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Abstract. Ontology-Driven Software Development (ODSD) advocates
using ontologies for capturing knowledge about a software system at de-
velopment time. So far, ODSD approaches have mainly focused on the
unambiguous representation of domain models during the system anal-
ysis phase. However, the design and implementation phases can equally
benefit from the logical foundations and reasoning facilities provided by
the Ontology technological space. This applies in particular to Model-
Driven Software Development (MDSD) which employs models as first
class entities throughout the entire software development process. We
are currently developing a tool suite called HybridMDSD that leverages
Semantic Web technologies to integrate different domain-specific mod-
eling languages based on their ontological foundations. To this end, we
have defined a new upper ontology for software models that comple-
ments existing work in conceptual and business modeling. This paper
describes the structure and axiomatization of our ontology and its un-
derlying conceptualization. Further, we report on the experiences gained
with validating the integrity and consistency of software models using a
Semantic Web reasoning architecture. We illustrate practical solutions to
the implementation challenges arising from the open-world assumption
in OWL and lack of nonmonotonic queries in SWRL.

1 Introduction

In recent years, researchers and practitioners alike have started to explore sev-
eral new directions in software engineering to battle the increasing complexity
and rapid rate of change in modern systems development. Among these new
paradigms is Semantic Web Enabled Software Engineering (SWESE), which tries
to apply Semantic Web technologies (such as ontologies and reasoners) in main-
stream software engineering. This way, SWESE hopes to provide stronger logical
foundations and precise semantics for software models and other development
artifacts.
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The application of ontologies and Semantic Web technologies in software en-
gineering can be classified along two dimensions [13]: the kind of knowledge
modeled by the ontology and whether the approach tackles runtime or devel-
opment time scenarios. If ontologies are employed during development time to
capture knowledge of the software system itself (rather than the development
infrastructure or process), we speak of Ontology-Driven Software Development
(ODSD).

So far, most approaches to ODSD have focused on using ontologies as un-
ambiguous representations of domain (or conceptual) models during the initial
phases of the software engineering process, i.e., requirements engineering and
systems analysis. However, the design and implementation phases can equally
benefit from the logical foundations and reasoning facilities provided by the Se-
mantic Web. This applies in particular to Model-Driven Software Development
(MDSD), a development paradigm that employs models as first class entities
throughout the entire development process [27].

MDSD advocates modeling different views on a system (e.g., data entities,
processes, or user interfaces) using multiple domain-specific modeling languages
(DSLs) [14]. This raises the need for sophisticated consistency checking between
the individual models, decoupling of code generators, and automatic generation
of model transformations [2]. We are currently developing a toolsuite called Hy-
bridMDSD that aims at leveraging Semantic Web technologies to address these
challenges.

In this paper, we introduce HybridMDSD with its ontological foundation, an
upper ontology for software models. Additionally, we concentrate on the chal-
lenges that arise from using Semantic Web technologies to validate the integrity
and consistency of multiple software models. Our main contribution is an analysis
of practical solutions to the implementation challenges posed by the open-world
assumption in OWL and lack of nonmonotonic queries in SWRL. By doing so, we
highlight the need for nonmonotonic extensions to the Semantic Web languages
in the context of Ontology-Driven Software Development.

After briefly reviewing selected aspects related to ODSD in Sect. 2, we present
our approach and its benefits in Sect. 3. Section 4 describes the main concepts
of our newly developed upper ontology. Based on its axiomatization, Sect. 5
elaborates in detail on the challenges and solutions for Semantic Web reasoning
over closed-world software models. In Sect. 6, we briefly highlight related work
to place our method in context. Section 7 concludes on the paper.

2 Ontologies and Models

This section reviews the prevalent view on ontologies and software models in
ODSD and the relation to the Semantic Web. This provides the foundation for
highlighting the differences of our approach and discussing the resulting chal-
lenges in the following sections.

So far, ontology-driven software development has focused on using ontologies
for domain representation in conceptual and business modeling [12]. This appears
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to stem from the view that ontologies and software models have differing, even
opposing intentions. For instance, in a recent proposal to unify Model-Driven
Architecture (MDA) and Semantic Web technologies [1], the authors point out
that both ontologies and models are means to describe a domain of interest by
capturing all relevant concepts and their relationships. However, a key difference
between the two approaches is that a model is a prescriptive representation
of a particular domain under closed-world assumption (CWA). Essentially, this
means that everything that is not explicitly contained in the model does not
exist. Thus, models are ideally suited as exact specifications for software systems.
Ontologies, by contrast, are descriptive and possibly incomplete representations
of the “real world”. They follow the open-world assumption (OWA) which means
that a statement is not necessarily false if it cannot be proved true.

The closed-world assumption in software models is closely related to non-
monotonic reasoning. Nonmonotonic logics allow to make decisions based on in-
complete knowledge, causing previously-drawn conclusions to be retracted when
new information becomes available. An important property of nonmonotonic
logics is strong negation or negation as failure, which allows to infer ¬P if P
cannot be proved. This is vital to validate integrity constraints in closed-world
data models, but can cause problems in the open world of the Semantic Web.
Since incomplete or changing knowledge is common in the web, nonmonotonicity
could often lead to wrong conclusions. Also, implementing efficient nonmonotonic
reasoners is difficult, because predicate nonmonotonic logic is undecidable. As a
result, the Semantic Web is currently built on monotonic formalisms: the Web
Ontology Language (OWL) corresponds to description logics, while the Semantic
Web Rule Language (SWRL) is based on Horn clause rules.

3 HybridMDSD

Model-Driven Software Development facilitates the generation of executable soft-
ware assets from technical abstractions of concrete domain knowledge. However,
applying multiple domain-specific models to describe different views on the same
system is still challenging, because it remains difficult to properly describe the
semantic references and interdependencies between elements in different models
and to maintain consistency. The HybridMDSD project tries to alleviate these
challenges. In the following, we outline our approach and highlight its benefits
for MDSD.

3.1 Approach

The core idea of our approach is to capture pure system-related knowledge of
modeling languages and actively use this knowledge during language instanti-
ation. To implement this, we establish a binding between the constructs of a
modeling language and the concepts and relationships of an axiomatized upper
ontology [20,4]. During system modeling, this binding is used to construct an
ontology knowledge base that contains information about elements from differ-
ent models and their interdependencies. We call this knowledge base a semantic
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connector, because it allows to create semantically sound references between
different domain-specific models in a holistic view of the entire system.

3.2 Benefits

Mapping constructs of different modeling languages to a single reference ontol-
ogy allows the generation of model transformations. Additionally, the semantic
connector forms the basis for comprehensive ABox reasoning over the set of all
semantically connected model elements. Thus, it permits integrity and consis-
tency validation across the boundaries of individual models (cf. Sect. 5). This
enables several modelers to work collaboratively on different models of a large
system while maintaining semantic consistency between the individual views.
In addition, domain-specific inference rules facilitate automatic adaptation of
model instances in case of modifications to one or more connected models. Such
modifications commonly occur during software evolution and especially in Soft-
ware Product Line Engineering (SPLE), where a variable product feature may
affect several system models [20].

4 An Ontology for Software Models

This section introduces the Unified Software Modeling Ontology (USMO), a new
upper ontology that is the basis for the semantic connector in the HybridMDSD
project. USMO is the result of a careful analysis of existing foundational ontolo-
gies in the area of conceptual modeling, such as the Bunge-Wand-Weber (BWW)
ontology [8], the General Foundational Ontology (GFO) [11] and the Unified
Foundational Ontology (UFO) [12]. Specifically, we have compared the ontolog-
ical foundations of conceptual models with those of software models. Our study
revealed major differences in the corresponding ontological interpretation, which
eventually prompted us to derive our own upper ontology. We have successfully
employed this new ontology in a case study that involved the semantic integra-
tion of several domain-specific models [5]. A detailed description of all USMO
concepts and relationships is beyond the scope of this paper, so we limit the
discussion to those elements relevant in the following sections. A comprehensive
coverage of the entire ontology — including its philosophical background and
conceptualization of physical objects changing over time — can be found in [5].

4.1 Concepts and Relationships

In its current version, USMO totals 27 classes and 56 properties. In line with
UFO, we divide the world of things into Entitys and Sets. In the context of
software modeling, Entitys simply correspond to model elements. At the most
general level, the Entity class therefore represents language constructs in model-
ing languages. Figure 1 depicts the top level concepts of USMO.

In our ontology, an Entity is simultaneously classified as (1) either an Actual-
ity or a Temporality and (2) either a Universal or a Particular. The Actuality and
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Entity

Universal Particular Actuality Temporality

owl:Thing

Set

OWL Class

OWL Property

Subclass

Disjoint

depends_on
has_dependent

is_part_of
contains

Fig. 1. Elementary concepts and relationships

Temporality concepts represent the philosophical notions of Endurant and Perdu-
rant, respectively [9]. While an Actuality is wholly present at any time instant,
Temporalitys are said to “happen in time”. In the context of software models,
this allows to ontologically interpret both structural and temporal elements.

Universals represent intensional entities that can be instantiated by Particulars.
This distinction facilitates the ontological interpretation of both type models
(e.g., class diagrams) and token models (e.g., object diagrams and behavioral
models) [19]. Figure 2 illustrates the relationships between a Universal and its
extension, which is the Set of instantiating Particulars. Note that USMO only
supports two levels of ontological instantiation, so a Universal cannot instantiate
other Universals.

Universal Particular

Set

has_instance

is_instance_of

      is_member_of

has_memberhas_extension

is_extension_of

Fig. 2. The model of ontological instantiation

At the top level, we define two major relationships. The most important one
is existential dependency, since the corresponding properties depends on and
has dependent subsume all other USMO properties. The dependency relation
therefore spans a directed, acyclic graph over all model elements captured in
the semantic connector knowledge base. With the help of a reasoner, this design
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allows complex impact analysis across several domain-specific models. The sec-
ond important relationship is containment, which adds the notion of transitive,
non-shareable ownership.

To conclude the overview of our ontology, Fig. 3 shows the USMO concep-
tualization of universal structural elements, which are typically found in type
models. A Schema is an Actuality Universal that classifies independent entities.
By contrast, a Property cannot exist on its own and always depends on at least
one Schema. There are two types of Propertys: a RelationalProperty relates at
least two Schemas in a formal or physical relationship, while an IntrinsicProperty
belongs to exactly one other Schema or Property. This allows to clearly specify
the semantics of object-oriented language constructs like classes, associations,
association classes and attributes.

Universal Actuality

Schema Property

Intrinsic
Property

Relational
Property

is_a
has_subtype

Fig. 3. An overview of universal structural concepts

4.2 Axiomatization

To facilitate inferencing and consistency checks, the semantics of each USMO
concept are captured in a rich axiomatization. Since neither description logics
nor Horn logic is a subset of the other, we are using a combination of both
DL concept constructors and rules for this purpose. Currently, we employ only
those constructors available in the OWL standard and emulate features from the
recent OWL 1.1 proposal [23] with rules. This applies to axioms such as qualified
number restrictions (e.g., C � � np.D), role inclusion axioms (R ◦ S �̇ R) and
irreflexive, antisymmetric, or disjoint roles.

The entire concept taxonomy of USMO is defined using so-called covering
axioms [15, p. 75]. This means that for each class C that is extended by a
number of subclasses D1, ..., Dn, we add an axiom
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C ≡ D1 � ... � Dn (1)

In addition, we declare all subclasses as disjoint, so an individual instantiating
C must necessarily instantiate exactly one of D1, ..., Dn.

Regarding the axiomatization with rules, we employ both deductive and in-
tegrity rules. Deductive rules (also known as derivation rules) assist the modeler
by completing the knowledge base with knowledge that logically follows from
asserted facts. They are always monotonic. A good example is the rule describ-
ing the semantics of the instantiation relationship between a Particular p and a
Universal u:

is instance of(p, u) ∧ has extension(u, e) → is member of(p, e) (2)

Integrity rules, by contrast, describe conditions that must hold for the knowl-
edge base to be in a valid state. These rules therefore ensure the wellformedness
of individual models as well as the consistency of all domain-specific viewpoints
that constitute a system description.

5 Semantic Web Reasoning over Software Models

As outlined in Sect. 3, we aim at leveraging the power of logical inference and Se-
mantic Web reasoning for integrity and consistency checking of software models.
This section describes the practical realization of this goal and discusses solu-
tions to the implementation challenges arising from the open-world assumption
in OWL and lack of nonmonotonic queries in SWRL.

5.1 Reasoning Architecture

In Sect. 4.2, we described how the semantics of our new upper ontology are
specified using DL axioms and rules. To validate the integrity and consistency
of software models using both DL and rule reasoning, we employ a three-layered
reasoning architecture (Fig. 4). At the bottom layer, the Jena Semantic Web
framework [16] parses OWL ontologies and knowledge bases serialized in RDF.
On the middle layer, the Pellet DL reasoner [26] provides basic DL reasoning
facilities like subsumption, satisfiability checking, and instance classification. At
the top, the rule reasoner of the Jena framework evaluates both deductive rules
and nonmonotonic consistency constraints. Each layer provides a view of the
RDF graph to the layer above, so the Jena rule engine sees all statements entailed
by the Pellet reasoner in addition to those asserted in the knowledge base.

The separation of DL and rule reasoning into two distinct layers is moti-
vated by the following practical considerations: First, ontologies with complex
TBox assertions like USMO (many disjunctions, inverse roles, and existential
quantifications) require the power of tableau-based implementations available
in dedicated DL reasoners such as Pellet. We experienced serious performance
degradation when activating the OWL-DL integrity rules in the general-purpose
rule engine of the Jena framework. Moreover, Jena rules are not DL-safe [21].
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Fig. 4. The Reasoning Architecture in HybridMDSD

When used for DL reasoning, the reasoner creates blank nodes for existential
quantification and minimum cardinality axioms. As a result, variables in USMO
integrity constraints are bound to individuals that are not explicitly asserted in
the ABox. This often results in wrongly reported integrity violations.

By contrast, the Pellet reasoner is DL-safe and only returns known individu-
als from the knowledge base. Unfortunately, Pellet alone does not suffice either.
Since it solely processes rules encoded in SWRL, there is no support for non-
monotonic querying over OWL ontologies. In particular, the lack of negation as
failure renders it impossible to formulate and validate many USMO integrity
constraints. The Jena rule engine does not have these limitations and supports
complex nonmonotonic queries via extensible built-ins.

5.2 Simulating a Closed World

One of the major challenges of DL reasoning over software models is the open-
world assumption of the Semantic Web. As outlined in Sect. 2, models of soft-
ware systems usually represent a closed world. Thus, missing model elements
might cause integrity constraint violations or inconsistencies between different
viewpoints in multi-domain development scenarios. Under the OWA, these vio-
lations remain undetected since unknown information is not interpreted as false.
Based on the axiomatization of our upper ontology for software models, this
section provides a classification of the various problems and discusses possible
solutions.

Essentially, we identify three types of USMO axioms negatively affected by
the open-world assumption: (1) the covering axioms for “abstract” concepts, (2)
existential property restrictions or cardinality axioms and (3) universal quantifi-
cation axioms.

As an example for covering axioms, consider that every USMO Property is
either an IntrinsicProperty or RelationalProperty:
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Property ≡ IntrinsicProperty � RelationalProperty (3)

Now, an individual p solely asserted to be an instance of Property will not vi-
olate this constraint, because it trivially satisfies the disjunction [18]; it is just
unknown which type of Property p exactly belongs to.

An example for existential quantification is the axiom describing a Property
as a dependent entity that cannot exist by itself:

Property � ∃depends on.Schema (4)

Due to the open-world semantics, a Semantic Web reasoner will not actually en-
sure that each Property depends on at least one Schema known in the knowledge
base. Similar considerations apply to cardinality restrictions.

Finally, a typical axiom illustrating universal quantification is that Universals
cannot depend on Particulars:

Universal � ∀depends on.Universal (5)

Here, a reasoner will not validate the actual type of an individual i asserted as
the object in a dependency relationship. Instead, i will be inferred to be of type
Universal.

Theoretically, all above-listed axioms can be rewritten with the epistemic
operator K [7] to gain the desired semantics. The K operator corresponds to �
(Necessarily) in modal logic and allows to close the world locally for a concept
or role [18]:

Property ≡ KIntrinsicProperty � KRelationalProperty (6)

Property � ∃Kdepends on.Schema (7)

Universal � ∀depends on.KUniversal (8)

Unfortunately, there is currently no support for the K operator in OWL, even
though a corresponding extension has been suggested many times [18,10,22]. The
only implementation known to us is part of the Pellet DL reasoner [6], but it is
of prototypical nature and limited to the description logic ALC [18].

A method to simulate local closed worlds without explicit support for the
K operator is documented in [22] and [24, pp. 85]. Its main idea is to use set-
theoretic operations to determine the set of individuals that possibly violate
an integrity constraint, in addition to those that are certainly invalid. The key
observation is that for a given class C, we can partition all individuals into
three distinct sets: (1) those that are known to be a member of C, (2) those
that are known to be a member of ¬C, and (3) those that may or may not
be a member of C. For instance, let C be the class of all individuals that are
asserted to be instances of Property, but do not depend on a Schema, thereby
causing an integrity violation. In an open world, simply enumerating C does
not yield the expected result. The invalid Propertys can instead be found by
subtracting everything in group 2 from the set of all Propertys. Obviously, a
sufficient condition for individuals in group 2 is that they depend on at least one
entity:
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DependsOnMinOne ≡ � 1 depends on (9)

InvalidProperty = Property − DependsOnMinOne (10)

Unfortunately, there is no DL concept constructor for expressing the difference
of classes. Moreover, as observed in [22], this method of querying invalid entities
is asymmetric to the usual instance retrieval for other classes. Hence, it does
not suit the needs of an end user (i.e., the modeler) who wishes to validate the
consistency of the knowledge base in a uniform way.

Since neither the K operator nor the set-theoretic approach are feasible in
practice, our prototype explicitly “closes the world” before each validation run.
In the first case (the covering axioms), this means to explicitly assert for each
Property p that it is neither an IntrinsicProperty nor a RelationalProperty if the
concrete type is unknown. This results in

p ∈ Property 
 ¬IntrinsicProperty 
 ¬RelationalProperty (11)

and a reasoner will readily report the apparent inconsistency. An alternative
approach is to declare the covering subclasses equivalent to an enumeration of
all known members. The following listing exemplifies this method in pseudo Java
code:

1 for each class C {
2 get i1, ..., in with {i1, ..., in} � C
3 assert C ≡ {i1, ..., in}
4 }

In the above example, this results in the following assertions:

IntrinsicProperty ≡ {} (12)

RelationalProperty ≡ {} (13)

A reasoner can now detect the inconsistency between an individual p declared
to be an instance of Property and the unsatisfiability of the Property concept.

To validate the second type of problematic axioms, namely existential prop-
erty restrictions or cardinality constraints, it is necessary to close the correspond-
ing roles. This is achieved by asserting for every individual i that a particular
role on i will have no more role fillers [3, p. 25]. The following listing illustrates
a possible implementation:

1 for each individual i {
2 for each class C with i ∈ C {
3 if ( C is one of {∃p.X,� np,= np} ) {
4 get n with i ∈ = np
5 assert i ∈ � np
6 }
7 }
8 }

For each individual that belongs to a restriction class, we add a member-
ship assertion to an anonymous class that limits the cardinality of the affected
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property to the number of current fillers. If this number violates an existential
property restriction or cardinality constraint, a reasoner will detect the incon-
sistency between the different class assertions. Again, the counting of existing
property assertions in line 4 is a nonmonotonic operation.

A major disadvantage of this approach is that any subsequent property as-
sertions will render the knowledge base inconsistent. Therefore, if one of the
represented models changes, we have to rebuild the entire ABox, which is ex-
pensive for large models and makes continuous validation of the knowledge base
in the background difficult.

Compared to the problems discussed above, universal quantification axioms
are relatively easy to validate. Since our upper ontology has been designed such
that subclasses on the same level of the inheritance hierarchy are always pairwise
disjoint, a reasoner will detect an inconsistency if fillers for universally quantified
properties do not have the expected type.

5.3 Realizing Nonmonotonic Rules

Integrity rules are typically read like “if the body is true, then the head must
also be true”. Yet, to actually validate these rules and show the results to the
user, a logical reformulation is necessary. To see why, consider the following
rule that combines the irreflexivity and antisymmetry axioms of the dependency
relationship:

depends on(x, y) → ¬depends on(y, x) (14)

Evidently, this rule is nonmonotonic as its head contains a negated atom. In
this form, the rule is a statement about the conditions that hold in a consistent
closed-world knowledge base KB. If we abbreviate the rule with R, we can thus
state a new rule S as follows:

¬R → Inconsistent(KB) (15)

Actually, we are only interested in those (known) individuals that cause the
knowledge base to be inconsistent, so we can reformulate S by inserting the old
rule for R and using an auxiliary predicate that classifies an individual as invalid.
We can then simply query the knowledge base for all instances of Invalid and
present them to the user:

¬(depends on(x, y) → ¬depends on(y, x)) → Invalid(x) ∧ Invalid(y) (16)

Transforming this rule using simple logical equivalences yields:

depends on(x, y) ∧ depends on(y, x) → Invalid(x) ∧ Invalid(y) (17)

Obviously, we can rephrase every integrity rule R of the form BR → HR into a
rule S of the form BS → HS , where BS is BR ∧ ¬HR. The intuitive reading of
S is then “If there are individuals that cause the body of R to be true and the
head of R to be false, then these individuals are invalid.”
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Not all nonmonotonic rules can be as easily transformed as in the example
above. Some USMO integrity rules contain negated predicates in their body.
We speak of simple negation in this case. As an example, consider the follow-
ing structural integrity rule, which ensures that the containment relationships
between entities span a tree rather than a graph:

contains(e1, e3) ∧ contains(e2, e3) ∧ e1 ˙�=e2 → contains(e1, e2) ∨ contains(e2, e1) (18)

Again, note the nonmonotonicity of this rule caused by the disjunction in the
head. Applying the logical transformation outlined above yields:

contains(e1, e3) ∧ contains(e2, e3) ∧ e1 ˙�=e2 ∧ ¬contains(e1, e2) ∧ ¬contains(e2, e1) →
Invalid(e1) ∧ Invalid(e2) ∧ Invalid(e3) (19)

The disjunction in the head is gone, but we have gained two negated predicates
in the body of the new rule. Under an open-world assumption, we do not know for
sure whether e1 contains e2 or vice versa. Without negation as failure semantics,
this rule will never fire.

A more complex problem than simple negation is what we call negated ex-
istential quantification. Here, the rule body contains an atom that queries the
knowledge base for the existence of an individual that matches a number of
given criteria. This is required in several USMO integrity rules. As an example,
consider the following rule which ensures that the extension of a Universal is not
empty:

Universal(u) ∧ has extension(u, e) → ∃p (Particular(p) ∧ is member of(p, e)) (20)

Reformulating this rule according to our transformation guideline yields:

Universal(u) ∧ has extension(u, e) ∧ ¬∃p (Particular(p) ∧ is member of(p, e)) →
Invalid(u) (21)

Axioms like this one apparently require a nonmonotonic querying mechanism
built into the rule language. Some USMO integrity rules even involve existential
quantification over not just one, but several variables.

In our implementation, we realize nonmonotonic rules through dedicated
built-ins for the Jena rule reasoner. Dealing with simple negation is easy since
Jena already offers a nonmonotonic built-in noValue that allows to query the
knowledge base for concept and role assertions. For instance, Axiom 19 can be
expressed as shown in in the following listing:

1 [(?e1 usmo:contains ?e3),(?e2 usmo:contains ?e3),notEqual (?e1 ,?e2),
2 noValue (?e1 usmo:contains ?e2), noValue (?e2 usmo:contains ?e1) ->
3 (?e1 rdf:type sc:Invalid ),(?e2 rdf:type sc:Invalid ),
4 (?e3 rdf:type sc:Invalid ) ]

By default, the Jena rule language is not expressive enough to formulate
integrity constraints involving negated existential quantification. Fortunately,
the set of available built-ins can easily be extended. We have written a custom
built-in notExists that realizes the required semantics. The following listing
exemplifies the usage of this built-in for Axiom 20:
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1 [(?u rdf:type usmo:Universal), (?u usmo:has_extension ?e),
2 notExists(?p rdf:type usmo:Property , ?p usmo: is_member_of ?e) ->
3 (?u rdf:type sc:Invalid ) ]

6 Related Work

To the best of our knowledge, the HybridMDSD project is the first attempt to
leverage Semantic Web reasoning for consistency checking of multiple domain-
specific software models based on semantics defined in a shared ontology.

Closely related are the works on UML model consistency validation with de-
scription logics by Simmonds et al. [25]. They, too, represent model elements
as individuals in the ABox of a DL reasoning system. However, in contrast to
our work, they do not employ an axiomatized upper ontology as a semantical
foundation and concentrate solely on the UML metamodel, which results in very
complex queries and hampers the reusability of their solution.

In the area of multi-domain modeling, Hesselund et al. have presented the
SmartEMF system [14]. SmartEMF supports validating consistency constraints
between several loosely coupled domain-specific languages by mapping all ele-
ments of a DSL’s metamodel and instantiating models to a Prolog fact base.
This yields the advantage of logical queries with closed-world semantics, but it
does not offer the powerful features of a DL reasoner such as subsumption and
instance classification.

Finally, both the SemIDE proposal by Bauer and Roser [2] and the ModelCVS
project by Kappel et al. [17] aim to integrate different modeling languages based
on common domain ontologies. Yet, both approaches focus excusively on an
integration on the metamodel level, which essentially means a restriction to
TBox reasoning.

7 Conclusion

In this paper, we have analyzed the challenges in Ontology-Driven Software
Development that arise from using Semantic Web technologies for representing
and reasoning about models in the design and implementation phases. We have
particularly focused on the conceptual mismatch between the open-world as-
sumption of the Semantic Web and the closed world of software models in an
MDSD process. To exemplify the resulting problems, we have introduced a new
upper ontology that allows to semantically integrate different domain-specific
software modeling languages. Based on the axiomatization of this ontology, we
have illustrated different types of integrity constraints that require closed-world
semantics and nonmonotonic reasoning. Our study of critical axioms comprised
both DL concept constructors and Horn clause rules. Finally, we described a
reasoning architecture that practically realizes the presented techniques.
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