. The second program shows how the type inference works for an
invocation of a dynamically received service name.

(νb)((νa)(a.(sum).(x,y).〈add(x,y)〉 + (inc).(x1).〈add(x1,1)〉 | b.〈a〉)|
b.(z). z.〈sum〉.〈2,3〉.(res))
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This time Γ contains only the definition of add and Γ ′ = Γ ∪ {b : α1, a : α4, x :
α5, y : α6, x1 : α7, z : α3, res : α2}. INF returns

α4 = [&{sum :?(α6, α5).!(int).end, inc :?(α7).!(int).end}] α6 = int α5 = int
α1 = [!(α4).end] α1 � [?(α3).end] α3 � [⊕{sum : {!(int, int).?(α2).end}]

and solve produces the solution

b : [!([&{sum :?(int, int).!(int).end, inc :?(int).!(int).end}]).end], x : int,
a : [&{sum :?(int, int).!(int).end, inc :?(int).!(int).end}], y : int, x1 : int,
z : [&{sum :?(int, int).!(int).end, inc :?(int).!(int).end}], res : int

Example 4. This example shows how an external function can input services and
return services as well. In particular, the function lb has type [!(int)]× [!(int)] →
[!(int)]; it inputs a couple of services and returns a service.

(νloadbalance)(νa)(νb)(loadbalance.〈lb(a,b)〉|b.4|a.4)
| loadbalance.(x). x.(res))

The inferred types are loadbalance : [!([!(int).end]).end], a : [!(int).end], b :
[!(int).end], x : [!(int).end], res : int

6 Conclusions and Future Work

In this paper we studied an algorithm to infer session types. This is a preliminary
study and we studied only a restricted form of session types in a syntactically
constrained language which does not give to the programmer the freedom to
directly use session channels. In spite of these limitations, we shown that with
respect to the simply typed π-calculus a context with dual interactions and
choices needs a new type of equations allowing for duality.

Moreover, typical typing systems for session types are nondeterministic due
to the choices, both internal and external, embedded in the types. In fact, stan-
dard rules leave the entire freedom; one can add and remove branches until both
the invocation protocol and the service specification are not syntactically equiv-
alent (modulo duality). Thus, we have proposed a set of syntax directed rules
which uses the if-then-else to deterministically expand choice branches and a
corresponding relation to be used in place of the syntactical equivalence. Succes-
sively, we have developed an algorithm to infer types, subdivided in two parts:
constraints extractor and solver.

As a consequence, the present ideas can be adopted as a base to the enhance-
ment of the algorithm, adding μ-types [11], extending the model with multi-parti
session types [1] and studying the inference for [20].
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Abstract. Context-aware applications adapt their behavior depending
on changes in their environment context. Programming such applications
in a modular way requires to modularize the global context into more
specific contexts and attach specific behavior to these contexts. This is
reminiscent of aspects and has led to the notion of context-aware aspects.
This paper revisits this notion of context-aware aspects in the light of
previous work on concurrent event-based aspect-oriented programming
(CEAOP). It shows how CEAOP can be extended in a seamless way in
order to define a model for the coordination of concurrent adaptation
rules with explicit contexts. This makes it possible to reason about the
compositions of such rules. The model is concretized into a prototypical
modeling language.

1 Introduction

A context-aware application is an application that is able to adapt its behavior
in order to best meet its users’ need. It does so by taking into account context
information, i.e., any piece of information relevant to the interaction between a
user and an application [1]. This typically includes information on the physical
environment (e.g., noise level, time of day, location, computer resources) as well
as the social environment of the user (e.g., nearby people, previous interactions,
objectives, mood). The versatility of this notion of context has lead to a focus on
context modelling and structuring [2,3] against the dynamic aspects of context
change.

Some (reactive) context-aware applications [4,5,6,7,8] adapt their behavior
using Event-Condition-Action (ECA) rules (first used in the field of reactive
databases [9]), also referred to as adaptation rules. An ECA rule defines an action
to be performed as a reaction to some event under a certain condition. In context-
aware applications, the event part refers to context changes, the condition part
to the current context and the action part to an adaptive behavior. In spite of
the fact that the necessity of coordinating adaptation rules was early proposed
(coordinated adaptation [5]), not much work has been done in this regard. As
this paper shows, uncoordinated adaptation rules may lead to an inconsistent
application state.
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Let us illustrate this point with an example (inspired by an example used in
the presentation of Fact Spaces [10]). Suppose Bob has a laptop that is able to
control the house devices in terms of his location in the house. In the living room
there is a video projector and speakers. Both devices support wireless connection
to the laptop. Bob has programmed his laptop such that, when he is in the living
room, the laptop connects to the video projector and the speakers, and opens a
video player to play his favorite music clips in the living room.

Bob has however noted an undesirable behavior. Sometimes he can watch the
clips in the video projector but the corresponding sound is not played in the
speakers. Instead, he hears the music of his roommate Alice, who has a similar
laptop. This is because Alice has programmed her laptop to listen to music in
the living room, which only requires an audio connection. So, when Bob arrives
after her, she has already a connection to the speakers. To solve this, Bob has
reprogrammed his laptop. The context in which the clips have to be played is
when he is in the living room and he has access to both the projector and the
speakers. Now, when Alice and Bob are in the living room one can listen to
music if Alice has arrived first, otherwise one can watch and listen to music
clips.

Last week Alice has changed her preferences. Now she has reprogrammed her
laptop to also play music clips in the living room (in the same way as Bob).
Since then, a problem sometimes arises when Alice and Bob arrive at the same
time in the room: nobody can see their clips. The reason is that sometimes
Alice’s laptop gains access to the speakers, whereas Bob’s laptop gains access
to the video projector. Since each laptop requires access to both resources in
order to play the clips, no clip is played. We can see this situation as a kind of
(context-aware) deadlock.

The behaviors programmed by Bob and Alice can be seen as adaptation
rules that adapt the video player and the resources to the context of a pres-
ence of Bob and Alice in the living room. This is an example of uncoordi-
nated adaptation leading to an inconsistent state in the application. We pro-
pose a model for the coordination of concurrent adaptation rules. The model
is based on a model of concurrent aspects, CEAOP [11], and is provided in
the form of a language for modeling the adaptation of applications to context
changes. The language extends Finite State Processes (FSP) [12] proposed by
Kramer et al., which is a simple algebraic notation to describe process models.
In our language, an application written in plain FSP syntax is enhanced with
explicit contexts and adaptation rules. The enhanced application is translated
into pure FSP and checked against the LTSA tool [12] to detect concurrency
problems.

This paper is structured as follows. Section 2 briefly describes FSP and shows
how our running example is modeled in FSP. Section 3 presents our language
and at the same time describes how the running example can be enhanced
with explicit contexts and adaptation rules. Section 4 describes the model of
concurrent adaptation rules. Section 5 discusses related work. Finally, Sect. 6
concludes.
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2 Overview of FSP

2.1 Syntax and Informal Semantics

A Labeled Transition System (LTS) is a form of state machine description, such
that its transitions are labeled with action names. The left of Fig. 1 models, for
instance, the behavior of a person that enters and leaves a room. The action
enter causes a transition from state(0) to state(1), and the action leave causes
a transition from state(1) to state(0).

enter

leave

0 1

Person = ( enter -> Inside ),
Inside = ( leave -> Person ).

Person2 = ( enter -> leave -> Person2 ).

Fig. 1. Light switch state machine

Finite State Processes (FSP) is a simple algebraic notation to describe pro-
cess models. Each FSP description has a corresponding state machine (LTS)
description. Figure 2 shows a simplified version of the FSP syntax (the full syn-
tax can be found in [12]). This syntax definition, as well as the other definitions
shown in this paper, are based on the syntax definition formalism SDF [13]
(close to EBNF) and its implementation with scannerless generalized-LR pars-
ing (SGLR) [14,15]. An SDF production s1...sn -> s0 defines that an instance
of non-terminal s0 can be produced by concatenating elements from symbols
s1...sn, in that order. SDF provides notation for optional (?) and iterated (*,+)
non-terminals. The notation {s lit}+ represents a list of s separated by lit.

ProcId = ProcBody . -> ProcDef
Proc -> ProcBody
Proc , { LocalProcDef , }+ -> ProcBody
ProcId = LocalProc -> LocalProcDef
( { Branch | }+ ) -> Proc
{ ActLabel -> }+ -> ProcId -> Branch
Label -> ActLabel

Fig. 2. FSP syntax definition

The definition of a finite state process (ProcDef) associates an identifier (Pro-
cId) to a body (ProcBody). The body consists of a process expression (Proc) and
an optional list of local process definitions (LocalProcDef). A process expression
is a choice between one or more branches separated by the choice operator |. A
branch (Branch) is a sequence of action labels separated by the sequence opera-
tor ->, and terminated by a process identifier. Processes defined in the body are
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referenced by their identifiers, whose scope is the definition of the finite state
process. The non-terminal ActLabel is intentionally introduced for further use.

An FSP starts behaving as its process expression. It performs a sequence of
actions until a reference to another process (or the same process) is found. Then,
the FSP continues behaving as the referenced process. As an example, the code
on the right of Fig. 1 illustrates two equivalent FSPs for the person’s behavior.
Person performs the action enter and continues behaving as the process Inside.
Then, it performs the action leave and comes back to the initial state. Person2
is a more compact notation for the same behavior.

Parallel processes can be built by composing sequential or parallel processes
using the operator ||. Parallel composition corresponds to the synchronized
product of the corresponding automata. Shared actions constrain parallel com-
position so that an action shared by a set of processes is performed at the same
time by all the processes of the set. Relabeling and hiding operations can be
used to define which actions are actually shared at composition time. FSP is
used to model applications as a set of processes together with their interactions
through shared actions.

2.2 Modeling the Motivation Example Using FSP

Let us illustrate FSP by modeling the behavior of our running example, without
adaptation rules. Bob and Alice enter and leave the living room and both an audio
and a video resources are ready to accept connections. Figure 3 shows this model.
The basic behavior of a user is modeled by the process Person of the previous sec-
tion. The activity of Alice is modeled by the process alice:Person, an “instance”
of the process Person, whose actions are prefixed by alice. Analogously, the ac-
tivity of Bob is modeled by the process bob:Person.The process Resourcemodels
a resource, which can be acquired by a user and afterward released. The video
resource is modeled by the process {alice.video,bob.video}::Resource,
an instance of the process Resource, whose transitions are duplicated and
each duplicate is prefixed by alice.video and bob.video, respectively.
This means that there are two distinct actions (alice.video.acquire and
bob.video.acquire) to obtain the video resource and similarly two actions
to free it (alice.video.release and bob.video.release). Analogously the
process {alice.audio,bob.audio}::Resource models the audio resource. The
access to each resource is mutually exclusive. Finally, the process Application
models the application by composing all the processes using the composition
operator ||.

3 The Language

This section presents our language for modeling the adaptation of applications
to context changes. The language extends FSP with adaptation rules, contexts,
and context rules. An adaptation rule is used to adapt a base application by
triggering reactions to the occurrence of particular base actions. In our example,
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Resource = ( acquire -> release -> Resource ).

||Application = ( alice:Person || bob:Person
|| {alice.video, bob.video}::Resource
|| {alice.audio, bob.audio}::Resource ).

Fig. 3. Model of the application in FSP

an adaptation rule can trigger playing clips as a reaction to the entrance of a
user in the living room and can stop playing clips as a reaction to the user’s
exit. A context is used to abstract a situation, e.g. the presence of a user in the
living room. A context rule improves adaptation rules by attaching behavior to
abstract contexts rather than to concrete actions. Once defined, context rules
can be instantiated with respect to concrete contexts. In our example, a context
rule can attach the behavior of playing clips to an abstract context denoting a
situation when clips should be played. By instantiating the context rule, it is
possible to associate this situation to the presence of a user in the living room.
Decomposing adaptation rules into contexts and context rules makes it easier
to capture context-awareness by making the notion of context explicit. It also
improves modularity and reuse.

The overall language is built as a combination of languages, namely FSP,
adaptation rules, contexts, and context rules. Thanks to the use of SDF, we can
easily combine the FSP syntax definition presented in Sect. 2 with the other
languages. We use grammar mixins, i.e. syntax definitions parameterized with
the context in which they are used. We explain this notion in the remainder of
this section as we present the different parts of the language.

3.1 Adaptation Rules

An adaptation rule is used to adapt an application. The application that is the
subject of this adaptation is denoted as the base application. Furthermore, we
use the term “base” as an adjective to denote an entity that belongs to the base
application, e.g. base action.

Let us call events the base actions. An adaptation rule in our language can be
seen as a process that observes events and can optionally react by introducing
actions, called reactions, where observing an event means synchronizing on it.
The definition of an adaptation rule only talks about the events of interest in
each state. A complete process model of the rule, which defines what happens
for each event in each state, is generated by a compiler, which translates our
language to FSP. In particular, new transitions, that we call waiting loops, are
created in each state for each (shared) label not explicitly taken care of. These
transitions simply loop back to their source state.

Figure 4 shows the syntax of an adaptation rule, which is very similar to
the FSP syntax. We use grammar mixins in order to reuse the FSP syntax. An
adaptation rule is defined as an identifier and a body. The body has the same
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syntax as an FSP body (mixin ProcBody[[RuleCtx]]), but the mixin parameter
is propagated within ProcBody and makes it possible to define new productions,
here for ActLabel, which may now, in the context of an adaptation rule, include
a reaction, distinguished through the operator =>. The prefix + is used to easily
recognize adaptation rules.

+ ProcId = ProcBody[[RuleCtx]] . -> RuleDef
Label => Reaction -> ActLabel[[RuleCtx]]
{ Label ; }+ -> Reaction

+PlayRule = ( enter -> Inside),
Inside = ( video.acquire -> Video | audio.acquire -> Audio

| leave -> PlayRule ),
Video = ( audio.acquire => play -> Played | leave -> PlayRule ),
Audio = ( video.acquire => play -> Played | leave -> PlayRule ),
Played = ( leave => stop -> PlayRule ).

Fig. 4. Syntax of an adaptation rule (at the top) and example of an adaptation rule
that triggers the actions that plays and stops clips (at the bottom)

As an example, the process PlayRule at the bottom of Fig. 4 illustrates an
adaptation rule that plays the clips in the living room. Note the use of the
operator => to indicate the reactions play and stop. This rule can be afterward
instantiated for each user using prefixing, e.g. alice:PlayRule corresponds to
the adaptation rule that plays the clips for Alice.

Adaptation rules are expressive enough to observe context changes and react.
However, without an independent notion of context, contexts are implicitely
embedded in the adaptation rules to the detriment of modularity and easy rea-
soning.

3.2 Context

Context Modeling. A fundamental part of a context-aware application is
context modeling. Due to its versatility, the notion of context can be represented
in different ways like key-value models, logic-based models and ontology-based
models [16]. The choice of a specific model depends on the required level of
abstraction. The exact GPS position of a person might not be of value for an
application but the name of the room the person is in, may be [3]. We aim to
abstract the notion of context as much as possible in order to facilitate the
definition of adaptation rules and the verification of the adapted systems.

A context represents an environmental state. Adaptation rules adapt an ap-
plication with respect to such a state. Usually, this adaptation is required as
soon as the context changes, which means that adaptation rules are triggered as
soon as the change is detected. The application detects context changes through
computations such as the evaluation of a value in a key-value model, or the de-
tection of a new fact in a logic-based model. We consider these computations
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as context-switch events and we model a context using them. In addition, we
assume that these events can be extracted from the application model. For ex-
ample, this is when alice.enter occurs that the system can detect that Alice
is in the living room. In this setting, we model a context as the tuple (context,
in, out, context provider), where context is the name given to the context, in and
out are context-switch events, in refers to the event making the system detect
that it is in context, out refers to the event making the system detect that it
is not in context anymore, and context provider is a process that defines these
events. In the remainder, it will be said that a context is active in all the states
following the in action and preceding the out action, otherwise it will be said to
be inactive.

Context Providers. A context is defined in a context provider, which has
the same name as the context. A context provider is a process that observes
events and indicates what are the context-switch ones. A context provider can be
either primitive or composite. A primitive context provider observes events and
annotates, with the suffixes :in and :out, the in and out actions, respectively.

Figure 5 shows the syntax of a primitive context provider. A primitive context
provider is defined as an identifier and a body with the same syntax as an FSP.
Furthermore, an action label in the context of a primitive context provider,
can be a label followed by the suffix :in or :out. Figure 5 also illustrates a
primitive context provider, namely LivingRoom, which defines the context of
being in the living room. This context observes the base action enter and the
sequence enter -> leave. As the annotations indicate, the context is activated
at enter and deactivated at leave. In a similar way, we define the context
Connected, which models a resource connection context. A context provider can
be instantiated using prefixing, e.g. video:Connected represents the context of
a connection to the video resource.

@ ProcId = ProcBody[[CpCtx]] . -> PrimCxtDef
Label Suffix -> ActLabel[[CpCtx]]
:in | :out -> Suffix

@LivingRoom = ( enter:in -> leave:out -> LivingRoom ).
@Connected = ( acquire:in -> release:out -> Connected ).

Fig. 5. Syntax of a primitive context provider (at the top) and example (at the bottom)

More complex contexts can be defined by composing simple context providers
using operators. We provide the three basic logical operators: the conjunction
operator &, the disjunction operator |, and the negation operator !. For exam-
ple, the context LivingRoom & Connected is active when both LivingRoom and
Connected are active, i.e. when in the context LivingRoom, Connected becomes
active, or vice-versa. In an analogous way, the context LivingRoom | Connected
is active when either LivingRoom or Connected is active. Finally, !LivingRoom



An Event-Based Coordination Model 239

@ ProcId = ! ProcId . -> CompCxtDef
@ ProcId = ProcId BinOp ProcId . -> CompCxtDef
& | | -> BinOp

@Ready = ( LivingRoom & video:Connected & audio:Connected ).

Fig. 6. Syntax of a composite context provider (at the top) and example (at the bot-
tom)

is active when LivingRoom is inactive, i.e. it is a context that is initially active
and becomes inactive as soon as LivingRoom becomes active.

Figure 6 shows the syntax of a composite context provider. This figure also
defines the context Ready as the conjunction of the context LivingRoom and the
context Connected, instantiated for each resource. Because of the conjunction,
Ready models the context in which a user is in the living room and a resource
has been connected for him/her.

3.3 Context Rules

We define context rules as a means to define adaptation rules that abstract the
context away. A context rule can be seen as a parameterized adaptation rule that
receives a context as a parameter, and can observe the context-switch events in
and out associated to this context (through actions denoted by the keywords in
and out, respectively). Once defined, a context rule can be instantiated for a
concrete context. Figure 7 shows the syntax of a context rule (CtxRuleDef) and
its instantiation (CtxRuleInst).

The rule that plays the clips of our running example can be written in a
modular way using a context rule, as shown at the bottom of Fig. 7. PlayDef
defines such a rule in terms of a generic context. In the same way, we can model
a rule, namely ConnDef, that attempts to acquire a resource. It observes the
beginning of the context and can either react by performing acquire, if the
resource is free, or observe the deactivation of the context. Afterwards, it releases
the resource if it was previously acquired. These rules can be instantiated for
the concrete contexts LivingRoom and Ready. A context rule can be prefixed,
e.g. alice:PlayDef would correspond to the rule that plays clips for Alice. The
prefixing of a context rule is such that all the actions of the rule are prefixed,
except the context-switch events.

3.4 Composition

Adaptation rules adapt a base application. In terms of FSP, this adaptation
means a composition. We provide the operators + and * for denoting the se-
quential composition of the FSP that represents a base application with one or
more (context) adaptation rules, whose syntax is shown in Fig. 8.



240 A. Núñez and J. Noyé

+ ProcId ( ProcId ) = ProcBody[[CrCtx]] . -> CtxRuleDef
{ ActLabel[[CrCtx]] -> }+ -> ProcId ( ProcId ) -> Branch
Label => Reaction -> ActLabel[[CrCtx]]
( in | out ) => Reaction -> ActLabel[[CrCtx]]
in | out -> ActLabel[[CrCtx]]
+ ProcId = ProcId( ProcId ) . -> CtxRuleInst

+PlayDef(Cxt) = ( in => play -> out => stop -> PlayDef(Cxt) ).
+ConnDef(Cxt) = ( in => acquire -> out => release -> ConnDef(Cxt),

| in => out -> ConnDef(Cxt) ).
+ConnRule = ConnDef(LivingRoom).
+PlayRule = PlayDef(Ready).

Fig. 7. Syntax of a context rule (at the top) and examples (at the bottom)

|| ProcId = BaseExpr SeqOp ProcId . -> Adaptation
ProcId -> BaseExpr
BaseExpr SeqOp ProcId -> BaseExpr
+ | * -> SeqOp

Fig. 8. Syntax of the composition of an application and adaptation rules

The composition of the base application with a single rule gives as a result a
new FSP denoting an adapted base application. This composition is such that
a reaction defined for an event takes place after the event is performed by all
the base processes synchronizing on such an event. Furthermore, these processes
cannot continue until the reaction has been performed.

When applying several rules, these operators are left-associative, i.e. if B is
a standard FSP, and R1 and R2 are rules, then B + R1 + R2 is the same as
( B + R1 ) + R2. B is first composed with R1 giving as a result a new adapted
application that is afterward composed with R2. As a result, if two rules apply
to the same event, some form of precedence takes place. Let us consider the
example above when considering individual events. The general scheme is that
the reaction of R2 precedes the reaction of R1. In other words, the last adaptation
has priority. When considering context rules, this general scheme is applied to all
the events when using the operator +. The operator * behaves slightly differently
with respect to “out” reactions, which are in reverse order: the “in” reaction of
R2 precedes the “in” reaction of R1, but the “out” reaction of R2 comes after
the “out” reaction of R2 in order to obtain a form of nesting.

3.5 Adaptation Rules and Aspects

Aspect-Oriented Programming [17] makes it possible to localize concerns that
cannot be encapsulated in standard modularization systems. In our language,
an adaptation rule can be seen as a kind of aspect. It observes actions that are



An Event-Based Coordination Model 241

scattered in the definition of other processes and introduces behavior. However,
a specific property of aspects is that they may prevent the base program from
executing some actions, and this is clearly not supported by our adaptation rules.

We include support for aspects in our language by extending the syntax of
adaptation rules with aspect expressions. The extension allows adaptation rules
to observe when a base action is about to happen. Then, it can introduce ac-
tions before and/or after the occurrence of the action. In addition, it can pre-
vent the base program from performing such an action. An adaptation rule is
equipped with aspect expressions of the form action > before; ps; after, where
action is a base action, before a sequence of actions performed before action, af-
ter a sequence of actions performed after action, and ps either skip or proceed.
The action skip means that the base action must be skipped and the action
proceed means that this base action must take place. With this extension, ex-
pressions of the form event => reaction are syntactic sugar for the expression
event > proceed;reaction. For the sake of simplicity, this paper just deals with
the case ps is proceed and only after actions are defined. Figure 9 shows the
way the syntax of (context) adaptation rules is extended.

Label > Advice -> ActLabel[[RuleCtx]]
Label > Advice -> ActLabel[[CrCtx]]
( in | out ) > Advice -> ActLabel[[CrCtx]]
( Label ; )* PS ( ; Label )* -> Advice
proceed | skip -> PS

Fig. 9. Extension of (context) adaptation rules with aspect expressions

Including support for aspects in the language allows us to reuse previous work
on concurrent event-based aspect-oriented programming (CEAOP) [11,18,19].
In this way, we add support for concurrent rules using the model of concurrent
aspects as the next section shows.

This section has presented a language to model context-aware applications.
Our running example can be modeled in a modular way using explicit context
and context rules. The next section is about coordinating rules in order to avoid
inconsistent states in an application.

4 Concurrent Adaptation Rules

We denote as concurrent adaptation rules all the rules that are triggered by the
same event. In our running example, the rule that attempts to open a video
connection is concurrent with the one for an audio connection. Both rules are
triggered by the same event: the entry to the living room. The uncoordinated
behaviors of these rules may lead to an inconsistent state in the base applica-
tion, as mentioned in the introduction of this paper. The necessity of coordinat-
ing concurrent rules has already been presented as the necessity of coordinated
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adaptation [5]. We contribute to this by presenting a model for the coordination
of adaptation rules.

Adaptation rules are translated into aspects, as shown in the previous section.
Thus, the schemes for aspect coordination introduced by CEAOP can be used
for adaptation rules, based on a combination of event renaming and hiding, and
the use of specific operators. In the following we present the main points be-
hind the coordination of aspects restricted to adaptation rules, i.e. aspects that
always proceed and that only define after advices. More details about coordi-
nating full-blown aspects are available in [11]. In our model, a base application
is considered as a combination of several processes, and an adaptation rule as
an independent process that is coordinated with the base application and the
other adaptation rules. Adaptation rules are translated into FSPs, which are
composed with the FSPs that model the base application. Some variability is
allowed for the coordination, which determines the way the translation is done,
as described in the remainder of this section.

4.1 Coordinating the Base Application with Adaptation Rules

An adaptation rule can be composed with the base application following several
coordination schemes: (1) the reactions to an event can be performed in the
background as soon as the event occurs, while the base application may continue
its normal computation, (2) the base application may wait until the reaction has
been performed, or (3) the reactions can be performed in parallel with the event.
We embody these schemes in the operator sync(base,rule,parallel,yield), where
base is the FSP that models the base application, rule is an adaptation rule,
parallel is a boolean value denoting whether reactions are triggered in parallel
with events, and yield is a boolean value denoting whether the base application
has to wait for the end of the reactions. In this setting, an expression B + R
using the operator + of Sect. 3.4 is equivalent to sync(B,R,false,true), i.e.
the reactions occur after the event and the base application waits for the end of
them.

The coordination, using the operator sync, of an adaptation rule declaring
an expression event => reaction -> Q is implemented as follows. The reaction
is translated into the sequence at the bottom of Fig. 10. The base application
is instrumented such that all the occurrences of event -> P are translated into
the sequence at the top of Fig. 10. The following synchronization events are
included in the translations: pb_event (the event is about to be performed),
pe_event (the event has been just performed), and e_event (the end of the event
scope). Figure 10 illustrates a coordination sync(B,R,false,true). The labels
surrounded with squares correspond to the synchronization events and the verti-
cal lines represent the different rendezvous. After a first rendezvous at pb_event,
the base application performs event. A second rendezvous is at pe_event. Then,
the actions denoted by reaction are performed until a last rendezvous at e_event.
The different options of sync can be achieved by hiding events. For example, if
pe_event is hidden the reaction is parallel to the event, or if e_event is hidden
the application does not wait for the reaction.
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-> reaction-> -> e_event -> Qpb_event pe_event

-> e_eventevent -> P->->pb_event pe_event

Fig. 10. Coordination of an application and an adaptation rule

4.2 Coordinating Adaptation Rules

Let us come back to our running example and consider the rules for triggering
the video and audio connections. These rules are not coordinated, leading to an
inconsistent state in the application. Ordering the way resources are acquired
is a known manner to solve this problem. This means coordinating adaptation
rules.

Adaptation rules can be composed together using operators. The result of
applying an operator is a composite rule that can be afterward composed with
the base application. Two concurrent adaptation rules can be coordinated using
two different schemes: (1) reactions to a shared event can be performed sequen-
tially, or (2) they can be performed in parallel. We reuse the CEAOP operators
to implement these schemes: the operator Fun implements sequential reactions,
and the operator ParAnd parallel reactions.

The implementation is as follows. Let us consider two adaptation rules declar-
ing expressions of the form event => reaction1 -> Q, and event => reaction2 -> R,
respectively. Analogously to the previous section, the expressions are translated
into the sequences on the middle and at the bottom of Fig. 11, respectively. The
base application is instrumented such that all the occurrences of event -> P are
translated into the sequence at the top of Fig. 11. This figure illustrates the op-
erator Fun. This operator uses relabeling to impose a rendezvous (indicated by a
vertical line) between pe_event of the first rule and e_event of the third one by
giving a common name pe1_event. As a result, the reactions are performed se-
quentially in the order reaction2 -> reaction1. Without this renaming, reaction1
would run in parallel with reaction2, which is the behavior determined by ParAnd.
(see Fig. 12). The operator Fun is used to implement the composition of a base ap-
plication with two rules using the operator + as defined in Sect. 3.4.

4.3 Coordinating Contexts and Adaptation Rules

A context provider is a process that observes events and indicates which are the
context-switch ones. A context rule uses these context-switch events in order
to define reactions that depends on the context. Therefore, the coordination of
the base application, context providers and context rules is done through these
events.

At the implementation level, some instrumentation is required. Let us consider
that a context is activated at the second occurrence of an event foo. In this
case, it is not possible to say that foo is the context-switch event, because the
first occurrence of foo does not activate the context. It is necessary to define
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Fig. 12. Coordination of adaptation rules using the operator ParAnd

other events “representing” each context-switch event, generated at the same
time as the original context-switch event. If the name of the context is context,
then in_context and out_context represent the context-switch events in and out,
respectively.

Finally, a context provider is implemented as an adaptation rule throwing as
a reaction to the occurrence of a context-switch event the corresponding pseudo
context-switch event. Context rules are translated into adaptation rules by replac-
ing the in and out events by the corresponding pseudo context-switch events.

This section has shown a model for the coordinated adaptation of an applica-
tion using explicit contexts and adaptation rules. Coordinating schemes such as
ordering reactions make it possible to keep a consistent application state while
adapting the application.

5 Related Work

Fact Spaces [10] is a logic-based approach to context-awareness implemented in
a concrete language called CRIME. One of the main ideas behind the model of
Fact Spaces, inherited from Linda, is the existence of a distributed data base of
knowledge populated with shared facts. Each time a fact is added or removed
from the data base, subscribed applications are notified. New facts can be added
or actions in applications can be triggered as soon as their required facts are
matched. These rules correspond to a list of facts, which have to be satisfied in
order to trigger actions or publish other facts. Our language provides support
for defining similar rules but using events instead of facts. This allows us to easily
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model concurrent rules and analyze concurrency properties using pre-existing
frameworks, which in a logic-based system is harder.

ContextL [20] is an object-oriented programming language that allows for
Context-oriented Programming. It provides means to associate partial classes
and method definitions with layers and to activate and deactivate such layers
in the control flow of a running program depending on the current context.
Thus, the behavior of objects is extended with the activated layers. Although
our approach is at the modeling level, we can find similarities. The behavior of
an object modeled in an FSP can be extended with context rules, which can be
seen as a kind of layers. Reactions are triggered depending on whether a given
context is active or not. A unique feature of our approach is that we specifically
deal with concurrent adaptation rules, whereas ContextL has no specific support
for concurrent layers.

Shankar et. al introduced the ECPAP framework for policy-based manage-
ment of a pervasive system [21]. The framework manages policies based on the
Event-Condition-Action pattern: a policy defines an action to be performed when
an event occurs under a given condition. In addition, the action is triggered
only if a precondition holds, and it is considered successful if a postcondition
is satisfied after its execution. The approach deals with concurrent policies, i.e.
policies that define actions for a common event. When this event occurs a Petri
net (built at compile time) defines an optimal order of execution of the in-
volved actions. The adaptation rules of our approach are comparable with the
policies of the ECPAP framework. Indeed, when considering individual events,
our adaptation rules are based on a form of ECA pattern. However, our ap-
proach is more abstract. We consider events not only as environmental events
but also as any kind of action (join point) in the computation of a system. In
this way, an action triggered by an adaptation rule can be seen as an event by
another rule, thus permitting the detection of possible conflicts between adap-
tation rules. Furthermore, linking related events using explicit events makes it
possible to detect other kinds of conflicts between rules. Finally, we include an
explicit notion of context and introduce context rules. The management of pre-
and postcondition together with the automatic ordering of reactions is an inter-
esting feature of the ECPAP framework that would be worth including in our
approach.

In the area of Aspect-Oriented Programming, Tanter et al. introduced context-
aware aspects [22], as aspects that match base-program joint points depending on
whether a given context is active. They stated the necessity of context as a first-
class entity in aspect-oriented languages that has to be stateful, composable and
parameterized. Our approach augments the proposal of Tanter et al. by providing
support to concurrent context-aware aspects.

Finally, our approach is based on CEAOP [11] and therefore includes stateful
aspects [23]. In our approach, part of a stateful aspect can be factorized out in
the notion of context. The instantiation of a context rule with a concrete context
can be seen as the completion of the initial state machine of a stateful aspect
with the states and transitions defined in the concrete context.
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6 Conclusion

This paper has presented an approach to model coordinated adaptation of
context-aware applications by enhancing a simple process calculus, FSP, with
adaptation rules, context, context rules, and aspects. We have built an exten-
sion of the LTSA tool that supports processes written using our language.1 The
extension translates (context) adaptation rules and context providers into FSPs.
Then, these FSPs are manipulated with the standard LTSA tool in order to
check concurrency properties.

Note that our main contribution is not in expressiveness (everything is trans-
lated into FSP), but rather in clarity of the specification and modular reason-
ing. In this regard, we provide a model that simplifies the analysis of concur-
rency properties in context-aware applications. Furthermore, our approach can
be used as a model for context-aware applications that takes concurrency into
account.

We are now interested in the use of this modeling language in two com-
plementary directions: the analysis of existing programs, e.g. programs written
using CRIME rules, with respect to their concurrency properties, as well as the
synthesis of actual implementations by refining part of the model (e.g. adding
parameters to actions) and combining the refined language to a general-purpose
programming language (e.g. Java) that could be used to implement the atomic
actions. Some work has already been done in this direction as we have previously
explored the possibility of using CEAOP as the basis of combining Java com-
ponents and aspects using behavioral interfaces [19]. When considering aspects,
these interfaces have much in common with adaptation rules.
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Abstract. A translation of the Business Process Modeling Notation into
the process calculus COWS is presented. The stochastic extension of
COWS is then exploited to address quantitative reasoning about the
behaviour of business processes. An example of such reasoning is shown
by running the PRISM probabilistic model checker on a case study.

1 Introduction

A challenging question for organisations is how to create strong, yet flexible,
business processes. Business Process Management is emerging as a means for
understanding the activities that organisations can perform to optimise their
business processes or to adapt them to new organisational needs. Specifically,
it defines the activities to be performed by organisations to manage and, if
necessary, to improve their business processes. Business Process Management
activities concern the design and capture of existing business processes as well as
the analysis of new ones. In this setting, the definition of languages for modelling
business processes is a key step in Business Process Management due to the need
of describing their structure and behaviour.

Different languages have been proposed in literature to model business pro-
cesses (e.g., [6,25,27]). Among them, the Business Process Modeling Notation
(BPMN) [19] is emerging as the de-facto standard modelling notation in indus-
try. BPMN was designed to provide a graphical notation for XML-based business
process languages, such as WS-BPEL [18]. Therefore, business analysts can take
advantage from the use of BPMN since they can exploit facilities for generating
executable WS-BPEL code from BPMN graphical models [20]. Unfortunately,
BPMN is informal and leaves room for ambiguity about its semantics [5]. More-
over, it does not allow for formal analysis. These issues are challenging and call
for formal frameworks encoding graphical elements into formal specifications.

Process calculi have been proved powerful enough to formalise the activities
performed within a business process, to render in a natural way the parallelism
and concurrency of interactions among participants as well as to analyse the
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overall process behaviour. In particular, in this paper we present a translation
of BPMN into the Calculus of Orchestration of Web Services (COWS) [13]. A
stochastic extension of COWS [22] is then exploited to obtain semantic models
that are quantitatively verified using the PRISM [10] model checker. Such a
quantitative reasoning aims to assist system designers in the evaluation and
comparison of design alternatives with the intent of driving them in the selection
of an appropriate infrastructure supporting the business process.

The choice of COWS is motivated, on one hand, by the fact that, being a foun-
dational calculus, it is based on a very small set of primitives associated with a
formal operational semantics that can be exploited for the automated derivation
of the behaviour of the specified services. On the other hand, the language is
strongly inspired by WS-BPEL, providing, among the rest, macros for fault and
compensation handlers. Not least, an on-the-fly model checker for the qualita-
tive verification of COWS specifications is already available [7]. So the proposed
translation of BPMN into COWS allows testing business processes against, e.g.,
responsiveness properties like “after a request, a response is eventually sent to
the requesting customer”.

The paper is organised as follows. Sec. 2 and Sec. 3 present a brief overview of
BPMN and of COWS, respectively. A small business process used as a case study
is also illustrated. The translation from BPMN to COWS is then reported in
Sec. 4. The following section (Sec. 5) provides some reasoning on the quantitative
analysis carried on the case study via PRISM. Sec. 6 discusses related works and
presents some final remarks.

2 BPMN

BPMN [19] provides a standard graphical notation for business process mod-
elling. A business process is represented as a Business Process Diagram (BPD),
which is composed of a set of partially ordered activities executed by the partic-
ipants of the process. A BPD is essentially a collection of pools, objects, sequence
flows, and message flows. Pools represent the participants to the business pro-
cess. Objects can be events, activities, or gateways. Sequence flows determine
the execution order between two objects in the same pool. The behaviour of
a process is described by tracking the path(s) of a token through a process. A
token is an abstract object that traverses the sequence flow passing through the
objects of the process. Finally, message flows represent message exchange be-
tween two objects in different pools. Fig. 1 presents the core subset of BPMN
elements which populate the domain of our translation into COWS.

Events may represent the start of a process (start event), the end of a process
(end event), or something that might happen during the process (intermediate
event). Intermediate events can also be attached to task. Different types of events
are available. Here we consider none event, message event, and error event.
None events are used when the modeller does not specify the type and can be
start or end events. The meaning of a message event depends on its “position”
in the BPD. A start message event represents the fact that a message arrives
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Fig. 1. A core subset of BPMN elements

from a participant and triggers the start of the process; an end message event
indicates that a message is sent to a participant at the end of the process; and an
intermediate message event indicates that a message arrives from or is sent to a
participant during the process execution. An error message is for error handling.
If the error is part of a normal flow, it throws an error; if it is attached to the
boundary of an activity, it catches the error.

An activity is either a task or a subprocess (For the sake of simplicity, subpro-
cesses are not dealt with in this paper). A task is an atomic activity. BPMN defines
different task types. Here we consider service tasks, which provide some service,
receive tasks, which wait for a message from another participant, send tasks, which
send a message to another participant, and none tasks, which do nothing.

A gateway is a connector used to control sequence flows. Different types of
gateways have been defined in BPMN. A parallel fork gateway is used to cre-
ate parallel flows and a parallel join gateway is used to synchronise incoming
parallel flows. An exclusive decision gateway defines a set of alternative paths,
each of them is associated with a conditional expression. Only one path can be
taken during the execution of the process on the basis of conditions. Conditions
may be based either on data-base entries or on external events. An exclusive
merge gateway is used as a merge for alternative sequence flows. An inclusive
decision gateway is a branching point where each alternative is associated with
a condition. Differently from exclusive decision, all sequence flows with a true
evaluation of the corresponding condition will be traversed. Finally, an inclusive
merge gateway synchronises all tokens produced upstream.

To illustrate what BPDs are, Fig. 2 shows the diagram for a credit request sce-
nario. This example is an excerpt of a case study analysed in the course of the
SENSORIA project. The goal of the scenario is twofold: ensuring the due support
to the customer during his credit request application, and reducing the effort of
bank employees in preparing an offer. The customer invokes the credit portal. If
the authentication process succeeds, he is required to insert his data, the desired
credit amount, and security values; otherwise, the process terminates and an error
message is produced. The information inserted by the customer is checked against
consistency and for validation purposes. In particular, a validation service is in-
voked. If such a service returns a positive answer, the data are uploaded to the
bank and the process goes on. Otherwise, the customer has to update his data.
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Fig. 2. Credit Request Process in BPMN

3 COWS: A Short Overview

In this section we present COWS [13], a foundational language for SOC that
combines elements of well-known process calculi (e.g., the π-calculus [17]) with
constructs inspired by WS-BPEL [18]. The computational units of COWS are
services. They are expressed as structured activities built by combining basic
activities by means of a small number of primitive operators. As it is typical for
many process calculi, COWS services are given a formal operational semantics
in terms of a set of syntax-driven axioms and rules which can be used to describe
the dynamics of the system at hand. Specifically, those rules define a transition
relation →, with s → s′ meaning that service s can execute a computation
step and transform into service s′. Interested readers are referred to [13] for a
detailed description of COWS semantics. Here we just provide an overview of
the language and of the interpretation of its constructs.

The syntax of COWS is based on three countable and pairwise disjoint sets:
the set of names , the set of variables , and the set of killer labels. The very basic
activities in COWS are request and invoke operations which occur at endpoints .
In [13], endpoints are identified by both a partner and an operation name. Here,
for simplifying the notation, we let endpoints be denoted by single identifiers,
and consider a monadic version of the calculus, that is, we suppose that re-
quest/invoke interactions can carry one single (vs. many) parameter at a time.

The terms of the COWS language are generated by the following grammar:

s ::= u! w | [ d ]s | g | s | s | {|s|} | kill(k) | ∗ s

g ::= 0 | p? w. s | g + g

Intuitively, service u! w performs an invoke (sending) activity over endpoint u
with parameter w, where w can be either a name or a variable. The actual scope
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of parameters has to be explicitly defined using the delimitation operator [ ] .
Basically, [ d ]s denotes that the scope of d is exactly s, where d can be either a
name or a variable or a killer label. Terms of the language can also be generated
by guarded commands g. In this case services can either be the empty activity 0,
or a choice between two guarded commands (g+g), or a request-guarded service
p? w. s that waits for a matching communication over the endpoint p and then
proceeds as s after the (possible) instantiation of the input parameter w. In what
follows, whenever the parameter of an invoke or request activity is irrelevant, we
simply write u! and p? for u! x or [ x ]p? x, respectively. Also, we usually omit
the trailing ‘.0’ from p? w. 0.

Furthermore, services can be described as parallel composition of other ser-
vices, as, e.g., in s1 | s2. The intended behaviour of service s1 | s2 is given by
all the possible communications given rise by matching the invoke (request) ac-
tions of s1 over any endpoint p with the request (invoke) actions of s2 over p.
Interactions can take place only if either the involved parameters coincide or the
request parameter is a variable. For instance,

p! n | [ x ](p? x. s) → 0 | s{n/x}

where x is used for variables and s{n/x} represents for the substitution of n for
x in service s.

The choice operator + models non-determinism. Either of its two arguments
can be chosen, and this causes the other be discharged. For instance, service

p! n | ([ x1 ](p? x1. s1) + [ x2 ](p? x2. s2))

can evolve into either 0 | s1{n/x1} or 0 | s2{n/x2}.
The protection primitive, written {| |} , saves from killer signals sent out by

means of the kill( ) primitive. The intended behaviour of kill(k) is to block the
activities of all unprotected parallel services in the scope of the killer label k.
For example, a kill activity inhibits unprotected communication

[ k ][ w ](p! n | p? w. s | kill(k)) → [ k ][ w ](0 | 0 | 0)

while, if the communication is protected,

[ k ][ w ]({|p! n |p? w. s|} |kill(k)) → [ k ][ w ]({|p! n |p? w. s|} |0)

The replication operator ∗ is used to model recursion. Intuitively, ∗ s behaves
as the parallel composition ∗ s | s, namely applying replication to s means that as
many copies of s are spawned as necessary. For instance, the following evolution
is possible:

∗ [ w ]p? w. s | p! n | p! m →
∗ [ w ]p? w. s | s{n/w} | 0 | p! m →
∗ [ w ]p? w. s | s{m/w} | s{n/w} | 0 | 0

The example shows the case when, at the first step, a copy of [ w ]p? w. s com-
municates with p! n, and at the second step another copy interacts with p! m.
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COWS allows some higher level imperative and orchestration constructs to
be encoded as combinations of the small set of primitives described so far. The
encoding of those constructs, written 〈〈 〉〉, is defined in full detail in [13]. Be-
low we provide the intuition underpinning the constructors used in this work:
imperative conditional statements, sequential compositions of services, and fault
handlers. The encoding of these constructs is obtained as a combination of com-
munications over reserved endpoints.

Conditional statements can be rendered as follows

〈〈if c then s1 else s2〉〉 � [ p ](p! ĉ | (p? true. 〈〈s1〉〉 + p? false. 〈〈s2〉〉))

where ĉ stays for the evaluation of the condition c and can either assume the
value true or the value false. If c is evaluated true, a communication between
p! ĉ and p? true takes place enabling service s1; otherwise, service s2 is triggered.
The scope of endpoint p is delimited to avoid interference with other services.

COWS does not natively support sequential composition of services, here
written s1; s2. As in CCS [16], however, this can be encoded by resorting to
invoke activities over a special endpoint for termination, say ps1 done for service
s1. Intuitively, if the encoding of s1 is such that each possible execution path has
ps1 done! as latest action, then a possible encoding for s1; s2 is the following:

〈〈s1; s2〉〉 � [ ps1 done ](〈〈s1〉〉 | ps1 done? . 〈〈s2〉〉)

Here notice that, because of killer activities, termination in COWS slightly differs
from termination in CCS. A service s is actually terminating if no kill action is
enabled when the unprotected ps done! can be performed.

Fault handlers can also be expressed in terms of COWS primitives. Here we
present an encoding that departs from that proposed in [13] to meet the BPMN
informal semantics. The fault generator activity throw(φ) is used to rise a fault
signal φ via the invoke pfault φ! that triggers the execution of the appropriate han-
dler. The scope activity [s1 : catch(φ){s2}] executes its normal behaviour s1, until
either s1 terminates or a fault signal φ triggers the execution of the handler s2:

〈〈[s1 : catch(φ){s2}]〉〉 �
[ k ][ k′ ][ ps1 done ](〈〈s1〉〉; ps1 done! | ps1 done? .kill(k′) | 〈〈catch(φ){s2}〉〉k)

If s1 signals its termination through ps1 done! , the catch activity is killed; other-
wise s2 is enabled and s1 is killed by the catch:

〈〈catch(φ){s2}〉〉k � pfault φ? . (kill(k) | {|〈〈s2〉〉|})

4 From BPMN to COWS

This section provides the intuition underlying the translation of core BPDs into
COWS services. Each BPMN object has an interface that is used to connect it
to other objects. This interface is made of request processing waiting for a token
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from the previous objects (if any), and invoke activities sending the token to the
next objects (if any).

The basic idea of the translation is to interpret each object as a distinct
COWS service. Services are then assembled using parallel compositions in such
a way that COWS terms corresponding to connected objects can communicate
to each other. Specifically, request activities correspond to incoming edges of
the graph, and invoke activities to outgoing edges. Besides the interface, each
object has a kernel, which defines the behaviour of the object itself in terms
of the actions that are executed when the object is triggered. Our transla-
tion describes the message flow along the objects of the business process at
hand. In this way, the transition system of the translating COWS service gives
a compact representation of the possible paths of tokens within the business
process.

The compositional translation of BPMN objects into COWS services is com-
pactly presented in Tab. 1. As a pre-processing phase, we assume that each object
of the diagram is firstly labelled by a name, so that no homonym between nodes
and no homonym between edges is given raise. In particular, we adopt both in
Tab. 1 and in the forthcoming examples the following easy labelling technique.
First we associate distinct names with all the objects in the BPD, then we pre-
liminarily give each edge the same name as the node it points to. If a node, say
N , has more than one incoming edge, then the preliminary names of these edges
are converted into N1, N2, . . . after an arbitrary ordering. Preliminary objects
are otherwise confirmed.

A none start event starts a business process by generating a token, and it is
modelled as a service performing the invoke activity pX ! , where X is the object
pointed by the start event. (Here notice that the name pX used as endpoint is
automatically determined by the labels in the diagram). Symmetrically, a none
end event E determines the end of the process and it is encoded as a service
that consumes all the tokens generated upstream, that is, as a replicated request
processing pE? . The replication operator ensures that every incoming token is
consumed by a none end event. Indeed, due for instance to the presence of cycles
in the diagram, the number of produced tokens is not known a priori. A message
start event is triggered when receiving a message by means of pE? w and then it
activates the process by performing the invoke activity pY ! .

Every time a none task T receives a token from the incoming flow (denoted
by pT ? ), a token for the outgoing sequence flow is generated (denoted by pY !
if the outgoing edge points to Y ). A receive task T gets a token by means of a
pT1? action, then it receives a message w when executing the activity pT2? w,
and it finally produces a token for next object Y . A send task T gets a token
by means of pT ? , and later on it sends a message msg by performing pZ ! .
When msg is sent, the task is completed [19, p. 65]. The token is thus passed
to the next object Y . We do not provide an encoding of service tasks since their
kernel depends on the particular service they are supposed to provide. Designers
can define them in terms of existing constructs using, for instance, predefined
patterns.
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Table 1. Translation of core BPMN into COWS

None start event S X pX !

None end event E ∗ pE? . 0

Message start event

E
Y

∗ [ w ]pE? w. pY !

None task T Y ∗ pT ? . pY !

Receive task
T

T 1 Y

T 2

∗ [ w ]pT1? . pT2? w. pY !

Send task
T

Y

Z

∗ ((pT ? . pZ !msg); pY ! )

Error event (normal flow) ∗ (pE? . throw(tr1); pX ! )

Error event (exception flow) [〈〈T1〉〉 : catch(tr1 ){〈〈T2〉〉}]

Parallel fork gateway
Y

Z

G ∗ pG? . (pY ! |pZ ! )

Parallel join gateway

G 1

G 2

Z ∗ ((pG1? | pG2? ); pZ ! )

Inclusive decision gateway
G

Y

Z

c 1

c 2

∗ pG? . (if ĉ1 then pY ! | if ĉ2 then pZ ! )

Inclusive merge gateway

G 1

G 2

Z ∗ ((pG1? + pG2? + (pG1? | pG2? )); pZ ! )

Exclusive decision gateway
G

Y

Z

c 1

c 2

∗ pG? . (if ĉ1 then pY ! else if ĉ2 then pZ ! )

Exclusive merge gateway

G 1

G 2

Z (∗ pG1? . pZ ! ) | (∗ pG2? . pZ ! )

T 1 T 2E 1 E 2

Fig. 3. BPD Example 1

As an easy example, consider the BPMN process in Fig. 3. Its complete trans-
lation into COWS is given as:

E1 | T 1 | T 2 | E2 = pT1! | ∗ pT1? . pT2! | ∗ pT2? . pE2! | ∗ pE2?
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E 1

T 1

T 2

G 1

E 2

G 2

G 2 1

G 2 2

Fig. 4. BPD Example 2

The operational semantics of the calculus prescribes how sequence flows proceed
within the service. Specifically:

pT1! | ∗ pT1? . pT2! | ∗ pT2? . pE2! | ∗ pE2? .0 → (1)
0 | ∗ pT1? . pT2! | pT2! | ∗ pT2? . pE2! | ∗ pE2? .0 → (2)

0 | ∗ pT1? . pT2! | 0 | ∗ pT2? . pE2! | pE2! | ∗ pE2? .0 → (3)
0 | ∗ pT1? . pT2! | 0 | ∗ pT2? . pE2! | 0 | ∗ pE2? .0 | 0 (4)

First, a token flows from E1 to T 1 via a communication along the endpoint pT1.
Then the token is passed to T 2, and finally it gets consumed by E2. The service
highlighted in (4) is stuck as no matching invoke/request activities are enabled.

Error events are used for error handling. An error event in normal flow E
receives the token, throws an error tr1 , and releases the token. When an error
event E is attached to the boundary of a task T 1, T 1 is executed until either it
completes or a trigger tr1 is caught. In this case, it generates an exception flow
by stopping T 1 and activating T 2.

A parallel fork gateway G repeatedly performs a request processing at pG,
that is, it waits for a token, and then it proceeds as the parallel composition
of two invoke activities pY and pZ . Namely, it produces a token for each of
the following objects Y and Z. A parallel join gateway first synchronises with
its incoming sequence flows. This is represented as the parallel composition of
the requests pG1? and pG2? . A token is then released to the next object Z via
the execution of the invoke activity pZ ! . As an example, service S below is the
translation of the diagram in Fig. 4.

S = E1 | G1 | T 1 | T 2 | G2 | E2

where:

E1 = pG1! G1 = ∗ pG1? . (pT1! | pT2! )
T 1 = ∗ pT1? . pG21! G2 = ∗ ((pG21? | pG22? ); pE2! )
T 2 = ∗ pT2? . pG22! E2 = ∗ pE2? .0

Fig. 5 describes the behaviour of service S by tracking how the tokens flow
along the diagram. Initially, only the communication over the endpoint pG1 is
enabled. This represents the fact that the token can only pass from the start
event E1 to the parallel fork gateway G1, written E1→G1−−−−−→ in Fig. 5. Then, the
service G1 generates a parallel flow and two invoke activities are simultaneously
enabled: one over the endpoint pT1, and the other over the endpoint pT2. The
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T1→G2 ��

G1→T2
��������������� G1→T2 ��

T2→G2

���
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��

E1→G1��

G1→T1
���������

G1→T2 ���
��

��
��

T1→G2

���������������

T2→G2

��������������� G2→E2��

T2→G2
��

G1→T1

���������������
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��
T1→G2

���������

Fig. 5. Behaviour of the process of Fig. 4

interleaving semantics of the parallel composition of COWS services allows the
derivation of non-trivial paths of the token flow. Consider, for instance, the top
level path along the graph in Fig. 5, namely:

(E1→G1)(G1→T 1)(T 1→G2)(G1→T 2)(T 2→G2)(G2→E2)

This path is relative to the case when task T 1 completes before task T 2 gets its
token. Also, Fig. 5 shows that a token cannot possibly reach the end event E2
before both T 1 and T 2 terminate their execution.

Inclusive decision gateways are translated as services that can transmit the
token to the following objects, under the proviso that the corresponding con-
dition is satisfied. One should notice that “if none of inclusive decision gate
condition expressions are evaluated as true, then the process is considered to
have an invalid model” [19, p. 78]. However, it is up to the modeller (rather than
to the encoding) to ensure that at least one condition is evaluated true during
the execution of the business process. To avoid possible problems, BPMN al-
lows modellers to set a default gate that is selected if none of the other gates
is chosen. In our approach the default gate is modelled as a gate whose condi-
tion is the negation of the disjunction of the other conditions. For instance, if
gates have conditions c1 and c2, the default condition is ¬(c1 ∨ c2). Inclusive
merge gateways synchronise all the tokens produced upstream. This makes the
semantics non-local because it requires one to know how many tokens have been
produced upstream before deciding whether to immediately release the token or
wait. It is a matter of debate how to manage the non-local semantics of this sort
of gateways (see for instance [24,26]). Existing solutions, however, either impose
some restrictions on the syntax of BPMN (e.g., avoiding cycles), or define a for-
mal semantics that deviate from the informal one. For pragmatic reasons, we
provide a semantics that “includes” the informal one. Since tokens can arrive at
either pG1, or pG2, or both, inclusive merge gateways are translated using the
choice operator and considering all possible alternatives. During the analysis,
when global information are available, the transition system can be refined by
cutting out those portions that do not correspond to possible behaviours of the
business process. The motivations for our choice are twofold. First, to get com-
positionality we cannot consider global information at translation time. Second,
any reasonable implementation of an inclusive merge gateway uses time-outs to
stop waiting for tokens. In this way, the gateway might not synchronise even
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when both tokens arrive. This would introduce unexpected paths in the transi-
tion system which could be analysed in our quantitative framework.

Exclusive decision gateways are translated in such a way that the token passes
to object Y only if condition c1 is true. If this is not the case, and if c2 is verified,
then the token is sent to Z. Also, default gates may be used analogously to the
case of inclusive decision gateways. Exclusive merge gateways are treated as
simple by-passes: each incoming token, no matter where it is coming from, is
passed to the next object Z. Event-based exclusive gateways (not reported in
Tab. 1) are encoded in a similar way. The difference is that the selection of the
gate depends on the caught event rather than on the satisfiability of conditions.

5 Quantitative Analysis of Business Processes

Testing and visualising the behaviour of business processes in a timed context
before implementing them allows one to correct or optimise the design of the
system [4]. For instance, the designer of a new process may have different alter-
natives to implement the same task. The decision on which alternative should
be adopted is usually driven by its cost and performance. System designers thus
need tools to compare and evaluate possible design alternatives. In this sec-
tion, we illustrate a quantitative reasoning on BPDs, relying on the encoding
presented in Sec. 4.

The operational semantics of COWS provides a full qualitative description of
the behaviour of business processes. Recently, a stochastic extension of COWS
was presented [22], where the syntax and semantics of the calculus have been
enriched along the lines of Markovian extensions of process calculi [9,23]. In this
way the semantic models associated with BPDs result to be Continuous Time
Markov Chains, a popular model for automated verification. In the above men-
tioned extension, basic actions are associated with a random duration governed
by a negative exponential distribution that is characterized by a unique param-
eter, called rate. In this way activities become pairs of the shape (μ,r), where μ
represents the basic action, and r is the rate of μ. Once enabled, the probability
that a certain activity (μ,r) is performed within a period of time of length t is
1 − e−rt. Also, the mean value of an exponentially distributed variable with pa-
rameter r is 1/r, and rates to be associated with basic actions can be determined
by estimating mean values for the various objects of BPDs. For instance, in our
experiments we assumed that, depending on whether encryption is used or not,
task T7 of Fig. 2 (the authenticate costumer task ) may require from 30 to 150
units of time. This corresponds to adopting rates varying from 0.03 to 0.006.
More generally, running the same formula on chains obtained for different rate
values of a certain action allows to analyze the sensitivity of the global behaviour
to the duration of that particular action.

For testing our approach, we have implemented the semantics of COWS in
PRISM [10], a stochastic model checker for the formal modelling and analysis of
systems. PRISM supports the automated analysis of a wide range of quantitative



260 D. Prandi, P. Quaglia, and N. Zannone

Fig. 6. Termination probability

properties. The property specification language is based on the Continuous
Stochastic Logic [1], a probabilistic extension of the classical temporal logic
CTL.

In the remainder of this section, we report an excerpt of the analysis of the
credit request process of Sec. 2 against a few properties. The symbol terminate
is a short-end for any state representing that (i) either the costumer receives
a preliminary approval for the credit loan request; (ii) or the customer fails
the authentication procedure. Below we comment on the results obtained by
checking our COWS service of the credit request process against the three logic
formulae F1, F2, and F3.

– F1 = P ≥ 1 [true U≤ 240 terminate]. This formula expresses that with
probability 1 the system terminates in at most 240 units of time, namely F1
is true if the system reaches one of the relevant states with probability 1
before 240 units of time. F1 is false for our model.

– F2 = P=? [true U≤ 240 terminate]. This formula refines the former one
by asking which is the probability that the system terminates in at most 240
units of time. Here the result is 0.75.

– F3 = P=? [true U[T,T] terminate]. This formula further refines the pre-
vious ones by asking which is the probability that the system terminates at
time T. Fig. 6 shows the PRISM plot resulting with F3 for our COWS model.

Finally, we briefly mention how to use PRISM to evaluate possible implementa-
tions of a business process. In a business process some phases can be critical. For
instance, authenticating the customer (task T7 in Fig. 2) is a critical operation
in the credit request process. Different authentication software can be used to
implement T7. Each of them provides a different level of encryption, more secure
it is more time it requires. Fig. 7 plots the probability that the system termi-
nates at time T when using different authentication software. With the faster
software, 30 units of time, the probability of completing the procedure is higher
than 0.85. As the authentication software employs more sophisticated encryp-
tion algorithms, the time duration increases, e.g., 60, 150, 300, and 600 units
of time. It emerges that sophisticated authentication software can drastically
affect the performance of the system. Therefore, system designers should make a
trade off between the security and performance of the system when choosing the
authentication software to be adopted. The framework proposed in this paper
aims at assisting them in the decision making process.
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Fig. 7. Cost evaluation

6 Related Works and Concluding Remarks

Few proposals have already addressed the problem of defining a formal seman-
tics for BPMN. To the best of our knowledge, the first work in this setting is
due to Wong et al. [28], who encoded BPMN in CSP. In particular, they used
the language and behavioural semantics of CSP as denotational model. Based
on it, they provided methods for specifying behavioural properties of business
processes as well as for comparing BPMN diagrams. Differently from our work,
the encoding is not compositional and so may not scale well to large business
processes. Another definition of formal semantics for a subset of BPMN was
made by Dijkman et al. [5]. They proposed a formal semantics of BPMN using
Petri Nets. Our translation is defined over a super-set of the BPMN fragment
considered in [5] where inclusive gateways are not dealt with, and tasks have one
incoming sequence flow only, and can either send messages or receive messages,
but cannot send and receive simultaneously. The translation presented in this
paper relates well to [21], where an encoding of sequence and state diagrams into
the π-calculus [17] is proposed. Similarly to our approach, objects of sequence
and state diagrams are represented as π-calculus processes and then all such pro-
cesses are composed by synchronising their interface via parallel composition.

Many interpretations of web services and business process specifications in
terms of process calculi have been proposed over the last few years. For in-
stance, Cámara et al. [3] provided an encoding of business process specifications
in CCS [16]. Many efforts were also addressed to the enhancement of well-known
process calculi with constructs inspired by those of WS-BPEL to better cap-
ture specific features of web service systems. Their common goal is to provide
a sound mathematical ground to web services definitions as well as to improve
their reliability using the analysis tools developed for process calculi. For in-
stance, Meredith et al. [15] used process calculi with type systems [11] to check
compatibility between web services. Other works [2,8] extended the π-calculus
with process mobility and with operations for data interaction, so getting a quite
rich and flexible model. Other proposals deal with issues of web transactions such
as interruptible processes, failure handlers, and time. This is the case of [12,14]
that respectively present timed and untimed extensions of the π-calculus.

The aim of the present work is to set the basis for the development of a plat-
form for the formal analysis of business processes. To this end, we have presented
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a semantic foundation for BPMN based on COWS, a calculus equipped with
qualitative and quantitative operational semantics. The compositionality of the
approach allows us to easily derive COWS specifications from the XML files gen-
erated by existing BPMN modelling applications. We have applied the PRISM
probabilistic model checker to test and visualise the behaviour of a BPMN model
in a timed context. This application intends to assist system designers in the
decision making when implementing business processes. Currently, we are ex-
tending the platform with analysis facilities tailored to test if, with probability
close to 1, the actual implementation of a business process is consistent with its
specification.
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Abstract. The deployment of Share Data Spaces in open, possibly hos-
tile, environments arises the need of protecting the confidentiality of the
data space content. Existing approaches focus on access control mecha-
nisms that protect the data space from untrusted agents. The basic as-
sumption is that the hosts (and their administrators) where the data space
is deployed have to be trusted. Encryption schemes can be used to protect
the data space content from malicious hosts. However, these schemes do
not allow searching on encrypted data. In this paper we present a novel
encryption scheme that allows tuple matching on completely encrypted
tuples. Since the data space does not need to decrypt tuples to perform
the search, tuple confidentiality can be guaranteed even when the data
space is deployed on malicious hosts (or an adversary gains access to the
host). Our scheme does not require authorised agents to share keys for in-
serting and retrieving tuples. Each authorised agent can encrypt, decrypt,
and search encrypted tuples without having to know other agents’ keys.
This is beneficial inasmuch as it simplifies the task of key management.
An implementation of an encrypted data space based on this scheme is
described and some preliminary performance results are given.

1 Introduction

Coordination through Shared Data Spaces (SDS) also called generative commu-
nication, forms an attractive model for developing distributed and component-
oriented systems as it supports referential and temporal decoupling of
processes [9]. Referential decoupling means that components exchange data with-
out the need to know each other. Temporal decoupling means that those com-
ponents do not even have to be online at the same time. This way, components
can be connected to or disconnected from the data space at any time, making it
easier to combine or replace. The SDS model was introduced by the coordination
language Linda [8]. Storage in Linda takes place in a so-called tuple space. In a
tuple space, data is stored as persistent objects, called tuples.

The early implementations of SDSes were closed systems, in the sense that
they were realised by compiling application and SDS code altogether. Once the
system was deployed and executed, it was not possible to add or remove appli-
cation components. In such systems, security was not a issue and the original
Linda model was conceived without addressing security concerns.
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In contrast, open systems were introduced where the SDS is not bound to
an application but is an autonomous process with its own resources. The main
advantage of open SDS systems is that persistent data storage can be offered
to applications. In this way, applications could dynamically join and leave the
computational environment. This is clearly a feature suited to distributed ap-
plications. With its small API and the decoupling of communication in space
and time, the SDS model provides an effective coordination layer for distributed
applications.

Distributed applications are deployed in environments that range from small
ad-hoc networks of portable devices (such as Body Area Networks) up to wide area
networks (such as the Internet). In such scenarios applications are faced with many
security threats that the original Linda model does not address. For instance, de-
nial of service attacks could be performed by malicious agents inserting a large
number of tuples into the data space. Still, a malicious agent can remove any tu-
ples from the space interfering with the other agents that are using the space. This
can be even more serious when the tuples contain sensitive information.

Such security deficiencies pose a limitation on the usability of the SDS model
for real-world applications. Early work presented by Wood in [20] discusses the
introduction of access control mechanisms, such as ACLs and capabilities, that
could be used for controlling access to the SDS content. Several other approaches
have proposed access control mechanisms that employ secret information asso-
ciated with SDSes and their content. In [12], an agent must know the password
associated with the space in order to get access to it. In [11,19] the secret informa-
tion is represented by locks that are associated with tuple instances. To get access
to a tuple, an agent must provide the specific lock associated with the tuple.

Although access control mechanisms are necessary for allowing authorised
operations on the data space, they are not always adequate to protect data
confidentiality. The common assumption of these approaches is that the host
where the data space is deployed is managed by a trustworthy entity that (1)
correctly enforces access control mechanisms and (2) is oblivious of the data that
is stored in the data space. However, such an assumption does not always hold
when sharing data over a wide area network such the Internet.

A solution to enforce the confidentiality of tuples against malicious hosts is to
encrypt the tuple content as proposed in [2]. However, because the ciphertexts
are not meaningful, it is not possible to perform search operations. A trusted
data space can temporarily decrypt the data, perform the search and return
the results to the agent. Alternatively, if the data space doesn’t have access
to the decryption keys, the encrypted data can be returned to the agent that
decrypts the data locally. The first solution cannot protect data confidentiality
from malicious hosts, while the second one is potentially very inefficient in com-
munications. Moreover, issues related to key management (i.e., key distribution,
key revocation, etc.) are not addressed.

In this paper we propose an efficient approach for guaranteing that tuple con-
fidentiality is protected against malicious hosts. We developed a novel encryp-
tion scheme that allows the execution of search operations on encrypted tuples,
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without having the data space decrypt the data. Another important property
of our encryption scheme is that it does not require agents to share secret keys.
Each authorised agent can encrypt, decrypt, and search encrypted tuples with-
out having to know other agents’ keys. This greatly simplifies the task of key
management. In particular, it avoids re-encrypting the tuple content when a key
needs to be revoked. To the best of our knowledge, this is the first approach that
proposes such features for the shared data space model. Finally, we integrate
the encryption scheme in a SDS implementation and carry out some preliminary
performance analysis.

The paper is organized as follows. Section 2 introduces the original SDS model.
Section 3 surveys recent developments aiming at providing security in the SDS
model. In Section 4, we describe on our encryption scheme. In Section 5, we
discuss and evaluate our encrypted SDS implementation. In this paper our main
focus to guarantee data confidentiality in case a host is compromised. However,
the SDS and its content can face other security threats when its host is compro-
mised. In Section 6, we discuss some of those security threats. We conclude in
Section 7 with some final thoughts and future research directions.

2 The Shared Data Space Model

The shared data space model was introduced by the coordination language Linda
[8]. Linda provides three basic operations: out, in and rd. The out operation inserts
a tuple into the tuple space. The in and rd operations respectively take (destruc-
tive) and read (non-destructive) a tuple from the tuple space, using a template
for matching. The tuple returned must exactly match every value of the template.
Templates may contain wildcards, which match any value. Whereas putting a tu-
ple inside the tuple space is non-blocking (i.e. the process that puts the tuple re-
turns immediately from the call to out), reading and taking from the tuple space
is blocking: the call returns only when a matching tuple is found. In the original
model two more operations were introduced: the inp and rdp. These operations are
predicate versions of in and rd: they too try to return a matching tuple. However,
if there is no such tuple they do not block but return a value indicating failure.

In Linda it is also possible to fork a process inside a tuple space through so-
called live tuples. To insert a live tuple inside a tuple space the eval operation is
used. eval is similar to an out and it is specific for live tuples. Once a live tuple
is inserted in a tuple space it carries out the specified computation. Afterwards,
a live tuple turns into an ordinary data tuple, and it can be used as such. In the
implementation of a SDS presented later on in this paper the inp, rdp, and eval
operations are not supported.

3 Related Work

This section provides a critical overview of exiting approaches providing security
for shared data space.



Encrypted Shared Data Spaces 267

Secure Lime, described in [12], introduces several security extension to
Lime [14]. Since Lime’s primary environment is a network of mobile low-resource
hosts, the main concern of the developers was to introduce security enhance-
ments with low overhead of the original Lime’s model. Security extensions are
implemented as two levels of access control: at tuple space level and single tuple
level. At the tuple space level, it is possible to protect access to a tuple space
by means of a password. An agent will be considered authorized to access a
tuple space if it knows the password for the given tuple space. At the tuple
level, agents can specify for each tuple that they insert passwords for granting
both read and take accesses. Inter-host communication uses unsecured links. For
avoiding eavesdropping of messages, each serialized tuple is encrypted using the
respective password for accessing the tuple space. It should be noted that it is
not a good practice to use a password as an encryption key.

SecOS [19] introduces the notion of lock for controlling access to a tuple. A
lock is a labeled value that specifies the key that should be used to grant access
to a given tuple. The simplest lock is represented by a symmetric key where
the same label can be used for locking and unlocking a tuple. Also, asymmetric
locks can be used. In this case, two different keys are necessary for locking and
unlocking a tuple. A public key is used for locking a tuple and a private one is
used for unlocking it. SecOS also provides finer grained access control at the level
of single fields in a tuple. Each field in a tuple can be protected by a separate
lock.

SecSpaces [11] provides a similar approach to that of SecOS. In SecSpaces
labels are used as an access control mechanism to protect tuples and tuple fields.
SecSpace provides two more extensions. The first extension concerns partitioning
the tuple space. The partitioning of a tuple space avoids all agents having the
same view on the data contained in a tuple space. Instead of a physical separation
in different tuple spaces, in SecSpaces the tuple space partitioning is achieved
through the introduction of a partition field in the tuples. A template can match
a tuple in a given partition only if the correct actual value is given in the partition
field. A template with a wildcard value in the partition field is considered not
valid. This means that a process has to know the name of the partition for
accessing the content. The second extension regards the distinction between
consumers that can only execute read operations and consumers that can only
execute take operations. This extension is provided via specified fields in the
tuples, called control fields. To be an authorized read consumer, the process has
to provide in the template issued by the read operation the exact value on the
read control field of a tuple.

Linda with multicapabilities [18] is an approach where the capability concept
is applied to the Linda model. Capabilities are the means by which agents can
access to tuples and SDS. In particular, a multicapability is a special capability
that refers to a group of tuples. A multicapability consists of three parts: u, a
unique identifier which is the reference to a collection of tuples; t, a template
that matches the tuples that the multicapability refers to; p, a set of permit-
ted operations on the matching tuples. To be able to exchange tuples, tow or
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more agents have to share the same multicapability that refers to the same set
of tuples. In case a multicapability has to be revoked, the authors adopt the
common solution of introducing indirect multicapability objects. A multicapabil-
ity now refers to the indirection object, which in turn refers to the intended
tuple set. The deletion of the indirection object has the effect of removing the
multicapability.

In all the approaches presented above, tuples are stored in the data space as
plaintext. Indeed, then basic assumption of these approaches is that the data
space host is trusted. However, if an adversary gets access to the host where
the data space is deployed, tuples could still be retrieved and accessed. The only
exception to this is KLAIM [2]. KLAIM provides privacy by means of encryption.
In the framework proposed, a key can be used for encrypting the data value
contained in a field. The model does not provide any access restrictions to the
tuple space. This means that encrypted tuples can be retrieved by agents that
do not have the right key for decrypting the content. If a tuple is withdrawn
from the tuple space by an agent that cannot access it, it is up to that agent to
reintroduce the tuple back to the space. The tuple space API is extended with
two operations that execute the decryption process before returning the tuple
to the application: ink and readk. If the decryption fails, then the ink operation
inserts the tuple back into the space. It should be made clear that the key used
for encrypting the data is not shared between the entities and the data space. The
ink and readk operations perform the decryption locally to the node where the
entity is deployed. This has a negative impact on the communication utilisation.

Although KLAIM is the only approach that encrypts the data when it is stored
in the space, it does not support encrypted search. Therefore it is necessary
to have in the tuples cleartext fields. Assuming that there is a secure channel
between the agent and the data space, an attacker can still gain some information
on the matched tuple if it has access to the data space host. However, if the data
space supports encrypted search then an attacker can not gather any information
about the tuple content by just looking at the ciphertext. Another common
drawback of the above approaches is that agents are required to share a secret
(either a key or a password). The revocation of the secret in the event that it
gets compromised requires the re-distribution of a new secret and the creation
and/or modification of the data space to be protected by the new secret. The
same needs to be done in case that access privileges have to be removed to an
agent.

To protect the confidentiality of shared data spaces from both unauthorised
clients and from the SDS host(s) we introduce a novel encryption scheme that
supports encrypted searches over encrypted shared data spaces. Furthermore,
the scheme does not require agents to share secret keys.

4 Multi-agent Searchable Encryption Scheme

This section presents our encryption scheme for a multi-agent searchable en-
crypted data space. The aim of this section is to describe the required
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cryptographic details of the scheme and its properties. For a more detailed de-
scription refer to [4].

4.1 Cryptographic Preliminaries

Our multi-user searchable encryption scheme employs RSA public-key encryption
[15] and Discrete Logarithms. RSA involves two asymmetric keys. The key pair
is generated as follows: First choose two random large prime p and q such that
|p| ≈ |q|. Then compute n = pq and φ(n) = (p−1)(q−1). Find a random integer
e < φ(n) and gcd(e, φ(n)) = 1. Compute d such that ed ≡ 1 mod φ(n). (n, e)
is the public key and d is the private key. To encrypt, compute c = me mod n.
To decrypt, compute m = cd mod n. In the rest of the paper, we assume all
arithmetic to be mod n unless stated otherwise. Discrete Logarithms in finite
fields are one-way functions. Namely, given a prime p, a generator g of the multi-
plicative group Z∗

p and gx mod p, it is hard to find x. Discrete Logarithms have
been used in constructing public-key encryption schemes [5], digital signature
schemes and zero-knowledge proof protocols.

Both RSA and Discrete Logarithms use Modular exponentiation as basic op-
erations and the exponents can be split multiplicatively. In RSA, for example we
can find e1, e2 such that e1e2 ≡ e mod φ(n). The two shares of e can be given to
two parties, then the two parties can collaboratively encrypt a message. Given a
message m, one party encrypts it as me1 mod n and the other party re-encrypts
it as (me1)e2 ≡ me1e2 ≡ me mod n. The decryption key can also be split in the
same way.

This idea is used in proxy cryptography and was first introduced in [3]. In a
proxy encryption scheme, a ciphertext encrypted by one key can be transformed
by a proxy function into the corresponding ciphertext for another key without
revealing any information about the keys and the plaintext. There are many
applications of proxy encryption, e.g. secure email lists [17], access control sys-
tems [18] and attribute based publishing of data [19]. A comprehensive study on
proxy cryptography can be found in [13].

The encryption schema that we use in our system combines the property
of proxy cryptography where each authorised agent has a unique key with the
capability of performing tuple matching on encrypted data.

4.2 Architecture

The system has the following components:

– Client: a client is any agent interacting with the data space.
– Encrypted Shared Data Space(eSDS): is used for storing and retrieving tu-

ples, performing encrypted searching operations, authenticating valid clients,
and safely storing encryption and decryption keys. The eSDS is also capable
of storing and retrieving tuples in plaintext or partially encrypted. The basic
assumption is that we trust the eSDS to perform these operations correctly.
Although conceptually we refer to the eSDS as a single component, it could
be physically distributed across several hosts.
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– Key Management Server (KMS): The KMS is a fully trusted server which is
responsible for all the key-related operations, e.g. key generation, distribu-
tion, and revocation. Although requiring a trusted KMS seems at odds with
using a less trusted node where the data space is running, we will show that
the KMS is lightweight, it requires less resources and management. Securing
the KMS is also much easier. Because of this, the KMS can be offline most
of the time.

4.3 System Setup

To initialise the encryption system, the KMS runs the setup algorithm to gen-
erate public and secret parameters which will be used for the whole lifetime of
the system. The algorithm is described as follows:

The algorithm first takes a security parameter k and runs the key generation
algorithm using standard RSA which generates (p, q, n, φ(n), e, d). It then gen-
erates {p′, q′, g, x, h, a, gaha} satisfying the following constraints: p′ and q′ are
two large prime numbers such that q′ divides p′ − 1; g is a generator of Gq′ , the
unique order-q′ subgroup of Z∗

p′ ; and h ≡ gx mod p′ where x is chosen uniformly
randomly from Zq′ . a is also a random number from Zq′ .

The parameters needed for encryption/decryption are n, p′, q′, g, h, gaha and
need to be published system-wide. The key material is represented by the pa-
rameters p, q, φ(n), e, d, x, a and must be kept secretly. In particular, the (e, d, a)
are called “Master Keys” for the system.

4.4 Client Key Generation and Revocation

When a new client is enrolled into the system, the KMS must generate a unique
key set for the client. The key set is derived from the key material using the
following algorithm:

For a client i, the KMS generates ei1, ei2, di1, di2, ai1, ai2 such that ei1ei2 ≡
e mod φ(n), di1di2 ≡ d mod φ(n) and ai1ai2 ≡ a mod q′. Key generation can
be efficiently done in the following way. Let us consider the generation of the
ei1, ei2 pair. The KMS randomly chooses ei1 < φ(n), where gcd(ei1, φ(n)) = 1.
Since ei1x ≡ 1 mod φ(n) has always a solution, then ei2 ≡ ex mod φ(n) always
satisfies ei1ei2 ≡ e mod φ(n). The KMS then sends (ei1, di1, ai1) to client i and
(ei2, di2, ai2) to the eSDS through secure channels.

In our system it is possible to authenticate a client and establish a secure
channel between the client and the eSDS using the corresponding key pairs. Be-
cause ei1di1ei2di2 ≡ ed ≡ 1 mod φ(n), k1 = ei1di1 and k2 = ei2di2 form another
RSA key pair. This key pair can be used for public key mutual authentication
and for establishing a secure channel, e.g. SSL.

When a client’s access privilege is revoked, the KMS sends an instruction to
the eSDS to request the removal of the client’s corresponding keys. After the keys
have been removed, the client cannot access the data unless the KMS generates
new keys for it.
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4.5 Tuple Encryption

In our system, tuple encryption is performed in two steps. A tuple is first en-
crypted by the client using its own private key. The encrypted tuple is then sent
to the eSDS, where the tuple is re-encrypted using the node’s key that correspond
to that client. Client side encryption prevents the eSDS (and its hosting site)
from knowing the data in the tuple whereas the eSDS side encryption makes
it possible for other authorised clients in the system to retrieve the tuple in
clear text. The encryption process for client i is shown in Fig. 1. For a tuple
t = 〈d1; ...; dn〉, we denote the value of a field at position x by dx.

On the client side, a tuple is first encrypted using a semantically secure sym-
metric encryption algorithm E [10]. For each tuple, client i randomly picks a
key K from the key space of E. Each value of the tuple’s fields dx is encrypted
under the key K which generates a ciphertext cx1 = EK(dx). The symmetric key
K is then encrypted by algorithm CEnc which is identical to the RSA-OAEP
(Optimal Asymmetric Encryption Padding) encryption algorithm [1] and uses

Fig. 1. Encryption of a tuple on client i and data space
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ei1 as the encryption key. RSA-OAEP enhances RSA by using a probabilistic
padding scheme and has been proved to be IND-CCA2 (Indistinguishable Adap-
tive Chosen Ciphertext Attack) secure [7]. The ciphertexts of the symmetric keys
is cK = (Pad(K))ei1 .

During the search for a matching tuple, the data space content is kept en-
crypted. The matching is done using an opportunely modified values of the
tuple field, called keywords. Keywords are computed as follows by the client
using the algorithm CEnc′ and sent together with the tuple to the eSDS. For
each value dx of a tuple field , the client i computes σx = H(dx) using a hash
function H . The client also picks a random number rx ∈ Zq′ and computes
cx2 = (grx+σxhrx)ai1 mod p′, cx3 = H((gaha)rx), where g, h, gaha, p′ are public
parameters in the system and ai1 is the client’s keyword encryption key. The
client then sends the encrypted tuple te = 〈(c11, c12, c13); ...; (cn1, cn2, cn3); cK〉
to the eSDS.

After receiving the encrypted tuple, the eSDS retrieves ei2 and ai2, the cor-
responding encryption keys for the client i. It re-encrypts the symmetric key
by computing c∗K = cei2

K using the SEnc algorithm. The eSDS processes the
keywords information that is contained in the tuple using the SEnc′ algo-
rithm. For each filed x, the eSDS computes c∗x2 = cai2

x2 = (grx+σxhrx)ai1ai2 =
(grx+σxhrx)a mod p′. The final encrypted tuple stored is t∗e = 〈(c11, c

∗
12, c13); ...;

(cn1, c
∗
n2, cn3); c∗K)〉.

4.6 Encrypted Search

The searching of a tuple in the data space is done by means of a template. A
template may contains wildcard fields, that in our system are represented as null
values. When a client j wants to retrieve a tuple matching the template temp =
〈z1, ..., zn〉, j first computes the hash value of all actual fields in the template.
Since a wildcard field matches any actual values in a tuple, it is not necessary
that our encrypted search algorithm processes wildcard fields of a template. For
each non-null field x the client j generates σ∗

x = H(zx). Then j encrypts σ∗
x as

Qx = g−σ∗
xaj1 . At this point, the encrypted template is tempe = 〈Q1; ...; Qn〉. j

sends tempe to the eSDS.
The eSDS computes for each field of the received template Q′

x = Q
aj2
x mod

p′ = g−σ∗
xa mod p′. During the search, for each encrypted tuple, the data space

computes the following two values for each x-th non-null field in the template:

yx1 = c∗x2Q
′
x = (grx+σxhrx)ag−σ∗

xa = (garx+aσxharx)g−aσ∗
x mod p′

yx2 = H(y1)

We can see that if dx = zx then aσx − aσ∗
x = 0, and therefore yx1 =

(garxharx) = (gaha)rx mod p′. From this follows that the value in the x-th
field of the template matches the value of the x-th filed in a tuple if and only if
yx2 = cx3 (because yx2 = H((gaha)rx) = cx3).
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4.7 Tuple Decryption

When a matching tuple is found, the eSDS computes the following before sending
the tuple to the client j. For each field x in the matching tuple t∗e = 〈(c11, c

∗
12, c13)

; ...; (cn1, c
∗
n2, cn3); c∗K)〉 the eSDS computes c′K = (c∗K)dj2 and sends to j the fol-

lowing tuple t′e = 〈c11; ...; cn1; c′K)〉. The client j retrieves the key for encrypting
the data items by computing (c′K)dj1 = (c∗K)d = (K)ed = K. The client j can
decrypt the value of each field by computing dx = E−1

K (cx1).

5 Implementation and Performance

In this section, we discuss the implementation and performance of the eSDS
based on the encryption scheme. The prototype is an extension of our imple-
mentation of a distributed SDS, called GSpace [16].

Figure 2 provides an overview of the modules that are part of our architec-
ture. Clients and the eSDS are different processes that reside in different hosts.
A client Ci communicates with the eSDS by means of a proxy, called eSD-
SProxy. The eSDSProxy takes care of hiding from the client all the details for
the communication with the eSDS and deals with the cryptographic operations.
To connect to an eSDS, a client creates a new eSDSProxy as follows:

eSDSProxy p = new eSDSProxy ("SpaceName");

The argument is used by the proxy to load in its KeyStore (KS) the appro-
priate key pair for tuple encryption and decryption and for establishing a secure
connection with the eSDS. The proxy performs tuple encryption and decryption
using the Proxy Encryption Module (PEM).

Tuples and templates are subclasses of the Tuple class. A tuple can be defined
in such a way that when it is stored in the eSDS it can contain both cleartext and
encrypted fields. A field in a tuple will be stored encrypted only when its type
is one of the following: eInt, eChar, eDouble, and eString. These are classes
that we define to represent the encrypted form of the corresponding Java classes.
Therefore, if a tuple is defined as follows:

MyTuple(eString name, eInt age, Integer weight)

Fig. 2. Overview of the architecture of the our eSDS prototype
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Fig. 3. Encryption steps executed for storing and retrieving a tuple using our scheme

when such a tuple is stored in the eSDS, only the first two fields will be
encrypted. Field weight will be stored in cleartext.

A client (by means of its proxy) establishes a secure communication with the
eSDS. The eSDS authenticates the client and the corresponding key is loaded
into the KS of the eSDS. The eSDS performs tuple encryption, decryption and
encrypted search by means of its Space Encryption Module (SEM). Tuples
are stored in the Tuple Repository (TR).

In the implementation, a put operation is used to insert a tuple in the space. read
and take operations are used for retrieving tuples; the former returns a copy of a
matching tuplewhether the latter destructively removes thematching tuple.When
these operations are executed, tuples and templates are transformed according to
our encryption scheme. Figure 3 shows the cryptographic operations executed in
the PEM and SEM on tuples and templates for a put and a read (or take) operation.

Let us assume that a tuple t has to be stored encrypted (i.e., all of its fields
must be encrypted). Figure 3-(a) shows the steps executed for a put operation.
The fields of tuple t are encrypted in the PEM using the submodule Ep

1.
The encrypted tuple te is sent to the eSDS where it is re-encrypted by SEM’s
submodule Es

2. The tuple t
′

e is stored in the TR.
Figure 3-(b) shows the case of a read operation. For a read operation a template

temp is used for finding a matching tuple. The non-null fields in the template are
encrypted by the submodule Ep that produces the encrypted template tempe.
tempe is sent to the eSDS where it is re-encrypted in temp

′

e. This is used for per-
forming the encrypted search. When an encrypted tuple t

′

e matches the template
temp

′

e, the tuple must be decrypted before it is returned to the client. First, t
′

e

is decrypted in the SEM using the Ds submodule and it is transformed in te. te
is returned to the client’s proxy that decrypts it using Dp, returning the tuple
in cleartext t to the client.

5.1 Evaluation

The eSDS prototype is implemented in Java using the packages provided in the
standard Java 1.5 distribution. We chose AES as the symmetric cipher which
1 This submodule implements the algorithms CEnc and CEnc′ that we described in

Section 4.
2 This submodule implements the algorithms SEnc and SEnc′ that we described in

Section 4.
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encrypts the actual data and SHA-1 as the hash function. For the RSA-based
proxy encryption scheme, we used 1024-bit keys. For the keyword encryption
scheme, q′ was 160-bit and p′ was 1024-bit. The tests were executed on a Intel
Pentium IV 3.2 GHz (dual core) with 1 GB of RAM.

Thefirst evaluation consisted ofmeasuring the execution time for the encryption
and decryption submodules. In particular, we measured the execution time for:

– Client Encryption: consists in the execution of Ep, that is encrypting tu-
ple fields using the symmetric cipher, encrypting the symmetric key and
encrypting the keywords.

– eSDS Encryption: consists in the execution of Es, that is the re-encryption
of the symmetric key and the keywords using the eSDS keys.

– eSDS Decryption: pre-decryption of the symmetric key by executing Ds.
– Client Decryption: decryption of the symmetric key and the tuple fields by

executing Dp.

Table 1 provides the results of our test for the execution of the encryption and
decryption operations. The time is given in milliseconds for a single execution of
each operation calculated on the average time for 10,000 executions. The tuple
and template used for the experiments consisted in a single field of type eString
with 4 chars.

We also measured the time for finding a matching tuple using our encrypted
search. In the data space, 10000 encrypted tuple were stored and only one was a
match for the template used in the search. We ensured that the matching tuple
was the last tuple to be evaluated (worst case scenario). Tuples and template
consisted of a single eString filed with 4 chars. Under these conditions, the time
required for finding the matching tuple is around 600 milliseconds. Basically, each
matching test takes around 0.06 milliseconds.

Given the results of this performance analysis, we can say that the use of our
scheme is well suited for cases where a large number of tuples need to be searched.
The search is performed entirely within the data space and the result that is
returned is a tuple matching the given template. In contrast, when executing
the same experiment using an approach as in KLAIM, executing cycles and
bandwidth would be wasted. In fact, the result that is given back to a client is
a partial match to the given template (only the fields not encrypted are used
for the matching). The client has to decrypt the tuple and if the values of the
encrypted fields are not the intended ones then the client has to re-encrypt the
tuple and send it back to the space.

Table 1. Performance of Encryption and Decryption Operations

Execution Step Execution Time (ms)

Client Encryption 53

eSDS Encryption 37

eSDS Decryption 37

Client Decryption 37
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6 Host Attack

In this section, we discuss some of the attacks that can be performed by malicious
hosts.

Existing research focused on protecting the data space from attacks performed
by malicious clients. The assumption is that hosts where the data space is de-
ployed are fully trusted while clients are not to be trusted. As discussed in [6],
existing approaches protect the data space against malicious clients that:

1. remove and/or forge tuples from a data space to disrupt the collaboration
between genuine clients, and

2. insert into a data space a large number of tuples to consume all resources.

Because hosts are fully trusted, there are no mechanisms in place that can
guarantee the confidentiality of data stored in the data space against the hosts
other than encrypting non-searchable data.

In our attack model, we assume that a host is honest-but-curious. We trust
the host to correctly authenticate the clients and to perform the operations
as requested by the clients. The confidentiality of the data is protected from
the host while supporting search on the protected data. However, in deploying
the data space on untrusted hosts other concerns need to be addressed. In the
following, we list some of these concerns and the threats to which the data space
is exposed to. Our aim is not to provide a concrete solution to each of them,
but to highlight possible future research directions that aim to protect the data
space from untrusted hosts.

Integrity. An attacker that has access to the data space hosts could threaten the
integrity of the data space in several ways. For one, the attacker could alter the
authorisation process allowing unauthorised clients to access the tuples (even
if the clients are not able to decrypt them) or it could deny access to autho-
rised clients. An attacker can alter the semantics of the data space operations.
For instance, a client can be blocked in executing a retrieving operation while
the matching tuple is in the space; the attacker can re-send back to a client a
tuple that was the result of a previous operation (replay attack); additionally,
the attacker can discard tuples inserted by legitimate clients modifying in this
way the results of retrieval operations. Although no mechanisms could prevent
the attacker form performing such attacks, methods developed for database sys-
tems could help in detecting and mitigating some of those attacks. For example,
methods based on cryptographic techniques and hash functions would allow a
client to determine whether the returned result corresponds to the real content
of the database. These methods could be extended to include the notion of time
with the encrypted representation of the actual content of the data space. In
this way, a client would be able to detect whether the blocking for a removal
operation was caused maliciously by a host or just because the tuple was not
present at the time the request was made. To make sure that tuples inserted
by genuine clients are not discarded by malicious hosts some global encrypted
indexing could be used. Finally, the integrity of tuples can also be compromised.
For instance, an attacker can change or reorder tuple fields (reordering attack).
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Availability. Clients that try to connect to the SDS hosts may experience some
disruptions. For instance, the data space host is not reachable or it requires a long
time for replying. These disruptions may be caused maliciously by the attacker.
In order to mitigate such attacks, mechanisms that ensure accountability are
required. Accountability is the property that allows the participants of a system
to determine and expose misbehavior. In this way, clients can determine whether
hosts are behaving correctly. Accountable mechanisms have been proposed for
network storage as in [21].

Traffic Analysis. By monitoring the timing and frequency of the communication
between hosts and clients, an attacker can gather useful information. By moni-
toring the execution time of encryption and decryption operations on tuples an
attacker can gather enough information to efficiently recover the client key. For
instance, in [17] Song shows that it is possible to use such an attack to recover
a password exchanged in the SSH protocol 50 times faster than using a brute
force attack. The attacker can also built a statistical attack by comparing the
templates with the matching tuples.

Collusion. One of the major concerns in proxy encryption schemes comes from
a collusion attack. If a client colludes with an attacker that has access to all the
EDS side keys, then it is possible to recover the master keys by combining their
keys. Collusion-resistant proxy encryption schemes is an open problem. How-
ever, we can lower the risk of collusion to an acceptable level by implementing
other mechanisms. For example, we can limit the access to the keys by using
tamper-proof devices. We can also split the master keys into multiple shares and
introduce additional servers, making collusion more difficult. Monitoring and
auditing to detect collusion can also help to mitigate the risk.

7 Conclusions and Future Work

In this paper, we presented a novel encryption scheme that ensure tuples confi-
dentiality even in the case that the data space is deployed on untrusted hosts.

The scheme supports encrypted search for a matching tuple over the encrypted
data space. In this way, the data space never has access to tuples in cleartext
protecting the confidentiality of the its content from nosey hosts. Moreover, the
scheme does not require the clients to share secret keys. Each client has its own
key that can be used for retrieving tuples encrypted by other clients’ keys. This
greatly reduces the burden of key management. for instance, when a key of a
client is revoked it is not necessary to invalidate all the other clients’ keys and
re-encrypt the entire data space content.

We provided an implementation of an encrypted SDS using the presented
scheme and performed some preliminary performance analysis.

Finally, we discussed a wider class of security threats that arise when data
spaces are deployed in untrusted hosts. This threat analysis can be seen as
a starting point for some future work. We are currently looking at Private
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Information Retrieval (PIR) schemes that would allow a user to retrieve tuples
from a data space without revealing to its host which items were searched.

As concluding thought, we would like to point out that although this scheme
has been presented in the context of the SDS model, it could be applicable to
any other systems where the confidentiality of data shared among several entities
must be protected, i.e. databases, publish subscribe systems, email servers, etc.
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Abstract. The practice of using workflows to model complex activities
in stable networks is commonplace and is supported by many commer-
cially available workflow management systems (WfMSs). However, the
use of workflows to model collaborative activities in mobile environments,
while possible at the model level, has not gained traction due to the lack
of a suitable WfMS for mobile networks and devices. This paper seeks
to address this need. We present CiAN, a choreography-based workflow
engine that is designed with MANETs in mind. We describe the de-
sign, architecture, and communication protocols used by CiAN as well
as its implementation using Java. An evaluation of the communication
protocol used to coordinate among various workflow participants across
MANETs is also presented.

1 Introduction

Workflows can be conceptualized as a set of related tasks that are arranged ac-
cording to a specific order and structure to accomplish a higher level goal in
a collaborative manner. Workflows are commonly represented and specified in
terms of graphs or petri-nets [23]. Software systems that execute these workflow
specifications are called Workflow Management Systems (WfMSs). In the current
state of the art, WfMSs such as ActiveBPEL [9], Oracle Workflow Engine [18],
Biztalk [7], etc. operate across wired networks and execute workflows that en-
code complex business processes such as insurance claims processing, inventory
control, loan approvals, among others.

A WfMS has two main functions: assigning tasks in the workflow to suitable
hosts and subsequently invoking them in the correct order, passing any data or
notifications between them as necessary. The performance of all the tasks by
multiple participants collectively accomplishes the collaborative activity speci-
fied by the workflow. Current designs for WfMSs reflect the stable and reliable
environment in which they operate. The architecture of these systems are cen-
tralized and interactions with the various distributed components are typically
synchronous calls made “just-in-time”.

In this paper, we describe the design of a WfMS targeted to mobile settings.
Our work is motivated by the fact that while the workflow model is robust
enough to describe more expansive forms of collaborations (including collabo-
rations involving both humans and software in the physical world), it is not in
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widespread use due to the lack of a suitable WfMS to execute such workflows. A
mobile WfMS that can operate over a mobile ad hoc network (MANET) can be
used as a general purpose coordination mechanism for the activities of workers
at a remote outdoor construction site, management of emergency responders in
the event of a toxic chemical spill, or directing the activities of a geological sur-
vey team where setting up a traditional WfMS over a temporary LAN, even if
possible, is not desirable.

However, developing a WfMS for MANETs has several implications, the most
significant of which is the paradigm shift from centralized management to a
distributed management scheme. In addition, appropriate communication and
coordination protocols need to be developed so that participants can interact
over a dynamic and fragmented network. CiAN, which stands for Collaboration
in Ad hoc Networks, is a clean sheet approach to building a WfMS that is flex-
ible enough to operate across a MANET. CiAN is designed from the ground
up to function in a choreographed manner, i.e., in a manner that does not re-
quire a central coordinating entity. Novel features of CiAN include a distributed
management system that functions at the level of granularity of a single task,
a communication protocol that combines publish-subscribe, store-and-forward,
and content-based routing to foster communication across the MANET between
various hosts performing the workflow, and an ability to adapt the workflow ex-
ecution according to changes in the context in which the execution takes place.

2 Background

Before we present the features of our system in detail, we describe precisely our
target environment and the differences between operating in a choreographed
manner as opposed to the more commonplace orchestrated manner.

For CiAN, we assume that there exists a group of human users, each of whom is
equipped with a relatively powerful mobile computing device (in the remainder of
the paper we refer to the device and user collectively as a host). We assume that
all hosts are co-located initially but may separate once the workflow execution
has begun. Since the devices are carried on the person of the users, we assume
that the devices are physically mobile and that their motion pattern is the same
as their associated user. The devices are capable of communicating with each
other using 802.11b/g/n radios when they are within communication range of
each other. However, such windows of communication (the intervals of time
during which a pair of hosts are within range) may be transient due to the
mobility of the associated human user.

Each host that participates in the execution of a workflow provides: (1) A
name, assumed to be unique in the network, (2) A schedule with entries that
indicate when it is not available. Each entry consists of a start time, location at
the start time, end time, and location at the end time. When hosts are assigned
tasks, they add them to their schedule so that they are not assigned additional
tasks that conflict, and (3) A list of services offered. This list includes software
services on the mobile devices and the associated user’s capabilities, e.g., a metal
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Fig. 1. Orchestration vs. Choreography (SVC = Service & WFMS = Workflow Mgmt.
System.

worker may have welding capabilities. We assume that each host maintains a
local knowledge base [12] in which it keeps information about other hosts in the
network. Initially the knowledge base contains information only about the local
host. However, over time, the knowledge base is populated with information
about other hosts when pairs of hosts are within communication range of each
other via a gossiping protocol. The contents of the knowledge base can be queried
by other components of the middleware. It should be noted that due to all hosts
being co-located initially, each host has knowledge of all others in the network.
However, future updates to host knowledge are dispersed via gossiping which
may lead to asymmetric information in the network.

Since there is no central coordinating entity in this environment, all man-
agement functions must be handled in a distributed manner. This requires the
execution model to be choreographed. In choreography, the responsibility for exe-
cuting the workflow is divided up a priori by an allocation algorithm (not covered
in this paper. Please refer to [25]). The various participants then interact with
each other directly via a peer-to-peer model using pre-established standardized
protocols. This is in sharp contrast to the more common orchestrated architec-
ture where a centralized entity is responsible for executing the entire workflow
and synchronously invokes services (in workflow order) to complete tasks. The
differences between these approaches are shown pictorially in Figure 1.

The following section describes our design for a choreography-based WfMS
along with the communication protocols for communicating with various com-
ponents across the MANET.

3 System Design

According to the W3C definition, choreography “defines re-usable common rules
that govern the ordering of exchanged messages, and the provisioning patterns
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of collaborative behavior, as agreed upon between two or more interacting par-
ticipants.”. In the context of our WfMS, this translates to the allocation of
tasks to hosts (which in combination with the workflow structure describes the
agreed upon collaboration patterns among participating hosts) while the exe-
cution engine is responsible for implementing the rules and protocols governing
the exchange of messages. To keep these two concerns separate, CiAN operates
in two modes: (1) planning - which is used to allocate tasks in the workflow and
(2) standard - which is used by the hosts whose responsibility is to perform the
tasks that have been allocated to it. This paper focusses on the standard mode.
We include a brief presentation of the planning mode for completeness.

3.1 CiAN in Planning Mode

The Planning Mode of CiAN is responsible for implementing a scheme to inform
each participating host of its role in the overall workflow. If the allocation of tasks
is being done centrally, a single host operates in planning mode (hereinafter re-
ferred to simply as the planning host) and runs a centralized allocation algorithm
[13] which allocates individual tasks to hosts. If the allocation of tasks is being
done in a distributed manner [25], then several hosts run in planning mode. The
host that initiates the workflow is responsible for fragmenting the workflow and
passing it to the other hosts running in planning mode along with a set of rules
for task allocation. For the purposes of our discussion, we will assume that the
allocation process is centralized followed by a distributed, choreographed exe-
cution. It should also be noted that a host can run the planning and standard
modes of CiAN simultaneously, if it so desires.

The planning host allocates each task in the workflow to a suitable host,
where a suitable host is defined as a host whose capabilities are a superset of the
capability requirements of the task, and whose motion pattern allows it to be
at the location at which the task needs to be performed at the time it needs to
be performed. Figure 2 shows the system architecture on the planning host. An
external application injects the workflow specification into the planning system
by way of the Planner. The Planner passes this specification to the Allocator,
which runs an appropriate allocation algorithm (e.g., [13] or [25]) to determine
the hosts that are assigned to each task in the workflow. It then annotates the
specification with these allocations and returns it to the Planner. The Planner
then feeds the specification to the Route Information unit, which augments
the specification with metadata (used for data routing - described later in this
section). This augmented specification is then returned to the Planner which
now forwards it to the Specification Disbursement Policy module, which
breaks the workflow into its constituent tasks and sends each task specification
to the host that has been allocated to perform it using the Communication
Middleware. Each task specification sent out includes (1) the input edges to the
task, their merging and synchronization pattern [27], and the tasks at the source
of the edges, (2) the service that must be invoked for that task, and (3) the
output edges to the task, their splitting and synchronization pattern [27], and
the tasks at the sinks of the edges.
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Communication Module

Route Information Allocator

Planner

External Injecting Application

Specification Disbursement 
Policy

Knowledge Base

Knowledge Routing Policy

Fig. 2. CiAN planning architecture

There are a few points to note in the figure. The components with dotted
borders are interfaces, i.e., they can be realized by alternate policies as long
as they meet the interface requirements. One simple example of this is the re-
placement of the Allocator which implements a centralized algorithm in our
description this far with one that sets up a distributed allocation policy. The
Allocator uses the schedule and service list provided by each host (stored in
the Knowledge Base as described in Section 2) to determine the allocation of
the tasks to hosts based on their capabilities and motion constraints. Recall that
since hosts are co-located initially, the planning host has access to information
about all participating hosts.

3.2 CiAN in Standard Mode

The Standard Mode of CiAN is responsible for managing the choreographed
execution of the workflow on individual hosts and then disbursing results to the
hosts that are responsible for executing subsequent tasks. At a high level, the
Standard Mode on a given host works as follows: (1) It waits for a task to be
allocated to the host on which it is executing. (2) When a task is allocated, it
receives the specification for that task and installs it within the system and goes
back to waiting (either on inputs to the task it has installed or additional task
allocations). (3) If an input to an installed task is received, it runs the input
synchronization logic for that task (see Figure 4). If the logic is satisfied, the
values received are passed to the task for execution. If not, then additional inputs
may be required and the system waits for these. (4) When the task execution
has been completed, it runs the output synchronization logic for that task and
transmits the values to the tasks at the sinks of the outgoing edges. We now
describe this process in detail.
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Fig. 3. CiAN runtime system architecture

The architecture of CiAN in standard mode is shown in Figure 3. When the
task specification arrives, the Communication Module passes it to the Workflow
Router. The arrival of the specification is regarded as a control message, so
it is given to the Control Routing Policy module of the Workflow Router,
which in turn notifies any Control Listeners that may be listening for these
messages. The default Control Listener parses the task specification and cre-
ates a Service Manager for the task. The Service Manager contains the input
synchronization and output synchronization logic mentioned above, which are
parametrized according to the information in the task specification received. For
example, if a task has three incoming edges with AND join semantics, the input
synchronization logic would not be satisfied until it had received values from
all three edges. The Service Manager creates subscriptions for each of its in-
puts, which is a request for data generated by its preceding tasks (we will cover
subscriptions later in this section). At this point a task is waiting on its inputs
before it can start executing.
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The first task in any workflow by definition does not have any inputs, and
hence can start executing immediately. The Service Manager must invoke the
service that performs the activity associated with the task. In CiAN, we assume
that all services can be accessed via SOAP calls. The Service Manager calls
the SOAP Converter which converts the service call into a SOAP request. This
is then handed off to a SOAP Front End which receives the request and routes
it to the appropriate service. The response from the service is translated into a
SOAP response and returned to the Service Manager via the same route. At
this stage, the Service Manager executes output synchronization logic. If the
logic is satisfied, it passes the data to the Data Policy of the Workflow Router
which then transmits it to the host(s) that is(are) responsible for performing
the task(s) immediately following the first task. These tasks wait on their in-
puts and execute once all the inputs are available. Execution continues until the
last task in the workflow is executed. This is what creates the choreographed
form of workflow management in CiAN. Two points to note in addition: (1) The
pluggable components in the middleware allow easy extensibility and more im-
portantly allow the middleware to be customized as per the specific requirements
of the domain and (2) The SOAP interface to the services allows compatibility
with Web services.

Task

Output
Synchronization

Logic

I

I

I

O

O

Service
Invocation

Input
Synchronization

Logic

I = Input Variables          O = Output Variables

Fig. 4. Task and synchronization logic

3.3 Communication in MANETs

Thus far, we have described how individual tasks get executed but have not
covered how the coordination of the hosts performing the tasks is handled. At
the coordination and communication layer, there are two key issues: (1) The hosts
are connected by a MANET, whose topology evolves rapidly over time and where
unpredictable disconnections are commonplace, making it difficult to maintain
long lasting routes between host pairs. (2) The workflow specification indicates
which task a result must be delivered to or obtained from but not the host that
is executing those tasks. We addressed these issues via a publish-subscribe-like
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protocol that opportunistically gossips data and subscriptions among hosts when
they are directly connected with each other. The scheme is described in detail
below.

The Communication Module on each host transmits a beacon periodically.
When the Communication Module on another host receives such a beacon, it
creates a Host Handler for that host. The Host Handler tries to establish a
direct connection between the hosts using TCP/IP streams. Thus, as long as
the hosts are in communication range, the Host Handler acts as the local proxy
of the remote host and handles communication between them. Since direct com-
munication is the most reliable and inexpensive form of communication in a
MANET, all information in CiAN is transmitted when two hosts are directly
connected. Thus, when the Host Handler establishes a connection, it synchro-
nizes the knowledge base of the two hosts using the time of acquisition of any
knowledge as a tie breaker. It also sends to and receives data or subscription
messages from the other host as appropriate. All data and subscription messages
received are passed to the Data Routing Policy in the Workflow Router. If a
data message is intended for a task on the local host, the Data Routing Policy
passes it to the Service Manager of the target task. The Service Manager then
runs the synchronization logic to see if a valid set of inputs have been received.

While this form of communication is acceptable for gossiping, it does not meet
all our requirements, specifically, it provides no means for a message exchange
to take place between two hosts that are never directly connected to each other.
This restriction can result in critical data from one task not reaching the next. A
simple solution to this problem is to simply address each message to its destina-
tion host and use a MANET routing protocol to deliver the message. However,
this has two drawbacks: (1) MANET routes do not last often and are expensive
to maintain, and (2) it strongly associates a task with a host, which while not
desirable is preferably avoided. Our approach is instead a store and forward ap-
proach based on a routing policy we have developed. At the planning stage, we
augment each task with a unique number (the metadata mentioned earlier) such
that it is greater than all its parents’ numbers but lesser than all its childrens’
(tasks that are siblings may have numbers lesser or greater depending on the
graph traversal method used). When each host receives a task spec, it assigns
a number to itself that is the same as the number of the task. If multiple tasks
are assigned, then it initially chooses the lowest numbered task. Once the task
associated with that number has been completed, it examines the remaining set
of tasks allocated to it and chooses the lowest number available. Subscriptions
(generated by tasks to solicit inputs) have the number of the subscribing task,
and the number of the task whose input is desired. Similarly, when a task finishes
execution, the data is labeled with the generating task number and the number
of the task(s) that should receive the data. The messages are routed using one
of the following three schemes: Scheme 1 - Data is routed to any host that has
a number between the generating task number and the target task number or
has no number in a strictly increasing fashion. Subscriptions are routed simi-
larly but in a strictly decreasing function. Routing to a host with no number
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is neither a decrease nor an increase. Scheme 2 - Data can be routed to any
host that has a number between the starting task number and the target task
number in a strictly increasing order. Subscriptions are routed to hosts between
the target task number and the ending task number. Routing to hosts without a
number is also permitted. Scheme 3 - This scheme is identical to Scheme 1 with
one exception. Any message can be routed outside the permissible range but
this triggers a counter. If the message moves to a host in range (as defined by
Scheme 1) before the counter expires, the counter is reset, otherwise the message
is destroyed.

Scheme 1 generates the lowest number of messages in the network but is
restrictive in the sense that the number of hosts that a message can be routed to
is much smaller than the total number of hosts collaborating. Scheme 2 increases
the permissible range but generates additional messages. Scheme 3 maintains the
low range of Scheme 1 but allows limited transgressions, which represents the
most favorable tradeoff between number of messages and number of hosts to
which the message can be routed. The use of task numbers for routing instead
of host names or IP addresses achieves the decoupling between tasks and hosts.

Thus, communication of data between a pair of hosts proceeds as follows: The
Service Manager on the receiving host issues a subscription for the data. When
the source host has finished executing the source task, the Service Manager on
that host creates a data message which it then passes to the Data Routing
Policy. At this stage, our publish-subscribe-like protocol takes over and gossips
it using one of the schemes described above. When a subscription and its corre-
sponding data “meet” on a host, a match is generated and the data forwarded
to the subscriber using AODV [22]. When the data is received on the receiving
host, it is passed to the Service Manager who then runs the synchronization
logic and invokes the next task.

3.4 Exploiting Mobility

Mobile systems work in a physical environment and it is desirable that these sys-
tems adapt their behavior to their environment. For WfMSs, this can be achieved
by the use of selection conditions. Each edge to a task may have one or more
selection conditions with one or more associated sub-conditions. If an edge has
at least one selection condition for which all its sub-conditions evaluate as true,
then the edge is marked active, otherwise the edge is marked as inactive. The
sub-conditions that make up the selection condition are of the form paramname,
comparator, valuewhere paramname can be the name of an edge, a parameter in
the local knowledge base, or the name of a sensor. For example sensor:velocity,
>, 10m/s tests if the velocity of the host is greater than 10m/s.

This type of support can be built through extensions to existing languages, or
a new language like the XML-based CiAN Workflow Specification which we are
developing (see mobilab.cse.wustl.edu/Projects/CiAN for more information).
Due to space constraints, it is not possible to describe all the tags in the CiAN
specification. A detailed explanation of all the specification features and examples
is available online at http://mobilab.cse.wustl.edu/Projects/CiAN.

mobilab.cse.wustl.edu/Projects/CiAN
http://mobilab.cse.wustl.edu/Projects/CiAN


CiAN: A Workflow Engine for MANETs 289

4 Evaluation

We implemented a prototype of the CiAN WfMS in Java. The calls to external
services are SOAP calls. To translate between the textual representation of the
input values and SOAP requests, we use kSOAP [17], a third party library.
The task of invoking the service and obtaining the return value is handled by
Sliver [10], a middleware developed in our lab. Sliver currently supports the
invocation of Java services only. However, since the request and response are
in the form of a SOAP message, CiAN can invoke services in another language
by simply adding a third party SOAP front end that is capable of invoking
services written in another language. In other words, CiAN can invoke any service
that can be invoked via SOAP calls if an appropriate front end is provided.
Hosts participating in the workflow can register their own front end with CiAN,
resulting in a situation where one host runs Java services while another runs
C++ services while a third might run both. Thus, CiAN is not restricted to
services written in any programming language. With the addition of language
specific parsers, CiAN can also support any workflow specification language.

In addition to our implementation, we measured the performance of our
publish-subscribe-like protocol to exchange data among hosts across a MANET.
This is the most crucial piece of the CiAN WfMS and its primary potential
bottleneck. Invocations of services to perform tasks do not take much time or
resources as they are local service calls. Rather, transmitting results and receiv-
ing inputs takes significantly more time due to the communication delays. We
refer to the time when tasks are being invoked and performed as relevant time
and the time spent getting the results of one task to another as overhead time.
Note that the system may be idle during relevant time periods (especially if the
task involves a human user doing some physical chore), but it is not considered
wasted time as a task is actually being performed. In our experiments, we fo-
cused on the overhead of our system since relevant time cannot be reduced due
to the task duration limits set in the workflow specification.

We simulated the performance of the communication module (which influences
the overhead values) using the NS2 network simulator. The transmission range
was set to 25m using the 2-ray ground propagation model and the 802.11b MAC
layer was used. Though the range of 802.11b can be higher than 25m, higher
ranges require more power, which is not desirable on power constrained mobile
devices. Host movement was modeled using the random waypoint mobility model
with hosts moving at a uniform speed of 1.7 m/s, which is close to human walking
speed.

With mobile hosts, it is not appropriate to compare performance as a function
of the number of hosts solely as additional factors are involved such as the
speed of the hosts and the total area that a group of hosts are responsible for.
Hence, we use a concept called upper bound coverage to determine the fraction
of the total area that is within communication range of at least one host in a
single second. The formula for coverage is (h/a)(π.r2 + 2.s.r) where h is the
number of hosts, a the total area, r the communication radius of hosts, and
s the speed of the hosts. The second term gives the instantaneous area that
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falls within the communication radius of a single host plus the differential area
covered in the second under consideration. This is multiplied by the number
of hosts to give the upper bound covered by all hosts and then divided by the
area to give a fraction in the range 0 ≤ coverage ≤ 1 with 1 indicating full
coverage and 0 indicating no coverage. The coverage upper bound is reached
only if every point in the area is covered exclusively by one host. In practice, the
coverage is lower than the upper bound due to certain points falling within the
range of more than one host. Holding area a constant, increasing the number
of hosts, speed or the communication radius influences coverage positively while
increasing area holding the other quantities constant influences the coverage
negatively. Intuitively, more coverage means that it is more likely for a host to
be at a particular location whereas less coverage indicates that a host is less
likely to be at a specific location. We used this environment to simulate the
execution of randomly generated workflows, the results of which appear below.
Each data point is an average of 30 runs.

Expt. 1 - Completing Workflows.In this experiment, we examined the influ-
ence of our protocols on workflow completion. As a baseline, we used a protocol
that delivers data and subscriptions directly without using intermediate hosts,
i.e., in a peer to peer manner during opportunistic encounters. We measured (1)
the number of tasks completed and (2) the number of tasks that failed due to
a communication error when using the baseline protocol as well as each of our
three schemes. The remaining tasks failed due to a dependency on the tasks that
failed due to communication errors. The results are shown in Figure 5. Each of our
schemes outperformed the baseline with Scheme 3 showing the best
performance. All schemes showed close to 100% completions when the coverage
was greater than 0.25. This illustrates that workflows are more likely to complete
when one of our schemes is used. In the case of the workflows that failed to com-
plete using our scheme, the reason was almost always due to aberrantmobility pat-
terns where a host isolated itself from the rest of the network. It should be noted
that we set an upper bound of 25000 seconds for each trial. This upper bound is
200% of the worst case time in which a workflow was actually completed.

Expt. 2 - Influence of Coverage on Overhead. Figure 6 shows the rela-
tion between coverage and overhead. Each data point is an average of executing
50 workflows. As can be seen, an increased coverage of the area in which the work-
flow is executing leads to lower overhead, primarily due to the availability of more
routing options. An interesting observation is that there was a lot of variance in
the data points for lower values of coverage. This can be explained as follows: the
coverage captures the area that a host “touches” over the interval of a second aver-
aged over all hosts participating in the workflow. When low coverage is prevalent,
hosts may cover a the “correct” subset of the total area in which a large fraction
of the workflow tasks must take place. This can result in low overhead. However,
if the hosts cover a different subset of the area that does not include many tasks
in the workflow, the overhead increases due to non-availability of hosts to perform
tasks or route results. The notion of “correct coverage” is inherently tied to the
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workflow being executed (different workflows need different subsets of the area
covered). Hence, coverage gives a sense of the performance but may be subject to
high variances at the bottom of the scale.
Expt. 3 - Influence of ’n’ on Scheme 3. Our final experiment involves a
deeper study of Scheme 3 of our routing protocol. In Scheme 3, data and subscrip-
tions are allowed to be routed outside their permitted range for a limited number
of hops, i.e., the value of ‘n’. In this experiment, we show the overhead of Scheme
3 with two values of ‘n’ - low and high. As can be seen in Figure 7, the value of
‘n’ did not significantly improve performance. The higher value of ‘n’ completed
on average only a few seconds faster. We attribute this small difference to the fact
that we chose environments where host density was not excessively sparse, and
the fact that hosts encountered each other sufficiently often to pass on messages.
We do expect to see a bigger difference for extremely low values of coverage.

Our results indicate that our routing protocol based on the task numbers
improves upon the performance of naive approaches in terms of workflow com-
pletions as well as the overhead associated with communication. In addition,
due to only a limited flooding of packets (within the range of task numbers),
the packets in the network are significantly lower, leading to reduced bandwidth
and power usage. These results are encouraging. However, we do intend to refine
our approach to achieve more efficiency in future work.

5 Related Work

A WfMS is the piece of software that executes a compatible workflow specifi-
cation. Today, innumerable WfMSs are available as both commercial and open
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source software such as FLOWer [3], AgentWork [20], Caramba [8], Groove [6],
and I-Flow [15]. ActiveBPEL [9], JBoss [19], Oracle Workflow Engine [18] are just
a few of the engines available today that run BPEL workflows while BizTalk [7]
supports XLANG. Each of these engines is designed for orchestrated operation
in wired settings.

In [5], message passing is used to distribute data in a wired setting while
MoCA [14] uses proxies for distributed control. MoCA has some design fea-
tures that support mobile environments while Exotica/FDMC [2] describes a
scheme to handle disconnected mobile hosts. In AWA/PDA [26], the authors
adopt a mobile agent based approach based on the GRASSHOPPER agent sys-
tem. WORKPAD [11] is designed to meet the challenges of collaboration in a
peer-to-peer MANET involving multiple human users. WORKPAD’s shortcom-
ing is that it requires at least one member of a MANET to be connected with
a central entity that coordinates the mobile devices. Our work is targeted to an
environment similar to that of WORKPAD. However, our approach is different
in that we use choreography rather than a central coordinator.

With a choreography-based system, a leading concern is the process by which
a workflow is distributed across various participants and then executed. In [21],
the authors describe the process by which a monolithic workflow specification can
be fragmented and eventually distributed across multiple hosts while in [5], the
authors parse a BPEL specification, discard all the structural constructs and use
the link construct to build a more graph-like specification. Several systems exist
that achieve partial choreography, a survey of which appears in [16]. OSIRIS [24]
is one such system where individual nodes maintain a hyperdatabase (HDB) to
which is pushed service execution requests by a set of global process repositories.
The choice of who to push the request to is handled by established load balancing
techniques. ADEPTDistribution [4] describes a scheme for distributed execution
of workflows such that the number of network messages is minimized. Additional
efforts are ongoing to define protocols and standards for choreography such as
in WS-CDL [1].

In summary, there are large bodies of work in orchestrated systems and lan-
guages supporting orchestrated systems in wired settings or environments with
limited mobility. Our work advanced the state of the art by bringing workflows
to the most dynamic type of mobile networks - MANETs - via the design of a
lightweight, decentralized, and choreographed WfMS.

6 Conclusion

WfMSs that provide orchestrated workflow management across stable wired net-
works are a proven technology today. However, when a WfMS is developed with a
mobile environment in mind, the centralized nature of orchestrated systems must
give way to distributed and choreographed systems. In this paper, we described
CiAN, a WfMS designed for MANETs that uses choreography of services to
complete workflow tasks. CiAN uses a publish-subscribe-like protocol that takes
results from a task and delivers them to the host responsible for executing the
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immediately succeeding tasks without going through a central coordinating en-
tity. This protocol was developed with MANETs in mind where routes between
hosts are transient and can break in an unpredictable manner. In our evalua-
tions, we found that the calls to the services that occur locally on individual hosts
took significantly less time than the process of communicating data and results
between hosts. We evaluated three variants of our communication protocol all
of which showed 100% completion when coverage upper bound was greater than
a quarter of the total area and with reasonable amounts of overhead relative to
the total specified duration of the workflow. We plan to build on this work and
add new features like workflow cycles and error management in future work.
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Abstract. We present the ω-calculus, a process calculus for formally
modeling and reasoning about Mobile Ad Hoc Wireless Networks
(MANETs) and their protocols. The ω-calculus naturally captures es-
sential characteristics of MANETs, including the ability of a MANET
node to broadcast a message to any other node within its physical trans-
mission range (and no others), and to move in and out of the transmission
range of other nodes in the network. A key feature of the ω-calculus is the
separation of a node’s communication and computational behavior, de-
scribed by an ω-process, from the description of its physical transmission
range, referred to as an ω-process interface.

Our main technical results are as follows. We give a formal operational
semantics of the ω-calculus in terms of labeled transition systems and
show that the state reachability problem is decidable for finite-control ω-
processes. We also prove that the ω-calculus is a conservative extension of
the π-calculus, and that late bisimulation (appropriately lifted from the
π-calculus to the ω-calculus) is a congruence. Congruence results are also
established for a weak version of late bisimulation, which abstracts away
from two types of internal actions: τ -actions, as in the π-calculus, and
μ-actions, signaling node movement. Finally, we illustrate the practical
utility of the calculus by developing and analyzing a formal model of a
leader-election protocol for MANETs.

1 Introduction

A Mobile Ad Hoc Network (MANET) is a network of autonomous mobile nodes
connected by wireless links. Each node N has a physical transmission range
within which it can directly transmit data to other nodes. Any node that falls
within N ’s transmission range is considered a neighbor of N . Nodes can move
freely in a MANET, leading to rapid change in the network’s communication
topology.

Two aspects of MANETs make them especially difficult to model using ex-
isting formal specification languages such as process algebras. First, MANETs
use wireless links for local broadcast communication: a MANET node can trans-
mit a message simultaneously to all nodes within its transmission range, but the
message cannot be received by any node outside that range. Secondly, the neigh-
borhood of nodes that lie within the transmission range of a node can change
unpredictably due to node movement, thereby altering the set of nodes that can
receive a transmitted message.
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Ideally, the specification of a MANET node’s control behavior should be inde-
pendent of its neighborhood information. Since, however, the eventual recipients
of a local broadcast message depend on this information, a model of a MANET-
based protocol given in a traditional process calculus must intermix the compu-
tation of neighborhood information with the protocol’s control behavior. This
tends to render such models unnatural and unnecessarily complex.

In this paper, we present the ω-calculus, a conservative extension of the π-
calculus that has been designed expressly to address the MANET modeling
problems outlined above. A key feature of the ω-calculus is the separation of a
node’s communication and computational behavior, described by an ω-process,
from the description of its physical transmission range, referred to as an ω-
process interface. This separation allows one to model the control behavior of a
MANET protocol, using ω-processes, independently from the protocol’s under-
lying communication topology, using process interfaces. (A similar separation
of concerns has been achieved in several recently introduced process calculi for
wireless and mobile networks [12,9,8,5], but not, as we argue in Section 6, as
simply and naturally as in the ω-calculus.)

As discussed further in Section 2, ω-process interfaces are comprised of groups,
which operationally function as local broadcast ports. Mobility is captured in
the ω-calculus via the dynamic creation of new groups and dynamically changing
process interfaces. The group-based abstraction for local broadcast in a wireless
network is a natural one; it appears also in [6], where it is shown how to model
MANETs in the UPPAAL model checker for timed automata.

Main Contributions. The rest of the paper is organized around our main
technical results, which include the following:

– Section 2 provides an informal introduction to the basic features of the ω-
calculus.

– Section 3 presents the formal operational semantics of the ω-calculus in terms
of labeled transition systems and structural-congruence rules. The calculus
is presented in three stages: ω0, the core version of the calculus, focuses on
local broadcast and mobility; ω1 extends ω0 with unicast communication and
scope extrusion; ω2 extends ω1 by allowing multi-threaded behavior at the
process level. Unless otherwise noted, the expression “the ω-calculus” refers
to ω2, the most general version of the calculus. We in fact show in Section 4
that ω2 is a conservative extension of the π-calculus.

– Section 4 defines bisimulation for the ω-calculus and proves that it is a
congruence. We obtain similar results for a weak version of bisimulation,
which treats as unobservable two types of internal actions: τ -actions, as in
the π-calculus, and μ-actions, signaling node movement. Full proofs of these
results appear in [16].

– Section 5 illustrates the practical utility of the calculus by developing and an-
alyzing a formal ω-calculus model of a leader-election algorithm for
MANETs [17].

Section 6 considers related work and Section 7 offers our concluding remarks.



298 A. Singh, C.R. Ramakrishnan, and S.A. Smolka

N2 N1 N3

N4 N4 N2

g1

N1

g2

N3

N4

N1N2 N3 N2

N4

N1 N3

   (a) Wireless Network    (b) Neighboring Nodes

               (d) Group−based View   (c) Node Connectivity Graph

Fig. 1. Multiple views of a MANET network

2 The ω-Calculus: An Informal Introduction

As an illustrative example of the ω-calculus, consider the MANET of Fig. 1(a)
comprising the four nodes N1, N2, N3, N4. The dotted circle centered around
a node indicates the node’s transmission range, and all nodes are assumed to
have the same transmission range. Thus, N1 is within the transmission range of
N2, N3, and N4 and vice versa, and N2 and N4 are in each other’s transmission
range. Fig. 1(b) highlights the maximal sets of neighboring nodes in the network,
one covering N1, N2, and N4, and the other covering N1 and N3. A maximal
set of neighboring nodes corresponds to a maximal clique in the network’s node
connectivity graph (Fig. 1(c)), and, equivalently, to an ω-calculus group (local
broadcast port), as illustrated in Fig. 1(d). The set of groups to which a node is
connected is specified by the interface of the underlying process; i.e. the process
executing at the node. Thus, the ω-calculus expression for the network is the
parallel composition N1|N2|N3|N4, where N1 = P1 :{g1, g2}, N2 = P2 :{g1}, N3
= P3 :{g2}, N4 = P4 :{g1}, for process expressions P1, P2, P3 and P4.

Note that process interfaces may contain groups that do not correspond to
maximal cliques. Such groups are redundant in the sense that do not represent
any additional connectivity information. Group g2 of Fig. 2 is an example of a
redundant group. A canonical form for ω-calculus expressions can be defined in
which redundant groups are elided.

Fig. 1 provides multiple views of the topology of the MANET at a particular
moment in time. As discussed below, the network topology may change over
time due to node movement, a feature of MANETs captured operationally in
the ω-calculus via dynamic updates of process interfaces.
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Fig. 2. (a) Node Connectivity Graph after N3’s movement and (b) View in ω-calculus

Local Broadcast in the ω-calculus. The ω-calculus action to locally broad-
cast a value x is bx, while r(y) is the action for receiving a value y. Thus, when
a process transmits a message, only the message x to be sent is included in the
specification. The set of possible recipients depends on the process’s current in-
terface: only those processes that share a common group with the sender can
receive the message and this information is not part of the syntax of local broad-
cast actions. In the example of Fig. 1, if P2 can broadcast a message and P1, P3,
P4 are willing to receive it, then the expression

N = r(x).P ′
1 :{g1, g2} | bu.P ′

2 :{g1} | r(y).P ′
3 :{g2} | r(z).P ′

4 :{g1}

may evolve to

N = P ′
1{u/x} :{g1, g2} | P ′

2 :{g1} | r(y).P ′
3 :{g2} | P ′

4{u/z} :{g1}

Observe that P3 does not receive the message since N3 is not in N2’s neighborhood.

Node Mobility in the ω-calculus. Node mobility is captured through the
dynamic creation of new groups and dynamically changing process interfaces.
Fig. 2 shows the topology of the network of Fig. 1 after N3 moves away from
N1’s transmission range and into N4’s transmission range. N3’s movement means
that the ω-calculus expression

(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} | P3 :{g2} | P4 :{g1})

evolves to

(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} | (νg3)(P3 :{g3} | P4 :{g1, g3}))

The new group g3 in the above expression represents the new maximal set of
neighboring nodes N3 and N4 that arises post-movement. We use the familiar
νg notation for group-name scoping.

Nodes vs. Processes. In an ω-calculus specification, nodes typically represent
physical devices; as such, the calculus does not provide a primitive for node
creation. Process creation, however, is supported, as processes model programs
and other executables that execute within the confines of a device.
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3 Syntax and Transitional Semantics of the ω-Calculus

We begin this section by presenting the syntax and semantics of ω0, our core
calculus for MANETs. We then introduce the extensions to ω0 that result in the
more expressive ω1- and ω2-calculi.

3.1 Syntax of ω0

A system description in the ω0-calculus comprises a set of nodes, each of which
runs a sequential process annotated by its interface. We use N and P to denote
the sets of all nodes and all processes, respectively, with M, N ranging over nodes
and P, Q ranging over processes. We also use names drawn from two disjoint sets:
Pn and Gn. The names in Pn, called pnames for process names, are used for
data values. The names in Gn, called gnames for group names, are used for
process interfaces. We use x, y, z to range over Pn and g (possibly subscripted)
to range over Gn. The ω0-calculus has a two-level syntax describing nodes and
processes, respectively.

The syntax of ω0-calculus processes is defined by the following grammar:

P ::= nil | Act .P | P + P | [x = y]P | A(
⇀
x )

Act ::= bx | r(x) | τ

Action bx represents the local broadcast of a value x, while the reception of a
locally broadcasted value is denoted by r(x). Internal (silent) actions are denoted
by τ . Process nil is the deadlocked process; Act .P is the process that can perform
action Act and then behave as P ; and + is the operator for nondeterministic
choice. Process [x = y]P (where x and y are pnames) behaves as P if names x

and y match, and as nil otherwise. A(
⇀
x) denotes process invocation, where A is

a process name (having a corresponding definition) and
⇀
x is a comma-separated

list of actual parameters (pnames) of the invocation. A process definition is of
the form A(

⇀
x) def= P , and associates a process name A and a list of formal pa-

rameters
⇀
x (i.e. distinct pnames) with process expression P . Process definitions

may be recursive.
The following grammar defines the syntax of ω0-calculus node expressions:

M ::= 0 | P :G | (νg)M | M |M

0 is the inactive node, while P :G is a node with process P having interface (set
of gnames) G. The operator (νg) is used to restrict the scopes of gnames. M |N
represents the parallel composition of node expressions M and N . Node expres-
sions of the form P :G are called basic node expressions, while those containing
the restriction or parallel operator are called structured node expressions. Note
that gnames occur only at the node level, capturing the intuition that, in an ad
hoc network, the behavioral specification of a (basic) node (represented by its
process) is independent of its underlying interface.
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Table 1. Structural congruence relation

N1. M ≡ M |0
N2. M1 | M2 ≡ M2 | M1

N3. (M1 | M2) | M3 ≡ M1 | (M2 | M3)
N4. (νg)M ≡ M, if g /∈ fgn(M)
N5. (νg)M | N ≡ (νg)(M | N), if g /∈ fgn(N)
N6. (νg1)(νg2)M ≡ (νg2)(νg1)M
N7. M ≡ N, if M ≡α N

N8. P :G ≡Q :G, if P ≡ Q
N9. P :G ≡ (νg)(P :G ∪ {g}), if g /∈ G

P1. P + Q ≡ Q + P
P2. (P + Q) + R ≡ P + (Q + R)
P3. P ≡ Q, if P ≡α Q

Free and Bound Names. Pname x is free in bx.P and bound in r(x).P . Gname
g is bound in (νg)M , and all gnames in G are free in P :G. In a process definition
of the form A(

⇀
x ) def= P ,

⇀
x are the only names that may occur free in P . The set

of all names, free names and bound names in a process expression P are denoted
by n(P ), fn(P ) and bn(P ), respectively. Similarly, the set of all pnames and
gnames in a node expression M are denoted by pn(M) and gn(M), and those
that occur free are denoted by fpn(M) and fgn(M), respectively. The set of all
free names in a node expression M is given by fn(M) = fpn(M) ∪ fgn(M). An
expression without free names is called closed. An expression that is not closed
is said to be open. The theory developed in the following sections is applicable
to both open and closed systems (expressions).

3.2 Transitional Semantics of ω0

The transitional semantics of the ω0-calculus is defined in terms of a structural
congruence relation ≡ (Table 1) and a labeled transition relation α−→ ⊆ N × N,
where α is the transition label. As such, only node expressions have transitions, and
these are of the form M

α−→ M ′. There are several varieties of transition labels.
When a node of the formP :Gbroadcasts a value x, it generates a transition labeled
by Gx. When P :G receives a broadcast value x, the corresponding transition label
is G(x). Actions μ and τ also serve as transition labels, with μ, as explained below,
indicating node movement, and τ representing internal (silent) actions.

For transition label α, the sets of bound names and gnames of α are denoted
bn(α) and gn(α), respectively, and defined as follows:

bn(Gx) = ∅, bn(G(x)) = {x}, bn(μ) = ∅, bn(τ) = ∅.
gn(Gx) = G, gn(G(x)) = G, gn(μ) = ∅, gn(τ) = ∅.
The transitional semantics of the ω0-calculus is given by the inference rules of

Tables 2 and 3, with the former supplying the inference rules for basic node
expressions and the latter for structured node expressions. Rules CHOICE,
MATCH, and DEF of Table 2 are standard. Rules MCAST and RECV of Table 2,
together with COM of Table 3, define a notion of local broadcast communica-
tion. RECV states that a basic node with process interface G can receive a local
broadcast on any gname in G. This, together with COM, means that a local-
broadcast sender can synchronize with any local-broadcast receiver with whom
it shares a gname (i.e. the receiver is in the transmission range of the sender).
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Table 2. Transition rules for basic node expressions

Rule Name Rule Side Condition

MCAST
(bx.P ):G Gx−→ P :G

RECV
(r(x).P ):G

G(x)−→ P :G

CHOICE
P :G α−→ P ′:G

(P + Q):G α−→ P ′:G

MATCH
P :G α−→ P ′:G

([x=x]P ):G α−→ P ′:G

DEF
P{⇀

y /
⇀
x}:G α−→ P ′:G

A(
⇀
y ):G α−→ P ′:G

A(
⇀
x)

def
= P

Table 3. Transition rules for structured node expressions

Rule Name Rule Side Condition

STRUCT
N ≡ M M

α−→ M ′ M ′ ≡ N ′

N
α−→ N ′

MOBILITY (I)
M | P :G

μ−→ M | P :G′

G′ �= G,
G′ ⊆ G ∪ fgn(M),
χ(M | P :G) |= I =⇒

χ(M | P :G′) |= I

PAR
M

α−→ M ′

M | N α−→ M ′ | N bn(α) ∩ fn(N) = ∅

COM
M

Gx−→ M ′ N
G′(y)−→ N ′

M | N Gx−→ M ′ | N ′{x/y}
G ∩ G′ �= ∅

GNAME-RES1
M

α−→ M ′

(ν g)M
α\{g}−→ (ν g)M ′

GNAME-RES2
M

Gx−→ M ′

(ν g)M τ−→ (ν g)M ′ G = {g}
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Local-broadcast synchronization results in a local-broadcast transition label
of the form Gx, thereby enabling other receivers to synchronize with the original
send action. In contrast to the broadcast calculi of [4,12], a node that is capable
of receiving a local broadcast is not forced to synchronize with the sender. The
semantics of local broadcast in the ω-calculus allows a receiver to ignore a local-
broadcast event even if this node is in the transmission range of the broadcasting
node. A semantics of this nature captures the lossy transmission inherent in
MANETs. The semantics of local broadcast can easily be modified to force all
potential receivers to receive a local broadcast.

GNAME-RES1 and GNAME-RES2 define the effect of closing the scope of a
gname. GNAME-RES1 states that a restricted gname cannot occur in a transi-
tion label. In GNAME-RES1, let G be the set of gnames in α; i.e., G = gn(α).
Then the transition label α \ {g} in the consequent of this rule denotes α with
the occurrence of gnames in α replaced by G \ {g}, given that G \ {g} �= ∅ and
α /∈ {τ, μ}. Note that if α = τ (α = μ), then α \ {g} = τ (α \ {g} = μ).
GNAME-RES2 states that when all gnames of a local-broadcast-send action are
restricted, it becomes a τ -action. MCAST, GNAME-RES1 and GNAME-RES2
together mean that a local-broadcast send is non-blocking; i.e., it can be per-
formed on a set of restricted groups even when there are no corresponding receive
actions. In contrast, other actions containing gnames, such as local-broadcast re-
ceive, are not covered by GNAME-RES2, and hence have blocking semantics:
a system cannot perform actions involving restricted gnames unless there is a
corresponding synchronizing action.

The notion of structural congruence (Table 1) considered in rule STRUCT
is defined for processes (rules P1-P3) in the standard way—P and Q are struc-
turally congruent if they are alpha-equivalent or congruent under the associa-
tivity and commutativity of the choice (‘+’) operator—and then lifted to nodes
(rules N1-N9). Two basic node expressions are structurally congruent if they
have identical process interfaces and run structurally congruent processes (rule
N8). Rules N4-N6 are for restriction on gnames. Rule N9 allows basic nodes to
create and acquire a new group name or drop a local group name. Structural
congruence of nodes includes alpha-equivalence (rule N7) and the associativity
and commutativity of the parallel (‘|’) operator (rules N2 and N3).

Semantics of Mobility. The semantics of node movement is defined by the
MOBILITY rule, which states that the process interface of node P : G can
change from G to G′ whenever the node is in parallel with another node M .
In particular, the side condition G′ ⊆ G ∪ fgn(M) stipulates that P may drop
gnames from its interface or acquire free gnames from M .

The MOBILITY rule reflects the fact that P ’s interface may change when
node P :G, or the nodes around it, are in motion. A change in P ’s interface may
further result in a corresponding change in the overall network topology. Note
that the rule does not specify which nodes moved, only that the topology has
been updated as the result of movement of one or more nodes.

Process interfaces provide an abstract specification of network topology in
terms of node connectivity graphs. Formally, the node connectivity graph of a
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node expression M , denoted by χ(M), is an undirected graph (V, E) such that
V , the set of vertices, are the basic nodes of M (i.e. subexpressions of M of
the form P : G) and E, the set of edges, is defined as follows. There is an edge
between two vertices P1 :G1 and P2 :G2 of χ(M) only if P1 and P2’s interfaces
overlap; i.e. G1 ∩ G2 �≡ ∅ (assuming bound names of M are unique and distinct
from its free names). The node connectivity graph for the ω0 node expression of
Fig. 1(d) is given in Fig. 1(c).

The third side condition to the MOBILITY rule, expressed in terms of node
connectivity graphs, allows one to impose different models of node movement on
the calculus. Specifically, the side condition decrees that, whenever M

μ−→ M ′

is derived using the MOBILITY rule, the resulting transition must preserve a
mobility invariant expressed as a property over the node connectivity graph. A
mobility invariant is a decidable property over undirected graphs. For example,
k-connectedness, for a given k, is a candidate mobility invariant, as is true,
indicating no constraints on node movement. We write G |= I to indicate that
undirected graph G possesses property I. We thus have that the MOBILITY rule
in particular, and the calculus’s semantics in general, are parameterized by the
mobility invariant, thus taking into account the constraints on node movement.

3.3 The ω1- and ω2-Calculi

The ω1- and ω2-calculi are defined in a modular fashion by adding new syntactic
constructs, and associated inference rules for their semantics, to the ω0-calculus.

Extending ω0 to ω1. Syntactically, we obtain ω1 from ω0 as follows:

– We add restriction operators for pnames for both process-level and node-
level expressions. We use the standard notation of (νx)P for a pname x
restricted to a process expression P , and (νx)N for a pname x restricted to
a node expression N . As usual, x is bound in (νx)P and (νx)N .

– We introduce unicast communication as a prefix operator for process expres-
sions. Although unicast in principle can be implemented on top of broadcast,
we prefer to give it first-class status, as it is a frequent action in MANET
protocols. Doing so also facilitates concise modeling and deterministic rea-
soning (only the intended recipient can receive a unicast message). We use
the standard notation of xy to denote the sending of name y along x, and
x(y) to denote the reception of a name along x that will bind to y. As usual,
x and y are free in the expression xy.P , and x is free and y is bound in
x(y).P .

Semantically, the introduction of scoped pnames needs new inference rules to han-
dle scope extrusion. We add OPEN and CLOSE rules (as in the π-calculus [11])
and, in addition to the broadcast communication rule (COM) of ω0, a rule for
communication of bound names. We also add RES rules at the process and node
levels to disallow communication over a restricted name. These additional rules
follow closely the standard rules for handling scopes and scope extrusion in the
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Table 4. Transition rules for unicast communication in ω1-calculus

Rule Name Rule Side Condition

UNI-SEND
(zx.P ):G z:Gx−→ P :G

UNI-RECV
(z(x).P ):G

z:G(x)−→ P :G

UNI-COM
M

z:Gx−→ M ′ N
z:G′(y)−→ N ′

M | N τ−→ M ′ | N ′{x/y} G ∩ G′ �= ∅

π-calculus; details are omitted. New structural congruence rules are added to
take the restriction of pnames into account. For instance, restriction of pnames
and gnames commute (i.e. (νx)(νg)N ≡ (νg)(νx)N), and the restriction opera-
tor can be pushed into or pulled out of node and process expressions as long as
free names are not captured. At first glance, it may appear that the structural
congruence rules for scope extension of pnames are redundant in the presence of
the scope-extrusion rules (OPEN/CLOSE). However, the OPEN/CLOSE rules
are essential for reasoning about open systems, and the scope extension rules
are essential for defining normal forms; see [16].

The addition of unicast communication raises certain interesting issues with
respect to mobility. Recall that groups encapsulate the locality of a process.
When two processes share a private name, they can use that name as a channel
of communication. However, after establishing that link, if the processes move
away from each other, they may no longer be able to use that name as a channel.
In summary, unicast channels should also respect the locality of communication.
We enforce this in the ω1-calculus by annotating unicast action labels with the
interfaces of the participating processes, and allowing synchronization between
actions only when their interfaces overlap (meaning that the processes are in
each other’s transmission range). Hence, the execution of a unicast send action
of value x on channel z by a basic node with process interface G is represented
by action label z :Gx; the corresponding receive action is labeled z :G(x).

The semantic rules for unicast send (UNI-SEND), receive (UNI-RECV), and
synchronization (UNI-COM) are given in Table 4. Scope extrusion via unicast
communication is accomplished by naturally extending their π-calculus counter-
parts (OPEN/CLOSE) rules as follows. Bound-output actions (due to OPEN)
are annotated with the interface of the participating process, and the CLOSE
rule applies only when the interfaces overlap. These extensions are straightfor-
ward, and the details are omitted.

Note that the scope of a name may encompass different processes regardless
of their interfaces, and hence two processes may share a secret even when they
are outside each others transmission ranges. The restriction we impose is that
shared names can be used as unicast channels only when the processes are within
each others transmission ranges.



306 A. Singh, C.R. Ramakrishnan, and S.A. Smolka

Extending ω1 to ω2. We obtain the ω2-calculus by adding the parallel compo-
sition (‘|’) operator at the process level, thereby allowing concurrent processes
within a node. This addition facilitates e.g. the modeling of communication be-
tween layers of a protocol stack running at a single node; it also renders the
π-calculus a subcalculus of the ω2-calculus. In ω2, the actions of two processes
within a node may be interleaved. Moreover, two processes within a node can syn-
chronize using unicast (binary) communication. We add PAR, COM and CLOSE
rules corresponding to intra-node interleaving, synchronization and scope extru-
sion, respectively; these rules are straightforward extensions of the corresponding
rules in the π-calculus.

4 Bisimulation, Congruence Results and Other
Properties of the ω-Calculus

In this section, we prove some fundamental properties of the ω-calculus, including
congruence results for strong bisimulation and a weak version of bisimulation
that treats τ - and μ-actions as unobservable.

Embedding of the π-Calculus. The ω-calculus is a conservative extension of the
π-calculus [11]. That is, every process expression P in the π-calculus can be
syntactically translated to an ω-node expression M such that the transition
system generated by M directly corresponds to the one generated by P . This
property is formally stated by the following theorem, which is readily proved by
induction on the length of derivations.

Theorem 1. Let P be a process expression in the π-calculus. Then P : {g} is
a node expression in the ω-calculus, where g is a fresh group name not in P .
Moreover, P

α−→ P ′ is a transition derivable from the operational semantics

of the π-calculus if and only if P : {g} α′
−→ P ′ : {g} is derivable from the

operational semantics of the ω-calculus, and one of the following conditions hold:
(i) α = α′ = τ ; (ii) α = x(y) and α′ = x : {g}(y); (iii)α = xy and α′ = x : {g}y ;
or (iv) α = (νy)xy and α′ = (νy)x : {g}y, for some names x, y.

Decidability of the Finite-Control Fragment. In the finite-control fragment of the
π-calculus, recursive definitions are not allowed to contain the parallel operator
(‘|’) nor unguarded occurrences of process identifiers. Reachability properties are
decidable for closed process expressions (i.e. those without free names) specified
in the finite-control fragment [3]. We can extend the notion of finite control to
the ω-calculus, and show that reachability remains decidable for closed node
expressions. Formally, we say that an ω-calculus expression N is reachable from
M (denoted by M−→∗N) if there is a finite sequence of transitions M

α1→ M1
α2→

M2 · · · αn→ N . We then have the following result.

Theorem 2. Let M be a finite-control ω-calculus expression such that M is
closed w.r.t. names. Then, the set of node expressions reachable from M modulo
the structural congruence relation, i.e., {N | M−→∗N}≡, is finite.
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Theorem 2 is of practical importance in verifying MANET system specifications.
Its proof is based on the observation that, in the ω-calculus, the physical notion of
neighborhood is represented abstractly by group-based connectivity information.
This ensures that only a finite number of equivalent configurations need be
analyzed.

Bisimulation for the ω-calculus. The definition of strong (late) bisimulation for
the π-calculus [11] can be extended to the ω-calculus.

Definition 1. A relation S ⊆ N × N on nodes is a strong simulation if M S N
implies:

– fgn(M) = fgn(N), and
– whenever M

α−→ M ′ where bn(α) is fresh then:
• if α ∈ {G(x), z : G(x)}, there exists an N ′ s.t. N

α−→ N ′ and for each
pname y, M ′{y/x} S N ′{y/x},

• if α /∈ {G(x), z :G(x)}, there exists an N ′ s.t. N
α−→ N ′ and M ′ S N ′.

S is a strong bisimulation if both S and S−1 are strong simulations. Nodes
M and N are strong bisimilar, written M ∼ N , if M S N , for some strong
bisimulation S.

Proposition 3. (i) ∼ is an equivalence; and (ii) ∼ is the largest strong bisim-
ulation.

Strong bisimulation is a congruence for the ω-calculus, as formally stated in
Theorem 4.

Theorem 4 (Congruence). ∼ is a congruence relation; i.e., for all nodes M1,
M2 ∈ N, the following hold:

(i) M1 ∼ M2 implies ∀x ∈ Pn : (νx)M1 ∼ (νx)M2;
(ii) M1 ∼ M2 implies ∀g ∈ Gn : (νg)M1 ∼ (νg)M2; and
(iii) M1 ∼ M2 implies ∀N ∈ N : M1|N ∼ M2|N .

We have also defined a notion of weak bisimulation for the ω-calculus, in which
τ - and μ-actions are treated as unobservable. Its definition is similar to that for
strong bisimulation (Definition 1) and is given in [16]. There, we also establish
that weak bisimulation, like its strong counterpart, is a congruence for the ω-
calculus.

5 Case Study: Modeling and Verifying a Leader Election
Protocol for MANETs

Syntactic Extensions to the ω-calculus. The ω-calculus provides the ba-
sic mechanisms needed to model MANETs. In order to make specifications more
concise, we extend the calculus to a polyadic version (along the same lines as the
polyadic pi-calculus [10]) and also add support for data types such as bounded
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Fig. 3. Message flow in leader election protocol

integers and structured terms. The matching prefix is extended to include equal-
ity over these types. Terms composed of these types can be used as values in
a unicast or local broadcast transmission, or as actual parameters for a process
invocation. The modifications to the theory developed in the preceding sec-
tions (Sections 3-4) to account for these syntactic extensions to the calculus are
straightforward.

A Leader Election Protocol for MANETs. The algorithm of [17] elects
the node with the maximum id among a set of connected nodes as the leader
of the connected component. A node that initiates the leader election sends
an election message to its neighboring nodes. The recipients of the election
message mark the node from which they received the message as their parent
and send the election message to their neighbors, thereby building a spanning
tree with the initiator as the root. After sending an election message, a node
awaits acknowledgements from its children in the spanning tree. A child node n
sends its parent an acknowledgement ack with the maximum id in the spanning
tree rooted at n. The maximum id in the spanning tree is propagated up the
tree to the root. The root node then announces the leader to all the nodes in
its spanning tree by sending a leader message. To keep track of the neighbors of
a node, probe and reply messages are used periodically. When a node discovers
that it is disconnected from its leader, it initiates an election process. The flow
of election, ack, and leader messages is depicted in Fig. 3, where the node with
id 1 is the initiator.

Description of the Protocol in the ω-calculus. We model a network
as the parallel composition of basic ω-nodes, whose process interfaces reflect
the initial topology of the network. Each node runs an instance of process
node(id, chan, init, elec, lid, pChan) defined in Fig. 4. The meaning of this
process’s parameters is the following: id is the node identifier; chan is an input
channel; init indicates whether the node initiates the election process; elec indi-
cates whether the node is part of the election process; lid represents the node’s
knowledge of the leader id; and pChan is the parent’s input channel. These
parameters are represented by pnames and integers.
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/* A node may receive an election or a leader message. */

node(id, chan, init, elec, lid, pChan)
def
=

r(election(sndrChan)). processElection(id, chan, init, 1, lid, pChan, sndrChan)
+ r(leader(maxid)). processLeader(id, chan, init, elec, lid, pChan, maxid)

/* Node that initiates election process broadcasts election msg and awaits ack in state awaitAck. */

initElection(id, chan, init, elec, lid, pChan)
def
=

b election(chan). awaitAck(id, chan, init, 1, id, none)

/* When a node receives an election message it reaches the processElection state where it broad-
casts the election message and goes to state awaitAck. */

processElection(id, chan, init, elec, lid, pChan, sndrChan)
def
=

b election(chan). awaitAck(id, chan, init, elec, lid, sndrChan)

/* A node in awaitAck state may receive an ack and reach processAck state or it may nondeter-
ministically conclude that it has received ack from all its children in the spanning tree. In the latter
case, it declares the leader by broadcasting a leader message if it is the initiator. Otherwise, it sends
(unicast) an ack to its parent node (pChan) with the maximum id in the spanning tree rooted at this
node. */

awaitAck(id, chan, init, elec, lid, pChan)
def
=

chan(ack(maxid)). processAck(id, chan, init, elec, lid, pChan, maxid)
+ [init = 1] b leader(lid). node(id, chan, init, 0, lid, pChan)
+ [init = 0] pChan ack(id, lid). node(id, chan, init, elec, lid, pChan)

/* On receiving an ack, a node stores the maximum of the ids received in ack messages. */

processAck(id,chan, init, elec, lid, pChan, maxid)
def
=

[maxid >= lid] awaitAck(id, chan, init, elec,maxid, pChan)
+ [maxid < lid] awaitAck(id, chan, init, elec, lid, pChan)

/* On receiving a leader message, a node sets its lid parameter to the maxid in the leader message.
If maxid is less than lid, then either the node was not part of the election process or did not report
ack to its parent node (probably because it moved away from its parent). In either case, it broadcasts
its lid as the maximum id. */

processLeader(id, chan, init, elec, lid, pChan, sndrChan, maxid)
def
=

[maxid = lid](
[elec = 1] b leader(maxid). node(id, chan, init, 0, lid, pChan)
+ [elec = 0] node(id, chan, init, 0, lid, pChan)

)
+ [maxid > lid] b leader(maxid). node(id, chan, init, 0, maxid, pChan)
+ [maxid < lid] b leader(lid). node(id, chan, init, 0, lid, pChan)

Fig. 4. ω-calculus encoding of the leader election protocol for MANETs
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M = (νa)(νb)(νc)(νd)(νe)(νh)(νi)(νj)(νg1)(νg2)(νg3)(νg4)(νg5)(νg6)(νg7)
(initElection(1, a, 1, 0, 1, none) : {g1, g2}

| node(2, b, 0, 0, 2, none) : {g1, g3, g4}
| node(3, c, 0, 0, 3, none) : {g4}

| node(4, d, 0, 0, 4, none) : {g2, g5}
| node(5, e, 0, 0, 5, none) : {g3}

| node(6, h, 0, 0, 6, none) : {g5, g6, g7}
| node(7, i, 0, 0, 7, none) : {g6}

| node(8, j, 0, 0, 8, none) : {g7})

Fig. 5. ω-calculus specification of leader election protocol for an 8-node tree-structured
network

A node may receive election, ack, and leader messages, representing an elec-
tion message, an acknowledgement to the election process, and a leader mes-
sage, respectively. We need not consider probe and reply messages in our model
because a node can broadcast to its neighbors without knowing its neighbors,
and the effect of disconnection between nodes can be modeled using the choice
operator. The ω-calculus model of the protocol is given in Fig. 4. The messages,
their parameters, and the parameters used in the definitions appearing in Fig. 4
are explained below:

Messages: election(sndrChan); ack(maxid); leader(maxid).

Message parameters: sndrChan: input channel of the sender of the message;
maxid: maximum id seen so far by the sender of the message.

Definition parameters: id: id of the node, chan: input channel of the node; init:
1 if node initiated the election process, 0 otherwise; elec: 1 if node is participating
in the election process, 0 otherwise; lid: node’s knowledge of the leader id; pChan:
input channel of the node’s parent in the spanning tree; sndrChan: input channel
of the sender node of the message; maxid: maximum id seen so far by the node.

An example specification of an eight-node network running the leader election
protocol of Fig. 4 is given in Fig. 5. The initial network topology is the same as
that of the network of Fig. 3. The node with id 1 (initElection) is designated to be
the initiator of the leader-election process. The last parameter none in the process
invocations indicates that theparent channel is initially notknownto theprocesses.

Verifying the Leader Election Protocol Model. Following our earlier
encoding of the semantics of value-passing CCS and the π-calculus [15,21] using
the XSB tabled logic-programming system [18], we encoded the transitional se-
mantics of the ω-calculus using Prolog rules. Each inference rule of the semantics
is encoded as a rule for a predicate trans, which evaluates the transition relation
of a given ω-calculus model. We also encoded a weak bisimulation checker for
the ω-calculus in Prolog. The weak version of the transition relation, abstracting
τ - and μ-transitions, is encoded as the dtrans predicate. The predicate nb(S1,
S2) checks if two ω-specifications S1 and S2 are weak bisimilar. Using this imple-
mentation, we verified the following correctness property for the leader election
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Table 5. Verification statistics for ω-calculus model of leader election protocol

Nodes Tree Ring
States Transitions Time(sec) States Transitions Time(sec)

5 77 96 0.97 98 118 1.22

6 168 223 3.35 212 281 4.45

7 300 455 11.55 453 664 17.58

8 663 1073 45.85 952 1560 71.22

protocol for MANETs: Eventually a node with the maximum id in a connected
component is elected as the leader of the component, and every node connected
to it (via one or more hops) learns about it.

The verification was performed on models having tree- and ring-structured
initial topologies. A distinguished node (with maximum id, for example, node 8
marked ‘M’ for “mobile” in Fig. 3) was free to move as long as the network
remained connected. A mobility invariant was used to constrain the other nodes
to remain connected to their neighbors. For verification purposes, we added a
node final to the model that remains connected to all other nodes. A node, upon
learning its leader, forwards this information to node final. After final receives
messages from every other node with their leader ids equal to the maximum id
in the network, it performs the observable action action(leader(MaxId)). The
closed ω-specification of the protocol was checked for weak bisimilarity with an
ω-specification that emits action(leader(MaxId)) as the only observable action.
Weak bisimilarity between these two specifications indicates that the correctness
property is true of the system.

We verified the correctness property for networks containing 5 through 8
nodes. Table 5 lists the states, transitions and time (in seconds) it took our
Prolog implementation of the calculus and weak bisimulation checker to ver-
ify the property for networks with initial tree and ring topologies. We consider
this implementation to be a prototype. Its main purpose is to demonstrate the
feasibility and straightforwardness of implementing the calculus in a tabled logic-
programming system. As future work, we plan to develop an optimizing compiler
for the ω-calculus, along the lines of one for the π-calculus implemented in the
MMC model checker [20]. As these prior results demonstrate, this should signif-
icantly improve the performance of our implementation.

We observed a number of benefits in using the ω-calculus to model the leader
election protocol for MANETs. (1) The concise and modular nature of our spec-
ification is a direction consequence of the calculus’s basic features, including
separation of control behavior (processes) from neighborhood information (inter-
faces), and modeling support for unicast, local broadcast, and mobility. (2) The
mobility constraints imposed on the model are specified independently of the
control logic using a mobility invariant. For the case at hand, the invariant dic-
tates that all nodes other than a distinguished node (node 8 in Fig. 3) remain
connected to their initial neighbors. Thus, during protocol execution, process
interfaces may change at will as long as the mobility invariant is maintained.
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(3) Our specification of the protocol is given in the finite-control sub-calculus of
the ω-calculus, thereby rendering it amenable to automatic verification (bisim-
ulation checking); see also Theorem 2.

6 Related Work

Several process calculi have recently been developed for wireless and mobile ad
hoc networks. The closest to our work are CBS# [12], CWS [9], CMN [8], and
CMAN [5]. These calculi provide local broadcast and separate control behav-
ior from neighborhood information. However, there are significant differences
between these calculi and ours, which we now discuss. CBS# [12], based on the
CBS process algebra of [14], supports a notion of located processes. Node con-
nectivity information is given independently of a system specification in terms
of node connectivity graphs. The effect of mobility is achieved by nondetermin-
istically choosing a node connectivity graph from a family of such graphs when
a transition is derived. In contrast, the ω-calculus offers a single, integrated lan-
guage for specifying control behavior and connectivity information, and permits
reasoning about changes to connectivity information within the calculus itself.

In CWS [9], node location and transmission range are a part of the node syntax.
Node movement is not supported, although the authors suggest the addition of
primitives for this feature. CWS is well-suited for modeling device-level behaviors
(e.g., interference due to simultaneous transmissions) in wireless systems.

In CMN [8], a MANET node is a named, located sequential process that can
broadcast within a specific transmission radius. Both the location and transmis-
sion radius are values in a physical coordinate system. Nodes are designated as
mobile or stationary, and those of the former kind can move to an arbitrary loca-
tion (resulting in a tau-transition). Bisimulation as defined for CMN is based on
a notion of physically located observers. A calculus based on physical locations
may pose problems for model checking as a model’s state space would be infinite
if locations are drawn from a real coordinate system.

In CMAN [5], each node is associated with a specific location. Furthermore, each
node n is annotated by a connection set : the set of locations of nodes to which n is
connected. Connections sets thus determine the network topology. Synchronous
local broadcast is the sole communication primitive. The connection set of a node
explicitly identifies the node’s neighbors. Consequently, when a node moves, its
neighbors actively participate by removing from (or adding to) their connection
sets the location of the moving node. This explicit handling of connection infor-
mation affects the modularity of the calculus’s semantics (the definition of bisim-
ulation, in particular), and may preclude reasoning about open systems. In con-
trast, in the ω-calculus, neighborhood information is implicitly maintained using
groups, thereby permitting us to define bisimulation relations in a natural way.

Other calculi for mobile processes that have been proposed in the literature
include the π-calculus [11], bπ-calculus [4], HOBS [13], distributed process cal-
culus Dπ [7], and the ambient calculus [2]. These calculi could be used to model
MANETs but not as in a concise and natural fashion as with the ω-calculus.
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7 Conclusions and Future Work

The ω-calculus, introduced in this paper, is a conservative extension of the π-
calculus that permits succinct and high-level encodings of MANET systems and
protocols. The salient aspect of the calculus is its group-based support for lo-
cal broadcast communication over dynamically changing network topologies. We
have shown that reachability of system states is decidable for the finite-control
fragment of the calculus, and late bisimulation and its weak counterpart is a
congruence. We illustrated the practical utility of the new formalism by us-
ing it to develop a model of a leader-election algorithm for MANETS [17]. We
also showed how the calculus’s operational semantics can be readily encoded
in the XSB tabled logic-programming system, thereby allowing us to generate
transition systems from ω-calculus specifications. We used this feature to im-
plement a weak bisimulation checker for the ω-calculus, which we then used to
verify certain key properties of our encoding of the leader election algorithm
of [17].

We have also considered the problem of adding a π-calculus-like mismatch
operator to the ω-calculus [16], the introduction of which necessitates a lifting
of the calculus’s transitional semantics to a symbolic one. This is to ensure
that terms identified as unequal do not violate substitution of free names in
expressions. As desired, the congruence results of Section 4 can be established
for this extension as well [16].

As mentioned in Section 5, future work involves the development of an op-
timizing compiler for the ω-calculus, along the lines of one for the π-calculus
implemented in the MMC model checker [20]. MMC exploits the use of binary
synchronization in the π-calculus, generating specialized rules from which the
transition system can be derived efficiently at model-checking time. The MMC
compiler enables MMC to match the efficiency of model checkers for non-mobile
systems. Extending such compilation techniques to broadcast and multicast com-
munication is an open problem. Another avenue of future work is the develop-
ment of a compositional model checker for the ω-calculus, such as of those for
CCS and the π-calculus [1,19]. A model checker of this nature would permit
verification of infinite families of MANETs. Finally, the ω-calculus models bidi-
rectional connectivity between nodes. Since certain MANET protocols rely on
unidirectional node connections, it would be fruitful to extend the calculus with
such a modeling capability.
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Abstract. The actor model provides high-level concurrency abstrac-
tions to coordinate simultaneous computations by message passing. Lan-
guages implementing the actor model such as Erlang commonly only
support single-headed pattern matching over received messages. We pro-
pose and design an extension of Erlang style actors with receive clauses
containing multi-headed message patterns. Patterns may be non-linear
and constrained by guards. We provide a number of examples to show
the usefulness of the extension. We also explore the design space for
multi-headed message matching semantics, for example first-match and
rule priority-match semantics. The various semantics are inspired by the
multi-set constraint matching semantics found in Constraint Handling
Rules. This provides us with a formal model to study actors with multi-
headed message receive patterns. The system can be implemented effi-
ciently and we have built a prototype as a library-extension to Haskell.

1 Introduction

We all know the free lunch is over. We must write concurrent programs to take
advantage of the next generation of multi-core architectures. But writing correct
concurrent programs using the traditional model of threads and locks is in-
herently difficult and error-prone. Message-based concurrency provides the pro-
grammer the ability to exchange messages without relying on low-level locking
and blocking mechanisms. A particular popular form of message-based concur-
rency is actor style concurrency [1] as implemented by the Erlang language [2].

In Erlang, an actor comes with an asynchronous message queue also known as
mailbox. Erlang actors communicate by sending and receiving messages. Send-
ing is a non-blocking (asynchronous) operation. Each sent message is placed in
the actors mailbox and immediately returns to the sender. Messages are pro-
cessed via receive clauses which resemble pattern matching clauses found in
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functional/logic languages. Receive clauses are tried in sequential order. The
receive operation is blocking. If none of the receive clauses applies we suspend
until a matching message is delivered.

Receive clauses in Erlang are restricted to a single-headed message pattern.
That is, each receive pattern matches at most one message, possible constrained
by a guard. There are situations where we wish to match against multiple mes-
sages. Via multi-headed message patterns we can give a direct encoding of such
problems. But such patterns are not commonly supported in Erlang style lan-
guages. The programmer herself must therefore either explicitly keep track of the
set of partial matches or resort to nested received clauses. This leads to clumsy
and error-prone code as we will see later in Section 2.

In this paper, we make the following contributions:

– We propose and design an extension of Erlang style actors with receive
clauses containing multi-headed message patterns. Patterns may be non-
linear (i.e. have multiple occurrences of the same pattern variable) and
be constrained by guards. There are several possibly ways how to define
multi-head message matching, for example either first-match or rule priority-
match. We explore both alternatives in detail (Section 4).

– We have implemented a library-based prototype in Haskell (Section 5).

We draw our inspiration from prior work in the concurrent constraint logic pro-
gramming community. Specifically, we adopt the various multi-set constraint
matching semantics found in Constraint Handling Rules [6]. Section 3 provides
the necessary background information. We discuss related work in Section 6.
Section 7 concludes and discusses some possible future work.

We assume that the reader has some basic familiarity with Erlang and func-
tional languages such as Haskell. We will write example programs in Haskell
syntax [15] extended with actors. The Haskell extension uses some minor syn-
tactic sugar compared to our library-based extension described in Section 5.
Throughout the paper whenever we refer to actors we mean Erlang style actors.

2 Motivating Example

We motivate multi-headed message receive patterns via a classic concurrency
challenge, the Santa Claus problem [18].

Santa Claus First Match (Variant). Santa repeatedly sleeps until wakened by
either all of his nine reindeer, back from their holidays, or by a group of three
of his ten elves. If awakened by the reindeer, he harnesses each of them to his
sleigh, delivers toys with them and finally unharnesses them (allowing them to
go off on holiday). If awakened by a group of elves, he shows each of the group
into his study, consults with them on toy R&D and finally shows them each out
(allowing them to go back to work). Santa chooses the first matching group of
either elves or reindeer waiting.
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Single-Headed Solution. We give a solution in Haskell extended with Erlang
style actors. We omit some unimportant tasks such as “deliver toys” and “show
study” and assume that initially ten elves and nine deer are sent to the Santa
actor which appear in random order in Santa’s mailbox.

data SantaMsg = Deer Int | Elf Int

santa sanActor DeerAcc ElvesAcc =
receive sanActor of

Deer x -> if length (Deer x:DeerAcc) == 9
then ‘‘Deliver toys etc’’
else santa sanActor (Deer x:DeerAcc) ElvesAcc

Elf x -> if length (Elf x:ElvesAcc) == 3
then ‘‘Show study etc’’
else santa sanActor DeerAcc (Elf x:ElvesAcc)

The critical task for Santa is to check for nine reindeer and three elves. Santa
will pick the group whichever arrives first. In Erlang, receive patterns are single-
headed. Therefore, the Santa actor accumulates the set of deer and elves received
so far. We are slightly more explicit compared to Erlang in that the receive
primitive takes the actor as the first argument and the receive clauses as second
argument (similar to case statements). The actual behavior is like in Erlang.
Receive clauses are tried from top to bottom, for one message at a time. If a
message does not match any of the clauses we try the next message. In our case,
we first match the current message against the deer pattern. If the match fails,
we check for an elf. If this match fails as well, we move on to the next message
and the process repeats itself. If none of the messages match we block and wait
for new messages to arrive. This case does not apply here because there are only
deer or elf messages. The receive clauses are exhaustive. The point to note is
that Erlang actors apply a first-match semantics which selects the first clause
(starting from the top) that matches the messages as they come in (the actors
mailbox).

Multi-Headed Solution. Via multi-headed message patterns we can omit the
accumulation of partial matches entirely. Here is a solution using our proposed
multi-head extension:

santa2 sanActor =
receive sanActor of

Deer x1, Deer x2, Deer x3, Deer x4, Deer x5,
Deer x6, Deer x7, Deer x8, Deer x9 -> ‘‘Deliver toys etc’’
Elf x1, Elf x2, Elf x3 -> ‘‘Show study etc’’

We explain the semantics for such an extension in terms of multi-set con-
straint matching semantics studied in the context of Constraint Handling Rules
(CHR) [6]. CHR is a concurrent committed-choice constraint logic program-
ming language to transform (rewrite) multi-sets of constraints into simpler ones.
Constraints correspond to messages, and the left-hand side of a CHR rule corre-
sponds to the pattern of a receive clause. Concretely, we adopt the refined CHR
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semantics [3] which finds a match for the left-hand side of a CHR rule by process-
ing constraints in sequential order and testing CHR rules from top to bottom.
For single-headed CHR rules, this is essentially the first-match actor semantics.
The refined CHR semantics provides for a formal basis to extend the first-match
actor semantics with multi-headed message receive patterns involving guards.

Guarded Multi-Heads. Suppose not every group of three elves is compatible. For
example, either only odd or even numbered elves are willing to work together.
Via guards we can easily impose this condition:

santa3 sanActor =

receive sanActor of

Deer x1, Deer x2, Deer x3, Deer x4, Deer x5,

Deer x6, Deer x7, Deer x8, Deer x9 -> ‘‘Deliver toys etc’’

Elf x1, Elf x2, Elf x3 when allOddorEven [x1,x2,x3] -> ‘‘Show study etc’’

where

allOddorEven xs = (and (map xs odd)) || (and (map xs even))

Multi-Heads are Unordered. The message order in patterns is irrelevant. For
example, the multi-headed receive clauses Deer x, Elf y -> body and Elf y,
Deer x -> body are equivalent. The rationale behind this design choice is as
follows. We treat the multiple messages in a pattern as an un-ordered multi-set
because, for the user, the order in which messages arrive is not observable. A
specific order among messages can be imposed using nested receive clauses. For
instance, the following program text gives priority to the elf:

receive someActor of
Elf y -> receive someActor of

Deer x ->

Nested receive clauses in combination with otherwise statements (introduced
shortly) can be essential to express priorities as we demonstrate next.

Santa Claus Priority-Match (Original). In the original specification of the Santa
Claus problem [18], instead of choosing the first matching group of three elves
or nine reindeer waiting, Santa needs to give priority to the reindeer if there
are matching groups of both elves and reindeer waiting. Under a first-match
semantics, our previous solutions santa and santa2 do not obey the priority
given to a group of deer. Suppose for example that at the moment the receive
statement is executed, three elves and nine deer are waiting in Santa’s mailbox,
with the elves appearing first in the mailbox. The first-match semantics of receive
patterns then selects the three elves (hence execute ”show study”), even though
nine deer are waiting. The priority given to the deer has to be encoded explicitly:

santa4 sanActor =
receive sanActor of

Deer x1, Deer x2, Deer x3, Deer x4, Deer x5,
Deer x6, Deer x7, Deer x8, Deer x9 -> ‘‘Deliver toys etc’’
otherwise -> receive sanActor of

Elf x1, Elf x2, Elf x3 -> ‘‘Show study etc’’
otherwise -> santa4 sanActor
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First, we check if there are nine deer (waiting) in Santa’s mailbox. Other-
wise, we call a nested receive statement to check for three elves. Otherwise, the
process repeats itself. The otherwise statement corresponds to ‘after 0’ in Er-
lang. This branch applies if none of the other branches could find a match. The
outer otherwise for instance applies if there are fewer than nine deer in Santa’s
mailbox. Enforcing priorities manually via otherwise and nested receive state-
ments leads to clumsy code. For concurrency problems with priorities a different
semantics is warranted in which receive clauses are executed in (textual) order.
Incidentally, in the CHR literature a semantics has been recently suggested [12]
in which rewrite rules can be executed in textual order. If we adopt such a se-
mantics to the actor setting, solution santa2 immediately solves the Santa Claus
Priority-Match problem.

Summary. Thanks to multi-headed message receive patterns the programmer
is relieved from the tedious and non-trivial task if building the set of partial
matches herself. In combination with guards this leads to more concise and
maintainable code. Erlang style actors follow the first-match semantics. The
refined CHR semantics [3] is a conservative extension of this semantics to the
setting of multi-set matching involving guards. Certain concurrency problems,
however, are more naturally solved using a rule priority-match semantics which
has also been explored in the CHR context.

In the up-coming section, we provide background information on the first-
match and rule priority-match semantics. In Section 4, we formalize an exten-
sion of actors with multi-headed message patterns which can be constrained by
guards. The extension is parametric in terms of the underlying message match
semantics for receive clauses. In case we adopt a first-match CHR style seman-
tics for message patterns, we obtain a conservative extension of Erlang style
actors.

3 Constraint Handling Rules Matching

We review the essentials of the multi-set constraint matching semantics of Con-
straint Handling Rules (CHR). The actual CHR framework is much richer than
presented here. CHR also supports constraint propagation and built-in con-
straints such as unification constraints. We ignore these additional features.

Figure 1 introduces some basic syntactic categories. Constraints are terms
built via constructors K. Constraints carry a distinct number to distinguish
multiple appearances of a constraint c. Rule patterns consist of a head and
guard component. A CHR rule also consists of a rule body which we ignore
here. We are only interested in the multi-set constraint match semantics of CHR
and not in CHR execution. In the actor context, a rule pattern corresponds to
a receive pattern and a rule body corresponds to the body of a receive clause.
The guard must evaluate to a Boolean value. Constraints in rule heads have
distinct, increasing occurrences with respect to their textual order in a program.
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Constraints
K Constructor name

c ::= K c...c Constraint
| x Constraint variable

cn ::= c#n Numbered constraint
co ::= c : j Occurrence constraint
cno ::= c#n : j Active constraint

Substitution
θ ::= [c1/x1, ..., cn/xn]

Rule patterns

H ::= co | H ∧ H Head
G ::= e Guard
RP ::= H when G Rule pattern

| H
RP ::= {RP1, ..., RPn} Set of rule patterns

Executables
M ::= N | [cno|N ]
N ::= [] | [cn|N ]

Store
St ::= [] | [cn|St]

Matching States
〈M, St〉 Intermediate
〈M, St, θ, RP 〉 Successful
〈[], St〉 Failure

Fig. 1. Constraint Handling Rules Essential Syntax

For example, the rule heads derived from the santa3 function in the previous
section are

Deer x1 : 1 ∧ ... ∧ Deer x9 : 9

and
Elf x1 : 10 ∧ Elf x2 : 11 ∧ Elf x3 : 12

Thus, we can perform a systematic search for a match.
The idea is that all (numbered) constraints are initially stored in a list M . We

use Prolog syntax to denote a list [x|xs] with first element x and tail xs. The
symbol [] denotes the empty list and++denotes list concatenation. In the CHR
context, M is referred to as the execution stack. Here, it is more appropriate
to view M as a list corresponding to the actors mailbox. Constraints in M are
executed in sequential order to find a match with a rule pattern. We execute
constraints by activating them with the initial occurrence number 1. We will
increase the occurrence until a match is found. Otherwise, we deactivate the
current active constraint by putting it into the store and start with a new active
constraint. In case of the first-match semantics, this strategy guarantees that
constraints are processed in sequential order and rules are tried from top to
bottom. Below are the formal details.
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Matching reduction: 〈M, St〉 −→F irst−RP 〈M, St〉 and 〈M, St〉 −→F irst−RP
〈M, St, θ, RP 〉

(Activate) 〈[c#n|M ], St〉 −→F irst−RP 〈[c#n : 1|M ], St〉

(Match)

H1, c
′ : j, H2 when G ∈ RP

θ(G) evaluates to True St1 ++St2++St′ =set St

θ(c′) = c θ(H1) = St1 θ(H2) = St2 for some θ

〈[c#n : j, M ], St〉 −→F irst−RP 〈M, St′, θ, H1 ∧ c′ : j ∧ H2 when G〉

(Continue)
j < maxOccur(RP)

〈[c#n : j|M ], St〉 −→F irst−RP 〈[c#n : j + 1|M ], St〉

(Deactivate)
j ≥ maxOccur(RP)

〈[c#n : j|M ], St〉 −→F irst−RP 〈M, St++[c#n]〉

(Step1)
〈M, St〉 −→F irst−RP 〈M ′, St′〉
〈M, St〉 −→∗

F irst−RP 〈M ′, St′〉

(Step2)
〈M, St〉 −→F irst−RP 〈M ′, St′, θ, RP 〉
〈M,St〉 −→∗

F irst−RP 〈M ′, St′, θ, RP 〉

(Trans)
〈M1, St1〉 −→∗

F irst−RP 〈M2, St2〉 〈M2, St2〉 −→∗
F irst−RP 〈M3, St3〉

〈M1, St1〉 −→∗
F irst−RP 〈M3, St3〉

Fig. 2. CHR Multi-Set First Match Semantics

3.1 First-Match Semantics

Our presentation largely follows the CHR description [3], which we adapt to our
specialized setting. Figure 2 describes the CHR multi-set first-match semantics
as a transition system −→∗

First−RP among states 〈M, St〉 where M represents
the constraints to be executed and St holds the already processed constraints.
The set RP holds the rule patterns. Initially, we start in the state 〈M, []〉. The
goal is to reach a successful state 〈M ′, St, θ, RP 〉 where RP is the (first) rule
pattern matched by a (sequentially processed) sequence of constraints in M , θ is
the matching substitution, St holds the already processed constraints that did
not contribute to the match, and M ′ are the remaining constraints. State 〈[], St〉
indicates failure: none of the constraints in the initial M trigger a rule pattern.

The search for a match is performed by activating the leading constraint in M
by assigning it the occurrence number 1. See rule (Activate). Rule (Match) checks
whether the active constraint matches a constraint in the head of a rule pattern
at the respective position. We consult the store to find constraints St1 and St2
which match the remaining constraints H1 and H2 in the head. The symbol =set
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Matching reduction: 〈M, St〉 −→∗
Priority−RP 〈M, St〉 and 〈M, St〉 −→∗

Priority−RP
〈M, St, θ, RP 〉

(Succ)

RP = {RP1, ..., RPn}
∀1 ≤ j < i 〈M, St〉 −→∗

F irst−{RPj} 〈[], St′j〉
〈M, St〉 −→∗

F irst−{RPi} 〈M ′, St′, θ, RPi〉
〈M, St〉 −→∗

Priority−RP 〈M ′, St′, θ, RPi〉

(Fail)

RP = {RP1, ..., RPn}
∀1 ≤ j ≤ n 〈M, St〉 −→∗

F irst−{RPj} 〈[], St′j〉
〈M, St〉 −→∗

Priority−RP 〈[], Stn〉

Fig. 3. CHR Multi-Set Rule Priority Match Semantics

denotes set equality among lists. The statement St1 ++St2 ++St′ =set St holds
if each element in St1 ++St2 ++St′ appears in St and vice versa. This implies
that the order of constraints in patterns does not matter which is a sensible choice
for our (actor) setting as argued in Section 2. The equality test among constraints
ignores numbering of constraints and occurrences. If the guard can be satisfied
as well, we report the successfully found match. Otherwise, we continue our
search by incrementing the occurrence number of the active constraint. See rule
(Continue). This is only sensible if the maximum occurrence in any constraint in
RP , computed via function maxOccur(·), is smaller than the current occurrence
number. Otherwise, we deactivate the constraint by putting it into the store. See
rule (Deactivate). The order among messages is retained. That is, for any initial
state 〈M, []〉 and intermediate state 〈M ′, St〉 we have that M = St ++ M ′. We
keep repeatedly applying rules (Activate), (Match), (Continue) and (Deactivate),
in that order, until we either reach a successful or failure state.

To summarize, the first-match semantics finds a match by processing con-
straints in sequential order and checking for a matching rule pattern from top
to bottom (in the textual order).

3.2 Rule Priority-Match Semantics

We consider a rule priority-match semantics which guarantees that rule patterns
are executed in (textual) order. Figure 3 contains the details. We apply the first-
match semantics on each rule pattern and select the first successful match in
textual order. We assume that RPj appears before RPj+1 in the program which
can be specified via occurrences associated to head constraints.

Next, we consider some examples to illustrate the differences between both
semantics.

3.3 Examples

The first example is given in Figure 4. We assume that A and B are con-
stant messages. Therefore, each (Match) reductions make use of the identity
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Receive clause:

receive act of
A,A -> "RP1" -- RP1 = A : 1 ∧ A : 2
B -> "RP2" -- RP2 = B : 3

RP = {RP1, RP2}
First-Match reduction:

〈[A#1, B#2, A#3], []〉
(Act-Cont-Deact) −→F irst−RP 〈[B#2, A#3], [A#1]〉
(Activate) −→F irst−RP 〈[B#2 : 1, A#3], [A#1]〉
(Continue ×2) −→F irst−RP 〈[B#2 : 3, A#3], [A#1]〉
(Match) −→F irst−RP 〈[A#3], [A#1], identSubst , RP2〉

Rule Priority-Match reduction:

〈[A#1, B#2, A#3], []〉
(Act-Cont-Deact) −→F irst−{RP1} 〈[B#2, A#3], [A#1]〉
(Act-Cont-Deact) −→F irst−{RP1} 〈[A#3], [A#1, B#2]〉
(Activate) −→F irst−{RP1} 〈[A#3 : 1], [A#1, B#2]〉
(Match) −→F irst−{RP1} 〈[], [B#2], identSubst , RP1〉

Fig. 4. Example 1

(matching) substitutions identSubst . Each reduction step is annotated with the
corresponding reduction rule. For brevity, we shorten reduction steps. For ex-
ample, we write

〈[A#1, B#2, A#3], []〉
(Act-Cont-Deact) −→F irst−RP 〈[B#2, A#3], [A#1]〉

as a short-hand for
〈[A#1, B#2, A#3], []〉

(Activate) −→F irst−RP 〈[A#1 : 1, B#2, A#3], []〉
(Continue ×3) −→F irst−RP 〈[A#1 : 4, B#2, A#3], []〉
(Deactivate) −→F irst−RP 〈[B#2, A#3], [A#1]〉

The first-match reduction applies RP2. We sequentially process constraints,
searching for the first match for a rule pattern from top to bottom. Starting
with the initial list of executables [A#1, B#2, A#3], we find that B#2 form
the first match for rule pattern RP2. On the other hand the rule priority-match
reduction applies RP1. We strictly apply rule patterns in (textual) order. Based
on the priority of rules, A#1, A#3 form a match for the first rule pattern RP1.

In the second example in Figure 5, we apply the first-match and rule priority-
match on the initial list of executables [A#1, B#2]. In both cases only rule
pattern RP2 applies. The first-match reduction is almost identical to Example 1
where we additionally find constraint A#3 in the initial M . But this constraint
does not contribute to the first match. In case of the rule priority-match reduction
we first try RP1 which fails and then we try RP2 which leads to success.
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Receive clause:

receive act of
A,A -> "RP1" -- RP1 = A : 1 ∧ A : 2
B -> "RP2" -- RP2 = B : 3

RP = {RP1, RP2}
First-Match reduction:

〈[A#1, B#2], []〉
(Act-Cont-Deact) −→F irst−{RP1,RP2} 〈[B#2], [A#1]〉
(Activate) −→F irst−{RP1,RP2} 〈[B#2 : 1], [A#1]〉
(Continue ×2) −→F irst−{RP1,RP2} 〈[B#2 : 3], [A#1]〉
(Match) −→F irst−{RP1,RP2} 〈[], [A#1], identSubst , RP2〉

Rule Priority-Match reductions:

〈[A#1, B#2], []〉
(Act-Cont-Deact) −→F irst−{RP1} 〈[B#2], [A#1]〉
(Act-Cont-Deact) −→F irst−{RP1} 〈[], [A#1, B#2]〉

〈[A#1, B#2], []〉
(Act-Cont-Deact) −→F irst−{RP2} 〈[B#2], [A#1]〉
(Activate) −→F irst−{RP2} 〈[B#2 : 1], [A#1]〉
(Continue ×2) −→F irst−{RP2} 〈[B#2 : 3], [A#1]〉
(Match) −→F irst−{RP2} 〈[], [A#1], identSubst , RP2〉

Fig. 5. Example 2

4 Actors with Multi-headed Message Patterns

Figure 6 introduces the syntax and Figures 7 and 8 introduce the semantics of
an elementary actor language which supports multi-headed message patterns.
In example programs, we use “,” (comma) to separate multi-headed message
patterns whereas in our (internal) syntax we use ∧. We assume a distinct pattern
variable otherwise to support otherwise statements. The otherwise pattern (if
present) does not appear anywhere else in the program but in the last pattern
of a receive statement. We assume that the variables in a guard statement e′i
appear in the associated pattern pi.

We define the semantics in terms of a small-step Wright/Felleisen style se-
mantics [20]. We assume a fixed set of actors, each identified by a unique actor
identification number, aid for short. Each actor has a mailbox M and the actor’s
behavior is specified by an expression e. We execute actors in random order. See
rule (Schedule) in Figure 8. We simply evaluate the actor expression k number of
steps. Evaluation affects the actors mailbox and has as a side effect the sending
of messages. We append sent messages to the appropriate mailboxes via the op-
erations S@a and S@AP . See rules (AS1-4). In rule (AS3), we attach a unique
number to the message to distinguish multiple occurrences of the same message.
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Expressions

e ::= x Variable
| K e...e Message
| λx.e | e e Function and application
| receive [pi when e′i → ei]i∈I Message receive
| send aid e Message send
| () Don’t care

p ::= p′ | p ∧ p Single-head and multi-head pattern
p′ ::= x Variable pattern

| otherwise Otherwise pattern
| K p′...p′ Message pattern

Actor
a ::= (aid, M, e)

aid Actor identification
M Mailbox
e Behavior

Fig. 6. MiniActor Language

Evaluation of expressions is described in Figure 7. Rule (Send) yields a don’t
care expression but has the side effect of sending a message. Side effects are
collected in a multi-set of constraints. We may send the same message twice to
the same actor. The symbol � denotes multi-set union. We do not care much
about the order of sent messages which may be random. Evaluation of receiving
of messages is parametric in terms of the match semantics described earlier.
We first describe the general receive rules in terms of a generic-match reduction
−→∗

X−RP before we consider the impact of a specific matching policy.
Matching starts in the initial state 〈M, []〉 where M is the actor’s current

mailbox. In rule (Receive) we have found a successful match. From the successful
state 〈M ′, St, θ, pj when e′j → ej〉 we collect the list St of already processed
messages which have not been involved in the matching. We put these messages
back into the actor’s mailbox in their original order (see also rule (Deactivate)
in Figure 2). We then continue executing the successful receive body θ(ej). In
the (Otherwise) case, we leave the mailbox unchanged. There is no rule for
covering failure which means that evaluation of a receive clause will block until
a successful match is found.

In case we instantiate −→∗
X−RP with the first-match reduction relation from

Section 3, we obtain a conservative extension of Erlang-style actors with
multi-headed message receive patterns. The first-match semantics guarantees
the following Monotonicity Property:

If 〈M, []〉 −→∗
First−RP 〈M ′, St, θ, pj when e′j → ej〉

then 〈M ++M ′′, []〉 −→∗
First−RP 〈M ′++M ′′, St, θ, pj when e′j → ej〉

This property says that any successful match remains valid if further messages
arrive in the actor’s mailbox. This is a fairly important property and shows that
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Values
v ::= λx.e | K v1...vn | ()

Send effects
S ::= ∅ | {send aid K v1...vn} | S � S

Evaluation contexts:

E ::= [ ] | E v | K E...E | receive [pi when E → ei]i∈I | send aid E

Expression reduction: 〈M, e〉 S−→ 〈M, e〉

(Beta) 〈M, (λx.e) v〉 ∅−→ 〈M, [v/x]e〉

(Send)
S = {send aid K v1...vn}

〈M, send aid K v1...vn〉 S−→ 〈M, ()〉

(Receive)

RP = {p1 when e′1 → e1, ..., pn when e′n → en}
〈M, []〉 −→∗

X−RP 〈M ′, St, θ, pj when e′j → ej〉
pj �= otherwise for some j ∈ {1, ..., n}

M ′′ = St++M ′

〈M, receive [pi when e′i → ei]i∈{1,...,n}〉
∅−→ 〈M ′′, θ(ej)〉

(Otherwise)

RP = {p1 when e′1 → e1, ..., pn when e′n → en}
〈M, []〉 −→∗

X−RP 〈M ′, St, θ, pn when e′n → en〉
pn = otherwise

〈M, receive [pi when e′i → ei]i∈{1,...,n}〉
∅−→ 〈M, en)〉

(Context)
〈M, e〉 S−→ 〈M ′, e′〉

〈M, E[e]〉 S−→ 〈M ′, E[e′]〉
(Step)

〈M, e〉 S−→ 〈M ′, e′〉

〈M,e〉
S

−→∗ 〈M ′, e′〉

(k-Step)

〈M1, e1〉
S1−→ 〈M2, e2〉....〈Mk−1, ek−1〉

Sk−1−→ 〈Mk, ek〉
Sk = S1 � ... � Sk−1

〈M1, e1〉
Sk

−→k 〈Mk, ek〉

(Trans)
〈M1, e1〉

S1
−→∗ 〈M2, e2〉 〈M2, e2〉

S2
−→∗ 〈M3, e3〉

〈M1, e1〉
S1�S2
−→∗ 〈M3, e3〉

Fig. 7. Expression Semantics

we can treat the actor’s mailbox as a “lazy” structure. That is, the mailbox
represents a stream of incoming messages.

If we employ the rule priority-match semantics from Section 3, however, newly
arrived messages can invalidate earlier (match) choices. For instance, consider
the rule priority-match reduction in Figure 5. Suppose that at some later stage
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Actor pool
AP ::= ∅ | {a} | AP ∪ AP

Actor send: S@a and S@AP

(AS1) ∅@(aid, M, e) = (aid, M, e)

(AS2)
aid �= aid′

{send aid K v1...vn} � S@(aid′, M, e) = S@(aid′, M, e)

(AS3)
aid = aid′ unique number m

{send aid K v1...vn} � S@(aid′, M, e) = S@(aid′, M ++[K v1...vn#m], e)

(AS4) S@{a1, ..., an} = {S@a1, ..., S@an}

Actor reduction: AP −→ AP

(Schedule)

AP = {(aid, M, e)} ∪ AP ′

〈M, e〉
S

−→k 〈M ′, e′〉
AP ′′ = {S@(aid, M ′, e′)} ∪ S@AP ′

AP −→ AP ′′

(Step)
AP −→ AP ′

AP −→∗ AP ′ (Trans)
AP1 −→∗ AP2 AP2 −→∗ AP3

AP1 −→∗ AP3

Fig. 8. MiniActor Semantics

the message A#5 arrives (already attached with a unique number). The rule
priority-match reduction in Figure 4 shows that in this case, a different rule
pattern may be applied.

On the other hand, under a rule priority-match semantics we can read off
the priorities directly from the receive clauses. Under a first-match semantics,
we need to explicitly program priorities via otherwise and nested receive state-
ments. This often leads to clumsy and hard to maintain code. See the discussion
in Section 2. In summary, we believe that both semantics represent interest-
ing, alternative design choices for an actor language, and it will depend on the
application which semantics is the better choice.

5 Implementation

We have implemented a prototype as a library extension in Haskell using the
Glasgow Haskell Compiler [7]. GHC supports light-weight threads. Therefore,
our implementation scales well to many actors. The latest version including
examples can be downloaded via [9].

We briefly highlight the main features of our implementation. We support
strongly typed actors in the sense that an actor’s mailbox can only holds
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messages of a certain (data) type. The actual mailbox consists of two parts.
A buffer for recently sent messages is represented as a transacted channel to
manage conflicts among multiple writers. A transacted channel is a linked list
in shared memory where access is protected by Software Transactional Mem-
ory. In the future we plan to support distributed channels to support sending of
messages across the network. The second part of the mailbox is a linked list to
process 〈M, St〉 by a single reader. We use pointers to indicate the start of M
and St.

Our implementation applies the first-match scheme outlined in Section 3. We
process messages in M in sequential order. If M is empty, we check the buffer
and transfer any recently sent messages to M . If the buffer is empty, we wait for
new messages to arrive. Our current prototype [9] performs a sequential search
for matching messages. To improve the performance, one possible optimization is
message indexing. For example, consider rule pattern Sell x,Buy x. Suppose the
active message Sell SomeObject in M matches part of the rule head. We then
need to find a matching partner Buy SomeObject in St. We can achieve a faster
lookup of candidate partners by using (hash)-indexing. Another optimization is
the early scheduling of guards. For example, consider the rule pattern Foo x,Bar
y,Erk z when x > y. Suppose that Foo 1 is our active message and what remains
is to find matching partners Bar y and Erk z for some y and z such that x>y. As
soon as we have found a possible candidate Bar y we should schedule (i.e. test) the
guard 1>y to reduce the search space. We plan to integrate the above and other
common CHR optimizations [10, 16]. into later versions of our system.

6 Related Work

In their foundational work, Kahn and Saraswat [11] establish connections be-
tween the actor programming model and concurrent constraint logic program-
ming. Our work follows their footstep by providing a formal model for multi-
headed message receive patterns with guards based on CHR style multi-set con-
straint matching semantics.

The basic motivation and idea of multi-headed message receive patterns can
already be found in the earlier work [5]. The concepts of receptionists and
activators introduced in [5] correspond to what we called heads and rules re-
spectively. However, there are noticeable differences. In [5], receptionists and
activators are first class entities that can be communicated. Also, activators
may be combined using both conjunction and disjunction. Whilst in [5], non-
determinism issues are resolved by introducing fairness conditions, we consider
a conservative extension of Erlang style actors, and propose a (in the context of
actors) novel rule-priority match semantics. Our prototype also shows that the
language extension can be implemented efficiently.

The main advantage of multi-headed message receive patterns is the ability to
expression complex synchronization patterns. In [5] two types of synchronization
are considered: input and reply synchronization; [19] only considers the latter.
For reply synchronization, we will consider some syntactic sugar, as in [5,19], that
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allows actors to reply on messages. We believe that in our system we can express
all synchronization patterns found in these works. Reply delegation (cf. [5, 19])
for instance is already possible by communicating the requesting actor’s address.
Further work is needed to support this claim.

Closest to our work is some recent work by Haller and Van Cutsem [8]. Like
us they use the abstractions in the language (they use Scala we use Haskell)
to avoid non-sensical pattern specifications. They focus on the implementation
of join patterns [4] by means of extensible pattern matching. There are close
connections between the join and actor model, and their system has support for
join-style actors (what we call multi-headed message receive patterns). However,
their approach appears to be more limiting. They can only support a limited
form of guards, it is unclear whether they can support our non-linear patterns
at all. Furthermore, they do not specify the semantics of their system.

7 Conclusion

We have studied an extension of Erlang style multi-headed message receive pat-
terns with guards. Such an extension is useful as supported by a number of ex-
amples. We have explored two possible semantics by adapting previously studied
CHR multi-set matching semantics. The first-match semantics gives us a con-
servative extension of Erlang style actors to the setting of multi-headed message
receive patterns with guards. We have also explored a rule priority-match se-
mantics which guarantees that rule patterns are executed in (textual) order.
For certain applications this semantics is the better choice. The original CHR
semantics proposed in [12] is more general and can express more complicated,
even dynamic, user-defined priorities. How to exploit more complex priority-
based execution control in the actor setting is subject of future work.

Both semantics can be implemented efficiently as shown by previous work [3,13,
16]. Our library-based prototype exploits some of these methods. We plan to inte-
grate further optimizations, and conduct more experimentations in future work.

In another line of work, we will enrich join patterns with CHR style guards
and non-linear patterns. In the join context, patterns can be be executed concur-
rently. We wish to parallelize the concurrent execution of join patterns. Contrast
this to actor receive patterns which are executed sequentially (either following
the first-match or rule priority-match semantics). We have already started work
on the parallelization of CHR [14], and explored a CHR style enriched join pat-
tern language [17]. We plan to report more detailed results in the future.

Acknowledgments. We thank the reviewers for their helpful comments.
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Abstract. Orc [9] is a language for task orchestration. It has a small set
of primitives, but sufficient to express many useful programs succinctly.
We identify an ambiguity in the trace semantics of Kitchin et al. [9]. We
give possible interpretations of the ambiguous definition and show that
the semantics is not adequate regardless of the interpretation. We remedy
this situation by providing new operational and denotational semantics
with a better treatment of variable binding, and proving an adequacy
theorem to relate them. Also, we investigate strong bisimulation in Orc
and show that bisimulation implies trace equivalence but not vice versa.

1 Introduction

Orc [9] is a concurrent programming language for web-service orchestration. It
is small yet usefully programmable, making it a good vehicle for the study of
distributed processes in the presence of timeouts and communication failures.
Orc uses autonomous computing units called sites to perform sequential com-
putation and other basic services. It then provides operators to coordinate the
execution of sites and build larger processes.

The question of the practical applicability of Orc is outside the scope of this
paper. Popular concurrent programming patterns like fork-join parallelism can
be coded in Orc, and also the workflow patterns of van der Aalst et al. [12]. The
practical aspects of the language are discussed in [11,9,6]. Here, we will discuss
the formal properties of Orc.

– The existing trace semantics for Orc [9] is ambiguous when there is a naming
conflict between free and bound variables. We resolve the ambiguity and
show that the semantics is not adequate.

– We suggest that dynamic binding of variables be prohibited because it in-
validates an equivalence between Orc processes proved in [9].

– We provide new operational and denotational semantics which fix the afore-
mentioned problems and prove an adequacy theorem to relate them.

– We investigate strong bisimulation in Orc and show that it is a congruence.
We use it to prove useful equivalences between Orc processes. Last, we show
that strong bisimulation implies trace equivalence but not vice versa.

This paper is organized as follows. We give a quick overview of Orc in the next
section. Then we present the existing semantics [9] and its deficiencies in sec-
tion 3. In section 4, we give our semantics for Orc. We study strong bisimulation
in Orc in section 5. We discuss related work in section 6 and conclude in section 7.

D. Lea and G. Zavattaro (Eds.): COORDINATION 2008, LNCS 5052, pp. 331–346, 2008.
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2 Overview of Orc

The simplest Orc program is a site call. For example, the site call IsPrime(N)
sends the number N to a site named IsPrime. We imagine that this site will
return true if N is prime and false otherwise. Similarly, we imagine that the
result of the site call RedditFeed(today) will be a page of today’s technical news.
In Orc terminology, we use the word publication to refer to the result of a site
call. A site may respond to a call at most once and it can also ignore the request.
Note that the same site call at different times may publish different values.

In symmetric composition (f | g) the two processes are evaluated in paral-
lel and there is no interaction between them. The composite process publishes
all the values published by f and g. For instance, the process (IsPrime(N) |
RedditFeed(today)) can publish at most two values.

The sequencing operator (f >x>g) is used to spawn threads. Process f starts
running, and whenever f publishes some value v, an instance of g with v bound to
x is launched in parallel. For example, ((IsPrime(N) | RedditFeed(today)) >x>
Print(x)) may print twice, if both IsPrime(N) and RedditFeed(today) publish.
If f does not publish, g is not run.

Last, we can use the where operator to terminate a process after it publishes.
The expression (f where x :∈ g) starts evaluating f and g in parallel. However,
the parts of f that depend on x block until x acquires a value. If g publishes,
the value published is bound to x in f and g is terminated. Therefore, the
expression (Print(x) where x :∈ (IsPrime(N) | RedditFeed(today))) will either
print a boolean or today’s technical news, maybe none, but not both.

The operators we saw up to now do not allow us to write recursive processes.
To do that, we can define expressions like the following:

DOS(x) � Ping(x) | DOS(x)
This is a simple denial-of-service attack; the process DOS(ip) pings ip an un-
bounded number of times.

At this point we have explained the features of Orc informally and we can
proceed to discuss its formal syntax and semantics.

3 The Existing Semantics of Orc and Its Deficiencies

3.1 Syntax - Operational Semantics

The syntax of Orc is shown in Fig. 1. An Orc program consists of a finite set of
mutually recursive declarations and an expression that is evaluated with these
declarations in scope. We use Δ to refer to the set of declarations. The terms
“expression” and “process” will be used interchangeably.

The process 0 is the inert process. The actual parameter of a site call or a
call to a defined expression is either a variable or a value. Values do not have
types; they all belong to some generic set Val . Orc is not higher-order: a process
is not a value. In what follows, we assume that processes are well-formed, i.e. do
not contain Ei(p) when there are fewer than i declarations in the program.
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Program P ::= D1, . . . , Dk in e
Expression e ::= 0 M (p) let(p) Ei(p) (e1 | e2) e1 >x> e2 e1 where x :∈ e2

Parameter p ::= x v

Declaration Di ::= Ei(x) � e

Fig. 1. Syntax of Orc

(SITECALL)
k fresh

M (v)
Mk (v)→ ?k

(SITERET) ?k
k?v→ let(v)

(LET) let(v)
!v→ 0

(DEF)
(Ei(x) � fi) ∈ Δ

Ei(p)
τ→ [p/x]fi

(SYM1)
f

a→ f ′

f | g
a→ f ′ | g

(SYM2)
g

a→ g′

f | g
a→ f | g′

(SEQ1N)
f

a→ f ′ a �=!v

f >x> g
a→ f ′ >x> g

(SEQ1V)
f

!v→ f ′

f >x> g
τ→ (f ′ >x> g) | [v/x]g

(ASYM1N)
f

a→ f ′

f where x :∈ g
a→ f ′ where x :∈ g

(ASYM1V)
g

!v→ g′

f where x :∈ g
τ→ [v/x]f

(ASYM2)
g

a→ g′ a �=!v

f where x :∈ g
a→ f where x :∈ g′

Fig. 2. Existing operational semantics for Orc [9]

The operational semantics uses labeled transitions (Fig. 2). The metavariables
f, g range over processes. Every transition is of the form f

a→ f ′, meaning that
process f takes a step to f ′ with event a. The events that occur during transitions
are publications, internal events, site calls and site responses:

BaseEvent ::= !v τ Mk (v) k?v

Let’s take a closer look at the rules. When process M (v) calls site M with
value v, a site call event occurs and a fresh handle k is allocated to identify the
call (rule SITECALL). The resulting process ?k is just an idle thread waiting
for an answer to the call with handle k. It is a necessary addition to the syntax
to represent intermediate state.

If the site replies with some value w, ?k performs a site response event k?w
and becomes let(w), as shown in rule SITERET. By rule LET, let(w) publishes
w and becomes 0, which has no further transitions.

None of the above steps is guaranteed to happen; M (v) may delay the site call
to M indefinitely, if the call happens M may never respond, and if it responds
the value may not be published.
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(let(y) | let(2)) >x> M (x)
τ→ by LET, SEQ1V

((let(y) | 0) >x> M (x)) | M (2)
Mk(2)→ by SITECALL, SYM2

((let(y) | 0) >x> M (x)) | ?k k?11→ by SITERET, SYM2

((let(y) | 0) >x> M (x)) | let(11) !11→
((let(y) | 0) >x> M (x)) | 0

by LET, SYM2

Fig. 3. Possible evaluation of (let(y) | let(2)) >x> M (x)

Defined expressions Ei(p) are called by name (rule DEF). The actual param-
eter p is substituted for x in the body of Ei and the process continues as [p/x]fi.
This substitution is marked by an internal event τ .

The rules for symmetric composition are simple; f | g takes a step if either f
or g takes a step. The steps of the sub-processes can be interleaved arbitrarily.

Process f >x> g takes a step if f takes a step (rule SEQ1N). If f publishes
v the process performs an internal event and launches a new instance of g in
parallel (rule SEQ1V). We can think of x as an implicit communication channel
between f and g.1

In asymmetric composition f where x :∈ g, f and g execute in parallel unless
g publishes. Then, g is terminated and the published value v is communicated
via x to f (rule ASYM1V). Rule ASYM2 shows the non-publication steps of g,
and ASYM1N shows the steps of f . Note that a let(x) or a site call M(x) in f
will block waiting for a publication from g.

The example in Fig. 3 illustrates the use of some of the rules. Observe that
processes can evaluate even when they have free variables.

Using the rules of Fig. 2, M(x) has no transitions. It behaves like 0. However,
in a context that can provide a value for x (see Fig. 3) M(x) can publish and 0
cannot. To model this behavior, Kitchin et al. add one more rule:

(SUBST) f
[v/x]→ [v/x]f

We call this new event a receive event.2 Any process f can perform any receive
step, even for variables not free in f (of course then [v/x]f = f). The constraint is
that the SUBST rule cannot be applied to parts of an expression, in other words
the event ‘a’ in the previous rules cannot be a receive event for any variable.

The reflexive and transitive closure of the transition relation is called execu-
tion:

Definition 1 (Execution). t is an execution of f i.e. f
t→∗ f ′ iff

– t = ε and f ≡ f ′, or

– t = a t′ and for some f ′′, f
a→ f ′′ and f ′′ t′

→∗ f ′

For instance, some executions of let(x) are: [2/x] [1/x] !2, [3/y] [2/x] !2
If t is a sequence of events then t\a is the sequence of events obtained from t

when all instances of event a are removed.
1 versus the explicit prefix form x(y).P of the π-calculus.
2 This was called substitution event in [9].
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Definition 2. The trace set 〈f〉 of a process f is { t\τ | t is an execution of f }

For example, every trace of M(v) is a prefix of σ1 Mk (v) σ2 k?w σ3 !w σ4 where
σ1, . . . , σ4 are arbitrary sequences of receives and w is an arbitrary value.

3.2 Trace Semantics

Kitchin et al. attempt to provide a denotational semantics for processes by
overloading the Orc combinators to work on trace sets. They define T1 | T2,
T1 >x> T2, and T1 where x :∈ T2 as follows.

Symmetric Composition

Definition 3 (Merge). For traces t1 and t2, t1 | t2 is the set of all t such that
- t1 and t2 are subsequences of t and every event of t belongs to at least one

of t1 and t2
- every common event of t (i.e. an event that belongs to both t1 and t2) is a

receive event
- if t1 and t2 contain receives for the same variable x, the first receive for

x in both t1 and t2 is a common event of t

For example, if t1 = [1/x] !1, t2 = [1/x] [4/x]Mk(4), t3 = [2/x] [11/y] then
(t1 | t2) contains three elements, including [1/x] [4/x] !1 Mk(4), and (t2 | t3) is
empty.

For trace sets, define T1 | T2 =
⋃

t1∈T1, t2∈T2
t1 | t2 .

Sequencing
Define the operator: T � [v/x] = { t | [v/x] t ∈ T }. This selects the traces in T
that start with [v/x] and removes the leading receive event from these traces.
For sequences of receives, define inductively:

T �ε = T
T �([v/x] σ) = (T � [v/x])�σ

Also, when a trace t has no publications we write P̄ (t) and when t has no
receives for x we write R̄(x, t).

Definition 4. For trace s and trace set T , define the set s >x> T by:⎧
⎪⎨

⎪⎩

{s} P̄ (s)
s1((s2 >x> T ′) | (T ′ � [u/x])) s = s1!u s2, P̄ (s1),

D is the sequence of receives in s1, T ′ = T �D

Note: Any receive event [v/x] in s is unrelated to x in (s >x> T )

For trace sets, define T1 >x> T2 =
⋃

s∈T1
s >x> T2 .

Every trace s of f that does not publish is also a trace of 〈f〉 >x> 〈g〉. More-
over, if s contains a publication, an instance of g is launched in parallel and the
remaining transitions of f may spawn more instances of g. For example, consider
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〈let(y)〉 >x> 〈let(y) | let(x)〉. The trace ([2/y] !2) is in 〈let(y)〉 and D is [2/y].
Also, ([2/y] [2/x] !2 !2) ∈ 〈let(y) | let(x)〉. Therefore, ([2/x] !2 !2) ∈ 〈let(y) |
let(x)〉 � D which gives (!2 !2) ∈ T ′ � [2/x]. Hence, ([2/y] !2 !2) ∈ 〈let(y)〉 >x>
〈let(y) | let(x)〉 .

The note in the definition of s >x> T which we copy directly from [9] is
ambiguous; what happens if s contains an event [v/x] ? We discuss possible
interpretations of the note in the following section.

Asymmetric Composition

Definition 5. For traces t1 and t2, define the set t1 where x :∈ t2 by:⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t1 | t2 P̄ (t2)
(t11 | t21)t12 t1 ≡ t11[v/x]t12, R̄(x, t11)

t2 ≡ t21!v t22, P̄ (t21)
∅ otherwise

Note: Any receive event [v/x] in t2 is unrelated to x in (t1 where x :∈ t2)

For trace sets, define 〈f〉 where x :∈ 〈g〉 =
⋃

t1∈〈f〉, t2∈〈g〉 t1 where x :∈ t2 .

If t2 does not publish, asymmetric composition is like symmetric composition. If
it publishes v and t1 receives v, the part of t2 prior to the publication is merged
with the part of t1 prior to the receive; followed by the rest of t1. The rest of t2
is discarded. The third branch disallows the creation of nonsensical traces that
combine a t1 that receives v1 for x with a t2 that publishes v2.

Like sequencing, the definition of t1 where x :∈ t2 is ambiguous about the
treatment of receives for x in t2.

3.3 Problems of Compositionality

To show that these definitions give a compositional semantics, Kitchin et al.
make the following claims:

Claim. 1. 〈f | g〉 = 〈f〉 | 〈g〉
2. 〈f >x> g〉 = 〈f〉 >x> 〈g〉
3. 〈f where x :∈ g〉 = 〈f〉 where x :∈ 〈g〉

We believe Claim 1 is true, but Claims 2 and 3 are problematic.

Sequencing
The truth of Claim 2 depends on the interpretation of the ambiguous note.

1. Rename the bound variable x to avoid naming conflicts:
Let h = let(1) >x> 0. The trace [3/x] is in 〈let(1)〉. Therefore, we pick a
fresh variable y and alpha-rename every event [v/x] in 〈0〉 to [v/y]. Let Z be
the set we obtain after the alpha-renaming. Then, the set [3/x] >x> 〈0〉 is
defined to be equal to [3/x] >y> Z. By rule SUBST however, 〈0〉 contains
every finite sequence of receives, so there is no fresh variable to pick for the
alpha-renaming; by this interpretation the set [3/x] >x> 〈0〉 is undefined.
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2. Receive events for x in s are not allowed in s >x> T :
By this interpretation, the definition of s >x> T becomes⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{s} P̄ (s), R̄(x, s)
s1((s2 >x> T ′) | (T ′ � [u/x])) s = s1!u s2, R̄(x, s), P̄ (s1), D is the

sequence of receives in s1, T ′ = T �D

∅ otherwise
Let h = M (1) > x > let(x). By rules SUBST, SITECALL and SEQ1N,
[3/x]Mk (1) ∈ 〈h〉. Let t = [3/x]Mk (1). We prove by contradiction that
t /∈ (〈M (1)〉 >x> 〈let(x)〉), hence 〈f >x> g〉 �= 〈f〉 >x> 〈g〉. Assume
that t ∈ (〈M (1)〉 >x> 〈let(x)〉). Then, there exists s ∈ 〈M (1)〉 such that
t ∈ (s >x> 〈let(x)〉).
a) If the first branch of the definition was used to produce t then t = s

which gives R̄(x, t), a contradiction.
b) If the second branch of the definition was used, then s is of the form

(σ1 Mk (1)σ2 k?w σ3 !w σ4) where σ1, . . . , σ4 are arbitrary sequences of
receive events for variables different from x. But then, σ1 must be [3/x]
which is a contradiction because R̄(x, s). We conclude that there is no
s ∈ 〈M (1)〉 such that t ∈ (s >x> 〈let(x)〉).

3. The note is simply a reminder that receives for x in s and receives for x in
the traces of T refer to different variables, and has no other impact:
In this interpretation, the definition of s >x> T is not influenced by the
note; receives for x in s are treated like receives for other variables. Let
h = let(2) >x> let(x), s = [1/x] !2, t = [1/x] [2/x] !1. Clearly, s ∈ 〈let(2)〉
and the sequence of receives in s is [1/x].
Also, t ∈ 〈let(x)〉 and {t} � [1/x] = {[2/x] !1} ⇒ ([2/x] !1) ∈ T ′ ⇒
{[2/x] !1} � [2/x] = {!1}. Then, ([1/x] !1) ∈ 〈let(2)〉 >x> 〈let(x)〉. But
this trace cannot be produced by the operational semantics of h; every op-
erational trace of h is of the form (σ1 !2 σ2) where σ1 and σ2 are arbitrary
sequences of receives. Thus, 〈f >x> g〉 �= 〈f〉 >x> 〈g〉

Asymmetric Composition
Claim 3 is false independent of the note, as the following simple counterexample
shows. Let h = let(x) where x :∈ 0. The only operational rule that applies to
h is SUBST, which takes h to itself. This means that a trace of h can consist
only of receive events. By SUBST and LET, t = ([2/x] !2) ∈ 〈let(x)〉 and also
ε ∈ 〈0〉. Then, (([2/x] !2) where x :∈ ε) = (([2/x] !2) | ε) = {[2/x] !2}
which yields ([2/x] !2) ∈ (〈let(x)〉 where x :∈ 〈0〉). Clearly, t /∈ 〈h〉. Therefore,
〈f where x :∈ g〉 �= 〈f〉 where x :∈ 〈g〉

Dynamic Binding
Consider the defined expression E(x) � e. Kitchin et al. [9] do not impose any
constraint on e, so it may contain variables other than x. In this case, dynamic
binding can take place during the execution of a process. This invalidates a
bisimulation result in [9], namely that when x /∈ fv(g)

(f | g) where x :∈ h ∼ (f where x :∈ h) | g
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(SITEC) k fresh

Δ, Γ � M (v)
Mk (v)→ ?k

(SITECV) Γ (x) = v

Δ, Γ � M (x)
[v/x]→ M (v)

(SITER)

Δ, Γ � ?k
k?v→ let(v)

(LET)

Δ, Γ � let(v)
!v→ 0

(LETV) Γ (x) = v

Δ, Γ � let(x)
[v/x]→ let(v)

(SYM-L) Δ, Γ � f
a→ f ′

Δ, Γ � f | g
a→ f ′ | g

(SYM-R) Δ, Γ � g
a→ g′

Δ, Γ � f | g
a→ f | g′

(DEF) (Ei(x) � fi) ∈ Δ

Δ,Γ � Ei(v)
τ→ [v/x]fi

(DEFV) (Ei(x) � fi) ∈ Δ Γ (x) = v

Δ, Γ � Ei(x)
[v/x]→ Ei(v)

(SEQ) Δ, Γ � f
a→ f ′ P̄ (a)

Δ, Γ � f >x> g
a→ f ′ >x> g

(SEQ-P) Δ, Γ � f
!v→ f ′

Δ, Γ � f >x> g
τ→ (f ′ >x> g) | [v/x]g

(ASYM-L) Δ, Γ � f
a→ f ′ R̄(x, a)

Δ, Γ � f where x :∈ g
a→ f ′ where x :∈ g

(ASYM-R) Δ, Γ � g
a→ g′ P̄ (a)

Δ, Γ � f where x :∈ g
a→ f where x :∈ g′

(ASYM-P) Δ, Γ � g
!v→ g′

Δ, Γ � f where x :∈ g
τ→ [v/x]f

Fig. 4. Our operational semantics for Orc

Let E(x) � let(y), f1 = (0 | E(2)) where y :∈ let(1), f2 = (0 where y :∈
let(1)) | E(2). Then τ τ !1 is an execution of f1 but not of f2 because in any
execution of f2 a receive for y must precede the publication. The details of this
are left to the reader.

Note: After the completion of this work, we contacted the authors of [9], who
suggested corrections to their definitions. In s >x> T , D is the sequence of
receive events in s1 for variables other than x. In t1 where x :∈ t2, add the
side-condition R̄(x, t1) to the first branch; the notes are no longer needed. Our
counterexamples do not apply to the changed definitions; however we did not
try to verify the adequacy of the fixed semantics.

Note that our counterexamples use processes where free and bound variables
have distinct names, but since any process can take any receive step the naming
conflict cannot be avoided in the traces.

4 New Operational and Trace Semantics for Orc

4.1 Operational Semantics

Our operational semantics for Orc is shown in Fig. 4. Here is a summary of the
changes.
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Δ, Γ � let(x) where x :∈ (M(x) | let(x))
[“hi”/x]→ by LET-VAR, SYM-R, ASYM-R

let(x) where x :∈ (M(x) | let(“hi”))
τ→

let(“hi”)
by LET, SYM-R, ASYM-P

Fig. 5. Possible evaluation when (x, “hi”) ∈ Γ

No Dynamic Binding. The syntax of the language is unchanged. However,
in a declaration Ei(x) � fi we demand that fv(fi) ⊆ {x}. Hence, no dynamic
binding can take place during process evaluation. This approach is also taken by
Wehrman et al. [15].

Defined Expressions are Called by Value. Since we do not know of any
Orc program where call-by-name functionality is absolutely necessary, we made
this change because it simplifies the technical treatment.

A Process f Can Take a [v/x] Step Only When x is Free in f . By
thinking of variables as channels, we say that f can receive only on a channel it
knows i.e. when x is free in f .

When x is not free in f a receive [v/x] would leave f unchanged, therefore
such receives can be harmlessly forbidden. Consequently, closed processes do not
take any receive steps throughout their execution.

The condition x ∈ fv(f) is necessary but not sufficient for a receive step, for
example the process 0 >y> let(x) is inert.

Addition of an Environment Γ . Let f take a [v/x] step to f ′. This means
that if f is plugged in a process-context that can provide v for x, f can receive
v and behave like f ′ (as in Fig. 3 for M(x)).

We use environments to model process contexts. An environment is a partial
function from variables to values. The metavariable Γ ranges over environments.
With this formulation, M(x) can go to M(v) only when (x, v) is in Γ , and is inert
otherwise. Note that, unlike traditional environments in operational semantics,
Γ can be non-empty at the beginning of the evaluation of a process and it
remains unchanged throughout the evaluation. This is because Γ keeps track of
the free variables in a process, but local binding is handled by substitution (e.g.
rule SEQ-P).

By using Γ instead of a SUBST-like rule which can be applied to whole
processes only, we do not need to differentiate between receives and base events.

Event ::= BaseEvent [v/x]

So, the event ‘a’ in our rules refers to any event, not just to a base event. Also,
observe that in ASYM-L f cannot proceed with a receive for x. Its parts that
depend on x are blocked waiting for a publication from g. See Fig. 5 for a sample
evaluation using the new operational semantics.
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[[0]] = λϕ.λρ.{ε}
[[let(v)]] = λϕ.λρ.{!v}p
[[let(x)]] = λϕ.λρ.case ρ(x) of Absent ⇒ {ε}

v ⇒ {[v/x] !v}p
[[M (v)]] = λϕ.λρ.{Mk(v) k?w !w | k fresh , w ∈ Val}p
[[M (x)]] = λϕ.λρ.case ρ(x) of Absent ⇒ {ε}

v ⇒ { [v/x] Mk (v) k?w !w | k fresh , w ∈ Val}p
[[?k]] = λϕ.λρ.{ k?w !w | w ∈ Val}p
[[Ei (v)]] = λϕ.λρ.{ τ t | t ∈ ϕi(v)}p
[[Ei (x)]] = λϕ.λρ.case ρ(x) of Absent ⇒ {ε}

v ⇒ { [v/x] τ t | t ∈ ϕi(v)}p
[[h | g]] = λϕ.λρ. [[h]]ϕρ ‖ [[g]]ϕρ
[[h >x> g]] = λϕ.λρ.

⋃
s∈[[h]]ϕρ s � λv.([[g]]ϕρ[x = v])\[v/x]

[[h where x :∈ g]] = λϕ.λρ. (
⋃

v∈Val [[h]]ϕρ[x = v]) <x [[g]]ϕρ

Fig. 6. Trace Semantics of Orc

4.2 Denotational Semantics

We now present our denotational semantics for Orc, which is based on complete
partial orders. The meaning of a process is a set of traces in the presence of
environments for the declarations Fenv and variables Env :

[[f ]] : [Fenv → [Env → P ]]

A trace is a (possibly empty) sequence of events. Unlike the previous trace
semantics, internal events appear in traces. Trace sets are prefix-closed and or-
dered by inclusion. They are also non-empty because the empty trace ε is a
trace of any process. Last, we consider traces of finite length only; an infinite
trace is represented by the set of all its finite prefixes.

Traces = Event ∗, a discrete CPO.
P = { S | S ⊆ Traces ∧ S �= ∅ ∧ S is prefix-closed}
Val = the set of all values, a discrete CPO.
Var = the set of all variable names, a discrete CPO.
Env = [Var → (Val ∪ {Absent})]
NoRecv = { S | S ∈ P ∧ ∀t∈S, x ∈ Var . R̄(x, t)}
Fenv = ([Val → NoRecv ])k

Consider a declaration (Ei(x) � fi). Since only x can be free in fi, the traces
of Ei(v) do not contain any receives. NoRecv is a CPO with bottom element
{ε} and Fenv inherits its order from NoRecv in the usual way. We do not need
names to refer to the declared processes, we can index them by the order of
declaration.

The definitions of the meaning functions can be found in Fig. 6. Juxtaposition
of traces means concatenation. Various auxiliary operators are defined in Fig. 7.
The operations t\a, t1 ‖ t2, tp and (t1 <x t2) are lifted to trace sets in the
obvious way.



A Compositional Trace Semantics for Orc 341

Remove event ‘a’ from a trace:

t\a �

⎧
⎪⎨

⎪⎩

ε t = ε

t′\a t = at′

a′ (t′\a) t = a′t′ and a �= a′

Merge:

t1 ‖ t2 �

⎧
⎪⎨

⎪⎩

{t1} t2 = ε

{t2} t1 = ε

a(t′1 ‖ t2) ∪ b(t1 ‖ t′2) t1 = at′1 and t2 = bt′2

Prefix-closure:

tp �
{

{ε} t = ε

{ε, a} ∪ a t′p t = at′

Sequencing combinator:

s � F =

{
{s} P̄ (s)

s1 τ ((s2 � F ) ‖F (v)) s ≡ s1!vs2 , P̄ (s1)

Asymmetric combinator:

t1 <x t2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t1 ‖ t2 R̄(x, t1) , P̄ (t2)

t1 ‖ t21τ R̄(x, t1) , t2 ≡ t21!v t22 , P̄ (t21)

(t11 ‖ t21τ )(t12\[v/x]) t1 ≡ t11[v/x]t12 , R̄(x, t11) ,

t2 ≡ t21!v t22 , P̄ (t21)

{ε} otherwise

Empty environment ρ0:
ρ0(x) = Absent for all x

Fig. 7. Various Definitions

We can easily establish the following properties of the meaning functions:

Theorem 1 (Prefix Closure of Trace Sets). For all f, ϕ, ρ, [[f ]]ϕρ ∈ P

Theorem 2 (Continuity of Denotations). For all f , [[f ]] is continuous.

Lemma 1 (Substitution). [[[v/x]f ]]ϕρ = ([[f ]]ϕρ[x = v])\[v/x]

One might expect [[[v/x]f ]]ϕρ to be equal to [[f ]]ϕρ[x = v]. However, since in
the latter v is provided by the environment we have to remove [v/x] from f ’s
traces in order to equate it with [v/x]f .

The proofs of these and all subsequent theorems can be found in [13]. Finally,
we apply the usual fixed-point technique [16] to give the denotation of a set of
declarations Δ: we define an Fenv transformer Δ̂ by

Δ̂ = λϕ.(λv.([[f1 ]]ϕρ0[x = v])\[v/x] × · · · × λv.([[fk]]ϕρ0[x = v])\[v/x])
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Δ̂ is continuous, so we define [[Δ]] as its least fixed point

[[Δ]] = fix(Δ̂)

To prove the correctness of our semantics we need to show that the executions
of a process match its traces.

Theorem 3 (Adequacy)
If ρ = ρ0[x1 = v1] . . . [xm = vm], Γ = {(x1, v1), . . . , (xm, vm)} then

t ∈ [[f ]][[Δ]]ρ iff ∃f ′. Δ, Γ � f
t→∗ f ′

The theorem is proved by induction on the length of t. It relies on the following
lemma, which is proved by structural induction on f .

Lemma 2. If ρ = ρ0[x1 = v1] . . . [xm = vm], Γ = {(x1, v1), . . . , (xm, vm)} then

a t ∈ [[f ]][[Δ]]ρ iff ∃f ′. Δ, Γ � f
a→ f ′ and t ∈ [[f ′]][[Δ]]ρ

Let’s look at an interesting property concerning the publications of a process f .
When a sub-process of f publishes, the publication is either masked as a τ and
sent to another sub-process (SEQ-P, ASYM-P), or it is observed by f ’s context.
Observable publications do not trigger other events of f . The next lemma shows
that there is no causality between a publication and the events that follow it in
a trace.

Lemma 3. If s1 !v s2 ∈ [[f ]][[Δ]]ρ then s1(!v ‖ s2) ⊆ [[f ]][[Δ]]ρ

4.3 Semantics Insensitive to Internal Events

Any Orc process can be a building block of a larger process, e.g. IsPrime(N)
in (Print(x) where x :∈ (IsPrime(N) | RedditFeed(today))). In such situations,
the internal events of a process are not observable by its context, in the sense
that they do not entail communication between the process and the rest of the
system. Instead, τ events represent communication that takes place within the
process. Therefore, we would like to have a semantics insensitive to internal
events:

Definition 6. {|f |} � λϕ.λρ.[[f ]]ϕρ\τ

One could also define {|f |} compositionally and independent of [[f ]] and then
prove definition 6 as a theorem.

Obviously, [[f ]] = [[g]] implies {|f |} = {|g|}. Therefore, this semantics is less
discriminating than the semantics in section 4.2. We can now prove the following
equivalence, which is false in our original trace semantics:

Lemma 4. For all f, ρ {|f |}{|Δ|}ρ = {|f >x> let(x)|}{|Δ|}ρ
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For any Δ such that f, g, h are well-formed,

1. f | 0 ∼Δ f
2. f | g ∼Δ g | f
3. f | (g | h) ∼Δ (f | g) | h
4. (f | g) >x> h ∼Δ (f >x> h) | (g >x> h)
5. f >x> (g >y> h) ∼Δ (f >x> g) >y> h if x /∈ fv(h)
6. (f | g) where x :∈ h ∼Δ (f where x :∈ h) | g if x /∈ fv(g)
7. (f >y> g) where x :∈ h ∼Δ (f where x :∈ h) >y> g if x /∈ fv(g)
8. (f where x :∈ g) where y :∈ h ∼Δ (f where y :∈ h) where x :∈ g

if y /∈ fv(g) and x /∈ fv(h)

Fig. 8. Strongly Bisimilar Processes

5 Strong Bisimulation Congruences

In [9], Kitchin et al. state some useful equivalences between processes using
strong bisimulation [10]. However, some of these equivalences are invalid because
of dynamic binding in the declarations. Also, they do not show bisimulation to
be a congruence and do not investigate the relation between bisimulation and
trace equivalence. For our semantics, we define a family of strong bisimulation
relations indexed by Δ:

Definition 7 (Δ-bisimulation). Let Δ be a set of declarations. Then, a binary
relation R on processes is a Δ-bisimulation iff

1. R is symmetric
2. for any (f, g) ∈ R and for any Γ if Δ, Γ � f

a→ f ′ then
∃g′. Δ, Γ � g

a→ g′ and (f ′, g′) ∈ R

Definition 8 (Largest Strong Bisimulation). ∼Δ �
⋃

{ R | R is a Δ-bisim.}

For different declaration sets we get different bisimulations. For example,

E1 (v) ∼Δ1 (let(v) >x> M (x)) for Δ1 = {E1 (x) � M (x)}

but
E1 (v) �∼Δ2(let(v) >x> M (x)) for Δ2 = {E1 (x) � 0}

We can prove the equivalences in [9] using our new operational semantics
(see Fig 8). Naturally, symmetric composition is commutative and associative
(equiv. 2, 3). Symmetric composition can be distributed over sequencing be-
cause symmetrically composed processes do not communicate with each other
(equiv. 4). Equivalence 6 verifies our intuition that a (where x)-context does
not influence a process g if x is not free in g.
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Lemma 5. For any Δ, ∼Δ is a congruence relation

The proof proceeds by induction on contexts. By lemma 5, the equivalences of
Fig. 8 become congruences automatically. Congruence is important in a con-
current setting, because we can replace a process in a system with a congruent
process without affecting the behavior of the system. The following example
illustrates congruences 1, 2 and 6 when x /∈ fv(g)

g where x :∈ h ∼Δ (0 | g) where x :∈ h ∼Δ (0 where x :∈ h) | g

Definition 7 is universally quantified over Γ . This helps establish a connection
between strong bisimulation and trace equivalence:

Theorem 4. If f ∼Δ g then for any ρ, [[f ]][[Δ]]ρ = [[g]][[Δ]]ρ

As one might expect, trace equivalence does not imply bisimilarity:
Let f = let(y) where y :∈ (let(1) >x> (let(2) | let(3)))
and g = (let(y) where y :∈ let(x)) where x :∈ (let(2) | let(3)) .
For any Δ, ρ we get [[f ]][[Δ]]ρ = [[g]][[Δ]]ρ = {τ τ !2, τ τ !3}p .
Let R be a Δ-bisimulation and (f, g) ∈ R. Then, g must be able to match the
steps of f .
Δ, Γ � f

τ→ let(y) where y :∈ ((0 >x> (let(2) | let(3))) | (let(2) | let(3)))≡ f ′

The possible τ transitions of g are
Δ, Γ � g

τ→ let(y) where y :∈ let(2) ≡ g′

Δ, Γ � g
τ→ let(y) where y :∈ let(3) ≡ g′′

It should be obvious that (f ′, g′) /∈ R and (f ′, g′′) /∈ R because g′, g′′ have lost
one publishing option while f ′ maintains both. Formally, by the contrapositive
of theorem 4 we get f ′ �∼Δ g′ and f ′ �∼Δ g′′ because their trace sets differ.
Assuming that R exists leads to a contradiction, therefore f �∼Δ g.

We now discuss a limitation of our semantics. Let f1 = let(y) >x> let(x), f2 =
let(y) >x> let(y), Γ = {(y, 42)}. These processes exhibit similar behaviors in Γ ,
they can receive 42 and publish it. However, they are not bisimilar. The reason
is that the right-hand-side of f1 will receive 42 from the left-hand-side, whereas
the right-hand-side of f2 will receive 42 from the context. We know that this
difference is unimportant because the value published by both will always be
the same, but we cannot equate such processes using our operational semantics.
A possible solution would be to propagate the receives with rules like:

(SYM-L′)
Δ � f

[v/x]→ f ′

Δ � f | g
[v/x]→ f ′ | [v/x]g

We have not verified the correctness of this semantics. We opted for the sim-
pler semantics and as a trade-off lost the ability to equate a small class of
Orc processes.

6 Related Work

Task orchestration is related to various industrial standards for business trans-
actions (e.g. WSBPEL [1], WSCDL [8]). Academics have also looked at other
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aspects of business transactions, such as compensations (see [2,3,4,5]). A formal
specification for a subset of WSBPEL has been proposed as well [14].

The semantics in [9] and this paper are asynchronous. Misra et al. [11] aug-
ment the operational semantics of [9] with a synchronous semantics. This is an
operational semantics that gives priority to internal events, thus allowing the
possibility for processes to synchronize on external interactions. However, they
do not give a denotational semantics, nor do they state any theorems. Hoare et
al. [7] present a tree-based denotational semantics for Orc, and sketch an oper-
ational semantics based on the same trees. They prove a number of interesting
denotational equivalences, but do not state any theorem relating the operational
and denotational semantics. Wehrman et al. [15] have developed a timed seman-
tics for Orc, but in their semantics the observable events are quite different;
except publications, all other events are internal.

7 Conclusions

In this paper we presented operational and denotational semantics for Orc, a
language for task orchestration. We proved an adequacy theorem, showing that
the operational transitions of a process coincide with its denotational traces.
This is not the case in [9], as demonstrated in section 3. We also discussed
strong bisimulation in Orc and showed it to be a congruence. Finally, we showed
that in Orc strong bisimulation is more discriminating than trace equivalence,
which is also the case in other process calculi like CCS and the π-calculus.
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