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Preface

This volume contains the proceedings of Formal Methods 2008, the 15th Inter-
national Symposium on Formal Methods, organized by Åbo Akademi University,
Turku, Finland, during May 26-30, 2008. The series of Formal Methods confer-
ences is supported by FME (Formal Methods Europe), an independent associ-
ation which aims to stimulate the use of, and the research on, formal methods
for system development. The first event in this series was VDM Europe, held
in 1987. The scope of the symposium has grown since then, encompassing all
aspects of software and hardware that are amenable to formal analysis.

As in previous years, this symposium brought together innovators and practi-
tioners in precise mathematical methods for software development, academic and
industrial users as well as researchers, tool developers and vendors. We received
106 submissions from 24 countries, a demonstration of the international nature
of the event. Each submission was carefully refereed by at least three reviewers.
The Programme Committee finally selected 23 papers for presentation at the
symposium after what was sometimes really extensive discussion! We would like
to extend our thanks once more to all the members of the Programme Commit-
tee and to all the reviewers for their excellent and efficient work. (The names of
all involved appear over the page.) Apart from the regular papers, there were
five invited talks at the symposium, given by Arvind, Shmuel Katz, Paolo Bres-
ciani, Jay Misra, and Dawson Engler. Arvind and Katz also submitted papers
to accompany their talks and these are included in the volume.

The Formal Methods 2008 symposium also included various related events.
There were five workshops, coordinated by the Workshop Chair, John Derrick:
Formal aspects of virtual organizations, John Fitzgerald and Jeremy Bryans;
Overture/VDM++, Peter Gorm Larsen and Shin Sahara; Refinement Work-
shop, John Derrick; Pilot Projects for the Grand Challenge in Verified Software,
Jim Woodcock, and Computational Models for Cell Processes, Ion Petre and
Ralph-Johan Back. There were also seven tutorials, coordinated by the Tutorial
Chair, Marina Waldén: Computational Systems Biology (full day), Ion Petre
and Ralph-Johan Back; Teaching formal methods to students in high school
and introductory university courses (full day), Ralph-Johan Back; Event-B and
the Rodin Platform (full day), Jean-Raymond Abrial; Why formal verification
remains on the fringes of commercial development (full day), Arvind; Formal
Methods and Signal Processing (half day), Raymond Boute; Runtime Model
Checking of Multithreaded C Programs Using Automated Instrumentation Dy-
namic Partial Order Reduction and Distributed Checking (half day), Ganesh
Gopalakrishnan and Yu Yang; and Formal modelling and analysis of real-time
systems using UPPAAL (half day), Paul Pettersson and Wang Yi. There was
also an associated Doctoral Symposium, organized by Elena Troubitsyna, that
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included presentations by doctoral students as well as a Poster and Tool Exhi-
bition, organized by Michael Leuschel.

An Industry Day was organized by the Formal Techniques Industrial Associ-
ation (ForTIA) in parallel with the first day of the main symposium. The first
invited speaker of the symposium, Arvind, was shared between the main pro-
gramme and that of the Industry Day. This associated event was organized by
Peter Gorm Larsen and Sari Leppänen. Five short contributed papers from the
Industry Day are included in this volume.

The electronic submission, refereeing and Programme Committee discus-
sions were well supported (almost always!) by EasyChair, developed by Andrei
Voronkov at the University of Manchester, UK. Our thanks to him and also
to our publisher Springer, in particular to Anna Kramer for helping with the
preparation of the proceedings. Pablo Castro worked hard on putting together
this volume, ably assisting the editors. Finally, we would like to thank all the
speakers, all the sponsors (listed at the end of the Preface), and especially the
Organizing Committee for all the hard work necessary for putting on this great
event.

May 2008 Jorge Cuellar
Tom Maibaum
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stitute), Faculty of Technology at Åbo Akademi University, Federation of Finnish
Learned Societies, FORTIA (Formal Techniques Industrial Association), FME
(Formal Methods Europe), and Distributed System Design Laboratory.

                                                    

       Distributed Systems Design Laboratory

            



Table of Contents

Session 1. Invited Talks

Aspects and Formal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Shmuel Katz

Getting Formal Verification into Design Flow . . . . . . . . . . . . . . . . . . . . . . . . 12
Arvind, Nirav Dave, and Michael Katelman

Lessons in the Weird and Unexpected: Some Experiences from Checking
Large Real Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Dawson Engler

Simulation, Orchestration and Logical Clocks . . . . . . . . . . . . . . . . . . . . . . . . 34
David Kitchen, Evan Powell, and Jayadev Misra

Session 2. Programming Language Analysis

CoVaC: Compiler Validation by Program Analysis of the
Cross-Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Anna Zaks and Amir Pnueli

Lazy Behavioral Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen

Checking Well-Formedness of Pure-Method Specifications . . . . . . . . . . . . . 68
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Aspects and Formal Methods

Shmuel Katz

Department of Computer Science
The Technion, Haifa 32000, Israel

katz@cs.technion.ac.il

Abstract. Aspects are now commonly used to add functionality that
otherwise would cut across the structure of object systems. In this survey,
both directions in the connection between aspects and formal methods
are examined. On the one hand, the use of aspects to facilitate (general)
software verification, and especially model checking, is demonstrated. On
the other hand, the new challenges to formal specification and verification
posed by aspects are defined, and several existing solutions are described.

Keywords: Aspects, interference, model-checking, detection, specifica-
tion.

1 Introduction

Aspects are modular units that treat concerns of object-oriented systems that
otherwise would crosscut the inheritance hierarchy and classes. They have proven
useful for a wide variety of tasks including debugging, logging, adding security or
privacy, expressing variants for software product lines, or increasing the flexibility
of middleware components.

The approach was first presented in the AspectJ [17] extension of Java, and
has been generalized to a variety of languages and aspect-oriented software de-
velopment techniques (see, for example, [9]). When a concern such as security
or logging is encapsulated in an aspect, this aspect contains both the code as-
sociated with the concern, called advice, and a description of when this advice
should run, called a pointcut descriptor. The binding of some base program with
an aspect (or in general, a collection of aspects), is termed weaving and yields
an augmented program. The pointcut descriptor identifies the joinpoints in the
execution of a program at which the advice should be invoked, either augmenting
or replacing code at the joinpoints.

Aspects are distinguished as a software construct in at least two characteris-
tics. First, unlike procedures, they are not activated by ”requests” in the base
program. The joinpoints where advice is applied are not explicit in the code
of the base program–an aspect advice is not ”called”— but are defined in the
declaration of the aspect itself. Second, the pointcuts that govern the execution
of advice are evaluated dynamically. When a pointcut identifies joinpoints, these
joinpoints are not static locations in the code; rather, in the most popular and
expressive joinpoint models used by aspect-oriented programming languages,

J. Cuellar and T. Maibaum (Eds.): FM 2008, LNCS 5014, pp. 1–11, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 S. Katz

joinpoints are well-defined points during the execution of a program. Depending
on the runtime context of a particular point, such as the methods on the pro-
gram’s stack, or the values currently in certain data fields, the same static code
location might match a pointcut at one time, but fail to match it at another. To
give the programmer access to these dynamic data, a pointcut may also expose
values of program variables or names of objects or methods to the advice.

In this survey, first the use of aspects in formal methods, and in particular to
aid in practical verification tools, is demonstrated, for Java Pathfinder. Then the
other direction is considered: how formal methods can be used for aspects, in-
cluding their specification and verification, and analysis of possible interferences
among multiple aspects woven to a system. To demonstrate how general princi-
ples and well-known techniques of formal methods can be extended and adapted
to aspects, I concentrate on examples from my own work that extend and adapt
classical assume-guarantee specifications, techniques from model checking, and
interference freedom of parallel processes.

2 Aspects for Model Checking

Java PathFinder (JPF) [26] is a model checker [5] that is implemented as a Java
virtual machine. That is, JPF executes Java’s virtual machine code, but unlike
a regular virtual machine, JPF explores all the possible states that the program
may reach. As in other software model checkers, the assertions we want to check
are inserted into the program at appropriate points, as annotations or comments.

JPF keeps track of every state (the content of the heap and the stack of each
thread) the program has visited. When the program reaches a point that may
lead to several possible executions (for example when two threads are executing
in parallel) JPF reruns the program on all the possible executions. As a result,
any assertion we embed in the code will be checked for all the possible executions
of the program. This means that if the assertion never triggers an exception then
we are sure that the program can never violate the assertion. As an additional
benefit, if the assertion is violated then JPF creates a report that consists of the
entire history of the execution up to the point of the violation.

There are two problems with the standard use of assertions in formal veri-
fication. The first problem is that we have to change the program every time
we decide to check for a different property. The second problem is that often
a single property cannot be checked in a specific place, but we must distribute
assertions at several places in the code.

By using aspects we can solve both problems. We can write a different aspect
for each new property and then weave it into the program without having to
manually edit it. And by using the appropriate pointcut patterns we can easily
distribute the different assertions to their appropriate locations. It also becomes
trivial to remove the assertions when we have finished with the verification task.
Finally, the connection between the pointcuts — representing where assertions
are made — and the advice —- representing the assertion itself — is immediate
and direct.
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Suppose we wish to ensure that every message that contains a password is
encrypted when it enters the medium. Rather than inserting assertions in the
source program, this requirement is best represented using the following aspect:

public aspect AllSentAreEncrypted {

pointcut sendingMessage(Message m) :
call(public void Medium.send(Message)) &&
args(m);

before(Message m) : sendingMessage(m) {
if (m.hasPassword())
assert(encrypted(m.getPassword()));

}
private boolean encrypted(String s) { // ... }

}

This use of aspects to express assertions and specifications, including pre- and
post-conditions or contracts between modules (as seen in [20]) appears already
in early examples found on the AspectJ webpage.

2.1 Aspects for Modelling and Abstraction

Beyond their use for specification and annotation, aspects can help to treat ab-
straction and modularization cleanly. In recent years it has become evident that
full post-facto formal verification of implemented software systems is impractical
due to the size of the state-space involved. Inductive methods have floundered
due to the difficulty in providing appropriate invariants, and model checking
has proven unable to directly handle the huge state-space of complex software
with asynchronous threads or processes. Thus any attempt to introduce formal
methods for general software has to either deal directly with key abstract mod-
els, e.g., of individual modules, or provide a methodology for abstracting an
implemented system by isolating components for independent analysis and/or
reducing the possible values of fields or variables.

Indeed, model checking the entire source code of a production system seems
impractical even in principle. Most systems today are distributed — they interact
with databases and with clients which may be located in different computers
around the world. A typical complete model of the system must include at least
the standard library, the server’s kernel, the database, and the TCP/IP stack.

In such cases we must replace the subsystem by a more abstract model. This
is very similar to the idea of a stub in testing. Rather than testing the system
against a live database, we create a mock database object with a fixed set of
records.

A related problem is that JPF, like any other model checker, assumes the
program is independent from any external environment. That is, it assumes that
the program does not take any input and does not emit any output. When such
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operations exist in the program they are simply ignored by JPF. This assumption
is essential for the model checking algorithm to work, but it creates a practical
problem when our programs perform I/O.

When a program performs an input operation it takes information from its
external environment. The program cannot assume what the exact value of the
input will be, instead it is the environment that makes the decision. The usual
Java Pathfinder solution is to replace the input operation by a nondeterministic
choice operation. A program that uses nondeterministic choice instead of input
has the same set of potential behaviors as the original, but is independent of
any particular environment and can be model checked. Thus before applying the
model checker, a Java fragment:

Integer x =
Integer.getInteger(System.in.readline());

would be replaced by a nondeterministic choice:

Integer x = Verify.getInt(0,5);

This program does not read anything from the outside world. When we run it on
a standard virtual machine the operation Verify.getInt picks values at random
from the range 0..5, simulating the choices made by a user. However, when we
run this program on JPF, it will cause the machine to backtrack to the location
of getInt and rerun the scenario with every possible value from the range 0..5.

Aspects can be used to cleanly treat the needed abstractions and isolation
of the system component discussed above, by encapsulating the needed changes
into abstraction aspects. For example, the client and the server may communicate
in real life by establishing a TCP/IP channel between them. However we are
not interested in model checking the TCP/IP protocol stack, but rather would
like to focus on checking the interaction between the client and the server. We
would therefore like to make the assumption that the TCP/IP subsystem is a
perfect medium. It never forgets messages, it never rearranges them and it never
duplicates them. In order to enforce this assumption on our program we create a
simple Medium class that consists of two queues, one for sending messages from
the client to the server and one for returning messages from the server to the
client. We then use an abstraction aspect that replaces the calls to the underlying
socket interface with calls to our Medium object.

Of course, if we would like to check how our system behaves when the connec-
tion is faulty we can change the Medium class, perhaps using nondeterministic
operations, for example to sometimes drop a message, or replace one message
with another and so on. Eventually it is up to us to decide how realistic we would
like the model of the environment to be.

For I/O, the abstraction aspects adding nondeterminism can determine which
values are to be checked for input, while assertion aspects check whether the
intended output values are correct. Consider a system which reads user names
and passwords in a getUserInput method, and then checks whether the password
is authorized for that user using a database query. An aspect would replace the
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input with a small domain of user-password pairs, and the database queries with
different possible responses.

In short, aspects provide a clean mechanism for expressing specifications, for
abstracting away from irrelevant parts of the system, and for reducing the states-
pace to enable model checking, and should be incorporated into modern software
verification tools.

3 Formal Methods for Aspects

Now we turn to the other direction: applying formal methods to systems with
aspects. The new issues raised by aspects provide ample ground for innovative use
of the conventions and the ”bag of tricks” we have developed in formal methods
research over many years. I will give several examples that demonstrate how
existing principles of formal methods can be adapted to aspect specification and
verification. These examples are taken from my own work, with which I am most
familiar. In the following section, some other relevant work is briefly surveyed.

3.1 The Quest for Modularity

Clearly, given a base program, a collection of aspects with their pointcut de-
scriptors and advice, and a system for weaving together these components to
produce a stand-alone augmented program, we can verify properties of this aug-
mented system using standard software verification, either inductive methods
or software model checking techniques. For example, AspectJ weaving produces
Java bytecode, and this can be used as the input for Java Pathfinder to check
properties of the augmented system.

However, the general quest for modular proof techniques is clearly relevant
for aspects. It would be preferable if we could employ a modular technique in
which an aspect can be considered separately from any base program. Such an
approach will allow us to:

– obtain verification results that hold for a particular aspect with any base
program from some class of programs, rather than for only one base program
in particular;

– use the results to reason about the application of aspects to base programs
with multiple evolving state machines describing changing configurations
during execution, or to other systems not amenable to model checking; and

– avoid model checking augmented systems, which may be significantly larger
than either their base systems or aspects, and whose unknown behavior may
resist abstraction.

The second point above relates to object-oriented programs that create new in-
stances of classes (objects) with associated state machine components. Often,
the assumption of an aspect about the key properties of those base state ma-
chines to which it may be woven can indeed be shown to hold for every possible
machine that corresponds to an object configuration of a program. For example,
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it may involve a so-called class invariant, provable by reasoning directly on class
declarations, as in [1].

3.2 Specifications of Aspects

In order to separately reason about aspects, the first question to be answered is
what should the specification of an aspect include. Aspect advice is a collection
of code fragments, to be activated at various states of a base system. It turns out
to be valuable to consider aspects as system transformers that given a base sys-
tem, return an augmented version. Then the specification can have the familiar
assume-guarantee form, but not merely involving the points where the aspect
applies and when the advice finishes.

Its specification is (a) its assumption about any system into which it may be
woven, and (b) a guarantee about properties of the result of weaving the aspect
into any system satisfying the assumption.

The form of the specification is an instance of the assume-guarantee paradigm
but generalized to relate to global properties of two systems: the one before weav-
ing the aspect, and the one afterwards. The assumption of an aspect can include
information on what is expected to be true at join-points, global invariants of
the underlying system, or assumed properties of instances of classes or variables
that may be bound to various parameters of the aspect when it is woven. The
result assertion can include both new properties added by the aspect, and those
properties of the basic system that are to be maintained in a system augmented
with the aspect. Both parts of aspect specifications can be expressed in linear
temporal logic.

An aspect is correct with respect to its assume-guarantee specification if,
whenever it is woven (by itself) into a system that satisfies the assumption, the
result will satisfy the guarantee. This view of aspect specification and correctness
appears in [23], adapting earlier work on superimpositions that also had a similar
view of specifications.

Sometimes a classical situation is appropriate, where the assumption relates
to the joinpoints and the guarantee to what is true immediately after the ad-
vice. For example, if the joinpoints are exactly at the method calls with sensitive
information, then the aspect might guarantee that the actual call occurs after
encrypting the parameters. In this case, the usual precondition and postcondi-
tion terminology could be used. The assumption is that the joinponts precisely
coincide with the sensitive method calls, and the guarantee is that when such
method calls are executed in the augmented system, the arguments are encoded.
But in other situations a more global assumption and guarantee are needed: for
example, to widen a property true only for part of the base system. Consider
an assumption that, in the base system, states satisfying predicate B lead to a
desired response R, and an aspect that, when woven over such a system, causes
every execution to eventually reach a state satisfying B (perhaps long after fin-
ishing the advice of the aspect) and does not disturb the property assumed about
the base. Then the woven system can be guaranteed to always eventually have
a desired response R.
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3.3 Using LTL Tableaux as Generic Base Programs

An aspect is not a program, and cannot execute on its own. Yet we would like
to prove once and for all that an aspect satisfies its specification, i.e., whenever
the aspect is woven to a system that satisfies the assumption assertion of the
aspect, then the woven system is guaranteed to satisfy the guarantee assertion.
To do such a proof modularly, in classic procedure-based systems, we must show
that the assumption at the initial state of a procedure or method is enough to
prove the guarantee when it completes. Here, as seen above, the assumption
is often more global. But consider how LTL model checking is done: a tableau
statemachine representing the LTL assertion to be shown is created, the negation
is taken by switching the initial states of the tableau, and then the cross product
with the system to be checked is considered. If this machine is empty, the desired
property holds, and if it is not, a counter example to the desired property is
produced.

The proof method suggested in [10] and the MAVEN tool presented there
exploit the tableau idea to allow a modular correctness proof for aspects. The
basic idea of that work, described for the verification of a single aspect relative
to its specification, is that a single model can be generated from the aspect as-
sumption, the pointcut description, and the advice, and used to model check the
result assertion. If that model check succeeds, the augmented program resulting
from the weaving of the aspect to any underlying system satisfying the aspect
assumption is guaranteed to satisfy the result assertion of the aspect.

The single model to be checked is built from the tableau that corresponds to
the linear temporal logic assertion of the aspect assumption. This tableau is a
generic model for all the systems satisfying the assumption of the aspect, and
the state machine fragments that correspond to the advice are woven according
to the pointcut descriptions. The tableau contains all the possible behaviors of
the base systems into which the aspect can be woven. In other words, for any
given underlying system that satisfies the assumption of the aspect, for every
computation of this system there is a corresponding computation of the tableau,
satisfying the same LTL properties. A generic model is built by weaving the
aspect statemachine into the tableau of the aspect’s assumption. The guarantee
of the aspect is then checked on that model.

In [10] it is shown that if the system S1 results from weaving the aspect
into some appropriate base system, and the system S2 is the result of weaving
the aspect into the tableau, then for every computation of S1 there exists a
corresponding computation of S2. The properties we check are LTL properties,
and an LTL property holds in a system iff each computation of this system, taken
alone, satisfies this property. So if there exists a “bad” base system S such that
S satisfies the assumption of the aspect, but the resulting assertion of the aspect
is violated when it is woven into S, then there exists a “bad” computation in the
woven system, violating the guarantee of the aspect. For this bad computation
there exists a corresponding bad computation in the (tableau + aspect) state
machine. It follows that indeed it is enough to model-check the guarantee of the
aspect on the (tableau+aspect) system only.
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It then remains to show that a given base system indeed satisfies the assump-
tions of the aspect, and it can be concluded that the resultant woven system
with that aspect satisfies the aspect guarantee, without directly model checking
the augmented system.

3.4 Using Interference Freedom Checks for Aspects

The discussion in the previous subsection related to a single aspect. However,
when multiple aspects are woven they may interfere with each other. Aspects
have been said to (at least potentially) interfere if they have overlapping join-
points, change the same variables, or mutually influence each others’ joinpoints.
The most general definition (and the one most familiar to formal methods prac-
titioners) uses the assume-guarantee specifications of aspects described in Sec-
tion 3.2 to define interference freedom in a way analogous to interference freedom
among processes in shared-memory systems [21]. In that classic work, interfer-
ence freedom among processes is defined in terms of whether independent and
local Hoare-logic proofs of correctness for each parallel process are invalidated
by operations from other processes.

In [14] interference among a set of aspects that are each correct relative to
their assume-guarantee specification is defined as:

Definition 1. it A set {A1, . . . , An} of aspects is interference-free if whenever
the assumptions P1, . . . , Pn hold in a system, the augmented system obtained
after weaving the aspects in any order satisfies the guarantees R1, . . . , Rn.

The individual proofs that each aspect is correct when woven alone (as seen
in the previous subsection) correspond to the n local proofs of [21], while in-
terference among aspects deals with the n2 checks of interference-freedom. A
key point, adapted for aspect interference checks in [14], is that the other pro-
cesses may change the values of shared variables, but there is no interference
as long as the independent proofs are not invalidated. The level of interleaving
in shared memory systems is much finer than for aspects: every local assertion
about memory values can be invalidated by another assignment by a different
processor. The fact that aspect advice is only activated at joinpoints means that
less stringent conditions can be used, and that modular model checking can be
used as a proof component.

Using the noninterference idea, for each pair of aspects A and B in a collection
(that satisfy certain restrictions on their form), when A’s assumption is true,
it should be shown to maintain the assumption and the guarantee of B, and
vice versa. These proofs can be done by producing a generic model of both
assumptions, and another of A’s assumption and B’s guarantee , weaving A into
each (using the MAVEN system described earlier), and checking the appropriate
property (B’s assumption in the first case, and its guarantee in the second), and
then repeating where the roles of A and B are reversed. Such checks for each
pair of aspects are proven sufficient to detect interference or establish interference
freedom for any order of application of any collection of aspects in a library.
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4 Related Work and Summary

Of course, there are many other works that apply formal methods to aspects. A
full description is not feasible, and in any case would quickly become outdated.
Thus here I only describe a sampling of existing work, to demonstrate the breadth
of work on this subject.

The first to separately model check aspect state machine segments that corre-
spond to advice is [18], where the verification is modular in the sense that base
and aspect machines are considered separately. The verification method allows
for joinpoints within advice to be matched by a pointcut and themselves advised.
The treatment there is for a particular aspect woven directly to a particular base
program, checking whether properties which hold for the base program can be
extended to the augmented program (using branching-time logic CTL).

In [16], model checking tasks are automatically generated for the augmented
system that results from each weaving of an aspect. The approach has the dis-
advantage of having to treat the augmented system, but offers the benefit that
needed annotations and set-up need only be prepared once. That work takes
advantage of the Bandera [11] system to generate input to model checking tools
directly from Java code.

In [15] a semantic model based on state machines is given, and syntactically
identifiable categories of aspects are shown to automatically preserve classes of
temporal properties when woven.

Some other works, such as [6] and [24], have an assume-guarantee structure
for aspect specification, similar to the specifications suggested here, but model
checking is not used.

There is also work on detecting whether the pointcuts of aspects match com-
mon joinpoints or overlapping introductions [8,12]. This is important because the
semantics of weaving can be ambiguous at such points, and be the source of errors.

Some work has also been done in identifying potential influence by using
dataflow techniques showing that one aspect changes (or may change) the value
of some field or variable that is used and potentially affects the computation done
by the advice of another aspect [22,28]. Slicing techniques for aspects [29,3,25]
can also be used for such detection. Since such potential influence is often harm-
less, false positives can result.

There is also extensive work on formal semantics for aspects, such as
[4,7,19,27], applying denotational, structured operational, or functional seman-
tics. The nature of weaving, and possible weaving strategies have been at the
center of such investigations. Other work, based on model checking, determines
whether the weaving of aspect scenarios is done correctly [13].

One convenient source for papers on formal methods and semantics of as-
pects is the annual Foundations of Aspect Languages (FOAL) Workshop, associ-
ated with the Aspect-Oriented Software Development Conference. The Common
Aspect Proof Environment (CAPE) [2], developed as part of the EU AOSD-
Europe Network of Excellence, provides Eclipse downloads and an integrated
environment of formal methods tools for aspects, including several of the tools
mentioned here.
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In summary, aspects are an interesting modularity concept, useful in many
contexts including within formal methods tools. They raise important issues
of modularity, compositionality, specification, and proof that often require new
extensions and application of the familiar techniques of formal methods. Such
research is ongoing, but far from complete, and provides ample challenges and
opportunities for formal analysis and verification methods.

Acknowledgments. This survey describes joint work with David Feitelson,
Max Goldman, Emilia Katz, and Marcelo Sihman, and has benefitted from dis-
cussions with them. The support of the AOSD-Europe Network of Excellence is
also appreciated.
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Abstract. The ultimate goal of formal methods is to provide assurances
about the quality, performance, security, etc. of systems. While formal
tools have advanced greatly over the past two decades, widespread pro-
liferation has not yet occurred, and the full impact of formal methods is
still to be realized. This paper presents some ideas on how to catalyze
the growth of formal techniques in day-to-day engineering practice. We
draw on our experience as hardware engineers that want to use, and
have tried to use, formal methods in our own designs. The points we
make have probably been made before. However we illustrate each one
with concrete designs. Our examples support three major themes: (1)
correctness depends highly on the application and even a collection of
formal methods cannot handle the whole problem; (2) high-level design
languages can facilitate the interaction between design and formal meth-
ods; and (3) formal method tools should be presented as integrated de-
bugging aids as opposed to one requiring mastering a foreign language
or esoteric concepts.

1 Introduction

Over the past few decades, formal techniques have made impressive progress. For
example, serious theorems (e.g., relative consistency of AC with ZF) have been
mechanically verified [1], and huge improvements in the range and capacity of
decision procedures (e.g., linear arithmetic, uninterpreted functions, bit-vectors,
SAT solving) have been made [2,3,4,5,6]. In the hardware industry, a number of
commercial tools to support formal verification have sprung up [7,8,9,10,11,12].
These improvements in tools and techniques have gotten the attention of both
the research community and industry. Formal methods are used within the re-
search community in numerous case studies ranging from security [13] and wire-
less protocols [14] to processors [15] and cache-coherence protocols [16] to buffer
overflows in software [17]. In the industrial setting, ever-increasing system com-
plexity in both hardware and software has fostered interest in formal methods
(e.g., [18,19,20,21,22]). Indeed, in the hardware industry, formal methods are
even widely employed for certain types of verification tasks. Sadly, despite all
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of these advances and a receptive climate, formal methods have had no discern-
able effect on the day-to-day design flow. Both hardware and software designers
still reach verification closure primarily through ad hoc testing and low-level
debugging.

Designers are paid to make efficient systems within some constraints. The
constraints may be on performance (e.g., a video codec must process 30 frames
per second at 720p), power (e.g., a cell phone may not dissipate more that
3W), cost (e.g., the chip must not cost more than $5) or some other metric like
compatibility (e.g., a DSP that must run all existing applications). In addition
there are always limited resources and time-to-market pressures. In such an
environment, many designers believe (with some justification) that extensive
testing is sufficient to reach the corresponding confidence for the economic or
social consequences of failure. It is difficult to find cases where a product is
shipped only after it passes a full “formal verification”.

The current design flows are strongly biased towards post-design verification.
Of course design engineers are encouraged to perform unit testing but the pri-
mary task of verification rests with a verification team that is often two to three
times the size of the design team. Good verification teams prepare elaborate test
plans and then employ a horde of engineers to actually write and perform the
tests. By way of analogy, this is how the automobile industry used to be in the
United States until the early 1980’s. It employed more and more inspectors to
try to avoid shipping defective automobiles. This proved ineffective in develop-
ing higher quality automobiles. Then the Japanese industry started focusing on
zero-defect components which resulted in drastically improved quality.

The aim of this paper is to provide, via a rich set of examples, insights into
the problems that designers face and how formal methods may alleviate some
of these problems. We are convinced that designers want their designs to be
correct, and would use methods and tools that isolate tricky problems quickly.
However, a designer is unlikely to employ a tool that is too hard to use or too
slow, or provides information that the designer is at best peripherally interested
in. Designers are rarely interested in tools that require daunting specifications
in some totally unfamiliar form, or which may not be available at the time of
design. If the verification of a WiFi protocol block requires, say, axiomatization of
the 802.11a standard in PVS, then the specification task itself would overwhelm
the design task. Additionally, large formal specifications are at least as hard to
debug as large designs and their engineering utility is questionable even when
correct.

We make three points in this paper with the goal of stirring a discussion
about how to address the gap between day-to-day engineering practice and the
unrealized potential of formal methods:

1. Correctness depends on the application. Different applications require vastly
different formal techniques. Most designswill benefit from both the application
of formal methods and testing via executable specifications (see Section 2).

2. Formal tools must be tied directly to high-level design languages. There is a
great deal of high-level information that needs to be communicated to formal
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tools. Much of it is also needed for the design itself. The only practical way to
get this information to the tools is by extracting it directly from the design
itself; designers are unlikely to restate knowledge in a different notation solely
for the sake of verification (see Section 3).

3. Most formal methods and tools have a post-design bias. Instead they should be
presented as debugging aids during the design process. In the most successful
cases, designers are unaware that they are using a formal method. A good
design method is much more likely to be used by the designers if it is enforced
by the tools (see Section 4).

In this paper we focus only on hardware design, though our observations may
apply equally to software. We also do not address the problems of defective
tools (e.g., the compiler itself produces incorrect code, ambiguities in the design
language). In the hardware industry there is a tendency to merge the testing
of the tool and of the design. We feel strongly that these activities should be
kept separate. The designer must have a high degree of confidence that the
tools are bug-free or the verification task is truly monumental. Also, we do not
focus on manufacturing bugs (e.g., stuck-at-zero faults) or the errors introduced
by physical design tools. We also ignore the issue of lack of education in formal
methods on part of design engineers; we live in an environment (i.e., MIT) where
this is not an issue. We focus only on the technical challenges involved in making
formal methods fit within an effective design-debug loop. Our goal is to help the
designer produce designs which, if implemented in a totally automatic way using
bug-free tools, would have completely satisfied the specification.

2 What Needs to be Verified: Examples from Hardware

Over the last decade we have designed a variety of complex digital systems. Our
verification methodology has been based primarily on testing and occasionally
on handwritten proofs for very difficult parts of the design. In our design ex-
plorations we’ve found a number of places where formal verification could have
been highly useful. However, in no instance have we found that formal verifica-
tion would have replaced testing. This is because testing provides a more-than-
adequate guarantee for some aspects of the verification task and setting up a
testbench is usually significantly easier than a formal verification tool. Never-
theless, there are situations where a designer cannot get sufficient confidence in
the correctness of the design even with extraordinary amount of testing.

In this section we illustrate the verification task via a number of examples
taken from our own personal experiences and highlight where formal methods
could have had significant impact. These examples should also make it obvious
to the reader that proper verification involves domain specific knowledge.

2.1 Simple Deterministic Designs: IP Lookup

The Longest Prefix Match (LPM) function is used in Internet Protocol (IP)
packet routers to determine the output port to which an input packet should be
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forwarded. It is a requirement that the router maintain the ordering of packets
between the same source and destination. For cost and power reasons, the mem-
ory size must be kept small. This rules out a flat table implementation which
even for IPv4 would need 232 elements. Desigjns often use a tree-structured table
which allows one to exploit the similarities in table entries with common pre-
fixes. The lookup procedure essentially reads the table repeatedly using different
parts of the IP address. If a result is found, an output is produced, otherwise
another read is performed in the part of the table holding the relevant subtree.
For most schemes, an IPv4 lookup requires between 1 and 4 memory reads.

One efficient implementation [23] of this lookup functionality is based on
a circular pipeline shown in Figure 1. It includes a FIFO of partially served
requests, a pipelined memory, and a completion buffer that ensures that outputs
are sent out in the correct order.

Writing an operational description of IP Lookup is easy. The functional cor-
rectness is deterministic and can be implemented in any sequential language as
a single lookup in a flat IP table. Indeed, with a simple executable description
and random stimulus generation, we can achieve a high degree of confidence
via testing that the design does not produce wrong answers. However, checking
other requirements is a different story. Do packets come out in order? Does each
packet produce a result packet? One may need to check this if there is a danger
of dropped packets because the design cannot keep up with the specified input
rate. Is there a dead-cycle, that is, can a new packet enter the system in the
cycle when an old packet leaves? All these questions are very important for the
designer, and to set up tests to check all these properties is not always easy
and often not satisfactory. If one could formally state these properties and easily
verify them, most designers would take the time to do so.

2.2 Dealing with Noise: 802.11a

802.11a is an IEEE standard for wireless communication [24]. The protocol trans-
lates raw bits from the Media Access Control (MAC) into Orthogonal Frequency
Division Multiplexing (OFDM) symbols comprised of 64 32-bit fixed-width com-
plex numbers. The protocol is designed to operate at different data rates; at



16 Arvind, N. Dave, and M. Katelman

Controller Scrambler Encoder

Interleaver Mapper

IFFT
Cyclic
Extend

headers

data24
Uncoded

bits

Fig. 2. 802.11a Transmitter Pipeline

higher rates it consumes more input to produce each symbol. Regardless of the
rate, to be acceptable an implementation must be able to generate an OFDM
symbol every 4 μs.

The 802.11a specification only specifies how data is to be transmitted. This
specification is given operationally as a sequence of stream processing functions
(see Figure 2). Each of these functions can be viewed in a way that is similar to
the IP lookup function and consequently it is easy to translate the 802.11a specs
into an executable sequential program. In fact the block structure in the reference
is often directly visible in the implementation. Verification can be performed by
comparing the test results from the design against the executable specs. For
debugging purposes it is not uncommon to instrument the standard executable
code to capture the bitstream after each functional block and compare it against
the internal bitstreams.

On the receiving side, the input is tightly coupled with the digital-to-analog
conversion at the transmitter, the noise properties of the transmission medium,
analog-to-digital conversion at the receiver and the phase shift between sender
and receiver. We can partition this problem into two subproblems: given a trans-
mitted stream, “can the receiver synchronize its phase to match the transmitter’s
phase?”, and “given a noisy transmitted packet can the receiver successfully re-
construct the original packet?”. Since we know the noise models the standard is
supposed to correct, we can introduce the correctable noise effects on a trans-
mitted packet (including possible phase shifts) relatively easily.

Currently, to reach sufficient confidence that an 802.11a design is transmit-
ting and receiving data reliably, we take into account two more facts. First,
the 802.11a codec was designed to reduce the effect of corner cases, which de-
termined the worst-case behavior. Second, since we can always drop data, not
getting all the exact behavior in corner cases only reduces the space of noise
which can be corrected, slightly degrading performance. Additionally, unlike the
IP lookup example, all of the design complexity lies in the data transformations,



Getting Formal Verification into Design Flow 17

not the control logic. These points make it so that once we have a system where
a few packets are sent and received correctly, our confidence that the design is
“good enough” to ship becomes very high. Of course more directed testing can
be performed to gain more confidence.

What simple directed testing does not cover, however, is the correctness of
fractional-level arithmetic, which is used pervasively in 802.11a. Designers need
confidence that their numerical logic works (of course, such an arithmetic library
is useful for other designs as well). This task is well suited to formal verification.

It is not uncommon in such designs that one transforms a block from an
obviously correct implementation into a higher-performing one. For example,
one may transform a large combinational circuit into a folded pipeline to reduce
area. These transformations will always need to be correct in the functional
sense but may not result in equivalent FSMs. It is possible to describe these
transformations in such a way that the functional behavior is abstracted away,
i.e., passed in as a parameter. It would be incredibly useful if transformations
of this sort were formally verified so that we could do architectural exploration
without adding to the testing burden.

2.3 Specification of a Lossy System: The H.264 Video CODEC

The H.264 Advanced Video Codec is an ITU standard for encoding and decoding
video with a target coding efficiency twice that of H.263 and with comparable
quality to H.262 (MPEG2) [25]. H.264 enables PAL (720 × 576) resolution video
to be transmitted at 1Mbit/sec. Like other video coding standards, H.264 speci-
fies only how to reconstruct a video from an encoded bitstream, not how a video
is encoded. The goal of the encoder designer is to produce as compressed a bit-
stream as possible without the degrading the user-perceivable quality. Sometimes
the encoder also has the constraint of how much computation can be performed
because the encoding may have to be done in real time or on a handheld device
such as cell phone or camcorder.

Since the encoding is lossy, what does it even mean to correctly encode a
video? We could compare the original video with the results of encoding and then
decoding the same video, but how does one classify user-perceivable differences?
A number of heuristics which approximate user-perceivable differences exist, but
these are too crude for verification purposes. Consequently there is no hard or
fast rule that the design must ensure. (Fortunately, a few errors here and there
are unlikely to be catastrophic in this application).

The decoder can be described as a relatively complex dataflow graph as shown
in Figure 3. Unlike the 802.11a transmitter which had a significant but still
manageable description, the decoding reference for H.264 is 80 thousand lines
of C and an English specification that runs into hundreds of pages! Neither of
these descriptions is complete: the English is ambiguous in many places and the
C code represents only a deterministic representation of the codec. While many
rich and complex transformations can be applied on the C code, some arbitrary
choices require significant high-level knowledge to find, effectively ruling them
out without additional knowledge. Thus, complete understanding of the codec
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requires significant use of both of these specifications in tandem. We believe
that H.264 is complex enough that there is virtually no hope of ever directly
generating a complete formal specification, especially one that could be ready
during the design process.

Given these complications, designers are limited to testing for all but the
simplest sub-blocks. For the decoder, we test by taking a good mix of interesting
videos, encoding them, and then checking that the output of the reference C code
and design match. As with the 802.11 transmitter, by instrumenting the reference
code one can also generate internal bitstreams at the output of functional blocks
and compare them against the design.

The main use of formal methods in this example, like 802.11, would be re-
stricted to testing arithmetic libraries, correctness of transformations for perfor-
mance, etc. One could also formally verify some tricky parts of dataflow in the
pipeline. For example, one could prove that the inter-prediction block does not
read the reference frame before it has been properly constructed. However, in
case of such an error the bitstream is unlikely to match with the C reference
code and the error would be caught by running a few sample videos.

2.4 Nondeterminism: Cache Coherence

Verifying the correctness of a cache coherence protocol for shared memory sys-
tems presents a unique challenge. On one hand, there is no ambiguity about a
correct answer; each Load is supposed to return a value from a set of possible
Store values. On the other hand, both the protocol and its operating environ-
ment exhibit nondeterminism, i.e., time dependent behavior. This is also an area
where absolute correctness is expected. After all, software systems rely on the
perfect behavior of Load-Store instructions on any machine!
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Protocols are often described abstractly in tabular form where each line rep-
resents a valid transition in the protocols abstract state space. These transitions
(or rules) are allowed to be applied in any order. Even though many rules can be
applied at a time, their behavior is understandable as if the rules were applied
one at a time in some order. This representation captures the nondeterminism
of both the protocol and its environment accurately. These tabular descriptions
are often independent of the number of processors or the size of caches.

Cache coherence protocols present two challenges in verification: how to incor-
porate nondeterminism in the verification framework and how to state formally
the correctness criterion so that it is of use in the verification process. An op-
erational model of a protocol, i.e., an interpreter that applies protocol rules in
some deterministic order is of limited use because it explores a very small subset
of the nondeterministic state space. Even for cleverly designed tests it is hard
to convince oneself that the protocol functions correctly in all cases and enters
neither deadlock nor livelock in any circumstance. The verification problem is
further exacerbated by the fact that modern protocols tend to be very complex
for performance reasons and are understood by very few implementers.

Model checking has proven quite useful in identifying obscure bugs in cache
coherence protocols. Indeed, for these reasons cache coherence protocols are well-
trodden ground in the formal methods literature (e.g., see [26]). This literature
also shows the limitations of model checking if one is looking for an absolute
guarantee of correctness for this problem. First, the designer/verifier builds an
abstraction of the real design, because the tools cannot handle the real design.
Second, the designer looks for a set of invariants, such as “a dirty copy of an
address cannot exist in more than one cache”, whose proof will guarantee the
correctness of the whole protocol. Third, to keep the state space from exploding,
model checking is applied to a small machine configuration (e.g., three caches
and two unique addresses). The designer has to convince himself that if there is
a bug in the protocol it will show up in this small system.

We think all these steps are fraught with problems; there is always a chance
of omitting an important detail in the abstraction process. Without a formal
proof it is difficult to convince oneself that a set of invariants is sufficient to
verify the whole protocol. Finally, one needs to prove, that the correctness of
the simple system configuration that was checked implies the correctness of all
possible system configurations.

This is one area where model checking coupled with mechanical theorem prov-
ing can be very useful in proving the correctness of a protocol. But to be useful
in practice, the implementation must be generated automatically from the pro-
tocol description that is used in the verification process. We will also report our
attempts at mechanical theorem proving of a complex cache coherence protocol
in Section 4.

2.5 Simple Specification, Complex Design: Processors

Microprocessors encompass many important architectural concepts that occur
throughout the wider spectrum of digital logic design. At the same time,
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“absolute correctness” is what is required of a microprocessor. People are more
tolerant of software bugs than a microprocessor which “sort of works”. Given the
economic importance of microprocessors it is not surprising that microprocessors
have pushed verification research and continues to be a rich source of technical
problems and proving ground for new verification tools. In addition, the size and
complexity of modern microarchitectures has led to a situation where functional
verification is a significant contributor to the microprocessor design cycle.

Specifying the correctness of a microprocessor is relatively straightforward: it
must respect the semantics of the target instruction set (ISA). Modulo certain
complexities (e.g., virtual memory, exceptions) a typical ISA consists of basic
arithmetic, memory, and branching instructions that together constitute a simple
but extremely expressive programming language. Unlike the previous example of
H.264 or 802.11a, this specification can be defined via a simple (one-instruction-
at-a-time) processor implementation or some other software ISA interpreter in
a straightforward manner. The proof obligation is then that the more complex
implementation matches the simpler one. These days microprocessors are often
multicore or appear in shared memory systems. Consequently, cache coherence
issues discussed in the previous section can be treated as a subset of micropro-
cessor verification problem.

The classic technique for establishing that a particular microarchitecture is
a correct implementation of an ISA is to show that its state transitions can
be simulated by a much simpler and obviously correct “reference implemen-
tation” of the ISA. Since a real implementation has much larger state space
than a reference implementation, one has to provide abstraction functions that
map the elements of the real implementation to the elements of the reference
implementation. Most abstraction functions are based on flushing or killing.
The flushing abstraction [15,27,28,29] returns an ISA state by completing par-
tially executed instructions in the pipeline. In contrast, killing squashes
partially executed instructions and returns the system to the ISA state cor-
responding to the last committed instruction. Processors are really nondeter-
ministic (consider interrupts and shared memory) and when reasoning about
nondeterministic behavior, killing has advantages over flushing because there is a
unique last instruction, but there can be several possible futures for uncommitted
instructions [29].

Intellectually stimulating as these ideas are, their impact on commercial pro-
cessor development is minimal. The biggest impediment is that none of these
ideas are actually applied to a real implementation, i.e., an RTL description
from which the gates may be synthesized automatically or semi-automatically.
They are applied to an abstraction of the implementation, where the abstraction
is motivated as much by what the tool can handle as what needs to be verified.

Nevertheless correct processor design remains one of the most promising areas
for formal verification. In addition to test codes (micro-benchmarks) and model
checking, mechanical theorem proving would be needed to gain confidence that
a processor with caches, TLBs and branch predictor and cache-coherence engine
works in all cases.
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3 High-Level Design Languages Are a Prerequisite for
Incorporating Formal Methods into Design

In the previous section we have shown through examples that domain specific
knowledge is essential to formulate a verification plan for a design. Furthermore,
formal verification requires some sort of specification or high-level architectural
information to state properties to be proven. What we argue in this section is that
this sort of information is communicated best as part of the design and hence,
directly through the design language. This isn’t just a vehicle to communicate
high-level information to various tools, it is also a way to communicate to the
designer the results of the checking and to help him understand and fix errors.
For example, type checking is most meaningful when the typing system allows
for rich type structures defined by the user. The ideal situation occurs when
the abilities of the formal analysis engine and the intention of the high-level
language concept match, so that the underlying discipline can be enforced. The
best example of this is again typing, where the intent of the system is to better
manage which operations go with which data, and type checking algorithms are
able to statically enforce this discipline.

This section is organized around a set of high-level concepts which we feel can
improve both design and formal analysis. They do not all neatly fit the ideal case
described above, but nevertheless elucidate important areas where language and
formal methods should fit together to the betterment of the design process. No
existing language embodies all of these concepts, but several incorporate a subset.

3.1 Static Type Checking

Type systems are one of the most accepted ideas in software engineering and
appear in varying degree of sophistication in almost all languages. Algebraic
and record constructors, in particular, allow a designer to design a rich type
structure allowing for notions like choice and grouping in user-defined types. For
instance, a Maybe type groups a data value with a valid bit. This guarantees that
the value is accessible only when the bit is true.

The purpose of typing is to avoid operations on improperly structured objects;
and when checked it helps designers avoid a large class of mistakes and actually
speeds up design. The reason that typing and type checking is successful is
because the high-level intent of types is made completely clear by the language.
Therefore the errors returned by a type check seem natural to the designer and
can be addressed quickly. In addition, type information also serves as useful
documentation for the designers.

Type correctness is best enforced statically, at compile time, and has proved
incredibly successful in this role. In fact, static type checking has gotten so
pervasive that most engineers do not even consider it to be a formal method;
formal methods are about correctness, type checking is just common sense. We
have seen that other forms of enforcing a type discipline fail to work as well. For
example, enforcing type correctness dynamically, as in Scheme or Perl, pinpoints
bugs much later in the design process than static type checking. Extra-lingual
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attempts in Verilog – a language with weak typing – invariably fail, because the
typing enforced by the compiler does not match the extra-lingual discipline, and
therefore is not checked automatically. Designers cannot be bothered to do hand
checking.

3.2 High-Level Parameterization

Often when an engineer starts to design a functional block, a number of similar
sub-blocks become apparent. For instance, one can imagine variations of a FIFO
with different sizes or different types of data elements. It makes little sense for
designers to make each of these variations separately; rather, one should have a
design which can be supplied the element type and the size as parameters. Using
a modern type system the type of element can be specified polymorphically so
that all the attendant FIFO operations accept and return only correct types.

Parameterization allows us to abstract unnecessary details and factor the
proof obligation. Parameterization by data type shows that the specifics of the
data element are unimportant to verifying the FIFO’s behavior. Secondly, pa-
rameterization of the FIFO size allows us to make proofs across all FIFO sizes,
amortizing verification costs.

In hardware this sort of parameterization is very common and keeping to a
small set of stateful building blocks can dramatically help in reducing complexity.
It is also likely to result in designs that are highly reusable. However, an im-
portant requirement in hardware design is that parameterization should not add
extra logic – all the effects of parameterization should disappear when the block
is instantiated. This can be accomplished by a compiler via static elaboration, a
simpler form of partial evaluation.

3.3 Modularity

Perhaps the most important high-level abstraction for a designer is modularity.
The purpose of modularity is to elucidate high-level functionality through the
encapsulation of implementation details. This enhances readability of the code
and improves its reuse amongst designers and between projects. Proper mod-
ularity also permits the designer to have several different implementations of
the same interface. For example, small (i.e., one or two element) FIFOs may be
implemented very differently from larger (i.e., several hundred element) FIFOs,
but may have the same interface. In addition, modularity may serve as a natural
place for formal tools to divide up proof obligations into tractable pieces.

Hardware also presents an opportunity to design a family of modules which
may differ only in their concurrency properties. For example, one can imagine
several different types of FIFOs for different design situations. For a FIFO to
be used in a pipeline, it is necessary that enqueue and dequeue can happen
concurrently, and the effect of dequeue should take place before the effect of
enqueue. On the other hand for a FIFO to be used in a rate matching buffer,
one also needs concurrent enqueue and dequeue but the effect of enqueue to take
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place before the effect of dequeue. Formal specification of such properties in a
FIFOs interface would dramatically benefit the verification process.

Additionally, a system with strong modularity may admit modular refine-
ment, where the designer derives various implementations from an original de-
sign serving as a “golden” specification. These derivations come in two types:
design-independent transformations which are provable solely based on the lan-
guage semantics, and design-specific refinements whose correctness depends upon
domain-specific knowledge. Both of these changes are clear places where formal
methods are useful, especially the provably correct transformations as they give
the designer a useful toolbox of easy but powerful design choices he can make.
For example, we have shown that using a few pipelining combinators we can
effectively take a functional description of FFT expressed as a pure combina-
tional circuit and quickly generate various “folded pipeline” versions [30]. (In
a folded pipeline the same “stage logic” is reused across several cycles to im-
plement different pipeline stages). Formally proving that these have the same
input-output behavior would mean that showing the correctness of a combina-
tional design (which is straightforward) would imply the correctness of the folded
design (which is much more challenging).

Many software languages have strong enough modular interfaces that proper
isolation is guaranteed. However, most hardware description languages (e.g., Ver-
ilog, VHDL) have modules which serve only as structural abstractions, and do
not easily allow one to abstract the behavior across module boundaries. Verilog
designers do use modules as abstractions, but because of the complications due
to its concrete timings, transferring these abstractions of interfaces to formal
tools is quite difficult.

In contrast, modules in Bluespec [31], a language in which we have written
all the examples discussed in this paper, require a stronger method-oriented in-
terface which groups related ports into methods. Bluespec semantics is based on
Guarded Atomic Actions (i.e., rules), which is the same semantic model that
underlies Unity [32]. In Bluespec every method has a notion of being “ready to
be applied”, and a compiler enforced microprotocol guarantees that a method
cannot be applied unless it is ready. This allows the designer to decouple the tim-
ings of interactions from different methods, giving them the ability to play with
the intra-cycle ordering. A formal tool can gain information about how a circuit
can be used because the method calling protocol is uniform and implied by the
language semantics, rather than in comments preceding the module definition.

3.4 Unified Language for Design and Specification

“Golden” reference specifications tend to be given in a different language than
the one used in implementation. This is because implementation languages often
require more details than what people writing the reference model wish to deal
with. Ideally, a good high-level language would not only allow one to write good
designs but also, when possible, to write reference specifications as well. This may
not be possible if the specification is so abstract as to not even be executable. If
it is possible then design becomes simply a refinement of the specification. The
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designer is saved from the major task of manually translating from the reference
specification language into the implementation language.

It is important to note that refinement is only natural when moving between
the high-level reference and detailed implementation does not involve significant
changes in the concurrency or semantic model. For instance, Verilog has two sep-
arate “sublanguages”: Behavioral Verilog which is generally used for rough-cut
behavioral specifications, and Synthesizable Verilog which is used to the repre-
sent implementable designs. While these two languages have the same syntax,
the simulation semantics of Verilog does not always match the Verilog synthesis
semantics. While there may be a way to refine from the initial high-level speci-
fication to a synthesizable implementation, the semantic difference significantly
hinders such a transformation. SystemC experiences this same problem as well.
Its high-level simulation semantics closely resembles OS-thread concurrency, and
therefore is a mismatch for the underlying hardware model that it needs to de-
scribe. Esterel [22] represents a significant improvement because its semantic
model is consistent with synchronous FSMs. These more closely correspond with
the eventual hardware implementation. Similarly, Bluespec offers a better basis
for formal methods in this regard as its nondeterministic guarded-atomic-action
semantics are consistent from high-level specification to implementation.

A key for languages to be able to operate at both levels is to have a large
selection of high-level constructs which have solid refinable reference implemen-
tations. This can be addressed partially via good standard libraries in a high-level
language where commonly used circuits like arithmetic units, register files, FI-
FOs and memories can be encapsulated and expressed cleanly. This is trickier
than what one might expect because, in most hardware descriptions languages
module interfaces are time sensitive.

3.5 Handling Nondeterminism

Closely related to the previous point is a language’s ability to express and re-
solve nondeterminism. An important aspect in verification is the ability to ex-
press inherent nondeterminism in the correctness specification. A specification
of a speculative processor should permit an unspecified number of speculative
instructions to be executed before the speculation is resolved. Tthe cache coher-
ence protocol described in Section 2.4 has nondeterminism in the memory access
stream, and with the 802.11 specification, there is probabilistic nondeterminism
having to do with the transmission medium.

With the exception of Bluespec, hardware design languages do not permit
one to express nondeterminism. An oft heard remark about nondeterminism
is that it significantly complicates reasoning about systems (See, for example,
Berry’s comment about the need of determinacy in Esterel [33]). This ignores the
fact that nondeterminism can be viewed as an axis of flexibility for implemen-
tation purposes. Once we have learned to deal with nondeterminism, to quote
Dijkstra [34]: “[It] is no longer frightening. On the contrary! We shall learn to
appreciate it, even as a valuable stepping stone in the design of an ultimately
fully deterministic mechanism.”
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For example, Bluespec semantics permits nondeterminism in the selection of
rules to be executed in a given cycle. The compiler removes this nondeterminism
to generate the final hardware in a process called scheduling. It has been shown
that the compiler can generate efficient hardware automatically, but the user can
also provide guidance from the source code if necessary. We can think of a Bluespec
design as a nondeterministic specification and the additional information the de-
signer passes to the compiler to choose a good scheduler as implementation details.
This flexibility allows designers to explore many different design options easily.

Nondeterminism also results in a simplification of the verification process. For
example we have shown how a cache coherence protocol [35] can be specified nat-
urally in Bluespec. The original protocol, after we made sure rules were selected
fairly for execution, served immediately as a working implementation. Assum-
ing that the original protocol was correct, this implementation was guaranteed
to be correct. The verification task now only requires us to show that further
refinements to the design preserve this correctness.

3.6 Property Specification

Property specification is a mechanism through which relatively simple assertions
can be made about a design. For example, in C the assert macro can be used to
halt execution when, at a prespecified execution point, the state of the program
is determined to be bad. Assertions on the hardware side are used somewhat
differently, as monitors of the circuit’s dynamic behavior over multiple cycles.
When behavior satisfying the assertion is witnessed, the event is recorded and
reported to the user. Alternatively, a design can be proven to always satisfy the
assertion. For example, a typical assertion is that the state of some register never
has more than one bit set to 1 (i.e., it is 1-hot encoded).

SystemVerilog [36], a proper extension to Verilog, adds a number of language
features to Verilog, including an assertion language, objects, and a more sophisti-
cated type system. The assertion language is a combination of regular expressions
and temporal logic. The designer benefits greatly from having Verilog embedded
directly within the language for defining assertions. For example, assertions are
pervasive across module instances so it is possible to define a one-hot register
module. This module can be reused repeatedly in the design and even across
designs.

Specification languages have to be limited in their expressivity to make the
proof obligations for automatic decision procedures tractable. The BAT sys-
tem [5] is interesting in the sense that it is geared towards handling bit-level
implementations and incorporates sophisticated decision procedures to prove
non-trivial assertions about them. In its present form BAT lacks many proper-
ties of high-level design languages, but it may be an appropriate compilation
target for languages like SystemVerilog or Bluespec.

Even though many decision procedures are totally automatic, in practice,
using them requires that we limit the complexity of the assertions as well as the
design unit over which they are considered. Given this limitation, there may be
room for specialized solvers aimed at common classes of local assertions.
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3.7 FSM Equivalence and Automatic Retiming

In the EDA industry we have seen wide adoption of equivalence checking tech-
nologies. All of the major EDA vendors supply such tools [8,9,10], which provide
some guarantee that low-level transformations on netlists result in functionally
equivalent circuitry. These systems allow retiming optimizations to be tried with-
out any worries about the correctness of the system has changes. This work has
been highly successful for two major reasons. First, the algorithms are effective
on real-world designs. Second, the optimizations which are allowed can quickly
eke out crucial system performance improvements.

Intel’s Integrated Design and Verification (IDV) environment built on the
Forte [20] formal verification system is a more cutting-edge example of successful
integration of formal methods into the design process. The input to IDV is
an executable and synthesizable model expressed in a general-purpose reflected
functional language (reFLect). The tool allows the designer to transform the
circuit in a way that maintains a sequential refinement relation at every step.
The transformation process is used throughout – from high-level algorithmic
transformations down to detailed physical placement changes. This allows the
tool to catch implementation bugs as soon as they are made. In order to remove
specification bugs, the Forte tool also has more sophisticated formal analysis
capabilities which require more user intervention. For example, it has been used
to verify the correctness of an x86 instruction-length decoder and formally link an
x86 floating-point unit with the IEEE specification expressed using real numbers.

3.8 Formalized Testing

Property specification is used for more than just assertions about one-hot reg-
isters or constraints on complicated protocols, they are widely used to define
functional coverage goals. Instead of an assertion firing to indicate a breach of
protocol (e.g., a one-hot register has two 1 bits) the satisfaction of a property
now indicates greater coverage of the planned test space (e.g., pipeline flush oc-
curred). Coverage-driven testing is becoming very popular with languages such
as SystemVerilog [36] that integrate coverage goal specification with the design.
Integration of the languages makes the testing goals clearer (similar syntax is
used) and simply more convenient.

Coverage goals given in a language such as SystemVerilog advance verification
practice by formalizing the testplan and removing ambiguity from the English
descriptions. This saves time in developing directed test cases, reduces redundant
work, and allows tools to automatically manage the testing effort. The manage-
ment tools that accompany simulators yield essential information for steering the
testing effort. Without such tools, it is not even clear when we have exercised
a particular behavior. The view into the logic may only be through waveforms,
and going through the generated waveform data from even a simple case can
be daunting. Techniques also exist for generating test-stimulus through formal
methods, most of which rely on having formalized coverage goals to guide the
underlying deduction mechanisms.
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4 Issues with Incorporating Formal Methods into Design

We have seen the development of a rich variety of formal tools over the last
two decades: temporal logic model checkers (e.g., SMV [2], SPIN [37]); theorem
provers (e.g., ACL2 [38], PVS [39], Isabelle/HOL [40]); automated decision and
semi-decision procedures (e.g., BAT [5], Z3 [4], UCLID [3], Yices [41], Alloy [42]);
and other specification languages and tools (e.g., B [43], IOA [44], TIOA [45]).
Most tools today can handle much larger problems, have better libraries, and are
much more robust than a decade ago. In spite of these advances these tools have
at best seen marginal penetration in the design community. The community of
users of these tools has not gone far beyond the tool designers, who tend to be
highly inclined mathematically.

The only way to use any of these tools is to learn an entirely new system often
involving its own mathematical concepts which are divorced from the concepts
used in most designs. The barrier to entry is so high that the effort required is
almost never justified by the economic gains. We think that there is an obvious
way to fix this problem, though it requires a change in the mindset of the formal
methods community:

1. Tools must be invokable from the design language in a seamless manner. This
implies that the tools must be able to take unmodified source as input as well
as report results in a manner consistent with the language.

2. If possible, tools should be entirely automatic requiring no user intervention
to facilitate the proof process. Alternatively, if tools require some user guid-
ance, this information must be provided through the design language.

In this section we demonstrate how the lack of these two characteristics make
current methods extremely difficult to integrate into design flows. We do this by
considering the possible verifications of two designs described previously using
current tools. In one case we focus on a model-checking-based platform, and in
the other we consider theorem proving.

4.1 IP Lookup: Using Model Checkers in Practice

Consider what the process would be to verify the IP lookup design of Section 2.1
using the SPIN model checker. The design is written in Bluespec, but the SPIN
tool accepts Promela as input. The first thing that needs to be done is to convert
the Bluespec into Promela. While this could possibly be done mechanically,
as it stands today the designer must translate by hand. The same is true for
most design languages and this is highly undesirable. A manual translation can
easily introduce new behaviors into the design, or remove behaviors that existed
before translation. Therefore, the translation itself has to be verified, making
this approach a non-starter.

After translation, the next barrier that we come up against is specifying the
property to be verified. Consider the property that there is a one-to-one corre-
spondence between inputs and output of the IP lookup design. Currently, the
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designer is expected to be able to represent this in LTL. This is a significant
challenge as such logics are a completely foreign way of thinking for most de-
signers. Worse, since we are limited by LTL we cannot even represent the possi-
bly unbounded size of the input-output relation. The designer is left wondering
whether this is a result of him not knowing how to express the property, LTL
being restrictive, or an actual issue in his design.

Assuming that the property actually can be represented in LTL, it is likely
that a direct translation will be completely untenable. That is, given the propo-
sitional nature of LTL, the only view into the state is through unary predicates.
Therefore, if a direct translation of the code is done, then this number will be
gigantic. For example, given a 32-bit register, each of the 232 states would need
to be encoded separately to get all information out of the design. These numbers
quickly become far larger than any model checker can reasonably handle. Alter-
natively, the designer must abstract away certain states and prove that a much
smaller representation preserves the property being checked. For example, with
IP lookup a reasonable abstraction would use certain key assumptions about the
lookup table (e.g., that a lookup chain in the table is of length 1 to 4). Repre-
senting such abstraction naturally in the design language is a challenging open
problem..

However, even if we assume some abstraction is done correctly, what happens
if SPIN evaluates the correctness property and reports a bug? The designer must
now translate this failed path back into something useful to reason about. In this
case, the ideal way to express this would be the relevant indexes in the IP lookup
and, the inputs questions, and the timings of the rules in the system. Extracting
this from the given path is tedious for a designer. Any help in making the data
more accessible would pay significant dividends.

For formal methods to work effectively in an engineering design flow, it is
important to prevent the user from having to jump through hoops. But how
would the designer want to be able to use a formal system? First, the designer
wouldn’t have to manually translate from the design language (in this example
Bluespec). Second, apropos Section 3.4, a correctness specification would also be
given as part of the design in some natural dialect of Bluespec. In this case it
may involve adding virtual state to represent unique request tags which can be
verified to occur in sequential order at output. By informing the system of the
invariant that should be maintained, (i.e., packet identifiers leave in sequential
order) compilation would either prove or disprove this assertion. If wrong, the
system would give an initial state and an understandable sequence of rule firings
(a single semantic step in Bluespec) witnessing the failure. This would allow the
designer to stay focused on his design in the language to which he is used while
incorporating the verification task easily with compilation, a task he must do
frequently in design.

4.2 Cache Coherence: Using Theorem Provers in Practice

In his dissertation, Xiaowei Shen described an adaptive cache coherence proto-
col called Cachet [46,47] and proved it correct. This proof was very long and



Getting Formal Verification into Design Flow 29

complicated and it was decided that it should be proved mechanically using
PVS [16] to guarantee no mistakes were made. The mechanical proof considered
a significant subset of the protocol. Despite already having completed a hand-
worked proof of the complete protocol, it took an engineer skilled both in design
and formal methods six months of effort to complete, a significant expenditure.
Clearly, this amount of effort is much too burdensome for general integration in
the design flow. However, it is still worthwhile to consider how this would apply
for verifying the implementation.

A full proof of our implementation requires effort just to get an implemen-
tation into PVS. One possible approach would be to synthesize the code and
then feed it into PVS as one large Boolean next-state function. Of course, the
user then has to reason at this horribly tedious level of detail. Alternatively, we
could try to axiomatize Verilog or Bluespec semantics directly in PVS, but this
adds a layer of indirection in the proof which may complicate things. Ideally the
user could express booleans which represented the interesting properties to be
verified (e.g., no multiple modified version of an address) directly in the design.

Secondly, even with a good representation of the code in PVS, the proof
becomes much more complicated based on the fact that any implementation
is bound to involve many system details not elucidated by the protocol. For
example, while the abstract proof could assume that all coherence messages are
received, in an implementation with finite buffering and various routing logic,
this too must be verified. This would be quite difficult to formulate, let alone
prove in PVS.

5 Conclusion

Formal methods have come a long way, but for reasons we have outlined in this
paper, a large gap remains between current formal methodologies and engineer-
ing practice. Except in a few instances, formal methods are not tightly integrated
into the design-debug loop. We have argued that for widespread adoption formal
methods must be invoked through high-level design languages and must present
a semantic model that makes sense to the designer. Incorporation of assertions
in SystemVerilog is an example of a good start but its effectiveness is limited.
The weak semantics of Verilog, inability to express the full spectrum of interest-
ing correctness properties, and the capacity of current tools all take away from
usability.

The range of examples in this paper have shown that even for a single appli-
cation often more than one formal technique is needed to show correctness. It
may not be desirable to try to unify too many concepts into one specification
language. For example, should every design language be so powerful that it can
express probabilistic correctness? Or, to put this another way, just because some-
one might develop a system where probabilities are important (e.g., our 802.11
transmitter) should probabilities be in the language? It is a difficult question to
answer as it is not clear where one should draw the line. For example, in Blue-
spec nondeterminism is inherent in the language, but its observability remains



30 Arvind, N. Dave, and M. Katelman

latent in the current set of tools. In this case, probabilities are entirely foreign
to this model and it is not clear how they will affect the system.

Based on our design experience in Bluespec, we think we can express, pro-
grammatically, many assertions that we would like to prove about the design.
This may require the introduction of extra state and rules, but semantically it
requires no new concepts for the user. If these assertions and associated code are
syntactically identifiable in the source then it should be straightforward to elim-
inate them once the design is deemed to be working correctly. Such a method
may provide a continuum between “proof by simulation” and proof by formal
means. The real technical challenge is how to place restrictions on this verifica-
tion code so that the decision or semi-decision procedures have a high chance of
success. We plan to pursue this line of research in the future.
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Abstract. This talk will draw on our efforts in using static analysis, model 
checking, and symbolic execution to find bugs in real code, both in academic 
and commercial settings.  The unifying religion driving all these efforts has 
been: results matter more than anything.  That which works is good, that which 
does not is not.  While this worldview is simple, reality is not.  I will discuss 
some what we learned in struggling with this mismatch. 



J. Cuellar and T. Maibaum (Eds.): FM 2008, LNCS 5014, p. 34, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Simulation, Orchestration and Logical Clocks 

David Kitchen, Evan Powell, and Jayadev Misra 

University of Texas at Austin 
misra@cs.utexas.edu 

Abstract. A language in which discrete event simulations can be coded needs 
to support the features (1) to describe behavior of a single physical process, (2) 
to describe concurrent ctivities of multiple physical processes, including com-
munication, synchronization and  interruption, (3) to account for passage of 
time, and (4) to record system state at appropriate points and  create statistical 
summaries. Orc, a recent language for orchestration of distributed services, 
combines these features so that complex simulations can be expressed very suc-
cinctly. This talk describes the relevant features of Orc for simulation and illus-
trates them using a number of realistic examples.  Additionally, we show that 
certain combinatorial problems, such as shortest paths in graphs and many 
problems in computational geometry, can be cast as simulation problems, and 
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Abstract. The paper presents a deductive framework for proving
program equivalence and its application to automatic verification of
transformations performed by optimizing compilers. To leverage existing
program analysis techniques, we reduce the equivalence checking problem
to analysis of one system – a cross-product of the two input programs. We
show how the approach can be effectively used for checking equivalence of
consonant (i.e., structurally similar) programs. Finally, we report on the
prototype tool that applies the developed methodology to verify that a
compiler optimization run preserves the program semantics. Unlike exist-
ing frameworks, CoVaC accommodates absence of compiler annotations
and handles most of the classical intraprocedural optimizations such as
constant folding, reassociation, common subexpression elimination, code
motion, dead code elimination, branch optimizations, and others.

1 Introduction

Compilers, especially optimizing compilers, are quite large applications, which
are bound to have bugs. For example, the GCC Bug Database contains over 3
thousand reported bugs some of which may alter the behavior of programs be-
ing compiled. This is highly undesirable, especially in safety critical and high-
assurance software, where the effort of program correctness verification is
extensive. First, the developers manually examine code and test it. Then, nu-
merous verification tools and techniques are applied to verify that the source
code satisfies the desired properties. After all the rigorous checks are complete,
the program is compiled by an optimizing compiler and released. Clearly, the
verification effort should not stop here – it is highly advisable to ensure that the
transformations performed by a compiler preserve the semantics of a program.

That is precisely the goal of Translation Validation (TV) [1] – it ensures that
optimizing transformations preserve program semantics. In essence, instead of
attempting the verification of a given compiler, each compiler run is followed by
a validation pass that automatically checks that the target code produced by the
compiler is semantically equivalent to the source code. A good question is: “Can
this goal be achieved?” The problem of program equivalence is undecidable.
However, since the focus is only on compiler optimizations, the number of false
� This research has been supported in part by a grant from the Microsoft Phoenix
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alarms can be drastically minimized or even eliminated, intuitively, due to the
fact that we are aware of the analyses used by the optimizing compilers, and
since those analyses are mechanical in nature.

In this paper, we present a Compiler Verification by Program Analysis of the
Cross-Product framework (CoVaC ) – a novel translation validation approach,
in which one constructs a comparison system – a cross-product of the source
and target programs. The input programs are equivalent if and only if the com-
parison system satisfies a certain specification. This allows us to leverage the
existing methods of proving properties of a single program instead of relying on
program analysis and proof rules specialized to translation validation, used by
the existing frameworks [2,3,4]. CoVaC is not tailored to validation of compiler
transformations – it targets program equivalence in general; for example, it can
be applied to validation of language-based security properties [5].

The CoVaC framework can be used in various settings, and, while the check
for specification conformance is expected to be the same, the construction of the
comparison system may diverge. For example, compiler writers may use trans-
lation validation for the creation of a self-certifying compiler and, thus, may
assume full knowledge of the inner workings of a particular compiler. In this
case, the compiler itself may output the comparison system. The second part of
this paper pursues the other extreme – it describes a method for automatic gen-
eration of the comparison system, and thus, a translation validation algorithm,
which accommodates no compiler cooperation. To the best of our knowledge,
the existing translation validation frameworks which handle a comparable set of
optimizations at least to some degree rely on compiler assistance. The lack of
compiler dependency makes it possible to develop a general purpose verification
tool that can be used to verify the transformations performed by different com-
pilers. Such tool would be especially useful to compiler users who may have to
work with a particular existing compiler. Additionally, this methodology can be
of service to compiler developers to facilitate testing of immature compilers.

In order to make the validator of non-cooperative compilers feasible and ef-
fective, we currently restrict the set of transformations under consideration to
intraprocedural optimizations in which each loop in the target program corre-
sponds to a loop in the source program; we refer to such input systems as con-
sonant . Many of the classical compiler optimizations such as constant folding,
reassociation, induction variable optimizations, common subexpression elimina-
tion, code motion, branch optimizations, register allocation, instruction schedul-
ing, and others fall into this category. These optimizations are usually referred to
as structure preserving [2]. Finally, this paper reports on a prototype tool CoVaC
that applies the developed framework to verification of optimizing transforma-
tions performed by LLVM [6] – an aggressive open-source C and C++ compiler.

In summary, this paper makes the following contributions. First, it presents
a novel deductive framework for checking equivalence of infinite state programs.
Second, it defines the notion of consonance and shows how the method can be
effectively applied to consonant programs. The presented algorithm does not
rely on any additional input; thus, it can be used to verify compilations while
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treating the compiler as a black-box. Due to lack of space, the paper does not
contain proofs and only briefly discusses the implementation details. For a full
version, the reader is referred to our technical report [7].

The rest of the paper is organized as follows. Section 2 introduces our formal
model and defines the notion of correct translation. We describe the general
framework for establishing program equivalence in Section 3. Section 4 presents
the algorithm for comparison system construction, which requires no compiler
cooperation. An example is presented in Section 5; and Section 6 focuses on the
experimental results. We discuss the related work and conclude in Section 7.

2 Formal Model and the Notion of Correct Translation

2.1 Transition Graphs

Our model is similar to that presented in [8] for verification of procedural pro-
grams.

A program (application) A consists of m + 1 procedures: main, f1, . . . , fm,
where main represents the main procedure, and f1, . . . , fm are procedures which
may be called from main or from other procedures. We use fi(�x; &�z) to denote
the signature of a procedure. Here, call-by-value parameter passing method is
used for �x, and call-by-reference is used for �z. A procedure may return a result
by means of �z variables. We use �y to denote the typed variables of a procedure.
�y = (�x; �z; �w), i.e. the variables in �y are partitioned into �x, �z, and �w, where �x
and �z are the input parameters and �w denotes the local variables.

Each procedure is presented as a transition graph fi := (�y, Ni, Ei) with vari-
ables �y, nodes (locations) Ni = {ri = ni

0, ni
1, ni

2, . . . , ni
k = ti} and a set of

labeled edges Ei. It must have a distinct root node ri as its only entry point, a
distinct tail node ti as its only exit point, and every other node must be on a path
from ri to ti. Nodes of the graph are connected by directed edges labeled by in-
structions. There are four types of instructions: guarded assignments, procedure
calls, reads, and writes. Consider a procedure fi(�x; &�z) with �y = (�x, �z, �w). Let
�u include variables from �y; and E(�y) be a list of expressions over �y.

• A guarded assignment is an instruction of the form c → [�u := E(�y)], where
guard c is a boolean expression. When the assignment part is empty, we
abbreviate the label to a pure condition c?.

• Procedure call instruction fk(E(�y), �u) denotes a call to procedure
fk(�xk; &�zk), passing input parameters E(�y) by value and �u by reference.

• Read and write instructions are denoted by read(�u) and write(�u). They are
used to express the interaction of the procedure with the outside world; e.g.
I/O instructions.

The implicit guards of read, write, and procedure call instructions always eval-
uate to true. A transition graph is deterministic when, for every node n, the
guards of all edges departing from n are mutually exclusive. A transition graph
is non-blocking when, for every node, the disjunction of the guards evaluates to
true. In this work, we only consider deterministic non-blocking systems.
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Transition graphs can be used to model programs written in procedural lan-
guages. In order to construct a formal model of a program, we first choose a set
of program locations Υ such that:

• At least one location in each loop belongs to Υ .
• For every procedure, both procedure entry and exit belong to Υ .
• The locations before and after read, write, and procedure call belong to Υ .

Each procedure whose implementation is given is represented by a transition
graph. We choose the set Υ of a procedure fi to be the set of nodes for the
corresponding transition graph. For every pair of locations n, m in Υ , if there
exists a path π from n to m, which does not pass through any other location
from Υ , we add edge (n, m) to the graph and label it by the instruction that
summarizes the effect of executing the path π.

2.2 States and Computations

We denote by �d = ( �dx; �dz ; �dw) a tuple of values, which represents an interpre-
tation (i.e., an assignment of values) of the procedure variables �y = (�x; �z; �w).
A state of a procedure f is a pair 〈n; �d〉 consisting of a node n and a data inter-
pretation �d. A (�ξ, �ζ)-computation of procedure f is a maximal sequence of states
and labeled transitions:

σ : 〈r; (�ξ, �ζ, ��)〉 λ1−→ 〈n1; �d1〉
λ2−→ 〈n2; �d2〉 . . .

The tuple �� denotes uninitialized values. At the first state of the computation,
the location is r, the entry location of f ; the values of input variables �x and �z are
set to �ξ and �ζ, respectively, and the local variables �w are not initialized. Labels
of the transitions are either labels of edges in the program or the special label
ret. Each transition must be justified by either an intra-procedural transition,
a call transition, or a return transition such that the call and return transitions
are balanced . See our technical report [7] for the formal definition.

We use Cmp(f) to denote the computations of a transition graph f . We define
a set of computations of a procedural program A, denoted Cmp(A), to be the
set of computations Cmp(main).

2.3 Correct Translation

In this work, we are only concerned with intraprocedural optimizations, so for
simplicity, we are going to assume that the corresponding procedures of S and
T have the same names; we are going to use a superscript notation to differ-
entiate between the source and target procedures. We define the correctness of
translation via equivalence of program behaviors that can be observed by the
user. Intuitively, given the same input, both, S and T , must produce the same
output and should either both terminate or generate infinite computations. We
also observe the values of input and output parameters of every procedure.

Given a computation, we define Vs – the set of observable variables at a state
s = 〈n; d〉, to be the minimal set satisfying the following conditions:
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• If s is a state immediately after transition read(�u), Vs ⊇ �u.
• If s is a state immediately before transition write(�u), Vs ⊇ �u.
• If n = r is the entry node of procedure f(�x, &�z), (Vs ⊇ �x) ∧ (Vs ⊇ �z).
• If n = t is the exit node of procedure f(�x, &�z), Vs ⊇ �z.

Above, we use Vs ⊇ �u to denote Vs ⊇ {v : v in �u}.
We associate observation function O with each program, mapping the source

and target states and transition labels into a common domain. The observation
function needs to ensure that read and write transitions of the source and target
computations match. Formally, given a state s = 〈n; d〉, an observation function
O(s) is defined as following. Let Vs be the set of observable variables at s. If
Vs = ∅ then O(s) = ⊥, else O(s) = �dVs . We obtain �dVs by restricting �d only
to the values that correspond to the variables in Vs. Given a transition label λ,
an observation function O(λ) is defined as follows. If λ is a label of a transition
that is a read, a write, a call to procedure g, or a return from g, O(λ) is equal
to read, write, callg, or retg, respectively. Otherwise, O(λ) = ⊥.

An observation of a computation σ, denoted o(σ), is obtained by applying the
observation function O to each state and each transition label in σ. That is, for

σ : s1
λ1−→ s2

λ2−→ s3 . . . , we get o(σ) : O(s1)
O(λ1)−→ O(s2)

O(λ2)−→ O(s3) . . . .

Definition 1. Computations σ and σ′ are stuttering equivalent, denoted
σ ∼st σ′, if their observations o(σ), o(σ′) only differ from each other by finite
sequences of pairs ⊥ ⊥−→ or ⊥−→ ⊥.

Stuttering equivalence is used to ensure that even though the programs may have
to execute a different number of instructions to get to an observable state, the
difference is always finite. Our assumption is that the user is not time-sensitive
so this finite delta cannot be observed. For example, β ∼st β′:

o(β) : ⊥ read−→ (5, 22) ⊥−→ ⊥ ⊥−→ ⊥ ⊥−→ (110) write−→ ⊥
o(β′): ⊥ read−→ (5, 22) ⊥−→ ⊥ ⊥−→ (110) write−→ ⊥ ⊥−→ ⊥

In both computations, first two numbers: 5 and 22, are read; and then, after a
finite number of steps, their product: 110, is written out.

Definition 2. We say that procedure fT is a correct translation of proce-
dure fS if, for every (�ξ, �ζ)-computation σT in Cmp(fT ), there exists a (�ξ, �ζ)-
computation σS in Cmp(fS) such that σT ∼st σS , and vice versa. Program T is
a correct translation of program S if mainT is a correct translation of mainS.

3 Equivalence Checking by Program Analysis of the
Cross-Product S � T

In this section, we show that the problem of establishing correct translation is
equivalent to construction of a cross-product (comparison) system C = S�T and
checking if C satisfies a set of correctness conditions. Our framework is general
enough for establishing translation correctness of deterministic systems in pres-
ence of a wide set of intraprocedural transformations and can be easily extended
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to cope with interprocedural optimizations as well. Later in the paper, we present
application of the method to proving translation of consonant systems. However,
the general framework can be used to reason about translation correctness in
presence of structure modifying optimizations such as loop transformations [9].

3.1 Comparison Graphs

Assume we are given two programs, S and T . For each pair of the corresponding
source and target procedures, fS = (�yS , N S , ES) and fT = (�yT , N T , ET ), a
graph satisfying the set of rules below is called a comparison transition graph,
denoted f = (�y, N , E) = fS � fT . f represents a simultaneous execution of fS

and fT . The collection of comparison graphs for all procedures constitutes the
comparison program C = S � T .

Rule 1. (Structural Requirement)

1. The variables of the comparison graph �y = (�x, �z, �w) are defined as follows:
�x = �xS ◦�xT ; �z = �zS ◦�zT ; and �w = �wS ◦ �wT , where �v◦�u denotes concatenation
of two vectors.

2. Each node of f is a pair of source and target nodes: N ⊆ N S × N T . Let
rS , tS and rT , tT denote the exit and entry nodes of fS and fT respectively.
Then r = 〈rS , rT 〉 and t = 〈tS , tT 〉 are the entry and exit nodes of f .

3. Each edge of the graph e = (〈nS , nT 〉, 〈mS , mT 〉) ∈ E, labeled by a pair of
instructions 〈opS ; opT 〉, should be justified by one of the following:

• (nS , mS) ∈ ES and it is labeled by opS ; (nT , mT ) ∈ ET and it is labeled
by opT ; and opS and opT are instructions of the same type (either both
reads, writes, assignments, or calls to procedures with the same name).

• (nS , mS) ∈ ES, labeled by assignment opS ; nT = mT ; and opT = ε.
• (nT , mT ) ∈ ET , labeled by assignment opT ; nS = mS; and opS = ε.

Where, ε stands for assignment true?, which represents an idle transition.

Since the edges of a comparison graph are labeled by the same type instructions,
reads and writes of the two systems are performed in sync.

A composed transition 〈n; �d〉 eS ; eT

−→ 〈n′; �d′〉 is interpreted as a sequential compo-
sition of the source and target transitions with one exception. Let eS and eT be la-
beled by read(�uS) and read(�uT ). Then, the transition is enabled only if �d′uS = �d′uT ,
where �d′

uS and �d′
uT are obtained from �d′ by restricting it to the values that corre-

spond to the variables �uS and �uT . Thus, we require that the values fed into the
source and target reads are equal. Given σ in Cmp(f), we use σ↑S to denote a path
obtained by projection of σ onto the states and transitions related to procedure fS .

Rule 2. There does not exist σ in Cmp(f) such that σ↑S or σ↑T contains an
infinite sequence of ε-transitions.

The following claim follows directly from Rule 1 and Rule 2: ∀σ ∈ Cmp(f) :
(∃σS ∈ Cmp(fS) : σS ∼st σ ↑S) ∧ (∃σT ∈ Cmp(fT ) : σT ∼st σ ↑T ); i.e.
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every computation of the comparison graph has the corresponding computations
in both source and target.

In addition, we should ensure the reverse of the previous claim: the computa-
tions of the comparison graph represent all the computations of the input sys-
tems. We say that computations of an input system, say Cmp(fS), are covered by
Cmp(f) when the following condition holds: ∀σS ∈ Cmp(fS), ∃σ ∈ Cmp(f) :
σS differs from σ ↑S, by only finite sequences of (padding) ε-transitions. The
notion of coverage is stronger then stuttering equivalence, so it follows that
σS ∼st σ↑S .

Rule 3. Computations of fS and computations of fT are covered by Cmp(f).

Note that following Rule 3, not all edges of the input graphs have to be in the
comparison graph, which allows us to disregard the unreachable states of the
input systems. Now as we have defined a comparison graph, let’s consider what
properties it should satisfy in order to guarantee the correctness of translation.

Definition 3. A comparison graph f = fS �fT , is a witness of correct transla-
tion if for every ((�ξ◦�ξ), (�ζ◦�ζ))-computation of f , its target and source projections
have equal observations. Note, we restrict the computations under consideration
to those in which the input parameters are initialized with the same values.

Theorem 1. Target function fT is a correct translation of source function fS

if and only if there exists a witness comparison graph f = fS � fT . In addition,
if fT is a correct translation of fS then every comparison graph f = fS � fT is
a witness of correct translation. (Refer to [7] for the proof of the theorem.)

Thus, in order to determine the correctness of translation, it is sufficient to
construct a comparison graph and check if it is, indeed, a witness. Fig. 1 depicts
an example of a witness comparison graph. For example, let σ be the (��; (5, 5))-
computation of f(&(Y, y)) = fS(&Y ) � fT (&y) defined by user input 10 then

o(σ↑S) = o(σ↑T ) = ⊥ ⊥−→ ⊥ read−→ (10) ⊥−→ (300) write−→ ⊥

0,0 1,0 2,1 3,32,2

ε;

ε read(x)

read(X);

write(y ∗ x)

write(Y ∗ X);

y := y + 25

Y := Y + 12 + 13;

Fig. 1. A comparison transition graph for f(&(Y, y)). We use capital variables to denote
the variables of the source and their lower case counterparts for the target.

3.2 Witness Verification Conditions

Let ϕn be an assertion associated with a node n. An assertion network ΦC =
{ϕn : n ∈ locations of C} for a program C is said to be invariant if for every
state 〈n; �d〉 occurring in a computation, d |= ϕn. That is, on every visit of a
computation of node n, the data state satisfies the corresponding assertion ϕn.
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Suppose a comparison program C = S � T and an invariant network have
been constructed. The rules presented below can be used to generate Witness
Verification Conditions for C. Whenever the verification conditions are valid,
all the transition graphs that constitute C are witnesses of correct translation,
so we can apply Theorem 1 to safely conclude that the translation is correct;
otherwise, we report that the translation is erroneous.

• For a write edge (n, m) labeled by ( write(�uS); write(�uT ) ):
ϕn → (�uS = �uT ).

• For a call edge e = (n, m) labeled by ( gS(ES , �uS); gT (ET , �uT ) ), we check
that the call arguments are equal:

ϕn → (ES = ET ) ∧ (�uS = �uT )
• If n is the exit node of the comparison transition graph fS � fT , where

fS(�xS ; &�zS) and fT (�xT ; &�zT ), we check if the values of the variables passed
by reference are equal:

ϕn → (�zS = �zT ).

Claim 1. Let mainS and mainT be the main procedures of S and T respec-
tively. A comparison graph main = mainS � mainT is a witness of correct
translation and, consequently, S is a correct translation of T if all the Witness
Verification Conditions associated with C are valid.

Note that since we are checking that the procedure input parameters are equiva-
lent, the invariant generation algorithm can be intraprocedural. Essentially, one
can apply an assume-guarantee reasoning, where f is checked to be a witness,
assuming that all the callees of a procedure f are witnesses themselves.

The presented conditions do not constitute an inductive proof of translation
correctness: it is assumed that the assertions in ΦC are indeed invariants of C. The
extra requirement that has to be satisfied in case such a proof is desirable is that
the invariant assertion network should be inductive [10,7]. The availability of
such a proof increases the level of confidence and allows third-party verification.
In addition, it is required if one is to employ invariant generation techniques that
may introduce false positives, such as probabilistic algorithms [11]. Automatic
theorem provers such as YICES[12], CVC3[13], can be utilized to independently
check the validity of the proof.

The rest of this paper describes a method for comparison system construc-
tion. However, generation of program invariants and checking their correctness
are essential ingredients for solving a translation validation problem. Here, one
of the main advantages of our approach comes into play. Since we have reduced
the translation validation problem to analysis of a single system, any existing
technique out of a vast body of work on invariant generation can be used. From
our experiments, we found that, among others, global value numbering [14] and
assertion checking – a static program verification technique based on computa-
tion of weakest-precondition [15], are quite effective in this setting. Refer to our
technical report [7] for a detailed discussion.
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4 Comparison Graph Construction

We have developed a construction algorithm for consonant input programs (i.e.,
structurally similar programs). This restriction allows for effective application of
our methodology to verification of optimizing compilers in absence of compiler
annotations. The comparison system C = S � T is just a collection of all graphs
f = fS � fT , where fS and fT are the corresponding procedures from S and
T . Thus, it suffices to present a construction algorithm for a procedure f .

4.1 Consonant Transition Graphs

We are going to use a transition graph fS = (�yS , N S , ES) to define several
notions, which apply to both fS and fT . Each node of fS belongs to one of
the following categories: read, write, call, branch, unconditional assignment, or
exit; denoted rd, wt, cl, br, ua, and tl respectively. Intuitively, the type of a
node n depends on the type of the edges outgoing from n. Specifically, we say
that a node n ∈ N S is a read node, written τ(nS) = rd, if ∃ (nS , mS) ∈ ES

and (nS , mS) is labeled by a read instruction. Similarly, we define write and call
nodes; the type of the exit node is tl. The remaining nodes are categorized as
either unconditional assignment or branch nodes depending on whether there
is more than one assignment edge outgoing from n. The node types are well
defined due to the fact that the graphs are deterministic and read, write, and
call edges are implicitly conditioned on true. Given a transition graph fS , we
define a set of cut points, denoted PS, to be a subset of graph nodes such that
PS = { nS : nS ∈ N S ∧ τ(nS) �= ua }. Adding all branch nodes, not only loop
heads, to the cut point set allows us to have different granularity, depending
on the choice of the transition graph nodes (see Section 2.1). Finer granularity
improves efficiency; but it is not always applicable: the input programs have to
be consonant modulo the chosen cut point set. Every computation σS defines a
corresponding sequence of cut points, which can be obtained from σS by first
selecting the nodes of each subsequent state and then removing nodes that are
not in PS from that sequence.

Definition 4. We say that graphs fS and fT are consonant if there exists a
partial map κ : PS �→ PT such that ∀ σS , σT : σS ∈ Cmp(fS), σT ∈ Cmp(fT )
the following holds: if σS and σT are defined by the same input sequence, and
nS

0 , nS
1 , ... and nT

0 , nT
1 , ... are the cut point sequences defined by σS and σT , then

(κ(nS
i ) = nT

i ) ∧ (τ(nS
i ) = τ(nT

i )). Such map is called a control abstraction.

Our comparison graph construction is going to discover the control abstrac-
tion by composing the corresponding nodes. Surprisingly many compiler opti-
mizations preserve consonance of programs. For example, code motion, constant
folding, reassociation, common subexpression elimination, dead code elimina-
tion, instruction scheduling, branch optimizations all fall into this category. On
the other hand, loop reordering transformations such as tiling and interchange
are not covered by the method presented below.
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4.2 Algorithm Compose

Fig. 2 presents pseudocode for the compose algorithm that iteratively constructs
a comparison graph f = fS � fT for consonant input transition graphs fS and
fT . We start the construction with a node n0 = 〈nS

0 , nT
0 〉, where nS

0 and nT
0 are

the entry nodes of fS and fT , respectively. The new node n0 is added to the
WorkList, which is our discovery frontier: if a node n is placed into WorkList, it
means that, potentially, more edges outgoing from n may be discovered. At each
iteration, we remove a node n from the WorkList and apply matchEdges function
to construct a list of newly discovered outgoing edges. The end nodes of the edges,
denoted ne, are placed into WorkList. Even though we always discover a new
edge, ne could have been added to f at some previous iteration and may also
have successors in f . In that case, all its eventual successors must also be added
to WorkList. Intuitively, if a new path leading to a node is added, that node
has to be processed again since more outgoing edges could be discovered. The
function matchEdges may fail, returning NULL. This happens when we cannot
construct a comparison system satisfying the requirements from Section 3.1.

//Initialization:
n0:=CompNode(n

S
0 , nT

0 ); C.Nodes:={n0}; C.Edges:={}; WorkList := {n0};
//Iteration:
while( ! WorkList.isEmpty()) {

n := WorkList.removeElement();
MatchList := matchEdges(n,S,T );
if(MatchList == NULL) ABORT;

while(! MatchList.isEmpty()){
enew := MatchList.removeElement();
ne = NewCEdge.toNode();
C.Nodes.add(ne); //unlike the edge, ne may not be new∗

C.Edges.insert(enew);
WorkList.add(ne);
WorkList.add(getDescendants(ne));

}
}

Fig. 2. Algorithm compose that constructs the comparison transition graph f = fS �
fT . * Procedure add does not add duplicate items to a collection.

Matching the source and target edges (matchEdges): Below is a set of
rules used to add new edges to the comparison graph:

• Matching edges of the same type: Given a node 〈nS , nT 〉, we match the
outgoing edges if and only if τ(nS) = τ(nT ).

• Adding ε–transitions: If nS /∈ PS (implying τ(nS) = ua), we match the
source assignment edge with an ε–transition on the target. The case of nT /∈
PT is handled analogously.
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• Raising error: If none of the rules are applicable to a node 〈nS , nT 〉, match-
Edges returns NULL, and the construction of C is aborted.

We always match read, write, and function call edges if both systems can take
such a step. Guarded assignment edges can also be composed with each other;
but we require that either both systems are currently at a branch node (or a loop
head depending on the desired granularity) or neither. Since the input systems
are consonant, this condition allows to align the corresponding source and target
cut points. The case when only one of systems has reached a cut point is covered
via ε–transitions, so that it can wait for the other system to catch up. Note
that since ε is only composed with unconditional assignments, it is guaranteed
that the comparison system does not contain an ε–cycle, so the wait always is
finite. Finally, we fail when both systems are at cut point nodes nS , nT but
τ(nS) �= τ(nT ). For example, one system is ready to read while the other is
about to execute a procedure call.

Branch Alignment: Consider the case when τ(nS) = τ(nT ) = br. By the first
rule of matchEdges, the outgoing edges should be matched. However, there is
an obvious efficiency problem with simply taking all possibilities (i.e., carte-
sian product) when we consider two nodes with multiple outgoing assignment
edges. Such straightforward approach may lead to a number of edges in f being
quadratic in the number of edges in the input graphs. More importantly, if we
mismatch the branches, unreachable nodes could be introduced into the graph,
which may lead to further misalignment down the road. In particular, read,
write, and function call edges may get out of sync. Consider the example in the
figure below. Suppose C = c, X = x, and Y = y. Then fT is a correct transla-
tion of fS. However, if we compose edges (0, 1) and (4, 6) just relying on the fact
that they are both conditional assignments (τ(0) = τ(4) = br), the algorithm
presented so far will raise an error when examining the newly added unreachable
node 〈1, 6〉. Thus, there is a need for comprehensive branch matching. One such
method is presented below; in addition to resolving the misalignment issue, it
usually constructs a comparison graph linear in the size of the input graphs.

1

0 4

5 62

0,4

1,6

read(X)read(x) write(y)

fS :

C ¬C
=⇒

read(X)

�

fT :

c ¬c

write(Y )

C ∧ ¬c

write(y)

Assume that we have an algorithm InvGen(fk) that, given a partially con-
structed graph fk, obtained after the kth iteration of compose, outputs a set of
invariants { ϕk

n : n ∈ locations of fk}. We will use these invariants to facilitate
the edge matching at iteration k + 1 so that the composed edges that would
introduce infeasible paths are ruled out. Let ES

n represent the set of source edges
outgoing from nS s.t. each edge eS ∈ ES

n is labeled by cS → [ �uS := ES(�y)].
Similarly, we define ET

n .
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A pair (eS , eT ) ∈ ES
n × ET

n is matched if and only if
– it does not yet belong to the comparison graph and
– (ϕk

n ∧ cS ∧ cT ) is satisfiable.

We only want to add an edge if there exists an execution through fk in which
eS and eT are enabled simultaneously. An important question to ask is how
the decision made using a partially constructed graph fk relates to the fully
constructed graph f . Let ϕfix

n be the invariant which can be obtained by running
InvGen on the fully constructed comparison graph f . Invariant ϕk

n is an under-
approximation of ϕfix

n , meaning, for some assertion Φk
n, ϕk

n = (ϕfix
n ∧ Φk

n).

Lemma 1. No spurious predictions are possible: if the match (eS , eT ) is made
with ϕk

n, it also complies with ϕfix
n . As a practical consequence, algorithm compose

never has to remove any of the previously added edges; thus, it never backtracks.
The converse does not hold: we may discover more matches with invariant ϕl

n,
where l : l > k is a later iteration of algorithm compose. For this reason, the
algorithm adds ne and its decedents to the WorkList (see Fig. 2).

Theorem 2. The following are properties of algorithm compose:

• Termination: algorithm compose terminates.
• Soundness: if algorithm compose succeeds, the resulting graph f = fS � fT

satisfies all of the requirements presented in Section 3.1.
• Completeness: if fT and fS are consonant, compose succeeds in construction

of a comparison graph f = fS � fT given a strong enough InvGen .

Note that the completeness of the algorithm is conditional on strength of InvGen
algorithm used for branch matching. As we show in [7], even for consonant graphs
the invariant may need to be strong enough to express reachability, which is
undecidable for infinite state systems. All hope is not lost: it is usually feasible
to construct the invariants sufficient for our particular application – verification
of compiler transformations, intuitively, due to the fact that compilers base their
decisions on automated reasoning. The proof of the theorem and the discussion
on the InvGen used in practice can be found in [7].

5 Example

In this section, we present an example that demonstrates application of compose
algorithm to comparison system construction along with the generated invariants
and Witness Verification Conditions. Consider Fig. 3. The first two graphs
depict the source transition graph and the target obtained from the source after
constant copy propagation, if simplification, loop invariant code motion, reas-
sociation, and instruction scheduling. Cut point nodes are denoted by double
circles. We use capital letters to denote the source variables and their lowercase
counterparts for the target. MEM and mem denote the memory heaps. The
procedure first reads in two elements – one is stored in register K and the other
one in memory at address A. Then, ten elements of the array, stored starting at
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address P , are being assigned to. Finally, the first element of the array is printed
out. We assume that the addresses of the array elements do not overlap with A.

After the third iteration of the algorithm compose (from Section 4), we ob-
tain graph C3 (Comparison 3), which is constructed as following. On the first
iteration, an assignment of the source is matched up with an ε-transition on the
target. On the second iteration, node 〈1, 0〉 is considered, and since both pro-
cedures are ready to execute reads, the composed read edge is added. Next, we
examine node 〈2, 1〉. Since only the source procedure has reached a cut point,
it waits for the target system to catch up by taking an ε-transition. On the
fourth iteration, node 〈2, 2〉 is considered for the first time and the algorithm
InvGen(C3) returns ϕ3

〈2,2〉 : (I = i = 1), which is used to align the branches of
the loop and obtain C4 (Comparison 4). However, ϕ3

〈2,2〉 ∧ (I ≥ 10) ∧ (i ≥ 10)
is unsatisfiable. Thus, the matching of the loop exit edges is ruled out by the
invariant. At the end of the fourth iteration, node 〈2, 2〉 is added to the WorkList
again. Notice that ϕ3

〈2,2〉 does not hold in system C4 since I and i are updated
in the loop, so InvGen(C4) widens the invariant, resulting in ϕ4

〈2,2〉 : (I = i),
which allows to match up the loop exit edges (ϕ4

〈2,2〉 ∧ (I ≥ 10) ∧ (i ≥ 10)
is satisfiable). Finally, we match the write edges and obtain C = C6 (Com-
parison 6).

After the comparison system is constructed, we generate the Witness Veri-
fication Condition to check that both systems write out the same values
(following the rules from Section 3.2):

ϕfix
〈3,3〉 → (MEM [P ] = mem[p]).

An inductive invariant network for the comparison program is presented below.
The validity of the verification condition directly follows from ϕfix

〈3,3〉.

ϕfix
〈0,0〉 : (MEM = mem) ∧ (A = a) ∧ (P = p) ∧ (A /∈ [P..P + 9])

ϕfix
〈1,0〉 : (I = 1) ∧ (C = 5) ∧ ϕfix

〈0,0〉
ϕfix
〈2,1〉 : (K = k) ∧ ϕfix

〈1,0〉
ϕfix
〈2,2〉 : (I = i) ∧ (u = (MEM [A] + C) ∗ K) ∧ (C = 5) ∧ ϕfix

〈0,0〉
ϕfix
〈3,3〉 : (MEM = mem) ∧ (P = p)

ϕfix
〈0,0〉 asserts our assumptions that at the entry to the programs, the memory

heaps of the source and target are the same; the corresponding address variables
of the two systems are equal; and the address variable A(a) does not overlap with
the addresses of the elements of the source(target) array. The most interesting
invariant is ϕfix

〈2,2〉, which asserts that, after each loop iteration, the source and
target heaps stay equivalent. Its validity is ensured by the following facts: the
addresses at which memory is updated are equal (due to I = i ∧ P = p); the
expressions stored at those addresses are equal (since u = (MEM [A] + C) ∗ K
∧ I = i); MEM [A] is not altered by the loop (because A /∈ [P..P + 10]).
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(I < 10 ∧ K > 0) → (MEM [P + I], I) := (I ∗ (MEM [A] + C) ∗ K, I + 1)

read (K, MEM [A]) write (MEM [P ])(I ≥ 10)?
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(I < 10 ∧ K ≤ 0) → (MEM [P + I], I) := (I ∗ (MEM [A] + 5) ∗ K, I + 1)

(i < 10) → (mem[p + i], i) := (i ∗ u, i + 1)

0,0

3,3 4,42,2

C
om

pa
ri

so
n
 6 1,0

2,1
ε

(I < 10 ∧ K > 0) → (MEM [P + I], I) := (I ∗ (MEM [A] + C) ∗ K, I + 1)

ε

(I, C) := (0, 5)

read (k, mem[a])
read (K, MEM [A]) (i ≥ 10)?

(I ≥ 10)?
write (mem[p])
write (MEM [P ])

(i < 10) → (mem[p + i], i) := (i ∗ u, i + 1)
(I < 10 ∧ K ≤ 0) → (MEM [P + I], I) := (I ∗ (MEM [A] + 5) ∗ K, I + 1)

(i, u) := (0, k ∗ (mem[a] + 5))

(i < 10) → (mem[p + i], i) := (i ∗ u, i + 1)

Fig. 3. Source and Target are the input transition graphs: the programs before and
after the optimization, respectively. Next, we depict the comparison graphs obtained
at the three stages of the comparison graph construction.
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6 CoVaC Tool

We have developed a prototype tool CoVaC based on the presented methodology
and used it to verify the optimizations performed by LLVM compiler [6]. The
tool has been developed in C++ and uses LLVM data structures for program
representation and parsing. Its current line count is at approximately 7,000.

One of the main focuses of the tool is balancing precision and efficiency. To
achieve this balance, CoVaC generally utilizes a two-phase strategy: first, it ap-
plies fast lightweight analyses, and then, resorts to deep and precise analyses. A
good illustration of the two-phase approach is expression equivalence checking,
which is one of the central subgoals of our framework. We employ a fast but im-
precise value numbering algorithm during the first phase. When value numbering
is inconclusive, we resort to assertion checking – a static program verification
technique based on computation of weakest-precondition [15], which uses CVC3
theorem prover [13] as the backend.

We have tested the tool performance on a set of C programs compiled from
the CoVaC feature tests, selected programs from the LLVM test suite, and third
party implementation of several algorithms (such as in-place heapsort, binary
search, print first N primes, etc.), with the total line count of approximately 1K,
which corresponds to 2K lines of LLVM bytecode. On average, when validating
highly optimized code: 0.53 optimizations per line, CoVaC spends 1 second per
every 61 lines, assuming no compiler collaboration. The most time is spent on
calls to assertion checker, which is dispatched once per every 8 lines. The proto-
type’s performance provides a strong evidence that a practical validator can be
constructed, especially taking into account that, unlike compiler, the tool is used
few times per program’s lifetime. The most notable exception is application of
the framework to compiler testing. However, in such a case, CoVaC can be called
after every optimization path rather than after a complete run, and verification
of lightly optimized code is much faster since value numbering is sufficient for
resolving most of the equivalence checks.

7 Related Work and Conclusion

Our approach can be seen as application of bisimulation equivalence [16] to
translation validation and checking equivalence of infinite state programs. Good
examples of existing general translation validation frameworks are [17,9,18], [4],
and [3]; all present program analysis and proof rules specialized to program
equivalence checking. [17,9,18] and [4] rely on compiler debug information to
guide their effort. [3] attempts to eliminate the dependency; however, the com-
piler annotations are the essential part of its heuristics for branch matching.
Even though CoVaC can benefit from compiler annotations in the same way as
the existing approaches, it does not require any. [18] focuses on handling inter-
procedural optimizations; and tools presented in [9] and [4] provide additional
rules for loop reordering optimizations (loop interchange, fusion, etc.), which
do not preserve consonance. Similar extensions can be incorporated into our
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general framework; however, their application to non-cooperative compilers is
a topic of future research. [19] describes a complete method (no false alarms)
for translation validation specialized to register allocation and spilling. For a
comprehensive survey on compiler verification in general, refer to [20].

We presented a framework for checking program equivalence based on con-
struction of a cross-product system, which reduces the problem to verification
of a single program and allows for utilization of the existing off-the-shelf pro-
gram analyses and tools. In particular, we have shown how the CoVaC frame-
work can be applied to verification of non-cooperative compilers and used it on
practice to validate a wide range of optimizations performed by an aggressive
modern compiler, LLVM[6]. Many interesting questions remain. For example,
we plan to extend our method to support interprocedural optimizations and
explore the ways in which the validator failures can be analyzed and used to
pinpoint compilation errors. We are also interested in investigating application
of the CoVaC framework to development of a self-certifying compiler and vali-
dation of language-based security properties, specifically, checking conformance
with information flow policies [5].
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Abstract. Late binding allows flexible code reuse but complicates formal rea-
soning significantly, as a method call’s receiver class is not statically known.
This is especially true when programs are incrementally developed by extend-
ing class hierarchies. This paper develops a novel method to reason about late
bound method calls. In contrast to traditional behavioral subtyping, reverification
is avoided without restricting method overriding to fully behavior-preserving re-
definition. The approach ensures that when analyzing the methods of a class, it
suffices to consider that class and its superclasses. Thus, the full class hierarchy is
not needed, and incremental reasoning is supported. We formalize this approach
as a calculus which lazily imposes context-dependent subtyping constraints on
method definitions. The calculus ensures that all method specifications required
by late bound calls remain satisfied when new classes extend a class hierarchy.
The calculus does not depend on a specific program logic, but the examples in
the paper use a Hoare-style proof system. We show soundness of the analysis
method.

1 Introduction

Late binding of method calls is a central feature in object-oriented languages and con-
tributes to flexible code reuse. A class may extend its superclasses with new methods,
possibly overriding the existing ones. This flexibility comes at a price: It significantly
complicates reasoning about method calls as the binding of a method call to code cannot
be statically determined; i.e., the binding at run-time depends on the actual class of the
called object. In addition, object-oriented programs are often designed under an open
world assumption: Class hierarchies are extended over time as subclasses are gradually
developed and added. In general, a class hierarchy may be extended with new subclasses
in the future, which will lead to new potential bindings for overridden methods.

To control this flexibility, existing reasoning and verification strategies impose re-
strictions on inheritance and redefinition. One strategy is to ignore openness and as-
sume a “closed world”; i.e., the proof rules assume that the complete inheritance tree
is available at reasoning time (e.g., [24]). This severely restricts the applicability of the
proof strategy; for example, libraries are designed to be extended. Moreover, the closed
world assumption contradicts inheritance as an object-oriented design principle, which
is intended to support incremental development and analysis. If the reasoning relies on
the world being closed, extending the class hierarchy requires a costly reverification.
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An alternative strategy is to reflect in the verification system that the world is open,
but to constrain how methods may be redefined. The general idea is that to avoid rever-
ification, any redefinition of a method through overriding must preserve certain proper-
ties of the method being redefined. An important part of the properties to be preserved
is the method’s contract; i.e., the pre- and postconditions for its body. The contract can
be seen as a description of the promised behavior of all implementations of the method
as part of its interface description, the method’s commitment. Best known as behavioral
subtyping (e.g, [20, 2, 19, 25]), this strategy achieves incremental reasoning by limit-
ing the possibilities for code reuse. Once a method has committed to a contract, this
commitment may not change in later redefinitions. That is overly restrictive and often
violated in practice [26]; e.g., it is not respected by the standard Java library definitions.

This paper relaxes the property preservation restriction of behavioral subtyping,
while embracing the open world assumption of incremental program development. The
basic idea is as follows: given a method m declared with p and q as the method’s pre-
and postcondition, there is no need to restrict the behavior of methods overriding m and
require that these adhere to that specification. Instead it suffices to preserve the “part”
of p and q actually used to verify the program at the current stage. Specifically, if m is
used in the program in the form of a method call {r} e.m(. . .) {s}, the pre- and postcon-
ditions r and s at that call-site constitute m’s required behavior and it is those weaker
conditions that need to be preserved to avoid reverification. We call the corresponding
analysis strategy lazy behavioral subtyping. This strategy may serve as a blueprint for
integrating a flexible system for program verification of late bound method calls into
object-oriented program development and analysis tools environments [5, 6, 7].

The paper formalizes this analysis strategy using an object-oriented kernel language,
based on Featherweight Java [15], and using Hoare-style proof outlines. Formalized as
a syntax-driven inference system, class analysis is done in the context of a proof envi-
ronment constructed during the analysis. The environment keeps track of the context-
dependent requirements on method definitions, derived from late bound calls. The
strategy is incremental; for the analysis of a class C, only knowledge of C and its super-
classes is needed. We show the soundness of the proposed method.

Paper overview. Sect. 2 introduces the problem of reasoning about late binding,
Sect. 3 presents the approach taken in this paper, and Sect. 4 gives the details of the
inference system. Related work is discussed in Sect. 5 and Sect. 6 concludes the paper.

2 Late Bound Method Calls

2.1 Syntax for an Object-Oriented Kernel Language

To succinctly explain late binding and our analysis strategy, we use an object-oriented
kernel language (Fig. 1) with a standard operational semantics (e.g., [15]) . We assume
a functional language of side-effect free expressions e. A program P consists of a list
L of class definitions, and a method body. A class extends a superclass, which may be
Object, with fields f and methods M. To simplify, we let fields have distinct names,
methods with the same name have the same signature (i.e., no method overloading),
programs be well-typed, and ignore the types of fields and methods. For classes B and
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P ::=L {t} L ::=classC extendsC { f M}
M ::=m (x){t} t ::=v := new C() | v := e.m(e) | v := e
v ::= f | return | skip | if b then t else t fi | t;t

Fig. 1. The language syntax, where C and m are class and method names (of types Cid and Mid,
respectively). Expressions e include declared fields f , the reserved variables this and return,
and Boolean expressions b. Vector notation denotes lists; e.g., a list of expressions is written e.

classC1 {
m() :(p1,q1){〈t1〉}
n1() :(_,_){. . . ;{r1} this.m() {s1}; . . .}
n2() :(_,_){. . . ;{r2} this.m() {s2}; . . .}

}

classC2 extendsC1 {
m() : (p2,q2){〈t2〉}

}

classC3 extendsC1 {
m() :(p3,q3){〈t3〉}

}

Fig. 2. A class hierarchy with proof outlines for overridden methods

C, B ≤ C denotes the reflexive and transitive subclass relation derived from class inher-
itance. If B ≤ C, we say that B is below C and C is above B.

A method M takes parameters x and contains a statement t, which may be com-
posed. The sequential composition of statements t1 and t2 is written t1;t2. The statement
v := new C() creates a new object of class C with fields instantiated to default values,
and assigns the new reference to v. A possible constructor method in the class must
be called explicitly. In a method invocation e.m(e), the object e receives a call to the
method m with actual parameters e. The statement v := e.m(e) assigns the value of the
method activation’s return variable to v. (For convenience, we often write e.m(e) or
simply e.m instead of v := e.m(e).) There are standard statements for skip, condition-
als if b then t else t fi, and assignments v := e. As usual, this is read only.

Late binding. Or dynamic dispatch is a central concept of object-orientation, already
present in Simula [8]. A method call is late bound, or virtual, if the method body to be
executed is selected at run-time, depending on the callee’s actual class. Virtual calls are
bound to the first implementation found above the actual class. The mechanism can be
illustrated by an object of class C2 which executes a method n1 defined in its superclass
C1 and this method issues a call to a method m defined in both classes (see Fig. 2).
With late binding, the code selected for execution is associated to the first matching
signature for m above C2; i.e., m of C2 is selected and not the one in C1. If n1, however,
were executed in an instance of C1, the virtual invocation of m would be bound to the
definition in C1. We say that a definition of m is reachable from C if there is a class
D ≤ C such that a call to m will bind to that definition for instances of D. For instance,
if m is overridden by D, that declaration is reached from C for instances of D. Thus, for
a virtual call there might be several reachable definitions.
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(ASSIGN) {q[e/v]} v := e {q}

(NEW) {q[newC/v]} v := new C() {q}

(SKIP) {q} skip {q}

(COND)
{p∧b} t1 {q} {p∧¬b} t2 {q}

{p} if b then t1 else t2 fi {q}

(SEQ)
{p} t1 {r} {r} t2 {q}

{p} t1;t2 {q}
(ADAPT)

p ⇒ p1 {p1} t {q1} q1 ⇒ q

{p} t {q}

(CALL)
∀i ∈ S .{pi[e/x]} body i

m(x) {qi}

{
V

i∈S(pi[e/x])} v := e.m(e) {
W

i∈S(qi[v/return])}
S = implements(classOf(e), m)

Fig. 3. Closed world proof rules. Let classOf(e) denote the class of expression e and p[e/v] the
substitution of all occurrences of v in p by e [12], extended for object creation following [24]. The
function implements(C,m) returns all classes where a call to m from class C may be bound.

2.2 Reasoning about Virtual Calls

Apart from the treatment of late bound method calls, our reasoning system for the other
statements follows standard proof rules [3, 4] for partial correctness, adapted to the
object-oriented setting; in particular, de Boer’s technique using sequences in the asser-
tion language addresses the issue of object creation [9]. We present the proof system
using Hoare triples {p} t {q}, where p is the precondition and q is the postcondition to
the statement t [12]. The meaning of a triple {p} t {q} is standard: if t is executed in
a state where p holds and the execution terminates, then q holds after t. The derivation
of triples can be done in any suitable program logic. Let PL be such a program logic
and let �PL {p} t {q} denote that {p} t {q} is derivable in PL. A proof outline [23]
for a method definition m(x){t} is an annotated method m(x) : (p,q){〈t〉} where 〈t〉
is the method body t annotated with pre- and postconditions to method calls. The
derivability �PL m(x) : (p,q){〈t〉} of a proof outline is given by �PL {p} 〈t〉 {q}. For
m(x) : (p,q){〈t〉}, the pair (p,q) is called the commitment of method m. For simplicity,
we assume that return does not occur in p and that x do not occur in q. To prove an
assertion, the annotated method body 〈t〉 may impose requirements on methods called
within t, expressed by pre- and postconditions to those calls. For a call {r} n() {s} in
〈t〉, (r,s) is the required assertion for n. To ensure that the requirement is valid, every
reachable definition of n must be analyzed.

If the proof system assumes a closed world, all classes must be defined before the
analysis can begin, as the requirement to a method call is derived from the commit-
ments of all reachable implementations of that method. To simplify the presentation in
this paper, we omit further details of the assertion language and the proof system (e.g.,
ignoring the representation of the program semantics — for details see [24]). The cor-
responding proof system is given in Fig. 3; the proof rule (CALL) captures late binding
under a closed world assumption. The following example illustrates the proof system.

Example 1. Consider the class hierarchy of Fig. 2, where the methods are decorated
with proof outlines. The specifications of methods n1 and n2 play no role in the dis-
cussion and are given a wildcard notation (_,_). Assume �PL m() : (p1,q1){〈t1〉}, �PL

m() : (p2,q2){〈t2〉}, and �PL m() : (p3,q3){〈t3〉} for the definitions of m in classes C1,
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C2, and C3, respectively. Let us initially consider the class hierarchy consisting of C1

and C2 and ignore C3 for the moment. The proof system of Fig. 3 gives the Hoare triple
{p1 ∧ p2}this.m(){q1 ∨q2} for each call to m, i.e., for the calls in the bodies of meth-
ods n1 and n2 in class C1. To apply (ADAPT), we get the proof obligations: r1 ⇒ p1 ∧ p2

and q1 ∨q2 ⇒ s1 for n1, and r2 ⇒ p1 ∧ p2, and q1 ∨q2 ⇒ s2 for n2. Extending now the
class hierarchy with C3 breaks the closed world assumption and requires to reverify the
methods n1 and n2. With the new Hoare triple {p1 ∧ p2 ∧ p3}this.m(){q1 ∨q2 ∨q3} at
every call site, the proof obligations given above for applying (ADAPT) no longer apply.

3 A Lazy Approach to Virtual Calls

This section presents informally the approach to reason about virtual calls which is
based on an open world assumption. It supports incremental reasoning about classes
and is well-suited for program development, being less restrictive than behavioral sub-
typing. A formal presentation is given in Sect. 4.

Reconsider class C1 of Example 1. The proof outlines for n1 and n2 require that
{r1}this.m(){s1} and {r2}this.m(){s2} hold in the bodies of n1 and n2, respec-
tively. The assertions (r1,s1) and (r2,s2) may be seen as requirements to reachable
definitions of m; for m’s definition in C1, both {r1} t1 {s1} and {r2} t1 {s2} must hold.
However, the proof obligations for method calls have shifted from the call site to the
declaration site, which allows incremental reasoning. During the verification of a class
only the class and its superclasses need to be considered, subclasses are ignored. If we
later analyze subclass C2 or C3, the same requirements apply to their definition of m.
Thus, no reverification of the bodies of n1 and n2 is needed when new subclasses are
analyzed.

Although C1 is analyzed independently of C2 and C3, its requirements must be con-
sidered during subclass analysis. For this purpose, a proof environment is constructed
while analyzing C1 recording that C1 requires both (r1,s1) and (r2,s2) from m. Sub-
classes are analyzed in the context of this proof environment, and may in turn extend
the proof environment with new requirements, tracking the scope of each requirement.
For two independent subclasses, the requirements made by one subclass should not af-
fect the other. Hence, the order of subclass analysis does not influence the assertions to
be verified in each class. To avoid reverification, the proof environment also tracks the
commitments established for each method definition. The analysis of a requirement to a
method definition immediately succeeds if the requirement follows from the previously
established commitments of that method.

3.1 Assertions and Assertion Entailment

We consider an assertion language with expressions e constructed as follows:

e ::= f | z | ops(ē) | this | return

Here, f is a program field, z a logical variable, and ops an operation on abstract data
types, ignoring field access. An assertion (of type Assert) is a pair of Boolean expres-
sions. Let p′ denote an expression p with all occurrences of fields f substituted by f ′,
avoiding name capture. We define entailment for assertions and for sets of assertions:



Lazy Behavioral Subtyping 57

Definition 1 (Entailment). Let (p,q) and (r,s) be assertions and let U and V denote
the assertion sets {(pi,qi) |1 ≤ i ≤ n} and {(ri,si) |1 ≤ i ≤ m}. Entailment is defined by

1. (p,q) � (r,s) � (∀z1 . p ⇒ q′) ⇒ (∀z2 . r ⇒ s′),
where z1 and z2 are the logical variables in (p,q) and (r,s), respectively.

2. U � (r,s) � (
∧

1≤i≤n(∀zi . pi ⇒ q′
i)) ⇒ (∀z . r ⇒ s′).

3. U � V � ∧
1≤i≤m U � (ri,si).

Note that the relation U � (r,s) corresponds to classic Hoare-style reasoning to prove
{r} t {s} from {pi} t {qi} for all 1 ≤ i ≤ n, by means of the adaptation and conjunction
rules [3] . Note that entailment is reflexive and transitive, and V ⊆ U implies U � V .

3.2 Class Analysis with a Proof Environment

We now illustrate the role of the proof environments during class analyses through a
series of examples. The environment collects method commitments and requirements
in two mappings S and R which, given a class name and method identifier, return a set
of assertions. The analysis of a class both uses and changes the proof environment.

Propagation of requirements. Method requirements encountered during the analysis of
a proof outline in a class C are verified for the known reachable definitions and im-
posed on future subclasses. If m(x) : (p,q){〈t〉} is shown while analyzing C, we extend
S(C,m) with (p,q). For each requirement {r} n {s} in the proof outline, (r,s) must hold
for definitions of n reached by instances of C. Furthermore, R(C,n) is extended with
(r,s) as a restriction on future subclass redefinitions of n.

Example 2. Consider the analysis of class C1 in Fig. 2. The commitment (p1,q1) is
included in S(C1,m) and the requirements (r1,s1) and (r2,s2) are included in R(C1,m).
Both requirements must be verified for the definition of m in C1, i.e., the definition of m
reachable from C1. Consequently, for each (ri,si), S(C1,m) � (ri,si) must hold, which
follows from (p1,q1) � (ri,si).

In the example, the requirements made by n1 and n2 follow from the established com-
mitment of m. Generally, the requirements need not follow from the previously shown
commitments. It is then necessary to provide a new proof outline for the method.

Example 3. If (ri,si) does not follow from (p1,q1) in Example 2, a new proof outline
m : (ri,si){〈t1〉} must be analyzed similarly to the proof outlines in C1. The mapping
S(C1,m) is extended by (ri,si), ensuring the desired relation S(C1,m) � (ri,si).

The analysis strategy must ensure that once a commitment (p,q) is included in S(C,m),
it will always hold when the method is executed in an instance of any (future) subclass
of C, without reverifying m. In particular, when m is overridden, the requirements made
by methods in C to m must hold for the new definition of m.

Example 4. Consider class C2 in Fig. 2, which redefines m. After analysis of the proof
outline m :(p2,q2){〈t2〉}, S(C2,m) is extended with (p2,q2). In addition, the superclass
requirements R(C1,m) must hold for the new definition of m to ensure that the commit-
ments of n1 and n2 apply for instances of C2. Hence, S(C2,m) � (ri,si) must be shown
for each (ri,si) ∈ R(C1,m), similar to S(C1,m) � (ri,si) in Example 2.
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When a method m is (re)defined in a class C, all superclass invocations of m from
instances of C will bind to the new definition. The new definition must therefore support
the requirements from all superclasses. Let R↑(C,m) denote the union of R(B,m) for all
C ≤ B. For each method m defined in C, it is necessary to ensure the following property:

S(C,m) � R↑(C,m) (1)

It follows that m must support the requirements from C itself; i.e., S(C,m) � R(C,m).

Context-dependent properties of inherited methods. Let us now consider methods that
are inherited but not redefined, say, m is inherited from a superclass of C. In this case,
virtual calls to m from instances of C are bound to the first definition of m above C, but
virtual calls by m are bound in the context of C, as C may redefine methods invoked by
m. Furthermore, C may impose new requirements on m not proved during the analysis
of the superclass, resulting in new proof outlines for m. In the analysis of the new proof
outlines, we know that virtual calls are bound from C. It would be unsound to extend
the commitment mapping of the superclass, since the new commitments are only part
of the subclass context. Instead, we use S(C,m) and R(C,m) for local commitment and
requirement extensions. These new commitments and requirements only apply in the
context of C and not in the context of its superclasses.

Example 5. Let the following class extend the hierarchy of Fig. 2:

classC4 extendsC1 {
n() :(_,_){. . . ;{r4} this.m() {s4}; . . .}

}

Class C4 inherits the superclass implementation of m. The analysis of n’s proof outline
yields {r4} m {s4} as requirement, which is included in R(C4,m) and verified for the
inherited implementation of m. The verification succeeds if S(C1,m) � (r4,s4). Other-
wise, a new proof outline m :(r4,s4){〈t1〉} is analyzed under the assumption that virtual
calls are bound in the context of C4. When analyzed, (r4,s4) becomes a commitment of
m and it is included in S(C4,m). This mapping acts as a local extension of S(C1,m) and
contains commitments of m that hold in the subclass context.

Assume that a definition of m in a class A is reachable from C. When analyzing a
requirement {r} m {s} in C, we can then rely on S(A,m) and the local extensions of
this mapping for all classes between A and C. We assume that programs are type-safe
and define a function S↑ recursively as follows: S↑(C,m) � S(C,m) if m is defined in
C and S↑(C,m) � S(C,m)∪S↑(B,m) otherwise, where B is the immediate superclass
of C. We can now revise Property 1 to account for inherited methods:

S↑(C,m) � R↑(C,m) (2)

Thus, each requirement in R(B,m), for some B above C, must follow from the estab-
lished commitments of m in context C. Especially, for each (p,q) ∈ R(C,m), (p,q) must
either follow from the superclass commitments or from the local extension S(C,m). If
(p,q) follows from the local extension S(C,m), we are in the case when a new proof
outline has been analyzed in the context of C. Note that Property 2 reduces to Property 1
if m is defined in C.
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Analysis of class hierarchies. A class hierarchy is analyzed in a top-down manner,
starting with Object and an empty proof environment. Classes are analyzed after their
respective superclasses, and each class is analyzed without knowledge of possible sub-
classes. Methods are specified in terms of proof outlines. For each method m(x){t}
defined in a class C, we analyze each (p,q) occurring either as a specification of m in
some proof outline, or as an inherited requirement in R↑(C,m). If S(C,m) � (p,q), no
further analysis of (p,q) is needed. Otherwise a proof outline m(x) :(p,q){〈t〉} needs to
be analyzed, after which S(C,m) is extended with (p,q). During the analysis of a proof
outline, annotated (internal) calls {r} n {s} yield requirements (r,s) on reachable im-
plementations of n. The R(C,n) mapping is therefore extended with (r,s) to ensure that
future redefinitions of n will support the requirement. In addition, (r,s) is analyzed with
respect to the implementation of n that is reached for instances of C; i.e., the first im-
plementation of n above C. This verification succeeds immediately if S↑(C,n) � (r,s).
Otherwise, a proof outline for n is analyzed in the context of C, which again extends
S(C,n) by (r,s). Each call statement in this proof outline is analyzed in this manner.
For external calls {r} x.m() {s}, where x refers to an object of class C′, we require that
(r,s) follows from the requirements R↑(C′,m) of m in C′.

The mapping S reflects the definition of methods; each lookup S(C,m) returns a set of
commitments for a particular implementation of m. In contrast, the mapping R reflects
the use of methods and may impose requirements on several implementations.

Lazy behavioral subtyping. Behavioral subtyping in the traditional sense does not fol-
low from the analysis. Behavioral subtyping would mean that whenever a method m is
redefined in a class C, its new definition must implement all superclass commitments
for m; i.e., the method would have to satisfy S(B,m) for all B above C. For example, be-
havioral subtyping would imply that m in both C2 and C3 in Fig. 2 must satisfy (p1,q1).
Instead, the R mapping identifies the requirements imposed by virtual calls. Only these
assertions must be supported by overriding methods to ensure that the execution of su-
perclass’ code does not have unexpected results. Thus, only the behavior assumed by
the virtual call statements is ensured at the subclass level. In this way, requirements are
inherited by need, resulting in a lazy form of behavioral subtyping.

Example 6. Consider a class defining two methods which increment counters.

class A {
int x = 0; y = 0
inc() { x := x + 1; y := y + 1 }
incX2() { this.inc(); this.inc() }

}

Let (x = z0,x = z0 +2) be a commitment of incX2, based on a requirement (x = z0,x =
z0 + 1) to inc, included in R(A, inc). If A is later inherited by a class B, B may override
inc, provided R(A, inc) is supported by the new implementation. The behavior of incX2
does not depend on other possible commitments in S(A, inc); e.g., (x = y,x = y) and
(y = z0,y = z0 +1). In fact, the subclass implementation of inc may assign any value to
y without breaking the reasoning system.
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4 An Assertion Calculus for Program Analysis

The incremental strategy outlined in Sect. 3 is now formalized as a calculus which tracks
commitments and requirements for method implementations in an extensible class hier-
archy. Given a program, the calculus builds an environment which reflects the class hi-
erarchy and captures method commitments and requirements. This environment forms
the context for the analysis of new classes, possibly inheriting already analyzed ones.
Proofs of the lemmas can be found in [11].

4.1 The Proof Environment of the Assertion Calculus

A class is represented by a tuple 〈D, f ,M〉 from which the superclass identifier D, fields
f , and methods M are accessible by observer functions inh, att, and mtds, respectively.
Let M.body = t for a method M = m(x){t} (or its proof outline). Class names are
assumed to be unique, and method names to be unique within a class. The superclass
identifier may be nil, representing no superclass (for class Object).

Definition 2 (Proof environments). A proof environment E of type Env is a tuple
〈PE ,SE ,RE 〉, where PE : Cid → Class is a partial mapping and SE ,RE : Cid× Mid →
Set[Assert] are total mappings.

In an environment E , PE reflects the class structure, SE (C,m) the set of commitments
for m in C and RE (C,m) a set of requirements to m from C. For the empty environment
E /0, PE /0(C) is undefined and SE /0(C,m) = RE /0(C,m) = /0 for all C : Cid and m : Mid. Let
≤E : Cid× Cid → Bool be the reflexive and transitive subclass relation on E .

Next we define some auxiliary functions on proof environments E . Let ↑PE(C).att
denote the fields of C and of its superclasses; i.e., the declared fields accessible from
methods in C, including the implicit declaration this : C. Denote by t ′ ∈ t that the
statement t ′ is contained in the statement t, and by C ∈ E that PE (C) is defined. The
function bindE (C,m) : Cid × Mid → Cid returns the first class above C in which
the method m is defined. This function will never return nil for type correct calls. Let the
recursively defined functions S↑E (C,m) and R↑E (C,m) : Cid × Mid → Set[Assert] re-
turn all commitments of m both above C and below bindE (C,m), and all requirements
to m that are made by all classes above C in the proof environment E , respectively.
Finally, bodyE(C,m) : Cid × Mid → Stm returns the body of m in bindE (C,m).

A sound environment reflects that previously analyzed classes are correct. If an as-
sertion appears in SE (C,m), there must be a verified proof outline M in PL for the
corresponding method body. For internal calls {r} n {s} in M, (r,s) must be included
in RE (C,n); i.e., all requirements made by the proof outline are in the R-mapping. For
external calls {r} x.n {s} in M, where x is of class D, the requirement (r,s) must fol-
low from the requirements of n in the context of D. Note that D may be independent
of C; i.e., neither above nor below C. Finally, method commitments must entail the
requirements (see Property 2 of Sect. 3.2). Sound environments are defined as follows:

Definition 3 (Sound environments). A sound environment E satisfies the following
conditions for all C : Cid and m : Mid:
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1. ∀(p,q) ∈ SE (C,m) . ∃〈bodyE (C,m)〉 . �PL m(x) : (p,q){〈bodyE (C,m)〉}
∧ ∀{r} n {s} ∈ 〈bodyE (C,m)〉 . RE (C,n) � (r,s)
∧ ∀{r} x.n {s} ∈ 〈bodyE (C,m)〉 . ∃D . ((x : D) ∈↑PE(C).att) ⇒ R↑E(D,n) � (r,s)

2. S↑E (C,m) � R↑E (C,m)

Note that in this definition, the proof outline required by Condition 1 need not be in C
itself, but may be found above C as described by bodyE (C,m). Let |=C {p} t {q} denote
|= {p} t {q} under the assumption that virtual calls in t are bound in the context of C,
and let |=C m(x) : (p,q){t} be given by |=C {p} t {q}. If there are no method calls in t
and �PL {p} t {q}, then |= {p} t {q} follows by the soundness of PL.

Although method redefinitions in a subclass need not respect the commitments of
method definitions in superclasses, Lemma 1 below ensures that the commitments of
method definitions in superclasses will hold when invoked from a subclass, even if
auxiliary methods have been redefined.

Lemma 1. Given a sound environment E and a sound program logic PL. For all C :
Cid, m : Mid, and (p,q) : Assert such that C ∈ E and (p,q) ∈ S↑E (C,m), we have
|=D m(x) :(p,q){bodyE (C,m)} for each D ≤E C.

In a minimal environment E , the mapping RE only contains requirements that are
caused by some proof outline; i.e., there are no superfluous requirements. Minimal en-
vironments are defined as follows:

Definition 4 (Minimal Environments). A sound environment E is minimal iff

∀(r,s) ∈ RE (C,n) . ∃(p,q),m,〈bodyE (C,m)〉 .
(p,q) ∈ SE (C,m)∧ �PL m(x) : (p,q){〈bodyE (C,m)〉}∧{r} n {s} ∈ 〈bodyE (C,m)〉

Reverification is avoided by incrementally extending SE (C,m). If a virtual call requires
a verified specification, it is found in SE (C,m). Thus, the avoidance of reverification
can be seen as a dual to the first condition to Def. 3: If {p} bodyE (C,m) {q} is proved,
the commitment (p,q) is added to SE (C,m).

4.2 The Analysis Operations of the Assertion Calculus

An open program may be extended with new classes, and there may be mutual depen-
dencies between the new classes. For example, a method in a new class C can call a
method in another new class D, and a method in D can call a method in C. In such
cases, a complete analysis of one class cannot be carried out without consideration of
mutually dependent classes. We therefore choose class sets as the granularity of pro-
gram analysis. A module is a set of classes, and a module is self-contained with regard
to an environment E if all method calls inside the module can be successfully bound
inside that module or to classes represented in E .

In the calculus, judgments have the form E � A , where E is the proof environment
and A is a list of analysis operations on the class hierarchy. The analysis operations
have the following syntax:

O ::= ε | analyzeMtds(M) | verify(m,R) | analyzeOutline(t) | O ·O
S ::= /0 | L | require(C,m,(p,q)) | S ∪S
A ::= module(L) | [〈C : O〉 ; S ] | [ε ; S ] | A ·module(L)



62 J. Dovland et al.

These analysis operations may be understood as follows. A set L of class declarations is
analyzed by the module operation module(L). Classes are assumed to be syntactically
well-formed and well-typed. Inside a module, the classes are analyzed in some order,
captured by the set S . The operationclassC extendsD { f M} initiates the analysis
of class C. The operation [〈C : O〉 ; S ] analyzes O in the context of class C before
operations in S are considered. Upon completion, the analysis yields a term of the form
[ε ; S ]. The analysis of a specific class consists of the following operations, all inside
the context of that class. The operation analyzeMtds(M) initiates analysis of the proof
outlines M. The operation verify(m,R) verifies the set R of assertions with respect to the
method m. The operation analyzeOutline(t) analyzes the method calls in the statement
t. Since the operation only occurs in the context of a class C, virtual calls are bound in
this context. The operation require(D,m,(p,q)) applies to external calls to ensure that
m in D satisfies the requirement (p,q). Requirements are lifted outside the context of
the calling class C by this operation, and the verification of requirement (p,q) for m in
D is shifted into the set of analysis operations S .

4.3 The Inference Rules of the Assertion Calculus

Class modules are analyzed in sequential order such that each module is self-contained
with regard to the already analyzed modules. Program analysis is initiated by E /0 �
module(L), where L is a module that is self-contained with regard to the empty envi-
ronment. The analysis of a module is carried out by manipulation of the module(L)
operation according to the inference rules below. During module analysis, the proof en-
vironment is extended, keeping track of the currently analyzed class hierarchy and the
associated method commitments and requirements. When a module operation succeeds,
the resulting environment represents a verified class hierarchy. New modules may in-
troduce subclasses of previously analyzed classes, and the calculus is based on an open
world assumption as a module may be analyzed in the context of previously analyzed
modules and independent of later modules.

There are three different environment updates; the loading of a new class L and the
extension of the commitment and requirement mappings with an assertion (p,q) for a
given method m and class C. These are denoted extS(C,m,(p,q)) and extR(C,m,(p,q)),
respectively. Environment updates are represented by the operator ⊕ : Env×Update →
Env, where the first argument is the current proof environment and the second argument
is the environment update, defined as follows:

E ⊕classC extends D { f M} = 〈PE [C �→ 〈D, f ,M〉],SE ,RE 〉
E ⊕ extS(C,m,(p,q)) = 〈PE ,SE [(C,m) �→ SE (C,m)∪{(p,q)}],RE 〉
E ⊕ extR(C,m,(p,q)) = 〈PE ,SE ,RE [(C,m) �→ RE (C,m)∪{(p,q)}]〉

The corresponding inference rules are given in Fig. 4. Note that A represents a list
of modules which will be analyzed later, and which may be empty. Rule (NEWMODULE)

initiates the analysis of a new module module(L). The analysis continues by manipu-
lation of the [ε ; L] operation that is generated by this rule. For notational convenience,
we let L denote both a set and list of classes.

Rule (NEWCLASS) selects a new class from the current module, and initiates analysis
of the class in the current proof environment. The premises ensure that a class cannot
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E � [ε ; L] ·A
E � module(L) ·A

(NEWMODULE)

C /∈ E D �= nil ⇒ D ∈ E
E ⊕ (classC extends D { f M}) � [〈C : analyzeMtds(M)〉 ; S ] ·A

E � [ε ; {classC extends D { f M}}∪S ] ·A
(NEWCLASS)

E � [〈C : verify(m,{(p,q)}∪R↑E (PE (C).inh,m)) ·O〉 ; S ] ·A
E � [〈C : analyzeMtds(m(x) :(p,q){〈t〉}) ·O〉 ; S ] ·A

(NEWMTD)

S↑E (C,m) � (p,q) E � [〈C : O〉 ; S ] ·A
E � [〈C : verify(m,(p,q)) ·O〉 ; S ] ·A

(REQDER)

�PL m(x) :(p,q){〈bodyE (C,m)〉}
E ⊕extS(C,m,(p,q)) � [〈C : analyzeOutline(〈bodyE (C,m)〉) ·O〉 ; S ] ·A

E � [〈C : verify(m,(p,q)) ·O〉 ; S ] ·A
(REQNOTDER)

E ⊕extR(C,m,(p,q)) � [〈C : verify(m,(p,q)) ·O〉 ; S ] ·A
E � [〈C : analyzeOutline({p} m {q}) ·O〉 ; S ] ·A

(CALL)

x : D ∈↑PE (C).att E � [〈C : O〉 ; S ∪{require(D,m,(p,q))}] ·A
E � [〈C : analyzeOutline({p} x.m {q}) ·O〉 ; S ] ·A

(EXTCALL)

C ∈ E R↑E (C,m) � (p,q) E � [ε ; S ] ·A
E � [ε ; {require(C,m,(p,q))}∪S ] ·A

(EXTREQ)

E � [ε ; S ] ·A
E � [〈C : ε〉 ; S ] ·A

(EMPCLASS)
E � A

E � [ε ; /0] ·A
(EMPMODULE)

E � [〈C : O〉 ; S ] ·A
E � [〈C : verify(m, /0) ·O〉 ; S ] ·A

(NOREQ)

E � [〈C : O〉 ; S ] ·A
E � [〈C : analyzeMtds( /0) ·O〉 ; S ] ·A

(NOMTDS)

E � [〈C : O〉 ; S ] ·A t does not contain call statements

E � [〈C : analyzeOutline(t) ·O〉 ; S ] ·A
(SKIP)

E � [〈C : verify(m,R1) · verify(m,R2) ·O〉 ; S ] ·A
E � [〈C : verify(m,R1 R2) ·O〉 ; S ] ·A

(DECOMPREQ)

E � [〈C : analyzeOutline(t1) ·analyzeOutline(t2) ·O〉 ; S ] ·A
E � [〈C : analyzeOutline(t1;t2) ·O〉 ; S ] ·A

(DECOMPCALLS)

E � [〈C : analyzeMtds(M1) ·analyzeMtds(M2) ·O〉 ; S ] ·A
E � [〈C : analyzeMtds(M1 M2) ·O〉 ; S ] ·A

(DECOMPMTDS)

Fig. 4. The inference system, where A is a (possibly empty) list of analysis operations. To sim-
plify the presentation, we let m denote a method call including actual parameters.
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be introduced twice and that the superclass has already been analyzed. The class hier-
archy is extended with the new class and the analysis continues by traversing the proof
outlines by means of the analyzeMtds operation. Note that at this point in the analy-
sis, the class has no subclasses in the proof environment. Rule (NEWMTD) generates a
set of requirement assertions for a method. The requirement set is constructed from the
specified commitment of the method and the superclass requirements to the method.

The rules (REQDER) and (REQNOTDER) address the verification of a particular require-
ment with respect to a method implementation. If the requirement follows from the
commitments of the method, rule (REQDER) proceeds with the remaining analysis oper-
ations. Otherwise, a proof of the requirement is needed. As 〈bodyE (C,m)〉 nondeter-
ministically selects a proof outline, the rule applies to any proof outline for the method
available in class C. Remark that (REQNOTDER) is the only rule which extends the S map-
ping. The considered requirement leads to a new commitment for m with respect to C,
and the commitment itself is assumed when analyzing the method body. This captures
the standard approach to reasoning about recursive procedure calls [13].

Rule (CALL) analyzes the requirement of a local call occurring in some proof out-
line. The rule extends the R mapping and generates a verify operation which analyzes
the requirement with respect to the implementation bound from the current class. The
extension of the R mapping ensures that future redefinitions of m must respect the re-
quirement; i.e., the requirement applies whenever future redefinitions are considered
by (NEWMTD) . Rule (EXTCALL) handles external calls on the form x.m (ignoring field
shadowing). The requirement to the external method is removed from the context of
the current class and inserted as a require operation in S . The class of the callee is
found by the declaration of x. Rule (EXTREQ) can first be applied after the analysis of
the callee class, and the requirement must then follow from the requirements of this
class.

Rule (EMPCLASS) concludes the analysis of a class when all analysis operations have
succeeded in the context of the class. The analysis of a module is completed by the rule
(EMPMODULE) . Thus, the analysis of a module is completed after the analysis of all the
module classes and external requirements made by these classes have succeeded.

In addition, there are some structural rules. The rules (NOREQ) and (NOMTDS) apply
to the empty requirement set and the empty method list, respectively. Rule (SKIP) ap-
plies to statements which are irrelevant to this analysis. These rules simply continue
the analysis with the remaining analysis operations. Finally, the rules (DECOMPMTDS) ,
(DECOMPREQ) , and (DECOMPCALLS) flatten non-empty method lists, requirement sets and
statements into separate analysis operations. Note that a proof of E � module(L) has
exactly one leaf node E ′ � [ε ; /0]; we call E ′ the environment resulting from the analy-
sis of module(L).

Properties of the inference system. Although the individual rules of the inference sys-
tem do not preserve soundness of the proof environment, the soundness of the proof
environment is preserved by the successful analysis of a module. This allows us to
prove that the proof system is sound for module analysis.

Theorem 1. Let E be a sound environment and L a set of class declarations. If a proof
of E � module(L) has E ′ as its resulting proof environment, then E ′ is also sound.
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Theorem 2 (Soundness). If PL is a sound program logic, then the derived proof out-
line logic combined with the calculus also constitutes a sound proof system.

Furthermore, the inference system preserves minimality of proof environments; i.e.,
only requirements needed by some proof outline are recorded in the RE mapping.

Lemma 2. If E is a minimal environment and L is a set of class declarations such that a
proof of E � module(L) leads to the resulting environment E ′, then E ′ is also minimal.

Finally we show that the proof system supports verification reuse in the sense that com-
mitments are remembered.

Lemma 3. Let E be an environment E and L a list of class declarations. Whenever
a proof outline m(x) : (p,q){〈t〉} is verified during analysis of some class C in L, the
commitment (p,q) is included in SE (C,m).

5 Related Work

Object-orientation poses several challenges to program logics; e.g., inheritance, late
binding, recursive method calls, aliasing, and object creation. In the last years several
programming logics have been proposed, addressing various of these challenges. Nu-
merous proof methods, verification condition generators, and validation environments
for object-oriented languages have been developed, including [1,22,14,16,6]. In partic-
ular, Java has attracted much interest, with advances being made for different (mostly
sequential) aspects and sublanguages of that language. In particular, most such formal-
izations concentrate on closed systems. A recent state-of-the-art survey of challenges
and results for proof systems and verification in the field is given in [18], and for an
overview of verification tools based on the Java modeling language JML, see [7].

Proof systems especially studying late bound methods have been shown to be sound
and complete assuming a closed world [24]. While this is proof-theoretically satisfactory,
the closed world assumption is unrealistic in practice and necessitates costly reverifica-
tion when the class hierarchy is extended (as discussed in Sect. 1). To support object-
oriented design, proof systems should be constructed for incremental reasoning. Most
prominent in that context are different variations of behavioral subtyping [20, 26, 19].
Virtual methods [25] similarly allow incremental reasoning by committing to certain ab-
stract properties about a method, which must hold for all its implementations. Although
sound, the approach does not generally provide complete program logics, as these ab-
stract properties would, in non-trivial cases, be too weak to obtain completeness. Virtual
methods furthermore force the developer to commit to specific abstract specifications of
method behavior early in the design process. In particular, the verification platforms for
Spec# [5] and JML [7] rely on versions of behavioral subtyping.

The fragile base class problem emerges when seemingly harmless superclass updates
lead to unexpected behavior of subclass instances [21]. Many variations of the problem
relate to imprecise specifications and assumptions made in super- or subclasses. By
making method requirements and assumptions explicit, our calculus can detect many
issues related to the fragile base class problem.
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6 Conclusion

This paper presents lazy behavioral subtyping, a novel strategy for reasoning about
late bound method calls. The strategy is designed to support incremental reasoning and
avoid reverification in an open setting, where class hierarchies can be extended by inher-
itance. Lazy behavioral subtyping is more flexible than strategies based on traditional
behavioral subtyping, while retaining the open world assumption. To focus the presen-
tation, we have abstracted from many object-oriented language features and presented
the approach for an object-oriented kernel language supporting single inheritance. This
reflects the mainstream object-oriented languages today, such as Java and C#.

We currently integrate lazy behavioral subtyping in a program logic for Creol [17,
10], a language for dynamically reprogrammable active objects, developed in the con-
text of the European project Credo. This integration requires a generalization of the
analysis to multiple inheritance and concurrent objects, as well as to Creol’s mech-
anism for class upgrades. Moreover an adaptation is needed to Creol’s type system,
which is purely based on interfaces. Interface types provide a clear distinction between
internal and external calls. By separating interface level subtyping from class level in-
heritance, class inheritance can freely exploit code reuse based on lazy behavioral sub-
typing while still supporting incremental reasoning techniques. This program logic with
lazy behavioral subtyping will be part of the programming environment for Creol, based
on Eclipse.
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Abstract. Contract languages such as JML and Spec# specify invari-
ants and pre- and postconditions using side-effect free expressions of the
programming language, in particular, pure methods. For such contracts
to be meaningful, they must be well-formed: First, they must respect the
partiality of operations, for instance, the preconditions of pure methods
used in the contract. Second, they must enable a consistent encoding of
pure methods in a program logic, which requires that their specifications
are satisfiable and that recursive specifications are well-founded.

This paper presents a technique to check well-formedness of contracts.
We give proof obligations that are sufficient to guarantee the existence
of a model for the specification of pure methods. We improve over earlier
work by providing a systematic solution including a soundness result and
by supporting more forms of recursive specifications. Our technique has
been implemented in the Spec# programming system.

1 Introduction

Contract languages such as the Java Modeling Language (JML) [21] and Spec# [2]
specify invariants and pre- and postconditions using side-effect free expressions of
the programming language. While contract languages are natural for program-
mers, they pose various challenges when contracts are encoded in the logic of a
program verifier or theorem prover, especially when contracts use pure (side-effect
free) methods [13]. This paper addresses two challenges related to pure-method
specifications.

The first challenge is how to ensure that a specification is well-defined, that is,
that all partial operations are applied within their domain. For instance method
calls are well-defined only for non-null receivers and when the precondition of the
method is satisfied. This challenge can be solved by encoding partial functions
as under-specified total functions [15]. However, it has been argued that such
an encoding is counter-intuitive for programmers, is not well-suited for runtime
assertion checking, and assigns meaning to bogus contracts instead of having
them rejected by a verifier [8]. Another solution is the use of 3-valued logic, such
as LPF [3]. However, 3-valued logic is typically not supported by the theorem
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provers that are used in program verifiers. We present a technique based on 2-
valued logic to check whether a specification satisfies all partiality constraints.
If the check fails, the specification is rejected.

The second challenge is how to ensure that a specification is consistent. In
order to reason about contracts that contain pure-method calls, pure methods
must be encoded in the logic of the program verifier. This is typically done by
introducing an uninterpreted function symbol for each pure method m, whose
properties are axiomatized based on m’s contract and object invariants [10, 13].
A specification is consistent if this axiomatization is free from contradictions.
Consistency is crucial for soundness. We present a technique to check consistency
by showing that the contracts of pure methods are satisfiable and well-founded
if they are recursive. If the consistency check fails, the specification is rejected.

An inconsistent specification of a method m is not necessarily detected during
the verification of m’s implementation [13]: (1) m might be abstract; (2) partial
correctness logics allow one to verify m w.r.t. an unsatisfiable specification if m’s
implementation does not terminate; (3) any implementation could be trivially
verified based on inconsistent axioms stemming from inconsistent pure-method
specifications; this is especially true for recursion, when the axiom for m is

��������� Sequence {
[	
���] ��� Length;

�������� Length >= 0;
�������� IsEmpty() ==> Length == 0;
�������� !IsEmpty() ==> Length == Rest().Length + 1;

[����][�������=Length] ��� Count(Object c)
�������� !IsEmpty();
������� ������ >= 0;
������� ������ == (GetFirst() == c ? 1 : 0) +

(Rest().IsEmpty() ? 0 : Rest().Count(c));
[����] ���� IsEmpty();
[����] Object GetFirst()

�������� !IsEmpty();
[����] Sequence Rest()

�������� !IsEmpty();
������� ������ != ����;

// other methods and specifications omitted
}

Fig. 1. Specification of interface Sequence. We use a notation similar to Spec#, which
is an extension of C#. The ���� attribute marks a method to be side-effect free;
pre- and postconditions are attached to methods by �������� and ������� clauses,
respectively. Invariants are specified in �������� clauses; in postconditions, ������
denotes the return value of methods. User-specified recursion measures are given by
the ������� attribute. Fields marked with the 	
��� attribute are specification-only.
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needed to verify its implementation. These reasons justify the need for verifying
consistency of specifications independently of implementations.

We illustrate these challenges by the interface Sequence in Fig. 1. It contains
pure methods to query whether the sequence is empty, and to get the first element
and the rest of the sequence. Method Count returns the number of occurrences
of its parameter in the sequence. The interface contains the specification-only
ghost field Length, which represents the length of the sequence. The interface is
equipped with method specifications and invariants specifying Length.

We call a specification well-formed if it is well-defined and consistent. The
main difficulty in the checking of well-formedness lies in the subtle dependencies
between the specification elements. For instance, to be able to show that the ex-
pression Rest().Count(c) in Count’s postcondition is well-defined, the guarding
condition !Rest().IsEmpty(), the precondition of Count, and the contract of
Rest are needed. These specification elements together allow one to conclude
that the receiver is not null and that the preconditions of Rest and Count are
satisfied. That is, we need the specification of (axioms for) some pure methods
to prove the well-definedness of other pure methods.

The second challenge is illustrated by the specification of method Count. Con-
sistency requires that there actually is a result value for each call to Count. This
would not be the case, for instance, if the first postcondition required ������ to
be strictly positive. Since the specification of Count is recursive, proving the ex-
istence of a result value relies on the specification of Count. Using this specifica-
tion is sound since the recursion in Count’s specification is well-founded: the first
and third invariant, and the precondition of Count guarantee that the sequence
is finite, and the guarding condition together with the precondition of Count and
the third invariant guarantees that we recurse on a shorter sequence. Again, we
have a subtle interaction between specifications: proving the consistency of a pure
method makes use of the specification of this method as well as invariants and the
specification of the methods mentioned in these invariants.

These examples demonstrate that generating the appropriate proof obligations
to check well-formedness is challenging. A useful checker must permit dependen-
cies between specification elements, but prevent circular reasoning.

Approach and Contributions. We show well-formedness of specifications
by posing proof obligations to ensure: (1) that partial operations are applied
within their domains, (2) the existence of a possible result value for each pure
method, and (3) that recursive specifications are well-founded. In order to deal
with dependencies between pure methods, we determine a dependency graph,
which we process bottom-up. Thereby, one can use the properties of a method
m to prove the proof obligations for the methods using m.

To deal with partiality, we interpret specifications in 3-valued logic. However,
we want to support standard theorem provers, which typically use 2-valued logic
and total functions [22, 14]. Therefore, we express the proof obligations in 2-
valued logic by applying the Δ formula transformer [17] to the specification
expressions. We proved the following soundness result: If all proof obligations
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for the pure methods of a program are proved then there is a partial model for
the axiomatization of these pure methods. In other words, we guarantee that
the partiality constraints are satisfied and the axiomatization is consistent.

Our approach differs from existing solutions for theorem provers [11,22], where
consistency is typically enforced by restricting specifications to conservative ex-
tensions, but no checks are performed for axioms. Since specifications of pure
methods are axiomatic, the approach of conservative extensions is not applica-
ble to contract languages. Moreover, theorem provers require the user to resolve
dependencies by ordering the elements of a theory appropriately. We determine
this order automatically using a dependency graph.

Our approach improves on existing solutions for program verifiers in three
ways. First, it supports (mutually) recursive specifications, whereas in previous
work recursive specifications are severely restricted [13,12]. Second, our approach
allows us to use the specification of one method to prove well-formedness of
another, which is needed in many practical examples. Such dependencies are not
discussed in previous work [9, 13] and are not supported by program verifiers
that perform consistency checks, such as Spec#. Neglecting dependencies leads
to the rejection of well-formed specifications. Third, we prove consistency for
the axiomatization of pure methods; such a proof is either missing in earlier
work [9, 12] or only presented for a very restricted setting [13].

For simplicity, we consider pure methods to be strongly-pure. That is, pure
methods may not modify the heap in any way. An extension to weakly-pure
methods [13], which may allocate and initialize objects, is possible.

Outline. Sec. 2 defines well-formedness of pure-method specifications. We
present sufficient proof obligations to guarantee the existence of a model in
Sec. 3. We discuss how our technique can be applied with automatic theorem
provers in Sec. 4. We summarize related work in Sec. 5 and offer conclusions in
Sec. 6.

2 Well-Formedness

In this section, we define the well-formedness criteria for the specifications of
pure methods. Even though some criteria such as partiality also apply to non-
pure methods, we focus on pure methods in the following.

Preliminaries. We assume a set Heap of heaps with the usual properties. For
simplicity, we assume that a program consists of exactly one class; a generaliza-
tion to several classes and subclassing is possible.

Since there is a one-to-one mapping between pure methods and the cor-
responding uninterpreted function symbols, we can state the well-formedness
criteria directly on the function symbols. In particular, we say “the specifi-
cation of a function f” to abbreviate “the specification of the pure method
encoded by function f”. We assume a signature with the function symbols
F := {f1, f2, , . . . , fn}, which correspond to the pure methods of a program.
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For simplicity we assume pure methods to have exactly one explicit parameter.
Thus, all functions in F are ternary with parameters for the heap (h), receiver
object (o), and explicit parameter (p). We assume that all formulas and terms
are well-typed.

We define a specification of F as Spec := 〈Pre,Post, INV〉, where:

– Pre maps each fi ∈ F to a formula. We denote Pre(fi) as Prefi . Due to
the syntactic structure of preconditions, the only free variables in Prefi are
h, o, and p.

– Post maps each fi ∈ F to a formula. We denote Post(fi) as Postfi . Due to
the syntactic structure of postconditions, the only free variables in Postfi

are h, o, p, and the result variable res. Since we assume pure methods to be
strongly-pure, one heap variable is enough to capture the heap before and
after the method execution.

– INV is a set of formulas {Inv1, Inv2, . . . , Invm}. Due to the syntactic struc-
ture of invariants, the only free variables in Invi ∈ INV are the heap h and
the object o to which the invariant is applied.
We use SysInv := ∀ o ∈ h.∧m

i=1 Invi to denote the conjunction of all invari-
ants for all allocated objects, where o ∈ h expresses that a reference o refers
to an allocated object in heap h. Note that SysInv is an open formula with
free variable h.

Structures and Interpretations. To define the interpretation of specifica-
tions, we use a structure M := 〈Heap,R, I〉, where R is the set of references
and I is an interpretation function for the specification of a function f ∈ F:
I(f) : Heap × R × R → R. This structure can be trivially extended to other
sorts like integer or boolean.

For a formula ϕ, we define the interpretation in total structures [ϕ]2Me in the
standard way. Here, e is a variable assignment that maps the free variables of ϕ
to values. For the interpretation in partial structures [ϕ]3Me, we follow Berezin
et al. [5]: intuitively, the interpretation of a function is defined if and only if the
interpretations of all parameters are defined and the vector of parameters belongs
to the function domain. The interpretation of logical operators and quantifiers
is defined according to Kleene logic [20].

A total interpretation maps a formula to a value in Bool2 := {T,F}, while
a partial interpretation maps a formula to a value in Bool3 := {T,F, ⊥}. A
partial structure M can be extended to a total structure M̂ by defining values
of functions outside of their domains by arbitrary values. To check whether or
not a value in Bool3 is ⊥ we use the following function:

wd : Bool3 → Bool2

wd(x) :=
{

T , if x ∈ {T,F}
F , if x = ⊥
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Well-Formedness Criteria. A specification Spec is well-formed (denoted by
|= Spec) if there exists a partial model M for the specification. A structure M
is a partial model for specification Spec, denoted by M |= Spec, if it satisfies
the following four criteria:

1. Invariants are never interpreted as ⊥, that is, for each heap ∈ Heap:

wd([SysInv]3Me) holds

where e := [h → heap].
2. Preconditions are never interpreted as ⊥ in heaps that satisfy the invariants

of all allocated objects, that is, for each f ∈ F, heap ∈ Heap, this ∈ heap,
and par ∈ heap:

if [SysInv]3Me holds, then wd([Pref ]3Me) holds

where e := [h → heap, o → this, p → par].
3. The values of the parameters belong to the domain of the interpretation

of function symbols, provided that the heap satisfies the invariants and the
precondition holds. That is, for each f ∈ F, heap ∈ Heap, this ∈ heap,
and par ∈ heap:

if [SysInv]3Me and [Pref ]3Me hold,
then 〈heap, this,par〉 ∈ dom(I(f)) holds

where e := [h → heap, o → this, p → par].
4. Postconditions are never interpreted as ⊥ for any result, and the interpreta-

tion of function f as result value satisfies the postcondition, provided that
the heap satisfies the invariants and the precondition holds. That is, for each
f ∈ F, heap ∈ Heap, this ∈ heap, and par ∈ heap:

if [SysInv]3Me and [Pref ]3Me hold,
then for each result ∈ heap wd([Postf ]3Me′) holds,
and [Postf ]3Me holds

where e := [h → heap, o → this, p → par, res → I(f)(heap, this,par)],
e′ := [h → heap, o → this, p → par, res → result].

Axiomatization. As motivated in Sec. 1, a verification system needs to extract
axioms from the specifications of pure methods. We denote the axiom for function
symbol f as Axf and the axioms for all functions as AxSpec. Formally:

Axf := ∀ h, o ∈ h, p ∈ h. SysInv ∧ Pref ⇒ Postf [f(h, o, p)/res]

AxSpec :=
∧

f∈F

Axf

From well-formedness criterion 4 and Axf , we can conclude that if a structure
M is a partial model for specification Spec then it is a model for AxSpec:

if M |= Spec then M |= AxSpec
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Consequently, if specification Spec is well-formed then the axioms are consistent:

if |= Spec then |= AxSpec

Important to note is that this property does not hold in the other direction,
that is, if |= AxSpec then |= Spec is not necessarily true. For example, consider
a method with precondition 1/0 == 1/0 and postcondition true. In 2-valued
logic, the axiom is trivially consistent, but the specification is not well-formed
(criterion 2). This demonstrates that our well-formedness criteria require more
than just consistency, namely also satisfaction of partiality constraints.

3 Checking Well-Formedness

In this section, we present sufficient proof obligations that ensure that a speci-
fication is well-formed, that is, the existence of a model.

3.1 Partiality

We want our technique to work with first-order logic theorem provers, which are
often used in program verifiers. These provers check that a formula holds for all
total models. However, we need to check properties of partial models. Therefore,
we apply a technique that reduces the 3-valued domain to a 2-valued domain by
ensuring that ⊥ is never encountered. This is a standard technique applied in
different tools, for instance, in B [4], CVC Lite [5], and ESC/Java2 [9].

The main idea is to use the formula transformer Δ [17,4], which takes a (pos-
sibly open) formula ϕ and domain restriction δ, and produces a new formula ϕ′.
The interpretation of ϕ′ in 2-valued logic is true if and only if the interpretation
of ϕ in 3-valued logic is different from ⊥. The domain restriction δ is a mapping
from a set of function symbols Fδ to formulas. δ characterizes the domains of
the function symbols of Fδ. For instance for the division operator, the domain
restriction δ requires the divisor to be non-zero. Thus, Δ(a/b > 0, δ) ≡ b �= 0.

For lack of space, we do not give the details of the Δ operator and refer the
reader to [4]. The most important property for our purpose is the following [5]:

M |= δ ⇒ ( [Δ(ϕ, δ)]2
M̂

e = wd([ϕ]3Me) ) (1)

which captures the intuition of Δ described above. Δ is a syntactical characteri-
zation of the semantical operation wd. Thus, using Δ, we can check in 2-valued
logic the partiality properties we are interested in.

Property (1) interprets formulas w.r.t. a structure M. This structure with
function symbols Fδ has to be a model for δ (denoted by M |= δ), that is:

– The domain formulas are defined, that is, for each f ∈ Fδ

wd([δ(f)]3M e) holds for all e.
– δ characterizes the domains of function interpretations for M, that is, for

each f ∈ Fδ and val1, . . . ,valk ∈ R:
[δ(f)]3Me holds if and only if 〈val1, . . . ,valk〉 ∈ dom(I(f))

where e := [v1 → val1, . . . , vk → valk] and {v1, . . . , vk} are the parameter
names of f . (Since methods have only one explicit parameter, k = 3.)
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3.2 Incremental Construction of Model

In general, showing the existence of a model requires one to prove the existence
of all its functions. To be able to work with first-order logic theorem provers, we
approximate this second-order property in first-order logic. We generate proof
obligations whose validity in 2-valued first-order logic guarantees the existence
of a model. However, if we fail to prove them then we do not know whether a
model exists or not. That is, the procedure is sound but not complete. However,
it works for the practical examples we have considered so far.

The basic idea of our procedure is to construct a model incrementally. We
build a dependency graph whose nodes are function symbols and invariants.
There is an edge from node a to node b if the specification of function a or the
invariant a applies function b. The dependency graph of interface Sequence is
presented in Fig. 2.

The dependency graph may be cyclic. However, we disallow cycles that are
introduced by preconditions. In other words, a precondition must not be recursive
in order to avoid fix-point computation to define the domain of the function. This
is not a limitation for practical examples.

We construct the model by traversing the dependency graph bottom-up. We
start with the empty specification Spec0 := 〈∅, ∅, ∅〉, for which we trivially have
a model M0. In each step j, we select a set of nodes Gj := {g1, g2, . . . , gk} such
that if there is an edge from gi to a node n then either n has already been visited
in some previous step (i.e., n ∈ G1 ∪ ... ∪ Gj−1) or n ∈ Gj . Moreover, we choose
Gj such that it has one of the following forms:

1. Gj contains exactly one invariant Invl ∈ INV.
2. Gj contains exactly one function symbol fl ∈ F and the specification of fl

is not recursive.
3. Gj is a set of function symbols, and the nodes in Gj form a cycle in the

dependency graph, that is, they are specified recursively in terms of each
other. Gj may contain only one node in case of direct recursion.

We call the pre- and postconditions and the invariants of Gj the current specifi-
cation fragment, sj . We extend Specj−1 with sj resulting in Specj . We impose
proof obligations on sj that guarantee that the model Mj−1 for Specj−1 can be
extended to a model Mj for Specj . Since this construction is inductive, we may
assume that all specification fragments processed up to step j−1 are well-formed.

It is easy to see that an order in which one can traverse the dependency graph
always exists. However, the chosen order may influence the success of the model
construction. Essentially one should choose an invariant node whenever possible
because the invariant provides information that might be useful for later steps.

3.3 Proof Obligations

We now present the proof obligations for the three different kinds of current
specification fragments sj . We refer to the elements of Specj as Prej , Postj ,
and INVj . To make the formulas more readable we use the following notations:
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IsEmptyInv1

Inv3

Rest

Count

GetFirst
Inv2

Fig. 2. Dependency graph for interface Sequence

– SysInvj := ∀ o ∈ h.
∧

Inv∈INVj
Inv. SysInvj is the conjunction of invari-

ants processed up to step j. After the last step z of the construction of the
model, we have SysInvz = SysInv.

– Fj denotes the set of function symbols whose pre- and postconditions have
been processed up to step j: Fj := dom(Prej), and thus Fj = dom(Postj).

– We denote the axioms for Specj as follows:

Axj
f := ∀ h, o ∈ h, p ∈ h. SysInvj ∧ Pref ⇒ Postf [f(h, o, p)/res]

AxSpecj :=
∧

f∈Fj
Axj

f

Axj
f is the definition of the axiom for a function f according to specifica-

tion Specj . Note that the axiom Axj
f may be different for different j since

SysInvj gets gradually strengthened during the construction of the model.
Therefore, the axiom Axj

f becomes gradually weaker. This is an important
observation for the soundness of our approach. After the last step z of the
construction of the model, we have Axz

f = Axf and AxSpecz = AxSpec.

The following proof obligations are posed on the three different types of specifi-
cation fragments in step j.

Invariant Invl. The invariant Invl must be well-defined for each object, pro-
vided the invariants SysInvj−1 hold.

AxSpecj−1 ⇒ ∀ h. (SysInvj−1 ⇒ Δ(∀ o ∈ h. Invl,Prej−1)) (2)

Note that we use preconditions Prej−1 as domain restriction. Although invari-
ants additionally restrict the domain of functions, these restrictions are never
violated due to the assumption that SysInvj−1 holds.

Example. We instantiate the proof obligation for a specification fragment from
Fig. 1. The corresponding dependency graph is presented in Fig. 2. The traversal
of the dependency graph first visits the first invariant since it has no dependen-
cies. The well-definedness of the invariant is trivial. Next, the traversal takes
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method IsEmpty, which is also processed trivially since the method has no spec-
ifications. As third node, the second invariant is picked. For this specification
fragment, the following proof obligation is generated.

∀ h. ((∀ o ∈ h. h[o, Length] ≥ 0) ⇒
Δ(∀ o ∈ h. IsEmpty(h, o) ⇒ h[o, Length] = 0, {〈IsEmpty, true〉}))

where h[o, f ] denotes field access with receiver object o and field f in heap h.
Note that AxSpec2 has been omitted since it is equivalent to true. After the
application of the Δ operator, the proof obligation requires one to prove that
(1) o is non-null since it is the receiver of a method call and a field access, and
that (2) the domain restriction of IsEmpty is not violated. The first property
holds since o ∈ h, the second since the domain restriction of IsEmpty is true. ��

Pre- and Postcondition of a Single Function fl. This case requires two
proof obligations for the non-recursive pre- and postcondition of fl, respectively.
The first proof obligation checks that the precondition of fl is defined for all
receiver objects and parameters in all heaps in which the invariants hold.

AxSpecj−1 ⇒ ∀ h, o ∈ h, p ∈ h. (SysInvj−1 ⇒ Δ(Prefl
,Prej−1)) (3)

Example. Assume method Rest is selected as fourth specification fragment. The
corresponding proof obligation is the following.

∀ h, o ∈ h.
( (∀ o ∈ h. h[o, Length] ≥ 0 ∧ (IsEmpty(h, o) ⇒ h[o, Length] = 0)) ⇒

Δ(¬IsEmpty(h, o), {〈IsEmpty , true〉}) )

Again, AxSpec3 has been omitted since it is equivalent to true. After the appli-
cation of the Δ operator, the same properties need to be proven as above: o is
non-null and the domain restriction of IsEmpty is not violated. ��

The second proof obligation checks that the postcondition of fl is never inter-
preted as ⊥ for any result, and that there exists a value which satisfies the post-
condition for all receiver objects and parameters that satisfy the precondition in
all heaps in which the invariants hold.

AxSpecj−1 ⇒ ∀ h, o ∈ h, p ∈ h. (SysInvj−1 ∧ Prefl
⇒

(∀ res. Δ(Postfl
,Prej−1)) ∧ (∃ res. Postfl

) )
(4)

Example. The proof obligation for the postcondition of method Rest is:
∀ h, o ∈ h.
( (∀ o ∈ h. h[o, Length] ≥ 0 ∧ (IsEmpty(h, o) ⇒ h[o, Length] = 0)) ∧

¬IsEmpty(h, o)
⇒

(∀ res. Δ(res �= null, {〈IsEmpty, true〉})) ∧ (∃ res. res �= null) )
As before, AxSpec3 is equivalent to true. The first conjunct is proved trivially
since formula res �= null does not contain any partial operation. To satisfy the
second conjunct, we instantiate res with o. ��
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Pre- and Postconditions of a Set of Recursively-Specified Functions.
This case handles both direct and mutual recursion. That is, we have a set of
functions Gj := {g1, g2, . . . , gk} with k ≥ 1. We assume that for each function gi

in Gj the programmer provides a measure function ‖ · ‖gi : Heap × R × R → N

using the ������� attribute. We assume that there is no recursion via measure
functions, that is, the definition of measure function ‖ · ‖gi may only contain
function symbols from G1 ∪ . . . ∪ Gj−1, but not from Gj .

Since preconditions must not be recursively specified (see Sec. 3.2), the proof
obligation for the precondition of each gi is identical to proof obligation (3) for
the non-recursive case.

In order to prove well-formedness of postconditions, we first need to show
that user-specified measures are well-defined and non-negative. For a function
gi with measure attribute �������=μgi, we introduce a new pure method Mgi

with precondition Pregi and postcondition μgi ≥ 0. The dependency graph is
extended with a node for Mgi and an edge from gi to Mgi . Node Mgi is processed
like any other node. This allows measures to rely on invariants and to contain
calls to pure methods.

Proof obligation (5) below for postconditions is similar to proof obligation (4),
but differs in two ways: First, we have to prove that the recursive specification
is well-founded. Since we have already shown that our measure functions yield
non-negative numbers, it suffices to show that the measure decreases for each
recursive application. We achieve this by using a domain restriction that ad-
ditionally requires the measure for recursive applications to be lower than the
measure ind of the function being specified. If the measure ind is 0, the domain
restriction becomes false, which prevents further recursion. Note that the oc-
currence of ind seems to violate the condition that domain restrictions do not
contain free variables other than the parameters of the function whose domain
they characterize. However, since ind is universally quantified, we may consider
ind to be a constant for each particular application of the domain restriction.
(One could think of the universal quantification as an unbounded conjunction,
where ind is a constant in each of the conjuncts.)

Second, for the proof of well-formedness of the specification of a function gi,
we may assume the properties of the functions recursively applied in this spec-
ification. This is an induction scheme over the measure ind, which is expressed
by the assumption in lines 4 and 5 of the following proof obligation, which must
be shown for each method gi.

AxSpecj−1 ⇒
∀ ind ∈ N, h, o ∈ h, p ∈ h.

(SysInvj−1 ∧ Pregi ∧ ‖〈h, o, p〉‖gi = ind ∧
(
∧k

l=1 ∀ o′ ∈ h, p′ ∈ h. Pregl
[o′/o, p′/p] ∧ ‖〈h, o′, p′〉‖gl

< ind ⇒
Postgl

[o′/o, p′/p, gl(h, o′, p′)/res] )
⇒

(∀ res. Δ(Postgi ,Prej−1∪{〈gl,Pregl
∧‖〈h, o, p〉‖gl

<ind〉 | l ∈ 1..k}))∧
(∃ res. Postgi) )

(5)
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Example. Since the size of proof obligation (5) for the postcondition of method
Count (the only recursive specification in our example) is rather large, we use
a considerably smaller example here, namely the factorial function with the
following specification.

[����][�������=p] ��� Fact(��� p)
�������� p >= 0;
������� p == 0 ==> ������ == 1;
������� p > 0 ==> ������ == Fact(p-1)*p;

To simplify the example, we omit the variables for heap h and receiver object o.
First, we need to prove that measure p is well-defined and non-negative. This

is trivially proven since the measure does not contain partial operators and the
precondition of Fact guarantees that p is non-negative.

Next, we need to show proof obligation (5). For brevity, we only show it for
the second postcondition, which is the interesting case containing recursion:

∀ ind ∈ N, p.
( p ≥ 0 ∧ p = ind ∧
(∀ p′. p′ ≥ 0 ∧ p′ < ind ⇒

(p′ = 0 ⇒ Fact(p′) = 1 ) ∧ (p′ > 0 ⇒ Fact(p′) = Fact(p′ − 1) ∗ p′) )
⇒

(∀ res. Δ( p > 0 ⇒ res = Fact(p − 1) ∗ p, {〈Fact, p ≥ 0 ∧ p < ind〉 })) ∧
(∃ res. p > 0 ⇒ res = Fact(p − 1) ∗ p) )

We need to show that the two quantified conjuncts on the right-hand side of
the implication hold. Proving that the existential holds is straightforward due to
the equality. The other conjunct is more interesting. The only partial operator
is Fact and after applying the Δ operator the sub-formula simplifies to:

∀ res. p > 0 ⇒ p − 1 ≥ 0 ∧ p − 1 < ind

The first conjunct is provable from p > 0 and the second from p = ind in the
premise of the proof obligation. ��

Soundness. The above proof obligations are sufficient to show that a specifi-
cation is well-formed:

Theorem. If a specification Spec does not contain recursive precondi-
tions and all of the above proof obligations for Spec hold then Spec is
well-formed, that is, |= Spec holds.

The proof of this theorem runs by induction on the order of specification frag-
ments given by the dependency graph. For each recursive specification fragment,
the proof uses a nested induction on the recursion depth ind. Due to lack of space,
we refer to [23] for a detailed proof sketch.

Modularity. In general, adding new classes to a program does not invalidate
the proofs for the well-formedness criteria of existing methods and invariants.
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This is because we assume behavioral subtyping, which ensures that the axiom
for an overriding method is weaker than the axiom for the overridden method.
Although new classes can introduce cycles in the dependency graph that involve
existing methods, proofs remain valid since we introduce new function symbols
for overriding methods, which thus do not interfere with existing proofs.

The invariants of additional classes strengthen SysInv, which appears as part
of the premises of proof obligations; thus, they weaken the proof obligations.

4 Application with Automatic Theorem Provers

The proof obligations presented in the previous section are sufficient to show
the well-formedness of a specification. However, they are not well-suited for au-
tomatic theorem provers such as Simplify [14] or Z3 for two reasons. First, the
proof obligations to ensure consistency for postconditions (proof obligations (4)
and (5)) contain existential quantifiers, for which automatic theorem provers
often do not find suitable instantiations. Second, the proof obligation for the
well-foundedness of recursive specifications (proof obligation (5)) is in general
proved by induction on ind, but induction is not supported well by automatic
theorem provers. In this section, we discuss these issues.

Consistency. Spec# uses four approaches to find witnesses for the satisfiability
of a specification, that is, instantiations for the existential quantifiers1. First, if
a postcondition has the form ������ R E, where R is a reflexive operator and
E is an expression that does not contain ������ and recursive calls, then there
always exists a possible result value, namely, the value of E [12]. Thus, this part
of the proof obligations can be dropped. Second, if a pure method has a body of
the form �����	 E, where E does not contain a recursive call, then expression E
is a likely candidate for a witness. It suffices to use a simplified proof obligation
to show that this candidate actually is a witness. Third, for many postconditions,
good candidates for witnesses can be inferred by simple heuristics. For instance,
for a postcondition ������ > E, one might try E + 1. Finally, if the former
approaches do not work, Spec# allows programmers to specify witnesses for
model fields explicitly. One could use the same approach for pure methods.

Well-Foundedness. Proof obligation (5) in general requires induction. For
instance, if function f(n) has a postcondition (n = 0 ⇒ res = 1) ∧ (n > 0 ⇒
res = 1/f(n − 1)), one needs to apply induction to prove that f never returns
zero. However, induction is needed only if the function is specified recursively
and the recursive call occurs as an argument to a partial function, as in this
example. In our experience, this is not the case for most specifications. For
instance, proving proof obligation (5) for the factorial function does not require
induction, as we have shown in Sec. 3.3. Therefore, this proof obligation is not
a major limitation in practice.

1 Most of these approaches were proposed and implemented by Rustan Leino and
Ronald Middelkoop.
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5 Related Work

We sketch what three important groups of formal systems do in the areas of
consistency and well-definedness checking.

Theorem Provers. Isabelle [22] is an interactive LCF-style theorem proving
framework based on a small logical core. Everything on top of the core is sup-
posed to be defined by conservative extensions, which ensures the consistency of
the specification. The use of axioms is possible but discouraged since inconsis-
tency may be introduced. Recursion (both direct and mutual) is supported and
the well-foundedness of the recursion has to be proven. Isabelle handles partiality
by under-specification [15] and requires no well-definedness checks.

PVS [11] is similar to Isabelle with respect to consistency guarantees. The
main difference is in the modeling of partial functions. Although PVS also con-
siders functions to be total, predicate subtyping is used to restrict the domain of
functions. This makes the type system undecidable leading to Type Correctness
Conditions to be proven [24].

Formal Software Development Systems. Z is a formal specification lan-
guage for computing systems [25]. The work closest to ours is the approach
of Hall et al., which shows how a model conjecture can be derived from a Z
specification [16]. Partiality is handled by under-specification [26].

The B method [1] is similar to Z but is more focused on the notion of refine-
ment. Satisfiability of the specification has to be proven in each refinement step.
B allows users to add axioms whose consistency is not checked. Thus, they may
introduce unsoundness. B allows functions to be partial and requires specifica-
tions to be well-defined by using the Δ formula transformer [4].

VDM [18] also checks satisfiability of specifications and allows the use of
(possibly inconsistent) axioms. VDM uses LPF [3], a 3-valued logic. In contrast
to our approach, well-definedness is not proven before the actual proof process,
but is proven together with the validity of verification conditions.

Program Verifiers. ESC/Java2 [19] is an automatic extended static checker
for Java programs annotated with JML specifications. The tool axiomatizes spec-
ifications of pure methods [10]. Consistency of the axiom system is not ensured,
which can lead to unsoundness. Recently, well-definedness checks have been
added by Chalin [9] but it is not clear how dependencies among specification
elements are handled, and no soundness proof is provided.

Jack [7] is a program verifier for JML annotated Java programs. The backend
prover of the tool is Coq [6]. The tool axiomatizes pre- and postconditions of pure
methods separately. This separation ensures that axioms are only instantiated
when a pure-method call occurs in a given verification condition—as opposed to
be available to the theorem prover at any time. However, since Jack does not
check consistency, unsoundness can still occur by the use of axioms. Jack does
not support mutual recursion and does not check well-definedness.

The Spec# program verifier ensures consistency of axioms over pure methods
by the approaches described in Sec. 4 and by allowing programmers to declare
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a static call-order on pure methods. Only a simple form of recursive specifica-
tions is supported where the measure is based on the ownership relation. The
well-foundedness of this relation can be checked by the compiler without proof
obligations [12]. Spec# does not fully check well-definedness of specifications.

Our technique improves on our own earlier work [13] by allowing pure-method
calls in invariants, ensuring well-formedness of specifications, supporting mutual
recursion, taking dependencies into account, and by precisely defining what the
proposed proof obligations guarantee. On the other hand, [13] handles weak-
purity which we omitted in this paper for simplicity. However, our work could
be extended following the technique described in [13].

6 Conclusion

Well-formedness of specifications is important to meet programmer expectations,
to reconcile static and runtime assertion checking, and to ensure soundness of
static verification. We presented a new technique to check the well-formedness
of specifications. We showed how to incrementally construct a model for the
specification, which guarantees that the partiality constraints of operations are
respected and that the axiomatization of pure methods is consistent. Our tech-
nique can be applied in any verification system, regardless of its contract lan-
guage, logic, or backend theorem prover. As a proof of concept, we implemented
our technique in the Spec# verification system.

As future work, we plan to develop adapted proof obligations that require
induction in fewer cases. We expect that this can be done by generating spe-
cific proof obligations for each given recursive call, which encode the inductive
argument. We also plan to investigate how to conveniently specify measures for
methods that traverse object structures.
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Abstract. We present a novel approach to the verification of concur-
rent pointer-manipulating programs with dynamic thread creation and
memory allocation as well as destructive updates operating on arbitrary
(possibly cyclic) singly-linked data structures. Correctness properties of
such programs are expressed by combining a simple pointer logic for
specifying heap properties with linear-time (LTL) operators for reason-
ing about system executions. To automatically solve the corresponding
model-checking problem, which is undecidable in general, we abstract
from non-interrupted sublists in the heap, resulting in a finite-state rep-
resentation of the data space. We also show that the control flow of a
concurrent program with unbounded thread creation can be character-
ized by a Petri net, making LTL model checking decidable (though not
feasible in practice). In a second abstraction step we also derive a finite-
state representation of the control flow, which then allows us to employ
standard LTL model checking techniques.

1 Introduction

Techniques for the verification of elementary properties of pointer programs are
highly desirable. Programming with pointers is error-prone with potential pit-
falls such as dereferencing null pointers and the emergence of memory leaks. So
far, the field of pointer analysis has primarily focused on sequential programs.
But pointer programming becomes even more vulnerable in a concurrent setting
where threads can be dynamically created, and where data structures such as
linked lists are shared between several threads.

We present an approach to model checking concurrent programs that operate on
singly-linked data structures. It stays within the realm of traditional (linear-time)
model checking. This facilitates the usage of standard model checkers for validat-
ing temporal properties addressing absence of memory leaks, dereferencing of null
pointers, dynamic creation of cells, and simple and position-dependent aliasing.

Our approach is illustrated by considering a simple concurrent programming
language that besides the usual control structures offers primitives for thread cre-
ation, pointer manipulation, cell creation and destruction, and (guarded) atomic
regions that allow to implement concurrency control constructs such as test-and-
set primitives, semaphores, and monitors.
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The operational semantics of our language is defined in a modular way. The
control-flow semantics is given by a (finite) Petri net whose places correspond
to the control locations of the program. The heap semantics is specified by
transformation rules which describe the effect of executing single commands.

The combination of both yields a labeled transition system (modeled by a
Petri net) which is generally infinite due to the unbounded creation of both
control threads and heap cells. Its desirable properties are expressed in a first-
order linear-time temporal logic (LTL) that is enriched with assertions on pointer
structures such as reachability and freshness of cells, or pointer aliasing.

Since the model-checking problem is generally undecidable in this setting we
introduce a first abstraction, which addresses the data space of the program.
Our list abstraction exploits a variant of summary nodes [7] to obtain a finite
representation of the heap and thus eliminates one potential source of undecid-
ability. In fact, known results then allow us to conclude that the data abstract
model-checking problem is decidable even though the underlying transition sys-
tem is still infinite (see Thm. 5.7). However, its intractability forces us to apply
a second abstraction step in which we also derive a finite-state representation of
the control flow, which altogether yields a finite transition system. As a result,
standard LTL model-checking algorithms can be employed. Both abstractions
are obtained in a fully mechanized manner. Moreover they are sound in the
sense that they over-approximate the concrete program behavior.

2 Related Work

Related work on the topic of analyzing pointer-manipulating programs can be
classified into the following (often overlapping) categories, which mainly focus on
sequential programming languages: predicate abstraction [1,8,23], shape analysis
[2,26,27], regular model checking [3,5], dataflow analysis [21,33,34], Hoare-style
approaches [6,18], and separation logic [22,24]. In summary, many of the char-
acterizing features of our approach are already present in earlier papers: the
restriction to singly-linked lists without data fields [1,3,11,16,19,20] which still
allows to model many practical applications such as device drivers, the introduc-
tion of abstract entities which represent a potentially unbounded number of heap
cells (called “summary nodes” in [7]), and the observation that, in this setting,
the number of sharing points in heap structures is bounded by the number of
program variables [1,4,20].

Pointer analysis in connection with concurrency is only considered in rather
few places. Most publications concentrate on specific questions such as aliasing
or escape analysis [25,28] or the analysis of safety properties [13,30], or partic-
ular applications such as concurrent garbage collection are studied [9,10,29]. To
our knowledge, the only pointer logics allowing to specify liveness properties of
concurrent systems are ETL [31] and NTL [11]. In contrast to these, however,
we avoid the use of temporal operators inside quantification. In this way, in-
volved mechanisms to keep track of the identities of individual heap nodes are
not required.
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Thus our approach is unique in that it supports concurrent programs with
dynamic thread creation, memory allocation, and destructive updates operating
on arbitrary (possibly cyclic) linked lists. Moreover it integrates both abstraction
and model checking in a fully automated way and supports a linear-time logic
in which both safety and liveness properties can be expressed, allowing to use
standard LTL model checkers.

3 A List-Manipulating Programming Language

Given sets PV of program variables and P of thread names, a dynamic list-
manipulating program (DLMP) π has the form (vi, v ∈ PV and pj , p ∈ P)

π = var v1, ..., vk; proc main(S0); p1(S1); ...; pl(Sl)
Here each Si (0 ≤ i ≤ l) is of the form si1; ...; siri with sij ∈ CMD, where CMD
is the set of the following commands:

PExp := PExp pointer assignment new(PExp) object creation
if BExp goto n conditional jump del(PExp) object destruction
goto n unconditional jump spawn(p) spawn instance of thread p

atc(BExp) guarded atomic region exit thread termination
end atc end of atomic region

Pointer expressions (PExp) comprise the special constant nil denoting an
undefined pointer value, a program variable, or the (de)referencing of a program
variable. Arbitrary dereferencing depths can be emulated using a sequence of
atomic assignments. The Boolean expressions (BExp) are standard.
PExp ::= nil | v | ∗v | &v BExp ::= PExp = PExp | BExp ∧ BExp | ¬BExp

Note that we do not allow nesting of atomic regions. In the following we assume
for simplicity that π as above is globally given (if not mentioned otherwise).

Fig. 1 shows a DLM-program that simulates a simple server/worker scenario.
The server creates new objects in an infinite loop and inserts them into a list.
For each object a new worker thread is spawned deleting one object from the
list when it is executed. Without imposing fairness constraints this may lead to
an infinite number of both objects and threads.

Petri Nets. We use Petri nets to describe the operational semantics of DLMPs.

Definition 3.1. A Petri net is a tuple P = (P, T, src, tgt , �, m0) where P is a
set of places, T a set of transitions, src, tgt : T → 2P associate each transition
with its source and target places, � : T → L is a transition labeling function,
and m0 : P → � the initial marking. A state of P is a marking m : P → �.
The set of all markings is denoted by Mark(P).

Petri nets are high-level representations of (infinite) transition systems whose
transitions are characterized by the token game. If in a marking m a transition
t is enabled, i.e. m(p) > 0 for all p ∈ src(t), and if its firing yields m′, we write
m �t m′. m � m′ means that there exists t ∈ T such that m �t m′.
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Definition 3.2 (Run). Let P = (P, T, src, tgt , �, m0) be a Petri net. A run of
P is a (possibly infinite) sequence of markings ρ = m0m1m2... ∈ Mark (P)� ∪
Mark (P)ω such that mi�mi+1. The set of all those runs is denoted by Runs(P).

For ρ = m0m1... ∈ Runs(P) let |ρ| ∈ � ∪ {∞} be the length of ρ. We
write ρ[k] to denote the suffix starting from the k-th marking, i.e., mkmk+1... ∈
Runs(P, T, src, tgt , �, mk) which implies ρ[k] = ε for |ρ| ≤ k, and we set ρi := mi.

Finally we call a Petri net k-safe if at no time any place holds more than k tokens
and bounded if there exists a k for which it is k-safe. Clearly only bounded Petri
nets can be represented by finite transition systems.

var x, y;
proc main(
01 new(x);
02 spawn(server); )

server(
11 spawn(worker);
12 atc(tt);
13 y := x;
14 new(x);
15 ∗x := y;
16 end atc;
17 goto 11; )

worker(
21 atc(x 	= nil);
22 y := x;
23 x := ∗x;
24 del(y);
25 end atc; )

Fig. 1. Server/Worker

Concrete Heap Semantics. Defining the semantics
of DLM-programs requires a formal model of the heap.

Definition 3.3. A heap configuration is a tuple H =
(N, A, μ, F ) with a set of nodes N ⊇ PV , a set of
abstract nodes A ⊆ N \ PV , a successor function μ :
N → Nnil (where Nnil := N ∪ {nil}), and a set of
flags F ⊆ Flags := {err, leak, del} ∪ {newn | n ∈ N} ∪
{spawnp | p ∈ P}.

H denotes the set of all heap configurations; H∅ ⊆
H the set of all concrete ones (i.e., those with A = ∅).

The nodes represent both the dynamic objects at run-
time and the static program variables (which cannot
be deleted). Edges, as formalized by the μ-function,
encode the points-to information of a specific program
state. The set A of abstract nodes will later be used for
our heap abstraction technique (see Sct. 4) and will be
empty throughout the current section. Finally the flags
give special information about a state, e.g., whether a
runtime error or memory leak occurred, a node was
created or deleted, or a thread has been spawned.

To delete unreachable nodes that do not influence
program semantics a garbage collection mapping de-
noted by ↓ is applied. Whenever it removes an unreachable node, it sets the leak
flag to indicate a potential memory leak.

Definition 3.4. Let H = (N, ∅, μ, F ) ∈ H∅. The semantics of pointer expres-
sions is given by the partial function [[· ]] : PExp ⇀ Nnil , defined as follows
(where ⊥ denotes the undefined value).1

[[nil ]] := nil [[v ]] := μ(v) [[∗v ]] := μ([[v ]]) [[&v ]] := v

The semantics of Boolean expressions, [[· ]] : BExp ⇀ �, is standard but strict,
i.e., it becomes undefined if at least one subexpression is undefined.

1 The definition implies μ(nil) = ⊥ and so [[· ]] can indeed yield undefined results.
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The effect of executing a program statement is captured by a transition rela-
tion which associates the source and target heap configuration with the given
statement and an indicator from the set {0, 1, ⊥}. Here 1 denotes the normal
execution of a statement or the selection of the then-branch of an if-command,
0 only occurs in the else-branch of if -statements, and ⊥ represents the failure of
a command (e.g., dereferencing a null-pointer).

Definition 3.5. The heap transformation relation, →h⊆ (H∅\{Herr})×CMD×
{0, 1, ⊥} × H∅, is given as follows. Here Herr := (PV , ∅, {v �→ nil | v ∈ PV },
{err}), H = (N, A, μ, F ) ∈ H∅ \ {Herr} with A = ∅, and f [x/y] denotes a func-
tion update where y is the new value of x. (We only show some example rules.)

[[α ]] �= ⊥
H,v := α

1→h (N, A, μ[v/[[α ]]], ∅)↓
[[α ]] = ⊥

H,v := α
⊥→h Herr

H,new(v)
1→h (N � {n}, A, μ[v/n], {newn})↓

[[α ]] �= nil

H,del(α)
1→h (N \ {[[α ]]}, A, μ[[[α ]]/⊥, μ−1([[α ]])/nil ], {del})↓
[[b ]] �= ⊥

H, if b goto n
[[b ]]→h (N, A, μ, ∅)

[[b ]] = ⊥

H, if b goto n
⊥→h Herr

[[b ]] = 1

H,atc(b)
1→h Ĥ

[[b ]] = ⊥

H,atc(b) ⊥→h Herr

Note that the heap flags (except err) are only active in the configuration directly
following the corresponding event.

As our final goal is to combine the heap and control-flow semantics, we now
represent the heap transformation relation by a Petri net. The labels will later
be used for synchronizing the two nets.

Definition 3.6. The concrete heap semantics is the (infinite, 1-safe) Petri net
Ph := (P, T, src, tgt , �, m0) with P ⊆ H∅, T = {(H, H ′, c, x) | H, c

x→h H ′)},
src(H, H ′, c, x) = {H}, tgt(H, H ′, c, x) = {H ′}, �(H, H ′, c, x) = (c, x), m0(H0) =
1 for a given H0 ∈ P (typically the empty heap), and m0(H) = 0 for H 	= H0.

Control-Flow Semantics. In the context of concurrency and dynamic thread-
ing it does not suffice to only consider the effects of certain statements on the
heap; the control flow of the program is also crucial. It can again be modeled by
a Petri net.

Definition 3.7. The control-flow semantics of π is given by the Petri net Pc :=
(P, T, src, tgt , �, m0) with P = {lock}∪

⋃l
i=0

⋃ri

j=1{ij}, � : T → CMD×{0, 1, ⊥},
m0(01) = 1, m0(lock) = 1 and m0(p) = 0 for all p /∈ {01, lock}. For 0 ≤ i ≤ l
and 1 ≤ j ≤ ri let lockij be the singleton set containing lock if sij is not inside
an atomic region and the empty set otherwise. The transitions (T , src and tgt)
are then given as follows:
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sij �(t) src(t) tgt(t)
if b goto n (sij , 0) {ij} ∪ lockij {i(j + 1)} ∪ lockij

(sij , 1) {ij} ∪ lockij {in} ∪ lockij

(sij , ⊥) {ij} ∪ lockij ∅
goto n (sij , 1) {ij} ∪ lockij {in} ∪ lockij

atc(b) (sij , 1) {ij, lock} {i(j + 1)}
(sij , ⊥) {ij, lock} ∅

end atc (sij , 1) {ij} {i(j + 1), lock}
spawn(px) (sij , 1) {ij} ∪ lockij {i(j + 1), x1} ∪ lockij

exit (sij , 1) {ij} ∪ lockij lock

α := α′,new(α),del(α) (sij , 1) {ij} ∪ lockij {i(j + 1)} ∪ lockij

(sij , ⊥) {ij} ∪ lockij ∅

If one of the target places is not in P we omit the corresponding out-edge (e.g.
in case of thread termination or a jump out of range).

Example 3.8. The graph in Fig. 2 shows the Petri net modeling the control-flow
semantics of the program from Fig. 1. The round nodes represent the places
and the rectangles the (labeled) transitions of the net. If there are incoming and
outgoing edges to the same place they are drawn as bidirectional arrows. In the
initial state there are only tokens in the places 01 and lock.

Concrete DLMP-Semantics. Now that we defined the heap as well as the
control flow semantics of our programming language we have to combine both.

Definition 3.9. Let Pc = (P c, T c, srcc, tgtc, �c, mc
0) be the control flow and

Ph = (P h, T h, srcc, tgtc, �h, mh
0 ) the heap semantics of π. The concrete seman-

tics of π is the Petri net P := Pc ⊗ Ph := (P c ∪ P h, T, src, tgt , �, m0) where
T = {((tc, th) ∈ T c × T h | �c(tc) = �h(th)}
src(tc, th) = src(tc) ∪ src(th)
tgt(tc, th) = tgt(tc) ∪ tgt(th)

�(tc, th) = �c(tc)

m0(p) =

{
mc

0(p) if p ∈ P c

mh
0 (p) otherwise

As one might suspect the concrete semantics cannot be used as-is in verification
techniques since DLM-programs are Turing complete2.

4 Data Abstraction

To tackle the verification problem we use heap abstraction techniques to generate
a data abstract semantics that over-approximates the behavior of the concrete
one, i.e., whose runs cover all concrete ones. In our setting this approach is correct
but generally incomplete: although we can conclude from the satisfaction of a
2 DLM-programs can simulate a counter machine (the values of the counters are rep-

resented by lists of the corresponding length).
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01 •

02

new(x), 1 new(x),⊥

spawn(server), 1

11

spawn(worker), 1

12

13

14

15

atc(tt), 1atc(tt),⊥

y := ∗x, 1y := ∗x,⊥

new(x), 1new(x),⊥

16

∗x := y, 1∗x := y,⊥

17

end atc, 1

goto 1, 1

21

22

23

24

atc(x �= nil), 1 atc(x �= nil),⊥

y := x, 1 y := x,⊥

x := ∗x, 1 x := ∗x,⊥

25

del(y), 1 del(y),⊥

end atc, 1

lock •

Fig. 2. Control-flow semantics for the server/worker example

property in the abstract state space the validity in the concrete case, the inverse
is not possible anymore. Our heap abstraction is parameterized via a global
constant M ∈ � which allows a systematic refinement. For a given M > 0 we
set � := {0, 1, ..., M, �}, where � represents all values greater than M .

x

x

Fig. 3. An Abstraction Morphism

Chain Abstraction and Canonical
Configurations. For heap abstraction
we adopt the idea of summary nodes.
Summary nodes are not allowed to rep-
resent arbitrary structures but only so-
called chains which are non-interrupted
sublists, i.e., list segments where only the
head node is allowed to have more than
one predecessor. This abstraction tech-
nique is well known [7,11,26]. For further
details you may also refer to [15].

Based on the concept of chains one can define so-called abstraction morphisms
which are surjective functions of the type h : N1 → N2 for Hi = (Ni, Ai, μi, Fi) ∈
H that retain the graph structure while collapsing chains of length greater than
M to abstract nodes. In Fig. 3 an example is depicted.
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We write H2 ≤ H1 to denote that there is an abstraction morphism that
abstracts H1 to H2. In this context we will also write h(H1) = H2 lifting h to
heap configurations. If |N1| = |N2|, h is an isomorphism. We then write H1 ∼= H2.

Note that a given source configuration can give rise to different abstractions.
To obtain a unique canonical representation of a concrete heap configuration we
collapse only maximal chains and do not abstract nodes that are closer than
three μ-steps to a program variable. This yields a concrete expression semantics.

The set of all such canonical configurations is denoted by H�. It can be shown
that for every concrete heap configuration a unique canonical configuration exists
which is related to the former by a morphism h� [15]. We will use it as abstraction
function in the following. The lower graph in Fig. 3 is a canonical configuration.

Abstract Heap Semantics. Regarding the expression semantics nothing needs
to be modified in the data-abstract setting: in a canonical configuration, abstract
nodes have a distance greater than two from the variable nodes such that ev-
ery pointer expression refers to a concrete node. The expression semantics can
therefore be chosen identical to the concrete case (Def. 3.4), now interpreted on
canonical configurations.

Definition 4.1 (Abstract Heap Transformation Relation). The abstract
heap transformation relation ⇒h⊆ (H�/∼= \{{Herr}})×CMD×{0, 1, ⊥}×H�/∼=
is depicted in Fig. 4 for H = (N, A, μ, F ) ∈ H�. We focus on assignments
since the other rules are analogous to the concrete case. For simplicity we use
representatives of the isomorphism classes.

In Fig. 4 the semantic rules are visualized by examples. Rules 1 and 2 lead to a
potential increase in the distance from variables to abstract nodes: consider an
assignment of the form y := nil . If y points into a list whose head is referred to by
another variable, we possibly increase the distance from that variable to abstract
nodes. The assignment therefore potentially yields a non-canonical configuration
making a re-abstraction necessary.

In rule 3 there might be the necessity for both concretization and abstrac-
tion. The execution of the assignment yields an intermediate configuration which
is generally not canonical since the variable v could now be too close to an
abstract node. Therefore we have to find a more concrete configuration H ′

whose abstraction yields the intermediate configuration. There might be more
than one solution, thus this rule is nondeterministic (indicated by dashed ar-
rows). After the concretization a re-abstraction is used to obtain the canonical
form.

Due to our canonical representation, H�/∼= is finite and its size depends (lin-
early) on the number of program variables and the value of the precision con-
stant M3. This implies the finiteness of the abstract heap semantics but not the
boundedness of the data abstract program semantics as defined below.

3 The number of nodes is bounded by (2M + 3) · |PV |.
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Definition 4.2. The abstract heap semantics is the Petri net Ph
� := (P, T, src,

tgt , �, m0) with P ⊆ H�/∼=, T = {(K, K ′, c, x) | K, c
x⇒h K ′}, �(K, K ′, c, x) =

(c, x), src(K, K ′, c, x) = {K}, tgt(K, K ′, c, x) = {K ′} and m0(K0) = 1 for a
K0 ∈ P (e.g. the empty heap congruence class) and m0(K) = 0 for K 	= K0.

The data abstract program semantics is given by the Petri net P� := Pc ⊗Ph
�

where ⊗ is as in Def. 3.9.

5 A Logic for Pointer Programs

In the previous sections we have defined our programming language and both
its concrete and abstract semantics. In this section we will present a logic which
allows us to reason about heap configurations and program behavior. In the
following LV denotes a set of logical variables with LV ∩ PV = ∅.

Pointer Logic. Pointer Logic deals with single configurations, and can be used
to express graph properties as well as to inspect the special heap flags.

Definition 5.1. We define the set of Pointer Logic formulae (PL-formulae) as
follows:

NExp ::= nil | v (∈ PV ) | x (∈ LV ) | ∗NExp
Atomic ::= tt | ff | f (∈ Flags) | NExp = NExp | NExp � NExp

PL ::= Atomic | ¬PL | PL ∧ PL | ∃x : PL
As usual we will use the logical operations ∨, →, and ∀ as abbreviations. In con-
trast to pointer expressions in DLM-programs, the logic supports dereferencing
operations of arbitrary depth. The predicate � expresses the reachability of
heap objects, whereas = is true iff both expressions refer to the same object.

Definition 5.2. Let β : LV ⇀ N be a valuation function instantiating logical
variables with heap nodes and (N, ∅, μ, F ) ∈ H∅ a concrete heap configuration.
Then we define [[· ]] : NExp ⇀ Nnil for x ∈ LV , v ∈ PV and α ∈ NExp by:

[[nil ]] := nil [[v ]] := v [[x ]] := β(x) [[∗α ]] := μ([[α ]])
Note the semantic difference in comparison to the programming language. In the
logic a variable v is interpreted by itself and not by the node it is referencing. This
allows the check for identity of program variables without introducing a reference
operator. The semantics of PL with respect to concrete heap configurations is
quite standard and therefore omitted.

Reasoning about Abstract Computations. When switching to abstract
configurations we run into several complications since logical variables can be
bound to both concrete and abstract nodes. In the latter case we have to record
to which concrete node, represented by the abstract node, a variable is bound.
This could lead to undefinedness of PL-formulae. The problem mainly occurs in
direct comparisons of the form α = α′. To solve it we choose the global precision
constant M in dependence of the formula ϕ ∈ PL, assuming from now on that

M ≥
∑

x∈Variables(ϕ)

{j + 1 | ∗jx occurs in ϕ},

and introduce the concept of abstract valuations.
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Given H ∈ H� and ϕ ∈ PL, an abstract valuation is of the form η = (β, o, δ)
where β : PV → N maps logical variables to (abstract) nodes, o : PV → �

denotes the offset of a variable “inside” an abstract node, and δ : PV → PV ⇀
� is a “distance matrix” for the logical variables (referring to the same abstract
node). δ is only defined if both arguments are mapped to the same entity, and
o is only different from 1 if the corresponding variable is mapped to an abstract
node. The set of all such valuations will be denoted by ValH,ϕ.

Using this concept one can define a function dH,η : NExp × NExp → {0, 1, ∞}
measuring the “distance” of pointer expressions, where distance here means either
0 if the expressions are mapped onto the same (concrete) node, 1 if the second
argument is reachable from the first, or ∞ if neither is the case (see [15] for details).

Definition 5.3. Let H = (N, A, μ, F ) ∈ H� and η = (β, o, δ) ∈ ValH,ϕ. The
satisfaction relation |= for PL-formulae on canonical configurations is then given
as follows (omitting the trivial cases):

H, η |= f iff f ∈ F , where f ∈ Flags
H, η |= α1 = α2 iff dH,η(α1, α2) = 0
H, η |= α1 � α2 iff dH,η(α1, α2) ≤ 1
H, η |= ∃x : ϕ iff ∃n ∈ N, off ∈�, dist : V (ϕ) ⇀� s.t.

H, (βη[x/n], oη[x/off ], δη[x/dist]) |= ϕ
H |= ϕ iff ∃η ∈ ValH,ϕ s.t. H, η |= ϕ

[H ]∼= |= ϕ iff H |= ϕ

Temporal Pointer Logic. Pointer Logic enables us to express properties of sin-
gle configurations. However it cannot be used to specify (ongoing) computations,
i.e., configuration sequences. To this aim we extend it by temporal operators.

Definition 5.4. The set of Temporal Pointer Logic formulae (TPL-formulae)
is given as follows:

TPL ::= PL | ¬TPL | TPL ∧ TPL | X TPL | TPL U TPL

For ϕ ∈ TPL we use the the abbreviations Fϕ := ttUϕ and Gϕ := ¬F¬ϕ.

Note that it is not possible to nest PL-quantifiers and temporal operators. To
do so it would be necessary to keep track of the object identities between states,
which is difficult in the presence of abstract nodes. In addition it would blow
up the state space and exclude the use of standard model checking algorithms.
Only a few approaches support this idea [11,31]; most other works in the area
consider only the shape of the heap. Clearly this restriction results in a loss of
expressivity, nonetheless we can specify many interesting properties.

Example 5.5. For our server/worker system from Fig. 1 it holds true:

1. GX tt (never deadlock, i.e., there is always a successor state)
2. ¬F err (no pointer errors)
3. GF ∃n : newn (new objects are created infinitely often)
4. GF spawnworker (infinitely often worker processes are spawned)
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5. G(∃n : newn → F spawnworker)
(for every new object a worker thread is spawned)

6. ¬G(spawnworker → F del)
(the creation of a worker process does not necessarily result in the deletion
of a node, i.e., fairness is not guaranteed)

More general correctness properties are:
7. F ∗v = ∗w (v and w will eventually become aliases)
8. G¬(∃x : (v � x ∧ w � x)) (v and w always point to disjoint heap parts)
9. G(∀x : (v � x → (¬∃y : (x � y ∧ ∗y � x))))

(v always points to a non-cyclic list)
10. FG(¬leak) (only finitely many memory leaks can occur)
11. G(∀x : (v � x → (∀y : (y � x → v � y)))) (v always points to a chain)

As mentioned before TPL specifies computation paths. These are given as se-
quences of heap configurations according to the Petri net representing the pro-
gram semantics. By construction, for each marking m there is exactly one p ∈
H�/∼= ∪ H∅ such that m(p) = 1.

Definition 5.6. Let P� = (P, T, src, tgt , �, m0) be the abstract (or concrete) se-
mantics of π. For a given run ρ ∈ Runs(P�) the satisfaction relation |= for
ϕ ∈ TPL, assuming w.l.o.g. that the maximal PL-subformulae in ϕ are closed,
is defined as follows (again omitting the trivial cases):

ε 	|= ϕ
ρ |= ϕ (∈ PL) iff ρ 	= ε ∧ ∃p ∈ P ∩ (H�/∼= ∪ H∅) : ρ0(p) = 1 ∧ p |=PL ϕ
ρ |= Xϕ iff ρ[1] |= ϕ
ρ |= ϕUψ iff ∃k ≤ |ρ| : ρ[k] |= ψ and ∀j < k : ρ[j] |= ϕ

We write P� |= ϕ iff ρ |= ϕ for all ρ ∈ Runs(P�) and π |= ϕ iff Pc ⊗ Ph
� |= ϕ.

Note that finite traces are included in the semantics of TPL. This implies that
the equivalence ¬Xϕ ↔ X¬ϕ does generally not hold.

Model Checking Temporal Pointer Logic. The Turing completeness of
DLM-programs implies that the model checking problem for TPL-formulae is
undecidable. The following theorem shows that it suffices to employ data ab-
straction to obtain a positive result.

Theorem 5.7. The data-abstract model checking problem is decidable, i.e., we
can decide whether Pc ⊗ Ph

� |= ϕ.

Proof. The idea is to evaluate all maximal PL-subformulae on the heap configura-
tions, to label (the transitions of) P� by atomic propositions and accordingly elim-
inate the PL-subformulae in ϕ to obtain an LTL-formula ϕ′ (see Algorithm 6.4).
The next step is to construct two automata A and B where A is a finite automaton
recognizing the finite words, and B a nondeterministic Büchi-automaton accept-
ing the infinite words satisfying ϕ′. Then according to [12] the model checking
problem is decidable using a formula of the type defined in [32] to formulate the
Büchi acceptance condition for B and a reduction to the reachability problem for
Petri net markings that is decidable in EXPSPACE [17]. ��
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The result is important but more of theoretical interest due to the high com-
plexity of the problem. Thus we have to apply further simplifications to obtain
practically feasible results.

6 Control-Flow Abstraction

The idea of the control-flow abstraction is similar to the data abstraction. Instead
of recording for each Petri net place the exact number of tokens we only do this
up to a certain resolution. A global constant C ∈ � parameterizes the resolution
bound. � := {0, ..., C, �} is used analogously to �. What we obtain is an over-
approximation Pc

� of the concrete control-flow semantics Pc. The first step is
the modification of the Petri net semantics.

Definition 6.1. An abstract Petri net is of the form P = (P, T, src, tgt , �, m0)
with abstract markings that are functions of the type m : P → �.

Definition 6.2. Let P = (P, T, src, tgt , �, m0) be an abstract Petri net, m, m′ ∈
Mark (P) and t ∈ T . Then �t ⊆ Mark (P) × T × Mark (P) is given by4:

m �t m′ ⇔ ∀p ∈ srct : m(p) > 0 ∧ ∀p ∈ P :

m′(p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m(p) − 1 if p ∈ src(t) \ tgt(t) and m(p) 	= �

C or � if p ∈ src(t) \ tgt(t) and m(p) = �

m(p) + 1 if p ∈ tgt(t) \ src(t)
m(p) otherwise

The abstract control-flow semantics Pc
� is defined as the concrete one, but using

the abstract transition relation �.

Definition 6.3. The abstract semantics of π is the Petri net P�� := Pc
� ⊗ Ph

� .

If we now want to apply model checking, i.e., verify that a TPL-formula ϕ is
satisfied by P��, we evaluate all maximal PL-subformulae of ϕ on the heaps in
P��, substitute them by atomic propositions, generate the underlying (finite)
transition system, label it with atomic propositions according to the evaluation
of subformulae, and solve the resulting model checking problem for LTL with
finite traces [14].

Algorithm 6.4. Let P�� = (P, T, src, tgt , �, m0) be given and ϕ ∈ TPL the
formula to verify. Let Ψ := {ψ ∈ PL | ψ is a maximal subformula of ϕ} =
{ψ1, ..., ψr} and a1, ..., ar be atomic propositions.
1. Generate a finite transition system T := ({m | m0 �� m}, m0, �, lab) with

lab(m) :=
r⋃

i=1

{ai | ∃p ∈ P ∩ H�/∼= : m(p) = 1 ∧ p |= ψi}

2. Solve T |=?
LTL ϕ[ψ1/a1, ..., ψr/ar] (admitting finite traces).

4 Note that �t can be nondeterministic for a given transition t.
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Fig. 5. Size of the state space for the server/worker example

Limitations and Refinement. Due to the over-approximation of the state
space, there may exist abstract computations falsifying the property to verify
and not corresponding to concrete ones. These false negatives can be eliminated
through abstraction refinement by increasing the parameters M and C. The size
of the state space is a linear function wrt. M (and C). This is visualized in
Fig. 5 for our server/worker example employing a prototype version of our tool
which is currently under development (note the logarithmic scale of both axes).
Thanks to the implicit universal quantification over paths in the LTL approach,
however, the successful verification of a property in the abstract case implies its
correctness in the concrete case, i.e., false positives are excluded.

Note that our framework can be easily extended to three truth values, to
eliminate false positives. The “don’t know” answer would then only be given
if the resulting transition system contains both positive and negative traces.
In the other cases the answer would be an exact “yes” or “no”. This would
require the additional checking of a CTL formula in the case that the LTL
model checker falsifies the property. If the answer is “don’t know” a refinement
step by increasing M and/or C is necessary.

7 Conclusions and Future Work

We have presented a framework for the verification of concurrent pointer-manipu-
lating programs with dynamic thread creation, unbounded heap size, and destruc-
tive updates. Correctness properties are specified using temporal pointer logic
(TPL) which is essentially a pointer logic for expressing heap properties enriched
with temporal operators. Rather than requiring dedicated algorithms, the TPL
model checking problem is reduced to an LTL model checking problem by
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appropriate abstractions. The trade-off is the restriction to list-like data struc-
tures and to static variables as well as the limitation in expressiveness of the logic
because object identities are not tracked between configurations.

Currently we are implementing the method to analyze more interesting ex-
amples. We are planning to support the user in handling abstract computations
which violate a given property, either by deriving concrete counterexamples or
by suggesting refinements to eliminate false negatives. Finally we are working
on an extension to arbitrary data structures.

Acknowledgments. We would like to thank Ulrich Schrempp for developing the
prototype implementation of our analysis framework, which was used for com-
puting the state spaces in the server/worker example.
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Abstract. We consider the issue of finding and presenting counterexam-
ples to a claim “this spec is implemented by that imp”, that is spec � imp
(refinement), in the context of probabilistic systems: using a geometric
interpretation of the probabilistic/demonic semantic domain we are able
to encode both refinement success and refinement failure as linear satis-
faction problems, which can then be analysed automatically by an SMT
solver. This allows the automatic discovery of certificates for counterex-
amples in independently and efficiently checkable form. In many cases
the counterexamples can subsequently be converted into “source level”
hints for the verifier.

Keywords: Probabilistic systems, counterexamples, quantitative pro-
gram logic, refinement, constraint solving.

1 Introduction

One of the strengths of standard model checking is its ability to produce coun-
terexamples as concrete evidence that an implementation or model of a system
fails to meet its specification. Moreover in some cases the counterexample can
aid debugging by pointing to possible causes of the problem [2].

Unfortunately, with probabilistic model checking there is not yet an accepted
definition for what a counterexample should be, nor is there a tradition for
using counterexamples for debugging. In particular, a single computation path
or trace is not normally sufficient counterevidence: it is more likely to be a
cumulative trend over many traces that leads to suspect behaviour [8], suggesting
a probabilistic computation tree as a candidate for a counterexample. A tree
however cannot easily be presented as a cogent summary of the possible faults,
nor does it indicate how to correct them.

The theme of this paper is a novel approach to presenting counterexamples
in the context of probabilistic systems, and how it can be used in practice. Our
proposal is guided by the following principles which, we believe, are qualities any
good counterexample should possess:

P1. A counterexample should produce a certificate of failure that is easy to
check, independently of the tool that found it; moreover,
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P2. As far as possible the certificate should relate directly to the program text
or system model; and finally,

P3. It should direct the verifier to the possible causes of the problem.

In system verification there is a great variety of behaviours. Whilst identify-
ing the “bad behaviours” amongst the complete set might be hard in the first
instance, once observed they should be immediately recognisable as such — in
this context that means the counterexample should be checkable with minimum
effort. This suggests P1 and P2. Principle P3 is included as it has the potential
to be extremely useful as a debugging tool.

The current proposals [7,8] for counterexamples in probabilistic systems sat-
isfy none of these properties, largely because they are based on probabilistic
trace semantics — whilst (sets of) traces do provide evidence, they are neither
easily verifiable, nor can they be directly related to the original system model.

Our approach is based on the refinement style of specification exemplified by
the refinement calculus [14,1] extended to include probability [15,12]. In this
style a specification spec is a heavily abstracted system, which is so simple as
to be “obviously correct,” whereas an implementation imp is more detailed,
including distributed features or complicated program-code intended to realise
some optimisation. Once a set of observable behaviours is agreed on, one writes
spec � imp, that spec is refined by imp, to mean that all possible behaviours of
imp are included in those of spec.

Our main concern in this paper is when such a hypothesised refinement fails
in the probabilistic case. We consider the problems of what constitutes good
evidence to refute a refinement, and how can it be used to help the verifier solve
the problem, possibly by changing one of spec or imp. (The former is changed
when the counterexample reveals that spec is too demanding, and the latter
when imp contains genuinely incorrect behaviours.)

Our specific contributions in this paper are thus as follows.

1. A description (Sec. 4.3) of how a counterexample to a proposed probabilistic
refinement may be encoded as the failure to satisfy a quantitative property:
i.e. it is rendered as a term in the quantitative program logic of Morgan and
McIver [12];

2. An implemented procedure (Sec. 4) to compute the semantics of a small
probabilistic programming language pGCL, and an arithmetic solver, which
together compute a certificate in the case that refinement fails, showing
adherence to Principles P1 and P2 ;

3. A method (Sec. 4.4) to use the certificate to produce a suspect schedule, in
distributed systems for example, thus fulfilling Principle P3.

In Sec. 2 we provide a summary of the overall approach, with later sections
elaborating the details of the ideas introduced there.

We assume a (finite) state space S; we write DX for the set of (discrete) dis-
tributions over a finite set X , namely the set of 1-summing functions X→[0, 1];
given a set K we write PK for its power set. Given two distributions d, d′ and
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scalar 0 ≤ p ≤ 1, we write d p⊕ d′ for the distribution p×d + (1−p)×d′. We use
an explicit dot for left-associating function application; thus (f(x))(y) becomes
f.x.y .

2 On Refinement, and Checking for It: An Introduction

Our basic model for operational-style denotations of sequential demonic pro-
grams without probability is S ↔ (S ∪ {⊥}) or equivalently S → PS⊥, in which
(in the latter form) some initial state s ∈ S is taken by (program denotation)
r ∈ S → PS⊥ to any one of the final states s′ ∈ r.s. A common convention is
that if ⊥ ∈ r.s then so also are all s′ ∈ r.s — nontermination (the “improper”
final state ⊥) is catastrophic.

The reason for that last, so-called “fluffing-up” convention (aside from its
being generated automatically by the Smyth power-domain over the flat order
on S⊥) is that it makes the refinement relation between programs very simple:
it is subset, lifted pointwise. Thus we say that r1 � r2, i.e. Program r1 is refined
by Program r2, just when for all states s we have r1.s ⊇ r2.s. The fluffing-up
means that the same ⊇-convention that refines by reducing nondeterminism also
refines by converting improper ⊥ (nontermination) into proper behaviour.

Except for nontermination, result sets given by r.s are fairly small when the
program r is almost deterministic. In that case, from a fixed initial state s◦ the
question of whether r1 � r2 can feasibly be established by examining every final
state s′ ∈ r2.s

◦ and checking that also s′ ∈ r1.s
◦.

Once probability is added, at first things look grim (details in Def. 1 below):
there can be non-denumerably many output distributions for non-looping pro-
grams over a finite, even small, state space: this is because of the “convexity”
convention (analogous to fluffing-up) that pure demonic choice � can be refined
by any probabilistic choice p⊕ whatever, i.e. for any 0 ≤ p ≤ 1. The reason
for convexity is to allow, again, refinement via ⊇ in all cases; but its effect is
that even the simple program s := A � B has as result set all distributions
{A p⊕ B | 0 ≤ p ≤ 1}, where in the comprehension we write A, B for the point
distributions at A, B.1 Thus if r2 is being compared for refinement against some
r1, it seems there are uncountably many final distributions to consider.

Luckily the actual situation is not grim at all: those result sets, big though
they might be, are convex (and up-) closures of a finite number of distributions,
provided S is finite — and even if the program contains loops. (A set D of
distributions is convex closed if whenever d, d′ ∈ D then so is d p⊕ d′ for any
0 ≤ p ≤ 1.) Writing �· for this closure we are saying that in fact r.s ∈ PDS⊥ is
equal to �D for some finite set of distributions D (depending on r and s). And
so by elementary properties of convexity, to check r1 � r2 for such programs we
need only examine for each s◦ the (small) sets D1,2 of distributions from which
r1,2.s

◦ are generated.
This amounts to taking each result distribution d′ ∈ D2 and checking whether

that d′ is a convex combination of the finitely many distributions in D1, which
1 Point distributions have probability one at some state and (hence) zero at all others.
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–crucially– can be formulated as a linear-constraint problem; and it is not so
much worse than in the non-probabilistic case. Even better, however, is that if
in fact d′ �∈ �D1, then it is possible to find a certificate for that: because of
the Separating Hyperplane Lemma, there must be some plane in the Euclidean
space2 containing D1,2 with �D1 strictly on one side of it and the inconvenient
d′ ∈ �D2 (non-strictly) on the other. Finding that plane’s normal (a tuple of
reals that describes the plane’s orientation) is also a linear-constraint problem,
and can be done with the same engine that attempted to show d′ ∈ �D1 (but
in fact found the opposite).

Thus the overall strategy –and the theme of this paper– is to calculate D1,2
for some initial state s◦ and probabilistic nondeterministic programs given as
r1,2 ∈ S → PDS⊥, and then for each d′ ∈ D2 to attempt to establish d′ ∈ �D1.
If that succeeds for all such d′’s, declare r1 � r2 at s◦; but if it fails at some
d′, then produce a certificate (hyperplane normal) for that failure. (Note that in
the automated procedure for finding certificates we only deal with terminating
programs.)

As we will see, that certificate can then be used to identify, in a sense “high-
light,” the key “decision points” through the program r2 that together caused
the refinement failure — and there is our probabilistic counterexample that can
be presented to the public and checked –by them independently– using the cer-
tificate from the hyperplane.

3 Probabilistic Refinement in Detail

3.1 Definition of Refinement

The transition-style semantics now widely accepted for probabilistic sequential
systems models a probabilistic program as a function from initial state to (ap-
propriately structured) sets of distributions over (final) states: each distribution
describes the frequency aspects of a probabilistic choice, and a set of them (if
not singleton) represents demonic nondeterminism.

Starting with a flat domain S⊥ =̂ S ∪ {⊥}, with ⊥ � s for all proper states
s, we construct DS⊥, the discrete distributions over S⊥ and give it an (flat-
induced) order so that for d, d′ ∈ DS⊥ we have d � d′ just when d.s ≤ d′.s for
all proper s. (Note that d.⊥ > d′.⊥ might occur to compensate.)

Then a set D ⊆ DS⊥ is said to be up-closed if whenever d ∈ D and d � d′

then also d′ ∈ D; it is convex if whenever d, d′ ∈ D, so too is d p⊕ d′ for any
0 ≤ p ≤ 1; and finally it is Cauchy closed if it contains all its limit points with
respect to the Euclidean metric. 2 again

Definition 1. [15,9] The space of (denotations of) probabilistic programs is
given by (CS, �) where CS is the set of functions from S to PDS⊥, restricted to
subsets which are convex, up- and Cauchy closed. The order between programs
is induced pointwise (again) so that r � r′ iff (∀s : S · r.s ⊇ r′.s) .

2 See Sec. 3.6.
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identity [[skip]].s =̂ {s}
assignment [[x := a]].s =̂ {s[x �→ a]}

composition [[P ; P ′]].s =̂ {
∑

s′ : S d.s′ × f ′.s′ | d ∈ [[P ]].s; [[P ′]] � f ′}
where f ′ ∈ S → DS⊥ and in general r′ � f ′ means r′.s � f ′.s for all s.

choice [[if B then P else P ′ fi]].s =̂ if B.s then [[P ]].s else [[P ′]].s
probability [[P p⊕ P ′]].s =̂ {d p⊕ d′ | d ∈ [[P ]].s; d′ ∈ [[P ′]].s}

nondeterminism [[P � P ′]].s =̂ 	 [[P ]].s ∪ [[P ′]].s � ,
where in general 	D� is the up-, convex- and Cauchy closure of D.

Iteration is defined via a least fixed-point; but we do not use iteration in this paper.

Fig. 1. Relational-style semantics of probabilistic programs [12]

The refinement relation defines when two programs exhibit the same or similar
overall behaviour — from Def. 1 we see that a program is more refined by another
whenever the extent of nondeterminism is reduced.

We use a small language pGCL that generalises Dijkstra’s guarded-command
language [5] by adding probabilistic choice (and retaining demonic choice); in
Fig. 1 we set out how its semantics in the style of Def. 1. Programs without
probability behave as usual; programs with probability, but no nondeterminism,
abide by classical probability theory; but programs containing both probability
and nondeterminism can exhibit highly skewed –and confusing– probabilistic
behaviour.

Fig. 2. Prog0’s re-
sults (vertical line)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Each point in a triangle defines a
discrete distribution over its ver-
tices, here {A, B, C}, their unique
linear combination that gives that
point. Since Prog0’s (set of) points
is a strict subset of Prog1’s points,
we have Prog1 � Prog0 and hence
also Prog0 �� Prog1.
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Fig. 3. Prog1’s re-
sults (diamond)

Figs. 2 and 3. Distribution triangles depict convex result-sets

3.2 Example; and Difficulty with Counterexamples

To illustrate probabilistic refinement, and the difficulties with counterexamples,
we consider the two programs below [12, App. A]. Checking Prog0’s text suggests
that it establishes s=A and s=B with equal probabilities; and those probabilities
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could be as high as 0.5 each (if the outer � resolves always to the left) or as low
as zero (if the � resolves always to the right). Probabilities in-between (but still
equal to each other) result from intermediate behaviours of the �.

Checking Prog1 however suggests more general behaviour. For example, con-
sider the “thought experiment” where we execute Prog0 many times, and keep a
record of the results: we expect to see a strong correlation between the number
of A’s and B’s. However with Prog1 we cannot rely on an A, B-correlation, as
instead it might correlate B, C while ignoring A altogether.3

Prog0 =̂ (s := A 0.5⊕ s := B) � s := C (1)
Prog1 =̂ (s := A � s := C) 0.5⊕ (s := B � s := C) (2)

Figures 2,3 depict the relation between Prog0 and Prog1 according to the
semantics at Def. 1, in particular that they seem to be different. But it is not easy
to see this experimentally via counterexample: what concrete property can we
use to observe the difference? Indeed even if we tabulate, for the two programs,
both the maximum and minimum probabilities of all 6 non-trivial result-sets, we
get in Fig. 4 the same results for both programs.

Allowed final value(s) of s A B C A,B B, C C, A

Maximum possible probability 1/2 1/2 1 1 1 1

Minimum possible probability 0 0 0 0 1/2 1/2

The table illustrates the maximum and minimum probabilities for Prog0 and Prog1
with respect to all non-trivial choices of allowed outcome: the programs are not distin-
guishable this way. But in a larger context, they are: the composite programs

Prog0; if s=C then (s := A 0.5⊕ s := B) fi
and Prog1; if s=C then (s := A 0.5⊕ s := B) fi

are distinguished by the test s = A.
This is a failure of compositionality for such (limited) tests [12, App. A.1].

Fig. 4. Maximum and minimum probabilities

The fallback position, that perhaps Prog0 and Prog1 are “observably” equal
at this level of abstraction, is not tenable either — for we can define a context
in which such simple tabulations do reveal the difference. Define the program
Prog2 to be the conditional if s=C then (s := A 0.5⊕ s := B) fi , and compare
Prog0;Prog2 with Prog1;Prog2. The former establishes s=A with probability 1/2;
the latter however can produce s=A with a probability as low as 1/4.3 again

3 If the 0.5⊕ goes left, take the � right — and vice versa.
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identity wp.skip.expt =̂ expt
assignment wp.(x := E).expt =̂ expt[x := E]
composition wp.(P ; P ′).expt =̂ wp.P.(wp.P ′.expt)
choice wp.(if B then P else P ′ fi).expt.s

=̂ wp.P.expt.s if B.s else wp.P ′.expt.s
probability wp.(P p⊕ P ′).expt =̂ p × wp.P.expt + (1−p) × wp.P ′.expt
nondeterminism wp.(P � P ′).expt =̂ wp.P.expt min wp.P ′.expt

The expression expt is of non-negative real type over the program variables. As earlier,
iteration is given in the usual way via fixed point; but we do not treat iteration here.

Fig. 5. Structural definitions of wp [15,12]

Fig. 6. Position the “distribution trian-
gle” in 3-space, on the base of the non-
negative A+B+C ≤ 1 tetrahedron. . .

Fig. 7. . . . approach from below, with a hy-
perplane of normal (2,0,1), until a point in
some result set is “touched”

The distribution-triangle of Figs. 2,3 becomes the base A+B +C = 1 of a tetrahedron
in the upwards octant of Euclidean 3-space; a distribution over {A, B, C} is now simply
a point with the discrete probabilities as its A, B, C co-ordinates.
The random variable defined (A,B, C) �→(2, 0, 1) is represented by an e-indexed family
of hyperplanes 2A+C = e all having the same normal (2, 0, 1). The minimum expected
value of that random variable over any set of distributions is the least e for which the
representing hyperplane touches the set. For Prog1’s distributions in particular, that
value is 1/2 (the plane shown in Fig. 7); for Prog0 the e would be 1 (touching in fact
at all the points in Prog0’s line, that plane not shown).
The fact that the e’s for Prog0 and Prog1 are different, for some normal, is what
distinguishes the two programs; and, given any normal, the program logic of Fig. 5 can
deliver the corresponding e directly from the source text of the program.
The “only” problem is to find that distinguishing normal.

Figs. 6 and 7. Distributions in 3-space, and touching hyperplanes
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3.3 Expected Values of Random Variables Certify Counterexamples

We are rescued from the difficulties of Fig. 4 by the fact that Prog0 and Prog1
can after all be distinguished statically (rather than via lengthy simulations
and statistical tests, as suggested by the above “thought experiment”) provided
we base our analysis on random variables rather than pure probabilities, i.e.
functions over final states (to reals) rather than simple sets of final states.4

Rather than ask “What is the minimum guaranteed probability of achieving a
given postcondition on the final states?” (precisely what was shown above to be
non-compositional), we ask “What is the minimum guaranteed expected value
of a given random variable over the final states?”

In our example above, a distinguishing random variable is e.g. the function
(A, B, C)�→(2, 0, 1), giving minimum (in fact guaranteed) expected value 1 for
Prog0 but only 1/2 for Prog1 (from all initial states, for these programs).

3.4 A Logic of Expectation Transformers

The minimum expected values, explained informally in Sec. 3.3, can be found
at the source level using a quantitative programming logic that generalises Di-
jkstra’s predicate-transformer semantics [5].5 We call it a logic of expectation
transformers.

Definition 2. Random variables (functions of type ES =̂ S → R≥0) are written
in the logic as non-negative real-valued expressions over the program variables.
They are ordered by pointwise ≥. The expectation-transformer denotation of the
logic is then (T S, �), where T S =̂ ES → ES, and t � t′ iff (∀e : ES · t.e ≤ t′.e) .

WiththisapparatuswepresentinFig.5theexpectation-transformerlogicforpGCL;
it corresponds to our earlier “set of distribution” semantics ofFig. 1in the sameway
as classical predicate transformers correspond to classical relational semantics.

3.5 Equivalence of Relational- and Transformer Semantics

Our two definitions Def. 1 and Def. 2 give complementary views of programs’
meaning; crucial for our work here is that those views are equivalent in the
following sense:

Theorem 1. [12,15] Here (and briefly in Sec. 3.6), distinguish the two refine-
ment orders by writing �R for the refinement order given in Def. 1; similarly
write �T for the refinement order given in Def. 2. Then for any two pGCL
programs P, P ′ we have [[P ]] �R [[P ′]] iff wp.P �T wp.P ′ .

With Thm. 1 we can use just � for refinement between pGCL programs, in either
semantics, which is why we do not usually distinguish them (thus dropping the
subscripts R, T ).

Next we see how a third, geometric view supports this equivalence.
4 This startling innovation is due to Kozen [11]; but he did not treat demonic choice,

and so our (non-)compositionality example was not accessible to him.
5 This is again due to Kozen, again only in the deterministic case [11].
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3.6 Distributions and Random Variables in Euclidean Space

Fig. 6 shows how discrete distributions in DS⊥ can be embedded in |S|-
dimensional Euclidean space: distribution d becomes a point whose s-coordinate
is just d.s. (Representing d.⊥ is unnecessary, as it is determined by 1-summing.)
Arithmetically convex sets of distributions become geometrically convex sets of
points in this space.

Fig. 7 shows how a random variable in ES can be embedded in the same
space: random variable f becomes a (family of) hyperplanes with a collective
normal whose s-coordinate is just f.s. 6

The crucial connection is that if the point representing d lies on a plane in the
family f then the constant term of that particular plane is the expected value
over the distribution d of the random variable that f ’s normal represents.

Def. 1 -style refinement remains the inclusion of one set of points (imp) wholly
within another (spec), just as in our earlier Figs. 2,3.

Def. 2 -style refinement is equivalent, but can be formulated in terms of
hyperplanes: take any (random-variable-representing-) hyperplane, and posi-
tion it strictly below the positive octant in the space. (The results sets lie en-
tirely in that octant.) Now move it up –along its normal– until it first touches
a point (i.e. distribution) in one of the result sets. The constant term then
gives exactly the wp for the program producing that first-touched distribution
with respect to the random variable, written as an expectation in the logic of
Fig. 5.

Then one program refines another just when for all such planes the less-refined
program (spec) is always touched before the more-refined one (imp) is — because
that means the constant term for spec is always less that that for imp, whence
the wp’s are similarly ordered as they must be.

The two views justify Thm. 1 informally; we explain it in the contrapositive.
If spec ��R imp then for some initial state s◦ we have a distribution d′ with
d′ ∈ [[imp]].s◦ but d′ �∈ [[spec]].s◦. Because [[spec]].s◦ is convex, by the Separating
Hyperplane Lemma there must be a plane separating d′ from it in the sense
that d′ is in the plane but [[spec]].s◦ lies strictly on one side of it.7 Because our
result sets are up-closed, the normal of that plane can be chosen non-negative;
and thus if that plane approaches the positive octant from below, it will reach
d′ in [[imp]].s◦ strictly before reaching any of [[spec]].s◦, thus giving spec ��T
imp.

The reverse direction is trivial: if spec ��T imp then some plane reaches
[[imp]].s◦ before it reaches [[spec]].s◦; hence we cannot have [[spec]].s◦ ⊇ [[imp]].s◦;
hence spec ��R imp.

6 A hyperplane in N-space is a generalisation of a plane, in 3-space ax+by+cz = e.
The tuple (a, b, c) is its normal and e is its constant term.

7 The SHP Lemma states that any point not in a closed and bounded convex set can
be separated from the set by a plane that has the point on one side and the set
strictly on the other.



Proofs and Refutations for Probabilistic Refinement 109

4 Proofs and Refutations

With the above apparatus we address our main issue: given two pGCL programs
spec, imp over some finite state space S, what computational methods can we
use either to prove that spec � imp, or to find –and present convincingly– a
counterexample? We treat the two outcomes separately.

4.1 Calculating Result Sets

In order to prove refinement, i.e. spec � imp, we must –in effect– investigate
every possible outcome (distribution) of the implementation imp (element of its
result set) and see whether it is also a possible outcome of the specification spec
(is an element of that result set too). Because of the structure of these sets,
that they are convex closures of a finite number of “vertex” distribution points,8

it is enough to check each vertex of the implementation result set against the
collection of vertices of the specification result set.

These sets are calculated in the same way (for spec and for imp), simply by
“coding up” the relational semantics given in Fig. 1 in a suitable (functional)
programming language. The main data-type is finite set of distributions, with
each distribution being in turn a suitably normalised real-valued function of the
finite state space (representable thus as a simple tuple of reals).

We discuss sequential composition S; T as an example. Components S and T
separately will have been analysed to give structures of type initial state to set
of final distributions ; the composition is implemented by taking the generalised
Cartesian product of the T structure –converting it to a set of functions from
initial state to final distribution– and then linearly combining the outputs of
each of those functions, varying over its initial-state input, using the coefficients
given by the probabilities assigned to each state by the S structure in each of
its output distributions separately. That gives a set of output distributions for
each single output distribution of S; and the union is taken of all of those.

The number of result distributions generated by the program as a whole is
determined by the number of syntactic nondeterministic choices and the size of
the support of the probabilistic branching, and it is affected by the order in which
these occur. For example a D-way demonic branch each of whose components is a
P -way probabilistic branch will generate only D distributions (since each P -way
branch is a single distribution). However the opposite, i.e. a P -way branch each
of whose components is a D-way branch, will generate |DP | output distributions
— because the effect of calculating those distributions for the whole program
is simply to convert it to (the representation of) a normal form in which all
nondeterministic branching occurs before any probabilistic branching.9

8 Sufficient mathematical conditions for this are that either the state space is finite and
“raw” nondeterminism � is finite, with loops allowed. We do not know whether it
holds for infinite state spaces with loops, or finite state spaces with general (non-tail)
recursion.

9 For example the program (x := ±1) 1/3⊕ (x := ±2) normalises to
(x := 1 1/3⊕ 2) � (x := 1 1/3⊕ −2) � (x := −1 1/3⊕ 2) � (x := −1 1/3⊕ −2) .
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Suppose we have M sequentially composed components each one of which is
an at most D-way demonic choice between alternatives each of which has at most
P non-zero-probability alternatives. The computed results-set is determined by
at most D 1+P+P 2+···+P M−1

vertices. Whilst this makes computing result distri-
butions theoretically infeasible, in practice it is rarely the case that probabilistic
and nondeterministic branching interleaves to produce this theoretical worst
case.

4.2 Proving Refinement

Now suppose our state-space is of finite size N ; then distributions can be rep-
resented as as points within Euclidean N -space. The procedure outlined above
will thus generate

– for spec some set S =̂ s1..K of N -vectors, and
– for imp some (other) set I =̂ i1..L of N -vectors.

In each case the actual “implied” sets of result distributions are the convex
closures �S and �I and we are checking that �I ⊆ �S,
– equivalently that each il ∈ �S,
– equivalently that each il = cl · S for some cl, where (·) is the matrix multi-

plication of the non-negative 1-summing row-vector cl of length K and the
K-row-by-N -column representation of the set S of distributions,

– equivalently for that l that this constraint set has a solution in scalars cl
1..K :

• 0 ≤ cl
k for 1 ≤ k ≤ K and

∑
1≤k≤K cl

k = 1;
• il

n =
∑

1≤k≤K cl
ksk

n for 1 ≤ n ≤ N .

That last set of K+1+N (in)equations (for each l) can be dealt with by a
suitable satisfaction solver (Sec. 6). If they can be solved, then the refinement
holds at that point il; and if that happens for all 1 ≤ l ≤ L then the refinement
holds generally. If not, then we have found an “inconvenient” implementation
behaviour il, and the refinement fails.

We say that the certificate to support a proposed refinement is the K×L matrix
c of scalars that gives the appropriate K-wise interpolation of S for each il ∈ I.
It can be checked as such separately by elementary arithmetic.10

In our example, to find the certificate to check the refinement Prog1 � Prog0,
we need to solve two systems of linear equations, one for each vertex distribution
in Prog0’s relational semantics (Fig. 2). For i1 =̂ (1/2, 1/2, 0) the system is

– 0 ≤ c1
k for 1 ≤ k ≤ 4;

– c1
1 + c1

2 + c1
3 + c1

4 = 1;
– c1

1(0, 0, 1) + c1
2(1/2, 0, 1/2) + c1

3(0, 1/2, 1/2) + c1
4(1/2, 1/2, 0) = (1/2, 1/2, 0).

The solution c1 = (0, 0, 0, 1) thus forms part of the certificate for verifying
refinement. The complete certificate would also need the vector c2 = (1, 0, 0, 0)
for Prog0’s other vertex point (0, 0, 1).
10 These certificates are the essential components of Principles P1,2 that make our

conclusions independent of the correctness of our tools.
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4.3 Refuting Refinement

In the case the refinement fails, that is for some 1 ≤ l ≤ L there is no cl (in the
sense of the previous section), we can do better than simply “the solver failed.”

We refer to Fig. 7 and its surrounding discussion, and see that if il �∈ �S
then there must be a hyperplane that separates il from �S, i.e. a hyperplane
with il on one side and all of �S strictly on the other: in Fig. 7 that is the plane
shown, having i3 =̂ (0, 1/2, 1/2) non-strictly on its lower side and all of Prog0’s
results strictly on the upper side.

Formulated in the expectation logic of Fig. 5, refinement failure spec �� imp
at some initial state s◦ requires an expectation expt with the strict inequal-
ity wp.spec.expt.s◦ > wp.imp.expt.s◦. That expt is given by the normal (2, 0, 1)
of the separating plane in Fig. 7, and wp.imp.expt.s◦ is its constant term 1/2
when it touches Prog1 at i3. To touch Prog0 it would need to move higher, to
constant term 1, which is thus the value of wp.imp.expt.s◦ for that same expt
(A, B, C)�→(2, 0, 1).

To find such a hyperplane, we must solve for the N -vector h in the equations

– (
∑

1≤n≤N hnsk
n) > (

∑
1≤n≤N hniln) for all 1 ≤ k ≤ K

and the inconvenient l in particular,

thus K inequations in this case.
Note well that if we have obtained il from a failure of refinement determined

as in Sec. 4.2, then the equations immediately above are guaranteed to have a
solution. That solution h together with initial state s◦ is the certificate refuting
the proposed refinement.10 again

In Sec. 4.2 we saw how our example failed for i3; to find our certificate for
that failure we therefore solve

h1/2 + h2/2 > h2/2 + h3/2 and h3 > h2/2 + h3/2 ,

for which one solution is of course the normal h =̂ (2, 0, 1) shown in Fig. 7.
We emphasise that simply the failure described in Sec. 4.2 to show some

inconvenient d′ is not in a convex closure �S is not above challenge: how do
we know the solver itself is not incorrect? The refutation certificate generated
for d′ by this section –given to us by the hyperplane duality– is independently
verifiable, and that is its importance.11

4.4 Source-Level Refutation

Finally in this section we consider how to turn the certificate for refuting refine-
ment into a hint presented at the source level.

For our example we imagine a distributed system comprising a number of
processors, each executing its local code. A scheduler coordinates the behaviour
of the entire system, by determining which of the processors is able to execute
11 Hyperplanes are used similarly in probabilistic process algebras to generate distin-

guishing contexts [4].
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Resulting weakest pre-expectation ↓
s := A 0.5⊕ s := B 1
s := A 0.5⊕ s := C 1.5

least → s := C 0.5⊕ s := B 0.5
s := C 0.5⊕ s := C 1

The pre-expectation is calculated wrt.
(A,B, C) �→(2, 0, 1) in each case.

Fig. 8. The four resolutions of Prog1 Fig. 9. �-Adversarial scheduling

an (atomic) local execution step; the overall behaviour of the system can be
analysed via an interleaving-style semantics [3]. In the most general setting we
can represent the scheduler’s choice by nondeterminism; in the case that the
distributed protocol contains a vulnerability due to the scheduling (i.e. the events
can be ordered so as to break the specification) we shall show how the certificate
for failure can be used to find automatically the failing schedule.

As an illustration, consider the simple distributed system of Fig. 9 where ini-
tially Processor C is scheduled, then a probabilistic choice 1/2⊕ is taken whether
to continue clockwise or anti-clockwise; the adversarial scheduler can however
on the very next step decide whether to remain at C or to move in the direction
chosen. One might specify with Prog0 that next-in-line Processors A, B should
be fairly treated wrt. each other, whether the move occurs or not; but the imple-
mentation we suggested immediately above first chooses the direction to move
via (s := A) 1/2⊕ (s := B), and then demonically either confirms the move
(skip), or inhibits it (s := C). The effect is an equivalent but differently written
formulation of Prog1 (which we know does not refine Prog0):

choose schedule
︷ ︸︸ ︷
(s := A) 1/2⊕ (s := B);

execute schedule, or inhibit
︷ ︸︸ ︷
skip � (s := C) (3)

Because the witness expt =̂ (A, B, C)�→(2, 0, 1) to Prog0 �� Prog1 is based on
semantics, it applies to this form (3) of Prog1 too, even though it is now more
confusingly presented. (Fig. 8 shows the four resolutions for both Prog1 and
(3).) In general, no matter how many statements are composed, the procedure
for determining how the nondeterministic choices in the protocol were resolved
to violate the refinement can be carried out on each component separately, rear-
to-front. This is because the minimised pre-expectation for one component be-
comes the post-expectation to be minimised for the one immediately before,
and so on to the beginning. That greatly reduces the complexity of finding the
schedule.12

12 This trick is well known in game theory [16].
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To see how this works, we take the certificate for failure of Prog0 � Prog1,
and refer to (3) and Fig. 5 to compute13

wp.(skip � (s := C)).〈2, 0, 1〉
= wp.skip.〈2, 0, 1〉 min wp.(s := C).〈2, 0, 1〉
= 〈2, 0, 1〉 min 〈1, 1, 1〉
= 〈1, 0, 1〉

Observe how the min in the calculation corresponds to the resolution of � in the
code, so that in computing the minimum we also select the bad schedule. In this
case, the last-line minimum is achieved from the previous line by taking pointwise
choices (A, B, C)�→〈right, left, don’t-care〉, which gives the failing schedule for the
second statement: at A take s := C (go right); at B take skip (go left); at C
take either. Thus the conditional if s=A then (s := C) else skip fi describes
concisely and at the source level a schedule that defeats the specification, i.e. if
A is suggested by the first statement (s := A) 1/2⊕ (s := B) then inhibit and
stay at C, otherwise accept the move to B.

Again we achieve independence from the correctness of our tools,10 yet again

since it is trivial syntactically that our selection is a resolution of imp; it is also
obvious what its single result distribution is and that spec cannot produce it.

This is a typical failure in such systems: the scheduler “exploits” a probabilis-
tic outcome that the specifier/developer did not realise was a vulnerability.

5 Finding Adversarial Schedules in Distributed Systems

More generally than Sec. 4.4 we fix a set of N processors, each executing “lo-
cal” code P1, . . . , PN respectively, and overall implementing some protocol. The
asynchronous execution of the protocol can be modelled by assuming that each
computation step is taken by one of the Pn’s, chosen arbitrarily by the adver-
sarial scheduler — in other words is the nondeterministic choice �1≤n≤N Pn,
where we have introduced notation for the generalised nondeterministic choice
over a finite set; we also write ProgK for K sequential compositions of the pro-
gram Prog. The analysis of protocols like these normally considers “runs” that
define the set of possible execution orders of the Pn’s, which execution orders
can be made on the basis of the current state. We describe these runs explicitly
as follows.

Definition 3. Given processors’s local code P1, . . . , PN , an execution schedule
is a map σ ∈ N→S→{1..N} so that σ.k.s defines the number of the processor that
would be selected in the k-th step of the protocol if the state at that point were
s. We write σK ∈ {0..K}→S→{1..N} for the K-bounded execution schedule,
namely the schedule σ restricted to the first K steps of the protocol.

In the following definition we allow P to be subscripted with a function f ∈
S→{1..N} –rather than a constant– so that Pf from state s behaves as Pf.s

would; the application of a schedule can then be defined as follows.
13 We abbreviate the expectation using 〈· · · 〉.
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Definition 4. Let σK be an K-bounded execution schedule; the resulting K-
bounded execution sequence is then written

(�0≤n≤N Pn)σK =̂ Pσ.0; · · · ; Pσ.K

We can now investigate the behaviour of bounded execution sequences of the pro-
tocol, by considering parameterised specifications. For example, suppose SpecK

denotes a specification of the protocol up to K steps, and our aim is to investigate
whether such bounded properties hold of the program.

In such a distributed system, we say that a certificate to refute a proposed
specification SpecK � (�0≤n≤N Pn)K is a K-bounded schedule σK such that
(�0≤n≤N Pi)σK is not a refinement of SpecK . The next lemma shows how to
compute one.

Lemma 1. Suppose that SpecK �� (�1≤n≤N Pn)K , and that (expt, s◦) is an (ex-
pectation, (initial) state) counterexample pair for the whole failure, as at Sec. 4.3.
Define expectations exptK · · · expt0 by exptK =̂ expt, and exptk−1 =̂ wp.(�1≤n≤N

Pn).exptk, for 1 ≤ k < K. Now define the schedule σK to give a result σK .k =̂ fk,
where each fk ∈ S → {1..N} is crafted –as we did at the end of Sec. 4.4– so that
wp.Pfk

.exptk = wp.(�1≤i≤n Pi).exptk . Then the resulting σK is a counterex-
ample schedule.

Proof. (Sketch.) As in Sec. 4.4 the hyperplane-generated expectation can “prune”
nondeterministic choice from the (purported) implementation so that only the
failing behaviour is left: one simply considers all deterministic resolutions and
picks the one for which the pre-expectation wrt. the witness is minimised. The
formal proof appears elsewhere [13].

We illustrate Lem. 1 with a small example case study elsewhere [13].
Finally we note that once we have the overall certificate (expt, s◦), assuming

the complexity of computing wp.Pn.expt is constant for every expt and n, the
complexity of breaking it up into a finer-grained failing schedule σK is O(KN).

6 Implementing the Search for Certificates

In this section we describe how the search for certificates for failure can be
implemented using an SMT solver.

Given two pGCL programs spec and imp we first compute the vertices gen-
erating their result distributions, as described in Sec. 4.1; and we formulate the
satisfiability problem of Sec. 4.2 to attempt to prove refinement. It is exported
to a general SMT solver [6] which, if successful, provides a certificate c of refine-
ment.

If it fails, the dual problem (as Sec. 4.3) is formulated for that failure, with the
inconvenient distribution providing the coefficients iln, and then we solve for the
hyperplane-normal coefficients hn. Success there is guaranteed, and the normal
h is the certificate of refutation.

An alternative approach is to attempt first to refute the refinement (Sec. 4.3)
for each implementation distribution. If refutation fails for all of them, then we
calculate a certificate of refinement (Sec. 4.2).
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7 Conclusions and Future Work

We have shown how to generate automatically a witness to the failure of a
hypothesised refinement spec � imp. We have not yet specifically automated the
subsequent production of a source level certificate generator, although a small
change to the wp-generator implemented in the HOL system [10] will be a good
place to start.

This work differs significantly from other work using SMT-solvers [7] which is
unable to produce an efficiently checkable certificate in the form of an expecta-
tion, nor a source-level counterexample.
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Abstract. Interface automata provide a formalism capturing the high
level interactions between software components. Checking compatibility,
and other safety properties, in an automata-based system suffers from
the scalability issues inherent in exhaustive techniques such as model
checking. This work develops a theoretical framework and automated
algorithms for modular verification of interface automata. We propose
sound and complete assume-guarantee rules for interface automata, and
learning-based algorithms to automate assumption generation. Our al-
gorithms have been implemented in a practical model-checking tool and
have been applied to a realistic NASA case study.

1 Introduction

Modern software systems are comprised of numerous components, and are made
larger through the use of software frameworks. Formal analysis of such systems
naturally suffers from scalability issues. Modular analysis techniques address this
with a “divide and conquer” approach: properties of a system are decomposed
into properties of its constituents, each verified separately. Assume-guarantee
reasoning [14, 21] is a modular formal analysis technique that uses assumptions
when checking components in isolation. A simple assume-guarantee rule infers
that a system composed of components M1 and M2 satisfies safety property P by
checking that M1 under assumption A satisfies P (Premise 1) and discharging
A on the environment M2 (Premise 2). Finding suitable assumptions can be
non-trivial, and has traditionally been performed manually.

Previous work [8] has proposed a framework using learning techniques to au-
tomate assumption generation for the aforementioned rule; that work addresses
safety property checking for Labeled Transition Systems (LTSs). LTSs inter-
act through synchronization of shared actions, and have been used extensively
in the analysis of high-level abstract systems, for example at the architecture
level [19]. However, as LTSs do not distinguish between input/output actions
that a component can receive/emit, respectively, they are often inadequate for
more detailed analyses, testing, or test-case generation [23].
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I/O automata [17] and interface automata [9] are formalisms that differentiate
between the input and output actions of a component. The main distinguishing
factor between the two formalisms is that I/O automata are required to be input-
enabled, meaning they must be receptive at every state to each possible input
action. For interface automata, some inputs may be illegal in particular states,
i.e., the component is not prepared to service these inputs. Two components
are said to be compatible if in their composition each component is prepared to
receive any request that the other may issue.

Compatibility is an important property for the analysis of component-based
systems [16]. In the case study we discuss in Section 7, compatibility checking
uncovered subtle errors that were undetectable when components were mod-
eled as LTSs. Consequently, parts of the model were unexplored, even though
the system is deadlock-free. (Note: these particular errors are undetectable if
components are assumed input-enabled, as I/O automata are.)

Checking compatibility and traditional safety properties of interface automata
suffers from the inherent scalability issues appearing in model checking tech-
niques. In this work we develop a theoretical framework with automated al-
gorithms for modular verification of systems modeled as interface automata.
Specifically, we provide the first sound and complete assume-guarantee rules for
checking properties of interface automata. This includes rules for compatibility
checking, traditional safety properties, and alternating refinement (the notion of
refinement associated with interface automata [9]).

We define a construction that reduces compatibility and alternating refine-
ment to checking error state reachability, by adding to each component tran-
sitions to error states. We provide algorithms that automate the application
of the assume-guarantee rules by computing assumptions (we provide both a
direct and a learning-based construction of the assumptions). Although we re-
duce compatibility checking to error detection, we cannot simply use the rules
and frameworks from our previous work [8]; that work assumed error states to
be introduced only by checking the property in Premise 1 and discharging the
assumption in Premise 2; in this work error states are also introduced by our
reduction. We describe this further in Sections 5 and 6.

For a system where component compatibility has been established we also
define an optimized assumption construction when checking traditional safety
properties. Our new algorithms have been implemented in the LTSA model
checking tool [18] and have been applied to a NASA case study.

2 Background

Labeled Transition Systems. A labeled transition system (LTS) A is a tuple
〈Q, a0, αA, δ〉, where Q is a finite set of states, a0 ∈ Q is an initial state, αA is
a set of observable actions called the alphabet of A, and δ ⊆ Q × αA × Q is a
transition relation. For readability, we write a

α→ a′ when 〈a, α, a′〉 ∈ δ, in which
case we say that α is enabled at a, and that a′ is a destination of α from a. A
state a′ is reachable from a if there exists n ∈ N and sequences 〈ai〉0≤i≤n and
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〈αi〉0≤i<n with a = a0 and a′ = an such that ai
αi→ ai+1 for 0 ≤ i < n. The LTS

A is deterministic if δ is a function (i.e., for all a ∈ Q and α ∈ αA, a
α→ a′ for at

most one state a′ ∈ Q), and is otherwise non-deterministic.
We use π to denote a special error state without enabled transitions. The

error completion of A is defined to be the LTS Aπ = 〈Q ∪ {π}, a0, αA, δ′〉 where
δ′ agrees with δ, and adds transitions a

α→ π for all states a where α is not
enabled. We say A is safe when π is not reachable from the initial state.

Parallel Composition. The parallel composition operator ‖ is (up to isomor-
phism) a commutative and associative operator on LTSs. Given LTSs A =
〈QA, a0, αA, δA〉 and B = 〈QB, b0, αB, δB〉, the composition A‖B is an LTS
with states QA × QB,1 initial state 〈a0, b0〉, alphabet αA ∪ αB, and a transition
relation defined by the rules (including the symmetric versions):

a
α→ a′ a′ 
= π α /∈ αB

〈a, b〉 α→ 〈a′, b〉
,

a
α→ a′ b

α→ b′ a′, b′ 
= π

〈a, b〉 α→ 〈a′, b′〉
, and

a
α→ π

〈a, b〉 α→ π
.

Traces. A trace t of length n on an LTS A is a finite sequence 〈αi〉1≤i≤n of
enabled actions on A starting from the initial state: formally, there exist states
a1, . . . , an ∈ Q such that ai−1

αi→ ai for 1 ≤ i ≤ n. The set of traces of A is called
the language of A, denoted L(A). A trace t may also be viewed as an LTS, called
a trace LTS, whose language consists of all prefixes of t (including t itself). As
the meaning will be clear from the context, we will use t to denote both a trace
and a trace LTS. We write t↓Σ for the trace obtained from t by removing every
occurrence of an action outside of Σ.

Safety properties. We call a deterministic LTS without the state π a safety
LTS (any non-deterministic LTS can be made deterministic with the standard
algorithm for automata). A safety property P is specified as a safety LTS whose
language L(P ) defines the set of acceptable behaviors over αP . An LTS M
satisfies P , written M |= P , if and only if for every trace t of M , t↓αP is a trace
of P . Note that M |= P can be checked algorithmically by searching for a trace
to π in M composed with the error completion of P .

The L* learning algorithm. Our algorithms for automating assume-guarantee
reasoning use the L* algorithm for learning appropriate assumptions. L* was de-
veloped by Angluin [3] and later improved by Rivest and Schapire [22]. To syn-
thesize an automaton for a regular language U over alphabet Σ, the algorithm
interacts with a “black box”, called a teacher, who answers questions about U .
The teacher answers membership queries (given a string s, is s ∈ U?), and refine-
ment queries (given an automaton A over Σ, does L(A) = U?). We henceforth
refer to the latter query as a conjecture, and the former simply as a query. If
the conjectured automaton A’s language is not U , the teacher is obligated to
produce a counterexample trace in the symmetric difference of L(A) and U . This
algorithm is guaranteed to terminate with a minimal automaton for U which
has at most n + 1 states, where n is the number of incorrect conjectures.
1 Each state 〈a, π〉 or 〈π, b〉 in the composition is identified with π.
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(a) Amsg (b) Ausr

(c) Aenv (d) Asys = Amsg‖Ausr

Fig. 1. A messaging system comprised of three components (a, b, and c). The dotted
transition to the error state π in (d) originates from the error completed automaton
A?

usr (explained in Sec.3.3), and survives in the composition A?
msg‖A?

usr. We omit other
transitions due to error completion for readability.

3 Interface Automata (IA)

Definition 1. An interface automaton A is a tuple 〈QA, IA, αAI, αAO, αAH, δA〉
where QA is a set of states, IA ∈ QA is the initial state, αAI, αAO, and αAH

are respectively disjoint input, output, and internal alphabets (we define αA =
αAI ∪ αAO ∪ αAH), and δA ⊆ QA × αA × QA is a transition relation.

Our running example of composable interface automata is borrowed from [9].

Example 1. The automaton Amsg (Fig. 1a) transmits messages over a lossy com-
munication channel. The input actions msg, ack, and nack (resp., send, ok, and
fail) are depicted by incoming (resp., outgoing) arrows to the enclosing box,
and question (resp., exclamation) marks on edge labels. Internal actions (see
Fig. 1c) do not appear on the interface boundaries, and suffixed by semicolons
on edge labels.

The semantics of interface automata are defined here by reduction to labeled
transition systems (LTSs). In particular, given an interface automaton
〈QA, IA, αAI, αAO, αAH, δA〉, lts(A) is the LTS 〈QA, IA, αA, δA〉. We lift the se-
mantics from LTSs by writing a

α→ a′ when lts(A) has such a move, we say A is
(non-) deterministic when lts(A) is, and an action α is enabled in a state a when
it is in lts(A). The traces and the language of A are defined similarly.

For the remainder of this section we fix A and B to be interface automata.
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Definition 2. A and B are composable when their signatures do not conflict,
i.e. αAI ∩ αBI = αAO ∩ αBO = αAH ∩ αB = αA ∩ αBH = ∅.

Example 2. The “user” component of Figure 1b expects that the message-sending
component of Figure 1a will never encounter failure. This implicit assumption
is a key feature of IAs; its expressed here by the lack of a fail?-labeled edge from
state 1 of Ausr.

The communication channel “environment” of Figure 1c either transmits a
message on the first attempt, or delays on the first attempt, and transmits on
the second. The internal action busy is not observed by other components. Both
Ausr and Aenv are composable with the Amsg, albeit on disjoint interfaces.

Note that composable IAs need not have any common actions, but each common
action must be an input of one and an output of the other. We identify the set
of common actions with αShared(A, B).

Definition 3. When A and B are composable, the composition of A and B,
written A‖B, is the interface automaton C = 〈QC , IC , αCI, αCO, αCH, δC〉,
where 〈QC , IC , αC, δC〉 = lts(A)‖lts(B), and the alphabet is partitioned as

– αCI = αAI ∪ αBI \ αShared(A, B),
– αCO = αAO ∪ αBO \ αShared(A, B), and
– αCH = αAH ∪ αBH ∪ αShared(A, B).

The composition of an IA A and an LTS T is an IA extending A by substituting
lts(A)‖T for lts(A).

Example 3. Since the constituents of Asys (Fig. 1d) synchronize on fail, and
Ausr failure never occurs, there are no transitions from state 6 in the composi-
tion. The signature of Asys does not mention common actions of Amsg and Ausr
which have been internalized.

3.1 Compatibility

Although the semantics of a single IA is the same as its underlying LTS, the dis-
tinction between input and output actions results in a more stringent behavioral
specification between components that cannot be checked for LTSs.

Definition 4. Given two composable automata A and B, a state 〈a, b〉 of A‖B
is illegal if some action α ∈ αShared(A, B) is an enabled output action in a
(resp., b), but a disabled input action in b (resp., a).

Example 4. State 6 of Asys (Fig. 1d) is illegal, since fail is an enabled output
in state 6 of Amsg and a disabled input in state 1 of Ausr.

Definition 5. The automaton A is closed when αAI = αAO = ∅, and is other-
wise open.
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(a) C1 (b) Ebad (c) C3 (d) Egood

Fig. 2. Four environments for Asys (Fig. 1d)

The optimistic notion of compatibility between IAs [9] is associated with the
existence of illegal states in their composition. An open automaton with illegal
states is not necessarily incompatible with its environments, since illegal states
may not be reachable in the composition.

Definition 6. When A‖B is closed, A and B are said to be compatible, written
A ∼ B, if A‖B does not have reachable illegal states.

3.2 Refinement

For convenience we will write α ∈ I-EnabledA(a) (resp., α ∈ O-EnabledA(a))
when α is an enabled input (resp., output) action in a. The internal-closure
of a, written H-ClosureA(a), is the set of states reachable from a via internal
actions. An externally observable move, denoted a

α� a′, exists when a1
α→ a2

for a1 ∈ H-ClosureA(a) and a′ ∈ H-ClosureA(a2), in which case we say a′ is an
external destination from a by α. An action α is an externally enabled input
(resp., output) in a, written α ∈ I-ExtEnA(a) (resp., α ∈ O-ExtEnA(a)), if α is
enabled in all (resp., some) states of H-ClosureA(a).

Definition 7. A binary relation � ⊆ (QA × QB) is an alternating simulation
from A to B if for all a ∈ QA and b ∈ QB such that a � b:

(1) I-ExtEnA(a) ⊇ I-ExtEnB(b).
(2) O-ExtEnA(a) ⊆ O-ExtEnB(b).
(3) For all actions α ∈ O-ExtEnA(a)∪I-ExtEnB(b) and states a′ such that a

α� a′,
there exists a state b′ such that b

α� b′ and a′ � b′.

We say A refines B, written A � B, if αAI ⊇ αBI, αAO ⊆ αBO and there
exists an alternating simulation �′ from A to B such that 〈IA, IB〉 ∈�′.

Example 5. Figure 2 gives four automata with signatures matching Aenv’s
(Fig. 1c). One can easily check that Aenv � Ebad, Egood, but Aenv 
� C1, C3.

The following refinement properties are known [9].

Theorem 1. The alternating simulation relation over interface automata is re-
flexive and transitive.
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Theorem 2. Let A, B, and C be interface automata such that B and C are
composable, and αBI ∩ αCO ⊆ αAI ∩ αCO. If A ∼ C and B � A, then B ∼ C
and B‖C � A‖C.

3.3 Checking Compatibility and Refinement

We reduce compatibility and refinement checking to model checking on automata
completed with error states.

Definition 8. The input (resp., output) error completion of A, denoted A?

(resp., A!), extends A with the state π and the transition a
α→ π whenever α

is a disabled input (resp., output) action at a.

Supposing that A and B are composable but incompatible, there must exist a
transition to π in A?‖B?, since either A or B performs an action which the
other does not anticipate, causing either B? or A?, respectively, to move to π.
Likewise, if A and B are of the same signature but the behaviors of A are not
contained within those of B, then either A performs some output action which
B cannot, in which case B! moves to π, or B performs some input action which
A cannot, in which case A? moves to π.

Theorem 3 (Checking Compatibility). Let A ‖ B be a closed automaton.
Then A ∼ B if and only if π is not reachable in A?‖B?.

Theorem 4 (Checking Refinement). Let A and B be safe interface au-
tomata with matching signatures such that B is deterministic. A � B if and
only if π is not reachable in A?‖B!.

We omit the proofs in the interest of space.

Example 6. Amsg, Ausr, and Ebad (Figs. 2b, 1a, and 1b) are incompatible since
π is reachable in the composition of A?

msg, A?
usr, and E?

bad by the sequence msg;
send; nack; send; nack; fail; (see Fig. 1d). On the other hand, Aenv (Fig. 1c) does
not refine C1 (Fig. 2a) since π is reachable in the composition of A?

env and C!
1 by

the sequence send; ack;.

4 Assume-Guarantee Reasoning for Interface Automata

Although in the simple setting of Example 5 the system and environment are
relatively small, their composition could, in general, be very complex. We then
seek to find a smaller environment model which is descriptive enough to prove
the absence of error states in the composition, in the case that there are none.

Figure 3 introduces assume-guarantee rules for reasoning with interface au-
tomata. Since composition and compatibility are only defined for composable
interface automata, we’ll henceforth assume that the automata said to take part
in these relations are composable. For the remainder of this section, the symbols
M1, M2, S, and A range over interface automata, and P denotes a property
specified by a safety LTS. Completeness, in the present setting, means that an
assumption for use in the premises of rule exists whenever the conclusion holds.
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Fig. 3. Assume-guarantee rules for interface automata. Rule IA-Compat gives a mod-
ular characterization of compatibility; IA-Prop is the IA instantiation of the classical
safety rule [8]; IA-AltRef modularly establishes alternating refinement with respect
to a high-level specification S.

Theorem 5. IA-Compat, IA-Prop, IA-AltRef are sound and complete.

Soundness of Rule IA-Compat is an immediate consequence of Theorem 2.
Soundness of Rule IA-Prop is guaranteed by the soundness of the original rule
for transition systems [11, 8]. Soundness of Rule IA-AltRef is guaranteed by
Theorems 1 and 2. Completeness, for any of the rules, follows directly by replac-
ing A with M2.

Since Rule IA-AltRef is only meaningful for open systems, and the current
work deals with closed systems, its study is deferred for future work.

5 Weakest Assumptions

A central notion in the work on automatic assumption generation for assume-
guarantee rules is the construction of a “weakest assumption”. For a rule and a
given alphabet (the communication alphabet between M1 and M2) the weakest
assumption AW is such that, for any assumption A that makes the premises of
a rule hold, A necessarily refines AW , i.e., AW is as abstract as possible.

Lemma 1. Given a rule and its associated weakest assumption AW , the premises
of the rule hold for AW if and only if the conclusion of the rule holds.

Therefore, to automate assume-guarantee reasoning based on a rule, it is suffi-
cient to build the corresponding AW and to use it when checking the premises
of the rule. We begin with a description of a direct construction of the weakest
assumptions for various rules. Since this construction involves expensive deter-
minization, we also define in the next section algorithms that learn the traces of
AW as needed, using L*. Let us first introduce the following definition.

Definition 9. The mirror of A, written Mirror(A), is an automaton identi-
cal to A, except for a symmetric alphabet partitioning: αMirror(A)I = αAO,
αMirror(A)O = αAI, and αMirror(A)H = αAH.

Rule IA-Compat. The weakest assumption AW of an interface automaton M1
is an interface automaton with: αAI

W = αMO
1 , αAO

W = αM I
1, and αAH

W = ∅. It
is constructed from M ?

1 as follows: 1) determinize2; 2) remove all transitions to
2 The determinization of our interface automata identifies sets containing π, with π.
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π (intuitively, all the inputs that M1 does not accept lead to error in M ?
1 , so its

environment should not provide these), and 3) mirror the resulting automaton.
The above construction is similar to the property extraction step in the gen-

eration of assumptions when checking safety properties of LTSs [11]. However
in [11], a completion step adds transitions to an (accepting) sink state. For com-
patibility, such completion of M ?

1 would add outputs (M ?
1 is input complete),

and would force the environment to accept more inputs than necessary, i.e., the
obtained assumption would not be the weakest. Also, the extra mirroring step
here is needed to obtain a correct representation of the environment.

Rule IA-Prop. As mentioned, Rule IA-Propis the same as the original rule
for LTSs [11,8], so the same notion of a weakest assumption applies. However, in
the context of interface automata, the knowledge that M1 ∼ M2 holds may be
used for defining a weaker assumption with fewer states than the one in previous
work [8]. Let AW be the weakest assumption for M2 with respect to M1 and P , as
previously defined [11]. AW is an interface automaton with: αAI

W = αMO
1 ∩αM I

2,
αAO

W = αM I
1 ∩ αMO

2 , and αAH
W = αP ∩αMH

2 . Assume that we already checked
M1 ∼ M2 (using e.g. Rule IA-Compat) and it holds. We build assumption AC

such that

L(AC) = L(AW ) \ {t | ∃u ∈ (αMO
1 )+ s.t. tu /∈ L(AW )}.

In other words, the assumption does not restrict the behaviors of M1 by non-
acceptance of M1’s outputs (i.e. the assumption is compatible with M1). AC

is constructed from M1‖P π using the same steps of previous work [11], with
the following differences. Since M1 ∼ M2 holds, backwards error propagation is
performed along output transitions in addition to internal transitions. Therefore
AC has potentially fewer states than AW . Moreover, the resulting automaton
needs to be mirrored since we are dealing with interface automata.

Lemma 2. Let M1 ∼ M2, and let AW and AC be the assumptions defined above.
Then M1‖AC |= P ∧ M2 |= lts(AC) ⇐⇒ M1‖M2 |= P .

The above Lemma establishes that AC , which has at most as many states as
AW , is the weakest assumption. For Rule IA-Prop, we will henceforth use the
term weakest assumption (AW ) to refer to AC .

6 Learning-Based Assume-Guarantee Reasoning

We develop iterative techniques based on L* [3, 22] to check M1 ‖ M2 com-
positionally, by automatically computing the weakest assumptions for Rules
IA-Compat and IA-Prop. We provide L* with teachers using error state reach-
ability analysis to answer membership queries and conjectures. We use L* con-
jectures as an assumption to check the premises of the rules (using an oracle
for each premise). When both oracles return OK then the premise is satisfied,
and the analysis terminates. Failure of Premise 1 gives L* a counterexample
to refine its conjecture, while failure of Premise 2 either corresponds to a real
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system violation (and the analysis terminates) or gives L* a counterexample for
refinement.

The techniques presented here are similar in spirit to existing techniques [8],
but must be significantly more complex to address the non-trivial notions of
compatibility and alternating refinement (the techniques learn the traces of the
new weakest assumptions that we defined in the previous section). Indeed ex-
isting algorithms [8] check a strictly weaker property—a consequence of not
distinguishing input from output actions.

We make use of the following auxiliary procedures in our L* teachers.

simulate(M,t) returns a set of M-states to which t is a trace, or π with the
shortest prefix of t tracing to π, or ∅ with the shortest prefix of t which is
not a trace of M.

analyze(M‖N) returns ERROR(M) (resp., ERROR(N)) when π is reachable in an
M-component (resp., N-component) of the composition, and otherwise OK.

Algorithm for compatibility. In our algorithm for obtaining the weakest as-
sumption for Rule IA-Compat, we use the procedures in Fig. 4 for answering
queries and conjectures. Oracle 1 uses Theorem 3 to check M1 ∼ A, while
Oracle 2 uses Theorem 4 to check M2 � A. If either case fails, the L* teacher
emits a counterexample trace witnessing such failure. For the case of Oracle 2,
further analysis determines whether the trace represents an actual incompati-
bility between M1 and M2, or the assumption needs further refinement. If the
trace turns out to be an error in M1, or an error in M2 which does not block M1,
M1 
∼ M2; otherwise the trace is not a feasible incompatibility of the system, so
the assumption needs refinement.

Fig. 4. The L* Teacher for Rule IA-Compat
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Example 7. Our teacher for Rule IA-Compat receives a total of four conjectures
when M1 and M2 are given by Asys and Aenv (Figs. 1d, 1c), respectively. The first
and second conjectures are the automata C1 and Ebad (Figs. 2a, 2b), respectively,
which Example 6 shows violate Premises 2 and 1 of Rule IA-Compat. The third
conjecture C3 (Fig. 2c) is also incompatible with Asys, since the cycle formed
between states 1 and 2 allow an arbitrary number of consecutive nacks. The
final conjecture, Egood (Fig. 2d) is refined by Aenv and adequate enough to prove
compatibility with Asys.

Algorithm for property safety. Although the LTS safety checking algorithm
of [8] can soundly be applied to interface automata, the knowledge about com-
patibility between automata allows us to develop an optimized algorithm for
checking property safety. To do so, we must first consider controllability.

Definition 10. Let A be an interface automaton, and t ∈ αA a word. The
controllable prefix of t (w.r.t. A), written ControlPrefA(t) is the longest prefix
of t ending in an output or internal action of A.

Intuitively, the controllable prefix corresponds to the period of time a particular
component is dictating a trace. In our optimized safety checking algorithm, we
consider incompatibilities arising from any externally controlled sequence ap-
pended to the end of the control prefix, not just the particular uncontrollable
suffix of the trace. We extend simulate to account for this behavior.

ext simulate(M,t) extends simulate(M,t) by additionally returning ERROR
together with the shortest trace to π, when such an error can be reached via
a prefix of t followed by a sequence of uncontrollable actions.

The key difference between our algorithm (that uses the procedures in Fig. 5
for queries and conjectures) and previous work [8] is that queries here replace
the standard automata simulation with ext simulate. The extension accounts
for the fact that error states are propagated along output transitions in addi-
tion to internal ones in M1‖P π (recall, these actions correspond to ones that
A cannot control). Moreover, when an assumption must be refined, the teacher
returns to L* the controllable prefix of the counterexample that is obtained from
reachability analysis (see line 4 in Oracle 1 and line 5 in Oracle 2).

Correctness. Granting Lemma 3, we are guaranteed that either L* terminates
with the weakest assumption, or that R does not hold. We omit the proof in the
interest of space.

Lemma 3. Let R be an assume-guarantee rule in the context of interface au-
tomata M1 and M2 (and if applicable the safety LTS P ), and let AW be the
weakest assumption for R. Then

(i) Query-R(t) returns YES iff t is a trace of AW , and
(ii) Conjecture-R(A) returns

(a) OK iff the conclusion of R holds,
(b) INCOMPATIBLE or PROPERTY VIOLATION if the conclusion of R does not

hold, and otherwise
(c) a trace in the symmetric difference of L(A) and L(AW ).
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Fig. 5. The L* Teacher for Rule IA-Prop

7 Experience

The ARD Case Study. Autonomous Rendezvous and Docking (ARD) de-
scribes a spacecraft’s capability of locating and docking with another spacecraft
without direct human guidance. In the context of a NASA project, we were
given UML statecharts describing an ARD protocol at a high level of abstrac-
tion, along with some required properties in natural language, for example: “good
values from at least two sensors are required to proceed to the next mode.”

The model consists of sensors (GPS, StarPlanetTracker, InertialNavigation), used
to estimate the current position, velocity, etc. of the spacecraft, and “modes” that
constitute a typical ARD system (see Figure 6). The ARD software moves se-
quentially through the modes, exhibiting different behavior in each. The Orbital-
State component takes sensor readings and reports to the mode-related software
whether it obtained good readings from enough sensors to calculate a reasonable
spacecraft state estimate for ARD. The ARD software enables or disables the
orbital state (via enableNavigation and disableNavigation actions, respec-
tively), reads the current estimate (via the read action), and requests for an up-
date of the state estimation (via refresh). The sensors may also fail, as observed
through the failed actions.

Study Set-Up. We have extended the LTSA tool [18] to provide support for
expressing interface automata and also with algorithms for (1) compatibility and
refinement checking and (2) learning-based compositional verification for inter-
face automata for Rules IA-Compat and IA-Prop. In an initial study of the
ARD system we translated the UML statecharts and their expected properties
into LTSs for LTSA; for the current study we refined these LTSs into Interface
Automata, resulting in approximately 1000 lines of input code for the LTSA.
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Fig. 6. Architecture of ARD protocol

Model Incompatibilities. Checking compatibility in the ARD system uncov-
ered subtle errors that were undetected in our original study using simple LTS
analysis. One incompatibility concerned the OrbitalState sub-system, which is
made up of an Estimator and three Counters; the counters record the number of
good readings obtained for position, velocity and attitude; estimates are updated
through the refresh action. Checking compatibility between the Estimator and
the Counters uncovered an error that prevented a significant portion of the sys-
tem from being exercised.

We illustrate this error with a simplified OrbitalState (see Figures 7 and 8)
that estimates position only with a single sensor. When the estimator refreshes,
it gets a reading from the sensor. If the reading is sensor good, the estimator
increments the counter. The estimator then gets the counter value get val; the
estimate becomes est poor when this value is 0, and is otherwise est good. In
intermediate states the estimate is est updating. Incompatibility between the
two components is illustrated by trace: <refresh, sensor good, increment,
get val, return.1, refresh, sensor good, increment>, where the estima-
tor tries to increment the counter at its max value. The error occurs because the
counter is not reset when it should be (i.e., after each refresh operation). If LTSs
were used instead of interface automata, incrementing a counter at its max value
would simply not be possible in the composition. Despite this fact, the system
would not deadlock, because of the self-loops in the estimator. One could write
liveness properties to ensure that certain behaviors are always possible in the
system, but it is much simpler and less costly to check for a pre-defined notion
of compatibility that does not require specification.

Results and Discussion. After correcting the incompatibilities in the Orbital-
State component, we applied our compositional algorithms system-wide level.
We divided the ARD model into two components: ARDModes (representing M1)
and OrbitalStateWithSensors (representing M2); we checked that compatibility
and a safety property (the sensor quality property, mentioned earlier) hold. The
results in Table 1 compare running LTSA for non-compositional verification with
learning-based assume-guarantee reasoning. For each of the runs we report the
maximum number of states and transitions explored (separated by the corre-
sponding premise), the analysis time, and the generated assumption’s number
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Table 1. Analysis results for a NASA ARD model

Check
Non-compositional Compositional

States Transitions Time Rule States Transitions |A| Time

Compatibility 2434K 16612K 37s
IA-Compat

35 445s
Prem. 1 5K 34K
Prem. 2 182K 864K

Property 2438K 16634K 36s
IA-Prop

74 483s
Prem. 1 20K 113K
Prem. 2 433K 3393K

of states. The experiments were run on a 64-bit Sun machine running Windows
and a 1GB Java virtual machine.

During compositional verification, the largest state spaces explored were dur-
ing the second premises for the assume-guarantee rules (highlighted in bold in Ta-
ble 1). This is approximately one order of magnitude smaller than the state space
explored when checking M1‖M2 directly. On the other hand, assume-guarantee
reasoning took 445s (483s) as compared to 37s (36s) for checking compatibility
(resp., safety property) directly. This time penalty is due to the iterative nature
of the learning algorithm and to the relatively large number of states in the
generated assumption. Previous studies [8, 2] on learning for compositional rea-
soning in other formalisms showed that the approach does not incur such time
penalty when smaller assumptions are obtained (i.e., less than 10 states).

The results reported in Table 1 for checking the safety property use the op-
timized algorithm presented in Section 6. Application of our algorithm from [8]
(that views the two components as LTSs and does not take advantage of com-
patibility) resulted in an assumption of 77 states. The savings in terms of the
assumption size (3 states) are not significant in this case. The reason is that
the components in our study exhibit behavior where inputs and outputs strictly
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alternate. More pronounced savings may be obtained in systems where occur-
rences of chains of output and internal actions may lead to the error state.
Finally, we have also experimented with an algorithm that combines Rules IA-

Compat and IA-Prop: the hybrid algorithm computes an assumption that
guarantees both compatibility and property satisfaction. With this algorithm,
we obtained an assumption of 94 states (in 3930 seconds). This indicates that
checking the two properties separately results in smaller assumptions.

We remark that the largest assumptions built by our frameworks are still
much smaller than the components that they represent in the compositional
rules (M1 has over 5K states and M2 has over 143K states). Therefore, the cost
of re-verification, for example, using assume-guarantee reasoning will be much
smaller than non-compositional verification.

8 Related Work

Several frameworks have been proposed to support assume-guarantee reason-
ing [14, 21, 6, 12], but their practical impact has been limited by their need for
human input in defining appropriate assumptions. Frameworks using L* to learn
assumptions or component interfaces have been developed, for example, in the
context of assume-guarantee reasoning of LTSs [11,8], synthesizing interfaces for
Java classes [1], and symbolic model checking using NuSMV [2]. Unlike these
approaches, we distinguish input actions from output actions to allow stricter
property checking (i.e., ensuring compatibility).

Several optimizations to learning for assume-guarantee reasoning have also
been studied. Alternative system decompositions [7, 20] and discovering small
interface alphabets [10, 4] may positively affect the performance of learning.
Our methods are orthogonal to these, as we consider an extended transition
system.

Another approach [13] uses predicate abstraction and refinement to synthe-
size interfaces for software libraries. This work does not use learning, nor does
it reuse the resulting interfaces in assume-guarantee verification. Several ap-
proaches have been defined to automatically abstract a component’s environ-
ment to obtain interfaces [15, 5], however these techniques are not incremental
and do not differentiate between inputs and outputs.

9 Conclusion

In this work we have developed a theoretical framework for the automated com-
positional verification of systems modeled with interface automata. We provide
sound and complete assume-guarantee rules, and learning-based algorithms tar-
geting the weakest-possible assumption for each rule. An evaluation of our algo-
rithms on an application of a NASA case study is also presented, based on the
implementation of the algorithms in a practical model checking tool.
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Abstract. This paper presents a verification technique for dense-time
MTL based on discretization. The technique reduces the validity prob-
lem of MTL formulas from dense to discrete time, through the notion of
sampling invariance, introduced in previous work [13]. Since the reduc-
tion is from an undecidable problem to a decidable one, the technique is
necessarily incomplete, so it fails to provide conclusive answers for some
formulas. The paper discusses this shortcoming and hints at how it can be
mitigated in practice. The verification technique has been implemented
on top of the Zot tool [19] for discrete-time bounded validity checking;
the paper also reports on in-the-small experiments with the tool, which
show some results that are promising in terms of performance.

Keywords: real-time, metric temporal logic, discretization, dense time,
verification techniques, sampling.

1 Introduction

Metric temporal logics such as MTL [18] and TRIO [5] are effective and flexible
notations to model and reason about a wide range of systems — real-time, in
particular — with varying level of detail. Both MTL and TRIO are parametric
with respect to the temporal domain, and permit to describe systems either with
a dense or a discrete notion of time [11].

Indeed, when modeling the behavior of real-time systems, the nature of the
time domain plays a prominent role, and it must be carefully chosen. From a
modeling viewpoint, dense time offers advantages in terms of naturalness and
completeness of description, being of the same quality as “physical time”, in par-
ticular when describing the composition of purely asynchronous processes (which
can occur at any instant in time); also, it is usually strictly more expressive than
discrete time [2]. Conversely, in practice, discrete-time models are generally more
amenable to (automated) verification than dense-time ones. In fact, dense-time
formalisms are often undecidable or with highly complex decidability problems
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[2]; in addition, while verification methods for discrete-time models can often
be built upon existing techniques (e.g., for LTL, automata, and untimed for-
malisms), the native treatment of dense time requires novel, more ingenuous,
solutions. In the literature, various techniques have been proposed to mitigate
this problem. A significant category of such approaches rely on some notion of
discretization, which consists in reducing the verification problem from dense to
discrete time. Therefore, discretization techniques permit the re-use of existing
techniques (and tools), but, for formalisms that are strictly more expressive in
their dense-time variant, they are also necessarily incomplete, i.e., they fail to
give conclusive results on some instances of the verification problem.

In [13], we introduced the notion of sampling for temporal logic formulas, an
idealization of the physical sampling process. We defined R

ZTRIO, a subset of
the TRIO metric temporal logic interpreted over behaviors (i.e., total functions
of time), and we identified a sufficient condition under which R

ZTRIO formulas
are sampling invariant (i.e., such that they can be interpreted consistently over
dense-time behaviors and over discrete-time samplings thereof). While the re-
sults of [13] were derived for R

ZTRIO, it is immediate to translate them for MTL,
the reference language in this paper. Hence, in the following we always refer to
MTL rather than R

ZTRIO, also when citing results from [13].
In the field of formal verification, automata-based techniques have been ex-

tensively studied [6]. However, in the last few years, the increased practical
efficiency of SAT solvers has rendered SAT-based verification techniques an in-
teresting and viable alternative [3]. These are particularly well-suited in purely
logical/descriptive approaches, where both the system to be analyzed and its
desired properties (i.e., the entire verification problem) are expressed as tempo-
ral logic formulas. In [20], we introduced Zot, a SAT-based verification tool for
discrete-time metric temporal logics with past operators (e.g., TRIO and MTL).

In this paper, we build upon the results of [13] and [20] to provide an ef-
fective, fully automated technique and tool for the verification of specifications
written in dense-time metric temporal logic. Our contribution is twofold. First,
the verification technique is introduced and proved sound. The technique relies
on two approximations (φ+ and φ−) of the formula representing the instance
of the verification problem. These approximations represent a mapping of the
problem to the discrete-time domain; in other words, they encode information
about the samplings of the original dense-time behaviors. Approximations are
built parametrically with respect to a chosen length of the sampling period for
these samplings. Then, the validity of φ+ over discrete time implies the validity
of the original formula over dense time; conversely, the non-validity of φ− over
discrete time implies the non-validity of the original formula over dense time.
As mentioned above, the technique must be incomplete, i.e., it may happen that
the validity check of the approximations yields inconclusive results. This paper
discusses how this can be mitigated in practice.

As a second contribution, we demonstrated the practical applicability of the
technique by implementing it on top of the Zot validity checker [19], and by
performing some experiments. Although limited to a small set of examples, our
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tests show interesting results; in particular, incompleteness is shown to be not
often a practical hurdle (usually because other limitations are more significant,
such as the inherent scalability even of discrete-time methods). The tests are
thus a first assessment of the feasibility of our discretization techniques.

The paper is organized as follows: Section 1.1 surveys some related works on
discretization techniques; Section 2 introduces the MTL subset considered in this
paper and recalls the notions of sampling (and sampling invariance) from [13];
Section 3 presents the discretization technique itself; Section 4 briefly describes
the implementation and reports on the experiments carried out; finally, Section
5 concludes. For lack of space, we omit some proofs, a few technical details, and
several experimental results; we refer the interested reader to [12].

1.1 Related Works

The problem of reducing the dense-time verification problem to the discrete-time
one was first explicitly studied in the seminal paper by Henzinger, Manna, and
Pnueli [16]. Their discretization techniques are based on the notion of digitiza-
tion; a (semantic) property (i.e., a set of timed state sequences) is digitizable if it
is both closed under digitization and closed under inverse digitization. Basically,
a property is closed under digitization if all the timed state sequences obtained by
digitizing the real-timed state sequences are also integer-timed state sequences
of the property; conversely, a property is closed under inverse digitization if all
its integer-timed state sequences can be obtained by digitizing some real-timed
state sequences of the property. The digitization of a timed state sequence is built
by considering all possible roundings, with respect to any threshold 0 ≤ ε < 1, of
the timestamps in the timed state sequence. Note that the timestamps are weakly
monotonic, so that more than one state value can share the same timestamp.

The comparison between the notion of digitization and the notion of sampling
invariance — to be recalled in Section 2.2 — shows three main differences (see
[10] for details). First, digitization assumes weakly monotonic timed words as
semantic models, whereas sampling invariance considers (strongly monotonic)
interval-based behaviors; each of these models has its own advantages and dis-
advantages [17]. Second, it has been shown [10] that the sets of MTL properties
that are digitizable and sampling invariant are incomparable, i.e., there are dig-
itizable properties that are not sampling invariant and sampling invariant prop-
erties that are not digitizable; this suggests that discretization techniques based
on these two notions are likely to have different domains of applicability. Third,
whereas sampling invariance is a syntactic property (i.e., it is defined for MTL
formulas), digitizability is a semantic notion (i.e., it is defined for sets of timed
words); as a consequence it is straightforward to characterize a significant subset
of the MTL language whose formulas are sampling invariant, whereas doing the
same with respect to digitizability is considerably more complicated [4].

Many subsequent works have applied the notion of digitization of [16], or other
notions of discretization, to specific formalisms. In the remainder of this section
we briefly report on a few of them, referring to [12] for more examples.
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Chakravorty and Pandya [4] apply the notion of digitization to Interval Dura-
tion Logic (IDL), a variant of duration calculus where formulas are interpreted
over timed state sequences. Overall, they introduce a technique to reduce the
validity problem for dense-time IDL formulas to that of discrete-time IDL; this is
possible for all IDL formulas that are closed under inverse digitization. However,
it is hard to characterize closure under inverse digitization for IDL formulas;
to lessen the problem, a new notion of strong closure under inverse digitization
(SCID) is introduced. It is much simpler to determine if a formula is SCID,
and SCID formulas are also closed under inverse digitization. For formulas that
are not SCID, they give approximations to stronger and weaker formulas that
are SCID. Finally, the validity problem for discrete-time IDL is decidable. Us-
ing these techniques, Sharma, Pandya, and Chakravorty [21] experiment with a
variety of discrete-time verification tools.

De Alfaro and Manna [7] approach the problem of discretization with refer-
ence to the temporal logic TL, a particular flavor of predicative modal logic, and
to the timed trace semantics. The authors first introduce the notion of sample
invariance (not to be confused with our notion of sampling invariance, see Sec-
tion 2.2): a temporal logic is sample invariant if the formulas of the logic do not
distinguish between any two timed traces for which a (sufficiently fine-grained)
trace that refines both exists. Then, the notion of finite variability is introduced:
roughly speaking, a formula φ is finitely variable if, for each timed trace, one
can find a refinement (called ground trace) such that any subformula of φ has a
constant truth value within any interval of the refined trace. For finitely variable
formulas over ground traces, the satisfaction relation of a formula φ in the con-
tinuous semantics corresponds to that of Ω(φ) in the discrete semantics (where
Ω is a suitably defined translation function). The paper states some sufficient
syntactic condition for a formula to achieve the finite variability requirement.
Based on this, a methodology for continuous-time verification is proposed; it is
based on refinement of continuous-time formulas to finitely-variable formulas,
which can then be verified in discrete time.

Fainekos and Pappas [9] present a technique for testing specifications written
in MITL (an MTL subset) against continuous-time signals by analyzing only
discrete samplings of the signals. Their technique shares some underlying moti-
vations and ideas with ours, although the two approaches have complementary
scopes: our tool-supported technique provides a partial verification procedure
for MTL formulas through discrete-time analysis, whereas [9] discusses practical
conditions under which the continuous-time behavior of a dynamical system can
be analyzed by means of its discrete-time observations.

2 Preliminaries

2.1 Specification Language: MTL

In this paper, we consider a variant of purely propositional Metric Temporal
Logic (MTL, [2]) as the specification language. For brevity, we refer to this
variant simply as “MTL”.
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Let P be a finite (non-empty) set of atomic propositions, and I the set of all
(possibly unbounded) intervals of the time domain T with rational endpoints.
In this paper T coincides with either the reals R (dense time) or the integers Z
(discrete time) — or some subset thereof; we call bi-infinite the sets R and Z,
and mono-infinite their subsets R≥0 and N = Z≥0.

Behaviors are total mappings b : T → 2P that assign to every instant t ∈ T

the set of propositions b(t) ⊆ P that are true at t. We denote as BT the set of
all behaviors over T.

MTL Syntax and Semantics

Syntax. The following grammar defines the syntax of MTL, where I ∈ I and β is
a Boolean combination of atomic propositions, i.e., β ::= p |¬β |β1 ∧β2 for p ∈ P .

φ ::= β | φ1 ∨ φ2 | φ1 ∧ φ2 | UI(β1, β2) | SI(β1, β2) | RI(β1, β2) | TI(β1, β2)

The basic temporal operator of MTL is the bounded until UI (and its past
counterpart bounded since SI), whose subscript I denotes the interval of time
over which the operator predicates. However, the results of sampling invariance,
recalled in Section 2.2, as well as the discretization techniques introduced in
Section 3, are easier to present when referred to MTL formulas that are in a
normal form where negations are pushed down to (Boolean combinations of)
atomic propositions, and no temporal operators are nested. Therefore, for the
sake of simplicity, we introduced directly the MTL syntax for this normal form;
hence, we also have the operators bounded release RI and bounded trigger TI —
dual of until and since, respectively — as primitive.

Throughout the paper we omit the explicit treatment of past operators (i.e.,
SI and TI) as it can be trivially derived from that of the corresponding future
operators, as shown in [12]. We also assume a number of abbreviations, such as
⊥, 	, ⇒, ⇔, and the following derived operators: ♦I(β) ≡ UI(	, β),

←−♦ I(β) ≡
SI(	, β), �I(β) ≡ RI(⊥, β), and

←−� I(β) ≡ TI(⊥, β).

Semantics. MTL semantics is defined over behaviors, parametrically with re-
spect to the choice of the time domain T.
b(t) |=T p iff p ∈ b(t)
b(t) |=T ¬p iff p �∈ b(t)
b(t) |=T UI(β1, β2) iff there exists d ∈ I such that: b(t + d) |=T β2

and, for all u ∈ [0, d] it is b(t + u) |=T β1
b(t) |=T RI(β1, β2) iff for all d ∈ I it is: b(t + d) |=T β2 or there exists

a u ∈ [0, d) such that b(t + u) |=T β1
b(t) |=T φ1 ∧ φ2 iff b(t) |=T φ1 and b(t) |=T φ2
b(t) |=T φ1 ∨ φ2 iff b(t) |=T φ1 or b(t) |=T φ2
b |=T φ iff for all t ∈ T: b(t) |=T φ

Whenever for all b ∈ BT : b |=T φ we say that φ is T-valid and write |=T φ.
We remark that a global satisfiability semantics is assumed, i.e., the satis-

fiability of formulas is implicitly evaluated over all time instants in the time
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domain. This permits the direct and natural expression of most common real-
time specifications (e.g., time-bounded response) without resorting to nesting
of temporal operators. In addition, every generic MTL formulas with nesting
temporal operators can be “flattened” to the form we introduced beforehand by
introducing auxiliary propositions; in other words flat MTL and full MTL are
equi-satisfiable [8,10]. Also notice that our MTL variant uses operators that are
non-strict in their first argument, i.e., the future and past include the present
instant, and the until and since operators are matching, i.e., they require their
two arguments to hold together at some instant in I. Other work [14] analyzes
the impact of these variants on expressiveness.

MTL+/MTL∗ Syntax and Semantics. In order to express the discretization
relations in Section 3, it is necessary to introduce some variations of the four
basic temporal operators until, since, release, and trigger, denoted as U↑

I , S↑
I ,

R↓
I , and T↓

I , respectively. Notice that they are not part of the language in which
dense-time specifications and properties are to be expressed, and they are needed
only to illustrate the discretization techniques. We call “MTL+” the extension
of MTL with these operators, and “MTL∗” the variant where we replace the
operators UI , SI , RI , TI with U↑

I , S↑
I , R↓

I , and T↓
I , respectively.

Let us define the semantics of the new variants of until and release.
b(t) |=T U↑

I(β1, β2) iff there exists d ∈ I such that: b(t + d) |=T β2
and, for all u ∈ [0, d) it is b(t + u) |=T β1

b(t) |=T R↓
I(φ1, φ2) iff for all d ∈ I it is: b(t + d) |=T φ2 or there exists

a u ∈ [0, d] such that b(t + u) |=T φ1

Granularity. For an MTL formula φ, let Iφ be the set of all non-null, finite
interval bounds appearing in φ. Given a formula φ, its granularity ρφ is a pair
of values (rφ, Rφ) where rφ is the greatest common divisor of the numerators of
the elements in Iφ, and Rφ is the least common multiple of the denominators
of the elements in Iφ. For any formula φ, we define Dφ as the set of positive
values δ such that any interval bound in Iφ is an integer if divided by δ; it is
not difficult to show that Dφ can be derived from the granularity ρφ as the set
of all fractions d/D such that: (1) D is a multiple of Rφ; and (2) d divides rφ.
Also notice that Dφ has a maximum (given by rφ/Rφ) but no minimum. D is
generalized to sets of formulas Φ in an obvious manner.

2.2 Sampling Invariance

The discretization technique developed in Section 3 is based on the notion of
sampling invariance [13]. This sub-section recalls the basic definitions and results
about sampling invariance that are needed in the remainder; we refer to [13] for
details. Note that, although sampling invariance results are presented in terms
of bi-infinite time domains, they are valid in the mono-infinite case as well.

The notion of sampling invariance characterizes formulas whose truth value
is “consistent” whether they are interpreted over dense-time or discrete-time
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behaviors. Informally, a formula φ is sampling invariant if the discrete-time be-
haviors that satisfy φ coincide with those obtained by “sampling” all the suffi-
ciently slow dense-time behaviors that satisfy another formula φ′ (where φ′ is
obtained from φ by suitably relaxing its interval bounds), and vice versa when φ
is interpreted as a dense-time formula. Below, we recall the precise definition of
sampling invariance, after briefly introducing the basic notions that are needed.

Bounded variability. As mentioned above, sampling invariance requires behaviors
to be “sufficiently slow”, with respect to a chosen period δ ∈ R>0. Informally,
the truth value of any atomic proposition must change at most once every δ
time units; in other words, the change rate is bounded above by 1/δ. In fact, this
requirement is sometimes called bounded variability [22]. The bounded variability
requirement can be expressed as an MTL formula χ, which we do not report here
for brevity [13]. We denote the set of all dense-time behaviors satisfying χ by
Bχ ⊂ BR, and we call them χ-regular behaviors. A formula φ is called χ-valid if
b |=R φ for all b ∈ Bχ, and χ-satisfiable if b |=R φ for some b ∈ Bχ.

Zeno and Berkeley. A Zeno behavior is one where time progresses only by in-
finitesimal amounts, and thus it stops, instead of diverging. The name “Zeno”
(introduced by Abadi and Lamport [1]) is a reference to the Greek philosopher
Zeno of Elea and his paradoxes on time advancement. In this vein, we desig-
nate χ-regular behaviors “non-Berkeley” [10], from the Irish philosopher George
Berkeley1 and his investigations arguing against the notion of infinitesimal. So, a
behavior is “Berkeley” when it does not obey constraint χ for any value of δ; thus
the minimum distance in time between consecutive state changes is infinitesi-
mal. Zeno behaviors are a special case of Berkeley behaviors; more generally, in
a Berkeley behavior time can diverge, but with the system becoming arbitrarily
“fast”. See [10] for more details.

Sampling of a behavior. Let b ∈ BR be a dense-time behavior. Its sampling, with
sampling period δ ∈ R>0, is a discrete-time behavior b′ = σδ [b] ∈ BZ that agrees
with b at all integer multiples of δ. Formally: b′(k) = b(kδ) for all k ∈ Z.2

Let us point out a straightforward property of the sampling function σδ [·]
with respect to the set of behaviors Bχ.

Lemma 1 (Properties of σδ [·]). For any δ ∈ R>0, σδ [·] is onto and total.

Adaptation functions. To “switch” from the discrete-time to the dense-time in-
terpretation of a formula φ in a way that preserves the truth value of φ, one has
to “adapt” the interval bounds appearing in φ. This adaptation is formalized
by two functions ηR

δ {·} and ηZ
δ {·}: the former adapts dense-time formulas to be

discrete-time ones, while the latter performs the converse.
The exact definition of ηR

δ {·} and ηZ
δ {·}, omitted for the lack of space, is given

in [13,12]. We note that, if φ is an MTL formula, then ηR
δ {φ} is an MTL∗ formula

and ηZ
δ {φ} is an MTL formula.

1 See e.g., http://www-groups.dcs.st-and.ac.uk/∼history/Biographies/Berkeley.html
2 The original definition in [13] also introduced a basic offset z ∈ R, but since it does

not play any role in the present discussion we simply take it to be zero.
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Sampling invariance. Let us introduce precisely the notion of sampling invari-
ance as a property of MTL formulas.

Theorem 1 (Sampling Invariance [13]). Any MTL formula φ is sampling
invariant, that is, for any sampling period δ: (1) (closure under sampling) for all
dense-time behavior b ∈ Bχ, if b |=R φ then σδ [b] |=Z ηR

δ {φ}; and (2) (closure
under inverse sampling) for all discrete-time behavior b ∈ BZ, if b |=Z φ then
∀b′ ∈ Bχ such that σδ [b′] = b, it is b′ |=R ηZ

δ {φ}.

3 Discretization of Dense-Time MTL through Sampling

This section presents a discretization technique to solve the verification problem
for MTL specifications.

First of all, given a dense-time MTL formula φ and a sampling period δ > 0,
we define two functions Ωδ : MTL → MTL∗, Oδ : MTL → MTL that approx-
imate φ through the discrete-time formulas Ωδ (φ) and Oδ (φ); basically, these
retain some properties of the samplings of the dense-time behaviors satisfying
φ, in a way that allows us to infer the validity of φ from the validity of its
approximations. For reasons that will become apparent shortly, we name Ωδ (φ)
the under-approximation of φ, and Oδ (φ) the over-approximation. They are pre-
sented in Sections 3.1 and 3.2, respectively.

In general, the verification problem consists in checking whether a system,
described by a specification formula φsys, satisfies a given property φprop; in other
words, whether b |=R φprop holds for any behavior b for which b |=R φsys holds.
Section 3.3 shows how to construct two discrete-time formulas φ+, φ− that are
both built upon the over- and under-approximations of φsys and φprop. Then:

– the validity of φ+ over discrete time implies that system φsys satisfies property
φprop over dense-time non-Berkeley behaviors;

– the non-validity of φ− over discrete time implies that system φsys does not
satisfy property φprop over some non-Berkeley dense-time behavior.

Finally, Section 3.4 shows how the previously introduced approximations can be
used in an algorithm to verify a system specified in dense time. The resulting
verification technique is however incomplete, in that the results from the validity
checking of the approximations of a formula can be inconclusive; therefore the
algorithm can fail. The incompleteness may be partially mitigated by suitably
choosing the sampling period δ, but it cannot be entirely avoided. This is in-
evitable, since the approximation is a simplification of the dense-time verification
problem, which cannot be fully captured by discrete-time reasoning only, for a
number of well-known reasons [2,15].

3.1 Under-Approximation

The approximation function Ωδ (·) maps dense-time MTL formulas to discrete-
time MTL∗ formulas such that the non-validity of the latter implies the non-
validity of the former, over behaviors in Bχ. More precisely, for MTL formulas
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such that the chosen sampling period δ is in Dφ (see Section 2.1), Ωδ (·) is defined
as follows.

Ωδ (β) ≡ β
Ωδ (φ1 ∧ φ2) ≡ Ωδ (φ1) ∧ Ωδ (φ2)
Ωδ (φ1 ∨ φ2) ≡ Ωδ (φ1) ∨ Ωδ (φ2)
Ωδ

(
U〈l,u〉(φ1, φ2)

)
≡ U↑

[l/δ,u/δ](Ωδ (φ1) , Ωδ (φ2))

Ωδ

(
R〈l,u〉(φ1, φ2)

)
≡ R↓

〈l/δ,u/δ〉(Ωδ (φ1) , Ωδ (φ2))

The following lemma, proved in [12], justifies the name under-approximation.

Lemma 2 (Under-approximation). For any MTL formula φ, for any δ ∈
Dφ, and for any b ∈ BZ: if b �|=Z Ωδ (φ) then for all b′ ∈ Bχ such that σδ [b′] = b
it is b′ �|=R φ.

3.2 Over-approximation

The approximation function Oδ (·) maps dense-time MTL formulas to discrete-
time MTL formulas such that the validity of the latter implies the validity of the
former, over behaviors in Bχ. More precisely, for MTL formulas such that the
chosen sampling period δ is in Dφ (see Section 2.1), Oδ (·) is defined as follows.

Oδ (β) ≡ β
Oδ (φ1 ∨ φ2) ≡ Oδ (φ1) ∨ Oδ (φ2)
Oδ (φ1 ∧ φ2) ≡ Oδ (φ1) ∧ Oδ (φ2)
Oδ

(
U〈l,u〉(φ1, φ2)

)
≡ U[l/δ+1,u/δ−1](Oδ (φ1) , Oδ (φ2))

Oδ

(
R〈l,u〉(φ1, φ2)

)
≡ R[l/δ−1,u/δ+1](Oδ (φ1) , Oδ (φ2))

The following lemma justifies the name over-approximation.

Lemma 3 (Over-approximation). For any MTL formula φ, for any δ ∈ Dφ,
and for any b ∈ BZ: if b |=Z Oδ (φ) then for all b′ ∈ Bχ such that σδ [b′] = b it is
b′ |=R φ.

Proof (sketch, see also [12]). Oδ (φ) is an MTL formula, which is therefore sam-
pling invariant according to Theorem 1, and in particular closed under inverse
sampling. Therefore, let b ∈ BZ such that b |=Z Oδ (φ). Then the definition of
closure under inverse sampling implies that all b′ ∈ Bχ such that b = σδ [b′]
satisfy b′ |=R ηZ

δ {Oδ (φ)}. According to the definition of ηZ
δ {·} (given in [12,

Tab. 3]), one can check that ηZ
δ {Oδ (φ)} ⇒ φ is valid. More precisely, ηZ

δ {·}
allows one to choose arbitrarily if any interval 〈l, u〉 of until and since should be
closed or not, so that it is possible to match the original intervals in φ. Moreover,
ηZ

δ {·} always yields a closed interval in instances of release and trigger ; there-
fore, it gives either the same subformula as in φ, or a strengthening of it, when it
replaces an open interval with its closure. It is easy to check that this property
is lifted to whole formulas. All in all, b′ |=R ηZ

δ {Oδ (φ)} implies b′ |=R φ.
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3.3 System Approximations

Let us now consider a system formally described by an MTL formula φsys, and a
putative property described by another MTL formula φprop. Verification amounts
to proving (or disproving) that all behaviors that satisfy φsys also satisfy φprop.

Let us abbreviate by Alw(φ) the nesting MTL formula φ ∧ �(0,+∞)(φ) ∧
←−� (0,+∞)(φ); b |=T Alw(φ) iff b |=T φ, for any behavior b, so Alw(φ) can be
expressed without nesting if φ is flat, through the global satisfiability seman-
tics. Then, the verification problem can be reduced to that of determining the
validity of the MTL formula Alw(φsys) ⇒ Alw(φprop). To this end we prove the
following.

Proposition 1 (Approximations). For any MTL formulas φ1, φ2, and for
any δ ∈ Dφ1,φ2 : (1) if Alw(Ωδ (φ1)) ⇒ Alw(Oδ (φ2)) is Z-valid, then Alw(φ1) ⇒
Alw(φ2) is χ-valid; and (2) if Alw(Oδ (φ1)) ⇒ Alw(Ωδ (φ2)) is not Z-valid, then
Alw(φ1) ⇒ Alw(φ2) is not χ-valid.

Proof. Let δ ∈ Dφ1,φ2 .
Proof of (1). Assume that φ+ = Alw(Ωδ (φ1)) ⇒ Alw(Oδ (φ2)) is Z-valid.

That is, for all b ∈ BZ it is b |=Z φ+; equivalently: either b �|=Z Ωδ (φ1) or
b |=Z Oδ (φ2). From Lemmas 3 and 2, this implies that for all b ∈ BZ, for all
b′ ∈ Bχ such that σδ [b′] = b, it is either b′ �|=R φ1 or b′ |=R φ2. Thus, let b′ be
any dense-time behavior in Bχ; from Lemma 1, there exists a b ∈ BZ such that
σδ [b′] = b. We conclude that for all b′ ∈ Bχ, either b′ �|=R φ1 or b′ |=R φ2. All in
all, Alw(φ1) ⇒ Alw(φ2) is χ-valid.

Proof of (2). We note that the proof of (2) can be obtained from the proof
of (1) by duality. Thus, assume that φ− = Alw(Oδ (φ1)) ⇒ Alw(Ωδ (φ2)) is not
Z-valid. That is, for some b ∈ BZ it is b �|=Z φ−; equivalently: b |=Z Oδ (φ1) and
b �|=Z Ωδ (φ2). From Lemmas 3 and 2, this implies that there exists a b ∈ BZ

such that, for all b′ ∈ Bχ such that σδ [b′] = b, it is b′ |=R φ1 and b′ �|=R φ2.
Next, Lemma 1 states that, for all b ∈ BZ, there exists some b′ such that b′ ∈ Bχ

and σδ [b′] = b. We conclude that there exists a b′ ∈ Bχ such that σδ [b′] = b,
b′ |=R φ1 and b′ �|=R φ2. All in all, Alw(φ1) ⇒ Alw(φ2) is not χ-valid. ��

3.4 Validity Checking Procedure

Let us finally present the validity checking algorithm based on the approxima-
tions described above.

The algorithm takes as input a set of MTL formulas φ1
sys, . . . , φ

m
sys, φprop, where

φi
sys are the formulas describing the system, and φprop is the property to be

verified, as well as a suitable value δ. The algorithm checks the validity of φ =∧
i=1,...,m Alw

(
φi

sys

)
⇒ Alw(φprop) as follows.

1. For each formula γ ∈ φprop ∪
⋃

i=1,...,m φi
sys, compute the over-approximation

Oδ (γ) and the under-approximation Ωδ (γ).
2. Compute:
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φ+ =
∧

i=1,...,m Alw
(
Ωδ

(
φm

sys

))
⇒ Alw(Oδ (φprop));

φ− =
∧

i=1,...,m Alw
(
Oδ

(
φm

sys

))
⇒ Alw(Ωδ (φprop)).

3. If φ+ is Z-valid, then φ is χ-valid for sampling period δ;
4. otherwise, if φ− is not Z-valid, then φ is not χ-valid for sampling period δ;
5. otherwise, fail.

Incompleteness of the Algorithm. The incompleteness of the algorithm in
determining the validity of MTL formulas is two-fold. First, the algorithm does
not check all dense-time behaviors for satisfaction of an MTL formula φ, but
only those obeying constraint χ for the chosen sampling period δ. Choosing a
smaller δ may mitigate this shortcoming, as this amounts to choosing a finer
sampling of behaviors or, equivalently, to allowing faster behaviors. However,
this may also not bring better results. In fact, as δ decreases, not only do the
approximation formulas change, but also more behaviors (namely, faster ones)
are allowed; thus the effects of shortening the sampling periods are subtle and
they may become difficult to predict. We leave a comprehensive study of this
phenomenon to future work.

The second source of incompleteness lies in the technique itself, that is based
on two different approximations for formula φ. Therefore, it is possible that φ+

is non-valid and φ− is valid; in this case, no conclusion about the validity of φ
can be drawn.

4 Implementation and Experiments

This section describes the implementation of the verification algorithm (Section
4.1), presents two system verification problems (Section 4.2), and reports some
of the results obtained in solving them using the tool presented in Section 4.1
(Section 4.3). Several more results can be found in [12].

4.1 Discrete-Time Bounded Validity Checking

The technique introduced in Section 3 reduces the validity-checking problem for
MTL formulas over dense time to that over discrete time; the latter is known
to be decidable and EXPSPACE-complete [2]. Recently, validity-checking tech-
niques based on the use of propositional satisfiability (SAT) checkers have been
developed for discrete-time verification, and they have yielded very encourag-
ing performances in practical tests. Recent variants of these techniques offer the
possibility to check completeness.

Zot is an agile and easily extensible bounded satisfiability checker (Zot and
the examples described in this section are available for download [19]). The
tool supports different logic languages through a multi-layered approach: its
core uses PLTL, and a decidable predicative fragment of TRIO (in practice
equivalent to R

ZTRIO and MTL) is defined on top of it. Zot supports different
encodings of temporal logic as SAT problems. Indeed, the user can choose a
particular encoding to carry out verification, and the tool loads automatically the
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corresponding plug-in. At the moment, a few variants of some of the encodings
presented in [3] are supported, and the encoding over Z presented in [20].

In order to assess the practical feasibility of our discretization technique, we
verified some examples using Zot. To this end, Zot was extended to accept
MTL+ formulas, and to perform the discretization routine on formulas. The
experimental results are described in Section 4.3.

4.2 Examples

We modeled two systems: a simple controlled reservoir (similar to the one in
[13]), and a coffee machine. They are described only informally here; the exact
formalization is given in the Appendix and details are in [12].

The controlled reservoir. The controlled reservoir system consists of a reservoir
and a controller. The reservoir can nondeterministically leak and being filled
with new liquid by the controller. The level of fluid in the reservoir is described
by two predicates:  ≥ min holds when the level of fluid is above a minimum
level,  ≥ thres holds if the level is above a control threshold, assumed to be
higher than the minimum. The system is described by five formulas, shown in
the Appendix, stating the behavior of the fluid level under all combinations of
filling and leaking, and the control action (filling is triggered as soon as the level
goes below the control threshold). The property (1) to be verified requires that,
after the system is “initialized” by setting the level above the control threshold,
the level stays above the minimum forever in the future:

 ≥ thres ⇒ �(0,+∞)( ≥ min) (1)

The system description is parametric with respect to a single parameter ν.
The desired property holds if and only if the sampling period δ equals ν. Oth-
erwise the property does not hold since the sampling period is “too short” with
respect to ν: this corresponds to allowing faster behaviors for which the given
specification is too weak to assess the desired property (more details can be
found in [12]).

The coffee machine. The second example consists in the description of a cof-
fee machine, in operational fashion. We introduce the predicates: prepare cup,
press button, start pour, end pour, get cup. They represent, respectively, the ac-
tions of inserting a new cup in the coffee machine, pressing the button to start
the brewing process, beginning and ending of the pouring of coffee, retrieving
a cup (presumably filled with coffee) from the machine. We also introduce the
predicates: pour, cup present, coffee ready, and key in. They are meant to hold
when, respectively, the coffee is pouring into the cup, a cup is inserted in the ma-
chine, the coffee has been completely brewed, and a key (to operate the machine,
say by recording the coffee credits of the user) is inserted in the machine. Three
constants T1, T2, T3 describe the various delays in the operations of the ma-
chine; also, a parameter ν is introduced to relate the various delays in a suitable
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manner (see [12] for details). The behavior of the machine is modeled through
ten formulas, shown in the Appendix. From these, two candidate properties of
the system should be verified: the first (2) states that the pouring ends only if
a key was inserted in the past (between T3 and T1 + T2 + T3 time units ago);
the second (3) asserts that a cup is present while the coffee is being poured.

end pour ⇒ ←−♦ [T3,T1+T2+T3](key in) (2)

pour ⇒ cup present (3)

Some modifications were required in order to obtain a system formalization
which avoids some idiosyncrasies of the dense-time description that obstruct the
discretization process. They are discussed in [12].

Both candidate properties hold if δ = 1. Otherwise, the properties may not
hold, also according to the particular values for the constants T1, T2, T3, which
interact in a subtle way. See [12] for more details.

4.3 Experiments

Tables 1–2 report a small sub-set of the results obtained in an array of tests
with the discretization techniques and Zot; more of them can be found in [12].
For each test the tables report: the value k of the bound given to Zot (in other
words, the size of the explored space); the value of parameter ν in the models;
the value of δ, according to which the discretizations are built; the value of other
parameters in the models (i.e., T1, T2, T3 in the case of the coffee machine); the
outcome of the validity check for the properties to be verified. Each test is done
both over mono-infinite domain, and over bi-infinite domain. For each test the
tables report, in addition to the outcome (	 means valid, ⊥ means non-valid, ∼
means that the approximation technique has been inconclusive), the net (CPU)
time and the total amount of memory taken in the process.

The tests have been performed on a PC equipped with an AMD Athlon64 x2
4600+ processor, 2 Gb of RAM, and Ubuntu GNU/Linux. Zot used GNU CLisp
v. 2.39, and MiniSat v. 1.14 as SAT-solving engine.

The reservoir example (in Table 1) is a simple one, and in fact the results
are highly predictable and satisfactory. Inconclusive results are never obtained
when applying the discretization technique, and the property is confirmed to be
valid if and only if ν = δ. The times and spaces required to obtain the results
are always relatively small, and they scale rather well with the increase of the
bound. Finally, notice that it usually takes a shorter time to check the validity
than to check the non-validity; this is obvious, as the latter requires to submit
both φ+ and φ− to the validity checker, while the former checks just φ+.

Table 2 reports some of the results obtained with the coffee machine example.
Property (2) is shown to be valid for all the choices of parameters made in
the experiments reported in Table 2. The times needed to get this result are
rather short, and scale with the length of k. This is reasonable, as the main
factors affecting the complexity of the check are the values of the parameters
T1, T2, T3, which however stay in a small range in all tests.
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Table 1. Checking property (1) of the reservoir example

k ν δ Pr.(1) T = N (time / mem) Pr.(1) T = Z (time / mem)

5 10 10 � (0.2 s / 2.2 Mb) � (0.4 s / 2.6 Mb)
5 10 10/3 ⊥ (0.7 s / 5.8 Mb) ⊥ (1.2 s / 9 Mb)

10 10 10 � (0.6 s / 3.2 Mb) � (0.7 s / 4.9 Mb)
10 10 10/3 ⊥ (1.6 s / 12.1 Mb) ⊥ (2 s / 18.1 Mb)
50 10 10 � (2.8 s / 15.3 Mb) � (5.3 s / 23.5 Mb)
50 10 10/3 ⊥ (8.6 s / 110.8 Mb) ⊥ (19.5 s / 149.5 Mb)

100 10 10 � (9.5 s / 30.4 Mb) � (20.2 s / 46.7 Mb)
100 10 10/3 ⊥ (29.9 s / 361.9 Mb) ⊥ (66.1 s / 470.6 Mb)
200 10 10 � (33.3 s / 60.7 Mb) � (72.6 s / 93.1 Mb)
200 10 10/3 ⊥ (108.6 s / 1240.1 Mb) ⊥ (245.1 s / 1588.3 Mb)

Table 2. Checking properties (2) and (3) of the coffee machine example

k ν δ T1, T2, T3 Pr.(2) N (time / mem) Pr.(3) N (time / mem) Pr.(2) Z (time / mem) Pr.(3) Z (time / mem)

10 1 1 4,4,4 � (1.8 s / 11.7 Mb) � (1.3 s / 9.8 Mb) � (3.5 s / 17.9 Mb) � (2.6 s / 14.9 Mb)
10 2 1 4,4,4 � (1.7 s / 11.4 Mb) � (1.4 s / 9.5 Mb) � (3.4 s / 17.6 Mb) � (2.2 s / 14.6 Mb)
10 3 1 10,7,8 � (3.1 s / 17.4 Mb) ∼ (4.2 s / 35.7 Mb) � (7.3 s / 27 Mb) ∼ (8.6 s / 52.5 Mb)
20 1 1 4,4,4 � (5.1 s / 22.7 Mb) � (3.6 s / 18.9 Mb) � (11.6 s / 34.7 Mb) � (8 s / 28.9 Mb)
20 2 1 4,4,4 � (4.9 s / 22 Mb) � (3.3 s / 18.3 Mb) � (10.9 s / 34.1 Mb) � (7.6 s / 28.3 Mb)
20 3 1 10,7,8 � (11.6 s / 33.6 Mb) ∼ (13.8 s / 78.3 Mb) � (25.6 s / 52.5 Mb) ∼ (30.4 s / 114.3 Mb)
30 1 1 4,4,4 � (11 s / 33.6 Mb) � (7.7 s / 28.1 Mb) � (24 s / 51.6 Mb) � (16.7 s / 43 Mb)
30 2 1 4,4,4 � (10.4 s / 32.7 Mb) � (7.1 s / 27.2 Mb) � (23.7 s / 51.1 Mb) � (16.1 s / 42.2 Mb)
30 3 1 10,7,8 � (24.2 s / 49.7 Mb) ∼ (28.6 s / 153.3 Mb) � (55.5 s / 78.3 Mb) ∼ (65.3 s / 189.2 Mb)
40 1 1 4,4,4 � (18.4 s / 45 Mb) � (12.9 s / 37.3 Mb) � (39.6 s / 68.9 Mb) � (27.6 s / 57.1 Mb)
40 2 1 4,4,4 � (17.8 s / 43.8 Mb) � (12.3 s / 36.1 Mb) � (38.3 s / 67.7 Mb) � (26.4 s / 56 Mb)
40 3 1 10,7,8 � (40.6 s / 66.3 Mb) ∼ (47.8 s / 200 Mb) � (89.3 s / 103.8 Mb) ∼ (106.7 s / 284.8 Mb)
50 1 1 4,4,4 � (27.7 s / 56 Mb) � (19.4 s / 46.5 Mb) � (60.8 s / 85.8 Mb) � (42.1 s / 71.2 Mb)
50 2 1 4,4,4 � (26.6 s / 54.5 Mb) � (18.4 s / 45 Mb) � (57.9 s / 84.4 Mb) � (39.9 s / 69.8 Mb)
50 3 1 10,7,8 � (60.8 s / 82.6 Mb) ∼ (71.8 s / 272.1 Mb) � (136.2 s / 129.3 Mb) ∼ (160.3 s / 389.1 Mb)

The outcomes of the validity check of the other property (3) are, on the
other hand, more varied. As stated when presenting the example, if δ = 1 the
second property is valid for the system. While this is confirmed by several of the
tests, some cases fall in the incompleteness area of the method, and analyzing
the approximations gives inconclusive results. In any case, the time and space
required are rather small.

5 Conclusion

We presented a technique to reduce the verification problem for dense-time MTL
specifications to the corresponding problem over discrete-time models, based on
the notions of sampling and sampling invariance. In a nutshell, we perform simple
syntactic transformations on the MTL formulas to be checked for validity; the
resulting formulas retain (partial) information about the discrete-time samplings
of the dense-time behaviors described by the the original formulas.

This approach, which considers only a subset of generic MTL formulas, has a
two-fold incompleteness: it verifies only “sufficiently slow” dense-time behaviors
(although the “speed” of the behaviors can often be modulated), and the analysis
of the discretized formulas may yield inconclusive results.

The technique is however simple to implement in practice, and it was used, on
top of the Zot bounded validity checker for discrete-time formulas, to carry out
some experiments. The results are promising in that they show that the effects of
incompleteness can often be mitigated in practice, and the computational effort
required to check the discretized formulas is usually acceptably small.
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Future work in this line of research will follow three main directions. First,
the technique and tool of this paper will be applied to real-life industrial case-
studies. Second, our verification technique will be extended to deal with systems
described through operational formalisms such as timed automata or Petri nets.
Third, methods will be developed to guide the writing of dense-time specifica-
tions in a form that is amenable to the application of discretization.
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Appendix: Example Specifications

The reservoir system.

 ≥ min ∧�(0,ν)(F) ⇒ �[ν,ν]( ≥ min) (4)

 ≥ thres ⇒ �[ν,ν]( ≥ min) (5)

 ≥ min ∧�(0,ν)(¬F ∧ ¬L) ⇒ �[ν,ν]( ≥ min) (6)

 ≥ thres ⇒  ≥ min (7)
 < thres ⇒ F (8)

The coffee machine.3

prepare cup ⇒ ←−♦ (0,T1)(press button) (9)

start pour ⇒ ←−♦ (0,T2)(prepare cup) (10)

end pour ⇒ ←−� [T3,T3](start pour) ∧ ←−� [0,T3)(pour) (11)

press button ⇒ key in (12)
¬pour ∧ ©(pour) ⇔ start pour (13)

�(0,T3)(pour) ⇒ start pour ∧�[T3,T3](end pour) (14)

start pour ⇒ cup present ∧ ¬coffee ready (15)
cup present ∧ ©(¬cup present) ⇔ get cup (16)

get cup ⇒ coffee ready (17)
start pour ⇒ �[T3,T3](end pour) ∧�(0,T3](pour) (18)

3 The ©(β) operator is defined as U(0,+∞)(β, �) ∨ (¬β ∧ R(0,+∞)(β, ⊥)).

http://home.dei.polimi.it/pradella
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Abstract. Modal μ-calculus is an expressive specification formalism for
temporal properties of concurrent programs represented as Labeled Tran-
sition Systems (Ltss). However, its practical use is hampered by the com-
plexity of the formulas, which makes the specification task difficult and
error-prone. In this paper, we propose Mcl (Model Checking Language),
an enhancement of modal μ-calculus with high-level operators aimed at
improving expressiveness and conciseness of formulas. The main Mcl in-
gredients are parameterized fixed points, action patterns extracting data
values from Lts actions, modalities on transition sequences described us-
ing extended regular expressions and programming language constructs,
and an infinite looping operator specifying fairness. We also present a
method for on-the-fly model checking of Mcl formulas on finite Ltss,
based on the local resolution of boolean equation systems, which has a
linear-time complexity for alternation-free and fairness formulas. Mcl is
supported by the Evaluator 4.0 model checker developed within the
Cadp verification toolbox.

1 Introduction

Model checking [7] is an automatic, cost-effective method for verifying tempo-
ral properties of concurrent finite-state systems. In the action-based framework,
where behaviours are represented as Labeled Transition Systems (Ltss), the
modal μ-calculus (Lμ) [26,38] provides a very expressive way of specifying prop-
erties. This fixed point-based logic subsumes virtually all other temporal logics
defined in the literature; from this perspective, it can be seen as an “assembly
language” for model checking on Ltss, similarly to the λ-calculus in the field of
functional programming. The counterbalance of this expressiveness is the inher-
ent complexity of Lμ formulas, even for encoding relatively simple properties,
which makes the practical usage of Lμ difficult and error-prone, especially for
non-expert users. In practice, higher-level formalisms are needed in order to fa-
cilitate the specification task and also to handle in a natural way the data values
present in the Ltss generated from value-passing concurrent programs.

Towards this objective, classical temporal logics were extended with mech-
anisms inspired from regular languages and first-order logic. Etl [44] was the
first extension of Ltl [34] with regular grammars. Brtl [21] and Ectl

∗ [41] are
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extensions of Ctl [7] and Ctl
∗ [12] with Büchi automata. Although they are

strictly more powerful than the original ones, these enhanced logics are difficult
to employ because of their complicated syntax. In practice, it appears that more
concise and readable specifications can be obtained by using regular expressions,
as illustrated by the Sugar [6] extension of Ctl and by regular Lμ1 [32], which
adds the modalities of test-free Pdl [14] to Lμ1, the alternation-free fragment
of Lμ [13]. Some extensions of Ctl and Ltl were further enriched with data
and signal handling mechanisms, leading to specialized languages for hardware
verification, such as Psl [23] and ForSpec [3]. As regards Lμ, various combi-
nations with first-order logic were proposed, especially in the field of symbolic
verification [9,19,36] and of runtime verification [5]. However, no attempt of ex-
tending Lμ both with regular expressions and data handling mechanisms was
made so far in the framework of model checking for finite-state systems.

The experiences of using regular Lμ1 for specifying temporal properties of in-
dustrial systems (Atm switches, asynchronous hardware, etc.) gave us a positive
feedback about the gain in readability and conciseness of regular expressions
w.r.t. fixed point operators. However, industrial users also formulated two re-
quirements concerning the practical usage and the expressiveness of this logic:

– Temporal properties of value-passing systems must deal with the data values
contained in the Lts, in order to avoid tedious updates of the properties for
every configuration of the system under analysis (number of processes, values
exchanged, etc.). Without parameterization mechanisms, temporal formulas
may become prohibitively large because of operator instantiations capturing
all relevant data values or expressing repetitions of transition sequences.

– Sometimes it is necessary to characterize precisely the presence of complex
cycles (made of regular transition subsequences) in the Lts. In the absence
of suitable fairness operators belonging to Lμ2, users can detect complex
cycles only by resorting to complicated schemes based on repetitive hiding
and bisimulation minimization [4,37].

In this paper, we attempt to fulfill these two requirements by proposing Mcl

(Model Checking Language), an extension of Lμ with various operators aimed at
improving the conciseness, readability, and expressiveness of temporal formulas.
Mcl combines data handling mechanisms (quantified variables and fixed point
parameters), extended regular expressions, and constructs inspired from pro-
gramming languages. All these features contribute to simplify the specification
task, by drastically reducing the amount of fixed points and modalities in Mcl

formulas and allowing specifiers to focus their attention on the description of
transition sequences. Fairness properties are expressed in Mcl using the infinite
looping operator of Pdl-Δ [39], which enables a straightforward description of
complex unfair sequences.

Besides improving the end-user language, our goal was also to maintain the
complexity of verification as low as possible in order to deal with large Ltss.
Therefore, as regards fixed point operators, we focused on the alternation-free
fragment of Mcl, which for dataless formulas coincides with Lμ1 and takes
advantage of its linear-time model checking complexity [8]. We reformulate the
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on-the-fly verification of Mcl formulas on Ltss as the local resolution of
alternation-free boolean equation systems (Bess), by generalizing the classi-
cal procedures used for Lμ1 [1,42]. The infinite looping operator is expressible
in Lμ2, the Lμ fragment of alternation depth 2 [13], whose model checking is
quadratic; however, we show that this operator can be verified on-the-fly in lin-
ear time by proposing an enhanced Bes resolution algorithm. This verification
method is at the heart of the Evaluator 4.0 model checker that we developed
within the Cadp toolbox [17] using the generic Open/Cæsar environment [15]
for on-the-fly exploration of Ltss. As verification engine, the tool employs the
generic Cæsar Solve library [31], which provides several linear-time local res-
olution algorithms for alternation-free Bess.

The paper is organized as follows. Section 2 defines the Mcl language and
illustrates its usage through various examples of properties. Section 3 describes
the model checking method and the linear-time algorithm for handling the in-
finite looping operator. Section 4 presents the Evaluator 4.0 tool and its ap-
plication for analyzing the Scsi-2 bus arbitration protocol [2]. Finally, Section 5
summarizes the results and indicates directions for future work.

2 Syntax and Semantics

Mcl formulas are interpreted over Ltss of the form M = 〈S, A, T, s0〉, where
S is the set of states, A is the set of actions, T ⊆ S × A × S is the transition
relation, and s0 ∈ S is the initial state. A transition s1

a→ s2 ∈ T indicates that
the system can move from state s1 to state s2 by performing action a. Actions
in A are of the form c v1...vn, where c is a communication channel and v1, ..., vn

are the values exchanged during a handshake on c. The invisible action τ �∈ A
denotes an unobservable behaviour of the system. These Ltss are natural models
for value-passing process algebras with early operational semantics, such as full
Ccs [33] and Lotos [24].

2.1 Basic MCL: Modal mu-Calculus with Data

A natural way of expressing properties about the values contained in Lts actions
is to extend Lμ with data variables, which can be quantified and used as pa-
rameters of fixed point operators. Our Mcl language follows existing extension
proposals [9,19,36] and enhances them by introducing higher-level constructs
inspired from programming languages.

Basic Mcl (see Fig. 1) consists of data expressions (e), action formulas (α),
and state formulas (ϕ). Expressions are built from data variables x ∈ X and
functions f : T1 ×· · ·×Tn → T . Types bool and nat, equipped with the usual op-
erations, are predefined, and all expressions are assumed to be well-typed. Action
formulas are built from action patterns and boolean connectors. Action patterns
inspect the structure of actions c v1...vn by matching values vi against expres-
sions (clause “!ei”) or extracting and storing them in typed variables (clause
“?xi:Ti”) exported to the enclosing formula.
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Expressions: e ::= x | f(e1, ..., en)

Action formulas: α ::= {c !e1...!en} | {c ?x1:T1...?xn:Tn}
| ¬α | α1 ∨ α2

State formulas: ϕ ::= e | ¬ϕ | ϕ1 ∨ ϕ2 | 〈α〉 ϕ
| exists x1:T1, ..., xn:Tn.ϕ | Y (e1, ..., en)
| μY (x1:T1:=e1, ..., xn:Tn:=en).ϕ
| let x1:T1:=e1, ..., xn:Tn:=en in

ϕ
end let

| if ϕ1 then ϕ′
1

elsif ϕ2 then ϕ′
2 ... else ϕ′

n

end if
| case e is

p1 → ϕ1 | ... | pn → ϕn

end case

Expressions: ||x|| δ = δ(x)
||f(e1, ..., en)|| δ = f(||e1|| δ, ..., ||en|| δ)

Action formulas: [[{c !e1...!en}]] δ = {c ||e1|| δ... ||en|| δ}
[[{c ?x1:T1...?xn:Tn}]] δ = {c v1...vn | ∀i ∈ [1, n].vi ∈ Ti}

[[¬α]] δ = A \ [[α]] δ
[[α1 ∨ α2]] δ = [[α1]] δ ∪ [[α2]] δ

env c v1...vn({c ?x1:T1...?xn:Tn}) = [v1/x1, ..., vn/xn] if ∀i ∈ [1, n].vi ∈ Ti

enva(α) = [ ] otherwise

State formulas: [[e]] ρδ = {s ∈ S | ||e|| δ}
[[¬ϕ]] ρδ = S \ [[ϕ]] ρδ

[[ϕ1 ∨ ϕ2]] ρδ = [[ϕ1]] ρδ ∪ [[ϕ2]] ρδ

[[〈α〉 ϕ]] ρδ = {s ∈ S | ∃s
a→ s′.a ∈ [[α]] δ ∧

s′ ∈ [[ϕ]] ρ(δ � enva(α))}
[[exists x1:T1, ..., xn:Tn.ϕ]] ρδ = {s ∈ S | ∃v1:T1, ..., vn:Tn.

s ∈ [[ϕ]] ρ(δ � [v1/x1, ..., vn/xn])}
[[Y (e1, ..., en)]] ρδ = (ρ(Y ))(||e1|| δ, ..., ||en|| δ)

[[μY (x1:T1:=e1, ..., xn:Tn:=en).ϕ]] ρδ = (μΦρδ)(||e1|| δ, ..., ||en|| δ)
where Φρδ : (T1 × · · · × Tn → 2S) → (T1 × · · · × Tn → 2S),
(Φρδ(F ))(v1, ..., vn) = [[ϕ]] (ρ � [F/Y ])(δ � [v1/x1, ..., vn/xn])[[

let x1:T1:=e1, ...,
xn:Tn:=en in ϕ end let

]]

ρδ = [[ϕ]] ρ(δ � [||e1|| δ/x1, ..., ||en|| δ/xn])

[[
if ϕ1 then ϕ′

1 elsif ϕ2 then ϕ′
2

... else ϕ′
n end if

]]

ρδ =
{s ∈ S | if s ∈ [[ϕ1]] ρδ then s ∈ [[ϕ′

1]] ρδ
elsif s ∈ [[ϕ2]] ρδ then s ∈ [[ϕ′

2]] ρδ
... else s ∈ [[ϕ′

n]] ρδ}[[
case e is p1 → ϕ1 |

... | pn → ϕn end case

]]

ρδ =
if ||e|| δ::p1 then [[ϕ1]] ρ(δ � ext(||e|| δ, p1))

... else [[ϕn]] ρ(δ � ext(||e|| δ, pn))

Fig. 1. Syntax (upper part) and semantics (lower part) of basic Mcl operators
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State formulas are built upon parameterized propositional variables Y ∈ Y
and boolean expressions e by applying boolean connectors, modalities, quanti-
fiers, and parameterized fixed point operators. Each variable Y denotes a func-
tion F : T1 × · · · × Tn → 2S belonging to a set F . Derived boolean opera-
tors (∨, ⇒, and ⇔) and universal quantification (forall) are defined as usual
in terms of ¬, ∧, and exists. The necessity modality is the dual of possibility
([α] ϕ = ¬ 〈α〉 ¬ϕ) and the maximal fixed point operator is the dual of the min-
imal one (νY (...).ϕ = ¬μY (...).¬ϕ[¬Y/Y ], where [¬Y/Y ] denotes the syntactic
substitution of Y by ¬Y ). Quantifiers may contain optional subdomain clauses
“x:T among {e1 ... e2}” indicating that x takes values between e1 and e2. We
allow quantification only on finite types equipped with a total order relation;
existential and universal quantifiers are merely shorthand notations for (large)
disjunctions and conjunctions parameterized by data values.

Fixed point formulas σY (...).ϕ, where σ ∈ {μ, ν}, are assumed to be syntacti-
cally monotonic [26], i.e., every free occurrence of Y in ϕ must fall in the scope
of an even number of negations. For efficiency of model checking, we consider
only alternation-free formulas, i.e., without mutual recursion between minimal
and maximal fixed point variables, similarly to the Lμ1 fragment [13].

Expressions e and action formulas α are interpreted in the context of a data
environment δ : X → T1 ∪ ... ∪ Tn assigning values to all free variables occurring
in e and α (the environment δ  [v/x] is identical to δ except for variable x,
which is assigned value v). State formulas ϕ are interpreted also in the context
of propositional environments ρ : Y → F , which assign functions to all free
propositional variables occurring in ϕ. The parameterized fixed point operators
σY (x1:T1:=e1, ..., xn:Tn:=en).ϕ represent both the definition and the call (with
the values of e1, ..., en as arguments) of functions F : T1×· · ·×Tn → 2S defined as
the corresponding fixed points of monotonic functionals over T1 ×· · ·×Tn → 2S .

To facilitate the handling of data values, we introduce the “let”, “if”, and
“case” operators, inspired from functional programming languages. The branches
of “if” and “case” formulas must be exhaustive in order to avoid exceptions
and the formulas ϕi used as branch conditions in “if” must not contain free
propositional variables in order to preserve syntactic monotonicity. Patterns in
“case” formulas are of the form “x:T ” or “f(p1, ..., pn)”, where f is a constructor
of the type of e. Variables defined in patterns pi are visible in the state formulas
ϕi of their corresponding branches. The predicate “v::p” indicates whether value
v matches p or not, and ext(v, p) denotes the data environment initializing all
variables defined in p with their values extracted from v by pattern-matching.

Action patterns have additional features (not shown in Fig. 1): the two kinds
of clauses can be mixed; the wildcard clause “any” matches a value of any type;
for dataless actions, brackets can be omitted; and an optional guard “where e”
ending the clause list indicates that the action pattern matches an action iff the
boolean expression e (which can refer to the variables declared in the clauses
“?x:T ” of the action pattern) evaluates to true.

A state satisfies a closed formula ϕ (notation s |= ϕ) iff s ∈ [[ϕ]]. An Lts

M = 〈S, A, T, s0〉 satisfies a closed formula ϕ (notation M |= ϕ) iff s0 |= ϕ. Basic
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Table 1. Temporal properties formulated using basic Mcl operators (upper part) and
extended regular operators (lower part). ϕ1 and ϕ2 involve action patterns, quantifiers,
and boolean expressions. ϕ3 counts using a parameterized fixed point and ϕ4 simulates
a simple pushdown automaton for syntactic analysis.

Mcl formula Meaning

ϕ1
[true∗.{open ?i:nat}.(¬{close !i})∗.
{open ?j:nat}] (i = j)

Mutual exclusion between
processes i and j.

ϕ2

[{bcast ?msg :nat}]
forall addr :nat.

μY.(〈true〉 true ∧ [¬{recv !msg !addr}] Y )

Inevitable reception of a
broadcasted message msg at
all its destinations addr.

ϕ3

νY (c:nat:=0).if c = 3 then 〈true∗.resp〉 true
else [req1 ∨ req2 ∨ req3] Y (c + 1)

end if

Potential response after
three requests occurring in
any order.

ϕ4

νX(n:nat:=0).([open par ] X(n + 1) ∧
[close par ] (n > 0 ∧ X(n − 1)) ∧
[eof ] (n = 0) ∧
[¬(open par ∨ close par ∨ eof )] X(n))

No sequence of transi-
tions (tokens) can reach
an eof without having
well-balanced parentheses.

ϕ5 [true∗.((¬output)∗.input){n + 1}] false Safety of a n-place buffer.

ϕ6

[{level ?l:nat}] ((l > max) ⇒
[(¬alarm){16}] false ∧
[(¬alarm){0 ... 15}] 〈true〉 true)

Inevitable alarm at most 15
transitions (ticks) after a
level reaches a threshold.

ϕ7
[true∗.{ask ?i:nat}]

〈(¬{get !i})∗.{get ?j:nat where j = i}〉 @
Starvation of process i in fa-
vor of another process j.

ϕ8 〈true+.if ¬pfinal then false end if〉@
Acceptance condition in a
Büchi automaton (pfinal de-
notes the repeated states).

Mcl allows to express naturally temporal properties involving data values, as
illustrated in Table 1. Other data-based properties will be shown in Section 4.

2.2 Extended Regular Operators

Besides the data handling operators of basic Mcl, which bring the benefits of
parameterization, another kind of useful extension is the ability of specifying
transition sequences using regular expressions [6]; in the context of Lμ, this can
be done naturally by plugging regular expressions inside modalities, similarly to
Pdl [14]. Although these modalities can be translated into Lμ1 [13], in practice
they are much more concise and readable than their fixed point counterparts [32].

The regular formulas (β) we propose in Mcl for specifying transition se-
quences are built from action formulas and various operators stemming from
extended regular expressions and programming languages (see Tab. 2). For con-
ciseness, we define the meaning of β formulas by giving their translations to basic
Mcl when they occur in 〈 〉 modalities (dual translations hold for [ ] modalities).
The counter-based iteration operators are inspired from the extended regular ex-
pressions implemented in string searching tools like the egrep utility available on
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Table 2. Syntax and semantics of (a subset of) Mcl extended regular operators

Syntax Meaning Translation

〈nil〉ϕ Empty seq. ϕ

〈β1.β2〉ϕ Concatenation 〈β1〉 〈β2〉ϕ

〈β1|β2〉ϕ Choice 〈β1〉 ϕ ∨ 〈β2〉 ϕ

〈β?〉 ϕ Option ϕ ∨ 〈β〉 ϕ

〈β∗〉ϕ Iter. ≥ 0 times μY.(ϕ ∨ 〈β〉 Y )

〈β+〉ϕ Iter. ≥ 1 times μY. 〈β〉 (ϕ ∨ Y )

〈β{e}〉 ϕ Iteration μY (c:nat:=e).
e times if c > 0 then 〈β〉 Y (c − 1)

else ϕ end if
〈β{e1 ... e2}〉 ϕ Iteration μY (c1:nat:=e1, c2:nat:=e2−e1).

e1 ≤ e2 if c1 > 0 then 〈β〉 Y (c1 − 1, c2)
times elsif c2 > 0 then

ϕ ∨ 〈β〉 Y (c1, c2 − 1)
else ϕ end if

〈let x1:T1:=e1, ..., xn:Tn:=en in Variable let x1:T1:=e1, ..., xn:Tn:=en in
β definition 〈β〉ϕ

end let〉 ϕ end let
〈if ϕ1 then β1 Conditional if ϕ1 then 〈β1〉ϕ

elsif ϕ2 then β2 ... else βn elsif ϕ2 then 〈β2〉 ϕ...else 〈βn〉 ϕ
end if〉 ϕ end if

〈case e is Selection case e is
p1 → β1 | ... | pn → βn p1 → 〈β1〉 ϕ | ... | pn → 〈βn〉 ϕ

end case〉ϕ end case
〈while ϕ1 do β end while〉ϕ2 Initial test loop μY.if ϕ1 then 〈β〉 Y else ϕ2 end if

Unix systems. These operators turn out to be as useful for specifying transition
sequences as their egrep counterparts are for describing character strings (see,
e.g., formulas ϕ5 and ϕ6 in Tab. 1). However, when one must handle the data
values contained in actions and characterize the intermediate states occurring
on a sequence, more sophisticated operators become necessary.

The “if” operator generalizes the testing operator “?ϕ” of Pdl [14], which al-
lows to specify a formula ϕ about an intermediate state of a sequence denoted by a
regular formula. The “?ϕ” operator is formulated in Mcl as if ¬ϕ then false end if.
The “let” and “case” operators are the sequence counterparts of the correspond-
ing state operators. Note that exhaustiveness of branches in the “if” and “case”
regular formulas is not mandatory: if none of the branch conditions is satisfied,
the formula denotes the empty sequence, exactly as in sequential programming
languages. The “while” iteration operator specifies repetitions of subsequences
driven by their source states. Originally, the “if” and “while” operators were in-
troduced in well-structured Pdl [20], a syntactic extension of Pdl intended to
enforce a disciplined use of the testing operator.

The regular modalities defined in Table 2 can deal only with finite transition
sequences and thus can specify only simple fairness properties, such as the fair
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reachability [35] of an action a, described as [(¬a)∗] 〈(¬a)∗.a〉 true. To specify
more complex fairness properties, we use the infinite looping operator Δβ of
Pdl-Δ [39], noted 〈β〉@ in Mcl, which states the existence of an infinite (unfair)
sequence made by concatenating subsequences satisfying β (see formula ϕ7 in
Tab. 1). This operator is equivalent to the νY. 〈β〉Y formula [13]; by expanding β
using the rules in Table 2, the resulting formula belongs to Lμ2 or Lμ1, depending
whether β contains iteration operators or not. The 〈β〉 @ operator captures the
Büchi acceptance condition (see formula ϕ8 in Tab. 1), unexpressible in Lμ1.

Expressiveness: The dataless fragment of Mcl (i.e., with no occurrences of
data variables) contains the operators of Lμ1, the regular modalities of Pdl (em-
bedded in Lμ1 [13]), and the infinite looping operator, which belongs to Lμ2 [13].
This fragment strictly includes Pdl-Δ, which in turn subsumes Ltl (see formula
ϕ8 in Tab. 1) and Ctl

∗ [43]. Data variables do not, strictly speaking, increase ex-
pressiveness: since we work on finite Ltss, all possible instances of data variables
or fixed point parameters related to the Lts could be expanded statically. This is
however uncompatible with the on-the-fly model checking approach, which does
not assume an a priori knowledge of the entire Lts.

3 Model Checking Method

We are interested in the on-the-fly model checking of an alternation-free Mcl

formula ϕ on an Lts M = 〈S, A, T, s0〉, which consists in determining whether
s0 satisfies ϕ or not by exploring T in a forward manner starting at s0. We
proceed by generalizing the method used for model checking Lμ1 formulas [1,8]
and their extensions with Pdl regular modalities [32]: the verification problem
is reformulated as the local resolution of a boolean equation system (Bes) [28],
which is performed using specialized algorithms such as those in [31].

3.1 Translation into Parameterized BESs

The reformulation of the verification problem roughly consists of four steps,
illustrated in the table below. The Mcl formula ϕ serving as example states
that every number p inserted into an empty 5-place buffer will be potentially
delivered after 4 internal transitions denoting the moves of p between contiguous
buffer cells. The first three steps transform ϕ syntactically, and the fourth one
involves semantic information coming from the Lts.

1. The normalization step inserts new propositional variables at appropriate
places in order to capture all occurrences of “hidden” fixed points underlying
regular modalities with iterations (e.g., νY1) and to ensure that every data vari-
able occuring free in a subformula must be a parameter of the propositional
variable dominating the subformula (e.g., μZ1(q:nat:=p)).

2. The translation to parameterized Pdl with recursion (PdlR) [32] brings
the formula to an equivalent equational form. Here we focus on alternation-
free PdlR systems, without cyclic dependencies between equation blocks. Every
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fixed point subformula induces an equation, which (due to normalization) is self-
contained w.r.t. its data parameters.

3. The translation to parameterized Hml with recursion (HmlR) [27] simpli-
fies the modalities by expanding the regular formulas according to their seman-
tics given in Table 2. Duplication of subformulas is avoided by introducing new
equations, in such a way that the size of the HmlR system remains linear w.r.t.
the initial Mcl formula.

4. The final step makes a kind of product between the HmlR system and
the Lts, producing a parameterized Bes (PBes) [29] in which a boolean vari-
able Ys(v1, ..., vn) is true iff state s satisfies Y (v1, ..., vn). The evaluation of the
boolean formulas in the right-hand sides allows to traverse the Lts transitions
in a forward way, suitable for on-the-fly verification.

Mcl formula [true∗.{put ?p:nat}] 〈τ{4}.{get !p}〉 true
Normalized formula νY1. [true∗.{put ?p:nat}] μZ1(q:nat:=p). 〈τ{4}.{get !q}〉 true

PdlR system
{

Y1
ν
=[true∗.{put ?p:nat}] Z1(p)

}

{
Z1(q:nat)

μ
=〈τ{4}.{get !q}〉 true

}

HmlR system
{

Y1
ν
=[true∗] [{put ?p:nat}] Z1(p)

}

{
Z1(q:nat)

μ
=〈τ{4}〉 〈{get !q}〉 true

}

{
Y1

ν
=[{put ?p:nat}] Z1(p) ∧ [true] Y1

}

⎧
⎨

⎩

Z1(q:nat)
μ
=Z2(q, 4)

Z2(q, c:nat)
μ
=if c > 0 then 〈τ 〉 Z2(q, c − 1)

else 〈{get !q}〉 true end if

⎫
⎬

⎭

PBes

{
Y1s

ν
=

∧

s
put m→ s′ Z1s′(m) ∧

∧
s→s′ Y1s′

}

s∈S⎧
⎪⎨

⎪⎩

Z1s(q:nat)
μ
=Z2s(q, 4)

Z2s(q, c:nat)
μ
=if c > 0 then

∨
s

τ→s′ Z2s′(q, c − 1)
else

∨

s
get q→ s′ true end if

⎫
⎪⎬

⎪⎭
s∈S

The evaluation of an Mcl formula on the initial state s0 of an Lts is reduced
to the resolution of a variable instance Ys0(v1, ..., vn) defined by the first equation
block of the corresponding PBes. This is carried out by expanding the PBes

incrementally, starting at Ys0 (v1, ..., vn) and evaluating the formula in the right-
hand side of its equation, which in turn will generate new variable instances,
and so on. If the number of generated instances is finite, the expanded PBes

portion is converted into a plain Bes by associating a boolean variable Ys,v1,...,vn

to each variable instance Ys(v1, ..., vn), based on the isomorphism of the lattices
(T1 × · · · × Tn → bool)|S| and bool|T1|···|Tn|·|S|. Then, the value of Ys0,v1,...,vn is
obtained by locally solving the resulting Bes using the linear-time algorithms
of [31]. The incremental expansion of the PBes to a plain Bes and the local
resolution are performed simultaneously, since both of them rely upon a forward
exploration of the dependencies between (instances of) boolean variables.
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3.2 Handling of the Infinite Looping Operator

When β contains iterations, the 〈β〉@ operator corresponds to a Lμ2 formula;
although we cannot directly use alternation-free Bes resolution, we can still
devise a linear-time algorithm for evaluating it on an Lts. The PdlR system
equivalent to 〈β〉@ contains two mutually recursive equation blocks {Y

ν= Z} and
{Z

μ
= 〈β〉Y }. The Bes obtained by applying the translation given in Section 3.1

has the form {Ys
ν= Zs}, {Zs

μ
= ∨

s
β→s′Ys′}. The shorthand notation ∨

s
β→s′ means

the existence of a sequence relating s and s′ and satisfying β; in general, this
is further expanded into several disjunctive equations, e.g., the block {Zs

μ
=

∨
s
(a∗.b)∗.c→ s′

Ys′} becomes {Zs
μ
= ∨

s
c→s′Ys′ ∨ Ws, Ws

μ
= ∨

s
b→s′Zs′ ∨ ∨

s
a→s′Ws′}. To

solve such a Bes, we abusively merge its two blocks into a single disjunctive
μ-block B = {Ys

μ
= Zs, Zs

μ
= ∨

s
β→s′Ys′} and take care to preserve the original

semantics during local resolution. A state s satisfies 〈β〉@ iff it has an outgoing
infinite sequence made of subsequences satisfying β. If there is no such sequence
going out of s, then the formula is false, which is also the value of Ys obtained
by solving B. Otherwise, the infinite sequence ends with a cycle (because the
Lts is finite) going through some variable Ys′ ; to force Ys to true, it is sufficient
to detect the cycle and set Ys′ to true, which will propagate back to Ys.

The local resolution algorithm A4 [31] solves a disjunctive Bes by performing
a depth-first search (Dfs) of the associated boolean graph [1], which encodes the
dependencies between boolean variables. The Dfs starts at the vertex (variable)
of interest x and, when it encounters a true constant, it propagates it back to
x via the disjunctive variables present on the Dfs stack, which become true as
well. Furthermore, all visited variables that may reach the true constant must
also be set to true, in order to avoid multiple traversals of the boolean graph
during subsequent invocations of A4 (this happens when the subformula from
which the block was generated is nested within other temporal operators) and
to keep a linear-time complexity for the overall resolution. Since these variables
belong to the partially explored strongly connected components (Sccs) covering
the Dfs stack, A4 also performs Scc detection using Tarjan’s algorithm [40].

Algorithm A4cyc (see Fig. 2) extends A4 with the ability to detect cycles going
through certain marked variables (such as Ys′ above), indicated by a predicate
marked. When such a cycle is detected, the marked variable becomes true, and its
value will propagate back to x via disjunctive variables, exactly like an ordinary
true constant. A simple way to detect these cycles is to check, every time a Scc

is identified, whether it contains such a variable or not. A more efficient solution
is to do the check only when traversing a cycle-closing edge (lines 20–23), i.e.,
a “back” or a “cross” edge in the Dfs terminology [40]. To avoid searching the
Dfs stack for marked variables, we use an additional stack2, which contains all
marked variables present on the Dfs stack and evolves synchronously with it.
Then, it is sufficient to check that the target variable of a cycle-closing edge has
a “lowlink” number [40] smaller than the Dfs number of the variable on top of
stack2. Thus, cycles containing marked variables are always detected before the
exploration of the last encountered Scc is completed.



158 R. Mateescu and D. Thivolle

1. var A : 2V ; k : nat ; stack : V ∗ ; stack 2 : V ∗ ;
2. A := ∅ ; k := 0 ; stack := nil ;
3. function A4cyc (x : V, (V, E, L),marked : V → bool) : bool is
4. var v, stable : V → bool ; n, p, low : V → nat ;
5. y, z : V ; val : bool ;
6. if |E(x)| = 0 then
7. if L(x) = ∨ then v(x) := false else v(x) := true end if ;
8. stable(x) := true
9. else

10. v(x) := false;
11. stable(x) := false
12. end if ;
13. p(x) := 0 ; n(x) := k ; k := k + 1 ; low(x) := n(x) ;
14. A := A ∪ {x} ; stack := push(x, stack ) ;
15. if marked(x) then stack 2 := push(stack 2) end if ;
16. while p(x) < |E(x)| do
17. y := (E(x))p(x) ;
18. if y ∈ A then
19. val := v(y) ;
20. if ¬stable(y) ∧ n(y) < n(x) then
21. low(x) := min(low(x), n(y)) ;
22. if low(x) ≤ n(top(stack 2)) then val := true end if
23. end if
24. else
25. val := A4cyc (y, (V, E, L))
26. low(x) := min(low(x), low(y))
27. end if ;
28. if val then
29. v(x) := true ; stable(x) := true ;
30. p(x) := |E(x)|
31. else
32. p(x) := p(x) + 1
33. end if
34. end while ;
35. if v(x) ∨ low(x) = n(x) then
36. repeat
37. z := top(stack) ; v(z) := v(x) ;
38. stable(z) := true ; stack := pop(stack )
39. until z = x
40. end if ;
41. if x = top(stack 2) then stack2 := pop(stack 2) end if ;
42. return v(x)
43. end

Fig. 2. Local resolution of a disjunctive μ-block with marked cycle detection
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Complexity of model checking: Algorithm A4cyc runs in O(|V |+ |E|) time and
O(|V |) memory, where V is the set of boolean graph vertices (boolean variables)
and E is the set of dependencies between them (boolean operators). Since A4 can
handle Pdl [31], it provides together with A4cyc a linear-time on-the-fly model
checking procedure for Pdl-Δ, improving over the classical quadratic procedure
obtained by translating Pdl-Δ to Lμ2 [13]. Given that 〈β〉 @ captures the Büchi
acceptance condition, A4cyc could also serve as verification back-end for Ltl; the
Scc detection (which is not needed for Ltl model checking [22]) is necessary for
ensuring a linear-time complexity when 〈β〉 @ occurs nested within branching-
time operators and is therefore evaluated multiple times.

Dataless formulas of Mcl are evaluated with a time and space complex-
ity O(|ϕ| · (|S| + |T |)) using Bes resolution [31]. The operators of Ctl and
Pdl-Δ, which cover the quasi-totality of practical needs, are evaluated with
a space complexity O(|ϕ| · |S|) using A4 and A4cyc. Data variables of infi-
nite types may lead to divergence of model checking, because the number of
boolean variable instances produced by expansion from PBess to Bess can be
unbounded. Therefore, parameterized fixed points should be used with the same
care as recursive functions in programming languages (note however that cycles
Ys(v1, ..., vn) → · · · → Ys(v1, ..., vn) do not harm, since Bes resolution algo-
rithms can handle cyclic dependencies between variables). The evaluation of all
extended regular operators given in Table 2 is guaranteed to converge, because
their expansion to Bess always creates a finite number of variable instances,
bounded by the values of iteration counters and/or the number of Lts states.

4 Implementation and Use

The model checkers Evaluator 3.x and 4.0: A verification method similar to that
given in Section 3, but restricted to dataless formulas, is at the core of the
Evaluator 3.x model checker [31,32] of Cadp [17], which evaluates formulas
of regular Lμ1 on Ltss on-the-fly. The tool is based on the generic Lts explo-
ration Api defined by Open/Cæsar [15] and therefore is language-independent.
The implicit Bes produced by reformulating the verification problem is solved
on-the-fly using the local resolution algorithms of the generic Cæsar Solve li-
brary [31]. These algorithms rely upon various exploration strategies of boolean
graphs: plain Dfs, optimized Dfs for the memory-efficient resolution of dis-
junctive/conjunctive or acyclic Bess, breadth-first search (Bfs), etc. The tool
is also able to generate examples and counterexamples (Lts portions explaining
the verification result) using the Bes approach proposed in [30]. To facilitate
the specification task, derived temporal operators can be defined as macros pa-
rameterized by subformulas and grouped into reusable libraries, several of which
are currently available (defining Ctl [7], Action-based Ctl [10], and the prop-
erty patterns proposed in [11]). Evaluator 3.x served to validate more than
30 industrial case-studies over the last 7 years1, and is currently used by Bull,
StMicroelectronics, and Cea/Leti for checking asynchronous hardware [37].
1 See http://www.inrialpes.fr/vasy/cadp/case-studies
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The verification method described in Section 3 is at the core of the new version
Evaluator 4.0 (38 000 lines of code) that we developed within Cadp. The new
tool2 brings two major enhancements w.r.t. its previous versions 3.x:

– The Mcl language presented in Section 2 (which is a conservative extension
of regular Lμ1, the input language of versions 3.x) is now accepted as input,
thus allowing to express temporal properties involving data. The presence of
data parameters significantly reduces the size of temporal specifications, by
avoiding tedious repetitions of formulas caused by instantiations of parame-
ters with values contained in the Lts actions.

– The infinite looping operator 〈...〉@ is now fully implemented (versions 3.x
only accepted iteration-free regular formulas inside the 〈...〉@ operator) using
the linear time algorithm A4cyc, thus allowing to verify elaborated fairness
properties on-the-fly. The presence of 〈...〉@ makes Mcl more expressive
than both Lμ1 and Ltl, enabling to specify the existence of complex unfair
cycles in Ltss, which was previously verifiable using Cadp only by means
of bisimulation checking [4,37].

Besides the operators defined in Section 2, Evaluator 4.0 also accepts weak
modalities as in observational Lμ [38]. The new tool is fully upward compatible
with the versions 3.x: it accepts existing specifications written in regular Lμ1,
uses the same on-the-fly verification engine Cæsar Solve, offers the same di-
agnostic features, and keeps the same macro-definition mechanism, allowing the
existing libraries of derived operators to be directly reused in Mcl specifications.

Model checking of data-based fairness properties using Evaluator 4.0: We illus-
trate below the use of Evaluator 4.0 for verifying the behaviour of the Scsi-2
bus arbitration protocol [2], based on the Lotos specification given in [16], avail-
able in the demo 31 of Cadp. The Scsi-2 protocol handles the access of devices
(disks and controllers) to a bus. Devices are assigned unique numbers (priorities)
in the range [0, n−1]. We consider a configuration containing one controller with
number nc and n − 1 disks. The controller communicates with disk i by sending
commands “cmd i”; after a disk receives a command, it processes it and responds
to the controller with a “rec i” action (reconnect in the Scsi-2 terminology). To
perform an emission or a reception, each device must get access to the bus; when
several devices are requesting the bus, the device with the highest number ob-
tains it. This priority-based arbitration raises a question about fairness: are the
low priority disks always able to dialog with the controller?

It turns out that this is not the case, as it was determined experimentally
by engineers at Bull [16]. The unfair behaviours of the Scsi-2 protocol are
precisely captured by the following Mcl formula, expressing the existence of
infinite execution sequences on which disks with numbers i < nc are continuously
preempted from accessing the bus by disks with higher priority:

[ true∗.{cmd ?i:nat where i < nc} ]
forall j:nat among {i + 1 ... n − 1}.

(j �= nc) ⇒ 〈(¬{rec !i})∗.{cmd !j}.(¬{rec !i})∗.{rec !j}〉@

2 See http://www.inrialpes.fr/vasy/cadp/man/evaluator.html
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This property was impossible to express and verify precisely using the earlier
versions Evaluator 3.x, which did not support the infinite looping operator.
Using version 4.0, we checked that the above formula holds for several values of
n and nc (see the table below). The experiments were carried out on a 731 MHz,
1 GByte Pentium III machine. For each experiment, we give the size of the Lts,
its generation time in seconds (for comparison with on-the-fly verification time),
the size of the underlying Bes, and the local resolution time. The Bes contains
a ν-block and a μ-block encoding the necessity modality and the infinite looping
subformula, respectively. We also indicate how many times A4cyc was invoked
for solving variables of the inner μ-block; each invocation denotes the evaluation
of the 〈...〉@ subformula on a state reached after an appropriate “cmd i” action.
The peak of memory usage was 182 MBytes (for n = 5 and nc = 4). For each
value of n, we observe a linear growth of the Bes size and resolution time w.r.t.
the value of nc, which directly influences the effort of evaluating the formula.

cfg. Lts gen. Bes res. calls to
n nc states trans. time vars. opns. time A4cyc

0 2 060 4 630 0.73 2 061 4 631 1.30 0
3 1 2 060 4 628 0.74 4 148 7 479 1.40 255

2 2 060 4 628 0.74 4 698 8 284 1.39 255

0 56 169 154 752 1.71 56 170 154 753 3.52 0
4 1 56 169 154 749 1.71 113 571 233 840 5.05 8 670

2 56 169 154 749 1.71 148 444 282 024 5.87 13 005
3 56 169 154 749 1.71 154 709 292 308 5.88 13 005

0 1 384 022 4 499 242 29.94 1 384 023 4 499 243 75.86 0
5 1 1 384 022 4 499 238 29.78 2 710 057 6 341 224 125.74 221 085

2 1 384 022 4 499 238 30.06 3 655 692 7 657 871 162.08 368 475
3 1 384 022 4 499 238 30.00 4 219 664 8 446 999 182.81 442 170
4 1 384 022 4 499 238 30.05 4 304 560 8 598 936 184.63 442 170

We successfully checked several other Mcl properties on the Scsi-2 protocol,
among which a safety property expressing that the difference between the num-
ber of commands received and reconnections sent by a disk i varies from 0 to 8
(the size of the buffers associated to disks):

νY (c:nat:=0).([ {cmd !i} ] ((c < 8) ∧ Y (c + 1)) ∧
[ {rec !i} ] ((c > 0) ∧ Y (c − 1)) ∧ [ ¬({cmd !i} ∨ {rec !i}) ] Y (c))

This property is also expressible in plain Lμ, but requires 9 nested maximal fixed
point operators (one for each value of the counter c) and 27 box modalities.

5 Conclusion and Future Work

The specification of temporal properties in Lμ is a difficult task that requires a sig-
nificant training and experience. By proposing Mcl, a user-friendly extension of
Lμ, we attempted to facilitate this task for branching-time, action-basedproperties
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interpreted on Ltss; our effort goes in the same direction as existing enhancements
of state-based temporal logics [3,5,6,23]. Our model checking method, based on re-
formulating the problem as a Bes resolution, provides a natural evaluation engine
for parameterized fixed points on finite Ltss; infinite-state systems could be han-
dledusing symbolic resolution ofPBess [18].The restriction to the alternation-free
Mcl fragment, motivated by efficiency, is compensated by the ability of the infinite
looping operator to handle fairness properties. The local Bes resolution algorithm
A4cyc that we proposed for evaluating this operator yields a linear-time on-the-fly
model checking procedure for Pdl-Δ, despite its embedding in Lμ2 [13].

We plan to continue our work along several directions. Firstly, a tighter cou-
pling is needed between Evaluator 4.0 and the data types and functions of
the program under verification: this can be done by appropriately extending
the Lts exploration Api defined by Open/Cæsar with data manipulation fea-
tures. Secondly, Mcl can be enhanced with the operators of other logics, such as
(action-based) Ltl, which can be translated using the infinite looping operator.
Finally, a distributed version of Evaluator 4.0 can be obtained by coupling it
with distributed Bes resolution algorithms [25].
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Abstract. We present a verified JavaCard implementation for the Mon-
dex Verification Challenge. This completes a series of verification efforts
that we made to verify the Mondex case study starting at abstract trans-
action specifications, continuing with an introduction of a security pro-
tocol and now finally the refinement of this protocol to running source
code. We show that current verification techniques and tool support are
not only suitable to verify the original case study as stated in the Grand
Challenge but also can cope with extensions of it resulting in verified
and running code. The Mondex verification presented in this paper is
the first one that carries security properties proven on an abstract level
to an implementation level using refinement.

1 Introduction

The Mondex [22] case study is a significant contribution to the Verified Software
Repository [4] [37] which has its origin in the Grand Challenge in Software Ver-
ification [18]. Mondex is an electronic purse application for smart cards. It was
originally implemented by Mastercard and became famous for being one of the
first applications to be verified according to the highest criteria of ITSEC [8].
The challenge is the machine assisted verification of Mondex smart cards security
properties. It was first done by paper and pencil proofs by Stepney, Cooper and
Woodcock [34]. A lot of groups recently showed that their verification tools and
methods can cope with the case study (e.g. [25] [2] [17] [38] [20]). Some small er-
rors were found in the original case study. Our group also solved the challenge in
[30] and [29] using Abstract State Machines (ASM) [6] and ASM Refinement [5]
[26] [27] with the interactive theorem prover KIV [1]. Furthermore, we extended
the case study by introducing a suitable cryptographic security protocol in [15],
while the original specifications do not deal with explicit cryptography, but only
assume messages to be unforgeable. We also introduced an UML-based mod-
elling framework for security protocols in general and used it to model Mondex
in [24].

In this paper we adopt our refinement method for security protocol implemen-
tations (already presented in [12]), to the verification of a Mondex implemen-
tation. The code we are verifying is running on Java smart cards [35]. Besides
the original Mondex challenge, this paper addresses especially the problems of
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Data Abstraction and of Complex Heap Data Structures as stated in a current
verification challenge [21].

We prove that our implementation

State Machines
Abstract

State Machines
Abstract

(original: A−World)

Abstract Transactions
Level 1

Level 2

(original: C−World)refine

refine

Level 3
Cryptographic Protocol
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(our first extension)

Specification

Java
Implementation

Prosecco

Level 4
JavaCard

[this paper]

(our second extension)

Communication Protocol

see e.g. [29]

see e.g. [14]

see e.g. [28]

Fig. 1. Our Mondex layers

preserves the Mondex security prop-
erties. First, security is proved for the
abstract levels. Then, the refinement
theory carries the properties over to
the concrete level. All proofs and the
implementation are available on the
Web [19]. Fig. 1 shows an overview of
our specification and verification lay-
ers for Mondex. The levels 1 and 2
are the A and C levels of the original
case study, using ASMs as the speci-
fication language. The third layer in-
troduces cryptography and was not
present in the original specification.
Level 4 is the JavaCard implementa-
tion level. The refinement from level 3
to 4 is the main content of this paper.

Sect. 2 will introduce Mondex, Sect.
3 describes the source code. Sect. 4 in-
troduces Java in KIV and the refinement framework, Sect. 5 explains the proof
strategy. Sect. 6 compares the approach to related work.

2 Mondex in a Nutshell

Mondex smart cards are electronic purses, that store an amount of money. They
can be used to pay by transferring money from one purse (called the FROM
Purse) to another one (the TO Purse). Those transactions are assumed to be
possibly faulty. While the most abstract level in the case study only uses non-
deterministic choice between successful money transfer or loss of money (both
possible in one atomic step), the first refinement introduces a protocol using
five different messages, together forming a transaction. All messages can be lost
during transmission, thereby leading to an error on any of the cards in any state.
Level 2 also uses an ether of messages which are currently in transit. Receiving
a message is basically taking an arbitrary one out of the ether. Thereby replay
attacks are modeled by adding the possibility of taking the same message out
more than once. Besides that, there is no explicit attacker analyzing messages
or generating new ones. Also there is no cryptography on this level: all messages
are assumed to be unforgeable. Any error during one protocol run (like receiving
a replayed message) leads to logging of the current transaction. The first refine-
ment shows that the log entries correctly represent the lost money on level 1.
This was shown e.g. in [30].
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The original verification of Mondex ends at our level 2. Level 3 now introduces
cryptography for this protocol using the Prosecco specification approach [14]
[13], which is also based on Abstract State Machines. We chose this approach
because Prosecco already provides lots of specification libraries for security
protocols and is well integrated into the KIV system. Prosecco contains an
explicit Dolev-Yao attacker [9] who is analyzing and building messages. The
ether of level 2 is now modelled using explicit input queues. Also additional
participants (like the terminal or the card holder) are introduced to get closer
to reality. We proved that this protocol is a correct refinement of level 2 [29]. A
symmetric secret key shared between all the authentic purses is used to encrypt
most messages and thereby ensures that the attacker cannot generate forged
critical messages. Some details on level 2 and level 3 were already given in [15].
Our Java implementation of Mondex on level 4 is a correct refinement of the
abstract ASM specification on level 3.

The protocol of level 3 and
to : Purse from : Purseterm : Terminal

getData

name(from), seqno(from),

name(to), seqno(to), 
balance(to)

balance(from)

getData

startFrom(name(to),

idle

epv

seqNo(to), amount)

enc{startTo(paydetails)}
enc{startTo(paydetails)}

enc{req(paydetails)}

epr

idle

enc{val(paydetails)}

balance :=
balance − value

enc{req(paydetails)}

balance := 
balance + value

enc{ack(paydetails)}

enc{val(paydetails)}

idle
enc{ack(paydetails)}

epa

idle

paydetails = (name(from), seqNo(from), name(to), seqNo(to), amount)
where:

Fig. 2. The Mondex Protocol

4 is shown in Fig. 2. After
the purses’ data was queried,
the two messages STARTTO
and STARTFROM set up the
transaction by sending one
purse the data of the other.
Every purse has a name and
a sequence number. The lat-
ter is used to avoid replay
attacks. The first messages
establish a transaction con-
text called PayDetails, con-
sisting of both purse names,
both sequence numbers and
the money in transfer. The
messages REQ(uest), VAL(ue),
and ACK(knowledge) are used
to transfer money. All mes-
sages contain the PayDetails
of the current transaction. The
FROM purse withdraws money from its balance after receiving a correct REQ
and before sending VAL, whereas the TO Purse deposits the same amount af-
ter receiving VAL and before sending ACK. Sending STARTTO as a response to
STARTFROM is a slight modification of the original protocol of [34], because we
found a possible attack in [29]. Another modification is the addition of an ex-
plicit getData message to query the sequence number, the name and the current
balance of a purse, which is necessary in a realistic environment. Furthermore
the messages STARTTO, REQ, VAL and ACK are secured by symmetrically en-
crypting them with a shared secret key (also shown by italic font and prefix
enc in Fig. 2). STARTFROM and getData messages are not encrypted. Those
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protocol modifications and extensions do not incur any problems with the se-
curity properties since we proved that this is a correct refinement of level 2
[29].

3 An Implementation of Mondex

3.1 Data Types and Communication

One of the main problems for a cor-

*

Key

byte[] value

EncDoc

byte[] encrypted

EncDoc(Key  k,
        Document d)

*
Doclist

Document[] docs

byte[] value

IntDoc

Document
<<abstract>>

Fig. 3. Mondex Document classes

rect refinement from an abstract spec-
ification is the correct mapping of data
types from specification to implemen-
tation. Level 3 uses a algebraic data
type called Document with various
subtypes for modelling messages. For
Mondex, we will need the following
ones: A Document is either ⊥ (an
empty document), an IntDoc repre-
senting an arbitrary large integer, or
the result of cryptographic encryption
of a document doc using the crypto-
graphic key key (i.e. EncDoc(key, doc)). Arbitrary protocol data (like the purse’s
name or sequence number) is modeled using the IntDoc type. Messages in com-
munication protocols are composed of those basic data types. To model compo-
sition the Document type also contains the Doclist constructor, which contains a
list of documents (Documentlist). The Documentlist type itself can either be the
empty list [ ] or a composition of a Document and another Documentlist. This
gives a mutual recursive algebraic specification of a free data type Document:
Document = ⊥ |

IntDoc(value : int) |
EncDoc(key : Key, doc : Document) |
Doclist(docs : Documentlist)

Key = mkKey(value : int)
Documentlist = [ ] | . + .(first : Document, rest : Documentlist)

The implementation uses a Java class type Document to implement this ab-
stract type, resulting in the classes of Fig. 3. We use byte[] as the representation
of the integer values in the abstract type. Those classes and the mapping from
the abstract to the concrete world was described in more detail in [11].

We implement a communication interface, which contains send and receive
methods for the Document type. This is the SimpleComm interface:

1 public interface SimpleComm {
2 public Document receive ();
3 public void send(Document d);}

An embedding of this SimpleComm interface into JavaCard will be introduced
in Sect. 3.3
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3.2 Purse Functionality

Using the communication interface, the Purse functionality benefits from the
high-level Java class type Document instead of low-level byte sequences. The
resulting implementation works as follows1:

1 public class Purse{
2 SimpleComm comm; Document payDetails , name;
3 short exLogCounter ; Document [] exLog;
4 ...
5 public void step () {
6 Document outdoc = null;
7 if(exLogCounter < exLog.length){
8 Document indoc = comm.receive ();
9 ... //decrypt and check indoc

10 switch(getInsByte (indoc)) {
11 case START_FROM : outdoc = startFrom (indoc); break;
12 ... // same for other steps
13 case ACK: ack(indoc); break;
14 default: abort(); break;}
15 if(outdoc!= null) comm.send(outdoc );}}}

The Purse class uses the SimpleComm.receive() method to receive the next
input (line 8). Since in a smart card implementation the exception log must have
a bounded length (it is unbounded in the original case study, the refinement to
bounded lengths is done from level 2 to 3), it is first checked, whether the log is
already full (line 7). The exception log is implemented using a field Document[]
exLog of class Purse. We use an additional field exLogCounter, which stores
the index of the next free exception log entry. A full log can be checked by
comparing this field to the maximum log length constant. If the log is full, no
further step is performed (the restriction to fixed length exception logs itself
is already introduced on the abstract level 3). If space is available, the input
document structure is decrypted (if necessary, line 9) and its structure is checked.
Level 3 already introduced a document format for all the Mondex messages of
Fig. 2. For example, the ACK message is:
EncDoc(

mkKey(THESECRETKEY), } Crypto
Key

Doclist(

IntDoc(ACK) } Type
Flag

+ Doclist( IntDoc(namefrom) + IntDoc(seqnofrom)
+ IntDoc(nameto) + IntDoc(seqnoto)
+ IntDoc(amount))))

⎫
⎬

⎭
Pay

Details

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Encrypted
Message

The other messages (except STARTFROM, which is slightly shorter) have the
same structure. This structure maps directly to Java Documents.

1 For the sake of readability we slightly pretty printed the programs for this paper.
The original verified programs can be found on the web [19].
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After checking the input structure, the getInsByte method (line 9 above)
returns the type of the input message and the correct protocol step method (e.g.
ack(...), line 13) is chosen. The ack() method now has to check whether the
PayDetails are correct and that it is no replayed message from an older protocol
run. Since the PayDetails are also implemented using the Document type (using a
field Document payDetails in class Purse), we can do this by calling a generic
equals Method on Document (line 3 below):

1 private void ack(Document indoc) {
2 indoc = getPaydetails (indoc);
3 if(! payDetails .equals(indoc)){ abort(); return; }
4 state = STATE_IDLE ;}

The abort() method now only has to check whether the current state is
critical (line 2 below). Money can only be lost if the TO Purse is in state EPV
or the FROM Purse is in state EPA (see Fig. 2). If we are in a critical state,
the current PayDetails have to be copied to the exception log exLog (using the
method copyLogPDs, line 3):

1 private void abort() {
2 if(state== STATE_EPA || state == STATE_EPV ) {
3 exLog[exLogCounter ] = copyLogPDs ();
4 exLogCounter ++;}
5 state = STATE_IDLE ;}

ack() is relatively short. In contrast, the startFrom()method has to perform
more checks, since it has to set up the PayDetails correctly:

1 private Document startFrom (Document indoc) {
2 Document othername = checkName (indoc);
3 short value = checkBalance (indoc);
4 short otherSeqNo = checkSeqNo (indoc);
5 if( 32767 == sequenceNo || otherSeqNo == -1
6 || value == -1 || othername == null) {
7 abort(); return null ;}
8 if(state != STATE_IDLE ) abort();
9 if(exLogCounter < exLog.length) {

10 setPaydetails (name ,sequenceNo ,othername ,
11 otherSeqNo ,value);
12 sequenceNo ++; state = STATE_EPR ;
13 return generateOutmsg (START_TO );}
14 else return null ;}

First it has to check, whether the transmitted name of the TO Purse is au-
thentic and different from the FROM purse name (in this implementation all
names with a length of 8 bytes are authentic2). This is checked in the method
2 Authenticity of names is a concept introduced in the abstract levels of Mondex, used

to distinguish real Mondex cards from faked ones. The original case study does not
state which names are authentic. Note that a check of authenticity of names using
e.g. cryptographic signatures does not add any security to the Mondex application.
All security of Mondex is based on the encryption and the sequence numbers.
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checkName (line 2). Also the amount of money to be deposited must be positive
and smaller than the current balance (checkBalance, line 3) and the transmitted
sequence number of the other purse must be reasonable (checkSeqNo, line 4).
Since the sequence number is a short value, we only allow a further protocol run,
if the maximum sequence number (32767) is not yet reached. This restriction
was already made on the abstract Prosecco level 3. The three check meth-
ods return an error value (null or -1), if anything is wrong. In those cases, we
simply abort and stop (line 7). If we receive a STARTFROM message when we
are in not in the IDLE state, we abort and continue afterwards (line 8). This is
an extension of the original case study where STARTFROM is only accepted in
IDLE. The approach of the original case study would have the negative effect
that every new transaction started directly after a previously interrupted trans-
action would fail, too. This is not what a user expects in reality. If all parameter
checks are successful, we store the PayDetails, increment the sequence number
and generate a STARTTO return message (lines 10 to 13).

3.3 Embedding in Javacard

The implementation of Mondex runs on Java smart cards. Those cards communi-
cate with APDUs (Application Protocol Data Units), which are essentially byte
arrays. To use Java Document classes on Java smart cards we provide a trans-
formation layer that encodes and decodes instances of the Document classes to
byte sequences and sends them over the APDU interface. This can be combined
with certain checks on the structure of incoming and outgoing messages. An
attacker generating for example non well-formed APDU messages has no chance
of attacking the protocol, if all those invalid inputs are filtered out in a transfor-
mation layer before even starting with the real protocol functionality. We have
implemented and proved correct such a transformation layer in [11] for normal
network communication and adopted it here to the use on Java smart cards.

The Purse class uses the SimpleComm interface to communicate. The embed-
ding of SimpleComm in the JavaCard world is is done schematically as described
in the following code:

1 public class PurseAppletWrapper
2 extends javacard .framework .Applet implements SimpleComm {
3 Document input; Purse protocolimpl ;
4 public void process(APDU apdu ){
5 ...
6 input = decode(apdu.getBuffer ());
7 protocolimpl .step ();}
8 public Document receive (){ return input; }
9 public void send(Document d){

10 byte [] outbytes = encode(d);
11 ... //copy outbytes to apdu buffer and send them }
12 //for an implementation of encode and decode see [11]
13 private byte [] encode(Document d){...}
14 private Document decode(byte [] b){...}}
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In JavaCard, every execution of a protocol step on the card is started by a call
of the Applet.process(APDU apdu) method (line 4). Therefore the byte array
input, which is wrapped in the parameter apdu of this method, is decoded into a
Java Document pointer structure (line 6). Then a step() Method on the Purse
implementation class is called (line 7). This method uses receive(), which re-
turns the decoded input Document. It will also eventually call send(Document),
which encodes the output and sends it over the APDU interface (line 10-11).

Additionally, the encoding scheme can be used to deal with cryptography (not
shown above), which is inherently necessary for Mondex: If we want to encrypt a
Document object with a certain key, we can simply encode it to an array of bytes
using the encoding scheme and then use the standard Java cryptographic archi-
tecture to encrypt this array using the given key’s value. This is also the reason
why our EncDoc class contains an array of bytes as the encrypted value. The
only assumption we have to make here is the standard assumption about per-
fect cryptography used in almost all approaches to security protocol verification:
cryptography can only be broken when knowing the right key.

All together, the Purse class implementation consists of over 600 lines of
code, not counting the various Document classes and the encoding/decoding
implementation. All classes verified for this case study have around 1800 lines,
which is quite a large number for interactive source code verification.

4 Refinement Method

We described our refinement framework for Java protocol implementations using
another case study in [12]. The method is based on the Java calculus in KIV
[32] [33]. For the Mondex verification, ASM Refinement theory [5] is used in a
variant which is preserving invariants over the refinement [27] 3. Every method
call of the step method in the implementation corresponds to exactly one step
of the abstract specification. Our refinement approach consists of the following
steps (described in more detail in [12]):

1. Specify the Implementation Level (Level 4, Fig. 1): First specify
the implementation level as a copy of the abstract Prosecco level. Then
replace the part of the abstract specification dealing with the Mondex purse
steps with a call of the Java Purse.step() method. Further replace the
abstract initialization with a constructor call for Purse. This is possible
within KIV, since both ASM Verification and Java Verification are based
on the same logical background framework, Dynamic Logic (DL) [16] and
algebraic specifications. ASMs are modeled using the programs of DL , Java
Verification is done by extending the program operators of DL by introducing
an explicit memory model for the heap, as described later. So we can add

3 In [12], standard Data Refinement theory is used. ASM Refinement is used in all
the other levels of our Mondex refinements, and ASM Refinement was shown to be
a generalization of Data Refinement [28]. So, technically this does not make any
difference, because all our proof obligations are standard 1:1 refinement properties.
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the heaps of the Java purses as an additional state function to the ASM.
Then we execute the Java implementation using those heaps to define the
concrete agents’ behaviour.

2. Data Transformation for Inputs: Insert a data transformation function
from abstract input Documents to Java objects before the actual call of the
Java implementation Purse.step().

3. Data Transformation for Outputs: Insert a data transformation function
from Java objects to abstract output Documents after the actual call of the
Java implementation Purse.step().

4. Simulation Relation: Find a simulation relation R, that maps the ab-
stract Prosecco state to the concrete Java state using data transformation
functions that are similar to input/output transformation. Additionally, find
suitable invariants for the abstract and concrete levels.

5. Prove Initialization: Prove that the Java constructor call of Purse leads
to a Java state, where a corresponding initial abstract state can be found in
which the simulation relation holds.

6. Prove Correctness: Prove that if the simulation relation holds and if we ex-
ecute a sequence of data input transformation to Java, call of Purse.step()
and data output transformation back to Documents, we then find a step of
the abstract ASM purse specification which results in a state where the sim-
ulation relation holds again.

We will describe these steps in more detail now. The state of the Prosecco

ASM is given by different state functions, which map an agent to some data,
where agent is a free data type specifying the protocol participants:

Agent = purse(int : name) | terminal | user(int : name) | attacker
For the Mondex purses, the level 3 ASM specification uses the state functions:

inputs : agent → documentlist input messages of each agent
seqNo : agent → int current sequence numbers
balance : agent → int current balances
payDetails : agent → Document current transaction details
exLog : agent → Documentlist current exception logs
To define the ASM rules for the agents on level 3, we use macro definitions

MACRO#(input; output) with input parameters input and input/output param-
eters output. For an agent representing a purse, the rule is:

1 PURSE#(agent, ... ;inputs, exLog, balance, ...)
2 i f i nput s ( agent ) �= [ ] ∧ # exLog ( agent ) < MAXLENGTH
3 then let indoc = input s ( agent ) . f i r s t in
4 input s ( agent ) := r e s t ( input s ( agent ) ) ;
5 // check the input and decrypt
6 . . .
7 i f i s s t a r t f r om ( indoc ) then STARTFROM# ( . . . )
8 else i f . . . then . . .
9 i f i s a c k ( indoc ) then ACK# ( . . . )

10 else i f i n sby te = 0 then ABORT# ( . . . ) ;
11 SEND#(outdoc , . . . ; i nput s )
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The abstract specification first selects the next available input from the inputs
state function (if one is available and the log is not yet full, line 2 and 3). Then the
inputs state function is updated accordingly (line 4), and the received Document
is cut off (rest(...)). After checking the input message, a case distinction over
the type of the message is performed, and the matching ASM Macro for that
protocol step is executed (just as in the implementation).

Now we have to define the concrete specification layer for the refinement. The
purse ASM rule is now substituted with a Java implementation. Since no other
agent protocol definitions are modified, and since those other definitions still use
the Documents to communicate, we keep the inputs state function on the concrete
level. We introduce data transformation functions from and to the Java world
before and after our protocol step. This will be done by Macros TOSTORE and
FROMSTORE. TOSTORE takes an input document from inputs and transforms
it into the Java world, FROMSTORE does the inverse. For this, we have to take
a look at how the state of Java programs is modeled in KIV [32] [33]. Since
KIV is a very elaborated system for the verification using Dynamic Logic and
algebraic specifications, we have a huge library of algebraically specified data
types. The state of Java programs is modeled explicitly using an algebraic data
type in KIV, too. This is the store data type. A store defines a mapping from
a tuple of a reference (a pointer to an object or array) and a field (a field of a
class or an array index) to a Java value. A Java value can be a primitive value
like an int or short, or a reference representing a pointer to another object.
This allows representation of arbitrary pointer structures. We write st[r.f] for
the access to field f of reference r in store st.

Now back to refinement, we store the states of the Java purses using another
state function cstore : agent → store. The functions seqNo, balance, ... of the ab-
stract level are not present on the refined level, since their values are contained
in the corresponding fields of the Purse inside the store. Formally, we have the
state functions:

inputs : agent → documentlist current input messages of each agent
cstore : agent → store current Java heaps
Java programs are now integrated into the logic by extending the Box and

Diamond operators of Dynamic Logic (shown here only for Diamond):
〈st ; α〉 φ states that Java program α terminates if executed in

the context of store st and afterwards formula φ holds
With those operators, KIV provides a sequent calculus for the complete se-

quential part of Java [10]. We do not perform any transformation on the Java
code we verify, the running original source code is verified. With those modified
DL operators, the concrete purse step is defined as:

1 JAVAPURSE(agent, ... ;inputs, cstore, ...)
2 TOSTORE( agent , input s ; c s t o r e ) ;
3 s t 0 := c s t o r e ( agent ) ;
4 choose s t with 〈 s t 0 ; Purse.instance.step();〉 ( s t 0 = st ) in
5 c s t o r e ( agent ) := s t ;
6 FROMSTORE( agent , s t ; outdoc ) ;
7 SEND( outdoc , . . . ; i nput s )
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The current Purse object is stored in a static field Purse.instance which is
set by the constructor as a Singleton. First the input from inputs(agent) is trans-
formed into cstore using TOSTORE (line 2), then step() is called (line 4) on a
Purse object in the context of the heap of that agent (which is st0 = cstore(agent),
line 3). As described later, step() then calls SimpleComm.receive() to get the in-
put and calls SimpleComm.send() to produce some output, which we transform
afterwards from the store into variable outdoc using FROMSTORE (line 6). Fi-
nally, the SEND macro is used (as on the abstract level) to update the inputs
function for the receiver of the document (line 7).

The next step is to define, how concrete Java states and abstract ASM states
relate to each other. This is done in the simulation relation R. It defines that the
Java state is the same as the corresponding abstract state. For example, for the
exception log in the JavaCard program, this means that the array of exception
log entries exLog from index 0 to index exLogCounter is (transformed to the ab-
stract world) equal to the abstract exLog state function. For Document classes,
a generic transformation function java2doc : reference ×store → Document is
defined for this purpose. It takes a store and a reference pointing to some
Document Java object and constructs the corresponding abstract Document. Us-
ing a simple recursion, this is lifted to lists of references java2doc : referencelist
×store → Documentlist. Additionally, we use a function getarray : reference×
startindex× length× store → referencelist to extract the references contained in
an array in the store. Using such functions, the property for the exception log
is:
exLogCorrect(cstore, exLog) ↔ (∀ agent. is purse(agent) →

java2doc(getarray(cstore(agent)[Purse.instance.exLog], 0,
cstore(agent)[Purse.instance.exLogCounter], cstore(agent)),

cstore(agent)) = exLog(agent))
Similar definitions are needed for all the different state functions. Besides such

value definitions, a lot of invariants, both for the concrete and the abstract level
are needed: a good example for the abstract level is the property that the exLog is
always shorter or equally long as the MAXLENGTH. Additionally, all exception
log entries have the correct format of PayDetails. Another example is that all
purses always share the same secret key, and that the attacker never knows it.

On the concrete level, one needs the property that the exLogCounter is always
smaller than the exLog.length. Here again all exception log entries have to be
well-formed. This is a lot harder to formulate than on the abstract level since
we are now talking about pointer structures. For example, one has to deal with
properties like sharing among the pointers or cyclic structures. Those structures
must be ruled out.

The whole invariant for the concrete level is way too long to be presented
here. It can be viewed on the web [19]. It consists of 87 properties, all of them
again divided into lots of different formulas. For example, the pure value map-
ping between abstract and concrete world requires 8 properties, the invariant
on the abstract level 21 and the invariant on the Java level requires 58 different
properties.
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Using such a simulation relation now directly translates the security properties
of the abstract world to the implementation. It follows directly from refinement
theory that for the concrete balances and for the concrete exception log entries the
sameproperties holdas on theabstract level.This is because the simulation relation
simply states that their values are equal (modulo transformation from Java pointer
structures to abstract data types). Thereby, all security properties (which are all
invariants on the state) of the abstract world hold for the implementation as well.

5 Proof Strategy and Experiences

The proof strategy for the case study is symbolic execution of the Java program,
extended by the use of lemmata for every method that is called on the way. The
main proof obligation for correct refinement of the Purse step is (abbreviating
the abstract state to astate and the concrete state to cstate): In every abstract
state astate, in which the simulation relation R holds with some concrete state
cstate, we have to show that if we do a step of the concrete JAVAPURSE , then
a step of abstract PURSE exists, after which the simulation relation holds again
with the new abstract and concrete states. In Dynamic Logic, this is:

R(astate, cstate)
→ 〈|JAVAPURSE(cstate)|〉 〈PURSE(astate)〉 R(astate, cstate)

We now can use symbolic execution for JAVAPURSE, leading to a formula that
contains a sequence of TOSTORE, Purse.step and FROMSTORE. Using further
symbolic execution on the step method at some point will lead to the switch
case distinction of the implementation deciding which protocol method to call.
Each protocol step is now treated by formulating a lemma, which discards the
Java method call for the protocol functionality and the corresponding abstract
specification ASM rule. Those lemmata have to state that the Java method,
when given the same input, behaves the same as the corresponding abstract
ASM macro. E.g. for STARTFROM we have schematically:

R(astate, cstate)
∧ ...// some more preconditions about structure of inputs and state
∧ st = cstore(agent) ∧ java2doc(in, st) = indoc
→ 〈st/Document out = Purse.instance.startfrom(in); 〉

〈STARTFROM#(agent, indoc; outdoc, astate)〉
(java2doc(out, st) = outdoc ∧ R(astate, setStore(agent, cstate, st))

where setStore(agent, cstate, st) updates cstate by setting the new Java store st
for the given agent.

Using such lemmata the method calls in the Java program are discarded one
after another together with the corresponding abstract specification. Finally the
simulation relation holds on the resulting states. The same strategy is then applied
to prove those lemmata themselves, meaning that for STARTFROM more lemmata
about checkName or setPaydetails are formulated and proven the same way un-
til we reach methods not containing other method calls. This is quite similar to the
approach used in Design by Contract [23], but making it more specific by linking
Java methods to abstract ASM program definitions as shown above.
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The verification described was done using the KIV system for the protocol
steps STARTFROM and ACK. Although these are only 2 of 6 different protocol
steps, the verification nevertheless covered almost 85% of the total lines of code
of the Purse class. This is because the other protocol steps are nearly symmetric
to those two (STARTTO is nearly the same as STARTFROM, REQ and VAL are
equal to ACK). So, we can state that the verification done gives a representative
insight on the case study. One of the hardest parts was getting the invariant right.
This is not really a matter of difficulty, more a matter of complexity, because
the state of the Java program and of the abstract specification is not trivial.
The most important part of the proofs was the formulation of suitable lemmata,
which can divide the complexity of the overall case study into smaller parts.
Especially sometimes a method called early in the program ensured properties
needed late in the program, but this was not predictable in the first iteration
of the proofs. All together, the Java KIV project for Mondex, consisting of the
abstract specification, its invariants, the concrete specification and finally the re-
finement proof, took around 4200 lines of specification and 600 lines of Java code
for Purse, around 1800 in total. Over 1700 theorems where formulated, which
took 85000 proof steps (with an automation degree of around 70%). This is not
counting any libraries, like the transformation functions for abstract Documents
to Java and vice versa and basic libraries for Prosecco, refinement theory or
simple data types. Nevertheless, the Mondex case study heavily accounted to
the growth of those libraries too. The time needed for verifying the case study
is hard to measure, but it certainly was more than half a year of verification for
one person. Most of the pure verification work was done in a master’s thesis.

6 Related Work

A lot of work has already been done for Mondex on more abstract specification
levels as mentioned in the introduction. Since all of them are not focusing on source
code verification we omit a detailed explanation of those approaches in this paper.

The most important work that is closely related to what we are presenting in
this paper is the verification by Tonin and Schmitt presented in [31] and in more
detail in a technical report [36]. They also claim to verify an implementation of
the Mondex case study for smart cards in JavaCard. Furthermore, they state to
have verified the security properties of the original Mondex case study on the
code level. Their approach uses JML[7] annotations for every method and class
and generates proof obligations from those annotations to be discarded using the
KeY Verification System [3]. There is no abstract specification and no refinement
theory. However, their implementation does not really implement the case study
in the sense that one could use the code on a real smart card and it would be
secure. That is because they do not use cryptography in their implementation
and therefore have very strong assumptions about the environment the cards are
used in. Without using cryptography, a malicious attacker can easily generate a
faked smart card and use it for payment, thereby generating money. They also
assume that a terminal exists which generates all the messages for the protocol
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instead of generating the messages by the cards themselves. But the latter, com-
bined with the need for cryptography in a real implementation, is postulated
in the original case study. The corresponding original technical monograph [34]
clearly states on p. 1 that “All security measures have to be implemented on the
card” and “Once released into the field, each purse is on its own: it has to en-
sure the security of all its transactions without recourse to a central controller.”.
In the work of Schmitt and Tonin, every card only answers “OK” or “Error”
to every input. Such a smart card can easily be faked. Also their formalization
of the security properties of Mondex does not capture the original work in all
their aspects. The property “All value accounted” (which states that no money
is really lost but correctly logged in the exception logs on the cards) is formu-
lated without using the exception logs in the formalization. They argue that this
is because JML lacks the abilily to formulate causality between different opera-
tions, and argue that their formalization still captures the essence of the security
property. But actually, their implementation contains a bug in the handling of
the exception logs. All previous exception log entries are changed by side effect
when adding a new exception log entry because there is a problem with pointer
sharing. So the security property “All value accounted”, which states that the
exception logs really captures exactly the lost money due to failed transactions
cannot hold in their implementation. They did not find that bug, because their
proof obligations do not state anything about the contents of the log entries.
Summarizing, in our opinion their work can be viewed as an additional speci-
fication of the Mondex case study using the Java programming language as a
kind of specification language, rather than an actual implementation of it, which
is usable and secure in the real world. Our aim in this work, however, was to
achieve the latter.

7 Conclusion

We presented a verification of the Mondex case study starting at abstract spec-
ifications and ending at the proof of correctness and security of an implementa-
tion in Java. The result is based on several techniques ranging from refinement
theories, implementation techniques, encoding and decoding of messages in the
implementation, modelling and specification of security protocols on an abstract
level. It is, to our best knowledge, the largest and most comprehensive approach
to the Mondex case study. We succeded showing that current elaborated verifi-
cation tools like KIV can cope with the challenge of verifying such applications.
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Abstract. The construction of formal models of real-time distributed
systems is a considerable practical challenge. We propose and illustrate a
pragmatic incremental approach in which detail is progressively added to
abstract system-level specifications of functional and timing properties
via intermediate models that express system architecture, concurrency
and timing behaviour. The approach is illustrated by developing a new
formal model of the cardiac pacemaker system proposed as a “grand
challenge” problem in 2007. The models are expressed using the Vienna
Development Method (VDM) and are validated primarily by scenario-
based tests, including the analysis of timed traces. We argue that the
insight gained using this staged modelling approach will be valuable in
the subsequent development of implementations, and in detecting poten-
tial bottlenecks within suggested implementation architectures.

1 Introduction

Formal models have a valuable role to play in validating requirements and designs
for real-time distributed systems in early development stages. Rapid feedback
from the analysis of such models has the potential to reduce the risk of expensive
re-working as a consequence of the late-stage detection of defects. However, mod-
els that incorporate the description of functionality alongside timing behaviour
and distribution across shared computing resources are themselves potentially
complex. Moving too rapidly to such a complex model can increase modelling
and design costs in the long run. In order to gain full value from formal mod-
elling and analysis, a systematic approach to constructing and validating models
is required.

Our current work is focussed on the development and industrial application
of formal modelling techniques that satisfy the requirements discussed above.
We have developed and applied technology based on the Vienna Development
Method (VDM) [1,2,3] and its tool support (VDMTools [4]). Recent work has
developed modelling abstractions and test-based analysis tools that support the
object-oriented description of distributed real-time systems [5,6]. Our experience
applying formal modelling techniques in a variety of industry sectors suggests
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that an approach to modelling such distributed real-time systems should permit
the staged and controlled construction of a formal model, with opportunities for
validation at each stage. We have proposed such a staged approach as part of
the methodological guidelines accompanying the VDMTools [7].

This paper reports a study in which we have assessed the feasibility of ap-
plying an incremental approach to model construction by developing a model
for an artificial cardiac pacemaker [8]. The pacemaker specification is that it
includes system-level requirements affecting hardware as well as software. We
demonstrate how such cross-disciplinary requirements can be introduced grad-
ually into a model in a phased fashion, along with validation of functional and
timing requirements.

The Pacemaker specification has been offered by the Software Quality Re-
search Laboratory at McMaster University as a pilot problem in the Grand
Challenge in Verified Software [9] and this paper is believed to represent the
first attempt at its treatment. However, the present study does not aim to pro-
vide comprehensive coverage of the Pacemaker challenge. The intention is to use
the problem to pilot the incremental method in an industrially relevant context,
using the available tools, as a precursor to tackling more substantial challenges,
including the full Pacemaker and other real-time systems.

We introduce the Pacemaker system in Section 2. Section 3 briefly introduces
the VDM technology used, our phased approach to model construction and the
tool support. The progressive development of the Pacemaker model is described,
illustrated by extracts from the series of VDM models developed (Section 4).
The test-based approach to validation is discussed in Section 5, including how
timing conditions can be checked using this technology. Finally Sections 6 and 7
discuss related work and draw conclusions from the study.

2 The Pacemaker System and Environment

Fig. 1. The natural pacemaker

In this study, the pacemaker is treated as an
embedded system operating in an environ-
ment containing the heart. We first review
the elements of the environment that inter-
act with the pacemaker (Section 2.1) and then
consider the elements of the pacemaker sys-
tem itself (Section 2.2).

2.1 Environment: The Heart

The human heart serves as a pump for the cir-
culatory system. It is a muscular shell around
four chambers (called atria and ventricles)
which contract and relax periodically under the control of natural electrical
stimuli. A natural pacemaker orchestrates the functioning of the pump, dis-
charging electrical pulses at specific points (see Fig. 1). In normal functioning, a
discharge made at the sinus node subsequently reaches the atrioventricular (AV)
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node which amplifies it, stimulating the ventricles. If the natural pacemaker is
malfunctioning, a physical condition termed Bradycardia may arise in which the
heart rate falls below the level expected for the patient. To normalise the heart
rate, an artificial pacemaker may be implanted to aid or replace the natural
pacemaker. Physicians measure the heart’s performance using, among other pa-
rameters, the bpm (beats per minute) rate of the heart. We use the term pulse
and pulses per minute in reference to pacemaker activity, whereas beat and beats
per minute refer to heart activity.

2.2 System: Artificial Pacemaker

An artificial pacemaker (referred to subsequently as a pacemaker [10]) is a system
composed of:

Leads: One or more wires, normally two, that both sense and discharge electric
pulses.

Device: The implanted batteries and controller.
Device Controller-Monitor (DCM): An external unit that interacts with

the device using a wireless connection (not modelled in this paper.)
Accelerometer: A unit inside the device measuring body motion in order to

allow modulated pacing.

A typical configuration consists of one lead attached to the right atrium and
another to the right ventricle. The pacemaker has several operating modes that
address different malfunctions of the natural pacemaker. The specification doc-
ument [8] identifies 18 operating modes controlling 26 variables and each of the
variables can be configured within a value range. Most of the variables are time-
related parameters, defining such properties as the interval between a pace in the
atrium and the ventricle or the number of pulses per minute the device should
deliver to a given chamber.

The operating modes of the device are classified using a code consisting of
three or four characters. For the examples in this paper, the code elements are:
chamber(s) paced (“O” for none, “A” for atrium, “V” for ventricle, “D” for both),
chamber(s) sensed (same codes), response to sensing (“O” for none in this paper)
and a final optional “R” to indicate the presence of rate modulation in response
to the physical activity of the patient as measured by the accelerometer. “X” is
a wildcard used to denote any letter (i.e. “O”, “A”, “V” or “D”). Thus “DOO”
is an operating mode in which both chambers are paced but no chambers are
sensed, and “XXXR” denotes all modes with rate modulation.

3 VDM Modelling Technology for Distributed Real-Time
Systems

In our modelling work, we have used VDM [1]. Three dialects of the VDM mod-
elling language are in use, each supporting different forms of system specification.
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VDM-SL [2] provides facilities for the functional specification of sequential sys-
tems with basic support for modular structuring. VDM++ [3] extends VDM-SL
with features for object-oriented modelling and concurrency. VICE (VDM++ In
Constrained Environments) further extends VDM++ with features for describ-
ing real-time computations [11] and distributed systems [5]. Each dialect has
formally defined syntax, static and dynamic semantics which extend those of the
ISO Standard VDM-SL language [12]. For a detailed introduction to VDM++,
the reader is referred to the texts and the VDM Portal [13]. In the remainder of
this section, we focus on the features of VDM++ and VICE that have a major
role in the modelling of distributed real-time systems.

3.1 Basic VDM Notations

A model in VDM-SL, is composed of type definitions built from simple abstract
types such as bool or nat, and type constructors such as sequences and records.
Types may be restricted by predicate invariants. Persistent state variables may
be defined. Operations that may modify the state can be defined implicitly, using
pre- and postcondition expressions, or explicitly, using imperative statements.
Functions are similar to operations except they may not refer to state variables,
and are side-effect free.

An object-oriented model in VDM++ is composed of class specifications
which may use single or multiple inheritance. The internals of each class def-
inition are similar to those of a regular VDM-SL model. each object’s persistent
state consists of typed instance variables. Operations in VDM++ are re-entrant
and their invocation is defined with synchronous (rendezvous) semantics. Oper-
ation execution may be constrained by specifying a permission predicate [14], a
Boolean expression over history counters that acts as a guard for the operation,
for example to express mutual exclusion. History counters are maintained per ob-
ject to count the number of requests (#req), activations (#act) and completions
(#fin) per operation.

VDM++ classes may be active or passive. Active classes represent entities
that have their own thread of control; passive classes are always manipulated
from the thread of control of another active class. A thread is a sequence of
statements that is executed to completion, at which point the thread dies. The
thread is created whenever the object is created but the thread needs to be
started explicitly using a start operator. For reactive systems it is possible to
specify threads that do not terminate.

Extensions to VDM++ (VICE) support the description and analysis of real-
time embedded and distributed systems [5,15]. These include primitives for mod-
elling deployment to a distributed hardware architecture and support for asyn-
chronous communication. Two predefined classes, BUS and CPU, are available
to the specifier to construct the distributed architecture in the model. User-
defined classes can be instantiated and deployed on specific CPU s. The com-
munication topology between the computation resources in the model can be
described using the BUS class.

The semantics of VDM++ is extended with a notion of time such that any
thread that is running on a computation resource or any message that is in transit
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on a communication resource can cause time to elapse. Models that contain only
one computation resource are compatible to models in plain VDM++.

Operations may be specified as asynchronous in VICE, allowing the caller to
resume its own thread of control after the call is initiated. A new thread is cre-
ated, scheduled and started to execute the body of the asynchronous operation.
Statements (duration and cycles) may be used in operation bodies to specify
time delays that are, respectively independent of or dependent upon processor
capacity. The time delay incurred by the message transfer over the BUS can be
made dependent on the size of the message being transferred.

3.2 An Incremental Approach to Model Construction

Faced with the challenge of developing VDM++ models of distributed real-time
systems, we have proposed a staged approach [7] which reflects the capabilities
of each of the VDM modelling languages.

The analysis of informally expressed requirements leads to a first abstract
model giving system-level specification of behaviour. The basic VDM-SL lan-
guage is well suited to this level of description. Based on the abstract model, we
introduce a static architecture, creating a sequential (i.e. non-concurrent) model
with structure expressed using the features of VDM++. This model would then
be extended to become a concurrent VDM++ design model. The concurrent
design model itself is then extended with real-time information using the VICE
extensions, and additionally distribution over processors can be described also
using the VICE extensions. At this stage it may prove necessary to revisit the
concurrent design model, since design decisions made at that stage may prove
to be infeasible when real-time information is added to the model (for instance,
the model may not be able to meet its deadlines).

The ability to validate the intermediate models developed in this process
makes it possible to identify requirements and design defects at an early stage.
The initial abstract model need not be directly executable, but subsequent mod-
els are likely to be so, making it possible to conduct extensive tests in order to
validate design decisions. The VDMTools are intended to provide extensive sup-
port for scenario-based testing as a form of validation.

We do not claim that the models introduced at each stage in our approach are
formal refinements of their predecessors, although this may sometimes be the case.
Our intended output is a comprehensive model of the target system that can serve
as a basis for subsequent development, possibly using refinement. We are therefore
introducing detail in a staged manner, where the executions at each level might,
informally, be seen as providing a finer level of granularity than its predecessor.

3.3 VDM Tool Support

VDM is supported by an industry-strength tool set, VDMTools, owned and de-
veloped by CSK Systems [16]. VDM and VDMTools have been used successfully
in several large-scale industrial projects, e.g. [17,4]. The tools offer syntax, type
and integrity checking capabilities, code generators, a pretty printer and an ap-
plication programmer interface. The main support for model validation is by
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Fig. 2. Showtrace tool demonstrating validation conjecture violation

means of an interpreter allowing the execution of models written in the large
executable subset of the language.

Scenarios defined by the user are essentially test cases consisting of scripts
invoking the model’s functionality. The interpreter executes the script over the
model and returns observable results as well as an execution trace containing,
for each event, a time stamp and an indication of the part of the model in
which it appeared. A separate tool (an Eclipse plug-in) called showtrace has been
developed for reading execution traces, displaying them graphically so that the
user can readily inspect behaviour after the execution of a scenario, and thereby
gain insight into the ordering and timing of exchange of messages, activation of
threads and invocation of operations.

The existing tools have been further extended to allow explicit logical state-
ments of expected system-level timing properties (termed timing conjectures)
which can be checked against execution traces [6]. Fig. 2 shows the showtrace
output resulting from the analysis of three validation conjectures (C1-C3) from
the pacemaker study (see Section 5). The main window shows a fragment of
the execution trace, with time on the horizontal axis. Processing on each ar-
chitectural unit is shown by horizontal lines (colours are used to denote thread
start-up, kill and scheduling). Thin arrows indicate message passing and fat
arrows indicate thread swapping. The conjectures are shown at the bottom of
the window. Circular marks on the traces show conjecture violations, e.g. the
circle showing a counterexample to the timing conjecture C3, where an event
occurrence breaches an expected temporal separation.
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4 The Pacemaker Models

We describe the incremental development of a model of the Pacemaker challenge
problem conducted in order to evaluate the incremental development approach
outlined above using an industrially relevant application. At this stage, we have
not attempted a comprehensive attack on the Pacemaker problem. In this con-
text, the overall purpose of the modelling work on the Pacemaker has been to clar-
ify and validate the system’s informally stated requirements as defined at [8], from
where additional tutorial material on cardiac timing cycles and pacing modes is
also available. A full-scale attempt on the pacemaker challenge would also rely
on extensive domain background from texts [10] and domain experts.

Following our staged approach, in order to manage the complexity of the
model itself, the construction was done in four steps, each involving the con-
struction of a new model at a lower level of abstraction from its predecessor.
We will term them Abstract, Sequential, Concurrent and Distributed Real-Time
(DR-T) respectively.

Of the 19 modes of the pacemaker, eight have been modelled so far, covering
18 of the 26 controlling variables. The initial Abstract model consists of several
modules totalling 652 lines of VDM-SL. The three subsequent object-oriented
models are larger but of almost equal size: the Sequential model is 872 lines
of VDM++ and the Concurrent model is 879 lines whereas the DR-T model
is 811 lines of VDM++. So the Abstract model is a bit smaller and simpler
than the Sequential model. Although the sizes of the sequential, concurrent and
DR-T models are similar, they get progressively more complex as they include
concurrency and the distribution.

Note that we do not claim that this is a formal refinement process. The initial
Abstract model is informally refined by a Sequential model by adding structuring
information. Neither of these models the concurrency of the environment and the
system; instead they simulate fixed time steps controlled from the environment.
In the Concurrent model both the environment and the relevant parts of the sys-
tem are organised with concurrent threads that are synchronized by permission
predicates. In each of these three models, time is present explicitly as an abstrac-
tion whereas in the final Distributed Real-Time model time is implicit, allowing
us to express more realistic timing behaviour while validating this model.

4.1 Abstract Model

The first model is expressed in VDM-SL, the simplest of the VDM modelling lan-
guages, lacking the object-orientation and concurrency features of VDM++. It is
organised in modules, each of which corresponds to an operating mode of the pace-
maker anddefines a single functionPacemakerM (whereM is themode), derived from
the requirements. The key type and function definitions have the following form:
SenseTimeline = set of (Sense * Time );
ReactionTimeline = set of ( Reaction * Time );
functions
PacemakerM (inp : SenseTimeline ) r : ReactionTimeline
post ...
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where Sense and Reaction are enumerated types representing the presence or
absence of a pulse. Each PacemakerM function is expressed in VDM-SL in an
implicit style by means of a postcondition characterising the events trace that
should result from correct functioning of the pacemaker over an input sense trace.
The implicit style is used because it is not intended that the function should be
directly executed; it serves primarily as a means of clarifying requirements.

The abstract models support the formalisation of our understanding of the
system requirements. For example, during construction of the abstract models it
became apparent that the requirements in [8] for some modes place constraints
on ventricular pace events even when the ventricle is not being paced. Domain
experts later reported this is an error in the natural language specification. We
also identified areas of incompleteness, for example the requirements as modelled
in PacemakerDOO [18] do not take account of certain unstated requirements on
intervals between atrium pulses.

The post-conditions of the PacemakerM functions have the potential to serve
as test oracles on the models developed in subsequent phases, provided suit-
able abstraction functions are implemented. The post-condition formulations
were also valuable and we were also able to use them to help design the val-
idation conjectures that were applied to the analysis of the final (distributed
real-time) model. For example, the following post-condition from PacemakerDOO
gives rise to the validation conjecture C2 used on test traces and shown in
Section 5.2:
forall mk_(<ATRIA >,ta) in set r &

(exists mk_(<VENTRICLE >,tv) in set r & tv = ta + FixedAV);

4.2 Sequential and Concurrent Models

The sequential design model describes both the data that is to be computed,
and how it is to be structured into static classes, without commitment to a spe-
cific dynamic architecture. The Pacemaker model is structured around a class
Pacemaker coexisting with an Environment class in a given World. Figure 3
shows the classes that are common to all the VDM++ models and their asso-
ciations. The diagram is derived automatically from the VDM++ models using
the VDMTools link to IBM Rational Rose. In the generated class diagram, we
do not show associations arising from the use of public static methods. How-
ever, the public static instance variables in the Pacemaker class are shown as
directed associations (labelled ‘+$’) sign from Pacemaker to the relevant target
class.

The main feature of the static architecture is its division into the environment
and the pacemaker system. The Environment class controls the production of
stimuli delivered via Leads. The Pacemaker class represents the technical system.
The HeartController class monitors incoming stimuli and generates pulses. The
RateController class is used for rate adaptation control in “XXXR” operating
modes, and will not be further discussed in this paper (for full details see [18,19])
and the Accelerometer class is coping with the motion data.
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Fig. 3. A UML class diagram describing the common static structure

The initial sequential model is then used to analyse the system behaviour
without taking concurrency issues into account. In the sequential step, the envi-
ronment affects the flow-of-control by passing signals to the pacemaker system.
The environment also provides the simulated time increments using an addi-
tional Timer class (not shown in Figure 3). This model is executable and so may
be validated with respect to informal requirements by running tests through the
VDM++ interpreter.

In the sequential model the environment class contains an explicit Run op-
eration which operates a form of command loop, stepping through the input
timeline of sensed events, delivering signals to the system (through the oper-
ation createSignal). Having created the signals, it calls a Step operation in
rateController and later in heartController, the two parts of the system
model that will become concurrent in subsequent models. In addition the global
time variable is stepped forward.

In the third phase of model development concurrency is introduced. The static
structure is maintained with the exception of a more elaborate modelling of time
enabling synchronisation of time in concurrent threads [18]. The environment
model is freed of the responsibility to control the system model but still con-
trols the time. The concurrent model has the same structure as the sequential
one, but the lock-step stepping mechanism is substituted by threading and syn-
chronisation. With the introduction of concurrency the need for synchronisation
arises and this is achieved through the use of VDM++ permission predicates. We
claim that the main benefit of this model is to study and find possible concur-
rency issues, for instance, we have found some race conditions caused by errors
introduced in our specification that were corrected at this level.
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4.3 Distributed Real-Time Model

The final step in model construction is the introduction of distribution over CPUs
in a topology determined by the configuration of a bus. Time “annotations”
allow time to be built in and managed by the VDM++ interpreter so again
the static structure is preserved except that the explicit modelling of time now
disappears.

The deadlines and periods in the requirements [8] are stated in milliseconds
and in certain cases in fractions of milliseconds. We therefore use 0.1 ms as the
unit of time below.

The Environment class now only delivers signals to the system as a periodic
thread:
thread periodic (1000 ,10 ,900 ,0) ( createSignal );

The operation createSignal will be invoked approximately every 1000 time
units and a jitter of up to 10 time units can be allowed for the periodic invocation
of this thread. The third parameter indicates that there is going to be at least
900 time units between two wake-ups of this periodic thread. Finally, the last
parameter indicates that no offset is required for the invocation of it. This is
a feature that is most valuable if a number of threads are started at the same
time, and there is a desire to carry them out in a special order.

The createSignal operation looks at the remaining input events in the input
lines (inplines) which each have a time associated with them. If this time has
been reached for one or more of the events the relevant leads and accelerometer
must be notified. It is defined as:

createSignal : () == > ()
createSignal () ==

(if len inplines > 0
then (dcl curtime : Time := time ,

done : bool := false;
while not done do

let mk_(sensed ,chamber ,accinfo ,stime)= hd inplines
in if stime <= curtime

then
(leads(chamber ). stimulate (sensed);
accelerometer .stimulate (accinfo );
inplines := inplines (2,..., len(inplines ));
done := len inplines = 0

)
else done := true

);
if len inplines = 0 then busy := false;

);

Expressing Time Requirements. Time “annotations” are used to record the du-
rations allocated to particular actions. For example, consider the requirement that
“The Atrial pulse width must be 0.4 milliseconds.” [8], appendix. This is
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a requirement on the operation that describes the discharge of a pulse.
The duration statement of VDM++ is used to specify the width (40 in the 0.1
ms units).
private async
dischargePulse : Pulse * Chamber ==> ()
dischargePulse (p,c) ==

if(c = <ATRIUM >)
duration (40) World ‘env.handleEvent (p,c,time );

Notice also the use of async so that the caller of this operation will not block
waiting for it to terminate.

Modelling the System Distribution. The system class defines the distribution
architecture. Instance variables are defined as follows (all declared public static)
to define the physical objects present in the system architecture:

atriumLead : Lead := new Lead(<ATRIUM >);
ventricleLead : Lead := new Lead(<VENTRICLE >);
accelerometer : Accelerometer := new Accelerometer ();
rateController : RateController := new RateController ();
heartController : HeartController := new HeartController ();

The architectural components in the model are, for the purposes of illustra-
tion, four CPUs. Each CPU definition in the model indicates the scheduling
policies (Fixed Priority (FP) and First-Come-First-Served (FCFS) respectively)
and processor capacity (number of cycles per unit time). For the CPUs that
will just run a single thread we used a FCFS scheduling algorithm. For the
case of CPU4 that contains both the rateController and heartController
threads we opted for a fixed priority policy, assuming that the stimulation
of the patient heart is more important than adjusting the rate of the
stimulation.

cpu1 : CPU := new CPU(<FCFS >,3E2);
cpu2 : CPU := new CPU(<FCFS >,3E2);
cpu3 : CPU := new CPU(<FCFS >,3E2);
cpu4 : CPU := new CPU(<FP > ,3E2);

In order to define the communication topology, we create three bus objects link-
ing the specified CPUs with a certain bandwidth (1E6) and the chosen network
control protocol, in this case FCFS.

bus1 : BUS := new BUS(<FCFS >,1E6 ,{cpu1 ,cpu4 });
bus2 : BUS := new BUS(<FCFS >,1E6 ,{cpu2 ,cpu4 });
bus3 : BUS := new BUS(<FCFS >,1E6 ,{cpu3 ,cpu4 });

The final element in this system class is the constructor operation that deploys
the functionality across the resources. Here the leads are deployed on two proces-
sors (representing the physical wires and lead controllers) and the accelerometer
is deployed using the same approach. The remaining devices are deployed on
cpu4:
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public Pacemaker : () == > Pacemaker
Pacemaker () ==

(cpu1.deploy(atriumLead );
cpu2.deploy(ventricleLead );
cpu3.deploy(accelerometer );
cpu4.deploy(rateController );
cpu4.deploy(heartController );
cpu4.setPriority (HeartController ‘pace ,3);
cpu4.setPriority (RateController ‘adjustRate ,1);

);

Implicitly there is always a virtual CPU and BUS where elements run that are
not explicitly deployed to a CPU. Also the communication between objects in
different CPUs with no explicit bus connecting them will occur using the virtual
bus.

Whenever a Lead is stimulated it simply delegates this stimulus on to the
statically declared heartController as a notification:
public
stimulate : Sense ==> ()
stimulate (s) ==

Pacemaker ‘heartController .sensorNotify (s,chamber );

When the heartController is notified it adds the new signal that has been
sensed to a mapping of sensed entries and that is then taken into account subse-
quently by a periodic thread determining whether a pace is necessary depending
upon the mode of operation of the pacemaker.
public
sensorNotify : Sense * Chamber ==> ()
sensorNotify (s,c) ==

sensed := sensed ++ {c |-> s};

5 Validation

5.1 Validation of Abstract, Sequential, Concurrent and DR-T
Models

A systematic testing approach [3] was used to validate the models derived during
the staged development process. “Validation” in this context refers to the activ-
ity of gaining confidence that the formal models developed are consistent with
the requirements expressed in the requirements document [8]. A comprehensive
model of the full Pacemaker specification would additionally entail domain ex-
perts in both the setting of validation conjectures and the detailed review of the
model; for the initial study reported here, we had only limited access to domain
expertise.

Test scenarios were defined to model interesting situations such as the absence
of input pulses. These were run over the several models while collecting the test
coverage data for each model. Tests developed for the abstract model can be
used, adapted, as regression tests in the later model development phases.
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To validate the sequential model we used the re-shaped scenarios, augmenting
them with new tests derived from the process of constructing and debugging of
the model and its algorithmic subtleties. The validation process involves loading
the chamber senses into the Environment which will deliver them at the correct
time to the respective lead. During the simulation reactions (pulses delivered by
the leads) were collected by the environment and then displayed. All of the test
scenarios were reused in the validation of the Concurrent model and the DR-T
model using the same paradigm.

5.2 Timing Conjectures and Their Validation

The capabilities of VDMTools have been extended to support automated check-
ing of timing-related conjectures on traces derived from runs of test scenarios
over VDM++ models [6]. A simple language of standard conjecture forms has
been defined and the semantics have been embedded directly into the tool set.
The result of checking conjectures on a trace is displayed using the trace display
format, with conjecture violation points identified as shown in Figure 2. These
timing conjectures are not part of the requirements; they are assertions that the
developers expect to hold over the traces derived from scenario executions. The
timing conjectures analysed so far in this pilot study are naive; a fuller set would
be derived from interactions with domain experts in a full-scale modelling and
verification study.

The forms of timing conjecture used in the pacemaker study are: separa-
tions, required separations and deadlines [6]. Separation conjectures describe a
minimum separation between occurrences of specified events, should the events
occur. A Separation conjecture is a 5-tuple separate(e1, c, e2, d, m) where e1 and
e2 are the names of events, c is a state predicate, d is the minimum accept-
able delay between an occurrence of e1 and the next following occurrence of
e2 provided that c evaluates to true at the occurrence time of e1. If c evalu-
ates to false when e1 occurs, the validation conjecture holds independently of
the occurrence time of e2. The Boolean flag m, when set to true, indicates a
requirement that the occurrence numbers of e1 and e2 should be equal. This
allows the designer to record conjectures that describe some coordination be-
tween events. The Required separation conjecture is similar to the separation
conjecture but additionally requires that e2 does indeed occur. The Deadline
conjecture places a maximum delay on the occurrence of e2. Again, the m op-
tion may be used to link the occurrence numbers of the events. A validation
conjecture deadline(e1, c, e2, d, m); if c holds, d is the maximum tolerable delay
between e2 and e2.

Validation conjectures can be proposed for the test scenarios on the Dis-
tributed Real-Time model. For example, a conjecture might be stated that the
minimum delay between a ventricular pace event and the next ventricular pace
shall be 500 ms. After converting it to the modelled time unit i.e. 0.1 ms, this is
expressed as the following conjecture C1:

separate (#fin(Lead ‘dischargePulse (-,<VENTRICLE >), true ,
#fin(Lead ‘dischargePulse (-,<VENTRICLE >), 5000, false)
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A requirement that, after an atrial event there must be a ventricular pace after
150 ms (± 4 ms), leads to the following conjecture which includes a requirement
that the second event occurs, C2:
separatereq (#fin(Lead ‘dischargePulse (-,<ATRIUM >), true ,

#fin(Lead ‘dischargePulse (-,<VENTRICLE >), 1460, true)

A requirement on the maximum delay between pulses being, say, 100 ±8 ms
would be expressed as a deadline conjecture as follows, C3:
deadline (#fin(Lead ‘dischargePulse (-,<ATRIUM >), true ,

#fin(Lead ‘dischargePulse (-,<ATRIUM >), 1080, false)

The three validation conjectures above have been applied to test runs of the
validation scenarios. In several cases this identified violations in the model and in
this way the model could be improved as such bottlenecks were discovered [20,21].

6 Related Work

Efforts are being made to support the incremental development of formal mod-
els, but has not so far been extended to model-oriented specifications of real-
time systems with explicit deployment. Work in SCTL/MUST [22] addresses
the iterative production of early-stage models of real-time systems. As in our
approach, validation by testing is supported and the model production process
feeds back into requirements scenarios. The Credo project [23] focuses on mod-
elling and analysis of evolutionary structures for distributed services and also
includes formal models similar to those described here but without so far con-
sidering deployment issues. Our incremental approach also has similarities with
refinement-oriented approaches, such as those in event-based B work [24] but
here the focus is more on the formal aspects of the refinement, not explicitly
addressing time or deployment.

Related work by Suhaib et al. [25] proposes a methodology derived from that
of eXtreme Programming, in which “user stories” are expressed as LTL formulae
representing properties which are model-checked. On each iteration, new user
stories are addressed. The ordering of properties is significant for the practical
tractability of the analysis on each iteration. In the context of research on real-
time UML [26], a combination of UML and SDL [27] with a rigorous semantic
foundation. However, in this work the ability to carry out the validation is more
limited when deployment is considered. Burmester et al. [28] describe support
for an iterative development process for real-time system models in extended
UML by means of compositional model checking, and Uchitel et al. [29] address
the incremental development of message sequence charts, again model-checking
the models developed in each iteration.

Regarding our particular pacemaker example, we believe that the McMaster
pilot problem example has not previously been attacked. It is always a challenge
to be first with a new case study and the work presented here should only be seen
as the first step in attacking the pacemaker challenge. From the cardiac pacing
domain, the work that comes closest to ours is that of Liu and others addressing
safety analysis of a pacemaker product line using state-based modelling [30]. They
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have a very similar split between the environment and system; the main difference
is that they use Rhapsody’s executable state models for simulations in contrast
to our model-oriented specification supporting deployment. The focus there is on
safety analysis while ours is on the incremental development of models.

7 Concluding Remarks and Further Work

Our objective in the work reported here was to assess the feasibility of using an
incremental approach in the production of a useful model of an industrially rele-
vant real-time distributed system. The pacemaker case study suggests that such
an approach can yield a viable model that can be subjected to validation against
system-level properties at an early stage in the development process. The study
encourages us to apply the approach to a wider range of examples. The study re-
vealed that the regression test suite built from the validation activities on the in-
termediate models was valuable in validating the later, more complex models.

It is important to stress that we have not attempted a comprehensive attack
on the full Pacemaker specification [8]. Our validation activity in particular,
has been preliminary. We would like as a next stage to seek domain expert
involvement in the definition of validation conjectures.

The scheduling models in the current VICE formalism limit the range of
exploration supported. An important future task is extending this range and
increasing the configurability of the model set. In the pacemaker example, we
would like to explore a wider range of scheduling assumptions.

Our approach has been pragmatic, driven by the aim of providing a fully formal
modelling approach with a low barrier to industrial adoption. As a consequence
we have emphasised validation by animation rather than verification by proof.
The state of the art in VDM tool support reflects this. Facilities such as the appli-
cation programmer interfaces and dynamic link libraries in VDMTools allow for
co-simulation [31,32] in which models of the environment (e.g. a Matlab model of
electrical activity in the heart) can be linked to VDM++ models of discrete event
controllers. We plan to do this for the Pacemaker application in order to explore
the fault tolerance characteristics of alternative candidate architectures.

Looking forward to proof-based verification, modern implementations of proof
support for VDM [33] currently handle a subset of the modelling language but
require further work to adapt them to the needs of distributed real-time mod-
els in VDM++. Once the tool support is enhanced, enabling analysis of proof
obligations for the Pacemaker model, this will be carried out.

We have not yet dealt with the relationship between the incremental addition
of detail and formal refinement. In particular, we would like to be able to drive
useful proof obligations out of the “refinement” steps. An examination of this issue
must address the treatment of atomicity in the abstract and sequential models (for
example in handling the maintenance of invariants). To encourage adoption, we
feel it is essential that we automate a larger part of the validation process.

Acknowledgments. We are grateful to Brian Larson of Boston Scientific and
to anonymous FM’08 referees for comments and suggestions on this paper. José
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Abstract. This paper presents an effective use of formal methods for the
development and for the security certification of smart card software. The
approach is based on the Common Criteria’s methodology that requires
the use of formal methods to prove that a product implements the claimed
security level. This work led to the world-first certification of a commer-
cial Java CardTM product involving all formal assurances needed to reach
the highest security level. For this certification, formal methods have been
used for the design and the implementation of the security functions of
the Java Card system embedded in the product. We describe the refine-
ment scheme used to meet the Common Criteria’s requirements on for-
mal models and proofs. In particular, we show how to build the proof that
the implementation ensures the security objectives claimed in the security
specification. We also provide some lessons learned from this important
application of formal methods to the smart cards industry.

1 Introduction

Common Criteria (ISO 15408) becomes nowadays a well-established standard to
evaluate the security of IT products. This standard, that defines seven levels of
security from EAL1 to EAL71, requires the use of formal methods for the high-
level evaluations (5 to 7). From a practical point of view, the main goal is to protect
the assets of the product against risks and threats. The assurance scale is used
to evaluate the effectiveness of the security mechanisms ensuring this protection.
The high levels of the Common Criteria (CC) allow the user to protect high value
assets against significant risks using security engineering techniques and a rigorous
development environment. Those security engineering techniques include formal
methods for the design and the development of the product.

Ina security-sensitive industryas smartcardsmanufacturing, the level ofCCcer-
tificate becomes an important differential factor: for the clients, a high-level Com-
mon Criteria certificate is a measurable assurance on the security of the product.

In the industry, the EAL4 level that is the common security level required for
smart cards, provides assurance that the claimed security functions are present
in the code. It is an indication of where the functions are located. But the correct-
ness of that code, w.r.t. the security policies, is simply checked by the evaluator.
1 EAL stands for Evaluation Assurance Level.

J. Cuellar and T. Maibaum (Eds.): FM 2008, LNCS 5014, pp. 198–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The code is only tested with the requirement that the test is structured. The
requirements of the EAL7 level give, not only the assurance that the security
functions are implemented, but also that these functions are correct w.r.t. the
security policies defined in the security target of the product.

In order to obtain a high-level certificate (EAL5-7), the CC requires to follow
the software engineering waterfall model and to use formal methods to build
the different descriptions of the product, starting from its security specification
down to its implementation. The correspondence between the different refine-
ment levels are proved using the underlying tool.

In this paper, we present an industrial project that led to the world-first certi-
fication of a smart card product using formal models and proofs in all refinement
levels. This work produces an augmented EAL4 certificate2 in which the Java
Card system meets all the formal requirements of the EAL7 level. We describe
the technical approach developed to fulfill the EAL7 requirements and show the
added value in terms of security. Using the Java Card firewall security function
as an example, the key elements are detailed, showing how the security objec-
tives defined in the security specification are represented, proved in the different
formal descriptions and then, are ensured by the implementation of the product.

In this project, all formal models and proofs have been developed using
Coq [1], a proof assistant based on higher-order type theories. This choice was
firstly motivated by the safeness of Coq that is based on well-studied mathemat-
ical foundations and is defensively implemented: only a tiny kernel needs to be
trusted and all Coq proofs are rechecked by this kernel. Secondly, the expres-
sive power of the logics underlying Coq allowed us to deal efficiently with the
(universally) quantified security properties.

The rest of this paper is organized as follows. Section 2 recalls the product
development cycle required by the CC methodology and in particular the refine-
ment scheme that is followed along this paper. Section 3 presents the security
target and one of the security objectives implemented by our Java Card system,
i.e., the firewall, that will be used to illustrate the present approach. Section 4
describes the different formal representations of the product. Section 5 presents
the correctness proof of the stepwise refinement and Section 6 explains how this
refinement ensures that the implementation fulfills the security objectives. We
discuss the related work and give some concluding remarks in Section 7.

2 CC Waterfall Model

The Common Criteria define several classes of activities (development, test, con-
figuration management, vulnerability analysis, operation, maintenance, etc) and
a set of requirements for each class. The developer has to fulfill the requirements in
order to demonstrate to the evaluator that the product meets its claimed security
level. Amongst these classes, the ADV class deals with the product development,
and describes the (security of the) product at different levels of detail starting
2 Certificate Ref. DCCSI-2007/19 delivered by the French Certification Body (DCSSI)

on September 2007 (see also http://www.gemalto.com/php/pr view.php?id=239).

http://www.gemalto.com/php/pr_view.php?id=239
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from the informal security specification, i.e., the security target (ST), down to
the implementation (ADV IMP). The levels of description are the security func-
tional specification (ADV FSP), the high level design (ADV HLD) of the product
in terms of sub-systems and the low-level design (ADV LLD) in terms of modules.
The main goal of this class is to gain confidence that the security functions are
correctly implemented in the source code of the product. The EAL7 level requires
that the three descriptions of the security design of the product, i.e., FSP, HLD,
LLD and the security policy, are formal models. Hence correspondences between
adjacent models are formal proofs. In practice, the application of these require-
ments is challenging because their fulfillment depends on the used formal method
(the language and the underlying tool). Several questions may be raised here:

– How safe is a theorem prover ?
– Should we trust the automatic proofs done by a model checker or a deductive

proof with a theorem prover ?
– How to interpret the concept of refinement between two formal models ?

In addition to the development of practical models and proofs, there are also
other challenges to deal with:

1. how to ensure the correspondence between the Security Target, an informal
document and the two adjacent ones that are formal

2. how to ensure the correspondence between the most detailed level, that is
formal, and the implementation of the product

Figure 1 resumes our refinement scheme for the EAL7 requirements which
deals with these challenges in an effective way. This scheme not only fulfills the
CC requirements but also allows to certify the security policy on the product
using formal techniques. In the following, we will describe how this scheme is
applied to the evaluation of our Java Card system.

3 Security Target

The security target is the security specification of the product. It is the main doc-
ument of a CC evaluation used as a reference of the claimed security. The main
goal of this document is to describe the efforts done by the developer to protect
the assets of the product. The security target is then the result of the risk analysis
and describes all the elements to be evaluated, in particular (see Figure 1):

– a set of security objectives, that counters the identified threats to the
security of the assets

– a set of security functional requirements3, that defines the security
behavior of the product, and necessary to meet the security objectives

– a set of security functions, that claim to implement the functional re-
quirements

3 The functional requirements (SFR) are selected from a dictionary provided by the
CC.
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Fig. 1. A practical EAL7 refinement scheme

The assurance that the product meets its security objectives, i.e., that the se-
curity objectives are achieved by the security functions, is derived from two
conditions:

a) confidence in the correctness of the implementation of the security functions,
i.e., the assessment whether they are correctly implemented; and

b) confidence in the effectiveness of the security functions, i.e., the assessment
whether they actually satisfy the stated security objectives.

The refinement scheme presented in Figure 1 substitutes formal proof for confi-
dence to fulfill the EAL7 requirements.

3.1 Java Card Firewall as a Security Objective

Figure 2 overviews the software architecture of a Java-embedded smart card.
The scope of the EAL7 evaluation is the Java Card system that consists of the
virtual machine4, the API written in Java and the native API.

The virtual machine plays a central role: it securely interprets the bytecodes and
makes calls to the API if necessary. The virtual machine is usually implemented
4 Here, the virtual machine also includes the Java Card Runtime Environment that is

sometimes described separately.
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Fig. 2. Java Card system inside the card architecture

in a low-level programming language such as C for performance reasons. The
functional behavior of the virtual machine is defined by Sun in [2] and [3].

Java Card API [4] provides the applets with commonly used functions such as
the operations on array data-type, access to the card resource, remote method
invocation, etc. Many API methods are written in Java but some of them are
implemented in a native language (C) in order to speed up the low-level opera-
tions. An API method may also be a mixture of Java code and native API calls.
Java Card API is part of the Java Card system and obviously participates in its
security functions. However, in this paper, we only concentrate on the virtual
machine due to space limitations. The refinement scheme of the API is not very
different from that of the virtual machine, but requires some adaptation and is
described in [5] for native API and in [6] for Java API.

The security target contains the objectives required for the Java Card system
(see [7] for the complete list of objectives). Amongst them, several objectives have
been formalized5. The most complex and demanding objective is the following:

OT.FIREWALL : the Java Card platform shall ensure the isolation between the
applet executions.
This objective prevents the objects owned by one applet from being used by
another applet without explicit sharing. The isolation between the applets covers
two security properties: confidentiality and integrity. The confidentiality ensures
that during its execution, an applet cannot read the information stored in the
other applets. The integrity ensures that during its execution, an applet cannot
modify the information stored in the other applets.

3.2 Security Policy Model of Java Card Firewall

The second component of the security target is a set of security functional re-
quirements describing the security behavior of the product. Examples of func-
tional requirements are :

1. The security functions (of the product) shall require each user to identify
itself before authorizing any other actions on behalf of that user.

5 Not all objectives can be formalized. For example, some of the security objectives
provide assurance against physical attacks. These objectives are not formalizable in
the current state of the art.
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2. The security functions (of the product) shall explicitly authorize access of
subjects to objects based on the following rules: R1, R2, etc.

The product security policy (TSP) is then the set of rules that regulate how as-
sets are managed, protected and distributed, expressed by the security functional
requirements. Those policies could be explicitly stated by the functional require-
ments, e.g., the second one above, or are implicit e.g., the first one. They are all the
securitypolicies enforcedby theproduct, e.g. the auditpolicy, themanagementpol-
icy, the encryption policy, etc. But only a subset of those policies can be formalized,
becausemodeling certainpolicies is currentlybeyond the state of the art.Generally,
access control and information flow control policies are required to be formalized.

From EAL5 to EAL7, the CC requires a formal security policy model and a
demonstration that the formal security policy implements the informal security
policies described in the security target. The set of CC requirements to be met
by the models and the associated proofs are called the ADV SPM.

For our Java Card system, the formal security policy model (TSPM) is made
of two abstract state machines, called JCVM (Java Card Virtual Machine), and
FWVM (Firewall Virtual Machine).

The JCVM state machine is the complete defensive formalization of the virtual
machine. The JCVM states represent the card states that are composed of the
installed applets, the runtime data of the virtual machine (i.e., the frame stack
and the heap), the static data, the transaction log, etc. A JCVM transition
corresponds to the execution a Java Card bytecode that transforms a card state
into another card state.

The FWVM state machine formalizes all the access control and information
flow control rules defining the firewall control of Sun (see Chapter 6 of [3]).
FWVM is an abstraction of JCVM that only defines the transitions and the
card components that are related to the reference data-type. Indeed, the firewall
control authorizes an access according to the reference of its target. In other
words, the other data-types are not concerned by this control and are not con-
sidered in FWVM. Similarly, the bytecodes that do not require an access through
the firewall are not included in FWVM.

The demonstration, that the TSPM implements the informal security policies
of the security target, may be done in the two following steps6:

1. provide a correspondence between the rules and characteristics of the func-
tional requirements and the mathematical objects (sets, predicates, func-
tions, etc) which are the formal counterpart in the security policy model.

2. as the objectives are met by the functional requirements, and the security
policy model formalizes the functional requirements, the objectives are then
properties7 that the model must verify.

6 Details on the interpretation of the CC requirements for formal models and proofs
can be found in the document [8] issued by the German Certification Body (BSI).

7 Generally, due to the fact that the objective is too abstract, there is no direct trans-
lation between an objective and a property, but mainly an objective represents a set
of properties.
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In a previous work [9], it has been proved that the firewall control rules are
sufficient to ensure the confidentiality aspect of OT.FIREWALL providing that
the embedded applets have been bytecode verified and there is not shared ele-
ment between them. In other words, the FWVM provides a formalization of the
confidentiality aspect of OT.FIREWALL and is the property that the JCVM
must verify.

The integrity aspect is formalized as a theorem on JCVM stating that if the
two applets do not share any element, then the execution of an applet does
not modify the memory zone owned by the other applet. More formally, let
A1 and A2 be two applets belonging two different security contexts. If they do
not share any element (for example, through a shareable interface), then for all
JCVM transitions on A1, the heap spaces belonging to A2 before and after the
transition are identical.

3.3 Java Card Firewall as a Security Function

The last component of the security target is a high-level definition of the se-
curity functions claimed to implement the security functional require-
ments(see Figure 1). In the case of the firewall, a function named SF.Firewall
describes the rules of the access control and information flow control during the
execution of the bytecodes that may give access to an object in the card memory.
This description is informal. The security target includes a rationale, made of a
table and explanatory text showing the coverage of the security requirements by
the security functions, i.e. that each SFR is implemented by at least one security
function.

4 Formal Refinement of the Product

We presented the security target, that is the security specification describing
the expected security behavior (security functional requirements and security
functions) of the product. The following sections will describe the design of
the security functions of the product, using the refinement process described in
Figure 1. The description starts with the security functional specification.

4.1 Functional Specification

The functional specification (FSP for short) is a high-level description of the
user-visible interface and the behavior of the product security functions.

The functional specification of the Java Card virtual machine is formalized by
an abstract state machine, called the FIVM (Formal Internal Virtual Machine),
that is a refinement of the JCVM. This refinement is based on the fact that the
applets to be interpreted by the FIVM are linked and are already checked by
a bytecode-verifier. The difference between FIVM and JCVM resides essentially
on the two following features:
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1. The FIVM interprets linked applets whose data structures are optimized to
speed up the execution. The linking process transforms the indirect refer-
ences into the absolute addresses in the card memory, and initializes the
static data structures. In other words, FIVM references are absolute while a
JCVM reference consists of a segment and an offset.

2. FIVM is not as defensive as JCVM. When interpreting a bytecode, JCVM
performs static checks on the arguments to detect typing errors. Because
FIVM operates on applets that have been bytecode verified, these static
checks are not necessary. In other words, FIVM concentrates on the execution
of the applets and only handles the runtime errors (exceptions or internal
errors).

As for the JCVM, the FIVM transitions are the executions of the bytecodes
and the FIVM states are the card states. FIVM is an abstract state machine
because its states are opaque: the state components (i.e., the installed applets,
the heap, the frame stack, the static data, etc) are not fully refined but are
abstract data-types. Thus, the access operations to these components are also
abstract: only their signatures are given in the FSP. This refinement keeps the
FSP independent of any implementation of the product. Indeed, the concrete
data structures are only instantiated in the implementation.

In the FSP, the execution of a bytecode is formalized by a pre-condition
and a post-condition. The pre-condition specifies the conditions on the card
state before the execution while the post-condition specifies the effects of the
execution.

Functional Specification of the Security Functions. The correspondence
between the security target and the security functional specification must be pro-
vided in order to give assurance that all the security functions are covered. The
coverage is a mapping between the security functions, as identified in the security
target, and the formal functional specification. The mapping shall demonstrate
that the FSP is a complete and consistent representation of the security func-
tions. In our case, the security target is an informal document and the FSP is a
formal model, the mapping consists in pointing the mathematical objects that
are used in the FSP model to specify a given security function.

The firewall security function is formalized as a set of firewall control rules in
the pre-conditions of the bytecodes that provide access to card resource. If a rule
is not satisfied, then the execution is switched to the error case where a security
exception is thrown. The list of bytecodes and the informal specification of the
rules are described in Chapter 6 of [3].

4.2 High Level Design

The High Level Design (HLD for short) describes the product in terms on subs-
systems participating to the enforcement of the security. The functional spec-
ification of the security functions, must be refined in a high level design. This
refinement will indicate in which sub-system each security function is imple-
mented.
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In our approach, the HLD model describes the computational behavior of
the virtual machine, refining the specification of the security functions in terms
of algorithms. It is close to the FSP model because it is formalized using the
same FIVM state machine. The difference between these two description levels
relies on the modeling style. On one hand, the FSP describes a security function
using logical predicates to relate its pre-condition (on the input state) and its
post-condition (on the output state). On the other hand, the HLD specifies the
security function by a (total) function that computes the output from the input.
For example, the HLD model of a bytecode defines an executable algorithm that
handles all possible cases of the execution (nominal, errors and exceptions). The
FSP of this bytecode lists the possible couples of input state and output state. In
other words, the HLD gives an algorithmic description of the security function
and is more close to a real implementation than the FSP, which is abstract
because not every relation is realizable.

Because the HLD also uses the FIVM whose states are abstract, this model is
still independent of the implementation. Indeed, the components of the virtual
machine are not concretely defined. These components will be defined in the
low-level design model that is implementation-dependent.

Sometimes, there exist different algorithms to implement an execution spec-
ified in the FSP8. In that case, the HLD becomes implementation-dependent
because it must choose a concrete algorithm. This is the case of the Java Card
API methods whose the HLD contains all necessary details and the LLD is not
needed anymore [6].

4.3 Low Level Design

The Low-level Design (LLD for short) describes the product in terms of mod-
ules that participate in the enforcement of the security. The modules are the
refinement of the HLD sub-systems. The LLD is built using a new state ma-
chine9 that is called CVM (Concrete Virtual Machine). Contrary to the FIVM,
the CVM is fully defined by concrete data structures and takes into account
the optimizations done by the implementation. For example, the frame stack is
defined such as the different frames share part of their structure in order to re-
duce the RAM consumption. Because the data structures and the optimizations
are implementation-dependent, the LLD is actually a refinement of the HLD by
following the implementation of the product.

5 Correctness

We have described the formal models that correspond to the stepwise refinement
(Figure 1) of the product development. We will describe how the correctness of
the refinement steps is formalized and proved upon the different state machines.

8 An execution is a set of traces of the abstract machine.
9 Even if the LLD is only required to be semi-formal in EAL7.
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5.1 Theorems of Correctness

The correctness of each refinement step between two representations is stated
as a commutative property between the two corresponding state machines as
described in Figure 3. A commutative theorem states that for each transition
(i.e., for each bytecode execution) in the refined representation, there exists a
corresponding transition in the abstract representation.

Theorem 1 (Correctness of refinement). A transition between two states s1
and s2 on the state machine M is denoted by M(s1, s2). Let R be a refinement
relation between the states of M1 and M2. Assume that the two initial states
of a transition are related by R. The refinement from M1 to M2 is said to be
correct if the two final states are also related by R:

R(s1, v1) ∧ M1(s1, s2) ⇒ ∃v2.M2(v1, v2) ∧ R(s2, v2)

This generic theorem has been used to define:

– the commutation between FWVM and JCVM which implies that the fire-
wall rules are satisfied by JCVM. By combining with the result of a previous
work [9], we conclude that the confidentiality aspect of OT.FIREWALL is
verified by the TSP model. The integrity aspect of OT.FIREWALL is for-
malized and proved on JCVM as a separate theorem.

– the correspondence between the TSP model and the FSP i.e., the com-
mutation between JCVM and FIVM which implies that the security func-
tions specified in FSP fulfills the objectives ensured by JCVM and hence,
OT.FIREWALL.

– the HLD-LLD correspondence i.e., the commutation between FIVM and
CVM which implies that the security functions are correctly refined from
the HLD to the LLD.
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The refinement from the FSP to the HLD is a specific step because both these
models are built on the same FIVM state machine. The refinement between
the HLD and the FSP is correct if the algorithms defined in the HLD fulfill
their specifications defined in the FSP. In Hoare logic, a function f fulfills its
precondition Pref and postcondition Postf if:

∀xy : y = f(x) ⇒ Pref (x) ⇒ Postf (y)

where x, y respectively represent the input and the output of f .
In our case, this amounts to proving:

∀fivm s1fivm s2 : fivm s2= FIV MA(fivm s1) ⇒ FIV M(fivm 1, f ivm s2)

where FIV MA denotes the HLD function and FIV M denotes the FSP predi-
cate relating the two FIVM states.

To resume, the proof of the commutative theorems in Figure 3 demonstrates
that the security objective OT.FIREWALL is verified by all formal representa-
tions of the product.

5.2 Proof Scheme and Experiences

The proof of the correctness theorems described above is done for each transition
of the state machines (i.e., for each bytecode execution). The general structure
of a bytecode execution can be seen as a tree whose leaves are the access opera-
tions to the card state (i.e., to the machine states in the formal models). These
operations consist in reading or modifying a state component (heap, frame stack,
static data, etc). The internal nodes of the execution tree are the constructs used
to express the execution flow, e.g., assigning, branching (if. . . then. . . else), loop-
ing. The general proof scheme for the commutation of two state machines on a
bytecode execution is described as follows:

1. Decompose the bytecode execution into more simple operations in both two
machine states until the access operations are reached.

2. Prove the correctness for each decomposition step: because the definitions of
the bytecode in both models follow the same structure, this proof is feasible.

3. Apply the appropriate refinement hypotheses to get the correctness for the
access operations: the refinement hypotheses define the relation between the
two state machines i.e., the mapping between their components.

This proof scheme is closely related to the structure of the bytecode execution.
For example, if the byte code execution is a recursive function, then for proving
the correctness of the decomposition steps over it, a proof by induction is needed.
Furthermore, because the execution needs to cover all possible error cases, the
proof must be done on all of its execution paths.

In many cases, this leads to a huge and unreadable proof script. Actually,
one of the difficulties we encountered in this work is the maintenance of the
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proof scripts. Indeed, a modification in the model usually requires a significant
adaptation of the proof script. For example, a modification on an internal node
of the execution tree implies the modification of all the proof branches passing
through this node: new quantified variables are introduced and the tactic calls are
changed. In order to ease the proof readability and maintenance, the following
methodology has been used:

– respect several “coding rules” while writing proof scripts: (1) adding com-
ments for each branching point; (2) properly naming the quantified variables
instead of using the generated names by Coq (these generated names are
numbered and make proof maintenance costly); (3) using one-step Coq tac-
tics and not automatic ones that make proof debugging costly because their
effects are too complex to be traced.

– define new tactics to replace the repetitive proof scripts: the proof of our
theorems does not require complex proof search. It is usually up to the user
to provide the right arguments to the tactics according to the proof context.
This does not favor the use of the automatic decision procedures. In contrast,
many parts of the proof scripts are repetitive and can be factorized by the
user-defined tactics.

In total, more than 1600 theorems have been proved using the standard Coq tac-
tics and some 150 user-defined tactics. This work has shown that the proof mode
of the interactive provers still needs to be improved to reduced the maintenance
cost. Actually, in the “proof-as-programming” paradigm proposed by theorem
provers based on type theories, a theorem is seen as a specification. Proving
the theorem corresponds to writing a program that fulfills this specification. For
software engineering, numerous tools have been developed to help the developers
to debug, maintain and improve their programs. The equivalent tools in proof
engineering are still missing or are very specific to an application domain (e.g.,
model-checking based tools).

6 Ensuring Security Objectives by the Implementation

The main goal of the CC evaluation process is that the developer of the product
demonstrate to the evaluator that the most detailed, or least abstract, prod-
uct representation is an accurate, consistent, and complete instantiation of the
security functions of the security target. This is accomplished by showing the
correspondence between adjacent representations at a certain level of rigor. In
our approach, the refinement process described in the previous sections formally
proves that the security functions, and then the security objectives are verified
by the low level model of the product. But how about the last description that
is the implementation of the product in C language ?

In the idea case, one may automatically generate the implementation of the
product from the (formal) LLD using a formal tool. Hence the implementation
will ensure the security objectives by construction. This approach has been tested
for part of the Java Card (such as the bytecode-verifier) in some previous work
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(see for example [10]). However, the prohibitive size and the poor performance of
the generated code prevent it from being embedded into a smart card. Beside the
cost, the size of the embedded code is crucial for the viability of services offered by
the card. Hence, the footprint of the Java Card system needs to be minimized to
save the space for application data such as the biometric images or phone-book.
In terms of performance, the generated code needs to be optimized. However, a
generic optimization by the code generator is usually difficult while a particular
optimization (by hand) may jeopardize the benefits of the formal verification.
Last but not least, a CC evaluation is generally required when the product is
already developed, i.e., on an existing implementation. All these constraints
make that solution not satisfactory for the moment.

Another direction is to formalize the semantics of C and then, to prove the
correspondence between the LLD model and the C code (see for example [11]).
In the current state of the art, this approach is not sufficiently developed to deal
with an industrial C implementation.

From a CC point of view, because the LLD model is formal while the im-
plementation is informal, the refinement between them is only required to be
semi-formal by the EAL7 level. In other words, the correspondence between the
elements in the LLD model and in the code must only be showed in a structured
and complete manner. In this work, this correspondence is showed by a hyper-
text document using a precise and complete code-to-spec review. For any data
structure and function, the LLD model and C implementation are linked, and
the semantics of C source code is informally checked.

In particular, for the OT.FIREWALL security objective, we check that the
SF.Firewall rules formalized in the LLD are effectively implemented in the C
code of the bytecodes that require the firewall to access to card resource.

7 Concluding Remarks

In this paper, we present the use of formal methods techniques for the security
design and development of a smart card product. This methodology has been
evaluated and led to a CC certificate. The approach consists of the specification
of the security objectives that the product has to meet and their stepwise refine-
ment into security functions to be implemented in the code. All the refinements
steps, from the security target down to the implementation, have been described
and the chain provides a formal proof that the security functions are correctly
implemented.

In our knowledge, this project is the biggest development that has been done
in Coq with more than 117 000 lines of code. This code includes the different
state machines and the proof of 1 640 theorems. Most of these theorems require
an interactive proof. This work allowed us to detect and fix several bugs in the
implementation, in particular in the Java Card API. Some of them have been
described in [5, 6].

The main difficulties we encountered in this work are the first and last step
of correspondence of the development chain. The first one is a correspondence
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between an informal description and two formal models, i.e., between the secu-
rity target, and the formal functional security specification or the formal security
policy model. The second correspondence is between the formal model of the
low-level design and the C description of the implementation.

The first correspondence is the classic problem of the conformity of a for-
mal model w.r.t. the informal specification. The specification in our case is the
security specification (Security Target) of the product. The formal models are
the security policy model and the formal functional specification of the security
functions. The main achievement of this work is the correspondence between the
security policy model and the security objectives and functional requirements
of the security target. We applied the interpretation proposed in [8] using the
objectives as security properties to be proved on the formal model describing
the functional behavior of the policy. It is important to note that the CC is a
security standard that provides a set of requirements for the developer and for
the evaluator and provides a Common Evaluation Methodology (CEM). But at
the start of this work there were no guidelines nor methodology for the EAL5-
7 levels, e.g. no recommendation for the verification tool to use. Therefore the
use of formal methods for the complete chain of the design was a challenge.
Consequently, the successful evaluation of our security policy model and its cor-
respondence with the security target is a major forward step for the state of
the art.

The second difficulty is the final refinement step, between the formal low-level
design of the product and the C implementation. This correspondence has been
done with a code-to-spec review providing a mapping between Coq objects and C
objects. Obviously, this correspondence requires a structured C implementation
with a minimum of complexity. Future work on this direction may focus on the
compilers. In fact, even if the C code could be generated automatically by a
trusted formal verification tool, the code will then be compiled by an untrusted
tool. The next goal will be then to certify the compiler (formally proving its
correctness) to complete the chain. Several research projects are following this
direction (see for example [12] and [13]).

Applying formal methods to the security of smart cards in general, and of
Java Card in particular, has been studied by numerous researchers in the last
ten years ([14] and [15] provide a survey of their work). However, most of them
concentrate on building formal analysis tools or on formalizing part of the Java
Card system. A high-level CC evaluation requires a more important efforts to
build and to prove several models of the complete system.

Thatmayexplainwhyvery fewhigh-levelevaluationsof smartcardsoftwarehave
beenconducted,andallof themareattheEAL5level (see forexample,http://www.
ssi.gouv.fr/site documents/certificats/cible2007 16en.pdf for such
an evaluation). At that level only the security policy model is required to be for-
mal.The other descriptions, functional specification, high level design and low level
design are semi-formal (generally UML models). The result is that at the EAL5
level, the security functions are semi-formally designed and tested. From the CC

http://www.ssi.gouv.fr/site_documents/certificats/cible2007_16en.pdf
http://www.ssi.gouv.fr/site_documents/certificats/cible2007_16en.pdf
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view, this level is applicablewhen the user requires “ahigh level of independently as-
suredsecurity inaplanneddevelopmentandrequirearigorousdevelopmentapproach
without incurring unreasonable costs attributable to specialist security engineering
techniques” [16]. Therefore, this level could be sufficient with the time-to-market
constraint in the smart card industry but the open10 and multi-applications11

constraints justify the additional costs ofusing“specialist security engineering tech-
niques” such as formal methods. But for customers from fast-moving industries
like mobile telecommunications and retail banking, the applications to be hosted in
smart cards are becoming more sophisticated and more sensitive. For example, one
of the most promising market is the mobile banking where the user uses his mobile
phone for payment (transport, goods, etc). This business model requires applica-
tions from different sectors, here finance and telecommunication, to collaborate on
the same card to provide the requested services. In this context, the card (applica-
tion) security is crucial as several embeddedapplications are combined ina complex
architecture.The use of formal techniques is then advocated to minimize the risk to
the integrity and the confidentiality of the data handled by the card.

Our approach has proposed a new kind of evaluation where the complete
product is certified according to the state of the art, but where the main security
properties have been ensured using formal methods. The resulting certificate,
an EAL4 augmented by formal assurances, is a major breakthrough in the CC
certifications and in smart card security. The (EAL7) formal assurances provided
for this product mean that the integrity and the confidentiality of the application
data in a multi-application card have been mathematically proved. The formal
assurances from the EAL7 certification level add an extra dimension to the
Java Card system implementation. They provide a protection against significant
security risks normally reserved for high-value assets.
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Abstract. The use of formal methods can significantly improve software
quality. However, many instructors and students consider formal meth-
ods to be too difficult, impractical, and esoteric for use in undergraduate
classes. This paper describes a method, used successfully at several uni-
versities, that combines ninja stealth with the latest advances in formal
methods tools and technologies to integrate applied formal methods into
software engineering courses.

1 Enter the Ninja

Software development tools and techniques based on formal methods hold great
promise for improving software quality. Unfortunately, many undergraduate com-
puter science and software engineering curricula include no formal methods in-
struction beyond the introduction of basic concepts such as the assertion and the
loop invariant. Moreover, even when formal methods concepts are introduced,
they tend not to be used outside of toy examples. Many students and instructors,
it seems, believe that the very words “formal methods” imply writing equations
on paper for hours on end with no computers in sight. Those who have never used
modern formal tools and techniques generally consider formal methods to be ir-
relevant to “real” computer programming.

Our goal is not only for our students to use formal methods in their software
design and implementation process, but also for them to enjoy doing so. To ac-
complish this lofty goal, we employ shinobi-iri1 (stealth and entering methods)—
we sneak up on our blissfully unaware students, slip a dose of formal methods
into their coursework and development environments, then with a thunderclap
disappear in a puff of smoke.

We teach our students to design software systems using a (formal) notation
that appears to be merely structured English, and to implement them using so-
phisticated tool support that is almost entirely hidden behind simple instructor-
provided scripts and IDE plugins. Details about the automated theorem proving,
1 The terminology of the ninja may be inscrutable to the uninitiated; the

curious reader may more intensively exercise his chōhō (espionage skill) at
http://en.wikipedia.org/wiki/Ninjutsu.

J. Cuellar and T. Maibaum (Eds.): FM 2008, LNCS 5014, pp. 214–228, 2008.
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static code analysis, runtime assertion generation, and other processes underly-
ing the system are not revealed to the students until after they have implemented
software projects. By the time our initiates realize they are using “formal meth-
ods” in developing their software, they have experienced firsthand what formal
methods can do for them, and are likely to continue to follow in their masters’
silent footsteps.

Over the past 10 years we have used this approach to varying degrees, with
considerable success, in classes taught at the California Institute of Technology,
Radboud University Nijmegen, University College Dublin, and the University of
Washington, Tacoma. And, while we are aware of the formal methods teaching
literature [1], we and the colleagues with whom we have corresponded about
teaching know of no other academics that combine the tools and techniques
described herein to practice formal methods ninjutsu in their classrooms.

2 The Ninja Arts

A formal methods ninja has many subtle and effective techniques at his com-
mand. We use only a few of these in our classrooms. In this section, we briefly
introduce the formal methods concepts we use and then discuss the tools we
employ in the software development process. For more details on any of these
formal methods or tools, please see the cited sources.

2.1 Formal Methods

Assertions. The assertion [2] is a core concept we use and emphasize in software
design and development. Our notion and use of assertions are much broader than
just formal assertions in program code; we also classify informal documentation
of conceptual constraints and compiler pragmas [3], both of which are encoded
as semantic properties in BON and JML (see below), and logging messages as
forms of assertions.

Design by Contract. Design by Contract (DBC) [4] is a design technique
for object-oriented software that uses assertions to document and enforce re-
strictions on data and specify class and method behavior. Contracts are used
throughout the entire process of creating a software system, from analysis and
design to implementation and maintenance.

BON. The Business Object Notation (BON) [5] is an analysis and design
method for object-oriented software originally developed for use with the Eiffel
programming language. We use an extended version of BON (EBON) that folds
user-defined domain-specific languages into BON. We use BON instead of UML
because BON is simple and has a clear semantics.

JML. The Java Modeling Language (JML) [6] is a specification language for
Java programs. It is used both to write class and method contracts in a DBC
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style and to specify properties beyond simple partial correctness of method spec-
ifications and class invariants. We use JML both because its Java-like syntax is
easy for students to learn and because it has excellent tool support.

Underlying Semantics. Underlying the concepts in our realization of DBC,
BON, and JML is a rich set of semantics embodied in several logics and tools. A
detailed discussion of these semantics is beyond the scope of this paper; however,
we will highlight how some of them are naturally expressed to the students in
Section 3.

2.2 Tools and Technologies

The main “hook” that we use to get students interested in and excited about
trying new development techniques is tool support. In fact, we consider the ex-
istence of rich, high quality, automated tools mandatory for any kind of real
adoption of applied formal methods. Moreover, such tools must be integrated
into development environments with which students are already familiar.

The tools that we use include some that we have helped develop and some
from other teams with which we have little interaction. The former is motivated
not by selfishness, but by the principle that we should “eat our own mochi.”2 We
believe that one cannot propose and provide a tool to the software developers of
the world unless one at least uses the tool himself, preferably in the tool’s own
development.

Common JML Tools. The Common JML tool suite [6] contains several tools,
nearly all of which we use in teaching. The tool suite includes a JML type-
checker (jml), a JML compiler (jmlc) that compiles JML specifications into
runtime checks, a runtime assertion checking environment (jmlrac), an aug-
mented version of Javadoc (jmldoc) that generates browsable documentation
containing specifications, and a unit test generating framework (jmlunit, dis-
cussed below).

Although these tools are quite easy to use, as jmlc behaves very much like
javac, jmldoc very much like javadoc, etc., our young apprentices need not
learn their details as we provide pre-defined build configurations (using GNU
Make, Ant, and Eclipse) for them to use.

For example, a freshman programmer need only type make build in a shell to
generate a full runtime assertion checking build of his project. The same applies
to the GNU Make targets test, docs, etc. Similar targets exist in the predefined
Ant build scripts and Eclipse build configurations. Using these predefined build
targets, students catch errors in their programs early and often, in reliable and
repeatable ways.

In addition, students get to see their hard work on writing documentation
and specifications published in an attractive format for all the world, or at least
2 Others “eat their own dog food”. We prefer mochi, a delicious Japanese treat made

of glutinous rice pounded into paste and molded into shape.
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their fellow students, to see. In fact, publishing documentation in this fashion
sometimes initiates intra-class rivalries where different teams try to “out-doc”
each other, delving into the use of more sophisticated code and documentation
presentation mechanisms such as MathML in Javadoc, fancy hyperlinked source
processors like Doxygen, etc.

JUnit with JML. Using the Common JML tool jmlunit, one can generate
arbitrary numbers of different unit tests for an annotated API. Contracts are
used as test oracles and data values are identified manually by the developer.

In some of our courses, when appropriate, we generate tests for the students to
use and simply provide a build system with a test target. The students do not
know how these (thousands of) tests are generated, nor do they really care. . . at
first. All they care about is that, by running the automated tests occasionally,
they know what piece of code is responsible for a given test failure (as they are
taught that precondition failures are the fault of the caller and postcondition
failures are the fault of the implementer), and can more easily find and fix bugs.

This style of automated project evaluation is the first example of how we align
assessment and project process, development methodology, and code quality in
our teaching. Through the use of such stealthy alignment, students are inclined
to take “suggestions” like full documentation coverage seriously, as not doing so
impacts their grades.

ESC/Java2. The problem with relying solely upon runtime checking and unit
testing, even in the presence of tens of thousands of tests, is that one can neither
test for the absence of errors nor test a subsystem that is not yet completely im-
plemented. We believe that students need feedback on the quality and correctness
of their system’s architecture and specified behavior before the implementation is
complete. To achieve this, the true formal methods ninja reaches into his shinobi
shokozu3 for static checkers.

ESC/Java2 is an extended static checker for Java [7]. It statically analyzes
JML-annotated Java modules (classes and interfaces)—it does not run the code,
but instead checks the code and its annotations at compile time. Its capabilities
are twofold: (1) it identifies common programming errors like null pointer deref-
erences, class cast exceptions, out-of-bounds array indexing, etc.; (2) it performs
lightweight full-functional verification, ensuring that program code conforms to
(sometimes quite rich) specifications written in JML. That is, ESC/Java2 mod-
ularly and statically checks that each method body fulfills its contract.

We note a few points about our use of ESC/Java2. First, students run the
tool unknowingly, via a build system, exactly as they run the JML compiler and
other tools. Second, students are encouraged to run this tool early and often, as
static checking is modular and does not depend upon having a running system.
Finally, students do not know what kind of (very complex) analysis is being
rapidly and efficiently performed in the background; they know only that error

3 The traditional garb of the ninja, which we wear when giving all our ninja-related
conference talks.
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messages that look exactly like those produced by javac or gcc are displayed on
their screens or, if they are using Eclipse, that problem markers and red squiggles
dynamically appear in their editors.

The fact that ESC/Java2 is carrying out weakest precondition and strongest
postcondition reasoning on a Hoare logic using several different automated theo-
rem provers sails over the students’ heads like a errant shuriken (throwing star).
This hensōjutsu (disguise and impersonation technique) is highly effective, and
only when a student wonders aloud or asks in class how this build rule performs
its magic do we begin to reveal the true nature of the connections between
this tool and the seemingly highly abstract “nonsense” the student may have
witnessed in theory courses.

It is essential that we carefully approach this dialogue. Subtlety is critical,
as pushing this formal material, or its connection to the tools being used, too
hard can cause the students to crack. It is better to let the advanced students
ask the questions, investigate the material on their own, and espouse the ideas,
methods, and tools to their less enthusiastic fellow students. Finding the fulcra
in the classroom is critical to developing the students’ juhakkei (ninja skills).

Moodle. We use a Moodle-based Virtual Learning Environment (VLE) in our
teaching4. We use our Moodle servers for typical course-related purposes: posting
lecture slides; hosting web and email forums for discussing course organization
and concepts; providing a course calendar for scheduling lectures, special tutori-
als, and instructor/teaching assistant/student group collaborative hack sessions;
posting, collecting, and grading homework assignments; and referencing sup-
plementary materials like book lists and tutorials. However, we also integrate
our VLE with our collaborative development environment (see below) and our
development methodology.

In particular, we use two Moodle components in an integrated fashion. First,
we use the Moodle’s wiki module to document and evolve the class project’s
co-analysis and co-design (see the discussion in Section 3 for more information).
Second, we use the Moodle’s support for automatic implicit dictionary entry
hyperlinking to document and cross-reference all concepts identified during the
analysis phase of our software development method. The result of these two
approaches is that, at any point in time, a student or instructor can: (a) browse
the current project architecture, or any previous version thereof, in the wiki;
(b) make updates and proposals directly in the wiki; and (c) jump to a single
consistent set of concept definitions, as written during concept analysis.

GForge. All project development is managed via a web-based Collaborative
Development Environment (CDE). We have used a GForge server for the past
several years5. CDEs like the GForge provide a variety of services including web
forums, email lists, version control repository management and browsing, user

4 Our Moodles are all available via the KindSoftware research group website.
5 The UCD GForge server that contains hundreds of student projects is

http://sort.ucd.ie/.

http://www.gforge.org/
http://kind.ucd.ie/
http://sort.ucd.ie/
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polls, a ticket tracker (for features, bugs, patches, etc.), release and download
services, etc.

Students are taught not only how to wield a CDE and its critical dependent
services (especially version control and ticket tracking), but also how to integrate
these practices with their groups’ work. In particular, we have an extensive
code standard [8] with domain-specific code annotations that students use to
communicate about, and through, their system artifacts.

For example, in addition to Javadoc annotations (which are used extensively),
we provide special pragmas written in a familiar Javadoc-like syntax. These
special pragmas include everything from informal markup (such as copyright,
version information, and bug and feature tracking cross-references) to formal
annotations about concurrency semantics and time and space complexity.

The students feel like they are just writing normal Javadoc-like documenta-
tion. This is our ninja (qi, a kind of “life force” or “spiritual energy”) flowing
through the students, mesmerizing them into believing they are doing something
quite simple. In fact, these annotations have formal semantics that are statically
checked by the tools we supply.

In summary, by integrating our VLE, our CDE, and project analysis, design,
development, deployment, and maintenance, we more deeply engage the students
and accurately measure (and potentially reward) their participation, as our VLE
and CDE both stealthily track user actions in great detail.

Eclipse and its Plugins. Students are encouraged to use rich editors and devel-
opment environments. In fact, they receive lectures on, and homework about, the
classic yin and yang of emacs and vi. But many students, in the end, use Eclipse.
Thus, we provide a rich set of pre-configured Emacs features and Eclipse plugins
and align assessment with the regular use of these tools. In particular, we use
plugins for evaluting code standard conformance (CheckStyle), code complexity
analysis (NCSS and, in future classes, Metrics), and source and bytecode-level
design and implementation analysis to find common programming errors (PMD
and FindBugs).

Each of these plugins provides interactive feedback to students, who are eas-
ily dazzled by such kayakujutsu (pyrotechnics and explosives), while subtly and
stealthily training them to use better design and programming practices. Little
do they know that our plugins are “tuned” with an eye toward developing for-
mally verifiable software. That is, the rigorous practices that our students follow,
and the results against which they are assessed, are those necessary to develop
robust, reliable, dependable software of very high quality.

Other Common Software Engineering Tools. A number of other concepts,
tools, and practices are introduced, with complementary homework assignments,
in our courses. As mentioned earlier, build systems like GNU Make and Apache
Ant are used. Version control systems like RCS, CVS, and Subversion are critical,
and thus introduced early in the semester so that all homeworks can be stored,
and sometimes submitted, via commits. Also, unit testing frameworks like JUnit
are used.

http://eclipse-cs.sourceforge.net/
http://sourceforge.net/projects/jncss4eclipse/
http://metrics.sourceforge.net/
http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/
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The aforementioned assessments encourage students to learn about each of
these tools. Additionally, as previously stated, student inertia is overcome by
precise bōryaku (military strategy) in the form of pre-written build system spec-
ifications, initial extensive (but not complete) unit tests, and pre-configured
version control repositories. This encourages our students to follow the Way of
the Formal Methods Ninja.

Reflecting on Our Technology Choices. While some of these choices in
concepts, tools, technologies, and languages are predictable, many are also sur-
prising. Why not use UML instead of EBON? Why not use Eiffel instead of
Java?

Most applied formal methods ninjas have extensive experience with these
alternative choices, and these weapons are indeed found in our dōjō. However,
while we would love to use, for example, Eiffel in instruction, all ninjas have
limitations imposed by the local daimyō (i.e., the head of the department).
Moreover, some choices, at least in the domain of rigorous software development,
are simply poor ones, and we avoid them.

3 Ninjutsu in the Classroom

Every ninja knows that his choice of weapon must be appropriate for the situa-
tion at hand; a bad choice can mean the difference between victory and defeat.
The software development process we teach our students illuminates the right
situations and wrong situations in which to use each tool and technique previ-
ously described. In this process, no executable code is written until after the
important engineering work has taken place.

Our process is derived from the BON process [5], but has been modified over
the years with an aim toward developing verifiable software, and is conducted
as co-analysis and co-design—rather than lecturing at our students, we run in-
teractive analysis and design sessions with active student involvement. Students
propose and argue over terminology (Section 3.1), debate the best informal in-
terface (Section 3.2) and type specification (Section 3.4) for each concept, and
argue over appropriate formal specifications (Section 3.5). The remainder of this
section describes our six-fold path of software development and gives an example
of a single software concept as it travels the path. This concept is necessarily
limited in complexity so that we can, within this manuscript, depict multiple
steps of its journey; for further, more complex application examples, our course
websites and example projects are available online.

3.1 Concept Analysis

The first step in the process, concept analysis, involves identifying and naming
the important concepts (also sometimes called entities, properties, or, most often,
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classifiers) in the desired software system and collecting them into clusters, sets
of related classifiers. We explicitly do not use the word “class” at this stage,
because we want the students to think about basic concepts rather than about
software artifacts such as classes, interfaces, and objects. In fact, students are
forbidden from using words like “class”, “variable”, “array”, and “loop”.

We ask the students to analyze things from the real world, such as desks and
automobiles. In a recent class (the video of which is available on the course web-
site), the students analyzed a desk and identified several important associated
concepts: a leg, a top, a drawer, a knob (for the drawer), screws, etc.

A more complicated system than a desk (such as a cellular automaton sim-
ulator or a Tetris-like game, both examples that we have used in our classes)
requires more concepts. At this stage of the process, the goal is to devise a set of
classifiers that is as small as possible while capturing all the important concepts
of the desired system.

3.2 Queries, Commands and Constraints

Once the students have devised a set of concepts for their system, the next step is
to identify the queries, commands, and constraints associated with each concept.
A query is a question that an concept must answer, such as “How tall are you
in feet?”; a command is a directive that a concept must obey, such as “Open
your drawer!”; and a constraint is a restriction on query responses or command
contexts, such as “A desk must be made of at least one material.” or “An open
drawer cannot be opened.” Composite query/commands (and query/queries)
such as “Lock your drawer and tell me whether it was already locked!” are not
allowed.

Students identify the queries, commands, and constraints for each concept as
simple sentences using a restricted English vocabulary. This vocabulary includes
the following: the concept names identified during concept analysis; numbers;
comparison terms (“at least”, “at most”, etc.); articles; and some common nouns
and verbs. Each query must end with a question mark, each command with an
exclamation point, and each constraint with a period. When reading queries
and commands aloud in class, this punctuation is overemphasized to drive the
point home. This reinforces the fact that composite queries and commands are
forbidden, because such mixed constructs cannot be written as simple English
questions or exclamations.

By the end of this co-analysis step, the students and the instructor (recall that
much of this process is performed initially with the instructor, thus co-analysis)
have identified queries, commands, and constraints for every concept. Similar to
the concept analysis, the goal is to have as few of these as possible while capturing
the important characteristics of the concepts. Figure 1 shows a set of queries,
commands, and constraints for a simple desk with a single drawer. This is by
no means the only possible such set of queries, commands, and constraints; for
instance, the length, width, and height are (roughly) what we consider “useful”
sizes for a desk.
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Queries

How tall are you in feet? / How wide are you in feet? / How deep are you in feet? /
What materials are you made of? / Is your drawer open? / Is your drawer locked?

Commands

Open your drawer! / Close your drawer! / Lock your drawer! / Unlock your drawer!

Constraints

A desk must be between 2 and 8 feet tall. / A desk must be between 2 and 20 feet
wide. / A desk must be between 2 and 8 feet deep. / A desk must be made of at least

one material. / An open drawer cannot be opened. / A closed drawer cannot be
closed. / A locked drawer cannot be opened.

Fig. 1. Queries, commands, and constraints associated with a simple desk

3.3 Java Module Skeletons

After identifying the queries, commands, and constraints, it is finally time for
the students to start using a programming language, which at our current uni-
versities, for good or ill, is Java. However, students do not write any executable
code at this stage. Instead, the concepts identified during analysis are refined
into Java modules (classes, abstract classes, and interfaces, as appropriate) and
primitive types, and clusters are refined into Java packages. Only a subset of
the concepts identified in the first stage are refined into Java modules—there is
rarely a one-to-one correspondence between concepts and module skeletons by
the end of this step.

The queries, commands, and constraints associated with each concept are
(literally) cut-and-pasted into the appropriate module as specially-formatted
comments. Every module created in this step also has a Javadoc comment, which
is likewise cut-and-pasted from its concept’s definition.

Our simple desk concept is refined into a Java class SimpleDesk, and we
assume the existence of a Java module for Material. We do not need new Java
modules for the dimensions, which are represented by existing primitive types
(e.g., float, double). Figure 2 shows the Java class skeleton for SimpleDesk.

3.4 Method Signatures

Having created the Java modules, the students move on to writing method sig-
natures for each concept. Each query or command has exactly one method sig-
nature associated with it. Method signatures associated with queries must have
non-void return types, and method signatures associated with commands must
have void return types. The parameter types and return types of the methods
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package formalmethods.ninja.furniture;

/**
* A representation of a desk with a single drawer.
*
* @author Daniel M. Zimmerman
* @author Joseph R. Kiniry
* @version 9 November 2007
*/

public class SimplifiedDesk
{

// @bon query

// @query How tall are you in feet?
// @query How wide are you in feet?
// @query How deep are you in feet?
// @query What materials are you made of?
// @query Is your drawer open?
// @query Is your drawer locked?

// @bon command

// @command Open your drawer!
// @command Close your drawer!
// @command Lock your drawer!
// @command Unlock your drawer!

// @bon constraint

// @constraint A desk must be between 2 and 8 feet tall.
// @constraint A desk must be between 2 and 20 feet wide.
// @constraint A desk must be between 2 and 8 feet deep.
// @constraint A desk must be made of at least one material.
// @constraint An open drawer cannot be opened.
// @constraint A closed drawer cannot be closed.
// @constraint A locked drawer cannot be opened.

}

Fig. 2. Java class skeleton for a simple desk

are chosen from among the previously-created Java module skeletons and the
core Java libraries and primitive types.

Every method has a Javadoc comment, which is written entirely using cut-
and-paste. The @return tag of a query is exactly the original English query
(“What materials are you made of?”), and the method description of a com-
mand is exactly the original English command. Method parameters, if any, are
named starting with articles (the width, a material) or indexed with num-
bers (material 1, material 2). All these guidelines are automatically checked
against our code standard using the aforementioned static style checker.

At this stage, each method body consists of exactly the following: (1) the
JML assertion //@ assert false; (2) the Java assertion assert false; and
(3) for methods with return types, the Java statement return null (or a re-
turn of an appropriate default value of a primitive type, such as 0 for integral
types). This default body enables the classes to compile before the methods are
implemented, and also allows our tools to properly analyze the methods, as this
initial implementation both signals that the method has not been implemented
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(differentiating it from a legal empty implementation) and is the “bottom” im-
plementation with respect to refinement. Of course, our initiates do not know
or understand these theoretical subtleties; they merely know that this is a very
practical way to generate method stubs.

Figure 3 shows the SimpleDesk class with method signatures; for space rea-
sons, we omit some of the methods.

3.5 JML Specifications

The method signatures from the previous step are the translation of the queries
and commands into Java. The next step is the addition of JML specifications in
the form of basic preconditions and postconditions on methods, and the trans-
lation of the BON constraints into JML invariants. Also, every query is labeled
with the JML annotation “pure”, which indicates that the method does not
change any system state.

For example, the constraint “A desk must have at least one leg.” (on a
more complex desk class than the one in our example) might be translated into
both a class invariant (0 < numberOfLegs()) and a precondition on the method
removeLeg (1 < numberOfLegs()). These specifications are written collabora-
tively (remember, this is co-design); young students are only expected to be able
to read them, while older, more advanced students are expected to be able to
write them as well.

Figure 4 shows the SimpleDesk class from Figure 3 after JML specifications
have been added.

3.6 Method Bodies and Fields

The final step, which takes place only after all method signatures and JML
specifications are completed, is when the students, working individually or in
teams, finally get to write executable code. They take this step without our
direct involvement.

At this point, programming is something of a fill-in-the-blanks exercise. All
the students need to do is write code in each method to fulfill the specification,
concretize fields to represent essential data, and (optionally) write a main()
method somewhere to actually run the system. They are encouraged to imple-
ment methods in a bottom-up fashion, focusing on “leaf” methods and simple
queries first and complex methods later.

Recall that students have thousands of pre-generated test cases as well as
tools like ESC/Java2 at their disposal. They are encouraged to regularly run
these tests and tools as they write their code. In the vast majority of cases, the
code that students write at this stage “just works” on the first try; this is a very
different result from the code written in most introductory software engineering
classes, and gives students a concrete sense of accomplishment.
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package formalmethods.ninja.furniture;

import java.util.Collection;

/**
* A representation of a desk with a single drawer.
*
* @author Daniel M. Zimmerman
* @author Joseph R. Kiniry
* @version 9 November 2007
*/

public class SimpleDesk {
// @bon query

/** @return How tall are you in feet? */
public float height() {
//@ assert false;
assert false;
return 0.0f;

}

// width() and depth() are symmetric with height()

/** @return What materials are you made of? */
public Collection<Material> materials() {
//@ assert false;
assert false;
return null;

}

/** @return Is your drawer open? */
public boolean isDrawerOpen() {
//@ assert false;
assert false;
return false;

}

// isDrawerLocked() is symmetric with isDrawerOpen()

// @bon command

/** Open your drawer! */
public void openDrawer() {
//@ assert false;
assert false;

}

// closeDrawer(), lockDrawer(), and unlockDrawer() are symmetric with openDrawer()

// @bon constraint

// @constraint A desk must be between 2 and 8 feet tall.
// @constraint A desk must be between 2 and 20 feet wide.
// @constraint A desk must be between 2 and 8 feet deep.
// @constraint A desk must be made of at least one material.
// @constraint An open drawer cannot be opened.
// @constraint A closed drawer cannot be closed.
// @constraint A locked drawer cannot be opened.

}

Fig. 3. Java class skeleton with method signatures for a simple desk
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package formalmethods.ninja.furniture;

import java.util.Collection;

/**
* A representation of a desk with a single drawer.
*
* @author Daniel M. Zimmerman
* @author Joseph R. Kiniry
* @version 9 November 2007
*/

public class SimpleDesk {
// @bon query

/** @return How tall are you in feet? */
public /*@ pure */ float height() {
//@ assert false;
assert false;
return 0.0f;

}

// width() and depth() are symmetric with height()

/** @return What materials are you made of? */
//@ ensures \result.size() >= 1;
public /*@ pure */ Collection<Material> materials() {
//@ assert false;
assert false;
return null;

}

/** @return Is your drawer open? */
public /*@ pure */ boolean isDrawerOpen() {
//@ assert false;
assert false;
return false;

}

// isDrawerLocked() is symmetric with isDrawerOpen()

// @bon command

/** Open your drawer! */
//@ requires !isDrawerOpen();
//@ requires !isDrawerLocked();
//@ ensures isDrawerOpen();
public void openDrawer() {
//@ assert false;
assert false;

}

// closeDrawer(), lockDrawer(), and unlockDrawer() are symmetric with openDrawer()

// @bon constraint
// @constraint A desk must be between 2 feet and 8 feet tall.
//@ public invariant 2.0 <= height() && height() <= 8.0;
// (width and depth constraints and invariants are symmetric with height)
// (other constraints have no corresponding invariants)

}

Fig. 4. Java class skeleton with JML specifications for a simple desk
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4 Notes from the Dōjō

We now reflect upon some of our choices, successes and failures, and student
reactions in our classrooms. To date, we have received primarily informal student
feedback through in-class and online anonymous questionnaires, the results of
which are public and available via the aforementioned website. The qualitative
evidence from this feedback suggests that the training we provide in our formal
methods dōjō is both well-received and successful. However, we recognize that
more quantitative evidence is necessary to refine our training techniques, and are
currently undertaking a study to gather data about student adoption of formal
methods.

Student reactions to several of our choices have been excellent. As previously
mentioned, Java is used in other courses at all the universities where we have
used this approach, and the students are comfortable with it. JML feels just like
Java with a handful of extra keywords, the tool support for JML with Java 1.4
is very good, and students generally enjoy using our enriched Eclipse and the
Moodle online course management system. Also, students seem to enjoy our
process and adopt it well, and many use it in subsequent software engineering
and design courses.

On the other hand, our tool arsenal is currently lacking in two main respects.
First, EBON tool support is poor. We provide a minimal shell script for extract-
ing BON specifications from annotated Java code and use both EiffelStudio and
BlueJ for carrying out the initial design stages of our approach. However, these
tools are not a perfect fit, as EiffelStudio does not support Java and BlueJ does
not support BON. Work is underway on new tools to directly support EBON,
and we will quickly adopt these tools once they become available. In fact, the
first version of our new BON specification checker, BONc, was released recently
and is now being used in our software engineering courses.

Second, because JML does not currently support Java 1.5 language features
such as generics, enhanced for loops, and autoboxing, the contexts in which we
can use the JML tools are more limited than we would like. Students that have
already been exposed to these language features are (understandably) reluctant
to do without them in order to use the tools. Projects such as JML4 [9] that
aim to update JML for use with current Java virtual machines will alleviate this
problem in the near future.

In addition to these tool-related shortcomings, we have received significant
negative feedback about the user interface of the GForge. We have therefore
decided to replace the GForge with a Trac server for the current academic year.
Trac’s excellent interface and integration of a wiki, a tracker, and version con-
trol allow us to eliminate the haphazard use of various suboptimally-realized
subsystems in the Moodle (e.g., its wiki) and the GForge.

We have customized our Trac server significantly, using over a dozen plugins
to enrich its capabilities for our teaching practices. One of these plugins supports
Mylyn, an Eclipse feature for task management that we will use in some classes
this year. With Mylyn, students are able to interact with the Trac server directly
from within Eclipse. Mylyn also provides support for context-aware, task-focused

http://eiffelsoftware.origo.ethz.ch/Main_Page
http://www.bluej.org/
http://kind.ucd.ie/products/opensource/BONc/
http://trac.edgewall.org/
http://www.eclipse.org/mylyn/
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software development—a style we have taught previously, but have been unable
to enforce.

5 Conclusion

We hope that you, the reader, have not been offended by our ninja metaphors
and are, perhaps, intrigued by our unique integration of applied formal methods
into undergraduate instruction. We welcome your inquiries, and have made large
amounts of quality pedagogical materials available including slides, projects,
videos, tutorials, papers, etc. Perhaps you, too, might enter our dōjō and adopt
the Way of the Formal Methods Ninja.
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Abstract. Information assurance applications providing Multi-Level Secure
(MLS) solutions must often implement information flow policies that are condi-
tional in the sense that data is allowed to flow between system components only
when the system satisfies certain state predicates. However, existing specification
and verification environments, such as SPARK, used to develop such applica-
tions, are capable of capturing only unconditional information flows. Motivated
by the need to better formally specify and certify MLS applications in industrial
contexts, we present an enhancement of the SPARK system that enables speci-
fication, inference, and compositional checking of conditional information flow
contracts. We report on the use of this framework for a collection of SPARK
examples.

1 Introduction

National and international infrastructures as well as commercial services are increas-
ingly relying on complex distributed systems that share information with Multiple Lev-
els of Security (MLS). These systems often seek to coalesce information with mixed
security levels into information streams that are targeted to particular clients. For ex-
ample, in a national emergency response system, some data will be privileged (e.g.,
information regarding availability of military assets, and deployment orders for those
assets) and some data will be public (e.g., weather and mapping information).

The Multiple Independent Levels of Security (MILS) architecture [25] proposes to
make development, accreditation, and deployment of MLS-capable systems more prac-
tical, achievable, and affordable by providing a certified infrastructure foundation for
systems that require assured information sharing. In the MILS architecture, systems
are developed on top of: (a) a “separation kernel”, a concept introduced by Rushby [21]
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which guarantees isolation and controlled communication between application compo-
nents deployed in different virtual “partitions” supported by the kernel, and (b) MLS
middleware services such as “high assurance guards” that allow information to flow
between various partitions, and between trusted and untrusted segments of a network,
only when certain conditions are satisfied.

Researchers at the Rockwell Collins Advanced Technology Center are industry lead-
ers in certifying MILS components according to standards such as the Common Criteria
(EAL 6/7) that mandate the use of formal methods. For example, Rockwell Collins en-
gineers carried out the certification of the hardware-based separation kernel in Rockwell
Collins’ AAMP7 processor (this was the first such certification of a MILS separation
kernel and it formed the initial draft of the Common Criteria Protection Profile for
Separation Kernels). Product groups at Rockwell Collins are building several differ-
ent information assurance products on top of the AAMP7 that leverage the underlying
MILS architecture. These products are often programmed using the SPARK subset of
Ada [7]. A motivating factor for the use of SPARK is that it includes annotations (for-
mal contracts for procedure interfaces) for specifying and checking information flow
[9]. These annotations often play a key role in the certification of such products. The
SPARK language and associated tool-set is the only commercial product that we know
of which can support checking of code-level information flow contracts, and SPARK
provides a number of well-designed and effective capabilities for specifying and veri-
fying properties of highly critical implementations.

Even with SPARK, however, developers are sometimes unable to provide complete,
machine-checkable arguments for the correctness of information assurance products.
This is due to certain limitations in the SPARK information flow framework, in par-
ticular: SPARK information flow annotations are unconditional (e.g., they capture such
statements as “executing procedure P may cause information to flow from input vari-
able X to output variable Y ”), but MLS security policies are often conditional (e.g.,
“data from input variable X is only allowed to flow to output variable Y when state vari-
ables G1 and G2 satisfy certain conditions”). Thus, SPARK currently can neither cap-
ture nor support verification of certain critical aspects of MLS security policies (treating
such conditional flows as unconditional flows in SPARK is an over-approximation that
leads to many false alarms).

In previous work, Amtoft and Banerjee have developed Hoare logics that enable
compositional reasoning about information flow [2,1]. Inspired by challenge problems
from Rockwell Collins, these logics were extended to support conditional information
flow [4]. While the logic as presented in [4] exposed some foundational issues, it only
supported intraprocedural analysis, it required developers to specify information flow
loop invariants, the verification algorithm was not yet fully implemented (and thus no
experience was reported), and the core logic was not mapped to a practical method
contract language capable of supporting compositional reasoning in industrial settings.

In this paper, we address these limitations by describing how the logic can provide
a foundation for a practical information flow contract language capable of supporting
compositional reasoning about conditional information flows. The specific contribu-
tions of our work are as follows:
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procedure MACHINE STEP
−− INFORMATION FLOW CONTRACT ( F ig ure 2 )
i s D 0 , D 1 : CHARACTER;
begin

i f IN 0 RDY and not OUT 1 RDY then

D 0 := IN 0 DAT ; IN 0 RDY := FALSE ;
OUT 1 DAT := D 0 ; OUT 1 RDY := TRUE;

end i f ;
i f IN 1 RDY and not OUT 0 RDY then

D 1 := IN 1 DAT ; IN 1 RDY := FALSE ;
OUT 0 DAT := D 1 ; OUT 0 RDY := TRUE;

end i f ;
end MACHINE STEP ;

Fig. 1. Simple MLS Guard - mailbox mediates communication between partitions

– we propose an extension to SPARK’s information flow contract language that sup-
ports conditional information flow, and we describe how the logic of [4] can be
used to provide a semantics for the resulting framework,

– we extend the algorithm of [4] to support procedure calls and thus modularity,
– we present a strategy for automatically inferring conditional information flow in-

variants for while loops, thus significantly reducing developers’ annotation burden,
– we provide an implementation that can automatically generate conditional infor-

mation flow contracts from unannotated source code, and
– we report on experiments applying the implementation to a collection of examples.

Recent efforts for certifying MILS separation kernels [13,14] applied ACL2 [16] or
PVS [19] theorem provers to formal models; extensive inspections were then required
by certification authorities to establish the correspondence between model and source
code. Because our approach is directly integrated with code, it complements these ear-
lier efforts by: (a) removing the “trust gaps” associated with inspecting behavioral mod-
els (built manually), and (b) allowing many verification obligations to be discharged
earlier in the life cycle by developers while leaving only the most complicated obliga-
tions to certification teams. Moreover, our logic-based approach provides a foundation
for producing independently auditable and machine-checkable evidence of correctness
and MILS policy compliance as recommended [15] by the National Research Council’s
Committee on Certifiably Dependable Software Systems.

2 Example

Figure 1 illustrates the conceptual information flows in a fragment of a simplistic MLS
component. Rockwell Collins engineers constructed this example to illustrate, to NSA
and industry representatives, the specification and verification challenges facing the de-
velopers of MLS software. The “Mailbox” component in the center of the diagram me-
diates communication between two client processes – each running on its own partition
in the separation kernel. Client 0 writes data to communicate in the memory segment
Input 0 that is shared between Client 0 and the mailbox, then it sets the Input 0 Ready
flag. The mailbox process polls its ready flags; when it finds that, e.g., Input 0 Ready is
set and Output 1 Ready is cleared (indicating that Client 1 has already consumed data
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−−# g l o b a l i n o u t IN 0 RDY , IN 1 RDY ,
−−# OUT 0 RDY , OUT 1 RDY ,
−−# OUT 0 DAT , OUT 1 DAT ;
−−# i n IN 0 DAT , IN 1 DAT ;
−−# d e r i v e s
−−# OUT 0 DAT from IN 1 DAT , OUT 0 DAT ,
−−# OUT 0 RDY , IN 1 RDY &
−−# OUT 1 DAT from IN 0 DAT , OUT 1 DAT ,
−−# IN 0 RDY , OUT 1 RDY &
−−# IN 0 RDY from IN 0 RDY , OUT 1 RDY &
−−# IN 1 RDY from IN 1 RDY , OUT 0 RDY &
−−# OUT 0 RDY from OUT 0 RDY , IN 1 RDY &
−−# OUT 1 RDY from OUT 1 RDY , IN 0 RDY ;

(a)

−−# d e r i v e s
−−# OUT 0 DAT from
−−# IN 1 DAT when
−−# ( IN 1 RDY and n o t OUT 0 RDY ) ,
−−# OUT 0 DAT when
−−# ( n o t IN 1 RDY or OUT 0 RDY ) ,
−−# OUT 0 RDY , IN 1 RDY &
−−# OUT 1 DAT from
−−# IN 0 DAT when
−−# ( IN 0 RDY and n o t OUT 1 RDY ) ,
−−# OUT 1 DAT when
−−# ( n o t IN 0 RDY or OUT 1 RDY ) ,
−−# OUT 1 RDY , IN 0 RDY

(b)

Fig. 2. (a) SPARK information flow contract for Mailbox example. (b) Fragment of same example
with proposed conditional information flow extensions (Section 4).

deposited in the Output 1 slot in a previous communication), then it copies the data
from Input 0 to Output 1 and clears Input 0 Ready and sets Output 1 Ready. The com-
munication from Client 1 to Client 0 follows a symmetric set of steps. The actions to be
taken in each execution frame are encoded in SPARK by the MACHINE STEP procedure
of Fig. 1.

Figure 2(a) shows SPARK annotations for the MACHINE STEP procedure, whose in-
formation flow properties are captured by derives annotations. It requires that each
parameter and each global variable referenced by the procedure be classified as in (read
only), out (written, and initial values [values at call point] are unread), or in out (writ-
ten, and initial values read). For a procedure P , variables annotated as in or in out

are called input variables and denoted INP ; variables annotated as out or in out are
output variables and denoted as OUTP . Each output variable xo must have a derives
annotation indicating the input variables whose initial values are used to directly or in-
directly calculate the final value of xo. One can also think of each derives clause as
expressing a dependence relation (or program slice) between an output variable and the
input variables that it transitively depends on (via both data and control dependence).
For example, the second derives clause specifies that on each MACHINE STEP execu-
tion the output value of OUT 1 DAT is possibly determined by the input values of several
variables: from IN 0 DAT when the Mailbox forwards data supplied by Client 0, from
OUT 1 DAT when the conditions on the ready flags are not satisfied (OUT 1 DAT’s output
value then is its input value), and from OUT 1 RDY and IN 0 RDY because these vari-
ables control whether or not data flows from Client 0 on a particular machine step (i.e.,
they guard the flow).

While upper levels of the MILS architecture require reasoning about lattices of se-
curity levels (e.g., unclassified, secret, top secret), the policies of infrastructure compo-
nents such as separation kernels and guard applications usually focus on data separation
policies (reasoning about flows between components of program state), and we restrict
ourselves to such reasoning in this paper.

No other commercial language framework provides automatically checkable infor-
mation flow specifications, so the use of the information flow checking framework in
SPARK is a significant step forward. As illustrated above, SPARK derives clauses
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can be used to specify flows of information from input variables to output variables,
but they do not have enough expressive power to state that information only flows un-
der specific conditions. For example, in the Mailbox code, information from IN 0 DAT

only flows to OUT 1 DAT when the flag IN 0 RDY is set and the flag OUT 1 READY is
cleared. Unfortunately, the SPARK derives cannot distinguish the flag variables as
guards nor phrase the conditions under which the guards allow information to pass or
be blocked. This means that guarding logic, which is central to many MLS applications
including those developed at Rockwell Collins, is completely absent from the checkable
specifications in SPARK. In general, the lack of ability to express conditional informa-
tion flow not only inhibits automatic verification of guarding logic specifications, but
also results in imprecision which cascades and builds throughout the specifications in
the application.

3 Foundations of SPARK Conditional Information Flow

The SPARK subset of Ada is designed for programming and verifying high assurance
applications such as avionics applications certified to DO-178B Level A. It deliberately
omits constructs that are difficult to reason about such as dynamically created data,
pointers, and exceptions. Below, we present the syntax of a simple imperative language
with assertions that one can consider to be an idealized version of SPARK.

Assertions
φ ::= B | φ ∧ φ

| φ ∨ φ | ¬φ

Expressions
A ::= x | c | A op A

B ::= A bop A

Commands
S ::= skip | x := A | assert(φ)

| S ; S | if B then S else S

| call p | while B do S

Features of SPARK that we do not consider here include the package and inheritance
structure, records, and arrays. From these, only arrays present conceptual challenges.
Our current implementation treats arrays as atomic entities, just as SPARK does. The
extended version of this paper [5] describes how our logical approach can reason about
individual elements of arrays (giving more precision than SPARK), a feature which is
currently being included in our implementation. We consider both arithmetic (A) and
boolean (B) expressions where we use x, y, . . . to range over variables, c to range over
integer constants, p to range over named (parameterless) procedures, op to range over
arithmetic operators in {+, ×, mod, . . .}, and bop to range over comparison operators in
{=, <, . . .}. Using parameterless procedures simplifies our exposition; our implemen-
tation supports procedures with parameters (there are no conceptual challenges in this
extended functionality). For an expression E (arithmetic or boolean), we write fv(E)
for the variables occurring free in E, and E[A/x] for the result of substituting in E all
occurrences of x by A.

The semantics of an arithmetic expression [[A]] is a function from stores into values,
where a value (v∈Val ) is an integer n and where a store s ∈ Store maps variables
to values; we write dom(s) for the domain of s and write [s|x �→ v] for the store that
is like s except that it maps x into v. Similarly, [[B]]s denotes a boolean. A command
transforms the store into another store; hence its semantics is given in relational style,
in the form s [[S]]s′. For some S and s, there may not exist any s′ such that s [[S]]s′;
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this can happen if a while loop does not terminate, or an assert fails. The details of
the semantics are standard and thus omitted; implicitly we assume a global procedure
environment P that for each p returns a relation between input and output stores.

Assertions φ are also called 1-assertions since they represent predicates on a single
program state; we write s |= φ to denote that φ holds in s following the standard
semantics. We write φ �1 φ′ if whenever s |= φ also s |= φ′. As usual we define
φ1 → φ2 as ¬φ1 ∨ φ2; we also define true as 0 = 0, and false as 0 = 1.

Reasoning about information flow in terms of non-interference: MILS seeks to pre-
vent security breaches that can occur via unauthorized/unintended information flow
from one partition to another; thus previous certification efforts for MILS components
have among the core requirements included the classical property of non-interference
[12] which (in this setting) states: for every pair of runs of a program, if the runs agree
on the initial values of one partition’s data (but may disagree on the data of other parti-
tions) then the runs also agree on the final values of that partition’s data.

Capturing non-interference and secure information flow in a compositional logic:
The logic developed in [2] was designed to verify specifications of the following form:
given two runs of P that initially agree on variables x1 . . . xn, the runs agree on vari-
ables y1 . . . ym at the end of the runs. This includes non-interference as a special case
(let x1 . . . xn, and y1 . . . ym, be the variables of one partition). We may express such a
specification, which makes the “end-to-end” (input to output) aspect of verifying confi-
dentiality explicit, in Hoare-logic style as {x1�, . . . , xn�} P {y1�, . . . , ym�}, where
the agreement assertion x� is satisfied by a pair of states, s1 and s2, if s1(x) = s2(x).
With P the example program from Sect. 2, we would have, e.g.,

{IN 1 DAT�, OUT 0 DAT�, IN 1 RDY�, OUT 0 RDY�} P {OUT 0 DAT�}.

To capture conditional information flow, recent work [4] by Banerjee and Amtoft intro-
duced conditional agreement assertions, also called 2-assertions. They are of the form
φ ⇒ E� which is satisfied by a pair of stores if either at least one of them does not
satisfy φ, or they agree on the value of E:

s & s1 |= φ ⇒ E� iff whenever s |= φ and s1 |= φ then [[E]]s = [[E]]s1 .

We use θ ∈ 2Assert to range over 2-assertions. For θ = (φ ⇒ E�), we call φ
the antecedent of θ and write φ = ant(θ), and we call E the consequent of θ and
write E = con(θ). We often write E� for true ⇒ E�. We use Θ ∈ P(2Assert) to
range over sets of 2-assertions (where we often write θ for the singleton set {θ}), with
conjunction implicit. Thus, s&s1 |= Θ iff ∀θ ∈ Θ : s&s1 |= θ.

Fig. 3(a) illustrates a simple derivation using conditional information flow asser-
tions that answers the question: what is the source of information flowing into variable
OUT 0 DAT? The natural way to read the derivation is from the bottom up (since our
algorithm works “backwards”). Thus, for OUT 0 DAT� to hold after execution of P , we
must have D 1� before line 3 (since data flows from D 1 to OUT 0 DAT), IN 1 DAT�

before line 2 (since data flows from IN 1 DAT to D 1), and before line 1 IN 1 RDY�

and OUT 0 RDY� (since they control which branch of the condition is taken), along with
conditional assertions. The pre-condition shows that the value of OUT 0 DAT
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{IN 1 RDY ∧ ¬OUT 0 RDY ⇒ IN 1 DAT�,
¬IN 1 RDY ∨ OUT 0 RDY ⇒ OUT 0 DAT�,
IN 1 RDY�, OUT 0 RDY�}

1. if IN 1 RDY and not OUT 0 RDY then
{IN 1 DAT�}

2. D 1 := IN 1 DAT; IN 1 RDY := false;
{D 1�}

3. OUT 0 DAT := D 1; OUT 0 RDY := true;
{OUT 0 DAT�}

4. fi
{OUT 0 DAT�}

(a)

Summary information for p with OUTp = {x}
derives x from y,

z when y > 0,
w when y ≤ 0

Procedure call

{z > 7 ⇒ v�, z > 5 ⇒ u�, z > 5 ⇒ y�,
z > 5 ∧ y > 0 ⇒ z�, z > 5 ∧ y ≤ 0 ⇒ w�}
call p

{x > 5 ∧ z > 7 ⇒ v�,
x > 7 ∧ z > 5 ⇒ (x + u)�}

(b)

Fig. 3. (a) A derivation for the mailbox example, illustrating the handling of conditionals. (b) An
example illustrating the handling of procedure calls (Section 5).

depends unconditionally on IN 1 RDY and OUT 0 RDY, and conditionally on IN 1 DAT

and OUT 0 DAT, just as we would expect.

Relations between agreement assertions: We define Θ �2 Θ′ to hold iff for all s, s1:
whenever s&s1 |= Θ then also s&s1 |= Θ′. In development terms, when Θ �2 Θ′

holds we can think of Θ as a refinement of of Θ′, and Θ′ an abstraction of Θ. For
example, {x� , y�} refines x� by adding an (unconditional) agreement assertion, and
z < 10 ⇒ x� refines z < 7 ⇒ x� by weakening the antecedent of a 2-assertion.

We define a function decomp that converts arbitrary 2-assertions into assertions with
only variables as consequents: decomp(Θ) = {φ ⇒ x� | φ ⇒ E� ∈ Θ, x ∈ fv(E)}.
For example, decomp(φ ⇒ (x + y)�) = {φ ⇒ x�, φ ⇒ y�}.

Fact 1. For all Θ, decomp(Θ) is a refinement of Θ.

The converse does not hold, with a counterexample being s&s1 |= (x + y)� but not
s&s1 |= x� or s&s1 |= y�, as when s(x) = s1(y) = 3, s(y) = s1(x) = 7.

4 Conditional Information Flow Contracts

4.1 Foundations of Flow Contracts

The syntax of a SPARK derives annotation for a procedure P (as illustrated in Fig-
ure 2(a)) can be represented formally as a relation DP between OUTP and P(INP ).
A particular clause derives(x, ȳ) ∈ DP declares that the final value of output variable
x depends on the input values of variables ȳ = y1, . . . , yk. The correctness of such a
clause as a contract for P can be expressed in terms of the logic of the preceding sec-
tion, as requiring the triple {ȳ�} S {x�} where S is the body of procedure P and
where ȳ� is a shorthand for {y1�, . . . , yk�}.

Because DP contains multiple clauses (one for each output variable of P ), it captures
multiple “channels” of information flow through P . Therefore, we cannot simply de-
scribe the semantics of a multi-clause derives contract {derives(x, ȳ), derives(z, w̄)}
as {(ȳw̄)�} S {x�, z�} because this would confuse the dependencies associated
with x and z, i.e., it would allow z to depend on ȳ. Accordingly, the full semantics
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of SPARK derives contracts is supported by what we term a multi-channel version
of the logic which is extended to include indexed agreement assertions x�c indexed
by a channel identifier c – which one can associate with a particular output variable.
In the multi-channel logic, the confused triple above can now be correctly stated as
{ȳ�x, w̄�z} S {x�x, z�z}. (Alternatively, we could have two single-channel triples:
{ȳ�} S {x�} and {w̄�} S {z�}.) The algorithm to be given in Sect. 5 extends to the
multi-channel version of the logic in a straightforward manner, and our implementation
supports the multi-channel version of the logic. For simplicity, we present the semantics
of contracts using the single-channel version of the logic.

We now give a more convenient notation for triples of the form {Θ} P {Θ′}. A
flow judgement κ is of the form Θ � Θ′, with Θ the precondition and with Θ′ the
postcondition. We say that Θ � Θ′ is valid for command S, written S |= Θ�Θ′, if
whenever s1&s2 |= Θ and s1 [[S]]s′1 and s2 [[S]] s′2 then also s′1&s′2 |= Θ′ (if the 2-
assertions in the precondition hold for input states s1 and s2, the postcondition must
also hold for associated output states s′1 and s′2).

4.2 Language Design for Conditional SPARK Contracts

The logic of the preceding section is potentially much more powerful than what we ac-
tually want to expose to developers – instead, we view it as a “core calculus” in which
information flow reasoning is expressed. To determine how much of the power of the
logic we wish to expose to developers in enhanced SPARK conditional information flow
contracts, our design goals are: (1) writing the contracts should be as simple as possi-
ble, (2) the contracts should be able to capture common idioms of MILS information
guarding, (3) the contract checking framework should be compositional so as to support
MILS goals, and (4) there should be a natural progression (e.g., via formal refinements)
from unconditional derives statements to conditional statements.

Simplifying assertions: The agreement assertions from the logic of Sect. 3 have the
form φ ⇒ E�. Here E is an arbitrary expression (not necessarily a variable), whereas
SPARK derives statements are phrased in terms of IN/OUTvariables only. We believe
that including arbitrary expressions in SPARK conditional derives statements would
add significant complexity for developers, and our experimental studies have shown that
little increase in precision would be gained by such an approach. Instead, we retain the
use of expression-based assertions φ ⇒ E� only during intermediate (automated) steps
of the analysis. Appealing to Fact 1, we have a canonical way of strengthening, at proce-
dure boundaries, φ ⇒ E� to φ ⇒ w1�, . . . , φ ⇒ wk� where fv(E) = {w1, . . . , wk}.
A second simplification relates to the fact that the core logic allows both pre- and post-
conditions to be conditional (e.g., {φ1 ⇒ E1�} P {φ2 ⇒ E2�} where φ1 and φ2
may differ). Based on discussions with developers at Rockwell Collins and initial ex-
periments, we believe that this would expose too much power/complexity to developers
leading to unwieldy contracts and confusion about the underlying semantics. Accord-
ingly, we are currently pursuing an approach in which only preconditions can be condi-
tional. Combining these two simplifications, SPARK derives clauses are extended to
allow conditions on input variables as follows:

derives x from y1 when φ1, . . . , yk when φk
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{Θ} (R)⇐= skip {Θ′} iff R = {(θ, u, θ) | θ ∈ Θ′} and Θ = Θ′

{Θ} (R)⇐= assert(φ0) {Θ′} iff R={((φ ∧ φ0) ⇒ E�, u, φ ⇒ E�) | φ ⇒ E�∈Θ′} and Θ=dom(R)

{Θ} (R)⇐= x := A {Θ′} iff R = {(φ[A/x] ⇒ E[A/x]�, γ, φ ⇒ E�) | φ ⇒ E� ∈ Θ′},
where γ = m iff x ∈ fv(E), and Θ = dom(R)

{Θ} (R)⇐= S1 ; S2 {Θ′} iff {Θ′′} (R2)⇐= S2 {Θ′} and {Θ} (R1)⇐= S1 {Θ′′}
and R={(θ, γ, θ′) | ∃θ′′, γ1, γ2 : (θ, γ1, θ′′)∈R1, (θ′′, γ2, θ′)∈R2}, where γ = m iff γ1 =m or γ2 =m

{Θ} (R)⇐= if B then S1 else S2 {Θ′}
iff {Θ1} (R1)⇐= S1 {Θ′} , {Θ2} (R2)⇐= S2 {Θ′} , R = R′

1 ∪ R′
2 ∪ R′

0 ∪ R0, and Θ = dom(R),
where R′

1 = {((φ1 ∧ B) ⇒ E1�, m, θ′) | θ′ ∈ Θ′
m, (φ1 ⇒ E1�, , θ′) ∈ R1}

and R′
2 = {((φ2 ∧ ¬B) ⇒ E2�, m, θ′) | θ′ ∈ Θ′

m, (φ2 ⇒ E2�, , θ′) ∈ R2}
and R′

0 = {(((φ1∧B)∨(φ2∧¬B))⇒B�, m,θ′) |θ′∈Θ′
m,(φ1⇒E1�, ,θ′)∈R1, (φ2⇒E2�, ,θ′)∈R2}

and R0 = {(((φ1∧B)∨(φ2∧¬B))⇒E�, u,θ′) |θ′ ∈Θ′
u,(φ1⇒E�, u, θ′)∈R1,(φ2⇒E�, u, θ′)∈R2}

and Θ′
m = {θ′ ∈ Θ′ | ∃( , m, θ′) ∈ R1 ∪ R2} and Θ′

u = Θ′ \ Θ′
m

{Θ} (R)⇐= call p {Θ′}
iff R = Ru ∪ R0 ∪ Rm and Θ = dom(R),
where Ru = {(rm+

OUTP
(φ) ⇒ E�, u, φ ⇒ E�) | (φ ⇒ E�) ∈ Θ′ ∧ fv(E) ∩ OUTP = ∅}

and R0 = {(rm+
OUTP

(φ)⇒x�, m, φ⇒E�) |(φ⇒E�)∈Θ′∧fv(E)∩OUTP = ∅∧x∈ fv(E)∧x /∈OUTP }
and Rm = {(rm+

OUTP
(φ) ∧ φy

x ⇒ y�, m, φ ⇒ E�)
| (φ ⇒ E�)∈Θ′ ∧ x∈ fv(E) ∩ OUTP ∧ φy

x ⇒ y� among preconditions for x� in p’s summary }
{Θ} (R)⇐= while B do S0 {Θ′}

iff R = Ru ∪ Rm and Θ = dom(R), where for each x (in X) we inductively in i define φi
x, Θi, Ri, ψi

x by
φ0

x =
W{φ | ∃E : (φ ⇒ E�)∈Θ′ ∧ x∈ fv(E)}, Θi ={φi

x ⇒ x� | x∈X}, { } (Ri)⇐= S0 {Θi}
ψi

x =
W{φ | ∃(φ ⇒ E�, , ) ∈ Ri, x ∈ fv(E) or x ∈ fv(B), ∃(θ, m, θ′) ∈ Ri, φ ∈ {ant(θ), ant(θ′)}}

φi+1
x = if ψi

x �1 φi
x then φi

x else φi
x � ψi

x,
and j is the least i such that Θi =Θi+1, and Rm ={(θ, m, θ′) | θ′ ∈ Θ′

m ∧ θ ∈ Θj ∪ {true ⇒ 0�}}
and Ru ={(φ ⇒ E�, u, θ′) |θ′∈Θ′

u,E =con(θ′),(fv(E)=∅,φ= true)∨(fv(E) =∅,φ=
W

x∈fv(E)(φ
j
x))},

and Θ′
m ={θ′ ∈ Θ′ | ∃x ∈ fv(con(θ′)) : ∃( , m, ⇒ x�) ∈ Rj} and Θ′

u = Θ′ \ Θ′
m

Fig. 4. The Precondition Generator

Here φ1 . . . φk are boolean expressions on the pre-state of the associated procedure
P . Thus, the above specification can be read as “The value of variable x at the conclu-
sion of executing P (for any final state s′) is derived from those yj where φj holds in
the pre-state s from which s′ is computed.” Figure 2(b) shows how this can be used to
specify conditional flows for procedure MACHINE STEP in Fig. 1.

Design methodology separating guard logic from flow logic: The lack of conditional
assertions in post-conditions has the potential to introduce imprecision. Yet, we believe
the above approach to conditional expressions can be effective for the following reason:
we have observed that information assurance application design tends to factor out the
guarding logic (i.e., the pieces of state and associated state changes that determine
when information can flow) from the code which propagates information. This follows
a common pattern in embedded systems in which the control logic is often factored out
from data computation logic.

Contract abstraction and refinement:For a practical design and development method-
ology, it is important to consider notions of contract abstraction (generalization) and
refinement – ideally, conditional contracts should be a refinement of unconditional con-
tracts. For example, we believe it will be easier to introduce conditional contracts into
workflows if developers can: (1) make a rough cut at specifying information flows
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without conditions, and (2) systematically refine to produce conditional contracts, per-
haps assisted by expert verification engineers. Conversely, if developers decide not to
pursue a verification approach based on our conditional contracts, we want them to be
able to safely abstract all conditional contracts back to unconditional SPARK contracts.

We now establish the desired notion of contract refinement (in terms of the general
underlying calculus instead of its limited exposure in SPARK), by defining a relation
between flow judgements: κ1 �κ κ2, pronounced “κ1 refines κ2”, to hold iff for all
commands S, whenever S |= κ1 then also S |= κ2. To gain the proper intuition about
contract refinement, it is important to note that the refinement relation is contra-variant
in the pre-condition and co-variant in the post-condition: given κ1 ≡ Θ1 �Θ′

1 and
κ2 ≡ Θ2 �Θ′

2, if Θ2 �2 Θ1 and Θ′
1 �2 Θ′

2 then κ1 �κ κ2. For example, x� �

y� �κ x�, y� � y� holds because x�, y� �2 x� (Section 3). Intuitively, this
captures the fact that a contract can always be abstracted to a weaker one by stating that
the output variables may depend on additional input variables. This illustrates that our
contracts capture “may” dependence modalities: output y may depend on both inputs
x and y, but a refinement x� � y� shows that output y need not depend on input y
(the contract before refinement is an over-approximation of dependence information).
Also, we have (z<7 ⇒ x�� y�)�κ (x��y�) which realizes our design goals of
achieving: (a) a formal refinement by adding conditions to a contract, and (b) a formal
(safe) abstraction by removing conditions.

5 A Precondition Generation Algorithm

We define in Fig. 4 an algorithm Pre for inferring preconditions from postconditions.
We write {Θ} (R) ⇐= S {Θ′} when, given command S and postcondition Θ′, Pre
returns a precondition Θ for S that is designed so as to be sufficient to establish Θ′, and
a relation R that associates each 2-assertion θ ∈ Θ′ with the 2-assertions in Θ needed
to establish θ. R captures dependences between variables before and after the execution
of S, and it also supports reasoning about multiple channels of information flow as
discussed in Sect. 4.1, e.g., if {y1y2�x, y1y3�z} S {x�x, z�z} then R will relate y1
to x and to z, y2 to x, and y3 to z. More precisely, we have R ⊆ Θ × {m, u} × Θ′

where tags m,u are mnemonics for “modified” and “unmodified”; if (θ, u, θ′) ∈ R then
additionally it holds that S modifies no “relevant” variable, where a “relevant” variable
is one occurring in the consequent of θ′. We use γ to range over {m, u}, and write
dom(R) = {θ | ∃(θ, , ) ∈ R} and ran(R) = {θ′ | ∃( , , θ′) ∈ R}.

Correctness results: If {Θ} ( )⇐= S {Θ′} then Θ is indeed a precondition (but not
necessarily the weakest such) that is strong enough to establish Θ′, as stated by:

Theorem 2 (Correctness). Assume {Θ} ( )⇐= S {Θ′} . Then S |= Θ�Θ′. That is,
if s&s1 |= Θ, and s′, s′1 are such that s [[S]] s′ and s1 [[S]] s′1, then s′&s′1 |= Θ′.

Note that Theorem 2 is termination-insensitive; this is not surprising given our choice
of a relational semantics (but see [3] for a logic-based approach that is termination-
sensitive). Also note that correctness is phrased directly wrt. the underlying semantics,
unlike [2,1] which first establish the semantic soundness of a logic and next provide a
sound implementation of that logic. Theorem 2 is proved [5] much as the corresponding
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result [4] (that handled a language with heap manipulation but without procedure calls
and without automatic computation of loop invariants), by establishing some auxiliary
properties (e.g., the R component) that have largely determined the design of Pre.

Intraprocedural analysis: We now explain the various clauses of Pre in Fig. 4, where
the clause for skip is trivial. For an assignment x := A, each 2-assertion φ ⇒ E� in
Θ′ produces exactly one 2-assertion in Θ, given by substituting A for x (as in standard
Hoare logic) in φ as well as in E; the connection is tagged m when x occurs in E. For
example, if S is x := w then R might contain the triplets (q > 4 ⇒ w�, m, q > 4 ⇒
x�) and (w > 3 ⇒ z�, u, x > 3 ⇒ z�). The rule for S1 ; S2 works backwards, first
computing S2’s precondition which is then used to compute S1’s; the tags express that
a consequent is modified iff it has been modified in either S1 or S2. The rule for assert
allows us to weaken 2-assertions, by strengthening their antecedents; this is sound since
execution will abort from stores not satisfying the new antecedents.

To illustrate and motivate the rule for conditionals, we shall use Fig. 3(a) where,
given postcondition OUT 0 DAT�, the then branch generates (as the domain of R1)
precondition IN 1 DAT� which by R′

1 contributes the first conditional assertion of the
overall precondition. The skip command in the implicit else branch generates (as the
domain of R2) precondition OUT 0 DAT� which by R′

2 contributes the second condi-
tional assertion of the overall precondition. We must also capture that two runs, in order
to agree on OUT 0 DAT after the conditional, must agree on the value of the test B; this
is done by R′

0 which generates the precondition (true ∧ B) ∨ (true ∧ ¬B) ⇒ B�; op-
timizations (not shown) in our algorithm simplify this to B� and then use Fact. 1 to
split out the variables in the conjuncts of B into the two unconditional assertions of the
overall precondition. Finally, assume the postcondition contained an assertion φ ⇒ E�

where E is not modified by either branch: if also φ is not modified then φ ⇒ E� be-
longs to both R1 and R2, and hence by R0 also to the overall precondition; if φ is
modified by one or both branches, R0 generates a more complex antecedent for E�.

Interprocedural analysis: Recall from Sect. 4.2 that for a procedure summary, we
allow only variables as consequents, and allow conditional assertions only in the pre-
conditions. At a call site call p, antecedents in the call’s postcondition will carry over
to the precondition, provided that they do not involve variables in OUTP . Otherwise,
since our summaries express variable dependencies but not functional relationships, we
cannot state an exact formula for modifying antecedents (unlike what is the case for
assignments). Instead, we must conservatively strengthen the preconditions, by weak-
ening their antecedents; this is done by an operator rm+ such that if φ′ = rm+

X(φ)
(where X = OUTp) then φ logically implies φ′ where φ′ does not contain any vari-
ables from X . A trivial definition of rm+ is to let it always return true (which drops
all conditions associated with X), but we can often get something more precise; for
instance, we can choose rm+

{x}(x > 7 ∧ z > 5) = (z > 5).
Equipped with rm+, we can now define the analysis of procedure call, as done

in Fig. 4 and illustrated in Fig. 3(b). In Fig. 4, Ru deals with assertions (such as
x > 5 ∧ z > 7 ⇒ v� in the example) whose consequent has not been modified by the
procedure call (its “frame conditions” determined by the OUT declaration). For an as-
sertion whose consequent E has been modified (such as x > 7 ∧ z > 5 ⇒ (x + u)�),
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Table 1. Experiment Data (excerpts)

Flows Cond. Flows Gens. Time (seconds)
Package.Procedure Name LoC C L P O SF 1 2 1 2 1 2 1 2
Autopilot.AP.Altitude.Pitch.Rate.History Average 10 0 1 0 1 2 5 3 0 0 0 0 0.047 0.063
Autopilot.AP.Altitude.Pitch.Rate.Calc Pitchrate 13 2 0 2 2 7 17 8 0 0 15 15 0.000 0.015
Autopilot.AP.Altitude.Pitch.Target Rate 17 4 0 1 1 3 53 4 42 0 142 46 0.015 0.015
Autopilot.AP.Heading.Roll.Target ROR 15 3 0 1 1 2 4 3 0 0 26 26 0.000 0.000
Autopilot.AP.Heading.Roll.Target Rate 11 2 0 1 1 3 9 4 0 0 14 14 0.000 0.000
Autopilot.AP.Control 19 1 0 13 8 46 58 54 0 0 63 51 0.016 0.032
Autopilot.Scale.Scale Movement 22 4 0 2 1 4 47 10 46 9 0 0 0.016 0.000
Minepump.Logbuffer.ProtectedWrite 8 1 0 0 5 9 9 9 4 4 0 0 0.031 0.047
Mailbox.MACHINE STEP 17 2 0 0 6 16 18 18 12 12 0 0 0.047 0.062
Mailbox.Main 6 0 1 1 6 16 54 22 0 0 2 2 0.031 0.016
BoilerWater-Monitor.FaultIntegrator.Test 11 3 0 0 4 11 46 22 42 18 0 0 0.047 0.047
BoilerWater-Monitor.FaultIntegrator.Main 11 0 1 6 2 2 14 4 0 0 0 0 0.016 0.016
Lift-Controller.Poll 22 2 1 3 2 9 77 12 43 0 0 0 0.031 0.031
Lift-Controller.Traverse 18 0 1 11 3 10 210 13 66 0 0 0 0.281 0.063
Missile Guidance.Clock Read 12 2 0 0 3 5 13 11 10 8 0 0 0.047 0.047
Missile Guidance.Extrapolate Speed 13 2 0 2 2 7 14 10 6 4 36 16 0.000 0.000
Missile Guidance.Code To State 12 3 0 0 1 7 15 9 14 8 0 0 0.000 0.000
Missile Guidance.Transition 20 4 0 2 1 9 3527 63 3524 62 4 4 0.156 0.125
Missile Guidance.Drag cfg.Calc Drag 21 4 0 1 1 3 37 3 34 0 0 0 0.000 0.000
Missile Guidance.Nav.Handle Airspeed 18 4 0 4 3 13 117 28 110 25 18 18 0.000 0.000
Missile Guidance.Nav.Estimate Height 21 5 0 2 2 11 60 18 57 16 4 4 0.000 0.000

we must ensure that the variables of E agree after the procedure call (when the an-
tecedent holds). For those not in OUTp (such as u), this is done by R0 (which expresses
some “semi frame conditions”); for those in OUTp (such as x), this is done by Rm

which utilizes the procedure summary (contract) of the called procedure.

Synthesizing loop invariants: For while loops (the only iterative construct), the idea is
to consider assertions of the form φx ⇒ x� and then repeatedly analyze the loop body
so as to iteratively weaken the antecedents until a fixed point is reached. Illustratively:

while i < 7 do
if odd(i)
then r := r + v; v := v + h
else v := x;
i := i + 1

{r�}

Iteration 0 1 2 3
false false false false ⇒ h�

false true true true ⇒ i�
true true true true ⇒ r�

false odd(i) odd(i) odd(i) ⇒ v�

false false ¬odd(i) true ⇒ x�

Here we are given r� as postcondition; hence the initial value of r’s antecedent is
true whereas all other antecedents are initialized to false. The first iteration updates v’s
antecedent to odd(i) (we use odd(i) as a shorthand for i mod 2 = 1), since v is used
to compute r when i is odd, and also updates i’s antecedent to true, since (the parity
of) i is used to decide whether r is updated or not. The second iteration updates x’s
antecedent to ¬odd(i), since in order for two runs to agree on v when i is odd, they
must have agreed on x in the previous iteration when i was even. The third iteration
updates x’s antecedent to true, since in order for two runs to agree on x when i is
even, then must agree on x always (as x doesn’t change). We have now reached a fixed
point. It is noteworthy that even though the postcondition mentions r�, and r is updated
using v which in turn is updated using h, the generated precondition does not mention
h, since the parity of i was exploited. This shows [4] that even if we should only aim
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at producing contracts where all assertions are unconditional, precision may still be
improved if the analysis engine makes internal use of conditional assertions.

In the general case, however, fixed point iteration may not terminate. To ensure termi-
nation, we need a “widening operator”  on 1-assertions, with the following properties:
(a) for all φ and ψ, ψ logically implies ψ φ, and also φ logically implies ψ φ; (b) if
for all i we have that φi+1 is of the form φi  ψ, then the chain {φi | i ≥ 0} eventually
stabilizes. A trivial widening operator is the one that always returns true, in effect con-
verting conditional agreement assertions into unconditional. A less trivial option will
utilize a number of assertions, say ψ1 . . . ψk, and allow ψ  φ = ψj if ψj is logically
implied by ψ as well as by φ; such assertions may be given by the user if he has a hint
that a suitable invariant may have one of ψ1 . . . ψk as antecedent.

6 Evaluation

The algorithm of Section 5 provides a foundation for automatically inferring contracts
from implementations, but can also be used for checking derives contracts supplied
by a developer: the verification condition will be that the contract pre-condition implies
the inferred pre-condition. In principle, this approach may reject a sound contract since
the inference algorithm does not always generate the weakest pre-condition.

There is much merit in a methodology that encourages writing of the contract be-
fore writing/checking the implementation. However, one of our strategies for injecting
our techniques into industrial development groups is to pitch the tools as being able
to discover more precise conditional specifications to supplement conventional SPARK
derives contracts already in the code; thus we focus the experimental studies of this
section on the more challenging problem of automatically inferring conditional con-
tracts starting from code with no existing derives annotations.

For each procedure P with OUTP = {w1, . . . , wk}, the algorithm analyzes the body
wrt. a post-condition w1�1, . . . , wk�k. Since SPARK disallows recursion, we simply
move in a bottom-up fashion through the call-graph – guaranteeing that a contract exists
for each called procedure. When deployed in actual development, one would probably
allow developers to tweak the generated contracts (e.g., by removing unnecessary con-
ditions for establishing end-to-end policies) before proceeding with contract inference
for methods in the next level of the call hierarchy. However, in our experiments, we
used autogenerated contracts for called methods without modification. All experiments
were run under JDK 1.6 on a 2.2 GHz Intel Core2 Duo.

Code bases: Embedded security devices are the initial target domain for our work, and
the security-critical sections to be certified from these code bases are often relatively
small, e.g., roughly 1000 LOC for one Rockwell Collins high assurance product and
3000 LOC for a device recently certified by Naval Research Labs researchers [14]. For
our evaluation, we consider a collection of five small to moderate size applications from
the SPARK distribution, in addition to an expanded version of the mailbox example of
Section 2. Of these, the Autopilot and Missile Control applications are the most realis-
tic. There are well over 250 procedures in the code bases, but due to space constraints,
in Table 1 we list metrics for only the most complex procedures from each application
(see [27] for the source code of all the examples). Columns LOC, C, L, and P report
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the number of non-comment lines of code, conditional expressions, loops, and proce-
dure calls in each method. Our tool can run in two modes. The first mode (identified
as version 1 in Table 1) implements the rules of Figure 4 directly, with just one small
optimization: a collection of boolean simplifications are introduced, e.g., simplifying
assertions of the form true ∧ φ ⇒ E� to φ ⇒ E�. The second mode (version 2 in
Table 1) enables a collection of simplifications aimed at compacting and eliminating
redundant flows from the generated set of assertions. One simplification performed is
elimination of assertions with false in the antecedent (these are trivially true), and elim-
ination of duplicate assertions. Also, it eliminates simple entailed assertions, such as
φ ⇒ E� when true ⇒ E� also appears in the assertion set.

Typical refinement power of the algorithm: Column O gives the number of OUT
variables of a procedure (this is equal to the number of derives clauses in the original
SPARK contract), and Column SF gives the number of flows (total number of IN/OUT
pairs) appearing in the original contract. Column Flows gives the number of flows gen-
erated by different versions of our algorithm. This number increases over SF as SPARK
flows are refined into conditional flows (often creating two or more conditioned flows
for a particular IN/OUT variable pair). The data shows that the compacting optimiza-
tions often substantially reduce the number of flows; the practical impact of this is to
substantially increase the readability/tractability of the contracts. Column Cond. Flows
indicates the number of flows from Flows that are conditional. We expect to see the re-
fining power of our approach in procedures with conditionals (column C) primarily, but
we also see increases in precision that is due to conditional contracts of called proce-
dures (column P). In a few cases we see a blow-up in the number of conditional flows.
The worse case is MissileGuidance.Transition, which contains a case statement
with each branch containing nested conditionals and procedure calls with conditional
contracts – leading to an exponential explosion in path conditions. Only a few vari-
ables in these conditions lie in what we consider to be the “control logic” of the system.
The tractability of this example would improve significantly with the methodology sug-
gested earlier in which developers declare explicitly the guarding variables (such as
IN 1 RDY of Fig. 1), thus allowing the algorithm to omit tracking of conditional flows
not associated with declared guard variables. A manual inspection of each inferred con-
tract showed that the algorithm usually produces conditions that an expert would expect.

Efficiency of inference algorithm: As can be see in the Time columns, the algorithm
is quite fast for all the examples, usually taking a little longer in version 2 (all optimiza-
tions on). However, for some examples, version 2 is actually faster; these are the cases
of procedures with calls to other procedures. Due to the optimizations, the callees now
have simpler contracts, simplifying the processing of the caller procedures.

Sources of loss of precision: We would like to determine situations where our treatment
of loops or procedure calls leads to abstraction steps that discard conditional informa-
tion. While this is difficult to determine for loops (one would have to compare to the
most precise loop invariant – which would need to be written by hand), Column Gens.
indicates the number of conditions dropped across processing of procedure calls. The
data shows, and our experience confirms, that the loss of precision is not drastic (in
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some cases, one wants conditions to be discarded), but more experience is needed to
determine the practical impact on verification of end-to-end properties.

7 Related Work

The theoretical framework for the SPARK information flow framework is provided by
Bergeretti and Carré [9] who presents a compositional method for inferring and check-
ing dependences among variables. That approach is flow-sensitive, whereas most secu-
rity type systems [26,6] are flow-insensitive as they rely on assigning a security level
(“high” or “low”) to each variable. Chapman and Hilton [10] describe how SPARK
information flow contracts could be extended with lattices of security levels and how
the SPARK Examiner could be enhanced to check conformance of flows to particular
security levels. Those ideas could be applied directly to provide security levels of flows
in our framework. Rossebo et al.[20] show how the existing SPARK framework can be
applied to verify various unconditional properties of a MILS Message Router. Apart
from Spark Ada, there exists several tools for analyzing information flow properties,
notably Jif (Java + information flow) which is based on [17]), and Flow Caml [22].

The seminal work on agreement assertions is [2], whose logic is flow-sensitive,
and comes with an algorithm for computing (weakest) preconditions, but the approach
does not integrate with programmer assertions. To address that, and to analyze heap-
manipulating languages, the logic of [1] employs three kinds of primitive assertions:
agreement, programmer, and region (for a simple alias analysis). But, since those can
be combined only through conjunction, programmer assertions are not smoothly inte-
grated, and it is not possible to capture conditional information flows. That was what
motivated Amtoft & Banerjee [4] to introduce conditional agreement assertions, for a
heap-manipulating language. This paper integrates that approach into the SPARK set-
ting (whose lack of heap objects allows us to omit the “object flow invariants” of [4])
for practical industrial development, adds interprocedural contract-based compositional
checking, adds an algorithm for computing loop invariants (rather than assuming the
user provides them), and provides an implementation as well as reports on experiments.

A recently popular approach to information flow analysis is self-composition, first
proposed by Barthe et al. [8] and later extended by, e.g., Terauchi and Aiken [24] and
(for heap-manipulating programs) Naumann [18]. Self-composition works as follows:
for a given program S, a copy S′ is created with all variables renamed (primed); with
the observable variables say x, y, then non-interference holds provided the sequential
composition S; S′ when given precondition x = x′ ∧ y = y′ also ensures postcondition
x = x′ ∧ y = y′. This is a property that can be checked using existing static verifiers.

Darvas et al. [11] use the KeY tool for interactive verification of non-interference;
information flow is modeled by a dynamic logic formula, rather than by assertions.

When it comes to conditional information flow, the most noteworthy existing tool is
the slicer by Snelting et al [23] which generates path conditions in program
dependence graphs for reasoning about end-to-end flows between specified program
points/variables. In contrast, we provide a contract-based approach for compositional
reasoning about conditions on flows with an underlying logic representation that can
provide external evidence for conformance to conditional flow properties. We have
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recently received the implementation of the approach in [23], and we are currently
investigating the deeper technical connections between the two approaches.

Finally, we have already noted how our work has been inspired by and aims to
complement previous ground-breaking efforts in certification of MILS infrastructure
[13,14]. While the direct theorem-proving approach followed in these efforts enables
proofs of very strong properties beyond what our framework can currently handle, our
aim is to dramatically reduce the labor required, and the potential for error, by integrat-
ing automated techniques directly on code, models, and developer workflows to allow
many information flow verification obligations to be discharged earlier in the life cycle.

8 Conclusion

We have presented what we believe to be an effective and developer-friendly framework
for specification and automatic checking of conditional information flow properties,
which are central to verification and certification of information applications hoping
to provide MLS solutions. The directions that we are pursuing are inspired directly by
challenge problems presented to us by industry teams using SPARK to develop MLS
components. The initial prototyping and evaluation of our framework has produced
promising results, and we are pressing ahead with evaluating our techniques against
actual product codebases developed at Rockwell Colins. A crucial concern in this ef-
fort will be to develop design and implementation methodologies for (a) exposing and
checking conditional information flows, (b) specifying and checking security levels of
data along conditional flows, and (c) investigating a more precise treatment of arrays as
presented in the extended version of this paper [5].
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9. Bergeretti, J.-F., Carré, B.A.: Information-flow and data-flow analysis of while-programs.
ACM TOPLAS 7(1), 37–61 (1985)

http://www.sireum.org


Specification and Checking of Software Contracts 245

10. Chapman, R., Hilton, A.: Enforcing security and safety models with an information flow
analysis tool. In: SIGAda 2004, Atlanta, Georgia, November 2004, pp. 39–46. ACM, New
York (2004)
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Abstract. The Java Modeling Language (JML) recently switched to an asser-
tion semantics based on “strong validity” in which an assertion is taken to be 
valid precisely when it is defined and true. Elsewhere we have shared our posi-
tive experiences with the realization and use of this new semantics in the con-
text of ESC/Java2. In this paper, we describe the challenges faced by and the 
redesign required for the implementation of the new semantics in the JML Run-
time Assertion Checker (RAC) compiler. Not only is the new semantics effec-
tive at helping developers identify formerly undetected errors in specifications, 
we also demonstrate how the realization of the new semantics is more effi-
cient—resulting in more compact instrumented code that runs slightly faster. 
More importantly, under the new semantics, the JML RAC can now compile 
sizeable JML annotated Java programs (like ESC/Java2) which it was unable to 
compile before. 

1   Introduction  

The assertion semantics of the Java Modeling Language (JML) [13, 17], a behavioral 
interface specification language for Java, was formerly founded on a classical defini-
tion of validity. Elsewhere we have demonstrated that  

• this semantics was not faithfully implemented [4] by either of the two main JML 
tools [1] (namely, jmlc, the JML Runtime Assertion Checker (RAC) Compiler 
and ESC/Java2) and that in any case, 

• a comprehensive survey of programmers, mainly from industry, indicated that this 
is not the semantics that they want [3]. 

Hence, a new assertion semantics for JML based on “strong validity” was recently 
proposed [2, 4] and adopted [20, §2.7]. Under such a semantics, an assertion is taken 
as valid when its evaluation does not result in partial functions being applied to values 
outside their domain and, the assertion evaluates to true. In terms of runtime assertion 
checking (RAC), this means that an assertion is considered valid if and only if its 
evaluation (terminates and) results in true without raising an exception. 

We have begun the realization of the new assertion semantics in ESC/Java2 [4]. In 
this paper, we explain how the JML RAC has been adapted to conform to the new 
semantics and some of the challenges that we faced. We also demonstrate how the  
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public class Person { 
  /*@ spec_public */ private String name; // a spec_public field
  /*@ spec_public */ private int age;     // can be used in public specs
  //@ public invariant age >= 0; 
  //@ requires age >= 0; 
public Person(String n, int age) { this.name = n; this.age = age; } 

  //@ ensures age == \old(age) + 1; 
public void birthday() { age++; } 

}  

Fig. 1. Person class annotated with JML 

realization of the new semantics helped us find new bugs in JML specifications and 
that it is more efficient, resulting in smaller instrumented bytecode that runs slightly 
faster. More importantly, under the new semantics, the JML RAC can now compile 
sizeable JML annotated Java programs (like ESC/Java2) which it was unable to com-
pile before. 

This paper first compares both the old classical and new assertion semantics before 
giving more details on the JML RAC and its design. Then, we present an overview of 
how we had to modify the JML RAC to support the new assertion semantics and how 
we assessed the validity of our work.  

2   JML Assertion Semantics 

Among other things, the Java Modeling Language brings Design by Contract to Java [6, 
18]. Hence, in particular, classes can be annotated with invariants and methods adorned 
with contracts expressed using preconditions and postconditions inside Java comments 
starting with a leading “@”—see Fig. 1. Invariants, pre- and post-conditions are  
expressed using assertions, which in the case of JML, consist of (the side-effect free 
subset of) Java boolean expressions enhanced with some extra operators and con-
structs—such as logical implication (==>) and quantifiers (\forall, \exists) [20]. 

2.1   Classical Assertion Semantics 

The old classical JML semantics assumed that assertions, even if their syntax is very 
close to that of Java, are to be interpreted as formulas of a classical logic. Under such 
an interpretation, computational issues that can introduce undefinedness such as short-
circuiting of logical operators, exceptions, runtime errors, and informal assertions are 
not explicitly modeled [7, p.29]. Instead, partial functions are modeled as underspeci-
fied total functions [19]. Hence, partial functions applied to values outside their do-
mains are assigned a fixed, though unspecified value.  

2.2   RAC Approximation of the Old Semantics through Game-playing 

Conformant with this view of assertions, the JML RAC-compiled bytecode will al-
ways consider an assertion as satisfied or violated; it will never be declared as invalid. 
Since the evaluation of Java expressions can naturally lead to exceptions, the RAC 
still has to deal with undefinedness. In its attempt to emulate classical two-valued 
logic from Java’s three-valued operational semantics, the RAC resorts to a game-
playing strategy as we explain next. 
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Table 1. Game played by the JML RAC to approximate classical logic 

Value assigned to … 

(*informal*) x/0 == y 

Value of  
top-level 
assertion 

!(* informal *) && x/0 == y 
i.e. !angelic && demonic False False False 
! (* informal *) && !(x/0 == y) 
i.e. !angelic && !demonic False True False 
(* informal *) || !(x/0 == y) 
i.e. angelic || !demonic True True True 

 
 

In the JML RAC, undefinedness comes in two flavors: demonic and angelic [7, 
pp.30-31]. Demonic undefinedness arises from various runtime errors or exceptions 
that are generated when an assertion expression is evaluated. Angelic undefinedness 
comes from the attempt to evaluate something that is not executable (e.g., an informal 
predicate or some categories of quantified expression). The JML RAC adopts a game-
playing strategy in its attempt to deal with the two kinds of undefinedness. That is, 
generally, the smallest Boolean subexpression containing an undefined term will be 
treated as either true or false depending on the evaluation context. For demonic un-
definedness the JML RAC tries to choose a truth value for the undefined subexpres-
sion that will make the top-level assertion false; whereas for angelic undefinedness 
the RAC will try to make the top-level assertion true [7]. When both angelic and de-
monic undefinedness occurs in the same expression, they each try to influence the 
top-level assertion in the best way they can to meet their respective goals. Table 1 
illustrates the game being played. 

Classical logic does not feature conditional Boolean operators such as conditional 
conjunction (&&). Under the old JML semantics, Java’s conditional operators were 
mapped into their classical non-conditional counterparts. This implied that the JML 
assertion E1 && E2 is equivalent to E2 && E1 [19]. In order to preserve that behavior, 
the JML RAC evaluated both of its operands when the evaluation of the first operand 
is exceptional [7, p.27]. Such a scheme can be confusing for developers since it leads 
to the evaluation of syntactically correct Java expressions differently if done in a Java 
or JML context as illustrated in Table 2. For both expressions, JML will interpret a 
logical or between something (possibly) undefined and something true; hence always 
yielding true in such a case. Java on the other hand will throw an exception upon a 
null pointer dereference. 

2.3   New Semantics Based on Strong Validity 

The original JML RAC semantics guessed a truth value for an invalid assertion; using 
the new semantics, an assertion can be satisfied (evaluated true), violated (false) or  
 

Table 2. Semantic differences between Java and JML 

true || x.length > 0 x.length > 0 || true 

Java Always true if x is not null: true. Otherwise: NullPointerException.
JML Always true Always true  
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invalid (when evaluation does not complete successfully) [4]. Violated and invalid 
assertions are reported as distinct kinds of error. 

Handling Undefinedness.  In our implementation of the new semantics, all logical 
operators behave in the same way in both Java and JML. For instance, a conditional 
disjunction or conjunction whose left-hand subexpression is exceptional would cause 
the resulting expression to be exceptional no matter what the right-hand subexpres-
sion refers to. When an exception or runtime error occurs while evaluating part of an 
assertion, that exception causes the entire assertion to be invalid and the user to be 
notified. In other words, as soon as demonic undefinedness occurs, the evaluation of 
the assertion is halted, and the assertion is reported as invalid. 

The concept of angelic undefinedness cannot be as easily factored out. As was 
mentioned earlier, such undefinedness was associated with non-executable subexpres-
sions and was treated in a way that ensured the top-level expression would be “as true 
as possible”. We do not want assertion expression evaluation to have the overhead of 
game playing. In the new semantics, if an assertion is non-executable (in its entirety 
or in part) then the entire assertion is tagged as non-executable. While most non-
executable assertions can be detected at compile-time, the rest can only be discovered 
at runtime. While it is possible to warn the user that some of the assertions may be 
non-executable, it is not always possible to precisely say if it will always be non-
executable [7, 23]. 

Whether a non-executable assertion should play a role in the overall truth value of 
a specification depends on what the developer wants. In some cases (e.g. during pre-
liminary development, when there is a higher occurrence of incomplete specifica-
tions), one might be willing to ignore them by treating the assertion in which they 
occur as equivalent to true. However, in other situations, to gain extra confidence and 
ensure that the specifications are entirely verified, one may prefer to have non-
executable assertions be reported and make the specification verification fail since 
they cannot be enforced or verified. Non-executable assertions can either be simpli-
fied to true or false, depending on the setting of a JML RAC compilation flag. Trying 
to factor out non-executable expressions from an assertion while trying to infer a truth 
value to the expression would mimic the game played by the previous semantics. We 
believe non-executable assertions should be avoided as they provided very little in the 
context of automated program verification. 

3   JML Runtime Assertion Checker (RAC), Old Semantics 

The JML RAC is part of the Common JML tools suite—formerly known as the ISU 
JML tool suite. It uses a “compilation-based approach” for translating JML specifica-
tions into runtime checking bytecode [7]. Unlike static checkers, which verify pro-
gram properties at compile-time, the JML RAC enables dynamic checking by gener-
ating bytecode that verifies that specifications are satisfied during program execution. 
When an assertion fails, the JML RAC-compiled code generates a runtime error. The 
remainder of this section describes the design and operation of the RAC under the old 
semantics. (As will be seen in the next section, the design changes required to imple-
ment the new semantics have been quite localized.) 
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The JML RAC is built on top of the 
MultiJava (MJ) compiler and uses the 
JML Checker1 for type checking JML 
specifications and as the front-end for 
building an Abstract Syntax Tree (AST). 
JML specification clauses are translated 
into assertion methods. For each Java method, three RAC assertion methods are gen-
erated: one for precondition checking and two for postcondition checking (i.e., for 
normal and exceptional termination). The JML-specified Java methods are instrumented 
using a wrapper approach. The instrumentation process takes the original body of a 
method and extracts it into a private method with a uniquely defined name. The original 
signature of the method is used for the newly created wrapper method hence replacing 
it. The wrapper implements the specification checking logic by calling the original body 
and assertion methods when required. Not only are the preconditions and postconditions 
associated with the method called, but some class-related assertion methods are also 
called (e.g., for invariant and constraint checking [18]). The control flow of the wrapper 
approach to method instrumentation is presented in [7, §4.1]. 

3.1   Code Instrumentation  

Every Java class compiled with the JML RAC contains not only its normal content (as 
would be generated by, e.g., javac), but also an embedding of its specification and 
how to verify it at runtime. Instrumentation code is generated on a per classifier, per 
method, per field, and per assertion basis [9]. Most generated instrumentation code 
gives rise to an overhead that is linear and foreseeable, though for assertion expres-
sions interpreted under the old semantics it used to be polynomial (at least quadratic!) 
as we shall soon illustrate. 

3.1.1   General Assertion Evaluation 
Under the old semantics, JML RAC-generated code that evaluates an assertion ex-
pression tended to be rather verbose because expression evaluation had to emulate 
classical two-valued logic while playing an optimization game with angelic and de-
monic undefinedness. Hence, for example, the JML RAC made extensive use of new 
variables: as a rule of thumb, every subexpression had an associated new internal 
variable used to hold its value. Moreover, each step in the evaluation was done sepa-
rately and had again its own new internal variable, and sometimes its own try block. 
For example, a simple precondition such as the one given in Fig. 2 was translated into 
59 lines of instrumentation code and used 7 new internal variables—see Fig. 3. Upon 
reading the code, one may notice the right-hand side of the && operator is evaluated if 
the left-hand side is exceptional; as mentioned earlier, this different from the Java 
semantics for that operator. 

3.1.2   RAC Generated Code Exceeded JVM and Class File Format Limits 
The JML RAC’s attempt to implement an assertion semantics based on classical two-
valued logic caused the instrumented code to be much larger than the source. We note 
                                                           
1 MultiJava: http://multijava.sourceforge.net/; Java Modeling Language (JML):  

http://www.jmlspecs.org/. 

public int x, y;

//@ requires b && x < y; 
public void m(boolean b) {...}

Fig. 2. A simple method precondition 
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1|  try { 
2|    // eval of && 
3|    boolean rac$v0 = true; 
4|    boolean rac$v1 = false, rac$v2 = false; 
5|    // arg 1 of && 
6|    try { 
7|      rac$v0 = b; 
8|    } 
9|    catch (JMLNonExecutableException jml$e0) { 
10|     rac$v2 = true; 
11|   } 
12|   catch (java.lang.Exception jml$e0) { 
13|     rac$v1 = true; 
14|   } 
15|   if (rac$v0) { 
16|     // arg 2 of && 
17|     try { 
18|       boolean rac$v3 = false, rac$v4 = false; 
19|       int rac$v5 = 0; 
20|       int rac$v6 = 0; 
21|       try { 
22|  rac$v5 = this.x; 
23|       } 
24|       catch (JMLNonExecutableException jml$e0) { 
25|  rac$v4 = true; 
26|       } 
27|       catch (java.lang.Exception jml$e0) { 
28|  rac$v3 = true; 
29|       } 
30|       if (!rac$v3) { 

31|  try { 
32|    rac$v6 = this.y; 
33|  } 
34|  catch (JMLNonExecutableException jml$e0) {
35|    rac$v4 = true; 
36|  } 
37|  catch (java.lang.Exception jml$e0) { 
38|    rac$v3 = true; 
39|  } 
40|       } 
41|       if (rac$v3) { rac$v0 = false; } 
42|       else if (rac$v4) { rac$v0 = true; } 
43|       else try { 
44|        rac$v0 = rac$v5<rac$v6; 
45|       } 
46|       catch (JMLNonExecutableException jml$e0) { 
47|  rac$v0 = true; 
48|       } 
49|       catch (java.lang.Exception jml$e0) { 
50|  rac$v0 = false; 
51|       } 
52|     } 
53|     catch (JMLNonExecutableException jml$e0) { 
54|       rac$v2 = true; 
55|     } 
56|     catch (java.lang.Exception jml$e0) { 
57|       rac$v1 = true; 
58|     } 
59|   } 
60| }  

Fig. 3. Instrumentation code evaluating “requires b && x < y” ( old RAC semantics) 

here that in some cases, the generated code was so large that a Java compiler would 
be unable to process it. For example, in the ESC/Java2 project, there are a few classes 
that could not be compiled using the JML RAC. One of these classes (javafe.ast.-
TypeDeclElem) has an automatically generated postcondition composed of a conjunc-
tion of 118 implications. Unfortunately, the instrumented code generated for verifying 
the postcondition consisted of 15,816 lines of Java which no compiler can success-
fully compile.  This is because the assertion method which checks the postcondition 
had a top-level catch block that was too far away from its try block (due to limitations 
of the JVM instruction set and the Java class file format, the two blocks must compile 
into byte code that is no more than 65535 bytes apart [21, §4.10]). Of course, methods 
with such postconditions are rather rare, but the fact is that the evaluation of expres-
sions following the original semantics JML RAC does not scale and cannot cope with 
heavily specified code. Users should obtain benefits from writing richer specifications 
rather than be penalized. 

4   JML RAC Redesign in Support of Strong Validity 

4.1   Expression Evaluation 

Representing Assertions as a Single Java Expression. Most of the time, an asser-
tion’s body can be evaluated exactly as written (i.e., without having to declare new 
variables for each subexpression). The possible outcomes of such an evaluation are 
true, false, or an error/exception. Hence, if we choose not to model partial functions by 
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underspecified total functions, the evaluation of expressions becomes quite straightfor-
ward, helping us overcome some of the practical limitations mentioned earlier. 

Expression Evaluation under the Old Semantics. Expression-evaluation code was 
generated by RAC expression translators implemented as AST visitors [12]. Given an 
expression to be translated, an expression translator would walk the expression AST 
and build a compound “node” that contained the instrumentation code to evaluate the 
expression at runtime. Such a node could either be wrapped with a try-catch block or 
not. A high-level translator used such nodes whenever it needed for that expression to 
be evaluated while generating the wrapper assertion methods [7]. 

The translation process was achieved by visiting every subexpression of a given 
top-level expression and generating nodes to evaluate the subexpressions. As was 
mentioned earlier, a new variable was usually defined to hold the value of a subex-
pression. Each of the subexpression nodes was stored on a stack. When all of the  
expressions had been visited, the stack of nodes was used to generate an all encom-
passing node that, most often, was wrapped in a try-catch block before being returned 
to the sender. We briefly note that proper handling of quantified expressions is quite 
involved (e.g. requiring specialize heuristic-based static analysis in order to decide 
how, if possible, to evaluate them). Hence we will only describe the handling of quan-
tified expressions in Section 0 for the new semantics. 

New Approach to Expression Evaluation. The implementation of the new semantics 
requires alternate expression translators. For this reason, we created a new general ex-
pression translator usable almost as a simple drop-in replacement for the old (top-level) 
translators. Under the new semantics, there is no need to evaluate subexpressions sepa-
rately through the use of newly declared variables. Precedence of operators is embedded 
in the AST and hence, an appropriate use of parentheses while visiting the tree avoids the 
need for variables. Since, in the new semantics, a clause is either entirely executable or 
not at all, a new runtime exception was created to short-circuit evaluation code genera-
tion in the event that one of the subexpressions is found to be non-executable at compile-
time. At runtime, the expression is evaluated in a top-level try-block that catches two 
things: (i) JMLNonExecutableExceptions (Fig. 4), and (ii) all other errors and exceptions. 
JMLNonExecutableExceptions cause an entire assertion to immediately simplify to true 
(as was mentioned in Section 0, a command line option allows developers to change this 
default to false). Any other exception or error thrown while evaluating an expression is 
caught and wrapped in a JMLEvaluationError before being re-thrown. 

4.2   Handling Quantified Expressions 

Quantified expressions, unlike other simpler expressions, cannot have their evaluation 
code mechanically derived. They have to be analyzed beforehand. In order to properly 
analyze quantified expressions and derive the best way to verify them at runtime, the 
JML RAC provides a special package and translator that, like the other high-level 
translators, uses the (base) expression translator to evaluate expressions. In order to 
reuse the existing quantifier evaluation package while implementing our new direct 
expression evaluation approach, we decided to wrap the output of the quantifier trans-
lator into an inner class that is used in the evaluation of the assertion instead of the 
quantified expression as described in [23]. 
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Fig. 4. Modified error hierarchy of the JML RAC runtime package 

public static ArrayList myList = new ArrayList();

//@ requires (x > y) || (x < 0) || 
//@  (\forall Object obj;  
//@         myList.contains(obj); obj instanceof Integer); 
public void m(int x, int y) {...}  

Fig. 5. Sample assertion containing a quantified subexpression 

Consider the specification fragment of Fig. 5. Under the new semantics, RAC code 
for the method’s precondition is as shown in Fig. 6. Note that the try block starts with 
the definition of the inner class rac$v4 whose eval() method performs the evaluation 
of the quantified subexpression. The statement following the inner class definition 
instantiates the class. Finally, the last statement of the try block, marked (*), is the one 
that can be clearly seen to correspond to the requires clause expression of Fig. 5. 

5   Validation: Assessment and Statistics 

Basic Validation: Regression Testing. The Common JML tool suite is supported by 
an extensive collection of automated tests. These tests, numbering in the thousands, 
help developers ensure the integrity of the tool suite following any modification. The 
test suite for the JML RAC consists of approximately 500 test files, each containing 
several test cases. Out of those, more than 375 are grouped under the racrun package, 
whose purpose is to test the runtime behavior of RAC-compiled code—this is in con-
trast to, e.g., testing the behavior of the JML RAC. In particular, the racrun package 
is meant to test all JML statements and expressions individually and in various com-
binations. The test coverage of the racrun package is considered sufficiently com-
plete. For the purpose of testing the new assertion semantics we adapted the racrun  
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try {
class rac$v4 {

public boolean eval() {
   boolean rac$v0 = false;
   java.util.Collection rac$v1 = new java.util.HashSet();
   java.util.Collection rac$v3 = MyClass.myList;
   rac$v1.addAll(rac$v3);
   java.util.Iterator rac$v2 = rac$v1.iterator();
   rac$v0 = true;
   while (rac$v0 && rac$v2.hasNext()) {
    java.lang.Object obj = (java.lang.Object) rac$v2.next();
    rac$v0 = (!(MyClass.myList.contains(obj))  
                        || obj instanceof java.lang.Integer);
   }
   return rac$v0;
  }
 }
 rac$v4 rac$v0Evaluator = new rac$v4();
 rac$pre4 = (((x > y) || (x < 0)) || rac$v0Evaluator.eval()); // (*)
} catch (JMLNonExecutableException rac$v5$nonExec) {
 rac$pre4 = true;
} catch (Throwable rac$v6$cause) {
 JMLChecker.exit();

throw new JMLRacExpressionEvaluationError("Invalid Expression in 
\"FM08.java\", line 36, character 10", rac$v6$cause);

}  

Fig. 6. RAC Code for precondition evaluation of method m() 

package to support the expected output of the new semantics and ensured that all unit 
tests passed successfully. 

Testing Code Generation Robustness. Aside from racrun tests, we also success-
fully compiled all the JML model classes, which are heavily annotated classes that 
specify abstract data types such as sequences, sets and bags. The model classes exten-
sively use of the features of JML. Such a test suite helped us discover some design 
flaws that surfaced in rare circumstances. Most of them were for situations where 
operator precedence is not preserved during the translation from JML to Java. 

While the racrun package gave us confidence in the behavior of the generated 
code, ensuring that the model classes could yield properly formed instrumented 
source code when compiled using the new assertion semantics demonstrated the ro-
bustness of the code generation for the new semantics. 

Assessing Improved Capabilities. One of the goals of the JML community is to use 
its own tools. As was mentioned earlier, prior attempts to compile ESC/Java2 [11] 
with the JML RAC demonstrated that for a few source files, it would generate instru-
mentation code that had such large try blocks that it was impossible to represent them 
 

1|try { 
2|  rac$pre0 = (b && (this.x < this.y)); 
3|} catch (JMLNonExecutableException rac$v0$nonExec) { 
4|  rac$pre0 = true;  
5|} catch (Throwable rac$v1$cause) { 
6|  JMLChecker.exit(); 
7| throw new JMLRacExpressionEvaluationError("Invalid Expression in \"...\", line 5, ...", rac$v1$cause);
8|}  

Fig. 7. Evaluation of precondition in the modified RAC 
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Table 3. ESC/Java2 source code statistics for  escjava and javafe  packages 

Source code size (measured in MB) Old Semantics New Sem. New/Old 
Escjava Instrumented source code 33.6 26.5 7.1  78.9% 
Escjava Instrumented bytecode 12.2 9.8 2.4  80.3% 

Javafe Instrumented source code 35.5 
30.5*

21.7 
21.6*

13.8 
8.9*

 61.1% 
 70.8%*

Javafe Instrumented bytecode 10.7 8.0 2.7  74.8%  
* Adjusted measurement in which we removed the code size for two files that could not be 

compiled under the old semantics due to the excessive size of try blocks in the instru-
mentation code. 

in bytecode. We verified that with the new semantics, such a problem did not happen as 
all files were amenable to RAC compilation. Moreover, for the files that compiled using 
both semantics, we gathered statistics to measure the overall reduction in code size. 

Measurements and Code Size Statistics. Throughout our assessment of the new 
semantics, we gathered some measurements that demonstrated an improvement in 
both size and performance of JML RAC-instrumented code. In order to understand 
the source of such an improvement, one should consider that the new semantics gen-
erates much less code to evaluate expressions than the previous semantics did, in part 
due to its more coarse approach, but mostly because it no longer plays the angelic vs. 
demonic undefinedness game for invalid expressions. Moreover, that code always 
takes advantage of short-circuited logical operators and does not try to assign a truth 
value to exceptional expressions. For instance, the instrumentation code of Fig. 3 (59 
LOC) is reduced to only 8 lines of code under the new semantics—Fig. 7. 

We observed that the racrun test package executes on average 8% faster than the ver-
sion using the original semantics (average of 96.0s vs. 88.3s in five independent runs). 
Such an evaluation includes the parsing, checking, code generation, compilation, run and 
validation against expected output files of over 375 tests files. While using the new seman-
tics on ESC/Java2 source, both the generated instrumented source code and bytecode 
showed a significant size reduction, as illustrated in Table 3. E.g., for the ESC/Java2 
escjava package (301 classes), the instrumented source code using the new semantics was 
only 78.9% the size of the one instrumented with the original semantics (for this metric, 
we had the JML compiler emit the Java source corresponding to the instrumented runtime 
checking code that it would otherwise create a .class file for). For the instrumented byte-
code, the new/original semantics ratio was of 80.5%. The compiler front end of 
ESC/Java2 (javafe package, 216 classes) displayed similar improvements in size. Two 
classes in the javafe package could not be compiled under the old semantics due to the 
excessive size of try blocks. If we factor out those two abnormally large (and un-
compilable) instrumented source files, the new/original size ratio goes from 61.1% to 
70.8%. 

6   Effectiveness at Finding Bugs 

Using the new RAC semantics, approximately 45 previously undetected errors have 
been found in JML specifications of the sample and model files (307 files, 77KLOC) 
included with the JML distribution. It should be noted that most of these sample and 
model files have been in use since 2002; some are from published specifications that  
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public /*@pure*/ class NaturalNumber implements TotallyOrderedCompareTo,...  {
/*@ spec_public */ private final BigInteger value;

//@ public normal_behavior 
  //@   ensures \result == value.compareTo(n.value); 
public int compareTo(NaturalNumber n) { 

      return value.compareTo(n.value); 
  } 

//@ also public normal_behavior 
  //@  requires o instanceof NaturalNumber ...    
  //@  ensures \result == ...;
public int compareTo(Object o) throws ClassCastException { 

      return value.compareTo(((NaturalNumber)o).value);
  } 

/*@ public normal_behavior 
    @   requires !isZero() && exponent.equals(ZERO); 
    @   ensures \result.equals(ONE); 
    @ also 
    @   forall NaturalNumber v; 
    @   requires !(exponent.equals(ZERO)) && 
    @     exponent.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) <= 0; // (*)
    @ ... */ 
public NaturalNumber pow(NaturalNumber exponent) { ... } 

...    

Fig. 8. Excerpt from the JML model class NaturalNumber 

have appeared in peer-reviewed books or articles and hence have been carefully been 
reviewed by both human readers and/or analyzed by other JML tools. Of the errors 
found, slightly more than half are the specification equivalent of common program-
ming errors (such as null dereferences2 and array index out of bound errors) as well as 
some common object-oriented programming pitfalls.  

As an example of the latter, consider the excerpt of the NaturalNumber model 
class, slightly simplified due to space constraints, given in Fig. 8. (Note that all decla-
rations of reference types, with the exception of local variables, are non-null by de-
fault in JML unless annotated with /*@nullable*/ [5].) Under the new semantics, 
unit testing reports a ClassCastException during the precondition evaluation of the 
second spec-case at (*). Given this information one can easily see that the developer 
forgot to include a compareTo(BigInteger) method, and hence the call to compareTo 
at (*) resolves to compareTo(Object), resulting in a meaningless method contract due 
to the undefinedness of the precondition. 

Most of the remaining errors had to do with recursive specification constructs. A 
simple example of such an error is illustrated by the excerpt from the specification for 
java.lang.Boolean given in Fig. 9. Notice how the model field theBoolean is repre-
sented by the expression “booleanValue()” and yet, the contract of booleanValue() 
defines it to be equal to the model field theBoolean.  Hence each is defined in terms 
of the other. (Note that a JML model field is a specification-only field used to repre-
sent an abstraction of part of an object’s or a class’ state, for non-static and static 
fields respectively. The binding between the model field’s value and the concrete state 
is given in the form of a represents clause.) 

                                                           
2 A potential null-dereference is shown in Fig. 10—see the underlined occurrence of nextNode. 
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public final /*@ pure @*/ class Boolean ... {
  //@ public model boolean theBoolean; 
  //@ represents theBoolean <- booleanValue();

  /*@ public normal_behavior
    @   assignable \nothing; 
    @   ensures \result == theBoolean; 
    @*/ 
public boolean booleanValue(); 

  … 
}  

Fig. 9. Excerpt from the JML API specification for java.lang.Boolean 

//@ model import org.jmlspecs.models.JMLObjectSequence; 

public class OneWayNode {  // Singly Linked Node 
/*@spec_public*/ protected /*@nullable*/ Object entry;
/*@spec_public*/ protected /*@nullable*/ OneWayNode nextNode;

//@ public model JMLObjectSequence entries; 
//@ public model JMLObjectSequence allButFirst; ... 
//@ protected represents entries <- allButFirst.insertFront(entry); 
//@ protected represents allButFirst <- (nextNode == null) 

  //@   ? new JMLObjectSequence() : nextNode.entries; 
  ... 
}

public class TwoWayNode extends OneWayNode { // Doubly Linked Node 
  /*@spec_public*/ protected /*@nullable*/ TwoWayNode prevNode;

//@ public model JMLObjectSequence prevEntries; ... 
  //@ protected represents prevEntries <- (prevNode == null) 
  //@   ? new JMLObjectSequence()  
  //@     : prevNode.prevEntries.insertBack(prevNode.entry); 

/*@ public normal_behavior
    @  assignable prevEntries; 
    @  ensures prevEntries.equals(\old(prevEntries).insertBack(newEntry))
    @        && \not_modified(nextNode.entries); 
    @*/ 
    public void insertBefore(/*@nullable*/ Object newEntry) {...} 
}  

Fig. 10. Classes from the org.jmlspecs.samples.list.node package 

An example that is more involved is treated next. Consider the code excerpt from 
two classes in org.jmlspecs.samples.list.node package (Fig. 10): OneWayNode, 
used to build singly-linked lists and TwoWayNode used to build doubly-linked lists3. A 
OneWayNode contains an entry and a possibly-null reference to a next node 
(nextNode).  TwoWayNodes extend OneWayNodes by adding a possibly-null reference to 
a previous node (prevNode). Two model fields are defined for a OneWayNode: entries 
which is the sequence of Object entries contained in the linked list rooted at this 
node; allButFirst, as the name implies, is the sequence of Object entries contained 
in the linked list rooted at this.nextNode, provided it is not null. Similarly, 
TwoWayNode defines the model field prevEntries to be the sequence of entries con-
tained in the linked list rooted at this node but by following the prevNode field.  
                                                           
3 Note that in the JML distribution, the specifications for these two classes are each spread over 

three files since use was made of JML’s specification refinement feature. Since this feature is 
somewhat involved, a simplified—though equivalent—version of the classes and their speci-
fications is given here. 
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z b

curr

...

this

a

Initially curr == this.prevNode .
Illustrated is: this.prevEntries (curr) = <b, c, … >.
Terminates when curr == null or curr == this .

c

 

Fig. 11. Evaluation of TwoWayNode.prevEntries (terminates even for circular lists) 

Running the test suite for this package using RAC instrumented versions of these 
classes reports a null-dereference error on nextNode.entries in the postcondition of 
TwoWayNode.insertBefore(). More interestingly is the fact that under the new se-
mantics, a stack overflow error is reported. While at first we believed that the error 
might have been caused by a bug in our implementation of the new assertion seman-
tics, inspection of the error reports allowed us to identify bugs in the specifications. 
Notice that the definitions of the representations of OneWayNode.entries, OneWay-
Node.allButFirst and TwoWayNode.prevEntries are all subject to looping forever if 
the nodes are part of a cyclic list. The main point here is that under the old semantics, 
the stack overflow caused by the use of any one of these three model fields would 
have been caught and translated into some truth value that would make true the over-
all assertion in which they occurred as subexpressions! A corrected specification for 
prevEntries is given in Fig. 12—the corrections for the other two model fields are  

 
public class TwoWayNode extends OneWayNode
{
protected /*@nullable*/ TwoWayNode prevNode;
/*@ public model JMLObjectSequence prevEntries; ... 

    @ protected represents prevEntries <- prevEntries(); 
    @ 
    @ public model pure JMLObjectSequence prevEntries() { 
    @   // To detect cycles we use a helper function. 
    @   return prevEntries(prevNode); 
    @ } 
    @ 
    @ public model pure
    @   JMLObjectSequence prevEntries(nullable TwoWayNode curr) { 
    @   return (curr == null 
    @           // the following disjunct prevents infinite recursion
    @           || curr == this) 
    @          ? new JMLObjectSequence() 
    @          : prevEntries(curr.getPrevNode()).insertBack(curr.getEntry()); 
    @ }*/ 

  ... 

  /*@ public normal_behavior
    @    assignable prevEntries; 
    @    ensures prevEntries.equals(\old(prevEntries).insertBack(newEntry))
    @     && (nextNode != null ==> \not_modified(nextNode.entries)); 
    @*/ 
    public void insertBefore(/*@nullable*/ Object newEntry) { 
      ...  
    } 
}  

Fig. 12. TwoWayNode specification now correctly handling lists with cycles 
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similar. Note how prevEntries is represented by the prevEntries() model method 
which returns the sequence of entries in the nodes reachable from this by following 
prevNode links until either null is reached or we have cycled by to this—see the 
illustration of Fig. 11. With this change, all tests pass under the new semantics. 

7   Related Work   

The use of program assertions as an aid in verifying the correctness of programs was 
first explored by Alan Turing in the late 40s. Over the decades, this idea was further 
refined by Computer Science founding fathers such as Goldstine, von Neumann, 
McCarthy, Floyd, Hoare and others [15, 16]. An early milestone in this vein was 
Hoare’s 1969 Axiomatic Basis for Computer Programming where the pre- and post-
conditions of Hoare triples were expressed by means of assertions [14]. Early on, as-
sertions were also introduced as a distinct construct in mainstream programming lan-
guages, and eventually, Hoare triples found their way into the programmer’s tool box 
in the form of a method known as Design by Contract (DbC) [22]. A comprehensive 
report on the history of runtime assertion checking can be found in Clarke and Rosen-
blum’s IMPACT report [10]. 

To our knowledge, all programming languages (or programming language exten-
sions) supporting the use of plain inline assertions or DbC at runtime also support an 
assertion semantics like the one recently adopted for JML.  The main reason is that it 
results in the simplest and most efficient runtime checking code. It remains a chal-
lenge to find a proper balance between minimalist instrumentation code with less use-
ful error reporting in cases where assertions fail due to undefinedness vs. more accu-
rate error reporting (which requires extra try-catch blocks to catch exceptions and 
wrap them up in another more meaningful exception before re-throwing it). 

Another related challenge is to preserve soundness of the new assertion semantics 
in the context of static checkers like ESC/Java2. In [3, 4], we show how this can be 
achieved by making use of definedness predicates. Use of definedness predicates al-
lows us to keep on using provers for classical logic (even though the new assertion 
semantics is essentially that of a three-valued logic). We note that the increase in 
processing time required for definedness checking in ESC/Java2 is currently less than 
2% [4]. This is fairly small compared to the increase in static error detection offered 
by the adoption of strong validity (especially for API specifications for which little 
more than type checking was provided before).  

A few other tools that make direct or indirect use of jmlc will be able to upgrade to 
the new semantics merely by making use of the new version of the compiler. This is 
the case for JmlUnit, a tool that can help developers create JUnit tests using JML 
specifications as oracles [8], and the SpEx-JML model checker [26]. Being build on 
the Bogor framework [24], SpEx-JML makes use of jmlc’s core translation module to 
render runtime checking code for JML constructs. By making use of the new version 
of jmlc, SpEx-JML will in effect be implementing a form of model checking based on 
three-valued logic (in the spirit of [25]). 
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8   Conclusion 

The work reported here was conducted as part of an ongoing effort to bring strong 
validity into all of the main JML verification tools. Using ESC/Java2, we have dem-
onstrated the effectiveness of the new semantics by showing how it uncovered about 
50 errors in the (143) API specifications of the java.* package [4, §6.1]. In applying 
the JML RAC (also with the new semantics), we have uncovered a comparable num-
ber of bugs in the JML model classes and specification samples which are a part of 
the JML distribution. 

As future work we plan to finalize a few unresolved issues. For example, under the 
former RAC semantics, the value of \old expressions4 that occur in method postcon-
ditions are evaluated before preconditions. This often leads to runtime errors under 
the new semantics since the evaluation of the \old expressions is meant to be guarded 
by the preconditions. That is, the pre-state evaluation of the \old expressions should 
be done if and only if the corresponding preconditions evaluate to true. We also need 
to better address the issue of short circuiting the evaluation of an assertion when one 
of its subexpressions raises an exception because it is non-executable. Currently we 
simplify the entire assertion to true; ideally we would want to simplify the smallest 
top-level conjunct that contains the non-executable subexpression. 
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Abstract. Runtime monitoring is an established technique for enforc-
ing a wide range of program safety and security properties. We present
a formalization of monitoring and monitor inlining, for the Java Vir-
tual Machine. Monitors are security automata given in a special-purpose
monitor specification language, ConSpec. The automata operate on finite
or infinite strings of calls to a fixed API, allowing local dependencies on
parameter values and heap content. We use a two-level class file annota-
tion scheme to characterize two key properties: (i) that the program is
correct with respect to the monitor as a constraint on allowed program
behavior, and (ii) that the program has an instance of the given monitor
embedded into it, which yields state changes at prescribed points accord-
ing to the monitor’s transition function. As our main application of these
results we describe a concrete inliner, and use the annotation scheme to
characterize its correctness. For this inliner, correctness of the level II
annotations can be decided efficiently by a weakest precondition annota-
tion checker, thus allowing on-device checking of inlining correctness in
a proof-carrying code setting.

1 Introduction

Program monitoring is a firmly established and efficient approach for enforc-
ing a wide range of program security and safety properties [6,10,5,9]. Several
approaches to program monitoring have been proposed in the literature. In “ex-
plicit” monitoring, target program actions are intercepted and tested by some
external monitoring agent [10]. A variant, examined by Schneider and Erlingsson
[6], is monitor inlining, under which target programs are rewritten to include the
desired monitor functionality, thus making programs essentially self-monitoring.
This eliminates the need for a runtime enforcement infrastructure which may be
costly on small devices. Also, it opens the possibility for third party developers
to use inlining as a way of providing runtime guarantees to device users or their
proxies. This, however, requires that users are able to trust that inlining has
been performed correctly. In this work we propose a formalization of monitoring
and monitor inlining as a first step towards addressing this concern.
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We focus on monitors as security automata that operate on calls to some fixed
API from a target program given as an abstract Java Virtual Machine (JVM)
class file. Automaton transitions are allowed to depend locally on argument
values, heap at time of call and (normal or exceptional) return, and return
value. Our main contributions are characterizations, in terms of JVM class files
annotated by formulas in a suitable Floyd-like program logic, of the following
two conditions on a program:

1. That the program is policy-adherent.
2. The existence of a concrete representation of the monitor state inside the tar-

get program itself, as an inlined monitor which is compositional, in the sense
that manipulations of the monitor state do not cross method call boundaries.

The annotations serve as an important intermediate step towards a decidable
annotation validity problem, once the inliner is suitably instantiated. Composi-
tionality allows validity to be checked per method. This is uncontroversial, and
satisfied by all inliners we know of.

By these results, the verification of a concrete inliner reduces to proof of
validity of the corresponding annotations. We use this to prove correctness for
an inlining scheme which is introduced in the paper. We also sketch how, for a
program inlined by such an inliner, the annotations can be completed to produce
a fully annotated program for which validity can be efficiently decided. Such a
fully annotated program can then be used by a bytecode weakest precondition
checker in a proof-carrying code setting to certify monitor compliance to a third
party such as a mobile device.

Related Work A closely related result is the recent work on type-based moni-
tor certification by Hamlen et al [8]. That work focuses on per-object monitoring
rather than the “per-session” model considered here. Also, their results are re-
stricted to one particular inliner, whereas we give a characterization of a whole
class of compositional inliners.

Our results can be seen as providing theoretical underpinnings for the earlier
work by Schneider and Erlingsson [6]. The PoET/PSLang framework developed
by Erlingsson represents monitors as Java snippets connected by an automaton
superstructure. The code snippets are inserted into target programs at suitable
points to implement the inlined monitor functionality. This approach, however,
makes many monitor-related problems such as policy adherence and correctness
undecidable. To overcome this, we base our results on a restricted monitor
specification language, ConSpec [3], developed in the context of the EU project
S3MS.

Organization In section 2 we present the JVM model used in this paper.
Sections 3 and 4 introduce the automaton model in concrete and symbolic forms,
the ConSpec language, and relations between the three. In section 5 we give an
account of monitoring by interleaved co-execution of a target program with a
monitor, and establish the equivalence of policy adherence and co-execution. In
section 6, the two annotation levels are presented, and the main characterization
theorems are proved. In section 7 an inliner and its correctness are presented.
We also sketch how to produce, for this inliner, fully annotated programs with a
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decidable validity problem. Finally, in section 8 we conclude and discuss future
work. Due to space limitations, many technical details, all proofs and further
examples are delegated to a technical report [1].

2 Program Model

We briefly present the components of JVM used in this paper.
Types Fix sets of class names c ∈ C, method names m ∈ M, and field names

f ∈ F. A type τ ∈ Type is either a primitive type, not further specified, or
an object type, determined by a class name c. An object type determines a set
of fields and methods defined through its class declaration. Class declarations
induce a class hierarchy, and c1 <: c2 if c1 is a subclass of c2. If c is the smallest
superclass (under <:) of c′ that contains an explicit definition of c.m then c
defines c′.m. Single inheritance ensures that definitions are unique, if they exist.

Values and Methods Values of object type are (typed) locations � ∈ Loc,
mapped to objects by a heap h ∈ H, a partial assignment of objects to locations.
Objects determine typed fields and methods, using standard dot notation, and
type(�, h) is the type of � in h, if defined. A method definition is an environment
Γ (usually elided) taking a method reference M = c.m to a definition (P, H)
consisting of a method body (instruction sequence) P , and an exception handler
array H . Method overloading is not considered. The notation M [L] = I indicates
that Γ (M) = (P, H) and P (L) is defined and equal to the instruction I. The
exception handler array H is a partial map from integer indices to exception
handlers. An exception handler (b, e, t, c) catches exceptions of type c and its
subtypes raised by instructions in the range [b, e) and transfers control to address
t, if it is the topmost handler that covers the instruction for this exception type.

Machine Configurations, Transitions and Type Safety A configuration of the
JVM is a pair C = (R, h), where R is a stack of activation records of the
form either (M, pc, s, lv) for some method reference M , program counter pc,
operand stack s, and local variables lv , or, for exceptional states, of the form
(�)e, where � is the location of an exceptional object. Unhandled(C) holds if C
has an exceptional frame on top of the frame stack, and the current method does
not have a handler for the exception. We assume a standard transition relation
−→JVM on JVM configurations (cf. [7]). An execution E of a program (class file)
T is then a (possibly infinite) sequence of JVM configurations C1C2 . . . where
C1 is an initial configuration consisting of a single, normal activation record
with an empty stack, no local variables, M as a reference to the main method
of P , pc = 1, Γ set up according to T, and for each i ≥ 1, Ci −→JVM Ci+1.
We restrict attention to configurations that are type safe, in the sense that heap
contents match the types of corresponding locations, and that arguments and
return/exceptional values for primitive operations as well as method invocations
match their prescribed types. The Java bytecode verifier serves, among other
things, to ensure that type safety is preserved under machine transitions.

API Method Calls The only non-standard aspect of −→JVM is the treatment
of API methods. We assume a fixed API for which we have access only to the
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signature, but not the implementation, of its methods. We therefore treat API
method calls as atomic instructions with a non-deterministic semantics. Our
approach hinges on our ability to recognize such method calls. This property
is destroyed by the reflect API, which is left out of consideration. Among the
method invocation instructions, we discuss here only invokevirtual; the re-
maining invoke instructions are treated similarly.

3 Security Policies and Automata

Let T be a program for which we identify a set of security relevant actions A.
Each execution of T determines a corresponding set Π(T) ⊆ A∗ ∪ Aω of finite
or infinite traces of actions in A. A security policy is a predicate on such traces,
and T satisfies a policy P if P(Π(T)).

The notion of security automata was introduced by Schneider [11]. We view
a security automaton over alphabet A as an automaton A = (Q, δ, q0) where Q
is a countable set of states, q0 ∈ Q is the initial state, and δ : Q × A ⇀ Q is
a (partial) transition function. All q ∈ Q are viewed as accepting. A security
automaton A induces a security policy PA ⊆ 2A∗∪Aω

through its language LA
by PA(X) ⇔ X ⊆ LA.

In this study, we focus on security automata which are induced by poli-
cies in the ConSpec language (see section 4) and therefore are named Con-
Spec automata. The security relevant actions are method calls, represented by
the class name and the method name of the method, along with a sequence
of values that represent the actual arguments. We partition the set of secu-
rity relevant actions into pre-actions A� ⊆ C × M × Val∗ × H and post-actions
A� ⊆ RVal × C × M × Val∗ × H × H, corresponding to method invocations and
returns. Both types of actions may refer to the heap prior to method invocation,
while the latter may also refer to the heap upon termination and to a return
value from RVal = V al ∪ {exc} where exc is used to mark exceptional return
from a method call1. The partitioning on security relevant actions induces a cor-
responding partitioning on the transition function δ of ConSpec automata into
a function δ� on pre-actions, and a function δ� on post-actions.

4 ConSpec: A Monitor Specification Language

A monitor specification in ConSpec determines a collection of security relevant
actions (sra’s), a security state, and for each security relevant action, a transition
rule, using a guarded command-like syntax. In addition, in [3] a scope declara-
tion is introduced which is ignored in this paper. As an example, consider the
following specification:

1 We disregard the exceptional value since we do not, as yet, put constraints on these
in ConSpec policies.
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SECURITY STATE bool accessed = false; bool permission = false;

BEFORE File.Open(string path, string mode, string access)
PERFORM mode.equals("CreateNew") -> { skip; }

mode.equals("Open") && access.equals("OpenRead") -> { accessed = true; }

AFTER bool answer = GUI.AskConnect()
PERFORM answer -> { permission = true; }

!answer -> { permission = false; }

BEFORE Connection.Open(string type, string address)
PERFORM !accessed || permission -> { permission = false; }

The sra’s are self-explanatory. The security state is a pair of boolean variables
accessed and permission, which record whether an existing file has been ac-
cessed and if a permission has been obtained. The example policy contains three
clauses that state the conditions for and effect of the security relevant actions.
The sra of a clause is identified by the signature of the method mentioned in
the clause. The modifiers BEFORE and AFTER (or EXCEPTIONAL) indicate
whether it is the call of, or the normal (or exceptional) return from, the method
that is security relevant. For each sra, there can exist at most one event clause
per modifier in the policy. In order to determine if the policy allows an sra, the
guards of the corresponding clause are evaluated top to bottom using the cur-
rent value of the security state variables and the values of the relevant program
variables. If none of the conditions hold for the current sra, it is violating and
no more sra’s are allowed by the policy.

Fix a set Svar of security state variables and a set Var of program variables.
The security state variables of ConSpec are restricted to strings, integers and
booleans. Expressions Exp and boolean expressions BoolExp over Svar ∪Var can
access object fields and use standard arithmetic and boolean operations. Strings
can be compared for equality or prefix.

The formal semantics of ConSpec policies is defined in terms of symbolic
security automata, which in turn induce ConSpec automata.

Definition 1 (Symbolic Security Automaton). A symbolic security au-
tomaton is a tuple As = (qs, As, δs, Inits), where:

(i) qs = Svar is the initial and only state;
(ii) Inits : qs → Val is an initialization function;
(iii) As = A�

s ∪ A�
s is a countable set of symbolic actions, where:

A�
s ⊆ C × M × (Type × V ar)∗ and A�

s ⊆ {(Type × V ar) ∪ {exc}} × C ×
M × (Type × V ar)∗ are the symbolic pre- and post-actions, respectively;

(iv) δs = δ�
s ∪ δ�

s is a symbolic transition relation, where:
δ�
s ⊆ A�

s × BoolExp × (qs → Exp) and δ�
s ⊆ A�

s × BoolExp × (qs → Exp)
are the symbolic pre- and post-transitions, respectively.

ConSpec policies and symbolic automata are two very similar representations.
The security state variables of a ConSpec policy determines the state of the
symbolic automaton. Each sra clause gives rise to one symbolic action, and each
guarded command of the clause gives rise to a symbolic transition consisting of
the sra itself, the guard of the guarded command in conjunction with negations
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file_open:

{ a,p }

ask_user:

file_open:conn_open:

ask_user:

mode.equals("CreateNew") ? [p �→ p, a �→ a]

!mode.equals("CreateNew") && mode.equals("Open")

&& access.equals("OpenRead") ? [p �→ p, a �→ true]

answer ?
[p �→ true, a �→ a]

!answer ?
[p �→ false, a �→ a]

!a || p ?

[p �→ false, a �→ a]

A�
s={file open, conn open}

A
�
s={ask user}

file open=(File,Open,(string path, string mode, string access))

ask user=(string answer, GUI,AskConnect,())

conn open=(Connection,Open,(string type, string address))

Inits =[p �→ false, a �→ false]

Fig. 1. Symbolic Automaton for the Example Policy

of the guards that lie above it in the clause, and the effect of the guarded
command. The updates to security state variables, which are presented as a
sequence of assignments in ConSpec, are captured in the automaton as functions
that return one ConSpec expression per symbolic state variable, determining the
value of that variable after the update. In fig. 1 we illustrate the construction
on the earlier example, using ”a” for accessed and ”p” for permission.

Symbolic automata are converted to ConSpec automata without too much
effort. The details are given in [1]. Here it suffices to note that states in the
induced ConSpec automaton are members of the lifted function space (qs →
Val)⊥. The bottom element, in particular, is used only as the target of post-
transitions that are disallowed (has an unsatisfied boolean guard) in the symbolic
automaton; it has no outgoing transitions.

5 Monitoring with ConSpec Automata

In this section we formalize the enforcement language of a ConSpec automaton
as a set of finite strings of security relevant actions. Each target transition can
give rise to zero, one, or two security relevant actions, namely, in the latter case, a
pre-action followed by a post-action. Accordingly, we define the security relevant
pre-action, act �(C), of the configuration C, and the corresponding post-action,
act �(C1, C2), as in the table below. If none of the conditions of the table hold,
the corresponding action is ε.

act �(C) Condition

(c, m, s, hb)
C = ((M,pc, s · [d] · s′, lv) · R, h�) M [pc] = invokevirtual c′.m

c defines type(d, h�).m type(h�, d) <: c′ (c, m, s, h�) ∈ A�

act �(C1, C2) Condition

(v, c, m, s, h�, h�)
C1 = ((M, pc, s · d · s′, lv) · R,h�) M [pc] = invokevirtual c′.m

C2 = ((M, pc + 1, v · s′, lv) · R, h�) c defines type(h�, d).m
type(h�, d) <: c′ (v, c, m, s, h�, h�) ∈ A�

(exc, c, m, s, h�, h�)
C1 = ((M, pc, s · d · s′, lv) · R,h�) M [pc] = invokevirtual c′.m

C2 = ((b)e · (M, pc, s · d · s′, lv) · R, h�) c defines type(h�, d).m
type(h�, d) <: c′ (exc, c, m, s, h�, h�) ∈ A�
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We obtain the security relevant trace, srtA(w), of an execution w by lifting
the operations act � and act � co-inductively to executions in the following way:

srtA(ε) = ε srtA(C) = act �(C)
srtA(C1C2 · w) = act �(C1) · act �(C1, C2) · srtA(C2 · w)

Then a target program T adheres to a policy P , if the security trace of each
execution of T is in the enforcement language of the corresponding automaton
AP , i.e. ∀E ∈ Π(T). srtA(E) ∈ LAP .

Program-Monitor co-execution. A basic application of a ConSpec automaton
is to execute it alongside a target program to monitor for policy compliance.
We can view such an execution as an interleaving w = (C0, q0)(C1, q1) · · · such
that C0 and q0 is the initial configuration and state of T and A, respectively,
and such that for each consecutive pair (Ci, qi)(Ci+1, qi+1), either the target
(only) progresses: Ci −→JVM Ci+1 and qi+1 = qi or the automata (only) pro-
gresses: Ci+1 = Ci and ∃a ∈ A. δ(qi, a) = qi+1. In the former case we write
(Ci, qi) −→JVM (Ci+1, qi+1), and in the latter case we write (Ci, qi) −→AUT
(Ci+1, qi+1). We can w.l.o.g. assume that at most one of these cases apply, for
instance by tagging each interleaving step.

The first projection function w ↓ 1 on interleavings w = (C1, q1)(C2, q2) · · ·
extracts the underlying execution sequence C′

1C
′
2 · · · such that C′

1 = C1, and
C′

2 = C1 if (C1, q1) −→AUT (C2, q2) and C′
2 = C2 otherwise, and so on. To

extract the automaton states and the security relevant actions, we use the (co-
inductive) function extract :

extract((C1, q1)(C2, q2)w) = q1q2extract((C2, q2)w)

if (C1, q1) −→AUT (C2, q2),

extract((C1, q1)(C2, q2)w) = act �(C1)act �(C1, C2)extract((C2, q2)w),

if (C1, q1) −→JVM (C2, q2), extract(C, q) = act �(C), and extract(ε) = ε.
Note that extract(w) may well be finite even if w is infinite.

Definition 2 (Co-Execution). Let E� = {qq′a� | q, q′ ∈ Q, a� ∈ A�, δ�(q, a�) =
q′}, E� = {a�qq′ | q, q′ ∈ Q, a� ∈ A�, δ�(q, a�) = q′}. An interleaving w is a co-
execution if extract(w) ∈ (E� ∪ E�)∗ ∪ (E� ∪ E�)ω.

In other words, an interleaving is a co-execution, if the sequence of extracted
automaton states corresponds to an automaton run for the security relevant
trace of the underlying execution.

Theorem 1 (Correctness of Monitoring by Co-execution). The program
T adheres to policy P if, and only if, for each execution C1C2 · · · of T there is
a co-execution w for the automaton AP such that w ↓ 1 = C1C2 · · · .
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6 Specification of Monitoring

We specify monitor inlining correctness using annotations in a Floyd-style logic
for bytecode. The idea behind our annotation scheme is the following. In a first
annotation, referred to as the policy (or, level I) annotation, we define a monitor
for the given policy by means of “ghost” variables, updated before or after every
security relevant action according to the symbolic automaton induced by the
given security policy. In a second annotation, referred to as synchronisation check
annotation (or level II), we add assertions that check at all relevant program
points that the actual inlined monitor (represented by global program variables)
agrees with the specified one (represented by ghost variables).

6.1 Language of Ghost Annotations

Assertions Methods are augmented with annotations that determine assertions
on the extended state (current configuration and current ghost variable assign-
ment), and actions on ghost variables. Let g range over ghost variables, i ∈ ω,
and let Op (Bop) range over a standard, not further specified, collection of
unary and binary operations (comparison operations) on strings and integers.
Assertions a, and expressions e used in assertions, have the following shape:

e ::= ⊥ | v | g | e.f | s[i] | Op e | e Op e

a ::= e Bop e | e : c | ¬a | a ∧ a | a ∨ a

Here, s[i] is the value at the i’th position of the current operation stack, if defined,
and ⊥ otherwise, and e : c is a class membership test.

Ghost Variable Assignments Ghost variables are assigned using a single,
guarded multi-assignment of the form

−→gs := a1 → −→e1 | · · · |am → −→em (1)

such that the arities (and types) of −→gs and the −→ei match. The idea is that the first
assignment −→gs := −→ei is assigned such that the guard ai is true in the current ex-
tended state. If no guard is true, the ghost state is assigned the constant ⊥-vector.
This happens, in particular, when m ≤ 0 in (1) above, which we write as −→gs := ().

Method Annotations. A target program is annotated by an extended environ-
ment, Γ ∗, which maps method references M to tuples (P, H, A,Requires ,
Ensures, Exsures) such that Requires, Ensures and Exsures are assertions, and
such that A is an assignment to each program point n ∈ Dom(P ) of a sequence,
ψ, of atomic annotations, either an assertion or a ghost variable assignment.

Annotation Semantics In the absence of ghost variable assignments the notion
of annotation validity is the expected one, i.e. that the assertions annotating any
given program point (or the point of exceptional return) are all guaranteed to
be valid. To extend this account to ghost variables, we use a rewrite semantics,
shown on table 1. In the table, extended configurations are triples of the form
(ψ, C, σ) such that ψ is the sequence of annotations remaining to be evaluated
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Table 1. Operational Semantics of Annotations

(1)
Assert(a, C, σ)

Γ ∗ � (aψ,C, σ) → (ψ, C, σ)

(2)
‖ a1 ‖ (C, σ) = TRUE, m > 0

Γ ∗ � ((−→gs := a1 → −→e1 | · · · |am → −→em)ψ,C, σ) → (ψ, C, σ[‖ −→e1 ‖ (C, σ)/−→gs])

(3)
‖ a1 ‖ (C, σ) �= TRUE, m > 0

Γ ∗ � ((−→gs := a1 → −→e1 | · · · |am → −→em)ψ, C, σ) → ((−→gs := a2 → −→e2 | · · · |am → −→em)ψ,C, σ)

(4)
·

Γ ∗ � ((−→gs := ())ψ, C, σ) → (ψ,C, σ[
−→
⊥/−→gs])

(5)
C −→JVM C′ Unexc(C′)

Γ ∗ � (ε, C, σ) → (A(Γ ∗(M(C′)))(pc(C′)), C′, σ)

(6)
C −→JVM C′, Unhandled(C ′)

Γ ∗ � (ε, C, σ) → (Exsures(Γ ∗(M(C))), C′, σ)
(7)

C −→JVM C′ Handled(C ′)
Γ ∗ � (ε, C, σ) → (ε, C ′, σ)

for the current program point in C. We use abbreviations M , pc, A, Requires,
Ensures, and Exsures for the first to sixth projections, respectively. Unexc holds
of a configuration that does not have an exceptional frame on the top of the
stack, and Unexc(C) ⇔ ¬(Handled(C) ∨ Unhandled(C)). The side condition
Assert(a, C, σ) always returns true, but as a sideeffect causes the arguments to
be “asserted”, e.g. to appear on some output channel. For rule (6), note that
unhandled exceptions causes the assertions in the Exsures clause to be asserted.

Definition 3 (Validity). A program annotated according to the rules set up
above is valid for the annotated environment Γ ∗, if all predicates asserted as a re-
sult of a Γ ∗-derivation (ψ0, C0, σ0) −→JVM · · · −→JVM (ψn, Cn, σn) −→JVM · · ·
are valid, where ψ0 is Requires(Γ ∗(〈main〉)) · A〈main〉[1], C0 is an initial configu-
ration, and σ0 = ⊥.

6.2 Policy Annotations (Level I)

The policy annotations define a monitor for the given policy by means of a ghost
state. The ghost state is initialized in the precondition of the 〈main〉 method and
updated at relevant points by annotating all the methods defined by the classes
of the target program. We call each such method an application method. We as-
sume that 〈main〉 is not called by any application method (including itself) and
that all exceptions that may be raised by a security relevant instruction (i.e. an
instruction that may lead to a security relevant action) are covered by a handler.
We also assume that the exception handling is structured such that the only way
an instruction in an exception handler gets executed is if an exception has been
raised and caught by the handler that the instruction belongs to. Finally, we as-
sume w.l.o.g. that there are no jumps to instructions below method invocations.

Updating the Specified Security State. The updates to the specified security
state are done according to the transitions of the symbolic automaton. If the
automaton does not have a transition for a security relevant method call, the
call is violating and the corresponding annotation sets the value of the specified
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state to undefined. Such a program should terminate without executing the next
security relevant action in order to adhere to the policy. This is specified by
asserting, as a precondition to each security relevant method invocation and at
updates to the ghost state, that the ghost state is not undefined. If a security
relevant instruction may cause a pre-action (an unexceptional post-action) of
the automaton, then a ghost assignment annotation is inserted as a precondi-
tion (as a postcondition) to this instruction. Finally, if the instruction can cause
an exceptional post-action, the update is inserted as a precondition to the first
instruction of each exception handler that covers the instruction.

Preliminary Definitions In the definitions below, fix a program T and a pol-
icy P . Let As = (qs, As, δs, Inits) be the symbolic automaton induced by P .We
define the set Ae

s ⊆ A�
s of exceptional symbolic post-actions as those which have

the value exc as their first component. Given a symbolic action set A′
s, the func-

tion RS((c, m), A′
s) returns those subclasses c′ of c for which the method (c′.m)

is defined by a class c′′ such that A′
s has an action with the reference (c′′.m).

The variables of −→gs are named identical to the security state variables of the au-
tomaton.The ghost variable gpc records labels of security relevant instructions.
and ghost variables g stack values. For an expression mapping E : qs → Exp,
let −→eE denote the corresponding expression tuple, and for a boolean ConSpec
expression b ∈ BoolExp, let ab denote the corresponding assertion.

Level I Annotation We define the annotations for every method M , through
three arrays of annotations: a pre-annotation array A�

M [i], a post-annotation
array A�

M [i][j], and an exceptional annotation array Ae
M [i][k], where i ranges over

the instructions of method M . The second index j ∈ {0, 1}, k ∈ {0, 1, 2} indicates
whether the annotation will be placed as a precondition of the instruction (j, k =
0), as a precondition to the next instruction (j, k = 1), or as a precondition to
all the exception handlers of the instruction (k = 2). The predicate Handler
holds for a label L and a method M if (L1, L2, L, c) ∈ HM for some labels L1,
L2, and class name c. In addition, we define Exc(L, M) as the sequence of all
annotations Ae

M [L′][2] where L′ is a security relevant instruction and there exists
an exception handler (L1, L2, L, c) ∈ HM such that L1 ≤ L′ < L2, and as ε if
such an L′ does not exist.

Given these annotations, the level I annotation of program T is given for
each application method M as a precondition RequiresI

M and an array AI
M of

annotation sequences defined as follows (where L > 0):

RequiresI
M =

{
(−→gs := −−−→eInits

) · (gpc := 0) if M = 〈main〉
(gpc := 0) otherwise.

AI
M [1] = A�

M [1] · A�
M [1][0] · Ae

M [1][0]

AI
M [L] =

{
Exc(L, M) · A�

M [L] · A�
M [L][0] · Ae

M [L][0] ifHandler(L, M)
Ae

M [L− 1][1] · A�
M [L− 1][1] · A�

M [L] · A�
M [L][0] · Ae

M [L][0] otherwise

The annotation RequiresM resets the value of gpc and, if M = 〈main〉, also
initializes the ghost state using function Inits of the automaton.

After Annotations For every method M , the elements of the post-annotation
array A�

M [L] are defined for each label L as follows:



272 I. Aktug, M. Dam, and D. Gurov

(i) If the instruction at label L is not an invokevirtual instruction or is of
the form M [L] = invokevirtual c.m where RS((c, m), A�

s \ Ae
s) = ∅, we

define the pre- and postconditions to be empty:A�
M [L][0] = A�

M [L][1] = ε
(ii) Otherwise, if the instruction at label L is of the form M [L] = invokevirtual

c.m with c.m : (γ → τ) and |γ| = n and RS((c, m), A�
s \ Ae

s) = {c′1, . . . , c
′
p},

then the precondition of the instruction saves the arguments and the object
in ghost variables:

A�
M [L][0] = ((g0, . . . , gn−1, gthis) := (s[0], . . . , s[n])) · Defined�

The assertion Defined � checks if the ghost variables are defined:

Defined� = ((gthis : c′1 ∨ . . . ∨ gthis : c′p) ⇒ (−→gs �= −→⊥))

while the postcondition of the instruction uses these saved values to compute
the new security state:

A�
M [L][1] = (−→gs := α1 | · · · | αm | α)

where the αk are the guarded expressions (−→gs �= −→⊥)∧gthis : c′i∧abρi → −→eEρi

where class c′′ defines (c′i, m) and there exists a�
s = (τ x, c′′, m, (τ0 x0, . . . ,

τn−1 xn−1)), a�
s ∈ A�

s \ Ae
s such that (a�

s, b, E) ∈ δ�
s. The substitution ρi is

defined as [s[0]/x, g0/x0, . . . , gn−1/xn−1, gthis/this]. Finally, α = ¬(gthis :
c′1 ∨ . . . ∨ gthis : c′p) → −→gs.

The annotation arrays A�
M and Ae

M are defined similarly (see [1] for details).
Each execution of a program that is valid w.r.t. level I annotations for policy P

is a co-execution of the program and the automaton for P , where the automaton
states are given by the ghost state; hence the program adheres to P .

Theorem 2 (Correctness of Level I Annotations). Program T annotated
with level I annotations for policy P is valid, if and only if T adheres to P.

6.3 Synchronisation Check Annotations (Level II)

An inlined program can be expected to contain an explicit representation of the
security state, an embedded state, which is updated in synchrony with the exe-
cution of security relevant actions. The level II annotations aim to capture this
idea in a generic form that is independent of the design choices a specific inliner
may make. To this end, we make two assumptions on the inliner. We require that
the embedded state is in agreement with the ghost state immediately prior to
execution of a security relevant action. This condition would be violated by, for
example, an optimized inliner which determines in advance that a fixed sequence
of security relevant actions is permissible and reflects this to the embedded state
through only a single update. The second assumption we make in this section
is that updates to the embedded state are made locally, that is by the method
that executes the security relevant method call. The specified and the embedded
states are synchronized then at all call points.
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For simplicity we assume that the embedded state is determined as a fixed vec-
tor −→ms of global static variables of the target program, of types corresponding
pointwise to the type of ghost state vector −→gs. The synchronisation assertion is
the equality −→gs = −→ms, and the level II annotations are formed by appending the
synchronization assertion to the level I annotations of each application method M
at the following points: (i) each annotation A(Γ ∗(M))(i) such that P (Γ ∗(M))(i)
is an invoke or a return instruction, and (ii) the annotation Exsures(Γ ∗(M)).

AII [L] L M [L]
...

L3 dup
L4 astore r1⎧

⎨

⎩

gthis := s[0] ·
gthis : GUI ⇒ (ga, gp) 	= (⊥,⊥) ·
(ga, gp) = (SecState.accessed, SecState.permission)

⎫
⎬

⎭
L5 invokevirtual GUI/AskConnect()Z

⎧
⎪⎨

⎪⎩

(ga, gp) :=
((ga, gp) 	= (⊥,⊥) ∧ gthis : GUI ∧ s[0]) → (ga, true) |
((ga, gp) 	= (⊥,⊥) ∧ gthis : GUI ∧ ¬s[0]) → (ga, false) |
(¬(gthis : GUI)) → (ga, gp)

⎫
⎪⎬

⎪⎭
L6 istore r2

L7 aload r1
L8 instanceof GUI
L9 ifeq L12
L10 iload r2
L11 putstatic SecState/permission
L12 iload r2{

(ga, gp) = (SecState.accessed, SecState.permission)
}

L13 ireturn

Fig. 2. An application method with level II annotations for the example policy

Level II Annotation Example. An application method annotated with level II
annotations for the example policy of section 4 is shown in fig. 2. The ghost state
is represented by the ghost variables ga and gp, i.e. −→gs = (ga, gp). The embedded
state consists of the static fields accessed and permission of the SecState class.
It is assumed that the class GUI does not have any subclasses. The annotated
method is valid since the embedded state is updated as is described by the policy,
after a call to the method GUI.AskConnect. The annotations are enclosed by
braces and placed on the left of the instruction label they are associated with.

Level II Characterization. We now explain in what sense the level II annotations
characterize the two conditions assumed in this section (the synchronous update
assumption, and the method-local update assumption).

Consider a program T with a level II annotated environment Γ ∗. Consider an
execution E = C0C1 · · · from an initial configuration C0 of T. The index i is a
sampling point if one of the following three conditions holds:

(i) the top frame of Ci has the shape (M, pc, s, f) · R; h, and M [pc] is either
an invokevirtual instruction, or a return instruction;

(ii) the configuration Ci−1 has the shape (M, pc, s, f) · R; h where M [pc] is an
invokevirtual instruction, and Ci, the shape (N, 1, ε, f ′)(M, pc, s, f)·R; h;

(iii) alternatively, Unhandled(Ci).
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We can then construct a sequence w(E, −→ms) = (C0, q0)(C1, q1) · · · such that:
q0 is the initial automaton state, for all sampling points i > 0, qi = Ci(−→ms),
where Ci(−→ms) denotes the value of −→ms in configuration Ci, and for any two
consecutive sampling points i and i′, for all j : i ≤ j < i′, qj = qi.

The role of the sequence w(E, −→ms) is similar to that of interleavings in sec-
tion 5. However, the sequence q0q1 · · · may not necessarily correspond to an
automaton run: the intermediate automaton state is not sampled when a post-
action is followed by a pre-action without an intermediate method boundary
crossing, as there is no well-defined point where this might be done. The con-
struction also needs to account for the method-local nature of embedded state
updates. For this reason, we define the operation extractII , taking sequences w
to strings over the alphabet Q ∪ A ∪ {I} where I is a distinguished symbol, by
the following conditions:

– extractII((C1, q1)(C2, q2)w)=q1act �(C1)act �(C1, C2)q2extractII((C2, q2)w),
if C1 is an API method call.

– extractII((C1, q1)(C2, q2)w) = q1Iq2 extractII((C2, q2)w), if C1 is an appli-
cation method call and Unexc(C2), i.e. C2 is a method entry point.

– extractII((C, q)w) = qIq extractII(w), if C is a return point from an appli-
cation method, either normal or exceptional.

– extractII((C1, q1)(C2, q2)w) = extractII((C2, q2)w), otherwise.
– extractII((C, q)) = q act �(C) if C is a method call and ε otherwise.

Definition 4 (Method-local Co-execution). Let

Σ0 = {I, q, a�, a� | q ∈ Q, a� ∈ A�, a� ∈ A�},
Σ1 = {I} ∪ Q ∪ E� ∪ E� ∪ {a�qq′a� | ∃q′′.δ�(q, a�) = q′′, δ�(q′′, a�) = q′},
Σ2 = {qq′q′′, qq′q, Iqq′a�, Iqq′I, Iqq′q′, qa�q′,

qa�a�q′, a�qq′q′, a�qq′I, a�qq′a�, qIq′, qa�q′ | q �= q′ �= q′′}

A sequence w is a method-local co-execution, if

extractII(w) ∈ (Σ∗
1 ∪ Σω

1 ) \ (Σ∗
0 · Σ2 · (Σ∗

0 ∪ Σω
0 ))

We can then extend theorem 2 to the situation where a target program T has a
monitor for the given policy inlined into it.

Theorem 3 (Level II Characterization). The level II annotation of T with
embedded state −→ms is valid if, and only if, for each execution E of T, the sequence
w(E, −→ms) is a method-local co-execution.

7 Correctness of Inlining

As an application of the annotation scheme described in the previous
section, we characterize the correctness of a class of inliners in the flavor of
PoET/PSLang [6]. We first describe the operation of a simple inliner that em-
beds, in target programs, a method-local monitor for a ConSpec policy.
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Description of Inlining The inliner adds a class definition to the program.
The static variables of this class serve as the embedded state. Since this class is
not in the original namespace, the embedded state is safe from interference by
the target. For each clause in the policy, a piece of bytecode is created, which
evaluates, in turn, the guards of guarded commands and either updates the
security state according to the update block associated with the first condition
that holds or quits the program if none of them hold.

The rewriting process consists of identifying method invocation instructions
that lead to security relevant actions (security relevant instructions), and for
each such instruction, inserting code produced by policy compilation in an ap-
propriate manner. The inliner inserts, immediately before the security relevant
instruction, code that records the object the method is called for, and the ar-
guments (and possibly parts of the heap) in local variables. Then, code for the
relevant BEFORE clauses of the policy (if any) is inserted. Next, the object and
the method arguments are restored on the stack. If there are AFTER clauses
in the policy for the instruction, first the return value (if any) is recorded in a
local variable, the code compiled from the AFTER clauses is inlined, followed
by code to restore the return value on the stack. Finally, if there are EXCEP-
TIONAL clauses for the instruction, an exception handler is created that covers
only the method invocation instruction and catches all types of exceptions. It
is placed highest amongst the handlers for this label in the handler list, so that
whenever the instruction throws an exception, this handler will be executed. The
code of this exception handler consists of code created for the related EXCEP-
TIONAL clauses and ends by rethrowing the caught exception. All (original)
exception handlers of the program that cover the security relevant instruction
are redirected to cover this last throw instruction instead.

Due to virtual method call resolution, execution of an invocation instruction
can give rise to different security relevant actions. The inliner inserts code to
resolve, at runtime, the signature of the method that is called, using the type
of the object that the method is invoked on, and information on which methods
have been overridden. A check to compare this signature against the signature of
the event mentioned in the clause is prepended to code compiled for the clause.

Correctness of Inlining Inliners as described above are expected to satisfy
the following property. Let P be a policy, T a program and M [L] be a post-
security relevant instruction M [L] of the inlined program T ′. Let M [L] =
invokevirtual (c.m) for some c and m, α1, . . . , αm be the guarded expressions
gthis : c′i ∧ abρi → −→eEρi, 1 ≤ i ≤ m, and α be ¬(gthis : c′1 ∨ . . .∨gthis : c′p) → −→gs,
induced, by the policy, for M [L] as described in section 6.2. Furthermore, let
rthis be the local variable used by the inliner to record the reference of the
object M [L] operates on. Then the weakest pre-condition of the block of code
inlined immediately after the instruction M [L] in T′ w.r.t. the synchronisation
assertion −→gs = −→ms is the logical assertion

∧
1≤i≤m rthis : c′i ∧ abρ

′
i → −→gs = −→eEρ′i

∧ ¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) → −→gs = −→ms
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The blocks inlined above and at the exception handlers of security relevant
instructions can be specified similarly.

We claim that it is possible to devise an inliner in accordance with the de-
scription above. Let I be such an inliner, and let I(T,P) denote the program T
inlined by I for the policy P . Our implementation of such an inliner is found
at [2].

The following result shows that programs inlined for a policy contain a monitor
as characterized by theorem 3, and that level II annotations can be efficiently
completed to a “fully” annotated program for which annotation validity, and
hence policy adherence, is decidable. In the result, local validity refers to logical
validity of the verification conditions resulting from a fully annotated program
(see [4] for details).

Theorem 4. Let P be a ConSpec policy and T a program.

(i) The inlined program I(T,P) is valid with respect to the level II annotation
for this policy.

(ii) For I(T,P), the level II annotation can be efficiently extended to an an-
notation so that: (a) the extended annotation is locally valid (in terms of
the pre- and postconditions of the individual instructions) if and only if the
level II annotation is valid (in terms of definition 3), and (b) local validity
is decidable.

An extended (or level III) annotation as referred to above can be obtained by:
(a) annotating all non-inlined instructions with the synchronisation assertion
−→gs = −→ms, (b) extending the annotation to inlined instructions by means of
a syntactic weakest precondition function wp(M [L]) (as defined in [4]), and (c)
collapsing every annotation to an equivalent single assertion (see [1] for details).

As a corollary of theorem 2 and the above result, every program inlined with
the described inliner adheres to the policy it was inlined for.

Corollary 1 (Correctness of Inlining). Let P be a ConSpec policy and T be
a program. The inlined program I(T,P) adheres to the policy.

Another corollary of theorem 4 is that the inlined program I(T,P) yields only
method-local co-executions. This is so since programs that validate level III
annotations validate also level II annotations and thus theorem 3 applies to
inlined programs.

As a consequence, a level III annotation as described above can be used for
on-device checking of inlining correctness in a proof-carrying code setting.

8 Conclusion

This extended abstract presents a specification language for security policies in
terms of security automata, and a two-level class file annotation scheme in a
Floyd-style program logic for Java bytecode, characterizing two key properties:
(i) that a program adheres to a given policy, and (ii) that the program has an
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embedded method-compositional monitor for this policy. The annotation scheme
thus characterizes a whole class of monitor inliners. As an application, we de-
scribe a concrete inliner and prove its correctness. For this inliner, validity of the
annotations can be decided efficiently using a weakest precondition annotation
checker, thus allowing the annotation scheme to be used in a proof-carrying code
setting for certifying monitor compliance. This idea is currently being developed
within the European S3MS project.

Future effort will focus on generalizing the level II annotations by formulating
suitable state abstraction functions to extend the present approach to programs
that are not inlined but still self-monitoring. Another interesting challenge is to
extend the annotation framework to programs with threading.

Acknowledgements. Thanks are due to Andreas Lundblad for discussions on
many issues relating to this paper, and to Johan Linde for his work on the
inliner tool.
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Abstract. TLM (Transaction-Level Modeling) was introduced to cope
with the increasing complexity of Systems-on-Chip designs by raising
the modeling level. Currently, TLM is primarily used for system-level
functional testing and simulation using the SystemC C++ API widely
accepted in industry. Nevertheless, TLM requires a careful handling of
asynchronous concurrency. In this paper, we give a semantics to TLM
models written in SystemC via a translation into the process algebra
LOTOS, enabling the verification of the models with the CADP toolbox
dedicated to asynchronous systems. Contrary to other works on formal
verification of TLM models written in SystemC, our approach targets
fully asynchronous TLM without the restrictions imposed by the Sys-
temC simulation semantics. We argue that this approach leads to more
dependable models.

1 Introduction

Systems-on-Chip combine several hardware components with embedded software
in a single integrated circuit. TLM (Transaction-Level Modeling) was introduced
to cope with the increasing complexity and time-to-market pressure of Systems-
on-Chip by using reference descriptions closer to system-level. Compared to tra-
ditional RTL (Register Transfer Level) based design flows, TLM reduces both
the development time of virtual test platforms and the simulation time, allowing
to run the embedded software earlier and to perform functional testing of the
system.

TLM is still a rather informal concept. In this paper, we use the definition
given in [4]. TLM models describe both system architecture and behavior. The
hardware part of a system is not required to be completely detailed, but only to
be sufficient to develop and run the embedded software. A TLM model is a set
of interconnected modules, whose behavior is represented by asynchronous con-
current processes communicating only through transactions and events. Dealing
with asynchronous concurrency is known to be difficult due to the many possible
interleavings of concurrent tasks. TLM models are no exception: explicitly and
completely defining the synchronizations between processes is the key to ensure
model correctness; unfortunately, this is also very error prone, so that formal
validation techniques are required.
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real system

simulation

TLM

SystemC

Fig. 1. Observable system behaviors

In general, TLM models are written in system-level design languages, among
which the SystemC standard [16] has become the most popular. SystemC is a
C++ library providing (1) types, methods, and macros to describe systems, in-
cluding hardware, at various abstraction levels and (2) a simulation kernel, in
particular a scheduler, to simulate the execution of the modeled systems. Simula-
tion greatly helps functional validation, yet it is well-known that testing cannot
prove the absence of errors, since exhaustiveness is impossible (at reasonable
cost). This holds all the more for asynchronous concurrent systems, where the
process interleaving space must be covered in addition to the data space. On the
other hand, formal methods and tools dedicated to concurrent systems have a
proper handling of asynchronous concurrency and can guarantee a property for
all possible executions of a system.

Moreover, and to the contrary of the nondeterministic and asynchronous na-
ture of TLM, the scheduler of the SystemC simulation kernel is nonpreemptive,
has synchronous features, and imposes that for the same input the order of pro-
cess execution does not vary from run to run. These properties of the scheduler
are useful for testing and debugging, since they allow to reproduce a simulation
run. However, they do not suit verification needs since they restrict the set of
executions. Thus, as will be shown in Sect. 3.3, one may miss executions leading
to erroneous states of the system.

Figure 1 compares the possible observable behaviors of different models and
the real system. A TLM model is an abstraction of the real system, thus its
behavior does not always exactly coincide with the behavior of the real sys-
tem; further differences might be introduced during synthesis, since the step
from TLM to hardware is not formally defined. A model based on the SystemC
scheduler can only exhibit a subset of the TLM model behaviors. We advocate
that verification over the increased number of behaviors of TLM leads to more
dependable models and thus to more dependable embedded software. Therefore,
we aim at a formal semantics of TLM models written in SystemC independent
from the SystemC scheduler and its simulation semantics.

The contribution of this paper is a formal semantics of TLM defined via a
translation from a TLM-subset of SystemC into the standard process algebra
LOTOS [8], so as to enable the use of CADP (Construction and Analysis of
Distributed Processes) [3], a rich formal verification toolbox that allows on the
fly, compositional model-checking and equivalence checking of asynchronous sys-
tems. The translation has the following features:

– It regards SystemC as a description language for TLM and does not super-
impose the SystemC simulation semantics to TLM semantics. This allows
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to exhibit behaviors that might occur if the embedded software were run on
hardware, but that would not be revealed by simulation with SystemC.

– It is parameterized to control asynchronous behaviors according to verifica-
tion needs; in particular, the SystemC scheduler semantics can be reproduced
if required.

– It preserves the architectural hierarchy (encapsulation of modules) of the
SystemC description, since TLM models are not flattened to an unstructured
set of processes. This facilitates compositional verification as well as going
back and forth from the formal model to the SystemC code.

The rest of the paper is organized as follows. Related work is presented in
Sect. 2. Section 3 surveys TLM and SystemC and discusses the limitations of the
SystemC simulation semantics. The translation itself and a brief introduction to
LOTOS are given in Sect. 4. Some experimental results are discussed in Sect. 5.
Section 6 concludes.

2 Related Work

Both TLM and SystemC lack an authoritative semantics to which formal ap-
proaches could refer. As for TLM, there is no standard definition: [17] is a pro-
posal seeking better interoperability between TLM models but it is still incom-
plete. The works addressing the issue of giving a formal semantics for TLM
and/or SystemC differ mainly as regards the formal methods used and level of
abstraction, e.g. cycle-accurate RTL, algorithmic level, or the so-called trans-
action levels, themselves divided into TLM PV (Programmer’s view) untimed
models and TLM PVT (PV + Timing) timed models. Focussing on a particular
level allows to optimize the formal model, but may require to choose a subset
of SystemC constructs. For instance, SystemC signals are important to RTL
but not to TLM. The chosen level may also determine the target formalism: for
instance, synchronous models seem adequate for RTL, whereas asynchronous
models seem appropriate for TLM.

We distinguish four main lines of work targeting either low-level SystemC,
full SystemC, TLM with SystemC, or TLM alone.

SystemC was initially designed as a language for modeling circuits, provid-
ing low-level hardware constructs such as hardware signals. A first line of work
targets this low-level SystemC. For instance, [5] addresses temporal property
checking for SystemC RTL level descriptions. [14] proposes an operational se-
mantics for low-level SystemC, which uses distributed Abstract State Machines
but limits asynchrony to two modules: the SystemC scheduler and the set of all
SystemC processes, i.e. there is no asynchrony between the SystemC processes.
[18, 6] define a denotational semantics for a restricted subset of SystemC. In this
paper, we are interested in modeling of systems above this low-level SystemC.

A second line of work targets full SystemC, i.e. low-level SystemC as well
as higher levels of abstraction. Various formalisms have been used to give a
semantics to full SystemC, e.g. labeled Kripke structures [10], synchronous lan-
guages [19], Petri nets [9] or process algebra [12]. Contrary to our proposal, these
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approaches do not take advantage of the higher abstraction levels, in particular
they are tied to the synchronous features of low-level SystemC. Moreover, most
of these works flatten the hierarchical description allowed by SystemC.

A third line of work is interested in dedicated methods for TLM descriptions
written in SystemC. In [13], a verification tool chain for TLM is developed upon
synchronous communicating automata, with interfaces to synchronous languages
and their model checkers. Recently, [20] proposed an encoding of a TLM-subset
of SystemC in Promela, allowing a connection with verification tools based
on asynchronous formalisms. However, these works have in common with the
previous ones to integrate the SystemC scheduler as part of the formalized model,
either explicitly [9, 13] or implicitly [10, 12, 19, 20]. Whereas the problem of
covering more schedules is an active research direction (see [7] for instance), these
works do not depart from the SystemC simulation semantics and its restrictions
on the possible schedules, e.g. nonpreemption. Our work belongs to this third
line, since we give a formal semantics to a TLM-subset of SystemC: we translate
the PV level of TLM into the process algebra LOTOS. More importantly, we
aim at verification of TLM, and distinguish between SystemC as a description
language and SystemC as a simulation tool, i.e. we give a formal semantics to
TLM models written in SystemC, not to TLM models as simulated by SystemC.
Thus, in contrast to other works, our formal semantics of TLM does not integrate
the SystemC scheduler and the simulation semantics it implies.

The fourth line consists in relatively few works interested in formalizing TLM
models not written in SystemC. For instance, [21] presents the modeling of an
on-chip bus protocol in LOTOS at TLM level. Seeking more generality, [15]
gives first a formal definition of what a transaction should be (according to cri-
teria applying to transactions in databases) and then derives guidelines how to
implement complying transactions in SystemC, considering the SystemC sched-
uler specificities. Our approach is just the opposite: we start from a SystemC
implementation of a TLM model and translate it into a formal language.

3 TLM Subset of SystemC

Although TLM is in principle not tied to a particular language, the SystemC
standard [16] has gained wide acceptance for describing TLM models. In this
section, we first outline the SystemC subset relevant to TLM PV. Then, we
describe the SystemC scheduler and its limitations as regards verification.

3.1 TLM Principles

Basically, a TLM model is a set of components whose behavior and communica-
tion aspects are clearly separated. The behavior of a component is captured by
a set of concurrent processes. Communication between modules is captured by
transactions, which can transfer data and/or trigger events.

TLM models range over several abstraction subclasses whose boundaries de-
pend mainly on timing accuracy and data granularity. In this work, we focus on
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PV models as this level is intended for embedded software development and func-
tional verification. PV models are untimed and the data granularity should fit the
intended application rather than the hardware micro-architecture (e.g. a frame for
a video processing unit, rather than the actual bus packets or hardware signals).

The PV model of computation is summed up by four points [4, p. 34]:

1. concurrent execution of independent processes,
2. respect for causal dependencies between processes using system synchroniza-

tion,
3. bit-true behavior, and
4. bit-true communication.

Points (1) and (2) define an asynchronous model of computation where process
interleavings are only controlled by explicit synchronizations between processes;
points (3) and (4) ensure that functional verification is possible.

3.2 SystemC Description Language

The SystemC C++ library defines classes and convenience macros to describe
system architectures. The components of a system are modules (SC_MODULE)
whose behavior is specified by a set of processes. For simulation efficiency and
synthesis concerns, SystemC distinguishes several kinds of processes, but we
focus, without loss of generality, on threads (SC_THREAD). To our knowledge,
TLM models have a static number of processes; thus, we do not handle process
spawning.

Modules contain ports (sc_port) through which they communicate with other
modules. Ports are connected either to other ports or channels.

Channels are used to encapsulate communication protocols, they are either
primitive or hierarchical. Primitive channels, e.g. sc_signal, are only used in
modeling levels lower than PV. Hierarchical channels are not very different from
other modules.1 Hence, we will not make the distinction in the sequel.

A transaction is a call of a method in another module (through a port).
The calling process executes the code encapsulated in the other module. The
two involved modules exchange data through method parameters and return
value. Methods used for transactions are declared in interfaces (sc_interface)
inherited by the module implementing the transaction.

Processes can also synchronize via events (sc_event). A process can sus-
pend its execution waiting for a specific event e (wait(e)). When e is notified
(e.notify()), all suspended processes waiting for e resume their execution; if
there is no waiting process, the notification is lost.

Finally, SystemC has also constructs related to timing and to synchrony —
e.g. delayed wait and notification, update-request mechanism of primitive chan-
nels — implemented in its simulation kernel by the so-called delta-cycles. These

1 The difference between hierarchical channels and ordinary modules is that the former
also inherit from interfaces specifying the implemented transactions.
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«SC thread» run_m1()

«SC module»
m1

«SC module»
m2

− m_count:int
− m_set:bool

p
m2_if set()

read():int

«SC thread» run_m2()

«SC interface»
m2_if

Component2

Component1

Fig. 2. UML diagram of the set-counter example

features are inherited from earlier versions, before the language was extended to
support TLM, and they are not relevant to our discussion of the PV level.

For illustration, we use the set-counter example depicted in Fig. 2. Its SystemC
code is:

SC_MODULE (M1) {
sc_port <m2_if > p;
SC_CTOR(M1) { SC_THREAD (run_m1); }
void run_m1() { p->set (); cout << p->read (); }

};
class m2_if: virtual public sc_interface {

virtual void set() = 0;
virtual int read () = 0;

};
SC_MODULE (M2): public m2_if {

SC_CTOR(M2): m_set(false), m_count (0) {
SC_THREAD (run_m2);

}
void run_m2() {

while(true) { wait(e); m_count ++; m_set=false; }
}
void set() { m_set=true; e.notify(); }
int read () { return m_count; }

private:
sc_event e; bool m_set; int m_count;

};
int sc_main (int argc , char *argv []) {

M1 m1("module1"); M2 m2("module2");
m1.p.bind(m2); sc_start (-1); return 0;

}

Module m2 allows module m1 to set a flag (m_set) and to read how many times
it was set. The program entry point sc_main instantiates the two modules and
binds port p of m1 to module m2. Thus, in the thread run_m1, method calls
p->set() and p->read() are transactions, in which run_m1 executes the meth-
ods set and read defined in m2. These two methods are declared in interface
m2_if inherited by module m2. Transaction set sets data member m_set to true
and notifies event e. Transaction read returns the value of counter m_count.
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The behavior of m2 is described by run_m2: it waits for the notification of e,
increments m_count and resets m_set.

3.3 SystemC Scheduler

In order to simulate the concurrent execution of several processes on a single
processor, the SystemC simulation kernel uses a scheduler to select the process
gaining control of the processor. In this section, we discuss two limitations, as
regards verification, of the SystemC scheduler: immutable order of process exe-
cution and nonpreemption.

Immutable Order of Process Execution. Except for explicit synchroniza-
tions, TLM does not impose any order of execution of processes: they run con-
currently with an asynchronous semantics. Synchronizations between processes
define a partial order on process interleavings, allowing several different sched-
ules. Although the choice of a schedule by the SystemC scheduler is implementa-
tion dependent, the SystemC standard [16] requires that all the simulation runs
with the same input will choose the same schedule. This helps debugging since
it allows to easily reproduce an erroneous behavior of the system. The downside
is that other schedules may lead to different erroneous behaviors that will never
show up with SystemC simulation.

In the set-counter, asynchronous concurrency means that the wait(e) state-
ment of process run_m2 can occur either before or after process run_m1 has
performed the transaction p->set(), i.e. either before or after event e is noti-
fied. This leads to two different system behaviors.

If the notification of e occurs before the wait, then the event is lost and run_m2
will deadlock since it will eventually wait for an event that will not be notified
anymore. If the notification of e occurs after the wait, then run_m2 will resume
its execution and eventually proceed.

These two behaviors are intended in TLM. However, the SystemC scheduler
imposing an order of process execution no matter the number of simulation runs,
only one out of the two behaviors will be simulated. Hence, simulation may miss
the deadlock.

This deadlock can be prevented by replacing the statement wait(e) by
while(!m_set) wait(e). With this modification, a correct synchronization be-
tween the wait of run_m2 and the notification of event e by run_m1 is ensured.

Non-preemption. The SystemC scheduler is not preemptive, i.e. a process
runs without interruption until it explicitly gives control back with a wait state-
ment. This is known as collaborative multithreading and is generally found easier
to program with than preemptive multithreading, e.g. it simplifies access control
to shared variables. However, this major difference with the concurrent model
of computation of TLM may hide interleavings intended in the model and the
final system.

For instance, when run_m1 gains control, it performs the two transactions, set
and read, in a row. Although run_m2 is resumed by transaction set, with the
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simulation semantics of SystemC, this second process has no chance to execute
before run_m1 explicitly gives control back, i.e. on termination in this case.
Therefore, the value of m_count read by run_m1 during the transaction read is
never updated by run_m2.

However, in real asynchronous concurrency as in TLM, once process run_m2
is resumed, the update of m_count could occur before or after run_m1 performs
its transaction read. Therefore, the value of m_count read by run_m1 can either
be the updated one or not. These two behaviors are intended in the TLM model,
but only the second one is permitted by the SystemC scheduler. Hence, this syn-
chronization problem between successive transactions is missed by simulation,
and by formal semantics based on the SystemC simulation semantics.

4 Translation of the TLM-Subset of SystemC into
LOTOS

In this section, we briefly present LOTOS and outline the translation of TLM
descriptions written in SystemC into LOTOS. In the following, L denotes a list
L1, . . . , Ln of, depending on context, gates, variables, type-variable couples or
values. We use the set-counter without deadlock as a running example.

4.1 LOTOS

The standard process algebra LOTOS (Language Of Temporal Ordering Specifi-
cation) [8] allows to describe asynchronous concurrent processes communicating
and synchronizing by rendez-vous on gates. LOTOS specifications are composed
of a data part and a behavior part. For a complete description of LOTOS, we
refer the reader to existing tutorials, such as [1]; in the following we briefly
introduce the notions occurring in the examples of this paper.

Data values and operations are described by algebraic specifications in the
style of ACTONE [2]. Types define a collection of sorts, operations on sorts and
equations describing the meaning of operations. The verification toolbox CADP
also allows to use external C data types. In the examples of this paper, we
suppose that we are given an implementation of Booleans and natural numbers.

Behaviors are expressed by terms combining processes with algebraic oper-
ators. Figure 3 gives a grammar of behaviors; lower case identifiers stand for
terminals and upper case identifiers for non terminals (P is a process name, G
a gate name, X a variable name, S a sort name, and F a function name).

The semantics of LOTOS is formally defined by labeled transition systems.
Here, we only sketch the meaning. A rendez-vous “G O; B” on a gate G al-
lows to communicate several values O, called offers, either for emission (!) or
reception (?); then behavior B is executed. Hidden gates G of B in “hide G in
B” are unobservable, and unavailable for synchronization with other behaviors.
“B1 [] B2” implements a nondeterministic choice between behaviors B1 and
B2. “B1 |[G]| B2” is the parallel composition of B1 and B2 synchronizing on
the gates G; pure interleaving “B1 ||| B2” is the special case where G is empty.
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B ::= G O1 . . . On; B rendez -vous
| hide G1, . . . , Gn in B hiding
| B1 [] B2 choice
| B1 ||| B2 interleaving
| B1 |[G1, . . . , Gn]| B2 parallel
| B1 >> accept X1:S1, . . . , Xn:Sn in B2 sequence
| exit(V1, . . . , Vn) termination
| [V ]−> B guard
| let X:S=V in B variable definition
| P[G1, . . . , Gm](V1, . . . , Vn) process call

O ::= !V | ?X:S offer
V ::= X | F(X1, . . . , Xn) value

Fig. 3. Grammar of LOTOS behaviors

Synchronization on gates with offers only occurs if the offers are compatible
(same number and types, same values for matching emissions). In the sequence
“B1 >> accept X:S in B2”, on successful termination, behavior B1 uses the
operator “exit(V )” to pass results V of types S to B2 through variables X (of
types S). A behavior B can be guarded by a Boolean expression V : “[V ]−> B”.
A “let X:S=V in B” construct allows to define a variable X of sort S that can
be used in B and is initialized to value V . Finally, a behavior B can be encap-
sulated in a recursive process P as follows: “process P [G](X:S): E:= B
endproc” where E is either noexit or exit(S).

4.2 Overview of the Translation

Our translation into LOTOS maps SystemC threads, transactions, shared vari-
ables, and modules into the single concept of LOTOS process. SystemC types are
translated into LOTOS types. Two additional LOTOS processes are required.
The event manager process is an implementation of the event communication
mechanism used in TLM. The lock manager process is not the translation of a
TLM concept. It is added to the LOTOS model so as to adjust the degree of
asynchrony to verification needs.

Several LOTOS implementations may exist for a given concept (e.g. event
communication). Due to lack of space, we will only briefly mention these alter-
natives. Translation of shared variables and locks are based on standard tech-
niques from process algebra (e.g. [11]). In the following, we will write thread for
a LOTOS process corresponding to the translation of a SystemC thread.

4.3 Variables of Modules

A variable v of a module can be shared, i.e. accessed by several threads or
transactions of the module. If this is not the case, the variable is added as a
parameter of the thread using it. Otherwise, it is necessary to introduce a dedi-
cated process sharedv that offers rendez-vous to read and write v. In LOTOS,
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this supplementary process avoids synchronizations between processes accessing
the same shared variables.

If the type of v is Bool, sharedv can be defined as:

process sharedv[readv ,writev](v:Bool): noexit :=
readv !v; sharedv[readv,writev](v) []
writev ?newv:Bool; sharedv[readv ,writev](newv)

endproc

A single process comprising all read/write rendez-vous suffices to handle all
shared variables of a module.

Moreover, if a shared variable of a module m is accessed by threads of m and
by threads of other modules, then it is necessary to duplicate the gates accessing
this variable in order to avoid n-ary rendez-vous between the threads of m and
the other threads. This is the case in the set-counter example with the shared
variables of module m2: m_set (resp., m_count) is accessed for reading (resp.,
writing) by both run_m2 and transaction set (resp., read). Consequently, we
introduce the two supplementary gates w_m_set_ext and r_m_count_ext that
will be used by the transactions. The LOTOS code for the shared variables of
module m2 is:

process shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,
w_m_set_ext ,r_m_count_ext ]

(m_set:Bool , m_count:Nat) : noexit :=
w_m_set ?v:Bool;
shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext ] (v,m_count)
[]
r_m_set !m_set;
shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext ] (m_set ,m_count)
[]
w_m_count ?v:Nat;
shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext ] (m_set ,v)
[]
r_m_count !m_count;
shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext ] (m_set ,m_count)
[]
w_m_set_ext ?v:Bool;
shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext ] (v,m_count)
[]
r_m_count_ext !m_count;
shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext ] (m_set ,m_count)
endproc
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4.4 Locks

For various reasons (e.g. debugging, efficiency, knowledge of the system), it may
be desirable to control the level of asynchrony in (parts of) the LOTOS model.
This is possible using different locking strategies: locks ensure mutually exclusive
execution of selected code parts. For instance, one lock per module acquired by
each transaction of the module prevents simultaneous transactions in the same
target module, whereas a single global lock acquired by each thread reproduces
the nonpreemptive semantics of the SystemC scheduler. Several lock granularities
for different parts of the system can be used to fine tune the desired behaviors
of a model.

One or several lock manager processes can propose rendez-vous to acquire or
release locks on gates lock and free. These gates may take an offer identifying
a desired lock if a centralized lock manager is used for several locks.

To illustrate the use of locks with the set-counter, we implement a locking
policy that prevents transactions and the thread of m2 from executing simul-
taneously. Thus, a thread or a transaction starts by acquiring the lock of m2,
which is then freed only on suspension or termination. The corresponding lock
manager process is:

process lock_manager [lock ,free ]( m2_locked : Bool) : noexit :=
[not(m2_locked )] −> lock !m2; lock_manager [lock ,free ](true)

[]
free !m2; lock_manager [lock ,free ]( false)

endproc

4.5 Event Communication

For an event e, an event manager process is used to record which processes are
waiting for e and to resume them all nondeterministically on notification of event
e. A wait(e) is translated into a sequence suspend !id_p !e; resume !id_p
where id_p is the identifier of the waiting process. A e.notify() translates into
a rendez-vous notify !e; if a process p is waiting for e, the event manager offers
a rendez-vous resume !id_p to resume p.

For each process p possibly waiting for an event e (this can be known stati-
cally), we use one Boolean parameter of the event manager to record whether
p is waiting for e or not. An event manager for an event e with two possible
waiting processes p1 and p2 can then be defined as:

process event_manager [notify ,resume ,suspend]
(id_p1_e , id_p2_e:Bool): noexit :=

suspend !id_p1 !e;
event_manager [notify ,resume ,suspend ](true ,id_p2_e)

[]
suspend !id_p2 !e;
event_manager [notify ,resume ,suspend ]( id_p1_e ,true)

[]
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(notify !e;
(

([ id_p1_e]−>resume !id_p1; exit [] [not(id_p1_e )]−>exit)
| | |
([ id_p2_e]−>resume !id_p2; exit [] [not(id_p2_e )]−>exit)

) >> event_manager [notify ,resume ,suspend ]( false ,false) )
endproc

For each process, an additional Boolean parameter can suffice to encode whether
the process is waiting for a conjunction or disjunction of events. Finally, a single
process may manage all event/process combinations, or several processes can be
used to manage events local to groups of modules.

In the set-counter, there is only one event and run_m2 is the only thread
waiting for it, so the event manager is simpler than the more generic one above:

process event_manager [n, r, s]( b_run_m2 : Bool) : noexit :=
s; event_manager [n, r, s]( true)

[]
[not (b_run_m2 )] −> n; event_manager [n, r, s]( b_run_m2 )

[]
[b_run_m2 ] −> n; r; event_manager [n, r, s]( false)

endproc

4.6 Threads and Transactions

A SystemC thread T is translated into a LOTOS process whose behavior is the
translation of the body of T . C++ constructs occurring in threads are translated
as follows: an assignment to a local variable becomes a let construct, a condi-
tional branching becomes a choice between behaviors guarded by mutually exclu-
sive conditions ([cond]−>if_part [][not(cond)]−>else_part), a loop be-
comes a recursive process, and a method call becomes either a process call or a
call to a C function if the method only processes data without synchronizing. In
this latter case, CADP calls the C function to compute a value if needed.

A transaction is also translated into a process P . Unlike threads, transactions
may have input (request) and output (response). Inputs become parameters of
P while outputs become results returned by P via the exit operator. Calling a
transaction through a port is calling the corresponding process – which one is
statically known.

In the set-counter example, there are two transactions, set and read. Their
translation is:

process set[lock ,free ,notify ,w_m_set_ext ] : exit :=
lock !m2;
w_m_set_ext !true; notify;
free !m2; exit

endproc

process read[lock ,free ,r_m_count_ext ] : exit(Nat) :=
lock !m2;
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r_m_count_ext ?n:Nat;
free !m2; exit(n)

endproc

Then, the translation of thread run_m1 calling the transactions is:

process run_m1[lock ,free ,notify ,cout ,w_m_set_ext ,
r_m_count_ext ] : noexit :=

set[lock ,free ,notify , w_m_set_ext ]
>> read[lock ,free ,r_m_count_ext ]

>> accept n:Nat in cout !n; stop
endproc

Finally, the translation of thread run_m2 is:

process run_m2[lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,
r_m_count ,w_m_count ] : noexit :=

lock !m2; run2[lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,
r_m_count ,w_m_count ]

where
process run2[lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,

r_m_count ,w_m_count ] : noexit :=
r_m_set ?v:Bool;
(

[not(v)]−> suspend ; free !m2; resume; lock !m2;
run2[lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,

r_m_count , w_m_count ]
[]
[v]−> r_m_count ?n:Nat; w_m_count !n+1; w_m_set !false;

run2[lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,
r_m_count , w_m_count ]

)
endproc

endproc

4.7 Modules and Complete System

A SystemC module is translated into a parallel composition of the process han-
dling its state variables with the translation of its threads.

As an example, the following is a translation of a module M with two threads
P1 and P2, which use the gates Aint=Aint1∪Aint2 to access variables of M and
the gates Aext=Aext1∪Aext2 to access variables of other modules. Contrary to
SystemC, transactions are not encapsulated in the owner module2. Consequently,
the scoping rules of LOTOS require M to expose its variables via gates (here
At) to make them accessible to threads of other modules (through transactions
of M).

2 This solution has been investigated and leads either to complex handling of contexts,
or to duplication of code; it is not exposed here.
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process M [notify ,resume ,suspend ,At,Aint,Aext]: noexit :=
shared_var [Aint,At](var)

|[Aint ] |
(P1[notify ,resume ,suspend ,Aint1 ,Aext1 ]
| | |
P2[notify ,resume ,suspend ,Aint2 ,Aext2 ])

endproc

The module m2 of the set-counter is translated into:

process m2[lock ,free ,notify ,resume ,suspend ,
w_m_set_ext ,r_m_count_ext ] : noexit :=

hide r_m_set ,w_m_set ,r_m_count ,w_m_count in
(

shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,
w_m_set_ext ,r_m_count_ext ] (false ,0)

|[ w_m_set ,r_m_set ,w_m_count ,r_m_count ] |
run_m2[lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,

r_m_count ,w_m_count ]
)

endproc

Module m1 contains only one thread, thus m1 is translated into a call to run_m1.
The entire system is the parallel composition of all modules with the event

and lock managers. Modules are synchronized with each other on the gates to
access their variables (the union of the Aext and At gates).

Finally, the translation of the entire set-counter system is:

(
( run_m1[lock ,free ,notify ,cout ,w_m_set_ext ,r_m_count_ext ]

|[ w_m_set_ext ,r_m_count_ext ] |
m2[lock ,free ,notify ,resume ,suspend ,

w_m_set_ext ,r_m_count_ext ] )
|[ notify ,resume ,suspend ] |
event_manager [notify ,resume ,suspend ](false)

)
|[ lock ,free ] | lock_manager [lock ,free ]( false)

5 Experimental Results

We developed the LOTOS model of the set-counter without deadlock using two
locking policies: without (a global lock has to be acquired by each thread and
released on suspension or termination) and with thread preemption (no lock at
all). The former reproduces the behaviors of the TLM model observable with
the SystemC simulation kernel. The latter allows transaction interleavings, as
required by TLM semantics. We also wrote a μ-calculus formula expressing what
values of the counter may be read by initiator module m1 (cf. Sect. 3.3).

For both versions, we used CADP [3] to generate the corresponding automata
and check the property (as expected, it holds only with preemption). We also
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Table 1. Results for the set-counter example

i=initiator t=target 1i 1t 2i 1t 1i 2t 2i 2t 3i 2t

w/
preemption

generation time (s) 1.1 1 1.4 1.8 28.4
number of states 77 1,201 1,109 48,149 1,940,977
formula checking (s) 0.1 0.3 0.1 0.7 35.8

w/o
preemption

generation time (s) 1 1 1.4 1.5 1.5
number of states 35 141 149 770 3,334
formula checking (s) < 0.1 < 0.1 < 0.1 < 0.1 1.1

checking w/o � w/ (s) 1.4 1.7 2.7 32.6 450.4

verified that, modulo branching equivalence, the model without preemption was
included in the model with preemption, but not vice versa.

Table 1 shows the results for different configurations of initiator (m1) and
target (m2) modules. When several targets are available, each initiator performs
set and read transactions with each target in sequence. Experiments were done
on a Sun UltraSparc IIIi 1.6GHz with 2GB memory running Solaris 10 (time is
in seconds and “generation” refers to the automata construction from LOTOS).

As a consequence of showing more behaviors, preemptive models (lines “w/”)
produce automata with a greater number of states than nonpreemptive mod-
els (lines “w/o”). However, first experiments show that minimization with
respect to branching bisimulation reduces automata of preemptive models by
factors up to 103. Therefore, compositional approaches might be very effective.

6 Conclusion

TLM models are nondeterministic and asynchronous, as may be the underlying
hardware. Hence, they are difficult to apprehend and formal methods can help
their understanding and verification. Since there is no formal semantics of TLM,
most verification approaches refer to the simulation semantics of SystemC and
its nonpreemptive scheduler. Such approaches cannot exhibit all behaviors of a
TLM model, possibly leaving errors undetected, as we have shown in this paper.

We presented a translation from a TLM-subset of SystemC into LOTOS us-
ing a schedulerless semantics; our translation can be easily tuned to support
the nonpreemptive semantics as a particular case. Although the interleaving se-
mantics abstraction of concurrency, in which our approach is rooted, may not
always correspond to physical true concurrency, it is widely accepted and proved
efficient in many application domains. Experimenting our translation on several
TLM models with CADP, we showed that our semantics is a strict superset of
a nonpreemptive one and that the additional behaviors may reveal errors.

Automating a translation of TLM into LOTOS is a difficult task, since the
former is informal whereas the latter has a precise formal semantics. The for-
malization of TLM is a necessary first step, to which the translation rules of this
paper contribute.
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Abstract. Despite more then 30 years of research on protocol specifi-
cation, the major protocols deployed in the Internet, such as TCP, are
described only in informal prose RFCs and executable code. In part this
is because the scale and complexity of these protocols makes them chal-
lenging targets for formalization.

In this paper we show how these difficulties can be addressed. We
develop a high-level specification for TCP and the Sockets API, expressed
in the HOL proof assistant, describing the byte-stream service that TCP
provides to users. This complements our previous low-level specification
of the protocol internals, and makes it possible for the first time to state
what it means for TCP to be correct: that the protocol implements the
service. We define a precise abstraction function between the models
and validate it by testing, using verified testing infrastructure within
HOL. This is a pragmatic alternative to full proof, providing reasonable
confidence at a relatively low entry cost.

Together with our previous validation of the low-level model, this
shows how one can rigorously tie together concrete implementations, low-
level protocol models, and specifications of the services they claim to
provide, dealing with the complexity of real-world protocols throughout.

1 Introduction

Real-world network protocols are usually described in informal prose RFCs,
which inevitably have unintentional ambiguities and omissions, and which do
not support conformance testing, verification of implementations, or verification
of applications that use these protocols. Moreover, there are many subtly dif-
ferent realisations, including the TCP implementations in BSD, Linux, WinXP,
and so on. The Internet protocols have been extremely successful, but the cost is
high: there is considerable legacy complexity that implementors and users have
to deal with, and there is no clear point of reference. To address this, we have
developed techniques to put practical protocol design on a rigorous footing, to
make it possible to specify protocols and services with mathematical precision,
and to do verified conformance testing directly against those specifications. In
this paper we demonstrate our approach by developing and validating a high-
level specification of the service provided by TCP: the dominant data transport
protocol (underlying email and the web), which provides reliable duplex byte
streams, with congestion control, above the unreliable IP layer.
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Our specification deals with the full complexity of the service provided by
TCP (except for performance properties). It includes the Sockets API (connect,
listen, etc.), hosts, threads, network interfaces, the interaction with ICMP and
UDP, abandoned connections, transient and persistent connection problems, un-
expected socket closure, socket self-connection and so on. The specification com-
prises roughly 30 000 lines of (commented) higher-order logic, and mechanized tool
support has been essential for work on this scale. It is written using the HOL sys-
tem [11]. The bulk of the definition is an operational semantics, using idioms for
timed transition relations, record-structured state, pattern matching and so on.

We relate this service-level specification to our previous protocol description
by defining, again in HOL, an abstraction function from the (rather complex)
low-level protocol states, with sets of TCP segments on the wire, flow and con-
gestion control data, etc., to the (simpler) service-level states, comprising byte
streams and some status information. This makes explicit how the protocol im-
plements the service.

The main novelty of the approach we take here is the validation of this abstrac-
tion function. Ideally, one would prove that the abstraction relationship holds in
all reachable states. Given the scale and complexity of the specifications, how-
ever, it is unclear whether that would be pragmatically feasible, especially with
the limited resources of an academic team. Accordingly, we show how one can
validate the relationship by verified testing. We take traces of the protocol-level
specification (themselves validated against the behaviour of the BSD TCP imple-
mentation), and verify (automatically, and in HOL) that there are corresponding
traces of the service-level specification, with the abstraction function holding at
each point. Our previous protocol-level validation, using a special-purpose sym-
bolic evaluator, produced symbolic traces of the protocol-level specification. We
now ground these traces, using a purpose-built constraint solver to instantiate
variables to satisfy any outstanding constraints, and use a new symbolic eval-
uator to apply the abstraction function and check that the resulting trace lies
in the service-level specification. By doing this all within HOL, we have high
confidence in the validation process itself.

Obviously, such testing cannot provide complete guarantees, but our experience
with the kind of errors it detects suggests that it is still highlydiscriminating (partly
due to the fact that it examines the internal states of the specifications at every step
along a trace) and one can develop useful levels of confidence relatively quickly.

In the following sections, we first recall our previous protocol model (Sect. 2),
before describing the new service-level specification (Sect. 3) and abstraction
function (Sect. 4), giving small excerpts from each. We then discuss the validation
infrastructure, and the results of validation (Sect. 5). Finally, we discuss related
work and conclude.

2 Background: Our Previous Low-Level Protocol Model

Our previous low-level specification [5,6] characterises TCP, UDP and ICMP
at the protocol level, including hosts, threads, the Sockets API, network
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interfaces and segments on the wire. As well as the core functionality of seg-
ment retransmission and flow control, TCP must handle details of connection
setup and tear-down, window scaling, congestion control, timeouts, optional TCP
features negotiated at connection setup, interaction with ICMP messages, and
so on. The model covers all these. It is parameterized by the OS, allowing OS-
dependent behaviour to be specified cleanly; it is also non-deterministic, so as
not to constrain implementations unnecessarily.

This level of detail results in a model of roughly 30 000 lines of (commented)
higher-order logic (similar in size to the implementations, but structured rather
differently). As further evidence of its accuracy and completeness, it has been suc-
cessfully used as the basis for a Haskell implementation of a network stack [13].

The main part of the protocol model (the pale shaded region below) is the host
labelled transition system, or host LTS, describing the possible interactions of a
host OS: between program threads and host via calls and returns of the Sockets
API, and between host and network via message sends and receives. The protocol
model uses the host LTS, and a model of the TCP, UDP and ICMP segments
on the wire, to describe a network of communicating hosts.

TCP

IP

TCP

IP

UDP
ICMP

UDP
ICMP

IP network

applications
libraries and
Distributed Distributed

applications

Host LTS spec

libraries and

Sockets API interface

Wire interface

The host labelled transition relation, h lbl−→ h′, is defined by some 148 rules
for the socket calls (5–10 for each interesting call) and some 46 rules for message
send/receive and for internal behaviour. An example of one of the simplest rules
is given in Fig. 1. The rule describes a host with a blocked thread attempting to
send data to a socket. The thread becomes unblocked and transfers the data to
the socket’s send queue. The send call then returns to the user.

The transition h 〈[...]〉 τ−→ h 〈[...]〉 appears at the top, where the thread pointed
to by tid and the socket pointed to by sid are unpacked from the original and
final hosts, along with the send queue sndq for the socket. Host fields that are
modified in the transition are highlighted. The initial host has thread tid in state
Send2, blocking attempting to send str to sndq. After the transition, tid is in
state Ret(OK...), about to return to the user with str ′′, the data that has not
been sent, here constrained to be the empty string.

The bulk of the rule is the condition (a predicate) guarding the transition,
specifying when the rule applies and what relationship holds between the input
and output states. The condition is simply a conjunction of clauses, with no
temporal ordering. The rule only applies if the state of the socket, st , is either
ESTABLISHED or CLOSE WAIT. Then, provided send queue space is large
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send 3 tcp: slow nonurgent succeed Successfully return from blocked state
having sen t data

h 〈[ts := ts ⊕ (tid �→ (Send2(sid , ∗, str , opts))
d

);

socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑p2, ∗,F, cantrcvmore,
TCP Sock(st , cb, ∗, sndq , sndurp , rcvq , rcvurp, iobc)))]]〉

τ
−→
h 〈[ts := ts ⊕ (tid �→ (Ret(OK(implode str ′′)))sched timer );

socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,
TCP Sock(st , cb, ∗, sndq + +str ′ , sndurp′ , rcvq , rcvurp, iobc)))]]〉

st ∈ {ESTABLISHED;CLOSE WAIT} ∧
space ∈ send queue space(sf .n(SO SNDBUF))

(length sndq)(MSG OOB ∈ opts)
h.arch cb.t maxseg i2 ∧

space ≥ length str ∧
str

′ = str ∧ str
′′ = [ ] ∧

sndurp
′ = if MSG OOB ∈ opts then ↑(length(sndq + +str

′) − 1) else sndurp

HOL syntax For optional data items, ∗ denotes absence (or a zero IP or port) and
↑ x denotes presence of value x . Concrete lists are written [1, 2, 3] and appending two
lists is written using an infix ++. Records are written within angled brackets 〈[...]〉.
Record fields can be accessed by dot notation or by pattern-matching. Record fields
may be overridden: cb′ = cb 〈[irs := seq ]〉 states that the record cb ′ is the same as the
record cb, except that field cb ′.irs has the value seq . The expression f ⊕ [(x , y)] or
f ⊕ (x �→ y) denotes the finite map f updated to map x to y .

Fig. 1. Protocol-level model, example rule

enough, str is appended to the sndq in the final host. Lastly, the urgent pointer
sndurp′ is set appropriately.

Although the bulk of the model deals with the relatively simple Sockets API,
with many rules like that of Fig. 1, the real complexity arises from internal
actions that are largely invisible to the Sockets user, such as retransmission and
congestion control. For example, the rule deliver in 3 (not shown) that handles
normal message receipt comprises over 1 000 lines of higher-order logic.

The model has been validated against several thousand real-world network
traces, designed to test corner cases and unexpected situations. Of these, 92%
are valid according to the model, and we believe that for many purposes the
model is sufficiently accurate — certainly enough to be used as a reference, in
conjunction with the standard texts.

3 The New Service-Level Specification

The service-level specification, illustrated below, describes the behaviour of a
network of hosts communicating over TCP, as observed at the Socket APIs
of the connections involved. It does not deal with TCP segments on the wire
(though it necessarily does include ICMP and UDP messages).
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In principle one could derive a service-level specification directly from the
protocol model, taking the set of traces it defines and erasing the TCP wire
segment transitions. However, that would not give a usable specification: one in
which key properties of TCP, that users depend on, are clearly visible. Hence,
we built the service-level specification by hand, defining a more abstract notion
of host state, an abstract notion of stream object, and a new network transition
relation, but aiming to give the same Sockets-API-observable behaviour.

The abstract host states are substantially simpler than those of the protocol-
level model. For example, the protocol-level TCP control block contains 44 fields,
including retransmit and keep-alive timers; window sizes, sequence position and
scaling information; timestamping and round trip times. Almost none of these
are relevant to the service-level observable behaviour, and so are not needed in
the service-level TCP control block. Along with this, the transition rules that
define the protocol dynamics, such as deliver in 3 , become much simpler. The
rules that deal with the Sockets API must be adapted to the new host state, but
they remain largely as before. The overall size of the specification is therefore
not much changed, at around 30 000 lines (including comments).

A naive approach to writing the individual rules would be to existentially
quantify those parts of the host state that are missing at the service level (and
then to logically simplify as much as possible). However, this would lead to
a highly non-deterministic and ultimately less useful specification. Instead, we
relied on a number of invariants of the low-level model, arguing informally that,
given those, the two behaviours match. We rely on the later validation to detect
any errors in these informal arguments.

In the rest of this section we aim to give a flavour of the service-level specifi-
cation, referring the interested reader to the complete specification online [23].

The heart of the specification is a model of a bidirectional TCP connection
as a pair of unidirectional byte streams between Sockets endpoints:

– unidirectional stream :
tcpStream =〈[ i : ip; (* source IP *)

p : port; (* source port *)
flgs : streamFlags;
data : byte list;
destroyed : bool]〉
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The data in the stream is a byte list. Further fields record the source IP
address and port of the stream, control information in the form of flags, and a
boolean indicating whether the stream has been destroyed at the source (say,
by deleting the associated socket). Some of these fields are shared with the low-
level specification, but others are purely abstract entities. Note that although a
stream may be destroyed at the source, previously sent messages may still be on
the wire, and might later be accepted by the receiver, so we cannot simply remove
the stream when it is destroyed. Similarly, if the source receives a message for
a deleted socket, a RST will typically be generated, which must be recorded in
the stream flags of the destroyed stream. These flags record whether the stream
is opening (SYN ,SYNACK ), closing normally (FIN ) or abnormally (RST ).

– stream control information :
streamFlags =〈[ SYN : bool; (* SYN , no ACK *)

SYNACK : bool; (* SYN with ACK *)
FIN : bool;
RST : bool]〉

This control information is carefully abstracted from the protocol level, to
capture just enough structure to express the user-visible behaviour. Note that
the SYN and SYNACK flags may be set simultaneously, indicating the presence
of both kinds of message on the wire. The receiver typically lowers the stream
SYN flag on receipt of a SYN : even though messages with a SYN may still
be on the wire, subsequent SYN s will be detected by the receiver as invalid
duplicates of the original. A bidirectional stream is then just an unordered pair
(represented as a set) of unidirectional streams.

The basic operations on a byte stream are to read and write data. The fol-
lowing defines a write from Sockets endpoint (i1, p1) to endpoint (i2, p2).

– write flags and data to a stream :
write(i1, p1, i2, p2)(flgs, data)s s

′ = (
∃in out in

′
out

′.
sync streams(i1, p1, i2, p2)s(in , out) ∧
sync streams(i1, p1, i2, p2)s

′(in′, out ′) ∧
in

′ = in ∧
out

′.flgs =
〈[ SYN :=(out .flgs .SYN ∨ flgs .SYN );

SYNACK :=(out .flgs .SYNACK ∨ flgs .SYNACK );
FIN :=(out .flgs .FIN ∨ flgs .FIN );
RST :=(out .flgs .RST ∨ flgs.RST )]〉 ∧

out
′.data = (out .data + +data))

Stream s ′ is the result of writing flgs and data to stream s . Stream s consists
of a unidirectional input stream in and output stream out , extracted from the
bidirectional stream using the auxiliary sync streams function. Similarly s ′, the
state of the stream after the write, consists of in ′ and out ′. Since we are writing
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send 3 tcp: slow nonurgent succeed Successfully return from blocked state
having sent data

(h 〈[ts := ts ⊕ (tid �→ (Send2(sid , ∗, str , opts))
d

);

socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s )],M )
τ
−→ (h 〈[ts := ts ⊕ (tid �→ (Ret(OK(implode str ′′)))

sched timer
);

socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,
TCP Sock(st , cb, ∗)))]]〉,

S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s ′ )],M )

st ∈ {ESTABLISHED;CLOSE WAIT} ∧
space ∈ UNIV ∧
space ≥ length str ∧
str

′ = str ∧ str
′′ = [ ] ∧

flgs = flgs 〈[ SYN :=F;SYNACK :=F;FIN :=F;RST :=F]〉 ∧
write(i1, p1, i2, p2)(flgs, str ′)s s

′

Fig. 2. Service-level specification, example rule

to the output stream, the input stream remains unchanged, in ′ = in . The
flags on the output stream are modified to reflect flgs. For example, SYN is
set in out ′.flgs iff flgs contains a SYN or out .flgs already has SYN set. Finally,
out ′.data is updated by appending data to out .data.

Fig. 2 gives the service-level analogue of the previous protocol-level rule. The
transition occurs between triples (h 〈[...]〉, S0 ⊕ [...],M ), each consisting of a host,
a finite map from stream identifiers to streams, and a set of UDP and ICMP
messages. The latter do not play an active part in this rule, and can be safely
ignored. Host state is unpacked from the host as before. Note that protocol-
level constructs such as rcvurp and iobc are absent from the service-level host
state. As well as the host transition, there is a transition of the related stream
s to s ′. The stream is unpacked from the finite map via its unique identifier
streamid of quad(i1, p1, i2, p2), derived from its quad.

As before, the conditions for this rule require that the state of the socket st
must be ESTABLISHED or CLOSE WAIT. Stream s ′ is the result of writing
string str ′ and flags flgs to s . Since flgs are all false, the write does not cause
any control flags to be set in s ′, although they may already be set in s of course.

This rule, and the preceding definitions, demonstrate the conceptual simplicity
and stream-like nature of the service level. Other interesting properties of TCP
are clearly captured by the service-level specification. For example, individual
writes do not insert record boundaries in the byte stream, and in general, a
read returns only part of the data, uncorrelated with any particular write. The
model also makes clear that the unidirectional streams are to a large extent
independent. For example, closing one direction does not automatically cause
the other to close.
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Fig. 3. Abstraction function, illustrated (data part only)

4 The Abstraction Function

While the service specification details what service an implementation of TCP
provides to the Sockets interface, the abstraction function details how. The
abstraction function maps protocol-level states and transitions to service-level
states and transitions. A protocol-level network consists of a set of hosts, each
with their own TCP stacks, and segments on the wire. The abstraction func-
tion takes this data and calculates abstract byte streams between Sockets API
endpoints, together with the abstract connection status information.

The latter is the more intricate part, but we can give only a simple example here:
the destroyed flag is set iff either there is no socket on the protocol-levelhost match-
ing the quad for the TCP connection or the state of the TCP socket is CLOSED.

The former is illustrated in Fig. 3. For example, consider the simple case
where communication has already been established, and the source is sending a
message to the destination that includes the string “abc...xyz”, of which bytes
up to “w” have been moved to the source sndq. Moreover, the destination has
acknowledged all bytes up to “f”, so that the sndq contains “fgh...uvw”, and
snd una points to “f”. The destination rcvq contains “cde...opq”, waiting for
the user to read from the socket, and rcv nxt points just after “q”.

↓ snd una ↓ rcv nxt

message ...abcdefghijklmnopqrstuvwxyz...
source sndq fghijklmnopqrstuvw
destination rcvq cdefghijklmnopq
DROP(rcv nxt − snd una)sndq rstuvw
stream cdefghijklmnopqrstuvw

The data that remains in the stream waiting for the destination endpoint to
read, is the byte stream “cdefghijklmnopqrstuvw”. This is simply the destina-
tion rcvq with part of the source sndq appended: to avoid duplicating the shared
part of the byte sequence, (rcv nxt − snd una) bytes are dropped from sndq
before appending it to rcvq .
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– unidirectional abstraction function :
abs hosts one sided(i1, p1, i2, p2)(h,msgs, i) = (

(* messages that we are interested in, including oq and iq *)
let (hoq , iiq) =

case (h.oq , i .iq) of ((msgs)
1

,
`
msgs

′
´

2
) → (msgs,msgs

′) in
let msgs = list to set hoq ∪ msgs ∪ (list to set iiq) in
(* only consider TCP messages . . . *)
let msgs = {msg | TCP msg ∈ msgs} in
(* . . . that match the quad *)
let msgs = msgs ∩

{msg | msg = msg 〈[ is1 := ↑ i1; ps1 := ↑ p1; is2 := ↑ i2; ps2 := ↑ p2]〉} in

(* pick out the send and receive sockets *)
let smatch i1 p1 i2 p2 s =

((s.is1, s.ps1, s.is2, s.ps2) = (↑ i1, ↑ p1, ↑ i2, ↑ p2)) in
let snd sock = Punique range(smatch i1 p1 i2 p2)h.socks in
let rcv sock = Punique range(smatch i2 p2 i1 p1)i .socks in
let tcpsock of sock = case sock .pr of

TCP1 hostTypes $TCP PROTO tcpsock → tcpsock

‖ 3 → ERROR“abs hosts one sided:tcpsock of”
in
(* the core of the abstraction function is to compute data *)
let (data : byte list) = case (snd sock , rcv sock) of

(↑( 8 , hsock), ↑( 9 , isock)) → (
let htcpsock = tcpsock of hsock in
let itcpsock = tcpsock of isock in
let (snd una, sndq) = (htcpsock .cb.snd una, htcpsock .sndq) in
let (rcv nxt , rcvq) = (itcpsock .cb.rcv nxt , itcpsock .rcvq) in
let rcv nxt = tcp seq flip sense rcv nxt in
let sndq

′ = DROP((num(rcv nxt − snd una)))sndq in
rcvq + +sndq

′)

‖ (↑( 8 , hsock), ∗) → (
let htcpsock = tcpsock of hsock in
htcpsock .sndq)

‖ (∗, ↑( 9 , isock)) → (
let itcpsock = tcpsock of isock in
let (rcv nxt : tcpLocal seq32 , rcvq : byte list) =

(tcp seq flip sense(itcpsock .cb.rcv nxt), itcpsock .rcvq) in
rcvq + +(stream reass rcv nxt msgs))

‖ (∗, ∗) → ERROR“abs hosts one sided:data”
in
〈[ i := i1;

p := p1;
flgs :=
〈[ SYN :=(∃msg .msg ∈ msgs ∧ msg = msg 〈[ SYN :=T;ACK :=F]〉);

SYNACK :=(∃msg .msg ∈ msgs ∧ msg = msg 〈[ SYN :=T;ACK :=T]〉);
FIN :=(∃msg .msg ∈ msgs ∧ msg = msg 〈[ FIN :=T]〉);
RST :=(∃msg .msg ∈ msgs ∧ msg = msg 〈[ RST :=T]〉)

]〉;
data := data;
destroyed :=(case snd sock of
↑(sid , hsock) → ((tcpsock of hsock).st = CLOSED)
‖ ∗ → T)

]〉)

Fig. 4. Abstraction function, excerpt



A Rigorous Approach to Networking 303

An excerpt from the HOL definition appears in Fig. 4. It takes a quad
(i1, p1, i2, p2) identifying the TCP connection, a source host h, a set of messages
msgs on the wire, and a destination host i , and produces a unidirectional stream. It
follows exactly the previous analysis: (rcv nxt − snd una) bytes are dropped from
sndq to give sndq ′, which is then appended to rcvq to give the data in the stream.

Note that, inkeepingwith the fact thatTCP isdesigned so thathosts can retrans-
mit any data that is lost on the wire, this abstraction does not depend on the data
in transit — at least for normal connections in which neither endpoint has crashed.

For a given TCP connection, the full abstraction function uses the unidirec-
tional function twice to form a bidirectional stream constituting the service-level
state. As well as mapping the states, the abstraction function maps the transi-
tion labels. Labels corresponding to visible actions at the Sockets interface, such
as a connect call, map to themselves. Labels corresponding to internal protocol
actions, such as the host network interface sending and receiving datagrams from
the wire, are invisible at the service level, and so are mapped to τ , indicating no
observable transition. Thus, for each protocol-level transition, the abstraction
function gives a service-level transition with the same behaviour at the Sockets
interface. Mapping the abstraction function over a protocol-level trace gives a
service-level trace with identical Sockets behaviour. Every valid protocol-level
trace should map to a valid service-level trace.

5 Experimental Validation

How can we ensure that TCP implementations (written in C), our previous
protocol-level model (in HOL), and our new service-level specification (also in
HOL) are consistent? Arguing that a small specification corresponds to a simple
real-world system can already be extremely challenging. Here, we are faced with
very large specifications and a very complex real-world system. Ideally one would
verify the relationship between the protocol and service specifications by proving
that their behaviours correspond, making use of the abstraction function. One
would also prove that the Sockets behaviour of the endpoint implementations
(formalized using a C semantics) conformed to the protocol model.

Proving the relationships between the levels in this way would be a very
challenging task indeed. One of the main barriers is the scale of TCP implemen-
tations, including legacy behavioural intricacies of TCP and Sockets, which were
not designed with verification in mind.

Hence, we adopt the pragmatic approach of validating the specifications to
provide reasonable confidence in their accuracy. Note that for TCP the imple-
mentations are the de facto standard. In producing specifications after the fact,
we aim to validate the specifications against the implementation behaviour. Our
techniques could equally well be used in the other direction for new protocol
designs. Our service-level validation builds on our earlier protocol-level
work [5,6], so we begin by recalling that.

Protocol-level validation. We instrumented a test network and wrote tests
to drive hosts on the network, generating real-world traces. We then ensured that
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the protocol specification admitted those traces by running a special-purpose
symbolic model checker in HOL, correcting the specification, and iterating, when
we discovered errors. Because it is based directly on the formal specification, and
deals with all the internal state of hosts, the checker is extremely rigorous, pro-
ducing a machine checked proof of admissibility for each successfully validated
trace. Obviously no testing-based method can be complete, but this found many
issues in early drafts of the specification, and also identified a number of anoma-
lies in TCP implementations.

Service-level validation. For the service-level validation of this paper, we be-
gan with a similar instrumented test network, but collected double-ended traces,
capturing the behaviour of two interacting hosts, rather than just one endpoint.
We then used our previous symbolic evaluation tool to discover symbolic traces
of the protocol-level model that corresponded to the real-world traces. That is
a complex and computationally intensive process, involving backtracking depth-
first search and constraint simplification, essentially to discover internal host
state and internal transitions that are not explicit in the trace.

We then ground these symbolic traces, finding instantiations of their variables
that satisfy any remaining constraints, to produce a ground protocol-level trace
in which all information is explicit. Given such a ground trace, we can map the
abstraction function over it to produce a candidate ground service-level trace.

It is then necessary to check validity of this trace, which is done with a service-
level test oracle. As at the protocol level, we wrote a new special-purpose service-
level checker in HOL which performs symbolic evaluation of the specification
with respect to ground service-level traces. Crucially, this checking process is
much simpler than that at the protocol level because all host values, and all
transitions, are already known. All that remains is to check each ground service-
level transition against the specification.

The most significant difference between the old and new checkers is that the for-
mer had to perform a depth-first search to even determine which rule of the proto-
col model was appropriate. Because that work has already been done, and because
the two specifications have been constructed so that their individual rules corre-
spond, the service-level checker does not need to do this search. Instead, it can sim-
ply check the service-level version of the rule that was checked at the protocol level,
dealing with each transition in isolation. In particular, this means that the service-
level checker need not attempt to infer the existence of unobservable τ -transitions.

Another significant difference between the two checkers is that the service-level
checker can aggressively search for instantiations of existentially quantified vari-
ables that arise when a rule’s hypothesis has to be discharged. At the protocol
level, such variables may appear quite unconstrained at first appearance, but then
become progressively more constrained as further steps of the trace are processed.

For example, a simplified rule for the socket call might appear as

fd �∈ usedfds(h0)

h0〈[socks := socks ]〉 tid ·socket()−−−−−−−→ h0〈[socks := socks ⊕ (sid , fd)]〉
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stating that when a socket call is made, the host h0’s socks map is updated to
associate the new socket (identified by sid) with file-descriptor fd , subject only
to the constraint that the new descriptor not already be in use. (This under-
specification is correct on Windows; on Unix, the file-descriptor is typically the
next available natural number.)

In the protocol-level checker, the fd variable must be left uninstantiated until
its value can be deduced from subsequent steps in the trace. In the service-
level checker, both the initial host and the final host are available because they
are the product of the abstraction function applied to the previously generated,
and ground, protocol trace. In a situation such as this, the variable from the
hypothesis is present in the conclusion, and can be immediately instantiated.

In other rules of the service-level specification, there can be a great many vari-
ables that occur only in the hypothesis. These are existentially quantified, and
the checker must determine if there is an instantiation for them that makes the
hypothesis true. The most effective way of performing this check is to simplify,
apply decision procedures for arithmetic, and to then repeatedly case-split on
boolean variables, and the guards of if-then-else expressions to search for possible
instantiations.

The above process is clearly somewhat involved, and itself would ordinarily
be prone to error. To protect against this we built all the checking infrastruc-
ture within HOL. So, when checking a trace, we are actually building machine-
checked proofs that its transitions are admitted by the inductive definition of
the transition relation in the specification.

Results. Our earlier protocol-level validation involved several thousand traces
designed to exercise the behaviour of single endpoints, covering both the Sockets
API and the wire behaviour. To produce a reasonably accurate specification, we
iterated the checking and specification-fixing process many times.

For the service-level specification, we have not attempted the same level of
validation, simply due to resource constraints. Instead, we have focused on de-
veloping the method, doing enough validation to demonstrate its feasibility. Pro-
ducing a specification in which one should have high confidence might require
another man-year or so of testing — perfectly feasible, and a tiny amount of
effort in terms of industrial protocol stack development, but unlikely to lead to
new research insights. That said, most of the Sockets API behaviour does not
relate to the protocol dynamics and is common between the two specifications,
so is already moderately well tested. In all, 30 end-to-end tests were generated,
covering a variety of connection setup and tear-down cases and end-to-end com-
munication, but not including packet loss, reordering, duplication, and severe
delay. After correcting errors, all these traces were found to validate successfully.

To illustrate how discriminating our testing process is, we mention two errors
we discovered during validation. At the protocol-level, a TCP message moving
from a host output queue to the wire corresponds to an unobservable τ event at
the service level. Naively we assumed the host state would be unchanged, since
the output queue at the service-level carries only ICMP and UDP messages.
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However, this is not correct, since the transmission of a TCP message alters the
timer associated with the output queue, increasing its value. The update to the
timer permits the host to delay sending the ICMP and UDP messages. Without
this side-effect, the service-level specification effectively required ICMP and UDP
messages to be sent earlier than they would otherwise have been. To correct this
error, the service specification had to allow the timer to be updated if at the
protocol-level there was potentially a TCP message on the queue that might be
transferred to the wire. Another error arose in the definition of the abstraction
function. The analysis of the merging of the send and receive queues on source
and destination hosts, described in Sect. 4, was initially incorrect, leading to
streams with duplicated, or missing, runs of data. Fortunately this error was
easy to detect by examining the ground service-level trace, where the duplicated
data was immediately apparent.

Our validation processes check that certain traces are included in the protocol-
level or service-level specification. As we have seen, this can be a very discrimi-
nating test, but it does not touch on the possibility that the specifications admit
too many traces. That cannot be determined by reference to the de facto stan-
dard implementations, as a reasonable specification here must be looser than
any one implementation. Instead, one must consider whether the specifications
are strong enough to be useful, for proving properties of applications that use
the Sockets API, or (as in [13]) as a basis for new implementations.

6 Related Work

This work builds on our previous TCP protocol model [5,6], and we refer the reader
there for detailed discussion of related work. We noted that “to the best of our
knowledge, however, no previous work approaches a specification dealing with the
full scale and complexity of a real-world TCP”. This also applies to the service-
level specification. As before, this is unsurprising: we have depended on automated
reasoning tools and on raw compute resources that were simply unavailable in
the 1980s or early 1990s. Our goals have also been different, and in some sense
more modest, than the correctness theorems of traditional formal verification: we
have not attempted to prove that an implementation of TCP satisfies the protocol
model, or that the protocol satisfies the service-level specification.

There is a vast literature devoted to verification techniques for protocols,
with both proof-based and model checking approaches, e.g. in conferences such
as CAV, CONCUR, FM, FORTE, ICNP, SPIN, and TACAS. The most detailed
rigorous specification of a TCP-like protocol we are aware of is that of Smith
[22], an I/O automata specification and implementation, with a proof that one
satisfies the other, used as a basis for work on T/TCP. The protocol is still
substantially idealised, however. Later work by Smith and Ramakrishnan uses
a similar model to verify properties of a model of SACK [21]. A variety of work
addresses radically idealised variants of TCP [8,9,19,10,3,15,16]. Finally, Postel’s
PhD thesis used early Petri net protocol models descriptively [18].
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Implementations of TCP in high-level languages have been written by Biagioni
in Standard ML [2], by Castelluccia et al. in Esterel [7], and by Kohler et al. in
Prolac [12]. As for any implementation, allowable non-determinism means they
cannot be used as oracles for conformance testing.

For concurrent and distributed systems, there are many abstraction-
refinement techniques, such as abstraction relations (which include our abstrac-
tion function) and simulation relations, see [14] for an overview. As an example
of these techniques, Alur and Wang address the PPP and DHCP protocols [1].
For each they check refinements between models that are manually extracted
from the RFC specification and from an implementation. Although these tech-
niques are widely used in verification, to the best of our knowledge, they have
never been applied previously to real-world protocols on the scale of TCP.

7 Conclusion

Summary. We presented a formal, mechanized, service-level specification of
TCP, tackling the full detail of the real-world protocol. The specification is ap-
propriate for formal and informal reasoning about applications built above the
Sockets layer, and about the service that TCP and TCP-like protocols provide to
the Sockets layer. The service-level specification stands as a precise statement of
end-to-end correctness for TCP. We also presented a formal abstraction function
from our previous protocol-level model of TCP to the service-level specification,
thereby explaining how stream-like behaviour arises from the protocol level. We
used novel validation tools, coupled with the results of previous work, to validate
both the service specification and the abstraction function. The specification, ab-
straction function, and testing infrastructure were developed entirely in HOL.

On the practice of protocol design. This paper is the latest in a line of work
developing rigorous techniques for real-world protocol modelling and specification
[20,24,17,5,6,4]. In most of this work to date we have focused on post-hoc specifi-
cation of existing infrastructure (TCP, UDP, ICMP, and the Sockets API) rather
than new protocol design, though the latter is our main goal. This is for two rea-
sons. Firstly, the existing infrastructure is ubiquitous, and likely to remain so for
the foreseeable future: these wire protocols and the Sockets API are stable artic-
ulation points around which other software shifts. It is therefore well worth char-
acterising exactly what they are, for the benefit of both users and implementers.
Secondly, and more importantly, they are excellent test cases. There has been a
great deal of theoretical work on idealised protocols, but, to develop rigorous tech-
niques that can usefully be applied, they must be tested with realistic protocols.
If we can deal with TCP and Sockets, with all their accumulated legacy of corner
cases and behavioural quirks, then our techniques should certainly be applicable
to new protocols. We believe that that is now demonstrated, and it is confirmed
by our experience with design-time formalisation and conformance testing for an
experimental MAC protocol for an optically switched network [4].
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In recent years there has been considerable interest in ‘clean slate’ network-
ing design, and in initiatives such as FIND and GENI. Protocols developed in
such work should, we argue, be developed as trios of running implementation,
rigorous specification, and verified conformance tester between the two. Modest
attention paid to this at design time would greatly ease the task — for exam-
ple, specifying appropriate debug trace information, and carefully identifying
the deterministic parts of a protocol specification, would remove the need for
backtracking search during validation. Declarative specification of the intended
protocol behaviour, free from the imperative control-flow imposed by typical im-
plementation languages, enables one to see unnecessary behavioural complexities
clearly. Verified conformance testing makes it possible to keep implementations
and specifications in sync as they are developed. Together, they should lead to
cleaner, better-understood and more robust protocols, and hence to less costly
and more robust infrastructure.

More specifically to TCP, we see two main directions for future work.One is sim-
ply to scale up our validation process, covering a wide variety of common protocol
stacks, increasing confidence still further by testing againstmore traces, identifying
and testing additional invariants of connection states, and so forth, and producing
a packaged conformance tester for TCP implementations. This would be useful,
and on an industrial scale would be a relatively small project (compared, perhaps,
to the QA effort involved in developing a new protocol stack), but doing this for an
existing protocol may be inappropriate for a small research group. The weight of
legacy complexity here is very large, so non-trivial resources (perhaps severalman-
years) would be needed to cope with the detail, but the basic scientific questions,
of how to do this, have now been solved. Doing this for new protocols, on the other
hand, seems clearly worthwhile, even with very limited resources.

The second, more research-oriented, question, is to consider not just validation
of end-to-end functional correctness (as we have done here), but properties such
as end-to-end performance. Ultimately one could envisage proving network-wide
properties, such as network stability, thereby connecting highly abstract proper-
ties of these protocols to the low-level details of their implementations.
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Abstract. The declarative modeling language Alloy and its automatic analyzer
provide an effective tool-set for building designs of systems and checking their
properties. The Alloy Analyzer performs bounded exhaustive analysis using off-
the-shelf SAT solvers. The analyzer’s performance hinges on the complexity of
the models and so far, its feasibility has been shown only within limited bounds.
We present a novel optimization technique that defines program slicing for declar-
ative models and enables efficient analyses exploiting partial solutions. We
present an algorithm that computes transient slices for Alloy models by parti-
tioning them into a base and a derived slice. A satisfying solution to the base
slice is systematically extended to generate a solution for the entire model, while
unsatisfiability of the base implies unsatisfiability of the entire model.

By generating slices, our approach enables constraint prioritization, where
the base slice assumes higher priority than the derived slice. Compared to the
complete model, base and derived slices represent smaller and, ideally, simpler
sub-problems, which, in turn, enables efficient analyses for the underlying SAT
solvers. Our approach analyzes the structure of a given model and constructs a
set of candidate slicing criteria. Our prototype tool, Kato, performs a small-scope
analysis for each criterion to determine whether declarative slicing optimization
provides any performance gain and, if so, to select a criterion that is likely to pro-
vide an optimal performance enhancement. The experimental results show that,
with declarative slicing, it is possible to achieve significant improvements com-
pared to the Alloy Analyzer.

1 Introduction

Testing and verification become more challenging as software systems grow in com-
plexity. Automated techniques are even more critical today to achieve a certain level of
confidence in software quality. Alloy [5] is a declarative modeling language that can
be used for building designs of systems. Together with its fully automatic analyzer [6],
Alloy provides an effective tool-set for checking system properties.

Alloy is a first-order relational logic with transitive closure, which allows express-
ing rich structural properties using succinct and intuitive path expressions. The Alloy
Analyzer translates Alloy models into Boolean formulas using a scope—bound on the
universe of discourse—provided by the user, and uses off-the-shelf Boolean satisfiabil-
ity (SAT) solvers to generate a satisfying instance for and determine the consistency
and feasibility of the Boolean formulas. Since Alloy’s analysis is valid with respect to a
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given bound, the analyzer’s failure to generate a satisfying instance does not amount to
a proof of non-existence of satisfying instances. It is therefore natural for Alloy users to
(iteratively) check the formulas using a bound as large as is feasible within the amount
of time they have.

The Alloy Analyzer already incorporates a variety of optimizations to improve the
solving time by generating optimized Boolean formulas such as symmetry-breaking
and type-based reduction of variables [10]. In past work [7], we presented a suite of
optimizations inspired by traditional compiler optimizations, such as common subex-
pression elimination and loop unrolling, to perform source-to-source translations on
Alloy models to enable the SAT solvers to perform more efficiently. However, the main
limitation with the analyzer is that it generates one (typically large) SAT problem, which
can choke the underlying solver.

In this paper, we present a new class of optimizations, declarative slicing, which
are inspired by program slicing for imperative languages [14] but are applicable to
analyzable declarative languages, in general, and Alloy, in particular. We present a novel
algorithm for slicing declarative models. Given an Alloy model, our prototype tool,
Kato, uses a slicing criterion to partition the model into a base and a derived slice. A
base slice consists of a subset of the model constraints that constrains only the relations
specified by the slicing criterion. A satisfying instance for the base is systematically
extended into a satisfying instance for the entire model using the derived slice, while
unsatisfiability of the base implies unsatisfiability of the entire model.

We use the partial solution support in the KodKod relational engine [11] for extend-
ing a satisfying instance of a base slice to a satisfying instance for the original model.
We first generate a partial instance solving the base slice, and then we conjoin that
instance with the constraints defined on the derived slice and re-execute the analyzer.
Since slices typically consist of only a strict subset of the original model, the slices
translate to smaller Boolean formulas with fewer variables. Even though this method
executes SAT twice, each time it executes on, ideally, a simpler Boolean formula than
the one that represents the whole model, which enables more efficient analysis for the
underlying SAT solvers.

Slicing enables constraint prioritization [15] since a base slice assumes a higher pri-
ority than the derived slice. However, the potential performance improvement of using
declarative slicing depends on how a given model is partitioned into slices. Kato per-
forms a static analysis of the model to identify a set of candidate slicing criteria, where
each criterion defines a valid base slice for the model. The candidate set is formed us-
ing the free variables that appear in each constraint. To select a slicing criterion that
would provide a likely optimal performance gain, we perform a heuristic evaluation.
The evaluation performs declarative slicing for each slicing criterion for a small scope
and considers the overall solving time as the basis for selection.

While slicing in the context of Alloy is not a new idea because, for example, the Al-
loy Analyzer only translates the formulas that are relevant to the command being ana-
lyzed (akin to dead code elimination), we present a fundamentally different approach to
slicing. Our slicing algorithm introduces a transient notion of slicing for Alloy models.
Even though we partition the given model into a base and a derived slice, the partition-
ing is to optimize the underlying analysis, and the final result pertains to the complete
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model. Our technique thus, applies even when the entire model is necessary to compute
the result of the analysis. This contrasts even with traditional program slicing for im-
perative languages, where only the computed slice is of interest and the rest of the code
is considered irrelevant and hence ignored [14].

We have evaluated the potential speedup in solving time that Kato can provide using
a suite of benchmark examples that model structurally complex data. The results evince
the existence of opportunities for significant performance gains. This paper builds on
our FSE 2006 poster presentation [12] and ICSE 2007 tool demonstration [13] and
makes the following contributions:

– We introduce the notion of transient program slicing for declarative specifications;
– We present an algorithm that computes transient slices for Alloy models by parti-

tioning them into base and derived components;
– We present an algorithm for solving declarative models using slices; and,
– We present experimental results that show significant opportunities for optimizing

analyses of Alloy models using slicing.

2 Example: Binary Search Tree

This section illustrates our optimization technique using a binary search tree example.
We describe the example using Alloy notations [5]. Section 4 presents a more detailed
discussion of our approach.

2.1 Alloy Model: Binary Search Tree

Consider a binary search tree [2], which is acyclic, satisfies the search constraints, has
parent pointers and caches the number of nodes in the tree. The Alloy model for this
data structure is shown in Figure 1.

The keyword sig is a declaration and introduces a set of (indivisible) atoms; the
signatures BinaryTree and Node respectively declare a binary tree atom and a set of
node atoms. The fields of a signature declare relations. The field root introduces a
relation of type (BinaryTree x Node) and left, right and parent relations of
type (Node x Node). lone indicates that these relations are partial functions. The
field key declares a partial relation of type (Node x Int) and specifies that the tree
stores integer values at each node, where Int is a built-in Alloy type that represents the
domain of integers. size relation has a type (Tree x Int) and caches the number of
nodes in the tree.

The Acyclic predicate constrains the structure to be acyclic. The predicate is a
universally quantified (all) formula which represents an implicit conjunction of three
sub-formulas. The expression t.root.*(left+right) defines all the nodes reach-
able from the root node following zero or more traversals along the left and right

children. The operator ‘*’ denotes reflexive-transitive closure. The first sub-formula
uses the quantifier lone to say that all nodes are either left or right child of another
node or none. The second sub-formula says that a node’s itself is not reachable by
following its left and right children. The operator ‘+’ denotes set union and ‘˜’ de-
notes transpose of a relation.The expression n.ˆ(left+right) represents the set of
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sig BinaryTree { root : lone Node }

sig Node {
left, right, parent : lone Node,
key : Int }

pred Acyclic(t:Tree) {
all n: t.root.*(left+right) {

lone n.∼(left+right)
n !in n.ˆ(left+right)
no n.left & n.right }}

pred Search(t:Tree) {
all n: t.root.*(left+right) {

all n’: n.left.*(left+right) | int n’.key < int n.key
all n’: n.right.*(left+right) | int n.key < int n’.key }}

pred Parent(t:Tree) {
all n, n’: t.root.*(left+right) | n in n’.(left+right) ⇔ n’ = n.parent
no t.root.parent }

pred Size(t:Tree) {
int t.size = #(t.root.*(left+right)) }

pred Generate[t:Tree] {
Acyclic[t] && Search[t] && Parent[t] && Size[t]}

run Generate exactly 1 Tree, exactly 8 Node

Fig. 1. Alloy model for binary search tree. The model captures acyclicity, search, size
and parent constraints.

all nodes reachable from n following one or more traversals along the left and right
fields. The operator ‘ˆ’ denotes transitive closure. The third sub-formula says that left
and right children are distinct using the set intersection operator ‘&’.

The Search predicate defines the ordering over the integer values stored at each
node using a nested quantification. The keyword int represents the actual integer value
denoted by the expression it precedes, for instance, ‘n.key’. The operator ‘<’ is used
for integer comparison.

The Parent predicate defines the parent pointer for each node and that root node
has no parent. The operator ‘⇔’ represents bi-implication.

The Size predicate constrains the size field to represent the number of nodes in the
tree. The ‘#’ operator denotes the set cardinality.

To instruct the analyzer, we formulate the Generate predicate specifying the con-
straints and write a run command stating that we want to generate a binary search tree
with exactly 8 nodes.
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Performance of the Alloy Analyzer: Invoked on the Generate predicate, the an-
alyzer takes 4.05 seconds on average to generate a binary search tree with exactly 8
nodes. An instance satisfying all the model constraints is illustrated in Figure 7(b). As
the scope increases the solving time increases significantly; for example, the analyzer
takes 128.78 seconds for scope 12 and 538.54 seconds for scope 16 on average. Due to
the increasing size of the generated Boolean problem, the Alloy Analyzer (the underly-
ing SAT solver) fails to generate a binary search tree instance beyond scope 16 within
a reasonable time (1 hour).

Declarative Slicing: We next illustrate how using declarative slicing can improve the
solving time. We compare our approach against the conventional use of the analyzer,
where models are solved in a single execution of the underlying SAT solver. Given
the same Alloy model for binary search tree, Kato identifies a set of candidate slicing
criteria and selects a likely optimal one by evaluating each criterion for a small scope.
For the binary search tree example, Kato identifies the following set of relations as the
slicing criterion:

c = {root, left, right, parent}

The base and the derived slices are generated based on the given criterion. With
declarative slicing, we solve the base slice first and then conjoin that instance with the
constraints defined on the derived slice and re-execute the analyzer with this new SAT
problem. Our approach improves the solving time significantly, where it takes 0.77
second on average to generate a binary search tree with exactly 8 nodes. An illustration
of declarative slicing is shown in Figure 7. This amounts to a performance gain of
5.24 times. As opposed to the behavior observed with the conventional approach, the
analysis time does not increase drastically as the scope increases. It takes 1.81 seconds
for scope 12 and 2.90 seconds for scope 16. In addition, we were able to generate a
binary search tree with 32 nodes in 23.84 seconds on average using the same slicing
criterion, which is far beyond the largest scope, 16, we were able to reach with the
conventional approach.

3 Background: Alloy and Program Slicing

3.1 Alloy

Alloy [5] is a first-order declarative language based on sets and relations. The Alloy
Analyzer [6] is a tool for automatically analyzing models written in Alloy. The analyzer
translates Alloy models into boolean formulas and uses off-the-shelf SAT technology
to solve the formulas. The analyzer consists of the following: a front-end that parses
Alloy models into an intermediate representation (IR), a set of optimizations on this IR,
and a back-end that translates IR into boolean formulas.

Each Alloy model consists of data (i.e., sets and relations), formulas that constrain
data, and commands that represent invocations of the analyzer. The formulas can be
structured using predicates (i.e., parameterized formulas that can be invoked elsewhere),
which the analyzer inlines. Additionally, each analysis specifies a scope (i.e., a bound
on the size of basic sets within which to check the formulas). The analyzer translates
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a conjunction of all formulas relevant to the command being executed into a boolean
formula—the boolean formula has a solution iff there are some sets and relations that
satisfy all the constraints represented by the relevant Alloy formulas (thus providing a
satisfying instance). Alloy is a relational language; every expression in Alloy denotes a
relation (or a set in the case of a relation of arity one). Even the scalars are represented
as singleton sets. More details of the Alloy language are available elsewhere [5].

3.2 Constraint Partitioning and Prioritization

Yuan et. al. introduces constraint prioritization to address some of the challenges in
constraint-based verification of electronic designs [15]. Instead of solving a set of con-
straints as a whole, some constraints may assume higher priority than others. In such
a case, the variables constrained by the lower-priority constraints can be decided using
the valuations to the higher-priority constraints. For example, in our binary search tree
example, one can generate a binary tree based on the constraints pertaining to the tree
properties and then assign integer values to the nodes in this tree to satisfy the search
constraints. However, they also note that the necessary information for how to partition
the constraints is usually only known by the user. They propose that the user can either
provide priorities or specify the constrained variables for each constraint.

Given a set of constraints, constraint prioritization enables identifying independent
subsets of those constraints that can be analyzed independently and/or incrementally.
Yuan et.al. [15] presents a framework for constrained functional verification, where
prioritization is used as a technique to minimize representation of constraints and com-
plexity of constraint solving as well. Constraint prioritization provides for enhanced
expressiveness of constraints, but simplification of complicated constraint system into
manageable blocks which make constraint solving more efficient.

Yuan et al. also uses constraint partitioning to partition constraints by identifying
disjoint input variable support within the constraint, which enables solving each par-
tition separately. While this approach is based on the assumption that disjoint sets of
variables exist in a constraint, our approach follows a partitioning approach based on
the semantic information observed in Alloy models. In either way, the main benefit of
partitioning is reduction in problem size and, therefore, more efficient SAT solving.

4 Our Approach

4.1 Alloy Language Structure

An Alloy model consists of first-order logic formulas over free variables (relations).
Figure 2 shows the language syntax for a subset of Alloy along with how free variables
are computed for each formula type. An Alloy instance represents a valuation to all
the declared relations such that the formulas evaluate to true; in other words, all the
model constraints are satisfied. Mathematically, an instance i is a function from a set
of relations R to a power set of tuples 2T where each tuple consists of indivisible atoms,
i.e., i: R -> 2T. Thus, for each Alloy relation, an instance gives the set of tuples that
valuate the relation.
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Language Syntax Free Variables

model ::= relDecl∗ formula

formula ‘f ::=
formula binOp formula fv(f.left) ∪ fv(f.right)
mult expr fv(f.expr)
not formula fv(f.formula)
expr [not]compOp expr fv(f.left) ∪ fv(f.right)
quantifier varDecl+ formula fv(f.formula) − fv(f.varDecl)

expr e ::=
expr binExprOp expr fv(e.left) ∪ fv(e.right)
unaryOp expr fv(e.expr)
rel e.identifier
var ∅

relDecl r ::= rel : arity ∪ fv(r.rel)
varDecl v ::= var : expr fv(v.expr) − fv(v.var)
rel ::= identifier
var ::= identifier
arity ::= 1 | 2 | ...

binOp ::= and | or | implies | iff
mult ::= one | lone | some | no
compOp ::= in | =
quantifier ::= all | some
binExprOp ::= + | & | − | . | → | ++
unaryOp ::= ˜ | ˆ | ∗

Fig. 2. On the left column, a subset of the Alloy language syntax is shown. For each language
construct, right column shows how corresponding set of free variables are computed.

To solve a formula, the Alloy Analyzer uses a scope that bounds the universe of
discourse. The Kodkod back-end of the Alloy Analyzer allows specifying a scope using
two bounds: a lower bound and an upper bound on the set of tuples that any valuation of
a relation may take. Any instance must satisfy the following property: for every relation,
each tuple in the lower bound must be present in the instance and no tuple that is not
in the upper bound may be present in the instance. Hence, a lower bound represents
a partial solution for a given model. Kodkod’s support for partial solution is one of
the key advantages for efficient analysis. Mathematically, a bound b is a pair of two
functions: a lower bound l and an upper bound u, each of type R -> 2T. An instance
can equivalently be viewed as a bound b = [l, u], where l = u.

Thus, an Alloy model can be seen as a triple 〈d, s, b〉, where d represents the data
elements, i.e., declared relations, s represents the formula that constrains the data el-
ements (i.e., constraints), and b represents the bound on the universe discourse. We
assume (without loss of generality) that s is a conjunction of several sub-formulas, i.e.,
s =

∧
si.

4.2 Declarative Slicing

Declarative slicing is an optimization technique that exploits partial solutions for effi-
cient analysis of declarative specifications. It is inspired by program slicing for imper-
ative languages [14], and is applicable to analyzable declarative languages, in general,
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1 all n: t.root.*(left+right) | lone n.∼(left+right) //{root, left, right}
2 all n: t.root.*(left+right) | n !in n.ˆ(left+right) //{root, left, right}
3 all n: t.root.*(left+right) | no n.left & n.right //{root, left, right}
4 all n: t.root.*(left+right) { //{root, left, right, key}

all n’: n.left.*(left+right) | int n’.key < int n.key }
5 all n: t.root.*(left+right) { //{root, left, right, key}

all n’: n.right.*(left+right) | int n.key < int n’.key }
6 all n, n’: t.root.*(left+right) | //{root, left, right, parent}

n in n’.(left+right) ⇔ n’ = n.parent
7 no t.root.parent //{root, parent}
8 int t.size = #(t.root.*(left+right)) //{root, left, right, size}

Fig. 3. Free variables for each sub-formula is shown next to it in parenthesis. This form is
equivalent to the original model.

and Alloy, in particular. Our technique introduces an alternative way to analyze Alloy
models and provides significant performance enhancement compared to the conven-
tional use of the Alloy Analyzer.

With declarative slicing, an Alloy model is partitioned into a base and a derived slice,
where each slice is a disjoint subset of the model constraints. A base slice is defined by
a slicing criterion, c, which is a set of relations to be constrained by the constraints in
the base slice. Given a model and a slicing criterion, our algorithm (Figure 4) generates
the base and the derived slices. The base slice is analyzed first and then the constraints
in the derived slice are used to extend a satisfying instance for the base into a satisfying
instance for the entire model (Figure 5).

Considering all the relations declared in a given Alloy model, there can be many
different slicing criteria, hence many different base slices. We refer to the set of all pos-
sible criteria for a model as the set of candidate slicing criteria. Note that a model itself
can also be considered as a slice with a slicing criterion consisting all the declared rela-
tions. Recall that slicing optimization aims at improving the performance of the Alloy
analyzer by generating smaller and, ideally, simpler sub-problems from the complete
model: The performance gain that can be achieved varies based on the partitioning de-
fined by a particular slicing criterion. From the set of all candidate criteria, we select
a criterion that would provide a likely optimal improvement in solving time using a
heuristic evaluation (Section 4.3). Next, we describe the notion of slice, the algorithm
for constraint partitioning and how we solve Alloy models using slices.

Definition 1. Let R be the set of all relations. Let Rb and Rd partition R. Let fb be the
formulas in f that only involve relations in Rb. Let I be the set of all instances of f .
Let Ib be the set of all valuations to relations in Rb and Id be the set of all valuations to
relations in Rd. Rb defines a base slice if and only if:

∀ib ∈ Ib | fb(ib) ⇒ ∃id ∈ Id | f(ib ++ id)

Essentially, a base instance represents a partial solution for the complete model and
the key idea behind declarative slicing is to extend this solution to a complete solution
using the derived slice. However, it is also possible for a particular partial instance to
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a base slice, there is no way to extend it to a complete instance using the given scope.
Such cases can be handled by using an enumerating SAT solver, such as mchaff [8].
Enumerating partial instances continues until there is one that can be extended, which
we refer to as filtering. Indeed, if no such partial solution is found it means that the com-
plete model is unsatisfiable for the given scope. Therefore, it is imperative to identify a
base slice properly (if there exists any) to prevent inefficient applications of declarative
slicing.

Constraint Partitioning. To generate slices, we use a constraint partitioning algorithm
as described in Figure 4. The algorithm traverses the abstract syntax tree (AST) of a
given model and evaluates each formula based on the provided slicing criterion. For
this, a preprocessing is performed on the AST before the algorithm starts. First, the
composite constraints (e.g., nested quantified formulas) are broken into sub-formulas
by a mechanical transformation. This form represents the model as a conjunction of
sub-formulas. Figure 3 shows this form for the binary search tree model (Section 2).

Next, the algorithm computes the free variables for each sub-formula. Figure 2 shows
how free variables are computed for a subset of the Alloy language constructs. Free vari-
ables for a formula states which variables (relations in Alloy models) are constrained
by that formula. Free variables for the sub-formulas of the binary search tree model are
also shown in Figure 3.

After the initial preprocessing, each sub-formula is evaluated based on the given
slicing criterion: If a formula contains a free variable that is not part of the slicing
criterion it is deleted from the model; hence, it is not included the base slice and added
to the derived slice. As a result, the algorithm generates two disjoint subsets from the
model’s sub-formulas, where the conjunction of the base slice sb and the derived slice
sd is equivalent to the original model, s: s ⇔ sb ∧ sd. Figure 6 show an example for
how base and derived slices are formed.

Approach for Slicing-based Constraint Solving. We provide an algorithm (Figure 5),
which enables a fully automatic solver for declarative slicing. The algorithm takes as

〈Formula, Formula〉 Slicer(Model s, Set〈Relation〉 c){
Formula base = s.formulas();
Formula drv = true;
Set〈Relation〉 R = s.relations();
for(Formula f: s.formulas()){

if (fv(f) �⊆ c){
base = base.remove(f);
drv = drv.and(f);

}
}
return 〈base, drv〉;

}

Fig. 4. Algorithm for slicing an Alloy model
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Instance SlicingSolver (Model s, Set〈Relation〉 c){
Slice sb, sd = Slicer(s, c);
Bound bound = sb.bound().update(null);
Iterator〈Instance〉 itr = Alloy.solveAll(sb, bound);

Instance I, Ib = itr.getNext();

while(Ib.outcome == SAT){
bound = sd.bound().update(Ib);
I = solve(sd, bound);
if(I.outcome() = = SAT)

break;
else

Ib = itr.getNext();
}
return I;

}

Fig. 5. Algorithm for analyzing an Alloy model using base and derived slices

c = {root, left, right}
sb = all n: t.root.*(left+right) | lone n.∼(left+right)

all n: t.root.*(left+right) | n !in n.ˆ(left+right)
all n: t.root.*(left+right) | no n.left & n.right

sd: all n: t.root.*(left+right) {all n’: n.left.*(left+right) | int n’.key < int n.key }
all n: t.root.*(left+right) { all n’: n.right.*(left+right) | int n.key < int n’.key }
all n, n’: t.root.*(left+right) | n in n’.(left+right) ⇔ n’ = n.parent
no t.root.parent
int t.size = #(t.root.*(left+right))

Fig. 6. For the given slicing criterion, the base and the derived slices represent a disjoint subset
of the sub-formulas shown in Figure 3
.

input an Alloy model, s, and a slicing criterion for the base slice, c, and generates a
satisfying instance for the model by analyzing the base and the derived slices and com-
bining their solutions. Successive calls are made to the analyzer to generate a complete
instance satisfying all the model constraints. We first generate an instance for the base,
and then extend the instance with respect to the derived slice. In case a base instance
cannot be extended to a complete solution, we continue enumerating the base instances
until either a satisfying instance is found or all the base instances are exhausted. The
later case implies the unsatisfiability of the entire model.

The algorithm extends a base instance into an instance for the complete model by
conjoining the base instance with the derived slice. This is achieved by tightening the
bound for the derived slice, which forces the lower and upper bounds to be equal to the
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valuations in the base instance for the base relations ( sd.bound().update(Ib) ).
This guarantees the satisfaction of base constraints in the final solution. In addition, the
final solution includes valuations for the relations constrained by the derived slice and
satisfies the derived constraints on all relations.

Illustration. Consider the base and the derived slices in Figure 6. Invoking the Alloy
Analyzer on the base slice results in the following valuation, Ib, for scope 3, which is
graphically illustrated in Figure 7(a):

BinaryTree = { BT0 } Node = { N0, N1, N2 }
root = { <BT0, N0> } left = { <N0, N1> }
right = { <N0, N2> }

We run the analyzer on the derived slice and set the lower and upper bounds for the free
variables that are solved for base (i.e., BinaryTree, Node, root, left and right) to
the values in the instance Ib. The analyzer generates a satisfying solution for the entire
model, I , by combining the valuations in Ib with the new relations Int, size, key and
parent:

Int = { 0, 1, 2 } key = { <N0, 1> <N1, 0>, <N2, 2> }
size = { <BT0, 3> } parent = { <N1, N0>, <N2, N0> }

Figure 7 (b) graphically illustrates this tree, which is indeed a binary search tree.

4.3 Selecting a Likely Optimal Criterion

Previous section described the declarative slicing optimization in detail. It is important
to note that the efficiency of the optimization heavily depends on the selected slicing
criterion. We introduce a heuristic evaluation approach as an enabling technique for
the declarative slicing optimization. Using sub-formulas and free variables generated
during initial preprocessing (Figure 3), we identify a set of candidate slicing criteria.
Each criterion in this set represents a valid partitioning. We evaluate each candidate for a
small scope to; (1) determine whether the optimization is likely to produce a significant
performance gain, and (2) if so, select a likely optimal criterion.

Intuitively, slicing criteria could be selected from the power set of declared relations
for a given model. However, such an approach would cause a substantial amount of
analysis overhead to find an optimal criterion; for example, the binary search tree model
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Fig. 7. Base and complete solution. (a) An acyclic binary tree. (b) An acyclic binary search tree
with size field and parent pointers. The small unlabeled square represents the BinaryTree
atom BT0; nodes N0, N1, N2 are Node atoms. Edges represent valuations of binary relations.
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{root, left, right, size, parent, key}

{root, parent}

{root, left, right, parent}{root, left, right, size} {root, left, right, key}

{root, left, right}

Fig. 8. Partially ordered set of free variables for the binary search tree model

we used earlier declares 6 relations, which results in 64 distinct set of relations that
could be use as slicing criteria.

Slicing (constraint partitioning), ρ can be thought of as a function from a slicing
criterion, c, to a base slice, sb,: ρ : c → sb. Given a random criterion, it may map to
an empty slice, i.e., there is no constraint in the model that constrains only the relations
in that criterion. For example, using {root,left} as the slicing criterion for the binary
search tree example would map to an empty slice: ρ({root,left}) → ∅. This indicates
that a slicing criterion, c, is valid candidate if and only if there is at least one sub-formula
si that the set of its free variables is a subset of c: fv(si) ⊆ c.

Using this as the basis of our approach, we use free variables of the sub-formulas to
prune the candidate set, where each distinct set of free variables is a candidate slicing
criterion. Using the binary search tree example again, we identify that there are only 5
different slicing criteria that would map to a base slice (numbers next to each criterion
indicate the sub-formulas from Figure 3 to be included in the base slice):

ρ({root, left, right}) → sb = 1 ∧ 2 ∧ 3
ρ({root, left, right, key}) → sb = 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5
ρ({root, left, right, parent}) → sb = 1 ∧ 2 ∧ 3 ∧ 6
ρ({root, left, right, size}) → sb = 1 ∧ 2 ∧ 3 ∧ 8
ρ({root, parent}) → sb = 7

The set of candidate slicing criteria can also be shown as a partially ordered set
using subset inclusion as in Figure 8. The partially ordered set of free variables reflects
a hierarchy of criteria, as in this case, including only 5 criteria. The topmost criterion
includes all the declared relations in the binary search tree model, which defines a base
slice as the complete model. Following the downward arrows, each criterion defines a
smaller base slice, where the criteria at the bottom defines the smallest possible base
slices that can be generated for the model. This approach helps us work with a small
candidate set; however, we still have to try each criterion to select an optimal one.

Heuristic Evaluation. Once the candidate set is generated, we perform a small-scope
analysis on each slicing criterion. The analysis executes the declarative slicing opti-
mization with each candidate criterion and evaluates the results with respect to perfor-
mance. The assumption is that the performance observed during small-scope analysis



322 E. Uzuncaova and S. Khurshid

indicates the performance for larger scopes as well. As a result of the evaluation, we
expect to find a criterion that is likely to provide an optimal performance gain. In case
there is none, declarative slicing is not effective for the given model due to the fact that
we cannot find an appropriate partitioning.

For each candidate criterion, we collect and evaluate overall analysis time and rela-
tive complexity of the Boolean formulas generated by the Alloy Analyzer. If an optimal
base slice exists, we expect to be able to observe it through these variables. Note that,
we compare the performance against the conventional use of the Alloy analyzer. Next,
we describe each variable and why they are important to measure performance of the
analyzer.

Overall Analysis Time: Overall analysis time T consists of both the time required to
translate an Alloy model into a Boolean formula and the time spent during SAT solving.
Generally, translation takes much less time than SAT solving. A proper slicing criterion
would be likely to yield a significantly better overall analysis time for declarative slic-
ing, Tds, compared to the conventional use, Tconv: λT = Tconv ÷ Tds > 1.

Complexity of the Boolean Formula: Complexity C of a Boolean formula (generated
by the analyzer) can be expressed with respect to the number of variables and clauses
used in that formula: 〈V, C〉. With our slicing optimization, we generate two smaller
sub-problems representing the same Boolean formula; i.e., base,〈Vb, Cb〉, and derived,
〈Vd, Cd〉. While the total number of primary variables is equal to the original formula,
V = Vb + Vd, the total number of clauses used for the base and the derived slices
decreases: Cb + Cd < C. This is because each slice contains a subset of the model
constraints defined on a subset of the relations. We expect a proper partitioning to yield
a ratio greater than 1 for complexity: λC = Cconv ÷ (Cb + Cd) > 1.

5 Experiments

The sections first presents experimental results, and then presents a discussion of our
technique and some future work.

5.1 Results

We present evaluation for three Alloy models: binary search tree, doubly-linked list, and
red-black tree [2]. We run the experiments with our prototype tool, Kato, implemented
as an extension to the KodKod relational engine and use MiniSat SAT solver [3]. The
experiments were run on a Windows XP machine with 1.8 GHz processor using Java 2
SDK 1.5.

Table 9 summarizes the results we obtained from small scope analysis for each sub-
ject. Binary search tree and doubly linked list models are solved for scope 8 and red-
black tree for scope 7 due to the model’s complexity. While doubly linked list is a
cyclic data structure, the tree subjects are acyclic. Red-black tree can be seen as a more
constrained version of binary search tree, where nodes have color attributes. We gen-
erated 10 different instances for each criterion. The overall analysis times, Tconv and
Tds, represents the average time to generate one instance. Detailed times for base and
derived slices are not tabulated due to space considerations. The number of clauses for
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slicing criteria solving time clauses
Tconv Tds λT Cconv 〈Cb, Cd〉 λC

Binary Search Tree (scope=8)
{root, left, right} 4.12 0.82 5.01 23496 〈8319,10826〉 1.23
{root, left, right, size} 4.12 0.81 5.06 23496 〈9543,9636〉 1.23
{root, left, right, parent} 4.12 0.79 5.29 23496 〈9324,10388〉 1.19
{root, left, right, key} 4.12 7.24 0.57 23496 〈21251,1365〉 1.04

Doubly Linked List (scope=8)
{header,next} 2.34 0.12 19.50 19177 〈7076,4003〉 1.73
{header,next, size} 2.34 0.12 19.50 19177 〈7636,3600〉 1.71
{header, next, prev} 2.34 0.09 26.00 19177 〈8058,3731〉 1.63
{header,next, key} 2.34 3.89 0.60 19177 〈18125,676〉 1.02

Red-Black Tree (scope=7)
{root, left, right, color} 4.61 0.42 10.89 14379 〈7621,3743〉 1.27
{root, left, right, color, size} 4.61 0.48 9.65 14379 〈8140,3366〉 1.25
{root, left, right, color, size, parent} 4.61 0.61 7.52 14379 〈8834,3110〉 1.20

Fig. 9. The results obtained from small-scope analysis for subject models. For space consider-
ations, criteria causing filtering are not included in the table. One important observation is the
consistency between the λT and λC values.

each Boolean formula generated by the Alloy analyzer is also shown in the table. The
analyzer finds satisfying solutions for all three subject models.

The speed-up in solving time, λT , and the reduction in the formula size, λC , are used
for selecting a likely optimal slicing criterion as highlighted foreach subject. Overall anal-
ysis times indicate significant performance gains for some of the slicing criteria, while
some others provide either a smaller or negative gain. While we use the speed-up as the
basis for evaluation, the performance gain and complexity reduction variables are con-
sistent with each other for all cases, which we consider as an interesting point for further
exploration. Our assumption is that the criterion with the highest positive gain represents
a likely optimal base slice. Indeed, when we run declarative slicing optimization with the
identified criteria on the binary tree and the linked list models, we achieve substantial
performance improvements for larger scopes. This is mainly because as the scope in-
creases SAT problems face a state explosion problem, where slicing addresses this issue
by generating smaller sub-problems. While the conventional approach fails to generate
instances for binary search tree beyond scope 16, Kato is able to test scope 32 only within
24 seconds on average. Similarly, Kato can generate doubly linked list instances with 32
nodes in 20.59 seconds on average using the slicing criterion identified by our approach.

While we were also able to achieve speed-ups for the red-black tree, the largest scope
we were able to reach with declarative slicing was 14. For the same model, the conven-
tional approach failed to generate instances for scope 8. In its simplest terms, this is
because the red-black tree is a more complex data structure; therefore, the analysis can-
not scale. In the declarative slicing case, note that every criteria (except the ones causing
filtering) contains the color field, which causes most of the complex constraints to be
included in each corresponding base slice. While declarative slicing helps the analyzer
to scale, for this reason, it is not as significant as the other subject models.
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In addition to the tabulated criteria, there some others that cause filtering, i.e., not all
base instances can be extended for that particular base slice (not included due to space
considerations). Main reason for this is that the generated base slice is underconstrained
and satisfying instances for those slices are often invalid with respect to the complete
model. These are identified during analysis and discarded from the candidate set, which
is crucial for pruning the candidate set even further. For all subject models, the results
indicate that declarative slicing optimization enables efficient analysis and our approach
identifies a likely optimal slicing criterion.

5.2 Discussion

Our approach for slicing declarative models opens a new avenue for developing a range
of novel optimizations for analyzing Alloy models. To illustrate, consider the Search
constraints for binary search tree (Section 2). There is no reason why we must use
a SAT solver or a Java program for that matter to computes the values of keys. We
could instead use a dedicated solver, such as the Omega library [9] or CVC-lite [1], for
integer constraints. Thus, Kato enables the use of a variety of solvers (and optimizations
as well) in conjunction, and we plan to explore this further.

Currently, Kato makes successive invocations to the analyzer and the underlying SAT
solver to identify a proper base slice. As the experiment results suggest, there is a direct
correlation between the overall analysis time and the size of the Boolean formula gen-
erated by the analyzer. We strongly believe that more efficient techniques can be devel-
oped by introducing a tighter integration between the semantic and structural properties
of declarative models and the internal decision procedures of SAT solvers. We are plan-
ning to explore ways to use such properties to directly influence the decision procedures,
such as branching heuristics and learning procedures [16], within SAT solvers.

It is worth pointing that the problem of generating boolean formulas that optimize
analysis of underlying SAT solvers is particularly challenging because the performance
of SAT solvers cannot be described in any simple terms. There are two guiding heuris-
tics in the field: reducing the number of variables tends to reduce the solving time
(presumably because it reduces the search space that the SAT solver must explore) and
increasing the number of constraints also tends to reduce the solving time (again be-
cause it reduces the search space). These are just heuristics and do not hold always [4].
In the context of Alloy the problem is even more interesting because of the semantic
information associated with models and the optimizations done internally. We plan to
systematically explore these issues.

6 Conclusion

We have presented declarative slicing, a novel optimization that defines program slic-
ing for declarative models and enables efficient analyses exploiting partial solutions. As
opposed to the conventional use of the analyzer, where models are solved in a single
execution of the underlying SAT solver, our approach identifies two sub-problems for
a model and solves each problem separately and combines their solution. This not only
enables the Alloy Analyzer to scale to larger scopes, but it is also complementary to the
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other optimizations addressing the scalability problem. Since the slices generated by
the incremental analysis are valid SAT problems, our optimization can be used in con-
junction with other optimizations to further improve the performance. The experimental
results show that it is possible to achieve a significant improvement in the solving time
for Alloy models. We believe analyses based on program slicing hold a lot of promise
for efficiently checking declarative specifications.
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Abstract. Declarative specifications exhibit a variety of problems, such
as inadvertently overconstrained axioms and underconstrained conjec-
tures, that are hard to diagnose with model checking and theorem
proving alone. Recycling core extraction is a new coverage analysis that
pinpoints an irreducible unsatisfiable core of a declarative specification. It
is based on resolution refutation proofs generated by resolution engines,
such as SAT solvers and resolution theorem provers. The extraction al-
gorithm is described, and proved correct, for a generalized specification
language with a regular translation to the input logic of a resolution en-
gine. It has been implemented for the Alloy language and evaluated on
a variety of specifications, with promising results.

1 Introduction

As Dijkstra famously noted, testing can only show the presence of errors and not
their absence. Establishing the absence of errors has been a major motivation
for more complete analyses, such as model checking and theorem proving. Yet,
despite the advantages such analyses often bring in bug-detecting ability, it is not
always clear what level of confidence is warranted when no bugs are reported.

The main reason for doubting the result of a successful analysis is simply
that the theorem being checked might not be the right one, and might fail to
capture the notion of correctness that will actually be required in the context
of use. When the artifact being checked is a model (rather than the actual
implementation of a system), there is an additional concern that the model may
not be faithful to the system it purports to represent.

It may seem that this problem is not amenable to a technical solution. In
fact, however, the most common faults in a model or theorem that undermine
the credibility of an analysis can be exposed by a kind of ‘coverage analysis’ that
highlights those portions of the model and theorem that were used to establish
that the theorem held for the model. Portions that are not highlighted, contrary
to the expectations of the user, are evidence that the analysis was inadequate.

This idea has been explored as “vacuity detection” [1, 2] in the context of
model checking, although the very definition of the problem is somewhat in-
tricate. In the context of checking declarative specifications (as written in lan-
guages such as Alloy, Z, VDM, B, OCL, and so on), the notion of coverage has
a particularly simple formulation. A constraint, whether occurring in the model
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being checked or in the theorem being asserted, is covered (and subsequently
highlighted) if it was used in the proof that the theorem follows from the model.

This approach has been implemented as a feature of the Alloy Analyzer [3,4],
but until recently has not been particularly useful since the highlighting has been
too conservative, often including constraints that were not in fact used. This
paper presents a new algorithm, RCE, that has been incorporated into the tool,
and which gives superior results. RCE is proven to give results that are sound
(meaning that constraints that are not highlighted are definitely irrelevant) and
minimal (meaning that removing the highlighting on a constraint would make
the result unsound). Its performance is compared to three simpler algorithms:
OCE, the one previously implemented in the Alloy Analyzer, which runs faster
than RCE but is not minimal, and typically highlights 2 to 3 times as many
constraints; and NCE and SCE, which are sound and minimal, but run much
more slowly than RCE.

As illustrated in the next section, coverage analysis mitigates a variety of
problems that can arise in practice: inadvertently overconstraining the model
(so that behaviours that should be included are de facto excluded); using a
theorem that is not strong enough (so that bad behaviours are accepted); and
setting the analysis bounds too small, so that the analyzer does not examine
a sufficiently large space of possibilities. This last problem is a liability only of
checkers (such as the Alloy Analyzer) that artificially bound the space, and is
not suffered by theorem provers. Nevertheless, provers do suffer from the other
two problems, and the algorithm presented here will therefore work for them
too.

The underlying mechanism used is unsat core extraction, a facility of some
SAT solvers. The core of an unsatisfiable formula (presented in CNF as a set
of boolean clauses) is a subset of the formula that is also unsatisfiable. Every
unsatisfiable formula is its own core, but a smaller core is more useful. SAT
solvers do not generally provide minimal cores, which would require too much
computation to produce.

Exploiting an unsat core facility is not straightforward, however, since the
core returned by the SAT solver must be translated back into the high-level
specification language before being shown to the user. Efficient compilations
into SAT employ a variety of elaborations and transformations that result in a
complex relationship between the original specification formula and the boolean
formula passed to the solver. Consequently, a small core at the boolean level
may be translated back to a large core at the specification level.

The new algorithm has two key ideas. The first idea is that, rather than
attempting to minimize the core at the boolean level, to map the core back
and apply reductions (by testing the removal of candidate constraints) at the
specification level. The second idea is to identify, using the proof returned by
the solver, and the mapping between levels, those boolean clauses that were
generated during a proof of unsatisfiability, and which will still hold when a
specification-level constraint is removed. By adding these clauses to the formula
presented to the SAT solver, the algorithm allows the solver to reuse the results
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of inferences that were previously made. It is well known that careful exploitation
of learned clauses is essential for improving SAT solver performance in general,
so it is not surprising that it plays an important role in this application also.

Although the scheme was developed for analyzing coverage of Alloy specifica-
tions that are translated to boolean formulas, it has more general applicability.
The paper therefore defines the context rather abstractly. The source language
can take any form so long as its translation to the target language satisfies some
basic properties that the paper defines. The target language can be any clausal
language, and any prover is suitable if it can return a proof as a resolution graph.

2 A Small Example

As a motivating example, consider the problem of formalizing a key ingredient
in our core extraction algorithm—a proof of unsatisfiability expressed as a res-
olution graph. To make the problem more concrete, our challenge is to specify
what it means to refute a set of propositional clauses via resolution. A more
generic definition that also applies to first order clauses is given in §3.2.

Figure 1 shows an Alloy [5] solution to this problem.1 The keyword “sig” in-
troduces a set of atoms, called a signature. A field within a signature defines a
relation of some arity whose leftmost column is the signature itself. For example,
neg is a function from literals to their negations, and assign is a ternary relation
that maps each Instance to a partial function from Literals to Booleans. The key-
word “extends” specifies a containment relationship between sets. So, True and
False are subsets of Boolean. The constraints that immediately follow a signature
declaration hold for all atoms of that signature. For example, the constraint on
line 18 means that the edges of every Refutation are free of cycles.

A Refutation has three components: sources, resolvents, and edges. The sources
relation maps a Refutation to the nonempty set of clauses that it refutes. These
clauses cannot include the conflict clause. The resolvents relation defines the set of
clauses that are derivable from the sources via resolution, defined by the resolve
predicate. The resolvents of a valid refutation must include the conflict clause.
The edges relation describes the resolution relationships among the sources and
resolvents of a refutation. Every resolvent is a target of some edge, and the source
of that edge is a clause used in resolution derivation of the target. The remaining
definitions are straightforward.

2.1 Sample Analyses

We validate an Alloy model against an assertion that we believe to be true by
instructing the Alloy Analyzer [6] to check that the conjunction of the model
and the negation of the assertion is unsatisfiable. The check is performed with
respect to a finite scope, which bounds the number of atoms that the Analyzer
may assign to each signature in the model. If the assertion is invalid in the given
1 A simpler example motivating the use of unsatisfiable cores, with a slower-paced

introduction to Alloy, can be found in the paper by Shlyakhter et al. [3].
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scope, the Analyzer produces a counterexample—an assignment of values to sets
and relations that satisfies the model but violates the assertion. The absence of
a counterexample, however, does not necessarily constitute a proof of validity.
Rather, it indicates one of the following:

1. the assertion is valid but the model is too strong,
2. the assertion and the model are both valid,
3. the assertion is too weak, or
4. the scope is too small.

Each of these cases leads to an identifiable pattern of minimal cores, discussed
below.

Case 1: The Model is Too Strong. The first case is probably the most
common. It happens when a part of the model itself is overconstrained, admitting
either no solutions or just the uninteresting ones. As a result, many assertions
follow trivially from the model.

1 abstract sig Boolean {} // The set of booleans is partitioned into
2 one sig True, False extends Boolean {} // singleton sets True and False.

3 sig Literal { neg: Literal } // Each literal has an associated negation.
4 fact { neg = ˜neg ∧ (no iden ∩ neg) } // Negation is symmetric and irreflexive.

5 sig Clause { lits: set Literal } // Each clause contains a set of literals.
6 one sig Conflict extends Clause {} { no lits } // One empty clause is denoted Conflict.
7 fact { ∀ c: Clause \ Conflict | some c.lits } // Every clause other than Conflict is nonempty.
8 fact { ∀ c: Clause | no c.lits ∩ c.lits.neg } // No clause has both a literal and its negation.

9 pred resolve [c1, c2, r: Clause] { // Resolving clauses c1 and c2 yields r if
10 ∃ x: c1.lits ∩ c2.lits.neg | // c1 contains some literal x, c2 contains !x,
11 r.lits = (c1.lits ∪ c2.lits) \ (x ∪ x.neg) // and r is a union of c1 and c2 minus x and !x.
12 }

13 sig Refutation { // Each refutation consists of
14 sources: some Clause \ Conflict, // a set of nonempty clauses called ‘sources,’
15 resolvents: set Clause, // a set of clauses called ‘resolvents,’ and
16 edges: (sources ∪ resolvents)→resolvents // a set of edges from clauses to resolvents,
17 }{ // such that
18 no êdges ∩ iden // 1) The edge relation is acyclic;
19 ∀ r: resolvents | some edges.r // 2) Every resolvent has some incoming edges;
20 Conflict ⊆ resolvents // 3) The empty clause is a resolvent;
21 ∀ n1, n2: sources ∪ resolvents | // 4) For every source or resolvent n1 and n2
22 ∀ r: resolvents | // for every resolvent r
23 ((n1 ∪ n2)→r ⊆ edges // there are two edges 〈n1, r〉 and 〈n2, r〉
24 ⇔ resolve[n1, n2, r]) // if and only if n1 and n2 resolve to r.
25 }

26 sig Instance {
27 clauses: some Clause, // Each instance has a nonempty set of clauses,
28 assign: Literal→lone Boolean // and each literal is assigned at most one value.
29 }{
30 ∀ lit: clauses.lits | // Each mentioned literal is assigned a value,
31 assign[lit] = Boolean \ assign[lit.neg] // and its negation has the opposite value.
32 ∀ c: clauses | True ⊆ assign[c.lits] // Each clause has at least one true literal.
33 }

Fig. 1. A buggy formalization of resolution refutation
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The example in Fig. 1 contains a bona fide error that one of the authors made
in the first version of the model. It was revealed by checking that a set of clauses
cannot have both an instance and a refutation:

check { ∀ i: Instance |  ∃ ref: Refutation | ref.sources = i.clauses } for 3

The Analyzer confirms that the assertion has no counterexamples in a scope of
3, and highlights these constraints as a minimal cause of unsatisfiability:

5 sig Clause { lits: set Literal }
8 fact { ∀ c: Clause | no c.lits ∩ c.lits.neg }

13 sig Refutation {
16 edges: (sources ∪ resolvents)→resolvents
17 }{
19 ∀ r: resolvents | some edges.r
20 Conflict ⊆ resolvents
21 ∀ n1, n2: sources ∪ resolvents |
22 ∀ r: resolvents |
23 ((n1 ∪ n2)→r ⊆ edges
24 ⇔ resolve[n1, n2, r])
25 }

check { ∀ i: Instance |  ∃ ref: Refutation | ref.sources = i.clauses } for 3

Increasing the analysis scope to 4, 5, and 6 yields the same result: the definition
of Instance is not needed to prove the assertion. What’s wrong?

Examining the highlighted lines more closely reveals that the definition of
refutation edges is too strong. It forces each Refutation to have at least one re-
solvent (line 20) and to therefore include at least one edge (line 19). But, the
constraints on lines 21-24 and line 8 prevent any edge from existing. To see why,
let 〈c1, c2〉 be an edge between some clauses c1 and c2. The formula on lines 21-24
simplifies to (c1 ∪ c1)→c2 ⊆ edges ⇔ resolve[c1, c1, c2] when c2 is substituted
for r and c1 for n1 and n2. By our hypothesis, 〈c1, c2〉 ⊆ edges, so resolve[c1,
c1, c2] must be true. The definition of resolution (Fig. 1, lines 10-11), however,
says that c1 must contain both a literal and its negation, which contradicts the
constraint on line 8. A revised definition of edges is given below:

21 edges = { // For every source or resolvent n, for every
22 n: sources ∪ resolvents, r: resolvents | // resolvent r, 〈n, r〉 is an edge if there is
23 one edges.r \ n ∧ // a unique clause m!=n such that 〈m, r〉
24 resolve[n, edges.r \ n, r] } // is an edge, and n and m resolve to r.

Case 2: The Model and Assertion are Both Valid. A valid model and
a valid assertion produce cores that highlight both the assertion and all the
definitions to which it pertains. When we revise the definition of edges and check
the previous assertion against the revised model, the Analyzer, once again, finds
no counterexample within a scope of 3. But, the derived core now includes the
entire definition of Clause, Refutation, and Instance. Moreover, it remains the same
with increasing scope, suggesting that the model and the assertion are both
valid.

Case 3: The Assertion is Too Weak. A valid assertion that exercises only a
small portion of a model is called weak. By themselves, weak assertions are not
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harmful, but they can be misleading. If the modeler believes a weak assertion
covers all or most of the model, he can miss real errors in the parts of the
model that are not exercised. For example, the following assertion is supposed
to validate the Instance definition. It states that, if an instance satisfies a set of
clauses, then it must also satisfy all subsets of those clauses:

check { ∀ i: Instance, cs: set i.clauses | cs ⊆ lits.(i.assign.True) } for 3

The Analyzer finds no counterexample, but produces the following minimal
core that, once again, does not include more constraints as the scope is increased:

26 sig Instance {
29 }{
32 ∀ c: clauses | True ⊆ assign[c.lits]
33 }

check { ∀ i: Instance, cs: set i.clauses | cs ⊆ lits.(i.assign.True) } for 3

The problem here is that the assertion covers only the highlighted part of the
Instance definition, when the intention was to cover the definition in its entirety.
That is, the assertion was intended to fail if any part of the Instance definition
was wrong. But, if we had, for example, accidentally omitted the “lone” keyword
from the declaration of assign (Fig. 1, line 28), which ensures that each literal gets
at most one value, checking this assertion would not produce a counterexample.

Case 4: The Scope is Too Small. The last case is the easiest to diagnose:
if the scope is too small, the minimal core usually increases when the analysis
is repeated in a larger scope. In the case of a valid assertion, the core will stop
increasing after a while. For an invalid one, the core will often continue to grow
with scope until the scope becomes large enough to reveal a counterexample.
The following assertion, which states that the edges of a resolution graph never
point to source clauses, illustrates this scenario:

check { ∀ ref: Refutation | no (ref.edges).(ref.sources) } for 2

In the search scope of 2, no counterexample exists and the unsatisfiable core
includes only the assertion and the definition of resolution edges:

13 sig Refutation {
17 }{
21 edges = {
22 n: sources ∪ resolvents, r: resolvents |
23 one edges.r \ n ∧
24 resolve[n, edges.r \ n, r] }
25 }

check { ∀ ref: Refutation | no (ref.edges).(ref.sources) } for 2

As we increase the scope, however, the core expands to include more and more of
the model—Refutation, Clause, and Literal definitions—until a counterexample is
found in a scope of 5. The assertion is invalid because the sources of a refutation
graph can be redundant; i.e. they can include a clause that is derivable from
other source clauses via resolution.
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3 Finding Minimal Cores

The Simple and Recycling Core Extractor (SCE and RCE) are new algorithms
for finding minimal unsatisfiable cores of declarative specifications. They were
developed in the context of the Alloy language and SAT-based analysis, but are
independent of either. Both SCE and RCE are applicable to any specification
language that can be translated to the input language of some resolution engine
as described in §3.1-3.3. Unlike the alternatives (§3.4), they guarantee minimality
(§3.6) at a reasonable cost (§4).

3.1 Specifications and Cores

A declarative specification is a conjunction of constraints on variables vi ∈ V
that range over a universe U of values. A model or an instance of a satisfiable
specification is a binding of vi ∈ V to elements of U that makes the specification
true. An unsatisfiable specification has no models, but it has one or more un-
satisfiable cores—subsets of the specification’s constraints which are themselves
unsatisfiable. Such a core is minimal if removing any one of its constraints causes
the remainder of the core to become satisfiable.

We assume that a declarative specification S = s1 ∧ . . . ∧ sk is encoded in a
language L as a directed, acyclic Abstract Syntax Graph (ASG) with k roots.
The remaining constraints on the structure of ASGs capture the usual syntactic
rules for declarative languages. In particular, the leaves of the ASG are variables
vi ∈ V and constants in U , and each internal node n computes a predetermined
function f : U |n| → U of its children, c1, . . . , c|n|.

The meaning of an ASG node n with respect to a binding b : V 
→ U is
computed by applying the function f to the values of n’s children: [[n]]b =
f([[c1]]b, . . . , [[c|n|]]b). The root nodes compute Boolean functions whose conjunc-
tion is the value of S as a whole. Hence, S is satisfiable if there is a binding for
the variables vi ∈ V that induces the value true in the roots of its ASG. In the
remainder of the paper, we will take S to mean “the ASG of S.”

3.2 Resolution Engine

Invalidity of a specification can be proved by converting it to a clausal logic and
then applying a suitable resolution engine to the generated clauses. At its sim-
plest, a resolution engine is a procedure that applies resolution to a set of clauses
in conjunctive normal form until it detects a conflict or determines satisfiability.
Because resolution is refutation complete [7], a resolution engine is guaranteed
to terminate on an unsatisfiable clause set with a proof of its unsatisfiability.
This proof takes the form of a resolution refutation (Fig. 2), defined as follows:

Definition 1 (Resolution refutation). Let C and R be sets of clauses such
that C is unsatisfiable and R\C contains the empty (conflict) clause, denoted by
c∅. Let E be a set of edges from C∪R to R. A directed acyclic graph G = (C, R, E)
is a resolution refutation of C iff
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1. the sources of G are in C;
2. each r ∈ R is the result of resolving some clauses s0, s1, . . . , sk ∈ C ∪ R,

represented by 〈s0, r〉, . . . , 〈sk, r〉 ∈ E (which are the only edges in E); and,
3. c∅ is a sink of G.

The sources of a resolution refutation G = (C, R, E) that are connected to c∅
form an unsatisfiable core of C. The core of C with respect to (C, R, E) is denoted
by {c ∈ C | c∅ ∈ E∗

�c�}, where E∗ is the reflexive transitive closure of E and
E∗

�c� is the relational image of c under E∗.

The behavior of a resolution engine on an arbitrary clause set depends on the
decidability of its input language. For example, a SAT solver [8,9,10] will even-
tually produce a model or a refutation for every set of propositional clauses,
while a theorem prover [11, 12, 13] will run forever on some sets of first order
clauses. We abstract away from the particulars of the concrete engines’ behavior
with a partial function E : P(C) ⇀ G that maps each unsatisfiable clause set
to a resolution refutation. The remaining sets in the domain of E are taken to
resolution graphs that do not include c∅ (indicating satisfiability).

¬c a

¬b

¬a

false

a  ¬b¬a  b ¬b  c b  ¬c

Fig. 2. Resolution refutation of (a = b) ∧ (b = c) ∧ ¬(a ⇒ c). Core clauses are shaded
in gray. The false square designates the conflict clause.

3.3 Translation

There are many ways to translate an ASG to a set of clauses in conjunctive normal
form (e.g. [14,15,16]). The details of such a translation are unimportant for its use
with our core extraction algorithms, as long as it is regular in the following sense:

Definition 2 (Regular Translation). A procedure T : L → P(C) is a regular
translation from the specification language L to the clausal logic P(C) iff

1. a specification S ∈ L is unsatisfiable iff T (S) is unsatisfiable;
2. the translation of a specification S ∈ L is the union of the translations of

its constraints: T (S) = TS(roots(S)) = ∪s∈roots(S)TS(s), where TS(s) is the
translation of the constraint s in the context of the specification S; and,

3. the translation of the constraints σ = roots(S) ∩ roots(S′) is context in-
dependent up to a renaming: TS(σ) = r(TS′(σ)) for some bijection r over
the symbols (i.e. variable, constant, function, and predicate names) used in
T (S) ∪ T (S′), lifted to clauses and sets of clauses in the obvious way.
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Informally, a regular translation takes a specification to an equisatisfiable set of
clauses, in a context independent way.For example, suppose that wehave two spec-
ifications S = ∃x.p(x) and S′ = (∀x.q(x)) ∧ (∃x.p(x)) whose free variables range
over a universe of two atoms, {a0, a1}. A regular translation T of these specifi-
cations to propositional logic might generate the clauses T (S) = (v0 ∨ v1) and
T (S′) = v0∧v1∧(v2 ∨v3). In the context ofS, the value of the predicate p on atoms
a0 and a1 is represented by boolean variables v0 and v1, respectively. In the context
of S′, p is represented by v2 and v3. As a result, the translation of the constraint
∃x.p(x) is not context-free. But, it is context independent, because TS(∃x.p(x))
and TS′(∃x.p(x)) are equivalent up to the renaming of v0 to v2 and v1 to v3.

3.4 Basic Core Extraction Algorithms

The Naive Core Extractor (NCE) is the most basic algorithm for extracting
minimal cores of declarative specifications (Fig. 3a). It starts with an initial core
K that contains all roots of the unsatisfiable specification S (line 1). The initial
core is then pruned, one constraint at a time, by discarding all constraints u for
which a regular translation of K \ {u} is unsatisfiable (lines 3-8). This pruning
step is sound since the regularity of the translation guarantees that T (K \ {u})
and K \ {u} are equisatisfiable. In the end, K contains a minimal core of S.

Because it calls the computationally expensive resolution procedure once for
each constraint, NCE tends to be unacceptably slow for large specifications with
small, hard cores. Shlyakhter et al. [3] addressed this problem with the One-Step
Core Extractor (OCE) algorithm which sacrifices minimality for scalability. OCE
(Fig. 3b) simply returns all roots of S whose translations include clauses connected
to the conflict clause c∅ in a refutation of T (S). The set of constraints computed in
this way is an unsatisfiable core of S (§3.6, Thm. 1), but it is usually not minimal.

3.5 Simple and Recycling Core Extraction

The Simple Core Extractor (SCE) combines the core-pruning loop of NCE with
the core-extraction technique of OCE (Fig. 3c). In particular, SCE is NCE with
the following modifications: initialize K with a core of S instead of S (line 14),
and reduce K to a core of K \ {u} instead of K \ {u} itself in the iterative step
(line 21). Correctness and minimality of SCE’s output are discussed in §3.6.

Although it avoids unnecessary calls to the resolution engine, SCE is still
wasteful. By applying E solely to TS(K\{u}) on line 19, it discards all the clauses
that E has learned about TS(K \ {u}) in previous iterations (while refuting
TS(K)). When these clauses are recycled, SCE turns into the Recycling Core
Extractor algorithm (RCE).

The pseudocode for RCE is shown in Fig. 3d. As before, line 24 initializes K to
the unsatisfiable core of S extracted from E(T (S)). Lines 29-30 construct T (K \
{u}) (from the already computed translations of the roots of S) and collect the
clauses, called resolvents, that E had already learned about T (K \{u}). These are
simply all resolvents reachable from T (K \ {u}) but not from the other clauses
previously fed to E . If they include the conflict clause c∅, u is discarded (line 32)
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NCE(S: L, T : L → P(C), E: P(C)⇀G)

1 K ← roots(S)
2 M ← {}
3 while K �⊆ M do
4 u ← pick(K \ M)
5 M ← M ∪ {u}
6 (C, R, E) ← E(T (K \ {u}))
7 if c∅ ∈ R then
8 K ← K \ {u}
9 return K

OCE(S: L, T : L → P(C), E: P(C)⇀G)

10 (C, R, E) ← E(T (S))
11 K ← {s∈roots(S) | c∅ ∈ E∗�TS(s)�}
12 return K

(a) Naive Core Extractor (b) One-Step Core Extractor

SCE(S: L,T : L → P(C), E: P(C)⇀G)

13 (C, R, E) ← E(T (S))
14 K ← {s∈roots(S) | c∅ ∈ E∗�TS(s)�}
15 M ← {}
16 while K �⊆ M do
17 u ← pick(K \ M)
18 M ← M ∪ {u}
19 (C, R, E) ← E(TS(K \ {u}))
20 if c∅ ∈ R then
21 K ← {s ∈ K\{u} | c∅ ∈ E∗�TS(s)�}
22 return K

RCE(S: L, T : L → P(C), E: P(C)⇀G)

23 (C, R, E) ← E(T (S))
24 K ← {s∈roots(S) | c∅ ∈ E∗�TS(s)�}
25 M ← {}
26 while K �⊆ M do
27 u ← pick(K \ M)
28 M ← M ∪ {u}
29 C′ ← TS(K \ {u})
30 R′ ← R \ E∗�C \ C′�
31 if c∅ ∈ R′ then
32 K ← K \ {u}
33 else
34 (C′′, R′′, E′′) ← E(C′ ∪ R′)
35 if c∅ ∈ R′′ then
36 (C, R, E) ← (C′, R′∪R′′, E′′∪(E�R′))
37 K ← {s : K\{u} | c∅ ∈ E∗�TS(s)�}
38 return K

(c) Simple Core Extractor (d) Recycling Core Extractor

Fig. 3. Core extraction algorithms. S is an unsatisfiable specification, T is a regular
translation, and E is a resolution engine. Star (*) means reflexive transitive closure,
r�X� is the relational image of X under r, and � is range restriction.

because there must be some other constraint in K \ {u} whose translation con-
tributes the same or a larger set of clauses to the core of C as u. Otherwise, line
34 applies E to T (K \ {u}) and its resolvents. If the result is a refutation, the in-
validity of K can be proved without u. Before we can extract the u-free core from
(C′′, R′′, E′′), however, we have to fix it: (C′′, R′′, E′′) is not a valid refutation of
S because its sources include the resolvents for T (K \ {u}). So, lines 36-37 fix the
proof and set K to the corresponding core, which excludes at least u.

3.6 Correctness and Minimality of SCE and RCE

Both SCE and RCE rely on OCE’s core extraction technique to reduce the
number of calls to the resolution engine. Establishing the correctness of OCE’s
output is therefore the first step to proving the correctness of SCE and RCE:
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Theorem 1. Let G = (C, R, E) be a resolution refutation for C = T (S), a regu-
lar translation of the unsatisfiable specification S. Then, K = {s∈roots(S) | c∅ ∈
E∗

�TS(s)�} is an unsatisfiable core of S.

Proof. Let S′ be a specification whose roots are K, i.e. roots(S′) = K. Because
T is regular, T (S′) = TS′(roots(S′)) = TS′(K) = r(TS(K)) for some renaming
r. Let CK = TS(K), RK = E∗

�CK� and EK = E � RK , where � is range
restriction. By Def. 1 and the construction of K, the graph GK = (CK , RK , EK)
is a resolution refutation of TS(K), and, letting r(GK ) denote GK with r applied
to all of its vertices, r(GK) is a resolution refutation of r(TS(K)) = T (S′). Hence,
by regularity of T , S′ is unsatisfiable and, by the semantics of ASGs, so is K. ��

We can now show that RCE produces a minimal unsatisfiable core of the input
specification S, if the input engine terminates on each invocation. Since RCE
reduces to SCE when R′ is set to the empty set on line 30, the following is also
a proof of SCE’s correctness and minimality:

Theorem 2. If it terminates, RCE(S, T , E) returns a minimal unsatisfiable
core of S, where S is an unsatisfiable specification, T is a regular translation,
and E a resolution engine.

Proof. Let K be the output of RCE(S, T , E). We first show that K is unsat-
isfiable and then that it is minimal. By Thm. 1, the constraints assigned to K
by line 24 form an unsatisfiable core of S. The only other lines that assign K
are lines 32 and 37. Suppose that the condition on line 31 is true. Then, by Def.
1 and construction of C′ and R′, (C′, R′, E � R′) is a resolution refutation for
C′ = TS(K \ {u}) which, by regularity of T , is equivalent (up to a renaming)
to T (K \ {u}). Hence, K \ {u} is unsatisfiable, so line 32 will never remove a
relevant constraint from K. For line 37 to execute, the condition on line 35 must
hold. If it does, line 36 executes first, establishing (C, R, E) as a resolution refu-
tation for C = C′ ≡r T (K \ {u}) (Defs. 1, 2). This and Thm. 1 ensure that the
constraints assigned to K in line 37 form an unsatisfiable core of K \ {u}.

Now, suppose that K is not minimal. Then, there is a constraint s ∈ K such
that K \{s} is unsatisfiable. Lines 26 and 28 ensure that s is picked at least once
on line 27. Because K \ {s} is invalid, either the condition on line 31 or that on
line 35 holds, causing s to be removed from K—a contradiction. ��

4 Experimental Results

We have implemented both SCE and RCE for the Alloy language, with Min-
iSat [8] as the resolution engine and Kodkod [14] as the (regular) transla-
tion procedure from Alloy to propositional clauses. These implementations were
evaluated against the basic algorithms (NCE and OCE) on two sets of prob-
lems: fifteen TPTP [17] benchmarks and six problems from the Alloy4 distribu-
tion [6]. The chosen problems come from a variety of fields (software engineering,
medicine, geometry, etc.), include 4 to 59 constraints, and exhibit a wide range
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problem size scope variables clauses
transl

(sec)

solve

(sec)

initial

core

min

core

OCE

(sec)

NCE

(sec)

SCE

(sec)

RCE

(sec)

tRCE

(sec)

Trees 4 7 407396 349384 10 98 4 4 1 7 7 7 7

RingElection 10 8 59447 187381 1 49 9 9 2 59 7 8 9

Lists.empties 12 60 2547216 7150594 74 12 7 6 9 196 89 86 86

Lists.reflexive 12 14 34914 91393 1 23 10 5 3 134 120 158 96

Lists.symmetric 12 8 7274 17836 0 27 12 7 3 150 115 93 85

Hotel 59 5 22407 55793 0 0 53 29 0 27 14 11 11

ALG212 6 7 1072203 1027000 7 63 6 5 1 103 104 107 98

COM008 14 9 6154 9845 0 1 14 10 0 190 193 235 166

NUM374 14 3 6874 18938 0 0 14 6 0 3 3 3 3

TOP020 14 10 2554114 4262733 21 113 2 2 6 826 10 10 10

SET943 18 5 5333 12541 0 0 14 4 0 19 18 15 13

SET948 20 14 339132 863889 5 36 10 6 1 754 247 359 254

SET967 20 4 14641 45112 0 0 10 2 0 454 181 142 142

GEO091 26 10 106329 203303 9 108 24 7 3 1129 652 105 105

GEO092 26 8 48500 91285 3 7 24 7 0 120 99 70 51

GEO158 26 8 46648 88234 3 38 25 7 2 175 107 45 45

GEO115 27 9 109002 188782 6 85 25 7 2 675 278 63 86

LAT258 27 7 205621 336912 2 11 26 20 0 95 87 70 70

GEO159 28 8 87214 195200 10 57 24 7 1 223 83 50 50

MED007 41 35 130777 265702 2 67 24 7 1 >3600 >3600 176 91

MED009 41 35 130777 265703 2 71 26 7 1 >3600 >3600 85 76

A
llo

y
T
P
T
P

Fig. 4. Experimental results. The notation “>3600” means that an algorithm was
unable to produce a core for the specified problem in the given scope within one hour.
Gray shading highlights the best running time among NCE, SCE, RCE, and trained
RCE (tRCE).

of behaviors. In particular, eleven are theorems (i.e. unsatisfiable conjunctions
of axioms and negated conjectures); four are assumed to be (counter)satisfiable
but have no known finite models; two are unsatisfiable in some universes and
satisfiable in others; and four have neither an assumed status nor any known
finite models.

Each problem p was tested for satisfiability in scopes of increasing sizes until a
failing scope sfail(p) was reached in which either a model was found or all three
minimality-guaranteeing algorithms failed to produce a result for that scope
within 5 minutes (300 seconds). Then, because our implementation of RCE is
parameterized by a “resolution distance” d that controls which resolvents are
reused in each iteration2, RCE was automatically trained using a scope of 0.75 ∗
(sfail(p) − 1) to estimate the best d for the problem p. Once the experimental
parameters were determined, the algorithms were tested on each problem using
a scope of sfail(p)−1. All experiments were performed on a 2×3 GHz Dual-Core
Intel Xeon with 2 GB of RAM, with a cut-off time of one hour (3600 seconds).

The results are shown in Fig. 4. The first three columns show the name of the
problem, the number of constraints it contains, and the scope in which it was
tested. The next two columns contain the number of propositional variables and
clauses produced by the translator. The “transl (sec)” and “solve (sec)” columns
show the time, in seconds, taken by the translator to generate the problem and
the SAT solver to produce the initial refutation. The “initial core” and “min

2 A relevant resolvent r ∈ R′ (Fig. 3d, line 30) is recycled if all paths from r to a
source in C′ (Fig. 3d, line 29) contain at most d edges.
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problem N-score
NCE /

RCE

NCE /

tRCE

average

speed-up

NUM374 -0.34 1.04 0.95

RCE:  1.48x

tRCE: 1.56x

SET943 0.12 1.29 1.44

SET967 0.53 3.20 3.20

Trees 0.59 1.08 1.08

COM008 0.60 0.81 1.14

Hotel 1.08 2.54 2.54

RCE:  2.45x

tRCE: 2.59x

RingElection 1.73 7.13 6.31

ALG212 1.82 0.96 1.05

Lists.empties 1.87 2.28 2.29

LAT258 1.89 1.36 1.36

Lists.symmetric 2.13 1.61 1.77

GEO092 2.14 1.73 2.35

Lists.reflexive 2.21 0.85 1.40

SET948 2.70 2.10 2.97

GEO158 2.86 3.90 3.89

GEO159 3.08 4.49 4.48

RCE:  29.04x

tRCE: 32.65x

TOP020 3.13 85.26 85.76

GEO115 3.23 10.74 7.82

GEO091 3.32 10.78 10.77

MED007 3.36 20.51 39.54

MED009 3.38 42.47 47.53

e
a
s
y

m
e
d

iu
m

 h
a
rd

problem S-score
SCE /

RCE

SCE /

tRCE

average

speed-up

NUM374 -0.34 1.05 0.96

RCE:  1.08x

tRCE: 1.11x

SET943 -0.03 1.21 1.36

SET967 0.18 1.28 1.28

TOP020 0.35 0.99 1.00

Trees 0.59 1.08 1.08

COM008 0.60 0.82 1.16

RingElection 0.65 0.87 0.77

Hotel 0.99 1.31 1.31

Lists.empties 1.12 1.04 1.04

RCE:  1.27x

tRCE: 1.43x

ALG212 1.82 0.97 1.06

LAT258 1.82 1.24 1.24

Lists.reflexive 2.06 0.76 1.25

GEO092 2.09 1.43 1.94

Lists.symmetric 2.13 1.24 1.36

SET948 2.16 0.69 0.97

GEO158 2.83 2.39 2.39

GEO159 2.99 1.67 1.66

MED007 3.06 20.51 39.54

RCE:  18.41x

tRCE: 24.13x

MED009 3.13 42.47 47.53

GEO115 3.18 4.42 3.22

GEO091 3.27 6.23 6.22

e
a
s
y

m
e
d

iu
m

 h
a
rd

(a) RCE and tRCE versus NCE (b) RCE and tRCE versus SCE

Fig. 5. Comparison of minimal core extractors based on problem difficulty

core” columns present the number of constraints in the initial core found by
OCE and the minimal core found by the minimality-guaranteeing algorithms.
The remaining columns show core extraction time, in seconds, for each algorithm.

On average, RCE outperforms NCE and SCE by a factor of 10 and 4, re-
spectively; its trained variant (tRCE) is roughly 11 times faster than NCE and
6 times faster than NCE. These overall averages, however, do not take into ac-
count the wide variance in difficulty among the tested problems. A more useful
comparison of the minimality-guaranteeing algorithms is given in Fig. 5, where
we classify the problems according to their difficulty for NCE (Fig. 5a) and
SCE (Fig. 5b), and then report how well the RCE variants perform on the
problems deemed as “easy”, “moderately hard” or “hard” for the competing
algorithms.

To assess the difficulty of a given problem for NCE, we compute its N-score,
and rate it as easy if the score is less than 1, hard if the score is 3 or more, and
moderately hard otherwise. The N-score for a specification S is log10((s − m) ∗
t+m∗ t∗ .01), where s is the size of the specification, m is the size of its minimal
core, and t is the time, in seconds, taken by the SAT solver to determine that S
is unsatisfiable. Note that the N-score for a problem measures how much work
NCE has to do to eliminate irrelevant constraints from the specification, which
is approximated by predicting that NCE will take (s − m) ∗ t seconds to prune
away the (s−m) irrelevant constraints. (The formula assumes that it takes only
1 percent of the initial time to throw out a relevant constraint because of the
ability of modern SAT solvers to find satisfying assignments very quickly.) The
difficulty of a problem for SCE is computed in a similar way; the S-score of a
given problem is log10((s′ − m) ∗ t + m ∗ t ∗ .01), where s′ is the size of the initial
(one-step) core.
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Unsurprisingly, OCE outperforms both SCE and RCE in terms of execution
time. However, it generates cores that are on average 2.4 times larger than the
corresponding minimal cores. For 20 out of 21 (95%) of the tested problems, the
OCE core included at least 50% of the original constraints. In contrast, only 7
out of 21 (33%) minimal cores included at least half of the original constraints.

5 Related Work

The problem of finding unsatisfiable cores of sets of constraints has been studied
in the context of linear programming [18], propositional satisfiability [19, 20,
21, 22, 23, 24, 25], and finite model finding [3]. Chinneck and Dravnieks’ [18]
deletion filtering algorithm for linear constraints is similar to NCE: given an
infeasible linear program LP , the algorithm tests each functional constraint for
membership in an Irreducible Infeasible Subset (i.e. minimal unsatisfiable core)
by removing it from LP and applying a linear programming solver to the result.
If the reduced LP is infeasible, the constraint is permanently removed, otherwise
it is kept. The remaining algorithms in [18] are specific to linear programs, and
there is no obvious way to adapt them to other domains.

Most of the work on extracting small unsatisfiable cores comes from the SAT
community. Several practical algorithms [20,24,25] have been proposed for find-
ing small, but not necessarily minimal, cores of propositional formulas. Zhang
and Malik’s algorithm [25], for example, works by extracting a core from a refu-
tation, feeding it back to the solver, and repeating this process until the size of
the extracted core no longer decreases. A few proposed algorithms provide strong
optimality guarantees—such as returning the smallest minimal core [22, 23] or
all minimal cores [21, 26, 27, 28] of a boolean formula—at the cost of scaling to
problems that are orders of magnitude smaller than those handled by the ap-
proximation algorithms. The Complete Resolution Refutation (CRR) algorithm
by Dershowitz et al. [19] strikes an attractive balance between scalability and
optimality: it finds a single minimal core but scales to large real-world formulas.
CRR was one of the inspirations for our work and is, in fact, an instantiation of
RCE for propositional logic, with a SAT solver as a resolution engine and the
identity function as the translation procedure.

The work by Shlyakhter et al. [3] is most closely related to ours. It proposes
the One-Step Core Extractor (OCE) for declarative specifications in a language
reducible to propositional logic. As discussed in previous sections, OCE is faster
than RCE but produces cores that are two to three times larger than the corre-
sponding minimal cores.

6 Conclusions

We have presented recycling core extraction, a new method for finding minimal
unsatisfiable cores of declarative specification, and compared it to two simpler
algorithms, NCE and SCE. On hard problems, the base recycling extraction
algorithm (RCE), which reuses all available learned clauses, is about 29x faster
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than NCE and 18x faster than SCE. But even greater speed-ups can be achieved
with a simple variant of RCE that is trained to recycle a fixed subset of the
available resolvents in each iteration.

RCE has so far been used as a coverage analysis for hand-crafted formal
models within the interactive modeling environment of the Alloy Analyzer. It
seems likely, however, that RCE will be applicable in other settings, particularly
those involving large, automatically generated specifications, enabling its use for
coverage analysis in code checking [29,30,31] and declarative configuration [32].
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Abstract. In [8], a practical algorithm for precise interval analysis is provided
for which, however, no non-trivial upper complexity bound is known. Here, we
present a lower bound by showing that precise interval analysis is at least as hard
as computing the sets of winning positions in parity games. Our lower-bound
proof relies on an encoding of parity games into systems of particular integer
equations. Moreover, we present a simplification of the algorithm for integer
systems from [8]. For the given encoding of parity games, the new algorithm
provides another algorithm for parity games which is almost as efficient as the
discrete strategy improvement algorithm by Vöge and Jurdziński [17].

1 Introduction

Interval analysis as introduced by Cousot and Cousot [3,4] tries to determine at compile-
time for each variable x and program point v in a program an as tight interval as possible
which is guaranteed to contain all values of x when reaching program point v. This prob-
lem is of fundamental importance for program optimizations such as safe removal of array
bound checks as well as the certification of absence of arithmetic overflows. The prob-
lem with interval analysis, though, is that the lattice of all intervals has infinite ascending
chains implying that acceleration techniques are needed to enforce fixpoint iteration to
terminate. One such acceleration technique is the widening and narrowing approach of
Cousot and Cousot [3,4] which, however, results in algorithms which may fail to return
the least solution of the given system of equations extracted from the program.

Recently, the problem of interval analysis has attracted new attention. In [15] Su and
Wagner identified a class of polynomial solvable range constraints for interval analy-
sis which can be solved precisely. This class admits full addition. Multiplication and
intersection are restricted in such a way that at least one of the arguments must be a
constant interval. Leroux and Sutre [13] extend this result by providing an acceleration-
based algorithm for solving interval constraints with full multiplication and restricted
intersection in cubic time precisely. In [2], Gaubert et al. suggest strategy iteration as
an alternative method for computing solutions of interval equations with full intersec-
tions. Their method still fails to return the least solution in some cases. Computing the
least solution to the interval equations introduced for interval analysis will be called
precise interval analysis in the sequel. In [8], we reduce precise interval analysis to
solving systems of integer equations for which we propose another variant of strategy
iteration which is guaranteed to return the least solution. The practical efficiency of any
algorithm based on strategy iteration depends on the number of strategies encountered
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during the iteration. Although we never have observed more than a linear number of
strategies, no non-trivial upper bound to this number is known. Thus, one might think
of other methods to obtain not only a practical, but also provably polynomial algo-
rithm for precise interval analysis. Here we show that, if such an algorithm exists, it
also solves a long standing open problem, namely, to compute the winning regions of a
parity game in polynomial time.

This lower-bound proof uses a reduction similar to the reductions of parity games to
mean payoff games and discounted payoff games [10,14]. A different class of interval
constraints is considered in [1] where Bordeaux et al. prove that computing the least
fixpoint is NP-hard. This strong lower bound, however, relies on the explicit use of
a square-root operator and thus cannot easily be carried over to our class where only
linear operations on intervals are allowed.

Our encoding of parity games does not only give a lower-bound argument for pre-
cise interval analysis, but also allows to use methods for integer systems to solve parity
games. As our second contribution, we therefore present a new version of the algorithm
from [8] for integer systems which is significantly simpler. Similar to the algorithm in
[8], the new algorithm is based on strategy iteration. The original algorithm, however,
relies on an instrumentation of the underlying lattice to guide strategy improvement.
This extra overhead is now avoided. Via our encoding, the new method for integer sys-
tems also provides a very simple algorithm for parity games. Compared to the discrete
strategy improvement algorithm of Vöge [17,16], the valuations to determine the next
strategy needed by our algorithm are just mappings from positions to integers.

The paper is organized as follows. In section 2, we introduce basic notions and the
concepts of parity games and systems of integer equations. In section 3, we show how
one can reduce the computation of the winning regions and the winning strategies for
a parity game to the computation of the least solution of systems of particular integer
equations. In section 4, we show how computing least solutions of these integer equa-
tions can be reduced to precise interval analysis — thus completing the lower-bound
proof for interval analysis. In section 5, we present the novel strategy iteration algorithm
for solving systems of integer equations. Moreover, we organize the strategy iteration
in such a way that, for simple integer equations, i.e., for equations with addition of con-
stants only, the number of maxima with constants no longer affects the asymptotic com-
plexity. Since the systems obtained from our reduction from parity games are simple,
the reduction together with the new algorithm for integer equations provides another
strategy iteration algorithm for parity games. Each improvement step of this algorithm
requires at most quadratically many operations on integers of length O(d · log n) where
n is the number of positions and d is the maximal rank of the parity game.

2 Notation and Basic Concepts

As usual, N and Z denote the set of natural numbers excluding 0 and the set of integers,
respectively. We write N0 for N∪{0}. Given a relation R ⊆ A×B and a subset A′ ⊆ A
we write A′R for the set {b ∈ B | ∃a ∈ A′ : (a, b) ∈ R}. Our complexity results will
be stated w.r.t. a uniform cost measure where we count memory accesses and arithmetic
operations for O(1).
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Parity Games. A parity game is a tuple G = (V∨, V∧, E, r). V∨ and V∧ are disjoint
finite sets of positions owned by the ∨-player and the ∧-player, respectively. We will
always write V for the set V∨ ∪ V∧. The set E ⊆ V 2 is a finite set of possible moves
with {v}E �= ∅ for every position v ∈ V , i.e., there is no sink. Finally, r : V → N0 is
the rank function which assigns a rank r(v) to every position v.

A play over G is an infinite word w = v1v2 · · · with (vi, vi+1) ∈ E for i ∈ N. Let
m(w) := max{r(v) | v ∈ V occurs infinitely often in w}. The play w is won by the
∨-player (resp. ∧-player) iff m(w) is odd (resp. even). A position v ∈ V is called ∨-
winning (resp. ∧-winning) iff the ∨-player (resp. ∧-player) can enforce that every play
starting at v is won by the ∨-player (resp. ∧-player). The set of all ∨-winning (resp.
∧-winning) positions is called the ∨-winning region (resp. ∧-winning region).

A mapping σ∨ : V∨ → V with σ∨(v) ∈ {v}E for every v ∈ V∨ is called a positional
∨-strategy. Dually, a mapping σ∧ : V∧ → V with σ∧(v) ∈ {v}E for every v ∈ V∧
is called a positional ∧-strategy. A play w is consistent with the positional ∨-strategy
σ∨ iff σ∨(v∨) = v for every finite prefix w′v∨v of w with v∨ ∈ V∨. Dually, a play w
is consistent with the positional ∧-strategy σ∧ iff σ∧(v∧) = v for every finite prefix
w′v∧v of w with v∧ ∈ V∧. It is well-known that positional strategies are sufficient
(memoryless determinacy) [6]. This means: there exists a positional ∨-strategy σ∨ such
that every play w which starts at a ∨-winning position and which is consistent with σ∨
is won by the ∨-player. Such a positional ∨-strategy is called winning. Dually, there
exists a positional ∧-strategy σ∧ (called winning) such that every play w which starts at
a ∧-winning position and which is consistent with σ∧ is won by the ∧-player.

Given a positional ∨-strategy σ∨ (resp. ∧-strategy σ∧) we write G(σ∨) (resp. G(σ∧))
for the parity game (V∨, V∧, (E∩V∧×V )∪σ∨, r) (resp. (V∨, V∧, (E∩V∨×V )∪σ∧, r)) 1.
Thus, the parity game G(σ∨) (resp. G(σ∧)) is obtained from G by removing all moves
which cannot be used in any play which is consistent with σ∨ (resp. σ∧). A ∨-strategy
σ∨ (resp. ∧-strategy σ∧) is winning iff every play w in G(σ∨) (resp. G(σ∧)) which
starts from a ∨-winning position (resp. ∧-winning position) is won by the ∨-player
(resp. ∧-player).

Systems of Integer Equations. We briefly introduce systems of integer equations (cf.
[8]). Let Z denote the complete lattice Z∪{−∞, ∞} equipped with the natural ordering.
We extend the operations addition + : Z × Z → Z and multiplication · : Z × Z → Z to
the operands −∞ and ∞:

x + (−∞) = −∞ for all x ∈ Z x + ∞ = ∞ for all x > −∞
0 · x = 0 for all x > −∞ x · (−∞) = −∞ for all x > 0
x · ∞ = ∞ for all x > 0 x · (−∞) = ∞ for all x < 0
x · ∞ = −∞ for all x < 0

A system E of integer equations is a sequence of equations xi = ei for i = 1, . . . , n,
where the variables xi on the left-hand sides are pairwise distinct and the right-hand
sides ei are expressions e built up from constants and variables by means of addition,
multiplication with constants as well as minimum (“∧”) and maximum (“∨”):

e ::= a | x | e1 + e2 | b · e1 | e1 ∧ e2 | e1 ∨ e2

1 Here a mapping f : A → B is considered as the relation {(a, f(a)) | a ∈ A}.
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where e1, e2 are expressions, x is a variable, a, b ∈ Z, b ≥ 1. We assume that b· has
the highest operator precedence followed by +, ∧ and ∨ which has the lowest operator
precedence. We write |E| for the number of subexpressions occurring in right-hand
sides of E . Thus, |E| is independent of the sizes of numbers occurring in E . We denote
the set of variables of E by XE . We drop the subscript whenever E is clear from the
context. The system E is called disjunctive, if it does not contain ∧-expressions, and
it is called conjunctive, if it does not contain ∨-expressions. A system without ∨- and
∧-expressions is called basic. If E denotes the system xi = ei, i = 1, . . . , n, then, for
a, b ∈ Z with a ≤ b, E|[a,b] denotes the system xi = (ei ∧ b) ∨ a, i = 1, . . . , n.

Under a variable assignment μ, i.e., a function which maps variables from X to
values from Z, an expression e evaluates to a value �e�μ ∈ Z:

�a�μ = a �x�μ = μ(x) �e1 + e2�μ = �e1�μ + �e2�μ
�b · e�μ = b · �e�μ �e1 ∨ e2�μ = �e1�μ ∨ �e2�μ �e1 ∧ e2�μ = �e1�μ ∧ �e2�μ

where e, e1, e2 are expressions, x is a variable, a, b ∈ Z, b ≥ 1. Together with the
point-wise ordering the set of variable assignments X → Z forms a complete lattice.
A solution of E is a variable assignment μ which satisfies all equations of a system
E , i.e. μ(xi) = �ei�μ for all i. A variable assignment μ with μ(xi) ≤ �ei�μ (resp.
μ(xi) ≥ �ei�μ) is called a pre-solution (resp. post-solution) of E . Since every right-hand
side ei induces a monotonic function �ei�, Knaster-Tarski’s fixpoint Theorem implies
that every system E of integer equations has a least solution μ∗, i.e., μ∗ ≤ μ for every
solution μ of E . The least solution μ∗ is the greatest lower bound of all post-solutions.
We refer to computing the least solution of a system E as solving the system E .

We will also define strategies for systems of integer equations. Let M(E) denote
the set of all ∨-expressions occurring in E . Moreover, let Mc(E) ⊆ M(E) denote the
set of ∨-expression e ∨ e′ occurring in E where at least one of the arguments e, e′ is
constant, i.e. it does not contain any variable. Let Mnc(E) := M(E) \ Mc(E). A ∨-
strategy π for E is a function mapping every expression e1 ∨ e2 in M(E) to one of
the subexpressions e1, e2. For an expression e we write eπ for the expression obtained
from e by recursively replacing every ∨-expression with the respective subexpression
selected by the ∨-strategy π, i.e.:

aπ = a xπ = x (e1 + e2)π = e1π + e2π
(b · e)π = b · eπ (e1 ∨ e2)π = (π(e1 ∨ e2))π (e1 ∧ e2)π = e1π ∧ e2π

where e, e1, e2 are expressions, x is a variable, a, b ∈ Z, b ≥ 1. Assuming that E is the
system xi = ei, i = 1, . . . , n, we write E(π) for the system xi = eiπ, i = 1, . . . , n.
The definitions for ∧-strategies are dual.

Systems of simple integer equations are of a particular interest. We call an expression
e simple iff it is of the following form:

e ::= c | x | e + a | e1 ∨ e2 | e1 ∧ e2

where e, e1, e2 are simple expressions, x is a variable, a ∈ Z, c ∈ Z. I.e., at least
one argument of every +-expression is a constant. An integer equation x = e is called
simple iff e is simple.
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We define the relation → between expressions of E by e → e′ iff e′ is an immediate
subexpression of e or e is a variable and e′ is the right-hand side of e, i.e., e = e′ is
an equation of E . A sequence p = e1, . . . , ek of expressions occurring in E is called a
path in E iff ei → ei+1 for i = 1, . . . , k − 1. The path is called simple iff no expression
occurs twice in it. The path e1, . . . , ek is called a cycle iff ek → e1. The weight w(p)
of a path p = e1, . . . , ek is the sum

∑k
i=1 w(ei) where w(e) equals a if e ≡ e′ + a

for some expression e′ and a ∈ Z, and w(e) equals 0 otherwise. We call a system E of
simple integer equations non-zero iff w(c) �= 0 for every simple cycle c in E .

Example 1. Consider the following systems of simple integer equations:

E1 = x1 =x2 + 2, x2 =x1 + (−1) E2 = x1 =x2 + 2 ∨ x2 + 1, x2 =x1 + (−1)

The system E1 is non-zero, because the only simple cycle in E1 (up to cyclic permuta-
tions) is x1,x2 + 2,x2,x1 + (−1) which has weight 1. The system E2 is not non-zero,
because the simple cycle x1,x2 + 1,x2,x1 + (−1) has weight 0. ��

A variable assignment μ with −∞ < μ(x) < ∞, x ∈ X is called finite. We have:

Lemma 1. Every non-zero system E of simple equations has at most one finite solution.

Proof. Note that, if we rewrite an expression in E using distributivity, then the resulting
system is still non-zero. Let Xrhs

E denote the set of variables occurring in right-hand
sides of E . We proceed by induction on |Xrhs

E |. If |Xrhs
E | = 0, then the statement is

fulfilled, since there is exactly one solution.
Let |Xrhs

E | > 0 and x ∈ Xrhs
E . Consider the equation x = e. We consider the case

where e contains the variable x. Because of distributivity, we can w.l.o.g. assume that
x = e is of the form x = ((x + c) ∧ e1) ∨ e2. where e1 and e2 are such that no ∨
occurs within a ∧-expression and no ∧-expression occurs within a +-expression. We
say that such an expression is in disjunctive normal form. Since E is non-zero, we know
that c �= 0. We only consider the case that c > 0. The other case is similar. First of all,
observe that, for every finite variable assignment μ, the following holds:

μ(x) = �((x + c) ∧ e1) ∨ e2�μ implies μ(x) = �e1 ∨ e2�μ. (1)

Let μ1 and μ2 be finite solutions of E . Let E ′ denote the system of simple equations
obtained from E by replacing the equation x = e with the equation x = e1 ∨ e2. The
system E ′ is non-zero. (1) implies that μ1 and μ2 are finite solutions of E ′. Since we
can repeat this step, we can w.l.o.g. assume that the variable x does not occur within
e1 ∨ e2. We now replace every occurrence of x in right-hand sides of E ′ by e1 ∨ e2 and
obtain a system E ′′. This system is again non-zero and μ1 and μ2 are finite solutions of
E ′′. Thus, since |Xrhs

E′′ | = |Xrhs
E | − 1, the induction hypotheses implies μ1 = μ2. ��

3 From Parity Games to Systems of Integer Equations

In this section we reduce computing winning regions and winning strategies for parity
games to solving systems of integer equations. Thus, the latter computational problem
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is as least as hard as solving parity games. It is an intriguing open problem to determine
the precise complexity of parity games. What is known is that this problem is in UP ∩
co−UP [10]. A first subexponential algorithm has been presented in [11]. Whether or
not, however, parity games can be solved in polynomial time, is still unknown.

Let us fix a parity game G = (V∨, V∧, E, r). Let n := |V | be the number of posi-
tions, d := max r(V ) = max {r(v) | v ∈ V } the maximal rank and m := nd+1. In
order to compute the winning regions, we consider the system EG of integer equations
which we define subsequently. From the least solution μ∗ of EG|[−m,m] we will deduce
the winning regions as well as winning strategies for both players. For every position
v ∈ V we introduce a fresh variable xv , i.e., XEG := {xv | v ∈ V }. Let

δr = −(−n)r.

Observe that δr is less than 0 whenever r is even and greater than 0 whenever r is odd.
Moreover, δr is chosen such that (n − 1)|δr′ | < |δr| whenever r′ < r. This important
property ensures that, for k ≤ n, the sum δr1 + · · · + δrk

is greater than 0 iff the most
relevant rank within {r1, . . . , rk} is odd. We construct EG as follows. For every position
v ∈ V∨ we add the equation

xv = (xv1 ∨ · · · ∨ xvk
) + δr(v)

where {v}E = {v1, . . . , vk}. For every position v ∈ V∧ we add the equation

xv = (xv1 ∧ · · · ∧ xvk
) + δr(v)

where {v}E = {v1, . . . , vk}. We illustrate this reduction by an example.

(a) The parity game G of example 2 (b) Affine program PC of example 5

Fig. 1.

Example 2. Consider the parity game G = (V∨, V∧, E, r) (from [16]) where

– V∨ = {a, b, c, d} and V∧ = {e, f, g, h}
– E = {(a, f), (a, e), (b, e), (c, g), (c, h), (d, g), (d, h), (e, a), (e, d), (f, a),

(f, b), (f, c), (g, b), (g, c), (h, c)}
– r(b) = r(c) = 0, r(a) = r(f) = r(h) = 1, r(d) = r(e) = 2, r(g) = 3
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which is illustrated in figure 1 (a). The system EG|[−m,m] is given as

xa = (xe ∨ xf ) + 8 ∧ m ∨ −m xb = xe + (−1) ∧ m ∨ −m
xc = (xg ∨ xh) + (−1) ∧ m ∨ −m xd = (xg ∨ xh) + (−64) ∧ m ∨ −m
xe = (xa ∧ xd) + (−64) ∧ m ∨ −m xf = (xa ∧ xb ∧ xc) + 8 ∧ m ∨ −m
xg = (xb ∧ xc) + 512 ∧ m ∨ −m xh = xc + 8 ∧ m ∨ −m

where m = 4096. ��
We summarize statements about EG and EG|[−m,m] in the following Lemma:

Lemma 2. 1. |XEG | = |XEG|[−m,m]
| = n;

2. |M(EG)| = |E ∩V∨ ×V |− |V∨| and |M(EG|[−m,m])| = |E ∩V∨ ×V |− |V∨|+n;
3. The size of occurring numbers is bounded by (d + 1) log2 n;
4. The systems EG and EG|[−m,m] of simple equations are non-zero.

Proof. We only prove the fourth statement. Since there exists a one-to-one mapping f
from the set of simple cycles in EG|[−m,m] onto the set of simple cycles in EG with
w(c) = w(f(c)) for every simple cycle c in EG|[−m,m], we only have to show that EG

is non-zero. W.l.o.g., let

c = x1, e1 + δr(v1), . . . , x2, e2 + δr(v2), . . . , xk, ek + δr(vk)

be a simple cycle in EG where x1, . . . ,xk are the only expressions in the sequence
c which are variables. Thus k ≤ n. Let J := {j ∈ {1, . . . , k} | |δr(vj)| =
maxi=1,...,k |δr(vi)|}. Let r denote the only rank in the set r({vj | j ∈ J}). Note
that k − |J | ≤ n − 1 and |δr| > (n − 1)|δr−1|. We get:

|w(c)| = |
∑k

i=1 δr(vi)| = |
∑

i∈J δr(vi) +
∑

i∈{1,...,k}\J δr(vi)|
= | |J |δr +

∑
i∈{1,...,k}\J δr(vi)| ≥ |δr| −

∑
i∈{1,...,k}\J |δr(vi)|

≥ |δr| − (k − |J |)|δr−1| ≥ |δr| − (n − 1)|δr−1| > 0

It follows w(c) �= 0. ��

Thus, by Lemma 1 and 2, EG|[−m,m] has exactly one solution which is finite.

Example 3. The unique solution μ∗ of EG|[−4096,4096] in example 2 is given by
μ∗(xa) = −4080, μ∗(xb) = −4096, μ∗(xc) = 4095, μ∗(xd) = 4032,
μ∗(xe) = −4096, μ∗(xf ) = −4088, μ∗(xg) = −3584, μ∗(xh) = 4096. ��

The next Lemma states that we can reassemble the unique solution of EG|[−m,m] by a
∨-strategy for EG. This is simlar to the memoryless determinacy of parity games.

Lemma 3. Let μ∗ denote the unique finite solution of EG|[−m,m]. There exists a ∨-
strategy (resp. ∧-strategy) π for EG such that μ∗ is the unique solution of EG(π)|[−m,m].
Moreover, π can be computed from μ∗ in time O(|EG|).

Proof. We only prove the ∨-strategy case. Let π be the ∨-strategy defined by

π(e1 ∨ e2) =
{

e1 if �e1�μ
∗ ≥ �e2�μ

∗

e2 if �e1�μ
∗ < �e2�μ

∗
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for every expression e1 ∨e2 occurring in EG. The system EG(π)|[−m,m] is non-zero and
μ∗ is a solution of EG(π)|[−m,m]. Thus, Lemma 1 implies that μ∗ is the only solution
of EG(π)|[−m,m]. The complexity statement follows from the fact that the ∨-strategy π
can be computed by evaluating each right-hand side once. ��

Before going further we consider the special case that no player has a choice.

Lemma 4. Let G = (V∨, V∧, E, r) be a parity game where only one move is possible
for every position, i.e., |{v}E| = 1 for every v ∈ V∨ ∪ V∧. Let μ∗ be the unique finite
solution of EG|[−m,m]. Then μ∗(xv) > 0 iff v is a ∨-winning position.

Proof. Since the winning regions partition the set of positions, we only have to show
that μ∗(xv) > 0 for every ∨-winning position v. Let v be a ∨-winning position. Let

w = v′1 · · · · · v′k′ · (v1 · · · · · vk)ω

denote the only game which can be played on G starting at v. We can assume that
v′1, . . . , v′k′ , v1, . . . , vk are pair-wise distinct. Then k + k′ ≤ n and k ≥ 1. Since w is
won by the ∨-player, the highest rank h which occurs in r(v1), . . . , r(vk) is odd. Thus
δh > 0. Let j be the smallest j ∈ {1, . . . , k} with r(vj) = h. The system EG|[−m,m]
contains the equations

xvi = xv(i+1) mod k
+ δr(vi) ∧ m ∨ −m, i = 1, . . . , k.

Thus, since
∑k

i=1 δr(vi) ≥ δh − (k − 1)|δh−1| > 0, it follows that μ∗(xvj ) = m.

Since
∑k′

i=1 δr(v′
i) +

∑j−1
i=1 δr(vi) ≤ (n − 1)|δd| = (n − 1)nd < nd+1 = m, we get

μ∗(xv′
1
) > 0. ��

We establish a one-to-one correspondence between positional strategies for G and
strategies for EG. For a positional ∨-strategy σ∨ (resp. ∧-strategy σ∧) for G, we write
π(σ∨) (resp. π(σ∧)) for the ∨-strategy (resp. ∧-strategy) for EG which corresponds to
σ∨ (resp. σ∧). More precisely, the ∨-strategy π(σ∨) is defined by

π(σ∨)(xv1 ∨ · · · ∨ xvk
) = xvj for {v}E = {v1, . . . , vk} and σ∨(v) = vj .

The ∧-strategy π(σ∧) is defined analogously. Since the mapping π is one-to-one, the
inverse π−1 exists which maps strategies for EG to positional strategies for G. By con-
struction, EG(σ) = EG(π(σ)) and thus EG(σ)|[−m,m] = EG(π(σ))|[−m,m] for every
∨-strategy (resp. ∧-strategy) σ for G.

Let μ∗ denote the unique solution of EG|[−m,m]. By Lemma 3 we can compute a
∨-strategy π∨ for EG such that μ∗ is the unique solution of EG(π∨)|[−m,m]. The next
Lemma in particular states that π−1(π∨) is a ∨-winning strategy for G.

Lemma 5. Let G = (V∨, V∧, E, r) be a parity game. Let μ∗ be the unique solution of
EG|[−m,m]. Then μ∗(xv) > 0 (resp. μ∗(xv) ≤ 0) iff v is a ∨-winning (resp. ∧-winning)
position. Moreover, winning strategies for both players can be computed from μ∗ in time
O(|E|). More precisely, if π∨ (resp. π∧) is a ∨-strategy (resp. ∧-strategy) for EG such
that μ∗ is the unique solution of EG(π∨)|[−m,m] (resp. EG(π∧)|[−m,m]), then π−1(π∨)
(resp. π−1(π∧)) is ∨-winning (resp. ∧-winning).
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Proof. We only show the statement for the ∨-player. The statement for the ∧-player
can be shown dually. Let W denote the ∨-winning region in G. Let Σ∨ (resp. Σ∧)
denote the set of ∨-strategies (resp. ∧-strategies) for G. Given some σ∨ ∈ Σ∨ and
some σ∧ ∈ Σ∧, we write Wσ∨ (resp. Wσ∨σ∧ ) for the ∨-winning region in G(σ∨) (resp.
G(σ∨)(σ∧)). Let Π∨ (resp. Π∧) denote the set of ∨-strategies (resp. ∧-strategies) for
EG. Given some π∨ ∈ Π∨ and some π∧ ∈ Π∧, we write μπ∨ (resp. μπ∨π∧) for the
unique solution of EG(π∨)|[−m,m] (resp. EG(π∨)(π∧)|[−m,m]). Lemma 4 implies

Wσ∨σ∧ = {v ∈ V | μπ(σ∨)π(σ∧)(xv) > 0} for all σ∨ ∈ Σ∨ and all σ∧ ∈ Σ∧. (2)

Let us fix some σ∨ ∈ Σ∨. Lemma 3 implies that there exists some π∧ ∈ Π∧ such
that μπ(σ∨)π∧ = μπ(σ∨). Let σ′

∧ ∈ Σ∧. We have μπ(σ∨)π(σ′
∧) ≥ μπ(σ∨) = μπ(σ∨)π∧ .

Thus (2) implies Wσ∨σ′
∧ ⊇ Wσ∨π−1(π∧). Since σ′∧ was chosen arbitrarily, we have

Wσ∨ = Wσ∨π−1(π∧). Since σ∨ was also chosen arbitrarily, (2) implies

Wσ∨ = {v ∈ V | μπ(σ∨)(xv) > 0} for all σ∨ ∈ Σ∨. (3)

Lemma 3 implies that there exists some π∨ ∈ Π∨ such that μπ∨ = μ∗. Let σ′∨ ∈ Σ∨.
We have μπ(σ′

∨) ≤ μ∗ = μπ∨ . Thus (3) implies Wσ′
∨ ⊆ Wπ−1(π∨). Since σ′

∨ was
chosen arbitrarily, we have W = Wπ−1(π∨) which means that π−1(π∨) is a ∨-winning
strategy in G. Using (3) we get W = {v ∈ V | μ∗(xv) > 0}. The complexity statement
is obvious. ��

Example 4. Consider again example 2 and example 3. Positions c, d and h are ∨-
winning positions, since μ∗(xc), μ∗(xd), μ∗(xh) > 0. Conversely, a, b, e, f, g are ∧-
winning positions, since μ∗(xa), μ∗(xb), μ∗(xe), μ∗(xf ), μ∗(xg) < 0. A ∨-strategy
π∨ for EG such that μ∗ is the unique solution of EG(π∨)|[−m,m] is given by

π∨(xe ∨ xf ) = xf π∨(xg ∨ xh) = xh.

Thus σ := π−1(π∨), given by σ(a) = f, σ(c) = h, σ(d) = h is ∨-winning. ��

Thus we get the main result for this section as a corollary of Lemma 5.

Theorem 1. The problem of computing winning regions for parity games is P-time
reducible to solving systems of integer equations. ��

4 From Systems of Integer Equations to Interval Analysis

We now reduce solving systems of integer equations to precise interval analysis for
affine programs (cf. e.g. [12]). Let I denote the set of closed intervals in Z, i.e.,

I = {∅} ∪ {[a, b] ⊆ Z | a, b ∈ Z and ∞ > a ≤ b > −∞}.

Let B := {I1 × · · · × In | Ii ∈ I, i = 1, . . . , n} ⊆ 2Z
n

. (B, ⊆) is a complete lattice.
Elements from B are called boxes. We define α : 2Z

n → B by

α(X) =
⋂

B∈B,B⊇X B ∈ B, X ⊆ Z
n.

The box α(X) is the smallest box which is a super-set of X .
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Subsequently we discuss affine programs. Let us fix a set XP = {x1, . . . ,xn} of
program variables.Then a state in the concrete semantics which assigns values to the
variables is conveniently modeled by a vector x = (x1, . . . , xn) ∈ Z

n; xi is the value
assigned to variable xi. Note that we distinguish variables and their values by using a
different font. In this paper, we only consider statements of the following forms:

(1) xj := a +
∑n

i=1 ai · xi (2) a +
∑n

i=1 ai · xi ≥ 0

where a, a1, . . . , an ∈ Z. We use an abstract fixpoint semantics which associates a box
B = I1 × · · · × In ∈ B to each program point. Each statement s ∈ Stmt induces a
transformation [[s]] : B → B, given by

�xj := a +
∑n

i=1 ai · xi�B = α({(x1, . . . , xj−1, a +
∑n

i=1 ai · xi, xj+1, . . . , xn)
| (x1, . . . , xn) ∈ B})

�a +
∑n

i=1 ai · xi ≥ 0�B = α({(x1, . . . , xn) ∈ B | a +
∑n

i=1 ai · xi ≥ 0})

where B ∈ B. We emphasize that �s� is the best abstract transformer w.r.t. the natural
concrete semantics (cf. [5]). The branching of an affine program is non-deterministic.
Formally, an affine program is given by a control flow graph P = (N, T, st) that con-
sists of a set N of program points, a set T ⊆ N ×Stmt×N of (control flow) edges and a
special start point st ∈ N . Then, the abstract fixpoint semantics V of P is characterized
as the least solution of the following system of constraints:

(1) V[st] ⊇ Z
n (2) V[v] ⊇ [[s]](V[u]) for each (u, s, v) ∈ T

where the variables V[v], v ∈ N take values in B. We denote the components of the
abstract fixpoint semantics V by V [v] for v ∈ N . We emphasize that we focus on
precise interval analysis which means that it is not sufficient to compute a small solution
of the above constraint system. We in fact want to compute the least solution.

Assume that E denotes a system of integer equations. In place of E we consider a
system C of integer constraints where each constraint is of one of the following forms

(1) x ≥ c (2) x ≥ a +
∑k

i=1 ai · xi (3) x ≥ x1 ∧ x2

where c ∈ Z \ {−∞}, a, a1, . . . , ak > 0, x,x1,x2 are variables. This can be done
w.o.l.g. since, for every system E of integer equations, we can compute a system C of
integer constraints of the above form whose least solution gives us the least solution
of E in linear time. Furthermore, we assume w.l.o.g. that, for every variable x, there
exists exactly one constraint of the form (1). This can be done w.o.l.g., since we can
identify the set of variables x with μ∗(x) = −∞ in time O(n · |E|). We can remove
these variables and obtain a system whose least solution maps every variable to a value
strictly greater than −∞. Additionally, we can compute a lower bound cx ∈ Z for
each variable x, i.e. μ∗(x) ≥ cx, in time O(n · |E|) by performing n lock-step fixpoint
computation steps.

We construct the affine program PC = (N, T, st) as follows. Let {x1, . . . ,xn} de-
note the set of variables used in C. We choose

N := {st, u1, . . . , un} ∪ {vk1,k2 | xj ≥ xk1 ∧ xk2 is a constraint of C}
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as the set of program points and identify st with u0. We construct the set T of control-
flow edges as follows. For every constraint xj ≥ c of C we add the control-flow edge

(uj−1, c − xj ≥ 0, uj).

For every constraint xj ≥ a +
∑

i ai · xki of C we add the control-flow edge

(un,xj := a +
∑

i ai · xki , un).

For every constraint xj ≥ xk1 ∧ xk2 of C we add the control-flow edges

(un,xj := xk1 , vk1,k2) and (vk1,k2 ,xk2 − xj ≥ 0, un).

Then we can obtain the least solution of C from the abstract fixpoint semantics V of P :

Lemma 6. Let μ∗ denote the least solution of C and (I1, . . . , In) := V [un]. Then, for
every i = 1, . . . , n, μ∗(xi) equals the upper bound of the interval Ii. ��

Example 5. Consider the following system E of integer constraints:

x1 = 0 ∨ x3 + 1 x2 = 10 x3 = x1 ∧ x2

By performing 3 rounds of lock-step fixpoint iteration we get that the value of the
variable x3 is as least 0. Thus, in place of E , we consider the following system C of
integer constraints. E and C have the same least solution.

x1 ≥ 0 x1 ≥ x3 + 1 x2 ≥ 10 x3 ≥ 0 x3 ≥ x1 ∧ x2

The least solution μ∗ of E is given by μ∗(x1) = 11, μ∗(x2) = 10, μ∗(x3) = 10. Figure
1 (b) shows the corresponding affine program PC . Let V denote the abstract fixpoint
semantics of PC . Then V [u3] = [−∞, 11] × [−∞, 10] × [−∞, 10]. ��

Combining Theorem 1 and Lemma 6 we get our lower bound result:

Theorem 2. The problem of computing winning regions of parity games is P-time re-
ducible to precise interval analysis for affine programs. ��

5 Solving Integer Equations

In this section we present a simplified method for computing least solutions of systems
of integer equations. As the algorithm in [8], our new algorithm essentially iterates
over suitable ∨-strategies where, for each attained strategy, we determine the greatest
solution of the corresponding conjunctive system. Our key contribution is to show that
this idea also works, if instrumentation of the underlying lattice as in [8] is abandoned.

Assume that μ∗ denotes the least solution of the system E of integer equations. A ∨-
strategy improvement operator P∨ is a function which maps a pair (π, μ) to an improved
∨-strategy π′ := P∨(π, μ), where π is a ∨-strategy for E and μ ≤ μ∗ is a pre-solution
of E and the following holds:

π′ �= π whenever μ < μ∗ and π′(e1 ∨ e2) ∈

⎧
⎨

⎩

{e1, π(e1 ∨ e2))} if �e1�μ > �e2�μ
{e2, π(e1 ∨ e2))} if �e1�μ < �e2�μ
{π(e1 ∨ e2)} if �e1�μ = �e2�μ
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If not further specified P∨ means any ∨-strategy improvement operator. We define the
∨-strategy improvement operator P eager

∨ by

P eager
∨ (π, μ)(e1 ∨ e2) =

⎧
⎨

⎩

e1 if �e1�μ > �e2�μ
e2 if �e1�μ < �e2�μ
π(e1 ∨ e2) if �e1�μ = �e2�μ

where π is a ∨-strategy for E and μ ≤ μ∗ is a pre-solution of E . This is basically the
∨-strategy improvement operator used in [9].

Assume that E is a system of basic integer equations. We define the set D(E) of
derived constraints as the smallest set of constraints of the form x ≤ e such that (1)
x ≤ e ∈ D(E) whenever x = e is an equation of E ; and (2) x ≤ e′′ ∈ D(E) whenever
x ≤ e, x′ ≤ e′ ∈ D(E) and e′′ is obtained from e by replacing x′ with e′. For
a system E of conjunctive equations we define the set D(E) of derived constraints by
D(E) :=

⋃
π is a ∧-strategy for E D(E(π)). Let E be a system of conjunctive equations.

For every x ≤ e ∈ D(E) and every pre-solution μ of E we have �x�μ ≤ �e�μ. A pre-
solution μ of E is called (E-)feasible iff (1) e = −∞ whenever x = e is an equation of
E with �e�ρ = −∞; and (2) �x�μ = �e�μ implies �x�μ = ∞ for all derived constraints
x ≤ e ∈ D(E) where x occurs in e.

Example 6 (feasibility). There exists no feasible pre-solution of the system x1 = x1 ∧
10. Every variable assignment which maps x1 to values between 1 and 10 is a feasible
pre-solution of the system x1 = 2 · x1 ∧ 10. ��

Lemma 7. 1. Let E be a conjunctive system of integer equations and μ be a feasible
pre-solution of E . Every pre-solution μ′ ≥ μ of E is feasible.

2. Let E be a system of integer equations, π a ∨-strategy for E , μ a feasible pre-
solution of E(π) and π′ := P∨(π, μ). Then μ is a feasible pre-solution of E(π′). ��

Let E be the system x1 = e1, . . . ,xn = en and μ∗ the least solution of E . Our strategy
improvement algorithm is given as algorithm 1. It starts with a ∨-strategy π for E and
feasible pre-solution μ ≤ μ∗ of E(π).

Algorithm 1. Computing Least Solutions of Systems of Integer Equations
π ← π; μ ← μ;
while (μ is not a solution of E) {

π ← P eager
∨ (π,μ); μ ← least solution of E(π) that is greater than or equal to μ;

}
return μ;

By induction one can show that algorithm 1 returns the least solution μ∗ of E whenever
it terminates (cf. [8]). In order to obtain an upper bound to the number of iterations, we
first show that every system of conjunctive equations has at most one feasible solution.

Lemma 8. Assume that the greatest solution μ∗ of the system E of conjunctive equa-
tions is feasible. Then μ∗ is the only feasible solution of E .
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Proof. Assume that E denotes the system xi = ei, i = 1, . . . , n. We first prove the
statement for a system E of basic equations. Let X(E) denote the set of variables occur-
ring in right-hand sides of E . Let μ be a feasible solution of E . We show by induction
on |X(E)| that μ = μ∗. This is obviously fulfilled, if |X(E)| = 0. Thus, consider an
equation xi = ei of E where xi occurs in a right-hand side ej of E .

Assume that ei does not contain xi. We obtain a system E ′ from E by replacing all
occurrences of xi in right-hand sides with ei. Since D(E ′) ⊆ D(E), μ, μ∗ are feasible
solutions of E ′. Since |X(E ′)| = |X(E)| − 1, the induction hypothesis implies μ = μ∗.

Assume now that ei contains xi. Since xi ≤ ei ∈ D(E) and μ, μ∗ are feasible
solutions we get �xi�μ = �xi�μ

∗ = ∞. Thus μ, μ∗ are solutions of the system E ′

obtained from E by replacing the equation xi = ei with xi = ∞ and then replacing all
occurrences of the variable xi in right-hand sides with ∞. Since D(E ′) ⊆ D(E), μ, μ∗

are feasible solutions of E ′. Since |X(E ′)| = |X(E)| − 1, the induction hypothesis
implies μ = μ∗. Thus the statement holds for systems of basic equations.

Now assume that E is a system of conjunctive equations. In order to derive a contra-
diction, assume that μ < μ∗ is a feasible solution of E . Then μ is a feasible solution
of E(π) for some ∧-strategy π. Thus μ is the greatest solution of E(π). The greatest
solution of E(π) is greater than or equal to μ∗. Thus, μ ≥ μ∗ — contradiction. ��

Consider algorithm 1. Let πj be the ∨-strategy π after the execution of the first statement
in the j-th iteration. Let μj be the variable assignment μ at this point and μ′

j the variable
assignment μ after the j-th iteration. The sequence (μ′

j) is strictly increasing until the
least solution is reached. Lemma 7 implies that, for every j, μj and μ′

j is a feasible pre-
solution of E(πj). Thus, Lemma 8 implies that μ′

j is the greatest solution of E(πj). This
has two important consequences. The first consequence is that, since E(πj) is a system
of conjunctive equations, the greatest solution μ′

j can be computed in time O(|XE | · |E|)
using Bellman-Ford’s algorithm (cf. [7]). The second consequence is that every strategy
πj is considered at most once. Otherwise, there exist j′ > j such that πj′ = πj implying
that μ′

j′ = μ′
j which is a contradiction to the fact that (μ′

j) is strictly increasing. Thus,
the number of iterations is bounded by the number of ∨-strategies.

In order to give a precise characterization of the run-time, let Π(m) denote the max-
imal number of updates of strategies necessary for a system with m ∨-subexpressions.
Thereby we assume that π and μ are given. Π(m) is trivially bounded by 2m.

Until now we have assumed that we have a ∨-strategy π and a feasible pre-solution
μ ≤ μ∗ of E(π) at hand. In order to lift this restriction, we consider E∨−∞ in place of
E which we define to be the system x1 = e1 ∨ −∞, . . . ,xn = en ∨ −∞. Then we
can choose π to be the ∨-strategy which maps every top-level ∨-expression ei ∨ −∞
of E∨−∞ to −∞. Accordingly, we choose μ to be the variable assignment which maps
every variable to −∞. Then μ ≤ μ∗ is a feasible solution of E∨−∞(π).

We now show that the number of updates of strategies necessary for computing the
least solution of E∨−∞ is n + Π(m) although |M(E∨−∞)| = m + n. We have:

Lemma 9. μ′
n(xi) = −∞ iff μ∗(xi) = −∞ for i = 1, . . . , n. ��

Let i ∈ {1, . . . , n}. Lemma 9 implies μ∗(xi) ≥ μ′
j(xi) = −∞ for all j ≥ n iff

μ′
n(xi) = −∞ Since μ′

j is a feasible solution of E(πj), we get πj(ei ∨−∞) = πn(ei ∨
−∞) for all j ≥ n. Thus, after n iterations we can consider the following iterations
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as iterations for the system obtained by replacing every right-hand side ei ∨ −∞ with
πn(ei ∨ −∞). This system has m ∨-expressions. Thus, the number of iterations is
bounded by n + Π(m). Summarizing, we have:

Theorem 3. The least solution of a system E of integer equations can be computed in
time O(|XE | · |E| · Π(|M(E)|)). ��

In contrast to the algorithm presented in [8], our new algorithm no longer relies on an
instrumentation of the underlying lattice. For systems of simple integer equations we
can improve on the number of iteration, if we use a different improvement operator.

Assume now that E is a system of simple integer equations. We now also consider
partial ∨-strategies π, i.e., the domain dom(π) of a partial ∨-strategy π is a subset of
M(E). Then we set

(e ∨ e′)π =
{

(π(e ∨ e′))π if e ∨ e′ ∈ dom(π)
eπ ∨ e′π if e ∨ e′ /∈ dom(π).

Let M ⊆ M(E). We define the ∨-strategy improvement operator PM
∨ by

PM
∨ (π, μ) =

{
P eager
∨ (π, μ)|M ∪ π|M(E)\M if P eager

∨ (π, μ)|M �= π|M
P eager
∨ (π, μ) if P eager

∨ (π, μ)|M = π|M .

Intuitively, PM
∨ first tries to improve at ∨-expressions from M . Only if such an im-

provement is not possible, ∨-expressions from M(E) \ M are considered.
Assume that E is a system of conjunctive simple equations. All derived constraints in

D(E) can be rewritten to the form x ≤ y + a or x ≤ c where x, y are variables, a ∈ Z

and c ∈ Z. We call E feasible iff a > 0 for all derived constraints x ≤ x + a ∈ D(E)
and x ≤ −∞ ∈ D(E) implies that x = −∞ is an equation of E . The greatest solution
μ′ of a feasible system E of simple conjunctive equations is feasible.

Assume now that E denotes a system of simple integer equations with least solution
μ∗. A ∨-strategy π for E is called feasible iff E(π) is feasible. Similar to Lemma 7 it
can be shown that algorithm 1 considers feasible strategies, only. For systems of simple
equations we have the following property:

Lemma 10. Let E be the system x1 = e1, . . . ,xn = en of simple integer equations
and μ a solution of E . Assume that π is a feasible ∨-strategy with eiπ = −∞ whenever
μ(xi) = −∞ for i = 1, . . . , n. Let μπ be the greatest solution of E(π). Then μπ ≤ μ.

Proof. Note that μπ is a feasible solution of E(π) and μ is a post-solution of E(π).
Let μ(0) := μ and, for j ∈ N, let μ(j+1) be defined by μ(j+1)(xi) = �eiπ�μ(j). Then
μ′ :=

∧
j∈N0

μ(j) ≤ μ is a solution of E(π) and, since a > 0 for all derived constraints
x ≤ x + a ∈ D(E(π)), μ′(xi) = −∞ implies μ(xi) = −∞ which implies eiπ = −∞
for i = 1, . . . , n. Thus, μ′ is a feasible solution of E(π). Since, by Lemma 8, μπ = μ′,
we get μ′ ≤ μ. ��

Consider the sequences (μj), (μ′
j) and (πj) which we obtain from algorithm 1 using the

∨-strategy improvement operator PM∨ . We show that there do not exist indexes j < k
with j ≥ n such that πk|M(E)\M = πj |M(E)\M �= πj+1|M(E)\M (∗). In order to
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derive a contradiction, assume the opposite. By the definition of PM
∨ , μ′

j is a solution
of E ′ := E(πj |M(E)\M ). Furthermore, μ′

k is the greatest solution of the feasible system
E(πk) = E(πk|M(E)\M )(πk|M ) = E(πj |M(E)\M )(πk|M ) = E ′(πk|M ). Since k > j ≥
n, we have eiπk = −∞ whenever μ′

j(xi) = −∞. Thus we can apply Lemma 10 which
implies that μ′

k ≤ μ′
j . This contradicts the fact that (μ′

j) is strictly ascending.

We use the ∨-improvement operator P
Mc(E)
∨ , i.e., M = Mc(E). The ∨-improvement

operator P
Mc(E)
∨ first tries to improve at expressions e ∨ e′ ∈ Mc(E) and only if this is

not possible it tries to improve at expressions e ∨ e′ ∈ Mnc(E). For M ⊆ M(E), we
call j an update index on M iff πj+1|M �= πj |M . Assume that e ∨ e′ ∈ Mc(E) where
w.l.o.g. e′ is a constant expression. Then, since μj is ascending, if there is a k such that
πk(e ∨ e′) = e, then πj(e ∨ e′) = e for all j ≥ k. Thus, there are at most |Mc(E)|
update indexes on Mc(E) (∗∗).

Let ji denote the sequence of update indexes on Mnc(E). By (∗), these are at most
2|Mnc(E)|. Between two update on Mnc(E) there must be updates on Mc(E). By (∗∗)
the overall number of updates on Mc(E) is bounded by |Mc(E)|, i.e.,

∑
i ji+1−ji−1 ≤

|Mc(E)|. Thus, the number of strategies is bounded by 2|Mnc(E)| + |Mc(E)|. We denote
the maximal number of updates of strategies on Mnc(E) necessary for solving a simple
system E by Πs(|Mnc(E)|). We obtain:

Theorem 4. The least solution of a system E of simple integer equations can be com-
puted in time O(|XE | · |E| · (Πs(|Mnc(E)|) + |Mc(E)|)). ��

The practical run-time of our algorithm is quite comparable to the discrete strategy
improvement algorithm by Vöge and Jurdziński [17]. The number Πs(|Mnc(E)|))
corresponds to the number of strategy improvements for the parity game. For each
improvement-step, we need O(n · |EG|[−m,m]|) operations where arithmetic operations
are on numbers of size O(d · log n). The improvement-step of the discrete strategy
improvement algorithm by Vöge and Jurdziński [17] uses also O(n · |EG|[−m,m]|) op-
erations — but arithmetic operations are just on numbers of size O(log n).

6 Conclusion

By encoding parity games into integer equations, we have provided a lower complexity
bound for precise interval analysis of affine programs. Additionally, we provided a sim-
plified version of the algorithm in [8] for solving integer equations. As in the algorithm
of [9] for rational equations, the new version for integers avoids the instrumentation
of the underlying lattice. The restriction to integers, on the other hand also allowed to
improve on the complicated treatment of conjunctive systems in [9] for rationals.

The methods which we have presented here, can be applied to simplify the algo-
rithm for interval equations from [8] where also multiplication of arbitrary interval ex-
pressions is allowed. By modifying the strategy improvement operator, we also have
obtained an algoithm for simple integer equations where for the complexity estima-
tion only non-constant maxima must be taken into account. By our encoding of parity
games into integer systems, we thus obtain a simple but efficient strategy improvement
algorithm for computing winning regions and winning strategies of parity games.
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16. Vöge, J.: Strategiesynthese für Paritätsspiele auf endlichen Graphen. PhD thesis, RWTH
Aachen (2000)
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Abstract. We present a strategy for using the existing theory of class
refinement in Object-Z to introduce an arbitrary number of object in-
stances into a specification. Since class refinement applies only to a single
class, the key part of the strategy is the use of references to objects of the
class being refined. Once object instances have been introduced through
local class refinements in this way, they can be turned into foreign class
instantiations through the application of straight-forward equivalence
preserving transformations. We introduce a set of logical classifiers to
allow for the precise determination of which parts of the specification
logic must be moved into the foreign class.

1 Introduction

Abstract functional specifications are intended to capture high-level require-
ments. They are not intended to describe any peculiarities of a software system’s
implementation. Object-oriented software designs , on the other hand, necessitate
classes that may not exist in an abstract specification (for user-interface specific
functionality, internals of data structures, library interfaces, etc.). While design
concerns could be included in an initial specification, they may obscure essential
system functionality and complicate reasoning. The primary motivation for our
work is the need for practical techniques for adding design elements after the
initial functional specification has been formulated. In this paper, we provide
a mechanism for justifying that a proposed concrete architecture (specified in
Object-Z [16]) is a valid implementation of a specification (also in Object-Z)
according to the existing refinement theory for Object-Z presented by Derrick
and Boiten [3].

The existing refinement theory applies to single classes only. It does not explic-
itly address the problem of introducing new object instances. In earlier work [9],
a specification refactoring rule (adapted from Goldsack and Lano’s annealing
rule for VDM++ [7,8]) was proposed to partially overcome this limitation. This
rule is limited, however. It allows the extraction of only one instance of a new
class, and consequently does not completely address the challenges of managing
object instantiation. In this paper, we present a strategy for using regular class
refinement to introduce an arbitrary number of instances. Like the refactoring
rule, the strategy works by partitioning the state.
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The process involves three distinct stages of data refinement. The first stage
is a preparatory stage where the part of the state to be accessed through instan-
tiation is identified and moved into the range of an indexing function. This is
followed by another data refinement to split the operations in the class where
necessary, so that they distinctly operate over the indexing function or over the
rest of the state. The way in which they operate over the indexing function is
important, and the identification of this forms part of the process. The final re-
finement replaces the range of the indexing function with references to the class
being refined. These references constitute the new object instances. They can
subsequently be made to refer to a new syntactically equivalent class introduced
to the specification without changing the specification’s meaning. This new class
and the original can then be refined individually to reflect their intended roles.

We introduce the above three stages in Sections 2, 3, and 4 respectively. This
is followed by concluding remarks and a discussion of related work in Section 5.

2 Indexing Function

In order to refine a class to one which refers to an arbitrary number of object
instances, we begin by introducing a non-visible1 indexing function. The domain
of the indexing function is arbitrary, and can be denoted by a given type. The
range of the indexing function includes the cross-product of all of the data types
that are to form the state of the delegate (instantiated) class.

In [9] we introduced the annealing rule which partitioned the state into those
variables that were to stay local to the class and those that were to form the state
of the introduced class. The introduction of the indexing function is a general
application of this idea. Rather than individual variables being migrated to an
instantiated reference, however, with an indexing function we can deal with a
plurality of ‘instances’. It is a loosely-defined partial function to begin with,
but the intention is to eventually have a one-to-one correspondence between the
indices and actual instantiation references: this is the final step of the strategy.

The concept is illustrated below where a class A on the left-hand side is refined
to a class with an indexing function index on the right-hand side.

A
�(. . .)
α
β

. . .

A
�(. . .)
[IDENTITY ]

α
index : IDENTITY �→ γ

. . .

The state of A initially has two sets of variables: α and β. Through the
refinement, α remains unchanged, but β is replaced by the new function. The
1 Visibility in Object-Z refers to whether or not a feature is accessible through the

class’s interface. Visible variables are indicated by their inclusion in a list of the form
�(. . .) at the top of the class definition [16].
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domain of the function is a new given type IDENTITY . The range γ captures
the state of the objects which we wish to introduce (as a cross-product of data
types). The relationship between β and γ is not pre-defined, but must be chosen
to ensure the right-hand side refines the left-hand side.

Consider for example the partial specification of an airport shown below. The
class Airport models queues of a given type AIRCRAFT , representing aircraft
waiting for clearance to depart from one of the airport’s two runways (runway1
and runway2). A variable holding keeps a count of the total number of aircraft
waiting to depart the airport.

[AIRCRAFT ]

Airport
�(INIT ,RequestDeparture)

runway1 : seqAIRCRAFT
runway2 : seqAIRCRAFT
holding : N

INIT
holding = 0
runway1 = runway2 = 〈〉

RequestDeparture
Δ(runway1, runway2, holding)
a? : AIRCRAFT

((runway1′ = runway1 � 〈a?〉 ∧ runway2′ = runway2)
∨
(runway2′ = runway2 � 〈a?〉 ∧ runway1′ = runway1))
holding ′ = holding + 1

The initialisation predicate stipulates that there are initially no aircraft wait-
ing to depart. The operation RequestDeparture adds an aircraft a? to a non-
deterministically chosen runway and increments holding. The delta-list of the
operation, i.e., the list of the form Δ(. . .), indicates that each of the three state
variables may be changed by the operation. When a variable does not appear in
the delta-list of an operation, its value is unable to be changed by that operation.
Since this is only a partial specification, we have not shown any operations that
specify departures.

In the following data refinement, the class Airport has been structured such
that a partial function index holds the queues of aircraft. The domain of this
function is a new given type RUNWAY which is internal to the class. The fact
that there are only two runways is captured by the invariant #(dom index ) = 2.
The initial state schema and operation are refined appropriately to accommodate
the new representation of the state.
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[AIRCRAFT ]

Airport
�(INIT ,RequestDeparture)
[RUNWAY ]

holding : N

index : RUNWAY �→ seqAIRCRAFT

#(dom index ) = 2

INIT
holding = 0
ran index = {〈 〉}

RequestDeparture
Δ(index , holding)
a? : AIRCRAFT

holding ′ = holding + 1
(∃1 runway : RUNWAY | runway ∈ dom index •

index ′ = index ⊕ {runway �→ (index (runway) � 〈a?〉)})

3 Classification and Splitting of Operations

The next stage of our approach involves identifying the operations to remain in
the class, and those that will eventually form part of the class of the new ob-
ject instances. When the indexing function is introduced, the state is effectively
separated between the variables that are going to remain local to the class, and
those that are going to be accessed via instantiation. Based on this, we identify
three general categories of operations:

– the operations that affect the range of index (exclusively, no other part of
the state is changed);

– the operations that do not affect the range of index , but may affect other
parts of the state; and

– the operations that do not fit into the former categories.

The operations in the last category must be split into multiple operations, each
of which fits into the former two categories. These two categories correspond to
delegate and local operations respectively.

To identify each category we utilise operation classifiers . These classifiers are
predicates that are implied by the operation if the operation fits the category.
We first introduce the local operation classifier, and then the delegate classifier.
Following that, we show how operations that imply neither classifier are split.
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3.1 Local Operations

If the following property holds for an operation’s predicate P , the operation is
considered local.

P ⇒ index ∪ index ′ ∈ ( �→ )

The notation f ∈ ( �→ ) is used to specify the constraint that f is a partial
function. This classifier stipulates that the union of the pre- and post-states
of the index variable must form a partial function. Since we know that index
and index ′ are partial functions independently, this classifier is true unless the
predicate P specifies the alteration of the range value of an existing domain
element in index to form index ′.

In our example, the operation RequestDeparture does not satisfy this classifier.
For any chosen runway, index (runway) = index ′(runway), thus index ∪index ′ ∈
( �→ ).

3.2 Delegate Operations

If an operation predicate P satisfies the following classifier, it is considered a
delegate operation.

P ⇒ delta = {index} ∧ dom index = dom index ′ ∧ index = index ′

Here delta is a meta-level variable referring to the the set of variables in the
delta-list of an operation.

The classifier identifies those operations that exclusively affect index , and only
modify a mapping in index without altering the domain. Our example operation
RequestDeparture does not satisfy this classifier as delta = {index , holding}.

3.3 Unclassified Operations

Unclassified operations, like RequestDeparture, need to be split into multiple
separate operations where each can be classified independently. This may be
achieved in Object-Z by the use of its operation composition operators [16].
There are, in fact, only two general cases of operations that are unclassified.
Below we discuss these cases and how they must be split.

To derive the two cases, we first realise that an operation can never be classi-
fied as both a delegate and a local operation, as the conjunction of those classi-
fiers is contradictory (there does not exist an operation predicate P that could
possibly satisfy both). This is because the partial functions index and index ′

must have common domains but differing range members to satisfy the delegate
classifier, so there must exist at least one member in the common domain that
maps to different range members in the respective functions. Thus the union of
index and index ′ cannot itself be a partial function, which is a requirement of
the local classifier.
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An unclassified operation P must therefore adhere to neither classifier:

P ⇒ ¬ (delta = {index} ∧ dom index = dom index ′ ∧ index = index ′) ∧
¬ (index ∪ index ′ ∈ ( �→ ))

≡ (de Morgan’s law)
P ⇒ (delta = {index} ∨ dom index = dom index ′ ∨ index = index ′) ∧

index ∪ index ′ ∈ ( �→ )

If we rewrite this single classifier as a disjunctive series of implications, we derive
three potentially overlapping classifiers:

1. P ⇒ delta = {index} ∧ index ∪ index ′ ∈ ( �→ )
2. P ⇒ dom index = dom index ′ ∧ index ∪ index ′ ∈ ( �→ )
3. P ⇒ index = index ′ ∧ index ∪ index ′ ∈ ( �→ )

Refer to the third classifier in this list. Given index = index ′, then it follows
that index ∪ index ′ = index . Since index must be in its type, and therefore
index ∈ ( �→ ), it is a contradiction that index ∪ index ′ ∈ ( �→ ). Consequently,
as classifier (3) cannot be satisfied by any operation it is removed.

Both remaining classifiers require the operation to be split. We shall discuss
Classifier (1) and Classifier (2) individually, and then discuss the case when
both classifiers are satisfied. We refer to Classifiers (1) and (2) as the delta-list
partitioning and domain partitioning classifiers respectively.

Delta-list Partitioning Classifier. The classifier for delta-list partitioning is:

P ⇒ delta = {index} ∧ index ∪ index ′ ∈ ( �→ ).

In this case P is an operation which needs to be a delegate, but it cannot be
because other variables are referenced in the delta-list besides index . The solution
to this is to split the operation. This is generally achieved by promoting logical
operators to operation composition operators and introducing communicating
variables where necessary (refer to [9]). We will now present an argument that
an operation which satisfies this classifier may be split in the general case.

Given that index ∪ index ′ ∈ ( �→ ), it follows that index = index ′, so index
must be a member of the delta-list. Since delta = {index}:

P ⇒ delta ⊃ {index} ∧ index ∪ index ′ ∈ ( �→ ).

We define L to be delta \{index} and because of the proper superset relation,
we know L = ∅. L represents the local variables that the operation changes
excluding the index variable. Part of the operation needs to be delegated (that
which changes the range of the index variable), and part must remain local (that
which refers to the post-state of any variable in L). Clearly these concerns do not
overlap as they apply to different variables, so such operations can be partitioned
by the variables they change into one part that satisfies the local classifier, and
one part that satisfies the delegated classifier.
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The example operation RequestDeparture satisfies this classifier, because
{index , holding} ⊃ {index} and, as established earlier, index ∪ index ′ ∈ ( �→ ).
In this case, L is {holding}, so we create a local operation IncrementHolding
which applies to holding.

IncrementHolding
Δ(holding)

holding ′ = holding + 1

By promoting conjunction, RequestDeparture is split between IncrementHolding
and the remaining predicate (which we have called AssignRunway).

AssignRunway
Δ(index )
a? : AIRCRAFT

∃1 runway : RUNWAY | runway ∈ dom index •
index ′ = index ⊕ {runway �→ (index (runway) � 〈a?〉)}

RequestDeparture =̂ IncrementHolding ∧ AssignRunway

The AssignRunway operation can be further split to clearly delineate the
choice of runway from the joining of the queue (denoted below by SelectRunway
and WaitOnRunway respectively). Naturally, operations may be split in a vari-
ety of ways. Our overall aim is to carefully distinguish between those parts of
the predicate that apply to the range of index and those that do not. In the
case of AssignRunway, we have illustrated the promotion of logical conjunction
to parallel composition (‖) in Object-Z [16]. This operator unifies the variables
runway! and runway? such that communication occurs across the schema bound-
ary, and then hides these variables so that AssignRunway is equivalent to the
original version.

SelectRunway
runway! : RUNWAY

∃1 runway : RUNWAY | runway ∈ dom index • runway! = runway

WaitOnRunway
Δ(index )
a? : AIRCRAFT
runway? : RUNWAY

runway? ∈ dom index ⇒
index ′ = index ⊕ {runway? �→ (index (runway?) � 〈a?〉)}
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AssignRunway =̂ SelectRunway ‖ WaitOnRunway

Note that we have introduced the antecedent runway? ∈ dom index to the
predicate of WaitOnRunway. Although this is assured in its context by Select -
Runway, this predicate would otherwise form part of the precondition (this is
implicit in the function application) and thus restrict the further refinement of
this operation which is necessary in Section 3.4.

We can now test these three operations against the classifiers, showing that
IncrementHolding and SelectRunway satisfy the local classifier (index is un-
changed by both operations), and WaitOnRunway satisfies the delegate classifier
(because only the range of index is changed by this operation).

Domain Partitioning Classifier. The classifier for domain partitioning is:

P ⇒ dom index = dom index ′ ∧ index ∪ index ′ ∈ ( �→ ).

In this case part of the operation needs to be delegated (that which changes a
range member such that index ∪ index ′ ∈ ( �→ )), and part must remain lo-
cal (that which adds or removes mappings such that dom index = dom index ′).
In a similar fashion to the delta-list partitioning classifier, we present an argu-
ment that an operation which satisfies this classifier may be split in the general
case.

For the domains to differ, members are either added, removed or both. We
refer to the subset of the domain that identifies these added/removed members
as δ. It is defined as dom index� dom index ′ (where � is symmetric difference:
S�T = (S ∪ T ) \ (S ∩ T )).

Since index ∪ index ′ ∈ ( �→ ), there must be members in the domain of both
index and index ′ with different range elements. Let these domain members be
represented by ρ. Since they exist in both domains, the following property holds
over ρ: ρ ⊂ dom index ∩ dom index ′.

It follows that δ and ρ must be disjoint. This indicates that operations that
adhere to this classifier may be split with respect to the domain members they
act upon in index . The operation dealing with the domain members in δ will
satisfy the local classifier. That dealing with the domain members in ρ will
satisfy the delegate classifier. No particular domain member will appear in both
operations.

Simultaneous Delta-list and Domain Partitioning. Where both classifiers
are satisfied by a predicate, the operation can be split as per delta-list partition-
ing, and then by domain partitioning. That is, the local variables in the delta-list
(excluding index ) may be moved into a separate operation, and then the original
operation that includes index needs to be split again such that the activity over
the domain of index is separated into that which is local and that which forms
a delegate operation.
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3.4 Standard Form of Delegate Operations

Operations that are classified as delegates need to be written to conform to a cer-
tain template (via a refinement step). This enables such operations to be changed
by the final data refinement stage to use operation composition operators. This
template is illustrated below.

Op =̂ [Δ(index ) | ∀ id : dom index | G1(id) • P1(index (id), index ′(id)) ]
�
. . .
�

[Δ(index ) | ∀ id : dom index | Gn(id) • Pn(index (id), index ′(id)) ]

We take advantage of the fact that delegate operations exclusively operate
over the range of index — this is required to imply the classifier. The operation
is rewritten such that predicates P1, . . . ,Pn are defined according to which part
of the range they apply to. In each term, a guard Gi narrows the applicability of
a predicate Pi to a subset of domain elements. The asterisk (�) is a placeholder
representing any of the Object-Z operation composition operators.

This template can be applied to any operation that satisfies the classifier
because index ′ is the only variable that may change, and only its range can be
modified. Since id covers the entire domain of index (and thus index ′, as the
domain must be unchanged to imply the classifier) and each predicate has access
to the full state, any constraint over the range of index ′ can be specified.

Continuing with the airport example, the delegate operation WaitOnRunway
could be expressed as such:

WaitOnRunway =̂
[Δ(index ) a? : AIRCRAFT ; runway? : RUNWAY |

∀ id : dom index | id = runway? • index ′(id) = index (id) � 〈a?〉 ]
∧
[Δ(index ) a? : AIRCRAFT ; runway? : RUNWAY |

∀ id : dom index | id = runway? • index ′(id) = index (id) ]

4 Introducing Object References

Since Object-Z supports recursive class definitions [16], object references can be
introduced during the refinement of a single class such that these reference the
class being refined.

Our approach uses this to replace the range of the index function with object
instances. The data type of the range of index is embedded back into the state as
a variable state. The concept is illustrated below where a class A on the left-hand
side is refined to a class referencing objects of itself on the right-hand side.
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A
�(. . .)
[IDENTITY ]

α
index : IDENTITY �→ γ

. . .

A
�(. . .)
[IDENTITY ]

α
index : IDENTITY �� A c©

state : γ

. . .

Letting subscript A identify variables of the abstract class and subscript C
identify variables of the concrete, i.e., refined, class, the retrieve relation for this
refinement is

αA = αC ∧
dom indexA = dom indexC ∧
∀ id : dom indexA • indexA(id) = indexC (id).stateC

First, note that we have replaced the partial function with a partial injection
( ��) for the index relation. This guarantees that there is no aliasing of objects
within the index function, i. e., that no object of A is associated with more than
one IDENTITY . Second, we utilise the object containment operator denoted
by the subscript c© (refer to Smith [16]). The containment of A in this way
disallows any object-level recursion, such that an object of class A cannot refer
to itself via index . In fact, the semantics of the containment operator are more
general: it also prevents aliasing of objects contained in the type A c© from all
other parts of the system. The combination of the injective partial function and
the containment operator ensures that it is safe, from the perspective of object
aliasing, to introduce the class type in place of the type γ.

Operations. The operations affected by this refinement are those classified as
delegates. These need to be rewritten such that constraints previously specified
in terms of index (id) (for some id) are now applied to index (id).state. A simple
rewriting of the predicates of these operations is not possible since expressions
referring to the post-state of a referenced object, e.g., index (id).state ′, are not
legal in Object-Z. Instead, we replace each predicate affecting the post-state of a
referenced object by a new operation which acts on the variable state. Operations
conforming to the template of Section 3.4 are refined as follows.

Op =̂ (∀ id : dom index | G1(id) • index (id).Delegate1)
�
. . .
�

(∀ id : dom index | Gn(id) • index (id).Delegaten )
Delegate1 =̂ [Δ(state) | P1(state, state ′) ]
. . .

Delegaten =̂ [Δ(state) | Pn(state, state ′) ]
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That is, each predicate Pi is embedded within a new operation named Delegatei ,
and these operations are invoked depending upon the satisfaction of the respec-
tive guards. Note that the arguments index (id) and index ′(id) to each predicate
have been replaced by state and state ′ respectively.

The proof of this refinement follows by showing that this definition is equiv-
alent to that of Section 3.4 under the retrieve relation above. Starting with
the definition from Section 3.4 and using the rules and notation for Object-Z
semantics defined in [16]:

Op =̂ [Δ(indexA) | ∀ id : dom indexA | G1(id) • P1(indexA(id), index ′
A(id)) ]

�
. . .
�

[Δ(indexA) | ∀ id : dom indexA | Gn(id) • Pn(indexA(id), index ′
A(id)) ]

≡ (applying the retrieve relation and
definition of reference semantics

to remove delta-list)
Op =̂ [ ∀ id : dom indexC | G1(id) •

P1(indexC (id).stateC , indexC (id).state ′
C ) ]

�
. . .
�

[ ∀ id : dom indexC | Gn(id) •
Pn(indexC (id).stateC , indexC (id).state ′

C ) ]
≡ (definition of dot notation)
Op =̂ [ ∀ id : dom indexC | G1(id) • indexC (id).P1(stateC , state ′

C ) ]
�
. . .
�

[ ∀ id : dom indexC | Gn(id) • indexC (id).Pn (stateC , state ′
C ) ]

≡ (definition of operation promotion and
universal schema quantification (∀))

Op =̂ (∀ id : dom indexC | G1(id) • indexC (id).Delegate1)
�
. . .
�

(∀ id : dom indexC | Gn(id) • indexC (id).Delegaten )
Delegate1 =̂ [Δ(state) | P1(stateC , state ′

C ) ]
. . .

Delegaten =̂ [Δ(stateC ) | Pn(stateC , state ′
C ) ] �

During this refinement step, it is necessary that the interface to the class through
the visibility list has been widened to include the Delegatei operations. This
ensures that the new operations are accessible through the instantiation ref-
erence. We take the view that the interface of a class can be widened under
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refinement [9]. Interface widening is allowable because, prior to the refinement,
the context of a class cannot observe a feature that is not exposed by the inter-
face. Since this is the case, and the context is not altered by the refinement, the
context cannot observe that the feature is exposed after the refinement.

Returning to our example, the operation WaitOnRunway is transformed by
this process such that the delegate operations JoinQueue and DoNothing are
introduced.

WaitOnRunway =̂
[ runway? : RUNWAY ] •

(∀ id : dom index | id = runway? • index (id).JoinQueue)
∧
[ runway? : RUNWAY ] •

(∀ id : dom index | id = runway? • index (id).DoNothing)
JoinQueue =̂ [Δ(state) a? : AIRPORT | state ′ = state � 〈a?〉 ]
DoNothing =̂ [Δ(state) a? : AIRPORT | state ′ = state ]

However, objects that do not undergo an operation do not change their state in
Object-Z [16], so WaitOnRunway is more simply expressed as

WaitOnRunway =̂
[ runway? : RUNWAY ] •

(∀ id : dom index | id = runway? • index (id).JoinQueue)

with DoNothing removed as it is implied by the language semantics.

Initialisation. The initial state schema is also affected by this refinement. We
require that all introduced object instances are initialised. This is achieved by

– adding a predicate ∀ id : dom index • index (id).INIT to the initialisation
predicate2, and

– rewriting constraints on the values of type γ in the range of index in terms
of state.

This will result in state being initialised in the same way that the values in the
range of index were initialised before the refinement.

After this refinement stage, the airport class will be as follows.

2 The notation a.INIT in Object-Z is a predicate that is true precisely when the object
a’s state satisfies its initialisation predicate [16].
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Airport
�(INIT ,RequestDeparture, JoinQueue)
[RUNWAY ]

holding : N

index : RUNWAY �� Airport c©

state : seqAIRCRAFT

dom index = 2

INIT
holding = 0
(∀ id : dom index • index (id).INIT )
state = 〈 〉

RequestDeparture =̂ IncrementHolding ∧ AssignRunway
IncrementHolding =̂ [Δ(holding) | holding ′ = holding + 1 ]
AssignRunway =̂ SelectRunway ‖ WaitOnRunway

SelectRunway
runway! : RUNWAY

∃1 runway : RUNWAY | runway ∈ dom index • runway! = runway

WaitOnRunway =̂
[ runway? : RUNWAY ] •

(∀ id : dom index | id = runway? • index (id).JoinQueue)
JoinQueue =̂ [Δ(state) a? : AIRCRAFT | state ′ = state � 〈a?〉 ]

4.1 Migrating the References to a Foreign Class

Given the refined class A above, we wish to finally turn the object references
to class A into references to objects of a new class. This is accomplished by
three equivalence preserving transformations. The first involves introducing a
new class B which is syntactically (and hence semantically) equivalent to A
above. References from class A to the type A c© are replaced by references to the
type B c©. That is, the definition of A above can be replaced by the following.

A
�(. . .)
[IDENTITY ]

α
index : IDENTITY �� B c©

state : γ

. . .

B
�(. . .)
[IDENTITY ]

α
index : IDENTITY �� A c©

state : γ

. . .
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The second transformation involves the visibility list of the class B . Since B
is a new class only referenced from A, and A does not refer to any operation
other than its Delegatei operations, all other operations may be removed from
its visibility list.

The third transformation involves the visibility list of the class A. Since the
operations Delegatei were introduced by our process, they will not be referenced
by any class other than B . As these references are made inaccessible by the
previous transformation, the operations will not be referenced at all, and can be
removed from the visibility list.

The latter two transformations allow us to perform further data refinements
to modify the classes for their intended roles. For example, the airport specifi-
cation could be refined to the following.

[AIRCRAFT ]

Airport
�(INIT ,RequestDeparture)
[RUNWAY ]

holding : N

index : RUNWAY �� Runway c©

dom index = 2

INIT
holding = 0
(∀ id : dom index • index (id).INIT )

RequestDeparture =̂ IncrementHolding ∧ AssignRunway
IncrementHolding =̂ [Δ(holding) | holding ′ = holding + 1 ]
AssignRunway =̂ SelectRunway ‖ WaitOnRunway

SelectRunway
runway! : RUNWAY

∃1 runway : RUNWAY | runway ∈ dom index • runway! = runway

WaitOnRunway =̂
[ runway? : RUNWAY ] •

(∀ id : dom index | id = runway? • index (id).JoinQueue)

Runway
�(INIT , JoinQueue)

state : seqAIRCRAFT
INIT
state = 〈 〉

JoinQueue =̂ [Δ(state) a? : AIRCRAFT | state ′ = state � 〈a?〉 ]
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5 Conclusion and Related Work

The post hoc extraction of new classes and objects as part of an object-oriented
development process in general has been previously addressed in the literature.
The Extract Class refactoring rule [6,11] is widely known, but like the anneal-
ing rule for VDM++ [7,8] (mentioned earlier) it is limited to the extraction
of only one object instance. Some other examples exist in the literature that
present a formal treatment of class/object extraction but are still restricted
to one class and object. These range in application from high-level modelling
languages like UML-RT [13] to programming languages (with a formal seman-
tics) such as ROOL [1]. Ruhroth and Wehrheim [15] discuss class extraction in
the context of CSP-OZ [4], which is an integration of Object-Z and CSP [14].
However, this work does not address the creation of new object instances (the
extracted class is abstract).

There are also examples in the literature of extracting more than one class and
instance from an existing specification. As part of a top-down design process,
where structure is added after a functional specification is formulated, Cruz et
al. [2] present a general method in the context of the VDM [5] specification
language. Here, structure is inferred as well as manipulated algebraically. As
part of a re-engineering process, Periyasamy and Mathew [12] provide a set of
heuristics for translating from Z specifications to Object-Z specifications. Unlike
the approach in this paper, their approach is not formulated in terms of data
refinement.

The use of self-instantiation under data refinement has been presented before
by Smith [17]. This work introduced a technique for translating between an older
semantics for Object-Z where objects were treated as values, and the current
semantics which is reference-based. However, this process does not provide a
mechanism for the creation of previously unspecified classes and object instances.

In recent work [10], we have shown that class refinement can be performed
compositionally in Object-Z — that is, a class may undergo a data refinement
without respect to its context. Given this result, the work presented in this paper
can be applied to existing Object-Z specifications without creating system-wide
proof obligations.

We suspect that the approach presented in this paper is potentially applica-
ble to other specification frameworks with an object-oriented style (and, partic-
ularly, a reference-based object semantics). The investigation of how to adapt
this methodology to such frameworks presents an area of possible future work.

To extend the practicality of the method further, other possible future work
could explicitly address the case where one wishes to incorporate an existing
class into the specification. This would then allow for the targetting of existing
library components as part of the overall design process. One means of achieving
this using the presented methodology would be to create instances to a new class
of which the existing class could be shown to be a refinement. The existing class
may then be substituted in place of the introduced class.
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Abstract. We focus on synthesis techniques for transforming existing
fault-intolerant real-time programs to fault-tolerant programs that pro-
vide phased recovery. A fault-tolerant program is one that satisfies its
safety and liveness specifications as well as timing constraints in the
presence of faults. We argue that in many commonly considered pro-
grams (especially in mission-critical systems), when faults occur, simple
recovery to the program’s normal behavior is necessary, but not suffi-
cient. For such programs, it is necessary that recovery is accomplished
in a sequence of phases, each ensuring that the program satisfies cer-
tain properties. In this paper, we show that, in general, synthesizing
fault-tolerant real-time programs that provide bounded-time phased re-
covery is NP-complete. We also characterize a sufficient condition for
cases where synthesizing fault-tolerant real-time programs that provide
bounded-time phased recovery can be accomplished in polynomial-time
in the size of the input program’s region graph.

Keywords: Fault-tolerance, Real-time, Bounded-time recovery, Phased
recovery, Synthesis, Transformation, Formal methods.

1 Motivation

In this paper, we focus on the problem of automated synthesis for real-time
systems that provide bounded-time phased recovery in the presence of faults.
To illustrate this problem, first, we provide a motivating example to informally
describe the idea of bounded-time phased recovery and the concepts of synthe-
sis and fault-tolerance. We also use this example as a running demonstration
throughout the paper.

Consider a one-lane turn-based bridge where cars can travel in only one direc-
tion at any time. The bridge is controlled by two traffic signals, say sig0 and sig1,
at the two ends of the bridge. The signals work as follows. Each signal changes
phase from green to yellow and then to red, based on a set of timing constraints.
Moreover, if one signal is red, it will turn green some time after the other signal
� This work was partially sponsored by NSF CAREER CCR-0092724 and ONR Grant
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turns red. Thus, at any time, the values of sig0 and sig1 show in which direction
cars are traveling. The specification of this system can be easily characterized by
a set SPEC bt of bad transitions that reach states where both signals are not red
at the same time. In order to address the correctness of the system, we identify
a system invariant. Intuitively, the system invariant is a set S of states from
where the system behaves correctly. For example, in case of the traffic signals
system, one system invariant is the set of states from where the system always
reaches states where at least one signal is red and they change phases in time.
Obviously, as long the system’s state is in S, nothing catastrophic will happen.
However, this is not the case when a system is subject to a set of faults.

Let us consider a scenario where the state of the systems is perturbed by
occurrence of a fault that causes the system to reach a state, say s, in ¬S.
Although reaching s may not necessarily violate the system specification, sub-
sequent signal operations can potentially result in execution of a transition in
SPEC bt. For example, when sig0 is green and sig1 is red, if the timer that is
responsible for changing sig1 from red to green is reset due to a circuit problem,
sig1 may turn green within some time while sig0 is also green. Such a system is
called fault-intolerant, as it violates its specification in the presence of faults.

In order to transform this system into a fault-tolerant one, it is desirable
to synthesize a version of the original system, in which even in the presence
of faults, the system (1) never executes a transition SPEC bt, and (2) always
meets the following bounded-time recovery specification denoted by SPEC br:
When the system state is in ¬S, the system must reach a state in S within a
bounded amount of time. Although such a recovery mechanism is necessary in a
fault-tolerant real-time system, it may not be sufficient. In particular, one may
require that the system must initially reach a special set of states, say Q, within
some time θ, and subsequently recover to S within δ time units. We call the
set Q an intermediate recovery predicate. The intuition for such phased recovery
comes from the requirement that the occurrence of faults must be noted (e.g.,
for scheduling hardware repairs or replacement) before normal system operation
resumes. Thus, in our example, Q could be the set of states where all signals are
red. Such a constraint ensures that the system first goes to a state in which a
set of preconditions for final recovery (e.g., via a system reboot or rollback) is
fulfilled.

In this paper, we concentrate on the problem of synthesizing real-time systems
that provide bounded-time phased recovery in the presence of faults. Intuitively,
the problem is as follows. After the occurrence of faults, the system must recover
to a state in the set Q within θ and from there, recover to the invariant S within
δ time units. The main results in this paper are as follows:

– We formally define the notion of bounded-time phased recovery in the con-
text of fault-tolerant real-time systems.

– We show that, in general (i.e., when Q �⊆ S and S �⊆ Q), the problem of
synthesizing fault-tolerant real-time programs that provide phased recovery
is NP-complete. An example of such a case is the traffic signals system in
which Q includes states where all signals are flashing red.
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– We characterize a sufficient condition for cases where the synthesis problem
can be solved efficiently. In particular, we show that if S ⊆ Q, and, execution
of the synthesized system needs to be closed in Q (i.e., starting from a state
in Q, the state of the system never leaves Q) then there exists a polynomial-
time sound and complete synthesis algorithm in the size of time-abstract
bisimulation of the input intolerant program. An example of such a case is
the traffic signals system in which Q is the set of states where either both
signals remain red indefinitely or S holds.

Organization of the paper. In Section 2, we formally define real-time pro-
grams and the type specifications that we consider in this paper. In Section 3,
we present our fault model and introduce the notions of bounded-time phased
recovery and fault-tolerance. We formally state the problem of synthesis of fault-
tolerant real-time programs that provide bounded-time phased recovery in Sec-
tion 4. Then, in Section 5, we present our results on the complexity of the synthe-
sis problem and the sufficient condition for existence of a polynomial-time sound
and complete synthesis algorithm. In Section 6, we present the related work.
Finally, in Section 7, we make concluding remarks and discuss future work.

2 Real-Time Programs and Specifications

In our framework, real-time programs are specified in terms of their state space
and their transitions [AH97, AD94]. The definition of specification is adapted
from Alpern and Schneider [AS85] and Henzinger [Hen92].

2.1 Real-Time Program

Let V = {v1, v2 · · · vn}, n ≥ 1, be a finite set of discrete variables and X =
{x1, x2 · · · xm}, m ≥ 0, be a finite set of clock variables. Each discrete variable
vi, 1 ≤ i ≤ n, is associated with a finite domain Di of values. Each clock variable
xj , 1 ≤ j ≤ m, ranges over nonnegative real numbers (denoted R≥0). A location
is a function that maps discrete variables to a value from their respective domain.
A clock constraint over the set X of clock variables is a Boolean combination
of formulae of the form x � c or x − y � c, where x, y ∈ X , c ∈ Z≥0, and �
is either < or ≤. We denote the set of all clock constraints over X by Φ(X). A
clock valuation is a function ν : X → R≥0 that assigns a real value to each clock
variable.

For τ ∈ R≥0, we write ν + τ to denote ν(x) + τ for every clock variable x
in X . Also, for λ ⊆ X , ν[λ := 0] denotes the clock valuation that assigns 0 to
each x ∈ λ and agrees with ν over the rest of the clock variables in X . A state
(denoted σ) is a pair (s, ν), where s is a location and ν is a clock valuation for
X . Let u be a (discrete or clock) variable and σ be a state. We denote the value
of u in state σ by u(σ). A transition is an ordered pair (σ0, σ1), where σ0 and
σ1 are two states. Transitions are classified into two types:

– Immediate transitions: (s0, ν) → (s1, ν[λ := 0]), where s0 and s1 are two
locations, ν is a clock valuation, and λ is a set of clock variables.
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– Delay transitions: (s, ν) → (s, ν + δ), where s is a location, ν is a clock
valuation, and δ ∈ R≥0 is a time duration. We denote a delay transition of
duration δ at state σ by (σ, δ).

Thus, if ψ is a set of transitions, we let ψs and ψd denote the set of immediate
and delay transitions in ψ, respectively.

Definition 1 (real-time program). A real-time programP is a tuple 〈SP , ψP〉,
where SP is the state space (i.e., the set of all possible states), and ψP is a set of
transitions.

Definition 2 (state predicate). A state predicate S is any subset of SP such
that in the corresponding Boolean expression, clock constraints are in Φ(X), i.e.,
clock variables are only compared with nonnegative integers.

By closure of a state predicate S in a set ψP of transitions, we mean that (1) if
an immediate transition originates in S then it must terminate in S, and (2) if
a delay transition originates in S then it must remain in S continuously.

Definition 3 (closure). A state predicate S is closed in program P = 〈SP , ψP〉
(or briefly ψP) iff

(∀(σ0, σ1) ∈ ψs
P : ((σ0 ∈ S) ⇒ (σ1 ∈ S))) ∧

(∀(σ, δ) ∈ ψd
P : ((σ ∈ S) ⇒ ∀ε | ((ε ∈ R≥0) ∧ (ε ≤ δ)) : σ + ε ∈ S)).

Definition 4 (computation). A computation of P = 〈SP , ψP〉 (or briefly ψP)
is a finite or infinite timed state sequence of the form:

σ = (σ0, τ0) → (σ1, τ1) → · · ·

iff the following conditions are satisfied: (1) ∀j ∈ Z≥0 : (σj , σj+1) ∈ ψP , (2) if
σ is finite and terminates in (σf , τf ) then there does not exist any state σ such
that (σf , σ) ∈ ψs

P , and (3) the sequence τ0, τ1, · · · (called the global time), where
τi ∈ R≥0 for all i ∈ Z≥0, satisfies the following constraints:

1. (monotonicity) for all i ∈ Z≥0, τi ≤ τi+1,
2. (divergence) if σ is infinite, for all t ∈ R≥0, there exists j ∈ Z≥0 such that

τj ≥ t, and
3. (time consistency) for all i ∈ Z≥0, (1) if (σi, σi+1) is a delay transition (σi, δ)

in ψd
P then τi+1 − τi = δ, and (2) if (σi, σi+1) is an immediate transition in

ψs
P then τi = τi+1.

We distinguish between a terminating finite computation and a deadlocked finite
computation. Precisely, when a computation σ terminates in state σf , we include
the delay transitions (σf , δ) in ψd

P for all δ ∈ R≥0, i.e., σ can be extended to an
infinite computation by advancing time arbitrarily. On the other hand, if there
exists a state σd, such that there is no outgoing (delay or immediate) transition
from σd then σd is a deadlock state.
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2.2 Example

As mentioned in Section 1, we use the one-lane bridge traffic controller as a
running example throughout the paper. To concisely write the transitions of
a program, we use timed guarded commands. A timed guarded command (also
called timed action) is of the form L :: g

λ−→ st , where L is a label, g is a state
predicate, st is a statement that describes how the program state is updated,
and λ is a set of clock variables that are reset by execution of L. Thus, L denotes
the set of transitions {(s0, ν) → (s1, ν[λ := 0]) | g is true in state (s0, ν), and s1
is obtained by changing s0 as prescribed by st}. A guarded wait command (also
called delay action) is of the form L :: g −→ wait, where g identifies the set of
states from where delay transitions with arbitrary durations are allowed to be
taken as long as g continuously remains true.

The one-lane bridge traffic controller program (TC ) has two discrete variables
sig0 and sig1 with domain {G, Y, R} to represent the status of signals. Moreover,
for each signal i, i ∈ {0, 1}, TC has three clock variables xi, yi, and zi acting
as timers to change signal phase. When a signal turns green, it may turn yellow
within 10 time units, but not sooner than 1 time unit. Subsequently, the signal
may turn red between 1 and 2 time units after it turns yellow. Finally, when the
signal is red, it may turn green within 1 time unit after the other signal becomes
red. Both signals operate identically. Thus, the traffic controller program is as
follows. For i ∈ {0, 1}:

TC1i :: (sigi = G) ∧ (1 ≤ xi ≤ 10)
{yi}−−−→ (sig i := Y );

TC2i :: (sigi = Y ) ∧ (1 ≤ yi ≤ 2)
{zi}−−−→ (sig i := R);

TC3i :: (sigi = R) ∧ (zj ≤ 1)
{xi}−−−→ (sig i := G);

TC4i :: ((sigi = G) ∧ (xi ≤ 10)) ∨
((sigi = Y ) ∧ (yi ≤ 2)) ∨
((sigi = R) ∧ (zj ≤ 1)) −−−→ wait;

where j = (i + 1) mod 2. Notice that the guard of TC 3i depends on z timer of
signal j. For simplicity, we assume that once a traffic light turns green, all cars
from the opposite direction have already left the bridge.

2.3 Specification

Let P = 〈SP , ψP〉 be a program. A specification (or property), denoted SPEC ,
for P is a set of infinite computations of the form (σ0, τ0) → (σ1, τ1) → · · ·
where σi ∈ SP for all i ∈ Z≥0. Following Henzinger [Hen92], we require that
all computations in SPEC satisfy time-monotonicity and divergence. We now
define what it means for a program to satisfy a specification.

Definition 5 (satisfies). Let P = 〈SP , ψP〉 be a program, S be a state pred-
icate, and SPEC be a specification for P . We write P |=S SPEC and say that
P satisfies SPEC from S iff (1) S is closed in ψP , and (2) every computation of
P that starts from S is in SPEC .
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Definition 6 (invariant). Let P = 〈SP , ψP〉 be a program, S be a state pred-
icate, and SPEC be a specification for P . If P |=S SPEC and S �= {}, we say
that S is an invariant of P for SPEC .

Whenever the specification is clear from the context, we will omit it; thus, “S
is an invariant of P” abbreviates “S is an invariant of P for SPEC ”. Note that
Definition 5 introduces the notion of satisfaction with respect to infinite com-
putations. In case of finite computations, we characterize them by determining
whether they can be extended to an infinite computation in the specification.

Definition 7 (maintains). We say that program P maintains SPEC from S
iff (1) S is closed in ψP , and (2) for all computation prefixes α of P , there exists
a computation suffix β such that αβ ∈ SPEC . We say that P violates SPEC iff
it is not the case that P maintains SPEC .

Specifying timing constraints. In order to express time-related behaviors
of real-time programs (e.g., deadlines and recovery time), we focus on a standard
property typically used in real-time computing known as the bounded response
property. A bounded response property, denoted P �→≤δ Q where P and Q are
two state predicates and δ ∈ Z≥0, is the set of all computations (σ0, τ0) →
(σ1, τ1) → · · · in which, for all i ≥ 0, if σi ∈ P then there exists j, j ≥ i, such
that (1) σj ∈ Q, and (2) τj − τi ≤ δ, i.e., it is always the case that a state in P
is followed by a state in Q within δ time units.

The specifications considered in this paper are an intersection of a safety spec-
ification and a liveness specification [AS85, Hen92]. In this paper, we consider a
special case where safety specification is characterized by a set of bad immediate
transitions and a set of bounded response properties.

Definition 8 (safety specification). Let SPEC be a specification. The safety
specification of SPEC is the union of the sets SPEC bt and SPEC br defined as
follows:

1. Let SPEC bt be a set of immediate bad transitions. We denote the specifica-
tion whose computations have no transition in SPEC bt by SPEC bt.

2. We denote SPEC br by the conjunction
∧m

i=0(Pi �→≤δi Qi), for state predi-
cates Pi and Qi, and, response times δi.

Throughout the paper, SPEC br is meant to prescribe how a program should
carry out bounded-time phased recovery to its normal behavior after the occur-
rence of faults. We formally define the notion of recovery in Section 3.

Definition 9 (liveness specification). A liveness specification of SPEC is a
set of computations that meets the following condition: for each finite computa-
tion α ∈ SPEC , there exists a computation β such that αβ ∈ SPEC .

Remark 1. In our synthesis problem in Section 4, we begin with an initial pro-
gram that satisfies its specification (including the liveness specification). We will
show that our synthesis techniques preserve the liveness specification. Hence,
the liveness specification need not be specified explicitly.
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2.4 Example (cont’d)

Following Definition 8, the safety specification of TC comprises of SPEC btTC

and SPEC brTC . SPEC btTC is simply the set of transitions where both signals are
not red in their target states:

SPEC btTC = {(σ0, σ1) | (sig0(σ1) �= R) ∧ (sig1(σ1) �= R)}.

We define SPEC br of TC in Section 3, where we formally define the notion of
bounded-time phased recovery.

One invariant for the program TC is the following:

STC = ∀i ∈ {0, 1} : [(sig i = G) ⇒ ((sigj = R) ∧ (xi ≤ 10) ∧ (zi > 1))] ∧
[(sig i = Y ) ⇒ ((sigj = R) ∧ (yi ≤ 2) ∧ (zi > 1))] ∧
[((sig i = R) ∧ (sigj = R))

⇒ ((zi ≤ 1) ⊕ (zj ≤ 1))],

where j = (i+1) mod 2 and ⊕ denotes the exclusive or operator. It is straight-
forward to see that TC satisfies SPEC btTC

from STC .

3 Fault Model and Fault-Tolerance

3.1 Fault Model

The faults that a program is subject to are systematically represented by tran-
sitions. A class of faults f for program P = 〈SP , ψP〉 is a subset of immediate
and delay transitions of the set SP ×SP . We use ψP []f to denote the transitions
obtained by taking the union of the transitions in ψP and the transitions in f .

Definition 10 (fault-span). We say that a state predicate T is an f -span
(read as fault-span) of P = 〈SP , ψP〉 from S iff the following conditions are
satisfied: (1) S ⊆ T , and (2) T is closed in ψP []f .

Example (cont’d). TC is subject to clock reset faults due to circuit malfunc-
tions. In particular, we consider faults that reset either z0 or z1 at any state in
the invariant STC (cf. Subsection 2.3), without changing the location of TC :

F0 :: STC
{z0}−−−→ skip;

F1 :: STC
{z1}−−−→ skip;

It is straightforward to see that in the presence of F0 and F1, TC may violate
SPEC btTC

. For instance, if F1 occurs when TC is in a state of STC where
(sig0 = sig1 = R) ∧ (z0 ≤ 1) ∧ (z1 > 1), in the resulting state, we have (sig0 =
sig1 = R) ∧ (z0 ≤ 1) ∧ (z1 = 0). From this state, immediate execution of timed
actions TC 30 and then TC 31 results in a state where (sig0 = sig1 = G), which
is clearly a violation of the safety specification.
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3.2 Phased Recovery and Fault-Tolerance

As illustrated in Section 1, preserving safety specification and providing sim-
ple recovery to the invariant from the fault-span may not be sufficient and,
hence, it may be necessary to complete recovery to the invariant in a sequence
of phases where each phase satisfies certain constraints. We formalize the no-
tion of bounded-time phased recovery by a set of bounded response properties
inside the safety specification, i.e., by SPEC br (cf. Definition 8). In this paper,
in particular, we focus on 2-phase recovery.

Definition 11 (2-phase recovery). Let P = 〈SP , ψP〉 be a real-time program
with invariant S, Q be an arbitrary intermediate recovery predicate, f be a set
of faults, and SPEC be a specification (as defined in Definitions 8 and 9). We
say that P provides 2-phase recovery from S and Q with recovery times δ, θ ∈
Z≥0, respectively, iff 〈SP , ψP []f〉 maintains SPEC br from S, where SPEC br ≡
(¬S �→≤θ Q) ∧ (Q �→≤δ S).

Note that in Definition 11, if S and Q are disjoint then P has to recover to Q
and then S in order, as S is closed in P . On the other hand, if S and Q are not
disjoint, P has the following options: (1) recover to Q ∩ ¬S within θ and then
S, or (2) directly recover to S ∩ Q within min(δ, θ).

We are now ready to define what it means for a program to be fault-tolerant
while providing 2-phase recovery. Intuitively, a fault-tolerant program satisfies its
safety, liveness, and timing constraints in both absence and presence of faults. In
other words, the program masks the occurrence of faults in the sense that all pro-
gram requirements are persistently met in both absence and presence of faults.

Definition 12 (fault-tolerance). Let P = 〈SP , ψP〉 be a real-time program
with invariant S, f be a set of faults, and SPEC be a specification as defined
in Definitions 8 and 9. We say that P is f -tolerant to SPEC from S, iff (1)
P |=S SPEC , and (2) there exists T such that T is an f -span of P from S and
〈SP , ψP []f〉 maintains SPEC from T .

Notation. Whenever the specification SPEC and the invariant S are clear from
the context, we omit them; thus, “f -tolerant” abbreviates “f -tolerant to SPEC
from S”.

Example (cont’d). As described in Section 1, when faults F0 or F1 (defined
in Subsection 3.1) occur, the program TC has to, first, ensure that nothing
catastrophic happens and then recover to its normal behavior. Thus, the fault-
tolerant version of TC has to, first, reach a state where both signals remain red
indefinitely and subsequently recover to S where exactly one signal turns green.
In particular, we let the 2-phase recovery specification of TC be the following:

SPEC brTC
≡ (¬STC �→≤3 QTC ) ∧ (QTC �→≤7 STC ),

where QTC = ∀i ∈ {0, 1} : (sig i = R) ∧ (zi > 1). The response times
in SPEC brTC (i.e., 3 and 7) are simply two arbitrary numbers to express the
duration of the two phases of recovery.
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4 Problem Statement

Given are a fault-intolerant real-time program P = 〈SP , ψP〉, its invariant S, a
set f of faults, and a specification SPEC such that P |=S SPEC . Our goal is to
synthesize a real-time program P ′ = 〈SP′ , ψP′〉 with invariant S′ such that P ′ is
f -tolerant to SPEC from S′. We require that our synthesis methods obtain P ′

from P by adding fault-tolerance to P without introducing new behaviors in the
absence of faults. To this end, we first define the notion of projection. Projection
of a set ψP of transitions on state predicate S consists of immediate transitions
of ψs

P that start in S and end in S, and delay transitions of ψd
P that start and

remain in S continuously.

Definition 13 (projection). Projection of a set ψ of transitions on a state
predicate S (denoted ψ|S) is the following set of transitions:

ψ|S = {(σ0, σ1) ∈ ψs | σ0, σ1 ∈ S} ∪
{(σ, δ) ∈ ψd | σ ∈ S ∧ (∀ε | ((ε ∈ R≥0) ∧ (ε ≤ δ)) : σ + ε ∈ S)}.

Since meeting timing constraints in the presence of faults requires time pre-
dictability, we let our synthesis methods incorporate a finite set Y of new clock
variables. We denote the set of states obtained by abstracting the clock variables
in Y from the state predicate U by U\Y . Likewise, if ψ is a set of transitions,
we denote the set of transitions obtained by abstracting the clock variables in
Y by ψP\Y . Now, observe that in the absence of faults, if S′ contains states
that are not in S then P ′ may include computations that start outside S.
Hence, we require that (S′\Y ) ⊆ S. Moreover, if ψ

′

P |S′ contains a transition
that is not in ψP |S′ then in the absence of faults, P ′ can exhibit computa-
tions that do not correspond to computations of P . Therefore, we require that
(ψP′\Y )|(S′\Y ) ⊆ ψP |(S′\Y ).

Problem Statement 1 . Given a program P = 〈SP , ψP〉, invariant S, specifi-
cation SPEC , and set of faults f such that P |=S SPEC , identify P ′ = 〈SP′ , ψP′〉
and S′ such that:

(C1) SP′\Y = SP , where Y is a finite set of new clock variables,
(C2) (S′\Y ) ⊆ S,
(C3) ((ψP′\Y ) | ((S′\Y )) ⊆ (ψP |(S′\Y )), and
(C4) P ′ is f -tolerant to SPEC from S′.

5 Synthesizing Fault-Tolerant Real-Time Programs with
2-Phase Recovery

5.1 Complexity

In this section, we show that, in general, the problem of synthesizing fault-
tolerant real-time programs that provide phased recovery is NP-complete in the
size of locations of the given fault-intolerant real-time program.
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Instance. A real-time program P = 〈SP , ψP〉 with invariant S, a set of faults f ,
and a specification SPEC , such that P |=S SPEC , where SPEC br ≡ (¬S �→≤θ

Q) ∧ (Q �→≤δ S) for state predicate Q and δ, θ ∈ Z≥0.

The decision problem (FTPR). Does there exist an f -tolerant program
P ′ = 〈SP′ , ψP′〉 with invariant S′ such that P ′ and S′ meet the constraints of
Problem Statement 1?

Theorem 1. The FTPR problem is NP-complete in the size of locations of the
fault-intolerant program.

Example (cont’d). The proof of Theorem 1 particularly implies that if Q
and S are disjoint in the problem instance then NP-completeness of the synthesis
problem is certain. In the context of TC , notice that according to the definitions
of STC and QTC in Subsections 2.4 and 3.2, it is the case that STC ∩ QTC =
{}. Hence, the TC program and specification in their current form exhibit an
instance where the synthesis problem is NP-complete. However, in Subsection
5.3, we demonstrate that a slight modification in the specification of TC makes
the problem significantly easier to solve.

5.2 A Sufficient Condition for a Polynomial-Time Solution

In this section, we present a sufficient condition under which one can devise a
polynomial-time sound and complete solution to the Problem Statement 1 in the
size of time-abstract bisimulation of input program.

Claim. Let P = 〈SP , ψP〉 be a program with invariant S and recovery specifi-
cation SPEC br ≡ (¬S �→≤θ Q) ∧ (Q �→≤δ S). There exists a polynomial-time
sound and complete solution to Problem Statement 1 in the size of the region
graph of P , if (S ⊆ Q) ∧ (Q is closed in ψP′).

In order to validate this claim, we propose the Algorithm
Add BoundedPhasedRecovery.

Algorithm sketch. Intuitively, the algorithm works as follows. In Step 1, we
transform the input program into a region graph [AD94] (described below). In
Step 2, we isolate the set of states from where SPEC bt may be violated. In Step
3, we ensure that any computation of P ′ that starts from a state in ¬S′ − Q
(respectively, Q−S′) reaches a state in Q (respectively, S′) within θ (respectively,
δ) time units. In Step 4, we ensure the closure of fault-span and deadlock freedom
of invariant. We repeat Steps 3-4 until a fixpoint is reached. Finally, in Step 5,
we transform the resultant region graph back into a real-time program.

Assumption 1 . Let α = (σ0, τ0) → (σ1, τ1) → · · · (σn, τn) be a computation
prefix where σ0, σn ∈ S and σi �∈ S for all i ∈ {1..n − 1}. Only for simplicity of
presentation, we assume that the number of occurrence of faults in α is one. Pre-
cisely, we assume that in α, only (σ0, σ1) is a fault transition and no faults occur
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outside the program invariant. In our previous work [BK06b], we have shown
how to deal with cases where multiple faults occur in a computation when adding
bounded response properties. The same technique can be applied while preserv-
ing soundness and completeness of the algorithm Add BoundedPhasedRecovery
in this paper. Furthermore, notice that the proof of Theorem 1 in its current
form holds with this assumption.

Region Graph. Real-time programs can be analyzed with the help of an
equivalence relation of finite index on the set of states [AD94]. Given a real-
time program P , for each clock variable x ∈ X , let cx be the largest constant
in clock constraint of transitions of p that involve x, where cx = 0 if x does
not occur in any clock constraints of P . We say that two clock valuations ν,
μ are clock equivalent if (1) for all x ∈ X , either �ν(x)� = �μ(x)� or both
ν(x), μ(x) > cx, (2) the ordering of the fractional parts of the clock variables
in the set {x ∈ X | ν(x) < cx} is the same in μ and ν, and (3) for all x ∈ X
where ν(x) < cx, the clock value ν(x) is an integer iff μ(x) is an integer. A
clock region ρ is a clock equivalence class. Two states (s0, ν0) and (s1, ν1) are
region equivalent, written (s0, ν0) ≡ (s1, ν1), if (1) s0 = s1, and (2) ν0 and ν1
are clock equivalent. A region r = (s, ρ) is an equivalence class with respect to
≡, where s is a location and ρ is a clock region. We say that a clock region β
is a time-successor of a clock region α iff for each ν ∈ α, there exists τ ∈ R≥0,
such that ν + τ ∈ β, and ν + τ ′ ∈ α ∪ β for all τ ′ < τ .

Using the region equivalence relation, we construct the region graph of P =
〈SP , ψP〉 (denoted R(P) = 〈Sr

P , ψr
P〉) as follows. Vertices of R(P) (denoted Sr

P)
are regions. Edges of R(P) (denoted ψr

P) are of the form (s0, ρ0) → (s1, ρ1) iff
for some clock valuations ν0 ∈ ρ0 and ν1 ∈ ρ1, (s0, ν0) → (s1, ν1) is a transitions
in ψP .

We now describe the algorithm Add BoundedPhasedRecovery in detail:

– (Step 1 ) First, we use the above technique to transform the input program
P = 〈SP , ψP〉 into a region graph R(P) = 〈Sr

P , ψr
P〉. To this end, we invoke

the procedure ConstructRegionGraph as a black box (Line 1). We let this
procedure convert state predicates and sets of transitions in P (e.g., S and
ψP) to their corresponding region predicates and sets of edges in R(P) (e.g.,
Sr and ψr

P). Precisely, a region predicate U r with respect to a state predicate
U is the set U r = {(s, ρ) | ∃(s, ν) : ((s, ν) ∈ U ∧ ν ∈ ρ)}.

– (Step 2 ) In order to ensure that the synthesized program does not violate
SPEC bt, we identify the set ms of regions from where a computation may
reach a transition in SPEC bt by taking fault transitions alone (Line 2). Next
(Line 3), we compute the set mt of edges, which contains (1) edges that
directly violate safety (i.e., SPEC r

bt), and (2) edges whose target region is
in ms (i.e., edges that lead a computation to a state from where safety may
be violated by faults alone). Since the program does not have control over
occurrence of faults, we remove the set ms from the region predicate T r

1 ,
which is our initial estimate of the fault-span (Line 4). Likewise, in Step
3, we will remove mt from the set of program edges ψr

P when recomputing
program transitions.
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Algorithm 1. Add BoundedPhasedRecovery
Input: A real-time program P = 〈SP , ψP〉 with invariant S, fault transitions f , bad transitions

SPEC bt, intermediate recovery predicate Q s.t. S ⊆ Q, recovery time δ, and intermediate re-
covery time θ.

Output: If successful, a fault-tolerant real-time program P′ = 〈SP′ , ψP′ 〉.

1: 〈Sr
P , ψr

P〉, Sr
1 , Qr , fr, SPEC r

bt := ConstructRegionGraph(〈SP , ψP〉, S, Q, f , SPEC bt);
2: ms := {r0 | ∃r1, r2 · · · rn : (∀j | 0≤j <n : (rj , rj+1) ∈ fr) ∧ (rn−1, rn) ∈ SPEC r

bt};
3: mt := {(r0, r1) | (r1 ∈ ms) ∨ ((r0, r1) ∈ SPEC r

bt)};
4: T r

1 := Sr
P − ms;

5: repeat
6: T r

2 , Sr
2 := T r

1 , Sr
1 ;

7: ψr
P1

:= ψr
P |Sr

1 ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (T r
1 − Qr) ∧ (s1, ρ1) ∈ T r

1 ∧
∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} ∪

{((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (Qr − Sr
1 ) ∧ (s1, ρ1) ∈ Qr ∧

∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} − mt;
8: ψr

P1
, ns := Add BoundedResponse(〈Sr

P, ψr
P1

〉, T r
1 − Qr , Qr , θ);

9: T r
1 := T r

1 − ns;
10: ψr

P1
, ns := Add BoundedResponse(〈Sr

P, ψr
P1

〉, Qr − Sr
1 , Sr

1 , δ);
11: T r

1 , Qr := T r
1 − ns, Qr − ns;

12: while (∃r0, r1 : r0∈T r
1 ∧ r1 �∈T r

1 ∧ (r0, r1)∈fr) do
13: T r

1 := T r
1 − {r0};

14: end while
15: while (∃r0∈ (Sr

1 ∩ T r
1 ) : (∀r1 | (r1 �= r0 ∧ r1 ∈ Sr

1) : (r0, r1) �∈ ψr
P1

)) do
16: Sr

1 := Sr
1 − {r0};

17: end while
18: if (Sr

1 = {} ∨ T r
1 = {}) then

19: print ‘‘no fault-tolerant program exists’’; exit;
20: end if
21: until (T1 = T2 ∧ S1 = S2)
22: 〈SP′ , ψP′ 〉, S′, T ′ := ConstructRealTimeProgram(〈Sr

P, ψr
P1

〉, Sr
1 , T r

1 );
23: return 〈SP′ , ψP′ 〉, S′, T ′;

– (Step 3 ) In this step, we add recovery paths to R(P) so that R(P) satisfies
¬S′ �→≤θ Q and Q �→≤δ S′. To this end, we first recompute the set ψP1

of
program edges (Line 7) by including (1) existing edges that start and end
in Sr

1 , and (2) new recovery edges that originate from regions in T r
1 − Qr

(respectively, Qr −Sr
1) and terminate at regions in T r

1 (respectively, Q) such
that the time-monotonicity condition is met. We exclude the set mt from ψr

P1

to ensure that these recovery edges do not violate SPEC bt. Notice that the
algorithm allows arbitrary clock resets during recovery. If such clock resets
are not desirable, one can rule them out by including them as bad transitions
in SPEC bt.
After adding recovery edges, we invoke the procedure Add BoundedResponse
(Line 8) with parameters T r

1 − Qr, Qr, and θ to ensure that R(P) indeed
satisfies the bounded response property ¬S �→≤θ Q. The details of how the
procedure Add BoundedResponse (first proposed in [BK06a]) functions are
not provided in this paper, with the exception of the following properties:
(1) it adds a clock variable, say t1, which gets reset when T1 − Q becomes
true, to the set X of clock variables of P , (2) for each state σ in T1 − Q,
it includes the set of transitions that participate in forming the computa-
tion that starts from σ and reaches a state in Q with smallest possible time
delay, if the delay is less than θ, and (3) the regions made unreachable by
this procedure (returned as the set ns) cannot be present in any solution
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that satisfies ¬S1 �→≤θ Q. The procedure may optionally include additional
computations, provided they preserve the corresponding bounded response
property. Thus, since there does not exist a computation prefix that main-
tains the corresponding bounded response property from the regions in ns ,
in Line 9, the algorithm removes ns from T r

1 . Likewise, in Line 10, the algo-
rithm adds a clock variable, say t2, which gets reset when Q − S1 becomes
true and ensures that R(P) satisfies Q �→≤δ S1.

– (Step 4 ) Since we remove the set ns of regions from T r
1 , we need to ensure

that T1 is closed in f . Thus, we remove regions from where a sequence of
fault edges can reach a region in ns (Lines 12-14). Next, due to the possibility
of removal of some regions and edges in the previous steps, the algorithm
ensures that the region graph 〈Sr

P , ψr
P1

〉 does not have deadlock regions in
the region invariant Sr

1 (Lines 15-17). Precisely, we say that a region (s0, ρ0)
of region graph R(P) = 〈Sr

P , ψr
P〉 is a deadlock region in region predicate

U r iff for all regions (s1, ρ1) ∈ U r, there does not exist an edge of the
form (s0, ρ0) → (s1, ρ1) ∈ ψr

P . Deadlock freedom in the region graph is
necessary, as the constraint C4 in the Problem Statement 1 does not allow
the algorithm to introduce new finite or time-divergent computations to the
input program. If the removal of deadlock regions and regions from where
the closure of fault-span is violated results in empty invariant or fault-span,
the algorithm declares failure (Lines 18-20).

– (Step 5 ) Finally, upon reaching a fixpoint, we transform the resulting region
graph 〈Sr

P , ψr
P1

〉 back into a real-time program P ′ = 〈SP′ , ψP′〉 by invoking
the procedure ConstructRealTimeProgram. In fact, the program P ′ is returned
as the final synthesized fault-tolerant program. Note that since a region graph
is a time-abstract bisimulation [AD94], we will not lose any behaviors in the
reverse transformation.

Theorem 2. The Algorithm Add BoundedPhasedRecovery is sound and com-
plete.

5.3 Example (cont’d)

We now demonstrate how the algorithm Add BoundedPhasedRecovery synthesizes
a fault-tolerant version of TC , which provides bounded-time recovery. Let the
intermediate recovery predicate be:

Qnew = STC ∪ QTC .

In other words, after the occurrence of faults, the recovery specification requires
that either both signals turn red within 3 time units and then return to the normal
behavior within 7 time units, or, the system reaches a state in STC within 3 time
units. Since, STC ⊆ Qnew , we apply the Algorithm Add BoundedPhasedRecovery
to transform TC into a fault-tolerant program TC ′. We note that due to many
symmetries in TC and the complex structure of the algorithm, we only present a
highlight of the process of synthesizing TC ′.
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First, observe that in Step 2 of the algorithm, ms = {} and mt = SPEC btTC . In
Step 3, consider a subset of T1 − Qnew where (sig0 = sig1 = R) ∧ (z0, z1 ≤ 1).
This predicate is reachable by a single occurrence of (for instance) F0 from an
invariant state where (sig0 = sig1 = R) ∧ (z0 > 1) ∧ (z1 ≤ 1). After adding
legitimate recovery transitions (Line 7), the invocation of Add BoundedResponse
(Line 8) results in addition of the following recovery action:

TC5i :: (sig0 = sig1 = R) ∧ (z0, z1 ≤ 2) ∧ (t1 ≤ 2) −−−→ wait;

for all i ∈ {0, 1}. This action enforces the program to take delay transitions so
that the program reaches a state in Q where (sig0 = sig1 = R) ∧ (z0, z1 > 1).

Now, consider the case where TC is in a state where (sig0 = G) ∧ (sig1 =
R) ∧ (x0 = 1) ∧ (z0, z1 ≤ 1). In this case, one may argue that TC has the
option of executing action TC 31 and reaching a state where sig0 = sig1 = G,
which is clearly a violation of safety specification SPEC btTC

. However, since we
remove the set mt from ψP1

(Line 7), action TC 3i would be revised as follows:

TC3i:: (sig i = R) ∧ (zj ≤ 1) ∧ (sigj �= G)
{xi}−−−→ (sigi := G);

for all i ∈ {0, 1} where j = (i+1) mod 2. In other words, the algorithm strength-
ens the guard of TC 1i such that in the presence of faults, a signal does not turn
green while the other one is also green.

In Step 4, consider the state predicate Qnew − S1TC = (sig0 = sig1 = R) ∧
(z0, z1 > 1). Similar to Step 3, the algorithm adds recovery paths with the
smallest possible time delay, which is the following action for either i = 0 or
i = 1:

TC6i:: (sig i = sigj = R) ∧ (zi, zj > 1)
{zi}−−−→ skip;

It is straightforward to verify that by execution of TC 6i, the program reaches
the invariant STC from where the program behaves correctly. Similar to Step
3, the procedure Add BoundedResponse may include the following additional ac-
tions:

TC7i:: (sig i = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7)
{xi}−−−→ (sigi := G);

TC8i:: (sig i = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7)
{yi}−−−→ (sigi := Y );

TC9i:: (sig i = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7) −−−→ wait;

In the context of TC , in Step 5, the algorithm removes states from neither
the fault-span nor the invariant, as ns = {}, and, hence, the algorithm finds the
final solution in one iteration of the repeat-until loop.

6 Related Work

Our formulation of the synthesis problem is in spirit close to timed controller
synthesis (e.g., [BDMP03, DM02, AM99, AMPS98]), where program and fault
transitions may be modeled as controllable and uncontrollable actions, and game
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theory (e.g., [dAFH+03, FLM02]), where program and fault transitions may be
modeled in terms of two players. In controller synthesis (respectively, game the-
ory) the objective is to restrict the actions of a plant (respectively, an adversary)
at each state through synthesizing a controller (respectively, a wining strategy)
such that the behavior of the entire system always meets some safety and/or
reachability conditions. Notice that the conditions C1..C3 in Problem State-
ment 1 precisely express this notion of restriction (also called language inclu-
sion). Moreover, constraint C4 implicitly implies that the synthesized program
is not allowed to exhibit new finite computations, which is known as the non-
blocking condition. Note, however, that there are several distinctions. First, in
addition to safety and reachability constraints, our notion of fault-tolerance is
also concerned with adding new bounded-time recovery behaviors to the given
program as well, which is normally not a concern in controller synthesis and
game theory. Secondly, unlike most game theoretic approaches, we do not con-
sider turns between occurrence of program and fault transitions. Thirdly, in
controller synthesis and game theory, a common assumption is that the existing
program and/or the given specification must be deterministic which is not the
case in our model.

Finally, we concentrate on safety properties typically used in specifying real-
time systems (cf. Definition 8). As a result, the complexity of our synthesis
techniques is often lower than the related work. For example, synthesis prob-
lems presented in [dAFH+03, FLM02, AMPS98, AM99] are Exptime-complete
and deciding the existence of a controller in [DM02, BDMP03] is 2Exptime-
complete.

7 Conclusion and Future Work

In this paper, we focused on the problem of synthesizing fault-tolerant real-
time programs that mask the occurrence of faults while providing bounded-
time phased recovery. We modeled such phased recovery using bounded response
properties of the form (¬S �→≤θ Q)∧(Q �→≤δ S) where S is an invariant predicate
and Q is an intermediate recovery predicate. We showed that in general the
problem is NP-complete in the size of locations of the input program. We also
showed that if S ⊆ Q and Q is closed in execution of the output program then
there exists a polynomial-time solution to the problem in the size of the input
program’s region graph.

Also, as discussed in Subsection 5.3, the designer can use the contrast between
the complexity classes with slightly different problem specifications to determine
if system requirements can be slightly modified for permitting automated synthe-
sis. In particular, in Section 6, we argued that the alternate specification (where
the problem is in P) for the one-lane bridge problem considered in this paper may
be acceptable to many designers. Also, as argued in that section, the modified
specification can assist in partial automation of providing fault-tolerance with
phased recovery. One of our future works in this area is to develop algorithms
that utilize such a partial automation.
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We are currently working on other variations of the problem. One such vari-
ation is where S ⊆ Q, but Q need not be closed in the output program. We
conjecture that the complexity of this problem is exponential. We also plan
to develop symbolic algorithms for synthesizing bounded-time phased recovery.
In previous work, we have shown that such techniques are extremely effective
in synthesizing distributed programs with state space of size 1030 and beyond
[BK07].
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Abstract. Addressing the challenges faced today during the develop-
ment of multi-functional system families, we suggest a service-oriented
approach to formally specifying the functionality and, in particular, the
functional variability already in the requirement engineering phase. In
this paper, we precisely define the underlying concepts, such as the notion
of individual services, the combination of services, inter-service depen-
dencies, and variability. Thereby, we especially focus on establishing the
consistency of the overall specification. To that end, we formally define
conflicts between requirements and describe how they can be detected
and resolved based on the introduced formal concepts.

1 Introduction

Today, in various application domains, e.g. the automotive domain, software
plays a dominant role. The rapid increase in the amount and importance of dif-
ferent software-based functions and their extensive interaction as well as a rising
number of different product variants are just some of the challenges that are faced
during the development of multi-functional system families. As a consequence
there is a need for adequate modeling techniques for functional requirements.
Prevalent approaches like UML Use Cases or FODA [1] lack a precise seman-
tics in general. However, in order to assure the consistency of a specification,
a precise semantics of the modeling techniques is inevitable. Based on a formal
foundation, discrepancies between conflicting functionalities can be detected and
resolved already in the early phases of the development process. Furthermore,
such a formal specification represents the first model in a model-based system
development along different abstraction levels as introduced in [2]. It serves as a
formal basis for the construction and verification of the models in the consecu-
tive design phase. Consequently, we focus on the formal definitions of functional
requirements and relations between them, and show how the upcoming service-
oriented paradigm is used to handle the aforementioned functional intricacy.
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Our notation technique, the Service Diagram, informally introduced in [3] de-
scribes the system as a set of related functional requirements (services). Regard-
ing product families, our approach includes concepts which allow for the formal
specification of functional variability. Thereby, functional variability means that
the specification includes alternative functional requirements. Each variant of
the product family is required to satisfy at least one of the alternative require-
ments. Thus, the denotational semantics of our Service Diagram specifies the
behavior of a product family as the behavior that can be delivered by at least
one of its variants. Also, we precisely define the meaning of typical dependencies
for product families, namely excludes and requires. These dependencies specify
which requirements must and which ones must not be simultaneously satisfied
by a variant of a product family.

In this paper, we especially focus on understanding how single services de-
pend on and interfere with each other. Thereby, the main goal of our approach
is to ensure the consistency of the specification, i.e. the absence of conflicts be-
tween services. Informally, there is a conflict between two services if they impose
conflicting requirements on the behavior of a system which can not be simulta-
neously fulfilled. Giving formal definitions of these concepts, our approach can
be used for a tool-supported analysis of the functional requirements and, in
particular, for consistency checks between different variants.

1.1 Running Example

The concepts introduced in the remainder of the paper will be illustrated by a
simplified example of a cruise control (cp. Figure 1). The cruise control com-
prises a manual cruise control (MCC) and an adaptive cruise control (ACC). The
MCC specifies the acceleration/deceleration of the vehicle triggered by the ac-
celeration/brake pedal (Pedal). Additionally, there is an option to control the
speed via buttons on the steering wheel (Steering Wheel). The ACC comprises
an automatic speed control (Speed), which controls the vehicle speed for a con-
stant target speed. There exist two alternative variants varying in the way how
the target speed is selected by the driver (target speed arbitrarily configurable
(Input) or target speed set to the current vehicle speed when the ACC is acti-
vated (Save)). Furthermore, the ACC optionally comprises a follow-up control
(Follow-Up) to automatically follow a target vehicle and a pre-crash control
(Pre-Crash). There exist two variants of the pre-crash control, one which dis-
plays a warning (Warning) and one which actively brakes (Brake) as soon as a
potential crash is detected. There are several dependencies between these func-
tionalities to assure a correct interplay between them. The dependencies as well
as all other relevant details will be described at the appropriate places.

1.2 Outline

The rest of this paper is organized as follows: In Section 2 the semantics of
the Service Diagram is presented. In particular, we explain the formal specifica-
tion of functional requirements by means of services, concepts for hierarchically
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structuring services, variability concepts, and concepts for modeling dependen-
cies between services. In Section 3, we concentrate on the consistency of a service
specification. To that end, we formally define conflicts and describe how they can
be detected and resolved based on the introduced formal concepts. Contributions
of our approach are listed in Section 4. Finally, we compare our service model
to related approaches in Section 5 before we conclude the paper in Section 6.

2 Service Diagram

This section introduces the denotational semantics of the Service Diagram, a hi-
erarchical model for the specification of the system functionality. This diagram
gives a black-box specification of a system, i.e. the system behavior is specified
as a causal relation between input and output messages. Thus, an implementa-
tion satisfies the specification formalized by a Service Diagram if it shows the
same I/O behavior as specified by the diagram. A Service Diagram consists of
hierarchically subdivided services and four kinds of relationships between them,
namely aggregation, functional dependencies, optional and alternative relations
(cp. Figure 1). All these concepts will be introduced in the following subsections.
A more detailed description of the basic concepts can be found in [4].

Pre-Crash

Cruise
Control

MCC ACC

Pedal Steering
Wheel

Speed Follow-up

Input Save Warning Brake

Aggregation Alternative DependencyOptional

Fig. 1. Service Diagram for the Cruise Control

2.1 Single Service

The Service Diagram is based on the notion of a service [5] as the fundamental
concept of the model. Intuitively, a service represents a piece of functionality by
specifying requirements on the I/O behavior. More precisely, a service specifies
a relation between certain inputs and outputs. Hence, the Service Diagram is a
restrictive specification, where each service imposes a requirement on the sys-
tem and, thus, further restricts the valid I/O behavior. Formally, a service is a
(partial) stream-processing function which maps streams of input messages to
corresponding streams of output messages. Here, a stream s of elements of type
Data can be thought of as a function s : N → Data.
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Syntactic Interface. Every service has a syntactic interface (I � O), which
consists of a set I of typed input ports and a set O of typed output ports.

Table 1 depicts the syntactical interfaces of the atomar services of our example.
Exemplary, the type of the port currentSpeed is N and the type of the port
speed is {accelerate, decelerate, ε}. Note, that if necessary the type of a port
includes the empty message ε to explicitly model no interaction.

Table 1. Syntactical Interfaces of the Modular Services of the Cruise Control

Service I Ports O Ports
MCC/Pedal brakePedal, accPedal speed
MCC/Steering Wheel brakeButton, accButton speed
ACC/Speed/Input currentSpeed, targetSpeed speed
ACC/Speed/Save active, currentSpeed speed
ACC/Follow-Up objectDetected, objectDistance, currentSpeed speed
ACC/Pre-Crash/Warning objectDetected, objectDistance, currentSpeed warning
ACC/Pre-Crash/Brake objectDetected, objectDistance, currentSpeed speed

With each port we associate a set of streams representing the syntactically
correct communication over this port. Formally, for a given set of ports P , a port
history is a mapping which associates a concrete stream to each port: h : P →
(N → Data). H(P ) denotes the set of all such histories. H(Is) × H(Os) specifies
the set of all syntactically correct I/O history pairs (x, y) for a service s with
interface (Is � Os). For a history h ∈ H(P ), we define its projection h|P ′ ∈
H(P ′) to be the history containing only streams which are attached to the ports
in P ′ ⊆ P . Also, we denote a projection of a history x to the interface of a
service s by xs, i.e. xs = x|Is. The same goes for an I/O history pair: (xs, ys) =
(x|Is, y|Os). Furthermore, we use h[p] to denote the stream associated with the
port p by the history h, i.e. h[p] = h(p). Then, the term h[p](t) denotes the
message contained in the stream h[p] on the port p within time interval t ∈ N.

Semantics. To specify the behavior of a service, we use an assumption/guarantee
notation (A/G) which consists of two predicates, namely, an assumption and a
guarantee. The assumption specifies the domain of a service1. The guarantee char-
acterizes the reaction of a service to its inputs if the inputs are in accordance with
the assumption. Formally,

A : H(I) → Bool, G : H(I) × H(O) → Bool.

By this, a service is a restrictive specification which restricts the set of all syn-
tactically correct histories to a subset of (semantically) valid histories. An I/O
history pair (x, y) is valid for a service if it fulfills the A/G of this service. We

1 We do not require that a service can react to every possible input, i.e. there may be
inputs which are not explicitly covered by the service specification.
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say, the behavior of a service is the set of all valid history pairs for this service.
Formally, a service s with the syntactic interface (I � O) is defined as a rela-
tion from the set of input port histories (according to the assumption) to the
powerset of output port histories (according to the guarantee):

s : H(I) → P(H(O)), s(x) ≡ {y|As(x) ∧ Gs(x, y)}.

In our example, the variant Input of the speed control is specified as follows:

A(x) ≡ ∀t ∈ N : x[currentSpeed](t) ∈ [20..220] ∧ x[targetSpeed](t) ∈ [40..200]
G(x, y) ≡ ∀t ∈ N :

x[currentSpeed](t) > x[targetSpeed](t) ⇒ y[speed](t + 1) = decelerate ∧
x[currentSpeed](t) < x[targetSpeed](t) ⇒ y[speed](t + 1) = accelerate ∧
x[currentSpeed](t) = x[targetSpeed](t) ⇒ y[speed](t + 1) = ε

The assumption formalizes, that the behavior of the cruise control is only speci-
fied for current speed between 20 and 220 km/h and target speed between 40 and
200 km/h. In our terminology, a valid history x must contain a value between 20
and 220 on port currentSpeed and a value between 40 and 200 on targetSpeed
within each time interval t. Otherwise, the behavior is not defined. The guarantee
requires for each time interval, that the vehicle accelerates if the current vehicle
speed is less, decelerates if the current speed is higher, and neither accelerates
nor decelerates if the current speed is equal to the target speed.

2.2 Aggregation

The aggregation relation allows to arrange individual services into a service hi-
erarchy. The semantics of a compound service (composed of several sub-services)
is defined as being a container of all concurrently operating sub-services.

The interface of a compound service sC composed of a set of sub-services S
aggregates all I/O ports of all its sub-services. Its behavior is defined as the
conjunction of the modular A/Gs of its sub-services. Formally,

AsC (x) ≡
∧

s∈S

As(xs), GsC (x, y) ≡
∧

s∈S

Gs(xs, ys). (1)

A more detailed description of the aggregation relation including illustrating
examples can be found in [4].

2.3 Variability

The basic concept to model variability are variation points (VPs). Intuitively, a
VP is a compound service composed of some mandatory, alternative, and/or op-
tional sub-services (the latter two are also called variants). In the following, the
syntactic interface and the behavior of a VP comprising alternative sub-services
are introduced. Subsequently, we explain the semantics of optional services based
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on the definitions for alternative VPs. To understand the following definitions,
it is important to keep in mind that our Service Diagram is a restrictive speci-
fication. Each service in the Service Diagram imposes a requirement on the I/O
behavior which must be fulfilled by any valid I/O history. If a service is absent
in a diagram (e.g. the service is not selected in a configuration2), the property
specified by this service is not required. However, a valid I/O history is not
prohibited from fulfilling this property.

Syntactic Interface. An alternative VP comprising a set of alternative services
SV has the set-valued interface

IVP ≡ {(Is � Os)|s ∈ SV } .

Herewith, in combination with the aggregation relation, we can specify the inter-
face of a product family. Mandatory and optional ports can be easily identified
by means of the set-theoretical operations over the set-valued interface.

We call a history pair (x, y) syntactically correct for a VP if it conforms to
the interface of one of its variants, i.e. if ∃ (I � O) ∈ IVP : (x, y) ∈ H(I)×H(O).

To be able to aggregate VPs, the definition of the history projection (see
Section 2.1) must be adapted for set-valued interfaces. Since a VP comprises
a set of interfaces, the projection to the interface of a VP results in a set of
histories. For an I/O history pair (x, y) this projection is defined as follows:

(x, y)|IVP ≡ {(xs, ys)|(Is � Os) ∈ IVP}. (2)

Semantics. Each alternative VP specifies a set of history pairs which are valid
for at least one of its variants. Thereby, for the definition of the semantics, the
syntactic interface must be taken into account. A history pair (x, y) defined over
the interface (I � O) is valid if it fulfills the A/G specification of one of the
variants with the same interface:

AVP (x) ≡ ∃s ∈ SV : x ∈ H(Is) ∧ As(x)
GVP (x, y) ≡ ∃s ∈ SV : (x, y) ∈ H(Is) × H(Os) ∧ (As(x) ∧ Gs(x, y)).

(3)

The assumption of a VP describes all input histories which are valid for at least
one variant, in terms of sets:

⋃
s∈SV

{x ∈ H(Is) | As(x)}. The guarantee of a
VP describes all I/O history pairs which are valid for at least one variant, in
terms of sets:

⋃
s∈SV

{(x, y) ∈ H(Is)×H(Os) | As(x)∧Gs(x, y)}. Note, according
to Definition 1, the projection of a valid history pair of the compound service
must fulfill the A/G of a VP if this VP is a sub-service of the compound service.
According to Definition 2, the projection of a history pair to the interface of a
VP yields a set of history pairs. Thereby, a set of projected history pairs satisfies
the specification of a VP if at least one of the pairs fulfills this specification.

2 By configuration we mean an instance of a product family specification where all
variation points are resolved, i.e. certain variants are selected.
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In our example, the speed control Speed is a VP comprising two alternative
variants (Input and Save). The specification of Input is given in Section 2.1.
The specification of Save differs in the way how the target speed is selected. The
target speed is set to the current speed if the speed control is activated. More pre-
cisely, let Save be active (value 1 on port active) exactly in the interval [t1..t2].
Then, in the interval [t1 +1..t2 +1], the target speed for the speed instruction on
port speed is equal to the value on port currentSpeed in t1. The corresponding
A/G formulas are similar to those of Input and, therefore, not explicitly specified
here. The VP Speed conjoins the behaviors of both variants. So, Speed defines the
set of all valid history pairs that fulfills the A/G of Input or Save. The syntac-
tical interface ISpeed is obtained according to the definition of the set-valued in-
terface: {({currentSpeed, targetSpeed} � {speed}), ({currentSpeed, active} �
{speed})}. The A/G of Speed is easily derivable according to Definition 3, but
due to space limitation not presented here.

Optional Service. Intuitively, an optional service so represents an alternative
between the presence and the absence of this service within the Service Diagram.
Consequently, it can be transfered into an alternative VP. This VP consists of
two alternatives, namely the service so and no service. If the optional service is
selected, a valid history must fulfill the requirements specified by the service so. If
no service is selected, a valid history does not have to fulfill these requirements.
Formally, no service is described by a special service sΩ which has no ports
(IsΩ ≡ OsΩ ≡ ∅) and is always fulfilled (AsΩ (x) ≡ GsΩ (x, y) ≡ true). Thus, sΩ

imposes no requirement on the I/O behavior of the system. Consequently, sΩ

acts as identity element concerning the aggregation relation, i.e. the aggregation
of any service s and sΩ results in s.

In our example, the service Follow-Up to control the speed based on the
distance to a vehicle in front is optional. Thus, it can be transfered into a VP
with syntactical interface I ≡ {(∅ � ∅), (IFollow−Up � OFollow−Up)}. According
to Definition 3, this VP (i.e. the optional service Follow-Up) defines the set of
history pairs (x, y) with either (x, y) ∈ H(∅) × H(∅) or (x, y) ∈ H(IFollow−Up) ×
H(OFollow−Up) and (x, y) in accordance with the specification of Follow-Up.

2.4 Dependencies

By dependencies, we mean relations between services in a way that the behavior
of one service influences the behavior of another one. As our approach aims at the
specification of the user-visible behavior, only those dependencies are specified
which are observable at the overall system boundaries. Dependencies between
services can be explicitly given by functional requirements or they are introduced
during the aggregation process to solve conflicts between services (see Section 3).

In the following, we introduce two kinds of dependency relations: dependency
predicates and dependency functions. Dependency predicates formalize addi-
tional requirements on the I/O behavior and, thus, further restrict the set of
valid I/O histories. Dependency functions, however, modify the user observable
behavior of the influenced services without explicitly modifying their modular
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specifications. Having introduced these relations, we show how the behavior of
a compound service composed of several sub-services is defined in consideration
of the dependencies in-between. To simplify matters, we limit the following for-
mal definitions to dependencies between two services. However, the extension to
m : n dependencies is straightforward.

Dependency Predicates. A dependency predicate describes further restrictions on
the inputs or outputs of the services. Formally, a predicate between the services
s1 and s2 specifies a relation between messages on I/O ports of s1 and s2 in
certain time intervals:

dPr : H(Is1 ) × H(Os1) × H(Is2) × H(Os2) → Bool.

Dependency Functions. A dependency function specifies a mapping from the
original output histories (specified by the modular A/G specification) to new
ones. This transformation of output histories greatly supports the modularity of
our approach since single services can be specified without considering the inter-
action with other services. This is especially suitable in the context of product
families where the context, i.e. the interaction with other services, may differ
from variant to variant. Formally, a dependency function dFct between an in-
fluencing service s1 and an influenced service s2 is a function of the form

dFct : H(Is1) × H(Os1) × H(Is2 ) × H(Os2) → P(H(Os2)).

In our example, there is a dependency function between the services MCC and
ACC. The application of the brake or accelerator (pedal or button) immediately
deactivates the ACC. Whenever the MCC requires a nonempty speed instruction
on port speed, the speed instruction calculated by the ACC is overwritten by
those of MCC. This dependency is formalized as follows:

d(xm, ym, xa, ya)≡y′
a : ∀t ∈ N :ym[speed](t) = ε ⇒ y′

a[speed](t) = ya[speed](t)
∧ym[speed](t) �= ε ⇒ y′

a[speed](t) = ym[speed](t).

Analogously, a further dependency between ACC and MCC determines that empty
speed instructions of MCC are overwritten by those of ACC. Furthermore, there is
a dependency function between the services Pedal and Steering Wheel. This
dependency resolves situations where the services require different instructions
on the common port speed, e.g. when the driver simultaneously presses a pedal
and a button. In this case the output history of Steering Wheel is modified, i.e.
Pedal overrules Steering Wheel. Analogously, the Follow-Up control overrules
the Speed control. The formalizations of these dependences are very similar to
the foregoing one and therefore omitted here due to the limitation of space.

Aggregation with Dependency. For each kind of dependency relation, the
behavior of the compound service sC composed of two sub-services s1 and s2
and a dependency d in-between is defined in the following paragraphs.
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If d specifies a dependency predicate between s1 and s2 which restricts the
outputs of the services, the additional predicate must hold in the compound
guarantee:

G(x, y) ≡ Gs1(xs1 , ys1) ∧ Gs2(xs2 , ys2) ∧ d(xs1 , ys1 , xs2 , ys2). (4)

If the dependency predicate affects the input histories, the compound assumption
has to be modified analogously.

If d is a dependency function (s1 influences s2), the guarantee of the compound
service is defined as:

G(x, y) ≡ ∃y′ ∈ H(Os2) : Gs1(xs1 , ys1) ∧ Gs2(xs2 , y
′)

∧ ys2 ∈ d(xs1 , ys1 , xs2 , y
′).

(5)

In the compound service the assumption and guarantee of the influencing service
s1 must hold. Additionally, there must exist an output history y′ which fulfills
the guarantee of s2 and which is transformable to ys2 by the dependency d.

Obviously, if the respective compound services are optional, the dependencies
must only be considered if the services are selected. Regarding product family de-
pendencies, the effects on the syntactical set-valued interface must be considered
in addition to the effects on the behavior (see the following subsection).

Requires and Excludes Dependencies. Although there are a lot of method-
ological significant dependencies, here, we focus on typical dependencies for
product families, namely requires and excludes. These dependencies specify that
certain services must or must not be selected together in a configuration.
Thereby, to select a service means that the valid I/O history pairs must ful-
fill the requirement formalized by this service. In the following, we introduce
precise semantics of these relations by describing the corresponding dependency
predicates.

A requires dependency between two alternative or optional services (t requires
s) means that if t is selected in a configuration, s must be selected, too. Intu-
itively, a valid history is required to fulfill the requirement specified by the service
s whenever it fulfills the requirement specified by t. Formally, a history pair (x, y)
of the compound service is valid if its projections to the interfaces of the services
t and s satisfy the condition At(xt)∧Gt(xt, yt) ⇒ As(xs)∧Gs(xs, ys). However,
this condition is only sufficient if the sets of valid histories specified by alternative
services are disjunct. Otherwise, (x, y) – more precisely, respective projections
of (x, y) – could fulfill the specification of more than one variant, e.g. t and t′.
Since t′ is allowed to be selected without s, a pair (x, y) which fulfills t and t′,
is valid even if s is not fulfilled. Thus, the correct meaning of requires is that all
history pairs which exclusively fulfill the service t must fulfill the service s. Valid
history pairs fulfilling t and another variant of the same VP do not necessarily
have to fulfill s. Formally, the definition of t requires s is given by:

(�t′ ∈ VT \ {t} : (xt′ , yt′) ∈ H(It′) × H(Ot′) ∧ At′(xt′) ∧ Gt′(xt′ , yt′))
⇒ (As(xs) ∧ Gs(xs, ys)) ,

(6)
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where VT denotes the set of all variants of the VP comprising t. This means,
a valid history pair (x, y) that fulfills the A/G of no variant of VT except for t
must fulfill the A/G of s. Although, satisfying t is not explicitly required in this
definition, it is implicitly given since any valid history pair must fulfill at least
one of the variants according to Definition 3. Here, this variant can only be t.

The dependency t excludes s means that the services t and s are not allowed to
be selected simultaneously, i.e. if the satisfaction of the service t is required (i.e.
t is selected), the satisfaction of the service s must not be required. Since at least
one of the alternatives of a VP must be fulfilled, this implies that the satisfaction
of one of the other alternatives must be required. Formally, the definition of the
dependency t excludes s is given by:

(�t′ ∈ VT \ {t} : (xt′ , yt′) ∈ H(It′) × H(Ot′) ∧ At′(xt′) ∧ Gt′(xt′ , yt′)) ⇒
(∃s′ ∈ VS \ {s} : (xs′ , ys′) ∈ H(Is′) × H(Os′) ∧ (As′(xs′ ) ∧ Gs′ (xs′ , ys′))) ,

(7)

where VT and VS denote the sets of variants of the respective VPs. A valid
history pair (x, y) that fulfills the A/Gs of no variant of VT except for t must
fulfill the A/G of a variant s′ �= s of VS .

Additionally to the behavior, the effects on the syntactical interface must be
considered. The set-valued interface of a compound service only comprises in-
terfaces which result from the aggregation including s1 and s2 or none of them
if there is a requires dependency between them. If there is an excludes depen-
dency between these services, the set-valued interface of their common compound
service does not comprise the interfaces which originated from combinations in-
cluding s1 and s2.

In our example, there is a requires dependency between Pre-Crash and
Follow-Up which reflects technical prerequisites: the pre-crash control uses the
sensors of the follow-up control, which are available in a vehicle only if the lat-
ter control is built in. Thus, their common compound service ACC defines a set
of valid history pairs which obligatory satisfy Speed and fulfill Follow-Up if
they fulfill Pre-Crash. Also, there is an excludes dependency between Steering
Wheel and the variant Brake of the pre-crash control. If both services would be
present in a configuration, there might be a conflict, e.g. if the pre-crash control
demands the vehicle to slow down and, simultaneously, the driver presses the
acceleration button. Hence, it was a marketing decision (non-functional require-
ment) to resolve this conflict by means of an excludes dependency. Consequently,
if Steering Wheel is selected, Warning must be selected, too.

3 Consistency

The basic idea of our approach is that the overall specification is the combination
of modularly specified sub-functionalities. Thereby, different services might be
defined over the same I/O ports. Thus, the integration of different functions
might cause unforeseen conflicts (known as feature interaction) and consequently
lead to an inconsistent specification of the overall behavior. As a consequence,
it becomes a central task during the functional integration to detect and resolve
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conflicts in order to assure the consistency of the overall specification. In the
following sections, we precisely define what we mean by conflicts and show how
the introduced formal concepts can be used to detect and to resolve conflicts
between functional requirements. Regarding product families, we show how the
compatibility of different variants can be analyzed.

3.1 Consistency of a Single System

A specification of a single product is consistent if there is no conflict neither
between different modular services nor between services and dependencies. To
allow tool-supported conflict detection and consistency checks we firstly intro-
duce formal definitions of conflicts. Subsequently, we show how these conflicts
can be detected and resolved.

Conflict Definitions. We differentiate two kinds of conflicts, namely input and
output conflicts. There is an input conflict between aggregated services and/or
dependencies if there is no history h ∈ H(IsC ) that fulfills the assumption of
their common compound service sC :

{x ∈ H(IsC ) | AsC (x)} = ∅. (8)

An input conflict shows that the assumptions of the sub-services of sC (and
potential dependencies between them) are contradictory.

The follow-up control of our example (Follow-Up) is designed for city traffic
and consequently only defined for target speeds between 40 and 80 km/h. The
pre-crash control, however, is designed for motorway traffic, e.g. for target speed
between 100 and 200 km/h. Then, the aggregations of these services results in
an input conflict as there exists no input history which satisfies the assumptions
of both services on their common input port targetSpeed.

Analogously, there is an output conflict between aggregated services and/or
dependencies if the history set defined by the guarantee of their common com-
pound service is empty for a valid input history:

∃x ∈ H(IsC ) : AsC (x) ∧ {y ∈ H(OsC ) | GsC (x, y)} = ∅. (9)

An output conflict indicates that the guarantees of the sub-services of sC (and
potential dependencies between them) are not satisfiable simultaneously for at
least one valid input.

In our example, the services MCC and ACC are output-conflicting. There are
input histories which cause contradictory output histories, e.g. an input his-
tory where the brake pedal is pressed in a time interval in which the current
speed is lower than the target speed. In this case, the MCC demands the mes-
sage decelerate on the output port speed, whereas the service ACC requires
the message accelerate within the same time interval.

The conflicts captured by the introduced definitions can be further classified
according to their causes. We differentiate service-service conflicts, dependency-
service conflicts, and dependency-dependency conflicts. Thereby, the definitions
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of I/O conflicts remain the same but the common compound service sC is ob-
tained in different ways (cp. Definition 1, 4).

Note, there are no conflicts between a dependency function and the service
influenced by it. Nevertheless, there might be conflicts between the influenced
service and other services or dependency predicates. These conflicts are also
covered by the definitions introduced above (cp. Definition 5).

Conflict Detection and Resolution. Obviously, two services are indepen-
dently combinable if their sets of I/O ports are disjunct. Thus, methodically, we
propose to start with an analysis of the syntactical interface to define the set of
candidates for conflicting services. These services must be analyzed for service-
service conflicts as described above. Subsequently, we take dependency predi-
cates into consideration and check all affected services for dependency-service
and dependency-dependency conflicts.

In order to get a consistent specification all detected conflicts have to be
resolved. Therefor, we propose two methodical procedures. A conflict can be
resolved by changing the modular specification of at least one of the affected
services or dependencies respectively. In many cases, conflicts can be resolved
easily by introducing nondeterminism in the modular specification. This res-
olution method is applicable to all kinds of conflicts. Moreover, changing the
modular specification is the only way to solve input conflicts.

The input conflict between Follow-Up and Pre-Crash is solved by changing
the modular specifications of both services. The assumption of both services is
enlarged to target speed between 40 and 200 km/h. However, it is not further
specified how the system reacts to the additional input histories, i.e. every output
message is valid – both services are nondeterministic. This nondeterminism is
resolved in the compound service ACC according to Definition 1.

For most of the output conflicts this procedure is not adequate since changing
the modular specification accordingly to the behavior of another service implies
a loss of modularity. Therefore, to resolve the source of output conflicts (namely,
the service interaction) we propose to introduce additional dependency func-
tions. A new dependency modifies the output histories in such a way that both
interacting services always send the same message on the common ports. By
this, we preserve the modularity of services and, furthermore, make functional
dependencies explicit.

In our example, the output conflict between MCC and ACC is resolved by intro-
ducing the dependency function as described in Section 2.4. This dependency
specifies that the service MCC overrules the service ACC, i.e. if conflicting the
output of the service ACC is substituted by the output of the service MCC.

3.2 Consistency of a System Family

Next, we aim at ensuring the consistency of a product family. The specification of
a product family is consistent if there is at least one consistent configuration of this
family. In the following, we explain the meaning of conflicts between a service and
a VP and sketch the methodology to analyze product families for conflicts.
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Conflict Definitions. Obviously, I/O conflicts between services and a certain
variant of a VP are covered by the same definitions as conflicts between services
of a single product. Based on these definitions, there is no conflict between a
service s and a VP comprising a set of variants V if no conflict is detected between
s and any variant v ∈ V . Particularly, the service s and the VP are independently
combinable if s and each variant v ∈ V are independently combinable.

Conflict Detection and Resolution. In order to reduce the effort of the
conflict detection we firstly analyze the syntactical interfaces. If s has no common
port with the maximum interface of a VP3, i.e. s has no common port with any
variant of the VP, there is no conflict between s and any variant – no further
analysis is necessary. Otherwise, a syntactical analysis of the single variants yields
the variants which must be further analyzed (analogously to single services). To
resolve conflicts we apply the already introduced procedures. Furthermore, we
can eliminate conflicts by introducing excludes or requires dependencies.

To exemplify the procedure, we analyze the service Follow-Up and the VP
Pre-Crash for output conflicts. An output conflict can not be excluded based on
the syntactical analysis of the maximum interface of the VP. But the syntactical
analysis of the single interfaces yields that Follow-Up and Warning have no com-
mon output port – they are independently combinable. Brake and Follow-Up use
the common output port speed and a further analysis of their behaviors shows an
output conflict between them. To resolve the conflict we introduce a dependency
function which states that the service Brake has a higher priority. Note, that in-
troducing an excludes dependency (Brake excludes Follow-Up) would also solve
this output conflict, but would provoke a new dependency-dependency conflict
because of the dependency Pre-Crash requires Follow-Up.

3.3 Tool Support

Thanks to the formal definitions of services, dependencies as well as conflicts,
we can use a theorem prover (e.g. Isabelle [6]) to assure the consistency of a
service specification. Thereby, all services (atomar as well as compound) are
transformed into Isabelle functions. Then, for each compound service we have
to prove two lemmata that claim that the sets of defined valid histories are not
empty (negation of Definitions 8 and 9). However, the transformation to Isabelle
is not scope of this paper – it is precisely addressed in [7].

4 Contributions

Having introduced the formal foundation of the underlying concepts in the pre-
vious sections, we shortly sketch the potential of our approach in the following.

Formalization of requirements. In contrast to pure informal approaches like
FODA, we have introduced a formal model with a well-defined semantics for
3 The maximum interface is the conjunction of the sets of all I/O ports of all variants.
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specifying functionality. This has several advantages. Firstly, a formal model
which formalizes (functional) requirements allows an analysis of the system al-
ready in the early phases of the development process. By this, discrepancies
between conflicting requirements can be detected and resolved. Secondly, since
implementation models will build upon this functional specification, it supports
bridging the formal gap between functional requirements and design models.
The Service Diagram provides formal specification of the functional require-
ments which can be used for a (tool-supported) verification of the subsequent
design models.

Functional Variability. Furthermore, we have enlarged our approach to model
whole families of related systems instead of single systems only. While traditional
approaches mainly focus on structural aspects, we concentrated on the behavior
and have precisely defined the behavioral meaning of variability. We especially
focused on the consistency of the specification of a product family. By formally
reasoning about the behavior conflicts between variants can be detected and
resolved by introducing excludes and requires relations. By this, dependencies
between variants which have not been realized during earlier engineering stages
can be derived and made explicit.

5 Related Work

Formal Semantics. The definition of a formal semantics for feature models –
the main method to formalize variability in product families – is not new. In [8],
Batory and O’Malley use grammars to specify feature models. The formalization
of feature models with propositional formulas goes back to the work by Man-
nion [9], in which logical expressions can be developed using propositional con-
nectives to model dependencies between requirements. Further formal semantics
are compared in [10]. Another approach to specifying multi-functional systems
is introduced by van Lamsweerde et al in [11]. The main deficit of all these ap-
proaches is a disregard for the behavior of single features. Moreover, approaches
like FODA only provide a two-valued notion of variability, i.e. a functionality
might be present or not present in a system. “As a consequence, these approaches
focus on the analysis of dependencies, however abstracting away from the causes
for these dependencies” [12].

In [13], Czarnecki and Antkiewicz recognize that features in a feature model
are “merely symbols”. They propose an approach to mapping feature models to
other models, such as behavior or data specifications, in order to give them se-
mantics. However, this approach only focuses on assets like software components
and architectures. Our approach, however, focuses on formalizing user require-
ments and their analysis in the early phases of the development process.

Our work is founded on a theoretical framework introduced by Broy [5] where
the notion of a service behavior is formally defined. This framework provides
several techniques to specify and to combine services based on their behaviors.
However, this approach does not cover several relevant issues such as techniques
for the specification of functional variability and of inter-service dependencies.
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Feature Interaction. Using the formal foundation, a central task of our approach
is to detect and resolve conflicts between single requirements (feature interaction)
in order to assure the consistency of the overall specification. A large body
of research [14] on feature interaction was caused by the the huge amount of
software-based functions in telecommunication. The telecommunication-specific
approaches to modeling feature interaction, like those by Jackson and Zave [15]
or Braithwaite and Atlee [16], consider only telecommunication-specific features
(functionality additional to the core body of software) and show how they can be
combined in telecommunication systems. Thus, they are not directly applicable
to other kinds of systems and for this reason can be barely compared to our
work.

If we consider “feature” as a synonym of “function”, we find further related
work, e.g. approaches by Stepien and Logrippo [17] or Klein et al. [18]. All these
approaches are comparable in the sense that they aim at explicit specification of
feature behavior and at identifying feature interaction on the basis of behavior
models. In our terminology, they look for interactions between services of a single
product. However, they do not provide any means of variability.

To summarize, to the best of our knowledge, there is no approach to specify a
product family, by formally describing the behavioral variability in requirements,
and to detect conflicts between variants based on their behavioral specifications.

6 Conclusion and Future Work

In this paper, we have introduced and formally founded the underlying con-
cepts of our service specification, which focuses on the modeling and structuring
of functional requirements. Thereby, the concept of a service is used to model
functional requirements in a modular fashion. In this paper, we especially con-
centrated on concepts to explicitly modeling inter-service dependencies. We have
integrated the concept of behavioral variability which makes the Service Diagram
suitable to formally capture functional requirements of a system family.

The formal specification of the functional requirements, their dependencies,
and the behavioral variability already at an early stage of the development pro-
cess allows to perform a formal (and therefore tool-supported) analysis of the
functional requirements for conflicts. Since ensuring the consistency of the spec-
ification is one of the main goals of our approach, we have precisely defined the
meaning of conflicts in the Service Diagram. Furthermore, we have described
the detection and resolution of conflicts from a methodological point of view.
Regarding product families, we have shown how the compatibility of different
variants can be analyzed.

Since the effort to perform consistency checks separately for all possible com-
binations of variants grows exponentially, we are currently working on concepts
to reduce the effort of consistency checks by extracting commonalities between
variants. Beyond this, our future work includes the development of a user-friendly
syntax for the semantics introduced in this paper and the transition from the
Service Diagram to the consecutive design models.
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Abstract. A recent application in commercial aviation is the electronic distribu-
tion of loadable software parts and data. Its safe and beneficial use, however, 
warrants that information security vulnerabilities are analyzed and mitigated at 
an adequate assurance level. In our prior work, we have identified security 
threats and assurance requirements for a generic aircraft asset distribution sys-
tem or AADS. In this paper, we focus on supporting analytical processes to ad-
dress security vulnerabilities as well as describing our experiences in applying 
formal methods to AADS. 

Keywords: Loadable Software Parts, Safety, Security, Formal Methods. 

1   High Assurance for eEnabled Aircraft Assets 

Today, commercial aviation is experiencing a revolutionary trend with technological 
innovations in aircraft manufacturing, operation and maintenance. A resulting concept 
is the eEnabled aircraft that can connect to ground infrastructure via shared networks 
and use commercial-off-the-shelf (COTS) solutions for onboard components. The 
benefits of the eEnabled aircraft are significant. A pivotal concern, however, is the 
impact of information security vulnerabilities from unprecedented features, such as 
network applications distributing aircraft assets as well as highly integrated COTS 
hardware/software impacting aircraft operation. Regulatory institutions world-wide 
have recognized that existing guidance for certification and continued airworthiness 
must be updated to cover the emerging threats to flight safety and proper functioning 
of eEnabled aircraft systems [1]. 

Our research focuses on vulnerabilities in the electronic distribution of eEnabled 
aircraft information assets, specifically loadable software parts and onboard generated 
data. We consider a generic model of the large and complex electronic distribution 
system, referred to as Aircraft Asset Distribution System (AADS), that involves mul-
tiple entities with different roles, including avionics suppliers, airframe manufacturer, 
airline and aircraft [3,4]. The objective of the AADS is to deliver software and data 
from the original source to the end-destination, referred as the end-to-end distribution. 

Our proposed work expresses the need for highly assuring the end-to-end security 
properties of the AADS based on the following. The safety-critical value of loadable 
avionics software is established by regulatory guidance mandating classification of 
such software according to the levels defined in Radio Technical Commission for 
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Aeronautics (RTCA) DO-178B, along with process controls for assuring that software 
is correct and complete. Suppliers are required to demonstrate that safety-related 
loadable software are designed, developed and produced in accordance with the guid-
ance in DO-178B. However, if aircrafts are not able to verify that received software is 
from the correct source (authenticity) and that the software has not been tampered 
(integrity), the aviation industry’s significant investment in assured software devel-
opment processes and practices is to some degree devalued. Similarly, the potential 
safety impact of onboard data, such as health diagnostics and aircraft configuration 
reports, warrants that they be secured at an adequate assurance level.  

Loadable software safety standards are being revised in RTCA/DO-178C to pro-
vide guidelines for a formal method based software vulnerability analysis. However, 
no standardized efforts or guidelines exist to evaluate and mitigate at a high assurance 
level potential vulnerabilities in the end-to-end distribution of loadable software/data. 

2   Securing Electronic Distribution of Aircraft Assets by AADS 

Recently, the need to assure authenticity and integrity of aircraft software has been 
recognized by the FAA and quantified by Aeronautical Radio, Inc. (ARINC), the 
internationally recognized standardization body responsible for defining interoperabil-
ity standards for aviation software. ARINC is currently in the process of defining 
interoperable software part format standards that explicitly include the use of crypto-
graphic signature as the mechanism for assuring parts. However, the mere application 
of signatures to data does not in itself provide any degree of assurance.  To be effec-
tive, signature capabilities must be employed within process contexts and application 
environments that support the required degree of assurance. 

Based on the Common Criteria (CC) [2] standard methodology, we have estab-
lished a security framework to identify threats, requirements and mitigation controls 
for the AADS. The complete assurance requirements for AADS was developed and 
documented in the form of a CC Protection Profile [4]. The CC approach was selected 
because it is the accepted international standard for defining protection needs, security 
functional requirements, assurance requirements and evaluating product security. For 
critical systems that call for high assurance levels (EAL 6 and above), the CC require 
a very rigorous evaluation approach including the use of formal methods. 

3   Relevant AADS Challenges for Formal Methods  

In developing and deploying an instance of the AADS, we have encountered the fol-
lowing challenges pertinent to the use of Formal Methods (FM). 

 

Lack of regulatory guidance on software development for ground systems. A 
well established standard, i.e., DO-178B, exists for the development of loadable avi-
onics software, making it possible for integration of formal methods in software 
specification, design and verification in the upcoming revision of the standard (DO-
178C). However, no such guidance is currently available for development of ground 
systems such as AADS that distributes avionics software from suppliers to aircraft.  
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Specification of consistent and complete security requirements. Establishment of 
requirements is the first step towards rigorous system design and assessment. As the 
AADS is a globally distributed system that involves multiple stakeholders, establish-
ment of adequate security requirements for AADS among multiple entities is a sig-
nificant challenge. Similarly, establishment of an agreeable level of assurance for 
determining the formalization level for AADS is also a major challenge. 
 
AADS cost constraints. Another major obstacle is balancing security evaluation 
effort with assurance needs. While the use of formal methods for rigorous evaluation 
of components distributing safety-critical parts can significantly increase the confi-
dence in the security of the AADS, it can significantly increase its development costs. 
These costs can be reduced by developing an architecture that confines the formal 
analysis to the critical AADS components.  

 
Integration of FM into AADS design and development. It is ideal to incorporate 
FM into AADS design and development process so we have high confidence in the 
correctness of the implemented algorithms and protocols. However, there are factors 
preventing the use of FM in software requirement specification, design and debug, 
including a lack of understanding on benefits versus cost of FM, a dearth of user-
friendly tools for formal modeling and analysis [5], and limited expertise on FM.    
 
Tradeoff between full formalization and light weight FM. AADS is a complex and 
large scale distributed system. Full formalization of such a system provides complete-
ness and rigor to the analysis, but on the other hand can be overwhelming, time con-
suming and expensive. Comparatively, lightweight FM, which focuses on partial 
specification and abstracts away details, is more economically feasible. Therefore, we 
adopt a light weight FM in our current verification process. 

4   Towards Establishing Confidence in the Security of AADS 

Our objectives are manifold: Define security requirements necessary to support an 
appropriate degree of confidence that the assurance of high-value software assets is 
maintained. Inform the processes for design, development, and deployment of a con-
crete AADS implementation. Establish a set of processes, corresponding to the “de-
velopment assurance” recommendations of the DO-178B, that may be recommended 
to aviation industry stakeholders (namely, avionics suppliers, airframe manufacturers, 
airlines) to assure that the authenticity and integrity of information assets is preserved 
during distribution and storage and throughout their post-development life-cycles. 

Development of the AADS assurance requirements specification in the CC Protection 
Profile was accomplished by an analysis of the threats and vulnerabilities to which soft-
ware assets may be exposed, and validated through a series of interviews and dialogues 
with a community of software architects and system designers. With the requirements in 
hand, we prepared a proposal to pursue assessment and evaluation of the implementation 
architecture and concrete distribution applications under development. Reception to our 
proposals proved lukewarm, at best. Many questions were raised regarding the need for 
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assessment exercises and the nature and value of formally modeling a software part dis-
tribution system. Customers pointed out that existing regulatory guidance for aircraft 
certification and operational approval carries neither provisions nor requirements for 
assessment of the kind we proposed. 

Overall, we found it very challenging to communicate the need for assessment, and 
in particular to express the value of developing a formal model of the distribution 
system for use in performing a model-checking based analysis. In response to the 
skepticism which met our original proposals, we determined to conduct a small scale 
case study to demonstrate the value of exploiting formal methods in our business 
context. We identified a single, discrete component necessary to the end-to-end air-
plane asset distribution topology, namely the protocol by which an airplane’s unique 
identity is established and initialized. 

In the AADS, the aircraft’s identity and public key are carried in a certificate which 
may be validated by ground-based systems to confirm the authenticity of aircraft-
generated data. We introduced a protocol for initializing such a certificate, describing 
the basic protocol and several protection variants.  Our analysis provided an informal 
discussion as well as a precise formal description, pointing out the differences in 
security properties of the variants.  Finally, we documented the results of model-
checking our formalizations using the public-domain Automated Validation of Inter-
net Security Protocols and Applications (AVISPA) protocol validation tool. 

We were able to make use of the results of our analysis in business and engineering 
venues, as a concrete example for explaining how we can model, analyze, and discuss 
the design of critical IT systems and applications. Through this example, we were 
able to show that our methodology is helpful for exploring requirements and design 
alternatives, bringing up important issues, for instance making explicit the assump-
tions and conditions on IT administration and maintenance to be met by the system 
environment, and giving evidence whether the system architecture meets desired 
security goals.  The analysis provided a concrete example of modeling and analyzing 
a key component of the security infrastructure needed to support eEnabled aircraft, to 
verify its security properties. We were able to show unambiguously that a number of 
non-obvious details may be easily overlooked unless one analyzes variants in a rigor-
ous formal way. Our analysis, as limited and focused as it was, provided definitive 
evidence that some designs do not afford adequate protection and thus materially 
influenced the design of the final system. 

Our documentation and presentations of these analytical results was received very 
positively by our business partners. Interviews conducted with architects and devel-
opers provided concrete value to our interviewees, giving them an appreciation for the 
full range of design alternatives available. Demonstrations to management showing 
how model development and model checking are performed for a real problem effec-
tively communicated the utility of our methodology, the value added by application of 
FM, and the reasonable level of cost incurred in the context of the importance of the 
subject software system. We showed that it is possible for formal methods to be  
understood, if not directly utilized, by system designers, software architects, and man-
agement. We have demonstrated to our customers that the value and benefits of mod-
eling go beyond the assurance assessment objective, per se, to add concrete value to 
our organization’s software products. 
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5   Open Problems 

Formal methods have the potential for building confidence in the security of a large 
scale distributed system such as AADS. However, we have not applied FM in its full 
form into the specification, design, development, and verification of AADS. An open 
issue is the lack of visual representations of FM with transparent analysis to facilitate 
the communication of FM benefits to business management. Further, to enable practi-
cal use of FM, we need a specification language that is accessible to software archi-
tects/developers without substantial training. Such a language, ideally, should be easy 
for customers to understand so they can contribute to the formal specification. Fur-
thermore, a user-friendly, automatic FM analysis tool that can handle complex sys-
tems and generate reliable feedback is needed. Another open research problem is in 
addressing the complexity and cost issues, such as composing partial formal specifi-
cation and verification while retaining consistency/correctness. 
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Abstract. This paper describes a project to develop a network-centric RTOS 
from scratch using formal methods. The (initial) purposes of the project was to 
get acquainted with the use of formal methods for software engineering and to 
obtain a trustworthy RTOS as a component for building networked embedded 
systems. The work was done by a small, distributed team that had no prior ex-
perience on using formal methods and with a small budget. The outcome is that 
the use of formal methods is most useful as an architectural design method, per-
haps more than as a formal verification of software code. The resulting software 
has many properties that were not anticipated at the beginning and would likely 
not have been achieved without the use of Formal Methods. 

Keywords: RTOS, Formal Methods, Trustworthy, Safety, Security, Network 
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1   Problem Statement 

Real-Time Operating Systems are an essential component in most embedded systems. 
They are essential when the application becomes complex and safety critical. They 
provide a way to organize the application in a set of modules that interact, the sched-
uler helps in achieving predictable real-time behavior, and they allow to recover from 
run-time error conditions.  

Nevertheless, almost none of the commercial and open-source RTOS-es have been 
certified according to standards like IEC61508 or DO178. Almost none have been 
formally verified. Part of the reason is historical: RTOSes are fairly complex and 
highly concurrent pieces of software that in addition must provide good performance 
with as little as possible resources. Hence, RTOSes are often developed by very 
skilled software engineers, but often following a bottom-up approach with little 
documentation, preventing even certification. 

Open License Society undertook the OpenComRTOS project in 2004 with the aim 
to develop a novel network-centric RTOS. Formal methods were used from the start 
with much effort going into finding the right architecture and being able to verify that 
the software is correct. 



412 E. Verhulst, G. de Jong, and V. Mezhuyev 

We also noted related work by Iain D. Craig [11,12] when this project was fin-
ished. This work is however rather different. It is mainly concerned with the formal 
specification and refinement of existing Operating Systems. The author shows that 
this is viable. Our work has indicated that formal methods provide serious benefits as 
well when used for designing new architectures from the very beginning, even for 
non-trivial pieces of software like an RTOS. As a result, formal verification of the 
final architecture is also a lot more straightforward because it results in a much 
cleaner architecture. 

2   Systems (and Software) Engineering Approach 

The Systems Engineering approach developed by Open License Society is a classical one 
as defined in [4] but adapted to the needs of embedded software development. It is an 
evolutionary iterative process. In such a process, much attention is paid to an incremental 
development requiring regular review meetings by several of the stakeholders. On the 
architectural level, the system or product under development is defined under the para-
digm of “Interacting Entities”, which maps very well on an RTOS based runtime system. 
When programming with an RTOS, the application is split over a number of concurrent 
entities called “Tasks”, scheduled in time by the RTOS scheduler. They “interact” 
through RTOS services, essentially points of synchronization but with a service specific 
semantic behaviour. In OpenComRTOS these services decouple the tasks completely 
from each other. Applied on the development of OpenComRTOS, the process was 
started by elaborating a first set of requirements and specifications. Next an initial archi-
tecture was defined. Starting from this point on, two groups started to work in parallel. 
The first group worked out an architectural model while a second group developed  

an initial formal model 
using TLA+/TLC [2]. This 
model was incrementally 
refined until the formal 
model was deemed close 
enough to the implementa-
tion architecture. Next, a 
simulation model was de- 
veloped on a PC (using 
Windows NT as a virtual 
target). This code was then 
ported to a real 16bit mi-
crocontroller [5]. On this 
target a few target speci- 
fic optimizations were 
performed on the imple-
mentation, while fully ma- 
intaining the design and 
architecture. The software 
was written in ANSI C and 
verified with a MISRA 

 

Fig. 1. OpenComRTOS-L0 view 
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rule checker. [8] Finally the reverse process was undertaken. For each service class a 
formal model was built matching the implementation and essential properties were veri-
fied. 

3   Lessons from Using Formal Modeling 

3.1   Selecting a Methodology 

Formal techniques basically fall into two categories. First we have model checkers:  a 
model of the software is constructed at an abstract level and the model checker will 
basically verify that specified properties are never violated and if they are a trace of a 
counter-example will be provided. A second class of formal techniques are so-called 
proofing systems. They allow to proof by deduction and aided by a computing ma-
chine that a certain property holds. Given that the project started with a clean slate 
and the strong architectural nature of the project we opted to use a model checker. A 
first observation is that while there are many tools and methods available, most of 
them are based on the same principles. However, many of the tools we found are 
academic and suffer from lack of robustness, performance or ease of use, clearly indi-
cating that this is still an emerging discipline. Also when used by commercial ven-
dors, the formal tools are often hidden and do their work in the background. This 
obliterates the need to be mathematical proficient and user can stay in the problem 
domain, instead of the math solution domain, but no such integration was found that 
applied to our project. 

While we had an initial bias toward using SPIN [7], in the end it was decided to 
use TLA/TLC from Leslie Lamport. [2] Although the mathematical notation of the 
TLA language was first considered a hindrance versus the C-like Promela language of 
SPIN. In the end this has proven to be a major benefit as it forced to reason in a much 
more abstract way about the RTOS. 

3.2   Why Are There No Errors? 

The initial goal of using formal techniques was to be able to prove that the software is 
correct. This is an often heard statement from the formal techniques community. A 
first surprise was that each model gave no errors when verified by the TLC model 
checker. This was due to the iterative nature of the model development process and 
partly its strength. From an initial rather abstract model, successive models were de-
veloped by checking them using the model checker and hence each model is correct 
when the model checker finds no illegal states. As such, model checkers can’t proof 
that the software is correct. They can only proof that the formal model is correct. For 
a complete proof of the software the whole programming chain as well as the target 
hardware should be modeled and verified as well. In the ideal case, the software 
should even be generated from the formal models. This is today an unachievable 
result due to its complexity and the resulting state space explosion. The model itself 
would be many times larger than the software being developed. It indicates however 
that if we would make use of verified target processors and verified programming 
language compilers, the model checker becomes practical as limited to modeling the 
application. 
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Other issues were discovered in relation to the use of formal modeling. E.g. the 
TLC model checker declares every action as a critical section, whereas e.g. in the case 
of a RTOS, many components operate concurrently and real-time performance dic-
tates that on a real target the critical sections are kept as short as possible. While this 
dictates the avoidance of shared data structures, it would be helpful to have formal 
model assistance that indicates the required critical sections.  

Nevertheless, a major benefit of using the model checker has proven to be its ab-
straction. The models developed in the beginning of the project had to be discarded 
after it was clear that they reflected how a programmer would write the software, 
often by unconsciously taken implementation decisions, resulting in unnecessary 
complexity. Once this was understood, (re)developing the models was much more 
straightforward.  

The final issue is the well known problem of state space explosion. Just modeling a 
small OpenComRTOS application, the TLC model checkers has to examine a few 
million states, exponentially taking more time for every task added to the model. This 
also requires increasing amounts of memory and limits the model checking to subsets 
of the whole architecture. However, this was not a real issue as the architecture is 
generic and based on a message passing protocol that is independent of the size of the 
system. The algorithmic logic of the RTOS kernel also makes no difference between 
local or remote services, making it independent of the topology of the target network 
and hence there was no need to make the network topology explicit. 

4   A Thin Boundary between Past Experience, Creativity and 
Model Checking 

For completeness, we need to mention that some of the elements of the Open-
ComRTOS architecture were inherited from a previous distributed RTOS (Virtuoso 
[4]) that was developed in a traditional way, and with some inspiration from CSP. The 
communication layer of this distributed RTOS used packets but the kernel was a large 
jump table. We had also experienced issues with portability and scalability. Finally, 
the third generation of the Virtuoso RTOS was loosing performance through what we 
can call “feature bloating”. Nevertheless, it was difficult to see how a better architec-
ture could be found that would at the same time provide improvements in terms of 
code size, safety, security and scalability properties. In addition we defined as objec-
tive that it should be able to run from memory restricted multi-core CPUs to widely 
distributed processing nodes running legacy software. 

Formal modeling has helped a lot in formalizing the problem and as a result we can 
claim success beyond initial expectations. 

5   Novelties in the Architecture 

OpenComRTOS has a semantically layered architecture. At the lowest level (L0) the 
minimum set of entities provides everything that is needed to build a small networked 
real-time application.  

The entities needed are Tasks (having a private function and workspace) and an in-
teraction entity we called an L0_Port to synchronize and communicate between the 
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Tasks. Ports act like channels in the tradition of Hoare’s CSP but allow multiple 
waiters and asynchronous communication.  One of the tasks is a kernel task schedul-
ing the tasks in order of priority and managing and providing services.  Driver tasks 
handle inter-node communication. Pre-allocated as well as dynamically allocated 
packets are used as a carrier for all activities in the RTOS such as: service requests to 
the kernel, synchronization, data-communication, etc. Each Packet has a fixed size 
header and data payload with a user defined but global data size. This significantly 
simplifies the management of the Packets, in particular at the communication layer. A 
router function also transparently forwards packets in order of priority between the 
nodes in a network.   

OpenComRTOS L0 therefore is a distributed, scalable and network-centric operat-
ing systems consisting of a packet-switching communication layer with a scheduler 
and port-based synchronization. This architecture has proven to be very efficient.  

In the next semantic level (L1) services and entities were added as found in most 
RTOS:  

Boolean events, counting semaphores, FIFO queues, resources, memory pools, 
mailboxes, etc. The formal modeling has allowed defining all such entities as seman-
tic variants of a common and generic entity type. We called this generic entity a 
“Hub”.  In addition, the formal modeling also helped to define “clean” semantics for 

such services whereas ad-hoc 
implementations often have 
side-effects. 

As the use of a single ge-
neric entity allowed a much 
greater reuse of code, the 
resulting code size is about 
10 times less than for an 
RTOS with a more traditional 
architecture. One could of 
course remove all such appli-
cation-oriented services and 
just use the Hub based ser-
vices. This has however the 
drawback that the services 
loose their specific semantic 
richness. E.g. resource lock-
ing clearly expresses that the 
task enters a critical section 
in competition with other 

tasks. Also erroneous runtime conditions like raising an event twice (with loss of the 
previous event) are easier to detect at the application level than when using a generic 
Hub. 

An unexpected side-effect of the use of Hub entities is that the set of services can 
be expanded independently of the kernel itself. A Hub is a generic synchronization 
entity and the Hub semantics are determined by the synchronization predicate and by 
the predicate action following successful synchronization. The result is not only that 
the RTOS can be made application specific, it also provides better performance and 

 

Fig. 2. L1 RTOS  generic Hub 
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more safety as most of the services and the driver code execute in the application 
domain, leaving the essential RTOS functions to a small kernel function. 

In the course of the formal modeling we also discovered weaknesses in the tradi-
tional way priority inheritance is implemented in most RTOS and we found a way to 
reduce the total blocking time. In single processor RTOS systems, this is less of an 
issue but in multi-processor systems, all nodes can originate service requests and 
resource locking is a distributed service. Hence the waiting lists can grow much 
longer and lower priority tasks can block higher priority ones while waiting for the 
resource. This was solved by postponing the resource assignment till the rescheduling 
moment. 

Finally, by generalization, also memory allocation has been approached like a re-
source locking service. In combination with the Packet Pool, this opens new  
possibilities for a safe and secure management of memory. E.g. the OpenComRTOS 
architecture is free from buffer overflow by design. We shortly summarize the results 
obtained on a real processing target. Although fully written in ANSI-C (except for the 
task context switch), the kernel could be reduced to less than 1 Kbytes single proces-
sor and 2 Kbytes with multi-processor support (measured on a 16bit Melexis micro-
controller). A sample application with two tasks and one Port required just 1230 bytes 
of program memory and 226 bytes of data memory (static and dynamic). More infor-
mation is available in [4]. 

6   Formal Verification 

This project would have been incomplete if we had not attempted a formal verifica-
tion of the source code. In the end this proved to be quite straightforward because the 
orthogonal and clean architecture allowed to check each service using a similar pat-
tern. Following issues however must be mentioned: 

- We did not find tools and methods that allowed to verify our asynchronous and 
concurrent design (inevitable for a RTOS) at the source code level. Tools only exist 
for static and synchronous programs [9,10] 

- It was practically impossible but also unnecessary to verify the kernel as a whole. 
Hence we verified the algorithms for each service class independently. Given the 
orthogonality of protocol based architecture (by using packets), this is sufficient. 

- The hardest part remained to find all properties to check for. A lot of these prop-
erties look rather trivial at first sight and our human brain has a tendency to overlook 
them. 

- The final issue is related to the programming in C itself. It is clear that this lan-
guage is a major source of errors. Hence, some errors were found at the programming 
level that no formal verification would ever find. 

- However, the fact that the formal modeling helped a lot in achieving such a clean 
and orthogonal architecture, verification as well as at the abstract level by using a 
formal model checker as well as at the language level was a lot easier, because the 
complexity is minimized and the code size is much smaller than comparable hand 
written code. 
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7   Future Developments and Research 

Above we already identified the need for the model checkers to detect the minimal 
critical sections. Another area of research is how to maintain consistency between the 
formal model and the implementation. This will require that the formal model can be 
used as a reference and requires that the source is generated rather than written by the 
software engineer.  

Future OpenComRTOS developments will focus on adding more safety and secu-
rity properties to a SW/HW co-design pair of OpenComRTOS and processor. Formal 
modeling should contribute in identifying minimum architectures that still are provid-
ing safety and security in the resource constrained domain of deeply embedded sys-
tems. 

Another area of interest is to find a better way to separate orthogonally the priority 
based scheduling from the logical behavior of the kernel entities. E.g. the use of prior-
ity inheritance support results in this code being mixed up in the manipulation of the 
data structures (e.g. to sort waiting lists). This makes the code more convoluted to 
read and understand while the impact is only on the timely behavior of the applica-
tion. 

8   Conclusion 

The OpenComRTOS project has shown that even for software domains often associ-
ated with ‘black art’ programming, formal modeling works very well. The resulting 
software is not only very robust and maintainable but also very performing in size and 
timings and inherently safer than standard implementation architectures. Its use how-
ever must be integrated with a global systems engineering approach as the process of 
incremental development and modeling is as important as using the formal model 
checker itself and resulting in many improvements of the RTOS properties. 

It can not be emphasized enough how many problems in the software world can be 
avoided by a systematic use from the very beginning. 
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Abstract. This paper revisits the experiences with the use of formal methods in 
the development of the control system for the Maeslant Kering. The Maeslant 
Kering is the movable barrier which has to protect Rotterdam from floodings 
while, at almost the same time, not restricting shipping traffic to the port of 
Rotterdam. The control system, called BOS, completely autonomously decides 
about closing and opening of the barrier and, when necessary, also performs 
these tasks without human intervention. BOS is a safety-critical software 
system of the highest Safety Integrity Level according to the IEC 61508 
standard. One of the reliability increasing techniques used during its 
development is formal methods. This paper revisits the earlier published 
experiences with the project after the system is in operation for ten years and 
has performed its first autonomous barrier operation on November 11th, 2007. 

Introduction 

BOS is the software system which controls and operates the storm surge barrier in the 
Nieuwe Waterweg near Rotterdam (figure 1). It is a complex, safety-critical system of 
medium size, which was developed by CMG Den Haag B.V.1, commissioned by 
Rijkswaterstaat (RWS) – the Dutch Ministry of Transport, Public Works and Water 
Management. The project completed in May 1997 and the system was officially 
commissioned in October 1998 on time and within budget. CMG used formal 
methods in the development of the BOS software in addition to a number of other 
techniques recommended in the IEC 61508 standard [1]. The experiences with formal 
methods and other techniques were published during and after the project in a number 
of publications [2][3][4][5][6]. 

The storm surge barrier control system has been in operation since October 1997 
and is each year active during the storm season (the summer period is used for 
                                                           
1 CMG Den Haag BV in 2003 merged with Logica. Acision is the result of the sale of the 

LogicaCMG Telecoms Products division to private equity. 
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maintenance on the barrier). In its operational life, there has been a test closing of the 
barrier each year. On November 11th, 2007 the barrier closed successfully on its own 
because of a combination of high tide and storm for the first time. 

The Barrier and the BOS System 

The history of The Netherlands has been shaped by the struggle against the sea. The 
great flood disaster of 1953 in Zeeland was a rude shock to the Netherlands, 
demonstrating yet again that the country was vulnerable. It was shortly after this flood 
that the Delta Plan was drafted, with measures to prevent such calamities from 
occurring in the future. This Delta Plan involved building a network of dams in 
Zeeland and upgrading the existing dikes to a failure rate of 10-4, i.e., one flooding 
every 10,000 years. The realization of the Delta Plan started soon after 1953 and in 
1986 the impressive dam network in Zeeland was finished. The weak point in the 
defence was now the Nieuwe Waterweg, an important shipping route for Rotterdam 
and the outlet for the Rhine. Being completely open, it is a major risk for flooding of 
Rotterdam. To protect Rotterdam from flooding a storm surge barrier in the Nieuwe 
Waterweg was constructed near Hoek van Holland: the Maeslant Kering. The 
geographic map and an impression of the barrier are depicted in the Figures below. 

  
 

The barrier consists of two hollow floating walls, called sector doors, connected 
with steel arms to pivot points on both banks. Each of these is as large as the Eiffel 
Tower. During normal weather conditions the two sector doors rest in their docks. 
Only when storms are expected with danger of flooding the two sector doors are 
closed. For more information, we refer to the internet-site of the Dutch Ministry of 
Transport, Public Works and Water Management about the Delta works where an 
animation of the moving barrier is provided, see [7].  

The main requirement on the barrier is that it must be as reliable as a dike. Careful 
failure analysis showed that manual control of this barrier would undermine the 
reliability. Therefore it was considered to be safer to let a computer control the 
barrier. The control system that decides about opening and closing of the barrier and 
that also completely autonomously performs these tasks, was baptized BOS (Dutch: 
Beslis & Ondersteunend Systeem, i.e., decision and support system). When BOS 
predicts the expected water level in Rotterdam will be too high, it has the 
responsibility to close the barrier. Since Rotterdam is a major port, the barrier should 
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be closed only when really necessary and as briefly as possible. An unnecessarily 
closed barrier will cost millions of Euros because of restricted shipping traffic. 

The realization of the BOS system is an effort in linking several distinct 
disciplines, viz., the organizational and global overview of the system functionality, 
requirements and decision rules by Rijkswaterstaat (RWS), the hydrological 
knowledge and model-based water level predictions by Delft Hydraulics2, 
(independent research institute for water management and control), and the 
controlling and automation discipline and systems' integration knowledge by CMG. 
Because of the dangers and costs involved, very strict safety and reliability 
requirements are imposed on the BOS software. These high safety and reliability 
requirements make that the BOS is a mission critical system (or safety critical 
system), for which special care, effort and precautions should be taken in order to 
guarantee its safe, reliable and correct operation. To this extent, the design and 
development of the BOS software were guided by the IEC 61508 standard [1], which 
gives guidelines for software development for safety critical systems. One of the 
“highly recommended” techniques applied in the BOS system development is formal 
methods. With formal methods, systems are modeled using precise mathematical 
concepts. Due to their mathematical underpinning these models allow for precise 
specification and design description, formal (automatic) verification of system 
behaviour, simulation and animation, derivation and calculation of system properties, 
and derivation of test cases. In the development of BOS the formal methods 
PROMELA and Z were used for modelling and specification of the design. 

Barrier Reliability Revisited 

During 2006 concerns were raised on the actual reliability of the Maeslant barrier. An 
independent study showed that instead of the required 1 in 1000 probability of failure 
per closure (one closure every 10 years), the actual probability of failure was 1 in 10 
per closure. The news around this study resulted in questions to the Minister on the 
subject and resulted in an extensive project to re-investigate the reliability and take 
appropriate measures to improve it [8]. As at that time no public information was 
available on what actually was the cause for the decreased reliability, it also resulted 
in a lot of opinion pieces in more popular computer magazines [9] arguing that the 
software was the problem of the reliability.  

However, the actual report sent by the Minister to the House provides a better view 
on the actual problems [10]. In the report, it can be seen that in terms of probability of 
failure, the main issue was the lack of pro-active maintenance. Though the barrier was 
working correctly, some spare parts for the barrier were not available or contracts 
with guaranteed repair times not in place. As the probability of failure is determined 
by both the MTTF (Mean Time To Failure) and the MTTR (Mean Time To Repair), 
the lack of spare parts and guaranteed repair times directly increases the probability of 
failure. In addition, the change in the water level at which the barrier must close also 
decreases the probability of failure through a complex relation. 

                                                           
2 Now called Deltares. 
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With respect to the BOS system, the main changes were stricter guaranteed repair 
times for specific hardware failures. In 2004, BOS was already extended with more 
validation logic for the wind and water measurements and hydraulic and 
meteorological forecasts. Validation of input information was extensively discussed 
during the initial BOS project. It was required to rely on the external measurements 
and forecasts as validation might introduce errors (note that the hole in the ozone 
layer over the south pole was missed because of incorrect validation rules[11]). 

Actual Operation of the BOS System 

During the life time of the BOS system, one test closure was performed every year. In 
addition, on November 11th, 2007 BOS closed the barrier for the first time because of 
a storm surge. In addition, during the storm season BOS was actively monitoring 
water and weather predictions and measurements. During its operational life of ten 
years, no critical or major errors that might affect barrier operation were found in the 
system itself. Minor errors have been found, in the area of incorrect alarm signals at 
startup et cetera. In the BOS system, a number of change requests were implemented 
to introduce simple input validation so that blatantly incorrect data from the 
measurement networks is rejected and an alarm is raised and to allow human 
intervention in error cases. 

Mid-Life Upgrade Project 

Currently, the BOS system hardware is end of life and needs to be replaced. The 
project for creating its successor has started. In it, the formal method Z is used as it 
was in the original project, i.e., the specifications and designs are still done in Z and 
the development process is followed as in the original project. Promela is not foreseen 
to be used as there are no architectural or protocol changes planned that require re-
validation. In terms of hardware, again a single, hardware fault-tolerant Stratus server 
is used. Communications lines are however terminated on standard terminal servers 
and use standard redundant networking to communicate to the Stratus. The total 
probability of failure decreases through the introduction of this hardware. With 
respect to the software, the following changes are being planned: 

1. Improved diagnostics to help detect errors in the external environment. 
2. De-coupling of the GUI from the actual system to simplify the system and de-

couple one of the less critical components onto separate hardware. 
3. Support for analysis and data mining to help determine the root cause of errors. 

Conclusions 

The use of formal methods has helped the project achieve the required software 
quality goals. As is common with software systems that only have to perform their 
critical operation incidentally, it is impossible to determine the software reliability 
itself. However, the following conclusions can be drawn: 
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• The learning curve for formal methods in the mid-life upgrade is still steep. New 
engineers still lack a good background in formal methods.  

• The combination of formal methods and code reviews/module testing pays off for 
analyzing subtle behavior. Detailed questions on  behavior can be answered 
within minutes through the formal specification. Also, FM support what-if 
analysis extremely well. 

• In the initial project all of the system was specified in Z and validated in Promela. 
This could have been optimized by applying it to the critical parts only. 

Though the application of formal methods was successful for the BOS system, 
with respect to the future, there are some remarks to be made: 
• Commercially, for LogicaCMG, very few customers are willing to pay the price 

of a SIL-4 system. Instead, very often the required software reliability is reduced 
to a lower level through conventional conservative design techniques. 

• The learning curve for formal methods, e.g., Z, is still steep for a new team.  
• For Acision, a major provider of messaging equipment, the experience over the 

past period is that the role of formal methods has decreased. Where conventional 
standards used SDL to specify protocols, both 3GPP and Open Mobile Alliance 
seem feature driven in the definition of new standards. Bad examples include the 
Multimedia Messaging Standard and the Diameter based charging standards. 

For a future role for formal methods, we therefore think it is necessary to focus on: 
• Support for the specification and design phase. As experiences with BOS show 

and as standardization shows, the majority of the problems are introduced in the 
specification and design, not the implementation. 

• Support for practical methods and tooling that make the use of formal methods 
simple. 

• Standardize on specific formal methods (best of breed) as a part of the standard 
computer science education. 

Fortunately, there seems more focus on practical methods and tooling. However 
only if all three conditions are fulfilled, formal methods will be a major benefit to 
software development for critical systems. 
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Abstract. We have adopted formal specification language in the de-
velopment of firmware of “Mobile FeliCa” IC chip and have achieved
successful results and confirmed its effectiveness.

1 Outline of Project

“FeliCa” is a contactless IC card technology widely used in Japan, developed
and promoted by Sony Corporation. This FeliCa technology is utilized in Mobile
FeliCa IC chip which is embedded in a mobile phone. Mobile phones embedded
with a FeliCa IC chip are known as “Osaifu Keitai” (means of mobile wallet)
by NTT DoCoMo, Inc., and today those chips are embedded in over 50 million
mobile phones which can be used as electric money, train tickets, identifications,
door keys and so on.

Mobile FeliCa system is comprised of mobile phones with a FeliCa IC chip, Fe-
liCa servers connected to the mobile telecom network and FeliCa reader/writers.

The characteristics of the Mobile FeliCa IC chip firmware are as follows:

– Contains the secure file system and the communications protocol, which are
the basis of the FeliCa technology;

– Possesses firewall functions that enable the multiple services in the Mobile
FeliCa IC chip such as electric money and train tickets;

– Provides the extended functions and performance required to be embedded
in a mobile phone while maintaining compatibility with FeliCa IC cards.

For the project, we must ensure the extremely high quality of the software so
as to avoid serious problems related to social infrastructure and to ensure that
multitude of stakeholders will not be affected.

The project duration was three years and three months. There were 50-60
members affiliated with this project, and the average age was about 30 years
old. There were no members who had the knowledge of or the experience with
formal methods at the time of project launch.

We employed several chip manufacturers in order to reduce risks in manu-
facturing and sales. It was necessary that the firmware on the different ASICs
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and firmware development environments behave exactly the same so that the
compatibility was retained.

C/C++ and assembler languages are used in the implementation of the Mobile
FeliCa IC chip firmware.

2 Objectives

After an intensive consideration to the characterization of the development of
the Mobile FeliCa IC chip, we decided to focus on improvements in upstream
processes related to software development and mutual understanding between
engineers, and we have taken on the challenge of writing formal specifications.

The objectives of adopting formal methods were as follows:

– Description of precise specifications and defining functions;
– Development and adoption of a scheme and processes for specification de-

velopment, firmware implementation and testing;
– Enhancing the quality of deliverables in upstream processes;
– Thoroughgoing testing with formal specifications for whole software devel-

opment processes;
– Improvement of communications between stakeholders.

3 Approach

We have developed and tested external specifications using VDM++[1].
The process of specification development is as follows:

1. Discussed requirements with stakeholders and wrote the general specifica-
tions in a natural language with various diagrams based on UML notation,
such as state transition diagrams and sequence diagrams;

2. Modeled the FeliCa file system and designed and implemented a framework
in VDM++;

3. Described command and security specifications using the framework;
4. Tested developed specifications using a unit test framework.

The main components or functions of the formal specifications are as follows:

– The FeliCa file system specification that defines the basic data structure;
– The framework for describing and testing specifications that are based on

the basic data structure;
– Command specifications which are the basis of the FeliCa technology;
– Security specifications.

We have decided to use the formal specification language VDM++ and VDM-
Tools, since they support describing and executing of models in large-scale.

Non-functional specifications such as performance and reliability were written
in the natural language separately from the formal specification.
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In the project, we organized three teams; specification team, firmware imple-
mentation team and testing team. There were 5-10 members, 15-20 members
and 25-35 members respectively.

4 Test Scheme

Test engineers design black-box test specifications from the formal specifications
and then implement test scripts. Executable formal specifications, firmware on
development boards and IC chips are tested using the test scripts.

From the results of the tests, we were able to confirm whether the test cases
and scripts are consistent with the specifications. In addition, from measuring the
coverage of the executable formal specifications we were able to confirm whether
the test items cover all the defined specifications. Therefore, executable formal
specifications, firmware on development boards and IC chips can be tested at
the same time.

5 Results and Considerations

The results related to specifications are as follows:

– 383 pages of a protocol manual written in a natural language (manual for
other departments within the company and for outside customers);

– 677 pages of an external specification document written in the formal spec-
ification language.

We developed the formal specifications of about 100,000 steps, inclusive of
unit testing for formal specifications and comments written in a natural lan-
guage as a supplement of the formal specifications. Using this specifications, we
implemented the C/C++ code of about 110,000 steps, inclusive of comments,
as firmware of a single IC chip.

The percentages of errors related to specifications for the overall project are
as shown in Table 1.

Table 1. Percentages of the Cause of Errors

Reason for Errors Percentage

Missing description 0.2%
Erroneous description 0%
Unclear description 1.8%

Oversight 5.6%
Insufficient understanding 10.7%
Insufficient confirmation 0%

Failure of change propagation 0.2%

Others (reasons unrelated to specifications) 81.5%
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The formal methods are useful for finding errors in the early stages of devel-
opment.

From the above results, it can be said that we have successfully described
the specifications in precise way. On the other hand, the total percentage of
“oversight” errors and “insufficient understanding” errors was 16.3%. This was
due to the fact that the separations between the actual specifications and the
code required to execute the specifications was unclear.

The average productivity of VDM code for the formal specifications was about
1,900 lines per engineer per month (approximately 160 hours). This number is
equal to the firmware implementation. It can be said that there was no particular
disadvantage by using the formal specification language.

The line coverage rate of the formal specifications by unit testing was 82%.
We were able to enhance the coverage rate of unit testing cases by coverage

analysis. As a result of unit testing, we were able, for example, to discover an
incorrect path in postconditions. It is generally difficult to discover this kind of
inconsistency in a specification by review.

The line coverage rate of the formal specifications by black-box testing was
100%. This coverage rate is inclusive of visual inspection.

“Random Test” is an aging test; the test tool sends randomly selected com-
mands continuously to the test target and checks whether the test target sends
back correct responses.

By carrying out about 7,000 black-box tests and 100 million random tests,
the high quality of IC chips was achieved.

We have analyzed all the questions related to the specifications from firmware
engineers, test engineers and stakeholders and have divided questions into three
categories: “Comprehension,” “Intent” and “Error.”

As compared with the formal specification, there are more requests for clarifi-
cation on the general specifications and the manual written in natural language.
On the other hand, there are more questions related to comprehension of the
formal specification.

This result shows that the specifications in natural language were not pre-
cise and for the formal specifications the background of the specifications were
unclear to readers. Therefore, it is preferable that the background of the spec-
ifications written in natural language are included as comments in the formal
specifications.

6 Conclusion

The application of the formal method was highly effective for the success of our
project.

The formal method contributes the quality of deliverables in upstream pro-
cesses, especially in the specification development process and the improvement
of communication within a project.

Additionally, the fact that the executable formal specifications are resembled
to program codes is an substantial advantage because the know-how accumulated
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through program development can be applied (for example, configuration man-
agement, filter programs, batch programs, object oriented analysis and design
technology, unit testing and so on).

It is necessary to pay attention to not only executable features but also the
readability of specifications. Since specifications are referred to by all project
members, it needs to be a simple specification that can be read without stress.

7 Difficulties

In our project, the capability for abstraction required by formal specification
engineers did not go beyond that required by usual programmers.

In the case of VDM++, an engineer who is familiar with the object oriented
design and the implementation of C++/Java languages will easily be able to
carry out coding and testing of formal specifications after training of about 1
month.

8 Future Issues

Future issues are listed below:

– Validating whether specifications fulfill requirements;
– Negotiating with stakeholders who do not read formal specifications;
– Testing manuals for users that is based on formal specifications;
– Defining effective combinations of formal and informal specifications;
– Description of formal specifications suitable for embedded systems;
– Validation and testing of the formal specification; for example validation of

whether the security specification is logically consistent;
– Framework for describing specifications that are easy-to-read and executable.
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Abstract. In this article we would like to present some recent applications of 
the B formal method to the development of safety critical system. These 
SIL3/SIL41 compliant systems have their functional specification based on a 
formal model. This model has been proved, guaranteeing a correct by 
construction behaviour of the system in absence of failure of its components. 
The constructive process used during system specification and design leads to a 
high quality system which has been qualified2 by French authorities.   

1   Introduction 

Historically, the B Method was introduced in the late 80s' to design correctly safe 
software. Promoted and supported by RATP3, B and Atelier B, the tool implementing 
it, have been successfully applied to the industry of transportation. First real success 
was Meteor line 14 driverless metro in Paris: Over 110 000 lines of B models were 
written, generating 86 000 lines of Ada. No bugs were detected after the proofs, 
neither at the functional validation, at the integration validation, at on-site test, nor 
since the metro lines operate (October 1998). The safety-critical software is still in 
version 1.0 in year 2007, without any bug detected so far.  Today, Alstom 
Transportation Systems and Siemens Transportation Systems (representing 80% of 
the worldwide metro market) are the two main actors in the development of B safety-
critical software development. Both have a product based strategy and reuse as much 
as possible existing B models to develop future metros. For the time being, ClearSy 
has developed for Siemens the biggest B application: the Charles de Gaule airport 
shuttle automated pilot is a 150 000 lines of code program. On a different domain, 
Gemplus has developed a smartcard java bytecode verifier [Casset 99].  
                                                           
1 SIL (Safety Integrity Level) is defined as a relative level of risk-reduction provided by a 

safety function, or to specify a target level of risk reduction. Four SIL levels are defined, with 
SIL4 being the most dependable and SIL1 being the least. A SIL is determined based on a 
number of quantitative factors in combination with qualitative factors such as development 
process and safety life cycle management. 

2 French authorities define Qualified as « Certified and working » while Certified is mainly a 
verification of conformance to specification (the system produced  may or may not work 
properly). 

3 Régie Autonome des Transports Parisiens : operates bus and metro public transport in Paris.  
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A more widely scope use of B appeared in the mid ‘90s, called Event-B, to analyze, 
study and specify systems. One of the outcome of Event-B is the proved definition of 
systems architectures and, more generally, the proved development of, so called, 
“system studies”, which are performed before the specification and design of the 
software. This enlargement allows one to perform failure studies right from the 
beginning in a large system development. Event-B has been applied in many cases to 
various fields: certification of smartcard security policies (level EAL5+, Common 
Criteria), verification of Ariane 5 launcher embedded flight software, generation of 
proven hardware specification,  etc.  

In this article, we detail the first platform screen door system which has been 
modelled in B, details the development process and presents qualitative and quantitative 
results.  

2   COPPILOT: A Platform Screen Door Controller 

2.1   Presentation 

In France, RATP has used for years platform screen doors (PSD) that prevent 
customers to enter or to fall on tracks. Such a system was adopted by the METEOR 
driverless metro, as it dramatically improves trains availability.  In order to offer 
higher quality services and more safety to its customers, RATP was trying to 
introduce this kind of protection system in several lines, automated or not. For 
practical reasons, trains and cars could not be modified with the introduction of PSD. 
Before starting to deploy a new PSD system in an entire line, RATP initiated a project 
aimed at developing a prototype PSD system for three stations of line 13.  

These prototypes would be evaluated during eight months. ClearSy was in charge of 
developing the SIL3 compliant (probability of system failure less than 10-7), control 
command controller. This controller is in charge of detecting the arrival, presence at a 
standstill and departure of trains without direct connection with them (on the contrary, 
Meteor4 trains communicate with PSD through dedicated communications lines). Once 
the train is at standstill, the controller should be able to detect train doors opening and 
closing, and then issue PSD opening and closing orders. These orders have to be 
securely issued (failure by elaborating a wrong opening order may lead to customers 
injury or death), and controller have to be designed, tested and validated in accordance 
with railway regulations (IEC 50126, 50128, 50129 in particular). 

The timescale of this project was quite short as the PSD controller would be 
installed in only 10 months after the beginning of the project. Given these strong 
timing constraints, we decided to adopt a secure architecture able to be quickly 
qualified by regulation authorities, loosely coupled with sensor technology. The final 
architecture was based on Siemens safety automaton, SIL3 compliant, and ordinary 
infra-red and radar sensors. In this case, security relies on the safety automaton and on 
sensor measure redundancy, not on the safety properties of the sensors. This approach 
leads to a decrease in system costs as usual since non-safety sensors are really cheaper 
than safety ones, leading to easier provisioning (shorter delay, no dependency towards 
a unique provider).  
                                                           
4 First driverless metro operated in Paris. 
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2.2   The Development Process 

In order to reach the required safety level during project timescale, we decided to set 
up a development method aimed at reaching targeted reliability, and also ensuring 
traceability between the different stages of the projects in order to reduce the 
validation effort. This method was heavily based on the B formal method, and applied 
during most phases of the project.  

Before any development activity, a formal functional analysis of the system was 
performed, to evaluate “completeness” and ambiguity freeness of the statement of 
work. At that time, the solution imagined by RATP was to point two laser telemeters 
on the platform, and to apply two independent 2D image recognitions in order to 
detect train arrival and departure, as well as train door opening and closing.   The B 
method was used to: 

- Verify on the overall system (PSD + controller) that functional constraints 
and safety properties were verified (no possibility to establish forbidden 
connections between train and platform or between train and tracks).   

- Lead to the observation of dangerous system behaviour. 

Telemeter based solution was then evaluated in order to verify that its compliancy 
with project constraints. This solution was finally abandoned due to the fact that 
designing two independent (but concordant) image recognition algorithms was judged 
too risky during the short lifetime of the project. 

A new architecture was then imagined and proposed, making use of usual sensors 
and processing based on temporal sequence recognition of sensor events. Hyper 
frequency, infrared and laser sensors help to improve system resistance to various 
perturbations. Redundancy among sensors using different technology raises measures 
confidence. These sensors were positioned on the platform and pointed to the tracks 
in order to measure train position, train speed and train door movements.   

System and software specification were then formalized in B by the development 
team, taking into account only nominal behaviour for the sensors (in absence of 
perturbation). Models obtained from previous functional analysis (independent from 
any PSD controller architecture) were directly reused. The proposed architecture was 
modelled and inserted in these previous models. New architecture was successfully 
checked by proof to comply with functional specification of the system, including 
parts of the French underground regulations. Controller functions were then precisely 
modelled (train arrival, train detection, train departure, train door opening, train door 
closing, etc). In the meantime, an independent safety case5 was developed in parallel 
by the security team, in order to precisely define how external perturbations may 
influence the behaviour of the PSD controller. Perturbations were given a priori or a 
posteriori frequencies, depending on availability of such data at RATP, and a 
mathematical model, independent from the B model, was set up in order to determine 
quantitatively the security level of the system. A priori frequencies were verified 
during the eight month experiment. In case these frequencies were not verified and 
lower system security below SIL3 level, the PSD controllers would have to be 
redesigned considering this new information. 
                                                           
5 Safety oriented study that provides a convincing and valid argument that a system is 

adequately safe for a given application in a given environment. 
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The resulting B model was animated with the Brama animator6, in order to verify 
on given scenarios that the model produced was corresponding to the real system we 
were modelling. This model animator was not part of the validation process, as this 
would require it to be qualified as a SIL3 software, but it helped us to check models 
against reality and to internally verify their suitability.   

Specification documentation was partly elaborated from the system level models 
developed during this project. The composys7 tool helps the modeller to add 
contextual information (comments, description, component name, etc) in B models 
that are used to generate in natural language the specification documentation descry-
bing the complete system. As events are associated to components and as variables 
are used within events (read/write), Composys computes relationships among 
components constituting the system being modelled, depending on how variables are 
read or modified. This document was used to check models with experts of the 
domain, unable to read and understand formal models. 

The development of the software was based on the formal models, as B enables the 
production of source code, proven to comply with its specification. Siemens 
automaton can be programmed in the LADDER language but, unfortunately, requires 
entering program source code via its graphical interface (according to its certificate) 
to keep its SIL3 accreditation. A dedicated translation schema (from B to LADDER) 
was elaborated. B to LADDER state diagrams translation is straightforward and some 
optimisations were introduced in order to verify temporal constraints (cycle time in 
particular). During validation phase, one can determine which event of the B model 
corresponds to the path of the LADDER program for a cycle (a LADDER program is 
defined by logical equations and is analyzed in term of execution path). In case the 
source code is automatically generated by a qualified translator (as for automatic 
pilots, by Siemens and Alstom), no unit test is required, this testing phase being 
covered by the proof of the model. In this project, as the source code was not 
generated automatically by such a translator, test was required and test specification 
was elaborated by usual means. Some months after the beginning of the project, we 
obtained a fully functional, tested and validated application. The process described 
above has enabled us to produce a 100% tested, error free (against its specification) 
software when running validation test bench for the first time. A dedicated test bench 
was designed to simulate major perturbations (sensors were emulated) and run during 
days, but no faulty behaviour was observed.  

Integration testing was performed on a dedicated testing platform installed in the 
METEOR line. Tracks and sensors being already protected by PSD in the line, 
measurement campaigns were setup quickly in order to assess as quickly as possible 
security, availability, response time, etc). Sensor technology choices were validated at 
that occasion. 

2.3   Results 

Finally, 4 months after the beginning of the project, the PSD controller was deployed 
on 3 platforms on line 13, for a 8 month experiment. The following metrics were 
obtained: 

                                                           
6 http://www.brama.fr 
7 http://www.composys.fr 
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- equip: a project manager, a developer, a validation engineer, a safety 
engineer 

- initial system level functional specification: 130 page document 
- safety case:  300 pages 
- development documentation: 600 pages 
- formal B models: 3500 lines of code, representing about 1000 proof 

obligations. 90 % were demonstrated automatically, the remaining proof 
obligations were discharged in two days with the Atelier B interactive prover. 

This system was experimented during 8 months, controlling around 96 000 trains. 
No fault was observed. Hypotheses made during the safety case were confirmed and 
made more accurate. System availability conformed to expectations and, after initial 
setup and tuning, no passenger remained stuck in the train (PSD should open 9999 out 
of 10000 times when a valid train is at standstill opening its doors).  

3   Conclusion 

The methodology we have developed appears to be efficient and well suited to 
address projects requiring high level of safety and short development time. The B 
formal method was not initially considered by RATP, but is now well accepted. The 
writing of some extra documents were required to help RATP engineers to fully 
understand, verify and qualify our deliverables. Reuse of existing models for similar 
projects proved to be efficient. 

The resulting systems are nowadays deployed worlwide. 
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Darvas, Ádám 68
Dave, Nirav 12
Dovland, Johan 52

Emmi, Michael 116
Engler, Dawson 33

Fitzgerald, John 181
Furia, Carlo A. 132

Gawlitza, Thomas 342
Geurts, Wouter 419
Giannakopoulou, Dimitra 116
Gonzalia, C. 100
Grandy, Holger 165
Greve, David 229
Gurov, Dilian 262

Harhurin, Alexander 390
Hartmann, Judith 390
Hatcliff, John 229
Hoag, Jonathan 229

Jackson, Daniel 326
Johnsen, Einar Broch 52
Jong, Gjalt de 411

Katelman, Michael 12
Katz, Shmuel 1
Khurshid, Sarfraz 310
Kiniry, Joseph R. 214

Kitchen, David 34
Kulkarni, Sandeep S. 374
Kurita, Taro 425

Larsen, Peter Gorm 181
Lecomte, Thierry 430
Li, Mingyan 406
Lintelman, Scott 406

Macedo, Hugo Daniel 181
Mateescu, Radu 148
McComb, Tim 358
McIver, A.K. 100
Mezhuyev, Vitaliy 411
Misra, Jayadev 34
Morgan, C.C. 100
Müller, Peter 68

Nakatsugawa, Yasumasa 425
Nguyen, Quang-Huy 198
Noll, Thomas 84
Norrish, Michael 294

Owe, Olaf 52
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Rodŕıguez, Edwin 229
Rossi, Matteo 132
Rudich, Arsenii 68

Sampigethaya, Krishna 406
Schellhorn, Gerhard 165
Seidl, Helmut 342
Serwe, Wendelin 278



436 Author Index

Sewell, Peter 294

Smith, Graeme 358

Steffen, Martin 52

Stenzel, Kurt 165

Thivolle, Damien 148

Torlak, Emina 326

Uzuncaova, Engin 310

Verhulst, Eric 411

Wijbrans, Klaas 419

Zaks, Anna 35
Zimmerman, Daniel M. 214


	Title Page
	Preface
	Organization
	Table of Contents
	Aspects and Formal Methods
	Introduction
	Aspects for Model Checking
	Aspects for Modelling and Abstraction

	Formal Methods for Aspects
	The Quest for Modularity
	Specifications of Aspects
	Using LTL Tableaux as Generic Base Programs
	Using Interference Freedom Checks for Aspects

	Related Work and Summary

	Getting Formal Verification into Design Flow
	Introduction
	What Needs to be Verified: Examples from Hardware
	Simple Deterministic Designs: IP Lookup
	Dealing with Noise: 802.11a
	Specification of a Lossy System: The H.264 Video CODEC
	Nondeterminism: Cache Coherence
	Simple Specification, Complex Design: Processors

	High-Level Design Languages Are a Prerequisite for Incorporating Formal Methods into Design
	Static Type Checking
	High-Level Parameterization
	Modularity
	Unified Language for Design and Specification
	Handling Nondeterminism
	Property Specification
	FSM Equivalence and Automatic Retiming
	Formalized Testing

	Issues with Incorporating Formal Methods into Design
	IP Lookup: Using Model Checkers in Practice
	Cache Coherence: Using Theorem Provers in Practice

	Conclusion

	Lessons in the Weird and Unexpected: Some Experiences from Checking Large Real Systems
	Simulation, Orchestration and Logical Clocks
	CoVaC: Compiler Validation by Program Analysis of the Cross-Product
	Introduction
	Formal Model and the Notion of Correct Translation
	Transition Graphs
	States and Computations
	Correct Translation

	Equivalence Checking by Program Analysis of the Cross-Product ST
	Comparison Graphs
	Witness Verification Conditions

	Comparison Graph Construction
	Consonant Transition Graphs
	Algorithm Compose

	Example
	CoVaC  Tool
	Related Work and Conclusion

	Lazy Behavioral Subtyping
	Introduction
	Late Bound Method Calls
	Syntax for an Object-Oriented Kernel Language
	Reasoning about Virtual Calls

	A Lazy Approach to Virtual Calls
	Assertions and Assertion Entailment
	Class Analysis with a Proof Environment

	An Assertion Calculus for Program Analysis
	The Proof Environment of the Assertion Calculus
	The Analysis Operations of the Assertion Calculus
	The Inference Rules of the Assertion Calculus

	Related Work
	Conclusion

	Checking Well-Formedness of Pure-Method Specifications
	Introduction
	Well-Formedness
	Checking Well-Formedness
	Partiality
	Incremental Construction of Model
	Proof Obligations

	Application with Automatic Theorem Provers
	Related Work
	Conclusion

	Verifying Dynamic Pointer-Manipulating Threads
	Introduction
	Related Work
	A List-Manipulating Programming Language
	Data Abstraction
	A Logic for Pointer Programs
	Control-Flow Abstraction
	Conclusions and Future Work

	Proofs and Refutations for Probabilistic Refinement
	Introduction
	On Refinement, and Checking for It: An Introduction
	Probabilistic Refinement in Detail
	Definition of Refinement
	Example; and Difficulty with Counterexamples
	Expected Values of Random Variables Certify Counterexamples
	A Logic of Expectation Transformers
	Equivalence of Relational- and Transformer Semantics
	Distributions and Random Variables in Euclidean Space

	Proofs and Refutations
	Calculating Result Sets
	Proving Refinement
	Refuting Refinement
	Source-Level Refutation

	Finding Adversarial Schedules in Distributed Systems
	Implementing the Search for Certificates
	Conclusions and Future Work

	Assume-Guarantee Verification for Interface Automata
	Introduction
	Background
	Interface Automata (IA)
	Compatibility
	Refinement
	Checking Compatibility and Refinement

	Assume-Guarantee Reasoning for Interface Automata
	Weakest Assumptions
	Learning-Based Assume-Guarantee Reasoning
	Experience
	Related Work
	Conclusion

	Automated Verification of Dense-Time MTL Specifications Via Discrete-Time Approximation
	Introduction
	Related Works

	Preliminaries
	Specification Language: MTL
	Sampling Invariance

	Discretization of Dense-Time MTL through Sampling
	Under-Approximation
	Over-approximation
	System Approximations
	Validity Checking Procedure

	Implementation and Experiments
	Discrete-Time Bounded Validity Checking
	Examples
	Experiments

	Conclusion

	A Model Checking Language for Concurrent Value-Passing Systems
	Introduction
	Syntax and Semantics
	Basic MCL: Modal mu-Calculus with Data
	Extended Regular Operators

	Model Checking Method
	Translation into Parameterized BESs
	Handling of the Infinite Looping Operator

	Implementation and Use
	Conclusion and Future Work

	Verification of Mondex Electronic Purses with KIV: From a Security Protocol to Verified Code
	Introduction
	Mondex in a Nutshell
	An Implementation of Mondex
	Data Types and Communication
	Purse Functionality
	Embedding in Javacard

	Refinement Method
	Proof Strategy and Experiences
	Related Work
	Conclusion

	Incremental Development of a Distributed Real-Time Model of a Cardiac Pacing System Using VDM
	Introduction
	The Pacemaker System and Environment
	Environment: The Heart
	System: Artificial Pacemaker

	VDM Modelling Technology for Distributed Real-Time Systems
	Basic VDM Notations
	An Incremental Approach to Model Construction
	VDM Tool Support

	The Pacemaker Models
	Abstract Model
	Sequential and Concurrent Models
	Distributed Real-Time Model

	Validation
	Validation of Abstract, Sequential, Concurrent and DR-T Models
	Timing Conjectures and Their Validation

	Related Work
	Concluding Remarks and Further Work

	Industrial Use of Formal Methods for a High-Level Security Evaluation
	Introduction
	CC Waterfall Model
	Security Target
	Java Card Firewall as a Security Objective
	Security Policy Model of Java Card Firewall
	Java Card Firewall as a Security Function

	Formal Refinement of the Product
	Functional Specification
	High Level Design
	Low Level Design

	Correctness
	Theorems of Correctness
	Proof Scheme and Experiences

	Ensuring Security Objectives by the Implementation
	Concluding Remarks

	Secret Ninja Formal Methods
	Enter the Ninja
	The Ninja Arts
	Formal Methods
	Tools and Technologies

	Ninjutsu in the Classroom
	Concept Analysis
	Queries, Commands and Constraints
	Java Module Skeletons
	Method Signatures
	JML Specifications
	Method Bodies and Fields

	Notes from the Dōjō�
	Conclusion

	Specification and Checking of Software Contracts for Conditional Information Flow
	Introduction
	Example 
	Foundations of SPARK Conditional Information Flow
	Conditional Information Flow Contracts
	Foundations of Flow Contracts
	Language Design for Conditional SPARK Contracts

	A Precondition Generation Algorithm
	Evaluation
	Related Work
	Conclusion

	JML Runtime Assertion Checking: Improved Error Reporting and Efficiency Using Strong Validity
	Introduction
	JML Assertion Semantics
	Classical Assertion Semantics
	RAC Approximation of the Old Semantics through Game-playing
	New Semantics Based on Strong Validity

	JML Runtime Assertion Checker (RAC), Old Semantics
	Code Instrumentation

	JML RAC Redesign in Support of Strong Validity
	Expression Evaluation
	Handling Quantified Expressions

	Validation: Assessment and Statistics
	Effectiveness at Finding Bugs
	Related Work
	Conclusion
	References

	Provably Correct Runtime Monitoring
	Introduction
	Program Model
	Security Policies and Automata
	ConSpec: A Monitor Specification Language
	Monitoring with ConSpec Automata
	Specification of Monitoring
	Language of Ghost Annotations
	Policy Annotations (Level I) 
	Synchronisation Check Annotations (Level II)

	Correctness of Inlining
	Conclusion

	A Schedulerless Semantics of TLM Models Written in SystemC Via Translation into LOTOS
	Introduction
	Related Work
	TLM Subset of SystemC
	TLM Principles
	SystemC Description Language
	SystemC Scheduler

	Translation of the TLM-Subset of SystemC into LOTOS
	LOTOS
	Overview of the Translation
	Variables of Modules
	Locks
	Event Communication
	Threads and Transactions
	Modules and Complete System

	Experimental Results
	Conclusion

	A Rigorous Approach to Networking: TCP, from Implementation to Protocol to Service
	Introduction
	Background: Our Previous Low-Level Protocol Model
	The New Service-Level Specification
	The Abstraction Function
	Experimental Validation
	Related Work
	Conclusion
	References

	Constraint Prioritization for Efficient Analysis of Declarative Models
	Introduction
	Example: Binary Search Tree
	Alloy Model: Binary Search Tree

	Background: Alloy and Program Slicing
	Alloy
	Constraint Partitioning and Prioritization

	Our Approach
	Alloy Language Structure
	Declarative Slicing
	Selecting a Likely Optimal Criterion

	Experiments
	Results
	Discussion

	Conclusion

	Finding Minimal Unsatisfiable Cores of Declarative Specifications
	Introduction
	A Small Example
	Sample Analyses

	Finding Minimal Cores
	Specifications and Cores
	Resolution Engine
	Translation
	Basic Core Extraction Algorithms
	Simple and Recycling Core Extraction
	Correctness and Minimality of SCE and RCE

	Experimental Results
	Related Work
	Conclusions

	Precise Interval Analysis vs. Parity Games
	Introduction
	Notation and Basic Concepts
	From Parity Games to Systems of Integer Equations
	From Systems of Integer Equations to Interval Analysis
	Solving Integer Equations
	Conclusion

	Introducing Objects through Refinement
	Introduction
	Indexing Function 
	Classification and Splitting of Operations 
	Local Operations
	Delegate Operations
	Unclassified Operations
	Standard Form of Delegate Operations

	Introducing Object References 
	Migrating the References to a Foreign Class

	Conclusion and Related Work

	Masking Faults While Providing Bounded-Time Phased Recovery
	Motivation
	Real-Time Programs and Specifications
	Real-Time Program
	Example
	Specification
	Example (cont'd)

	Fault Model and Fault-Tolerance
	Fault Model
	Phased Recovery and Fault-Tolerance

	Problem Statement
	Synthesizing Fault-Tolerant Real-Time Programs with 2-Phase Recovery
	Complexity
	A Sufficient Condition for a Polynomial-Time Solution
	Example (cont'd)

	Related Work
	Conclusion and Future Work

	Towards Consistent Specifications of Product Families
	Introduction
	Running Example
	Outline

	Service Diagram
	Single Service
	Aggregation
	Variability
	Dependencies

	Consistency
	Consistency of a Single System
	Consistency of a System Family
	Tool Support

	Contributions
	Related Work
	Conclusion and Future Work

	Formal Methods for Trustworthy Skies: Building Confidence in the Security of Aircraft Assets Distribution
	High Assurance for eEnabled Aircraft Assets
	Securing Electronic Distribution of Aircraft Assets by AADS
	Relevant AADS Challenges for Formal Methods
	Towards Establishing Confidence in the Security of AADS
	Open Problems
	References

	An Industrial Case: Pitfalls and Benefits of Applying Formal Methods to the Development of a Network-Centric RTOS
	Problem Statement
	Systems (and Software) Engineering Approach
	Lessons from Using Formal Modeling
	Selecting a Methodology
	Why Are There No Errors?

	A Thin Boundary between Past Experience, Creativity and Model Checking
	Novelties in the Architecture
	Formal Verification
	Future Developments and Research
	Conclusion
	References

	Software Engineering with Formal Methods: Experiences with the Development of a Storm Surge Barrier Control System
	Introduction
	The Barrier and the BOS System
	Barrier Reliability Revisited
	Actual Operation of the BOS System
	Mid-Life Upgrade Project
	Conclusions
	References

	Application of a Formal Specification Language in the Development of the “Mobile FeliCa” IC Chip Firmware for Embedding in Mobile Phone
	Outline of Project
	Objectives
	Approach
	Test Scheme
	Results and Considerations
	Conclusion
	Difficulties
	Future Issues

	Safe and Reliable Metro Platform Screen Doors Control/Command Systems
	Introduction
	COPPILOT: A Platform Screen Door Controller
	Presentation
	The Development Process
	Results

	Conclusion
	References

	Author Index



