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Abstract. The Java Modeling Language (JML) recently switched to an asser-
tion semantics based on “strong validity” in which an assertion is taken to be 
valid precisely when it is defined and true. Elsewhere we have shared our posi-
tive experiences with the realization and use of this new semantics in the con-
text of ESC/Java2. In this paper, we describe the challenges faced by and the 
redesign required for the implementation of the new semantics in the JML Run-
time Assertion Checker (RAC) compiler. Not only is the new semantics effec-
tive at helping developers identify formerly undetected errors in specifications, 
we also demonstrate how the realization of the new semantics is more effi-
cient—resulting in more compact instrumented code that runs slightly faster. 
More importantly, under the new semantics, the JML RAC can now compile 
sizeable JML annotated Java programs (like ESC/Java2) which it was unable to 
compile before. 

1   Introduction  

The assertion semantics of the Java Modeling Language (JML) [13, 17], a behavioral 
interface specification language for Java, was formerly founded on a classical defini-
tion of validity. Elsewhere we have demonstrated that  

• this semantics was not faithfully implemented [4] by either of the two main JML 
tools [1] (namely, jmlc, the JML Runtime Assertion Checker (RAC) Compiler 
and ESC/Java2) and that in any case, 

• a comprehensive survey of programmers, mainly from industry, indicated that this 
is not the semantics that they want [3]. 

Hence, a new assertion semantics for JML based on “strong validity” was recently 
proposed [2, 4] and adopted [20, §2.7]. Under such a semantics, an assertion is taken 
as valid when its evaluation does not result in partial functions being applied to values 
outside their domain and, the assertion evaluates to true. In terms of runtime assertion 
checking (RAC), this means that an assertion is considered valid if and only if its 
evaluation (terminates and) results in true without raising an exception. 

We have begun the realization of the new assertion semantics in ESC/Java2 [4]. In 
this paper, we explain how the JML RAC has been adapted to conform to the new 
semantics and some of the challenges that we faced. We also demonstrate how the  
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public class Person { 
  /*@ spec_public */ private String name; // a spec_public field
  /*@ spec_public */ private int age;     // can be used in public specs
  //@ public invariant age >= 0; 
  //@ requires age >= 0; 
public Person(String n, int age) { this.name = n; this.age = age; } 

  //@ ensures age == \old(age) + 1; 
public void birthday() { age++; } 

}  

Fig. 1. Person class annotated with JML 

realization of the new semantics helped us find new bugs in JML specifications and 
that it is more efficient, resulting in smaller instrumented bytecode that runs slightly 
faster. More importantly, under the new semantics, the JML RAC can now compile 
sizeable JML annotated Java programs (like ESC/Java2) which it was unable to com-
pile before. 

This paper first compares both the old classical and new assertion semantics before 
giving more details on the JML RAC and its design. Then, we present an overview of 
how we had to modify the JML RAC to support the new assertion semantics and how 
we assessed the validity of our work.  

2   JML Assertion Semantics 

Among other things, the Java Modeling Language brings Design by Contract to Java [6, 
18]. Hence, in particular, classes can be annotated with invariants and methods adorned 
with contracts expressed using preconditions and postconditions inside Java comments 
starting with a leading “@”—see Fig. 1. Invariants, pre- and post-conditions are  
expressed using assertions, which in the case of JML, consist of (the side-effect free 
subset of) Java boolean expressions enhanced with some extra operators and con-
structs—such as logical implication (==>) and quantifiers (\forall, \exists) [20]. 

2.1   Classical Assertion Semantics 

The old classical JML semantics assumed that assertions, even if their syntax is very 
close to that of Java, are to be interpreted as formulas of a classical logic. Under such 
an interpretation, computational issues that can introduce undefinedness such as short-
circuiting of logical operators, exceptions, runtime errors, and informal assertions are 
not explicitly modeled [7, p.29]. Instead, partial functions are modeled as underspeci-
fied total functions [19]. Hence, partial functions applied to values outside their do-
mains are assigned a fixed, though unspecified value.  

2.2   RAC Approximation of the Old Semantics through Game-playing 

Conformant with this view of assertions, the JML RAC-compiled bytecode will al-
ways consider an assertion as satisfied or violated; it will never be declared as invalid. 
Since the evaluation of Java expressions can naturally lead to exceptions, the RAC 
still has to deal with undefinedness. In its attempt to emulate classical two-valued 
logic from Java’s three-valued operational semantics, the RAC resorts to a game-
playing strategy as we explain next. 
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Table 1. Game played by the JML RAC to approximate classical logic 

Value assigned to … 

(*informal*) x/0 == y 

Value of  
top-level 
assertion 

!(* informal *) && x/0 == y 
i.e. !angelic && demonic False False False 
! (* informal *) && !(x/0 == y) 
i.e. !angelic && !demonic False True False 
(* informal *) || !(x/0 == y) 
i.e. angelic || !demonic True True True 

 
 

In the JML RAC, undefinedness comes in two flavors: demonic and angelic [7, 
pp.30-31]. Demonic undefinedness arises from various runtime errors or exceptions 
that are generated when an assertion expression is evaluated. Angelic undefinedness 
comes from the attempt to evaluate something that is not executable (e.g., an informal 
predicate or some categories of quantified expression). The JML RAC adopts a game-
playing strategy in its attempt to deal with the two kinds of undefinedness. That is, 
generally, the smallest Boolean subexpression containing an undefined term will be 
treated as either true or false depending on the evaluation context. For demonic un-
definedness the JML RAC tries to choose a truth value for the undefined subexpres-
sion that will make the top-level assertion false; whereas for angelic undefinedness 
the RAC will try to make the top-level assertion true [7]. When both angelic and de-
monic undefinedness occurs in the same expression, they each try to influence the 
top-level assertion in the best way they can to meet their respective goals. Table 1 
illustrates the game being played. 

Classical logic does not feature conditional Boolean operators such as conditional 
conjunction (&&). Under the old JML semantics, Java’s conditional operators were 
mapped into their classical non-conditional counterparts. This implied that the JML 
assertion E1 && E2 is equivalent to E2 && E1 [19]. In order to preserve that behavior, 
the JML RAC evaluated both of its operands when the evaluation of the first operand 
is exceptional [7, p.27]. Such a scheme can be confusing for developers since it leads 
to the evaluation of syntactically correct Java expressions differently if done in a Java 
or JML context as illustrated in Table 2. For both expressions, JML will interpret a 
logical or between something (possibly) undefined and something true; hence always 
yielding true in such a case. Java on the other hand will throw an exception upon a 
null pointer dereference. 

2.3   New Semantics Based on Strong Validity 

The original JML RAC semantics guessed a truth value for an invalid assertion; using 
the new semantics, an assertion can be satisfied (evaluated true), violated (false) or  
 

Table 2. Semantic differences between Java and JML 

true || x.length > 0 x.length > 0 || true 

Java Always true if x is not null: true. Otherwise: NullPointerException.
JML Always true Always true  
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invalid (when evaluation does not complete successfully) [4]. Violated and invalid 
assertions are reported as distinct kinds of error. 

Handling Undefinedness.  In our implementation of the new semantics, all logical 
operators behave in the same way in both Java and JML. For instance, a conditional 
disjunction or conjunction whose left-hand subexpression is exceptional would cause 
the resulting expression to be exceptional no matter what the right-hand subexpres-
sion refers to. When an exception or runtime error occurs while evaluating part of an 
assertion, that exception causes the entire assertion to be invalid and the user to be 
notified. In other words, as soon as demonic undefinedness occurs, the evaluation of 
the assertion is halted, and the assertion is reported as invalid. 

The concept of angelic undefinedness cannot be as easily factored out. As was 
mentioned earlier, such undefinedness was associated with non-executable subexpres-
sions and was treated in a way that ensured the top-level expression would be “as true 
as possible”. We do not want assertion expression evaluation to have the overhead of 
game playing. In the new semantics, if an assertion is non-executable (in its entirety 
or in part) then the entire assertion is tagged as non-executable. While most non-
executable assertions can be detected at compile-time, the rest can only be discovered 
at runtime. While it is possible to warn the user that some of the assertions may be 
non-executable, it is not always possible to precisely say if it will always be non-
executable [7, 23]. 

Whether a non-executable assertion should play a role in the overall truth value of 
a specification depends on what the developer wants. In some cases (e.g. during pre-
liminary development, when there is a higher occurrence of incomplete specifica-
tions), one might be willing to ignore them by treating the assertion in which they 
occur as equivalent to true. However, in other situations, to gain extra confidence and 
ensure that the specifications are entirely verified, one may prefer to have non-
executable assertions be reported and make the specification verification fail since 
they cannot be enforced or verified. Non-executable assertions can either be simpli-
fied to true or false, depending on the setting of a JML RAC compilation flag. Trying 
to factor out non-executable expressions from an assertion while trying to infer a truth 
value to the expression would mimic the game played by the previous semantics. We 
believe non-executable assertions should be avoided as they provided very little in the 
context of automated program verification. 

3   JML Runtime Assertion Checker (RAC), Old Semantics 

The JML RAC is part of the Common JML tools suite—formerly known as the ISU 
JML tool suite. It uses a “compilation-based approach” for translating JML specifica-
tions into runtime checking bytecode [7]. Unlike static checkers, which verify pro-
gram properties at compile-time, the JML RAC enables dynamic checking by gener-
ating bytecode that verifies that specifications are satisfied during program execution. 
When an assertion fails, the JML RAC-compiled code generates a runtime error. The 
remainder of this section describes the design and operation of the RAC under the old 
semantics. (As will be seen in the next section, the design changes required to imple-
ment the new semantics have been quite localized.) 
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The JML RAC is built on top of the 
MultiJava (MJ) compiler and uses the 
JML Checker1 for type checking JML 
specifications and as the front-end for 
building an Abstract Syntax Tree (AST). 
JML specification clauses are translated 
into assertion methods. For each Java method, three RAC assertion methods are gen-
erated: one for precondition checking and two for postcondition checking (i.e., for 
normal and exceptional termination). The JML-specified Java methods are instrumented 
using a wrapper approach. The instrumentation process takes the original body of a 
method and extracts it into a private method with a uniquely defined name. The original 
signature of the method is used for the newly created wrapper method hence replacing 
it. The wrapper implements the specification checking logic by calling the original body 
and assertion methods when required. Not only are the preconditions and postconditions 
associated with the method called, but some class-related assertion methods are also 
called (e.g., for invariant and constraint checking [18]). The control flow of the wrapper 
approach to method instrumentation is presented in [7, §4.1]. 

3.1   Code Instrumentation  

Every Java class compiled with the JML RAC contains not only its normal content (as 
would be generated by, e.g., javac), but also an embedding of its specification and 
how to verify it at runtime. Instrumentation code is generated on a per classifier, per 
method, per field, and per assertion basis [9]. Most generated instrumentation code 
gives rise to an overhead that is linear and foreseeable, though for assertion expres-
sions interpreted under the old semantics it used to be polynomial (at least quadratic!) 
as we shall soon illustrate. 

3.1.1   General Assertion Evaluation 
Under the old semantics, JML RAC-generated code that evaluates an assertion ex-
pression tended to be rather verbose because expression evaluation had to emulate 
classical two-valued logic while playing an optimization game with angelic and de-
monic undefinedness. Hence, for example, the JML RAC made extensive use of new 
variables: as a rule of thumb, every subexpression had an associated new internal 
variable used to hold its value. Moreover, each step in the evaluation was done sepa-
rately and had again its own new internal variable, and sometimes its own try block. 
For example, a simple precondition such as the one given in Fig. 2 was translated into 
59 lines of instrumentation code and used 7 new internal variables—see Fig. 3. Upon 
reading the code, one may notice the right-hand side of the && operator is evaluated if 
the left-hand side is exceptional; as mentioned earlier, this different from the Java 
semantics for that operator. 

3.1.2   RAC Generated Code Exceeded JVM and Class File Format Limits 
The JML RAC’s attempt to implement an assertion semantics based on classical two-
valued logic caused the instrumented code to be much larger than the source. We note 
                                                           
1 MultiJava: http://multijava.sourceforge.net/; Java Modeling Language (JML):  

http://www.jmlspecs.org/. 

public int x, y;

//@ requires b && x < y; 
public void m(boolean b) {...}

Fig. 2. A simple method precondition 
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1|  try { 
2|    // eval of && 
3|    boolean rac$v0 = true; 
4|    boolean rac$v1 = false, rac$v2 = false; 
5|    // arg 1 of && 
6|    try { 
7|      rac$v0 = b; 
8|    } 
9|    catch (JMLNonExecutableException jml$e0) { 
10|     rac$v2 = true; 
11|   } 
12|   catch (java.lang.Exception jml$e0) { 
13|     rac$v1 = true; 
14|   } 
15|   if (rac$v0) { 
16|     // arg 2 of && 
17|     try { 
18|       boolean rac$v3 = false, rac$v4 = false; 
19|       int rac$v5 = 0; 
20|       int rac$v6 = 0; 
21|       try { 
22|  rac$v5 = this.x; 
23|       } 
24|       catch (JMLNonExecutableException jml$e0) { 
25|  rac$v4 = true; 
26|       } 
27|       catch (java.lang.Exception jml$e0) { 
28|  rac$v3 = true; 
29|       } 
30|       if (!rac$v3) { 

31|  try { 
32|    rac$v6 = this.y; 
33|  } 
34|  catch (JMLNonExecutableException jml$e0) {
35|    rac$v4 = true; 
36|  } 
37|  catch (java.lang.Exception jml$e0) { 
38|    rac$v3 = true; 
39|  } 
40|       } 
41|       if (rac$v3) { rac$v0 = false; } 
42|       else if (rac$v4) { rac$v0 = true; } 
43|       else try { 
44|        rac$v0 = rac$v5<rac$v6; 
45|       } 
46|       catch (JMLNonExecutableException jml$e0) { 
47|  rac$v0 = true; 
48|       } 
49|       catch (java.lang.Exception jml$e0) { 
50|  rac$v0 = false; 
51|       } 
52|     } 
53|     catch (JMLNonExecutableException jml$e0) { 
54|       rac$v2 = true; 
55|     } 
56|     catch (java.lang.Exception jml$e0) { 
57|       rac$v1 = true; 
58|     } 
59|   } 
60| }  

Fig. 3. Instrumentation code evaluating “requires b && x < y” ( old RAC semantics) 

here that in some cases, the generated code was so large that a Java compiler would 
be unable to process it. For example, in the ESC/Java2 project, there are a few classes 
that could not be compiled using the JML RAC. One of these classes (javafe.ast.-
TypeDeclElem) has an automatically generated postcondition composed of a conjunc-
tion of 118 implications. Unfortunately, the instrumented code generated for verifying 
the postcondition consisted of 15,816 lines of Java which no compiler can success-
fully compile.  This is because the assertion method which checks the postcondition 
had a top-level catch block that was too far away from its try block (due to limitations 
of the JVM instruction set and the Java class file format, the two blocks must compile 
into byte code that is no more than 65535 bytes apart [21, §4.10]). Of course, methods 
with such postconditions are rather rare, but the fact is that the evaluation of expres-
sions following the original semantics JML RAC does not scale and cannot cope with 
heavily specified code. Users should obtain benefits from writing richer specifications 
rather than be penalized. 

4   JML RAC Redesign in Support of Strong Validity 

4.1   Expression Evaluation 

Representing Assertions as a Single Java Expression. Most of the time, an asser-
tion’s body can be evaluated exactly as written (i.e., without having to declare new 
variables for each subexpression). The possible outcomes of such an evaluation are 
true, false, or an error/exception. Hence, if we choose not to model partial functions by 
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underspecified total functions, the evaluation of expressions becomes quite straightfor-
ward, helping us overcome some of the practical limitations mentioned earlier. 

Expression Evaluation under the Old Semantics. Expression-evaluation code was 
generated by RAC expression translators implemented as AST visitors [12]. Given an 
expression to be translated, an expression translator would walk the expression AST 
and build a compound “node” that contained the instrumentation code to evaluate the 
expression at runtime. Such a node could either be wrapped with a try-catch block or 
not. A high-level translator used such nodes whenever it needed for that expression to 
be evaluated while generating the wrapper assertion methods [7]. 

The translation process was achieved by visiting every subexpression of a given 
top-level expression and generating nodes to evaluate the subexpressions. As was 
mentioned earlier, a new variable was usually defined to hold the value of a subex-
pression. Each of the subexpression nodes was stored on a stack. When all of the  
expressions had been visited, the stack of nodes was used to generate an all encom-
passing node that, most often, was wrapped in a try-catch block before being returned 
to the sender. We briefly note that proper handling of quantified expressions is quite 
involved (e.g. requiring specialize heuristic-based static analysis in order to decide 
how, if possible, to evaluate them). Hence we will only describe the handling of quan-
tified expressions in Section 0 for the new semantics. 

New Approach to Expression Evaluation. The implementation of the new semantics 
requires alternate expression translators. For this reason, we created a new general ex-
pression translator usable almost as a simple drop-in replacement for the old (top-level) 
translators. Under the new semantics, there is no need to evaluate subexpressions sepa-
rately through the use of newly declared variables. Precedence of operators is embedded 
in the AST and hence, an appropriate use of parentheses while visiting the tree avoids the 
need for variables. Since, in the new semantics, a clause is either entirely executable or 
not at all, a new runtime exception was created to short-circuit evaluation code genera-
tion in the event that one of the subexpressions is found to be non-executable at compile-
time. At runtime, the expression is evaluated in a top-level try-block that catches two 
things: (i) JMLNonExecutableExceptions (Fig. 4), and (ii) all other errors and exceptions. 
JMLNonExecutableExceptions cause an entire assertion to immediately simplify to true 
(as was mentioned in Section 0, a command line option allows developers to change this 
default to false). Any other exception or error thrown while evaluating an expression is 
caught and wrapped in a JMLEvaluationError before being re-thrown. 

4.2   Handling Quantified Expressions 

Quantified expressions, unlike other simpler expressions, cannot have their evaluation 
code mechanically derived. They have to be analyzed beforehand. In order to properly 
analyze quantified expressions and derive the best way to verify them at runtime, the 
JML RAC provides a special package and translator that, like the other high-level 
translators, uses the (base) expression translator to evaluate expressions. In order to 
reuse the existing quantifier evaluation package while implementing our new direct 
expression evaluation approach, we decided to wrap the output of the quantifier trans-
lator into an inner class that is used in the evaluation of the assertion instead of the 
quantified expression as described in [23]. 
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Fig. 4. Modified error hierarchy of the JML RAC runtime package 

public static ArrayList myList = new ArrayList();

//@ requires (x > y) || (x < 0) || 
//@  (\forall Object obj;  
//@         myList.contains(obj); obj instanceof Integer); 
public void m(int x, int y) {...}  

Fig. 5. Sample assertion containing a quantified subexpression 

Consider the specification fragment of Fig. 5. Under the new semantics, RAC code 
for the method’s precondition is as shown in Fig. 6. Note that the try block starts with 
the definition of the inner class rac$v4 whose eval() method performs the evaluation 
of the quantified subexpression. The statement following the inner class definition 
instantiates the class. Finally, the last statement of the try block, marked (*), is the one 
that can be clearly seen to correspond to the requires clause expression of Fig. 5. 

5   Validation: Assessment and Statistics 

Basic Validation: Regression Testing. The Common JML tool suite is supported by 
an extensive collection of automated tests. These tests, numbering in the thousands, 
help developers ensure the integrity of the tool suite following any modification. The 
test suite for the JML RAC consists of approximately 500 test files, each containing 
several test cases. Out of those, more than 375 are grouped under the racrun package, 
whose purpose is to test the runtime behavior of RAC-compiled code—this is in con-
trast to, e.g., testing the behavior of the JML RAC. In particular, the racrun package 
is meant to test all JML statements and expressions individually and in various com-
binations. The test coverage of the racrun package is considered sufficiently com-
plete. For the purpose of testing the new assertion semantics we adapted the racrun  
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try {
class rac$v4 {

public boolean eval() {
   boolean rac$v0 = false;
   java.util.Collection rac$v1 = new java.util.HashSet();
   java.util.Collection rac$v3 = MyClass.myList;
   rac$v1.addAll(rac$v3);
   java.util.Iterator rac$v2 = rac$v1.iterator();
   rac$v0 = true;
   while (rac$v0 && rac$v2.hasNext()) {
    java.lang.Object obj = (java.lang.Object) rac$v2.next();
    rac$v0 = (!(MyClass.myList.contains(obj))  
                        || obj instanceof java.lang.Integer);
   }
   return rac$v0;
  }
 }
 rac$v4 rac$v0Evaluator = new rac$v4();
 rac$pre4 = (((x > y) || (x < 0)) || rac$v0Evaluator.eval()); // (*)
} catch (JMLNonExecutableException rac$v5$nonExec) {
 rac$pre4 = true;
} catch (Throwable rac$v6$cause) {
 JMLChecker.exit();

throw new JMLRacExpressionEvaluationError("Invalid Expression in 
\"FM08.java\", line 36, character 10", rac$v6$cause);

}  

Fig. 6. RAC Code for precondition evaluation of method m() 

package to support the expected output of the new semantics and ensured that all unit 
tests passed successfully. 

Testing Code Generation Robustness. Aside from racrun tests, we also success-
fully compiled all the JML model classes, which are heavily annotated classes that 
specify abstract data types such as sequences, sets and bags. The model classes exten-
sively use of the features of JML. Such a test suite helped us discover some design 
flaws that surfaced in rare circumstances. Most of them were for situations where 
operator precedence is not preserved during the translation from JML to Java. 

While the racrun package gave us confidence in the behavior of the generated 
code, ensuring that the model classes could yield properly formed instrumented 
source code when compiled using the new assertion semantics demonstrated the ro-
bustness of the code generation for the new semantics. 

Assessing Improved Capabilities. One of the goals of the JML community is to use 
its own tools. As was mentioned earlier, prior attempts to compile ESC/Java2 [11] 
with the JML RAC demonstrated that for a few source files, it would generate instru-
mentation code that had such large try blocks that it was impossible to represent them 
 

1|try { 
2|  rac$pre0 = (b && (this.x < this.y)); 
3|} catch (JMLNonExecutableException rac$v0$nonExec) { 
4|  rac$pre0 = true;  
5|} catch (Throwable rac$v1$cause) { 
6|  JMLChecker.exit(); 
7| throw new JMLRacExpressionEvaluationError("Invalid Expression in \"...\", line 5, ...", rac$v1$cause);
8|}  

Fig. 7. Evaluation of precondition in the modified RAC 

 



 JML Runtime Assertion Checking 255 

Table 3. ESC/Java2 source code statistics for  escjava and javafe  packages 

Source code size (measured in MB) Old Semantics New Sem. New/Old 
Escjava Instrumented source code 33.6 26.5 7.1  78.9% 
Escjava Instrumented bytecode 12.2 9.8 2.4  80.3% 

Javafe Instrumented source code 35.5 
30.5*

21.7 
21.6*

13.8 
8.9*

 61.1% 
 70.8%*

Javafe Instrumented bytecode 10.7 8.0 2.7  74.8%  
* Adjusted measurement in which we removed the code size for two files that could not be 

compiled under the old semantics due to the excessive size of try blocks in the instru-
mentation code. 

in bytecode. We verified that with the new semantics, such a problem did not happen as 
all files were amenable to RAC compilation. Moreover, for the files that compiled using 
both semantics, we gathered statistics to measure the overall reduction in code size. 

Measurements and Code Size Statistics. Throughout our assessment of the new 
semantics, we gathered some measurements that demonstrated an improvement in 
both size and performance of JML RAC-instrumented code. In order to understand 
the source of such an improvement, one should consider that the new semantics gen-
erates much less code to evaluate expressions than the previous semantics did, in part 
due to its more coarse approach, but mostly because it no longer plays the angelic vs. 
demonic undefinedness game for invalid expressions. Moreover, that code always 
takes advantage of short-circuited logical operators and does not try to assign a truth 
value to exceptional expressions. For instance, the instrumentation code of Fig. 3 (59 
LOC) is reduced to only 8 lines of code under the new semantics—Fig. 7. 

We observed that the racrun test package executes on average 8% faster than the ver-
sion using the original semantics (average of 96.0s vs. 88.3s in five independent runs). 
Such an evaluation includes the parsing, checking, code generation, compilation, run and 
validation against expected output files of over 375 tests files. While using the new seman-
tics on ESC/Java2 source, both the generated instrumented source code and bytecode 
showed a significant size reduction, as illustrated in Table 3. E.g., for the ESC/Java2 
escjava package (301 classes), the instrumented source code using the new semantics was 
only 78.9% the size of the one instrumented with the original semantics (for this metric, 
we had the JML compiler emit the Java source corresponding to the instrumented runtime 
checking code that it would otherwise create a .class file for). For the instrumented byte-
code, the new/original semantics ratio was of 80.5%. The compiler front end of 
ESC/Java2 (javafe package, 216 classes) displayed similar improvements in size. Two 
classes in the javafe package could not be compiled under the old semantics due to the 
excessive size of try blocks. If we factor out those two abnormally large (and un-
compilable) instrumented source files, the new/original size ratio goes from 61.1% to 
70.8%. 

6   Effectiveness at Finding Bugs 

Using the new RAC semantics, approximately 45 previously undetected errors have 
been found in JML specifications of the sample and model files (307 files, 77KLOC) 
included with the JML distribution. It should be noted that most of these sample and 
model files have been in use since 2002; some are from published specifications that  
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public /*@pure*/ class NaturalNumber implements TotallyOrderedCompareTo,...  {
/*@ spec_public */ private final BigInteger value;

//@ public normal_behavior 
  //@   ensures \result == value.compareTo(n.value); 
public int compareTo(NaturalNumber n) { 

      return value.compareTo(n.value); 
  } 

//@ also public normal_behavior 
  //@  requires o instanceof NaturalNumber ...    
  //@  ensures \result == ...;
public int compareTo(Object o) throws ClassCastException { 

      return value.compareTo(((NaturalNumber)o).value);
  } 

/*@ public normal_behavior 
    @   requires !isZero() && exponent.equals(ZERO); 
    @   ensures \result.equals(ONE); 
    @ also 
    @   forall NaturalNumber v; 
    @   requires !(exponent.equals(ZERO)) && 
    @     exponent.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) <= 0; // (*)
    @ ... */ 
public NaturalNumber pow(NaturalNumber exponent) { ... } 

...    

Fig. 8. Excerpt from the JML model class NaturalNumber 

have appeared in peer-reviewed books or articles and hence have been carefully been 
reviewed by both human readers and/or analyzed by other JML tools. Of the errors 
found, slightly more than half are the specification equivalent of common program-
ming errors (such as null dereferences2 and array index out of bound errors) as well as 
some common object-oriented programming pitfalls.  

As an example of the latter, consider the excerpt of the NaturalNumber model 
class, slightly simplified due to space constraints, given in Fig. 8. (Note that all decla-
rations of reference types, with the exception of local variables, are non-null by de-
fault in JML unless annotated with /*@nullable*/ [5].) Under the new semantics, 
unit testing reports a ClassCastException during the precondition evaluation of the 
second spec-case at (*). Given this information one can easily see that the developer 
forgot to include a compareTo(BigInteger) method, and hence the call to compareTo 
at (*) resolves to compareTo(Object), resulting in a meaningless method contract due 
to the undefinedness of the precondition. 

Most of the remaining errors had to do with recursive specification constructs. A 
simple example of such an error is illustrated by the excerpt from the specification for 
java.lang.Boolean given in Fig. 9. Notice how the model field theBoolean is repre-
sented by the expression “booleanValue()” and yet, the contract of booleanValue() 
defines it to be equal to the model field theBoolean.  Hence each is defined in terms 
of the other. (Note that a JML model field is a specification-only field used to repre-
sent an abstraction of part of an object’s or a class’ state, for non-static and static 
fields respectively. The binding between the model field’s value and the concrete state 
is given in the form of a represents clause.) 

                                                           
2 A potential null-dereference is shown in Fig. 10—see the underlined occurrence of nextNode. 
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public final /*@ pure @*/ class Boolean ... {
  //@ public model boolean theBoolean; 
  //@ represents theBoolean <- booleanValue();

  /*@ public normal_behavior
    @   assignable \nothing; 
    @   ensures \result == theBoolean; 
    @*/ 
public boolean booleanValue(); 

  … 
}  

Fig. 9. Excerpt from the JML API specification for java.lang.Boolean 

//@ model import org.jmlspecs.models.JMLObjectSequence; 

public class OneWayNode {  // Singly Linked Node 
/*@spec_public*/ protected /*@nullable*/ Object entry;
/*@spec_public*/ protected /*@nullable*/ OneWayNode nextNode;

//@ public model JMLObjectSequence entries; 
//@ public model JMLObjectSequence allButFirst; ... 
//@ protected represents entries <- allButFirst.insertFront(entry); 
//@ protected represents allButFirst <- (nextNode == null) 

  //@   ? new JMLObjectSequence() : nextNode.entries; 
  ... 
}

public class TwoWayNode extends OneWayNode { // Doubly Linked Node 
  /*@spec_public*/ protected /*@nullable*/ TwoWayNode prevNode;

//@ public model JMLObjectSequence prevEntries; ... 
  //@ protected represents prevEntries <- (prevNode == null) 
  //@   ? new JMLObjectSequence()  
  //@     : prevNode.prevEntries.insertBack(prevNode.entry); 

/*@ public normal_behavior
    @  assignable prevEntries; 
    @  ensures prevEntries.equals(\old(prevEntries).insertBack(newEntry))
    @        && \not_modified(nextNode.entries); 
    @*/ 
    public void insertBefore(/*@nullable*/ Object newEntry) {...} 
}  

Fig. 10. Classes from the org.jmlspecs.samples.list.node package 

An example that is more involved is treated next. Consider the code excerpt from 
two classes in org.jmlspecs.samples.list.node package (Fig. 10): OneWayNode, 
used to build singly-linked lists and TwoWayNode used to build doubly-linked lists3. A 
OneWayNode contains an entry and a possibly-null reference to a next node 
(nextNode).  TwoWayNodes extend OneWayNodes by adding a possibly-null reference to 
a previous node (prevNode). Two model fields are defined for a OneWayNode: entries 
which is the sequence of Object entries contained in the linked list rooted at this 
node; allButFirst, as the name implies, is the sequence of Object entries contained 
in the linked list rooted at this.nextNode, provided it is not null. Similarly, 
TwoWayNode defines the model field prevEntries to be the sequence of entries con-
tained in the linked list rooted at this node but by following the prevNode field.  
                                                           
3 Note that in the JML distribution, the specifications for these two classes are each spread over 

three files since use was made of JML’s specification refinement feature. Since this feature is 
somewhat involved, a simplified—though equivalent—version of the classes and their speci-
fications is given here. 
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z b

curr

...

this

a

Initially curr == this.prevNode .
Illustrated is: this.prevEntries (curr) = <b, c, … >.
Terminates when curr == null or curr == this .

c

 

Fig. 11. Evaluation of TwoWayNode.prevEntries (terminates even for circular lists) 

Running the test suite for this package using RAC instrumented versions of these 
classes reports a null-dereference error on nextNode.entries in the postcondition of 
TwoWayNode.insertBefore(). More interestingly is the fact that under the new se-
mantics, a stack overflow error is reported. While at first we believed that the error 
might have been caused by a bug in our implementation of the new assertion seman-
tics, inspection of the error reports allowed us to identify bugs in the specifications. 
Notice that the definitions of the representations of OneWayNode.entries, OneWay-
Node.allButFirst and TwoWayNode.prevEntries are all subject to looping forever if 
the nodes are part of a cyclic list. The main point here is that under the old semantics, 
the stack overflow caused by the use of any one of these three model fields would 
have been caught and translated into some truth value that would make true the over-
all assertion in which they occurred as subexpressions! A corrected specification for 
prevEntries is given in Fig. 12—the corrections for the other two model fields are  

 
public class TwoWayNode extends OneWayNode
{
protected /*@nullable*/ TwoWayNode prevNode;
/*@ public model JMLObjectSequence prevEntries; ... 

    @ protected represents prevEntries <- prevEntries(); 
    @ 
    @ public model pure JMLObjectSequence prevEntries() { 
    @   // To detect cycles we use a helper function. 
    @   return prevEntries(prevNode); 
    @ } 
    @ 
    @ public model pure
    @   JMLObjectSequence prevEntries(nullable TwoWayNode curr) { 
    @   return (curr == null 
    @           // the following disjunct prevents infinite recursion
    @           || curr == this) 
    @          ? new JMLObjectSequence() 
    @          : prevEntries(curr.getPrevNode()).insertBack(curr.getEntry()); 
    @ }*/ 

  ... 

  /*@ public normal_behavior
    @    assignable prevEntries; 
    @    ensures prevEntries.equals(\old(prevEntries).insertBack(newEntry))
    @     && (nextNode != null ==> \not_modified(nextNode.entries)); 
    @*/ 
    public void insertBefore(/*@nullable*/ Object newEntry) { 
      ...  
    } 
}  

Fig. 12. TwoWayNode specification now correctly handling lists with cycles 
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similar. Note how prevEntries is represented by the prevEntries() model method 
which returns the sequence of entries in the nodes reachable from this by following 
prevNode links until either null is reached or we have cycled by to this—see the 
illustration of Fig. 11. With this change, all tests pass under the new semantics. 

7   Related Work   

The use of program assertions as an aid in verifying the correctness of programs was 
first explored by Alan Turing in the late 40s. Over the decades, this idea was further 
refined by Computer Science founding fathers such as Goldstine, von Neumann, 
McCarthy, Floyd, Hoare and others [15, 16]. An early milestone in this vein was 
Hoare’s 1969 Axiomatic Basis for Computer Programming where the pre- and post-
conditions of Hoare triples were expressed by means of assertions [14]. Early on, as-
sertions were also introduced as a distinct construct in mainstream programming lan-
guages, and eventually, Hoare triples found their way into the programmer’s tool box 
in the form of a method known as Design by Contract (DbC) [22]. A comprehensive 
report on the history of runtime assertion checking can be found in Clarke and Rosen-
blum’s IMPACT report [10]. 

To our knowledge, all programming languages (or programming language exten-
sions) supporting the use of plain inline assertions or DbC at runtime also support an 
assertion semantics like the one recently adopted for JML.  The main reason is that it 
results in the simplest and most efficient runtime checking code. It remains a chal-
lenge to find a proper balance between minimalist instrumentation code with less use-
ful error reporting in cases where assertions fail due to undefinedness vs. more accu-
rate error reporting (which requires extra try-catch blocks to catch exceptions and 
wrap them up in another more meaningful exception before re-throwing it). 

Another related challenge is to preserve soundness of the new assertion semantics 
in the context of static checkers like ESC/Java2. In [3, 4], we show how this can be 
achieved by making use of definedness predicates. Use of definedness predicates al-
lows us to keep on using provers for classical logic (even though the new assertion 
semantics is essentially that of a three-valued logic). We note that the increase in 
processing time required for definedness checking in ESC/Java2 is currently less than 
2% [4]. This is fairly small compared to the increase in static error detection offered 
by the adoption of strong validity (especially for API specifications for which little 
more than type checking was provided before).  

A few other tools that make direct or indirect use of jmlc will be able to upgrade to 
the new semantics merely by making use of the new version of the compiler. This is 
the case for JmlUnit, a tool that can help developers create JUnit tests using JML 
specifications as oracles [8], and the SpEx-JML model checker [26]. Being build on 
the Bogor framework [24], SpEx-JML makes use of jmlc’s core translation module to 
render runtime checking code for JML constructs. By making use of the new version 
of jmlc, SpEx-JML will in effect be implementing a form of model checking based on 
three-valued logic (in the spirit of [25]). 
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8   Conclusion 

The work reported here was conducted as part of an ongoing effort to bring strong 
validity into all of the main JML verification tools. Using ESC/Java2, we have dem-
onstrated the effectiveness of the new semantics by showing how it uncovered about 
50 errors in the (143) API specifications of the java.* package [4, §6.1]. In applying 
the JML RAC (also with the new semantics), we have uncovered a comparable num-
ber of bugs in the JML model classes and specification samples which are a part of 
the JML distribution. 

As future work we plan to finalize a few unresolved issues. For example, under the 
former RAC semantics, the value of \old expressions4 that occur in method postcon-
ditions are evaluated before preconditions. This often leads to runtime errors under 
the new semantics since the evaluation of the \old expressions is meant to be guarded 
by the preconditions. That is, the pre-state evaluation of the \old expressions should 
be done if and only if the corresponding preconditions evaluate to true. We also need 
to better address the issue of short circuiting the evaluation of an assertion when one 
of its subexpressions raises an exception because it is non-executable. Currently we 
simplify the entire assertion to true; ideally we would want to simplify the smallest 
top-level conjunct that contains the non-executable subexpression. 
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