
Authenticated Encryption Mode for Beyond the
Birthday Bound Security

Tetsu Iwata

Dept. of Computational Science and Engineering,
Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
iwata@cse.nagoya-u.ac.jp,

http://www.nuee.nagoya-u.ac.jp/labs/tiwata/

Abstract. In this paper, we propose an authenticated encryption mode
for blockciphers. Our authenticated encryption mode, CIP, has prov-
able security bounds which are better than the usual birthday bound
security. Besides, the proven security bound for authenticity of CIP is
better than any of the previously known schemes. The design is based on
the encrypt-then-PRF approach, where the encryption part uses a key
stream generation of CENC, and the PRF part combines a hash function
based on the inner product and a blockcipher.

Keywords: Blockcipher, modes of operation, authenticated encryption,
security proofs, birthday bound.

1 Introduction

Provable security is the standard security goal for blockcipher modes, i.e., en-
cryption modes, message authentication codes, and authenticated encryption
modes. For encryption modes, CTR mode and CBC mode are shown to have
provable security [1]. The privacy notion we consider is called indistinguishability
from random strings [24]. In this notion, the adversary is in the adaptive chosen
plaintext attack scenario, and the goal is to distinguish the ciphertext from the
random string of the same length. The nonce-based treatment of CTR mode was
presented by Rogaway [22], and it was proved that, for any adversary against
CTR mode, the success probability is at most O(σ2/2n) under the assumption
that the blockcipher is a secure pseudorandom permutation (PRP), where n is
the block length and σ denotes the total ciphertext length in blocks that the
adversary obtains. The security bound is known as the birthday bound.

Authenticity is achieved by message authentication codes, or MACs. Practical
examples of MACs that have provable security include PMAC [7], EMAC [21],
and OMAC [10]. We consider the pseudorandom function, or PRF [3], for au-
thenticity which provably implies the adversary’s inability to make a forgery. In
this notion, the adversary is in the adaptive chosen plaintext attack scenario,
and the goal is to distinguish the output of the MAC from that of the random
function. It was proved that, for any adversary against PMAC, EMAC, and
OMAC, the success probability is at most O(σ2/2n).

S. Vaudenay (Ed.): AFRICACRYPT 2008, LNCS 5023, pp. 125–142, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.nuee.nagoya-u.ac.jp/labs/tiwata/

126 T. Iwata

An authenticated encryption mode is a scheme for both privacy and authen-
ticity. It takes a plaintext M and provides both privacy and authenticity for M .
There are a number of proposals: the first efficient construction was given by
Jutla and the mode is called IAPM [13], OCB mode was proposed by Rogaway
et. al. [24], CCM mode [27,12] is the standard of IEEE, EAX mode [6] is based
on the generic composition, CWC mode [15] combines CTR mode and Wegman-
Carter MAC, and GCM mode [19,20] is the standard of NIST. Other examples
include CCFB mode [17], and XCBC [8]. All these modes have provable security
with the standard birthday bound.

There are several proposals on MACs that have beyond the birthday bound
security. For example, we have RMAC [11] and XOR MAC [2], and there are
other proposals which are not based on blockciphers. On the other hand, few
proposals are known for encryption modes and authenticated encryption modes.
CENC [9] is an example of an encryption mode, and its generalization called
NEMO was proposed in [16]. For authenticated encryption modes, CHM [9] is
the only example we are aware of.

We view that the beyond the birthday bound security as the standard goal for
future modes. AES is designed to be secure even if the adversary obtains nearly
2128 input-output pairs, and many other blockciphers have similar security goal.
On the other hand, CTR mode, OMAC, or GCM have to re-key before 264 blocks
of plaintexts are processed, since otherwise the security is lost. This situation
is unfortunate as the security of the blockcipher is significantly lost once it is
plugged into the modes, and the current state-of-the-art, CTR mode, OMAC,
or GCM, do not fully inherit the security of the blockcipher.

In this paper, we propose an authenticated encryption mode called CIP,
CENC with Inner Product hash, to address the security issues in GCM, and
CHM. GCM, designed by McGrew and Viega, was selected as the standard of
NIST. It is based on CTR mode and Wegman-Carter MAC, and it is fully par-
allelizable. Likewise, CHM uses CENC for encryption part and Wegman-Carter
MAC for PRF part,

While CHM has beyond the birthday bound security, its security bound for
authenticity includes the term Mmax/2τ , where Mmax is the maximum block
length of messages, and τ is the tag length. It is a common practice to use small
tag length to save communication cost or storage. For example, one may use
τ = 32 or 64 with 128-bit blockciphers. However the term, Mmax/2τ , is linear
in Mmax, the bound soon becomes non-negligible if τ is small. For example,
with τ = 32, if we encrypt only one message of 222 blocks (64MBytes), the
security bound is 1/1024, which is not acceptable in general. Therefore, beyond
the birthday bound security has little impact when τ is small. GCM also has the
same issue, and its security bounds for both privacy and authenticity have the
term of the form Mmax/2τ .

Our design goal of CIP is to have beyond the birthday bound security, but we
insist that it can be used even with small tag length. Besides, we want security
proofs with the standard PRP assumption, and we maintain the full paralleliz-
ability. CIP follows the encrypt-then-PRF approach [4], which is shown to be a

Authenticated Encryption Mode for Beyond the Birthday Bound Security 127

sound way to construct an authenticated encryption mode. We use CENC [9] for
encryption part, since it achieves beyond the birthday bound security with very
small cost compared to CTR mode. PRF part is a hash function that combines
the inner product hash and the blockcipher, which may be seen as the general-
ization of PMAC [7] to reduce the number of blockcipher calls and still have full
parallelizability.

CIP takes a parameter � called frame width, which is supposed to be a
small integer (e.g., 2 ≤ � ≤ 8). Our default recommendation is � = 4, and
with other default parameters, to encrypt a message of l blocks, CIP requires
257l/256 blockcipher calls for encryption, and l multiplications and l/� = l/4
blockcipher calls for PRF, while � = 4 blocks of key stream has to be pre-
computed and stored. CIP requires about l/� more blockcipher calls compared
to GCM or CHM. For security, if we use the AES, CIP can encrypt at most 264

plaintexts, and the maximum length of the plaintext is 262 blocks (236GBytes),
and the security bounds are, roughly, σ̃3/2245+ σ̃/2119 for privacy, and σ̃3/2245+
σ̃/2118 +2/2τ for authenticity. This implies σ̃ should be sufficiently smaller than
281 blocks (255GBytes). In particular, the only term that depends on tag length
τ is 2/2τ , and thus it does not depend on the message length. Therefore, CIP
can be used even for short tag length. CIP has security bounds that are better
than any of the known schemes we are aware of.

2 Preliminaries

Notation. If x is a string then |x| denotes its length in bits, and |x|n is its length
in n-bit blocks, i.e., |x|n = �|x|/n�. If x and y are two equal-length strings, then
x ⊕ y denotes the xor of x and y. If x and y are strings, then x‖y or xy denote
their concatenation. Let x ← y denote the assignment of y to x. If X is a set,
let x

R← X denote the process of uniformly selecting at random an element from
X and assigning it to x. For a positive integer n, {0, 1}n is the set of all strings
of n bits. For positive integers n and �, ({0, 1}n)� is the set of all strings of n�
bits, and {0, 1}∗ is the set of all strings (including the empty string). For positive
integers n and m such that n ≤ 2m − 1, 〈n〉m is the m-bit binary representation
of n. For a bit string x and a positive integer n such that |x| ≥ n, first(n, x)
and last(n, x) denote the first n bits of x and the last n bits of x, respectively.
For a positive integer n, 0n and 1n denote the n-times repetition of 0 and 1,
respectively.

Let Perm(n) be the set of all permutations on {0, 1}n. We say P is a ran-
dom permutation if P

R← Perm(n). The blockcipher is a function E : {0, 1}k ×
{0, 1}n → {0, 1}n, where, for any K ∈ {0, 1}k, E(K, ·) = EK(·) is a permutation
on {0, 1}n. The positive integer n is the block length, and k is the key length.
Similarly, Func(m, n) denotes the set of all functions from {0, 1}m to {0, 1}n,
and R is a random function if R

R← Func(m, n).

The frame, nonce, and counter. CIP takes a positive integer � as a parameter,
and it is called a frame width. For fixed positive integer � (say, � = 4), a

128 T. Iwata

�-block string is called a frame. Throughout this paper, we assume � ≥ 1. A
nonce N is a bit string, where for each pair of key and plaintext, it is used only
once. The length of the nonce is denoted by �nonce, and it is at most the block
length. We also use an n-bit counter, ctr. This value is initialized based on the
value of the nonce, then it is incremented after each blockcipher invocation. The
function for increment is denoted by inc(·). It takes an n-bit string x (a counter)
and returns the incremented x. We assume inc(x) = x + 1 mod 2n, but other
implementations also work, e.g., with LFSRs if x
= 0n.

3 Specification of CIP

In this section, we present our authenticated encryption scheme, CIP. It takes
five parameters: a blockcipher, a nonce length, a tag length, and two frame
widths.

Fix the blockcipher E : {0, 1}k×{0, 1}n → {0, 1}n, the nonce length �nonce, the
tag length τ , and the frame widths � and w. We require that log2(�k/n�+�) <
�nonce < n, and 1 ≤ τ ≤ n.

CIP consists of two algorithms, the encryption algorithm (CIP.Enc) and the
decryption algorithm (CIP.Dec). These algorithms are defined in Fig. 1. The
encryption algorithm, CIP.Enc, takes the key K ∈ {0, 1}k, the nonce N ∈
{0, 1}�nonce, and the plaintext M to return the ciphertext C and the tag Tag ∈
{0, 1}τ . We have |M | = |C|, and the length of M is at most 2n−�nonce−2 blocks.
We write (C, Tag) ← CIP.EncK(N, M). The decryption algorithm, CIP.Dec,
takes K, N , C and Tag to return M or a special symbol ⊥. We write M ←
CIP.DecK(N, C, Tag) or ⊥ ← CIP.DecK(N, C, Tag). Both algorithms internally
use the key setup algorithm (CIP.Key), a hash function (CIP.Hash), and the
keystream generation algorithm (CIP.KSGen).

We use the standard key derivation for key setup. The input of CIP.Key is the
blockcipher key K ∈ {0, 1}k, and the output is (KH , TH) ∈ {0, 1}k × ({0, 1}n)�,
where TH = (T0, . . . , T�−1), and

– KH is the first k bits of

EK(〈0〉�nonce‖1n−�nonce)‖ · · · ‖EK(〈�k/n� − 1〉�nonce‖1n−�nonce),

and
– Ti ← EK(〈�k/n� + i〉�nonce‖1n−�nonce) for 0 ≤ i ≤ � − 1.

These keys are used for CIP.Hash, which is defined in Fig. 2 (See also Fig. 8 for
an illustration). It takes the key (KH , TH) ∈ {0, 1}k × ({0, 1}n)�, and the input
x ∈ {0, 1}∗, and the output is a hash value Hash ∈ {0, 1}n. The inner product
is done in the finite field GF(2n) using a canonical polynomial to represent
field elements. The suggested canonical polynomial is the lexicographically first
polynomial among the irreducible polynomials of degree n that have a minimum
number of nonzero coefficients. For n = 128 the indicated polynomial is x128 +
x7 + x2 + x + 1. CIP.KSGen, defined in Fig. 3, is equivalent to CENC in [9], and

Authenticated Encryption Mode for Beyond the Birthday Bound Security 129

Algorithm CIP.EncK(N, M)
100 (KH , TH) ← CIP.Key(K)
101 l ← �|M |/n�
102 ctr ← (N‖0n−�nonce)
103 S ← CIP.KSGenK(ctr, l + 1)
104 SH ← first(n, S)
105 Smask ← last(n × l, S)
106 C ← M ⊕ first(|M |, Smask)
107 Hash ← CIP.HashKH ,TH (C)
108 Tag ← first(τ, Hash ⊕ SH)
109 return (C, Tag)

Algorithm CIP.DecK(N, C, Tag)
200 (KH , TH) ← CIP.Key(K)
201 l ← �|C|/n�
202 ctr ← (N‖0n−�nonce)
203 S ← CIP.KSGenK(ctr, l + 1)
204 SH ← first(n, S)
205 Hash′ ← CIP.HashKH ,TH (C)
206 Tag′ ← first(τ, Hash′ ⊕ SH)
207 if Tag′ �= Tag then return ⊥
208 Smask ← last(n × l, S)
209 M ← C ⊕ first(|C|, Smask)
210 return M

Fig. 1. Definition of CIP.Enc (left), and CIP.Dec (right). CIP.KSGen is defined in
Fig. 3, and CIP.Hash is defined in Fig. 2.

Algorithm CIP.HashKH ,TH (x)
100 x ← x‖10n−1−(|x| mod n)

101 l ← |x|/n; (x0, . . . , xl−1) ← x; � ← �l/��
102 Hash ← 0n

103 for i ← 0 to � − 2 do
104 Ai ← (xi�, . . . , x(i+1)�−1) · (T0, . . . , T�−1)
105 Hash ← Hash ⊕ EKH (Ai ⊕ 〈i〉n)
106 A�−1 ← (x(�−1)�, . . . , xl−1) · (T0, . . . , Tl−(�−1)�−1)
107 Hash ← Hash ⊕ EKH (A�−1 ⊕ 〈� − 1〉n)
108 return Hash

Fig. 2. Definition of CIP.Hash. The inner product in lines 104 and 106 is in GF(2n).

is parameterized by E and w. It takes the blockcipher key K, counter value ctr,
and an integer l as inputs, and the output is a bit string S of l blocks. See Fig. 9
for an illustration.

Discussion and default parameters. CIP takes five parameters, the blockcipher
E : {0, 1}k×{0, 1}n → {0, 1}n, the nonce length �nonce, the tag length τ , and the
frame widths � and w. With these parameters, CIP can encrypt at most 2�nonce

plaintexts, and the maximum length of the plaintext is 2n−�nonce−2 blocks.
Our default parameters are, E is any blockcipher such that n ≥ 128, �nonce =

n/2, and τ ≥ 32. The values of � and w affect the efficiency and security. Specif-
ically, to hash � blocks of input, CIP.Hash requires � blocks of keys for inner
product, � multiplications and one blockcipher call. Thus, large � implies that
per message block computation is reduced, while it increases the pre-computation
time and register for keys. Therefore there is a trade-off between security, per
block efficiency and the pre-computation time/resister size. � is supposed to be
a small integer (e.g., 2 ≤ � ≤ 8), and our default recommendation is � = 4. w
follows the recommendation of CENC, and its default value is 256.

130 T. Iwata

Algorithm CIP.KSGenK(ctr, l)
100 for j ← 0 to �l/w� − 1 do
101 L ← EK(ctr)
102 ctr ← inc(ctr)
103 for i ← 0 to w − 1 do
104 Swj+i ← EK(ctr) ⊕ L
105 ctr ← inc(ctr)
106 if wj + i = l − 1 then
107 S ← (S0‖S1‖ · · · ‖Sl−1)
108 return S

Fig. 3. Definition of CIP.KSGen, which is equivalent to CENC [9]

With these parameters, if we use the AES, CIP can encrypt at most 264 plain-
texts, and the maximum length of the plaintext is 262 blocks (236GBytes), and
the security bounds are σ̃3/2245+ σ̃/2119 for privacy, and σ̃3/2245+ σ̃/2118+2/2τ

for authenticity, where σ̃ is (roughly) the total number of blocks processed by one
key. This implies σ̃ should be sufficiently smaller than 281 blocks (255GBytes).

Information theoretic version. We will derive our security results in the infor-
mation theoretic setting and in the computational setting. In the former case,
a random permutation is used instead of a blockcipher, where we consider that
CIP.Key takes a random permutation P as its input, and uses P to derive KH

and TH by “encrypting” constants. Therefore, P is used in CIP.KSGen (lines
101 and 104 in Fig. 3), and (KH , TH) derived from P is used in CIP.Hash. We
still use a real blockcipher in lines 105 and 107 in Fig. 2 even in the information
theoretic version.

4 Security of CIP

CIP is an authenticated encryption (AE) scheme. We first present its security
definitions, and then present our security results.

Security of blockciphers. We follow the PRP notion for blockciphers that was
introduced in [18]. An adversary is a probabilistic algorithm with access to one
or more oracles. Let A be an adversary with access to an oracle, either the
encryption oracle EK(·) or a random permutation oracle P (·), and returns a bit.
We say A is a PRP-adversary for E, and define

Advprp
E (A) def=

∣
∣
∣Pr(K R← {0, 1}k : AEK(·) = 1) − Pr(P R← Perm(n) : AP (·) = 1)

∣
∣
∣ .

For an adversary A, A’s running time is denoted by time(A). The running time
is its actual running time (relative to some fixed RAM model of computation)
and its description size (relative to some standard encoding of algorithms). The
details of the big-O notation for the running time reference depend on the RAM
model and the choice of encoding.

Authenticated Encryption Mode for Beyond the Birthday Bound Security 131

Privacy of CIP. We follow the security notion from [6]. Let A be an adver-
sary with access to an oracle, either the encryption oracle CIP.EncK(·, ·) or
R(·, ·), and returns a bit. The R(·, ·) oracle, on input (N, M), returns a ran-
dom string of length |CIP.EncK(N, M)|. We say that A is a PRIV-adversary
for CIP. We assume that any PRIV-adversary is nonce-respecting. That is, if
(N0, M0), . . . , (Nq−1, Mq−1) are A’s oracle queries, then N0, . . . , Nq−1 are al-
ways distinct, regardless of oracle responses and regardless of A’s internal coins.
The advantage of PRIV-adversary A for CIP = (CIP.Enc, CIP.Dec) is

Advpriv
CIP(A) def=

∣
∣
∣Pr(K R← {0, 1}k : ACIP.EncK(·,·) = 1) − Pr(AR(·,·) = 1)

∣
∣
∣ .

Privacy results on CIP. Let A be a nonce-respecting PRIV-adversary for CIP,
and assume that A makes at most q oracle queries, and the total plaintext
length of these queries is at most σ blocks, i.e., if A makes exactly q queries
(N0, M0), . . . , (Nq−1, Mq−1), then σ = �|M0|/n� + · · · + �|Mq−1|/n�, the total
number of blocks of plaintexts. We have the following information theoretic
result.

Theorem 1. Let Perm(n), �nonce, τ , �, and w be the parameters for CIP. Let
A be a nonce-respecting PRIV-adversary making at most q oracle queries, and
the total plaintext length of these queries is at most σ blocks. Then

Advpriv
CIP(A) ≤ wr2σ̃2

22n−4 +
wσ̃3

22n−3 +
r2

2n+1 +
wσ̃

2n
, (1)

where r = �k/n� + � and σ̃ = σ + q(w + 1).

The proof of Theorem 1 is given in the next section. From Theorem 1, we have
the following complexity theoretic result.

Corollary 1. Let E, �nonce, τ , �, and w be the parameters for CIP. Let A be
a nonce-respecting PRIV-adversary making at most q oracle queries, and the
total plaintext length of these queries is at most σ blocks. Then there is a PRP-
adversary B for E making at most 2σ̃ oracle queries, time(B) = time(A) +
O(nσ̃), and Advprp

E (B) ≥ Advpriv
CIP(A)−wr2σ̃2/22n−4 −wσ̃3/22n−3 − r2/2n+1 −

wσ̃/2n, where r = �k/n� + � and σ̃ = σ + q(w + 1).

The proof is standard (e.g., see [9]), and omitted.

Authenticity of CIP. A notion of authenticity of ciphertext for AE schemes was
formalized in [24,23] following [14,5,4]. Let A be an adversary with access to an
encryption oracle CIP.EncK(·, ·) and returns a tuple, (N∗, C∗, Tag∗), called a
forgery attempt. We say that A is an AUTH-adversary for CIP. We assume that
any AUTH-adversary is nonce-respecting, where the condition applies only to the
adversary’s encryption oracle. Thus a nonce used in an encryption-oracle query
may be used in a forgery attempt. We say A forges if A returns (N∗, C∗, Tag∗)
such that CIP.DecK(N∗, C∗, Tag∗)
→ ⊥ but A did not make a query (N∗, M∗)

132 T. Iwata

to CIP.EncK(·, ·) that resulted in a response (C∗, Tag∗). That is, adversary A
may never return a forgery attempt (N∗, C∗, Tag∗) such that the encryption
oracle previously returned (C∗, Tag∗) in response to a query (N∗, M∗). Then
the advantage of AUTH-adversary A for CIP = (CIP.Enc, CIP.Dec) is

Advauth
CIP (A) def= Pr(K R← {0, 1}k : ACIP.EncK(·,·) forges).

Authenticity results on CIP. Let A be an AUTH-adversary for CIP, and assume
that A makes at most q oracle queries (including the final forgery attempt),
and the total plaintext length of these queries is at most σ blocks. That is, if
A makes queries (N0, M0), . . . , (Nq−2, Mq−2), and returns the forgery attempt
(N∗, C∗, Tag∗), then σ = �|M0|/n� + · · · + �|Mq−2|/n� + �|C∗|/n�. We have the
following information theoretic result.

Theorem 2. Let Perm(n), �nonce, τ , �, and w be the parameters for CIP. Let
A be a nonce-respecting AUTH-adversary making at most q oracle queries, and
the total plaintext length of these queries is at most σ blocks. Then, for some D,

Advauth
CIP (A) ≤ wr2σ̃2

22n−4 +
wσ̃3

22n−3 +
r2

2n+1 +
wσ̃

2n
+

σ

2n−1 +
2
2τ

+ Advprp
E (D) (2)

where r = �k/n� + �, σ̃ = σ + q(w + 1), D makes at most 2σ queries, and
time(D) = O(nσ).

Note that the left hand side of (2) has Advprp
E (D), since we use a blockcipher

in CIP.Hash, while there is no restriction on the running time of A.
The proof of Theorem 2 is given in Section 6. From Theorem 2, we have the

following complexity theoretic result.

Corollary 2. Let E, �nonce, τ , �, and w be the parameters for CIP. Let A be
a nonce-respecting AUTH-adversary making at most q oracle queries, and the
total plaintext length of these queries is at most σ blocks. Then there is a PRP-
adversary B for E making at most 2σ̃ oracle queries, time(B) = time(A) +
O(nσ̃), and Advprp

E (B) ≥ Advauth
CIP (A)−wr2σ̃2/22n−4 −wσ̃3/22n−3 −r2/2n+1 −

wσ̃/2n−σ/2n−1−2/2τ −Advprp
E (nσ, 2σ), where r = �k/n�+�, σ̃ = σ+q(w+1),

and Advprp
E (nσ, 2σ) is the maximum of Advprp

E (D) over all D such that it makes
at most 2σ queries, and time(D) = O(nσ).

The proof is standard (e.g., see [9]), and omitted.

5 Security Proof for Privacy of CIP

We first recall the following tool from [9]. Consider the function family F+,
which corresponds to one frame of CIP.KSGen, and it is defined as follows: Let
P

R← Perm(n) be a random permutation, and fix the frame width w. Then
F+ : Perm(n) × {0, 1}n → ({0, 1}n)w is F+

P (x) = (y[0], . . . , y[w − 1]), where
y[i] = L ⊕ P (inci+1(x)) for i = 0, . . . , w − 1 and L = P (x).

Authenticated Encryption Mode for Beyond the Birthday Bound Security 133

Now let A be an adversary. This A is the PRF-adversary for F+, but we give
A additional information, i.e., we allow A to access the blockcipher itself. That
is, A is given either a pair of oracles (P (·), F+

P (·)), or a pair of random function
oracles (R0(·), R1(·)), where R0 ∈ Func(n, n) and R1 ∈ Func(n, nw), with the
following rules.

– If Wi ∈ {0, 1}n is the i-th query for the first oracle (either P (·) or R0(·)),
then (�nonce + 1)-th bit of Wi must be 1.

– If xj ∈ {0, 1}n is the j-th query for the second oracle (either F+
P (·) or R1(·)),

then (�nonce + 1)-th bit of xj must be 0. That is, input/output samples from
the first oracle are not used in F+

P (·) oracle.
– A does not repeat the same query to its first oracle.
– Let xj ∈ {0, 1}n denote A’s j-th query to its second oracle, and let Xj =

{xj , inc(xj), inc2(xj), . . . , incw(xj)}, i.e., Xj is the set of input to P in the
j-th query. Now if A makes at most q calls to the second oracle, Xj ∩Xj′ = ∅
must hold for any 0 ≤ j < j′ ≤ q − 1, regardless of oracle responses and
regardless of A’s internal coins.

Define Advprf
Perm(n),F+(A) as

∣
∣
∣Pr(P R← Perm(n) : AP (·),F+

P (·) = 1)

− Pr(R0
R← Func(n, n), R1

R← Func(n, nw) : AR0(·),R1(·) = 1)
∣
∣
∣

and we say A is a PRF-adversary for (Perm(n), F+).
We have the following information theoretic result, whose proof is almost the

same as that of [9, Theorem 5].

Proposition 1. Let Perm(n) and w be the parameters for F+. Let A be the
PRF-adversary for (Perm(n), F+), with the above restrictions, making at most
r oracle queries to its first oracle and at most q oracle queries to its second
oracle. Then

Advprf
Perm(n),F+(A) ≤ r2q2(w + 1)3

22n−1 +
q3(w + 1)4

22n+1 +
r(r − 1)

2n+1 +
qw(w + 1)

2n+1 .

Now Theorem 1 follows by using Proposition 1. To see this, by using the
PRIV-adversary A for CIP as a subroutine, it is possible to construct a PRF-
adversary B for (Perm(n), F+). B first makes �k/n� + � calls to its first oracle
and constructs KH and TH , and simulates line 103 of Fig. 1 as in Fig. 4 by
making σ̃/w calls to the second oracle.

6 Security Proofs for Authenticity of CIP

6.1 Properties of the Inner Product Hash

We first recall that the inner product hash is ε-AXU for small ε [26].

134 T. Iwata

Algorithm CIP.KSGen.Sim(ctr, l)
100 for j ← 0 to �l/w� − 1 do
101 Sj ← F+

P (ctr)
102 ctr ← incw+1(ctr)
103 S ← (S0, . . . , S�l/w�−1)
104 S ← first(n × l, S)
105 return S

Fig. 4. The simulation CIP.KSGen.Sim of CIP.KSGen using F+

Proposition 2. Let (x0, . . . , x�−1), (x′
0, . . . , x

′
�−1) ∈ ({0, 1}n)� be two distinct

bit strings. Then for any y ∈ {0, 1}n,

Pr(TH
R← ({0, 1}n)� : (x0, . . . , x�−1) · (T0, . . . , T�−1)

⊕(x′
0, . . . , x

′
�−1) · (T0, . . . , T�−1) = y) = 1/2n.

Proof. We have xi ⊕ x′
i
= 0n for some i. Therefore, the coefficient of Ti in

(x0 ⊕ x′
0) · T0 ⊕ · · · ⊕ (x�−1 ⊕ x′

�−1) · T�−1 = y is non-zero, and for any fixed
T0, . . . , Ti−1, Ti+1, . . . , T�−1, exactly one value of Ti satisfies the equality. ��

If y
= 0n, a similar result holds for two bit strings of different block sizes.

Proposition 3. Let � ≥ �′, and let x = (x0, . . . , x�−1) ∈ ({0, 1}n)� and
x′ = (x′

0, . . . , x
′
�′−1) ∈ ({0, 1}n)�′

be two distinct bit strings. Then for any
non-zero y ∈ {0, 1}n,

Pr(TH
R← ({0, 1}n)� : (x0, . . . , x�−1) · (T0, . . . , T�−1)

⊕(x′
0, . . . , x

′
�′−1) · (T0, . . . , T�′−1) = y) = 1/2n.

Proof. The condition can be written as: (x0 ⊕ x′
0) · T0 ⊕ · · · ⊕ (x�′−1 ⊕ x′

�′−1) ·
T�′−1 ⊕ x�′ · T�′ ⊕ · · · ⊕ x�−1 · T�−1 = y. If all the coefficients of Ti are zero,
then this equation can not be true since y is non-zero. Therefore, we can without
loss of generality assume that at least one of coefficients of Ti is non-zero. ��

6.2 Properties of the CIP.Hash

We next analyze the properties of CIP.Hash.
Let x, x′ ∈ {0, 1}∗ be two distinct bit strings, where |x| ≥ |x′|. We show (in

Proposition 8) that for any y, Pr(CIP.HashKH ,TH (x) ⊕CIP.HashKH ,TH (x′) = y)
is small, where the probability is taken over the choices of KH and TH .

We begin by introducing the notation. Let X ← x‖10n−1−(|x| mod n) and X ′ ←
x′‖10n−1−(|x′| mod n). We parse them into blocks as X = (X0, . . . , Xl−1) and
X ′ = (X ′

0, . . . , X
′
l′−1), where l = |X |/n and l′ = |X ′|/n. Let � = �l/�� and

�′ = �l′/��. We write the i-th frame of X and X ′ as χi and χ′
i, respectively. That

is, χi = (Xi�, . . . , X(i+1)�−1) for 0 ≤ i ≤ � − 2, χ�−1 = (X(�−1)�, . . . , Xl−1),
χ′

i = (X ′
i�, . . . , X ′

(i+1)�−1) for 0 ≤ i ≤ �′−2, and χ′
�′−1 = (X(�′−1)�, . . . , Xl′−1).

Authenticated Encryption Mode for Beyond the Birthday Bound Security 135

Further, let χi · TH = Ai for 0 ≤ i ≤ � − 2, χ�−1 · (T0, . . . , Tl−(�−1)�−1) = A�−1,
χ′

i · TH = A′
i for 0 ≤ i ≤ �′ − 1, and χ′

�′−1 · (T0, . . . , Tl′−(�′−1)�−1) = A�′−1. That
is, Ai and A′

i are the results of the inner product in lines 104 and 106 of Fig. 2.
In the following three propositions, we first show that, for some i, Ai ⊕〈i〉n is

unique with high probability in the multi-set {A0⊕〈0〉n, . . . , A�−1⊕〈�−1〉n, A′
0⊕

〈0〉n, . . . , A′
�′−1 ⊕ 〈�′ − 1〉n}.

Proposition 4. Suppose that l = l′. Then there are at least 2n�(1−(2�−1)/2n)
choices of TH ∈ ({0, 1}n)� such that the following is true: for some 0 ≤ i ≤ �−1,

Ai ⊕ 〈i〉n
= Aj ⊕ 〈j〉n for all j ∈ {0, . . . , i − 1, i + 1, . . . , � − 1}, and (3)
Ai ⊕ 〈i〉n
= A′

j ⊕ 〈j〉n for all j ∈ {0, . . . , � − 1}. (4)

Proof. Since |X | = |X ′| and X
= X ′, we have χi
= χ′
i for some i. We show the

proof in three cases, (a) |χ�−1|n = �, (b) |χ�−1|n < � and 0 ≤ i < � − 1, and
(c) |χ�−1|n < � and i = � − 1.

We first consider case (a). For any fixed j ∈ {0, . . . , i − 1, i + 1, . . . , � − 1},
the number of TH that satisfies Ai ⊕ 〈i〉n = Aj ⊕ 〈j〉n is at most 2n�/2n from
Proposition 2. Note that, if χi = χj , then there is no TH that satisfies this
condition since 〈i〉n ⊕ 〈j〉n
= 0n. Therefore, we have at most (� − 1)2n�/2n

values of TH such that Ai ⊕〈i〉n = Aj ⊕〈j〉n holds for some j ∈ {0, . . . , i− 1, i+
1, . . . , � − 1}.

Similarly, the number of TH which satisfies Ai ⊕ 〈i〉n = A′
j ⊕ 〈j〉n for some

j ∈ {0, . . . , � − 1} is at most �2n�/2n. This follows by using Proposition 2 for
j
= i, and for j = i, we use Proposition 2 and the fact that χi
= χ′

i.
Therefore, we have at least 2n� − (2� − 1)2n�/2n = 2n�(1 − (2� − 1)/2n)

choices of TH ∈ ({0, 1}n)� which satisfies (3) and (4).
We next consider case (b). From Proposition 2, we have at most (2�−3)2n�/2n

values of TH such that Ai ⊕〈i〉n = Aj ⊕〈j〉n for some j ∈ {0, . . . , i−1, i+1, . . . ,
� − 2}, or Ai ⊕ 〈i〉n = A′

j ⊕ 〈j〉n for some j ∈ {0, . . . , � − 2}.
From Proposition 3, we have at most 2 × 2n�/2n values of TH such that

Ai ⊕ 〈i〉n = A�−1 ⊕ 〈� − 1〉n, or Ai ⊕ 〈i〉n = A′
�−1 ⊕ 〈� − 1〉n. Note that 〈i〉n ⊕

〈� − 1〉n
= 0n.
Finally, we consider case (c). From Proposition 3, we have at most (2� −

2)2n�/2n values of TH such that A�−1 ⊕ 〈� − 1〉n = Aj ⊕ 〈j〉n for some j ∈
{0, . . . , � − 2}, or A�−1 ⊕ 〈� − 1〉n = A′

j ⊕ 〈j〉n for some j ∈ {0, . . . , � − 2}.
From Proposition 3 and since χ�−1
= χ′

�−1, we have at most 2n�/2n values
of TH such that A�−1 ⊕ 〈� − 1〉n = A′

�−1 ⊕ 〈� − 1〉n. ��

Proposition 5. Suppose that l > l′ and � > �′. Then there are at least 2n�(1 −
(� + �′ − 1)/2n) choices of TH ∈ ({0, 1}n)� such that the following is true:

A�−1 ⊕ 〈� − 1〉n
= Aj ⊕ 〈j〉n for all j ∈ {0, . . . , � − 2}, and (5)
A�−1 ⊕ 〈� − 1〉n
= A′

j ⊕ 〈j〉n for all j ∈ {0, . . . , �′ − 1}. (6)

Proof. The number is at most 2n�(1− (�+ �′ − 1)/2n), since if |χ�−1|n = �, the
bound follows by using Proposition 2 for each j, and if |χ�−1|n < �, it follows
from Proposition 3 and the fact that 〈� − 1〉n ⊕ 〈j〉n
= 0n. ��

136 T. Iwata

Proposition 6. Suppose that l > l′ and � = �′. Then there are at least 2n�(1 −
(� + �′ − 1)/2n) choices of TH ∈ ({0, 1}n)� which satisfies both (5) and (6).

Proof. The bound follows by the same argument as in the proof of Proposition 5.
The exception is the event A�−1⊕〈�−1〉n
= A′

�−1⊕〈� − 1〉n, which is equivalent to
A�−1
= A′

�−1. In this case, we are interested in the equation (x(�−1)�, . . . , xl−1) ·
(T0, . . . , Tl−(�−1)�−1) = (x′

(�−1)�, . . . , x′
l′−1) · (T0, . . . , Tl′−(�−1)�−1). We see that

the coefficient of Tl−(�−1)�−1 is non-zero (because of padding). Therefore, exactly
one value of Tl−(�−1)�−1 satisfies the equality. ��

We now consider CIP.Hash that uses a random permutation instead of a block-
cipher. Thus, instead of KH

R← {0, 1}k, we let P
R← Perm(n), and write

CIP.HashP,TH (·) instead of CIP.HashKH ,TH (·). Besides, we consider CIP.Hash,
where its output bits are truncated to τ bits. The next result proves that this
truncated version of CIP.Hash is ε-AXU for small ε.

Proposition 7. Let x and x′ be two distinct bit strings, where �+�′−1 ≤ 2n−1.
For any 1 ≤ τ ≤ n and any y ∈ {0, 1}τ ,

Pr(P R← Perm(n), TH
R← ({0, 1}n)� :

first(τ, CIP.HashP,TH (x) ⊕ CIP.HashP,TH (x′)) = y) ≤ � + �′ − 1
2n

+
2
2τ

.

Proof. We first choose and fix any TH . If there is no i such that Ai ⊕ 〈i〉n is
unique in the multi-set {A0 ⊕ 〈0〉n, . . . , A�−1 ⊕ 〈� − 1〉n, A′

0 ⊕ 〈0〉n, . . . , A′
�′−1 ⊕

〈�′ − 1〉n}, then we give up the analysis and regard this as CIP.HashP,TH (x) ⊕
CIP.HashP,TH (x)) = y occurs. The probability is at most (� + �′ − 1)/2n from
Proposition 5, 6, and 7, and the first term follows.

Next, we assume for some i, Ai ⊕ 〈i〉n is unique in the multi-set. Now since
we have fixed TH , all the inputs to P are now fixed. We next fix the outputs
of P except for Ai ⊕ 〈i〉n. At most (� + �′ − l) input-output pairs are now
fixed, and therefore, we have at least 2n − (� + �′ − l) choices for the output of
Ai⊕〈i〉n. Out of these 2n−(�+�′−l) possible choices, at most 2n−τ values verify
first(τ, CIP.HashKH ,TH (x) ⊕ CIP.HashKH ,TH (x)) = y since the unused (n − τ)
bits may take any value. The probability of this event is at most 2n−τ/(2n − (�+
�′ − l)) ≤ 2/2τ , and the second term follows. ��

We now derive the result with a blockcipher E.

Proposition 8. Let x and x′ be two distinct bit strings, where �+�′−1 ≤ 2n−1.
For any 1 ≤ τ ≤ n and any y ∈ {0, 1}τ , there exists a PRP-adversary A for E
such that

Pr(KH , TH
R← {0, 1}k × ({0, 1}n)� : first(τ, CIP.HashKH ,TH (x)

⊕CIP.HashKH ,TH (x′)) = y) ≤ � + �′ − 1
2n

+
2
2τ

+ Advprp
E (A),

where A makes at most � + �′ queries, and time(A) = O(n(� + �′)).

Authenticated Encryption Mode for Beyond the Birthday Bound Security 137

Algorithm CIP.Sim1
Setup:
100 (KH , TH) R← CIP.Key(R0)
If A makes a query (Ni, Mi):
200 l ← �|Mi|/n�
201 ctr ← (Ni‖0n−�nonce)
202 S ← CIP.KSGen.Sim1(ctr, l + 1)
203 SH ← first(n, S)
204 Smask ← last(n × l, S)
205 Ci ← Mi ⊕ first(|Mi|, Smask)
206 Hashi ← CIP.HashKH ,TH (Ci)
207 Tagi ← first(τ, Hashi ⊕ SH)
208 return (Ci, Tagi)

Algorithm CIP.Sim1 (Cont.)
If A returns (N∗, C∗, Tag∗):
300 l ← �|C∗|/n�
301 ctr ← (N∗‖0n−�nonce)
302 S ← CIP.KSGen.Sim1(ctr, l + 1)
303 SH ← first(n, S)
304 Hash′ ← CIP.HashKH ,TH (C∗)
305 Tag′ ← first(τ, Hash′ ⊕ SH)
306 if Tag′ �= Tag∗ then return ⊥
307 Smask ← last(n × l, S)
308 M∗ ← C∗ ⊕ first(|C∗|, Smask)
309 return M∗

Fig. 5. The simulation CIP.Sim1 of CIP. CIP.Hash is defined in Fig. 2.

Proof. Fix x, x′ and y, and consider the following A: First, A randomly chooses
TH

R← ({0, 1}n)�. Then A computes the hash values of x and x′ following Fig. 2,
except that, in lines 105 and 107, blockcipher invocations are replaced with oracle
calls. The output of A is 1 iff the xor of their hash values is y. We see that A
makes at most � + �′ queries, and

∣
∣
∣Pr

(

first(τ, CIP.HashP,TH (x) ⊕ CIP.HashP,TH (x′)) = y
)

− Pr
(

first(τ, CIP.HashKH ,TH (x) ⊕ CIP.HashKH ,TH (x′)) = y
)∣
∣
∣

is upper bounded by Advprp
E (A). ��

6.3 Proof of Theorem 2

We now present the proof of Theorem 2.

Proof (of Theorem 2). First, consider the simulation CIP.Sim1 in Fig. 5 of CIP,
where KH and TH are generated by using CIP.Key(R0), i.e., a random function
R0 ∈ Func(n, n) is used to encrypt constants, and the keystream generation,
CIP.KSGen.Sim1, works as follows: it is exactly the same as Fig. 4, except that
it uses a random function R1 ∈ Func(n, nw) instead of F+

P .
Let Advauth

CIP.Sim1(A) be the success probability of A’s forgery, where the oracle
is CIP.Sim1, i.e.,

Advauth
CIP.Sim1(A) def= Pr(ACIP.Sim1 forges),

where the probability is taken over the random coins in lines 100, 202, 302 and
A’s internal coins. We claim that

∣
∣
∣Advauth

CIP (A) − Advauth
CIP.Sim1(A)

∣
∣
∣ (7)

≤ wr2σ̃2

22n−4 +
wσ̃3

22n−3 +
r2

2n+1 +
wσ̃

2n
. (8)

138 T. Iwata

To see this, suppose for a contradiction that (7) is larger than (8). Then,
by using A as a subroutine, it is possible to construct a PRF-adversary B
for (Perm(n), F+) making at most r oracle queries to its first oracle and at
most σ̃/w oracle queries to its second oracle, where B simulates R0 and R1
in Fig. 5 by using its own oracles, and returns 1 if and only if A succeeds in
forgery. This implies Pr(P R← Perm(n) : BP (·),F+

P (·) = 1) = Advauth
CIP (A) and

Pr(R0
R← Func(n, n), R1

R← Func(n, nw) : BR0(·),R1(·) = 1) = Advauth
CIP.Sim1(A)

and thus, Advprf
Perm(n),F+(B) is larger than (8), which contradicts Proposition 1.

Now we modify CIP.Sim1 to CIP.Sim2 in Fig. 6.

1. Instead of using CIP.Key in line 100 in Fig. 5, we directly choose (KH , TH)
randomly.

2. Instead of using CIP.KSGen.Sim1 in line 202 in Fig. 5, we choose an (l +1)-
block random string. Therefore, we have S

R← {0, 1}n(l+1) in line 201 of Fig. 6.
Also, we removed “ctr ← (Ni‖0n−�nonce)” in line 201 of Fig. 5 because we
do not need it.

3. We need a different treatment for a forgery attempt, since we allow the
same nonce, i.e., N∗ ∈ {N0, . . . , Nq−2}. We make two cases, case N∗
∈
{N0, . . . , Nq−2} and case N∗ = Ni. In the former case, we simply choose a
new random SH in line 301 of Fig. 6. In the latter case, SH for (Ni, Mi) has
to be the same SH for (N∗, C∗, Tag∗). Observe that SH = Hashi ⊕Tagi, and
thus, the simulation in line 306 of Fig. 6 is precise. Therefore, the simulation
makes no difference in the advantage of A.

4. When A makes a query (Ni, Mi), we return the full n-bit tag, Tagi ∈ {0, 1}n,
instead of a truncated one, while we allow τ -bit tag in the forgery attempt.
This only increases the advantage of A.

5. If Tag′ = Tag∗, we return M∗ = C∗ ⊕ first(|C∗|, Smask). Since the value of
M∗ has no effect on the advantage (as long as it is not the special symbol
⊥), we let M∗ ← 0|C

∗|. This makes no difference in the advantage of A.

Let Advauth
CIP.Sim2(A) def= Pr(ACIP.Sim2 forges), where the probability is taken

over the random coins in lines 100, 201, 301 and A’s internal coins. From the
above discussion, we have

Advauth
CIP.Sim1(A) ≤ Advauth

CIP.Sim2(A). (9)

Now we further modify CIP.Sim2 to CIP.Sim3 in Fig. 7.

1. We do not choose KH and TH until we need them (we need them after the
forgery attempt).

2. Since Ci is the xor of Mi and a random string of length |Mi|, we let Ci
R←

{0, 1}|Mi|. The distribution of Ci is unchanged, and thus, this makes no
difference in the advantage of A.

3. Similarly, since Tagi includes SH , which is a truly random string, we let
Tagi

R← {0, 1}n. The distribution of Tagi is unchanged, and thus, this makes
no difference in the advantage of A (Observe that we do not need KH and
TH , and we can postpone the selection without changing the distribution of
Ci and Tagi).

Authenticated Encryption Mode for Beyond the Birthday Bound Security 139

Algorithm CIP.Sim2
Setup:
100 KH

R← {0, 1}k; TH
R← ({0, 1}n)�

If A makes a query (Ni, Mi):
200 l ← �|Mi|/n�
201 S

R← {0, 1}n(l+1)

202 SH ← first(n, S)
203 Smask ← last(n × l, S)
204 Ci ← Mi ⊕ first(|Mi|, Smask)
205 Hashi ← CIP.HashKH ,TH (Ci)
206 Tagi ← Hashi ⊕ SH

207 return (Ci, Tagi)

Algorithm CIP.Sim2 (Cont.)
If A returns (N∗, C∗, Tag∗):
300 if N∗ �∈ {N0, . . . , Nq−2} then
301 SH

R← {0, 1}n

302 Hash′ ← CIP.HashKH ,TH (C∗)
303 Tag′ ← first(τ, Hash′ ⊕ SH)
304 if N∗ = Ni then
305 Hash′ ← CIP.HashKH ,TH (C∗)
306 Tag′ ← Hash′ ⊕ Hashi ⊕ Tagi

307 Tag′ ← first(τ, Tag′)
308 if Tag′ �= Tag∗ then return ⊥
309 M∗ ← 0|C∗|

310 return M∗

Fig. 6. The simulation CIP.Sim2 of CIP

4. If N∗ ∈ {N0, . . . , Nq−2}, Tag′ includes the random SH , and we let Tag′ R←
{0, 1}τ . The distribution of Tag′ is unchanged.

5. If N∗ = Ni, we need KH and TH . We choose them, and the rest is unchanged.

Since the distribution of (Ci, Tagi) is unchanged, and there is no difference in
the advantage of A, we have

Advauth
CIP.Sim2(A) = Advauth

CIP.Sim3(A), (10)

where Advauth
CIP.Sim3(A) def= Pr(ACIP.Sim3 forges) and the probability is taken over

the random coins in lines 100, 101, 201, 203 and A’s internal coins.
We now fix A’s internal coins and coins in lines 100 and 101. Then, the query-

answer pairs (N0, M0, C0, Tag0), . . . , (Nq−2, Mq−2, Cq−2, Tagq−2) and the forgery
attempt (N∗, C∗, Tag∗) are all fixed, and we evaluate Advauth

CIP.Sim3(A) with the
coins in lines 201, and 203 only. We evaluate it in the following two cases (Note
that we are choosing KH and TH after fixing Ni, Ci, Tagi, N

∗, C∗, Tag∗).

– Case N∗
∈ {N0, . . . , Nq−2}: In this case, Advauth
CIP.Sim3(A) = 1/2τ since for

any fixed Tag∗, Pr(Tag′ R← {0, 1}τ : Tag′ = Tag∗) = 1/2τ .
– Case N∗ = Ni and C∗
= Ci: In this case, we have

Advauth
CIP.Sim3(A) ≤ Pr(KH

R← {0, 1}k, TH
R← ({0, 1}n)� :

first(τ, CIP.HashKH ,TH (C∗) ⊕ CIP.HashKH ,TH (Ci)) = y),

where y = Tag∗⊕Tagi. This is at most (�|C∗|/n�+�|Ci|/n�−1)/2n+2/2τ +
Advprp

E (D) from Proposition 8, and this is upper bounded by 2σ/2n+2/2τ +
Advprp

E (D), where D makes at most 2σ queries, and time(D) = O(nσ).

Therefore, we have

Advauth
CIP.Sim3(A) ≤ σ

2n−1 +
2
2τ

+ Advprp
E (D). (11)

Finally, from (7), (9), (10), and (11), we have (2). ��

140 T. Iwata

Algorithm CIP.Sim3
If A makes a query (Ni, Mi):
100 Ci

R← {0, 1}|Mi|

101 Tagi
R← {0, 1}n

102 return (Ci, Tagi)

Algorithm CIP.Sim3 (Cont.)
If A returns (N∗, C∗, Tag∗):
200 if N∗ �∈ {N0, . . . , Nq−2} then
201 Tag′ R← {0, 1}τ

202 if N∗ = Ni then
203 KH

R← {0, 1}k; TH
R← ({0, 1}n)�

204 Hashi ← CIP.HashKH ,TH (Ci)
205 SH ← Hashi ⊕ Tagi

206 Hash′ ← CIP.HashKH ,TH (C∗)
207 Tag′ ← Hash′ ⊕ SH

208 Tag′ ← first(τ, Tag′)
209 if Tag′ �= Tag∗ then return ⊥
210 M∗ ← 0|C∗|

211 return M∗

Fig. 7. The simulation CIP.Sim3 of CIP

7 Conclusions

We presented an authenticated encryption mode CIP, CENC with Inner Product
hash. It has provable security bounds which are better than the usual birthday
bound security, and it can be used even when the tag length is short. Our proof is
relatively complex, and it would be interesting to see the compact security proofs,
possibly by following the “all-in-one” security definition in [25]. It would also be
interesting to see schemes with improved security bound and/or efficiency.

Acknowledgement

The author would like to thank anonymous reviewers of Africacrypt 2008 for
many insightful and useful comments.

References

1. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: Proceedings of The 38th Annual Symposium on Foun-
dations of Computer Science, FOCS 1997, pp. 394–405. IEEE, Los Alamitos (1997)

2. Bellare, M., Guerin, R., Rogaway, P.: XOR MACs: New methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995)

3. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. JCSS, 61(3), 362–399 (2000); Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Heidelberg (1994)

4. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

Authenticated Encryption Mode for Beyond the Birthday Bound Security 141

5. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000)

6. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

7. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002)

8. Gligor, V.G., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002)

9. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–317.
Springer, Heidelberg (2006), http://www.nuee.nagoya-u.ac.jp/labs/tiwata/

10. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

11. Jaulmes, E., Joux, A., Valette, F.: On the security of randomized CBC-MAC be-
yond the birthday paradox limit: A new construction. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002)

12. Jonsson, J.: On the Security of CTR+CBC-MAC. In: Nyberg, K., Heys, H.M.
(eds.) SAC 2002. LNCS, vol. 2595, pp. 76–93. Springer, Heidelberg (2003)

13. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

14. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (2001)

15. Kohno, T., Viega, J., Whiting, D.: CWC: A high-performance conventional authen-
ticated encryption mode. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 408–426. Springer, Heidelberg (2004)

16. Lefranc, D., Painchault, P., Rouat, V., Mayer, E.: A generic method to design
modes of operation beyond the birthday bound. In: Preproceedings of the 14th
annual workshop on Selected Areas in Cryptography, SAC 2007 (2007)

17. Lucks, S.: The two-pass authenticated encryption faster than generic composition.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 284–298.
Springer, Heidelberg (2005)

18. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

19. McGrew, D., Viega, J.: The Galois/Counter mode of operation (GCM) (submission
to NIST) (2004), http://csrc.nist.gov/CryptoToolkit/modes/

20. McGrew, D., Viega, J.: The security and performance of Galois/Counter mode of
operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

21. Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. Journal of Cryp-
tology 13(3), 315–338 (2000)

22. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004)

23. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the ACM Conference on Computer and Communications Security, ACM CCS 2002,
pp. 98–107. ACM, New York (2002)

http://www.nuee.nagoya-u.ac.jp/labs/tiwata/
http://csrc.nist.gov/CryptoToolkit/modes/

142 T. Iwata

24. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. ACM Trans. on Information Sys-
tem Security (TISSEC) 6(3), 365–403 (2003); Earlier version in Proceedings of the
eighth ACM Conference on Computer and Communications Security, ACM CCS
2001, pp. 196–205, ACM, New York (2001)

25. Rogaway, P., Shrimpton, T.: Deterministic authenticated-encryption: A provable-
security treatment of the keywrap problem. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006)

26. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. JCSS 22, 256–279 (1981)

27. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM) (submis-
sion to NIST) (2002), http://csrc.nist.gov/CryptoToolkit/modes/

A Figures

T0

� ��
�

x0

T1

� ��
�

x1

T2

� ��
�

x2

� �� �� �� 〈0〉n

�
E�KH

T0

� ��
�

x3

T1

� ��
�

x4

T2

� ��
�

x5

� �� �� �� 〈1〉n

�
E�KH

T0

� ��
�

x6

T1

� ��
�

x7

T2

� ��
�

x8

� �� �� �� 〈2〉n

�
E�KH

� �� � ��

�
Hash

Fig. 8. Illustration of CIP.Hash. This example uses � = 3, and l = 9.

ctr

�� inc
�

EK

�

�� inc
�

EK

�

�� inc
�

EK

�

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

S0 S1 S2 S3 S4 S5 S6

�

Fig. 9. Illustration of CIP.KSGen. This example uses w = 3 and outputs l = 7 blocks
of keystream S = (S0, . . . , S6).

http://csrc.nist.gov/CryptoToolkit/modes/

	Authenticated Encryption Mode for Beyond the Birthday Bound Security
	Introduction
	Preliminaries
	Specification of CIP
	Security of CIP
	Security Proof for Privacy of CIP
	Security Proofs for Authenticity of CIP
	Properties of the Inner Product Hash
	Properties of the CIP.Hash
	Proof of Theorem 2

	Conclusions
	References
	Figures

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

