
J. Cuellar and T. Maibaum (Eds.): FM 2008, LNCS 5014, pp. 246–261, 2008.
© Springer-Verlag Berlin Heidelberg 2008

JML Runtime Assertion Checking: Improved Error
Reporting and Efficiency Using Strong Validity

Patrice Chalin and Frédéric Rioux

Dependable Software Research Group,
Dept. of Computer Science and Software Engineering, Concordia University

chalin@encs.concordia.ca, fred@dsrg.org

Abstract. The Java Modeling Language (JML) recently switched to an asser-
tion semantics based on “strong validity” in which an assertion is taken to be
valid precisely when it is defined and true. Elsewhere we have shared our posi-
tive experiences with the realization and use of this new semantics in the con-
text of ESC/Java2. In this paper, we describe the challenges faced by and the
redesign required for the implementation of the new semantics in the JML Run-
time Assertion Checker (RAC) compiler. Not only is the new semantics effec-
tive at helping developers identify formerly undetected errors in specifications,
we also demonstrate how the realization of the new semantics is more effi-
cient—resulting in more compact instrumented code that runs slightly faster.
More importantly, under the new semantics, the JML RAC can now compile
sizeable JML annotated Java programs (like ESC/Java2) which it was unable to
compile before.

1 Introduction

The assertion semantics of the Java Modeling Language (JML) [13, 17], a behavioral
interface specification language for Java, was formerly founded on a classical defini-
tion of validity. Elsewhere we have demonstrated that

• this semantics was not faithfully implemented [4] by either of the two main JML
tools [1] (namely, jmlc, the JML Runtime Assertion Checker (RAC) Compiler
and ESC/Java2) and that in any case,

• a comprehensive survey of programmers, mainly from industry, indicated that this
is not the semantics that they want [3].

Hence, a new assertion semantics for JML based on “strong validity” was recently
proposed [2, 4] and adopted [20, §2.7]. Under such a semantics, an assertion is taken
as valid when its evaluation does not result in partial functions being applied to values
outside their domain and, the assertion evaluates to true. In terms of runtime assertion
checking (RAC), this means that an assertion is considered valid if and only if its
evaluation (terminates and) results in true without raising an exception.

We have begun the realization of the new assertion semantics in ESC/Java2 [4]. In
this paper, we explain how the JML RAC has been adapted to conform to the new
semantics and some of the challenges that we faced. We also demonstrate how the

 JML Runtime Assertion Checking 247

public class Person {
 /*@ spec_public */ private String name; // a spec_public field
 /*@ spec_public */ private int age; // can be used in public specs
 //@ public invariant age >= 0;
 //@ requires age >= 0;
public Person(String n, int age) { this.name = n; this.age = age; }

 //@ ensures age == \old(age) + 1;
public void birthday() { age++; }

}

Fig. 1. Person class annotated with JML

realization of the new semantics helped us find new bugs in JML specifications and
that it is more efficient, resulting in smaller instrumented bytecode that runs slightly
faster. More importantly, under the new semantics, the JML RAC can now compile
sizeable JML annotated Java programs (like ESC/Java2) which it was unable to com-
pile before.

This paper first compares both the old classical and new assertion semantics before
giving more details on the JML RAC and its design. Then, we present an overview of
how we had to modify the JML RAC to support the new assertion semantics and how
we assessed the validity of our work.

2 JML Assertion Semantics

Among other things, the Java Modeling Language brings Design by Contract to Java [6,
18]. Hence, in particular, classes can be annotated with invariants and methods adorned
with contracts expressed using preconditions and postconditions inside Java comments
starting with a leading “@”—see Fig. 1. Invariants, pre- and post-conditions are
expressed using assertions, which in the case of JML, consist of (the side-effect free
subset of) Java boolean expressions enhanced with some extra operators and con-
structs—such as logical implication (==>) and quantifiers (\forall, \exists) [20].

2.1 Classical Assertion Semantics

The old classical JML semantics assumed that assertions, even if their syntax is very
close to that of Java, are to be interpreted as formulas of a classical logic. Under such
an interpretation, computational issues that can introduce undefinedness such as short-
circuiting of logical operators, exceptions, runtime errors, and informal assertions are
not explicitly modeled [7, p.29]. Instead, partial functions are modeled as underspeci-
fied total functions [19]. Hence, partial functions applied to values outside their do-
mains are assigned a fixed, though unspecified value.

2.2 RAC Approximation of the Old Semantics through Game-playing

Conformant with this view of assertions, the JML RAC-compiled bytecode will al-
ways consider an assertion as satisfied or violated; it will never be declared as invalid.
Since the evaluation of Java expressions can naturally lead to exceptions, the RAC
still has to deal with undefinedness. In its attempt to emulate classical two-valued
logic from Java’s three-valued operational semantics, the RAC resorts to a game-
playing strategy as we explain next.

248 P. Chalin and F. Rioux

Table 1. Game played by the JML RAC to approximate classical logic

Value assigned to …

(*informal*) x/0 == y

Value of
top-level
assertion

!(* informal *) && x/0 == y
i.e. !angelic && demonic False False False
! (* informal *) && !(x/0 == y)
i.e. !angelic && !demonic False True False
(* informal *) || !(x/0 == y)
i.e. angelic || !demonic True True True

In the JML RAC, undefinedness comes in two flavors: demonic and angelic [7,
pp.30-31]. Demonic undefinedness arises from various runtime errors or exceptions
that are generated when an assertion expression is evaluated. Angelic undefinedness
comes from the attempt to evaluate something that is not executable (e.g., an informal
predicate or some categories of quantified expression). The JML RAC adopts a game-
playing strategy in its attempt to deal with the two kinds of undefinedness. That is,
generally, the smallest Boolean subexpression containing an undefined term will be
treated as either true or false depending on the evaluation context. For demonic un-
definedness the JML RAC tries to choose a truth value for the undefined subexpres-
sion that will make the top-level assertion false; whereas for angelic undefinedness
the RAC will try to make the top-level assertion true [7]. When both angelic and de-
monic undefinedness occurs in the same expression, they each try to influence the
top-level assertion in the best way they can to meet their respective goals. Table 1
illustrates the game being played.

Classical logic does not feature conditional Boolean operators such as conditional
conjunction (&&). Under the old JML semantics, Java’s conditional operators were
mapped into their classical non-conditional counterparts. This implied that the JML
assertion E1 && E2 is equivalent to E2 && E1 [19]. In order to preserve that behavior,
the JML RAC evaluated both of its operands when the evaluation of the first operand
is exceptional [7, p.27]. Such a scheme can be confusing for developers since it leads
to the evaluation of syntactically correct Java expressions differently if done in a Java
or JML context as illustrated in Table 2. For both expressions, JML will interpret a
logical or between something (possibly) undefined and something true; hence always
yielding true in such a case. Java on the other hand will throw an exception upon a
null pointer dereference.

2.3 New Semantics Based on Strong Validity

The original JML RAC semantics guessed a truth value for an invalid assertion; using
the new semantics, an assertion can be satisfied (evaluated true), violated (false) or

Table 2. Semantic differences between Java and JML

true || x.length > 0 x.length > 0 || true

Java Always true if x is not null: true. Otherwise: NullPointerException.
JML Always true Always true

 JML Runtime Assertion Checking 249

invalid (when evaluation does not complete successfully) [4]. Violated and invalid
assertions are reported as distinct kinds of error.

Handling Undefinedness. In our implementation of the new semantics, all logical
operators behave in the same way in both Java and JML. For instance, a conditional
disjunction or conjunction whose left-hand subexpression is exceptional would cause
the resulting expression to be exceptional no matter what the right-hand subexpres-
sion refers to. When an exception or runtime error occurs while evaluating part of an
assertion, that exception causes the entire assertion to be invalid and the user to be
notified. In other words, as soon as demonic undefinedness occurs, the evaluation of
the assertion is halted, and the assertion is reported as invalid.

The concept of angelic undefinedness cannot be as easily factored out. As was
mentioned earlier, such undefinedness was associated with non-executable subexpres-
sions and was treated in a way that ensured the top-level expression would be “as true
as possible”. We do not want assertion expression evaluation to have the overhead of
game playing. In the new semantics, if an assertion is non-executable (in its entirety
or in part) then the entire assertion is tagged as non-executable. While most non-
executable assertions can be detected at compile-time, the rest can only be discovered
at runtime. While it is possible to warn the user that some of the assertions may be
non-executable, it is not always possible to precisely say if it will always be non-
executable [7, 23].

Whether a non-executable assertion should play a role in the overall truth value of
a specification depends on what the developer wants. In some cases (e.g. during pre-
liminary development, when there is a higher occurrence of incomplete specifica-
tions), one might be willing to ignore them by treating the assertion in which they
occur as equivalent to true. However, in other situations, to gain extra confidence and
ensure that the specifications are entirely verified, one may prefer to have non-
executable assertions be reported and make the specification verification fail since
they cannot be enforced or verified. Non-executable assertions can either be simpli-
fied to true or false, depending on the setting of a JML RAC compilation flag. Trying
to factor out non-executable expressions from an assertion while trying to infer a truth
value to the expression would mimic the game played by the previous semantics. We
believe non-executable assertions should be avoided as they provided very little in the
context of automated program verification.

3 JML Runtime Assertion Checker (RAC), Old Semantics

The JML RAC is part of the Common JML tools suite—formerly known as the ISU
JML tool suite. It uses a “compilation-based approach” for translating JML specifica-
tions into runtime checking bytecode [7]. Unlike static checkers, which verify pro-
gram properties at compile-time, the JML RAC enables dynamic checking by gener-
ating bytecode that verifies that specifications are satisfied during program execution.
When an assertion fails, the JML RAC-compiled code generates a runtime error. The
remainder of this section describes the design and operation of the RAC under the old
semantics. (As will be seen in the next section, the design changes required to imple-
ment the new semantics have been quite localized.)

250 P. Chalin and F. Rioux

The JML RAC is built on top of the
MultiJava (MJ) compiler and uses the
JML Checker1 for type checking JML
specifications and as the front-end for
building an Abstract Syntax Tree (AST).
JML specification clauses are translated
into assertion methods. For each Java method, three RAC assertion methods are gen-
erated: one for precondition checking and two for postcondition checking (i.e., for
normal and exceptional termination). The JML-specified Java methods are instrumented
using a wrapper approach. The instrumentation process takes the original body of a
method and extracts it into a private method with a uniquely defined name. The original
signature of the method is used for the newly created wrapper method hence replacing
it. The wrapper implements the specification checking logic by calling the original body
and assertion methods when required. Not only are the preconditions and postconditions
associated with the method called, but some class-related assertion methods are also
called (e.g., for invariant and constraint checking [18]). The control flow of the wrapper
approach to method instrumentation is presented in [7, §4.1].

3.1 Code Instrumentation

Every Java class compiled with the JML RAC contains not only its normal content (as
would be generated by, e.g., javac), but also an embedding of its specification and
how to verify it at runtime. Instrumentation code is generated on a per classifier, per
method, per field, and per assertion basis [9]. Most generated instrumentation code
gives rise to an overhead that is linear and foreseeable, though for assertion expres-
sions interpreted under the old semantics it used to be polynomial (at least quadratic!)
as we shall soon illustrate.

3.1.1 General Assertion Evaluation
Under the old semantics, JML RAC-generated code that evaluates an assertion ex-
pression tended to be rather verbose because expression evaluation had to emulate
classical two-valued logic while playing an optimization game with angelic and de-
monic undefinedness. Hence, for example, the JML RAC made extensive use of new
variables: as a rule of thumb, every subexpression had an associated new internal
variable used to hold its value. Moreover, each step in the evaluation was done sepa-
rately and had again its own new internal variable, and sometimes its own try block.
For example, a simple precondition such as the one given in Fig. 2 was translated into
59 lines of instrumentation code and used 7 new internal variables—see Fig. 3. Upon
reading the code, one may notice the right-hand side of the && operator is evaluated if
the left-hand side is exceptional; as mentioned earlier, this different from the Java
semantics for that operator.

3.1.2 RAC Generated Code Exceeded JVM and Class File Format Limits
The JML RAC’s attempt to implement an assertion semantics based on classical two-
valued logic caused the instrumented code to be much larger than the source. We note

1 MultiJava: http://multijava.sourceforge.net/; Java Modeling Language (JML):

http://www.jmlspecs.org/.

public int x, y;

//@ requires b && x < y;
public void m(boolean b) {...}

Fig. 2. A simple method precondition

 JML Runtime Assertion Checking 251

1| try {
2| // eval of &&
3| boolean rac$v0 = true;
4| boolean rac$v1 = false, rac$v2 = false;
5| // arg 1 of &&
6| try {
7| rac$v0 = b;
8| }
9| catch (JMLNonExecutableException jml$e0) {
10| rac$v2 = true;
11| }
12| catch (java.lang.Exception jml$e0) {
13| rac$v1 = true;
14| }
15| if (rac$v0) {
16| // arg 2 of &&
17| try {
18| boolean rac$v3 = false, rac$v4 = false;
19| int rac$v5 = 0;
20| int rac$v6 = 0;
21| try {
22| rac$v5 = this.x;
23| }
24| catch (JMLNonExecutableException jml$e0) {
25| rac$v4 = true;
26| }
27| catch (java.lang.Exception jml$e0) {
28| rac$v3 = true;
29| }
30| if (!rac$v3) {

31| try {
32| rac$v6 = this.y;
33| }
34| catch (JMLNonExecutableException jml$e0) {
35| rac$v4 = true;
36| }
37| catch (java.lang.Exception jml$e0) {
38| rac$v3 = true;
39| }
40| }
41| if (rac$v3) { rac$v0 = false; }
42| else if (rac$v4) { rac$v0 = true; }
43| else try {
44| rac$v0 = rac$v5<rac$v6;
45| }
46| catch (JMLNonExecutableException jml$e0) {
47| rac$v0 = true;
48| }
49| catch (java.lang.Exception jml$e0) {
50| rac$v0 = false;
51| }
52| }
53| catch (JMLNonExecutableException jml$e0) {
54| rac$v2 = true;
55| }
56| catch (java.lang.Exception jml$e0) {
57| rac$v1 = true;
58| }
59| }
60| }

Fig. 3. Instrumentation code evaluating “requires b && x < y” (old RAC semantics)

here that in some cases, the generated code was so large that a Java compiler would
be unable to process it. For example, in the ESC/Java2 project, there are a few classes
that could not be compiled using the JML RAC. One of these classes (javafe.ast.-
TypeDeclElem) has an automatically generated postcondition composed of a conjunc-
tion of 118 implications. Unfortunately, the instrumented code generated for verifying
the postcondition consisted of 15,816 lines of Java which no compiler can success-
fully compile. This is because the assertion method which checks the postcondition
had a top-level catch block that was too far away from its try block (due to limitations
of the JVM instruction set and the Java class file format, the two blocks must compile
into byte code that is no more than 65535 bytes apart [21, §4.10]). Of course, methods
with such postconditions are rather rare, but the fact is that the evaluation of expres-
sions following the original semantics JML RAC does not scale and cannot cope with
heavily specified code. Users should obtain benefits from writing richer specifications
rather than be penalized.

4 JML RAC Redesign in Support of Strong Validity

4.1 Expression Evaluation

Representing Assertions as a Single Java Expression. Most of the time, an asser-
tion’s body can be evaluated exactly as written (i.e., without having to declare new
variables for each subexpression). The possible outcomes of such an evaluation are
true, false, or an error/exception. Hence, if we choose not to model partial functions by

252 P. Chalin and F. Rioux

underspecified total functions, the evaluation of expressions becomes quite straightfor-
ward, helping us overcome some of the practical limitations mentioned earlier.

Expression Evaluation under the Old Semantics. Expression-evaluation code was
generated by RAC expression translators implemented as AST visitors [12]. Given an
expression to be translated, an expression translator would walk the expression AST
and build a compound “node” that contained the instrumentation code to evaluate the
expression at runtime. Such a node could either be wrapped with a try-catch block or
not. A high-level translator used such nodes whenever it needed for that expression to
be evaluated while generating the wrapper assertion methods [7].

The translation process was achieved by visiting every subexpression of a given
top-level expression and generating nodes to evaluate the subexpressions. As was
mentioned earlier, a new variable was usually defined to hold the value of a subex-
pression. Each of the subexpression nodes was stored on a stack. When all of the
expressions had been visited, the stack of nodes was used to generate an all encom-
passing node that, most often, was wrapped in a try-catch block before being returned
to the sender. We briefly note that proper handling of quantified expressions is quite
involved (e.g. requiring specialize heuristic-based static analysis in order to decide
how, if possible, to evaluate them). Hence we will only describe the handling of quan-
tified expressions in Section 0 for the new semantics.

New Approach to Expression Evaluation. The implementation of the new semantics
requires alternate expression translators. For this reason, we created a new general ex-
pression translator usable almost as a simple drop-in replacement for the old (top-level)
translators. Under the new semantics, there is no need to evaluate subexpressions sepa-
rately through the use of newly declared variables. Precedence of operators is embedded
in the AST and hence, an appropriate use of parentheses while visiting the tree avoids the
need for variables. Since, in the new semantics, a clause is either entirely executable or
not at all, a new runtime exception was created to short-circuit evaluation code genera-
tion in the event that one of the subexpressions is found to be non-executable at compile-
time. At runtime, the expression is evaluated in a top-level try-block that catches two
things: (i) JMLNonExecutableExceptions (Fig. 4), and (ii) all other errors and exceptions.
JMLNonExecutableExceptions cause an entire assertion to immediately simplify to true
(as was mentioned in Section 0, a command line option allows developers to change this
default to false). Any other exception or error thrown while evaluating an expression is
caught and wrapped in a JMLEvaluationError before being re-thrown.

4.2 Handling Quantified Expressions

Quantified expressions, unlike other simpler expressions, cannot have their evaluation
code mechanically derived. They have to be analyzed beforehand. In order to properly
analyze quantified expressions and derive the best way to verify them at runtime, the
JML RAC provides a special package and translator that, like the other high-level
translators, uses the (base) expression translator to evaluate expressions. In order to
reuse the existing quantifier evaluation package while implementing our new direct
expression evaluation approach, we decided to wrap the output of the quantifier trans-
lator into an inner class that is used in the evaluation of the assertion instead of the
quantified expression as described in [23].

 JML Runtime Assertion Checking 253

Fig. 4. Modified error hierarchy of the JML RAC runtime package

public static ArrayList myList = new ArrayList();

//@ requires (x > y) || (x < 0) ||
//@ (\forall Object obj;
//@ myList.contains(obj); obj instanceof Integer);
public void m(int x, int y) {...}

Fig. 5. Sample assertion containing a quantified subexpression

Consider the specification fragment of Fig. 5. Under the new semantics, RAC code
for the method’s precondition is as shown in Fig. 6. Note that the try block starts with
the definition of the inner class rac$v4 whose eval() method performs the evaluation
of the quantified subexpression. The statement following the inner class definition
instantiates the class. Finally, the last statement of the try block, marked (*), is the one
that can be clearly seen to correspond to the requires clause expression of Fig. 5.

5 Validation: Assessment and Statistics

Basic Validation: Regression Testing. The Common JML tool suite is supported by
an extensive collection of automated tests. These tests, numbering in the thousands,
help developers ensure the integrity of the tool suite following any modification. The
test suite for the JML RAC consists of approximately 500 test files, each containing
several test cases. Out of those, more than 375 are grouped under the racrun package,
whose purpose is to test the runtime behavior of RAC-compiled code—this is in con-
trast to, e.g., testing the behavior of the JML RAC. In particular, the racrun package
is meant to test all JML statements and expressions individually and in various com-
binations. The test coverage of the racrun package is considered sufficiently com-
plete. For the purpose of testing the new assertion semantics we adapted the racrun

254 P. Chalin and F. Rioux

try {
class rac$v4 {

public boolean eval() {
 boolean rac$v0 = false;
 java.util.Collection rac$v1 = new java.util.HashSet();
 java.util.Collection rac$v3 = MyClass.myList;
 rac$v1.addAll(rac$v3);
 java.util.Iterator rac$v2 = rac$v1.iterator();
 rac$v0 = true;
 while (rac$v0 && rac$v2.hasNext()) {
 java.lang.Object obj = (java.lang.Object) rac$v2.next();
 rac$v0 = (!(MyClass.myList.contains(obj))
 || obj instanceof java.lang.Integer);
 }
 return rac$v0;
 }
 }
 rac$v4 rac$v0Evaluator = new rac$v4();
 rac$pre4 = (((x > y) || (x < 0)) || rac$v0Evaluator.eval()); // (*)
} catch (JMLNonExecutableException rac$v5$nonExec) {
 rac$pre4 = true;
} catch (Throwable rac$v6$cause) {
 JMLChecker.exit();

throw new JMLRacExpressionEvaluationError("Invalid Expression in
\"FM08.java\", line 36, character 10", rac$v6$cause);

}

Fig. 6. RAC Code for precondition evaluation of method m()

package to support the expected output of the new semantics and ensured that all unit
tests passed successfully.

Testing Code Generation Robustness. Aside from racrun tests, we also success-
fully compiled all the JML model classes, which are heavily annotated classes that
specify abstract data types such as sequences, sets and bags. The model classes exten-
sively use of the features of JML. Such a test suite helped us discover some design
flaws that surfaced in rare circumstances. Most of them were for situations where
operator precedence is not preserved during the translation from JML to Java.

While the racrun package gave us confidence in the behavior of the generated
code, ensuring that the model classes could yield properly formed instrumented
source code when compiled using the new assertion semantics demonstrated the ro-
bustness of the code generation for the new semantics.

Assessing Improved Capabilities. One of the goals of the JML community is to use
its own tools. As was mentioned earlier, prior attempts to compile ESC/Java2 [11]
with the JML RAC demonstrated that for a few source files, it would generate instru-
mentation code that had such large try blocks that it was impossible to represent them

1|try {
2| rac$pre0 = (b && (this.x < this.y));
3|} catch (JMLNonExecutableException rac$v0$nonExec) {
4| rac$pre0 = true;
5|} catch (Throwable rac$v1$cause) {
6| JMLChecker.exit();
7| throw new JMLRacExpressionEvaluationError("Invalid Expression in \"...\", line 5, ...", rac$v1$cause);
8|}

Fig. 7. Evaluation of precondition in the modified RAC

 JML Runtime Assertion Checking 255

Table 3. ESC/Java2 source code statistics for escjava and javafe packages

Source code size (measured in MB) Old Semantics New Sem. New/Old
Escjava Instrumented source code 33.6 26.5 7.1 78.9%
Escjava Instrumented bytecode 12.2 9.8 2.4 80.3%

Javafe Instrumented source code 35.5
30.5*

21.7
21.6*

13.8
8.9*

 61.1%
 70.8%*

Javafe Instrumented bytecode 10.7 8.0 2.7 74.8%
* Adjusted measurement in which we removed the code size for two files that could not be

compiled under the old semantics due to the excessive size of try blocks in the instru-
mentation code.

in bytecode. We verified that with the new semantics, such a problem did not happen as
all files were amenable to RAC compilation. Moreover, for the files that compiled using
both semantics, we gathered statistics to measure the overall reduction in code size.

Measurements and Code Size Statistics. Throughout our assessment of the new
semantics, we gathered some measurements that demonstrated an improvement in
both size and performance of JML RAC-instrumented code. In order to understand
the source of such an improvement, one should consider that the new semantics gen-
erates much less code to evaluate expressions than the previous semantics did, in part
due to its more coarse approach, but mostly because it no longer plays the angelic vs.
demonic undefinedness game for invalid expressions. Moreover, that code always
takes advantage of short-circuited logical operators and does not try to assign a truth
value to exceptional expressions. For instance, the instrumentation code of Fig. 3 (59
LOC) is reduced to only 8 lines of code under the new semantics—Fig. 7.

We observed that the racrun test package executes on average 8% faster than the ver-
sion using the original semantics (average of 96.0s vs. 88.3s in five independent runs).
Such an evaluation includes the parsing, checking, code generation, compilation, run and
validation against expected output files of over 375 tests files. While using the new seman-
tics on ESC/Java2 source, both the generated instrumented source code and bytecode
showed a significant size reduction, as illustrated in Table 3. E.g., for the ESC/Java2
escjava package (301 classes), the instrumented source code using the new semantics was
only 78.9% the size of the one instrumented with the original semantics (for this metric,
we had the JML compiler emit the Java source corresponding to the instrumented runtime
checking code that it would otherwise create a .class file for). For the instrumented byte-
code, the new/original semantics ratio was of 80.5%. The compiler front end of
ESC/Java2 (javafe package, 216 classes) displayed similar improvements in size. Two
classes in the javafe package could not be compiled under the old semantics due to the
excessive size of try blocks. If we factor out those two abnormally large (and un-
compilable) instrumented source files, the new/original size ratio goes from 61.1% to
70.8%.

6 Effectiveness at Finding Bugs

Using the new RAC semantics, approximately 45 previously undetected errors have
been found in JML specifications of the sample and model files (307 files, 77KLOC)
included with the JML distribution. It should be noted that most of these sample and
model files have been in use since 2002; some are from published specifications that

256 P. Chalin and F. Rioux

public /*@pure*/ class NaturalNumber implements TotallyOrderedCompareTo,... {
/*@ spec_public */ private final BigInteger value;

//@ public normal_behavior
 //@ ensures \result == value.compareTo(n.value);
public int compareTo(NaturalNumber n) {

 return value.compareTo(n.value);
 }

//@ also public normal_behavior
 //@ requires o instanceof NaturalNumber ...
 //@ ensures \result == ...;
public int compareTo(Object o) throws ClassCastException {

 return value.compareTo(((NaturalNumber)o).value);
 }

/*@ public normal_behavior
 @ requires !isZero() && exponent.equals(ZERO);
 @ ensures \result.equals(ONE);
 @ also
 @ forall NaturalNumber v;
 @ requires !(exponent.equals(ZERO)) &&
 @ exponent.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) <= 0; // (*)
 @ ... */
public NaturalNumber pow(NaturalNumber exponent) { ... }

...

Fig. 8. Excerpt from the JML model class NaturalNumber

have appeared in peer-reviewed books or articles and hence have been carefully been
reviewed by both human readers and/or analyzed by other JML tools. Of the errors
found, slightly more than half are the specification equivalent of common program-
ming errors (such as null dereferences2 and array index out of bound errors) as well as
some common object-oriented programming pitfalls.

As an example of the latter, consider the excerpt of the NaturalNumber model
class, slightly simplified due to space constraints, given in Fig. 8. (Note that all decla-
rations of reference types, with the exception of local variables, are non-null by de-
fault in JML unless annotated with /*@nullable*/ [5].) Under the new semantics,
unit testing reports a ClassCastException during the precondition evaluation of the
second spec-case at (*). Given this information one can easily see that the developer
forgot to include a compareTo(BigInteger) method, and hence the call to compareTo
at (*) resolves to compareTo(Object), resulting in a meaningless method contract due
to the undefinedness of the precondition.

Most of the remaining errors had to do with recursive specification constructs. A
simple example of such an error is illustrated by the excerpt from the specification for
java.lang.Boolean given in Fig. 9. Notice how the model field theBoolean is repre-
sented by the expression “booleanValue()” and yet, the contract of booleanValue()
defines it to be equal to the model field theBoolean. Hence each is defined in terms
of the other. (Note that a JML model field is a specification-only field used to repre-
sent an abstraction of part of an object’s or a class’ state, for non-static and static
fields respectively. The binding between the model field’s value and the concrete state
is given in the form of a represents clause.)

2 A potential null-dereference is shown in Fig. 10—see the underlined occurrence of nextNode.

 JML Runtime Assertion Checking 257

public final /*@ pure @*/ class Boolean ... {
 //@ public model boolean theBoolean;
 //@ represents theBoolean <- booleanValue();

 /*@ public normal_behavior
 @ assignable \nothing;
 @ ensures \result == theBoolean;
 @*/
public boolean booleanValue();

 …
}

Fig. 9. Excerpt from the JML API specification for java.lang.Boolean

//@ model import org.jmlspecs.models.JMLObjectSequence;

public class OneWayNode { // Singly Linked Node
/*@spec_public*/ protected /*@nullable*/ Object entry;
/*@spec_public*/ protected /*@nullable*/ OneWayNode nextNode;

//@ public model JMLObjectSequence entries;
//@ public model JMLObjectSequence allButFirst; ...
//@ protected represents entries <- allButFirst.insertFront(entry);
//@ protected represents allButFirst <- (nextNode == null)

 //@ ? new JMLObjectSequence() : nextNode.entries;
 ...
}

public class TwoWayNode extends OneWayNode { // Doubly Linked Node
 /*@spec_public*/ protected /*@nullable*/ TwoWayNode prevNode;

//@ public model JMLObjectSequence prevEntries; ...
 //@ protected represents prevEntries <- (prevNode == null)
 //@ ? new JMLObjectSequence()
 //@ : prevNode.prevEntries.insertBack(prevNode.entry);

/*@ public normal_behavior
 @ assignable prevEntries;
 @ ensures prevEntries.equals(\old(prevEntries).insertBack(newEntry))
 @ && \not_modified(nextNode.entries);
 @*/
 public void insertBefore(/*@nullable*/ Object newEntry) {...}
}

Fig. 10. Classes from the org.jmlspecs.samples.list.node package

An example that is more involved is treated next. Consider the code excerpt from
two classes in org.jmlspecs.samples.list.node package (Fig. 10): OneWayNode,
used to build singly-linked lists and TwoWayNode used to build doubly-linked lists3. A
OneWayNode contains an entry and a possibly-null reference to a next node
(nextNode). TwoWayNodes extend OneWayNodes by adding a possibly-null reference to
a previous node (prevNode). Two model fields are defined for a OneWayNode: entries
which is the sequence of Object entries contained in the linked list rooted at this
node; allButFirst, as the name implies, is the sequence of Object entries contained
in the linked list rooted at this.nextNode, provided it is not null. Similarly,
TwoWayNode defines the model field prevEntries to be the sequence of entries con-
tained in the linked list rooted at this node but by following the prevNode field.

3 Note that in the JML distribution, the specifications for these two classes are each spread over

three files since use was made of JML’s specification refinement feature. Since this feature is
somewhat involved, a simplified—though equivalent—version of the classes and their speci-
fications is given here.

258 P. Chalin and F. Rioux

z b

curr

...

this

a

Initially curr == this.prevNode .
Illustrated is: this.prevEntries (curr) = <b, c, … >.
Terminates when curr == null or curr == this .

c

Fig. 11. Evaluation of TwoWayNode.prevEntries (terminates even for circular lists)

Running the test suite for this package using RAC instrumented versions of these
classes reports a null-dereference error on nextNode.entries in the postcondition of
TwoWayNode.insertBefore(). More interestingly is the fact that under the new se-
mantics, a stack overflow error is reported. While at first we believed that the error
might have been caused by a bug in our implementation of the new assertion seman-
tics, inspection of the error reports allowed us to identify bugs in the specifications.
Notice that the definitions of the representations of OneWayNode.entries, OneWay-
Node.allButFirst and TwoWayNode.prevEntries are all subject to looping forever if
the nodes are part of a cyclic list. The main point here is that under the old semantics,
the stack overflow caused by the use of any one of these three model fields would
have been caught and translated into some truth value that would make true the over-
all assertion in which they occurred as subexpressions! A corrected specification for
prevEntries is given in Fig. 12—the corrections for the other two model fields are

public class TwoWayNode extends OneWayNode
{
protected /*@nullable*/ TwoWayNode prevNode;
/*@ public model JMLObjectSequence prevEntries; ...

 @ protected represents prevEntries <- prevEntries();
 @
 @ public model pure JMLObjectSequence prevEntries() {
 @ // To detect cycles we use a helper function.
 @ return prevEntries(prevNode);
 @ }
 @
 @ public model pure
 @ JMLObjectSequence prevEntries(nullable TwoWayNode curr) {
 @ return (curr == null
 @ // the following disjunct prevents infinite recursion
 @ || curr == this)
 @ ? new JMLObjectSequence()
 @ : prevEntries(curr.getPrevNode()).insertBack(curr.getEntry());
 @ }*/

 ...

 /*@ public normal_behavior
 @ assignable prevEntries;
 @ ensures prevEntries.equals(\old(prevEntries).insertBack(newEntry))
 @ && (nextNode != null ==> \not_modified(nextNode.entries));
 @*/
 public void insertBefore(/*@nullable*/ Object newEntry) {
 ...
 }
}

Fig. 12. TwoWayNode specification now correctly handling lists with cycles

 JML Runtime Assertion Checking 259

similar. Note how prevEntries is represented by the prevEntries() model method
which returns the sequence of entries in the nodes reachable from this by following
prevNode links until either null is reached or we have cycled by to this—see the
illustration of Fig. 11. With this change, all tests pass under the new semantics.

7 Related Work

The use of program assertions as an aid in verifying the correctness of programs was
first explored by Alan Turing in the late 40s. Over the decades, this idea was further
refined by Computer Science founding fathers such as Goldstine, von Neumann,
McCarthy, Floyd, Hoare and others [15, 16]. An early milestone in this vein was
Hoare’s 1969 Axiomatic Basis for Computer Programming where the pre- and post-
conditions of Hoare triples were expressed by means of assertions [14]. Early on, as-
sertions were also introduced as a distinct construct in mainstream programming lan-
guages, and eventually, Hoare triples found their way into the programmer’s tool box
in the form of a method known as Design by Contract (DbC) [22]. A comprehensive
report on the history of runtime assertion checking can be found in Clarke and Rosen-
blum’s IMPACT report [10].

To our knowledge, all programming languages (or programming language exten-
sions) supporting the use of plain inline assertions or DbC at runtime also support an
assertion semantics like the one recently adopted for JML. The main reason is that it
results in the simplest and most efficient runtime checking code. It remains a chal-
lenge to find a proper balance between minimalist instrumentation code with less use-
ful error reporting in cases where assertions fail due to undefinedness vs. more accu-
rate error reporting (which requires extra try-catch blocks to catch exceptions and
wrap them up in another more meaningful exception before re-throwing it).

Another related challenge is to preserve soundness of the new assertion semantics
in the context of static checkers like ESC/Java2. In [3, 4], we show how this can be
achieved by making use of definedness predicates. Use of definedness predicates al-
lows us to keep on using provers for classical logic (even though the new assertion
semantics is essentially that of a three-valued logic). We note that the increase in
processing time required for definedness checking in ESC/Java2 is currently less than
2% [4]. This is fairly small compared to the increase in static error detection offered
by the adoption of strong validity (especially for API specifications for which little
more than type checking was provided before).

A few other tools that make direct or indirect use of jmlc will be able to upgrade to
the new semantics merely by making use of the new version of the compiler. This is
the case for JmlUnit, a tool that can help developers create JUnit tests using JML
specifications as oracles [8], and the SpEx-JML model checker [26]. Being build on
the Bogor framework [24], SpEx-JML makes use of jmlc’s core translation module to
render runtime checking code for JML constructs. By making use of the new version
of jmlc, SpEx-JML will in effect be implementing a form of model checking based on
three-valued logic (in the spirit of [25]).

260 P. Chalin and F. Rioux

8 Conclusion

The work reported here was conducted as part of an ongoing effort to bring strong
validity into all of the main JML verification tools. Using ESC/Java2, we have dem-
onstrated the effectiveness of the new semantics by showing how it uncovered about
50 errors in the (143) API specifications of the java.* package [4, §6.1]. In applying
the JML RAC (also with the new semantics), we have uncovered a comparable num-
ber of bugs in the JML model classes and specification samples which are a part of
the JML distribution.

As future work we plan to finalize a few unresolved issues. For example, under the
former RAC semantics, the value of \old expressions4 that occur in method postcon-
ditions are evaluated before preconditions. This often leads to runtime errors under
the new semantics since the evaluation of the \old expressions is meant to be guarded
by the preconditions. That is, the pre-state evaluation of the \old expressions should
be done if and only if the corresponding preconditions evaluate to true. We also need
to better address the issue of short circuiting the evaluation of an assertion when one
of its subexpressions raises an exception because it is non-executable. Currently we
simplify the entire assertion to true; ideally we would want to simplify the smallest
top-level conjunct that contains the non-executable subexpression.

References

[1] Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An Overview of JML Tools and Applications. International Journal on Soft-ware
Tools for Technology Transfer (STTT) 7(3), 212–232 (2005)

[2] Chalin, P.: Reassessing JML’s Logical Foundation. In: Proceedings of the 7th Workshop on
Formal Techniques for Java-like Programs (FTfJP 2005), Glasgow, Scotland (July 2005)

[3] Chalin, P.: Are the Logical Foundations of Verifying Compiler Prototypes Matching User
Ex-pectations? Formal Aspects of Computing 19(2), 139–158 (2007)

[4] Chalin, P.: A Sound Assertion Semantics for the Dependable Systems Evolution Verify-
ing Compiler. In: Proceedings of the Int’l Conf. on Soft. Eng. (ICSE), pp. 23–33 (2007)

[5] Chalin, P., James, P.R.: Non-null References by Default in Java: Alleviating the Nullity
Annotation Burden. In: Proceedings of the ECOOP, pp. 227–247 (2007)

[6] Chalin, P., Kiniry, J., Leavens, G.T., Poll, E.: Beyond Assertions: Advanced Specification
and Verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363. Springer, Heidel-
berg (2006)

[7] Cheon, Y.: A Runtime Assertion Checker for the Java Modeling Language., Iowa State
Uni-versity, Ph.D. Thesis, also TR #03-09 (April 2003)

[8] Cheon, Y., Leavens, G.T.: A Simple and Practical Approach to Unit Testing: The JML
and JUnit Way. In: Proceedings of the ECOOP, pp. 231–255. Springer, Heidelberg (2002)

[9] Cheon, Y., Leavens, G.T.: A Contextual Interpretation Of Undefinedness For Runtime
Assertion Checking. In: Proc. Int’l Symp. on Automated Analysis-driven Debugging
(2005)

4 The occurrence of \old(e) in a post condition refers to the pre-state value of e.

 JML Runtime Assertion Checking 261

[10] Clarke, L.A., Rosenblum, D.S.: A Historical Perspective on Runtime Assertion Checking
in Software Development. ACM SIGSOFT SEN 31(3), 25–37 (2006)

[11] Cok, D.R., Kiniry, J.R.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G., Burdy,
L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp.
108–128. Springer, Heidelberg (2005)

[12] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Ob-ject-Oriented Software. Addison-Wesley, Reading (1995)

[13] Gary, T.L., Albert, L.B., Clyde, R.: Preliminary Design of JML: A Behavioral Interface
Specification Language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38 (2006)

[14] Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

[15] Hoare, C.A.R.: Assertions: A Personal Perspective. IEEE Annals of the History of Com-
put-ing 25(2), 14–25 (2003)

[16] Jones, C.B.: The early search for tractable ways of reasoning about programs. IEEE An-
nals of the History of Computing 25(2), 26–49 (2003)

[17] Leavens, G.T., Baker, A.L., Ruby, C.: JML: A Notation for Detailed Design. In: Haim
Kilov, B.R., Simmonds, I. (eds.) Behavioral Specifications of Businesses and Systems,
pp. 175–188. Kluwer, Dordrecht (1999)

[18] Leavens, G.T., Cheon, Y.: Design by Contract with JML (2006),
http://www.jmlspecs.org

[19] Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML ac-
commodates both runtime assertion checking and formal verification. Science of Com-
puter Programming 55(1-3), 185–208 (2005)

[20] Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry, J.,
Chalin, P.: JML Reference Manual (2007), http://www.jmlspecs.org

[21] Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Prentice-Hall, Engle-
wood Cliffs (1999)

[22] Meyer, B.: Applying Design by Contract. Computer 25(10), 40–51 (1992)
[23] Rioux, F.: Effective and Efficient Design by Contract for Java. M.Comp.Sc. thesis, Con-

cordia University, Montréal, Québec (2006)
[24] Robby, E., Rodríguez, M.B., Dwyer, M.B., Hatcliff, J.: Checking JML specifications us-

ing an extensible software model checking framework. International Journal on Software
Tools for Technology Transfer (STTT) 8(3), 280–299 (2006)

[25] Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM To-
PLaS 24(3), 217–298 (2002)

[26] SAnToS, SpEx Website (2003), http://spex.projects.cis.ksu.edu

	JML Runtime Assertion Checking: Improved Error Reporting and Efficiency Using Strong Validity
	Introduction
	JML Assertion Semantics
	Classical Assertion Semantics
	RAC Approximation of the Old Semantics through Game-playing
	New Semantics Based on Strong Validity

	JML Runtime Assertion Checker (RAC), Old Semantics
	Code Instrumentation

	JML RAC Redesign in Support of Strong Validity
	Expression Evaluation
	Handling Quantified Expressions

	Validation: Assessment and Statistics
	Effectiveness at Finding Bugs
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

