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Preface

The AFRICACRYPT 2008 conference was held during June 11–14, 2008 in
Casablanca, Morocco. Upon the initiative of the organizers from the Ecole nor-
male supérieure in Casablanca, this event was the first international research
conference in Africa dedicated to cryptography.

The conference was honored by the presence of the invited speakers Bruce
Schneier, Jacques Stern, and Alexander W. Dent who gave talks entitled “The
Psychology of Security” “Modern Cryptography: A Historical Perspective” and
“A Brief History of Provably-Secure Public-Key Encryption”, respectively. These
proceedings include papers by Bruce Schneier and by Alexander Dent.

The conference received 82 submissions on November 24, 2007. They went
through a careful doubly anonymous review process. This was run by the iChair
software written by Thomas Baignères and Matthieu Finiasz. Every paper re-
ceived at least three review reports. After this period, 25 papers were accepted
on February 12, 2008. Authors then had the opportunity to update their papers
until March 13, 2008. The present proceedings include all the revised papers.

At the end of the review process, the paper entitled “An Authentication
Protocol with Encrypted Biometric Data” written by Julien Bringer and Hervé
Chabanne was elected to receive the Africacrypt 2008 Best Paper Award.

I had the privilege to chair the Program Committee. I would like to thank
all committee members for their tough work on the submissions, as well as all
external reviewers for their support. I also thank my assistant Thomas Baignères
for maintaining the server and helping me to run the software. I thank the invited
speakers, the authors of the best paper, the authors of all submissions. They all
contributed to the success of the conference.

Finally, I heartily thank the General Chair Abdelhak Azhari, Chair of the
AMC (Moroccan Association for Cryptography), as well as his team for having
organized this wonderful conference, and especially Abderrahmane Nitaj with
whom I had a very good interaction. I hope their efforts will contribute to the
successful development of academic research in cryptology in Africa.

June 2008 Serge Vaudenay
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Improving Integral Attacks Against Rijndael-256

Up to 9 Rounds

Samuel Galice and Marine Minier

CITI / INSA-Lyon
F-69621 Villeurbanne

{samuel.galice,marine.minier}@insa-lyon.fr

Abstract. Rijndael is a block cipher designed by V. Rijmen and J.
Daemen and it was chosen in its 128-bit block version as AES by the
NIST in October 2000. Three key lengths - 128, 192 or 256 bits - are
allowed. In the original contribution describing Rijndael [4], two other
versions have been described: Rijndael-256 and Rijndael-192 that re-
spectively use plaintext blocks of length 256 bits and 192 bits under the
same key lengths and that have been discarded by the NIST. This paper
presents an efficient distinguisher between 4 inner rounds of Rijndael-
256 and a random permutation of the blocks space, by exploiting the
existence of semi-bijective and Integral properties induced by the cipher.
We then present three attacks based upon the 4 rounds distinguisher
against 7, 8 and 9 rounds versions of Rijndael-256 using the extensions
proposed by N. ferguson et al. in [6]. The best cryptanalysis presented
here works against 9 rounds of Rijndael-256 under a 192-bit key and
requires 2128 − 2119 chosen plaintexts and 2188 encryptions.

Keywords: block cipher, cryptanalysis, integral attacks, Rijndael-256.

1 Introduction

Rijndael [4] is an SPN block cipher designed by Vincent Rijmen and Joan Dae-
men. It has been chosen as the new advanced encryption standard by the NIST
[7] with a 128-bit block size and a variable key length k, which can be set to
128, 192 or 256 bits. It is a variant of the Square block cipher, due to the same
authors [3]. In its full version, the block length b is also variable and is equal to
128, 192 or 256 bits as detailed in [5] and in [10]. We respectively called those
versions Rijndael-b. The recommended Nr number of rounds is determined by b
and k, and varies between 10 and 14.

Many cryptanalyses have been proposed against Rijndael for the different
block sizes and more particularly against the AES. The first attack against all
the versions of Rijndael-b is due to the algorithm designers themselves and is
based upon the integral (or saturation) property ([3], [4], [12]) that allows to
efficiently distinguish 3 Rijndael inner rounds from a random permutation. This
attack has been improved by Ferguson et al. in [6] allowing to cryptanalyse an
8 rounds version of Rijndael-b with a complexity equal to 2204 trial encryptions
and 2128 − 2119 plaintexts and a 9 rounds version using a related-key attack.

S. Vaudenay (Ed.): AFRICACRYPT 2008, LNCS 5023, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 S. Galice and M. Minier

In [13], S. Lucks presented an other improvement of the Square Attack using a
particular weakness of the key schedule against a 7 rounds version of Rijndael-b
where 2194 executions are required for a number of chosen plaintexts equal to
232. H. Gilbert and M. Minier in [8] also presented an attack against a 7 rounds
version of Rijndael-b (known under the name of “Bottleneck Attack”) using a
stronger property on three inner rounds than the one used in the Square Attack
in order to mount an attack against a 7 rounds version of Rijndael requiring 2144

cipher executions with 232 chosen plaintexts.
Many other attacks ([2], [14]) have been exhibited against the AES using

algebraic techniques exploiting the low algebraic degree of the AES S-box. Other
attacks that use related keys and rectangle cryptanalysis have been proposed in
[9] and in [11]. But none of these attacks exploits new intrinsic structure of the
transformations used in Rijndael-b.

This paper describes an efficient distinguisher between 4 Rijndael-256 inner
rounds and a random permutation based upon a particular integral (or satura-
tion) property due to a slow diffusion, presents the resulting 7 rounds attacks on
Rijndael-256 which are substantially faster than an exhaustive key search for all
the key lengths and the corresponding 8 and 9 rounds extension of the previous
attacks for k = 192 and k = 256.

This paper is organized as follows: Section 2 provides a brief outline of Rijndael-
b. Section 3 recalls the original Integral property on three inner rounds, investigates
the new four rounds property and describes the resulting distinguisher for 4 inner
rounds. Section 4 presents 7, 8 and 9 rounds attacks based on the 4 rounds distin-
guisher of Section 3. Section 5 concludes this paper.

2 A Brief Outline of Rijndael-b

Rijndael-b is a symmetric block cipher that uses a parallel and byte-oriented
structure. The key length is variable and equal to 128, 192 or 256 bits whereas
the block length is equal to 128, 192 or 256 bits. The current block at the input
of the round r is represented by a 4 × (b/32) matrix of bytes A(r). We give its
representation for b = 256:

A(r) =

a
(r)
0,0 a

(r)
0,1 a

(r)
0,2 a

(r)
0,3 a

(r)
0,4 a

(r)
0,5 a

(r)
0,6 a

(r)
0,7

a
(r)
1,0 a

(r)
1,1 a

(r)
1,2 a

(r)
1,3 a

(r)
1,4 a

(r)
1,5 a

(r)
1,6 a

(r)
1,7

a
(r)
2,0 a

(r)
2,1 a

(r)
2,2 a

(r)
2,3 a

(r)
2,4 a

(r)
2,5 a

(r)
2,6 a

(r)
2,7

a
(r)
3,0 a

(r)
3,1 a

(r)
3,2 a

(r)
3,3 a

(r)
3,4 a

(r)
3,5 a

(r)
3,6 a

(r)
3,7

The key schedule derives Nr+1 b-bits round keys K0 to KNr from the master
key K of variable length.

The round function, repeated Nr − 1 times, involves four elementary map-
pings, all linear except the first one:

– SubBytes: a bytewise transformation that applies on each byte of the current
block an 8-bit to 8-bit non linear S-box (that we call S) composed of the
inversion in the Galois Field GF (256) and of an affine transformation.
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– ShiftRows: a linear mapping that rotates on the left all the rows of the
current matrix (0 for the first row, 1 for the second, 3 for the third and 4 for
the fourth in the case of Rijndael-256 as described in [4]).

– MixColumns: another linear mapping represented by a 4 × 4 matrix chosen
for its good properties of diffusion (see [5]). Each column of the input matrix
is multiplied by the MixColumns matrix M in the Galois Field GF (256) that
provides the corresponding column of the output matrix. We denote by Mi,j

for i and j from 0 to 3, the coefficients of the MixColumns matrix.
– AddRoundKey: a simple x-or operation between the current block and the

subkey of the round r denoted by Kr. We denote by K
(i,j)
r the byte of Kr

at position (i, j).

Those Nr − 1 rounds are surrounded at the top by an initial key addition
with the subkey K0 and at the bottom by a final transformation composed by a
call to the round function where the MixColumns operation is omitted.

3 The Integral Properties

We describe in this section the three inner rounds property named Integral
property explained in the original proposal [4] and the new four rounds property
of Rijndael-256.

3.1 The Integral Property of Rijndael-b

This particular property studied in [12] was first used to attack the Square block
cipher [3] and holds for the three size of blocks (128, 192 or 256 bits) of the initial
version of Rijndael-b. As previously mentioned, we denote by A(r) the input of
the round r.

Let us define the set Λ which contains 256 plaintext blocks (i.e. 256 matrices
of bytes of size 4 × (b/32)) all distinct. Two blocks belong to the same set Λ
if they are equal everywhere except on a particular predefined byte (called the
active byte). This active byte takes all possible values between 0 and 255:

∀A(1), A′(1) ∈ Λ :

{
a
(1)
i,j �= a

′(1)
i,j for a given i and a given j

a
(1)
i,j = a

′(1)
i,j elsewhere

for 0 ≤ i ≤ 3 and 0 ≤ j ≤ (b/32).
The Λ set contains then one active byte whereas the other bytes are passive.

Notice that this definition could be generalized to several active bytes as we will
see in the next subsections. In all the cases, the transformations SubBytes and
AddRoundKey transform a set Λ into another set Λ with the positions of the
active bytes unchanged (see [1] and [12] for more details).

Now, if we look at the semi-bijective properties of the internal transformations
of Rijndael-b on three rounds - especially the ones of the ShiftRows and of the
MixColumns operations -, we could observe the following results (as shown in
figure 1):
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– The MixColumns of the first round transforms the active byte of the Λ set
into a complete column of active bytes.

– The ShiftRows of the second round diffuses this column on four distinct
columns whereas the MixColumns converts this to four columns of only
active bytes. This stays a Λ set until the input of MixColumns of the third
round.

– Until the input of the MixColumns of the third round, the implied trans-
formations constitute a bijection. Then, since the bytes of this Λ set, range
over all possible values and are balanced over this set, we have if we denote
by M (3) the active blocks belonging to the Λ set at the input of the third
MixColumns operation:

⊕
A(4)=MC(M(3)),M(3)∈Λ

a
(4)
k,l =

⊕
M(3)∈Λ

(
2m

(3)
k,l ⊕ 3m

(3)
k+1,l ⊕ m

(3)
k+2,l ⊕ m

(3)
k+3,l

)

= 0 (1)

where MC represents the MixColumns of the third round and k and l taking
all possible values.

Fig. 1. The three rounds integral property in the case of Rijndael-256:
�

y∈Λ s = 0

Then, we can easily deduce that each byte at the input of the fourth round is
balanced in order to construct an efficient distinguisher between three Rijndael-
b inner rounds and a random permutation testing if equality (1) occurs and
requiring 256 plaintexts belonging to a same Λ set. Notice also that this property
holds for all the possible positions of the active byte.
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3.2 An Improvement of the Saturation Property for 4 Rounds of
Rijndael-256

In the case of Rijndael-256, we describe in this section a particular and stronger
property on three rounds of Rijndael-256 and how to extend this property to
four rounds for a particular Λ set with three active bytes.

A Stronger Three Rounds Property. Suppose now that the same Λ set than
the previous one with one active byte, say y at byte position (i, j), is defined.
Let us see how this set crosses three Rijndael-256 inner rounds:

– The MixColumns of the first round transforms the active byte of the Λ set
into a complete column of active bytes (called z0, · · · , z3 in figure 2).

– The ShiftRows of the second round diffuses this column on four among eight
distinct columns whereas the MixColumns converts this to four columns
among eight of only active bytes.

– The ShiftRows of the third round diffuses those four columns into the eight
columns of the current block but the (j+2 mod 8)-th and the (j+6 mod 8)-
th columns only depend on one byte each, say a

(2)
i+2 mod 4,j and a

(2)
i+1 mod 4,j .

Using the notations of figure 2, we could say that at the end of the third
round, the third and the seventh columns only depend respectively on the
byte a

(2)
2,0 = z2 and a

(2)
1,0 = z1; thus, the bytes of those two columns bijectively

depend on the y value and each of those two columns represent a Λ set.

Fig. 2. The three rounds property in the case of Rijndael-256: the bytes s0, · · · , s3 only
depend on z2 and the bytes r0, · · · , r3 only depend on z1

So, we have demonstrated that two particular columns stay two different Λ
sets at the output of the third round.
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How to Exploit this Property? Because two complete Λ sets remain for
two particular columns at the end of the third round, we want to find a way to
exploit this particular property on four rounds of Rijndael-256 by adding one
round at the end of the three previous rounds. We always consider here that the
input of the four rounds is a Λ set with one active byte y.

Fig. 3. The fourth round added after the three previous ones

Using the notation of figure 3, we could write the output bytes s and w at
the end of the fourth round according to the output bytes of the third round,
noticing that t0, v3, v0 and t3 belongs to two Λ sets:

s = 2 · S(t0) ⊕ 3 · S(t1) ⊕ S(t2) ⊕ S(t3) ⊕ K
(0,2)
4

w = 2 · S(v0) ⊕ 3 · S(v1) ⊕ S(v2) ⊕ S(v3) ⊕ K
(0,6)
4

More formally, we obtain:

a
(5)
0,j+2 mod 8 = 2S(a(4)

0,j+2 mod 8) ⊕ 3S(a(4)
1,j+3 mod 8)

⊕S(a(4)
2,j+5 mod 4) ⊕ S(a(4)

3,j+6 mod 4) ⊕ K
(0,2)
4 (2)

a
(5)
0,j+6 mod 8 = 2S(a(4)

0,j+6 mod 8) ⊕ 3S(a(4)
1,j+7 mod 8)

⊕S(a(4)
2,j+1 mod 8) ⊕ S(a(4)

3,j+2 mod 8) ⊕ K
(0,6)
4

If we use the notations of figure 3 and if we consider as in the previous sub-
section that the input of the four rounds is a Λ set with one active byte, say y,
then we have:

⊕
y∈Λ 2S(t0) = 0 and

⊕
y∈Λ S(t3) = 0 because t0 and t3 belongs

to the same Λ set at the end of the third round. Thus, we could write:⊕
y∈Λ

s =
⊕
y∈Λ

(2S(t0) ⊕ 3S(t1) ⊕ S(t2) ⊕ S(t3)) (3)

= 2
⊕
y∈Λ

S(t0) ⊕ 3
⊕
y∈Λ

S(t1) ⊕
⊕
y∈Λ

S(t2) ⊕
⊕
y∈Λ

S(t3)

= 0 ⊕ 3
⊕
y∈Λ

S(t1) ⊕
⊕
y∈Λ

S(t2) ⊕ 0
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The same property holds for w.
So, we want to find a way to obtain

3
⊕
y∈Λ

S(t1) ⊕
⊕
y∈Λ

S(t2) = 0 (4)

considering that t1 depends on z1 and on z3 and that t2 depends on z2 and on
z0. Thus, more input blocks are required to satisfy this equality. A good solution
to produce such equality is to take (256)2 Λ sets to completely saturated the
values of z1 and z3 for t1 and of z0 and z2 for t2. To produce a such number
of plaintexts, let us define the following Λ set with three active bytes - say y,
n, p as denoted in figure 4 - at the positions (i, j), (i + 1 mod 4, j) and (i + 2
mod 4, j). More formally, we could write this new Λ set as follows:

∀A(1), A′(1) ∈ Λ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a
(1)
i,j �= a

′(1)
i,j , a

(1)
i+1 mod 4,j �= a

′(1)
i+1 mod 4,jand

a
(1)
i+2 mod 4,j �= a

′(1)
i+2 mod 4,j

for a given i and a given j

a
(1)
i,j = a

′(1)
i,j elsewhere

Using such a Λ set with 224 elements generated from three different active
bytes (say y, n and p) belonging to a same input column, at the end of the
fourth round, equality (4) is verified and we then could write using equality (3),⊕

y,n,p∈Λ s = 0 and
⊕

y,n,p∈Λ w = 0. More formally, we have:

⊕
y,n,p∈Λ

a
(5)
i,j+2 mod 8 = 0 (5)

⊕
y,n,p∈Λ

a
(5)
i,j+6 mod 8 = 0 (6)

for all i ∈ {0..3}.

We performed some computer experiments which confirm the existence of
those properties for arbitrarily chosen key values. The complete property is rep-
resented on figure 4. Notice also that when only two bytes - say y and n - at
position (i, j) and (i + 1 mod 4, j) are saturated, the corresponding properties
are less strong and could be written as partial sums:

⊕
y,n∈Λ

a
(5)
0,j+2 mod 8 =

⊕
y,n∈Λ

a
(5)
3,j+2 mod 8

⊕
y,n∈Λ

a
(5)
0,j+6 mod 8 =

⊕
y,n∈Λ

a
(5)
3,j+6 mod 8
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Fig. 4. The four Rijndael-256 rounds property

3.3 The 4 Rounds Distinguisher

Then, we can easily use equality (5) or equality (6) at the input of the fifth
round in order to construct an efficient distinguisher between four Rijndael-256
inner rounds and a random permutation testing if equality (5) or (6) occurs and
requiring 224 plaintexts belonging to a same Λ set with three active bytes at
positions (i, j), (i + 1 mod 4, j) and (i + 2 mod 4, j).

The existence of such property for Rijndael-256 is not really surprising even
if it has never been observed before. This property is due to a slower diffusion in
Rijndael-256 than in Rijndael-128 (the AES) and in Rijndael-192. Note also that
this particular property doe not work for the AES and Rijndael-192: there is no
particular output byte after the third round that only depends on one particular
byte of the corresponding input and we do not find such a property for the AES
and Rijndael-192.

4 The Proposed Attacks

We could use the properties previously described on four Rijndael-256 inner
rounds to mount elementary attacks against 7, 8 and 9 rounds versions of
Rijndael-256. To attack 7 rounds of Rijndael-256, we use first the extension
by one round at the beginning proposed in [6] and the partial sums technique
described in [6] with equality (5) to add two rounds at the end of our four rounds
distinguisher. To extend this 7 rounds attack by one round at the end and/or
by one round at the beginning, we directly apply the techniques proposed in [6]
and the weakness of the Rijndael key-schedule proposed in [13].
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4.1 The 7 Rounds Attack

Extension at the Beginning. Usually and as done in [4] and in [13], to extend
the distinguisher that use equality (1) by one round at the beginning, the authors
first choose a set of 232 plaintexts that results in a Λ set at the output of the first
round with a single active byte (see figure 5). This set is such that one column of
bytes at the input of the first MixColumns range over all possible values and all
other bytes are constant. Then, under an assumption of the four well-positioned
key bytes of K0, a set of 256 plaintexts that result in a Λ set at the input of the
second round is selected from the 232 available plaintexts.

Fig. 5. The extension by one round at the beginning

Instead of guessing four bytes of the first subkey K0, the authors of [6] simply
use all the 232 plaintexts that represents in our case 28 Λ sets with three active
bytes (28 groups of 224 encryptions that vary only in three bytes of A(1)). Then,
for some partial guesses of the key bytes at the end of the cipher, do a partial
decryption to a single byte of A(5), sum this value over all the 232 encryptions
and check for a zero result.

This first improvement save a factor 232 corresponding with 4 exhaustive key
bytes of K0 compared to the attack proposed in [4] using always 232 plain-
texts/ciphertexts.

Note also, as done in [10], that we could see this extension as a distinguisher
with one more round implying a Λ set with 4 active bytes that results after the
first round into an other Λ set with a complete column of active bytes.

Partial Sums Technique. Using the method of [6], we could use the equality
(5) to attack a 7 rounds version of Rijndael-256 by adding one round at the
beginning using the technique previously described and adding two rounds at
the end using the two rounds extension proposed in [6] and described in figure
6. We describe here the original attack and then directly apply it in our case.

This extension works in the original paper on a 6 rounds version of Rijndael
and looks at a particular byte of A(5) that verifies (1) and how it relates to
the ciphertext. First, the authors rewrite the cipher slightly by putting the Ad-
dRoundKey before the MixColumns in round 5. Instead of applying MixColumns
and then adding K5, they first add in K ′

5, which is a linear combination of four
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Fig. 6. The extension by two rounds at the end proposed in [6], considering that the
last round does not contain a MixColumns operation

bytes of K5, and then apply MixColumns. Under this assumption, it is easy to
see that any byte of A(5) depends on the ciphertext, on four bytes of K6 and one
byte of K ′

5 considering that the sixth round is the last one and does not contain
a MixColumns operation. Then, only the five key bytes of the two last rounds
remain unknowns.

Moreover, the authors improve the complexity of their attack using a tech-
nique called “partial sums” to sequentially decipher the two last rounds (the
last not containing the MixColumns operation) according the values of the five
unknown key bytes. To use the three rounds distinguisher given by equation (1),
they compute from the i-th ciphertext ci:

∑
i

S−1 [S0 [ci,0 ⊕ k0] ⊕ S1 [ci,1 ⊕ k1] ⊕ S2 [ci,2 ⊕ k2] ⊕ S3 [ci,3 ⊕ k3] ⊕ k4] (7)

where S0, S1, S2, S3 represent the inverse of the S-box S multiplied by a compo-
nent of InvMixColumns, ci,j the byte number j of ci; k0, · · · , k3 the four bytes
of K6 and k4 the implied byte of K ′

5.
To improve the general complexity of the attack, they associate the following

partial sums to each ciphertext c:

xk :=
k∑

j=0

Sj [cj ⊕ kj ]

for k from 0 to 3. They use the transformation (c0, c1, c2, c3) → (xk, ck+1 , · · · , c3)
to sequentially determine the different values of kk and to share the global com-
putation into 4 steps of key bytes search (always testing if equation (1 happens)
with 248 operations for each one corresponding with 250 S-box lookups for each
set of 232 ciphertexts, corresponding with 224 particular Λ sets of plaintexts
with one active byte (see [6] for the details of the complexities). To discard false
alarms (i.e. bad keys that pass the test), they need to repeat this process on 6
different Λ sets. Then, the general complexity of the partial sums attacks against
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a 6 rounds version of Rijndael-b is about 244 encryptions (considering that 28

S-box applications are roughly equivalent with one trial encryption) using 6 ·232

plaintexts.

The Corresponding 7 Rounds Attacks. Applying the first extension at the
beginning and the partial sums technique, we could directly mount an attack
against 7 rounds of Rijndael-256 using the equality (5) and the corresponding
four Rijndael-256 rounds distinguisher: we test if equality (5) holds for A(6) by
summing on the 232 values of the partial decryptions corresponding with the 232

plaintexts that represent in our case 28 Λ sets with three active bytes. Then, we
exploit the partial sums technique on the four corresponding bytes of K7 and
the implied byte of K ′

6. For a set of 232 ciphertexts, the cost of the four steps of
the deciphering process is exactly the same than in the previous attack and is
about 250 S-box lookups. We need to repeat the process using around 6 different
sets of 232 ciphertexts to detect false alarms as in [6]. Then, the total number
of S-box lookups is 252 corresponding with 244 encryptions, always considering
that 28 S-box applications is roughly equivalent with one trial encryption.

4.2 The 8 Rounds Attack

The Naive Approach. As done in [6] and in [13], we could directly improve
the previous 7 rounds attack by adding one round at the end. To express a single
byte of A(6) in the key and the ciphertext, we could extend equation (5) to three
levels at the end with 16 ciphertexts bytes and 21 key bytes. However, the partial
sums technique is only helpful during the last part of the computation.

For a 192-bit master key, we first guess the required 112 bits of the last round
256-bit subkey. The two last bytes of this subkey required for the computations
could be directly deduced from the other 112 bits due to the weakness of the
key schedule described in [13]: if we know some bytes of the subkey at position i
and i− 1,we directly deduce those at position i−Nk with Nk = 6 for a 192-bit
master key. (Note that this property is only true for some particular positions
of the byte a

(6)
i,j , for example if i = 0 and j = 2.) Thus after guessing the 14

required bytes of this subkey, we could directly use the partial sums technique
requiring about 250 S-box lookups. Thus, the total cost for a structure of 232

ciphertexts is about 2162 S-box lookups. As noticed in [6], we need to process
three structures of 232 ciphertexts before we start eliminating guesses for the
last round key, so the overall cost of this 8-rounds attack is on the order of 2164

S-box lookups or about 2156 trial encryptions.
For a 256-bit master key, the alignment in the key schedule is different and

guessing the eighth round subkey does not give any information about round
keys of round 7 and of round 6. So, we could not improve the general complexity
of the attack. Working in a similar fashion as before, we first guess the 128 bits
of the last round key and using the partial sums technique, compute the four
bytes of K7 and the byte of K ′

6 for each of the 232 ciphertexts belonging to
a same structure. Thus, the complete cost of this attack is about 2178 S-box
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lookups for one structure. As noticed in [6], we need to process five structures
of 232 ciphertexts before we start eliminating guesses for the last round key, so
the overall cost of this 8-rounds attack is on the order of 2180 S-box lookups or
about 2172 trial encryptions.

The Herd Technique. In [6], the authors develop a technique to improve their
6 rounds attack by adding one round at the beginning. This new attack require
naively the entire codebook of 2128 known plaintexts that could be divided into
296 packs of 232 plaintexts/ciphertexts that represent 224 Λ sets with one active
byte after this first round. But this property could not be directly exploited
because in this case even the wrong keys pass the test at the end of the fifth
round since equality (1) holds on for the 2120 Λ sets.

Fig. 7. The herd technique: adding one more round at the beginning

Instead, they use a particular byte at the end of the first round, say a
(2)
a,b

different from the four bytes of the Λ set with a fixed value x (see figure 7).
With a

(2)
a,b = x, they obtain a set of 2120 possible encryptions composed of 288

packs, where each pack contains 224 groups of Λ sets. They call this structure
with 2120 elements a herd. If they sum up equality (1) on a herd, then the
property is only preserved for the correct key.

Thus, they notice that this particular byte a
(2)
a,b depends on only four bytes

of plaintext, say (p4, · · · , p7) and on four bytes of the key K0. As done for the
partial sums technique, they could share the key exhaustive search on the four
key bytes of K0 required to entirely determine the value of a

(1)
a,b in a three-phase

attack using 264 counters my for the first phase, 232 counters nz for the second
whereas the third phase filters information for key guesses.

The attack works as follows: in the first phase, the counter my is incremented
at bit level according the 64-bit value y = (c0, · · · , c3, p4, · · · , p7); in the second
phase, the four bytes of K0 are guessed to compute a

(2)
a,b and to share the counters

into herds; then select a single herd and update nz by adding z = (c0, · · · , c3)
for each y that is in the good herd; in the third phase, guess the five key bytes
of K7 and of K ′

6 to decrypt each z to a single byte of A(6), sum this byte over
all the 232 values of z (with multiplicities) and check for zero. This last phase
must be repeated for each initial guess of the four bytes of K0.
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The first phase requires about 2120 trial encryptions and the rest of the at-
tack has a negligible complexity compared to it (see [6] for some details about
the attack complexity). Then, the total complexity of this attack is 2120 trial
encryptions and 264 bits of memory using 2128 chosen plaintexts. The authors
provide another improvement of their attack remarking that the four plaintext
bytes (p4, · · · , p7) and the four guessed key bytes of K0 define four bytes of A(1).
So they can create 224 smaller herds with 2104 elements by fixing three more
bytes of A(1) to reduce the plaintext requirements to 2128 − 2119 texts.

So, we could directly apply this attack to an 8 rounds version of Rijndael-256
using the particular equality (5) by adding two rounds at the beginning and
two rounds at the end using 2128 − 2119 plaintexts that will be separated into
herds during the second phase of the attack. However, in the previous case, they
consider that all the codebook is known due to the huge amount of plaintexts
required. So, they do not take into account the ciphering process. This is not
our case and we first need to cipher 2128 − 2119 chosen plaintexts among the
2256 possible values with four active columns that lead to 224 herds with 2104

elements at the end of the first round. Then, the complexity of the attack itself
is the same but the total cost is dominated by the 2128 − 2119 trial encryptions.
Notice that the same problem remains for Rijndael-192.

4.3 The 9 Rounds Attack

As done in [6], we could use the herd technique (with 223 undamaged herds)
combined with the partial sums technique to mount an attack against a 9 rounds
version of Rijndael-256. In this case, we guess four bytes of K0 and the 21 subkey
bytes - 16 bytes of K9, 4 bytes of K8 and one byte of K ′

7 - required to add three
rounds at the end of the 4 rounds distinguisher. We always consider that this
distinguisher is extended with one round at the beginning summing on sets with
232 elements. The attack then works as follows: first, construct 223 undamaged
herds of 2104 elements using 2128 − 2119 plaintexts; guess the four key bytes of
K0 to determine a particular herd; then apply the partial sums technique to
this set to compute each xk and to obtain a single byte of A(7) depending on
16 bytes of the ciphertext and 21 subkey bytes; then use the fact that summing
the 2104 values on a single byte of A(7) will yield zero (from equality (5)) for the
good key. The required storage is about 2104 bits and the total complexity of
this attack is about 232 · 2170 = 2202 trial encryptions for one herd and a 256-bit
key (see [6] for the details of the complexity of the attack). We need to test four
herds before discarding the first bad keys and at least 26 herds to get exactly
the good key (with a decreasing complexity). Then, the total complexity of this
attack is about 2204 trial encryptions.

This attack could only work for a 256-bit key. However, in the case of a 192-bit
key, using the weakness of the key-schedule described in section 4.2, we know
that we could preserve 2 bytes of the exhaustive search of K9 that are directly
determined by the 14 others. Then, we could save a 216 factor from the previous
attack and we obtain a complexity of about 2204−16 = 2188 trial encryptions for
the same number of plaintexts and the same required storage.
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5 Conclusion

In this paper, we have presented a new particular property on four rounds of
Rijndael-256 that relies on semi-bijective properties of internal foldings. Then
we have built the best known attack against a 9 rounds version of Rijndael-256
requiring for a 192-bit keys 2188 trial encryptions with 2128 − 2119 plaintexts.
We have summed up in table 1 all known results concerning the attacks against
Rijndael-b.

In [6], the authors also present a related key attack against a 9 rounds version
of the AES. Moreover, in [9] and in [11], two related key rectangle attacks have
been proposed against the AES under keys of length 192 and 256 bits. We do not
find a way to extend the attacks that use related keys against Rijndael-256. The
main problem in this case comes from the higher number of 32-bit key words that
must be generated to construct 256-bit subkeys: we do not find a key pattern
that sufficiently preserves an integral property.

Table 1. Summary of Attacks on Rijndael-b - CP: Chosen plaintexts, RK: Related-key

Cipher nb Key Data Time source
rounds size Complexity

AES 6 (all) 232 CP 272 [4] (Integral)
7 (all) 2128 − 2119 CP 2120 [6] (Part. Sum)
8 (192) 2128 − 2119 CP 2188 [6] (Part. Sum)
8 (256) 2128 − 2119 CP 2204 [6] (Part. Sum)
9 (256) 285 RK-CP 2224 [6] (Related-key)
10 (192) 2125 RK-CP 2182 [11] (Rectangle)

Rijndael-192 6 (all) 232 CP 272 [4] (Integral)
7 (all) 2128 − 2119 CP 2128 − 2119 [6] (Part. Sum)
8 (192) 2128 − 2119 CP 2188 [6] (Part. Sum)
8 (256) 2128 − 2119 CP 2204 [6] (Part. Sum)

Rijndael-256 6 (all) 232 CP 272 [4] (Integral)
7 (all) 2128 − 2119 CP 2128 − 2119 [6] (Part. Sum)
7 (all) 6 × 232 CP 244 this paper
8 (all) 2128 − 2119 CP 2128 − 2119 this paper
9 (192) 2128 − 2119 CP 2188 this paper
9 (256) 2128 − 2119 CP 2204 this paper
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Abstract. This paper presents an updated implementation of the Ad-
vanced Encryption Standard (AES) on the recent Xilinx Virtex-5 FP-
GAs. We show how a modified slice structure in these reconfigurable
hardware devices results in significant improvement of the design effi-
ciency. In particular, a single substitution box of the AES can fit in
8 FPGA slices. We combine these technological changes with a sound in-
tertwining of the round and key round functionalities in order to produce
encryption and decryption architectures that perfectly fit with the Digi-
tal Cinema Initiative specifications. More generally, our implementations
are convenient for any application requiring Gbps-range throughput.

1 Introduction

Reprogrammable hardware devices are highly attractive options for the imple-
mentation of encryption algorithms. During the selection process of the AES [1],
an important criterion was the efficiency of the cipher in different platforms,
including FPGAs. Since 2001, various implementations have consequently been
proposed, exploring the different possible design tradeoffs ranging from the high-
est throughput to the smallest area [2]. Each of those implementations usually
focuses on a particular understanding of “efficiency”. Furthermore, every time
a new hardware platform is introduced, a new implementation is to be made in
order to comply with and take advantage of its specificities.

Therefore, this paper aims to provide an update on the performances of the
AES, taking the new Xilinx’s Virtex-5 FPGAs as evaluation devices. Our results
show how the modified slice structure (i.e. the 6-input Look-Up-Tables combined
with multiplexors) allows an efficient implementation of the AES substitution
box (S-box). We include these technological advances in a state-of-the art archi-
tecture for an encryption module. The resulting IP core typically complies with
the Digital Cinema Initiative specifications [3]: the presented encryption and de-
cryption designs can be used to decrypt the incoming compressed data stream in
a digital cinema server and re-encrypt the uncompressed data between the server
and the projector. More generally, it is convenient for any application requiring
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Gbps-range throughput and compares positively with most recently published
FPGA implementations of the AES. Although the improvements described in
this paper straightforwardly derive from technological advances, we believe they
are of interest for the cryptographic community in order to keep state-of-the-art
implementation results available and detailed in the public literature.

The rest of the paper is structured as follows. Section 2 briefly reminds how
the AES cipher processes the data. Then, we discuss the specificities of our
target platform before fully describing the architecture developed in Section 4.
The implementation results are summarized in Section 5, together with some
selected results from the literature. Finally, our conclusions are in Section 6.

2 Cipher Description

The AES is a substitution permutation network (SPN) allowing the encryp-
tion/decryption of data by blocks of 128-bits and supporting key lengths of 128,
192 and 256 bits. In the following, we focus on the 128-bit key version. Its inter-
nal state, usually represented as a 4× 4 matrix of bytes, is updated by iterating
through the round structure (10, 12 or 14 times according to the key size). The
round is described as four different byte-oriented transformations.

First, SubBytes introduces the non-linearity by taking, for each byte, the
modular inverse in GF(28) and then applying an affine transformation. Instead
of computing distinctly these two steps, the full transformation is achieved by
passing each byte through an S-box (Figure 1). Then ShiftRows modifies the
state. It simply consists of a circular left shift of the state’s rows by 0, 1, 2 and 3
bytes respectively (Figure 2). Third, MixColumns applies a linear transforma-
tion to the state’s columns (Figure 3). Each of them is regarded as a polynomial
and is multiplied by a fixed polynomial c(x) = 3 ·x3 +x2 +x+2 (mod x4 +1).
Finally, the AddRoundKey transform mixes the key with the state. As each
subkey has the same size as the state, the combination is performed by a simple
bitwise XOR between subkey bytes and their corresponding state bytes (Fig-
ure 4). A first key addition is performed before entering the first round, and the
last round omits the MixColumns transformation.

Prior to the en/de-cryption process, the subkeys have to be generated.

The key schedule takes the main key K0 and expand it as shown in Fig. 5
for the case of a 128-bit key, where SubWord applies the S-box to the 32-bit
input word, RotWord rotates the word one byte to the left and RC(i) is an
8-bit constant associated to each round i 1.

1 In encryption mode, this can easily be performed “on-the-fly”, i.e. in parallel to
the rounds execution in order to get the subkey at the exact time it is needed. In
decryption mode, the round keys generally have to be derived prior to the decipher.
Solutions allowing “on-the-fly” derivation of the decryption subkeys require specific
features (i.e. knowledge of a decryption key that corresponds to the last encryption
subkeys) and hardware overhead. Therefore, these are not considered in this paper.
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Fig. 1. SubBytes Transformation Fig. 2. ShiftRows Transformation

Fig. 3. MixColumns Transformation. Fig. 4. AddRoundKey Transform

Fig. 5. AES 128-bit Key Expansion Round

Let us finally mention that the decryption process slightly differs from the en-
cryption one. In order to decipher data blocks, the inverse transformations have to
be applied to the state. These operations are respectively called Inv-Transform,
except for the AddRounKey as it is its own inverse, and are applied in the same
order as described above. This may result in a different performance of the AES in
encryption and decryption. Regarding the key schedule, the operations
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remain the same as for encryption but the subkeys have to be introduced in reverse
order. For more details, we refer to [1].

3 Target Platform

The chosen platform for implementation is a Xilinx Virtex-5 FPGA. Nowadays,
such devices embed programmable logic blocks, RAM memories and multipli-
ers2. Compared to the early reconfigurable devices, these features allow recent
FPGAs to provide interesting solutions for a wide range of applications. In this
description, the focus will be set on logic elements as other resources will not
be used. In Xilinx FPGAs, the slice is the logic unit that is used to evaluate
a design’s area requirement. The Virtex-5 platform exhibits two kinds of slices.
Each of these contains 4 Look-Up Tables (LUTs), 4 flips-flops and some addi-
tional gates. These elements, defining the “basic” slice (sliceL), provide the user
with logic, arithmetic and ROM functions. In addition, another version of the
slice (sliceM) adds the capability to be configured as a distributed RAM or as a
shift register. Those enhanced slices represent about 25% of the total amount of
available slices. Figure 6 shows the difference between sliceLs and sliceMs.

4 Architecture

A lot of architectures for the AES have been presented in the open literature.
Each of those target a specific application and accordingly, various tradeoffs of
pipelining, unrolling, datapath width and S-boxes designs have been presented.
These contributions do generally agree that the most critical part in an AES de-
sign is the S-box. To our knowledge, three different methods have been exploited
in order to achieve efficient implementations:

Logic. In this first proposal, one 256×8-bit S-box is required for each byte
of the state. Implementing this as a large multiplexor on platforms where
LUTs provide 4-to-1 computation and by taking advantage of special FPGA
configurations (i.e. MuxF5s and MuxF6s), led the authors of [4] to consume
144 LUTs for one S-box. In the case of a full length datapath (128-bit), 2304
LUTs (144×16) are required to perform the whole substitution. This method
results in a logic depth of 2 slices. Those two levels can be advantageously
pipelined to prevent frequency reduction.

Algorithmic. Another approach to compute SubBytes is to directly imple-
ment the multiplicative inverse and affine transforms. In order to make it
more efficient, Rijmen suggested in [5] to move computations from GF(28)
to the composite field GF((24)2). The main advantage relies on the reduced
size of the inversion table: 24 × 4 instead of 28 × 8. However, some logic
is required to implement transformations to and from such composite field.
This type of implementation has been exploited in [6,7] for example.

2 Additionally, certain devices also embed microprocessors (PowerPC).
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Fig. 6. Virtex-5 mixed view of top-half sliceL and bottom-half sliceM

RAM. Embedded BlockRAMs on FPGA platforms can also be used to store the
S-boxes. Such an approach achieves high-throughput performances in [8]. If
enough of these memories are available, another idea is to combine SubByte
and MixColumns in a single memory table, as sometimes proposed in soft-
ware implementations. Examples of such designs are in [9,10]. Depending on
the size and availability of RAM blocks, these solutions may be convenient
in practice for recent FPGA devices.

In our context, the choice is straightforward. Due to the technology evolution, a
256×8-bit S-box fits in 32 LUTs. Using a similar approach as in [4], four LUTs
make four 6-to-1 tables from which the correct output is chosen thanks to the
F7MUXs and F8MUX of the slice. It allows packing a 256×1-bit table in four
LUTs, that is a single slice. This solution has the significant advantage of both
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reducing the area requirements in LUTs and performing the S-box computation
in a single clock cycle, thus reducing the latency.

The architecture developed for 128-bit key encryption is in Figure 7. It has a
128-bit datapath for both data and keys. The state of the cipher iterates over
a single round structure. The ShiftRows operation is not shown on the figure
below as it simply consists in routing resources.

Fig. 7. AES Encryption Architecture

As far as the key expansion is concerned and when dealing with large amount
of data, like in the Digital Cinema context, computing all subkeys prior to en/de-
cryption seems a better alternative than an “on-the-fly” key schedule. Indeed, the
overhead due to a master key change quickly vanishes as the number of messages
using this same key increases. It also allows us to reduce the area requirements
of the complete design. As the key schedule and the encryption module use
the same S-boxes, these are shared in our architecture. Multiplexors allow the
S-box inputs to change between the state and the subkey. These multiplexors
do not increase the implementation cost as they are packed in LUTs together
with the key addition. The remaining of the subkeys’computation proceeds as
explained in Section 2. Each subkey is written in a RAM configured sliceM.
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They are brought back when needed for en/de-cryption. We note that the key
schedule must be performed before decryption takes place anyway, as the subkeys
have to be applied in reverse order. Also, the S-Boxes sharing does not hold for
the decryption architecture. Indeed, the S-boxes implementing SubBytes for
the key schedule can not be reused for deciphering. This is because decryption
involves the InvSubBytes operation that do not yield the same S-boxes.

This architecture perfectly suits the needs of ECB and Counter modes of
operations. It could also be tuned to handle the CBC mode, at the cost of
a reduced efficiency. Indeed, as the plaintext block is to be XORed with the
previous ciphertext before being encrypted, the four pipeline stages of the round
do not allow encryption of four plaintext blocks at the same time. Note that
in the case of CBC decryption, this restriction does not hold as this additional
XOR is performed after looping through the round.

Although the focus of this paper is the implementation of an AES en/de-
cryption module on a Virtex-5, we also investigated this IP core in Virtex-4
and Spartan-3 FPGAs, for illustration/comparisons purposes. The architecture
remains the same as the one presented here for the Virtex-5. The only difference
relies on the way S-boxes are implemented. In the case of a Virtex-4, the S-boxes
are made up of BlockRAMs. Each of the blockRAM has a datapath width of
32-bit that allows the output of the S-box to be stored times 0, 1, 2 and 3. That
is, a part of the MixColumns computation is made while passing through the
RAMs. To make things clear, let us consider the combination of SubBytes and
MixColumns in the AES. An output column of this transform equals:

�
���

b0

b1

b2

b3

�
��� =

�
���

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

�
���×

�
���

SB(a0)
SB(a1)
SB(a2)
SB(a3)

�
��� ,

where the bi’s represent the transform output bytes and the ai’s its input bytes.
The bi vector is equivalent to:
�
���
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�
���× [SB(a0)] ⊕
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���

03
02
01
01

�
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���
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�
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�
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Therefore, if we define four tables as:

T0(a) =

�
���

02 × SB(a)
SB(a)
SB(a)

03 × SB(a)

�
��� , T1(a) =

�
���

03 × SB(a)
02 × SB(a)

SB(a)
SB(a)

�
��� ,

T2(a) =

�
���

SB(a)
03 × SB(a)
02 × SB(a)

SB(a)

�
��� , T3(a) =

�
���

SB(a)
SB(a)

03 × SB(a)
02 × SB(a)

�
��� ,

the combination of SubBytes and MixColumns equals:
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�
���

b0

b1

b2

b3

�
��� = T0(a) ⊕ T1(a) ⊕ T2(a) ⊕ T3(a)

In our Virtex-4 implementation, these T tables are stored in RAM and all what
is left to complete the MixColumns transform is a single level of logic handling
the XOR of the four bytes. On Spartan-3 devices, the situation is different since
the BlockRAMs do not provide a dedicated latch at their output. Reproducing
the behavior of Virtex-4 requires 24-bits to be stored using the slice flip-flops
which consumes much more area. Since XORing the table outputs without using
the slice flip flops causes a reduction of the work frequency, the most efficient
solution is to implement MixColumns and SubBytes independently.

5 Results

The AES designs were described using VHDL. Synthesis and Place & Route
were achieved on Xilinx ISE 9.1i. The selected devices are Xilinx’s Virtex-5,
Virtex-4 and Spartan-3. Table 1 summarizes the results achieved for both the
encryption and decryption (Enc/Dec) modules. Moreover, some previous results
are summarized in Table 2. As it is generally true for any comparison of hard-
ware performances, those results have to be taken with care since they relate to
different FPGA devices. In the Virtex-5 FPGAs, a slice is made up of 4 LUTs
instead of 2 for previous Xilinx devices. In order to allow fair(er) comparison, it
then makes sense to double the figures as if a slice was 2 LUTs. This is taken
into account into the parenthesis of Table 1. Compared to previous devices, the
benefit of Virtex-5 is easily underlined. It corresponds either to the removal of
the blockRAMs from the design on the Virtex-4 or a 50% slice reduction from a
full logic design on Spartan-3 FPGAs. This strongly emphasized the advantage
of technology evolution shifting from 4 to 6 input bits LUTs.

Table 1. Implementation Results: encryption/decryption designs

Device Slices BRAM Freq. Thr. Thr. / Area
(MHz) (Gbps) (Mbps/slice)

Virtex-5 400 / 550 (800 / 1100) 0 350 4.1 10.2 / 7.4

Virtex-4* 700 / 1220 8 250 2.9 4.1 / 2.3 *

Spartan-3 1800 / 2150 0 150 1.7 0.9 / 0.8

Additional insights on our implementation results can be obtained by looking
at Table 2. Namely, the proposed architectures range among the efficient ones
found out in the literature. Again, these observations have to be considered
as general intuitions rather than fair comparisons since they consider different
FPGA technologies: more recent FPGAs have higher work frequencies and thus
throughput. In addition, the hardware efficiency (i.e. throughput/area ratio) of
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Table 2. Previous Implementations

Device Datapath Slices BRAM Freq. Thr. Thr./Area
(MHz) (Gbps) (Mbps/slice)

Spartan-2 [11]* 8 124 2 – 0.002 0.02*

Virtex-2 [10]* 32 146 3 123 0.358 2.45*

Virtex-E [12]* 128 542 10 119 1.45 2.67*

Virtex-E [4] 128 2257 0 169 2.0 0.88

Virtex-2 [13]* 128 387 10 110.16 1.41 3.64*

Virtex-2 [13] 128 1780 0 77.91 1.0 0.56

Virtex-4 [14] 128 18400 0 140 17.9 0.97

Virtex-5 [15] 128 349 0 350 4.1 11.67

the *-marked implementations is not meaningful since they consumes FPGA
RAM blocks. Finally, the hardware cost can only be compared if the respective
implementation efficiencies (e.g. measured with the throughput/area ratio) are
somewhat comparable. As a matter of fact, it is always possible to reduce the
implementation cost, by considering smaller datapaths (e.g. [11] uses an 8-bit
datapath for the AES, [10] uses a 32-bit datapath, all the others use 128-bit
architectures) at the cost of a reduced throughput.

In the case of Helion Technology’s implementation [15], the comparison is more
interesting since it relates to the same Virtex-5 platform as ours. At first sight,
their Fast AES Encryption core seems to consume less area than the proposed
architecture. However, the gap can be reduced if we assume that their core uses
an “on-the-fly” key schedule. In such a case, the distributed RAM used to store
subkeys is to be removed from our presented design (along with its control logic)
which allows to earn at least 32 slices. This makes both designs very close. As
a matter of fact, the differences between these cores mainly relate to different
optimization goals. Our was to design encryption and decryption IPs exploiting
a very similar architecture with a key scheduling algorithm executed prior to
the encryption/decryption process. We note that not using the “on-the-fly” key
scheduling for encryption makes sense for power consumption reasons. If the
implementation context does not require frequent key changes, there is no need
to re-compute these keys for every plaintext.

6 Conclusion

This paper reports implementation results of the AES algorithm on the new
Virtex-5 devices. It exhibits the (straightforward but significant) benefits that
can be drawn from the technology evolution within recent FPGAs. In particular
it is shown how the AES substitution box perfectly suits the new Virtex-5 slice
structure using 6-bit LUTs. This enables reducing the cost of a single S-box from
144 down to 32 LUTs ! Compared to 4 input bit LUTs-based designs, this ad-
vantage roughly corresponds to either the removal of blocks of embedded RAM
memory or a slice count reduction of 50%, depending on the design choices.
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The proposed architectures range among the most efficient ones published in
the open literature. Their reasonable implementation cost make them a suit-
able solution for a wide range of application requiring Gbps-range throughput,
including digital cinema and network encryption.
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Abstract. In this paper we show weaknesses in SASI, a new Ultra-
Lightweight RFID Authentication Protocol, designed for providing
Strong Authentication and Strong Integrity. We identify three attacks,
namely, a de-synchronisation attack, through which an adversary can
break the synchronisation between the RFID Reader and the Tag, an iden-
tity disclosure attack, through which an adversary can compute the iden-
tity of the Tag, and a full disclosure attack, which enables an adversary
to retrieve all secret data stored in the Tag. The attacks are effective and
efficient.

1 Introduction

RFID Technology. Radio Frequency Identification (RFID, for short) is a rapidly
growing technology enabling automatic objects identification1. Each object is
labeled with a tiny integrated circuit equipped with a radio antenna, called Tag,
whose information content can be received by another device, called Reader,
without physical contact, at a distance of several meters.

RFID tags can perform computations. They are usually divided in passive
tags and in active tags. The first ones do not have a power source. They receive
energy for computation from the readers and can perform very simple operations.
The second are powered by small batteries and are capable of performing more
significant and computational heavy operations.

An important security concern associated to the RFID technology is the pri-
vacy of the tag content. Indeed, it is pretty much easy for anybody with technical
skills to set up a device for reading the tag content. Neverthless, to preserve user
privacy, only authorised RFID readers should be enabled to access the tag con-
tent. An authentication protocol, which grants access to the tag content only to
a legitimate reader, is therefore required.

Based on the computational cost and the operations supported on tags, au-
thentication protocols can be divided in classes. Using the terminology of [2], the

1 Ari Juels [4] has recently pointed out that the RFID technology ...In essence ... is
a form of computer vision... RFID has an advantage over even the most acute eyes
and brain: it is in fact a form of X-ray vision...RFID is poised to become one of the
sensory organs of our computing networks.

S. Vaudenay (Ed.): AFRICACRYPT 2008, LNCS 5023, pp. 27–39, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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full-fledged class refers to protocols demanding support on tags for conventional
cryptographic functions like symmetric encryption, hashing, or even public key
cryptography. The simple class refers to protocols requiring random number gen-
eration and hashing. The lightweight class refers to protocols which require ran-
dom number generation and simple checksum functions. The Ultra-Lightweight
class refers to protocols which only involve simple bitwise operations, like and,
or, exclusive or, and modular addition.

An overview of the applications of RFID and of the main security issues can
be found in [5]. Moreover, we refer the reader to [1] for references to the full
body of research papers dealing with RFID technology and its challenges.

A few lightweight and ultra-lightweight authentication protocols have appeared
in the literature during the last two years. For example, a series of ultra-lightweight
authentication protocols involving only bitwise operations and modular addition
have been proposed in [8,9,10]. Unfortunately, the vulnerabilities of these protocols
have been showed in [7,6,3].
Our Contribution. We focus our attention on a new ultra-lightweight authenti-
cation protocol, recently proposed in [2], to provide strong authentication and
strong integrity data protection. We identify three attacks, namely, a de-syn-
chronisation attack, through which an adversary can break the synchronisation
between the RFID Reader and the Tag, an identity disclosure attack, through
which an adversary can compute the identity of the Tag, and a full disclosure
attack, which enables an adversary to retrieve all secret data stored in the Tag.
The attacks are effective and efficient.

2 The Authentication Protocol

Let us focus on the protocol proposed by Chien in [2]. Three entities are involved:
a Tag, a Reader and a Backend Server. The channel between the Reader and the
Backend Server is assumed to be secure, but the channel between the Reader
and the Tag is susceptible to all the possible attacks.

Each Tag has a static identifier, ID, a pseudonym, IDS, and two keys, K1

and K2. All of them are 96-bit strings X . A string is represented as a sequence
X [95] . . .X [0], from the most significant bit to the least significant bit. The
pseudonym and the keys are shared with the Backend Server which, for each Tag
with static identifier ID, stores in a table the tuple (IDS, K1, K2). After each
successfull execution of the authentication protocol, the Tag and the Backend
Server update such values.

The authentication protocol is a four-round protocol. To simplify the descrip-
tion we do not introduce explicitely the Backend Server and will say that the
Reader performs some computations. However, the Reader just forwards the val-
ues received from the Tag to the Backend Server and gets back the output of
the computation the Backend Server performs.

The computations involve the following operations: ⊕ (bitwise exclusive or ),
∨ (bitwise or), + mod 296, and Rot(x, y), where x and y are two 96-bit values,
and the Rot(·, ·) operator shifts to the left in a cyclic way x by y positions.
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Let us look at Fig. 1. The Reader starts the authentication protocol by sending
an Hello message to the Tag. The Tag replies with the pseudonym IDS. Then,
the Reader chooses, uniformly at random, two 96-bit random values n1 and n2,
computes

A = IDS ⊕ K1 ⊕ n1

B = (IDS ∨ K2) + n2

K1 = Rot(K1 ⊕ n2, K1)
K2 = Rot(K2 ⊕ n1, K2)
C = (K1 ⊕ K2) + (K1 ⊕ K2),

and sends to the Tag A||B||C, the concatenation of A,B and C. The Tag, upon
receiving A||B||C, extract n1 from A, n2 from B, computes it own values

K1 = Rot(K1 ⊕ n2, K1)
K2 = Rot(K2 ⊕ n1, K2)∼
C= (K1 ⊕ K2) + (K1 ⊕ K2),

and verifies whether
∼
C= C. If the equality holds, i.e., the computed value is

equal to the received value, then the Tag computes and sends to the Reader the
value

D = (K2 + ID) ⊕ ((K1 ⊕ K2) ∨ K1)

and updates its pseudonym and secret keys. Similarly, the Reader, once D has
been received, computes his own value

∼
D= (K2 + ID) ⊕ ((K1 ⊕ K2) ∨ K1),

checks whether
∼
D= D, and if the equality holds, updates the pseudonym and

the keys shared with the Tag.
The pseudonym and the keys are updated has follows: The Reader sets

IDS = (IDS + ID) ⊕ (n2 ⊕ K1)
K1 = K1, K2 = K2

while the Tag sets

IDSold = IDS, K1,old = K1, K2,old = K2,
IDS = (IDSold + ID) ⊕ (n2 ⊕ K1), K1 = K1, K2 = K2.

The Tag stores two tuples (IDS, K1, K2) and (IDSold, K1,old, K2,old) because
it might happen that the Tag updates the pseudonym and the keys, while the
Server does not. Such an event for example might occur if a simple communica-
tion fault does not permit the Reader to get the value D, sent by the Tag during
the 4-th round of the authentication protocol. The old tuple is used as follows:
any time the Reader gets IDS from the Tag, the Reader/Backend Server looks
for a tuple (IDS, K1, K2). If no entry is found, the Reader sends another Hello
message to the Tag and the Tag replies with IDSold. Hence, even if the Reader
has not updated the tuple, the authentication protocol can be run by using the
old one, i.e., (IDSold, K1,old, K2,old). Of course, if no match is found also at the
second trial, the protocol fails.
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Tag Identification

Reader Tag

1.
Hello

− − − − − − − − −− −→
2.

IDS
←− − − − − − − − − −−

3.
A||B||C

− − − − − − − − −− −→
∼
C

?
= C

4.
∼
D

?
= D

D
←− − − − − − − − − −−

Pseudonym and Key Update

Reader Tag

IDSold = IDS, K1,old = K1, K2,old = K2

IDS = (IDS + ID) ⊕ (n2 ⊕ K1)

K1 = K1, K2 = K2

IDS = (IDS + ID) ⊕ (n2 ⊕ K1)

K1 = K1, K2 = K2

Fig. 1. SASI: Identification - Pseudonym and Key Update

3 De-synchronisation

In this section we propose a de-synchronisation attack.
Let Adv be an adversary who controls the channel between the Reader and

the Tag. Adv might simply look at and store the messages exchanged between
the parties before forwarding them correctly. Such a behaviour models passive
attacks. As well as, Adv might intercept/delay/inject/modify messages as he
likes. Such a behaviour models active attacks.

In our attack, Adv, in a first stage just looks at an honest execution of the
authentication protocol and stores the messages Hello, IDS, A||B||C and D
the parties send to each other.

Then, in a second stage, Adv interacts with the Tag. Roughly speaking, Adv
resets the Tag to the state in which the Tag was at the time of the interaction
with the Reader and, then, by using the transcript of the execution of the au-
thentication protocol, induces the Tag to accept a new sequence A′||B′||C′. Such
a sequence drives the Tag to overwrite the new IDS, computed at the end of
the honest execution. If Adv succeeds, then Tag and Reader are de-synchonised.
The new sequence A′||B′||C′ is constructed by computing C′ as a modification
of C and by looking for an appropriately chosen A′, obtained by flipping a single
bit of A. The value B stays the same. The attack if described in Fig. 2.
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Adv’s Computation.

1. Let C
′
= C + 20 and set j = 0.

2. Sends the Hello message to the Tag and gets back the (new) IDS, computed at
the end of the execution Reader-Tag of the authentication protocol. Indeed, the
Tag has updated (IDS, K1, K2).

3. Sends again the Hello message to the Tag and gets back the (old) IDS, the one
used during the execution Reader-Tag of the authentication protocol.

4. Computes A′ by flipping the j-th bit of A and sends to the Tag A′||B||C′.
5. If the Tag accepts and replies with D′, the attack has succeeded and Adv termi-

nates. Otherwise, if j < 96 then sets j = j + 1 and repeats from step 2., else Adv
sets C

′
= C − 20 and j = 0 and repeats from step 2.

Fig. 2. SASI: De-synchronisation Attack

As we will show in a while, on average, after 48.5 trials, the Tag accepts
a message A′||B||C′. Hence, the Tag updates the pseudonym and the keys
(IDS, K1, K2), while the old tuple (IDSold, K1,old, K2,old), used in the inter-
action with Adv stays the same. At this point, Reader and Tag have been de-
synchronized. The tuple held by the Reader has been overwritten in the tag’s
memory. Hence, they do not share a tuple anymore!
Why does the attack work? Notice that, by definition

A = IDS ⊕ K1 ⊕ n1.

By flipping a bit in A, Adv implicitly flips a bit of n1. On the other hand, n1 is
used to compute

K2 = Rot(K2 ⊕ n1, K2).

Hence, by flipping a bit of n1, Adv flips a bit of K2, but he does not know which
one, since K2 is unknown. Moreover, it is easy to see that, given two different
positions, i and j, in n1 by flipping the corresponding bits, the bits flipped in
K2 lie in two different positions i′ and j′. In other words, any time Adv flips a
bit in n1, he flips a bit in a different position of K2. Since,

C = (K1 ⊕ K2) + (K1 ⊕ K2),

and the only element Adv can partially control is K2, Adv changes the value of
A as long as he does change the first bit of K2 and gets C

′
.

Notice that, Adv does not know a-priori if, by changing the first bit of K2, gets
C + 20 or C − 20. Therefore, the attack, in order to find a sequence A′||B||C′,
accepted by the Tag, need to be applied once by setting C′ = C + 20 and, if
going through all possible A′ no sequence is found, one more time by setting
C′ = C − 20 and trying again. Eventually, the Tag will accept a sequence and
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reply with D′. Since A is a uniformly distributed random 96-bit string, Adv has
to try on average 192+1

2 = 96.5 times.
However, the above de-synchronization attack can be improved. Indeed, notice

that, if Adv computes C′ = C + 295 = C − 295 instead of the C′ = C + 20 and
C′ = C− 20, the average number of trials can be reduced. The key observation
is that

295 mod 296 = −295 mod 296.

Hence, Adv has to try on average 96+1
2 = 48.5 times to find a suitable sequence

A′||B||C′ for the tag.

Another important observation, which will play a key role in the next section,
is the following: once a sequence A′||B||C′ which the Tag accepts is found, Adv
discovers the value used in the rotation Rot(K2⊕n1, K2) to compute K2. Indeed,
if the sequence A′||B||C′ has been computed by flipping the i-th bit of A, then
the value of the rotation is exactly 96− i.

4 Identity Disclosure

In this section, by building on the above de-synchronisation attack, we show how
Adv can compute the static ID stored in the Tag.

We start by noticing that, the same argument used before by modifying A
and C, in order to find a sequence the Tag accepts, can be applied to every
position, i.e., we can compute a sequence A′||B||C′ by working on any one of
C[95], . . . ,C[0]. Indeed, all Adv has to do when working on the i-th position,
with i ∈ {0, . . . , 95}, is to set C′ = C ± 2i, and then look for an A′ such that
the sequence A′||B||C′ is accepted.

We also know that the attack is more efficient, i.e., it requires a small number of
trials, if applied to position 95, and that, once a sequence A′||B||C′ is found, Adv
also knows the amount y = y(z) of the rotation Rot(x, z) used in the protocol to
get K2. Therefore, once Adv has received a reply D′ from the Tag, then Adv can
compute a new sequence A′′||B||C′′ by working on any position of C in 1.5 trials
on average. Indeed, Adv knows exactly in which position of A he has to flip a bit in
order to add or subtract 2i to C. Therefore, Adv just needs to check if, by flipping
a certain bit in A, he gets C′ = C+2i or C′ = C− 2i. Let us represent the static
identifier ID as ID[95] . . . ID[0]. The key idea in the attack is to collect pairs of
values D,D′, sent from the Tag to Adv as replies to forged sequences A′||B||C′,
and to analyse the differences given by D ⊕ D′. As we will show in a while, the
differences give to Adv information about the ID and some other values used in
the computation both by the Reader and the Tag. Notice that the attack described
in this section does not enable Adv to compute the MSB of the ID, and gives two
possible candidate values for the ID (and for K2).

We will proceed as follows: we first describe an identity disclosure attack which
works only in a special case. Then, we show how to turn the general case to the
special case through a pre-processing stage. The identity disclosure attack for
the special case is given in Fig. 3.
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Adv’s Computation.

1. Let IDS,A||B||C, D be the transcript of an honest execution Adv looks at.
2. Apply the desynchronisation attack, described in Fig. 2, in order to compute the

amount y = y(z) of the rotation Rot(x, z). (Notice that, w.r.t. the description
given in Fig. 2, for the aforementioned efficiency reasons, in step 1. compute
C = C + 295 instead of C = C + 20.)

3. Let i = 0.
4. Using the knowledge of y, compute a sequence Ai||B||Ci, where Ai is obtained

by flipping in A the bit A[(i + y) mod 96] and the values Ci is either C + 2i or
C − 2i.

5. Send one of the sequence Ai||B||Ci to the Tag. If it is not accepted, then send
the second one. One of them will be accepted.

6. The Tag sends back to Adv, as a reply to one of Ai||B||Ci, a value, say Di.
7. From Di and D, the value the Tag sends to the Reader during the honest exe-

cution of the authentication protocol Adv looks at, Adv computes the i-th bit of
the static identifier as

ID[i] = D[i + 1] ⊕ Di[i + 1]. (1)

8. If i < 95, set i = i + 1 and repeat from step 4.

Fig. 3. SASI: Identity disclosure attack

When (and why) does the attack of Fig. 3 work? Notice that, by definition

D = (K2 + ID) ⊕ ((K1 ⊕ K2) ∨ K1)

and, hence, denoting with Ki
2 the value of K2 obtained when the Tag accepts

Ai||B||Ci, it holds that

Di = (Ki
2 + ID) ⊕ ((K1 ⊕ K2) ∨ K1).

Therefore

D⊕ Di = (K2 + ID) ⊕ (Ki
2 + ID).

Let us look at the i-th position. It holds that

D[i] ⊕ Di[i] = (K2[i] + ID[i] + ci) ⊕ (Ki
2[i] + ID[i] + ci),

where ci denotes the carry from the sum of the bits of the previous positions. Let
us assume that ci = 0. The bits K2[i] and Ki

2[i] are one the complement of the
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other. Hence, either if ID[i] = 0 or ID[i] = 1, it holds that D[i]⊕Di[i] = 1. On
the other hand, if ID[i] = 0, it holds that D[i + 1] ⊕ Di[i + 1] = 0, since
K2[i + 1] = K2

i
[i + 1]; while, if ID[i] = 1, then either (K2[i] + ID[i]) or

(Ki
2[i] + ID[i]) produces a carry to the next position in the computation of

D or of Di, respectively. Therefore, D[i + 1] �= Di[i + 1]. Hence, equation (1)
holds.

By giving a closer look at the identity disclosure attack presented in Fig. 3, it
comes out that it works surely for the LSB of the ID, i.e., to compute ID[0].
Indeed, in the first position there is no carry from the sum operation of the bits
of previous positions. In other words, in

(K2[0] + ID[0]) ⊕ (K
1

2[0] + ID[0])

only one of the sums provides a carry to the next position if ID[0] = 1, since
K

1

2[0] is the complement of K2[0]. However, in general, we need to consider

(K2[i] + ID[i] + ci) ⊕ (K
i

2[i] + ID[i] + ci).

where ci might be different from 0. Notice that, for example, if ci = 1 and
ID[i] = 0, by computing ID[i] through equation (1) we draw a wrong conclusion!

Hence, we have two possibilities: either we find a strategy to keep track of
the carries generated and propagated during the computation of D and Di by
(K2 + ID) and (K

i

2 + ID) or we identify a method to reduce the general case
to the special case, i.e., one where almost no carry is generated. We succeeded
in pursuing the second approach.

First of all, notice that the bit-string P obtained by computing D⊕D0 has the
form P = 096−r1r, where r ≥ 1. Moreover, the substring of r − 2 bits equal to
1, from the second position to the (r − 1)-th, tells us that, for i = 2, . . . , r − 1,
K2[i] �= ID[i]. On the other hand, the last 1 tells us that K2[r] = ID[r]. Indeed,
let us look at D⊕ D0 :

D . . . (K2[r] + ID[r]) (K2[r − 1] + ID[r − 1]) . . . (K2[1] + ID[1]) (K2[0] + ID[0])
⊕ . . . ⊕ ⊕ . . . ⊕ ⊕
D0 . . . (K

1
2[r] + ID[r]) (K

1
2[r − 1] + ID[r − 1]) . . . (K

1
2[1] + ID[1]) (K

1
2[0] + ID[0])

P = 0 . . . 0 1 . . . 1 1

Assume that ID[0] = 1. Since K
1

2[0] = 1 − K2[0], then one of the two strings
D or D0 generates a carry c1 to the next position. Then, in D and D0, for
j = 1, . . . , 95, it holds that K2[j] = K

1

2[j]. Therefore, we can conclude that the
only reason to get a sequence of 1′s in P is that K2[j] �= ID[j] as long as j < r.
In such a case, the carry generated in position 0 is propagated until position r−1.
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On the other end, it is easy to check that, in position r − 1, it holds that
K2[r−1] = ID[r−1]. Indeed, either if K2[r−1] = ID[r−1] = 0 or if K2[r−1] =
ID[r − 1] = 1, the bit P [r − 1] = 1 and the bit P [r] = 0.

We are now ready to describe the whole attack. It works in two steps:

– Pre-processing. Modify the string K2, in order to get an all 1’s string P, by
using the procedure described in Fig. 4.

– Identity Disclosure. Apply the identity disclosure attack given in Fig. 3.

Indeed, we have control over K2 and we can efficiently get a pair (D,D
0
)

such that P = D ⊕D
0

is all 1’s. We proceed as follows: assume that Adv, after
sending A0||B||C0 gets back D0 such that2 P = D⊕D0 = 096−r1r, with r > 1.
Then, let us look at Fig. 4.

Adv’s Computation.

1. Constructs and sends to the Tag a new sequence Ar||B||Cr, modifying A0 and
C0, in order to flip the r-th bit of K2.

2. The Tag replies with a value Dr.
3. Then, Adv sends to the Tag a new sequence Ar

′||B||Cr
′, constructed from

Ar||B||Cr, in order to flip the first bit of the new K2, i.e., K2 = 0.
4. The tag replies with Dr

′.
5. Adv computes P = Dr ⊕ Dr

′ = 096−t1t, where t > r. If t = 96, then Adv has
finished; otherwise, Adv repeats the procedure working on the t-th bit, that is,
setting r = t and A0||B||C0 = Ar||B||Cr.

Fig. 4. Pre-processing for the identity disclosure attack

Notice that step 1., as we have seen, takes on average 1.5 trials and aims at
extending the all 1’s substring in P . Step 3. also takes on average 1.5 trials.

Once Adv has a pair (D,D
0
) such that P = D ⊕ D

0
= 196, it mounts the

identity disclosure attack described in Fig. 3, starting from step 3. and setting
i = 1.

More precisely, let As||B||Cs the sequence which gave rise to D. The tran-
script Hello, IDS,As||B||Cs,D plays the role of the transcript of the honest

2 In the special case, in which the string we get is 0951, it means that ID[0] = 0.
Hence, we fix this bit of ID and apply again the procedure starting from the 2nd
position of the strings and going on, as long as we do not get, a string P with the
form P = 096−j−r1r0j , where j > 0 and r > 1. To simplify the analysis and simplify
the description, w.l.o.g., let us assume that ID[0] = 1 and P = D ⊕ D0 = 096−r1r,
with r > 1.
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execution in step 1. of Fig. 3. Then, Adv, for i = 1, . . . , 94, waits for D
i
from the

tag as a reply to a sequence Ai||B||Ci, constructed from As||B||Cs by working
on the i-th position. Once received D

i
, he computes the i-th bit of the ID using

equation (1), i.e., ID[i] = D[i + 1] + D
i
[i + 1].

At this point, notice that Adv computes two possible ID values. According to
our assumption ID[0] = 1 in both. However, depending on the value of K2[0],
Adv gets two values for the ID, which are one the complement of the other up
to the LSB and the MSB. More precisely, let us assume that K2[0] = 0. Through
the pre-processing stage and the identity disclosure attack, Adv computes ID1.
Notice that he also computes K2,1. Indeed, he knows that, for j = 1, . . . , 94, it
holds that ID[j] �= K[j].

On the other hand, if K2[0] = 1, it is easy to see that the bits in position 0
either of K2 + ID or of K

1

2 + ID, generate a carry which is propagated until
position 95. Hence, the second pair (ID2, K2,2) is obtained, for j = 1, . . . , 94,
by flipping the bits of ID1 and K2,1 one by one, i.e., ID2[j] = 1 − ID1[j], and
K2,1 = 1 − K2,1.

We stress that the above method does not enable Adv to compute the MSB
of the possible ID and K2. Therefore, Adv has to guess such bits.
Notice that, we can also recover the string K2, used by the Reader to update
the tuple (IDS, K1, K2) to the new tuple (IDSNew, K1, K2). Indeed, we have
modified such a string in the preprocessing stage of our attack, in order to get
a new string K2, such that ID[i] �= K2[i], for i = 2, . . . , 94. Such a condition
has been obtained by changing some bits of the former K2. However, we know
in which positions the bits have been flipped. Hence, from the two strings K2,1

and K2,2, obtained at the end of the attack, we can compute the two possible
K2, by reversing the flipped bits in K2,1 and K2,2.

Remark. The attack is effective and efficient. It requires on average, 48.5 inter-
actions with the Tag to find out the amount y of the rotation, � · (1.5 + 1.5)
interactions for the pre-processing stage, and 95 ·1.5 interactions to compute the
first 95 bits of the ID. The parameter � represents the number of positions in
which K2 and ID are equal. Since the strings are uniformly distributed, it holds
that, on average, � = (96 + 1)/2. Therefore, the whole identity disclosure attack
requires, on average, 48.5 + 144 + 48.5 = 240 interactions.

5 Full Disclosure

In this section we show how Adv can efficiently extract all secret data.
Assume that we have a black box procedure, let us say BB(IDS,A||B||C,D),

to recover the ID of the tag and the string K2. Then, Adv can extract all secret
data from the tag as described in Fig. 5:

The Reader, at the end of the first execution of the authentication protocol,
once received the value D, updates the old tuple (IDS, K1, K2) to the new tuple
(IDSNew, K1, K2).
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Then, Adv computes the ID and K2, re-sets the Tag, and eavesdrops a second
execution of the authentication protocol.

It is immediate to see that, at this point, Adv has enough information to
compute everything. Indeed:

Adv’s Computation

1. Eavesdropping stage. Looks at an execution of the authentication protocol and
stores Hello, IDS,A||B||C, D.

2. Identity disclosure stage. Applies BB(IDS,A||B||C, D) and gets ID and K2.
3. Re-set stage. Re-sets the Tag by sending again the sequence A||B||C, engaging

an instance of the authentication protocol
4. Eavesdropping stage. Looks at a new execution of the authentication protocol and

stores Hello, IDSNew, ANew||BNew ||CNew ,DNew .
5. Secret Data Extraction. Computes K1, K2, n1, n2 of the current state.

Fig. 5. Full disclosure attack

– From BNew, since knows K2 (the former K2) and IDSNew, gets n2, i.e., he
computes

n2 = BNew − (IDSNew ∨ K2).

– From IDSNew = (IDS + ID) ⊕ (n2 ⊕ K1), since knows IDS, ID and n2,
computes K1, i.e.,

K1 = IDSNew ⊕ (IDS + ID) ⊕ n2.

Notice that the current K1 is equal to the former K1, used to compute
IDSNew .

– From ANew, since knows IDSNew and K1, computes n1, i.e.,

n1 = ANew ⊕ IDSNew ⊕ K1.

Remark. The above attack requires a black box procedure which uniquely com-
putes ID and K2. However, the ambiguities present in the method we have
described, can be solved in several ways. Either by directly ”testing” the com-
puted secrets, by interacting with the Tag, or by using the available values of C
and D, for testing which ones are the correct hypothesis. The complexity of the
full disclosure attack is the same complexity of the identity disclosure attack, up
to some simple computation. All the secret data involved in the authentication
protocol can be efficiently retrieved. Moreover, it is easy to check that, Adv, once
computed the value K1, K2, n1, n2 of the current state, by using the transcript of
previous executions of the authentication protocol, can also compute the secret
data therein used.
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6 Conclusions

We have showed that SASI [2], a new ultra-lightweight authentication protocol,
proposed to provide strong authentication and strong integrity protection for
RFID tag presents vulnerabilities.

We have described three attacks. A de-synchronisation attack, through which
an adversary can break the synchronisation between the RFID Reader and the
Tag. An identity disclosure attack, through which an adversary can compute
the identity of the Tag. A full disclosure attack, which enables an adversary to
retrieve all secret data stored in the Tag. The attacks are effective and efficient.

During the writing of the camera-ready version of this paper, we have find
out that other researchers [11] have proposed two de-synchronisation attacks to
SASI.

The recent history shows that all ultra-lightweight authentication protocols
proposed have been broken through efficient attacks relatively soon after they
have been published. Almost all of them are designed in order to provide con-
fusion and diffusion of the output values. Informal security arguments are used
to support the merits of the obtained protocols. The above paper confirms that
sound security arguments should be used to support design strategies.
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Abstract. PRESENT is proposed by A.Bogdanov et al. in CHES 2007
for extremely constrained environments such as RFID tags and sensor
networks. In this paper, we present the differential characteristics for
r-round(5 ≤ r ≤ 15), then give the differential cryptanalysis on reduced-
round variants of PRESENT. We attack 16-round PRESENT using 264

chosen plaintexts, 232 6-bit counters, and 264 memory accesses.

1 Introduction

RFID systems and sensor networks have been aggressively deployed in a variety
of applications, but their further pervasive usage is mainly limited by lots of
security and privacy concerns. As RFID tags and sensor networks are low cost
with limited resources, the present cryptographic primitives can not be feasible.
So the security primitives suitable for these environments must be designed.

PRESENT is an Ultra-Lightweight block cipher proposed by A.Bogdanov,
L.R.Knudsen and G.Leander et al.[3] and has implementation requirements sim-
ilar to many compact stream ciphers. Compared to other current block ciphers
for low-cost implementation requirements such as TEA[12,13], MCRYPTON[7],
HIGHT[5], SEA[11] and CGEN[9], PRESENT has the lowest implementation
costs.

PRESENT is a 31-round SP-network with block length 64 bits and 80 bits or
128 bits key length. Serpent[1] and DES have excellent performance in hardware,
so the design of PRESENT makes use of the characteristics of the two block
ciphers. The non-linear substitution layer S-box of PRESENT is similar to that
of Serpent and the linear permutation layer pLayer of PRESENT is similar to
that of DES.

Differential cryptanalysis, proposed by Biham and Shamir[4], is one of the
most general cryptanalytic techniques. Although the original PRESENT pro-
posal provided theoretical upper bounds for the highest probability characteris-
tics of 25-round PRESENT[3], the proposal did not give the concrete differential
cryptanalysis.
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In this paper, we consider actual differential attack against reduced-round
PRESENT. First we give some differential characteristics for PRESENT. 14-
round differential characteristics occur with the probability of 2−62 and 15-round
differential characteristics occur with the probability of 2−66. However, the orig-
inal PRESENT proposal can provided theoretical upper bounds for the charac-
teristics of 15-round PRESENT with the highest probability 2−60. Second, we
attack 16-round PRESENT with 14-round differential characteristics using 264

chosen plaintexts, 232 6-bit counters, and 264 memory accesses.
The paper is organized as follows. Section 2 introduces the description of

PRESENT. In Section 3, we give some notations used in this paper. In Section
4, we present the best differential characteristics we found for PRESENT, and
give the differential attack on 16-round PRESENT-80. Section 5 concludes this
paper.

2 Description of PRESENT

2.1 The Encryption Process

PRESENT is a 31-round Ultra-Lightweight block cipher. The block length is 64-
bit. PRESENT uses only one 4-bit S-box S which is applied 16 times in parallel
in each round. The cipher is described in Figure 1. As in Serpent, there are
three stages involved in PRESENT. The first stage is addRoundKey described
as follows,

bj → bj

⊕
ki

j

where bj , 0 ≤ j ≤ 63 is the current state and ki
j , 1 ≤ i ≤ 32, 0 ≤ j ≤ 63 is the

j − th subkey bit of round key Ki.

The second stage is sBoxLayer which consists of 16 parallel versions of the
4-bit to 4-bit S-box, which is given in Table 1.

Table 1. Table of S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The third stage is the bit permutation pLayer, which is given by Table 2.
From pLayer, bit i of stage is moved to bit position P (i).

2.2 The Key Schedule

PRESENT’s key schedule can take key sizes of 80 bits or 128 bits. We will
cryptanalyze 80 bits version, so we will only give the schedule algorithm for 80
bits version.
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plaintext key register

sBoxLayer

pLayer
update

sBoxLayer

pLayer

ciphertext

update

•

•
•
•

•
•
•

addRoundKey

addRoundKey

Fig. 1. 31-round PRESENT Encryption Algorithm

Table 2. Table of pLayer

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Firstly, the 80-bit key will be stored in a key register K denoted as K =
k79k78 . . . k0. In round j, PRESENT firstly extracts 64-bit subkeys Kj in the
following ways,

Kj = κ63κ62 . . . κ0 = k79k78 . . . k16

Then it updates key register K = k79k78 . . . k0 as follows,

[k79k78 . . . k1k0] = [k18k17 . . . k20k19]

[k79k78k77k76] = S[k79k78k77k76]

[k19k18k17k16k15] = [k19k18k17k16k15] ⊕ round−counter

3 Some Notations

In the remainder of the paper, we use X = x0, x1, . . . , x15 to denote the inter-
mediate difference in each step. x0, x1, . . . , x15 are 16 nibble differences and x0 is



Differential Cryptanalysis of Reduced-Round PRESENT 43

the least significant nibble difference. We denote Ki as the subkey for the i− th
round.

4 Differential Characteristics for PRESENT

Firstly, we give the XORs differential distribution of S-box in Table 3. From the
XOR’s distribution table for S-box, one bit input difference will cause at least
two bits output difference, which will cause two active S-boxes in the next round.
Then each of the two active S-boxes will have at least two bits output difference,
which will cause at least four active S-boxes in the next round.

4.1 Searching for Differential Characteristics

The differential cryptanalysis of DES[4] makes use of 2-round iterative char-
acteristics to form 13-round differential characteristics. Knudsen has searched
the better iterative characteristics for DES[6], which is an efficient method to
find the differential characteristics for more rounds. We have searched for the
differential characteristic in the following way:

– We searched the iterative characteristics from 2-round to 7-round, which are
more advantage than the 2-round iterative characteristic given in [3]. As the
maximum probability in the differential distribution table for PRESENT S-
box is 2−2, we only consider the maximum number of active S-boxes from

Table 3. Differential Distribution Table of S-box

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1x 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0

2x 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0

3x 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0

4x 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0

5x 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0

6x 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4

7x 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4

8x 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4

9x 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0

Ax 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0

Bx 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0

Cx 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0

Dx 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0

Ex 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0

Fx 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4
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2-round to 4-round are 4, 7 and 9 respectively. The possible distribution of
the number of active S-boxes in them is listed in Table 4. As a result, only
4-round iterative characteristics with the probability 2−18 have been found,
one of which is given in Table 5.

– We searched the best differential characteristics from 5-round to 10-round
which are more advantage than the characteristics based on 4-round iterative
characteristics we have found.

– Based on 4-round iterative characteristic, we have found the differential char-
acteristics from 11-round to 15-round.

Table 4. Possible Distribution of Active S-box for Iterative Characteristics

Rounds 2 3 4

Possible Distribution of Active S-box 2-2 2-2-2 2-2-2-2

3-2-2 3-2-2-2

2-3-2 2-3-2-2

2-2-3 2-2-3-2

2-2-2-3

Table 5. 4-round Iterative Differential of PRESENT

Rounds Differences Pr

I x0 = 4, x3 = 4 1

R1 S x0 = 5, x3 = 5 1
24

R1 P x0 = 9, x8 = 9 1

R2 S x0 = 4, x8 = 4 1
24

R2 P x8 = 1, x10 = 1 1

R3 S x8 = 9, x10 = 9 1
24

R3 P x2 = 5, x14 = 5 1

R4 S x2 = 1, x14 = 1 1
26

R4 P x0 = 4, x3 = 4 1

The differential characteristics we found in the way are given in Table 6. It is
noted that the number of active S-boxes in each round are all 2.

We have found 24 14-round differential characteristics with the probability
2−62 with different input differences but the same output difference. All the
characteristics have the same differences after the 8− th round, and all have the
same probability 2−62. Table 7 gives one of the 14-round characteristics we have
found.
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Table 6. Probability of the Best Characteristics We Found

Rounds Differential Probability Number of Active S-box

5 2−20 10

6 2−24 12

7 2−28 14

8 2−32 16

9 2−36 18

10 2−42 20

11 2−46 22

12 2−52 24

13 2−56 26

14 2−62 28

15 2−66 30

4.2 Attacking 16-Round PRESENT

We will attack 16-round PRESENT using the 14-round differential characteris-
tics with probability of 2−62.

All of the 24 differential characteristics we found have 2 active S-boxes in the
first round located in position 0,1,2,12,13 and 14, so the S-boxes in position from
3 to 11 and 15 are all non-active. This attack requires 240 structures of 224 chosen
plaintexts each. In each structure, all the inputs to the 14 non-active S-boxes in
the first round can be random value, while 8 bits of input to 2 active S-boxes
take 28 possible values. In all structures, there are 240 · 216 · 27 = 263 pairs for
each possible characteristics. Each characteristic has the probability 2−62, so the
number of right pairs is 263 ∗ 2−62 ∗ 24 = 48 satisfying any one characteristic.
For each structure, the number of possible pairs is (224)2/2 = 247, thus we have
247 · 240 = 287 pairs of plaintext to be considered in total.

According to the output difference of 14-round differential characteristics,
there are two active S-boxes in round-15 which are x0 and x8 whose input differ-
ence is 9 and output difference will be 2, 4, 6, 8, 12 or 14. The least significant
bit of their output difference must be zero, so at most 6 bits are non-zero for
the output difference of S-boxes in round 15. After the pLayer of round 15, the
maximum number of active S-boxes for round 16 is 6 and the active S-boxes will
be x4, x6, x8, x10, x12 and x14, and the minimum number of active S-boxes for
round 16 is 2.

For each structure, each pair satisfying one of the characteristics should have
10 non-active S-boxes in round 16, so the wrong pairs should be discarded. Thus
about 247 ∗ 2−40 = 27 candidates for right pairs remain from each structure.
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Table 7. The 14-round Differential of PRESENT

Rounds Differences Pr

I x2 = 7, x14 = 7

R1 S x2 = 1, x14 = 1 1
24

R1 P x0 = 4, x3 = 4 1

R2 S x0 = 5, x3 = 5 1
24

R2 P x0 = 9, x8 = 9 1

R3 S x0 = 4, x8 = 4 1
24

R3 P x8 = 1, x10 = 1 1

R4 S x8 = 9, x10 = 9 1
24

R4 P x2 = 5, x14 = 5 1

R5 S x2 = 1, x14 = 1 1
26

R5 P x0 = 4, x3 = 4 1

R6 S x0 = 5, x3 = 5 1
24

R6 P x0 = 9, x8 = 9 1

R7 S x0 = 4, x8 = 4 1
24

R7 P x8 = 1, x10 = 1 1

R8 S x8 = 9, x10 = 9 1
24

R8 P x2 = 5, x14 = 5 1

R9 S x2 = 1, x14 = 1 1
26

R9 P x0 = 4, x3 = 4 1

R10 S x0 = 5, x3 = 5 1
24

R10 P x0 = 9, x8 = 9 1

R11 S x0 = 4, x8 = 4 1
24

R11 P x8 = 1, x10 = 1 1

R12 S x8 = 9, x10 = 9 1
24

R12 P x2 = 5, x14 = 5 1

R13 S x2 = 1, x14 = 1 1
26

R13 P x0 = 4, x3 = 4 1

R14 S x0 = 5, x3 = 5 1
24

R14 P x0 = 9, x8 = 9 1

Among 16 S-boxes in round 16, 10 S-boxes must be non-active, 2 S-boxed
must be active and 4 S-boxes can be active or non-active. If it is active, the
input difference must be 1, and the output difference will be 3, 7, 9 or 13.
Discarding any pair with a wrong output difference using the above filter should
keep only a fraction of 5

16

6 = 2−10.07. So only about 27 ∗ 2−10.07 = 2−3.07 pairs
remain for each structure.

For each structure, we check if the remaining pairs satisfy one of the 24 possible
plaintext differences corresponding to 24 characteristics. As there are about 224
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possible input differences, only a fraction of about 2−24∗20 = 2−19.68 of the pairs
remain. So the expected number of remaining pairs in all the 240 structures is
240 ∗ 2−3.07 ∗ 2−19.68 = 217.25.

Only the ciphertext bits corresponding to active S-boxes in the last two round
need to be decrypt, so 8 bits of round subkey K16 and 24 bits of round subkey
K17 will be involved during decrypt from round 16 to round 14. After deriving
the subkey K16 and K17 from the master key K, the 24-bit subkey from K17

above are independent from the 8-bit subkey from K16, so the total number of
subkey bits involved in the decryption from round 16 to round 14 is 32.

For each remaining pair, we guess the 24-bit subkey of K17 and 8-bit subkey
of K16 in round 16, and decrypt the remaining ciphertext pairs from round
16 to round 14. According to the differential distribution table of S-box for
PRESENT, given the input difference and output difference, there will be at
most 4 pairs occurrences, so the average count per counted pair of the subkey
nibble corresponding to one active S-box will be 4. According to the number of
active S-boxes in round 16 denoted as t(2 ≤ t ≤ 6) for the remaining ciphertext
pairs, we will consider 5 cases according to the value of t:

– If t = 2, only 217.25 ∗ 2−16 = 21.25 pairs of ciphertext satisfy the condition of
2 active S-boxes, so the total counted times of subkeys are about 21.25 ∗44 =
29.25 for the remaining pairs.

– If t = 3, about 217.25 ∗ (2−12 − 2−16) = 25.16 pairs of ciphertext satisfy the
condition of 3 active S-boxes, so the total counted times of subkeys are about
25.16 ∗ 45 = 215.16 for the remaining pairs.

– If t = 4, about 217.25 ∗ (2−8 − 2−12) = 29.16 pairs of ciphertext satisfy the
condition of 4 active S-boxes, so the total counted times of subkeys are about
29.16 ∗ 46 = 221.16 for the remaining pairs.

– If t = 5, about 217.25 ∗ (2−4 − 2−8) = 213.16 pairs of ciphertext satisfy the
condition of 5 active S-boxes, so the total counted times of subkeys are about
213.16 ∗ 47 = 227.16 for the remaining pairs.

– If t = 6, the remained pairs satisfying the condition of 6 active S-box will be
217.25 ∗ (1 − 2−4) = 217.16, so the total counted times of subkeys are about
217.16 ∗ 48 = 233.16 for the remaining pairs.

The total counted times of the subkeys are 233.16 + 227.16 + 221.16 + 215.16 +
29.25 = 233.18, so the wrong subkey hits are average about 233.18/232 = 21.18 =
2.27 times, but the right subkey is counted for the right pairs about 48 times,
so it can be easily identified. In total, we retrieve 32 subkey bits using at most
233.18 2-round PRESENT encryptions and 232 6-bit counters.

By exhaustively searching the remaining 48 bits master key, we can find out
80-bit master key. In this step, the time complexity is 248 16-round PRESENT
encryptions.

In order to reduce the time of analysis we perform the follow algorithm [11]:

1. For each structure:
(a) Insert all the ciphertext into the hash table according to the 40-bit ci-

phertext’bit of the non-active S-boxes in the last round.
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(b) For each entry with collision(a pair of ciphertext with equal 40-bit val-
ues) check whether the plaintexts’difference(in round 1) is one of the 24
characteristics’s input difference.

(c) If a pair passes the above test, check whether the difference(in the 24
bits) can be caused by the output difference of the characteristics.

(d) For each possible subkey of K17, we decrypt the last round to obtain the
output difference of 2 two active S-boxes for round 15 , and check whether
the difference(in the 8 bits) can be caused by the output difference of
the characteristics. If a pair passes the above test, add 1 to the counter
related to 24 bits of K17 and 8 bits of K16.

2. Collect all the subkeys whose counter has at least 48 hits. With the high
probability the correct subkey is in this list.

3. Exhaustive searching the remaining 48-bit master key, we can obtain the
whole 80-bit master key.

4.3 Complexity Estimations

In step (a), the time complexity is 224 memory accesses. In step (b), about 27

pairs remain through the filter of step (a), so the time complexity is 28 memory
accesses. The time complexity of step (c) (d) (e) and step 2 can be ignored for
the fewer remaining pairs for each structure. In all, the time in step 1 is 264

memory accesses.
In step 3, the time complexity is about 248 16-round PRESENT encryptions.
According to the relationship between the memory accesses and the encryp-

tion time in [4], 264 memory accesses is the main term in the implementing time,
so the time complexity is about 264 memory accesses.

In our attack, the ratio of signal to noise is as follows:

S/N = p∗2k

α∗β = 2−62∗232

233.18−17.25∗217.25−67.32 = 17.63

The success probability is as follows:

Ps =
∫ ∞
−

√
μSN −Φ−1(1−2−a)√

SN+1

Φ(x)dx = 0.999999939

where a = 32 is the number of subkey bits involved in the decryption and μ is
the number of right pairs which can be obtained

μ = pN = 2−62 ∗ 263 ∗ 24 = 48

In all, our attack needs encrypt the whole plaintext space. The time complexity
is 264 memory accesses. The memory requirements are about 232 6-bit counters
and 224 cells for hash table. We can obtain the right key with the probability
0.999999939.
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5 Summary

In this paper, we give the differential cryptanalysis on reduced-round variants of
PRESENT. We attack 16-round PRESENT using 264 chosen plaintexts, 232 6-bit
counters and 224 hash cells, the time complexity in our attack is about 264 memory
accesses. Our attack requires the encryption of the whole plaintext space.
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1 Introduction

Security is both a feeling and a reality. And they’re not the same.
The reality of security is mathematical, based on the probability of different

risks and the effectiveness of different countermeasures. We can calculate how
secure your home is from burglary, based on such factors as the crime rate in the
neighborhood you live in and your door-locking habits. We can calculate how
likely it is for you to be murdered, either on the streets by a stranger or in your
home by a family member. Or how likely you are to be the victim of identity
theft. Given a large enough set of statistics on criminal acts, it’s not even hard;
insurance companies do it all the time.

We can also calculate how much more secure a burglar alarm will make your
home, or how well a credit freeze will protect you from identity theft. Again,
given enough data, it’s easy.

But security is also a feeling, based not on probabilities and mathematical
calculations, but on your psychological reactions to both risks and countermea-
sures. You might feel terribly afraid of terrorism, or you might feel like it’s not
something worth worrying about. You might feel safer when you see people tak-
ing their shoes off at airport metal detectors, or you might not. You might feel
that you’re at high risk of burglary, medium risk of murder, and low risk of iden-
tity theft. And your neighbor, in the exact same situation, might feel that he’s
at high risk of identity theft, medium risk of burglary, and low risk of murder.

Or, more generally, you can be secure even though you don’t feel secure. And
you can feel secure even though you’re not. The feeling and reality of security
are certainly related to each other, but they’re just as certainly not the same as
each other. We’d probably be better off if we had two different words for them.

This essay is my initial attempt to explore the feeling of security: where it
comes from, how it works, and why it diverges from the reality of security.

Four fields of research—two very closely related—can help illuminate this
issue. The first is behavioral economics, sometimes called behavioral finance.
Behavioral economics looks at human biases—emotional, social, and cognitive—
and how they affect economic decisions. The second is the psychology of decision-
making, and more specifically bounded rationality, which examines how we make
decisions. Neither is directly related to security, but both look at the concept of
risk: behavioral economics more in relation to economic risk, and the psychology
of decision-making more generally in terms of security risks. But both fields go a
long way to explain the divergence between the feeling and the reality of security
and, more importantly, where that divergence comes from.

S. Vaudenay (Ed.): AFRICACRYPT 2008, LNCS 5023, pp. 50–79, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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There is also direct research into the psychology of risk. Psychologists have
studied risk perception, trying to figure out when we exaggerate risks and when
we downplay them.

A fourth relevant field of research is neuroscience. The psychology of security
is intimately tied to how we think: both intellectually and emotionally. Over the
millennia, our brains have developed complex mechanisms to deal with threats.
Understanding how our brains work, and how they fail, is critical to understand-
ing the feeling of security.

These fields have a lot to teach practitioners of security, whether they’re de-
signers of computer security products or implementers of national security policy.
And if this paper seems haphazard, it’s because I am just starting to scratch the
surface of the enormous body of research that’s out there. In some ways I feel
like a magpie, and that much of this essay is me saying: “Look at this! Isn’t it
fascinating? Now look at this other thing! Isn’t that amazing, too?” Somewhere
amidst all of this, there are threads that tie it together, lessons we can learn
(other than “people are weird”), and ways we can design security systems that
take the feeling of security into account rather than ignoring it.

2 The Trade-Off of Security

Security is a trade-off. This is something I have written about extensively, and
is a notion critical to understanding the psychology of security. There’s no such
thing as absolute security, and any gain in security always involves some sort of
trade-off.

Security costs money, but it also costs in time, convenience, capabilities, liber-
ties, and so on. Whether it’s trading some additional home security against the
inconvenience of having to carry a key around in your pocket and stick it into a
door every time you want to get into your house, or trading additional security
from a particular kind of airplane terrorism against the time and expense of
searching every passenger, all security is a trade-off.

I remember in the weeks after 9/11, a reporter asked me: “How can we prevent
this from ever happening again?” “That’s easy,” I said, “simply ground all the
aircraft.”

It’s such a far-fetched trade-off that we as a society will never make it. But in
the hours after those terrorist attacks, it’s exactly what we did. When we didn’t
know the magnitude of the attacks or the extent of the plot, grounding every
airplane was a perfectly reasonable trade-off to make. And even now, years later,
I don’t hear anyone second-guessing that decision.

It makes no sense to just look at security in terms of effectiveness. “Is this
effective against the threat?” is the wrong question to ask. You need to ask: “Is it
a good trade-off?” Bulletproof vests work well, and are very effective at stopping
bullets. But for most of us, living in lawful and relatively safe industrialized
countries, wearing one is not a good trade-off. The additional security isn’t worth
it: isn’t worth the cost, discomfort, or unfashionableness. Move to another part
of the world, and you might make a different trade-off.
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We make security trade-offs, large and small, every day. We make them when
we decide to lock our doors in the morning, when we choose our driving route,
and when we decide whether we’re going to pay for something via check, credit
card, or cash. They’re often not the only factor in a decision, but they’re a
contributing factor. And most of the time, we don’t even realize it. We make
security trade-offs intuitively.

These intuitive choices are central to life on this planet. Every living thing
makes security trade-offs, mostly as a species—evolving this way instead of that
way—but also as individuals. Imagine a rabbit sitting in a field, eating clover.
Suddenly, he spies a fox. He’s going to make a security trade-off: should I stay
or should I flee? The rabbits that are good at making these trade-offs are going
to live to reproduce, while the rabbits that are bad at it are either going to get
eaten or starve. This means that, as a successful species on the planet, humans
should be really good at making security trade-offs.

And yet, at the same time we seem hopelessly bad at it. We get it wrong
all the time. We exaggerate some risks while minimizing others. We exaggerate
some costs while minimizing others. Even simple trade-offs we get wrong, wrong,
wrong—again and again. A Vulcan studying human security behavior would call
us completely illogical.

The truth is that we’re not bad at making security trade-offs. We are very well
adapted to dealing with the security environment endemic to hominids living in
small family groups on the highland plains of East Africa. It’s just that the
environment of New York in 2007 is different from Kenya circa 100,000 BC. And
so our feeling of security diverges from the reality of security, and we get things
wrong.

There are several specific aspects of the security trade-off that can go wrong.
For example:

1. The severity of the risk.
2. The probability of the risk.
3. The magnitude of the costs.
4. How effective the countermeasure is at mitigating the risk.
5. How well disparate risks and costs can be compared.

The more your perception diverges from reality in any of these five aspects, the
more your perceived trade-off won’t match the actual trade-off. If you think
that the risk is greater than it really is, you’re going to overspend on mitigat-
ing that risk. If you think the risk is real but only affects other people—for
whatever reason—you’re going to underspend. If you overestimate the costs of a
countermeasure, you’re less likely to apply it when you should, and if you over-
estimate how effective a countermeasure is, you’re more likely to apply it when
you shouldn’t. If you incorrectly evaluate the trade-off, you won’t accurately
balance the costs and benefits.

A lot of this can be chalked up to simple ignorance. If you think the murder
rate in your town is one-tenth of what it really is, for example, then you’re
going to make bad security trade-offs. But I’m more interested in divergences
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between perception and reality that can’t be explained that easily. Why is it
that, even if someone knows that automobiles kill 40,000 people each year in
the U.S. alone, and airplanes kill only hundreds worldwide, he is more afraid
of airplanes than automobiles? Why is it that, when food poisoning kills 5,000
people every year and 9/11 terrorists killed 2,973 people in one non-repeated
incident, we are spending tens of billions of dollars per year (not even counting
the wars in Iraq and Afghanistan) on terrorism defense while the entire budget
for the Food and Drug Administration in 2007 is only $1.9 billion?

It’s my contention that these irrational trade-offs can be explained by psychol-
ogy. That something inherent in how our brains work makes us more likely to be
afraid of flying than of driving, and more likely to want to spend money, time,
and other resources mitigating the risks of terrorism than those of food poison-
ing. And moreover, that these seeming irrationalities have a good evolutionary
reason for existing: they’ve served our species well in the past. Understanding
what they are, why they exist, and why they’re failing us now is critical to un-
derstanding how we make security decisions. It’s critical to understanding why,
as a successful species on the planet, we make so many bad security trade-offs.

3 Conventional Wisdom about Risk

Most of the time, when the perception of security doesn’t match the reality of
security, it’s because the perception of the risk doesn’t match the reality of the
risk. We worry about the wrong things: paying too much attention to minor
risks and not enough attention to major ones. We don’t correctly assess the
magnitude of different risks. A lot of this can be chalked up to bad information
or bad mathematics, but there are some general pathologies that come up over
and over again.

In Beyond Fear, I listed five:

– People exaggerate spectacular but rare risks and downplay common risks.
– People have trouble estimating risks for anything not exactly like their nor-

mal situation.
– Personified risks are perceived to be greater than anonymous risks.
– People underestimate risks they willingly take and overestimate risks in sit-

uations they can’t control.
– Last, people overestimate risks that are being talked about and remain an

object of public scrutiny.[1]

David Ropeik and George Gray have a longer list in their book Risk: A Practical
Guide for Deciding What’s Really Safe and What’s Really Dangerous in the
World Around You:

– Most people are more afraid of risks that are new than those they’ve lived
with for a while. In the summer of 1999, New Yorkers were extremely afraid
of West Nile virus, a mosquito-borne infection that had never been seen in
the United States. By the summer of 2001, though the virus continued to
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show up and make a few people sick, the fear had abated. The risk was still
there, but New Yorkers had lived with it for a while. Their familiarity with
it helped them see it differently.

– Most people are less afraid of risks that are natural than those that are
human-made. Many people are more afraid of radiation from nuclear waste,
or cell phones, than they are of radiation from the sun, a far greater risk.

– Most people are less afraid of a risk they choose to take than of a risk imposed
on them. Smokers are less afraid of smoking than they are of asbestos and
other indoor air pollution in their workplace, which is something over which
they have little choice.

– Most people are less afraid of risks if the risk also confers some benefits they
want. People risk injury or death in an earthquake by living in San Francisco
or Los Angeles because they like those areas, or they can find work there.

– Most people are more afraid of risks that can kill them in particularly awful
ways, like being eaten by a shark, than they are of the risk of dying in less
awful ways, like heart disease—the leading killer in America.

– Most people are less afraid of a risk they feel they have some control over,
like driving, and more afraid of a risk they don’t control, like flying, or sitting
in the passenger seat while somebody else drives.

– Most people are less afraid of risks that come from places, people, corpo-
rations, or governments they trust, and more afraid if the risk comes from
a source they don’t trust. Imagine being offered two glasses of clear liquid.
You have to drink one. One comes from Oprah Winfrey. The other comes
from a chemical company. Most people would choose Oprah’s, even though
they have no facts at all about what’s in either glass.

– We are more afraid of risks that we are more aware of and less afraid of
risks that we are less aware of. In the fall of 2001, awareness of terrorism
was so high that fear was rampant, while fear of street crime and global
climate change and other risks was low, not because those risks were gone,
but because awareness was down.

– We are much more afraid of risks when uncertainty is high, and less afraid
when we know more, which explains why we meet many new technologies
with high initial concern.

– Adults are much more afraid of risks to their children than risks to them-
selves. Most people are more afraid of asbestos in their kids’ school than
asbestos in their own workplace.

– You will generally be more afraid of a risk that could directly affect you than
a risk that threatens others. U.S. citizens were less afraid of terrorism before
September 11, 2001, because up till then the Americans who had been the
targets of terrorist attacks were almost always overseas. But suddenly on
September 11, the risk became personal. When that happens, fear goes up,
even though the statistical reality of the risk may still be very low.[2]

Others make these and similar points, which are summarized in Table 1.[3,4,5,6]
When you look over the list in Table 1, the most remarkable thing is how

reasonable so many of them seem. This makes sense for two reasons. One, our
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perceptions of risk are deeply ingrained in our brains, the result of millions of
years of evolution. And two, our perceptions of risk are generally pretty good,
and are what have kept us alive and reproducing during those millions of years
of evolution.

Table 1. Conventional Wisdom About People and Risk Perception

People exaggerate risks that are: People downplay risks that are:
Spectacular Pedestrian

Rare Common

Personified Anonymous

Beyond their control, or externally im-
posed

More under their control, or taken will-
ingly

Talked about Not discussed

Intentional or man-made Natural

Immediate Long-term or diffuse

Sudden Evolving slowly over time

Affecting them personally Affecting others

New and unfamiliar Familiar

Uncertain Well understood

Directed against their children Directed towards themselves

Morally offensive Morally desirable

Entirely without redeeming features Associated with some ancillary benefit

Not like their current situation Like their current situation

When our risk perceptions fail today, it’s because of new situations that have
occurred at a faster rate than evolution: situations that exist in the world of
2007, but didn’t in the world of 100,000 BC. Like a squirrel whose predator-
evasion techniques fail when confronted with a car, or a passenger pigeon who
finds that evolution prepared him to survive the hawk but not the shotgun, our
innate capabilities to deal with risk can fail when confronted with such things
as modern human society, technology, and the media. And, even worse, they can
be made to fail by others—politicians, marketers, and so on—who exploit our
natural failures for their gain.

To understand all of this, we first need to understand the brain.

4 Risk and the Brain

The human brain is a fascinating organ, but an absolute mess. Because it has
evolved over millions of years, there are all sorts of processes jumbled together
rather than logically organized. Some of the processes are optimized for only
certain kinds of situations, while others don’t work as well as they could. And
there’s some duplication of effort, and even some conflicting brain processes.

Assessing and reacting to risk is one of the most important things a living
creature has to deal with, and there’s a very primitive part of the brain that
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has that job. It’s the amygdala, and it sits right above the brainstem, in what’s
called the medial temporal lobe. The amygdala is responsible for processing
base emotions that come from sensory inputs, like anger, avoidance, defensive-
ness, and fear. It’s an old part of the brain, and seems to have originated in early
fishes. When an animal—lizard, bird, mammal, even you—sees, hears, or feels
something that’s a potential danger, the amygdala is what reacts immediately.
It’s what causes adrenaline and other hormones to be pumped into your blood-
stream, triggering the fight-or-flight response, causing increased heart rate and
beat force, increased muscle tension, and sweaty palms.

This kind of thing works great if you’re a lizard or a lion. Fast reaction is
what you’re looking for; the faster you can notice threats and either run away
from them or fight back, the more likely you are to live to reproduce.

But the world is actually more complicated than that. Some scary things are
not really as risky as they seem, and others are better handled by staying in
the scary situation to set up a more advantageous future response. This means
that there’s an evolutionary advantage to being able to hold off the reflexive
fight-or-flight response while you work out a more sophisticated analysis of the
situation and your options for dealing with it.

We humans have a completely different pathway to deal with analyzing risk. It’s
the neocortex, a more advanced part of the brain that developed very recently, evo-
lutionarily speaking, and only appears in mammals. It’s intelligent and analytic.
It can reason. It can make more nuanced trade-offs. It’s also much slower.

So here’s the first fundamental problem: we have two systems for reacting to
risk—a primitive intuitive system and a more advanced analytic system—and
they’re operating in parallel. And it’s hard for the neocortex to contradict the
amygdala.

In his book Mind Wide Open, Steven Johnson relates an incident when he
and his wife lived in an apartment and a large window blew in during a storm.
He was standing right beside it at the time and heard the whistling of the wind
just before the window blew. He was lucky—a foot to the side and he would
have been dead—but the sound has never left him:

But ever since that June storm, a new fear has entered the mix for
me: the sound of wind whistling through a window. I know now that
our window blew in because it had been installed improperly. . . . I am
entirely convinced that the window we have now is installed correctly,
and I trust our superintendent when he says that it is designed to with-
stand hurricane-force winds. In the five years since that June, we have
weathered dozens of storms that produced gusts comparable to the one
that blew it in, and the window has performed flawlessly.

I know all these facts—and yet when the wind kicks up, and I hear
that whistling sound, I can feel my adrenaline levels rise. . . . Part of my
brain—the part that feels most me-like, the part that has opinions about
the world and decides how to act on those opinions in a rational way—
knows that the windows are safe. . . . But another part of my brain wants
to barricade myself in the bathroom all over again.[7]
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There’s a good reason evolution has wired our brains this way. If you’re a
higher-order primate living in the jungle and you’re attacked by a lion, it makes
sense that you develop a lifelong fear of lions, or at least fear lions more than
another animal you haven’t personally been attacked by. From a risk/reward
perspective, it’s a good trade-off for the brain to make, and—if you think about
it—it’s really no different than your body developing antibodies against, say,
chicken pox based on a single exposure. In both cases, your body is saying:
“This happened once, and therefore it’s likely to happen again. And when it
does, I’ll be ready.” In a world where the threats are limited—where there are
only a few diseases and predators that happen to affect the small patch of earth
occupied by your particular tribe—it works.

Unfortunately, the brain’s fear system doesn’t scale the same way the body’s
immune system does. While the body can develop antibodies for hundreds of
diseases, and those antibodies can float around in the bloodstream waiting for
a second attack by the same disease, it’s harder for the brain to deal with a
multitude of lifelong fears.

All this is about the amygdala. The second fundamental problem is that
because the analytic system in the neocortex is so new, it still has a lot of rough
edges evolutionarily speaking. Psychologist Daniel Gilbert has a great quotation
that explains this:

The brain is a beautifully engineered get-out-of-the-way machine that
constantly scans the environment for things out of whose way it should
right now get. That’s what brains did for several hundred million years—
and then, just a few million years ago, the mammalian brain learned a
new trick: to predict the timing and location of dangers before they
actually happened.

Our ability to duck that which is not yet coming is one of the brain’s
most stunning innovations, and we wouldn’t have dental floss or 401(k)
plans without it. But this innovation is in the early stages of develop-
ment. The application that allows us to respond to visible baseballs is
ancient and reliable, but the add-on utility that allows us to respond to
threats that loom in an unseen future is still in beta testing.[8]

A lot of what I write in the following sections are examples of these newer
parts of the brain getting things wrong.

And it’s not just risks. People are not computers. We don’t evaluate security
trade-offs mathematically, by examining the relative probabilities of different
events. Instead, we have shortcuts, rules of thumb, stereotypes, and biases—
generally known as “heuristics.” These heuristics affect how we think about
risks, how we evaluate the probability of future events, how we consider costs,
and how we make trade-offs. We have ways of generating close-to-optimal an-
swers quickly with limited cognitive capabilities. Don Norman’s wonderful essay,
“Being Analog,” provides a great background for all this.[9]

Daniel Kahneman, who won a Nobel Prize in Economics for some of this work,
talks about humans having two separate cognitive systems: one that intuits and
one that reasons:
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The operations of System 1 are typically fast, automatic, effortless,
associative, implicit (not available to introspection), and often emotion-
ally charged; they are also governed by habit and therefore difficult to
control or modify. The operations of System 2 are slower, serial, effortful,
more likely to be consciously monitored and deliberately controlled; they
are also relatively flexible and potentially rule governed.[10]

When you read about the heuristics I describe below, you can find evolutionary
reasons for why they exist. And most of them are still very useful.[11] The
problem is that they can fail us, especially in the context of a modern society.
Our social and technological evolution has vastly outpaced our evolution as a
species, and our brains are stuck with heuristics that are better suited to living
in primitive and small family groups.

And when those heuristics fail, our feeling of security diverges from the reality
of security.

5 Risk Heuristics

The first, and most common, area that can cause the feeling of security to diverge
from the reality of security is the perception of risk. Security is a trade-off, and
if we get the severity of the risk wrong, we’re going to get the trade-off wrong.
We can do this both ways, of course. We can underestimate some risks, like the
risk of automobile accidents. Or we can overestimate some risks, like the risk
of a stranger sneaking into our home at night and kidnapping our child. How
we get the risk wrong—when we overestimate and when we underestimate—is
governed by a few specific brain heuristics.

5.1 Prospect Theory

Here’s an experiment that illustrates a particular pair of heuristics.[12] Subjects
were divided into two groups. One group was given the choice of these two
alternatives:

– Alternative A: A sure gain of $500.
– Alternative B: A 50% chance of gaining $1,000.

The other group was given the choice of:

– Alternative C: A sure loss of $500.
– Alternative D: A 50% chance of losing $1,000.

These two trade-offs aren’t the same, but they’re very similar. And traditional
economics predicts that the difference doesn’t make a difference.

Traditional economics is based on something called “utility theory,” which
predicts that people make trade-offs based on a straightforward calculation of
relative gains and losses. Alternatives A and B have the same expected utility:
+$500. And alternatives C and D have the same expected utility: -$500. Utility
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theory predicts that people choose alternatives A and C with the same probabil-
ity and alternatives B and D with the same probability. Basically, some people
prefer sure things and others prefer to take chances. The fact that one is gains
and the other is losses doesn’t affect the mathematics, and therefore shouldn’t
affect the results.

But experimental results contradict this. When faced with a gain, most people
(84%) chose Alternative A (the sure gain) of $500 over Alternative B (the risky
gain). But when faced with a loss, most people (70%) chose Alternative D (the
risky loss) over Alternative C (the sure loss).

The authors of this study explained this difference by developing something
called “prospect theory.” Unlike utility theory, prospect theory recognizes that
people have subjective values for gains and losses. In fact, humans have evolved
a pair of heuristics that they apply in these sorts of trade-offs. The first is that
a sure gain is better than a chance at a greater gain. (“A bird in the hand is
better than two in the bush.”) And the second is that a sure loss is worse than
a chance at a greater loss. Of course, these are not rigid rules—given a choice
between a sure $100 and a 50% chance at $1,000,000, only a fool would take the
$100—but all things being equal, they do affect how we make trade-offs.

Evolutionarily, presumably it is a better survival strategy to—all other things
being equal, of course—accept small gains rather than risking them for larger
ones, and risk larger losses rather than accepting smaller losses. Lions chase
young or wounded wildebeest because the investment needed to kill them is
lower. Mature and healthy prey would probably be more nutritious, but there’s
a risk of missing lunch entirely if it gets away. And a small meal will tide the
lion over until another day. Getting through today is more important than the
possibility of having food tomorrow.

Similarly, it is evolutionarily better to risk a larger loss than to accept a
smaller loss. Because animals tend to live on the razor’s edge between starvation
and reproduction, any loss of food—whether small or large—can be equally
bad. That is, both can result in death. If that’s true, the best option is to risk
everything for the chance at no loss at all.

These two heuristics are so powerful that they can lead to logically inconsis-
tent results. Another experiment, the Asian disease problem, illustrates that.[13]
In this experiment, subjects were asked to imagine a disease outbreak that is
expected to kill 600 people, and then to choose between two alternative treat-
ment programs. Then, the subjects were divided into two groups. One group was
asked to choose between these two programs for the 600 people:

– Program A: “200 people will be saved.”
– Program B: “There is a one-third probability that 600 people will be saved,

and a two-thirds probability that no people will be saved.”

The second group of subjects were asked to choose between these two programs:

– Program C: “400 people will die.”
– Program D: “There is a one-third probability that nobody will die, and a

two-thirds probability that 600 people will die.”
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Like the previous experiment, programs A and B have the same expected util-
ity: 200 people saved and 400 dead, A being a sure thing and B being a risk.
Same with Programs C and D. But if you read the two pairs of choices care-
fully, you’ll notice that—unlike the previous experiment—they are exactly the
same. A equals C, and B equals D. All that’s different is that in the first pair
they’re presented in terms of a gain (lives saved), while in the second pair they’re
presented in terms of a loss (people dying).

Yet most people (72%) choose A over B, and most people (78%) choose D
over C. People make very different trade-offs if something is presented as a gain
than if something is presented as a loss.

Behavioral economists and psychologists call this a “framing effect”: peoples’
choices are affected by how a trade-off is framed. Frame the choice as a gain,
and people will tend to be risk averse. But frame the choice as a loss, and people
will tend to be risk seeking.

We’ll see other framing effects later on.
Another way of explaining these results is that people tend to attach a greater

value to changes closer to their current state than they do to changes further
away from their current state. Go back to the first pair of trade-offs I discussed.
In the first one, a gain from $0 to $500 is worth more than a gain from $500
to $1,000, so it doesn’t make sense to risk the first $500 for an even chance at
a second $500. Similarly, in the second trade-off, more value is lost from $0 to
-$500 than from -$500 to -$1,000, so it makes sense for someone to accept an
even chance at losing $1,000 in an attempt to avoid losing $500. Because gains
and losses closer to one’s current state are worth more than gains and losses
further away, people tend to be risk averse when it comes to gains, but risk
seeking when it comes to losses.

Of course, our brains don’t do the math. Instead, we simply use the mental
shortcut.

There are other effects of these heuristics as well. People are not only risk
averse when it comes to gains and risk seeking when it comes to losses; people
also value something more when it is considered as something that can be lost,
as opposed to when it is considered as a potential gain. Generally, the difference
is a factor of 2 to 2.5.[14]

This is called the “endowment effect,” and has been directly demonstrated
in many experiments. In one,[15] half of a group of subjects were given a mug.
Then, those who got a mug were asked the price at which they were willing to
sell it, and those who didn’t get a mug were asked what price they were willing
to offer for one. Utility theory predicts that both prices will be about the same,
but in fact, the median selling price was over twice the median offer.

In another experiment,[16] subjects were given either a pen or a mug with a
college logo, both of roughly equal value. (If you read enough of these studies,
you’ll quickly notice two things. One, college students are the most common test
subject. And two, any necessary props are most commonly purchased from a
college bookstore.) Then the subjects were offered the opportunity to exchange
the item they received for the other. If the subjects’ preferences had nothing to
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do with the item they received, the fraction of subjects keeping a mug should
equal the fraction of subjects exchanging a pen for a mug, and the fraction of
subjects keeping a pen should equal the fraction of subjects exchanging a mug
for a pen. In fact, most people kept the item they received; only 22% of subjects
traded.

And, in general, most people will reject an even-chance gamble (50% of win-
ning, and 50% of losing) unless the possible win is at least twice the size of the
possible loss.[17]

What does prospect theory mean for security trade-offs? While I haven’t found
any research that explicitly examines if people make security trade-offs in the
same way they make economic trade-offs, it seems reasonable to me that they
do at least in part. Given that, prospect theory implies two things. First, it
means that people are going to trade off more for security that lets them keep
something they’ve become accustomed to—a lifestyle, a level of security, some
functionality in a product or service—than they were willing to risk to get it in
the first place. Second, when considering security gains, people are more likely to
accept an incremental gain than a chance at a larger gain; but when considering
security losses, they’re more likely to risk a larger loss than accept than accept
the certainty of a small one.

5.2 Other Biases That Affect Risk

We have other heuristics and biases about risks. One common one is called
“optimism bias”: we tend to believe that we’ll do better than most others engaged
in the same activity. This bias is why we think car accidents happen only to other
people, and why we can at the same time engage in risky behavior while driving
and yet complain about others doing the same thing. It’s why we can ignore
network security risks while at the same time reading about other companies
that have been breached. It’s why we think we can get by where others failed.

Basically, animals have evolved to underestimate loss. Because those who
experience the loss tend not to survive, those of us remaining have an evolved
experience that losses don’t happen and that it’s okay to take risks. In fact, some
have theorized that people have a “risk thermostat,” and seek an optimal level
of risk regardless of outside circumstances.[18] By that analysis, if something
comes along to reduce risk—seat belt laws, for example—people will compensate
by driving more recklessly.

And it’s not just that we don’t think bad things can happen to us, we—all
things being equal—believe that good outcomes are more probable than bad
outcomes. This bias has been repeatedly illustrated in all sorts of experiments,
but I think this one is particularly simple and elegant.[19]

Subjects were shown cards, one after another, with either a cartoon happy
face or a cartoon frowning face. The cards were random, and the subjects simply
had to guess which face was on the next card before it was turned over.

For half the subjects, the deck consisted of 70% happy faces and 30% frowning
faces. Subjects faced with this deck were very accurate in guessing the face
type; they were correct 68% of the time. The other half was tested with a deck
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consisting of 30% happy faces and 70% frowning faces. These subjects were much
less accurate with their guesses, only predicting the face type 58% of the time.
Subjects’ preference for happy faces reduced their accuracy.

In a more realistic experiment,[20] students at Cook College were asked “Com-
pared to other Cook students—the same sex as you—what do you think are the
chances that the following events will happen to you?” They were given a list
of 18 positive and 24 negative events, like getting a good job after graduation,
developing a drinking problem, and so on. Overall, they considered themselves
15% more likely than others to experience positive events, and 20% less likely
than others to experience negative events.

The literature also discusses a “control bias,” where people are more likely to
accept risks if they feel they have some control over them. To me, this is simply
a manifestation of the optimism bias, and not a separate bias.

Another bias is the “affect heuristic,” which basically says that an automatic
affective valuation—I’ve seen it called “the emotional core of an attitude”—is
the basis for many judgments and behaviors about it. For example, a study of
people’s reactions to 37 different public causes showed a very strong correlation
between 1) the importance of the issues, 2) support for political solutions, 3)
the size of the donation that subjects were willing to make, and 4) the moral
satisfaction associated with those donations.[21] The emotional reaction was a
good indicator of all of these different decisions.

With regard to security, the affect heuristic says that an overall good feeling
toward a situation leads to a lower risk perception, and an overall bad feeling
leads to a higher risk perception. This seems to explain why people tend to
underestimate risks for actions that also have some ancillary benefit—smoking,
skydiving, and such—but also has some weirder effects.

In one experiment,[22] subjects were shown either a happy face, a frowning
face, or a neutral face, and then a random Chinese ideograph. Subjects tended
to prefer ideographs they saw after the happy face, even though the face was
flashed for only ten milliseconds and they had no conscious memory of seeing it.
That’s the affect heuristic in action.

Another bias is that we are especially tuned to risks involving people. Daniel
Gilbert again:[23]

We are social mammals whose brains are highly specialized for think-
ing about others. Understanding what others are up to—what they know
and want, what they are doing and planning—has been so crucial to the
survival of our species that our brains have developed an obsession with
all things human. We think about people and their intentions; talk about
them; look for and remember them.

In one experiment,[24] subjects were presented data about different risks oc-
curring in state parks: risks from people, like purse snatching and vandalism,
and natural-world risks, like cars hitting deer on the roads. Then, the subjects
were asked which risk warranted more attention from state park officials.
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Rationally, the risk that causes the most harm warrants the most attention,
but people uniformly rated risks from other people as more serious than risks
from deer. Even if the data indicated that the risks from deer were greater
than the risks from other people, the people-based risks were judged to be more
serious. It wasn’t until the researchers presented the damage from deer as enor-
mously higher than the risks from other people that subjects decided it deserved
more attention.

People are also especially attuned to risks involving their children. This also
makes evolutionary sense. There are basically two security strategies life forms
have for propagating their genes. The first, and simplest, is to produce a lot of
offspring and hope that some of them survive. Lobsters, for example, can lay
10,000 to 20,000 eggs at a time. Only ten to twenty of the hatchlings live to be
four weeks old, but that’s enough. The other strategy is to produce only a few
offspring, and lavish attention on them. That’s what humans do, and it’s what
allows our species to take such a long time to reach maturity. (Lobsters, on the
other hand, grow up quickly.) But it also means that we are particularly attuned
to threats to our children, children in general, and even other small and cute
creatures.[25]

There is a lot of research on people and their risk biases. Psychologist Paul
Slovic seems to have made a career studying them.[26] But most of the research
is anecdotal, and sometimes the results seem to contradict each other. I would be
interested in seeing not only studies about particular heuristics and when they
come into play, but how people deal with instances of contradictory heuristics.
Also, I would be very interested in research into how these heuristics affect
behavior in the context of a strong fear reaction: basically, when these heuristics
can override the amygdala and when they can’t.

6 Probability Heuristics

The second area that can contribute to bad security trade-offs is probability. If
we get the probability wrong, we get the trade-off wrong.

Generally, we as a species are not very good at dealing with large numbers. An
enormous amount has been written about this, by John Paulos[27] and others.
The saying goes “1, 2, 3, many,” but evolutionarily it makes some amount of
sense. Small numbers matter much more than large numbers. Whether there’s
one mango or ten mangos is an important distinction, but whether there are
1,000 or 5,000 matters less—it’s a lot of mangos, either way. The same sort of
thing happens with probabilities as well. We’re good at 1 in 2 vs. 1 in 4 vs. 1 in
8, but we’re much less good at 1 in 10,000 vs. 1 in 100,000. It’s the same joke:
“half the time, one quarter of the time, one eighth of the time, almost never.”
And whether whatever you’re measuring occurs one time out of ten thousand or
one time out of ten million, it’s really just the same: almost never.

Additionally, there are heuristics associated with probabilities. These aren’t
specific to risk, but contribute to bad evaluations of risk. And it turns out that
our brains’ ability to quickly assess probability runs into all sorts of problems.
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6.1 The Availability Heuristic

The “availability heuristic” is very broad, and goes a long way toward explaining
how people deal with risk and trade-offs. Basically, the availability heuristic
means that people “assess the frequency of a class or the probability of an event
by the ease with which instances or occurrences can be brought to mind.”[28]
In other words, in any decision-making process, easily remembered (available)
data are given greater weight than hard-to-remember data.

In general, the availability heuristic is a good mental shortcut. All things
being equal, common events are easier to remember than uncommon ones. So it
makes sense to use availability to estimate frequency and probability. But like all
heuristics, there are areas where the heuristic breaks down and leads to biases.
There are reasons other than occurrence that make some things more available.
Events that have taken place recently are more available than others. Events
that are more emotional are more available than others. Events that are more
vivid are more available than others. And so on.

There’s nothing new about the availability heuristic and its effects on security.
I wrote about it in Beyond Fear,[29] although not by that name. Sociology
professor Barry Glassner devoted most of a book to explaining how it affects our
risk perception.[30] Every book on the psychology of decision making discusses
it.

In one simple experiment,[31] subjects were asked this question:

– In a typical sample of text in the English language, is it more likely that a
word starts with the letter K or that K is its third letter (not counting words
with less than three letters)?

Nearly 70% of people said that there were more words that started with K, even
though there are nearly twice as many words with K in the third position as
there are words that start with K. But since words that start with K are easier
to generate in one’s mind, people overestimate their relative frequency.

In another, more real-world, experiment,[32] subjects were divided into two
groups. One group was asked to spend a period of time imagining its college
football team doing well during the upcoming season, and the other group was
asked to imagine its college football team doing poorly. Then, both groups were
asked questions about the team’s actual prospects. Of the subjects who had
imagined the team doing well, 63% predicted an excellent season. Of the subjects
who had imagined the team doing poorly, only 40% did so.

The same researcher performed another experiment before the 1976 presi-
dential election. Subjects asked to imagine Carter winning were more likely to
predict that he would win, and subjects asked to imagine Ford winning were
more likely to believe he would win. This kind of experiment has also been repli-
cated several times, and uniformly demonstrates that considering a particular
outcome in one’s imagination makes it appear more likely later.

The vividness of memories is another aspect of the availability heuristic that
has been studied. People’s decisions are more affected by vivid information than
by pallid, abstract, or statistical information.
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Here’s just one of many experiments that demonstrates this.[33] In the first
part of the experiment, subjects read about a court case involving drunk driving.
The defendant had run a stop sign while driving home from a party and collided
with a garbage truck. No blood alcohol test had been done, and there was only
circumstantial evidence to go on. The defendant was arguing that he was not
drunk.

After reading a description of the case and the defendant, subjects were di-
vided into two groups and given eighteen individual pieces of evidence to read:
nine written by the prosecution about why the defendant was guilty, and nine
written by the defense about why the defendant was innocent. Subjects in the
first group were given prosecution evidence written in a pallid style and defense
evidence written in a vivid style, while subjects in the second group were given
the reverse.

For example, here is a pallid and vivid version of the same piece of prosecution
evidence:

– On his way out the door, Sanders [the defendant] staggers against a serving
table, knocking a bowl to the floor.

– On his way out the door, Sanders staggered against a serving table, knocking
a bowl of guacamole dip to the floor and splattering guacamole on the white
shag carpet.

And here’s a pallid and vivid pair for the defense:

– The owner of the garbage truck admitted under cross-examination that his
garbage truck is difficult to see at night because it is grey in color.

– The owner of the garbage truck admitted under cross-examination that his
garbage truck is difficult to see at night because it is grey in color. The owner
said his trucks are grey “because it hides the dirt,” and he said, “What do
you want, I should paint them pink?”

After all of this, the subjects were asked about the defendant’s drunkenness level,
his guilt, and what verdict the jury should reach.

The results were interesting. The vivid vs. pallid arguments had no significant
effect on the subject’s judgment immediately after reading them, but when they
were asked again about the case 48 hours later—they were asked to make their
judgments as though they “were deciding the case now for the first time”—
they were more swayed by the vivid arguments. Subjects who read vivid defense
arguments and pallid prosecution arguments were much more likely to judge the
defendant innocent, and subjects who read the vivid prosecution arguments and
pallid defense arguments were much more likely to judge him guilty.

The moral here is that people will be persuaded more by a vivid, personal
story than they will by bland statistics and facts, possibly solely due to the fact
that they remember vivid arguments better.

Another experiment[34] divided subjects into two groups, who then read about
a fictional disease called “Hyposcenia-B.” Subjects in the first group read about
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a disease with concrete and easy-to-imagine symptoms: muscle aches, low energy
level, and frequent headaches. Subjects in the second group read about a disease
with abstract and difficult-to-imagine symptoms: a vague sense of disorientation,
a malfunctioning nervous system, and an inflamed liver.

Then each group was divided in half again. Half of each half was the control
group: they simply read one of the two descriptions and were asked how likely
they were to contract the disease in the future. The other half of each half was the
experimental group: they read one of the two descriptions “with an eye toward
imagining a three-week period during which they contracted and experienced
the symptoms of the disease,” and then wrote a detailed description of how they
thought they would feel during those three weeks. And then they were asked
whether they thought they would contract the disease.

The idea here was to test whether the ease or difficulty of imagining something
affected the availability heuristic. The results showed that those in the control
group—who read either the easy-to-imagine or difficult-to-imagine symptoms,
showed no difference. But those who were asked to imagine the easy-to-imagine
symptoms thought they were more likely to contract the disease than the control
group, and those who were asked to imagine the difficult-to-imagine symptoms
thought they were less likely to contract the disease than the control group. The
researchers concluded that imagining an outcome alone is not enough to make
it appear more likely; it has to be something easy to imagine. And, in fact, an
outcome that is difficult to imagine may actually appear to be less likely.

Additionally, a memory might be particularly vivid precisely because it’s ex-
treme, and therefore unlikely to occur. In one experiment,[35] researchers asked
some commuters on a train platform to remember and describe “the worst time
you missed your train” and other commuters to remember and describe “any time
you missed your train.” The incidents described by both groups were equally aw-
ful, demonstrating that the most extreme example of a class of things tends to
come to mind when thinking about the class.

More generally, this kind of thing is related to something called “probability
neglect”: the tendency of people to ignore probabilities in instances where there
is a high emotional content.[36] Security risks certainly fall into this category,
and our current obsession with terrorism risks at the expense of more common
risks is an example.

The availability heuristic also explains hindsight bias. Events that have actu-
ally occurred are, almost by definition, easier to imagine than events that have
not, so people retroactively overestimate the probability of those events. Think
of “Monday morning quarterbacking,” exemplified both in sports and in national
policy. “He should have seen that coming” becomes easy for someone to believe.

The best way I’ve seen this all described is by Scott Plous:

In very general terms: (1) the more available an event is, the more
frequent or probable it will seem; (2) the more vivid a piece of information
is, the more easily recalled and convincing it will be; and (3) the more
salient something is, the more likely it will be to appear causal.[37]
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Here’s one experiment that demonstrates this bias with respect to salience.[38]
Groups of six observers watched a two-man conversation from different vantage
points: either seated behind one of the men talking or sitting on the sidelines be-
tween the two men talking. Subjects facing one or the other conversants tended
to rate that person as more influential in the conversation: setting the tone, de-
termining what kind of information was exchanged, and causing the other person
to respond as he did. Subjects on the sidelines tended to rate both conversants
as equally influential.

As I said at the beginning of this section, most of the time the availability
heuristic is a good mental shortcut. But in modern society, we get a lot of sensory
input from the media. That screws up availability, vividness, and salience, and
means that heuristics that are based on our senses start to fail. When people
were living in primitive tribes, if the idea of getting eaten by a saber-toothed
tiger was more available than the idea of getting trampled by a mammoth, it was
reasonable to believe that—for the people in the particular place they happened
to be living—it was more likely they’d get eaten by a saber-toothed tiger than get
trampled by a mammoth. But now that we get our information from television,
newspapers, and the Internet, that’s not necessarily the case. What we read
about, what becomes vivid to us, might be something rare and spectacular.
It might be something fictional: a movie or a television show. It might be a
marketing message, either commercial or political. And remember, visual media
are more vivid than print media. The availability heuristic is less reliable, because
the vivid memories we’re drawing upon aren’t relevant to our real situation. And
even worse, people tend not to remember where they heard something—they
just remember the content. So even if, at the time they’re exposed to a message,
they don’t find the source credible, eventually their memory of the source of the
information degrades and they’re just left with the message itself.

We in the security industry are used to the effects of the availability heuristic.
It contributes to the “risk du jour” mentality we so often see in people. It explains
why people tend to overestimate rare risks and underestimate common ones.[39]
It explains why we spend so much effort defending against what the bad guys did
last time, and ignore what new things they could do next time. It explains why
we’re worried about risks that are in the news at the expense of risks that are
not, or rare risks that come with personal and emotional stories at the expense
of risks that are so common they are only presented in the form of statistics.

It explains most of the entries in Table 1.

6.2 Representativeness

“Representativeness” is a heuristic by which we assume the probability that
an example belongs to a particular class is based on how well that example
represents the class. On the face of it, this seems like a reasonable heuristic. But
it can lead to erroneous results if you’re not careful.

The concept is a bit tricky, but here’s an experiment makes this bias crystal
clear.[40] Subjects were given the following description of a woman named Linda:
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Linda is 31 years old, single, outspoken, and very bright. She majored
in philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in antinuclear
demonstrations.

Then the subjects were given a list of eight statements describing her present
employment and activities. Most were decoys (“Linda is an elementary school
teacher,” “Linda is a psychiatric social worker,” and so on), but two were critical:
number 6 (“Linda is a bank teller,” and number 8 (“Linda is a bank teller and
is active in the feminist movement”). Half of the subjects were asked to rank the
eight outcomes by the similarity of Linda to the typical person described by the
statement, while others were asked to rank the eight outcomes by probability.

Of the first group of subjects, 85% responded that Linda more resembled a
stereotypical feminist bank teller more than a bank teller. This makes sense.
But of the second group of subjects, 89% of thought Linda was more likely to
be a feminist bank teller than a bank teller. Mathematically, of course, this is
ridiculous. It is impossible for the second alternative to be more likely than the
first; the second is a subset of the first.

As the researchers explain: “As the amount of detail in a scenario increases,
its probability can only decrease steadily, but its representativeness and hence its
apparent likelihood may increase. The reliance on representativeness, we believe,
is a primary reason for the unwarranted appeal of detailed scenarios and the
illusory sense of insight that such constructions often provide.”[41]

Doesn’t this sound like how so many people resonate with movie-plot threats—
overly specific threat scenarios—at the expense of broader risks?

In another experiment,[42] two groups of subjects were shown short personal-
ity descriptions of several people. The descriptions were designed to be stereotyp-
ical for either engineers or lawyers. Here’s a sample description of a stereotypical
engineer:

Tom W. is of high intelligence, although lacking in true creativity. He
has a need for order and clarity, and for neat and tidy systems in which
every detail finds its appropriate place. His writing is rather dull and
mechanical, occasionally enlivened by somewhat corny puns and flashes
of imagination of the sci-fi type. He has a strong drive for competence.
He seems to have little feel and little sympathy for other people and
does not enjoy interacting with others. Self-centered, he nonetheless has
a deep moral sense.

Then, the subjects were asked to give a probability that each description
belonged to an engineer rather than a lawyer. One group of subjects was told
this about the population from which the descriptions were sampled:

– Condition A: The population consisted of 70 engineers and 30 lawyers.

The second group of subjects was told this about the population:

– Condition B: The population consisted of 30 engineers and 70 lawyers.
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Statistically, the probability that a particular description belongs to an engineer
rather than a lawyer should be much higher under Condition A than Condition
B. However, subjects judged the assignments to be the same in either case. They
were basing their judgments solely on the stereotypical personality characteris-
tics of engineers and lawyers, and ignoring the relative probabilities of the two
categories.

Interestingly, when subjects were not given any personality description at all
and simply asked for the probability that a random individual was an engineer,
they answered correctly: 70% under Condition A and 30% under Condition B.
But when they were given a neutral personality description, one that didn’t
trigger either stereotype, they assigned the description to an engineer 50% of
the time under both Conditions A and B.

And here’s a third experiment. Subjects (college students) were given a sur-
vey which included these two questions: “How happy are you with your life in
general?” and “How many dates did you have last month?” When asked in this
order, there was no correlation between the answers. But when asked in the re-
verse order—when the survey reminded the subjects of how good (or bad) their
love life was before asking them about their life in general—there was a 66%
correlation.[43]

Representativeness also explains the base rate fallacy, where people forget
that if a particular characteristic is extremely rare, even an accurate test for that
characteristic will show false alarms far more often than it will correctly identify
the characteristic. Security people run into this heuristic whenever someone tries
to sell such things as face scanning, profiling, or data mining as effective ways
to find terrorists.

And lastly, representativeness explains the “law of small numbers,” where
people assume that long-term probabilities also hold in the short run. This is,
of course, not true: if the results of three successive coin flips are tails, the odds
of heads on the fourth flip are not more than 50%. The coin is not “due” to flip
heads. Yet experiments have demonstrated this fallacy in sports betting again
and again.[44]

7 Cost Heuristics

Humans have all sorts of pathologies involving costs, and this isn’t the place to
discuss them all. But there are a few specific heuristics I want to summarize,
because if we can’t evaluate costs right—either monetary costs or more abstract
costs—we’re not going to make good security trade-offs.

7.1 Mental Accounting

Mental accounting is the process by which people categorize different costs.[45]
People don’t simply think of costs as costs; it’s much more complicated than
that.

Here are the illogical results of two experiments.[46]
In the first, subjects were asked to answer one of these two questions:
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– Trade-off 1: Imagine that you have decided to see a play where the admission
is $10 per ticket. As you enter the theater you discover that you have lost a
$10 bill. Would you still pay $10 for a ticket to the play?

– Trade-off 2: Imagine that you have decided to see a play where the admission
is $10 per ticket. As you enter the theater you discover that you have lost
the ticket. The seat is not marked and the ticket cannot be recovered. Would
you pay $10 for another ticket?

The results of the trade-off are exactly the same. In either case, you can either
see the play and have $20 less in your pocket, or not see the play and have $10
less in your pocket. But people don’t see these trade-offs as the same. Faced with
Trade-off 1, 88% of subjects said they would buy the ticket anyway. But faced
with Trade-off 2, only 46% said they would buy a second ticket. The researchers
concluded that there is some sort of mental accounting going on, and the two
different $10 expenses are coming out of different mental accounts.

The second experiment was similar. Subjects were asked:

– Imagine that you are about to purchase a jacket for $125, and a calculator
for $15. The calculator salesman informs you that the calculator you wish to
buy is on sale for $10 at the other branch of the store, located 20 minutes’
drive away. Would you make the trip to the other store?

– Imagine that you are about to purchase a jacket for $15, and a calculator for
$125. The calculator salesman informs you that the calculator you wish to
buy is on sale for $120 at the other branch of the store, located 20 minutes’
drive away. Would you make the trip to the other store?

Ignore your amazement at the idea of spending $125 on a calculator; it’s an
old experiment. These two questions are basically the same: would you drive 20
minutes to save $5? But while 68% of subjects would make the drive to save $5
off the $15 calculator, only 29% would make the drive to save $5 off the $125
calculator.

There’s a lot more to mental accounting.[47] In one experiment,[48] subjects
were asked to imagine themselves lying on the beach on a hot day and how
good a cold bottle of their favorite beer would feel. They were to imagine that
a friend with them was going up to make a phone call—this was in 1985, before
cell phones—and offered to buy them that favorite brand of beer if they gave
the friend the money. What was the most the subject was willing to pay for the
beer?

Subjects were divided into two groups. In the first group, the friend offered to
buy the beer from a fancy resort hotel. In the second group, the friend offered to
buy the beer from a run-down grocery store. From a purely economic viewpoint,
that should make no difference. The value of one’s favorite brand of beer on a hot
summer’s day has nothing to do with where it was purchased from. (In economic
terms, the consumption experience is the same.) But people were willing to pay
$2.65 on average for the beer from a fancy resort, but only $1.50 on average from
the run-down grocery store.
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The experimenters concluded that people have reference prices in their heads,
and that these prices depend on circumstance. And because the reference price
was different in the different scenarios, people were willing to pay different
amounts. This leads to sub-optimal results. As Thayer writes, “The thirsty beer-
drinker who would pay $4 for a beer from a resort but only $2 from a grocery
store will miss out on some pleasant drinking when faced with a grocery store
charging $2.50.”

Researchers have documented all sorts of mental accounting heuristics. Small
costs are often not “booked,” so people more easily spend money on things like a
morning coffee. This is why advertisers often describe large annual costs as “only
a few dollars a day.” People segregate frivolous money from serious money, so
it’s easier for them to spend the $100 they won in a football pool than a $100
tax refund. And people have different mental budgets. In one experiment that
illustrates this,[49] two groups of subjects were asked if they were willing to
buy tickets to a play. The first group was told to imagine that they had spent
$50 earlier in the week on tickets to a basketball game, while the second group
was told to imagine that they had received a $50 parking ticket earlier in the
week. Those who had spent $50 on the basketball game (out of the same mental
budget) were significantly less likely to buy the play tickets than those who spent
$50 paying a parking ticket (out of a different mental budget).

One interesting mental accounting effect can be seen at race tracks.[50] Bettors
tend to shift their bets away from favorites and towards long shots at the end of
the day. This has been explained by the fact that the average bettor is behind
by the end of the day—pari-mutuel betting means that the average bet is a
loss—and a long shot can put a bettor ahead for the day. There’s a “day’s bets”
mental account, and bettors don’t want to close it in the red.

The effect of mental accounting on security trade-offs isn’t clear, but I’m
certain we have a mental account for “safety” or “security,” and that money
spent from that account feels different than money spent from another account.
I’ll even wager we have a similar mental accounting model for non-fungible costs
such as risk: risks from one account don’t compare easily with risks from another.
That is, we are willing to accept considerable risks in our leisure account—
skydiving, knife juggling, whatever—when we wouldn’t even consider them if
they were charged against a different account.

7.2 Time Discounting

“Time discounting” is the term used to describe the human tendency to discount
future costs and benefits. It makes economic sense; a cost paid in a year is not
the same as a cost paid today, because that money could be invested and earn
interest during the year. Similarly, a benefit accrued in a year is worth less than
a benefit accrued today.

Way back in 1937, economist Paul Samuelson proposed a discounted-utility
model to explain this all. Basically, something is worth more today than it is in
the future. It’s worth more to you to have a house today than it is to get it in
ten years, because you’ll have ten more years’ enjoyment of the house. Money is
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worth more today than it is years from now; that’s why a bank is willing to pay
you to store it with them.

The discounted utility model assumes that things are discounted according
to some rate. There’s a mathematical formula for calculating which is worth
more—$100 today or $120 in twelve months—based on interest rates. Today, for
example, the discount rate is 6.25%, meaning that $100 today is worth the same
as $106.25 in twelve months. But of course, people are much more complicated
than that.

There is, for example, a magnitude effect: smaller amounts are discounted
more than larger ones. In one experiment,[51] subjects were asked to choose
between an amount of money today or a greater amount in a year. The results
would make any banker shake his head in wonder. People didn’t care whether
they received $15 today or $60 in twelve months. At the same time, they were
indifferent to receiving $250 today or $350 in twelve months, and $3,000 today
or $4,000 in twelve months. If you do the math, that implies a discount rate
of 139%, 34%, and 29%—all held simultaneously by subjects, depending on the
initial dollar amount.

This holds true for losses as well,[52] although gains are discounted more than
losses. In other words, someone might be indifferent to $250 today or $350 in
twelve months, but would much prefer a $250 penalty today to a $350 penalty
in twelve months. Notice how time discounting interacts with prospect theory
here.

Also, preferences between different delayed rewards can flip, depending on
the time between the decision and the two rewards. Someone might prefer $100
today to $110 tomorrow, but also prefer $110 in 31 days to $100 in thirty days.

Framing effects show up in time discounting, too. You can frame something
either as an acceleration or a delay from a base reference point, and that makes
a big difference. In one experiment,[53] subjects who expected to receive a VCR
in twelve months would pay an average of $54 to receive it immediately, but
subjects who expected to receive the VCR immediately demanded an average
$126 discount to delay receipt for a year. This holds true for losses as well: people
demand more to expedite payments than they would pay to delay them.[54]

Reading through the literature, it sometimes seems that discounted utility
theory is full of nuances, complications, and contradictions. Time discounting is
more pronounced in young people, people who are in emotional states – fear is
certainly an example of this – and people who are distracted. But clearly there
is some mental discounting going on; it’s just not anywhere near linear, and not
easily formularized.

8 Heuristics That Affect Decisions

And finally, there are biases and heuristics that affect trade-offs. Like many
other heuristics we’ve discussed, they’re general, and not specific to security.
But they’re still important.

First, some more framing effects.
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Most of us have anecdotes about what psychologists call the “context effect”:
preferences among a set of options depend on what other options are in the set.
This has been confirmed in all sorts of experiments—remember the experiment
about what people were willing to pay for a cold beer on a hot beach—and most
of us have anecdotal confirmation of this heuristic.

For example, people have a tendency to choose options that dominate other
options, or compromise options that lie between other options. If you want your
boss to approve your $1M security budget, you’ll have a much better chance of
getting that approval if you give him a choice among three security plans—with
budgets of $500K, $1M, and $2M, respectively—than you will if you give him a
choice among three plans with budgets of $250K, $500K, and $1M.

The rule of thumb makes sense: avoid extremes. It fails, however, when there’s
an intelligence on the other end, manipulating the set of choices so that a par-
ticular one doesn’t seem extreme.

“Choice bracketing” is another common heuristic. In other words: choose a
variety. Basically, people tend to choose a more diverse set of goods when the
decision is bracketed more broadly than they do when it is bracketed more
narrowly. For example,[55] in one experiment students were asked to choose
among one of six different snacks that they would receive at the beginning of
the next three weekly classes. One group had to choose the three weekly snacks
in advance, while the other group chose at the beginning of each class session.
Of the group that chose in advance, 64% chose a different snack each week, but
only 9% of the group that chose each week did the same.

The narrow interpretation of this experiment is that we overestimate the value
of variety. Looking ahead three weeks, a variety of snacks seems like a good idea,
but when we get to the actual time to enjoy those snacks, we choose the snack
we like. But there’s a broader interpretation as well, one borne out by similar
experiments and directly applicable to risk taking: when faced with repeated risk
decisions, evaluating them as a group makes them feel less risky than evaluating
them one at a time. Back to finance, someone who rejects a particular gamble
as being too risky might accept multiple identical gambles.

Again, the results of a trade-off depend on the context of the trade-off.
It gets even weirder. Psychologists have identified an “anchoring effect,”

whereby decisions are affected by random information cognitively nearby. In one
experiment[56], subjects were shown the spin of a wheel whose numbers ranged
from 0 and 100, and asked to guess whether the number of African nations in
the UN was greater or less than that randomly generated number. Then, they
were asked to guess the exact number of African nations in the UN.

Even though the spin of the wheel was random, and the subjects knew it, their
final guess was strongly influenced by it. That is, subjects who happened to spin
a higher random number guessed higher than subjects with a lower random
number.

Psychologists have theorized that the subjects anchored on the number in
front of them, mentally adjusting it for what they thought was true. Of course,
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because this was just a guess, many people didn’t adjust sufficiently. As strange
as it might seem, other experiments have confirmed this effect.

And if you’re not completely despairing yet, here’s another experiment that
will push you over the edge.[57] In it, subjects were asked one of these two
questions:

– Question 1: Should divorce in this country be easier to obtain, more difficult
to obtain, or stay as it is now?

– Question 2: Should divorce in this country be easier to obtain, stay as it is
now, or be more difficult to obtain?

In response to the first question, 23% of the subjects chose easier divorce laws,
36% chose more difficult divorce laws, and 41% said that the status quo was
fine. In response to the second question, 26% chose easier divorce laws, 46%
chose more difficult divorce laws, and 29% chose the status quo. Yes, the order
in which the alternatives are listed affects the results.

There are lots of results along these lines, including the order of candidates
on a ballot.

Another heuristic that affects security trade-offs is the “confirmation bias.”
People are more likely to notice evidence that supports a previously held posi-
tion than evidence that discredits it. Even worse, people who support position
A sometimes mistakenly believe that anti-A evidence actually supports that po-
sition. There are a lot of experiments that confirm this basic bias and explore
its complexities.

If there’s one moral here, it’s that individual preferences are not based on
predefined models that can be cleanly represented in the sort of indifference
curves you read about in microeconomics textbooks; but instead, are poorly
defined, highly malleable, and strongly dependent on the context in which they
are elicited. Heuristics and biases matter. A lot.

This all relates to security because it demonstrates that we are not adept at
making rational security trade-offs, especially in the context of a lot of ancillary
information designed to persuade us one way or another.

9 Making Sense of the Perception of Security

We started out by teasing apart the security trade-off, and listing five areas
where perception can diverge from reality:

1. The severity of the risk.
2. The probability of the risk.
3. The magnitude of the costs.
4. How effective the countermeasure is at mitigating the risk.
5. The trade-off itself.

Sometimes in all the areas, and all the time in area 4, we can explain this
divergence as a consequence of not having enough information. But sometimes
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we have all the information and still make bad security trade-offs. My aim was to
give you a glimpse of the complicated brain systems that make these trade-offs,
and how they can go wrong.

Of course, we can make bad trade-offs in anything: predicting what snack
we’d prefer next week or not being willing to pay enough for a beer on a hot
day. But security trade-offs are particularly vulnerable to these biases because
they are so critical to our survival. Long before our evolutionary ancestors had
the brain capacity to consider future snack preferences or a fair price for a cold
beer, they were dodging predators and forging social ties with others of their
species. Our brain heuristics for dealing with security are old and well-worn, and
our amygdalas are even older.

What’s new from an evolutionary perspective is large-scale human society,
and the new security trade-offs that come with it. In the past I have singled
out technology and the media as two aspects of modern society that make it
particularly difficult to make good security trade-offs—technology by hiding de-
tailed complexity so that we don’t have the right information about risks, and
the media by producing such available, vivid, and salient sensory input—but
the issue is really broader than that. The neocortex, the part of our brain that
has to make security trade-offs, is, in the words of Daniel Gilbert, “still in beta
testing.”

I have just started exploring the relevant literature in behavioral economics,
the psychology of decision making, the psychology of risk, and neuroscience.
Undoubtedly there is a lot of research out there for me still to discover, and more
fascinatingly counterintuitive experiments that illuminate our brain heuristics
and biases. But already I understand much more clearly why we get security
trade-offs so wrong so often.

When I started reading about the psychology of security, I quickly realized
that this research can be used both for good and for evil. The good way to use
this research is to figure out how humans’ feelings of security can better match
the reality of security. In other words, how do we get people to recognize that
they need to question their default behavior? Giving them more information
seems not to be the answer; we’re already drowning in information, and these
heuristics are not based on a lack of information. Perhaps by understanding how
our brains processes risk, and the heuristics and biases we use to think about
security, we can learn how to override our natural tendencies and make better
security trade-offs. Perhaps we can learn how not to be taken in by security
theater, and how to convince others not to be taken in by the same.

The evil way is to focus on the feeling of security at the expense of the reality.
In his book Influence,[58] Robert Cialdini makes the point that people can’t
analyze every decision fully; it’s just not possible: people need heuristics to get
through life. Cialdini discusses how to take advantage of that; an unscrupulous
person, corporation, or government can similarly take advantage of the heuristics
and biases we have about risk and security. Concepts of prospect theory, framing,
availability, representativeness, affect, and others are key issues in marketing and
politics. They’re applied generally, but in today’s world they’re more and more
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applied to security. Someone could use this research to simply make people feel
more secure, rather than to actually make them more secure.

After all my reading and writing, I believe my good way of using the research
is unrealistic, and the evil way is unacceptable. But I also see a third way:
integrating the feeling and reality of security.

The feeling and reality of security are different, but they’re closely related.
We make the best security trade-offs—and by that I mean trade-offs that give us
genuine security for a reasonable cost—when our feeling of security matches the
reality of security. It’s when the two are out of alignment that we get security
wrong.

In the past, I’ve criticized palliative security measures that only make people
feel more secure as “security theater.” But used correctly, they can be a way
of raising our feeling of security to more closely match the reality of security.
One example is the tamper-proof packaging that started to appear on over-the-
counter drugs in the 1980s, after a few highly publicized random poisonings. As
a countermeasure, it didn’t make much sense. It’s easy to poison many foods and
over-the-counter medicines right through the seal—with a syringe, for example—
or to open and reseal the package well enough that an unwary consumer won’t
detect it. But the tamper-resistant packaging brought people’s perceptions of the
risk more in line with the actual risk: minimal. And for that reason the change
was worth it.

Of course, security theater has a cost, just like real security. It can cost money,
time, capabilities, freedoms, and so on, and most of the time the costs far out-
weigh the benefits. And security theater is no substitute for real security. Fur-
thermore, too much security theater will raise people’s feeling of security to a
level greater than the reality, which is also bad. But used in conjunction with
real security, a bit of well-placed security theater might be exactly what we need
to both be and feel more secure.

References

1. Schneier, B.: Beyond Fear: Thinking Sensibly About Security in an Uncertain
World. Springer, Heidelberg (2003)

2. Ropeik, D., Gray, G.: Risk: A Practical Guide for Deciding What’s Really Safe and
What’s Really Dangerous in the World Around You, Houghton Mifflin (2002)

3. Glassner, B.: The Culture of Fear: Why Americans are Afraid of the Wrong Things.
Basic Books (1999)

4. Slovic, P.: The Perception of Risk. Earthscan Publications Ltd (2000)
5. Gilbert, D.: If only gay sex caused global warming. In: Los Angeles Times (July 2,

2006)
6. Kluger, J.: How Americans Are Living Dangerously. Time (November 26, 2006)
7. Johnson, S.: Mind Wide Open: Your Brain and the Neuroscience of Everyday Life,

Scribner (2004)
8. Gilbert, D.: If only gay sex caused global warming. Los Angeles Times, (July 2,

2006)
9. Norman, D.A.: Being Analog. The Invisible Computer, ch. 7. MIT Press, Cam-

bridge (1998), http://www.jnd.org/dn.mss/being analog.html

http://www.jnd.org/dn.mss/being_analog.html


The Psychology of Security 77

10. Kahneman, D.: A Perspective on Judgment and Choice. American Psycholo-
gist 58(9), 697–720 (2003)

11. Gigerenzer, G., Todd, P.M., et al.: Simple Heuristics that Make us Smart. Oxford
University Press, Oxford (1999)

12. Kahneman, D., Tversky, A.: Prospect Theory: An Analysis of Decision Under Risk.
Econometrica 47, 263–291 (1979)

13. Tversky, A., Kahneman, D.: The Framing of Decisions and the Psychology of
Choice. Science 211, 453–458 (1981)

14. Tversky, A., Kahneman, D.: Evidential Impact of Base Rates. In: Kahneman, D.,
Slovic, P., Tversky, A. (eds.) Judgment Under Uncertainty: Heuristics and Biases,
pp. 153–160. Cambridge University Press, Cambridge (1982)

15. Kahneman, D.J., Knetsch, J.L., Thaler, R.H.: Experimental Tests of the Endow-
ment Effect and the Coase Theorem. Journal of Political Economy 98, 1325–1348
(1990)

16. Knetsch, J.L.: Preferences and Nonreversibility of Indifference Curves. Journal of
Economic Behavior and Organization 17, 131–139 (1992)

17. Tversky, A., Kahneman, D.: Advances in Prospect Theory: Cumulative Represen-
tation of Subjective Uncertainty. Journal of Risk and Uncertainty 5:xx, 297–323
(1992)

18. Adams, J.: Cars, Cholera, and Cows: The Management of Risk and Uncertainty.
In: CATO Institute Policy Analysis 335 (1999)

19. Rosenhan, D.L., Messick, S.: Affect and Expectation. Journal of Personality and
Social Psychology 3, 38–44 (1966)

20. Weinstein, N.D.: Unrealistic Optimism about Future Life Events. Journal of Per-
sonality and Social Psychology 39, 806–820 (1980)

21. Kahneman, D., Ritov, I., Schkade, D.: Economic preferences or attitude expres-
sions? An analysis of dollar responses to public issues. Journal of Risk and Uncer-
tainty 19, 220–242 (1999)

22. Winkielman, P., Zajonc, R.B., Schwarz, N.: Subliminal affective priming attribut-
ional interventions. Cognition and Emotion 11(4), 433–465 (1977)

23. Gilbert, D.: If only gay sex caused global warming. Los Angeles Times (July 2,
2006)

24. Wilson, R.S., Arvai, J.L.: When Less is More: How Affect Influences Preferences
When Comparing Low-risk and High-risk Options. Journal of Risk Research 9(2),
165–178 (2006)

25. Cohen, J.: The Privileged Ape: Cultural Capital in the Making of Man. Parthenon
Publishing Group (1989)

26. Slovic, P.: The Perception of Risk. Earthscan Publications Ltd (2000)
27. Paulos, J.A.: Innumeracy: Mathematical Illiteracy and Its Consequences, Farrar,

Straus, and Giroux (1988)
28. Tversky, A., Kahneman, D.: Judgment under Uncertainty: Heuristics and Biases.

Science 185, 1124–1130 (1974)
29. Schneier, B.: Beyond Fear: Thinking Sensibly About Security in an Uncertain

World. Springer, Heidelberg (2003)
30. Glassner, B.: The Culture of Fear: Why Americans are Afraid of the Wrong Things.

Basic Books (1999)
31. Tversky, A., Kahneman, D.: Availability: A Heuristic for Judging Frequency. Cog-

nitive Psychology 5, 207–232 (1973)
32. Carroll, J.S.: The Effect of Imagining an Event on Expectations for the Event:

An Interpretation in Terms of the Availability Heuristic. Journal of Experimental
Social Psychology 14, 88–96 (1978)



78 B. Schneier

33. Reyes, R.M., Thompson, W.C., Bower, G.H.: Judgmental Biases Resulting from
Differing Availabilities of Arguments. Journal of Personality and Social Psychol-
ogy 39, 2–12 (1980)

34. Sherman, S.J., Cialdini, R.B., Schwartzman, D.F., Reynolds, K.D.: Imagining Can
Heighten or Lower the Perceived Likelihood of Contracting a Disease: The Me-
diating Effect of Ease of Imagery. Personality and Social Psychology Bulletin 11,
118–127 (1985)

35. Morewedge, C.K., Gilbert, D.T., Wilson, T.D.: The Least Likely of Times: How
Memory for Past Events Biases the Prediction of Future Events. Psychological
Science 16, 626–630 (2005)

36. Sunstein, C.R.: Terrorism and Probability Neglect. Journal of Risk and Uncer-
tainty 26, 121–136 (2003)

37. Plous, S.: The Psychology of Judgment and Decision Making. McGraw-Hill, New
York (1993)

38. Taylor, S.E., Fiske, S.T.: Point of View and Perceptions of Causality. Journal of
Personality and Social Psychology 32, 439–445 (1975)

39. Slovic, P., Fischhoff, B., Lichtenstein, S.: Rating the Risks. Environment 2, 14–20,
36–39 (1979)

40. Tversky, A., Kahneman, D.: Extensional vs Intuitive Reasoning: The Conjunction
Fallacy in Probability Judgment. Psychological Review 90, 293–315 (1983)

41. Tversky, A., Kahneman, D.: Judgments of and by Representativeness. In: Kahne-
man, D., Slovic, P., Tversky, A. (eds.) Judgment Under Uncertainty: Heuristics
and Biases, Cambridge University Press, Cambridge (1982)

42. Kahneman, D., Tversky, A.: On the Psychology of Prediction. Psychological Re-
view 80, 237–251 (1973)

43. Kahneman, D., Frederick, S.: Representativeness Revisited: Attribute Substitution
in Intuitive Judgement. In: Gilovich, T., Griffin, D., Kahneman, D. (eds.) Heuristics
and Biases, pp. 49–81. Cambridge University Press, Cambridge (2002)

44. Gilovich, T., Vallone, R., Tversky, A.: The Hot Hand in Basketball: On the Mis-
perception of Random Sequences. Cognitive Psychology 17, 295–314 (1985)

45. Thaler, R.H.: Toward a Positive Theory of Consumer Choice. Journal of Economic
Behavior and Organization 1, 39–60 (1980)

46. Tversky, A., Kahneman, D.: The Framing of Decisions and the Psychology of
Choice. Science 211, 253–258 (1981)

47. Thayer, R.: Mental Accounting Matters. In: Camerer, C.F., Loewenstein, G., Ra-
bin, M. (eds.) Advances in Behavioral Economics, Princeton University Press,
Princeton (2004)

48. Thayer, R.: Mental Accounting and Consumer Choice. Marketing Science 4, 199–
214 (1985)

49. Heath, C., Soll, J.B.: Mental Accounting and Consumer Decisions. Journal of Con-
sumer Research 23, 40–52 (1996)

50. Ali, M.: Probability and Utility Estimates for Racetrack Bettors. Journal of Polit-
ical Economy 85, 803–815 (1977)

51. Thayer, R.: Some Empirical Evidence on Dynamic Inconsistency. Economics Let-
ters 8, 201–207 (1981)

52. Loewenstein, G., Prelec, D.: Anomalies in Intertemporal Choice: Evidence and
Interpretation. Quarterly Journal of Economics, 573–597 (1992)

53. Loewenstein, G.: Anticipation and the Valuation of Delayed Consumption. Econ-
omy Journal 97, 666–684 (1987)



The Psychology of Security 79

54. Benzion, U., Rapoport, A., Yagel, J.: Discount Rates Inferred from Decisions: An
Experimental Study. Management Science 35, 270–284 (1989)

55. Simonson, I.: The Effect of Purchase Quantity and Timing on Variety-Seeking
Behavior. Journal of Marketing Research 17, 150–162 (1990)

56. Tversky, A., Kahneman, D.: Judgment under Uncertainty: Heuristics and Biases.
Science 185, 1124–1131 (1974)

57. Schurman, H., Presser, S.: Questions and Answers in Attitude Surveys: Experi-
ments on Wording Form, Wording, and Context. Academic Press, London (1981)

58. Cialdini, R.B.: Influence: The Psychology of Persuasion. HarperCollins (1998)



An (Almost) Constant-Effort

Solution-Verification
Proof-of-Work Protocol Based on Merkle Trees

Fabien Coelho
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Abstract. Proof-of-work schemes are economic measures to deter denial-
of-service attacks: service requesters compute moderately hard functions
the results of which are easy to check by the provider. We present such a
new scheme for solution-verification protocols. Although most schemes to
date are probabilistic unbounded iterative processes with high variance
of the requester effort, our Merkle tree scheme is deterministic with an
almost constant effort and null variance, and is computation-optimal.

1 Introduction

Economic measures to contain denial-of-service attacks such as spams were first
suggested by Dwork and Naor [1]: a computation stamp is required to obtain
a service. Proof-of-work schemes are dissymmetric: the computation must be
moderately hard for the requester, but easy to check for the service provider.
Applications include having uncheatable benchmarks [2], helping audit reported
metering of web sites [3], adding delays [4,5], managing email addresses [6],
or limiting abuses on peer-to-peer networks [7,8]. Proofs may be purchased in
advance [9]. These schemes are formalized [10], and actual financial analysis is
needed [11,12] to evaluate their real impact. There are two protocol flavors:

1. request service

3. challenge

7. grant service

5. response

6. verify

4. solve

2. choose

ProviderRequester

Fig. 1. Challenge-Response Protocol

Challenge-response protocols in Figure 1 assume an interaction between client
and server so that the service provider chooses the problem, say an item with

S. Vaudenay (Ed.): AFRICACRYPT 2008, LNCS 5023, pp. 80–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



An (Almost) Constant-Effort Solution-Verification Proof-of-Work Protocol 81

some property from a finite set, and the requester must retrieve the item in
the set. The solution is known to exist, the search time distribution is basically
uniform, the solution is found on average when about half of the set has been
processed, and standard deviation is about 1

2
√

3
≈ 0.3 of the mean.

Requester Provider

1. compute

2. solve

4. verify
3. send

Fig. 2. Solution-Verification Protocol

Solution-verification protocols in Figure 2 do not assume such a link. The
problem must be self-imposed, based somehow on the service description, say
perhaps the intended recipient and date of a message. The target is usually a
probabilistic property reached by iterations. The verification phase must check
both the problem choice and the provided solution. Such iterative searches have
a constant probability of success at each trial, resulting in a shifted geometrical
distribution, the mean is the inverse of the success probability, and the standard
deviation nearly equals the mean. The resulting distribution has a long tail as
the number of iterations to success is not bounded: about every 50 searches
an unlucky case requires more than 4 times the average number of iterations
to complete (the probability of not succeeding in 4 times the average is about
e

−4a
a = e−4 ≈ 1

50 ).
We present a new proof-of-work solution-verification scheme based on Merkle

trees with an almost constant effort and null variance for the client. When con-
sidering a Merkle tree with N leaves, the solution costs about 2N , P · ln(N)
data is sent, and the verification costs P · ln(N) with P = 8 · ln2(N) a good
choice. This contribution is theoretical with a constant requester effort, which
is thus bounded or of possibly low variance, but also practical as our scheme is
computation-optimal and has an interesting work-ratio.

Section 2 discusses proof-of-work schemes suggested to date and analyzes
their optimality and the computation distribution of solution-verification vari-
ants. Section 3 describes our new scheme based on Merkle trees built on top of
the service description. This scheme is shown computation-optimal, but is not
communication-optimal. The solution involves the computation of most of the
tree, although only part of it is sent thanks to a feedback mechanism which
selects only a subset of the leaves. Section 4 computes a cost lower bound for a
proof, then outlines two attacks beneficial to the service requester. The effort of
our scheme is constant, thus bounded and with a null variance. However we show
an iterative attack, which is not upper-bounded, and which results in a small
gain. Together with the demonstrated lower-bound cost of a proof, it justifies
our almost claim.
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2 Related Work

We introduce two optimality criteria to analyze proof-of-work schemes, then
discuss solution-verification protocols suggested to date with respect to these
criteria and to the work distribution on the requester side. Challenge-response
only functions [13,14,15] are not discussed further here.

Let the effort E(w) be the amount of computation of the requester as a func-
tion of provider work w, and the work-ratio the effort divided by the provider
work. Proof-of-work schemes may be: (a) communication-optimal if the amount
of data sent on top of the service description D is minimal. For solution-
verification iterative schemes it is about ln(work-ratio) to identify the found
solution: the work-ratio is the number of iterations performed over a counter
to find a solution, and it is enough to just return the value of this counter for
the provider to check the requester proof. For challenge-response protocols, it
would be ln(search space size). This criterion emphasizes minimum impact on
communications. (b) computation-optimal if the challenge or verification work
is simply linear in the amount of communicated data, which it must at least
be if the data is processed. This criterion mitigates denial-of-service attacks on
service providers, as fake proof-of-works could require significant resources to
disprove. A scheme meeting both criteria is deemed optimal.

Three proof-of-work schemes are suggested by Dwork and Naor [1]. One is a
formula (integer square root modulo a large prime p ≡ 3 mod 4), as computing
a square root is more expensive than squaring the result to check it. Assuming
a näıve implementation, it costs ln(p)3 to compute, ln(p) to communicate, and
ln(p)2 to check. The search cost is deterministic, but the w1.5 effort is not very
interesting, and is not optimal. Better implementations reduce both solution and
verification complexities. If p ≡ 1 mod 4, the square root computation with the
Tonelli-Shanks algorithm involves a non deterministic step with a geometrical
distribution. The next two schemes present shortcuts which allow some partic-
ipants to generate cheaper stamps. They rely on forging a signature without
actually breaking a private key. One uses the Fiat-Shamir signature with a weak
hash function for which an inversion is sought by iteration, with a geometrical
distribution of the effort. The computation costs E · ln(N)2, the communication
ln(N) and the verification ln(N)2, where N � 2512 is needed for the scheme

Table 1. Comparison of Solution-Verification POW

ref effort var comm. work constraints
[1]1 ln(p)3 0 ln(p) ln(p)2 p large prime
[1]2 E ln(N)2 > 0 ln(N) ln(N)2 N � 2512

[16] E = ln(E) ln(E)
[17] E� = ln(E) � typical � = 213

[18] E� = ln(E) � E � 2�, � > 210

[19] E = ln(E) ln(E)
here 2N 0 P ln(N) P ln(N) P = 8 · ln2(N)
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security and the arbitrary effort E is necessarily much smaller than N ; thus the
scheme is not optimal. The other is the Ong-Schnorr-Shamir signature broken
by Pollard, with a similar non-optimality and a geometrical distribution because
of an iterative step.

Some schemes [16,3,20] seek partial hash inversions. Hashcash [16] iterates a
hash function on a string involving the service description and a counter, and is
optimal. The following stamp computed in 400 seconds on a 2005 laptop:

1:28:170319:hobbes@comics::7b7b973c8bdb0cb1:147b744d

allows to send an email to hobbes on March 19, 2017. The last part is the hexadec-
imal counter, and the SHA1 hash of the whole string begins with 28 binary zeros.
Franklin and Malkhi [3] build a hash sequence that statistically catches cheaters,
but the verification may be expensive. Wang and Reiter [20] allow the requester
to tune the effort to improve its priority.

Memory-bound schemes [17,18,19] seek to reduce the impact of the computer
hardware performance on computation times. All solution-verification variants
are based on an iterative search which target a partial hash inversion, and
thus have a geometrical distribution of success and are communication-optimal.
However only the last of these memory-bound solution-verification schemes is
computation-optimal.

Table 1 compares the requester cost and variance, communication cost, and
provider checking cost, of solution-verification proof-of-work schemes, with the
notations used in the papers.

3 Scheme

This section describes our (almost) constant-effort and null variance solution-
verification proof-of-work scheme. The client is expected to compute a Merkle
tree which depends on a service description, but is required to give only part of
the tree for verification by the service provider. A feedback mechanism uses the
root hash so that the given part cannot be known in advance, thus induces the
client to compute most of the tree for a solution. Finally choice of parameters and
a memory-computation implementation trade-off are discussed. The notations
used thoroughly in this paper are summarized in Table 2. The whole scheme is
outlined in Figure 3.

3.1 Merkle Tree

Let h be a cryptographic hash function from anything to a domain of size 2m. The
complexity of such functions is usually stepwise linear in the input length. For
our purpose the input is short, thus computations only involve one step. Let D be
a service description, for instance a string such as hobbes@comics:20170319:0001.
Let s = h(D) be its hash. Let hs(x) = h(x‖s) be a service-dependent hash.
The Merkle binary hash tree [21] of depth d (N = 2d) is computed as follows: (1)
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Table 2. Summary of notations

Symbol Definition
w provider checking work

E(w) requester effort
D service description, a string
h cryptographic hash function
m hash function bit width
s service hash is h(D)
hs service-dependent hash function
d depth of Merkle binary hash tree

N number of leaves in tree is 2d

P number of proofs expected
ni a node hash in the binary tree
n0 root hash of the tree
r leaf selector seed is hP

s (n0)

leaf digests nN−1+i = hs(i) for i in 0 . . .N − 1; (2) inner nodes are propagated
upwards ni = hs(n2i+1‖n2i+2) for i in N−2 . . . 0. Root hash n0 is computed with
2N calls to h, half for leaf computations, one for service s, and the remainder for
the internal nodes of the tree. The whole tree depends on the service description
as s is used at every stage: reusing such a tree would require a collision of service
description hashes.

3.2 Feedback

Merkle trees help manage Lamport signatures [22]: a partial tree allows to check
quickly that some leaves belong to the full tree by checking that they actually
lead to the root hash. We use this property to generate our proof of work: the
requester returns such a partial tree to show that selected leaves belong to the
tree and thus were indeed computed. However, what particular leaves are needed
must not be known in advance, otherwise it would be easy to generate a partial
tree just with those leaves and to provide random values for the other branches.
Thus we select returned leaves based on the root hash, so that they depend on
the whole tree computation.

The feedback phase chooses P evenly-distributed independent leaves derived
from the root hash as partial proofs of the whole computation. A cryptographic
approximation of such an independent-dependent derivation is to seed a pseudo-
random number generator from root hash n0 and to extract P numbers corre-
sponding to leaves in P consecutive chunks of size N

P . These leaf numbers and the
additional nodes necessary to check for the full tree constitute the proof-of-work.
Figure 4 illustrates the data sent for 4 leaf-proofs (black) and the interme-
diate hashes that must be provided (grey) or computed (white) on a 256-leaf tree.
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solution work by requester
define service description: D = hobbes@comics:20170319:0001
compute service description hash: s = h(D) = 36639b2165bcd7c724...
compute leaf hashes: for i in 0 . . . N − 1: nN−1+i = hs(i)
compute internal node hashes: for i in N − 2 . . . 0: ni = hs(n2i+1‖n2i+2)
compute generator seed r = hP

s (n0)
derive leaf numbers in each P chunk for j in 0 . . . P − 1: �j = G(r, j)

communication from requester to provider
send service description D
send P leaf numbers �j for j ∈ (0 . . . P − 1)
for each paths of selected leaves send intermediate lower tree node hashes
that’s P ln2(

N
P

) hashes of width m

verification work by provider
check service description D do I want to provide this service?
compute service hash s = h(D)
compute root hash n0 from �j and provided node hashes
compute generator seed r = hP

s (n0)
derive leaf numbers in each P chunk for j in 0 . . . P − 1: �′

j = G(r, j)
check whether these leaf numbers were provided ∀j ∈ (0 . . . P − 1), �j = �′

j

Fig. 3. Scheme Outline

They are evenly distributed as one leaf is selected in every quarter of the tree,
so balanced branches only meet near the root.

3.3 Verification

The service provider receives the required service description D, P leaf numbers,
and the intermediate hashes necessary to compute the root of the Merkle tree
which amount to about P · ln2(N

P ) · (m + 1) bits: P · ln2(N
P ) for the leaf numbers

inside the chunks, and P · ln2(N
P ) · m for the intermediate hashes.

The server checks the consistency of the partial tree by recomputing the hashes
starting from service hash s and leaf numbers and up to the root hash using the
provided intermediate node hashes, and then by checking the feedback choice,
i.e. that the root hash does lead to the provided leaves. This requires about
P ·ln2(N) hash computations for the tree, and some computations of the pseudo-
random number generator. This phase is computation-optimal as each data is
processed a fixed number of times by the hash function for the tree and generator
computations.

Note that the actual root hash is not really needed to validate the Merkle tree:
it is computed anyway by the verification and, if enough leaves are required, its
value is validated indirectly when checking that the leaves are indeed the one
derived from the root hash seeded generator.
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01001110 11000111path 00101101 10011100

Fig. 4. Merkle tree proof (P = 4, N = 28)

3.4 Choice of Parameters

Let us discuss the random generator, the hash function h and its width m, the
tree depth d (N = 2d) and the number of proofs P .

The pseudo-random number generator supplies P ·ln2(N
P ) bits (14 = 22−8 bits

per proof for N = 222 and P = 256 = 28) to choose the evenly-distributed leaves.
Standard generators can be seeded directly with the root hash. To add to the
cost of an attack without impact on the verification complexity, the generator
seed may rely further on h by using seed r = hP

s (n0) (hs composed P times over
itself), so that about P hash computations are needed to test a partial tree, as
discussed in Section 4.1. The generator itself may also use h, say with the j-th
leaf in the j-th chunk chosen as �j = G(r, j) = hs(j‖r) mod N

P for j in 0 . . . P −1.
The hash width may be different for the description, lower tree (close to the

leaves), upper tree (close to the root), and generator. The description hash must
avoid collisions which would lead to reusable trees; the generator hash should
keep as much entropy as possible, especially as the seed is iterated P times;
in the upper part of the tree, a convenient root hash should not be targetable,
and the number of distinct root hashes should be large enough so that it is
not worth precomputing them, as well as to provide a better initial entropy. A
strong cryptographic hash is advisable in these cases. For the lower tree and
leaves, the smaller m the better, as it drives the amount of temporary data and
the proof size. Tabulating node hashes for reuse is not interesting because they
all depend on s and if 22m � 2N . Moreover it should not be easily invertible,
so that a convenient hash cannot be targeted by a search process at any point.
A sufficient condition is 2m > 2N : one hash inversion costs more than the whole
computation. For our purpose, with N = 222, the lower tree hash may be folded
to m = 24. The impact of choosing m = ln2(N) + 2 is not taken into account in
our complexity analyses because h is assumed a constant cost for any practical
tree depth: it would not change our optimality result to do so, but it would
change the effort function to e

3√w.
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The Merkle tree depth leads to the number of leaves N and the expected
number of hash computations 2N . The resource consumption required before
the service is provided should depend on the cost of the service. For emails,
a few seconds computation per recipient seems reasonable. With SHA1, depth
d = 22 leads to 223 hash calls and warrants this effort on my 2005 laptop.
For other hash functions, the right depth depends on the performance of these
functions on the target hardware. The number of leaves also induces the number
of required proofs, hence the total proof size, as discussed hereafter.

The smaller the number of proofs, the better for the communication and
verification involved, but if very few proofs are required a partial computation
of the Merkle tree could be greatly beneficial to the requester. We choose P =
8 · ln2(N), maybe rounded up to a power of two to ease the even distribution.
Section 4.2 shows that this value induces the service requester to compute most
of the tree. With this number of proofs, the solution effort is e

√
w (verification

work w = O(ln(N)2), and provider effort is 2N ≈ e
√

w). It is not communication-
optimal: proofs are a little bit large, for instance with SHA1 as a hash and with
N = 222 it is about 11 KB (that is 256 · (22− 8) · (24+1) bits), although around
22 bits are sufficient for a counter-based technique.

3.5 Memory-Computation Trade-off

The full Merkle tree needs about 2N ·m bits if it is kept in memory, to be able to
extract the feedback hashes once the required leaves are known. A simple trade-
off is to keep only the upper part of the tree, dividing the memory requirement
by 2t, at the price of P · 2t+1 hash computations to rebuild the subtrees that
contain the proofs. The limit case recomputes the full tree once the needed leaves
are known.

4 Attacks

In the above protocol, the requester uses 2N hash computations for the Merkle
tree, but the provider needs only P ·ln2(N) = 8·(lntwoN)2 to verify the extracted
partial tree, and both side must run the generator. This section discusses attacks
which reduce the requester work by computing only a fraction of the tree and
being lucky with the feedback so that required leaves are available. We first
compute a lower bound for the cost of finding a solution depending on the
parameters, then we discuss two attacks.

4.1 Partial Tree

In order to cheat one must provide a matching partial tree, i.e.: (a) a valid partial
tree starting from the service hashes or the tree itself is rejected ; (b) with valid
leaves choice based on the root hash or the feedback fails. As this tree is built
from a cryptographic hash function, the successful attacker must have computed
the provided partial Merkle tree root hash and its leaf derivations: otherwise the
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Fig. 5. Partial Merkle tree (f = 0.5, P = 4)

probability of returning a matching partial tree by chance is the same as finding
a hash inversion.

Let us assume that the attacker builds a partial tree involving a fraction f
of the leaves (0 ≤ f ≤ 1), where missing hash values are filled-in randomly, as
outlined in Figure 5: evenly-distributed proofs result in 4 real hashes at depth 2,
computed from 4 fake hashes (in grey) introduced at depth 3 to hide the non-
computed subtrees, and 4 real hashes coming from the real subtrees. Half leaf
hashes are really computed.

Once the root hash is available, the feedback leaves can be derived. If they
are among available ones, a solution has been found and can be returned. The
probability of this event is fP . It is quickly reduced by smaller fractions and
larger numbers of proofs. If the needed proof leaves are not all available, no
solution was found. From this point, the attacker can either start all over again,
reuse only part of the tree at another attempt, or alter the current tree. The
later is the better choice. This tree alteration can either consist of changing a
fake node (iteration at constant f), or of adding new leaves (extending f).

We are interested in the expected average cost of the search till a suitable root
hash which points to available leaves is found. Many strategies are possible as
iterations or extensions involving any subset of leaves can be performed in any
order. However, each trial requires the actual root hash for a partial tree and
running the generator. Doing so adds to the current total cost of the solution
tree computation and to the cost of later trials.

4.2 Attack Cost Lower Bound

A conservative lower bound cost for a successful attack can be computed by
assuming that for every added leaf the partial tree is tried without over-cost
for the queue to reach the root nor for computing the seed more than once.
We first evaluate an upper bound of the probability of success for these partial
trees, which is then used to derive a lower bound for the total cost: Whatever
the attack strategy, for our suggested number of proofs and a tree of depth 7 or
more, a requester will have to compute at least 90% of the full Merkle tree on
average to find an accepted proof of work.
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Proof. If we neglect the even distribution of proof leaves, the probability of
success at iteration i of constructing a tree (an i-th leaf is added in the tree)
is ρi = ( i

N )P , and the probability of getting there is (1 − σi−1) where σi is the
cumulated probability of success up to i: σ0 = 0, σi = σi−1 + (1 − σi−1)ρi, and
σN = 1, as the last iteration solves the problem with ρN = 1. The (1 − σi−1)ρi

term is the global probability of success at i: the computation got there (the
problem was not solved before) and is solved at this very iteration. As it is lower
than ρi:

σj ≤
j∑

i=0

ρi ≤
∫ j+1

N

0

NxP dx =
N

P + 1

(
j + 1
N

)P+1

(1)

If c(i) is the increasing minimal cost of testing a tree with i leaves, the average
cost C for the requester is:

C(N, P ) ≥
N∑

i=1

c(i)(1 − σi−1)ρi =
N∑

i=1

c(i)(σi − σi−1)

=
�−1∑
i=1

c(i)(σi − σi−1) +
N∑

i=�

c(i)(σi − σi−1)

≥ 0 + c(�)(σN − σ�−1)
≥ c(�)(1 − σ�)

The cost is bounded by cutting the summation at � chosen as �+1
N = ( 1

N )
1

P+1 .
The contributions below this limit are zeroed, and those over are minimized as
c(�) ≥ 2�+P (the �-leaf tree is built and the seed is computed once) and (1−σ�)
is bound with Equation (1) so that (1−σ�) ≥ (1− 1

P+1 ) = P
P+1 hence, as P ≥ 2:

C(N, P ) ≥
(

1
N

) 1
P+1 P

P + 1
(2N) (2)

Figure 6 plots this estimation. The back-left corner is empty where the number
of proofs is greater than the number of leaves. With P = 8·ln2(N) and if N ≥ 27,
Equation (2) is simplified:

C(N) ≥
(

1
2

) 1
8 8 · ln2(N)

8 · ln2(N) + 1
(2N) ≥ 0.9 (2N)

Namely the average cost for the requester C(N) is larger than 90% of the 2N
full tree cost. QED.

4.3 Iterative Attack

Let us investigate a simple attack strategy that fills a fraction of the tree with fake
hashes introduced to hide non computed leaves, and then iterates by modifying
a fake hash till success, without increasing the number of leaves. The resulting



90 F. Coelho

relative cost

 5
 10

 15
 20

 25
 30

tree depth d 1

 4

 16

 64

 256

number of
proofs P

0.0

0.5

1.0

Fig. 6. Relative cost lower bound – Equation (2)

average cost is shown in Equation (3). The first term approximates the hash tree
computation cost for the non-faked leaves and nodes, and is a minimum cost for
the attack with a given fraction f : there are N · f leaves in the binary tree,
and about the same number of internal nodes. The second term is the average
iteration cost for a solution, by trying faked hash values from depth ln2(P ) + 1
thanks to the even-distribution, and another P to derive the seed from the root
hash; the resulting cost is multiplied by the average number of iterations which
is the inverse of the probability of success at each trial.

Citer(f) ≈ 2Nf + (P + ln2(P ) + 1)
1

fP
(3)

If f is small, the second term dominates, and the cost is exponential. If f is
close to 1, the first linear term is more important and the cost is close to the
full tree computation. This effect is illustrated in Figure 7 for different number
of proofs P : few proofs lead to very beneficial fractions: many proofs make the
minimum of the functions close to the full tree computation.

F(N, P ) = P+1

√
P (P + ln2(P ) + 1)

2N
(4)

Equation (4), the zero of the derivative of (3), gives the best fraction of this
iterative strategy for a given size and number of proofs. F(222, 256) = 0.981 and
the cost is 0.989 of the full tree, to be compared to the 0.9 lower bound computed
in Section 4.2. Whether a significantly better strategy can be devised is unclear.
A conservative cost lower bound computed with a numerical simulation and for
the same parameters gives a 0.961 multiplier. In order to reduce the effectiveness
of this attack further, the hash-based generator may cost up to P · ln2(N) to
derive seed r without impact on the overall verification complexity, but at the
price of doubling the verification cost.

This successful attack justifies the almost constant-effort claim: either a full
tree is computed and a solution is found with a null variance, or some partial-
tree unbounded attack is carried out, maybe with a low variance, costing at least
90% of the full tree.
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4.4 Skewed Feedback Attack

Let us study the impact of a non-independent proof selection by the pseudo-
random number generator. This section simply illustrates the importance of the
randomness of the generator. We assume an extreme case where the first bits of
the root hash are used as a unique leaf index in the P chunks: the selected leaves
would be {k, k + N

P , k + 2N
P , . . .}. Then in the partial tree attack the requester

could ensure that any leaf k computed in the first chunk have their corresponding
shifted leaves in the other chunks available. Thus, when hitting one leaf in the
first chunk, all other leaves follow, and the probability of a successful feedback
is f instead of fP . N = 222 and P = 256 lead to 0.002(2N), a 474 speedup of
the attack efficiency.

5 Conclusion

Proof-of-work schemes help deter denial-of-service attacks on costly services such
as email delivery by requiring moderately hard computations from the requester
that are easy to verify by the provider. As solution-verification protocol variants
do not assume any interaction between requesters and providers, the compu-
tations must be self-imposed, based somehow on the expected service. Most of
these schemes are unbounded iterative probabilistic searches with a high vari-
ance of the requester effort. We have made the following contributions about
proof-of-work schemes:

1. two definitions of optimality criteria: communication-optimal if the minimum
amount of data is sent; computation-optimal if the verification is linear in
the data sent;

2. a computation-optimal (but not communication-optimal) proof-of-work solu-
tion-verification scheme based on Merkle trees with a e

√
w effort, for which
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the work on the requester side is bounded and the variance is null: the
requester computes 2N hashes and communicates P ln2(N) data which are
verified with P ln2(N) computations, with P = 8 ln2(N) a good choice;

3. a conservative lower bound of the cost of finding a solution at 90% of the
full computation, which shows that our chosen number of proofs P is sound;

4. a successful attack with a small 1% gain for our chosen parameter values,
which involves a large constant cost and a small iterative unbounded part,
thus resulting in a low overall variance.

These contributions are both theoretical and practical. Our solution-verifi-
cation scheme has a bounded, constant-effort solution. In contrast to iterative
probabilistic searches for which the found solution is exactly checked, but the
requester’s effort is probably known with a high variance, we rather have a
probabilistic check of the proof-of-work, but the actual solution work is quite
well known with a small variance thanks to the cost lower bound. Moreover our
scheme is practical, as it is computation-optimal thus not prone to denial-of-
service attacks in itself as the verification work is propotional to the data sent
by the requester. Also, although not optimal, the communication induces an
interesting work-ratio. The only other bounded solution-verification scheme is
a formula with a w1.5 effort, which is neither communication nor computation-
optimal. Whether a bounded fully optimal solution-verification scheme may be
built is an open question.
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Abstract. Recently, Chinese Remainder Theorem (CRT) based func-
tion sharing schemes are proposed in the literature. In this paper, we
investigate how a CRT-based threshold scheme can be enhanced with
the robustness property. To the best of our knowledge, these are the first
robust threshold cryptosystems based on a CRT-based secret sharing.

Keywords: Threshold cryptography, robustness, RSA, ElGamal, Pail-
lier, Chinese Remainder Theorem.

1 Introduction

In threshold cryptography, secret sharing deals with the problem of sharing a
highly sensitive secret among a group of n users so that only when a sufficient
number t of them come together the secret can be reconstructed. Function shar-
ing deals with evaluating the encryption/signature function of a cryptosystem
without the involved parties disclosing their secret shares. A function sharing
scheme (FSS) requires distributing the function’s computation according to the
underlying secret sharing scheme (SSS) such that each part of the computa-
tion can be carried out by a different user and then the partial results can
be combined to yield the function’s value without disclosing the individual se-
crets. Several SSSs [1,3,20] and FSSs [8,9,10,11,19,21] have been proposed in the
literature.

Nearly all existing solutions for the function sharing problem have been based
on the Shamir SSS [20]. Recently, Kaya and Selçuk [14] proposed several thresh-
old function sharing schemes based on the Asmuth-Bloom SSS for the RSA [18],
ElGamal [13] and Paillier [16] cryptosystems. These FSSs are the first examples
of secure function sharing schemes based on Asmuth-Bloom secret sharing.

We say that a function sharing scheme is robust if it can withstand partic-
ipation of corrupt users in the function evaluation phase. In a robust FSS, a
detection mechanism is used to identify the corrupted partial results so that, the
corrupted users can be eliminated. The FSSs proposed by Kaya and Selçuk [14]
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did not have the robustness property and, to the best of our knowledge, no
CRT-based robust and secure function sharing scheme exists in the literature.

In this paper, we investigate how CRT-based threshold schemes can be en-
hanced with the robustness property. We first give a robust threshold function
sharing scheme for the RSA cryptosystem. Then we apply the ideas to the ElGa-
mal and Paillier decryption functions. For RSA and Paillier, we use the thresh-
old schemes proposed by Kaya and Selçuk [14]. For ElGamal, we work with a
modified version of the ElGamal decryption scheme by Wei et al. [22]. All of
the proposed schemes are provably secure against a static adversary under the
random oracle model [2].

In achieving robustness, we make use of a non-interactive protocol designed to
prove equality of discrete logarithms [4,5,21]. The original interactive protocol
was proposed by Chaum et al [5] and improved by Chaum and Pedersen [6].
Later, Shoup [21] and, Boudot and Traoré [4] developed a non-interactive version
of the protocol.

The organization of the paper is as follows: In Section 2, we describe the
Asmuth-Bloom SSS and the FSSs proposed by Kaya and Selçuk [14]. After de-
scribing a robust threshold RSA scheme and proving its security in Section 3, we
apply the proposed idea to the Paillier and ElGamal cryptosystems in Section 4.
Section 5 concludes the paper.

2 Function Sharing Based on the Asmuth-Bloom Secret
Sharing

The Asmuth-Bloom SSS shares a secret among the parties using modular arith-
metic and reconstructs it by the Chinese Remainder Theorem. Here we give the
brief description of the scheme:

– Dealer Phase: To share a secret d among a group of n users with threshold
t, the dealer does the following:
• A set of pairwise relatively prime integers m0 < m1 < m2 < . . . < mn

are chosen where m0 > d is prime,

t∏
i=1

mi > m0

t−1∏
i=1

mn−i+1. (1)

• Let M denote
∏t

i=1 mi. The dealer computes

y = d + Am0

where A is a positive integer generated randomly subject to the condition
that 0 ≤ y < M .

• The share of the ith user, 1 ≤ i ≤ n, is

yi = y mod mi

i.e., the smallest nonnegative residue of y modulo mi.
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– Combiner Phase: Assume S is a coalition of t users to construct the secret.
For any coalition S, we define MS as

MS =
∏
i∈S

mi.

• Given the system
y ≡ yi (mod mi)

for i ∈ S, find y in ZMS using the Chinese Remainder Theorem.
• Compute the secret as

d = y mod m0.

According to the Chinese Remainder Theorem, y can be determined uniquely in
ZMS . Since y < M ≤ MS , the solution is also unique in ZM .

In the original Asmuth-Bloom scheme, m0 is not needed until the last step
of the combiner phase but still it is a public value. To avoid confusions, we
emphasize that it will be secret for the robust FSSs proposed in this paper.

Kaya and Selçuk [14] modified the Asmuth-Bloom SSS by changing (1) as

t∏
i=1

mi > m0
2

t−1∏
i=1

mn−i+1. (2)

to make the Asmuth-Bloom SSS perfect in the sense that t−1 or fewer shares do
not narrow down the key space and furthermore all candidates for the key are
equally likely: Assume a coalition S′ of size t− 1 has gathered and let y′ be the
unique solution for y in ZMS′ . According to (2), M/MS′ > m0

2, hence y′+ jMS′

is smaller than M for j < m0
2. Since gcd(m0, MS′) = 1, all (y′ + jMS′) mod m0

are distinct for 0 ≤ j < m0 hence, d can be any integer from Zm0 . For each value
of d, there are either �M/(MS′m0)� or �M/(MS′m0)� + 1 possible values of y
consistent with d, depending on the value of d. Hence, for two different integers
in Zm0 , the probabilities of d being equal to these integers are almost equal. Note
that M/(MS′m0) > m0 and given that m0 � 1, all d values are approximately
equally likely.

In the original Asmuth-Bloom SSS, the authors proposed an iterative process
to solve the system y ≡ yi (mod mi). Instead, a classical and non-iterative
solution exists which is more suitable for function sharing in the sense that
it does not require interaction between parties and has an additive structure
convenient to share exponentiations [12].

1. Let S be a coalition of at least t users. Let MS\{i} denote
∏

j∈S,j �=i mj and
M ′

S,i be the multiplicative inverse of MS\{i} in Zmi , i.e.,

MS\{i}M ′
S,i ≡ 1 (mod mi).

First, the ith user computes

ui =
(
yiM

′
S,i mod mi

)
MS\{i}. (3)
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2. y is computed as

y =
∑
i∈S

ui mod MS .

3. The secret d is computed as

d = y mod m0.

Even with these modifications, obtaining a threshold scheme by using Asmuth-
Bloom SSS is not a straightforward task. Here we give the description of the
proposed threshold RSA signature scheme [14].

– Setup: In the RSA setup phase, choose the RSA primes p = 2p′ + 1 and
q = 2q′+1 where p′ and q′ are also large random primes. N = pq is computed
and the public key e and private key d are chosen from Z

∗
φ(N) where ed ≡

1 (mod φ(N)). Use Asmuth-Bloom SSS for sharing d with a secret m0 =
φ(N) = 4p′q′.

– Signing: Let w be the hashed message to be signed and suppose the range
of the hash function is Z

∗
N . Assume a coalition S of size t wants to obtain

the signature s = wd mod N .

• Generating the partial results: Each user i ∈ S computes

ui =
(
yiM

′
S,i mod mi

)
MS\{i}, (4)

si = wui mod N.

• Combining the partial results: The incomplete signature s is obtained by
combining the si values

s =
∏
i∈S

si mod N. (5)

• Correction: Let κ = w−MS mod N be the corrector. The incomplete
signature can be corrected by trying

(sκj)e = se(κe)j ?≡ w (mod N) (6)

for 0 ≤ j < t. Then the signature s is computed by

s = sκδ mod N

where δ denotes the value of j that satisfies (6).

– Verification is the same as the standard RSA verification where the verifier
checks

se ?≡ w (mod N)
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The signature s generated in (5) is incomplete since we need to obtain y =∑
i∈S ui mod MS as the exponent of w. Once this is achieved, we have wy ≡ wd

(mod N) as y = d + Am0 for some A where m0 = φ(N).
Note that the equality in (6) must hold for some j ≤ t − 1 since the ui

values were already reduced modulo MS . So, combining t of them in (5) will
give d+am0 + δMS in the exponent for some δ ≤ t−1. Thus in (5), we obtained

s = wd+δMS mod N = swδMS mod N = sκ−δ mod N

and for j = δ, equation (6) will hold. Also note that the mappings we mod N
and wd mod N are bijections in ZN , hence there will be a unique value of s = sκj

which satisfies (6).
Besides RSA, Kaya and Selçuk also applied this combine-and-correct approach

to obtain threshold Paillier and ElGamal schemes [14] with Asmuth-Bloom secret
sharing.

3 Robust Sharing of the RSA Function

To enhance the threshold cryptosystems with the robustness property, we use a
non-interactive protocol proposed to prove equality of two discrete logarithms
with respect to different moduli. The interactive protocol, which was originally
proposed by Chaum et al [5] for the same moduli, was modified by Shoup and
used to make a threshold RSA signature scheme robust [21]. He used Shamir’s
SSS as the underlying SSS to propose a practical and robust threshold RSA sig-
nature scheme. In Shamir’s SSS, the secret is reconstructed by using Lagrange’s
polynomial evaluation formula and all participants use the same modulus which
does not depend on the coalition. On the other hand, in the direct solution used
in the abovementioned CRT-based threshold RSA scheme, the definition of uis in
(3) and (4) shows that we need different moduli for each user. For robustness, we
need to check the correctness of ui for each user i in the function evaluation phase.
We modified the protocol in [21] for the case of different moduli as Boudot and
Traoré [4] did to obtain efficient publicly verifiable secret sharing schemes.

To obtain robustness, we first modify the dealer phase of the Asmuth-Bloom
SSS and add the constraint that

pi = 2mi + 1

be a prime for each 1 ≤ i ≤ n. These values will be the moduli used to con-
struct/verify the proof of correctness for each user. The robustness extension
described below can be used to make the CRT-based threshold RSA signature
scheme in Section 2 robust. We only give the additions for the robustness exten-
sion here since the other phases are the same.

– Setup: Use Asmuth-Bloom SSS for sharing d with m0 = φ(N). Let gi be an
element of order mi in Z

∗
pi

. Broadcast gi and the public verification data

vi = gi
yi mod pi

for each user i, 1 ≤ i ≤ n.
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– Generating the proof of correctness : Let w be the hashed message to be
signed and suppose the range of the hash function is Z

∗
N . Assume a coalition

S of size t participated in the signing phase. Let h : {0, 1}∗ → {0, . . . , 2L1−1}
be a hash function where L1 is another security parameter. Let

w′ = wMS\{i} mod N,

v′i = vi
M ′

S,i mod pi,

zi = yiM
′
S,i mod mi.

Each user i ∈ S first computes

W = w′r mod N,

G = gi
r mod pi

where r ∈R {0, . . . , 2L(mi)+2L1}. Then he computes the proof as

σi = h(w′, gi, si, v
′
i, W, G),

Di = r + σizi ∈ Z

and sends the proof (σi, Di) along with the partial signature si.
– Verifying the proof of correctness: The proof (σi, Di) for the ith user can be

verified by checking

σi
?= h(w′, gi, si, v

′
i, w

′Disi
−σi mod N, gi

Div′i
−σi mod pi). (7)

Note that the above scheme can also be used to obtain a robust threshold RSA
decryption scheme. Since RSA signature and decryption functions are mostly
identical, we omit the details.

3.1 Security Analysis

Here we will prove that the proposed threshold RSA signature scheme is se-
cure (i.e. existentially non-forgeable against an adaptive chosen message attack),
provided that the RSA problem is intractable (i.e. RSA function is a one-way
trapdoor function [7]). We assume a static adversary model where the adversary
controls exactly t− 1 users and chooses them at the beginning of the attack. In
this model, the adversary obtains all secret information of the corrupted users
and the public parameters of the cryptosystem. She can control the actions of
the corrupted users, ask for partial signatures of the messages of her choice, but
she cannot corrupt another user in the course of an attack, i.e., the adversary is
static in that sense.

First we will analyze the proof of correctness. For generating and verifying
the proof of correctness, the following properties holds:
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– Completeness: If the ith user is honest then the proof succeeds since

w′Disi
−σi = w′r mod N,

gi
Div′i

−σi = gi
r mod pi.

– Soundness: To prove the soundness, we will use a lemma by Poupard and
Stern [17] which states that if the prover knows (a, b, σ, σ′, D, D′) such that
aDbσ ≡ aD′

bσ′
(mod K) for an integer K, then he knows the discrete loga-

rithm of b in base a unless he knows the factorization of K.
Let us define Ψ : Z

∗
Npi

→ Z
∗
N × Z

∗
pi

be the CRT isomorphism, i.e., x →
(x mod N, x mod pi) for x ∈ Z

∗
Npi

. Note that gcd(N, pi) = 1. Let g =
Ψ−1(w′, gi), v = Ψ−1(si, v

′
i) and τ = Ψ−1(W, G). Given W and G, if the

ith user can compute valid proofs (σ, D) and (σ′, D′) then we have

τ = gDvσ mod Npi = gD′
vσ′

mod Npi

and according to the lemma above, the ith user knows ui unless he can com-
pletely factor Npi. Since the factorization of N is secret we can say that if
the proof is a valid proof then the discrete logarithms are equal in modmi

and the prover knows this discrete logarithm. Hence, an adversary cannot
impersonate a user without knowing his share. Similar to Boudot and Tre-
ore [4], a range check on Di might be necessary while verifying the proof
of correctness to detect incorrect partial signatures from users with valid
shares.

– Zero-Knowledge Simulatability: To prove the zero-knowledge simulatability,
we will use the random oracle model for the hash function h and construct a
simple simulator. When an uncorrupted user wants to create a proof (σi, Di)
for a message w and partial signature si, the simulator returns

σi ∈R {0, . . . , 2L1 − 1}
and

Di ∈R {0, . . . , 2L(mi)+2L1 − 1}
and sets the value of the oracle at

(w′, gi, si, v
′
i, w

′Disi
−σi mod N, gi

Div′i
−σi mod pi)

as σi. Note that, the value of the random oracle is not defined at this point
but with negligible probability. When a corrupted user queries the oracle,
if the value of the oracle was already set the simulator returns that value
otherwise it returns a random one. It is obvious that the distribution of
the output of the simulator is statistically indistinguishable from the real
output.

To reduce the security of the proposed threshold RSA signature scheme to the
security of the standard RSA signature scheme, the following proof constructs
another simulator.
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Theorem 1. Given that the standard RSA signature scheme is secure, the thresh-
old RSA signature scheme is robust and secure under the static adversary model.

Proof. To reduce the problem of breaking the standard RSA signature scheme
to breaking the proposed threshold scheme, we will simulate the threshold pro-
tocol with no information on the secret where the output of the simulator is
indistinguishable from the adversary’s point of view. Afterwards, we will show
that the secrecy of the private key d is not disrupted by the values obtained by
the adversary. Thus, if the threshold RSA scheme is not secure, i.e., an adversary
who controls t − 1 users can forge signatures in the threshold scheme, one can
use this simulator to forge a signature in the standard RSA scheme.

Let S′ denote the set of users controlled by the adversary. To simulate the
adversary’s view, the simulator first selects a random interval I = [a, b) from
ZM , M =

∏t
i=1 mi. The start point a is randomly chosen from ZM and the end

point is computed as b = a+m0MS′ . Then, the shares of the corrupted users are
computed as yj = a mod mj for j ∈ S′. Note that, these t−1 shares are indistin-
guishable from random ones due to (1) and the improved perfectness condition.
Although the simulator does not know the real value of d, it is guaranteed that
for all possible d, there exists a y ∈ I which is congruent to yj (mod mj) and to
d (mod m0).

Since we have a (t, n)-threshold scheme, given a valid RSA signature (s, w),
the partial signature si for a user i /∈ S′ can be obtained by

si = sκ−δS
∏
j∈S′

(wuj )−1 mod N

where S = S′ ∪ {i}, κ = w−MS mod N and δS is equal to either
⌊�

j∈S′ uj

MS

⌋
+ 1

or
⌊�

j∈S′ uj

MS

⌋
. The value of δS is important because it carries information on

y. Let U =
∑

j∈S′ uj and US = U mod MS . One can find whether y is greater
than US or not by looking at δS :

y < US if δS = �U/MS� + 1,

y ≥ US if δS = �U/MS�.

Since the simulator does not know the real value of y, to determine the value of
δS , the simulator acts according to the interval randomly chosen at the beginning
of the simulation.

δS =
{ �U/MS� + 1, if a < US
�U/MS�, if a ≥ US

(8)

It is obvious that, the value of δS is indistinguishable from the real case if
US /∈ I. Now, we will prove that the δS values computed by the simulator does
not disrupt the indistinguishability from the adversary’s point of view. First of
all, there are (n−t+1) possible δS computed by using US since all the operations
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in the exponent depend on the coalition S alone. If none of the US values lies
in I, the δS values observed by the adversary will be indistinguishable from
a real execution of the protocol. Using this observation, we can prove that no
information about the private key is obtained by the adversary.

Observing the t − 1 randomly generated shares, there are m0 = φ(N) candi-
dates in I for y which satisfy yj = y mod mj for all j ∈ S′. These m0 candidates
have all different remainders modulo m0 since gcd(MS′ , m0) = 1. So, exactly one
of the remainders is equal to the private key d. If US /∈ I for all S, given an si, the
shared value y can be equal to any of these m0 candidates hence any two different
values of the secret key d will be indistinguishable from adversary’s point of view.
In our case, this happens with all but negligible probability. First, observe that
US ≡ 0 mod mi and there are m0MS′/mi multiples of mi in I. Thus, the prob-
ability of US /∈ I for a coalition S is equal to

(
1 − m0MS′ /mi

MS′

)
=

(
1 − m0MS′

MS

)
.

According to (1), mi > m0
2 for all i hence the probability of US /∈ I for all

possible S is less than
(
1 − 1

m0

)n−t+1

, which is almost surely 1 for m0 � n.
The simulator computes the public verification data of the users in S′ as

vj = gyj mod pj for j ∈ S′. For other users i /∈ S′, the simulator chooses a
random integer yi ∈R Zmi and sets vi = gyi mod pi. Note that gcd(N, pi) = 1.
So the public verification data generated by the simulator are computationally
indistinguishable from the real ones.

Consequently, the output of the simulator is indistinguishable from a real
instance from the adversary’s point of view, and hence the simulator can be
used to forge a signature in the standard RSA scheme if the threshold RSA
scheme can be broken. ��

4 Robustness in Other CRT-Based Threshold Schemes

The robustness extension given in Section 3 can be applied to other CRT-based
threshold schemes as well. Here we describe how to adapt the extension to the
CRT-based threshold Paillier and ElGamal function sharing schemes.

4.1 Robust Sharing of the Paillier Decryption Function

Paillier’s probabilistic cryptosystem [16] is a member of a different class of cryp-
tosystems where the message is used in the exponent of the encryption operation.
The description of the cryptosystem is as follows:

– Setup: Let N = pq be the product of two large primes and λ = lcm(p−1, q−
1). Choose a random g ∈ ZN2 such that the order of g is a multiple of N .
The public and private keys are (N, g) and λ, respectively.

– Encryption: Given a message w ∈ ZN , the ciphertext c is computed as

c = gwrN mod N2

where r is a random number from ZN .
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– Decryption: Given a ciphertext c ∈ ZN2 , the message w is computed as

w =
L

(
cλ mod N2

)
L (gλ mod N2)

mod N

where L(x) = x−1
N , for x ≡ 1 (mod N).

By using the combine-and-correct approach, Kaya and Selçuk proposed a
threshold version of the Paillier’s cryptosystem [14]. As in threshold RSA, the
decryption coalition needs to compute an exponentiation, s = cλ mod N2, where
the exponent λ is shared by Asmuth-Bloom SSS in the setup phase. Hence,
similar to RSA, the partial result si of the ith user is equal to si = cui mod N2.
The robustness extension can be applied to the Paillier cryptosystem as follows:

– Setup: Use Asmuth-Bloom SSS for sharing λ with m0 = φ(N2) = Nφ(N).
Let gi ∈ Z

∗
pi

be an element with order mi in Z
∗
pi

. Broadcast the public
verification data gi and

vi = gyi

i mod pi

for each user i, 1 ≤ i ≤ n.
– Generating the proof of correctness : Let h : {0, 1}∗ → {0, . . . , 2L1 − 1} be a

hash function where L1 is another security parameter. Let

c′ = cMS\{i} mod N2,

v′i = vi
M ′

S,i mod pi,

zi = yiM
′
S,i mod mi.

Each user i ∈ S first computes

W = c′r mod N2,

G = gi
r mod pi

where r ∈R {0, . . . , 2L(mi)+2L1}. Then he computes the proof as

σi = h(c′, gi, si, v
′
i, W, G),

Di = r + σizi ∈ Z

and sends the proof (σi, Di) along with the partial decryption si.
– Verifying the proof of correctness: The proof (σi, Di) for the ith user can be

verified by checking

σi
?= h(c′, gi, si, v

′
i, c

′Disi
−σi mod N, gi

Div′i
−σi mod pi). (9)

If the ith user is honest then the proof succeeds since c′Disi
−σi = c′r mod N2

and gi
Div′i

−σi = gi
r mod pi. The soundness property can be proved with a proof

similar to the proof of Theorem 1. Note that gcd(N2, pi) = 1 for all users and
φ(N2) = Nφ(N) is secret. A similar proof can be given for the zero knowledge
simulatability as the one in Section 3.1.
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4.2 Robust Sharing of the ElGamal Decryption Function

The ElGamal cryptosystem [13] is another popular public key scheme with the
following description:

– Setup: Let p be a large prime and g be a generator of Z
∗
p. Choose a random

α ∈ {1, . . . , p− 1} and compute β = gα mod p. (β, g, p) and α are the public
and private keys, respectively.

– Encryption: Given a message w ∈ Zp, the ciphertext c = (c1, c2) is computed
as

c1 = gk mod p,

c2 = βkw mod p

where k is a random integer in {1, . . . , p − 1}.
– Decryption: Given a ciphertext c, the message w is computed as

w = (c1
α)−1c2 mod p.

Adapting our robustness extension to the threshold ElGamal scheme given
in [14] is slightly more complicated than it is for the Paillier’s cryptosystem,
because φ(p) = p−1 is public. A simple solution for this problem is to extend the
modulus to N = pq where p = 2p′+1 and q = 2q′+1 are safe primes. There exist
versions of the ElGamal encryption scheme in the literature with a composite
modulus instead of p. For example, Wei et al. [22] modified the standard ElGamal
scheme to obtain a hidden-order ElGamal scheme. They proved that their scheme
is as secure as each of the standard RSA and ElGamal cryptosystems. Here we
give the description of a robust, CRT-based threshold scheme for Wei et al.’s
version of the ElGamal encryption.

– Setup: In the ElGamal setup phase, choose p = 2p′ + 1 and q = 2q′ + 1 be
large primes such that p′ and q′ are also prime numbers. Let N = pq and let
gp and gq be generators of Z

∗
p and Z

∗
q , respectively. Choose αp ∈R Z

∗
p and

αq ∈R Z
∗
q such that gcd(p − 1, q − 1) | (αp − αq). The secret key α ∈ Zλ(N)

is the unique solution of the congruence system

α ≡ αp (mod p − 1),
α ≡ αq (mod q − 1)

where λ(N) = 2p′q′ is the Carmichael number of N . Similarly, the public
key β ∈ ZN is the unique solution of congruence system

β ≡ gp
αp (mod p),

β ≡ gq
αq (mod q).

Let g be the unique solution of the congruence system

g ≡ gp (mod p),
g ≡ gq (mod q)
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and α and (β, g, N) be the private and the public keys, respectively. Note
that β = gα mod N . Use Asmuth-Bloom SSS for sharing the private key α
with m0 = 2p′q′. Let gi ∈ Z

∗
pi

be an element with order mi in Z
∗
pi

. Broadcast
the public verification data gi and vi = gyi

i mod pi for each user i, 1 ≤ i ≤ n.
– Encryption: Given a message w ∈ ZN , the ciphertext c = (c1, c2) is computed

as

c1 = gk mod N,

c2 = βkw mod N

where k is a random integer from {1, . . . , N − 1}.
– Decryption: Let (c1, c2) be the ciphertext to be decrypted where c1 = gk mod

N for some k ∈ {1, . . . , N−1} and c2 = βkw mod N where w is the message.
The coalition S of t users wants to obtain the message w = sc2 mod N for
the decryptor s = (cα

1 )−1 mod N .
• Generating the partial results: Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS , (10)

si = c1
−ui mod N,

βi = gui mod N. (11)

• Generating the proof of correctness : Let h : {0, 1}∗ → {0, . . . , 2L1 − 1}
be a hash function where L1 is another security parameter. Let

c′1 = c1
MS\{i} mod N,

v′i = vi
M ′

S,i mod pi,

zi = yiM
′
S,i mod mi.

Each user i ∈ S first computes

W = c′1
r mod N,

G = gi
r mod pi

where r ∈R {0, . . . , 2L(mi)+2L1}. Then he computes the proof as

σi = h(c′1, gi, si, v
′
i, W, G),

Di = r + σizi ∈ Z

and sends the proof (σi, Di) along with si.
• Verifying the proof of correctness: The proof (σi, Di) for the ith user can

be verified by checking

σi
?= h(c′1, gi, si, v

′
i, c

′
1
Disi

−σi mod N, gi
Div′i

−σi mod pi).
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• Combining the partial results: The incomplete decryptor s is obtained
by combining the si values

s =
∏
i∈S

si mod N.

• Correction: The βi values will be used to find the exponent which will
be used to correct the incomplete decryptor. Compute the incomplete
public key β as

β =
∏
i∈S

βi mod N. (12)

Let κs = c1
MS mod N and κβ = g−MS mod N be the correctors for s

and β, respectively. The corrector exponent δ is obtained by trying

βκj
β

?≡ β (mod N) (13)

for 0 ≤ j < t.
• Extracting the message: Compute the message w as

s = sκs
δ mod N,

w = sc2 mod N.

where δ denotes the value of j that satisfies (13).

As in the case of RSA, the decryptor s is incomplete since we need to obtain
y =

∑
i∈S ui mod MS as the exponent of c−1

1 . Once this is achieved, (c−1
1 )y ≡

(c−1
1 )α (mod N) since y = α + 2Ap′q′ for some A.
When the equality in (13) holds we know that β = gα mod N is the correct

public key. This equality must hold for one j value, denoted by δ, in the given
interval since the ui values in (10) and (11) are first reduced modulo MS . So,
combining t of them will give α + am0 + δMS in the exponent in (12) for some
δ ≤ t − 1. Thus in (12), we obtained

β = gα+am0+δMS mod N ≡ gα+δMS = βgδMS = βκ−δ
β (mod N)

and for j = δ equality must hold. Actually, in (12) and (13), our purpose is not to
compute the public key since it is already known. We want to find the corrector
exponent δ in order to obtain s, which is equal to the one used to obtain β. This
equality can be seen as follows:

s ≡ c1
−α = β−r

=
(
g−(α+(δ−δ)MS )

)r

= c1
−(α+am0+δMS )

(
c1

MS
)δ

= sκs
δ (mod N)

If the ith user is honest then the proof succeeds since c′1
Disi

−σi = c′1
r mod N

and gi
Div′i

−σi = gi
r mod pi. The soundness property can be proved with a proof

similar to the one in Section 3.1. Note that gcd(N, pi) = 1 for all users and
λ(N) = 2p′q′ is secret. A similar proof can be given for the zero knowledge
simulatability as the one in Section 3.1. We omit the security proof here since the
structure of the simulator is very similar to the one in Theorem 1 of Section 3.1.
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5 Conclusion

In this paper, we proposed robust threshold RSA, Paillier and ElGamal schemes
based on the Asmuth-Bloom SSS. Previous solutions for robust function shar-
ing schemes were based on the Shamir’s SSSs [10,15,19,21]. To the best of our
knowledge, the schemes described in this paper are the first robust and secure
FSSs using a CRT-based secret sharing. The ideas presented in this paper can
be used to obtain other robust FSSs based on the CRT.
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Abstract. At ACISP’07, Bringer et al. introduced a new protocol for
achieving biometric authentication with a Private Information Retrieval
(PIR) scheme. Their proposal is made to enforce the privacy of biometric
data of users. We improve their work in several aspects. Firstly, we show
how to replace the basic PIR scheme they used with Lipmaa’s which has
ones of the best known communication complexity. Secondly, we combine
it with Secure Sketches to enable a strict separation between on one hand
biometric data which remain the same all along a lifetime and stay en-
crypted during the protocol execution, and on the other hand temporary
data generated for the need of the authentication to a service provider.
Our proposition exploits homomorphic properties of Goldwasser-Micali
and Paillier cryptosystems.

Keywords: Authentication, Biometrics, Privacy, Private Information
Retrieval protocol, Secure Sketches.

1 Introduction

Biometric data are captured by sensors as physical or behavioral traits of individ-
uals. They are used for identification or authentication. The underlying principle
here is simple: during a preliminary phase called the enrollment, a template con-
taining a biometric reference for an individual is acquired and stored and, then,
is compared to new “fresh” acquisition of the same information during verifica-
tion phase. Note that, at this point, no secrecy about biometric data is required
for the verification to work. Moreover, as it is generally quite easy to have access
to biometric traits – a face in the crowd, fingerprints on glass – it is wiser to
treat biometric data as public.

To be clear, biometric acquisitions of the same trait do not give the same
result each time. In fact, a big amount of changes has to be taken into account
by specialized algorithms, called matching algorithms, during verification phase
for recognizing different acquisitions of the same individuals.

Finally, in practice, biometric data obtained from the enrollment phase are
usually stored in databases. For privacy reasons, this membership should not be
revealed as this is a link between the service provider holding the database and
the real person who want to authenticate.
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1.1 Related Works

In order to integrate biometrics into cryptographic protocols, it is often pro-
posed to replace traditional matching algorithms by error-correction procedures
[3,4,13,16,17,25,26,28,35,36] and traditional templates by Secure Sketches. In
these schemes, biometric features are treated to be secret and used for instance
to extract keys for cryptographic purposes. This construction is of great interest
to simplify the matching step but it does not answer to all security issues raised
by biometrics so far, cf. Sect. 3.1.

There are also other works which deal with the secure comparison of data,
e.g. [2,6,8,9,18,19,32]. Secure multi-party computation are used in [18,32] and ho-
momorphic encryption schemes could help to compare directly encrypted data
as it is the case in [6,8,9,32]. Specifically in [6], Bringer et al. propose to use
these kinds of techniques by describing a PIR based on Goldwasser-Micali cryp-
tosystem to increase privacy. However, the communication cost of their protocol
is linear in the size of the database and they rely on biometric templates stored
as cleartexts in a database.

1.2 Our Contributions

In this paper, we introduce a new protocol for biometric authentication. In
our scheme, biometric data stay encrypted during all the computations. This is
possible due to the integration of secure sketches into homomorphic cryptosys-
tems. Moreover, confidentiality of requests made to the database is also obtained
thanks to a Private Information Retrieval (PIR) protocol.We show how our re-
sults can be easily generalized to Lipmaa’s PIR protocol [29]. Finally, it is worth
noting that our proposition is proved secure in our security model.

1.3 Organization of This Work

The rest of the paper is organized as follows. In Section 2, we describe the security
model we consider for (remote) biometric-based authentication. In Section 3, we
introduce some basic notions on Secure Sketches and show how to deal with
these primitives in an encrypted way. In Section 4, we give a review of the
PIR protocol of Lipmaa and in Section 5, we introduce our new protocol for
biometric authentication by combining techniques from the previous sections. In
Section 6, we provide a security analysis of the protocol. Section 7 concludes the
paper.

2 Biometric Authentication Model

Following the ideas of [6], we describe the system we consider and the associated
security model.
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2.1 Biometric Systems

For typical configurations, a biometric-based recognition scheme consists of an
enrollment phase and a verification phase. To register a user U , a biometric
template b is measured from U and stored in a token or a database. When a new
biometric sample b′ is captured from U , it is compared to the reference data via
a matching function. According to a similarity measure m and some recognition
threshold τ , b′ will be accepted as a biometric capture of U if m(b, b′) ≤ τ ,
else rejected. Should it be accepted, b and b′ are called matching templates, and
non-matching ones otherwise.

More formally, we will consider four types of components:

– Human user Ui, who uses his biometric to authenticate himself to a service
provider.

– Sensor client C, which extracts human user’s biometric template using some
biometric sensor and which communicates with the service provider and the
database.

– Service provider SP , which deals with human user’s authentication. It may
have access to a Hardware Security Model HSM [1] which stores the secret
keys involved in the protocol.

– Database DB, which stores biometric information for users.

This structure captures the idea of a centralized storage database which can be
queried by many different applications and with several sensors. This helps the
user to make remote authentication requests. For the simplicity of description,
we assume that M users Ui (1 ≤ i ≤ M) register at the service provider SP .
Moreover, a user will use a pseudorandom username IDi to manage potential
multiple registrations on the same system.

We make the following classical liveness assumption:

Assumption 1. We assume that, with a high probability, the biometric template
captured by the sensor and used in the system is from a living human user.
In other words, it is difficult to produce a fake biometric template that can be
accepted by the sensor.

As biometrics are public information, additional credentials are always required
to establish security links in order to prevent some well-known attacks (e.g.
replay attacks) and to relay liveness assumption from the sensor to its environ-
ment. Therefore we assume that the sensor client is always honest and trusted
by all other components1. We also assume the following relationships.

Assumption 2. With respect to the authentication service, service provider is
trusted by human users to make the right decision, and database is trusted by
human users and the service provider to store and provide the right biometric
information. Only an outside adversary may try to impersonate an honest human
user.
1 When the service provider or the database receives some fresh biometric informa-

tion, it can confirm with a high probability that the fresh biometric information is
extracted from the human user which has presented itself to the sensor client.
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Assumption 3. With respect to privacy concerns, both service provider and
database are assumed to be malicious which means they may deviate from the
protocol specification, but they will not collude. In reality, an outside adversary
may also pose threats to the privacy concerns, however, it has no more advantage
than a malicious system component.

2.2 Security Model

We have two functionalities Enrollment and Verification, where Enrollment can
be initiated only once to simulate the enrollment phase and Verification can be
initiated for any user to start an authentication session for a polynomial number
of times.

The security of a protocol will be evaluated via an experiment between an ad-
versary and a challenger, where the challenger simulates the protocol executions
and answers the adversary’s oracle queries. Without specification, algorithms are
always assumed to be polynomial-time.

Soundness. This first requirement is defined as follows.

Definition 1. A biometric-based authentication scheme is defined to be sound if
it satisfies the following requirement: The service provider will accept an authen-
tication request if the sensor client sends (IDi, b

′
i) in an authentication request,

where bi and b′i are matching data and bi is the reference template registered for
IDi; and will reject it if they are non-matching data.

Due to the nature of biometric measurements, the probability of success for
non-matching data (respectively of reject for matching data) is not negligible.
However, these issues – traditionally measured as False Acceptance Rate (FAR)
and respectively False Reject Rate (FRR) – are related to biometric measure-
ment, so are irrelevant to our privacy concerns, hence we make abstraction of
this problem in the sequel. For instance we do not take into account these FAR
and FRR when dealing with soundness analysis. It is in fact a constraint on the
choice of the secure sketch construction (cf. Sect. 3.1).

Identity Privacy. Our main concern is the sensitive relationship between the
pseudonyms of users – which can possibly have multiple registrations – and
the reference biometric templates. In practice, a malicious service provider or a
malicious database may try to probe these relationships.

Definition 2. A biometric-based authentication scheme achieves identity pri-
vacy if A = (A1,A2) has only a negligible advantage in the following game,
where the advantage is defined to be |Pr[e′ = e] − 1

2 |.
ExpIdentity-Privacy

A
(i, IDi, b

(0)
i , b

(1)
i , (IDj , bj)(j �= i)) ← A1(1�)
bi = b

(e)
i

R← {b(0)
i , b

(1)
i }

∅ ← Enrollment((IDj , bj)j)
e′ ← A2(1�)
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Informally, the identity privacy means that, for any pseudorandom username,
the adversary knows nothing about the corresponding biometric template. It
also implies that the adversary cannot find any linkability between registrations.

The attack game can be formulated as: An adversary generates N pairs of
username and relevant biometric template, but with two possible templates
(b(0)

i , b
(1)
i ) for IDi. Thereafter a challenger randomly chooses a template b

(e)
i

for the username IDi, and simulates the enrollment phase to generate the pa-
rameters for the sensor client, the service provider, and the database. Then the
adversary tries to guess which template has been selected for Ui by listening
a polynomial amount of verifications. The particularity is that they must be
Verification requests run by the sensor. This way, the adversary can neither learn
nor control which biometric template is used on the sensor side.

Transaction Anonymity. We further want to guarantee that the database
which is supposed to store biometric information, gets no information about
which user is authenticating himself to the service provider or what is the au-
thentication result.

Definition 3. A biometric-based authentication protocol achieves transaction
anonymity if a malicious database represented by an adversary A = (A1,A2,A3)
has only a negligible advantage in the following game, where the advantage is
defined to be |Pr[e′ = e] − 1

2 |.

ExpTransaction-Anonymity
A

(IDj , bj)(1 ≤ j ≤ N) ← A1(1�)
∅ ← Enrollment((IDj , bj)j)

{i0, i1} ← A2(Challenger, Verification)
ie

R← {i0, i1}
∅ ← Verification(ie)
e′ ← A3(Challenger, Verification)

This captures the requirement that the database can not distinguish an au-
thentication request from a user Ui0 with one from Ui1 . In this experiment, we
assume that the database is not able to learn the result of verifications.

3 Embedding Secure Sketches in Homomorphic
Encryption

Before the description of our privacy-preserving biometric-authentication proto-
col, we first propose a way to manage secure sketches while encrypted.

3.1 Secure Sketches

Roughly speaking, a secure sketch scheme (SS, Rec) allows recovery of a hidden
value from any element close to this hidden value. The goal is to manage noisy
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data, such as biometric acquisitions, in cryptographic protocols. This has been
formalized by Dodis et al. [17] and the general idea is to absorb the differences
occurring between two captures by viewing them as errors over a codeword. Many
papers envisage applications of these techniques for cryptographic purposes in
various contexts, e.g. remote biometric authentication [4] or authenticated key
agreement [16].

Let H be a metric space with distance function d. A secure sketch allows to
recover a string w ∈ H from any close string w′ ∈ H thanks to a known data P
which does not leak too much information about w.

Definition 4. A (H, m, m′, t)–secure sketch is apair of functions (SS, Rec)where
the sketching function SS takesw ∈ H as input, and outputs a value in {0, 1}∗, called
a sketch, such that for all random variables W over H with min-entropy H∞(W ) ≥
m, we have the conditional min-entropy H∞(W | SS(W )) ≥ m′.

The recovery function Rec takes a sketch P and a vector w′ ∈ H as inputs,
and outputs a word w′′ ∈ H, such that for any P = SS(w) and d(w, w′) ≤ t, it
holds that w′′ = w.

When F is a finite field, then for some integer n, the set Fn equipped with the
Hamming distance dH is a Hamming space. Juels and Wattenberg [26] have pro-
posed a very natural construction in this case by means of linear error-correcting
code:

Definition 5 (Code-offset construction). Given C an [n, k, 2t + 1] binary
linear code, the secure sketch scheme is a pair of functions (SSC, RecC) where

– the function SSC takes w as input, and outputs the sketch P = c⊕w, where
c is taken at random from C.

– the function RecC takes w′ and P as inputs, decodes w′ ⊕P into a codeword
c′, and then outputs c′ ⊕ P .

Following [17], this yields a (Fn, m, m − (n − k) log2 q, t)-secure sketch, which
means that, given P , the entropy loss depends directly on the redundancy of the
code. There is thus an obvious trade-off between the correction’s capacity t of
the code and the security of the secure sketch.

The authentication protocol which arises naturally from this construction
follows.

– During the registration, we store P = SSC(w) = c ⊕ w, where c is a ran-
dom codeword in C, together with the hash value H(c) of c (where H is a
cryptographic hash function).

– To authenticate someone, we try to correct the corrupted codeword w′⊕P =
c ⊕ (w′ ⊕ w) and if we obtain a codeword c′, we then check: H(c′) = H(c).

There are a lot of propositions of applications to real biometrics data: see for
instance [7,34] for fingerprints, [27] for faces and [5,24] for irises. In all cases, the
size of the code shall not be too small if we want to prevent an attacker from
performing an exhaustive search on codewords and thus to recover biometric
data.
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Unfortunately, for biometric data, the security constraints of secure sketches
are difficult to fulfill. And even with a large code’s dimension, the security should
be increase by additional means. First, we know that biometrics are not random
data but their entropy is hard to measure, so that the consequences of entropy
loss are not well understood in practice. Moreover, biometrics are widely consid-
ered as public data, thus when P and H(c) are known, an attacker would easily
check if it is associated to one of his own-made biometric database or try other
kinds of cross-matching.

3.2 Review of the Goldwasser-Micali Scheme

The algorithms (Gen, Enc, Dec) of Goldwasser-Micali scheme [23] are defined as
follows:

1. The key generation algorithm Gen takes a security parameter 1� as input,
and generates two large prime numbers p and q, n = pq and a non-residue x
for which the Jacobi symbol is 1. The public key pk is (x, n), and the secret
key sk is (p, q).

2. The encryption algorithm Enc takes a message m ∈ {0, 1} and the public
key (x, n) as input, and outputs the ciphertext c, where c = y2xm mod n
and y is randomly chosen from Z

∗
n.

3. The decryption algorithm Dec takes a ciphertext c and the private key (p, q)
as input, and outputs the message m, where m = 0 if c is a quadratic residue,
m = 1 otherwise.

It is well-known (cf. [23]) that, if the Quadratic Residuosity (QR) problem is
intractable, then the Goldwasser-Micali scheme is semantically secure. In other
words an adversary A has only a negligible advantage in the following game.

ExpIND-CPA
E,A

(sk, pk) ← Gen(1�)
(m0, m1) ← A(pk)

c ← Enc(mβ , pk), β
R← {0, 1}

β′ ← A(m0, m1, c, pk)

At the end of this game, the attacker’s advantage AdvIND-CPA
E,A is defined to be

AdvIND-CPA
E,A =

�
�Pr[ExpIND-CPA

E,A = 1|β = 1] − Pr[ExpIND-CPA
E,A = 1|β = 0]

�
�.

Moreover the encryption protocol possesses a nice homomorphic property, for
any m, m′ ∈ {0, 1} the following equation holds.

Dec(Enc(m, pk) × Enc(m′, pk), sk) = m ⊕ m′

Note that the encryption algorithm encrypts one bit at a time, hence, in
order to encrypt a binary string we will encrypt every bit individually. To sim-
plify, we will denote the encryption of m = (m0, . . . , ml−1) by Enc(m, pk) =
(Enc(m0, pk), . . . , Enc(ml−1, pk)). The IND-CPA security under the quadratic
residuosity assumption and the homomorphic property above remain naturally.
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3.3 Encrypted Sketches

In a biometric authentication system, we generally want to store the enrolled
data in the database DB. In case of sketches, it is thus a problem as anybody can
check the membership of a biometric data by having access to DB. For privacy
concerns, we prefer to store the sketches encrypted and make the comparison in a
secure way. To solve this problem, we use a combination of the Goldwasser-Micali
encryption scheme with the Code-Offset construction of Definition 5.

The main advantage is to use the correction functionality which allows to
manage biometric data but without the need to fulfill the security constraints
usually associated to secure sketches. For instance:

– The service provider SP generates a Goldwasser-Micali (pk, sk) key pair and
publishes pk. In the following, we will denote a related encryption Enc(., pk)
as � . �

– At the enrollment, the user Ui registers to the service provider SP with bi

his reference biometric template. Then P = SSC(bi) = c ⊕ bi is computed
and � P � is stored in DB for a random codeword c and H(c) is stored by
SP with H a cryptographic hash function.

– When Ui wants to authenticate to SP , b′ is captured, and � b′ � is sent
to DB. The database DB computes � P � × � b′ �=� c ⊕ bi ⊕ b′ �= Z
and sends it to SP . Thereafter SP decrypts Z with its private key sk and
decodes the output c ⊕ bi ⊕ b′ to obtain a codeword c′. Finally, it checks if
H(c′) = H(c).

Thanks to the homomorphic property of Goldwasser-Micali encryption, the
service provider SP and the database DB never obtain information on the bio-
metric data which stay encrypted. Moreover, the database learns nothing about
c neither, as the computation is made in an encrypted way.

4 Description of the Lipmaa’s PIR Protocol

We now make a brief description of the PIR protocol which will be used in our
protocol.

4.1 Private Information Retrieval (PIR)

As introduced by Chor et al. [11,12], a PIR protocol allows a user to recover
data from a database without leaking which data is currently request . Suppose
a database DB is constituted with M bits X = x1, ..., xM . To be secure, the
protocol should satisfy the following properties [22]:

– Soundness: When the user and the database follow the protocol, the result
of the request is exactly the requested bit.

– Request Privacy: For all X ∈ {0, 1}M , for 1 ≤ i, j ≤ M , for any algorithm
used by the database, it can not distinguish with a non-negligible probability
the difference between the requests of index i and j.



An Authentication Protocol with Encrypted Biometric Data 117

Moreover, we have a Symmetric PIR (SPIR) when the user can not learn more
information than the requested data itself. Among the known constructions of
computational secure PIR, block-based PIR – i.e. working on block of bits –
allow to reduce efficiently the cost. The best performances are from Gentry and
Ramzan [21] and Lipmaa [29] with a communication complexity polynomial in
the logarithm of M . Surveys of the subject are available in [20,30].

4.2 Review of the Paillier Cryptosystem

The Paillier cryptosystem [31] is defined as follows.

– The key generation algorithm Gen takes a security parameter 1� as input and
generates an RSA integer n = pq. Let an integer g which order is a multiple
of n modulo n2. Then the public key is pk = (n, g) and the private key is
sk = λ(n) where λ is the Carmichael function.

– The encryption algorithm Enc from a message m ∈ Zn and the public key
pk outputs c = gmrn mod n2, with r randomly chosen in Z

∗
n.

– The decryption algorithm Dec computes m = L(cλ(n) mod n2)
L(gλ(n) mod n2)

mod n with
L defined on {u < n2 : u = 1 mod n} by L(u) = u−1

n .

The Paillier cryptosystem is known to be IND-CPA (following a similar exper-
iment as in Sect. 3.2) if CR[n] (degree n decisional Composite Residue problem)
is hard. This cryptosystem is homomorphic by construction:
Dec(Enc(m, pk) × Enc(m′, pk) mod n2, sk) = m + m′ mod n, and particularly

Dec(Enc(m, pk)k mod n2, sk) = km mod n.

In [14,15], Damg̊ard and Jurik have shown, first that we can choose g = 1+n
while keeping the same security. It simplifies the encryption and decryption as
gm = 1+mn mod n2 and csk = 1+mn when sk is defined as sk = 0 mod λ(n)
and sk = 1 mod n. Moreover, they generalized the construction for a variable-
length homomorphic cryptosystem by working modulo ns with s ≥ 1.

– The encryption of m ∈ Z
∗
ns becomes �m�s = (1 + n)mrns

mod ns+1 with
r ∈ Z

∗
n (to simplify, the notation does not mention the public key, although

it depends of its value).
– Decryption is deduced from successive applications of Paillier’s decryption.

This generalization is used in the Lipmaa’s PIR protocol [29], described below,
in order to reduce the communication cost.

4.3 Lipmaa’s Protocol

Here the database, denoted by S = DB is seen as a multidimensional array and
the entries are associated to a vector of index. Let L =

∏λ
j=1 lj with integers lj

the size of S. For i = (i1, . . . , iλ) with ij ∈ Zlj , for j = 1, . . . , λ, then

S[i] = S[i1
λ∏

j=2

lj + i2

λ∏
j=3

lj + . . . + iλ−1lλ + iλ + 1].
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To answer to a request for the data of index (q1, . . . , qλ), the idea of the
protocol is to decrease the dimension of S progressively by constructing a smaller
database recursively till the last dimension. Let S0 = S. The first iteration is
to construct S1 by defining S1(i2, . . . , iλ) as the encryption of S0(q1, i2, . . . , iλ).
This is repeated λ times and therefore Sj(ij+1, . . . , iλ) will be the encryption of
S0(q1, . . . , qj , ij+1, . . . , iλ) for j = 1, . . . , λ. At the end, the last element Sλ which
is a λ times encryption of S0(q1, . . . , qλ) is the answer to the user’s request. To
be a PIR, everything is made by concealing the index in several Damg̊ard-Jurik
encryptions.

We define the binary array δ with δj,t = 1 if qj = t, else 0 for j = 1, . . . , λ
and t ∈ Zlj . We suppose the user possesses a set of couple of keys for the
Damg̊ard-Jurik cryptosystem for various lengths and that the database knows
the corresponding public keys. Then the user sends as its request, the encryptions
�δj,t�s+j−1, for all j, t. Then the database can exploit homomorphic properties
like

(�m2�s+ξ)
�m1�s = �m2 �m1�s�s+ξ

and proceeds as follows.

– For j = 1, . . . , λ , it computes Sj(ij+1, . . . , iλ) =
∏

t∈Zlj
�δj,t�

Sj−1(t,ij+1,...,iλ)
s+j−1

for ij+1 ∈ Zlj+1 , . . ., iλ ∈ Zlλ

– and outputs Sλ.

With successive decryptions, the user will recover the requested element. In-
deed, starting from j = λ to j = 1, as the sub-database Sj entries correspond to
encryptions of entries S0(q1, . . . , qj , ∗, . . . , ∗), they are equal to

�

�
∑

t∈Zlj

δj,tSj−1(t, ij+1, . . . , iλ)

�

�

s+j−1

= �Sj−1(qj , ij+1, . . . , iλ)�s+j−1 .

So starting from j = λ to j = 1, decryption of Sλ leads to Sλ−1(qλ), which
decryption leads to Sλ−2(qλ−1, qλ) and so on. . . It gives the results at the end.

The Request Privacy of this protocol is achieved thanks to the semantic se-
curity of the Damg̊ard-Jurik cryptosystem used to encode the request’s index,
i.e. the δj,t.

5 A Private Biometric Authentication Protocol with
Secure Sketches

We describe here our biometric authentication protocol based on the use of the
Lipmaa’s protocol and the idea described in Sect. 3.3. It allows to achieve identity
privacy with a small communication cost compared to previous construction
and with biometric data protected in confidentiality during the entire process.
Moreover, the use of secure sketches permits to recover a key binded to the
enrolled biometric data which can then be reused in cryptographic applications
provided by the service provider SP .
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We combine Goldwasser-Micali with Damg̊ard-Jurik encryption in the Lip-
maa’s protocol in a way that it is still possible to use the homomorphic trick to
compute the encryption of the output of the recovery RecC function of the Code-
Offset construction. To simplify, we will describe our protocol with a database
of dimension λ = 1, but it is easily applicable to any λ.

So here, we make use of a double encryption via Goldwasser-Micali and Pail-
lier. We take benefit of their homomorphic properties in the principle below:

�� s ��
�w� = �� s � × � w �� = �� s ⊕ w �� (1)

5.1 Parameters

Let M be the number of enrolled user in the database DB. The service provider
SP is associated to two couples of keys (pkGM , skGM ) and (pkP , skP ) for the
Goldwasser-Micali and the Paillier cryptosystems respectively. The correspond-
ing encryption are denoted � . � and �.� respectively. The public keys are
published and the secret keys are stored inside the Hardware Security Module
HSM .

The database DB contains the M encrypted sketches � SSC(bi) �, for i =
1, . . . , M with bi the reference biometric template of the user Ui. The database
DB also possesses the hash values H(ci) associated to SSC(bi) = bi ⊕ ci for all i.

Let ai, i = 1, . . . , M be the vectors of DB, then ai,u = � πu(SSC(bi)) � for
u = 0, . . . , l − 1 and ai,l = H(ci), where πu(x) denotes the u-th bit of a binary
vector x.

5.2 Verification Phase

When the user Ui wants to authenticate itself to the service provider SP , the
steps are:

1. its new biometric template b′ is encrypted by the sensor via Goldwasser-
Micali: � b′ �,

2. the sensor client C sends to DB a request constituted with the Paillier’s
ciphertexts �δu

k �, k = 1, . . . , M , u = 0, . . . , l where δu
k = � πu(b′) � if k = i

and 0 else, for u ≤ l − 1 and δl
k = 1 if k = i and 0 else.

3. The database DB computes �ai,u× � πu(b′) �� =
∏M

k=1 �δu
k �

ak,u , for u =
0, . . . , l − 1, i.e. via Eq. (1)

�� πu(SSC(bi) ⊕ b′) ��

and �ai,l� =
∏M

k=1

�
δl
k

	ak,l .
4. The database DB sends it to the service provider SP for u = 0, . . . , l.
5. The HSM hence decrypts first via the Paillier decryption algorithm, then

via the Goldwasser-Micali algorithm to recover SSC(bi) ⊕ b′ and H(ci),
6. it decodes it to obtain a codeword c′ and checks if H(c′) = H(ci) to accept

or reject the authentication,
7. the result is forwarded to the service provider SP .
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A natural extension is to use H(ci) as a key for cryptographic applications
provided by SP .

The construction can be generalized to the Lipmaa’s protocol [29] with λ > 1
and several Damg̊ard-Jurik systems. The idea is simply to use l+1-length vectors
δj,t with coordinates δ∗j,t = 1 if qj = t, else 0 for j = 2, . . . , λ and t ∈ Zlj but with
the same modification as for item 2 above for j = 1, i.e. δ1,q1 is the l + 1-length
vector associated to the Goldwasser-Micali encryption of the fresh biometric
data. In other words, the protocol above corresponds to the first iteration of the
Lipmaa’s protocol and the other iterations will then be as usual.

We see here that the request of the PIR protocol – which corresponds clas-
sically to encryption of 1 and 0 – is slightly modified to force the database to
compute the multiplication of its own elements with the encryption of the fresh
template. This doing, the operation is quite transparent. Note that this combi-
nation of Goldwasser-Micali scheme with a PIR protocol is possible only if the
group law of the underlying homomorphic encryption scheme, here Paillier or
Damg̊ard-Jurik cryptosystem, is compatible. For instance, it is also applicable
to the protocol of Chang [10].

One advantage of Lipmaa’s protocol is to greatly decrease the communication
complexity as opposed to the basic version with Paillier cryptosystem only –
described above – which is linear on the size M of the database DB. Lipmaa’s
protocol allows to achieve a communication cost in O(log2 M). The parameters
can be optimized further in some cases, see [29].

Remark 1. Here, as sketches are encrypted bit by bit, the storage cost of an
encrypted sketch in the database DB is l× log2 n bits. For instance with l = 512
and n a 2048 bits RSA integer, it leads to about 128 kbytes per encrypted
template (encrypted sketch and hashed codeword). Concerning the computation
cost to answer a PIR request, DB performs about (l + 1) × M exponentiations
modulo ns (with some s; s = 2 with Paillier). It is thus a constraint on the size
of the database.

6 Security Analysis

We show here that the protocol satisfies the security requirements of Sect. 2.2.

6.1 Soundness

When the system’s components follow the protocol, the soundness is straight-
forward.

Lemma 1. The protocol is sound under Definition 1 if the involved Secure
Sketch (SSC, RecC) is sound and if the PIR protocol is sound.

In other words, we rely on the efficiency of secure sketches to fulfill this require-
ment while here we focus on increasing their security when related to a biometric
system. For instance as in our protocol, biometric data and sketches are always
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encrypted via at least one semantically secure encryption scheme, it implies that
the scheme provides a strong protection on templates as they can not be recov-
ered by any adversary. It is also an interesting property, for better acceptability
reason, although biometric data are assumed to be public.

6.2 Identity Privacy

The scheme is proved below to ensure identity privacy against non-colluding
malicious service provider or malicious database, and any external adversary.

For this, we assume that the errors bi ⊕ b′i occurring between two matching
biometric templates bi, b

′
i of any user Ui (registered or not) are indistinguishable

among all the possible errors bj⊕b′j. This is a quite reasonable assumption as errors
can greatly vary depending on internal and external factors of measurement.

Lemma 2. Our scheme achieves identity privacy against a malicious service
provider or a malicious database under the semantic security of the Goldwasser-
Micali scheme, i.e. under the QR assumption.

Proof. It is clear that the database DB has no advantage in distinguishing the
value of e in the experiment of Definition 2 as it has no access to any infor-
mation about biometric templates thanks to Goldwasser-Micali encryption of
the sketches. Any algorithm to obtain a valid guess of e with a non-negligible
advantage would lead to an algorithm to break the semantic security of the
Goldwasser-Micali encryption scheme.

Similarly for the service provider SP , the only possible information would be
obtained by using the secret keys. Under our assumption of non-collusion with
the database DB and thanks to the honesty of the sensor client C, we know that
SP can only obtain data of the form (cj ⊕ bj ⊕ b′, H(cj)) for some j and some
b′ corresponding to the authentication request for user Uj with a fresh template
b′. Hence, the only information on biometrics is at most – i.e. when decoding is
successful – the difference bj ⊕ b′. From the assumption of indistinguishability of
errors, the service provider SP does not learn information on bj nor b′. It means
that its best algorithm to guess e is to take it randomly. 
�

6.3 Transaction Anonymity

The anonymity of the verification’s requests against the database DB is directly
deduced from the Request Privacy property of the PIR protocol of Lipmaa, which
is a consequence of the IND-CPA security of Damg̊ard-Jurik cryptosystem.

Lemma 3. Our scheme achieves transaction anonymity, following Definition 3,
against a malicious database under the CR assumption.

Of course, the scheme does not allow transaction anonymity against the service
provider, because it can learn the value H(ci) for an authentication request of
the user Ui, which can thus be used to track this user in future authentication
requests. But it has a gain only on the final phase as the request is directly
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computed from the sensor’s side. This means that if we renew regularly the
enrolled data – the encrypted sketch and the corresponding hash value – the
service provider will not be able to link the future authentication results with
the previous ones. It leads to an interesting additional property as it can be seen
as a way to forbid long-term tracking.

7 Conclusion

In this paper, we improve the biometric authentication scheme of Bringer et
al. [6] but our goal is the same. We want to achieve biometric authentication while
preserving the privacy of users. In particular, we modify the protocol of [6] to
only have to deal with encrypted biometric data. To do so, we replace traditional
matching algorithm by an error correction procedure thanks to the introduction
of secure sketches. Moreover, we explain how our proposition can be integrated
into one of the best Private Information Retrieval scheme due to Lipmaa.

There are still many performances issues to handle. In our proposal, encryp-
tion is performed bit by bit and one can look forward more efficient ways to
encrypt biometric data. As another possible enhancement, following [33] com-
putational aspects can take more importance than communication issues and
introduction of different PIR schemes, for instance with multi-server, leading to
smaller computational overheads should be considered.
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Abstract. In this paper, we propose an authenticated encryption mode
for blockciphers. Our authenticated encryption mode, CIP, has prov-
able security bounds which are better than the usual birthday bound
security. Besides, the proven security bound for authenticity of CIP is
better than any of the previously known schemes. The design is based on
the encrypt-then-PRF approach, where the encryption part uses a key
stream generation of CENC, and the PRF part combines a hash function
based on the inner product and a blockcipher.

Keywords: Blockcipher, modes of operation, authenticated encryption,
security proofs, birthday bound.

1 Introduction

Provable security is the standard security goal for blockcipher modes, i.e., en-
cryption modes, message authentication codes, and authenticated encryption
modes. For encryption modes, CTR mode and CBC mode are shown to have
provable security [1]. The privacy notion we consider is called indistinguishability
from random strings [24]. In this notion, the adversary is in the adaptive chosen
plaintext attack scenario, and the goal is to distinguish the ciphertext from the
random string of the same length. The nonce-based treatment of CTR mode was
presented by Rogaway [22], and it was proved that, for any adversary against
CTR mode, the success probability is at most O(σ2/2n) under the assumption
that the blockcipher is a secure pseudorandom permutation (PRP), where n is
the block length and σ denotes the total ciphertext length in blocks that the
adversary obtains. The security bound is known as the birthday bound.

Authenticity is achieved by message authentication codes, or MACs. Practical
examples of MACs that have provable security include PMAC [7], EMAC [21],
and OMAC [10]. We consider the pseudorandom function, or PRF [3], for au-
thenticity which provably implies the adversary’s inability to make a forgery. In
this notion, the adversary is in the adaptive chosen plaintext attack scenario,
and the goal is to distinguish the output of the MAC from that of the random
function. It was proved that, for any adversary against PMAC, EMAC, and
OMAC, the success probability is at most O(σ2/2n).

S. Vaudenay (Ed.): AFRICACRYPT 2008, LNCS 5023, pp. 125–142, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.nuee.nagoya-u.ac.jp/labs/tiwata/


126 T. Iwata

An authenticated encryption mode is a scheme for both privacy and authen-
ticity. It takes a plaintext M and provides both privacy and authenticity for M .
There are a number of proposals: the first efficient construction was given by
Jutla and the mode is called IAPM [13], OCB mode was proposed by Rogaway
et. al. [24], CCM mode [27,12] is the standard of IEEE, EAX mode [6] is based
on the generic composition, CWC mode [15] combines CTR mode and Wegman-
Carter MAC, and GCM mode [19,20] is the standard of NIST. Other examples
include CCFB mode [17], and XCBC [8]. All these modes have provable security
with the standard birthday bound.

There are several proposals on MACs that have beyond the birthday bound
security. For example, we have RMAC [11] and XOR MAC [2], and there are
other proposals which are not based on blockciphers. On the other hand, few
proposals are known for encryption modes and authenticated encryption modes.
CENC [9] is an example of an encryption mode, and its generalization called
NEMO was proposed in [16]. For authenticated encryption modes, CHM [9] is
the only example we are aware of.

We view that the beyond the birthday bound security as the standard goal for
future modes. AES is designed to be secure even if the adversary obtains nearly
2128 input-output pairs, and many other blockciphers have similar security goal.
On the other hand, CTR mode, OMAC, or GCM have to re-key before 264 blocks
of plaintexts are processed, since otherwise the security is lost. This situation
is unfortunate as the security of the blockcipher is significantly lost once it is
plugged into the modes, and the current state-of-the-art, CTR mode, OMAC,
or GCM, do not fully inherit the security of the blockcipher.

In this paper, we propose an authenticated encryption mode called CIP,
CENC with Inner Product hash, to address the security issues in GCM, and
CHM. GCM, designed by McGrew and Viega, was selected as the standard of
NIST. It is based on CTR mode and Wegman-Carter MAC, and it is fully par-
allelizable. Likewise, CHM uses CENC for encryption part and Wegman-Carter
MAC for PRF part,

While CHM has beyond the birthday bound security, its security bound for
authenticity includes the term Mmax/2τ , where Mmax is the maximum block
length of messages, and τ is the tag length. It is a common practice to use small
tag length to save communication cost or storage. For example, one may use
τ = 32 or 64 with 128-bit blockciphers. However the term, Mmax/2τ , is linear
in Mmax, the bound soon becomes non-negligible if τ is small. For example,
with τ = 32, if we encrypt only one message of 222 blocks (64MBytes), the
security bound is 1/1024, which is not acceptable in general. Therefore, beyond
the birthday bound security has little impact when τ is small. GCM also has the
same issue, and its security bounds for both privacy and authenticity have the
term of the form Mmax/2τ .

Our design goal of CIP is to have beyond the birthday bound security, but we
insist that it can be used even with small tag length. Besides, we want security
proofs with the standard PRP assumption, and we maintain the full paralleliz-
ability. CIP follows the encrypt-then-PRF approach [4], which is shown to be a
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sound way to construct an authenticated encryption mode. We use CENC [9] for
encryption part, since it achieves beyond the birthday bound security with very
small cost compared to CTR mode. PRF part is a hash function that combines
the inner product hash and the blockcipher, which may be seen as the general-
ization of PMAC [7] to reduce the number of blockcipher calls and still have full
parallelizability.

CIP takes a parameter � called frame width, which is supposed to be a
small integer (e.g., 2 ≤ � ≤ 8). Our default recommendation is � = 4, and
with other default parameters, to encrypt a message of l blocks, CIP requires
257l/256 blockcipher calls for encryption, and l multiplications and l/� = l/4
blockcipher calls for PRF, while � = 4 blocks of key stream has to be pre-
computed and stored. CIP requires about l/� more blockcipher calls compared
to GCM or CHM. For security, if we use the AES, CIP can encrypt at most 264

plaintexts, and the maximum length of the plaintext is 262 blocks (236GBytes),
and the security bounds are, roughly, σ̃3/2245+ σ̃/2119 for privacy, and σ̃3/2245+
σ̃/2118 +2/2τ for authenticity. This implies σ̃ should be sufficiently smaller than
281 blocks (255GBytes). In particular, the only term that depends on tag length
τ is 2/2τ , and thus it does not depend on the message length. Therefore, CIP
can be used even for short tag length. CIP has security bounds that are better
than any of the known schemes we are aware of.

2 Preliminaries

Notation. If x is a string then |x| denotes its length in bits, and |x|n is its length
in n-bit blocks, i.e., |x|n = �|x|/n�. If x and y are two equal-length strings, then
x ⊕ y denotes the xor of x and y. If x and y are strings, then x‖y or xy denote
their concatenation. Let x ← y denote the assignment of y to x. If X is a set,
let x

R← X denote the process of uniformly selecting at random an element from
X and assigning it to x. For a positive integer n, {0, 1}n is the set of all strings
of n bits. For positive integers n and �, ({0, 1}n)� is the set of all strings of n�
bits, and {0, 1}∗ is the set of all strings (including the empty string). For positive
integers n and m such that n ≤ 2m − 1, 〈n〉m is the m-bit binary representation
of n. For a bit string x and a positive integer n such that |x| ≥ n, first(n, x)
and last(n, x) denote the first n bits of x and the last n bits of x, respectively.
For a positive integer n, 0n and 1n denote the n-times repetition of 0 and 1,
respectively.

Let Perm(n) be the set of all permutations on {0, 1}n. We say P is a ran-
dom permutation if P

R← Perm(n). The blockcipher is a function E : {0, 1}k ×
{0, 1}n → {0, 1}n, where, for any K ∈ {0, 1}k, E(K, ·) = EK(·) is a permutation
on {0, 1}n. The positive integer n is the block length, and k is the key length.
Similarly, Func(m, n) denotes the set of all functions from {0, 1}m to {0, 1}n,
and R is a random function if R

R← Func(m, n).

The frame, nonce, and counter. CIP takes a positive integer � as a parameter,
and it is called a frame width. For fixed positive integer � (say, � = 4), a
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�-block string is called a frame. Throughout this paper, we assume � ≥ 1. A
nonce N is a bit string, where for each pair of key and plaintext, it is used only
once. The length of the nonce is denoted by �nonce, and it is at most the block
length. We also use an n-bit counter, ctr. This value is initialized based on the
value of the nonce, then it is incremented after each blockcipher invocation. The
function for increment is denoted by inc(·). It takes an n-bit string x (a counter)
and returns the incremented x. We assume inc(x) = x + 1 mod 2n, but other
implementations also work, e.g., with LFSRs if x = 0n.

3 Specification of CIP

In this section, we present our authenticated encryption scheme, CIP. It takes
five parameters: a blockcipher, a nonce length, a tag length, and two frame
widths.

Fix the blockcipher E : {0, 1}k×{0, 1}n → {0, 1}n, the nonce length �nonce, the
tag length τ , and the frame widths � and w. We require that log2(�k/n�+�) <
�nonce < n, and 1 ≤ τ ≤ n.

CIP consists of two algorithms, the encryption algorithm (CIP.Enc) and the
decryption algorithm (CIP.Dec). These algorithms are defined in Fig. 1. The
encryption algorithm, CIP.Enc, takes the key K ∈ {0, 1}k, the nonce N ∈
{0, 1}�nonce, and the plaintext M to return the ciphertext C and the tag Tag ∈
{0, 1}τ . We have |M | = |C|, and the length of M is at most 2n−�nonce−2 blocks.
We write (C, Tag) ← CIP.EncK(N, M). The decryption algorithm, CIP.Dec,
takes K, N , C and Tag to return M or a special symbol ⊥. We write M ←
CIP.DecK(N, C, Tag) or ⊥ ← CIP.DecK(N, C, Tag). Both algorithms internally
use the key setup algorithm (CIP.Key), a hash function (CIP.Hash), and the
keystream generation algorithm (CIP.KSGen).

We use the standard key derivation for key setup. The input of CIP.Key is the
blockcipher key K ∈ {0, 1}k, and the output is (KH , TH) ∈ {0, 1}k × ({0, 1}n)�,
where TH = (T0, . . . , T�−1), and

– KH is the first k bits of

EK(〈0〉�nonce‖1n−�nonce)‖ · · · ‖EK(〈�k/n� − 1〉�nonce‖1n−�nonce),

and
– Ti ← EK(〈�k/n� + i〉�nonce‖1n−�nonce) for 0 ≤ i ≤ � − 1.

These keys are used for CIP.Hash, which is defined in Fig. 2 (See also Fig. 8 for
an illustration). It takes the key (KH , TH) ∈ {0, 1}k × ({0, 1}n)�, and the input
x ∈ {0, 1}∗, and the output is a hash value Hash ∈ {0, 1}n. The inner product
is done in the finite field GF(2n) using a canonical polynomial to represent
field elements. The suggested canonical polynomial is the lexicographically first
polynomial among the irreducible polynomials of degree n that have a minimum
number of nonzero coefficients. For n = 128 the indicated polynomial is x128 +
x7 + x2 + x + 1. CIP.KSGen, defined in Fig. 3, is equivalent to CENC in [9], and
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Algorithm CIP.EncK(N, M)
100 (KH , TH) ← CIP.Key(K)
101 l ← �|M |/n�
102 ctr ← (N‖0n−�nonce )
103 S ← CIP.KSGenK(ctr, l + 1)
104 SH ← first(n, S)
105 Smask ← last(n × l, S)
106 C ← M ⊕ first(|M |, Smask)
107 Hash ← CIP.HashKH ,TH (C)
108 Tag ← first(τ, Hash ⊕ SH)
109 return (C, Tag)

Algorithm CIP.DecK(N, C, Tag)
200 (KH , TH) ← CIP.Key(K)
201 l ← �|C|/n�
202 ctr ← (N‖0n−�nonce )
203 S ← CIP.KSGenK(ctr, l + 1)
204 SH ← first(n, S)
205 Hash′ ← CIP.HashKH ,TH (C)
206 Tag′ ← first(τ, Hash′ ⊕ SH)
207 if Tag′ �= Tag then return ⊥
208 Smask ← last(n × l, S)
209 M ← C ⊕ first(|C|, Smask)
210 return M

Fig. 1. Definition of CIP.Enc (left), and CIP.Dec (right). CIP.KSGen is defined in
Fig. 3, and CIP.Hash is defined in Fig. 2.

Algorithm CIP.HashKH ,TH (x)

100 x ← x‖10n−1−(|x| mod n)

101 l ← |x|/n; (x0, . . . , xl−1) ← x; � ← �l/��
102 Hash ← 0n

103 for i ← 0 to � − 2 do
104 Ai ← (xi�, . . . , x(i+1)�−1) · (T0, . . . , T�−1)
105 Hash ← Hash ⊕ EKH (Ai ⊕ 〈i〉n)
106 A�−1 ← (x(�−1)�, . . . , xl−1) · (T0, . . . , Tl−(�−1)�−1)
107 Hash ← Hash ⊕ EKH (A�−1 ⊕ 〈� − 1〉n)
108 return Hash

Fig. 2. Definition of CIP.Hash. The inner product in lines 104 and 106 is in GF(2n).

is parameterized by E and w. It takes the blockcipher key K, counter value ctr,
and an integer l as inputs, and the output is a bit string S of l blocks. See Fig. 9
for an illustration.

Discussion and default parameters. CIP takes five parameters, the blockcipher
E : {0, 1}k×{0, 1}n → {0, 1}n, the nonce length �nonce, the tag length τ , and the
frame widths � and w. With these parameters, CIP can encrypt at most 2�nonce

plaintexts, and the maximum length of the plaintext is 2n−�nonce−2 blocks.
Our default parameters are, E is any blockcipher such that n ≥ 128, �nonce =

n/2, and τ ≥ 32. The values of � and w affect the efficiency and security. Specif-
ically, to hash � blocks of input, CIP.Hash requires � blocks of keys for inner
product, � multiplications and one blockcipher call. Thus, large � implies that
per message block computation is reduced, while it increases the pre-computation
time and register for keys. Therefore there is a trade-off between security, per
block efficiency and the pre-computation time/resister size. � is supposed to be
a small integer (e.g., 2 ≤ � ≤ 8), and our default recommendation is � = 4. w
follows the recommendation of CENC, and its default value is 256.
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Algorithm CIP.KSGenK(ctr, l)
100 for j ← 0 to �l/w� − 1 do
101 L ← EK(ctr)
102 ctr ← inc(ctr)
103 for i ← 0 to w − 1 do
104 Swj+i ← EK(ctr) ⊕ L
105 ctr ← inc(ctr)
106 if wj + i = l − 1 then
107 S ← (S0‖S1‖ · · · ‖Sl−1)
108 return S

Fig. 3. Definition of CIP.KSGen, which is equivalent to CENC [9]

With these parameters, if we use the AES, CIP can encrypt at most 264 plain-
texts, and the maximum length of the plaintext is 262 blocks (236GBytes), and
the security bounds are σ̃3/2245+ σ̃/2119 for privacy, and σ̃3/2245+ σ̃/2118+2/2τ

for authenticity, where σ̃ is (roughly) the total number of blocks processed by one
key. This implies σ̃ should be sufficiently smaller than 281 blocks (255GBytes).

Information theoretic version. We will derive our security results in the infor-
mation theoretic setting and in the computational setting. In the former case,
a random permutation is used instead of a blockcipher, where we consider that
CIP.Key takes a random permutation P as its input, and uses P to derive KH

and TH by “encrypting” constants. Therefore, P is used in CIP.KSGen (lines
101 and 104 in Fig. 3), and (KH , TH) derived from P is used in CIP.Hash. We
still use a real blockcipher in lines 105 and 107 in Fig. 2 even in the information
theoretic version.

4 Security of CIP

CIP is an authenticated encryption (AE) scheme. We first present its security
definitions, and then present our security results.

Security of blockciphers. We follow the PRP notion for blockciphers that was
introduced in [18]. An adversary is a probabilistic algorithm with access to one
or more oracles. Let A be an adversary with access to an oracle, either the
encryption oracle EK(·) or a random permutation oracle P (·), and returns a bit.
We say A is a PRP-adversary for E, and define

Advprp
E (A) def=

∣∣∣Pr(K R← {0, 1}k : AEK(·) = 1) − Pr(P R← Perm(n) : AP (·) = 1)
∣∣∣ .

For an adversary A, A’s running time is denoted by time(A). The running time
is its actual running time (relative to some fixed RAM model of computation)
and its description size (relative to some standard encoding of algorithms). The
details of the big-O notation for the running time reference depend on the RAM
model and the choice of encoding.
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Privacy of CIP. We follow the security notion from [6]. Let A be an adver-
sary with access to an oracle, either the encryption oracle CIP.EncK(·, ·) or
R(·, ·), and returns a bit. The R(·, ·) oracle, on input (N, M), returns a ran-
dom string of length |CIP.EncK(N, M)|. We say that A is a PRIV-adversary
for CIP. We assume that any PRIV-adversary is nonce-respecting. That is, if
(N0, M0), . . . , (Nq−1, Mq−1) are A’s oracle queries, then N0, . . . , Nq−1 are al-
ways distinct, regardless of oracle responses and regardless of A’s internal coins.
The advantage of PRIV-adversary A for CIP = (CIP.Enc, CIP.Dec) is

Advpriv
CIP(A) def=

∣∣∣Pr(K R← {0, 1}k : ACIP.EncK(·,·) = 1) − Pr(AR(·,·) = 1)
∣∣∣ .

Privacy results on CIP. Let A be a nonce-respecting PRIV-adversary for CIP,
and assume that A makes at most q oracle queries, and the total plaintext
length of these queries is at most σ blocks, i.e., if A makes exactly q queries
(N0, M0), . . . , (Nq−1, Mq−1), then σ = �|M0|/n� + · · · + �|Mq−1|/n�, the total
number of blocks of plaintexts. We have the following information theoretic
result.

Theorem 1. Let Perm(n), �nonce, τ , �, and w be the parameters for CIP. Let
A be a nonce-respecting PRIV-adversary making at most q oracle queries, and
the total plaintext length of these queries is at most σ blocks. Then

Advpriv
CIP(A) ≤ wr2σ̃2

22n−4
+

wσ̃3

22n−3
+

r2

2n+1
+

wσ̃

2n
, (1)

where r = �k/n�+ � and σ̃ = σ + q(w + 1).

The proof of Theorem 1 is given in the next section. From Theorem 1, we have
the following complexity theoretic result.

Corollary 1. Let E, �nonce, τ , �, and w be the parameters for CIP. Let A be
a nonce-respecting PRIV-adversary making at most q oracle queries, and the
total plaintext length of these queries is at most σ blocks. Then there is a PRP-
adversary B for E making at most 2σ̃ oracle queries, time(B) = time(A) +
O(nσ̃), and Advprp

E (B) ≥ Advpriv
CIP(A)−wr2σ̃2/22n−4−wσ̃3/22n−3− r2/2n+1−

wσ̃/2n, where r = �k/n� + � and σ̃ = σ + q(w + 1).

The proof is standard (e.g., see [9]), and omitted.

Authenticity of CIP. A notion of authenticity of ciphertext for AE schemes was
formalized in [24,23] following [14,5,4]. Let A be an adversary with access to an
encryption oracle CIP.EncK(·, ·) and returns a tuple, (N∗, C∗, Tag∗), called a
forgery attempt. We say that A is an AUTH-adversary for CIP. We assume that
any AUTH-adversary is nonce-respecting, where the condition applies only to the
adversary’s encryption oracle. Thus a nonce used in an encryption-oracle query
may be used in a forgery attempt. We say A forges if A returns (N∗, C∗, Tag∗)
such that CIP.DecK(N∗, C∗, Tag∗) → ⊥ but A did not make a query (N∗, M∗)
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to CIP.EncK(·, ·) that resulted in a response (C∗, Tag∗). That is, adversary A
may never return a forgery attempt (N∗, C∗, Tag∗) such that the encryption
oracle previously returned (C∗, Tag∗) in response to a query (N∗, M∗). Then
the advantage of AUTH-adversary A for CIP = (CIP.Enc, CIP.Dec) is

Advauth
CIP (A) def= Pr(K R← {0, 1}k : ACIP.EncK(·,·) forges).

Authenticity results on CIP. Let A be an AUTH-adversary for CIP, and assume
that A makes at most q oracle queries (including the final forgery attempt),
and the total plaintext length of these queries is at most σ blocks. That is, if
A makes queries (N0, M0), . . . , (Nq−2, Mq−2), and returns the forgery attempt
(N∗, C∗, Tag∗), then σ = �|M0|/n�+ · · ·+ �|Mq−2|/n�+ �|C∗|/n�. We have the
following information theoretic result.

Theorem 2. Let Perm(n), �nonce, τ , �, and w be the parameters for CIP. Let
A be a nonce-respecting AUTH-adversary making at most q oracle queries, and
the total plaintext length of these queries is at most σ blocks. Then, for some D,

Advauth
CIP (A) ≤ wr2σ̃2

22n−4
+

wσ̃3

22n−3
+

r2

2n+1
+

wσ̃

2n
+

σ

2n−1
+

2
2τ

+ Advprp
E (D) (2)

where r = �k/n� + �, σ̃ = σ + q(w + 1), D makes at most 2σ queries, and
time(D) = O(nσ).

Note that the left hand side of (2) has Advprp
E (D), since we use a blockcipher

in CIP.Hash, while there is no restriction on the running time of A.
The proof of Theorem 2 is given in Section 6. From Theorem 2, we have the

following complexity theoretic result.

Corollary 2. Let E, �nonce, τ , �, and w be the parameters for CIP. Let A be
a nonce-respecting AUTH-adversary making at most q oracle queries, and the
total plaintext length of these queries is at most σ blocks. Then there is a PRP-
adversary B for E making at most 2σ̃ oracle queries, time(B) = time(A) +
O(nσ̃), and Advprp

E (B) ≥ Advauth
CIP (A)−wr2σ̃2/22n−4−wσ̃3/22n−3−r2/2n+1−

wσ̃/2n−σ/2n−1−2/2τ−Advprp
E (nσ, 2σ), where r = �k/n�+�, σ̃ = σ+q(w+1),

and Advprp
E (nσ, 2σ) is the maximum of Advprp

E (D) over all D such that it makes
at most 2σ queries, and time(D) = O(nσ).

The proof is standard (e.g., see [9]), and omitted.

5 Security Proof for Privacy of CIP

We first recall the following tool from [9]. Consider the function family F+,
which corresponds to one frame of CIP.KSGen, and it is defined as follows: Let
P

R← Perm(n) be a random permutation, and fix the frame width w. Then
F+ : Perm(n) × {0, 1}n → ({0, 1}n)w is F+

P (x) = (y[0], . . . , y[w − 1]), where
y[i] = L ⊕ P (inci+1(x)) for i = 0, . . . , w − 1 and L = P (x).
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Now let A be an adversary. This A is the PRF-adversary for F+, but we give
A additional information, i.e., we allow A to access the blockcipher itself. That
is, A is given either a pair of oracles (P (·), F+

P (·)), or a pair of random function
oracles (R0(·), R1(·)), where R0 ∈ Func(n, n) and R1 ∈ Func(n, nw), with the
following rules.

– If Wi ∈ {0, 1}n is the i-th query for the first oracle (either P (·) or R0(·)),
then (�nonce + 1)-th bit of Wi must be 1.

– If xj ∈ {0, 1}n is the j-th query for the second oracle (either F+
P (·) or R1(·)),

then (�nonce + 1)-th bit of xj must be 0. That is, input/output samples from
the first oracle are not used in F+

P (·) oracle.
– A does not repeat the same query to its first oracle.
– Let xj ∈ {0, 1}n denote A’s j-th query to its second oracle, and let Xj =

{xj , inc(xj), inc2(xj), . . . , incw(xj)}, i.e., Xj is the set of input to P in the
j-th query. Now if A makes at most q calls to the second oracle, Xj ∩Xj′ = ∅
must hold for any 0 ≤ j < j′ ≤ q − 1, regardless of oracle responses and
regardless of A’s internal coins.

Define Advprf
Perm(n),F+(A) as

∣∣∣Pr(P R← Perm(n) : AP (·),F+
P (·) = 1)

− Pr(R0
R← Func(n, n), R1

R← Func(n, nw) : AR0(·),R1(·) = 1)
∣∣∣

and we say A is a PRF-adversary for (Perm(n), F+).
We have the following information theoretic result, whose proof is almost the

same as that of [9, Theorem 5].

Proposition 1. Let Perm(n) and w be the parameters for F+. Let A be the
PRF-adversary for (Perm(n), F+), with the above restrictions, making at most
r oracle queries to its first oracle and at most q oracle queries to its second
oracle. Then

Advprf
Perm(n),F+(A) ≤ r2q2(w + 1)3

22n−1
+

q3(w + 1)4

22n+1
+

r(r − 1)
2n+1

+
qw(w + 1)

2n+1
.

Now Theorem 1 follows by using Proposition 1. To see this, by using the
PRIV-adversary A for CIP as a subroutine, it is possible to construct a PRF-
adversary B for (Perm(n), F+). B first makes �k/n�+ � calls to its first oracle
and constructs KH and TH , and simulates line 103 of Fig. 1 as in Fig. 4 by
making σ̃/w calls to the second oracle.

6 Security Proofs for Authenticity of CIP

6.1 Properties of the Inner Product Hash

We first recall that the inner product hash is ε-AXU for small ε [26].
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Algorithm CIP.KSGen.Sim(ctr, l)
100 for j ← 0 to �l/w� − 1 do
101 Sj ← F+

P (ctr)
102 ctr ← incw+1(ctr)
103 S ← (S0, . . . , S�l/w�−1)
104 S ← first(n × l, S)
105 return S

Fig. 4. The simulation CIP.KSGen.Sim of CIP.KSGen using F+

Proposition 2. Let (x0, . . . , x�−1), (x′
0, . . . , x

′
�−1) ∈ ({0, 1}n)� be two distinct

bit strings. Then for any y ∈ {0, 1}n,

Pr(TH
R← ({0, 1}n)� : (x0, . . . , x�−1) · (T0, . . . , T�−1)

⊕(x′
0, . . . , x

′
�−1) · (T0, . . . , T�−1) = y) = 1/2n.

Proof. We have xi ⊕ x′
i = 0n for some i. Therefore, the coefficient of Ti in

(x0 ⊕ x′
0) · T0 ⊕ · · · ⊕ (x�−1 ⊕ x′

�−1) · T�−1 = y is non-zero, and for any fixed
T0, . . . , Ti−1, Ti+1, . . . , T�−1, exactly one value of Ti satisfies the equality. ��

If y = 0n, a similar result holds for two bit strings of different block sizes.

Proposition 3. Let � ≥ �′, and let x = (x0, . . . , x�−1) ∈ ({0, 1}n)� and
x′ = (x′

0, . . . , x
′
�′−1) ∈ ({0, 1}n)�′

be two distinct bit strings. Then for any
non-zero y ∈ {0, 1}n,

Pr(TH
R← ({0, 1}n)� : (x0, . . . , x�−1) · (T0, . . . , T�−1)

⊕(x′
0, . . . , x

′
�′−1) · (T0, . . . , T�′−1) = y) = 1/2n.

Proof. The condition can be written as: (x0 ⊕ x′
0) · T0 ⊕ · · · ⊕ (x�′−1 ⊕ x′

�′−1) ·
T�′−1 ⊕ x�′ · T�′ ⊕ · · · ⊕ x�−1 · T�−1 = y. If all the coefficients of Ti are zero,
then this equation can not be true since y is non-zero. Therefore, we can without
loss of generality assume that at least one of coefficients of Ti is non-zero. ��

6.2 Properties of the CIP.Hash

We next analyze the properties of CIP.Hash.
Let x, x′ ∈ {0, 1}∗ be two distinct bit strings, where |x| ≥ |x′|. We show (in

Proposition 8) that for any y, Pr(CIP.HashKH ,TH (x)⊕CIP.HashKH ,TH (x′) = y)
is small, where the probability is taken over the choices of KH and TH .

We begin by introducing the notation. Let X ← x‖10n−1−(|x| mod n) and X ′ ←
x′‖10n−1−(|x′| mod n). We parse them into blocks as X = (X0, . . . , Xl−1) and
X ′ = (X ′

0, . . . , X
′
l′−1), where l = |X |/n and l′ = |X ′|/n. Let � = �l/�� and

�′ = �l′/��. We write the i-th frame of X and X ′ as χi and χ′
i, respectively. That

is, χi = (Xi�, . . . , X(i+1)�−1) for 0 ≤ i ≤ � − 2, χ�−1 = (X(�−1)�, . . . , Xl−1),
χ′

i = (X ′
i�, . . . , X ′

(i+1)�−1) for 0 ≤ i ≤ �′−2, and χ′
�′−1 = (X(�′−1)�, . . . , Xl′−1).
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Further, let χi · TH = Ai for 0 ≤ i ≤ � − 2, χ�−1 · (T0, . . . , Tl−(�−1)�−1) = A�−1,
χ′

i ·TH = A′
i for 0 ≤ i ≤ �′ − 1, and χ′

�′−1 · (T0, . . . , Tl′−(�′−1)�−1) = A�′−1. That
is, Ai and A′

i are the results of the inner product in lines 104 and 106 of Fig. 2.
In the following three propositions, we first show that, for some i, Ai ⊕〈i〉n is

unique with high probability in the multi-set {A0⊕〈0〉n, . . . , A�−1⊕〈�−1〉n, A′
0⊕

〈0〉n, . . . , A′
�′−1 ⊕ 〈�′ − 1〉n}.

Proposition 4. Suppose that l = l′. Then there are at least 2n�(1−(2�−1)/2n)
choices of TH ∈ ({0, 1}n)� such that the following is true: for some 0 ≤ i ≤ �−1,

Ai ⊕ 〈i〉n = Aj ⊕ 〈j〉n for all j ∈ {0, . . . , i − 1, i + 1, . . . , � − 1}, and (3)
Ai ⊕ 〈i〉n = A′

j ⊕ 〈j〉n for all j ∈ {0, . . . , � − 1}. (4)

Proof. Since |X | = |X ′| and X = X ′, we have χi = χ′
i for some i. We show the

proof in three cases, (a) |χ�−1|n = �, (b) |χ�−1|n < � and 0 ≤ i < � − 1, and
(c) |χ�−1|n < � and i = � − 1.

We first consider case (a). For any fixed j ∈ {0, . . . , i − 1, i + 1, . . . , � − 1},
the number of TH that satisfies Ai ⊕ 〈i〉n = Aj ⊕ 〈j〉n is at most 2n�/2n from
Proposition 2. Note that, if χi = χj , then there is no TH that satisfies this
condition since 〈i〉n ⊕ 〈j〉n = 0n. Therefore, we have at most (� − 1)2n�/2n

values of TH such that Ai ⊕〈i〉n = Aj ⊕〈j〉n holds for some j ∈ {0, . . . , i− 1, i+
1, . . . , � − 1}.

Similarly, the number of TH which satisfies Ai ⊕ 〈i〉n = A′
j ⊕ 〈j〉n for some

j ∈ {0, . . . , � − 1} is at most �2n�/2n. This follows by using Proposition 2 for
j = i, and for j = i, we use Proposition 2 and the fact that χi = χ′

i.
Therefore, we have at least 2n� − (2� − 1)2n�/2n = 2n�(1 − (2� − 1)/2n)

choices of TH ∈ ({0, 1}n)� which satisfies (3) and (4).
We next consider case (b). From Proposition 2, we have at most (2�−3)2n�/2n

values of TH such that Ai ⊕〈i〉n = Aj ⊕〈j〉n for some j ∈ {0, . . . , i−1, i+1, . . . ,
� − 2}, or Ai ⊕ 〈i〉n = A′

j ⊕ 〈j〉n for some j ∈ {0, . . . , � − 2}.
From Proposition 3, we have at most 2 × 2n�/2n values of TH such that

Ai ⊕ 〈i〉n = A�−1 ⊕ 〈� − 1〉n, or Ai ⊕ 〈i〉n = A′
�−1 ⊕ 〈� − 1〉n. Note that 〈i〉n ⊕

〈� − 1〉n = 0n.
Finally, we consider case (c). From Proposition 3, we have at most (2� −

2)2n�/2n values of TH such that A�−1 ⊕ 〈� − 1〉n = Aj ⊕ 〈j〉n for some j ∈
{0, . . . , � − 2}, or A�−1 ⊕ 〈� − 1〉n = A′

j ⊕ 〈j〉n for some j ∈ {0, . . . , � − 2}.
From Proposition 3 and since χ�−1 = χ′

�−1, we have at most 2n�/2n values
of TH such that A�−1 ⊕ 〈� − 1〉n = A′

�−1 ⊕ 〈� − 1〉n. ��
Proposition 5. Suppose that l > l′ and � > �′. Then there are at least 2n�(1−
(� + �′ − 1)/2n) choices of TH ∈ ({0, 1}n)� such that the following is true:

A�−1 ⊕ 〈� − 1〉n = Aj ⊕ 〈j〉n for all j ∈ {0, . . . , � − 2}, and (5)
A�−1 ⊕ 〈� − 1〉n = A′

j ⊕ 〈j〉n for all j ∈ {0, . . . , �′ − 1}. (6)

Proof. The number is at most 2n�(1− (�+ �′− 1)/2n), since if |χ�−1|n = �, the
bound follows by using Proposition 2 for each j, and if |χ�−1|n < �, it follows
from Proposition 3 and the fact that 〈� − 1〉n ⊕ 〈j〉n = 0n. ��



136 T. Iwata

Proposition 6. Suppose that l > l′ and � = �′. Then there are at least 2n�(1−
(� + �′ − 1)/2n) choices of TH ∈ ({0, 1}n)� which satisfies both (5) and (6).

Proof. The bound follows by the same argument as in the proof of Proposition 5.
The exception is the event A�−1⊕〈�−1〉n = A′

�−1⊕〈� − 1〉n, which is equivalent to
A�−1 = A′

�−1. In this case, we are interested in the equation (x(�−1)�, . . . , xl−1) ·
(T0, . . . , Tl−(�−1)�−1) = (x′

(�−1)�, . . . , x′
l′−1) · (T0, . . . , Tl′−(�−1)�−1). We see that

the coefficient of Tl−(�−1)�−1 is non-zero (because of padding). Therefore, exactly
one value of Tl−(�−1)�−1 satisfies the equality. ��
We now consider CIP.Hash that uses a random permutation instead of a block-
cipher. Thus, instead of KH

R← {0, 1}k, we let P
R← Perm(n), and write

CIP.HashP,TH (·) instead of CIP.HashKH ,TH (·). Besides, we consider CIP.Hash,
where its output bits are truncated to τ bits. The next result proves that this
truncated version of CIP.Hash is ε-AXU for small ε.

Proposition 7. Let x and x′ be two distinct bit strings, where �+�′−1 ≤ 2n−1.
For any 1 ≤ τ ≤ n and any y ∈ {0, 1}τ ,

Pr(P R← Perm(n), TH
R← ({0, 1}n)� :

first(τ, CIP.HashP,TH (x) ⊕ CIP.HashP,TH (x′)) = y) ≤ � + �′ − 1
2n

+
2
2τ

.

Proof. We first choose and fix any TH . If there is no i such that Ai ⊕ 〈i〉n is
unique in the multi-set {A0 ⊕ 〈0〉n, . . . , A�−1 ⊕ 〈� − 1〉n, A′

0 ⊕ 〈0〉n, . . . , A′
�′−1 ⊕

〈�′ − 1〉n}, then we give up the analysis and regard this as CIP.HashP,TH (x) ⊕
CIP.HashP,TH (x)) = y occurs. The probability is at most (� + �′ − 1)/2n from
Proposition 5, 6, and 7, and the first term follows.

Next, we assume for some i, Ai ⊕ 〈i〉n is unique in the multi-set. Now since
we have fixed TH , all the inputs to P are now fixed. We next fix the outputs
of P except for Ai ⊕ 〈i〉n. At most (� + �′ − l) input-output pairs are now
fixed, and therefore, we have at least 2n − (� + �′ − l) choices for the output of
Ai⊕〈i〉n. Out of these 2n−(�+�′−l) possible choices, at most 2n−τ values verify
first(τ, CIP.HashKH ,TH (x) ⊕ CIP.HashKH ,TH (x)) = y since the unused (n − τ)
bits may take any value. The probability of this event is at most 2n−τ/(2n− (�+
�′ − l)) ≤ 2/2τ , and the second term follows. ��
We now derive the result with a blockcipher E.

Proposition 8. Let x and x′ be two distinct bit strings, where �+�′−1 ≤ 2n−1.
For any 1 ≤ τ ≤ n and any y ∈ {0, 1}τ , there exists a PRP-adversary A for E
such that

Pr(KH , TH
R← {0, 1}k × ({0, 1}n)� : first(τ, CIP.HashKH ,TH (x)

⊕CIP.HashKH ,TH (x′)) = y) ≤ � + �′ − 1
2n

+
2
2τ

+ Advprp
E (A),

where A makes at most � + �′ queries, and time(A) = O(n(� + �′)).
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Algorithm CIP.Sim1
Setup:
100 (KH , TH)

R← CIP.Key(R0)
If A makes a query (Ni, Mi):
200 l ← �|Mi|/n�
201 ctr ← (Ni‖0n−�nonce )
202 S ← CIP.KSGen.Sim1(ctr, l + 1)
203 SH ← first(n, S)
204 Smask ← last(n × l, S)
205 Ci ← Mi ⊕ first(|Mi|, Smask)
206 Hashi ← CIP.HashKH ,TH (Ci)
207 Tagi ← first(τ, Hashi ⊕ SH)
208 return (Ci, Tagi)

Algorithm CIP.Sim1 (Cont.)
If A returns (N∗, C∗, Tag∗):
300 l ← �|C∗|/n�
301 ctr ← (N∗‖0n−�nonce )
302 S ← CIP.KSGen.Sim1(ctr, l + 1)
303 SH ← first(n, S)
304 Hash′ ← CIP.HashKH ,TH (C∗)
305 Tag′ ← first(τ, Hash′ ⊕ SH)
306 if Tag′ �= Tag∗ then return ⊥
307 Smask ← last(n × l, S)
308 M∗ ← C∗ ⊕ first(|C∗|, Smask)
309 return M∗

Fig. 5. The simulation CIP.Sim1 of CIP. CIP.Hash is defined in Fig. 2.

Proof. Fix x, x′ and y, and consider the following A: First, A randomly chooses
TH

R← ({0, 1}n)�. Then A computes the hash values of x and x′ following Fig. 2,
except that, in lines 105 and 107, blockcipher invocations are replaced with oracle
calls. The output of A is 1 iff the xor of their hash values is y. We see that A
makes at most � + �′ queries, and∣∣∣Pr

(
first(τ, CIP.HashP,TH (x) ⊕ CIP.HashP,TH (x′)) = y

)
−Pr

(
first(τ, CIP.HashKH ,TH (x) ⊕ CIP.HashKH ,TH (x′)) = y

)∣∣∣
is upper bounded by Advprp

E (A). ��

6.3 Proof of Theorem 2

We now present the proof of Theorem 2.

Proof (of Theorem 2). First, consider the simulation CIP.Sim1 in Fig. 5 of CIP,
where KH and TH are generated by using CIP.Key(R0), i.e., a random function
R0 ∈ Func(n, n) is used to encrypt constants, and the keystream generation,
CIP.KSGen.Sim1, works as follows: it is exactly the same as Fig. 4, except that
it uses a random function R1 ∈ Func(n, nw) instead of F+

P .
Let Advauth

CIP.Sim1(A) be the success probability of A’s forgery, where the oracle
is CIP.Sim1, i.e.,

Advauth
CIP.Sim1(A) def= Pr(ACIP.Sim1 forges),

where the probability is taken over the random coins in lines 100, 202, 302 and
A’s internal coins. We claim that∣∣∣Advauth

CIP (A) − Advauth
CIP.Sim1(A)

∣∣∣ (7)

≤ wr2σ̃2

22n−4
+

wσ̃3

22n−3
+

r2

2n+1
+

wσ̃

2n
. (8)
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To see this, suppose for a contradiction that (7) is larger than (8). Then,
by using A as a subroutine, it is possible to construct a PRF-adversary B
for (Perm(n), F+) making at most r oracle queries to its first oracle and at
most σ̃/w oracle queries to its second oracle, where B simulates R0 and R1

in Fig. 5 by using its own oracles, and returns 1 if and only if A succeeds in
forgery. This implies Pr(P R← Perm(n) : BP (·),F+

P (·) = 1) = Advauth
CIP (A) and

Pr(R0
R← Func(n, n), R1

R← Func(n, nw) : BR0(·),R1(·) = 1) = Advauth
CIP.Sim1(A)

and thus, Advprf
Perm(n),F+(B) is larger than (8), which contradicts Proposition 1.

Now we modify CIP.Sim1 to CIP.Sim2 in Fig. 6.

1. Instead of using CIP.Key in line 100 in Fig. 5, we directly choose (KH , TH)
randomly.

2. Instead of using CIP.KSGen.Sim1 in line 202 in Fig. 5, we choose an (l +1)-
block random string. Therefore, we have S

R← {0, 1}n(l+1) in line 201 of Fig. 6.
Also, we removed “ctr ← (Ni‖0n−�nonce)” in line 201 of Fig. 5 because we
do not need it.

3. We need a different treatment for a forgery attempt, since we allow the
same nonce, i.e., N∗ ∈ {N0, . . . , Nq−2}. We make two cases, case N∗ ∈
{N0, . . . , Nq−2} and case N∗ = Ni. In the former case, we simply choose a
new random SH in line 301 of Fig. 6. In the latter case, SH for (Ni, Mi) has
to be the same SH for (N∗, C∗, Tag∗). Observe that SH = Hashi⊕Tagi, and
thus, the simulation in line 306 of Fig. 6 is precise. Therefore, the simulation
makes no difference in the advantage of A.

4. When A makes a query (Ni, Mi), we return the full n-bit tag, Tagi ∈ {0, 1}n,
instead of a truncated one, while we allow τ -bit tag in the forgery attempt.
This only increases the advantage of A.

5. If Tag′ = Tag∗, we return M∗ = C∗ ⊕ first(|C∗|, Smask). Since the value of
M∗ has no effect on the advantage (as long as it is not the special symbol
⊥), we let M∗ ← 0|C

∗|. This makes no difference in the advantage of A.

Let Advauth
CIP.Sim2(A) def= Pr(ACIP.Sim2 forges), where the probability is taken

over the random coins in lines 100, 201, 301 and A’s internal coins. From the
above discussion, we have

Advauth
CIP.Sim1(A) ≤ Advauth

CIP.Sim2(A). (9)

Now we further modify CIP.Sim2 to CIP.Sim3 in Fig. 7.

1. We do not choose KH and TH until we need them (we need them after the
forgery attempt).

2. Since Ci is the xor of Mi and a random string of length |Mi|, we let Ci
R←

{0, 1}|Mi|. The distribution of Ci is unchanged, and thus, this makes no
difference in the advantage of A.

3. Similarly, since Tagi includes SH , which is a truly random string, we let
Tagi

R← {0, 1}n. The distribution of Tagi is unchanged, and thus, this makes
no difference in the advantage of A (Observe that we do not need KH and
TH , and we can postpone the selection without changing the distribution of
Ci and Tagi).
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Algorithm CIP.Sim2
Setup:
100 KH

R← {0, 1}k; TH
R← ({0, 1}n)�

If A makes a query (Ni, Mi):
200 l ← �|Mi|/n�
201 S

R← {0, 1}n(l+1)

202 SH ← first(n, S)
203 Smask ← last(n × l, S)
204 Ci ← Mi ⊕ first(|Mi|, Smask)
205 Hashi ← CIP.HashKH ,TH (Ci)
206 Tagi ← Hashi ⊕ SH

207 return (Ci, Tagi)

Algorithm CIP.Sim2 (Cont.)
If A returns (N∗, C∗, Tag∗):
300 if N∗ �∈ {N0, . . . , Nq−2} then
301 SH

R← {0, 1}n

302 Hash′ ← CIP.HashKH ,TH (C∗)
303 Tag′ ← first(τ, Hash′ ⊕ SH)
304 if N∗ = Ni then
305 Hash′ ← CIP.HashKH ,TH (C∗)
306 Tag′ ← Hash′ ⊕ Hashi ⊕ Tagi

307 Tag′ ← first(τ, Tag′)
308 if Tag′ �= Tag∗ then return ⊥
309 M∗ ← 0|C∗|

310 return M∗

Fig. 6. The simulation CIP.Sim2 of CIP

4. If N∗ ∈ {N0, . . . , Nq−2}, Tag′ includes the random SH , and we let Tag′ R←
{0, 1}τ . The distribution of Tag′ is unchanged.

5. If N∗ = Ni, we need KH and TH . We choose them, and the rest is unchanged.

Since the distribution of (Ci, Tagi) is unchanged, and there is no difference in
the advantage of A, we have

Advauth
CIP.Sim2(A) = Advauth

CIP.Sim3(A), (10)

where Advauth
CIP.Sim3(A) def= Pr(ACIP.Sim3 forges) and the probability is taken over

the random coins in lines 100, 101, 201, 203 and A’s internal coins.
We now fix A’s internal coins and coins in lines 100 and 101. Then, the query-

answer pairs (N0, M0, C0, Tag0), . . . , (Nq−2, Mq−2, Cq−2, Tagq−2) and the forgery
attempt (N∗, C∗, Tag∗) are all fixed, and we evaluate Advauth

CIP.Sim3(A) with the
coins in lines 201, and 203 only. We evaluate it in the following two cases (Note
that we are choosing KH and TH after fixing Ni, Ci, Tagi, N

∗, C∗, Tag∗).

– Case N∗ ∈ {N0, . . . , Nq−2}: In this case, Advauth
CIP.Sim3(A) = 1/2τ since for

any fixed Tag∗, Pr(Tag′ R← {0, 1}τ : Tag′ = Tag∗) = 1/2τ .
– Case N∗ = Ni and C∗ = Ci: In this case, we have

Advauth
CIP.Sim3(A) ≤ Pr(KH

R← {0, 1}k, TH
R← ({0, 1}n)� :

first(τ, CIP.HashKH ,TH (C∗) ⊕ CIP.HashKH ,TH (Ci)) = y),

where y = Tag∗⊕Tagi. This is at most (�|C∗|/n�+�|Ci|/n�−1)/2n+2/2τ +
Advprp

E (D) from Proposition 8, and this is upper bounded by 2σ/2n+2/2τ +
Advprp

E (D), where D makes at most 2σ queries, and time(D) = O(nσ).

Therefore, we have

Advauth
CIP.Sim3(A) ≤ σ

2n−1
+

2
2τ

+ Advprp
E (D). (11)

Finally, from (7), (9), (10), and (11), we have (2). ��
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Algorithm CIP.Sim3
If A makes a query (Ni, Mi):
100 Ci

R← {0, 1}|Mi|

101 Tagi
R← {0, 1}n

102 return (Ci, Tagi)

Algorithm CIP.Sim3 (Cont.)
If A returns (N∗, C∗, Tag∗):
200 if N∗ �∈ {N0, . . . , Nq−2} then
201 Tag′ R← {0, 1}τ

202 if N∗ = Ni then
203 KH

R← {0, 1}k; TH
R← ({0, 1}n)�

204 Hashi ← CIP.HashKH ,TH (Ci)
205 SH ← Hashi ⊕ Tagi

206 Hash′ ← CIP.HashKH ,TH (C∗)
207 Tag′ ← Hash′ ⊕ SH

208 Tag′ ← first(τ, Tag′)
209 if Tag′ �= Tag∗ then return ⊥
210 M∗ ← 0|C∗|

211 return M∗

Fig. 7. The simulation CIP.Sim3 of CIP

7 Conclusions

We presented an authenticated encryption mode CIP, CENC with Inner Product
hash. It has provable security bounds which are better than the usual birthday
bound security, and it can be used even when the tag length is short. Our proof is
relatively complex, and it would be interesting to see the compact security proofs,
possibly by following the “all-in-one” security definition in [25]. It would also be
interesting to see schemes with improved security bound and/or efficiency.
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Fig. 8. Illustration of CIP.Hash. This example uses � = 3, and l = 9.
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Abstract. In this paper, we investigate the security of the Tractable
Rationale Maps Signature (TRMS) signature scheme [9] proposed at
PKC’05. To do so, we present a hybrid approach for solving the algebraic
systems naturally arising when mounting a signature-forgery attack. The
basic idea is to compute Gröbner bases of several modified systems rather
than a Gröbner basis of the initial system. We have been able to provide
a precise bound on the (worst-case) complexity of this approach. For
that, we have however assumed a technical condition on the systems
arising in our attack; namely the systems are semi-regular [3,5]. This
claim is supported by experimental evidences. Finally, it turns out that
our approach is efficient. We have obtained a complexity bounded from
above by 257 to forge a signature on the parameters proposed by the
designers of TRMS [9]. This bound can be improved; assuming an access
to 216 processors (which is very reasonable), one can actually forge a
signature in approximately 51 hours.

1 Introduction

Multivariate Cryptography is the set of all the cryptographic primitives using
multivariate polynomials. The use of algebraic systems in cryptography dates
back to the mid eighties [15,29], and was initially motivated by the need for
alternatives to number theoretic-based schemes. Indeed, although quite a few
problems have been proposed to construct public-key primitives, those effec-
tively used are essentially factorization (e.g. in RSA [33]) and discrete logarithm
(e.g. in Diffie-Hellman key-exchange [16]). It has to be noted that multivariate
systems enjoy low computational requirements; moreover, such schemes are not
concerned with the quantum computer threat, whereas it is well known that
number theoretic-based schemes like RSA, DH, or ECDH are [34].

Multivariate cryptography has become a dynamic research area, as reflected
by the ever growing number of papers in the most famous cryptographic con-
ferences. This is mainly due to the fact that an European project (NESSIE1)
1 https://www.cosic.esat.kuleuven.be/nessie/

S. Vaudenay (Ed.): AFRICACRYPT 2008, LNCS 5023, pp. 143–155, 2008.
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has advised in 2003 to use such a scheme (namely, sflash [11]) in the smart-
card context. Unfortunately, Dubois, Fouque, Shamir and Stern [14] discovered
a sever flaw in the design of sflash, leading to an efficient cryptanalysis of
this scheme. In this paper, we investigate the security of another multivari-
ate signature scheme, the so-called Tractable Rationale Maps Signature
(TRMS) [9].

1.1 Organization of the Paper. Main Results

After this introduction, the paper is organized as follows. In Section 2, we in-
troduce the main concern of this paper, namely the Tractable Rationale Maps
Signature (TRMS) scheme presented at PKC’05 [9]. Note that the situation of
this scheme is a bit fuzzy. A cryptanalysis of a preprint/previous version [36] of
such scheme has been presented at PKC’05 [25]. However, no attack against the
version presented at PKC’05 [9] has been reported so far. In [25], the authors
remarked that one can – more or less – split the public-key of [36] in two in-
dependent algebraic systems which can be solved efficiently. We tried to mount
this attack on the TRMS version of PKC’05 [9] without success. Thus, it makes
sense to study the security of [9]. By the way, the authors of [25] also proposed
an “improved” version of the XL algorithm, the so-called linear method. We will
not much detail this point in this paper, but this linear method is actually very
similar to the F5 [19] algorithm in its matrix form [20]. We briefly come back to
this point in Section 3. We will explain why the linear method cannot be more
efficient than F5.

In Section 3, we will introduce the necessary mathematical tools (ideals, va-
rieties and Gröbner bases), as well as the algorithmic tools (F4/F5), allowing
to address the problem of solving algebraic systems. We will give the definition
of semi-regular sequences which will be useful to provide a precise complexity
bound on our attack. The reader already familiar with these notions can skip
this part. However, we would like to emphasize that the material contained in
this section is important for understanding the behavior of the attack presented
in Section 4. By the way, the notion presented in this section will permit to
compare F5 [19] with the linear method of [25].

In Section 4, we present a hybrid approach for solving the algebraic systems
arising when attacking TRMS. The basic idea is to compute Gröbner bases of
several modified systems rather than one Gröbner basis of the (bigger) initial
system. We have been able to provide a precise bound on the (worst-case) com-
plexity of this approach. For that, we have assumed that the systems arising in
our attack are semi-regular. This claim is supported by experimental evidences.
This approach approach is efficient; we have obtained a complexity bounded
from above by 257 (fields operations) to forge a signature on the parameters
proposed by the designers of TRMS [9]. This bound can be improved; assuming
an access to 216 processors (which is very reasonable), one can actually forge a
signature in approximately 51 hours.
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2 Tractable Rationale Maps Signature Schemes

To the best of our knowledge, multivariate public-key cryptosystems are mainly
constructed from two different one-way functions. The first one, that we only
mention for the sake of completeness is as follows. Let I =

〈
f1, . . . , fu〉 be an

ideal of the polynomial ring K[x1, . . . , xn] (K is a finite field) then :

fPC : m ∈ K �−→ eI + m ∈ K[x1, . . . , xn],

with eI a random element of I.
The one-way function fPC gave rise to a family of public-key encryption schemes
that are named Polly Cracker cryptosystems [23,27]. The public-key of such sys-
tems is an ideal I =

〈
f1, . . . , fu〉 ⊂ K[x1, . . . , xn], and the secret-key (or trap-

door) is a zero z ∈ K
n of I. Although the security study of Polly Cracker-type

systems led to interesting mathematical and algorithmic problems, several evi-
dences have been presented showing that those schemes are not suited for the
design of secure cryptosystems (for a survey, we refer the reader to [28]). More-
over, such systems suffer from efficiency problems, namely a poor encryption
rate and a large public-key size.

From a practical point of view, the most interesting type of one-way function
used in multivariate cryptography is based on the evaluation of a set of algebraic
polynomials p =

(
p1(x1, . . . , xn), . . . , pu(x1, . . . , xn)

) ∈ K[x1, . . . , xn]u, namely :

fMI : m = (m1, . . . , mn) ∈ K
n �−→ p(m) =

(
p1(m), . . . , pu(m)

) ∈ K
u.

Here, the mathematical hard problem associated to this one-way function is :
Polynomial System Solving (PoSSo)
Instance : polynomials p1(x1, . . . , xn), . . . , pu(x1, . . . , xn) of K[x1, . . . , xn].
Question : Does there exists (z1, . . . , zn) ∈ K

n s. t. :

p1(z1, . . . , zn) = 0, . . . , pu(z1, . . . , zn) = 0.

It is well known that this problem is np-complete [24]. Note that PoSSo re-
mains np-complete even if we suppose that the input polynomials are quadrat-
ics. This restriction is sometimes called MQ [10].

To introduce a trapdoor, we start from a carefully chosen algebraic system :

f(x) =
(
f1(x1, . . . , xn), . . . , fu(x1, . . . , xn)

) ∈ K[x1, . . . , xn]u,

which is easy to solve. That is, for all c = (c1, . . . , cu) ∈ K
u, we have an

efficient method for describing/computing the zeroes of :

f1(x1, . . . , xn) = c1, . . . , fu(x1, . . . , xn) = cu.

In order to hide the specific structure of f , we usually choose two linear transfor-
mations – given by invertible matrices – (S, U) ∈ GLn(K) × GLu(K) and set(

p1(x), . . . , pu(x)
)

=
(
f1(x · S), . . . , fu(x · S)

) · U,

abbreviated by p(x) = f(x · S) · U ∈ K
u to shorten the notation.
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The public-key of such systems will be the polynomials of p and the secret-key
is the two matrices (S, U) ∈ GLn(K) × GLu(K) and the polynomials of f .

To generate a signature s ∈ K
n of a digest m ∈ K

u, we compute s′ ∈ K
n such

that f(s′) = m · U−1. This can be done efficiently due to the particular choice
of f . Finally, the signature is s = s′ · S−1 since :

p(s) = f(s′ · S−1 · S) · U = m · U−1 · U = m.

To verify the signature s ∈ K
n of the digest m ∈ K

u, we check whether the
equality :

“p(s) = m” holds.

We would like to emphasize that most of the multivariate signature schemes pro-
posed so far (e.g. [11,26,37]), including TRMS [9], follow this general principle.

The specificity of TRMS lies in the way of constructing the inner polynomials
f(x) =

(
f1(x1, . . . , xn), . . . , fu(x1, . . . , xn)

) ∈ K[x1, . . . , xn]u. The designers of
TRMS propose to use so-called tractable rational maps, which are of the following
form :

f1 = r1(x1)

f2 = r2(x2) · g2(x1)
q2(x1)

+
h2(x1)
s2(x1)

...

fk = rk(xk) · gk(x1, . . . , xk−1)
qk(x1, . . . , xk−1)

+
hk(x1, . . . , xk−1)
sk(x1, . . . , xk−1)

...

fn = rk(xn) · gk(x1, . . . , xn−1)
qk(x1, . . . , xn−1)

+
hk(x1, . . . , xn−1)
sk(x1, . . . , xn−1)

where for all i, 2 ≤ i ≤ n, gi, qi, hi, si are polynomials of K[x1, . . . , xn], and i, 2 ≤
i ≤ n, ri is a permutation polynomial on K. Remember that ri is a univariate
polynomial. As explained in [9], tractable rational maps can be explicitly inverted
on a well chosen domain. We will not detail this point, as well as how the
polynomials gi, qi, hi, si and ri are constructed. This is not relevant for the attack
that we will present. We refer the reader to the initial paper [9]. We just mention
that we finally obtain quadratic polynomials for the fis. We quote below the set
of parameters recommended by the authors :

– K = F28

– n = 28 and u = 20

We will show that this set of parameters does not guaranty a sufficient level of
security.
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3 Gröbner Basics

In order to mount a signature-forgery attack against TRMS, we have to ad-
dress the problem of solving an algebraic system of equations. To date, Gröbner
bases [6,7] provide the most efficient algorithmic solution for tackling this prob-
lem. We introduce here these bases and some of their useful properties (allowing
in particular to find the zeroes of an algebraic system). We also describe effi-
cient algorithms permitting to compute Gröbner bases. We will touch here only
a restricted aspect of this theory. For a more thorough introduction, we refer the
reader to [1,12].

3.1 Definition – Property

We start by defining two mathematical objects naturally associated to Gröbner
bases : ideals and varieties. We shall call ideal generated by p1, . . . ,
pu ∈ K[x1, . . . , xn] the set :

I = 〈p1, . . . , pu〉 =

{
u∑

k=1

pk · hk : h1, . . . , hk ∈ K[x1, . . . , xn]

}
⊆ K[x1, . . . , xn].

We will denote by :

VK(I) =
{
z ∈ K

n : pi(z) = 0, for all i, 1 ≤ i ≤ u
}
,

the variety associated to I, i.e. the common zeros – over K – of p1, . . . , pu.

Gröbner bases offer an explicit method for describing varieties. Informally, a
Gröbner basis of an ideal I is a generating set of I with “good” algorithmic prop-
erties. These bases are defined with respect to monomial ordering. For instance,
the Lexicographical (Lex) and Degree Reverse Lexicographical (DRL) orderings
– which are widely used in practice – are defined as follows :

Definition 1. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ N
n. Then:

– xα1
1 · · ·xαn

n 
Lex xβ1
1 · · ·xβn

n if the left-most nonzero entry of α− β is positive.
– xα1

1 · · ·xαn
n 
DRL xβ1

1 · · ·xβn
n if

∑n
i=1 αi >

∑n
i=1 βi, or

∑n
i=1 αi =

∑n
i=1 βi and

the right-most nonzero entry of α − β is negative.

Once a (total) monomial ordering is fixed, we define :

Definition 2. We shall denote by M(n) the set of all monomials in n variables,
and Md(n) the set of all monomials in n variables of degree d ≥ 0. We shall
call total degree of a monomial xα1

1 · · ·xαn
n the sum

∑n
i=1 αi. The leading

monomial of p ∈ K[x1, . . . , xn] is the largest monomial (w.r.t. some monomial
ordering ≺) among the monomials of p. This leading monomial will be denoted
by LM(p,≺). The degree of p, denoted deg(p), is the total degree of LM(p,≺).

We are now in a position to define more precisely Gröbner bases.
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Definition 3. A set of polynomials G ⊂ K[x1, . . . , xn] is a Gröbner basis –
w.r.t. a monomial ordering ≺ – of an ideal I ⊆ K[x1, . . . , xn] if, for all p ∈ I,
there exists g ∈ G such that LM(g,≺) divides LM(p,≺).

Gröbner bases computed for a lexicographical ordering (Lex-Gröbner bases) per-
mit to easily describe varieties. A Lex-Gröbner basis of a zero-dimensional system
(i.e. with a finite number of zeroes over the algebraic closure) is always as follows

{f1(x1) = 0, f2(x1, x2) = 0, . . . , fk2(x1, x2) = 0, . . . , fkn(x1, . . . , xn)}
To compute the variety, we simply have to successively eliminate variables by
computing zeroes of univariate polynomials and back-substituting the results.

From a practical point of view, computing (directly) a Lex-Gröbner basis is
much slower that computing a Gröbner basis w.r.t. another monomial ordering.
On the other hand, it is well known that computing degree reverse lexicographical
Gröbner bases (DRL-Gröbner bases) is much faster in practice. The FLGM
algorithm [17] permits – in the zero-dimensional case – to efficiently solve this
issue. This algorithm use the knowledge of a Gröbner basis computed for a given
order to construct a Gröbner for another order. The complexity of this algorithm
is polynomial in the number of solutions of the ideal considered. This leads to
the following strategy for computing the solutions of a zero-dimensional system

p1 = 0, . . . , pu = 0.

1. Compute a DRL-Gröbner basis GDRL of 〈p1, . . . , pu〉.
2. Compute a Lex-Gröbner basis of 〈p1, . . . , pu〉 from GDRL using FGLM.

This approach is sometimes called zero-dim solving and is widely used in practice.
For instance, this is the default strategy used in the computer algebra system
Magma2 when calling the function Variety. In our context, the varieties will
usually have only one solution. Thus, the cost of the zero-dim solving is domi-
nated by the cost of computing a DRL-Gröbner basis. We now describe efficient
algorithms for performing this task.

3.2 The F4/F5 Algorithms

The historical method for computing Gröbner bases is Buchberger’s algorithm
[6,7]. Recently, more efficient algorithms have been proposed, namely the F4

and F5 algorithms [18,19]. These algorithms are based on the intensive use of
linear algebra techniques. Precisely, F4 can be viewed as the “gentle” meeting of
Buchberger’s algorithm and Macaulay’s ideas [30]. In short, the arbitrary choices
– limiting the practical efficiency of Buchberger’s algorithm – are replaced in F4

by computational strategies related to classical linear algebra problems (mainly
the computation of a row echelon form).
In [19], a new criterion (the so-called F5 criterion) for detecting useless com-
putations has been proposed. It is worth pointing out that Buchberger’s algo-
rithm spends 90% of its time to perform these useless computations. Under some
2 http://magma.maths.usyd.edu.au/magma/
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regularity conditions, it has been proved that all useless computations can be
detected and avoided. A new algorithm, called F5, has then been developed us-
ing this criterion and linear algebra methods. Briefly, F5 (in its matrix form)
constructs incrementally the following matrices in degree d :

Ad =

m1 
 m2 
 m3 . . .
t1 · p1

t2 · p2

t3 · p3

...

⎡
⎢⎢⎣

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

⎤
⎥⎥⎦

where the indices of the columns are monomials sorted w.r.t. ≺ and the rows are
products of some polynomials fi by some monomials tj such that deg(tjfi) ≤ d.
In a second step, row echelon forms of theses matrices are computed, i.e.

A′
d =

m1 m2 m3 . . .
t1 · p1

t2 · p2

t3 · p3

...

⎡
⎢⎢⎣

1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
0 0 0 . . .

⎤
⎥⎥⎦

For d sufficiently large, A′
d contains a Gröbner basis.

In [25], the authors proposed an “improved” version of the XL algorithm [10],
the so-called linear method. This method is very similar to F5 [19]. It can be
proved [2] that the matrices constructed by F5, with Lex, are sub-matrices of the
matrices generated by the linear method. One can argue that the goal of F5 and
the linear method is not the same. Namely, F5 computes Gröbner bases whereas
the linear method computes varieties. Again, using the same arguments of [2],
it can be proved that the linear method constructs intrinsically a Lex-Gröbner
basis. As explained previously, we avoid to compute directly Lex Gröbner bases.
We prefer to compute a DRL-Gröbner basis, and then use FGLM to obtain
the Lex-Gröbner basis. Thus, the practical gain of F5+FGLM versus the linear
method will be even more important. This was already pointed out in [2].
Finally, the main idea of the linear method is to remove linear dependencies
induced by trivial relation of the form f · g − g · f . This is actually the basic
idea of F5. Note that in F5 the matrices are constructed “incrementally” to
be sure of removing all the trivial linear dependencies. This is not the case
for the linear method. To summarize one can say that the linear method is a
degraded/devalued version of F5 using the worst strategy for computing varieties.

We now come back to the complexity of F5. An important parameter for evalu-
ating this complexity is the degree of regularity which is defined as follows :

Definition 4. We shall call degree of regularity of homogeneous polynomials
p1, . . . , pu ∈ K[x1, . . . , xn], denoted dreg(p1, . . . , pm), the smallest integer d ≥ 0
such that the polynomials of degree d in I = 〈p1, . . . , pu〉 generate – as a K
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vectorial space – the set of all monomials of degree d in n variables (the number
of such monomials #Md(n) is 3 Cd

n+d−1). In other words :

min
{
d ≥ 0 : dimK

({
f ∈ I : deg(f) = d

})
= #Md(n)

}
.

For non-homogeneous polynomials p1, . . . , pu ∈ K[x1, . . . , xn], the degree of reg-
ularity is defined by the degree of regularity of the homogeneous components of
highest degree of the polynomials p1, . . . , pu.

This degree of regularity corresponds to the maximum degree reached during a
Gröbner basis computation. The overall complexity of F5 is dominated by the
cost of computing the row echelon form of the last matrix Adreg , leading to a
complexity :

O
(
(m · Cdreg

n+dreg−1)
ω
)

,

with ω, 2 ≤ ω ≤ 3 being the linear algebra constant.
In general, it is a difficult problem to know a priori the degree of regularity.

However, for semi-regular sequences [3,5,4] – that we are going to introduce –
the behavior of the degree of regularity is well mastered.

Definition 5. [3,5,4] Let p1, . . . , pu ∈ K[x1, . . . , xn] be homogeneous polynomi-
als of degree d1, . . . , du respectively. This sequence is semi-regular if :

– 〈p1, . . . , pu〉 = K[x1, . . . , xn],
– for all i, 1 ≤ i ≤ u and g ∈ K[x1, . . . , xn] :

deg(g · pi) ≤ dreg et g · pi ∈ 〈p1, . . . , pi−1〉 ⇒ g ∈ 〈p1, . . . , pi−1〉.
We can extend the notion semi-regular sequence to non-homogeneous polynomi-
als by considering the homogeneous components of highest degree of theses poly-
nomials. We mention that the semi-regularity has been introduced by Bardet,
Faugère, Salvy and Yang to generalize the notion of regularity [3,5,4].

It can be proved that no useless reduction to zero is performed by F5 on semi-
regular (resp. regular) sequences [3,5,4,19] , i.e. all the matrices Ad (d < dreg)
generated in F5 are of full rank. Moreover, the degree of regularity of a semi-
regular sequence (p1, . . . , pu) of degree d1, . . . , du respectively is given [3,5,4] by
the index of the first non-positive coefficient of :

∑
k≥0

ck · zk =
∏m

i=1(1 − zdi)
(1 − z)n

.

For instance, it has been proved that the degree [3,5] of regularity of a semi-
regular system of n − 1 variables and n equations is asymptotically equivalent
to

⌈
(n+1)

2

⌉
. The authors have recovered here a result obtained, with a differ-

ent technique, by Szanto [35]. For a semi-regular system of n variables and n
equations, we obtain a degree of regularity equal to n + 1, which is the well-
known Macaulay bound. More details on these complexity analyses, and further
complexity results can be found in [3,5,4].
3 Cd

n if you consider the field equations.
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4 Description of the Attack

In this part, we present our attack against TRMS [9]. Our goal is to forge a valid
signature s′ ∈ K

n for a given digest m = (m1, . . . , mu) ∈ K
u. In other words,

we want to find an element of the variety :

VK(p1 − m1, . . . , pu − mu) ⊆ K
n,

with p1, . . . , pu ∈ K[x1, . . . , xn] the polynomials of a TRMS public-key. We recall
that the parameters are K = F28 , n = 28 and u = 20.

Following the zero dim-solving strategy presented in Section 3, one can directly
try to compute this variety. Unfortunately, there is at least two reasons for which
such a direct approach cannot be efficient in this context. First, we have explicitly
supposed that the field equations are included in the signature-forgery system.
In our context, K is relatively large; leading to field equations of high degree. In
particular, the degree of regularity of the system will be at least equal to #K.
Thus, the computation of a Gröbner basis is impossible in practice.

Another limitation is due to the fact that the number of equations (u) is
smaller that the number of variables (n). As a consequence, there is at least
(#K)n−u valid solutions to the signature-forgery system. Hence, even if you
suppose that you have been able to compute a DRL-Gröbner basis, you will
probably not be able to recover efficiently the Lex-Gröbner basis using FGLM.

A natural way to overcome these practical limitations is to randomly spe-
cialize (i.e. fix) n − u variables, and remove the field equations. We will have
to solve a system having the same number of variables and equations (u). For
each specification of the n − u variables, we can always find a solution of the
new system yielding to a valid signature. We also mention that the specialized
system will have very few solutions in practice. Thus, the cost of computing the
variety will be now essentially the cost of computing a Gröbner basis.

The important observation here is that – after having specified n−u variables
– the new system will behave like a semi-regular system. We will present latter in
this section experimental results supporting this claim. Note that such a behavior
has been also observed, in a different context, in [38]. The degree of regularity
of a semi-regular system of u variables and equations is equal to u + 1. In our
context (u = 20), this remains out of the scope of the F5 algorithm.

To decrease this degree of regularity, we can specialize r ≥ 0 more variables
(in addition of the n − u variables already fixed). Thus, we will have to solve
a systems of u equations with u − r variables, which behave like semi-regular
systems. This allows to decrease the degree of regularity, and thus the complexity
of F5. For instance, the degree of regularity of a semi-regular system of u − 1
variables and u equations is approximately equal to

⌈
(u+1)

2

⌉
. More generally, the

degree of regularity is given by the index of the first non-positive coefficient of
the series : ∏u

i=1(1 − z2)
(1 − z)u−r

.
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In the following table, we have quoted the degree of regularity observed in our
experiments. Namely, the maximum degree reached during F5 on systems ob-
tained by fixing n − u + r variables (r ≥ 0) on signature-forgery systems. We
have also quoted the theoretical degree of regularity of a semi-regular system of
u equations in u− r variables. These experiments strongly suggest that the sys-
tems obtained when mounting a specify+solve signature forgery attack against
TRMS behave like semi-regular systems.

u u − r r dreg (theoretical) dreg (observed)

20 19 1 11

20 18 2 9 9

20 17 3 8 8

20 16 4 7 7

20 15 5 6 6

By fixing variables, we obtain a significant gain on the complexity the F5. On
the other hand, as soon as r > 0, each specification of the r variables will not
necessarily lead to an algebraic system whose set of solutions is not empty . But,
we know that there exists a least one guess of the r variables (in practice ex-
actly one) leading to a system whose zeroes allow to construct a valid signature.
Thus, we have to perform an exhaustive search on the r new variables. In other
words, instead of computing one Gröbner basis of a system of u equations and
variables, we compute (#K)r Gröbner bases of “easier” systems (u equations
with u − r variables). The complexity of this hybrid approach is bounded from
above by:

O
(
(#K)r

(
m · Cdreg

u+dreg−1

)ω
)

,

with ω, 2 ≤ ω ≤ 3 being the linear algebra constant. We have then to find an
optimal tradeoff between the cost of F5 and the number of Gröbner basis that
we have to compute.

In the following table, practical results that we have obtained with F5 when
solving systems obtained by fixing n−u+r variables (r ≥ 0) on signature-forgery
systems. We have quoted the experimental complexity of this approach (T) for
different values of r (for that, we assumed that the r guesses are correct). We
included the timings we obtained with F5 (TF5) for computing one Gröbner basis,
and the maximum number

(
(#K)r

)
of Gröbner bases that we have to compute.

We also included the corresponding number of operations (field multiplications)
NopF5

performed by F5 for computing, and the total number N of operations
of our attack (i.e. the cost of computing 28·r Gröbner bases). Finally, we have
quoted the maximum memory, denoted Mem, used during the Gröbner basis
computation. The experimental results have been obtained using a bi-pro Xeon
2.4 Ghz with 64 Gb. of Ram.
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u u − r r (#K)r TF5 Mem NopF5
T

20 18 2 216 51h 41940 Mo 241 257

20 17 3 224 2h45min. 4402 Mo 237 261

20 16 4 232 626 sec. 912 Mo 234 266

20 15 5 240 46 sec. 368 Mo. 230 270

We observe that the optimal choice is for r = 2, for which you obtain a
complexity bounded from above by 257 to actually forge a signature on the
parameters proposed by the designers of TRMS [9]. We also would like to em-
phasize that this approach is fully parallelizable (each computation of the (#K)r

Gröbner basis are totally independent). For instance, assuming an access to 216

processors (which is very reasonable), the computation can be done in two days.
By extrapolating – from these experiments – the practical behavior of our

approach for r = 1, we have estimated that one can forge a signature in approxi-
mately in 253 (in terms of fields operations). As the consequence, the parameters
of TRMS [9] should be increased to achieve a reasonable level of security. Further
works need to be done for finding the optimal set of parameters.
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Abstract. Many knapsack cryptosystems have been proposed but al-
most all the schemes are vulnerable to lattice attack because of its low
density. To prevent the lattice attack, Chor and Rivest proposed a low
weight knapsack scheme, which made the density higher than critical
density. In Asiacrypt2005, Nguyen and Stern introduced pseudo-density
and proved that if the pseudo-density is low enough (even if the usual
density is not low enough), the knapsack scheme can be broken by a sin-
gle call of SVP/CVP oracle. However, the usual density and the pseudo-
density are not sufficient to measure the resistance to the lattice attack
individually. In this paper, we first introduce a new notion of density D,
which naturally unifies the previous two densities. Next, we derive con-
ditions for our density so that a knapsack scheme is vulnerable to lattice
attack. We obtain a critical bound of density which depends only on the
ratio of the message length and its Hamming weight. Furthermore, we
show that if D < 0.8677, the knapsack scheme is solved by lattice attack.
Next, we show that the critical bound goes to 1 if the Hamming weight
decreases, which means that it is quite difficult to construct a low weight
knapsack scheme which is supported by an argument of density.

Keywords: Low-Weight Knapsack Cryptosystems, Lattice Attack,
(pseudo-)density, Shannon Entropy.

1 Introduction

1.1 Background

If quantum computers are realized, a factoring problem and a discrete logarithm
problem can be solved in polynomial time [15] and some cryptosystems such as
RSA or Elliptic Curve Cryptosystem will be totally broken. Many post-quantum
schemes have been proposed. One of possible candidate is “knapsack cryptosys-
tem”, which is based on the difficulty of “subset sum problem”. Since the subset
sum problem is proved to be NP-hard, it is expected to not be solved by quantum
computers. From the Merkle-Hellman’s proposal of knapsack cryptosystem [9],
many schemes have been proposed, but broken.
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Some attacks to knapsack cryptosystems have been done by obtaining the
shortest vector of a corresponding lattice. First, the attacker constructs a lattice
from public key and ciphertext. Then, he obtains the shortest vectors of the
constructed lattice. Lagarias and Odlyzko introduces the concept of “density”
and they proved that the knapsack scheme is broken with high probability if its
density is low enough [7]. Coster et al. proposed the improved algorithm, which
can solve the schemes with higher density [3].

Some designers of knapsack cryptosystems choose to reduce the Hamming
weight of message in order to prevent low density. First, Chor-Rivest proposed
the knapsack cryptosystem with relatively low Hamming weight of message [2].
They employ enumerative source encoding to decrease the Hamming weight of
message. Then, they succeed to achieve relatively higher density. Unfortunately,
it was broken by Schnorr and Hörner for some moderate parameters [13]. Fur-
thermore, it was broken for all proposed parameters by Vaudenay [18] by its
algebraic structures. In CRYPTO2000, Okamoto et al. proposed another low
weight knapsack scheme [11]. We will call this scheme as OTU scheme in short.
OTU scheme hides an algebraic structure unlike Chor-Rivest scheme and its
security is improved.

Omura-Tanaka [12] and Izu et al. [6] analyzed the security of low weight knap-
sack cryptosystem. They pointed out that the low weight scheme can be broken
by lattice attack even if the density is bigger than 1. In Asiacrypt2005, Nguyen
and Stern [10] introduced another type of density: pseudo-density and proved
that low weight knapsack cryptosystem will be broken with high probability by
a single call of SVP/CVP-oracle if its pseudo-density is less than 1. They also
showed that the pseudo-density of Chor-Rivest scheme and OTU scheme are
less than 1 and the both schemes are vulnerable to lattice attack. Nguyen-Stern
pointed out that the usual density alone is not sufficient to measure the resis-
tance to lattice attack. Actually, after pointing out the above, they introduced
pseudo-density.

We should notice that in this paper, “a scheme is broken by lattice attack or
low density attack” means “the scheme is broken by a single call to SVP/CVP-
oracle.” Hence, this does not mean that “the scheme is totally broken.”

1.2 Our Contributions

In this paper, we first reconsider the definition of density. We introduce a new
notion of density D, which unifies the already proposed definitions of density:
usual density d and pseudo-density κ. This means that (1) if the message is
randomly generated, that is, the bit 1 and 0 in the message are randomly gen-
erated with probability 1/2, our density is equivalent to usual density, (2) if the
Hamming weight of the message is limited to be low, our density is equivalent to
the pseudo-density. Interestingly, our density is identical to so-called information
rate.

Next, we derive conditions for our density such that the knapsack scheme is
solved by a single call of SVP/CVP-oracle. We reuse the framework of Nguyen-
Stern’s work [10] relating subset sum problem and lattice theory. Let n and
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k be the message length and its Hamming weight. We derive a critical bound
of density: gCJ(k/n), which means that the knapsack scheme is solved if D <
gCJ(k/n) by lattice attack. The function gCJ(p) is easily computable and is
explicitly given. Notice that the critical bound depends only on the ratio of “1”,
that is, k/n. Our result shows that our density alone is sufficient to measure the
resistance to lattice attack. Since gCJ(p) > 0.8677 for any p, we can simply say
that the knapsack scheme is solved by lattice attack if D < 0.8677.

Furthermore, we show that limp→0 gCJ(p) = 1. This result leads to the con-
clusion that it is quite difficult to construct a secure “low-weight” knapsack
scheme which are supported by an argument based on density. Notice that we
do not use any concrete construction of knapsack cryptosystem in our discussion
unlike Nguyen-Stern’s analysis [10]. Instead of them, we will just use “unique
decryptability”.

Our analysis method is based on Nguyen-Stern’s method [10]. We will point
out the difference between our results and their results. One drawback of their
results is that the definition of low weight is not clear. That is, it is not clear
when we can decide whether the Hamming weight is low and the pseudo-density
is applicable. In our analysis, we don’t use a property that the Hamming weight
is low. Hence, our analysis is valid for any parameter setting although Nguyen-
Stern’s result is valid only for low weight knapsack.

There are a big gap between SVP/CVP-oracle and lattice reduction algorithm,
such as LLL. Hence, if we choose appropriate parameters, low weight cryptosys-
tems may be supported by an argument based on difficulty of SVP/CVP.

Little attention has been given to the message expansion in low weight knap-
sack cryptosystem. Our results indicate that the message length before expansion
is more important than expanded message length. Intuitively, we can say that
since information does not increase by any deterministic processing, the difficulty
of the problem will never increase.

1.3 Organization

The rest of paper is organized as follows. The next section contains the pre-
liminaries. In Section 3, we redefine a density, which unifies already proposed
density. Next, we derive the necessary conditions for secure knapsack scheme.
In our analysis, we reuse the framework of Nguyen-Stern’s work. We show that
our density is sufficient to measure the resistance to lattice attack. In Section 4,
we apply our results to Chor-Rivest and OTU schemes. In Section5, we show
one another evidence to convince our results. We will discuss algorithms for
directly solving the subset sum problem. We show that in the computational
cost of some algorithms [2,16], the knapsack size is not important and message
length before expansion is important. Section 6 concludes this paper. We also
give a simple procedure based on our results for judgment whether a knapsack
scheme is vulnerable or not. Our procedure is effective for any value of Hamming
weight.
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2 Preliminaries

2.1 Lattices

For a vector b, ||b|| denotes the Euclidean norm of b. In this paper, we deals with
integral lattice. A lattice is defined by a set of all integral linear combination of
linearly independent vectors b1, b2, . . . , bd in ZZn:

L =

{
d∑

i=1

nibi|ni ∈ ZZ

}
. (1)

The lattice is closed under addition and subtraction, that is, if x ∈ L and y ∈ L,
then x +y ∈ L and x−y ∈ L. The set of vectors: b1, b2, . . . , bd is called a basis
of lattice L. The dimension of L is d.

We introduce the following two well-known problems: Shortest Vector Problem
(SVP) and Closest Vector Problem (CVP).

Definition 1 (Shortest Vector Problem (SVP)). Given a basis of lattice
L, find a shortest non-zero vector v ∈ L.

Definition 2 (Closest Vector Problem (CVP)). Given a basis of lattice L
and t ∈ Qn, find a closest vector w ∈ L to t or find a lattice vector minimizing
||w − t||.
It is known that CVP is an NP-hard problem [17] and SVP is NP-hard under
randomized reductions [1]. However, it is known that some lattice reduction algo-
rithm, such as LLL algorithm, solves SVP and CVP in practice if the dimension
is moderate. Hence, it is important to judge whether the scheme is secure or not
even if a single call to SVP/CVP-oracle is allowed.

2.2 Knapsack Cryptosystem and Two Definitions of Density

First, we define Subset Sum Problem.

Definition 3 (Subset Sum Problem). Given a knapsack {a1, a2, . . . , an} of
positive integers and a sum s =

∑n
i=1 miai, where mi ∈ {0, 1}, recover

(m1, . . . , mn).

The knapsack cryptosystems are informally defined as follows.

Public Key: Knapsack {a1, a2, . . . , an}, where each ai is a positive integer.
This knapsack must be difficult to solve without private key.

Private Key: A secret information which transforms the knapsack into easily
solvable knapsack.

Encryption: A message (m1, . . . , mn) ∈ {0, 1}n is encrypted into a ciphertext
C =

∑n
i=1 miai.

Decryption: The message is recovered from the ciphertext C and the private
key.
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Solving Subset Sum Problem corresponds to passive attack to knapsack cryp-
tosystems.

Let k =
∑

mi be the Hamming weight of mi’s and r =
∑

m2
i . Since mi ∈

{0, 1}, r = k.
The usual density [7] is defined by

d =
n

log A
, (2)

where A = max ai. Lagarias and Odlyzko showed that if d < 0.645 · · ·, then
the subset sum problem can be solved with high probability by a single call to
SVP-oracle. Furthermore, Coster et al. [3] improved the bound to d < 0.9408 · · ·.

In Asiacrypt2005, Nguyen and Stern [10] introduced a new variant of density:
“pseudo-density”, which is effective for low weight knapsack cryptosystems. The
pseudo-density is defined by

κ =
r log n

log A
. (3)

They showed that if pseudo-density is less than 1, low weight knapsack scheme
can be solved with a single call to SVP/CVP-oracle. Furthermore, they showed
that the pseudo-densities of OTU scheme and Chor-Rivest scheme are less than 1.

It is important that the usual density and the pseudo-density alone are not
sufficient to measure the resistance to the lattice attack individually. As the
known results, we can say that Merkle-Hellman scheme [9] is vulnerable because
of its low density and Chor-Rivest scheme [2] is vulnerable because of its low
pseudo-density, respectively. On the other hand, if we use our density, we need
not discuss individually. That is, we can simply conclude that both of Merkle-
Hellman scheme and Chor-Rivest scheme are vulnerable since the our proposed
density is low enough.

2.3 Success Probability of Reduction to SVP/CVP [10]

In this subsection, we review the success probability of reduction to SVP/CVP
from the subset sum problem. The main part of this subsection comes from
Nguyen-Stern’s paper [10].

In evaluating the probability of reduction, the following value is important.

Definition 4. We define N(n, r) be the number of integer points in the n-
dimensional sphere of radius

√
r centered at the origin.

It is known that N(n, r) is known to be exponential in n if r is proportional to
n. Especially, it is known that N(n, n/2) ≤ 2c0n, N(n, n/4) ≤ 2c1n and (c0, c1) =
(1.54724, 1.0628). These analysis are done by Mazo-Odlyzko [8]. We should notice
that d < 1/c0 = 0.6463 is the critical density of Lagarias-Odlyzko’s attack and
d < 1/c1 = 0.9408 is the critical density of Coster et al’s attack.

Nguyen and Stern pointed out that Mazo-Odlyzko’s analysis is not useful
if k � n. Then, they gave a simple but effective upper bound of N(n, r) as
follows [10].
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Lemma 1. For any positive integers n and r, it holds that

N(n, r) ≤ 2r

(
n + r − 1

r

)
. (4)

By simple calculation, they obtained another (looking) bound of N(n, r) [10].

Lemma 2. For any positive integers n and r, it holds that

N(n, r) ≤ 2rer(r−1)/(2n)nr

r!
.

The failure probability of reduction to CVP that is, failure probability of solving
knapsack scheme even if we can use CVP-oracle, is given as follows [10].

L is set of vectors (z1, . . . , zn) ∈ ZZn such that z1a1 + z2a2 + · · · + znan = 0.
In this setting, the set is a lattice. The dimension of the lattice L is n − 1. Let
y1, . . . , yn be integers such that s =

∑n
i=1 yiai. These yi’s are computable in

polynomial time.

Lemma 3. Let m = (m1, . . . , mn) ∈ ZZn. Let a1, . . . , an be chosen uniformly
and independently at random in [0, A]. Let s =

∑n
i=1 miai. Let c be the clos-

est vector in L to t = (y1, . . . , yn). Then, the probability Pr that c �= (y1 −
m1, . . . , yn − mn) is given by

Pr <
N(n, r)

A
. (5)

The failure probability of reduction to SVP is given as follows [10]. Let L and
yi’s be the same as CVP case. Let (b1, . . . , bn−1) be a basis of L. Let L′ be the
lattice spanned by (1, y1, . . . , yn) ∈ ZZn+1 and the n− 1 vectors (0, bi) ∈ ZZn+1.
Let m′ = (1, m1, . . . , mn) ∈ ZZn+1. Obviously, m′ ∈ L′ and its norm is relatively
short. In this setting, we have the following lemma.

Lemma 4. Let m = (m1, . . . , mn) ∈ ZZn. Let a1, . . . , an be chosen uniformly
and independently at random in [0, A]. Let s =

∑n
i=1 miai. Let s be the shortest

vector in L′. The probability Pr that s �= ±m′ is given by

Pr < (1 + 2
√

1 + r2)
N(n, r)

A
. (6)

Nguyen and Stern proved that the low weight knapsack schemes can be solved
by a single call to an SVP/CVP-oracle by using Lemmas 2, 3 and 4.
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2.4 Review of Information Theory

Both of Chor-Rivest scheme and OTU scheme expand a real m-bit random mes-
sage into n-bit message with Hamming weight k as preprocessing of encryption.
We should notice that message is usually expanded before encryption. Fig. 1
shows the process flow for actual low weight knapsack scheme. Concretely speak-
ing, (1) m-bit message is expanded to n-bit message with Hamming weight k,
(2) n-bit message is encrypted into a ciphertext, (3) the ciphertext is decrypted
into n-bit message, (4) n-bit message is decoded to m-bit original message.

m-bit message n-bit message with
Hamming weight k

encode

decode

encryption

ciphertext

decryption

Fig. 1. Knapsack Cryptosystems with Preprocessing

We should notice that n > m and hence the usual density become larger.
Although both schemes recommend to use enumerative source encoding [5], we
do not care about concrete encoding methods in this paper.

The space of m-bit messages is 2m and the space of n-bit messages with
Hamming weight k is given by

(
n
k

)
. There exists adequate encoding and decoding

method which correspond each message on (almost) one-to-one. By increasing
the message length from m to n, the Hamming weight of message decreases
m/2 (in average) to k. We should notice that information will never increase by
deterministic processing. Hence, you may think that expanded message has more
information and knapsack scheme becomes more secure by decreasing Hamming
weight. However, this is not correct since Shannon Entropy never increase by
this kind of deterministic message expansion.

It is well known that the following inequalities hold between the number of
combination and Shannon Entropy.

Lemma 5 ([4]). For any positive integers n and k, it holds that

1
n + 1

2nH(k/n) ≤
(

n

k

)
≤ 2nH(k/n), (7)

where H(x) is an Entropy function: H(x) = −x log x − (1 − x) log(1 − x). Note
that the base of logarithm is 2.

Proof is given in pp. 284–285 of [4].

Remark 1. For large n, we have a rough approximation:(
n

k

)
≈ 2nH(k/n). (8)

from Lemma 5. In an intuitive discussion, we will use Eq. (8) instead of Lemma 5
for easy understanding. However, we will use Lemma 5 in most of our analysis.
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We will analyze the failure probability of reduction to SVP/CVP by using
Lemmas 3 and 4 as in the analysis of Nguyen-Stern. The difference of our analysis
from Nguyen-Stern’s analysis is that we use Lemma 5 instead of Lemma 2. We
obtain more precise bound than Nguyen-Stern’s.

3 Necessary Conditions for Secure Knapsack Scheme

In this section, first, we introduce a new notion of density. Our density unifies
previously proposed two density. Next, we reevaluate the security of low weight
knapsack scheme using our density.

3.1 New Definition of Density

We define a new notion of density as follows.

Definition 5. Let knapsack {a1, a2, . . . , an} and A = max1≤i≤n{ai}. Let k be
the fixed Hamming weight of the solution of subset sum problem. Then, density
D is defined by

D =
nH(p)
log A

, where p = k/n. (9)

Our definition can be regarded as a kind of density of multiplying normalization
factor H(p) to usual density d. That is, D = H(p)d.

Next, we show that our density D unifies two already proposed density and
includes them as a special case. That is to say, our density is almost equivalent
to

(1) usual density when the message is randomly chosen, and
(2) pseudo-density when k � n.

We explain the details of each case.

(1) the case that the message is randomly chosen : By the law of large numbers,
k ≈ n/2 with overwhelming probability. Hence, for almost case, p = 1/2 and
H(p) = 1. We have D = n/ logA = d.

(2) low weight case (k � n): Letting k = nα, where α < 1. nH(k/n) can be
transformed as follows.

nH(k/n) = −n

(
k

n
log

k

n
+

n − k

n
log

n − k

n

)

= k log n − k log k − (n − k) log(1 − k

n
)

Here, Maclaurin’s expansion of loge(1 − p) is given by

loge(1 − x) = −
∞∑

i=1

1
i
xi,
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where e is the base of natural logarithm. The third term −(n−k) log(1− k
n )

can be evaluated by

−(n − k) log
(

1 − k

n

)
= −k

(
1
p
− 1

)
loge(1 − p)

loge 2

=
k

loge 2

( ∞∑
i=1

1
i
xi−1 −

∞∑
i=1

1
i
xi

)

=
k

loge 2

(
1 +

∞∑
i=1

1
i + 1

xi −
∞∑

i=1

1
i
xi

)

=
k

loge 2

(
1 −

∞∑
i=1

1
i(i + 1)

xi

)

This term is obliviously upper bounded by k/ loge 2. We have the lower
bound of this term as

k

loge 2
(1 −

∞∑
i=1

1
i(i + 1)

xi) >
k

loge 2
(1 −

∞∑
i=1

1
i
xi) =

k

loge 2
(1 + loge(1 − p))

Hence, this term is obviously negligible to the first term k log n for large n
and small k. The first and second terms is evaluated by (1−α)k log n. Hence,
if α → 0, it will go to k log n and if α is small enough, we can approximate
nH(k/n) as k log n. Hence, we have

D ≈ k log n

log A
= κ. (10)

3.2 Necessary Condition for Unique Decryptability

Unless the ciphertext space is larger than message space, the message cannot
be recovered from ciphertext uniquely. The message space is given by

(
n
k

)
and

the ciphertext space is upper bounded by kA. Hence, a necessary condition for
unique decryptability is given as follows.(

n

k

)
≤ kA.

From Lemma 5, we know 2nH(k/n)/(n + 1) ≤ (
n
k

)
. By combining these two

inequalities, we have the following lemma.

Lemma 6. Let knapsack {a1, a2, . . . , an} and A = max1≤i≤n{ai}. If the knap-
sack scheme is uniquely decryptable, it holds that

D < 1 +
2
n

. (11)
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Proof. From Lemma 5, we have nH(k/n) ≤ log A + log k + log(n + 1). Then, we
have

D =
nH(k/n)

log A
≤ 1 +

log k(n + 1)
log A

. (12)

Let ε be log(k(n+1))
log A . Subsisting this into Eq.(12), we have

ε ≤ log k(n + 1)
nH(p) − log k(n + 1)

.

ε is upper bounded by 2/n as follows.

ε ≤ 2 log n

nH(k/n)
=

2 logn

−k log k + k log n − (n − k) log(n − k) + (n − k) log n

<
2 logn

n logn
=

2
n

.

Hence, we have the lemma. 	

Hence, if the scheme is uniquely decryptable, our density D must be D ≤ 1+2/n.
If n is large enough, the upper bound of D goes to 1.

3.3 Necessary Condition for Preventing Reduction to CVP

We have the following theorem in regard to the critical bound of lattice attack.

Theorem 1. Assume that the ai are chosen uniformly at random from [0, A].
If our density D satisfies

D <
H(p)

p + (1 + p)H(p/(1 + p))
, (13)

the knapsack scheme can be solved in a single call to CVP-oracle with high prob-
ability depending on n.

Remark 2. Eq. (13) is valid for higher weight knapsack in addition to low weight
case. On the other hand, Nguyen-Stern’s bound is valid for only low weight
knapsack.

Proof. From Lemma 3, the failure probability Pr of reduction is given by Pr <
N(n, k)/A. For simplicity, we rewrite N(n, k) by

N(n, k) = 2nfn(p), where p = k/n. (14)

From Lemma 3 and D = nH(p)/ logA, we have

log Pr < log
N(n, k)

A
= nfn(p) − log A

= nfn(p) − n
H(p)
D

= n

(
fn(p) − H(p)

D

)
. (15)
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If fn(p)− H(p)
D is negative, the reduction to CVP succeeds with high probability

for large n. Then, the condition such that the reduction to CVP succeeds is given
by

D <
H(p)
fn(p)

. (16)

Next, we evaluate fn(p) more precisely. If p is constant, the value of fn(p) is
analyzed precisely by Mazo and Odlyzko [8]. Especially, fn(1/2) = 1.54724 · · ·
and fn(1/4) = 1.0628 · · ·. In these cases, fn(p) does not depend on n. Hereafter,
we omit the subscript n and simply write f(p) if not necessary. It is possible
to obtain the exact value of f(p) for each p by Mazo-Odlyzko’s analysis. For
p = 1/2, if D is less than H(1/2)/f(1/2) = 0.6465, the knapsack scheme can
be solved in a single call to CVP-oracle. Hence, our result includes Lagarias-
Odlyzko’s result.

The drawback of using Mazo-Odlyzko’s analysis is that it is difficult to cal-
culate the exact value of fn(p). Next, we will obtain a simple bound of fn(p).
From Lemmas 1 and 5, we have

N(n, k) ≤ 2k

(
n + k

k

)
≤ 2k2(n+k)H( k

n+k ) = 2n(p+(1+p)H(p/(1+p))).

Hence, we have

fn(p) ≤ p + (1 + p)H
(

p

1 + p

)
. (17)

Therefore, the upper bound of fn(p) does not depend on n but only p. We should
notice that this bound is not tighter than Mazo-Odlyzko’s bound.

Summing up the above discussion, we obtain the theorem. 	


3.4 Necessary Condition for Preventing Reduction to SVP

From Lemma 4, the failure probability of reduction to SVP is given by

Pr < (1 + 2
√

1 + r2)
N(n, r)

A
.

By the similar analysis of CVP case, we have the same bound. That is, if

D <
H(p)

p + (1 + p)H(p/(1 + p))
,

we can solve knapsack scheme by a single call to SVP-oracle.

3.5 Necessary Conditions for Secure Scheme

From the above discussion, we have the necessary condition that the knapsack
scheme is secure as follows:

H(p)
p + (1 + p)H(p/(1 + p))

< D < 1 +
2
n

. (18)
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Now, we write

gLO(p) ≡ H(p)
p + (1 + p)H(p/(1 + p))

. (19)

We can easily verify that
lim
p→0

gLO(p) = 1. (20)

This result leads to the following claim.

Claim. It is quite difficult to construct a low weight knapsack scheme which is
supported by an argument of density.

The reason is as follows. If a knapsack scheme such that p asymptotically goes
to zero is secure, its density D must be 1. This observation implies that it is
quite difficult to construct such a scheme.

Substituting p = 1/2 into Eq. (13), we have

D <
H(1/2)

1/2 + 3/2H(1/3)
= 0.5326. (21)

This condition is not so tight since the tight bound is given by H(1/2)/f(1/2) =
0.6465. But, we can easily calculate the bound Eq. (13).

The graph of gLO(p) is given by Fig. 2. As p increases, gLO(p) monotonically
decreases. Hence, for any p ≤ 1/2, gLO(p) ≥ gLO(1/2) = 0.5326.

As already mentioned, our density D is normalization of usual density d. We
can rewrite the above condition by using the usual density d:

1
p + (1 + p)H(p/(1 + p))

< d <
1 + 2/n

H(p)
. (22)

When p → 0, the both of left and right terms goes to infinity. Hence, even if the
density is infinitely large, it does not guarantee whether the scheme can prevent
the lattice attack.

3.6 Improved Bound Based on CJLOSS

Coster et al. improved the bound of Lagarias-Odlyzko’s attack. Then, their at-
tack succeeds to break knapsack scheme with higher density knapsack [3]. They
also pointed out that their idea can be applied to low weight knapsack scheme
such as Chor-Rivest scheme. In this section, we apply this improvement to the
case of our density. The analysis is based on Nguyen-Stern’s analysis, which
means that we use Theorem 3 in [10]. The failure probability of reduction to
CVP is given as follows. Note that the lattice L is the same as Lemma 3.

Lemma 7. Let m = (m1, . . . , mn) ∈ ZZn and s =
∑n

i=1 miai. We let c be
the closest vector in L to t = (y1 − k/n, . . . , yn − k/n). The probability Pr that
c �= (y1 − m1, . . . , yn − mn) is given by

Pr <
N(n, r − k2/n)

A
. (23)
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By the similar discussion in Section 3.3, we have

N(n, k − k2/n) ≤ 2n(p−p2+(1+p−p2)H( 1
1+p−p2 ))

. (24)

Then we obtain the improved bound for low lattice attack as follows.

Theorem 2. Assume that the ai are chosen uniformly and at random from
[0, A]. If our density D satisfies

D <
H(p)

p − p2 + (1 + p − p2)H(1/(1 + p − p2))
≡ gCJ(p) (25)

the knapsack scheme can be solved in a single call to CVP-oracle.

Remark 3. If p is very small (p � p2), the bound gCJ(p)is almost equal to gLO(p).
Hence, in this case, the effect of this improvement is very small, which is also
pointed out in Nguyen-Stern [10]. However, if p is not so small, this improvement
is effective.

It also holds that limp→0 gCJ(p) = 1. Substituting p = 1/2 into Eq. (25), we
have

H(1/2)
1/4 + 5/4H(1/5)

= 0.8677 < D. (26)

This condition is not so tight since the tight bound is given by H(1/2)/f(1/4) =
0.9408. But, we can easily calculate the bound Eq. (25).

The graph of gCJ(p) is given by Fig. 2. As p increases, gCJ(p) also monoton-
ically decreases. Hence, for any p ≤ 1/2, gCJ(p) ≥ gCJ(1/2) = 0.8677. This
implies that the lattice attack is always applicable if D < 0.8677, which does
not depend on the actual value p. We should notice that the above discussion is
effective for any choice of public key and trapdoor.

Interestingly, gCJ(p) can be simply and roughly approximated by a constant:
gCJ(p) = 0.87 for p > 0.08. Furthermore, gLO(p) can be simply approximated
by gLO(p) = 0.87 − 2

3p for p > 0.08.

Remark 4. In SVP case, we have the same bound as the CVP case. So, we omit
the details.

Remark 5. Since Eq. (25) does not give a tight bound, you may think that this
bound is useless. However, it is not the case. If the density D of a knapsack
scheme satisfies Eq. (25), we can immediately determine whether this scheme is
vulnerable to the lattice attack. If not so, we calculate the exact value of f(p)
based on Mazo-Odlyzko’s analysis and check whether D < H(p)/f(p). Hence,
we can use Eq. (25) as the condition of the first cutoff.

Remark 6. We expect that the critical bound can be improved to D < 0.9408 as
like Coster et al.’s case. If we use exact analysis of f(p), we will be able to prove
it. It is enough to prove that H(p)/f(p) monotonically decreases. We have not
checked this so far.
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Fig. 2. Critical Bound for lattice attack: gLO(p) and gCJ (p)

We would like to emphasize that our density alone is sufficient to measure the
resistance to lattice attack for both random knapsack and low weigh knapsack
although the usual density and pseudo-density alone are not sufficient.

3.7 Intuitive Meaning of Our New Density

In this subsection, we give an intuitive meaning of our introduced density. From
the definition, our density D can be interpreted as

D =
the size of solution space

the bit length of maximum value of knapsack
. (27)

Let m be a message length before expansion. Letting n be a message length
after the expansion and k be the Hamming weight of expanded message, we have(

n

k

)
≈ 2m. (28)

From Eq. (8), we have nH(p) ≈ m. Hence, our density D can be transformed as

D =
m

log A
. (29)

This can be interpreted as

D ≈ the bit length of message
the bit length of ciphertext

, (30)
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which is so-called information rate. Lagarias and Odlyzko also gave similar ob-
servation [7]. But, their analysis focused on only the random message case. We
extended this observation into general case. Summing up the above discussion,
we can say that the information rate is more useful indication to measure the
resistance to lattice attack.

We can intuitively explain this phenomenon as follows. If D (i.e. information
rate) is small, the bit length of ciphertext is much larger than that of plaintext
and the ciphertext has more information about plaintext. Then, it tends to reveal
more information about plaintext.

We try to explain the above from the view of information theoretical sense.
From Eq. (8), we know the followings. (1) The n-bit binary sequence with Ham-
ming weight k can be compressed into nH(k/n)-bit sequence. This transfor-
mation is lossless compression. Or, equivalently, (2) the random nH(k/n)-bit
sequence can be expanded into n-bit binary sequence with Hamming weight k.

Next, we consider actual compression method of sequence.

random case (k ≈ n/2). When 0 and 1 occurs with probability 1/2 respec-
tively, the sequence cannot be compressed any more. Hence, n = m =
nH(1/2).

low weight case(k � n). The following simple coding is optimal encoding in
extremely low weight case.

Step1 Record the place where the bit is “1”.
Step2 Represent that place in the binary representation.
Step3 Concatenate all binary sequence obtained in Step2.

To represent the bit place, log n-bit is needed. Since the number of bit whose
value is “1” is k, the length of transformed sequence is k log n. Hence, m ≈
k log n.

4 Application to Some Previously Proposed Schemes

In this section, we apply the results in Section 3 to some previously proposed
low weight knapsack schemes: Chor-Rivest scheme [2] and OTU scheme [11].
Actually, these schemes are proved to be vulnerable to lattice attack by Nguyen-
Stern [10]. However,we obtain more precise results than their results by using
our analysis.

4.1 Application to Chor-Rivest Scheme

Chor and Rivest proposed a knapsack cryptosystem with low Hamming weight in
1988 [2]. Schnorr and Hörner broke this scheme for some parameters by using an
improved lattice reduction technique. In 2001, Vaudenay [18] broke this scheme
for all proposed parameters by using algebraic structures specific to the Chor-
Rivest scheme. His attack is categorized as key-only attack and is not lattice
attack. In this section, we apply our results to the Chor-Rivest scheme to clarify
the difference between our analysis and Nguyen-Stern’s analysis.
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In Chor-Rivest scheme, A is set as A = nk. Hence, letting p = k/n, we have

D =
H(p)
p log n

.

If D < gLO(p), we can conclude that the Chor-Rivest scheme is vulnerable to
the lattice attack. This condition can be transformed into

p log n > p + (1 + p)H(p/(1 + p)).

We can easily verify that p+(1+p)H(p/(1+p)) is lower bounded by H(p). Hence,
we can simply write the condition as log n > H(p)/p. On the other hand, from
the unique decryptability, log n > H(p)/p is always satisfied. Hence, Chor-Rivest
scheme is vulnerable to the lattice attack in any parameter setting.

Next, we show some numerical examples. Table 1 shows usual density d,
pseudo-density κ, our density D, the critical bound gLO(p) and gCJ(p) for
Chor-Rivest parameters in proposed in [2]. All parameters proposed in [2] is
set as d ≥ 1 to prevent lattice attack. However, since D < gLO(p) (and also
D < gCJ(p)) for any parameters, the reduction to SVP/CVP cannot be pre-
vented.

Table 1. Application to the Chor-Rivest parameters

n k A d κ D gLO(p) gCJ(p)

197 24 182 bit 1.08 1.005 0.58 0.79 0.87

211 24 185 bit 1.14 1.002 0.58 0.79 0.87

243 24 190 bit 1.28 1.001 0.59 0.80 0.87

256 25 200 bit 1.28 1.00 0.59 0.81 0.87

4.2 Application to OTU Scheme

Okamoto et al. showed the following two kinds of parameter setting [11].

1. For c < 1, k = 2(log n)c

.
2. k = O( n

log n ).

For two setting, if n → ∞, p = k/n → 0. They claimed that since density d is at
least 1, (actually d is asymptotically ∞), the lattice attack can be prevented [11].
However, this claim is not correct.

We will show one typical numerical example. Consider the following parameter
setting: p = k/n = 1/10, A ≈ 2n. In this setting, usual density is d = 1 and
our density is D = 0.47. It holds that D < gLO(1/10) = 0.80 (and also D <
gCJ(1/10)). So, in this setting, the reduction to SVP/CVP is not prevented.
Hence, the security of OTU scheme is not supported by an argument based on
density. It is strongly believed that if the lattice dimension is sufficiently high,
SVP/CVP cannot be solved in polynomial time or practical computational time.
Hence, the security of OTU should be based on the difficulty of SVP and CVP
and the parameter for OTU should be carefully chosen such that SVP and CVP
will not be solved.
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5 Algorithms for Directly Solving Subset Sum Problem

Some algorithms for directly solving subset sum problem have been proposed.
Schroppel and Shamir proposed the algorithm with computational time: O(2n/2)
and storage: O(2n/4) [14]. Their algorithm does not use any inner structure.

Coppersmith proposed an algorithm which solves subset sum problem with
promise that the Hamming weight of solution is known and limited to k [16]. This
algorithm is based on meet-in-the middle technique. Its complexity is estimated

by O(
√(

n
k

)
). From Eq. (8), it is approximated by O(

√
2m). Chor and Rivest

also proposed another Coppersmith-like algorithm [2]. Since the solution space
is given by 2m, the computational cost for exhaustive search is given by 2m.
Intuitively, their algorithm achieves the square root speed up. The above fact
mentions that the superficial message length n (or the size of knapsack) is not
important itself. The actual message length m (or the size of solution space) is
rather important. The above discussion supports the validity of our proposed
density.

6 Concluding Remarks

In this paper, we revisited the lattice attack to knapsack cryptosystems and
introduced a new notion of density. Our density unifies naturally two density:
usual density and pseudo-density. Then, we derived the necessary conditions for
our density that lattice attack succeeds. We also showed that the lattice attack
almost cannot be prevented by decreasing the Hamming weight of messages.

Our derived conditions are useful for judging whether a target knapsack
scheme is vulnerable to lattice attack. The following is an explicit procedure.

Step 1. Calculate D = nH(k/n)/ logA by n, k and A.
Step 2. If D < 0.8677, we decide the scheme is vulnerable to lattice attack and

stop.
Step 3. If D < gCJ(k/n), we decide the scheme is vulnerable and stop.
Step 4. If D < H(k/n)/f(p − p2), we decide the scheme is vulnerable. Other-

wise, we decide the scheme is secure against lattice attack.

The above procedure is valid for any values of Hamming weight. In Steps 1–3 of
this procedure, we need not do complicated calculation. Hence, our result can
be used for simple judgment.
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Abstract. A well-known attack on RSA with low secret-exponent d
was given by Wiener in 1990. Wiener showed that using the equation
ed − (p − 1)(q − 1)k = 1 and continued fractions, one can efficiently
recover the secret-exponent d and factor N = pq from the public key

(N, e) as long as d < 1
3N

1
4 . In this paper, we present a generalization

of Wiener’s attack. We show that every public exponent e that satisfies
eX − (p − u)(q − v)Y = 1 with

1 ≤ Y < X < 2− 1
4 N

1
4 , |u| < N

1
4 , v =

�
− qu

p − u

�
,

and all prime factors of p − u or q − v are less than 1050 yields the
factorization of N = pq. We show that the number of these exponents is

at least N
1
2 −ε.

Keywords: RSA, Cryptanalysis, ECM, Coppersmith’s method, Smooth
numbers.

1 Introduction

The RSA cryptosystem invented by Rivest, Shamir and Adleman [20] in 1978 is
today’s most important public-key cryptosystem. The security of RSA depends
on mainly two primes p, q of the same bit-size and two integers e, d satisfying
ed ≡ 1 (mod (p−1)(q−1)). Throughout this paper, we label the primes so that
q < p < 2q. The RSA modulus is given by N = pq and Euler’s totient function is
φ(N) = (p−1)(q−1). The integer e is called the public (or encrypting) exponent
and d is called the private (or decrypting) exponent.

To reduce the decryption time or the signature-generation time, one may wish
to use a short secret exponent d. This was cryptanalysed by Wiener [22] in 1990
who showed that RSA is insecure if d < 1

3N0.25. Wiener’s method is based on
continued fractions. These results were extended by Boneh and Durfee [3] in 1999
to d < N0.292. The method of Boneh and Durfee is based on Coppersmith’s re-
sults for finding small solutions of modular polynomial equations [6]. In 2004,

S. Vaudenay (Ed.): AFRICACRYPT 2008, LNCS 5023, pp. 174–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Blömer and May [2] presented a generalization of Wiener’s attack by combin-
ing continued fractions and Coppersmith’s method. They showed that RSA is
insecure for every (N, e) satisfying ex + y ≡ 0 (mod φ(N)) with x < 1

3N1/4 and
|y| = O

(
N−3/4ex

)
.

In this paper, we present another generalization of Wiener’s attack. Our
method combines continued fractions, integer partial factorization, integer re-
lation detection algorithms and Coppersmith’s method. Let us introduce the
polynomial

ψ(u, v) = (p − u)(q − v).

Observe that ψ(1, 1) = (p − 1)(q − 1) = φ(N), so ψ could be seen as a gener-
alization of Euler’s function. We describe an attack on RSA that works for all
public exponents e satisfying

eX − ψ(u, v)Y = 1, (1)

with integers X , Y , u, v such that

1 ≤ Y < X < 2−
1
4 N

1
4 , |u| < N

1
4 , v =

[
− qu

p − u

]
,

with the extra condition that all prime factors of p−u or q− v are less than the
Elliptic Curve Method of Factoring smoothness bound Becm = 1050. Here and
throughout this paper, we let [x] and �x� denote the nearest integer to the real
number x and the fractional part of x.

Observe that when u = 1, we get v = −1 and rewriting (1) as

eX − (p − 1)(q + 1)Y = 1,

a variant of Wiener’s attack enables us to compute p and q without assuming
any additional condition on the prime divisors of p − 1 nor q + 1.

Our new method works as follows: We use the Continued Fraction Algorithm
(see e.g. [11], p. 134) to find the unknowns X and Y among the convergents of
e
N . Then we use Lenstra’s Elliptic Curve Factorization Method (ECM) [14] to
partially factor eX−1

Y . Afterwards, we use an integer relation detection algorithm
(notably LLL [15] or PSLQ [7]) to find the divisors of the Becm-smooth part of
eX−1

Y in a short interval. Finally, we show that a method due to Coppersmith [6]
can be applied. Moreover, we show that the number of keys (N, e) for which our
method works is at least N

1
2−ε.

Organization of the paper. Section 2 presents well known results from number
theory that we use. After presenting some useful lemmas in Section 3, and some
properties of ψ in Section 4, we present our attack in Section 5 and in Section
6, we show that the number of keys (N, e) for which our method works is lower
bounded by N

1
2−ε. We briefly conclude the paper in Section 7.
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2 Preliminaries

2.1 Continued Fractions and Wiener’s Attack

The continued fraction expansion of a real number ξ is an expression of the form

ξ = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
where a0 ∈ ZZ and ai ∈ IN−{0} for i ≥ 1. The numbers a0, a1, a2, · · · are called
the partial quotients. As usual, we adopt the notation ξ = [a0, a1, a2, · · · ]. For
i ≥ 0, the rationals ri

si
= [a0, a1, a2, · · · , ai] are called the convergents of the

continued fraction expansion of ξ. If ξ = a
b is rational with gcd(a, b) = 1, then

the continued fraction expansion is finite and the Continued Fraction Algorithm
(see [11], p. 134) finds the convergents in time O((log b)2). We recall a result on
diophantine approximations (see Theorem 184 of [11]).

Theorem 1. Suppose gcd(a, b) = gcd(x, y) = 1 and∣∣∣∣ab − x

y

∣∣∣∣ <
1

2y2
.

Then x
y is one of the convergents of the continued fraction expansion of a

b .

Let us recall Wiener’s famous attack on RSA with N = pq and q < p < 2q. The
idea behind Wiener’s attack on RSA [22] with small secret exponent d is that
for d < 1

3N1/4, the fraction e/N is an approximation to k/d and hence, using
Theorem 1, k/d can be found from the convergents of the continued fraction
expansion of e/N . Wiener’s attack works as follows. Since ed− kφ(N) = 1 with
φ(N) = N − (p + q − 1) and p + q − 1 < 3

√
N then kN − ed = k(p + q − 1)− 1.

Therefore, ∣∣∣∣kd − e

N

∣∣∣∣ =
|k(p + q − 1) − 1|

Nd
<

3k
√

N

Nd
.

Now, assume that d < 1
3N1/4. Since kφ(N) = ed − 1 < ed and e < φ(N), then

k < d < 1
3N1/4. Hence∣∣∣∣kd − e

N

∣∣∣∣ <
N3/4

Nd
=

1
dN1/4

<
1

2d2
.

From Theorem 1, we know that k/d is one of the convergents of the continued
fraction expansion of e/N .

2.2 Coppersmith’s Method

The problem of finding small modular roots of a univariate polynomial has been
extensively studied by Coppersmith [6], Howgrave-Graham[13], May [17] and oth-
ers. Let f(x) be a monic univariate polynomial with integer coefficients of degree
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δ. Let N be an integer of unknown factorization and B = N1/δ. The problem is
to find all integers x0 such that |x0| < B and f(x0) ≡ 0 (mod N). In 1997, Cop-
persmith presented a deterministic algorithm using

(
2δ log N

)O(1) bit operations
to solve this problem. The algorithm uses lattice reduction techniques, and as an
application, the following theorem was proved (see also [17], Theorem 11).

Theorem 2. Let N = pq be an RSA modulus with q < p < 2q. Given an
approximation p̃ of p with |p − p̃| < N

1
4 , N can be factored in time polynomial

in log N .

2.3 Smooth Numbers

A few words about notation: let f and g be functions of x. The notation f 	 g
denotes that f(x)/g(x) is bounded above and below by positive numbers for large
values of x. The notation f = O(g) denotes that ∃c such that f(x) ≤ cg(x). The
notation f ∼ g denotes that limx→∞

f(x)
g(x) = 1.

Let y be a positive constant. A positive number n is y-smooth if all prime
factors of n are less than y. As usual, we use the notation Ψ(x, y) for the counting
function of the y-smooth numbers in the interval [1, x], that is,

Ψ(x, y) = # {n : 1 ≤ n ≤ x, n is y-smooth} .

The ratio Ψ(x, y)/[x] may be interpreted as the probability that a randomly
chosen number n in the interval [1, x] has all its prime factors less than y. The
function Ψ(x, y) plays a central role in the running times of many integer fac-
toring and discrete logarithm algorithms, including the Elliptic Curve Method
(ECM) [14] and the number field sieve method (NFS) [16]. Let ρ(u) be the
Dickman-de Bruijn function (see [9]). In 1986, Hildebrand [12] showed that

Ψ(x, y) = xρ(u)
{

1 + O

(
log(u + 1)

log y

)}
where x = yu (2)

holds uniformly in the range y > exp
{
(log log x)5/3+ε

}
. Studying the distribu-

tion in short intervals of integers without large prime factors, Friedlander and
Granville [8] showed that

Ψ(x + z, y)− Ψ(x, y) ≥ c
z

x
Ψ(x, y), (3)

in the range x ≥ z ≥ x
1
2+δ, x ≥ y ≥ x1/γ and x is sufficiently large where δ and

γ are positive constants and c = c(δ, γ) > 0.
In order to study the distribution of divisors of a positive integer n, Hall and

Tenenbaum [10] studied the counting function

U(n, α) = #
{

(d, d′) : d|n, d′|n, gcd(d, d′) = 1,

∣∣∣∣log
d

d′

∣∣∣∣ < (log n)α

}
, (4)

where α is a real number. They proved that for any fixed α < 1 and almost all n,

U(n, α) ≤ (log n)log 3−1+α+o(1), (5)

where the o(1) term tends to 0 as n tends to +∞.
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2.4 ECM

The Elliptic Curve Method (ECM) was originally proposed by H.W. Lenstra [14]
in 1984 and then extended by Brent [4] and Montgomery [18]. It is suited to find
small prime factors of large numbers. The original part of the algorithm proposed
by Lenstra is referred to as Phase 1, and the extension by Brent and Montgomery
is called Phase 2. ECM relies on Hasse’s theorem: if p is a prime factor of a large
number M , then an elliptic curve over ZZ/pZZ has group order p + 1 − t with
|t| < 2

√
p, where t depends on the curve. If p + 1 − t is a smooth number,

then ECM will probably succeed and reveal the unknown factor p. ECM is a
sub-exponential factoring algorithm, with expected run time of

O
(
exp

{√
(2 + o(1)) log p log log p

}
Mult(M)

)
where the o(1) term tends to 0 as p tends to +∞ and Mult(M) denotes the
cost of multiplication mod M . The largest factor known to have been found by
ECM is a 67-digit factor of the number 10381 + 1, found by B. Dodson with
P. Zimmerman’s GMP-ECM program in August 2006 (see [23]). According to
Brent’s formula [5]

√
D = (Y − 1932.3)/9.3 where D is the number of decimal

digits in the largest factor found by ECM up to a given date Y , a 70-digit factor
could be found by ECM around 2010.

In Table 1, we give the running times obtained on a Intel(R) Pentium(R) 4
CPU 3.00 GHz to factor an RSA modulus N = pq of size 2n bits with q < p < 2q
with ECM, using the algebra system Pari-GP[19].

Table 1. Running times for factoring N = pq with q < p < 2q

n = Number of bits of q 60 70 80 90 100 110 120 130

T = Time in seconds 0.282 0.844 3.266 13.453 57.500 194.578 921.453 3375.719

Extrapolating Table 1, we find the formula

log T = 2.609
√

n − 21.914 or equivalently T = exp
{
2.609

√
n − 21.914

}
,

where T denotes the running time to factor an RSA modulus N = pq with 2n
bits. Extrapolating, we can extract a prime factor of 50 digits (≈ 166 bits) in 1
day, 9 hours and 31 minutes. Throughout this paper, we then assume that ECM
is efficient to extract prime factors up to the bound Becm = 1050.

3 Useful Lemmas

In this section we prove three useful lemmas. We begin with a simple lemma
fixing the sizes of the prime factors of the RSA modulus.
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Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Then

2−
1
2 N

1
2 < q < N

1
2 < p <

√
2N

1
2 .

Proof. Assume q < p < 2q. Multiplying by p, we get N < p2 < 2N or equiv-
alently N

1
2 < p <

√
2N

1
2 . Since q = N

p , we obtain 2−
1
2 N

1
2 < q < N

1
2 and the

lemma follows. ��
Our second lemma is a consequence of Theorem 2 and Lemma 1.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. Suppose |u| < N
1
4 .

If p − u < N
1
2 or p − u >

√
2N

1
2 , then the factorization of N can be found in

polynomial time.

Proof. Assume q < p < 2q and |u| < N
1
4 . If p − u < N

1
2 , then p < N

1
2 + u <

N
1
2 + N

1
4 . Combining this with Lemma 1, we obtain

N
1
2 < p < N

1
2 + N

1
4 .

It follows that p̃ = N
1
2 is an approximation of p with 0 < p − p̃ < N

1
4 . By

Theorem 2, we deduce that the factorization of N can be found in polynomial
time.

Similarly, if p − u >
√

2N
1
2 , then p >

√
2N

1
2 + u >

√
2N

1
2 − N

1
4 and using

Lemma 1, we get √
2N

1
2 > p >

√
2N

1
2 − N

1
4 .

It follows that p̃ =
√

2N
1
2 satisfies 0 > p − p̃ > −N

1
4 . Again, by Theorem 2, we

conclude that the factorization of N can be found in polynomial time. ��
Our third lemma is a consequence of the Fermat Factoring Method (see e.g. [21]).
We show here that it is an easy consequence of Theorem 2 and Lemma 1.

Lemma 3. Let N = pq be an RSA modulus with q < p < 2q. If p − q < N
1
4 ,

then the factorization of N can be found in polynomial time.

Proof. Assume q < p < 2q and p − q < N
1
4 . Combining with Lemma 1, we get

N
1
2 < p < q + N

1
4 < N

1
2 + N

1
4 .

It follows that p̃ = N
1
2 is an approximation of p with 0 < p − p̃ < N

1
4 . By

Theorem 2, we conclude that the factorization of N can be found in polynomial
time. ��

4 Properties of ψ(u, v)

Let N = pq be an RSA modulus with q < p < 2q. The principal object of
investigation of this section is the polynomial ψ(u, v) = (p − u)(q − v) when p
and q are fixed.
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Lemma 4. Let u be an integer with |u| < N
1
4 . Put v =

[
− qu

p−u

]
. Then

|ψ(u, v) − N | < 2−
1
2 N

1
2 .

Proof. Since v is the nearest integral value to − qu
p−u , then

−1
2
≤ − qu

p− u
− v <

1
2
.

Hence

q +
qu

p − u
− 1

2
≤ q − v < q +

qu

p − u
+

1
2
.

Multiplying by p − u, we get

N − 1
2
(p − u) ≤ (p − u)(q − v) < N +

1
2
(p − u).

It follows that

|(p − u)(q − v) − N | ≤ 1
2
(p − u).

Since |u| < N
1
4 , then by Lemma 2, we can assume p−u <

√
2N

1
2 and we obtain

|(p − u)(q − v) − N | ≤ 2−
1
2 N

1
2 .

This completes the proof. ��

Lemma 5. Let u be an integer with |u| < N
1
4 . Set v =

[
− qu

p−u

]
. Then |v| ≤ |u|.

Proof. Assume q < p < 2q and |u| < N
1
4 . By Lemma 3, we can assume that

p − q > N
1
4 . Then

u < N
1
4 < p − q,

and q < p − u. Hence

|v| =
[

q|u|
p − u

]
≤ q|u|

p − u
+

1
2

< |u| + 1
2
.

Since u and v are integers, then |v| ≤ |u| and the lemma follows. ��

Lemma 6. Let u, u′, be integers with |u|, |u′| < N
1
4 . Define

v =
[
− qu

p − u

]
and v′ =

[
− qu′

p − u′

]
.

If v = v′, then |u′ − u| ≤ 1.
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Proof. Suppose v′ = v. Then, from the definitions of v and v′, we obtain∣∣∣∣ qu′

p − u′ −
qu

p − u

∣∣∣∣ < 1,

Transforming this, we get

|u′ − u| <
(p − u)(p − u′)

N
.

By Lemma 3 we can assume that p − u <
√

2N
1
2 and p − u′ <

√
2N

1
2 . Then

|u′ − u| <

(√
2N

1
2

)2

N
= 2.

Since u and u′ are integers, the lemma follows. ��
Lemma 7. Let u, u′, be integers with |u|, |u′| < N

1
4 . Define

v =
[
− qu

p − u

]
and v′ =

[
− qu′

p − u′

]
.

If ψ(u, v) = ψ(u′, v′), then u = u′.

Proof. Assume that ψ(u, v) = ψ(u′, v′), that is (p−u)(q−v) = (p−u′)(q−v′). If
v = v′, then p−u = p−u′ and u = u′. Next, assume for contradiction that v �= v′.
Without loss of generality, assume that u > u′. Put ψ = ψ(u, v) = ψ(u′, v′) and
let U(ψ, α) as defined by (4), i.e.

U(ψ, α) = #
{

(d, d′) : d|ψ, d′|ψ, gcd(d, d′) = 1,

∣∣∣∣log
d

d′

∣∣∣∣ < (log ψ)α

}
.

Let g = gcd(p − u, p − u′), d = p−u
g and d′ = p−u′

g . Hence gcd(d, d′) = 1. We
have

d

d′
=

p − u

p − u′ = 1 − u − u′

p − u′ .

By Lemma 2, we can assume that p − u > N
1
4 . For N > 28 we have

0 <
u − u′

p − u′ <
2N

1
4

N
1
2

= 2N− 1
4 <

1
2
.

Using that | log(1 − x)| < 2x holds for 0 < x < 1
2 this yields∣∣∣∣log

d

d′

∣∣∣∣ =
∣∣∣∣log

(
1 − u − u′

p − u′

)∣∣∣∣ < 2 × u − u′

p − u′ < 2
√

2N− 1
4 = (log ψ)α

,

where

α =
log

(
2
√

2N− 1
4

)
log(log(ψ))

.
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It follows that U(ψ, α) ≥ 1. On the other hand, we have

α =
log

(
2
√

2N− 1
4

)
log(log(ψ))

≤
log

(
2
√

2N− 1
4

)
log

(
log

(
N − 2−

1
2 N

1
2

)) < 1 − log 3,

where we used Lemma 4 in the medium step and N > 27 in the final step. Using
the bound (5), we have actually

U(ψ, α) ≤ (log ψ)log 3−1+α+o(1) ≤ (log N)δ+o(1),

where δ = log 3 − 1 + α < 0 and we deduce U(ψ, α) = 0, a contradiction. Hence
v = v′, u = u′ and the lemma follows. ��
Lemma 8. Let u, u′ be integers with |u|, |u′| < N

1
4 . Define

v =
[
− qu

p − u

]
and v′ =

[
− qu′

p − u′

]
.

Assume that ψ(u, v) < ψ(u′, v′). Let [a0, a1, a2, · · · ] be the continued fraction
expansion of ψ(u,v)

ψ(u′,v′) . Then a0 = 0, a1 = 1 and a2 > 2−
1
2 N

1
2 − 1

2 .

Proof. Let us apply the continued fraction algorithm (see e.g. of [11], p. 134).
Assuming ψ(u, u) < ψ(u′, v′), we get

a0 =
⌊

ψ(u, v)
ψ(u′, v′)

⌋
= 0.

Next, we have

a1 =

⎢⎢⎢⎣ 1
ψ(u,v)

ψ(u′,v′) − a0

⎥⎥⎥⎦ =
⌊

ψ(u′, v′)
ψ(u, v)

⌋
.

By Lemma 4, we have

0 < ψ(u′, v′) − ψ(u, v) ≤ |ψ(u, v) − N | + |ψ(u′, v′) − N | <
√

2N
1
2 . (6)

Combining this with Lemma 4, we get

0 <
ψ(u′, v′)
ψ(u, v)

− 1 =
ψ(u′, v′) − ψ(u, v)

ψ(u, v)
<

√
2N

1
2

ψ(u, v)
<

√
2N

1
2

N − 2−
1
2 N

1
2

< 1.

From this, we deduce a1 = 1. Finally, combining (6) and Lemma 4, we get

a2 =

⎢⎢⎢⎣ 1
ψ(u′,v′)
ψ(u,v) − a1

⎥⎥⎥⎦ =
⌊

ψ(u, v)
ψ(u′, v′) − ψ(u, v)

⌋
>

N − 2−
1
2 N

1
2√

2N
1
2

= 2−
1
2 N

1
2 − 1

2
.

This completes the proof. ��
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5 The New Attack

In this section we state our new attack. Let N = pq be an RSA modulus with
q < p < 2p. Let e be a public exponent satisfying an equation eX−ψ(u, v)Y = 1
with integers X , Y , u, v such that

1 ≤ Y < X < 2−
1
4 N

1
4 , |u| < N

1
4 , v =

[
− qu

p − u

]
,

and with the condition that all prime factors of p−u or q−v are ≤ Becm = 1050.
Our goal is to solve this equation. As in Wiener’s approach, we use the continued
fraction algorithm to recover the unknown values X and Y .

Theorem 3. Let N = pq be an RSA modulus with q < p < 2p. Suppose that
the public exponent e satisfies an equation eX − ψ(u, v)Y = 1 with

|u| < N
1
4 , v =

[
− qu

p − u

]
, 1 ≤ Y < X < 2−

1
4 N

1
4 .

Then Y
X is one of the convergents of the continued fraction expansion of e

N .

Proof. Starting with the equation eX − ψ(u, v)Y = 1, we get

eX − NY = 1 − (N − ψ(u, v))Y.

Together with Lemma 4, this implies∣∣∣∣ e

N
− Y

X

∣∣∣∣ =
|1 − (N − ψ(u, v))Y |

NX

≤ 1 + |(N − ψ(u, v))| Y
NX

≤ 1 + 2−
1
2 N

1
2 Y

NX

≤ 2 +
√

2N
1
2 (X − 1)

2NX
.

Suppose we can upperbound the right-hand side term by 1
2X2 , that is

2 +
√

2N
1
2 (X − 1)

2NX
<

1
2X2

,

then, applying Theorem 1 the claim follows. Rearranging to isolate X , this leaves
us with the condition

√
2N

1
2 X2 −

(√
2N

1
2 − 2

)
X − N < 0.

It is not hard to see that the condition is satisfied if X < 2−
1
4 N

1
4 . This gives us

the theorem. ��
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Afterwards, we combine ECM, integer relation detection algorithms and Cop-
persmith’s method to factor N = pq.

Theorem 4. Let N = pq be an RSA modulus with q < p < 2p. Let Becm be
the ECM-bound. Suppose that the public exponent e < N satisfies an equation
eX − ψ(u, v)Y = 1 with

|u| < N
1
4 , v =

[
− qu

p − u

]
, 1 ≤ Y < X < 2−

1
4 N

1
4 .

If p − u or q − v is Becm-smooth, then we can efficiently factor N .

Proof. By Theorem 3 we know that X and Y can be found among the conver-
gents of the continued expansion of e

N . From X and Y , we get

ψ(u, v) = (p − u)(q − v) =
eX − 1

Y
.

Without loss of generality, suppose that p − u is Becm-smooth. Using ECM,
write eX−1

Y = M1M2 where M1 is Becm-smooth. Let ω(M1) denote the number
of distinct prime factors of M1. Then the prime factorization of M1 is of the
form

M1 =
ω(M1)∏

i=1

pai

i ,

where the ai ≥ 1 are integers and the pi are distinct primes ≤ Becm. Since p−u
is Becm-smooth, then p − u a divisor of M1, so that

p − u =
ω(M1)∏

i=1

pxi

i , (7)

where the xi are integers satisfying 0 ≤ xi ≤ a1. By Lemma 2, we can assume
that N

1
2 < p − u <

√
2N

1
2 . Combining this with (7) and taking logarithms, we

get

0 <

ω(M1)∑
i=1

xi log pi − 1
2

log N <
1
2

log 2. (8)

These inequalities are related to Baker’s famous theory of linear forms in log-
arithms [1] and can be formulated as a nearly closest lattice problem in the
1-norm. They can be solved using the LLL [15] or the PSLQ algorithm [7]. The
complexity of LLL and PSLQ depends on ω(M1). Since Hardy and Ramanujan
(see e.g.Theorem 431 of [11]), we know that, in average, ω(M1) ∼ log log M1 if
M1 is uniformly distributed. Since X < 2−

1
4 N

1
4 , we have for e < N

M1 ≤ eX − 1
Y

<
eX

Y
≤ eX < N

5
4 ,
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This implies that the number of primes dividing M1 satisfies

ω(M1) ∼ log log M1 ∼ log log N.

Next, let us investigate the number of solutions of (8) which is related to the
number of divisors of M1. Let τ(M1) denote the number of positive divisors of
M1. The prime decomposition of M1 gives the exact value

τ(M1) =
ω(M1)∏

i=1

(1 + ai).

By Dirichlet’s Theorem, we know that if M1 is uniformly distributed, then the
average order of τ(M1) is log M1 (see Theorem 319 of [11]). It follows that the
average number of divisors of M1 is

τ(M1) ∼ log(M1) ∼ log(N).

This gives in average the number of solutions to the inequalities (8).
Next, let D be a divisor of M1 satisfying (8). If D is a good candidate for

p−u with |u| < N
1
4 , then applying Theorem 2, we get the desired factor p. This

concludes the theorem. ��
Notice that the running time is dominated by ECM since every step in our at-

tack can be done in polynomial time and the number of convergents and divisors
are bounded by O(log N).

6 The Number of Exponents for the New Method

In this section, we estimate the number of exponents for which our method
works. Let N = pq be an RSA modulus with q < p < 2q. The principal object
of investigation of this section is the set

H(N) =
{
e : e < N, ∃u ∈ V (p), ∃X < 2−

1
4 N

1
4 , e ≡ X−1 (mod ψ(u, v))

}
,

where

V (p) =
{

u : |u| < p
1
2 , p − u is Becm-smooth

}
, (9)

and v =
[
− qu

p−u

]
.

We will first show that every public exponent e ∈ H(N) is uniquely defined
by a tuple (u, X). We first deal with the situation when an exponent e is defined
by different tuples (u, X) and (u, X ′).

Lemma 9. Let N = pq be an RSA modulus with q < p < 2p. Let u, v, X,
X ′ be integers with 1 ≤ X, X ′ < 2−

1
4 N

1
4 and gcd(XX ′, ψ(u, v)) = 1 where

v =
[
− qu

p−u

]
. Define

e ≡ X−1 (mod ψ(u, v)) and e′ ≡ X ′−1 (mod ψ(u, v)).

If e = e′, then X = X ′.
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Proof. Since e ≡ X−1 (mod ψ(u, v)), there exists a positive integer Y such that
eX−ψ(u, v)Y = 1 with gcd(X, Y ) = 1. Similarly, e′ satisfies e′X ′−ψ(u, v)Y ′ = 1
with gcd(X ′, Y ′) = 1. Assume that that e = e′. Then

1 + ψ(u, v)Y
X

=
1 + ψ(u, v)Y ′

X ′ .

Combining this with Lemma 4, we get

|XY ′ − X ′Y | =
|X ′ − X |
ψ(u, v)

<
2−

1
4 N

1
4

N − 2−
1
2 N

1
2

< 1.

Hence XY ′ = X ′Y and since gcd(X, Y ) = 1, we get X ′ = X and the lemma
follows. ��
Next, we deal with the situation when an exponent e is defined by different
tuples (u, X) and (u′, X ′) with u �= u′ and v = v′.

Lemma 10. Let N = pq be an RSA modulus with q < p < 2p. Let u, u′ be
integers with |u|, |u′| < N

1
4 . Let X, X ′ be integers with 1 ≤ X, X ′ < 2−

1
4 N

1
4 ,

gcd(X, ψ(u, v)) = 1, gcd(X ′, ψ(u′, v′)) = 1 where v =
[
− qu

p−u

]
and v′ =

[
− qu′

p−u′

]
.

Define

e ≡ X−1 (mod ψ(u, v)) and e′ ≡ X ′−1 (mod ψ(u′, v′)).

If v = v′ and e = e′, then X = X ′ and u = u′.

Proof. As in the proof of Lemma 9, rewrite e and e′ as

e =
1 + ψ(u, v)Y

X
and e′ =

1 + ψ(u′, v′)Y ′

X ′ .

Suppose e = e′. Then

|ψ(u′, v′)XY ′ − ψ(u, v)X ′Y | = |X ′ − X |. (10)

Assuming v = v′ and using ψ(u, v) = (p − u)(q − v), ψ(u′, v′) = (p − u′)(q − v)
in (10), we get

(q − v) |(p − u′)XY ′ − (p − u)X ′Y | = |X ′ − X |.
By Lemma 2, we have q−v > 2−

1
2 N

1
2 −N

1
4 > N

1
4 and since |X ′−X | < 2−

1
4 N

1
4 ,

we get {
X ′ − X = 0,
(p − u′)XY ′ − (p − u)X ′Y = 0.

Hence X = X ′ and (p−u′)Y ′ = (p−u)Y . Suppose for contradiction that u′ �= u.
Put g = gcd(p − u′, p − u). Then g divides (p − u) − (p − u′) = u′ − u. Since
v = v′, by Lemma 6 we have |u′ − u| ≤ 1, so g = 1. Hence gcd(p− u′, p− u) = 1
and p − u divides Y ′. Since p − u > N

1
2 and Y ′ < X ′ < 2−

1
4 N

1
4 , this leads to a

contradiction, so we deduce that u′ = u. This terminates the proof. ��
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Using the methods used to prove Lemma 9 and Lemma 10 plus some additional
arguments, we shall prove the following stronger result.

Theorem 5. Let N = pq be an RSA modulus with q < p < 2p. Let u, u′

be integers with |u|, |u′| < N
1
4 . Let X, X ′ be integers with 1 ≤ X, X ′ <

2−
1
4 N

1
4 , gcd(X, ψ(u, v)) = 1, gcd(X ′, ψ(u′, v′)) = 1 where v =

[
− qu

p−u

]
and

v′ =
[
− qu′

p−u′

]
. Define

e ≡ X−1 (mod ψ(u, v)) and e′ ≡ X ′−1 (mod ψ(u′, v′)).

If e = e′, then u = u′, v = v′ and X = X ′.

Proof. Assume that e = e′. Then, as in the proof of Lemma 10, e and e′ sat-
isfy (10). We first take care of some easy cases.

If u = u′, then v = v′ and by Lemma 9, we get X = X ′.
If v = v′, then by Lemma 10, we get u = u′ and X = X ′.
Without loss of generality, suppose that ψ(u, v) < ψ(u′, v′). Transform-

ing (10), we get∣∣∣∣XY ′

X ′Y
− ψ(u, v)

ψ(u′, v′)

∣∣∣∣ =
|X ′ − X |

X ′Y ψ(u′, v′)
≤ max(X ′, X)

X ′Y ψ(u′, v′)
<

1
2(X ′Y )2

,

where the final step is trivial since, for N ≥ 210

2 max(X ′, X)X ′Y < 2 ×
(
2−

1
4 N

1
4

)3

< N − 2−
1
2 N

1
2 < ψ(u′, v′).

Combined with Theorem 1, this implies that XY ′

X′Y is one of the convergents of
the continued fraction expansion of ψ(u,v)

ψ(u′,v′) . By Lemma 8, the first non trivial

convergents are 1
1 and a2

a2+1 where a2 > 2−
1
2 N

1
2 − 1

2 . Observe that

a2 + 1 > 2−
1
2 N

1
2 − 1

2
+ 1 = 2−

1
2 N

1
2 +

1
2

> 2−
1
2 N

1
2 =

(
2−

1
4 N

1
4

)2

> X ′Y.

This implies that the only possibility for XY ′

X′Y to be a convergent of ψ(u,v)
ψ(u′,v′) is

1
1 . This gives XY ′ = X ′Y . Since gcd(X, Y ) = gcd(X ′, Y ′) = 1 then X = X ′

and Y = Y ′. Replacing in (10), we get ψ(u′, v′) = ψ(u, v) and by Lemma 7, we
deduce u = u′. This completes the proof. ��
We now determine the order of the cardinality of the set H(N). Recall that the
elements of H(N) are uniquely defined by the congruence

e ≡ X−1 (mod ψ(u, v)),

where |u| < N
1
4 , v =

[
− qu

p−u

]
, 1 ≤ X < 2−

1
4 N

1
4 and gcd(X, ψ(u, v)) = 1. In

addition, p − u is Becm-smooth.
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Theorem 6. Let N = pq be an RSA modulus with q < p < 2p. We have

#H(N) ≥ N
1
2−ε,

where ε is a small positive constant.
Proof. Assume Becm < p − p

1
2 . Let us consider the set V (p) as defined by (9).

Put x = p − p
1
2 , z = 2p

1
2 and y = Becm. Define δ > 0 and γ > 0 such that

x
1
2 +δ ≤ z, y = x1/γ .

Then x ≥ z ≥ x
1
2+δ, x ≥ y ≥ x1/γ and the conditions to apply (3) are fulfilled.

On the other hand, we have y > exp
{
(log log x)5/3+ε

}
for x < exp

{
107−ε

}
and

the condition to apply (2) is fulfilled. Combining (3) and (2), we get

#V (p) = Ψ(x + z, y) − Ψ(x, y) ≥ c
z

x
Ψ(x, y) = czρ (γ)

{
1 + O

(
log (γ + 1)

log(y)

)}
,

where c = c(δ, γ) > 0 and ρ (γ) is the Dickman-de Bruijn ρ-function (see Table 2).
Hence

#V (p) ≥ cρ (γ) z = 2cρ (γ) p
1
2 .

Since trivially #V (p) < z = 2p
1
2 , we get #V (p) 	 p

1
2 . Combining this with

Table 2, we conclude that #V (p) is lower bounded as follows

#V (p) ≥ p
1
2−ε′

= N
1
4−ε1 ,

with small constants ε′ > 0 and ε1 > 0.
Next, for every integer u with |u| < N

1
4 put

W (u) =
{

X : 1 ≤ X < 2−
1
4 N

1
4 , (X, ψ(u, v)) = 1

}
,

where v =
[
− qu

p−u

]
. Setting m =

⌊
2−

1
4 N

1
4

⌋
, we have

#W (u) =
m∑

X=1
(X,ψ(u,v))=1

1 =
∑

d|ψ(u,v)

μ(d)
⌊m

d

⌋
≥ m

∑
d|ψ(u,v)

μ(d)
d

=
mφ(ψ(u, v))

ψ(u, v)

where μ(.) is the Möbius function and φ(.) is the Euler totient function. We shall
need the well known result (see Theorem 328 of [11]),

φ(n)
n

≥ C

log log n
,

where C is a positive constant. Applying this with n = ψ(u, v) and using
Lemma 4, we get

#W (u) ≥ Cm

log log ψ(u, v)
≥ 2−

1
4 CN

1
4

log log
(
N + 2−

1
2 N

1
2

) = N
1
4−ε2 ,

with a small constant ε2 > 0.
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It remains to show that #H(n) ≥ N
1
4−ε where ε is a positive constant. Indeed,

for every u ∈ V (p) there are at least N
1
4−ε2 integers X ∈ W (u). Hence

#H(n) ≥ #V (p)#W (u) ≥ N
1
2−ε1−ε2 .

Setting ε = ε1 + ε2, this completes the proof of the theorem. ��

Table 2. Table of values of ρ (γ) with
�
p − √

p
� 1

γ = Becm = 1050

Number of bits of p 256 512 1024 2048

γ =
log

�
p − √

p
�

log Becm
≈ 1.5 3 6.25 12.50

ρ (γ) ≈(see[9]) 5.945 × 10−1 4.861 × 10−2 9.199 × 10−6 1.993 × 10−15

7 Conclusion

Wiener’s famous attack on RSA with d < 1
3N0.25 shows that using the equation

ed − k(p − 1)(q − 1) = 1 and a small d makes RSA insecure. In this paper, we
performed a generalization of this attack. We showed that we can find any X
and Y with 1 ≤ Y < X < 2−0.25N0.25 from the continued fraction expansion of
e/N when they satisfy an equation

eX − Y (p − u)
(

q +
[

qu

p − u

])
= 1,

and if p − u or q + [qu/(p − u]) is smooth enough to factor, then p and q can
be found from X and Y . Our results illustrate that one should be very cautious
when choosing some class of RSA exponent. Note that our attack, as well as all
the attacks based on continued fractions do not apply to RSA with modulus N
and small public exponents as the popular values e = 3 or e = 216+1 because the
non-trivial convergents of e

N are large enough to use diophantine approximation
techniques, namely Theorem 1.
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Abstract. In 2000, Paulus and Takagi introduced a public key cryp-
tosystem called NICE that exploits the relationship between maximal
and non-maximal orders in imaginary quadratic number fields. Relying
on the intractability of integer factorization, NICE provides a similar
level of security as RSA, but has faster decryption. This paper presents
REAL-NICE, an adaptation of NICE to orders in real quadratic fields.
REAL-NICE supports smaller public keys than NICE, and while pre-
liminary computations suggest that it is somewhat slower than NICE, it
still significantly outperforms RSA in decryption.

1 Introduction

The most well-known and widely used public-key cryptosystem whose security
is related to the intractability of the integer factorization problem is the RSA
scheme. A lesser known factoring-based system is the NICE (New Ideal Coset
Encryption) scheme [13,18], a cryptosystem whose trapdoor decryption makes
use of the relationship between ideals in the maximal and a non-maximal order
of an imaginary quadratic number field. The security of NICE relies on the
presumed intractability of factoring an integer of the form q2p where p and q
are prime, thereby providing a similar level of security as RSA, but with much
faster decryption. NICE decryption has quadratic complexity, as opposed to
RSA’s cubic decryption complexity. This makes NICE particularly suited for
devices with limited computing power or applications that require fast digital
signature generation.

In this paper, we explain how to extend the NICE concept to real quadratic
fields; this was first proposed in [19]. REAL-NICE exploits the same relationship
between ideals in the maximal and a non-maximal quadratic order as NICE. Fur-
thermore, just as in NICE, knowledge of the trapdoor information is provably
� Research by the first two authors supported by NSERC of Canada.
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equivalent to being able to factor the discriminant of the non-maximal order
in random polynomial time. However, the security of REAL-NICE relies on the
intractability of a somewhat different problem. In NICE, encryption hides the
message ideal in its own exponentially large coset with respect to a certain sub-
group of the ideal class group of the non-maximal order. In a real quadratic field,
such a coset may be too small to prevent an exhaustive search attack. Instead,
REAL-NICE encryption hides the message ideal in the generally exponentially
large cycle of reduced ideals in its own ideal class in the non-maximal order.

While preliminary numerical data using prototype implementations suggest
that REAL-NICE is somewhat slower than its imaginary counterpart NICE,
REAL-NICE allows for the possibility of a smaller public key than NICE, at the
expense of increased encryption effort. Moreover, both our NICE and REAL-
NICE prototypes significantly outperformed a highly optimized public-domain
implementation of RSA in decryption for all five NIST security levels [12]; for
the two highest such levels, combined encryption and decryption was faster for
both NICE and REAL-NICE compared to RSA.

The discrepancy in performance between NICE and REAL-NICE can be offset
by using a more efficient encryption algorithm, called IMS encryption, for REAL-
NICE. IMS encryption exploits the very fast baby step operation in the cycle
of reduced ideals of a real quadratic order, an operation that has no imaginary
analogue. Unfortunately, so far, the only known rigorous proof of security for IMS
encryption needs to assume a very unfavourable parameter set-up. However, even
under these adverse assumptions, IMS-REAL-NICE outperformed the original
REAL-NICE system. It it is conceivable that a set-up could be established that
makes IMS-REAL-NICE competitive to NICE without sacrificing security. IMS
encryption and its security are the subject of future research.

2 Overview of Quadratic Orders

We begin with a brief overview of quadratic fields and their orders. Most of the
material in this section can be found in [11] and Chapter 2, §7, of [4]; while the
latter source considers mostly imaginary quadratic fields, much of the results are
easily extendable to real quadratic fields as was done in [19].

Let D ∈ Z, D �= 0,±1 be a squarefree integer. A quadratic (number) field is
a field of the form K = Q(

√
D) = {a + b

√
D | a, b ∈ Q}. K is an imaginary,

respectively, real quadratic field if D < 0, respectively, D > 0. Set Δ1 = 4D if
D ≡ 2 or 3 (mod 4) and Δ1 = D if D ≡ 1 (mod 4), so Δ1 ≡ 0 or 1 (mod 4). Δ1

is called a fundamental discriminant. For f ∈ N, set Δf = f2Δ1. The (quadratic)
order of conductor f in K is the Z-submodule OΔf

of K of rank 2 generated by 1
and f(Δ1+

√
Δ1)/2; its discriminant is Δf . We speak of imaginary, respectively,

real quadratic orders, depending on whether K is an imaginary, respectively, a
real quadratic field. The maximal order of K is OΔ1 ; it contains all the orders
of K, and f = [OΔ1 : OΔf

] is the index of OΔf
in OΔ1 as an additive subgroup.

Henceforth, let f ∈ N be any conductor. We denote by O∗
Δf

the group of units
of the integral domain OΔf

, i.e. the group of divisors of 1 in OΔf
. The units



An Adaptation of the NICE Cryptosystem to Real Quadratic Orders 193

of OΔf
, denoted by O∗

Δf
, form an Abelian group under multiplication. If K is

imaginary, then O∗
Δf

consists of the roots of unity in K and thus has 6, 4, or 2
elements, according to whether Δ1 = −3, Δ1 = −4, or Δ1 < −4. If K is real,
then O∗

Δf
is an infinite cyclic group with finite torsion {1,−1}, whose unique

generator εΔf
exceeding 1 is the fundamental unit of OΔf

. In this case, the real
number RΔf

= log(εΔf
) is the regulator of OΔf

. Here, as usual, log(x) denotes
the natural logarithm of x > 0.

An (integral) OΔf
-ideal 1 a is a Z-submodule of OΔf

of rank 2 that is closed
under multiplication by elements in OΔf

. A fractional OΔf
-ideal a is a Z-

submodule of K of rank 2 such that da is an (integral) OΔf
-ideal for some d ∈ N.

A fractional OΔf
-ideal a is invertible if there exists a fractional OΔf

-ideal b such
that ab = OΔf

, where the product of two fractional OΔf
-ideals a, b is defined to

consist of all finite sums of products of the form αβ with α ∈ a and β ∈ b. The
set of invertible fractional OΔf

-ideals, denoted by I(OΔf
), is an infinite Abelian

group under multiplication with identity OΔf
. A principal fractional OΔf

-ideal
a consists of OΔf

-multiples of some fixed element α ∈ K∗ = K \ {0} that is said
to generate (or be a generator of) a. We write a = (α) = αOΔf

. The principal
fractional OΔf

-ideals form an infinite subgroup of I(OΔf
) that is denoted by

P(OΔf
). The factor group Cl(OΔf

) = I(OΔf
)/P(OΔf

) is a finite Abelian group
under multiplication, called the ideal class group of OΔf

. Its order hΔf
is the

(ideal) class number of OΔf
. For any OΔf

-ideal a, we denote the OΔf
-ideal class

by [a] ∈ Cl(OΔf
).

For any element α = a + b
√

D ∈ K (a, b ∈ Q), the conjugate of α is α =
a−b

√
D ∈ K, and the norm of α is N(α) = αα = a2−b2D ∈ Q. If α ∈ OΔ1 , then

N(α) ∈ Z. The norm NΔf
(a) of an (integral) OΔf

-ideal a is the index of a as an
additive subgroup of OΔf

. When the context is clear, we will omit the subscript
Δf from the ideal norm and simply write N(a). If we set a = {α | α ∈ a},
then aa = (N(a)), the principal OΔf

-ideal generated by N(a). If a is a principal
OΔf

-ideal generated by α ∈ OΔf
, then N(a) = |N(α)|.

An integral OΔf
-ideal a is primitive if the only positive integer d such that

every element of a is an OΔf
-multiple of d is d = 1. An OΔf

-ideal a is reduced if
it is primitive and there does not exist any non-zero α ∈ a with |α| < N(a) and
|α| < N(a). We summarize some important properties of reduced ideals; see for
example [6,13,21] as well as Sections 2.1 and 2.2 of [19].

Theorem 1. Let OΔf
be an order in a quadratic number field K = Q(

√
D).

Then the following hold:

1. Every ideal class of Cl(OΔf
) contains a reduced OΔf

-ideal.
2. If K is imaginary, then every ideal class of Cl(OΔf

) contains a unique re-
duced OΔf

-ideal. If K is real, then the number rC of reduced ideals in any
ideal class C ∈ Cl(OΔf

) satisfies RΔf
/ log(f2D) ≤ rC < 2RΔf

/ log(2) + 1.
3. If a is a primitive OΔf

-ideal with N(a) <
√|Δf |/2, then a is reduced.

4. If a is a reduced OΔf
-ideal, then N(a) <

√
Δf if K is real and N(a) <√|Δf |/3 is K is imaginary.

1 We always assume that integral and fractional ideals are non-zero.
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For an OΔf
-ideal a, we denote by ρΔf

(a) any reduced OΔf
-ideal in the class of

a. By the above theorem, if K is imaginary, then ρΔf
(a) is the unique reduced

representative in the OΔf
-ideal class of a, whereas if K is real, then there are

many choices for ρΔf
(a). Given any OΔf

-ideal a, a reduced ideal ρΔf
(a) in the

equivalence class of a can be found using at most O
(
log

(
N(a)/

√
Δf

)
log(Δf )

)
bit operations. Furthermore, in the real scenario, the entire cycle of reduced
ideals in the OΔf

-ideal class of a can then be traversed using a procedure called
baby steps. Details on ideal reduction, baby steps, and other ideal arithmetic can
be found in Section 7.

For any integer d, an integral OΔf
-ideal a is said to be prime to d if N(a)

is relatively prime to d. Of particular interest is the case d = f , as every OΔf
-

ideal prime to f is invertible, and the norm map is multiplicative on the set of
OΔf

-ideals prime to f . Denote by I(OΔf
, f) the subgroup of I(OΔf

) generated
by the OΔf

-ideals prime to f , by P(OΔf
, f) the subgroup of I(OΔf

, f) gener-
ated by the principal ideals (α) with α ∈ OΔf

and N(α) prime to f , and set
Cl(OΔf

, f) = I(OΔf
, f)/P(OΔf

, f). Then Cl(OΔf
, f) is isomorphic to the class

group Cl(OΔf
) of OΔf

; see Proposition 7.19, p. 143, of [4] and Theorem 2.16,
p. 10, of [19].

Finally, we denote by I(OΔ1 , f) the subgroup of I(OΔ1) generated by the
OΔ1 -ideals prime to f , by P(OΔ1 , f) the subgroup of I(OΔ1 , f) generated by
the principal OΔ1 -ideals (α) with α ∈ OΔ1 and N(α) prime to f , and define the
factor group Cl(OΔ1 , f) = I(OΔ1 , f)/P(OΔ1 , f).

For the NICE cryptosystem in both real and imaginary quadratic orders, it
will be important to move between OΔf

-ideals prime to f and OΔ1 -ideals prime
to f . More specifically, we have the following isomorphism (see Proposition 7.20,
p. 144, of [4] and Theorem 3.2, p. 25, of [19]):

φ : I(OΔ1 , f) −→ I(OΔf
, f) via φ(A) = A∩OΔf

, φ−1(a) = aOΔ1 . (2.1)

The maps φ and φ−1 are efficiently computable if f and Δ1 are known; for
details, see Section 7. In fact, both the NICE and the REAL-NICE schemes use
φ−1 as their underlying trapdoor one-way function, with public information Δf

and trapdoor information f , where f is a prime. Note that φ and φ−1 preserve
norms and primitivity. Furthermore, φ−1 preserves ideal principality, but φ does
not. Thus, φ−1 induces a surjective homomorphism

Φ̂ : Cl(OΔf
, f) −→ Cl(OΔ1 , f) via Φ̂([a]) = [φ−1(a)] = [aOΔ1 ] . (2.2)

For proofs of these results, see pp. 144-146 of [4] and pp. 25-29 of [19].
The kernel of Φ̂, i.e. the subgroup of Cl(OΔf

, f) of the form

ker(Φ̂) = {[a] ∈ Cl(OΔf
, f) | φ−1(a) is a principal OΔ1 -ideal}

is of crucial importance to the NICE cryptosystem in imaginary quadratic orders,
and also plays a role in its counterpart REAL-NICE in real quadratic orders.
The size of this kernel is exactly the class number ratio hΔf

/hΔ1 . For the cryp-
tographically interesting case of prime conductor f = q, and disregarding the
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small cases Δ1 = −3 or −4 where K contains nontrivial roots of unity, the size
of this kernel is given by

| ker(Φ̂)| =
hΔq

hΔ1

=

{
q − (Δ1/q) if Δ1 < −4 ,
q − (Δ1/q)RΔ1/RΔq if Δ1 > 0 ,

(2.3)

where (Δ1/q) denotes the Legendre symbol.

3 The Original NICE Cryptosystem

The original NICE cryptosystem [18,13] exploits the relationship between ideals
in a maximal and a non-maximal imaginary quadratic order of prime conductor q
as described in (2.1) and (2.2). The key observation is that images of OΔq -ideals
under the map φ−1 of (2.1) are efficiently computable if q is known, whereas
without knowledge of the trapdoor information q (i.e. only knowledge of Δq),
this task is infeasible and is in fact provably equivalent to being able to factor
Δq in random polynomial time (see Theorem 2.1, pp. 13-14, of [18]).

The specifics of NICE are as follows:

Private Key: Two large primes p, q of approximately equal size with p ≡
3 (mod 4).

Public Key: (Δq, k, n, p) where
– Δq = q2Δ1 with Δ1 = −p;
– k and n are the bit lengths of 	√|Δ1|/4
 and q − (Δ1/q), respectively;
– p is a randomly chosen OΔq -ideal with [p] ∈ ker(Φ̂).

The key ideal p can be found by generating a random element α ∈ OΔ1 whose
norm is not divisible by q, finding a Z-basis of the principal OΔ1 -ideal A = (α),
and computing p = φ(A). Note that the OΔq -ideal p itself is generally not
principal, but its image φ−1(p) is a principal OΔ1 -ideal.

Encryption: Messages are bit strings of bit length k − t, where t is a fixed
parameter explained below. To encrypt a message m:
1. Embed m into a primitive OΔq -ideal m prime to q with NΔq (m) ≤ 2k in

such a way that NΔq(m) uniquely determines m.
2. Generate random r ∈R {1, 2, . . . , 2n−1}.
3. The ciphertext is the reduced OΔq -ideal c = ρΔq(mpr).

Note that since 2n−1 < q − (Δ1/q) < 2n, the range for r specified in step 2
ensures that r < q− (Δ1/q) = | ker(Φ̂)|. This is the optimal range, as [p]q−(Δ1/q)

is the identity in Cl(OΔq), i.e. the principal class. The cipher ideal c is computed
using standard ideal arithmetic; see Section 7 for details.

Decryption: To decrypt a ciphertext OΔq -ideal c:
1. Compute M = ρΔ1(φ−1(c)).
2. Extract m from NΔ1(M).
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Note that [p] ∈ ker(Φ̂) and (2.2) together imply

[M] = [ρΔ1(φ
−1(c))] = [φ−1(c)] = Φ̂([c]) = Φ̂([ρΔq (mpr)])

= Φ̂([mpr]) = Φ̂([m])Φ̂([p])r = Φ̂([m]) = [φ−1(m)] .

Since φ−1 is norm-preserving and 2k−1 ≤ 	√|Δ1|/4
 < 2k, encryption step 1
yields

NΔ1(φ
−1(m)) = NΔq(m) ≤ 2k ≤ 2

⌊√|Δ1|
4

⌋
<

√|Δ1|
2

,

where the last inequality follows since
√|Δ1|/4 /∈ Z. By part 3 of Theorem 1,

φ−1(m) is a reduced OΔ1 -ideal. Thus, M and φ−1(m) are reduced ideals in the
same OΔ1 -ideal class, so they must be equal by part 2 of Theorem 1. It follows
that NΔ1(M) = NΔ1(φ−1(m)) = NΔq(m), which by encryption step 1 uniquely
determines m. Note also that NΔf

(m) = NΔ1(M) <
√|Δ1|/2 < q, where the

last inequality holds because p and q are of roughly the same size. It follows that
both m and M are prime to q. Since N(c) = N(m)N(p)r , c is also prime to q.

Since the decrypter knows the conductor q of OΔq , he can efficiently compute
φ−1(c), and hence M using standard reduction arithmetic. We explain how to
compute images under φ−1 in Section 7.

To perform encryption step 1, one first selects a security parameter t; we
explain below how large t should be chosen. The plaintext needs to be divided
into message blocks of bit length k− t. To embed such a block m into a reduced
OΔq -ideal m prime to q, the encrypter does the following:

1. Set m = m2t, obtaining an integer m of bit length k whose t low order bits
are all 0.

2. Find the smallest prime l exceeding m such that (Δq/l) = 1.
3. Set m to be the OΔq -ideal of norm l.

If l ≡ 3 (mod 4), then a Z-basis for the ideal m can be found efficiently and
deterministically. If l ≡ 1 (mod 4), then there is a fast probabilistic method for
performing step 3 above. For details, see again Section 7.

If l ≤ m+2t, then m ≤ 2k−t−1 implies NΔf
(m) = l ≤ m+2t = (m+1)2t ≤ 2k

as desired. Furthermore, the k high order bits of l agree with m and hence with m.
Since NΔ1(M) = NΔq(m) = l, m is easily obtained from NΔ1(M) in decryption
step 2 by truncating the first k bits from l. According to pp. 34-36 of [19], the
probability that l ≤ m + 2t is bounded below by Pt = 1− 2−2t/k. It follows that
decryption step 2 is successful with high probability for t sufficiently large.

The security of NICE was analyzed in detail in [13], [7], and [19], and resides in
the difficulty of factoring Δq. We only briefly review some facts here. Encryption
under NICE can be viewed as masking the message ideal m by multiplying it by a
random ideal a = pr with [a] ∈ ker(Φ̂), thereby hiding it in its own coset m ker(Φ̂).
The size of each such coset is equal to | ker(Φ̂)| = q − (Δ1/q). Obviously, q must
be chosen large enough to make exhaustive search through any coset relative to
ker(Φ̂) infeasible. Moreover, in order to guarantee a sufficiently large number of
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distinct elements of the form mpr, or equivalently, a sufficiently large number of
distinct powers pr, we need to ensure that the subgroup in ker(Φ̂) generated by
the class [p] is large. The order of this subgroup is a divisor of q− (Δ1/q), so this
quantity should be chosen prime or almost prime. Suppose that q−(Δ1/q) = Ld
where L is a large prime and d ∈ N is very small. Then the number of generators
of the cyclic subgroup of ker(Φ̂) of order L is φ(L) = L− 1, where ϕ(N) denotes
the Euler totient function of N ∈ N. So the probability that a random ideal
p ∈ ker(Φ̂) generates this subgroup is (L − 1)/Ld ≈ 1/d which is large if d is
small. One expects d trials of an ideal p to produce a desirable key ideal. For any
such trial, checking that ρΔq(pd) �= OΔq guarantees that p generates a subgroup
of ker(Φ̂) of order L.

An algorithm for computing images of primitive OΔq -ideals under φ−1 without
knowledge of q would lead to the decryption of any message. However, according
to Theorem 1 of [13], such an algorithm could be used as an oracle for factoring
Δq in random polynomial time. Hence, the security of NICE is equivalent to
factoring an integer of the form q2p, so p and q need to be chosen sufficiently
large to render the factorization of Δq via the elliptic curve method and the
number field sieve infeasible. Using the estimate that factoring a 1024-bit RSA
modulus is computationally equivalent to finding a 341-bit factor of a 3-prime
modulus of the same size [10] yields the estimates in Table 1 for parameter sizes
of Δq that are required to provide a level of security equivalent to block ciphers
with keys of 80, 112, 128, 192, and 256 bits, respectively.

Table 1. NIST recommendations for parameter sizes of p and q

symmetric key size 80 112 128 192 256

Size of Δq 1024 2048 3072 8192 15360

Size of p and q 341 682 1024 2731 5120

To the best of our knowledge, revealing the public key and the form of Δq

(Δq = −q2p with primes p, q and p ≡ 3 (mod 4)) does not compromise the
security of NICE. Finally, the chosen ciphertext attack of [7] is prevented by
padding message blocks with t low order 0 bits for sufficiently large t. To ensure
that this attack is approximately as costly as any other known attack method, t
should be chosen according to the first row of Table 1 (the symmetric key size).
NICE has also been extended, using standard techniques, to provide IND-CCA2
security in the random oracle model — see the NICE-X protocol presented in [1].

4 NICE in Real Quadratic Orders

Before we describe in detail REAL-NICE, our adaptation of NICE to orders
in real quadratic fields, we highlight the main differences between REAL-NICE
and NICE. The security of the original NICE scheme resides in the difficulty of
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identifying a specific representative in the coset of an OΔq -ideal m relative to
ker(Φ̂) without knowledge of the conductor q of the order OΔq . In real quadratic
orders, this problem is generally easy to solve via exhaustive search, since hΔq

can be a small multiple of hΔ1 , resulting in a very small kernel of Φ̂ by (2.3).
Instead, in the real case, an adversary needs to identify a specific reduced ideal
in the cycle of reduced ideals in the OΔq -ideal class [m]. It is therefore necessary
to ensure that the number of reduced ideals in any OΔq -ideal class is large.

At the same time, the decryption process of NICE no longer yields a unique
reduced OΔ1 -ideal. To extract m, we need to make sure that the OΔ1 -ideal class
of φ−1(c) contains very few reduced ideals, so they can all be quickly computed
and the correct one identified by a predetermined unique bit pattern in its norm.
During encryption, m is endowed with that same bit pattern. By part 2 of
Theorem 1, the system parameters must therefore be chosen so that RΔ1 is very
small, while RΔq is large.

Finally, the ideal p need no longer be included in the public key; instead, a
random ideal p with [p] ∈ ker(Φ̂) can be generated for each encryption.

The specifics of REAL-NICE are as follows:

Private Key: Two large primes p, q of approximately equal size with p ≡
1 (mod 4).

Public Key: (Δq, k, n, p) or (Δq, k, n), where
– Δq = q2Δ1 with Δ1 = p;
– k and n are the bit lengths of 	√Δ1/4
 and q − (Δ1/q), respectively;
– p is a randomly chosen OΔq -ideal with [p] ∈ ker(Φ̂); inclusion of p in the

public key is optional.

Here, p and q must be chosen so that RΔ1 is small and RΔq is large; details
on how to select these primes will be provided in Section 5. If storage space
for public keys is restricted, p need not be included in the public key. Instead,
a different ideal p with [p] ∈ ker(Φ̂) can be generated for each encryption, at
the expense of increased encryption time. In the case where p is included in
the public key, it can be generated exactly as in the original NICE system. In
Section 7, we describe an alternative method for finding p that does not require
knowledge of q and Δ1 and can hence be used by the encrypter.

Encryption: Messages are bit strings of bit length k− t− u, where t and u are
fixed parameters explained below. To encrypt a message m:
1. Convert m to a string m′ that uniquely determines m and contains a

predetermined bit pattern of length u.
2. Embed m′ into a primitive OΔq -ideal m prime to q with NΔq(m) ≤ 2k

in such a way that NΔq(m) uniquely determines m′.
3. Generate random r ∈R {1, 2, . . . , 2n−1}.
4. If the public key does not include the ideal p, generate a random OΔq -

ideal p with [p] ∈ ker(Φ̂).
5. The ciphertext is a reduced OΔq -ideal c = ρΔq (mpr).
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Decryption: To decrypt a ciphertext OΔq -ideal c:
1. Compute C = φ−1(c).
2. Find the reduced ideal M ∈ [C] such that NΔ1(M) contains the prede-

termined bit pattern of length u of encryption step 1.
3. Extract m′ from NΔ1(M) and m from m′.

Since the decrypter knows q, he can once again efficiently compute C; for details,
see Section 7. As in the original NICE scheme, we see that [M] = [φ−1(m)].
Unfortunately, we can no longer conclude from this that M = φ−1(m), only
that both are two among many reduced ideals prime to q in the same OΔ1 -class.
This is the reason why in contrast to encryption step 1 of NICE, the embedding
of a message m into an OΔq -ideal m in REAL-NICE requires two steps. To
ensure that M = φ−1(m) does in fact hold, m is endowed with a predetermined
public bit pattern of length u to obtain m′. We argue below that this forces
M = φ−1(m) with high probability, so NΔ1(M) = NΔq(m) uniquely determines
m′ by encryption step 2, and hence m by encryption step 1.

More exactly, to perform encryption steps 1 and 2, one first selects the pa-
rameters t and u; we explain below how large t and u should be chosen. The
plaintext needs to be divided into blocks of bit length k − t− u. To embed such
a block m into a reduced OΔq -ideal m prime to q, one does the following:

1. Set m′ = m + 2k−t, obtaining an integer m′ of bit length k − t whose u high
order bits are 100 · · ·000.

2. Set m′ = m′2t, obtaining an integer m′ of bit length k whose u high order
bits are 100 · · · 000 and whose t low order bits are all 0.

3. Find the smallest prime l exceeding m′ such that (Δq/l) = 1.
4. Set m to be the OΔq -ideal of norm l.

The ideal m is found exactly as in the NICE embedding procedure, and provided
that M = φ−1(m), m′ can again be extracted from NΔ1(M) = NΔq (m) = l with
high probability by truncating the high order k bits from l. Then m is obtained
from m′ by simply discarding the u high order bits of m′.

Before we argue that, with high probability, the class of [C] contains only
one ideal whose norm contains our specified bit pattern (namely the ideal M =
φ−1(m) of norm l), we explain how to find this ideal. In order to perform de-
cryption step 2, the decrypter needs to traverse the set of reduced OΔ1 -ideals
in the class of C to locate M. This is accomplished by applying repeated baby
steps as described in Section 7, starting with the OΔ1 -ideal C ∈ [M]. Since Δ1

was chosen so that the class of C contains very few reduced ideals, M can be
found efficiently. After each baby step, the decrypter performs a simple X-OR
on the u high order bits of the ideal norm and the string 100 · · ·000, checking
whether or not the resulting string consists of all 0’s.

The decryption procedure will work with high probability under two condi-
tions. Firstly, just as in NICE, the parameter t needs to be chosen as described in
Section 3 to ensure that m′ can be uniquely determined from M. We already saw
that this succeeds with probability at least Pt = 1−2−2t/k. Secondly, u must be
chosen large enough so that with high probability, the OΔ1 -class of C contains
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only one reduced OΔ1 -ideal M such that the u high order bits of NΔ1(M) are
100 · · ·000. Using the analysis on p. 53, of [19], this probability is expected to be
bounded below by Pu = (1− 2−u)N , where N is an upper bound on the number
of reduced ideals in any class of Cl(OΔ1). We will see in Section 5 that Δ1 can be
chosen so that such an upper bound is of the form κ1 log(Δ1) for some explicitly
computable constant κ1.

5 Choice of Parameters

The parameters for REAL-NICE clearly need to be selected with care to ensure
both efficiency and security. As explained in Section 4, p and q must be chosen
to satisfy the following conditions:

– RΔq must be large enough to ensure a sufficiently large number of reduced
ideals in any OΔq -ideal class, thus rendering exhaustive search through any
cycle of reduced OΔq -ideals infeasible.

– RΔ1 must be small enough to ensure a sufficiently small number of reduced
ideals in any OΔ1 -ideal class, thus rendering exhaustive search through any
cycle of reduced OΔ1 -ideals efficient.

We proceed in two steps. First, we explain how to ensure that the ratio RΔq/RΔ1

is of order of magnitude q with high probability. Then we present a means of
guaranteeing that RΔ1 is small, i.e. bounded by a polynomial in log(Δ1).

The unit index of OΔq is the group index [O∗
Δ1

: O∗
Δq

], i.e. the smallest positive
integer i such that εi

Δ1
= εΔf

, or equivalently, RΔf
= iRΔ1 . By (2.3), i divides

q − (Δ1/q), so forcing i to be large is another reason why q − (Δ1/q) should be
almost prime. Specifically, Theorem 5.8, p. 58, of [19] states that if q− (Δ1/q) =
Ld where L is a large prime and d ≤ log(Δ1)κ for some positive constant κ, then
the probability that i < L is bounded above by log(Δ1)2κ/(

√
Δ1 − 1). In other

words, i = RΔq /RΔ1 ≥ L with overwhelming probability.
To verify that i ≥ L does in fact hold, it suffices to check that i does not

divide d, i.e. that εd
Δ1

�= εΔf
. Suppose that RΔ1 is sufficiently small so that εΔ1 =

U1 + V1

√
Δ1 is computable; εΔ1 can be obtained from RΔ1 using for example

Algorithm 4.2 of [2]. Then any power εj
Δ1

= Uj + Vj

√
Δ1 can be efficiently

evaluated using Lucas function arithmetic on Uj and Vj analogous to binary
exponentiation; see Chapter 4, pp. 69-95, of [20].

Next, we illustrate how to choose Δ1 so that RΔ1 is small. In general, the
regulator RΔf

of any real quadratic order OΔf
is of magnitude

√
Δf which is far

too large for our purposes. One possibility is to choose D to be a Schinzel sleeper
[15], i.e. a positive squarefree integer of the form D = D(x) = a2x2 + 2bx + c
with a, b, c, x ∈ Z, a �= 0, and b2 − a2c dividing 4 gcd(a2, b)2. Schinzel sleepers
were analyzed in detail in [3]; here, the regulator RΔ1 is of order log(Δ1). More
exactly, if a, b, c, x are chosen so that gcd(a2, 2b, c) is squarefree and D ≡ 0 or
1 (mod 4) (so Δ1 = D), then by Theorem 5.4, p. 52, of [19], the number of
reduced OΔ1 -ideals in any class of Cl(OΔ1) is bounded above by κ1 log(Δ1) for
an explicitly computable constant κ1 that depends only on a and b.
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Finally, the fixed bit pattern in any message is again critical in defending
REAL-NICE against the same chosen ciphertext attack [7] that was already
mentioned in Section 3. This attack can be detected with the same probabil-
ity with which the cipher ideal can be successfully decrypted. Therefore, it is
suggested to choose t + u according to first row of Table 1, keeping the proba-
bility of successful decryption via the chosen ciphertext attack consistent with
the probability of success of any other known attack on REAL-NICE.

6 Security

Although the security of REAL-NICE is based on a different mathematical prob-
lem than NICE, namely locating an OΔq -ideal within the cycle of reduced ideals
in its own ideal class, as opposed to locating it in its own coset relative to ker(Φ̂),
the same security considerations apply. Assuming a passive adversary, both sys-
tems can be broken if and only if an adversary can efficiently compute images of
OΔq -ideals under the map φ−1 of (2.1) without knowledge of the trapdoor infor-
mation q, a task that is provably equivalent to factoring in random polynomial
time. More exactly, according to Theorem 2.1, pp. 13-14, of [18]:

Theorem 2. Let Δ1 ∈ N be a fundamental discriminant and Δq = q2Δ1 with q
prime. Assume that there exists an algorithm A that computes for any primitive
ideal a ∈ I(OΔq , q) the primitive ideal A = φ−1(a) ∈ I(OΔ1 , q) without knowl-
edge of the conductor q of OΔq . By using the algorithm A as an oracle, Δq can
be factored in random polynomial time. The number of required queries to the
oracle is polynomially bounded in log(Δq).

Hence, as with NICE, p and q must be chosen sufficiently large to render the
factorization of Δq infeasible. Again, it is highly unlikely that knowledge of the
public information would compromise the security of REAL-NICE. In addition,
the specified bit pattern in the norm of the message ideal m protects against the
chosen ciphertext attack of [7]; once again, the length of this bit pattern should
be chosen equal to the symmetric key size as specified in Table 1 to render this
attack as expensive as any other known attack. As REAL-NICE is so similar to
NICE, it should also be possible to adapt the methods of [1] to obtain IND-CCA2
security.

The fact that Δ1 = a2x2 + 2bx + c is chosen to be a Schinzel sleeper requires
further analysis. It is recommended that the values a, b, c, x are kept secret and
discarded after computing Δ1. Care must also be taken how to select x in the
Schinzel sleeper. Put A = qa, B = q2b, and suppose B = SA+R with 0 ≤ R < A
(note that A, B, S, R are all unknown). Then by Theorem 4.1 of [3], the fraction
A/R appears among the first κ2 log(A) convergents of the continued fraction
expansion of

√
Δq for some explicit positive constant κ2, so there are only poly-

nomially many possibilities for this fraction. If we find A/R and write it in lowest
terms, i.e. A/R = U/V with gcd(U, V ) = 1, then q = gcd(Δq , U	√Δq
 + V ) if
x is sufficiently large, so Δq is factored. This factoring attack can be avoided if
x is chosen sufficiently small, but at the same time large enough to guarantee
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sufficiently large Δ1. More exactly, by Corollary 6.5, p. 72, of [19], it is sufficient
to choose x < 2−3w−1q − 2w where a, b ≤ 2w.

Suppose we wish to generate parameters Δ1 and q of bit length s. If we choose
a and b of some bit length w ≤ s/4 − 1 and x of bit length s/2 − w, then ax
has bit length s/2, 2bx has bit length s/2+1, and the condition b2 − a2c divides
4 gcd(a2, b)2 implies |c| ≤ 5b2 < 22w+3 ≤ 2s/2+1, so |c| has bit length at most
s/2 + 1. Thus, (ax)2 is the dominant term in D(x), which then has bit length
s. Since q > 2s−1, it suffices to choose x < 2s−3w−2 − 2w, so to obtain x of bit
length at least s/2 − w, we require that 2s/2−w < 2s−3w−2 − 2w. This is easily
verified to always hold if w ≤ s/4 − 1.

We also need to ensure that there are sufficiently many primes of desired size
that occur as values of Schinzel sleepers. Let πF (n) denote the number of primes
assumed by the polynomial F (x) = ax2 + bx + c for 0 ≤ x ≤ n, with a, b, c ∈ Z,
a > 0, and a + b, c not both even. The well-known Hardy-Littlewood conjecture
[5] states in essence that πF (n) ∼ κF n/ log(n), where κF is an explicitly com-
putable constant than depends only on F . Under the assumption that prime
values assumed by Schinzel polynomials behave similarly to those assumed by
arbitrary quadratic polynomials, we conclude that the number of primes pro-
duced by Schinzel polynomials is large enough to render an exhaustive search
for Δq infeasible. However, further study of this question is warranted.

Finally, we need to make sure that there are sufficiently many reduced OΔq -
ideals of the form c = ρΔq(mpr) to ensure that cipher ideals cannot be found via
exhaustive search. We already saw how to guarantee a large ratio RΔq /RΔ1 = Ld
where L is a large prime and d ≤ log(Δ1)κ for some positive constant κ. This
ensures a large number of reduced ideals in each OΔq -ideal class. For any B ∈ N,
any OΔq -ideal p with [p] ∈ ker(Φ̂), and any reduced OΔq -ideal m, consider the
set of possible cipher ideals CB = {ρΔq(mpr) | 1 ≤ r ≤ B}. Then a sufficiently
large choice of a generator α ∈ OΔq of p ensures that all the ideals in CB are
distinct. More exactly, according to Theorem 6.8, p. 81, of [19], if we choose α
so that log(α) ∈ I where

I = ] (b + 1) log(4Δq) + log(2),
L log(Δ1)

2b+2
− b log(2) ] (6.4)

and b is the bit length of B, then the set CB has cardinality B.
Table 2 contains upper and lower bounds on log(α) depending on the required

level of security and the constant κ. The notation (v, w) in the column headers
means that the set CB contains at least 2v different OΔq -ideals, where Δq has
bit length w. The columns “min” and “max” denote lower and upper bounds on
the bit length of log(α). The data show that it is feasible to choose α such that
CB is sufficiently large to satisfy the NIST security requirements.

7 Ideal Arithmetic and Algorithms

We review basic ideal arithmetic involving Z-bases and provide the algorithms
that are required in the REAL-NICE cryptosystem. See also [21,9] for details.
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Table 2. Bounds the size of log α depending on the level of security

(80, 1024) (112, 2048) (128, 3092) (192, 8192) (256, 15360)

κ min max min max min max min max min max

1 17 259 18 568 20 1235 21 2536 22 4861
5 17 223 18 528 20 1191 21 2488 22 4809

10 17 178 18 478 20 1136 21 2428 22 4744
15 17 133 18 428 20 1081 21 2368 22 4679
20 17 88 18 378 20 1026 21 2308 22 4614

Let K = Q(
√

D) be a (real or imaginary) quadratic field and OΔf
an order in

K of conductor f . Set σ = 1 if D ≡ 2, 3 (mod 4) and σ = 2 if D ≡ 1 (mod 4), so
Δ1 = (2/σ)2D ≡ σ − 1 (mod 4). Then every integral OΔf

-ideal a is a Z-module
of the form

a = S

(
Q

σ
Z +

P + f
√

D

σ
Z

)
,

where S, Q ∈ N, P ∈ Z, σ divides Q, σQ divides f2D−P 2, and gcd(Q, 2P, (f2D−
P 2)/Q) = σ. Here, Q and S are unique and P is unique modulo Q, so we write
a = S(Q, P ) for brevity. We have NΔf

(a) = S2Q/σ. The ideal a is primitive if
and only if S = 1, in which case we simply write a = (Q, P ).

Suppose now that D > 0, so K is a real quadratic field. Recall that any OΔf
-

ideal class contains a finite number of reduced ideals. A baby step moves from
one such ideal to the next. More exactly, if ai = (Qi, Pi) is a reduced OΔf

-ideal,
then a reduced OΔf

-ideal ai+1 = (Qi+1, Pi+1) in the OΔf
-ideal class of ai can

be obtained using the formulas

qi =

⌊
Pi +

√
D

Qi

⌋
, Pi+1 = qiQi − Pi, Qi+1 =

f2D − P 2
i+1

Qi
. (7.5)

Note that f2D = (σ/2)2Δf , so f need not be known here. Baby steps applied to
any reduced OΔf

-ideal a produce the entire cycle of reduced ideals in the OΔf
-

ideal class of a. In practice, one uses a more efficient version of (7.5) that avoids
the division in the expression for Qi+1; see for example Algorithm 1 of [21].

We now give details on how to perform the different encryption and decryption
steps, beginning with a method for finding a Z-basis (Q, P ) of the message ideal
m of prime norm l as required in encryption step 2 of REAL-NICE. Set Q = 2l,
and let P ′ be a square root of Δq modulo l with 0 < P < l. Such a square root
exists since (Δq/l) = 1 and can be found using standard probabilistic methods
in at most an expected O(log(l)3) bit operations. Now put P = P ′ if P is odd
and P = l − P ′ if P is even. Then it is not hard to verify that m = (Q, P ) is a
primitive OΔq -ideal of norm Q/2 = l.

Given Z-bases of two reduced OΔf
-ideals a, b, it is well-known how to com-

pute a Z-basis of a reduced OΔf
-ideal ρΔf

(ab) in the class of the (generally
non-reduced and possibly not even primitive) product ideal ab in O(log(D)2)
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bit operations. This operation is called a giant step. Five different ways for ef-
fecting a giant step were described and compared in [9]; the most efficient one
is Algorithm 6.8 on p. 111 (the NUCOMP algorithm). This method can be em-
ployed to compute the cipher ideal c in REAL-NICE encryption step 5.

An ideal p ∈ ker(Φ̂) as required in encryption step 4 can be determined
during encryption or as part of the public key as follows. Generate a random
element x ∈ I, with I as given in (6.4), and use Algorithm 5.2 of [14] to find
the Z-basis of a reduced principal OΔq -ideal p that has a generator α ∈ OΔq

with log2(α) ≈ x/ log(2), so log(α) ≈ x. This algorithm is essentially repeated
squaring using giant steps and requires O(log(x) log(Δq)2) bit operations. Since
p is principal and φ−1 preserves principality, φ−1(p) is a principal OΔ1 -ideal, so
[p] ∈ ker(Φ̂).

In decryption step 1, the user needs to find the image C of the cipher ideal c
under φ−1. The functions φ−1 and φ can be efficiently computed if the conductor
f is known. We briefly recall the procedures here; for details, see [6,13] as well
as pp. 14 and 28 of [19]. Let a = (Q, PΔf

) be any primitive OΔf
-ideal prime

to f . Then A = φ−1(a) = (Q, PΔ1) is a primitive OΔ1 -ideal prime to f , where
PΔ1 ≡ xPΔf

+ybQ/2 (mod Q). Here, x, y ∈ Z are given by xf +yQ/σ = 1, and b
is the parity of Δf ; note that if Q is odd, then σ = 1 and hence b = 0. Conversely,
if A = (Q, PΔ1) is a primitive OΔ1 -ideal prime to f , then a = φ(A) = (Q, PΔf

)
with PΔf

≡ fPΔ1 (mod Q) is a primitive OΔf
-ideal prime to f .

8 Implementation and Run Times

We implemented prototypes of both NICE and REAL-NICE in C++ using GMP
and the NTL library for large integer arithmetic [16]. Our numerical data were
generated on an Athlon XP 2000+ with 512 MB RAM under the Linux Mandrake
9.1 operating system. In addition, we felt that a comparison to the RSA cryp-
tosystem would be of interest, since the security of RSA also depends on integer
factorization and, because it is so widely used in practice, highly-optimized im-
plementations are readily available. We therefore determined run times for RSA
using the open source implementation of OpenSSL. Note that our current im-
plementations of NICE and REAL-NICE are first prototypes, whereas the RSA
implementation in OpenSSL is highly optimized. Thus, our numerical results are
somewhat skewed in favour of RSA.

We used the same parameter sizes for our RSA moduli and non-fundamental
discriminants Δq = q2Δ1, with q and Δ1 of approximately equal size, as they
give the same level of security. We chose parameter sizes corresponding to the
NIST recommended levels of security equivalent to block ciphers with keys of 80,
112, 128, 192, and 256 bits, as specified in Table 1. As public key cryptosystems
are usually used for secure key exchange, the message lengths used in our set-up
corresponded to these key sizes.

Both NICE and REAL-NICE require selecting a suitable fundamental dis-
criminant Δ1. For NICE, we simply chose Δ1 = −p where p is a prime with
p ≡ 3 (mod 4). In REAL-NICE, we chose Δ1 = p where p ≡ 1 (mod 4) and
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p is a Schinzel sleeper as described in Section 5. To find such a prime p of bit
length s, we began by choosing random positive integers a and b of bit length
w = 12; this length easily satisfies the requirement w ≤ s/4 − 1 of Section 6 for
all five NIST [12] security levels with s as given in the second row of Table 1.
Then we attempted to determine an integer c such that b2 − a2c divides g2 with
g = 2 gcd(a2, b). To find c, we searched the interval S = [(b2−g2)/a2, (b2+g2)/a2]
for an integer c satisfying the above divisibility condition. Note that if a and b
are randomly generated, then g = 1 with high probability, leaving only a very
small search interval S. Moreover, smaller values of a lead to a larger interval S.
Hence, if for a given pair (a, b), no suitable c value was found, we decreased a
by 1 — rather than generating a new random value a — and conducted a new
search for c. We repeated this procedure until either a = 1 or a suitable value of
c was found; in the former case, we discarded a and b and started over.

Once a suitable triple (a, b, c) was obtained, we generated successive random
integers x of bit length at least s/2 − 12 until a value x was found such that
ax2 + 2bx + c is a prime congruent to 1 (mod 4). After a certain number of
unsuccessful trials at a value of x, we discarded the triple (a, b, c) and started
over with a new choice of a and b. This method worked very well in practice.

To find a conductor q such that q − (Δ1/q) is guaranteed to have a large
prime factor, we first generated a random prime L close to |Δ1| and checked
exhaustively whether q = jL + 1 is prime and (Δ1/q) = −1 for j = 2, 4, 6, . . .
If no prime was found for j up to some predetermined bound M , we discarded
L and repeated the same procedure until a prime l with the desired properties
was obtained.

For encryption under NICE and REAL-NICE, messages were embedded into
an OΔq -ideal of prime norm l such that the binary representation of l contained
a fixed bit pattern of length bΔq ∈ {80, 112, 128, 192, 256} corresponding to the
level of security that was chosen for Δq; bΔq = t in NICE and bΔq = t + u in
REAL-NICE. In addition, the 20 low order bits of l were set so that (Δq/l) = 1.
Consequently, messages were bit strings of length k − bΔq − 20.

Table 3 gives the average run times for NICE, REAL-NICE, and RSA for var-
ious parameter sizes. The run times were obtained by encrypting and decrypting
1000 randomly generated messages for each discriminant size. In addition to the
timings for encryption, decryption and message embedding, Table 3 lists the
minimal, the maximal and the average number of baby steps that were required
to locate the OΔ1 -ideal M during decryption with REAL-NICE.

Our numerical results show that NICE out-performs REAL-NICE for both
encryption and decryption. This is not surprising. Recall that in REAL-NICE,
the ideal p with [p] ∈ ker(Φ̂) is not included in the public key, resulting in shorter
keys. This is done at the expense of a considerable increase in encryption time
due to the need for generating a new random ideal p for each encryption. We also
expect decryption times of REAL-NICE to be slower than those of NICE, due to
the extra search through the cycle of reduced ideals in the class of the OΔ1 -ideal
C = φ−1(c), where c is the cipher ideal. In fact, decryption showed the most
significant difference in performance between NICE and REAL-NICE. When



206 M.J. Jacobson, R. Scheidler, and D. Weimer

Table 3. Average Run Times for NICE, REAL-NICE, and RSA

size(Δq) 1024 2048 3072 8192 15360

message length 80 112 128 192 256
block length 180 244 276 404 532

NICE

encryption 0.02139s 0.06994s 0.12659s 0.68824s 2.35274s
decryption 0.00033s 0.00082s 0.00099s 0.00312s 0.00729s
embedding 0.00467s 0.01152s 0.01550s 0.04257s 0.08860s

REAL-NICE

encryption 0.03532s 0.09944s 0.18096s 0.96830s 3.28507s
decryption 0.00210s 0.00468s 0.00757s 0.02811s 0.07735s
embedding 0.00531s 0.01152s 0.01547s 0.04289s 0.09770s

min. number of baby steps 1 1 1 2 2
max. number of baby steps 127 181 193 271 355
avg. number of baby steps 58.345 92.801 121.107 204.056 281.438

RSA

encryption 0.0074s 0.0081s 0.0090s 0.0173s 0.0499s
decryption 0.0127s 0.0334s 0.0931s 1.1188s 7.8377s

considering the overall performance, NICE is up to 1.61 faster than REAL-
NICE. However, we note that encryption in REAL-NICE can be replaced by
a technique called infrastructure multiple side-step (IMS) encryption that could
potentially make REAL-NICE competitive to NICE; a similar idea was used with
considerable success in cryptographic protocols using real hyperelliptic curves [8],
and is explained in the next section.

As expected, both NICE and REAL-NICE decryption significantly outper-
form RSA for all security levels. It is also noteworthy that when considering the
overall performance, both NICE and REAL-NICE are faster than RSA for the
two highest levels of security. This is surprising as our NICE and REAL-NICE
implementations are first prototypes, whereas the implementation of RSA in the
OpenSSL package is considered to be highly optimized.

9 Conclusion and Further Work

There exists a modified version of RSA due to Takagi [17] that would perhaps be
more appropriate for comparison with NICE and REAL-NICE. Takagi’s cryp-
tosystem relies on the difficulty of factoring integers of the form pkq (similar
to NICE and REAL-NICE) and has faster decryption than RSA. When using
k = 2, Takagi reports decryption times that are three times faster than decryp-
tion using Chinese remaindering with a 768-bit modulus. Our main goal was to
compare NICE and REAL-NICE with a highly-optimized implementation of the
most widely-used factoring-based cryptosystem (namely RSA), but a comparison
with Takagi’s cryptosystem would clearly be of interest as well.
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While the performance difference between NICE and REAL-NICE is at first
glance disappointing, a method referred to as infrastructure multiple side-step
(IMS) encryption can speed up REAL-NICE encryption time considerably, mak-
ing the system potentially competitive with NICE. IMS is explained in detail
in Section 7.2.1 of [19]. In both NICE and REAL-NICE, the OΔq -ideal ρΔq (pr)
used to obtain the cipher ideal c is evaluated using a standard binary exponen-
tiation technique involving giant steps. That is, a square corresponds to a giant
step of the form ρΔq (a2), and a multiply to the giant step ρΔq(ap), where a is
the intermediate ideal (a = ρΔq(pr) at the end). In IMS encryption, no random
exponent needs to be generated. Instead, a fixed number of square giant steps
is chosen, and each square giant step is followed by a certain random number of
baby steps (multiple side steps) in the cycle of reduced ideals (also referred to
as the infrastructure) in the OΔq -class of the message ideal m.

The complexity of a baby step is linear in O(log(Δq)) in terms of bit oper-
ations, whereas a giant step has quadratic complexity. Thus, if the number of
square giant steps corresponds to the bit length of r, and the number of baby
steps after each square & reduce operation is not too large, this results in a
significant speed-up in encryption time. On the other hand, if the number of
squarings or the number of side steps is too small, this may significantly de-
crease the number of possible values that the cipher ideal c can take on, thereby
rendering exhaustive search for c potentially feasible. Preliminary numerical data
in Section 7.3 of [19] showed that an IMS-prototype of REAL-NICE using even
the most conservative security analysis outperformed the original REAL-NICE
scheme. It is conceivable that the IMS parameters could be chosen to lead to
significantly faster encryption times, while still ensuring the same level of secu-
rity. Under these circumstances, IMS-REAL-NICE could be competitive to, or
even outperform, NICE. This would make IMS-REAL-NICE potentially attrac-
tive in situations where fast decryption time is essential (e.g. for fast signature
generation) and space is too restricted to hold the larger NICE keys. Clearly,
the subject of IMS encryption requires further exploration.

The questions of whether there are sufficiently many prime Schinzel sleepers
of a given bit length, and whether choosing Δ1 to be a Schinzel sleeper presents a
security risk, warrant further study. We also point out that it should be possible
to adapt the IND-CCA2 secure version of NICE to REAL-NICE in order to
provide the same level of security. These and other questions are the subject of
future research.
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Abstract. In [1], W. Aiello and R. Venkatesan have shown how to con-
struct pseudorandom functions of 2n bits → 2n bits from pseudoran-
dom functions of n bits → n bits. They claimed that their construction,
called “Benes” reaches the optimal bound (m � 2n) of security against
adversaries with unlimited computing power but limited by m queries
in an Adaptive Chosen Plaintext Attack (CPA-2). This result may have
many applications in Cryptography (cf [1,19,18] for example). However,
as pointed out in [18] a complete proof of this result is not given in
[1] since one of the assertions in [1] is wrong. It is not easy to fix the
proof and in [18], only a weaker result was proved, i.e. that in the Benes
Schemes we have security when m � f(ε) · 2n−ε, where f is a function
such that limε→0 f(ε) = +∞ (f depends only of ε, not of n). Never-
theless, no attack better than in O(2n) was found. In this paper we
will in fact present a complete proof of security when m � O(2n) for
the Benes Scheme, with an explicit O function. Therefore it is possible
to improve all the security bounds on the cryptographic constructions
based on Benes (such as in [19]) by using our O(2n) instead of f(ε) ·2n−ε

of [18].

Keywords: Pseudorandomfunction,unconditional security, information-
theoretic primitive, design of keyed hash functions, security above the
birthday bound.

1 Introduction

In this paper we will study again the “Benes” Schemes of [1] and [18]. (The
definition of the “Benes” Schemes will be given in Section 2). More precisely,
the aim of this paper is to present a complete proof of security for the Benes
schemes when m � O(2n) where m denotes the number of queries in an Adaptive
Chosen Plaintext Attack (CPA-2) with an explicit O function. With this security
result we will obtain a proof for the result claimed in [1] and this will also solve
an open problem of [18], since in [18] only a weaker result was proved (security
when m � f(ε) · 2n−ε where f is a function such that limε→0 f(ε) = +∞). It is
important to get precise security results for these schemes, since they may have
many applications in Cryptography, for example in order to design keyed hash
functions (cf [1]) or in order to design Information-theoretic schemes (cf [18]).
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Here we will prove security “above the birthday bound”, i.e. here we will prove
security when m � 2n instead of the “birthday bound” m � √

2n where m
denotes the number of queries in an Adaptive Chosen Plaintext Attack (CPA-
2).

√
2n is called the ‘birthday bound’ since when m � √

2n, if we have m
random strings of n bits, the probability that two strings are equal is negligible.
2n is sometimes called the ‘Information bound’ since security when m � 2n is
the best possible security against an adversary that can have access to infinite
computing power. In fact, in [18], it is shown that Benes schemes can be broken
with m = O(2n) and with O(2n) computations. Therefore security when m �
O(2n) is really the best security result that we can have with Benes schemes.

In [2], Bellare, Goldreich and Krawczyk present a similar construction that
provides length-doubling for the input. However their construction is secure
only against random queries and not against adaptively chosen queries. Benes
schemes, in contrast, produce pseudorandom functions secure against adaptively
chosen queries.

It is interesting to notice that there are many similarities between this prob-
lem and the security of Feistel schemes built with random round functions (also
called Luby-Rackoff constructions), or the security of the Xor of two random
permutations (in order to build a pseudorandom function from two pseudoran-
dom permutations). The security of random Feistel schemes above the birthday
bound has been studied for example in [13], [15], [17], and the security of the
Xor of two random permutations above the birthday bound has been studied
for example in [3], [8]. However the analysis of the security of the Benes schemes
requires a specific analysis and the proof strategy used for Benes schemes is
significantly different than for Feistel or the Xor of random permutations. In
fact, our proof of security for Benes schemes in m � O(2n) is more simple than
the proofs of security in m � O(2n) for Feistel schemes or the Xor of random
permutations, since we will be able, as we will see, to use a special property of
Benes schemes.

2 Notation

We will use the same notation as in [18].
• In = {0, 1}n is the set of the 2n binary strings of length n.
• Fn is the set of all functions f : In → In. Thus |Fn| = 2n·2n

.
• For a, b ∈ In, a ⊕ b stands for bit by bit exclusive or of a and b.
• For a, b ∈ In, a||b stands for the concatenation of a and b.
• For a, b ∈ In, we also denote by [a, b] the concatenation a||b of a and b.
• Given four functions from n bits to n bits, f1, . . . , f4, we use them to define the
Butterfly transformation (see [1]) from 2n bits to 2n bits. On input [Li, Ri],
the output is given by [Xi, Yi], with:

Xi = f1(Li) ⊕ f2(Ri) and Yi = f3(Li) ⊕ f4(Ri).
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Fig. 1. Butterfly transformation

• Given eight functions from n bits to n bits, f1, . . . , f8, we use them to define the
Benes transformation (see [1]) (back-to-back Butterfly) as the composition of
two Butterfly transformations. On input [Li, Ri], the output is given by [Si, Ti],
with:

Si = f5(f1(Li) ⊕ f2(Ri)) ⊕ f6(f3(Li) ⊕ f4(Ri)) = f5(Xi) ⊕ f6(Yi)

Ti = f7(f1(Li) ⊕ f2(Ri)) ⊕ f8(f3(Li) ⊕ f4(Ri)) = f7(Xi) ⊕ f8(Yi).
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Fig. 2. Benes transformation (back-to-back Butterfly)

3 A Problem in the Proof of [1]

As showed in [18], there is a problem in the security proof of [1]. Let us recall
what the problem is.

Definition 1. We will say that we have “a circle in X, Y of length k” if we
have k pairwise distinct indices such that Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 ,. . .,
Xik−1 = Xik

, Yik
= Yi1 . We will say that we have “a circle in X, Y ” if there is

an even integer k, k ≥ 2, such that we have a circle in X, Y of length k.

Let [L1, R1], [L2, R2], [L3, R3] and [L4, R4] be four chosen inputs such that L1 =
L2, R2 = R3, L3 = L4 and R4 = R1 (and R1 	= R2 and L1 	= L3). (Here we will
say that we have “a circle in L, R” of length 4). Let p be the probability for these
inputs to produce “a circle in X, Y ” (or, in the language of [1], an “alternating
cycle”) after a Butterfly. In [1], page 318, it is claimed that “the probability that
the top Butterfly produces an alternating cycle of length 2j is ≤ 2−2jn”. So here
this means p ≤ 1

24n . However we will see that p ≥ 1
22n . We have:
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X1 = f1(L1) ⊕ f2(R1)
X2 = f1(L2) ⊕ f2(R2) = f1(L1) ⊕ f2(R2)
X3 = f1(L3) ⊕ f2(R3) = f1(L3) ⊕ f2(R2)
X4 = f1(L4) ⊕ f2(R4) = f1(L3) ⊕ f2(R1)

Y1 = f3(L1) ⊕ f4(R1)
Y2 = f3(L2) ⊕ f4(R2) = f3(L1) ⊕ f4(R2)
Y3 = f3(L3) ⊕ f4(R3) = f3(L3) ⊕ f4(R2)
Y4 = f3(L4) ⊕ f4(R4) = f3(L3) ⊕ f4(R1)

First possible circle in X, Y We will get the circle X1 = X2, Y2 = Y3,
X3 = X4 and Y4 = Y1 if and only if f2(R1) = f2(R2) and f3(L1) = f3(L3) and
the probability for this is exactly 1

22n (since R1 	= R2 and L1 	= L3).
Conclusion. The probability p to have a circle in X, Y of length 4 (i.e. the
probability that the top Butterfly produces an alternating cycle of length 4 in
the language of [1]) is ≥ 1

22n , so it is not ≤ 1
24n as claimed in [1].

As we will see in this paper, this problem is not easily solved: a precise analysis
will be needed in order to prove the security result m � 2n.

4 “Lines” and “Circles” in X, Y

“Circles” in X, Y have been defined in Section 3. Similarly, (as in [18] p.104) we
can define “Lines” in X , Y like this:

Definition 2. If k is odd, we will say that we have “a line in X, Y of length
k if we have k + 1 pairwise distinct indices such that Xi1 = Xi2 , Yi2 = Yi3 ,
Xi3 = Xi4 , . . ., Yik−1 = Yik

, Xik
= Xik+1 . Similarly, if k is even, we will say

that we have “a line in X, Y of length k” if we have k+1 pairwise distinct indices
such that Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , . . ., Xik−1 = Xik

, Yik
= Yik+1 . So in

a line in X, Y we have k + 1 indices, and k equations, in X or in Y , and these
equations can be written “in a line” from the indices.

Remark: with this definition, a “line in X, Y ” always starts with a first equation
in X . This will not be a limitation in our proofs. Of course we could also have
defined lines in X, Y by accepting the first equation to be in X or in Y and then
to alternate X and Y equations.

To get our security results, as for [1] and [18], we will start from this theorem:

Theorem 1. The probability to distinguish Benes schemes, when f1, . . . , f8 are
randomly chosen in Fn, from random functions of 2n bits → 2n bits in CPA-2
is always less than or equal to p, where p is the probability to have a circle in
X, Y .

Proof of theorem 1
A proof of Theorem 1 can be found in [1] written in the language of “alternating
cycles”, or in [18] p.97, written with exactly these notations of “circles”. In fact,
this result can easily be proved like this:

With Benes, we have:

∀i, 1 ≤ i ≤ m, Benes(f1, . . . , f8)[Li, Ri] = [Si, Ti] ⇔{
Si = f5(Xi) ⊕ f6(Yi)
Ti = f7(Xi) ⊕ f8(Yi)

(1)
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with
{

Xi = f1(Li) ⊕ f2(Ri)
Yi = f3(Li) ⊕ f4(Ri)

When there are no circles in X, Y in each equation (1), we have a new variable
f5(Xi) or f6(Yi), and a new variable f7(Xi) or f8(Yi), so if f5, f6, f7, f8 are
random functions, the outputs Si and Ti are perfectly random and independent
from the previous Sj, Tj , i < j.

In this paper we will now evaluate p in a new way, in order to get stronger
security result. For this we will introduce and study the properties of “first
dependency lines”.

5 First Dependencies

Definition 3. A line in X, Y of length k will be called a “first dependency” line
when all the equations in X, Y except the last one are independent and when the
last one (i.e. the equation number k) is a consequence of the previous equations
in X, Y .

Example: If L1 = L3, L2 = L4, R1 = R2, R3 = R4, then (X1 = X2), (Y2 = Y3),
(X3 = X4) is a “first dependency line”, since (X1 = X2) and (Y2 = Y3) are
independent, but (X3 = X4) is a consequence of (X1 = X2).

Definition 4. A circle in X, Y will be called a “ circle with one dependency”
when all the equations in the circle, except one are independent from the others,
and when exactly one is a consequence of the others equations in X, Y .

The key argument in our proof will be this (new) Theorem:

Theorem 2. When f1, f2, f3, f4 are randomly chosen in Fn, the probability qk

to have a “first dependency line” in X, Y of length k satisfies qk ≤ k5 mk−1

2(k−1)n

Remark. Some possible improvements of this Theorem 2 (with a better coeffi-
cient than k5) will be given in Section 7. However this version with a coefficient
k5 will be enough for us, in order to get a security for Benes in O(2n) as we will
see in Section 6.

Proof of theorem 2
a) Rough Evaluation
Since we have (k − 1) independent equations in X or Y , when all the indices

are fixed the probability to have all these equations is 1
2(k−1)n . Now, in order to

choose the k + 1 indices of the messages, we have less than mk+1 possibilities.
Therefore, qk ≤ mk+1

2(k−1)n . Moreover, the last equation (in X or Y ) is a consequence
of the previous equations in X, Y . However, a dependency in these equations
implies the existence of a circle in L, R on a subset of the indices involved in the
dependency. [The proof is exactly the same as for Theorem 1 except that here
we use L, R instead of X, Y and X, Y instead of S, T ].
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Fig. 3. Example of circle in L, R

Now if we have a circle in L, R of length α, α even, we know that α
2 of the

messages in the circle come from the other α
2 messages.

For example, if L1 = L2, R2 = R3, L3 = L4, R4 = R5, L5 = L6, R6 = R1,
we have a circle in L, R of length 6, and if we know the messages 1, 3, 5, then
we know (L1, R1), (L3, R3), (L5, R5), and we can deduce (L2, R2), (L4, R4) and
(L6, R6), since (L2, R2) = (L1, R3), (L4, R4) = (L3, R5) and (L6, R6) = (L5, R1).
In a circle in L, R of length α, we must have α ≥ 4, since α = 2 gives Li = Lj

and Ri = Rj , and therefore i = j. Therefore, if there is a circle in L, R we will
be able to find α

2 messages, α
2 ≥ 2, from the other messages of the circle. So,

in order to choose k + 1 indices of the messages in a first dependency line, we
will have O(mk−1) possibilities (instead of mk+1 possibilities since at least 2
messages will be fixed from the others), and therefore qk ≤ O(m(k−1))

2(k−1)n . We will
now evaluate the term O(m(k−1)) more precisely.

b) More precise evaluation
From a first dependency line in X, Y we have just seen that at least two

messages of the line, let say messages [La, Ra] and [Lb, Rb] are such that La = Li,
Ra = Rj , Lb = Rk, Rb = Rl with i, j, k, l /∈ {a, b}. Moreover, we can choose b
to be the last message of the line (since between the two last messages we have
a dependency in X or in Y from the other equations in X and Y ). Now for
a we have less than k possibilities, and for i, j, k, l we have less than (k − 1)4

possibilities. Therefore, for the choice of the k + 1 messages of the line we have
less than k(k − 1)4 mk−1 possibilities, which is less than k5 mk−1. Therefore,
qk ≤ k5 mk−1

2(k−1)n as claimed.
Remark. We can not always choose a and b to be the last two messages,

because it is possible that we have an equality in L, or in R, between these two
last messages. However, we can always choose b to be the last message, as we
did here.
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Fig. 4. An example of line in X, Y

Theorem 3. When f1, f2, f3, f4 are randomly chosen in Fn, the probability
qk to have a “first dependency line” in X, Y of length k, or a “circle with one

dependency” of length k − 1 (k odd) satisfies: qk ≤ k5 mk−1

2(k−1)n
.

Proof of theorem 3
This is just a simple extension of Theorem 2. A circle of length k − 1 with one
dependency can be seen as a special line of length k with the first index equal to
the index number k, and the proof given for Theorem 2 extended to the classical
lines in X, Y and to these special lines gives immediately Theorem 3.

6 Security of the Benes Schemes

Theorem 4. When f1, f2, f3, f4 are randomly chosen in Fn, the probability p
to have a circle in X, Y satisfies, if m ≤ 2n

2

p ≤ m2

22n

( 1
1 − m2

22n

)
+

m2

22n

(+∞∑
k=3

k5

2(k−3)

)

and
+∞∑
k=3

k5

2(k−3)
= 35 +

45

2
+

55

22
+

65

23
+ . . . converges to a finite value.

Therefore, when m � 2n, p  0, as wanted.

Proof of theorem 4
For each circle in X, Y of length k, k even, we have three possibilities:

a) Either all the k equations in X, Y are independent. Then the probability
to have a circle is less than or equal to mk

2kn .
b) Or there exists a first dependency line of length strictly less than k in the

equations in X, Y of the circle.
c) Or the circle is a circle with exactly one dependency.
Now from Theorems 2 and 3, we get immediately:

p ≤ ( m2

22n
+

m4

24n
+

m6

26n
+

m8

28n
+ . . .

)
+

+∞∑
k=3

k5 mk−1

2(k−1)n
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Therefore, if m ≤ 2n

2 ,

p ≤ m2

22n

( 1
1 − m2

22n

)
+

m2

22n

(+∞∑
k=3

k5

2(k−3)

)

as claimed (since mk−3

2(k−3)n ≤ 1
2(k−3) ). Therefore, from Theorem 1, we see that we

have proved the security of Benes when m � O(2n) against all CPA-2, with an
explicit O function, as wanted.

7 Improving the k5 Coefficient

By working a little more it is possible, as we will see now, to improve the k5

coefficient in Theorem 2. First, we will see that it is possible to choose k4 instead
of k5.

Theorem 5. When f1, f2, f3, f4 are randomly chosen in Fn, the probability qk

to have a “first dependency line” in X, Y of length k satisfies qk ≤ k4 mk−1

2(k−1)n
.

× × × × × × × × ×

X Y X Y X Y X Y

α β δ γ a b

R L R

L

Fig. 5. Illustration of the proof in k4 instead of k5.

Proof of theorem 5
We will still denote by a and b the indices of the last equations (in X or in Y

and dependent from the other equations). We can proceed like this:
a) We choose 4 indices α, β, γ, δ /∈ {b} in the line X, Y . We have here less

than k4 possibilities to choose α, β, γ, δ.
b) We choose all the k− 1 messages of indices /∈ {a, b} in the line of length k.

We have here less than mk−1 possibilities.
c) The messages of indices β and b will be fixed from the previous values from

these equations: Rβ = Rα, Lβ = Lγ , Rb = Rγ , Lb = Lδ.
Therefore we have less than k4 mk−1 possibilities for the choice of the k + 1

messages in the first dependency line, so qk ≤ k4 mk−1

2(k−1)n
as claimed.

As we will see now, we can get further improvements on the coefficient k4 by
looking at the type of circle in L, R that contains a and b.

Theorem 6. With the same notation as in Theorem 5, we have: qk ≤ 1
2(k−1)n(

3kmk−1 + k6mk−2
)
.



A Proof of Security in O(2n) for the Benes Scheme 217

Proof of theorem 6
We know that the last equation of the line (Xa = Xb or Ya = Yb) is a consequence
of the previous equations in X or Y . We also know that such a consequence is
only possible if there is a circle in L, R that includes the two last points a and b.
In a circle in L, R of length α, α even, we have seen that α ≥ 4 and that α

2 points
can be fixed from the others. We will consider two cases: α = 4 and α ≥ 6.
Case 1: α = 4. In this case, the circle in L, R is between a, b and two other
points c, d such that the equation (in X or Y ) in a, b is a consequence of the
equation in c, d (in X or Y ). Therefore, for {c, d} we have at most k

2 possibilities
(cf figure 6). Now when {a, b, c, d} are fixed, for the circle in L, R we have at
most 3× 2 possibilities (Ra = Rb, Rc orRd and when this equation in R is fixed,
we have two possibilities for the equation in L). Therefore, we have at most
k
2 × 3 × 2 × mk−1 possibilities for a first dependency line in X, Y in this case 1.

× × × × × × ×
X Y, R X Y X Y, R

c d a b

L

L

Fig. 6. Example of dependency generated by a circle of length 4 in L, R

Case 2: α ≥ 6. In this case, at least 2 indices can be fixed from the others, and
by using exactly the same arguments as in the proof of Theorem 5 above, with
two more points, we see immediately that we have at most k6 ·mk−2 possibilities
for a first dependency line in X, Y in this case 2. By combining case 1 and case
2, we get immediately Theorem 6.

Theorem 7. With the same notation as in Theorem 5, we have:

qk ≤ 1
2(k−1)n

(
3kmk−1 + 30k2mk−2 + k8mk−3

)
Proof of theorem 7
The proof is exactly the same as above: the term in 3kmk−1 comes from circles
in L, R of length 4, the term in 30k2mk−2 (i.e. 5!k

2 · k
2 ·mk−2) comes from circles

in L, R of length 6, and the term in k8mk−3 from circles in L, R of length greater
than or equal to 8.

Theorem 8. With the same notation as in Theorem 5, we have: for all integer μ:

qk ≤ 1
2(k−1)n

(
3kmk−1 + 5!(

k

2
)2mk−2 + 7!(

k

2
)3mk−3 + 9!(

k

2
)4mk−4 + . . .

+(2μ + 1)!(
k

2
)μmk−μ + k2μ+4mk−μ−1

)
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Alternatively, we also have:

qk ≤ 1
2(k−1)n

(+∞∑
μ=1

(2μ + 1)!(
k

2
)μmk−μ

)

Proof of theorem 8
The proof is exactly the same as above. The term (2μ + 1)!(k

2 )μmk−μ comes
from the circles in L, R of length 2μ + 2, and the term k2μ+4mk−μ−1 from the
circles in L, R of length greater than or equal to 2μ+4, such that these circles in
L, R generate the dependency Xa = Xb (or Ya = Yb) from the previous equations
in X, Y .

Application to the Benes schemes
We can immediately apply these results to the Benes schemes, by using these im-
proved results instead of Theorem 2. For example, from Theorem 6 and Theorem
1 we get:

Theorem 9. The probability p to distinguish Benes schemes from truly random
functions of F2n satisfies:

p ≤ m2

22n

( 1
1 − m2

22n

)
+

+∞∑
k=3

3kmk−1

2(k−1)n
+

+∞∑
k=5

k6mk−2

2(k−1)n

and therefore if m ≤ 2n

2 we get:

p ≤ m2

22n

( 1
1 − m2

22n

)
+

m2

22n

(+∞∑
k=3

3k

2(k−3)

)
+

m3

24n

(+∞∑
k=5

k6

2(k−5)

)
(2)

In (2), we have again obtained a proof of security for the Benes schemes against
all CPA-2 when m � O(2n). Moreover the O function obtained here is slightly
better compared with the O function obtained with Theorem 4.

8 Modified Benes, i.e. Benes with f2 = f3 = Id

If we take f2 = f3 = Id in the Benes schemes, we obtain a scheme called
“Modified Benes” (see [1,18]). Then we have: Xi = f1(Li)⊕Ri, Yi = Li⊕f4(Ri)
and the output [Si, Ti] is such that Si = f5(Xi)⊕f6(Yi) and Ti = f7(Xi)⊕f8(Yi).
It is conjectured that the security for Modified Benes is also in O(2n) but so far
we just have a proof of security in O(2n−ε) for all ε > 0 (see [18]). It is interesting
to notice that the proof technique used in this paper for the regular Benes cannot
be used for the Modified Benes, since, as we will see in the example below, for
Modified Benes, unlike for regular Benes, the first ‘dependent’ equation can
fix only one index instead of two. Example: If we have L1 = L3, L2 = L4,
R1 ⊕R2 ⊕R3 ⊕R4 = 0, then we will get the ‘line’, X1 = X2, Y3 = Y3, X3 = X4

from only two independent equations in f , (X1 = X2 and Y2 = Y3), and the first
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‘dependent’ equation, here X3 = X4, fixes only the index 4 from the previous
indices (since L4 = L2 and R4 = R1 ⊕ R2 ⊕ R3). Therefore, a proof of security
in O(2n) for the Modified Benes will be different, and probably more complex
than our proof of security on O(2n) for the regular Benes.

9 Conclusion

W. Aiello and R. Venkatesan did a wonderful work by pointing out the great
potentialities of the Benes schemes and by giving some very important parts of
a possible proof. Unfortunately the complete proof of security when m � 2n for
CPA-2 is more complex than what they published in [1] due to some possible
attacks in L,R. However, in this paper we have been able to solve this open
problem by improving the analysis and the results of [18]. The key point in our
improved proof was to analyse more precisely what happens just after the first
‘dependent’ equations in X,Y (with the notation of Section 3), and to use the
fact that in this case two ‘indices’ are fixed from the others. Therefore we have
obtained the optimal security bound (in O(2n)) with an explicit O function. This
automatically improves the proved security of many schemes based on Benes,
for example the schemes of [19].
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Abstract. We present a new side-channel attack against VEST, a set
of four stream ciphers which reached the second phase of the eSTREAM
project (the European stream cipher project). The proposed attacks tar-
get the counter part of the ciphers, composed of 16 short-length non-
linear feedback shift registers (NLFSR) independently updated. Our aim
is to retrieve the whole initial state of the counter (163 to 173 bits) which
is a part of the keyed state. The first attack is directly adapted from pre-
vious works on differential side-channel attacks. The second attack is
brand new. It involves a unique measurement thus it can be seen as a
simple side-channel attack. However, it requires some signal processing
so we call it Refined Simple Power Analysis. As we expect full recovery of
the initial state with minimal complexity, one should carefully consider
implementing any VEST cipher in an embedded device.

Keywords: Side Channel Attacks, VEST, Stream Ciphers,Fourier
Transform.

1 Introduction

Since the introduction of Differential Power Analysis in 1998 [8], attacks and
countermeasures of cryptographic algorithms performed on embedded devices
have been deeply studied. While conventional attacks focus on the mathemati-
cal security of cryptographic algorithms, side-channel attacks target implemen-
tations on embedded devices to recover secret data. The limited investment and
the low complexity are the major assets of these attacks thus the implementa-
tion of cryptographic algorithms in embedded or insecure devices is now carefully
studied.

While side-channel attacks first targeted software implementations, recent re-
sults [15] adapted these attacks to hardware implementations in FPGA and
ASIC. Although many attacks against block ciphers and public-key ciphers have
been published so far (see [9,10] for example), few attacks target stream ciphers.
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One explanation may be the lack of a standard stream cipher such as the stan-
dard AES for block ciphers. Anyway a lot of stream ciphers coexist and they are
widely used for their high encryption and decryption speed.

From [16] we get a state of the art of side-channel attacks against stream
ciphers. In [11] we discover two Differential Power Attacks (DPA) against two
widely used algorithms: A5/1 (GSM communication encryption algorithm) and
E0 (Bluetooth encryption algorithm).

According to the latter publication, side-channel attacks on stream ciphers are
quite rare because “The problem with DPA attacks against stream ciphers is that
the key stream is computed independently from the plain text to be encrypted”.
Actually we disagree with the authors on this assertion on the following points.

– Stream ciphers have an IV setup phase where a known IV is introduced into
the cipher and is mixed with the secret key. Although no output is observable
during this phase, the internal state depends on the known IV and the secret
key.

– Why would one only be restrained to differential attacks ?
– Is the knowledge of some input data required to mount side channel attacks?

As an answer to the latter question, the authors of [6] proposed an attack
targeting a single Galois Linear Feedback Shift Register with a simple power
analysis and a fast correlation attack. Although this attack does not apply
to any particular cipher, it presents an interesting opening by mixing two as-
pects of cryptanalysis : side-channel analysis and traditional attacks. In a recent
paper([3]), the authors present two novel differential side-channel attacks against
the eSTREAM ciphers GRAIN and TRIVIUM. They introduce well-chosen IV
to decrease the noise level during the proposed attack.

In order to go further in this direction, we present a new side channel attack
on a publicly submitted stream cipher called VEST [14]. VEST passed the phase
I of the eSTREAM project but due to a practical attack described in [7], it was
rejected during the second phase. The authors proposed a minor change in the
design to resist to the attack in a second version of the cipher. However we study
the behavior of a straightforward implementation of VEST and we point out two
side-channel weaknesses in its architecture. Both allow an attacker to recover the
initial state of the counter. Our attacks do not focus on the previously mentioned
vulnerability thus they are intended to work on both versions of the cipher.

The present paper is organized as follows: in the next section we briefly de-
scribe the core components of VEST as submitted in [14]. Section 3 is devoted to
Side-Channel Analysis. We shortly remind the different models of side-channel
leakage in embedded devices and the main attacks discovered so far. In section
4 we present a classical differential side-channel analysis which focuses on the
first half of the counter. Finally, in section 5, we highlight a vulnerability in the
design of VEST which allows an attacker to mount a simple side-channel attack
to recover the whole counter. We illustrate our approach with a time complexity
analysis of our algorithms and theoretical results based on our experiments.
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2 VEST Core Components

VEST is a family of four stream ciphers (VEST-4, VEST-8, VEST-16 and VEST-
32) which was submitted to the ecrypt/eSTREAM project1. All VEST ciphers
are constructed on the same basis but each one is intended to provide a different
level of security (280 for VEST-4, 2128 for VEST-8, 2160 for VEST-16 and 2256

for VEST-32).
The core of the cipher contains 4 different components:

– a counter, made of 16 non-linear feedback shift registers,
– a linear counter diffusor,
– an accumulator,
– a linear output filter.

The size of these inner components depends on the chosen cipher. In the
following we describe the counter since our attacks specifically target this part.
We shortly remind the other parts but we refer the reader to [14] to get full
description.

2.1 The Counter

The counter is the autonomous part of VEST. It is made of 16 different registers
of either 10 or 11-bit long. Each register is associated with a 5 to 1 non-linear
function gi. At each clock cycle, the update function introduces the XOR of the
output of gi with the shifted out bit oi at the beginning of the register and shifts
the other bits.

The registers have two modes of operation: the keying mode and the counter
mode. In the keying mode, the NLFSR is disturbed by one bit k at each clock
cycle while in the counter mode it is autonomously updated. Fig.1 summarizes
the evolution of the NLFSR of VEST in both modes.

3 4 5 6 71 2

gi

fi

0 l−1
ojij

k

Fig. 1. NLFSR used in VEST

1 harp//www.ecrypt.eu.org/stream
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The authors of VEST proposed 32 non-linear functions gi, 16 for the 10 bits
long registers and 16 for the 11 bits long registers. For each cipher in the family,
they specified a set of 16 NLFSR among these to define the counter part.

In VEST, the counter is a highly sensitive part. Indeed it serves as a random
number generator for the whole cipher during the computation. It has to be
unpredictable. Actually, this assertion is not satisfied: there is a flaw in the
design. The authors of [7] highlighted a vulnerability in the design of the counter
and they proposed an attack on the IV setup phase. They recovered 53 bits of
the keyed state with 222 IV setups. This attack made the cipher to be rejected
in phase II of the eSTREAM project.

2.2 The Other Components

Each clock cycle, 16 bits of the counter are extracted. They pass through the
linear counter diffusor. The latter maps the extracted bits to 10 bits and linearly
combines them with its last state. The computed 10 bits long value enters the
accumulator. Every clock cycle, the internal state of the accumulator goes into a
substitution phase and a permutation phase. Then the first 10 bits of the result
are XOR-ed with the result of the linear counter diffusor.

The last part of the cipher is the linear memoryless output combiner. It lin-
early combines the state of the accumulator to output M bits, M ∈ {4, 8, 16, 32}
depending on the chosen cipher.

3 Side Channel Attacks

In this section we describe some important facts about side-channel attacks. We
firstly recall the different models of leakage and briefly remind the two major
attacks. Finally, we survey the previous side-channel attacks on stream ciphers.

3.1 A Brief History

Side-channel attacks were first published by Kocher et al. in [8]. The authors
linked the instantaneous power consumption of a smart card performing a cryp-
tographic algorithm with the value of the data currently handled. They success-
fully recovered the secret key of a DES by monitoring the power consumption
of the smart card performing the algorithm.

This area of research is being intensely studied. Many side-channel attacks
have been discovered, essentially based on timing delays, power or electromag-
netic leakage, even acoustic leakage for few of them. We refer the reader to [9,10]
to find some examples of side-channel attacks and possible countermeasures on
either block ciphers or asymmetric ciphers.

3.2 Models of Leakage

In order to assess the validity of side-channel attacks, we need to correlate the
observed leakage with some information in the device. Many models [1,2] have
been proposed since 1999 to answer this problem.
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When dealing with registers storing values or flip-flops which update their
content at each clock cycle, two models coexist: the Hamming weight model
and the Hamming distance model. The former model linearly links the observed
leakage W with the Hamming weight H of the data handled by the device (eq.
(1)). The latter model links W with the Hamming distance Hd between the
current and the previous handled data (eq. (2)).

W = aH + b (1)
W = aHd + b (2)

When the device contains a majority of combinatorial logic, the most suitable
model seems to be the transition count model. In this model, the leakage is
linearly linked to the number of switchings that occur in CMOS cells during the
computation. This switching activity is essentially due to timing delays occurring
in a circuit. We refer the reader to [12] to get an overview of this model.

3.3 Types of Side-Channel Attacks

Although many different side-channel attacks have yet been published, we can
group them into two major categories: simple and differential side-channel attacks.

Simple attacks recover secret data from a single curve of leakage. As an ex-
ample, key-dependent operation attacks [13] and special value attacks [5] can be
considered as simple attacks. Differential attacks exhibit biases in the leakage
related to some secret data. A typical differential side-channel attack can be
found in [8].

3.4 Side-Channel Attacks on Stream Ciphers

As we previously mentioned, side-channel attacks against stream ciphers are
quite uncommon. As a matter of fact, previous publications on the subject are
limited to [6,11,16,17]. In [11], the authors proposed two differential side-channel
attacks against A5/1 and E0 which are respectively used in GSM communica-
tions and in the Bluetooth encryption process.

In [3], the authors exposed two differential attacks against the eSTREAM
ciphers Grain and TRIVIUM. The attack against the first cipher occurs in three
phases. The first two phases are based on a differential power analysis with
carefully chosen IV to recover 34 and 16 bits of the secret key. These IV are chosen
to minimize the power consumption of the rest of the cipher when computing
the differential traces. Indeed some specific bits are fixed to obtain an identical
power consumption in specific parts of the cipher. The third phase is a simple
exhaustive search among the 30 remaining bits.

The attack against TRIVIUM is quite similar since it also uses specific IV to
recover the secret key. These attacks seem really interesting and they are the
first side-channel attacks against two phase III eSTREAM ciphers.

The attack described in [6] is quite different. The authors presented a simple
power analysis on a n-bit length Galois LFSR that recovered a biased output
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sequence. They applied a modified fast correlation attack (fast correlation attack
with bias weighting) on the sequence in order to recover the initial state of the
LFSR.

Although this particular attack does not apply to any specific cipher, the
authors showed that simple side-channel analysis can be applied to components
of stream ciphers.

Based on these few publications, we decide to target a specific, yet publicly
submitted stream cipher and we try to point out potential side-channel vulner-
abilities in its design.

4 Differential Analysis of the Counter

From section 2 we know that VEST is made of 4 main components: the counter,
the counter diffusor, the accumulator and the output combiner. Our attacks
especially target the counter which is the only autonomous part of the cipher.

VEST is a hardware profile stream cipher thus when implemented in a FPGA
or an ASIC, the registers of the NLFSR are synthesized as flip-flops which update
their values at each clock cycle. However the non-linear functions are likely to
be implemented with simple logic gates. In our attacks, we focus on the update
of the registers. Hence the Hamming weight and the Hamming distance models
described in section 3 are the most adequate for our analysis.

During the key setup phase, the key is introduced into the cipher. In order
to use the same secret key for many encryptions, VEST offers a IV setup phase
in which a known IV is introduced into the cipher. In this mode, NLFSR 0 to
7 are in keying mode while NLFSR 8 to 15 are in counter mode (see section 2
for more details). Hence the introduced IV only affects the first 8 NLFSR. This
remark is the basis of our first attack.

Since the IV setup phase disturbs half of the NLFSR in the counter and the
length of each disturbed NLFSR is 10 or 11 bits, we can mount a known plain text
differential side-channel attack on each one with low complexity. Anyway, the
results of this potential weakness highly depend on the differential characteristic
of each NLFSR.

4.1 Differential Characteristic of a Short Length NLFSR

For two NLFSR chosen from [14], we perform the following test: for each possible
initial state, we introduce 2 bytes of random data as described in the IV setup
phase in [14]. Then we apply a theoretical differential side-channel attack at the
end of this phase. We use the traditionnal selection function here, separate the
curves where the theoretical leakage (Hamming weight or Hamming distance
model) is among or above n/2 where n is the length of the targeted register.

In order to validate the differential attack, for each possible initial state we
check whether the highest differential peak is obtained for the right initial state
(validity of the differential attack). We also check whether the second highest
peak is far lower than the first one (ghost peaks problem). Table 1 summarizes
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the results obtained for two distinct NLFSR of VEST, for 4000 IV of either 2 or
3 bytes long and 10000 IV of 2 bytes long. The feedback function is given as a
32 bits long word: the 5 input bits form a decimal number from 0 to 31 which is
the index of the result in the 32 bits long word.

Table 1. Differential side-channel attacks on NLFSR of VEST

Feedback Length of Length Number Validity Closest
function the NLFSR of IV of IV of DPA ghost peak

0xDD1B4B41 11 2 4000 �� 11%
0xDD1B4B41 11 3 4000 �� 11%
0xDD1B4B41 11 2 10000 �� 8%

0x94E74373 10 2 4000 �� 10%
0x94E74373 10 3 4000 �� 9%
0x94E74373 10 2 10000 �� 6%

From this table we deduce some important facts. We can mount a differential
side-channel attack with known IV on a short-length NLFSR. For both of the
considered NLFSR, only 4000 IV are sufficient to recover the right initial state.
Moreover, the ghost peaks problem is unlikely to happen: the closest highest
peak is only 1

10

th of the highest for all possible initial states and for only 4000
IV. Moreover, that proportion decreases with more IV. Finally, increasing the
length of the IV does not decrease the size of the ghost peaks. As a matter of
fact, 2 bytes of IV looks like a good compromise in size and diffusion.

4.2 Application to the Counter Part of VEST

During the IV setup phase, the IV is introduced by the first 8 NLFSR. Thus
we can only target these NLFSR with our differential attack. It is necessary to
introduce at least 2 bytes of IV in each NLFSR to obtain a correct diffusion.
Since each bit is inserted only once in one NLFSR, this attack requires at least
16 bytes of IV. Note that the authors of VEST do not specify any maximal
length for the IV.

Each NLFSR is independent of the others: it involves a unique feedback poly-
nomial and no cross-computation occurs. This ensures that when we target a
single NLFSR, the contribution of the others can be seen as some random noise
in the observed leakage. In other words, we require substantially more IV to keep
the same level of signal. Table 2 summarizes the different experiments made for
random initial states and 10000 to 35000 different IV.

As shown in the previous section, IV longer than 2 bytes do not necessarily
increase the Signal to Noise Ration (SNR) while a larger number of IV helps
decreasing the ghost peaks effect. If we need to increase the SNR, one solution
would be to average the contribution of the untargeted NLFSR. This could be
done by setting the bytes entering the targeted NLFSR while varying the other
bytes. The complexity of the attack is O(N×213) for N IV. It allows the recovery
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Table 2. Differential side-channel attacks on VEST counters

Number of IV Length of IV Mean of closest ghost peaks Highest ghost peak

10000 16 11.6% 14.2%
10000 24 12% 14.2%
20000 16 8.5% 10%
35000 16 6.2% 7.1%

of 83 bits of the initial state. Since we only recover half of the counter, we need
to perform an additional attack to recover the key. Examples of such attacks can
be found in [7].

As we are dealing with side-channel attacks, we try to find a new attack
that can be applied to the whole counter part of VEST. Indeed we find some
interesting points in [14] that allow an attacker to mount a simple side-channel
attack on VEST with insignificant extra complexity.

5 Refined Simple Side-Channel Attack Based on the
Fourier Transform

“The period of each of the chosen NLFSR is guaranteed to be a predetermined
prime number for any starting value. Such prime-period NLFSR when combined
together result in a counter with a total period being a multiple of the individual
periods of all 16 NLFSR” ([4]). This assertion is actually true but, as we will
see in the following, it also creates vulnerabilities that compromise the whole
counter.

5.1 The Use of the Fourier Transform

First of all, the counter part of VEST is made of 16 NLFSR Ni which update their
internal values at each clock cycle. The clock rate being known, we can simply
separate a single long trace into multiple traces of one cycle each to sum them up.
Moreover, for a given initial state, each NLFSR has a unique and predetermined
prime period referenced in [14]. Hence a simple Fourier transform on a long trace
will present remarkable peaks at some distinct frequencies fi corresponding to
the predetermined periods Ti.

From this simple operation, we recover the period Ti of each NLFSR Ni of
the counter. In appendix F from [14] are listed all the possible periods for each
NLFSR.

5.2 New NLFSR-Oriented Curves

Suppose we have a trace of leakage (power consumption, electro-magnetic ema-
nations) E of N cycles of the VEST algorithm running into an embedded device:

E = (E0 . . . EN−1)
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Once Ti is identified with the Fourier transform, for each i ∈ �0, 15� we target
the corresponding NLFSR Ni as follows. We construct the curve Ci of length Ti,
defined as:

Ci = (Ci,0 . . . Ci,Ti−1), Ci,j =
�N/Ti�∑

k=0

Ej+k×Ti

The NLFSR Ni cycles every Ti steps. Hence we can separate its leakage in-
duced in Ci from the leakage induced by the other NLFSR. We respectively define
these parts Ai and Bi and we detail them hereafter.

5.3 The Biases

For the sake of simplicity, we consider the Hamming weight model as the leakage
model in the following. We define H(N j

i ) as the Hamming weight of the targeted
NLFSR Ni at time j. We firstly consider the Ai part. For each j ∈ �0, Ti − 1�,
we define

Ai = (Ai,0 . . . Ai,Ti−1), Ai,j =
N/Ti∑
k=0

H(N j+k×Ti

i )

Since Ni cycles every Ti steps, we have H(N j+k×Ti

i ) = H(N j
i ) and we obtain

∀j ∈ �0, Ti − 1�, Ai,j =
N

Ti
H(N j

i )

Obviously, when we analyze the NLFSR Ni on its own curve Ci, its Hamming
weight is linearly amplified by N

Ti
. Hence, from a single curve Ci, we extract the

evolution of the Hamming weight H(Ni) during Ti cycles. Anyway, 16 NLFSR
run in parallel in the counter and this amplification solely targets Ni. We need
to analyse the behavior of the 15 remaining Nj , j �= i with respect to Ti in the
curve Ci (i.e. the Bi part).

As a matter of fact, no cross-computation occurs between the 15 remaining
NLFSR. Moreover, each one has a unique and predetermined prime period for a
fixed initial state. The update of each NLFSR is independent of the others and
so it is for their Hamming weights. Thus the leakage of the 15 left NLFSR can
be modeled as the sum of their own leakages. In other words, Bi =

∑15
k=0,k �=i Bk

i .
Since all the NLFSR are similar, in the following we model the theoretical

leakage of one NLFSR Nk with respect to Ti, i �= k. The other NLFSR will
behave the very same way.

Even if Nk is made of simple flip-flops, we can not model its leakage with a
normal distribution. Indeed, the Hamming weight H(N t+1

k ) depends on H(N t
k).

Actually, H(N t+1
k ) = H(N t

k) ± {0, 1} thus the variables are not independent.
Anyway, since the length of each NLFSR is relatively small (10 to 11 bits long),
we simply perform an exhaustive overview of its theoretical leakage Bk

i and
deduce its contribution in the overall leakage Bi.
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As an example, we choose T1 = 1009 from [14] i.e. we target N1. We compute
the theoretical behavior B17

1 of N17 for N = 220 cycles with respect to T1 under
the Hamming weight model. Note that these two NLFSR are recommended in
VEST-4 and the potential periods of N17 are 503 and 521 which are close to
T1/2. For each possible initial state k of N17 we compute the theoretical leakage
of N17 as explained above thus for each j ∈ �0, T1−1� we compute the following
values

B16
1,j(k) =

N/T1∑
m=0

H(N j+m×T1
17 )

These k curves correspond to the contribution of N17 in C1 for each possible
initial state k. Unsurprisingly, when N increases, ∀j ∈ �0, T1 − 2�, B17

1,j(k) ≈
B17

1,j+1(k) ≈ N
T1

× μ(N k
17) where μ(N k

17) is the mean of Hamming weights of N17

initialized with k during the period T17.
Figure 2 represents the theoretical contributions of N1 (sharp curve) and N17

(flat curve) with respect to T1 for random initial values. Note that we observe
an equivalent behavior for the 2|Nj | possible initial states. Depending on the
initial value, μ(N k

17) has 2 different values due to two possible periods T17 = 503
and T17 = 521. Anyway the curve remains almost flat which is the important
point here. In other words for a sufficiently large number of output bits, the
contribution of N17 in C1 (the curve B17

1 ) is merely a constant whichever the
initial state is.

We also simulate the experiments for the remaining NLFSR even if their
unique and predetermined prime periods guarantee similar behaviors. The results
validate our assumptions: for a sufficiently large number of output bits (220 in
our experiments), the contribution of H(Nj) in Ci is almost constant and the
variations are insignificant compared to the variations of H(Ni). When we sum
the leakages of the 16 NLFSR, the 15 untargeted ones add an almost constant
value with a minimal standard deviation. Therefore the noise generated hardly
interfere with the signal recovered from the targeted NLFSR. In other words,
from a single curve of the leakage we construct the 16 curves Ci. They correspond
to the evolution of the Hamming weight of the 16 NLFSR which compose the
counter.

5.4 Extracting Information from the Variations

The curve Ci emphasizes the evolution of H(Ni) during the period Ti and min-
imizes the effects of the other NLFSR. We consider the presence of a Gaussian
noise induced by the whole chip. We model this noise by the normal distribution
N (μnz , νnz).

Now we focus on this evolution to extract information on the internal state
of Ni.
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Fig. 2. Contribution of NLFSR N0 (blue) and N16 (black) with respect to T0

For each j ∈ �0, T0 − 2�,

Ci,j+1 − Ci,j ≈ (Ai,j+1 − Ai,j) + N (μnz , νnz) (3)
Ai,j+1 − Ai,j = �N/Ti� × (H(Ni,j+1) − H(Ni,j))︸ ︷︷ ︸

dj

(4)

Hence from Ci,j+1 − Ci,j we obtain information on dj modulated with some
noise. The difference between two successive points of Ci amplifies the difference
of the Hamming weight of two successive states of Ni by �N/Ti�. As dj can
only take 3 values {0, 1,−1} we can compute from eq. (3) a threshold t which
recovers the value of dj from Ci,j+1−Ci,j . This threshold depends on the level of
the noise and the number of available samples. We will make no further analysis
on the threshold since it is essentially based on the quality of the measurement
and this study is theoretical.

This value dj helps recovering the value ij (resp. oj−1) of the input bit i at time
j (resp. the output bit o at time j−1), the only bits that can vary the Hamming
weight of the register. Since ij = oj−1 ⊕ fj−1, we also extract information on
fj−1, the value of the non-linear function f at time j − 1. Information on these
values is recovered as follows:

– if Ci,j+1 − Ci,j > t then dj = 1, ij = 1, oj−1 = 0 so fj−1 = 1 (the Hamming
weight increases),

– if Ci,j+1 − Ci,j < −t then dj = −1, ij = 0, oj−1 = 1 so fj−1 = 1 (the
Hamming weight decreases),

– if Ci,j+1 − Ci,j ∈ [−t, t], dj = 0, the Hamming weight does not change, we
can not guess the shifted in value but ij = oj−1 so fj−1 = 0.
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Hence we construct the 3 following sequences by observing Ci:

I = {0, 1, x}Ti, O = {0, 1, x}Ti, F = {0, 1}Ti

where I (resp. O, F ) is the shifted in bit sequence (resp. the shifted out bit
sequence, the non-linear output bit sequence). In the first two sequences x means
unable to decide or unset, it occurs when fj = 0.

When ij is unset (i.e. ij = x), we have an additional information. Since
ij = oj−1 ⊕ fj−1, fj−1 = 0 and oj = Ij−|Ni|+1 (the bits are simply shifted in the
NLFSR) we have ij = ij−|Ni|.

Therefore, on a second phase, a simple backtracking algorithm recovers some
unset input bits ij by matching them with ij−|Ni|. Note that this algorithm is
valid because fj−1 = 0 in this case. Moreover, it does not increase the overall
complexity of the recovery phase since its complexity is linear.

Fig.3 is a closer view of an attack on N8 in which the algorithm of detection
predicts the sequence

{x, 0, 1, x, 1, x, x, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, x, x, 1, x, 0, x, x, x, 0, . . .}

The backtracking phase recovers the following sequence:

{x, 0, 1, x, 1, x, x, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, . . .}

370 375 380 385 390 395 400 405 410
60000

61000

62000

63000

64000

65000

66000

Fig. 3. Zoom on N24 at t = 370, T24 = 677

When no more input bits can be recovered within the first two phases, we
extract the first subsequence of |Ni| bits from I with the least number of unknown
bits, say ti. Sometimes ti = 0, thus we obtain a complete state of the NLFSR
and the attack is over. Otherwise, we perform a correlation attack on Ni for the
2ti possible initial states and match the sequences with I, O and F . Only the
correct initial state matches the recovered sequences with no error (see section
5.5 for more details).
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The first subsequence of 10 bits (the length of N24) with the least number
of unpredicted bits of this sequence is Z24 = {1, 1, 0, 0, 1, 0, 0, 0, 1, 0} which has
no unpredicted bit. In this special case, our recovery algorithm compares the
sequence of bits entering the NLFSR initialized with Z24 with the predicted
non-linear output sequence F .

When the considered initial state is fully recovered, we simply rewind the
NLFSR to obtain its initial value i.e. the state at the beginning of the curve.
Proceeding similarly with the other NLFSR, we recover their respective initial
states at the very same time t = 0. Thus we obtain the full state of the counter
at this precise time.

Experiments on Fig.3 have been made using 220 output bits. According to [4],
it corresponds to 3 ms of encryption on the least efficient tested FPGA. It is
worth noticing that this attack works on the whole counter part of VEST, unlike
the previous attack.

The complexity of the Fourier transform is O(N log N) for N output bits. For
each NLFSR, the complexity of the attack is in O(N + Ti 2ti) thus the whole
complexity of the attack is O(N log N +

∑15
i=0 (N + Ti 2Ti)). Since we deal with

approximately 220 or more output bits, this complexity is about O(N log N),
which is the complexity of the Fourier transform.

5.5 False Prediction

Two minor drawbacks arise from this attack:

– an incorrect prediction in I will automatically result in the rejection of the
considered initial state,

– a sequence with an incorrect initial state can match the correct sequence on
the predicted bits of F .

Depending on the number of collected samples and the noise level, our detec-
tion algorithm can predict incorrect values. In this case, the recovery algorithm
does not work as intended.

However, we can tighten the threshold t by creating a new population of
discarded input bits. In this case, we differentiate unpredicted bits ij and oj−1 in
which fj−1 = 0 and discarded bits in which ij, oj−1 and fj−1 are unknown. The
former population can be recovered by the second phase as explained above but
the latter has to be put apart.

Obviously the population of predicted bits in I and O will decrease and the
complexity of the attack will slightly increase. Anyway the confidence level of
the predicted bits will also increase. The second phase of the algorithm ensures
the recovery of some input bits with a high level of confidence since it is based
on the predicted bits in the first phase. Thus the complexity of the attack does
not significantly increase since ti is still small.

This problem can also be avoided by observing a leakage trace with signif-
icantly more output bits. We previously saw that the leakage of the targeted
NLFSR is linearly amplified by the number of samples N while the leakage of
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the other NLFSR acts as a constant. Thus the signal to noise ratio would increase
in this scenario.

The second drawback is actually very unlikely to happen. Two different initial
states can not generate the same output sequence: once the bits are in the NLFSR
Ni, they are just shifted and never modified until they are output. Thus if n
output bits coincide (where n is the length of the NLFSR), the internal states
are identical. In the case of discarded input bits, some bits are not predicted
thus the correlation attack is only performed on the predicted output bits. The
probability of an incorrect internal state to match all the t predicted bits exists
but decreases if t increases. This problem can also be avoided by observing a
longer output sequence.

6 Conclusion

We present two different side-channel attacks against VEST, a phase II candi-
date of the eSTREAM project. These attacks are based upon two weaknesses in
the design of the cipher. The first vulnerability is the short length of the NLFSR.
Since they are independent and only 10 or 11 bit long, we firstly apply a dif-
ferential side-channel attack on each NLFSR used in the IV setup phase with
random IV. The results confirm our assumptions: the initial state corresponds
to the highest peak of leakage and the closest ghost peak is far lower. We applied
this attack to the whole counter part and the results went unchanged. Although
the 16 NLFSR in VEST run in parallel, they evolve independently. In this case,
the leak induced by the untargeted NLFSR behaves like some random noise. We
recovered 83 bits of the keyed state corresponding to the 8 NLFSR in which the
IV is introduced.

The second pinpointed vulnerability is the small, unique and predetermined
prime period of each NLFSR. We present a new simple side-channel attack ex-
ploiting this weakness to recover the whole keyed state of the counter. We high-
light the evolution of the leakage of each NLFSR during its own period. Based
on the Hamming weight model, we extract from this evolution some important
bits of the targeted NLFSR such as the input bit and the value of the non-
linear function. Then we apply a correlation attack on the extracted sequences
to recover the initial state.

It is worth noticing that this new attack can be considered as a simple side-
channel attack since it requires only a single trace. Moreover, it requires neither
known plain text nor known cipher text and can only be performed with an
Electro Magnetic leakage curve.

Contrary to the authors’ assertion in [4], VEST contains vulnerabilities that
can be exploited with side-channel analysis. In these conditions, implementing
this cipher in an unprotected fashion should be avoided.

More generally, we do not encourage to introduce secret data in small length
independent objects. Indeed, an attacker will directly target these specific parts
with side-channel analysis to extract important information with low complexity.
As an example, we provided two different attacks on VEST. Stream ciphers
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should be carefully implemented or synthesized as numerous side-channel attacks
have not yet been discovered.
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in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
144–157. Springer, Heidelberg (1999)

14. O’Neil, S., Gittins, B., Landman, H.: VEST. Hardware-Dedicated Stream Ciphers
(2005)

15. Ors, S.B., Oswald, E., Preneel, B.: Power-analysis attacks on an FPGA - first
experimental results. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003.
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Abstract. A recent framework for chosen IV statistical distinguishing
analysis of stream ciphers is exploited and formalized to provide new
methods for key recovery attacks. As an application, a key recovery at-
tack on simplified versions of two eSTREAM Phase 3 candidates is given:
For Grain-128 with IV initialization reduced to up to 180 of its 256 iter-
ations, and for Trivium with IV initialization reduced to up to 672 of its
1152 iterations, it is experimentally demonstrated how to deduce a few
key bits. Evidence is given that the present analysis is not applicable on
Grain-128 or Trivium with full IV initialization.

Keywords: Stream ciphers, Chosen IV analysis, eSTREAM, Grain,
Trivium

1 Introduction

Synchronous stream ciphers are symmetric cryptosystems which are suitable in
software applications with high throughput requirements, or in hardware appli-
cations with restricted resources (such as limited storage, gate count, or power
consumption). For synchronization purposes, in many protocols the message is
divided into short frames where each frame is encrypted using a different pub-
licly known initialization vector (IV) and the same secret key. Stream ciphers
should be designed to resist attacks that exploit many known keystreams gen-
erated by the same key but different chosen IVs. In general, the key and the IV
is mapped to the initial state of the stream cipher by an initialization function
(and the automaton produces then the keystream bits, using an output and up-
date function). The security of the initialization function relies on its mixing (or
diffusion) properties: each key and IV bit should affect each initial state bit in
a complex way. This can be achieved with a round-based approach, where each
round consists of some nonlinear operations. On the other hand, using a large
number of rounds or highly involved operations is inefficient for applications with
frequent resynchronizations. Limited resources of hardware oriented stream ci-
phers may even preclude the latter, and good mixing should be achieved with
simple Boolean functions and a well-chosen number of rounds. In [4, 8, 9, 6], a
framework for chosen IV statistical analysis of stream ciphers is suggested to
investigate the structure of the initialization function. If mixing is not perfect,
then the initialization function has an algebraic normal form (ANF) which can
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be distinguished from a uniformly random Boolean function. Particularly the co-
efficients of high degree monomials in the IV (i.e. the product of many IV bits)
are suspect to some biased distribution: it will take many operations before all
these IV bits meet in the same memory cell. In [4], this question was raised: ”It
is an open question how to utilize these weaknesses of state bits to attack the
cipher.”. The aim of this paper is to contribute to this problem and present a
framework to mount key recovery attacks. As in [4, 8] one selects a subset of
IV bits as variables. Assuming all other IV values as well as the key fixed, one
can write a keystream symbol as a Boolean function. By running through all
possible values of these bits and generating a keystream output each time, one
can compute the truth table of this Boolean function. Each coefficient in the
algebraic normal form of this Boolean function is parametrized by the bits of
the secret key. Based on the idea of probabilistic neural bits from [1], we now
examine if every key bit in the parametrized expression of a coefficient does oc-
cur, or more generally, how much influence each key bit does have on the value
of the coefficient. If a coefficient depends on less than all key bits, this fact can
be exploited to filter those keys which do not satisfy the imposed value for the
coefficient. It is shown in [10] that for eSTREAM Phase 3 candidate Trivium
with IV initialization reduced to 576 iterations, linear relations on the key bits
can be derived for well chosen sets of variable IV bits. Our framework is more
general, as it works with the concept of (probabilistic) neutral key bits, i.e. key
bits which have no influence on the value of a coefficient with some (high) prob-
ability. This way, we can get information on the key for many more iterations in
the IV initialization of Trivium, and similarly for the eSTREAM Phase 3 can-
didate Grain-128. On the other hand, extensive experimental evidence indicates
clear limits to our approach: With our methods, it is unlikely to get information
on the key faster than exhaustive key search for Trivium or Grain-128 with full
IV initialization.

2 Problem Formalization

Suppose that we are given a fixed Boolean function F (K, V ) : {0, 1}n×{0, 1}m →
{0, 1}. An oracle chooses a random and unknown K = (k0, . . . , kn−1) and returns
us the value of z = F (K, V ) for every query V = (v0, . . . , vm−1) of our choice
(and fixed K). The function F could stand e.g. for the Boolean function which
maps the key K and IV V of a stream cipher to the (let say) first output bit.
Our goal as an adversary is to determine the unknown key K (or to distinguish
F from a random function) in the chosen IV attack model only by dealing with
the function F . If F mixes its inputs in a proper way, then one needs to try
all 2n possible keys in the worst case by sending O(n) queries to the oracle in
order to find the correct key (since each query gives one bit information about
the key for a balanced F ). Here, we are going to investigate methods which
can potentially lead to faster reconstruction of the key in the case where the
function F does not properly mix its inputs. This could occur for example when
the initialization phase of a stream cipher is performed through an iterated
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procedure for which the number of iterations has not been suitably chosen. On
the other hand these methods may help to give the designers more insight to
choose the required number of iterations. The existence of faster methods for
finding the unknown key K highly depends on the structure of F . It may be
even impossible to uniquely determine the key K. Let F (K, V ) =

∑
κ Cκ(V )Kκ

where Kκ = kκ0
0 · · ·kκn−1

n−1 for the multi-index κ = (κ0, . . . , κn−1) (which can also
be identified by its integer representation). Then the following lemma makes this
statement more clear.

Lemma 1. No adversary can distinguish between the two keys K1 and K2 for
which Kκ

1 = Kκ
2 for all κ ∈ {0, 1}n such that Cκ(V ) �= 0.

Indeed, it is only possible to determine the values of {Kκ|∀κ, Cκ(V ) �= 0} which is
not necessarily equivalent to determination of K. As a consequence of Lemma 1,
the function F divides {0, 1}n into equivalence classes: K1, K2, . . . ,KJ (with
J ≤ 2n). See Ex. 3 as an application on a reduced version of Trivium.

3 Scenarios of Attacks

The algebraic description of the function F (K, V ) is too complex in general to
be amenable to direct analysis. Therefore, from the function F (K, V ) and with
the partition V = (U, W ) we derive simpler Boolean functions C(K, W ) with
the help of the oracle. In our main example, C(K, W ) is a coefficient of the
algebraic normal form of the function deduced from F by varying over the bits
in U only, see Sect. 4 for more details. If this function C(K, W ) does not have a
well-distributed algebraic structure, it can be exploited in cryptanalytic attacks.
Let us investigate different scenarios:

1. If C(K, W ) is imbalanced for (not necessarily uniformly) random W and
many fixed K, then the function F (or equivalently the underlying stream
cipher) with unknown K can be distinguished from a random one, see [4, 8,
9, 6].

2. If C(K, W ) is evaluated for some fixed W , then C(K, W ) is an expression
in the key bits only. In [10], it was shown that in Trivium case for reduced
iterations, linear relations on the key bits can be derived for a well chosen
IV part.

3. If C(K, W ) has many key bits, which have (almost) no influence on the values
of C(K, W ), a suitable approximation may be identified and exploited for
key recovery attacks, see [1]. This is the target scenario of this paper and
will be discussed in detail.

Scenario 1 has already been discussed in the introduction. In scenario 2, the
underlying idea is to find a relation C(K, W ), evaluated for some fixed W , which
depends only on a subset of t (< n) key bits. The functional form of this relation
can be determined with 2t evaluations of C(K, W ). By trying all 2t possibilities
for the involved t key bits, one can filter those keys which do not satisfy the
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imposed relation. The complexity of this precomputation is 2t times needed to
compute C(K, W ), see Sect. 4. More precisely, if p = Pr{C(K, W ) = 0} for
the fixed W , the key space is filtered by a factor of H(p) = p2 + (1 − p)2. For
example, in the case of a linear function it is p = H(p) = 1/2. In addition, if
several imposed relations on the key bits are available, it is easier to combine
them to filter wrong keys if they have a simple structure, see e.g. [10]. In scenario
3, the main idea is to find a function A(L, W ) which depends on a key part L of
t bits, and which is correlated to C(K, W ) with correlation coefficient ε, that is
Pr{C(K, W ) = A(L, W )} = 1/2(1+ε). Then, by asking the oracle N queries we
get some information (depending on the new equivalence classes produced by A)
about t bits of the secret K in time N2t by carefully analyzing the underlying
hypothesis testing problem. We will proceed by explaining how to derive such
functions C from the coefficients of the ANF of F in Sect. 4, and how to find
such functions A using the concept of probabilistic neutral bits in Sect. 5.

4 Derived Functions from Polynomial Description

The function F can be written in the form F (K, V ) =
∑

ν,κ Cν,κV νKκ with
binary coefficients Cν,κ. We can make a partition of the IV according to V =
(U, W ) and ν = (α, β) with l-bit segments U and α, and (m − l)-bit segments
W and β . This gives the expression F (K, V ) =

∑
α,β,κ C(α,β),κUαW βKκ =∑

α Cα(K, W )Uα where Cα(K, W ) =
∑

β,κ C(α,β),κW βKκ. For every α ∈ {0, 1}l,
the function Cα(K, W ) can serve as a function C derived from F . Here is a toy ex-
ample to illustrate the notation:

Example 1. Let n = m = 3 and F (K, V ) = k1v1⊕k2v0v2⊕v2. Let U := (v0, v2) of
l = 2 bits and W := (v1) of m−l = 1 bit. Then C0(K, W ) = k1v1, C1(K, W ) = 0,
C2(K, W ) = 1, C3(K, W ) = k2. �	
Note that an adversary with the help of the oracle can evaluate Cα(K, W ) for the
unknown key K at any input W ∈ {0, 1}m−l for every α ∈ {0, 1}l by sending at
most 2l queries to the oracle. In other words, the partitioning of V has helped us
to define a computable function Cα(K, W ) for small values of l, even though the
explicit form of Cα(K, W ) remains unknown. To obtain the values Cα(K, W )
for all α ∈ {0, 1}l, an adversary asks for the output values of all 2l inputs
V = (U, W ) with the fixed part W . This gives the truth table of a Boolean
function in l variables for which the coefficients of its ANF (i.e. the values of
Cα(K, W )) can be found in time l2l and memory 2l using the Walsh-Hadamard
transform. Alternatively, a single coefficient Cα(K, W ) for a specific α ∈ {0, 1}l

can be computed by XORing the output of F for all 2|α| inputs V = (U, W )
for which each bit of U is at most as large as the corresponding bit of α. This
bypasses the need of 2l memory.

One can expect that a subset of IV bits receives less mixing during the initial-
ization process than other bits. These IV bits are called weak, and they would
be an appropriate choice of U in order to amplify the non-randomness of C.
However, it is an open question how to identify weak IV bits by systematic
methods.
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5 Functions Approximation

We are interested in the approximations of a given function C(K, W ) : {0, 1}n×
{0, 1}m−l → {0, 1} which depend only on a subset of key bits. To this end we
make an appropriate partition of the key K according to K = (L, M) with L
containing t significant key bits and M containing the remaining (n − t) non-
significant key bits, and construct the function A(L, W ). We also use the term
subkey to refer to the set of significant key bits. Such a partitioning can be
identified by systematic methods, using the concept of probabilistic neutral bits
from [1]:

Definition 1. The neutrality measure of the key bit ki with respect to the func-
tion C(K, W ) is defined as γi, where Pr = 1

2 (1 + γi) is the probability (over
all K and W ) that complementing the key bit ki does not change the output of
C(K, W ).

In practice, we will set a threshold γ, such that all key bits with |γi| < γ are
included in the subkey L (i.e. the probabilistic neutral key bits are chosen ac-
cording to the individual values of their neutrality measure). The approximation
A(L, W ) could be defined by C(K, W ) with non-significant key bits M fixed to
zero. Here is another toy example to illustrate the method:

Example 2. Let n = m = 3, l = 2 and C(K, W ) = k0k1k2v0v1 ⊕ k0v1 ⊕ k1v0.
For uniformly random K and W , we find γ0 = 1/8, γ1 = 1/8, γ2 = 7/8. Conse-
quently, it is reasonable to use L := (k0, k1) as the subkey. With fixed k2 = 0,
we obtain the approximation A(L, W ) = k0v1 ⊕ k1v0 which depends on t = 2
key bits only. �	

Note that, if M consists only of neutral key bits (with γi = 1), then the approxi-
mation A is exact, because C(K, W ) does not depend on these key bits. In [1] the
notion of probabilistic neutral bits was used to derive an approximation function
A in the case of W = V and C = F which lead to the first break of Salsa20/8.

6 Description of the Attack

In the precomputation phase of the attack, we need a suitable partitioning of
the IV and the key (i.e. a function C and an approximation A). The weak IV
bits are often found by a random search, while the weak key bits can be easily
found with the neutrality measure for some threshold γ. Given C and A, we can
find a small subset of candidates for the subkey L with a probabilistic guess-
and-determine attack. In order to filter the set of all 2t possible subkeys into
a smaller set, we need to distinguish a correct guess of the subkey L̂ from an
incorrect one. Our ability in distinguishing subkeys is related to the correlation
coefficient between A(L̂, W ) and C(K, W ) with K = (L, M) under the following
two hypotheses. H0 : the guessed part L̂ is correct, and H1 : the guessed part L̂
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is incorrect. More precisely, the values of ε0 and ε1 defined in the following play
a crucial role:

Pr
W
{A(L̂, W ) = C(K, W )|K = (L̂, M)} =

1
2
(1 + ε0) (1)

Pr
L̂,W

{A(L̂, W ) = C(K, W )|K = (L, M)} =
1
2
(1 + ε1) . (2)

In general, both ε0 and ε1 are random variables, depending on the key. In the
case that the distributions of ε0 and ε1 are separated, we can achieve a small
non-detection probability pmis and false alarm probability pfa by using enough
samples. In the special case where ε0 and ε1 are constants with ε0 > ε1, the
optimum distinguisher is Neyman-Pearson [2]. Then, N values of C(K, W ) for
different W (assuming that the samples C(K, W ) are independent) are sufficient
to obtain pfa = 2−c and pmis = 1.3 × 10−3, where

N ≈
(√

2c(1 − ε2
0) ln 2 + 3

√
1 − ε2

1

ε1 − ε0

)2

. (3)

The attack will be successful with probability 1 − pmis and the complexity is as
follows: For each guess L̂ of the subkey, the correlation ε of A(L̂, W )⊕C(K, W )
must be computed, which requires computation of the coefficients A(L̂, W ) by
the adversary, and computation of the coefficient C(K, W ) through the oracle,
for the same N values of W , having a cost of N2l at most. This must be repeated
for all 2t possible guesses L̂. The set of candidates for the subkey L has a size
of about pfa2t = 2t−c. The whole key can then be verified by an exhaustive
search over the key part M with a cost of 2t−c2n−t evaluations of F . The total
complexity becomes N2l2t + 2t−c2n−t = N2l+t + 2n−c. Using more than one
function C or considering several chosen IV bits U may be useful to reduce
complexity; however, we do not deal with this case here.

Remark 1. In practice, the values of ε0 and ε1 are key dependent. If the key
is considered as a random variable, then ε0 and ε1 are also random variables.
However, their distribution may not be fully separated, and hence a very small
pmis and pfa may not be possible to achieve. We propose the following non-
optimal distinguisher: first, we choose a threshold ε�

0 such that pε = Pr{ε0 > ε�
0}

has a significant value, e.g. 1/2. We also identify a threshold ε�
1, if possible,

such that Pr{ε1 < ε�
1} = 1. Then, we estimate the sample size using Eq. 3 by

replacing ε0 and ε1 by ε�
0 and ε�

1, respectively, to obtain pfa ≤ 2−c and effective
non-detection probability pmis·pε ≈ 1/2. If ε�

0 and ε�
1 are close, then the estimated

number of samples becomes very large. In this case, it is better to choose the
number of samples intuitively, and then estimate the related pfa.

Remark 2. It is reasonable to assume that a false subkey L̂, which is close to
the correct subkey, may lead to a larger value of ε. Here, the measure for being
”close” could be the neutrality measure γi and the Hamming weight: if only a
few key bits on positions with large γi are false, one would expect that ε is large.
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However, we only observed an irregular (i.e. not continuous) deviation for very
close subkeys. The effect on pfa is negligible because subkeys with difference of
low weight are rare.

7 Application to Trivium

The stream cipher Trivium [3] is one of the eSTREAM candidates with a 288-
bit internal state consisting of three shift registers of different lengths. At each
round, a bit is shifted into each of the three shift registers using a non-linear
combination of taps from that and one other register; and then one bit of output
is produced. To initialize the cipher, the n = 80 key bits and m = 80 IV bits
are written into two of the shift registers, with the remaining bits being set to
a fixed pattern. The cipher state is then updated R = 18 × 64 = 1152 times
without producing output in order to provide a good mixture of the key and
IV bits in the initial state. We consider the Boolean function F (K, V ) which
computes the first keystream bit after r rounds of initialization. In [4], Trivium
was analyzed with chosen IV statistical tests and non-randomness was detected
for r = 10 × 64, 10.5 × 64, 11 × 64, 11.5 × 64 rounds with l = 13, 18, 24, 33 IV
bits, respectively. In [10], the key recovery attack on Trivium was investigated
with respect to scenario 2 (see Sect. 3) for r = 9 × 64. Here we provide more
examples for key recovery attack with respect to scenario 3 for r = 10 × 64 and
r = 10.5 × 64. In the following two examples, weak IV bits have been found by
a random search. We first concentrate on equivalence classes of the key:

Example 3. For r = 10 × 64 rounds, a variable IV part U with the l = 10 bit
positions {34, 36, 39, 45, 63, 65, 69, 73, 76, 78}, and the coefficient with index
α = 1023, we could experimentally verify that the derived function Cα(K, W )
only depends on t = 10 key bits L with bit positions {15, 16, 17, 18, 19, 22, 35,
64, 65, 66}. By assigning all 210 different possible values to these 10 key bits and
putting those L’s which gives the same function Cα(K, W ) (by trying enough
samples of W ), we could determine the equivalence classes for L with respect to
Cα. Our experiment shows the existence of 65 equivalence classes: one with 512
members for which k15k16 + k17 + k19 = 0 and 64 other classes with 8 members
for which k15k16 + k17 + k19 = 1 and the vector (k18, k22, k35, k64, k65, k66) has a
fixed value. This shows that Cα provides 1

2 × 1 + 1
2 × 7 = 4 bits of information

about the key in average. �	

Example 4. For r = 10 × 64 rounds, a variable IV part U with the l = 11 bit
positions {1, 5, 7, 9, 12, 14, 16, 22, 24, 27, 29}, and the coefficient with index
α = 2047, the derived function Cα(K, W ) depends on all 80 key bits. A more
careful look at the neutrality measure of the key bits reveals that max(γi) ≈ 0.35
and only 7 key bits have a neutrality measure larger than γ = 0.18, which is
not enough to get a useful approximation A(L, W ) for an attack. However, we
observed that Cα(K, W ) is independent of the key for W = 0, and more generally
the number of significant bits depends on |W |. �	
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It is difficult to find a good choice of variable IV’s for larger values of r, using a
random search. The next example shows how we can go a bit further with some
insight.

Example 5. Now we consider r = 10.5 × 64 = 10 × 64 + 32 = 672 rounds. The
construction of the initialization function of Trivium suggests that shifting the bit
positions of U in Ex. 4 may be a good choice. Hence we choose U with the l = 11
bit positions {33, 37, 39, 41, 44, 46, 48, 54, 56, 59, 61}, and α = 2047. In this
case, Cα(K, W ) for W = 0 is independent of 32 key bits, and p = Pr{Cα(K, 0) =
1} ≈ 0.42. This is already a reduced attack which is 1/H(p) ≈ 1.95 times faster
than exhaustive search. �	
The following example shows how we can connect a bridge between scenarios 2
and 3 and come up with an improved attack.

Example 6. Consider the same setup as in Ex. 5. If we restrict ourself to W
with |W | = 5 and compute the value of γi conditioned over these W , then
maxi(γi) ≈ 0.68. Assigning all key bits with |γi| < γ = 0.25 as significant, we
obtain a key part L with the t = 29 bit positions {1, 3, 10, 14, 20, 22, 23, 24, 25,
26, 27, 28, 31, 32, 34, 37, 39, 41, 46, 49, 50, 51, 52, 57, 59, 61, 63, 68, 74}. Our
analysis of the function A(L, W ) shows that for about 44% of the keys we have
ε0 > ε�

0 = 0.2 when the subkey is correctly guessed. If the subkey is not correctly
guessed, we observe ε1 < ε�

1 = 0.15. Then, according to Eq. 3 the correct subkey
of 29 bits can be detected using at most N ≈ 215 samples, with time complexity
N2l+t ≈ 255. Note that the condition N <

(
69
5

)
is satisfied here. �	

8 Application to Grain

The stream cipher Grain-128 [7] consists of an LFSR, an NFSR and an output
function h(x). It has n = 128 key bits, m = 96 IV bits and the full initialization
function has R = 256 rounds. We again consider the Boolean function F (K, V )
which computes the first keystream bit of Grain-128 after r rounds of initializa-
tion. In [4], Grain-128 was analyzed with chosen IV statistical tests. With N = 25

samples and l = 22 variable IV bits, they observed a non-randomness of the first
keystream bit after r = 192 rounds. They also observed a non-randomness in
the initial state bits after the full number of rounds. In [8], a non-randomness
up to 313 rounds was reported (without justification). In this section we provide
key recovery attack for up to r = 180 rounds with slightly reduced complexity
compared with exhaustive search. In the following example, weak IV bits for
scenario 2 have been found again by a random search.

Example 7. Consider l = 7 variable IV bits U with bit positions {2, 6, 8, 55, 58,
78, 90}. For the coefficient with index α = 127 (corresponding to the monomial
of maximum degree), a significant imbalance for up to r = 180 rounds can be
detected: the monomial of degree 7 appears only with a probability of p < 0.2
for 80% of the keys. Note that in [4], the attack with l = 7 could only be applied
to r = 160 rounds, while our improvement comes from the inclusion of weak
IV bits. �	
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In the following examples, our goal is to show that there exists some reduced
key recovery attack for up to r = 180 rounds on Grain-128.

Example 8. Consider again the l = 7 IV bits U with bit positions {2, 6, 8, 55,
58, 78, 90}. For r = 150 rounds we choose the coefficient with index α = 117
and include key bits with neutrality measure less than γ = 0.98 in list of the
significant key bits. This gives a subkey L of t = 99 bits. Our simulations show
that ε0 > ε�

0 = 0.95 for about 95% of the keys, hence pmis = 0.05. On the
other hand, for 128 wrong guesses of the subkey with N = 200 samples, we
never observed that ε1 > 0.95, hence pfa < 2−7. This gives an attack with time
complexity N2t+l + 2npfa ≈ 2121 which is an improvement of a factor of (at
least) 1/pfa = 27 compared to exhaustive search. �	
Example 9. With the same choice for U as in Ex. 7 and 8, we take α = 127 for r =
180 rounds. We identified t = 110 significant key bits for L. Our simulations show
that ε0 > ε�

0 = 0.8 in about 30% of the runs when the subkey is correctly guessed.
For 128 wrong guesses of the subkey with N = 128 samples, we never observed
that ε1 > 0.8. Here we have an attack with time complexity N2t+l+2npfa ≈ 2124,
i.e. an improvement of a factor of 24. �	

9 Conclusion

A recent framework for chosen IV statistical distinguishers for stream ciphers has
been exploited to provide new methods for key recovery attacks. This is based
on a polynomial description of output bits as a function of the key and the IV.
A deviation of the algebraic normal form (ANF) from random indicates that not
every bit of the key or the IV has full influence on the value of certain coeffi-
cients in the ANF. It has been demonstrated how this can be exploited to derive
information on the key faster than exhaustive key search through approxima-
tion of the polynomial description and using the concept of probabilistic neutral
key bits. Two applications of our methods through extensive experiments have
been given: A reduced complexity key recovery for Trivium with IV initialization
reduced to 672 of its 1152 iterations, and a reduced complexity key recovery
for Grain-128 with IV initialization reduced to 180 of its 256 iterations. This
answers positively the question whether statistical distinguishers based on poly-
nomial descriptions of the IV initialization of a stream cipher can be successfully
exploited for key recovery. On the other hand, our methods are not capable to
provide reduced complexity key recovery of the eSTREAM Phase 3 candidates
Trivium and Grain-128 with full initialization.
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Abstract. Moustique is one of the sixteen finalists in the eSTREAM
stream cipher project. Unlike the other finalists it is a self-synchronising
cipher and therefore offers very different functional properties, compared
to the other candidates. We present simple related-key phenomena in
Moustique that lead to the generation of strongly correlated keystreams
and to powerful key-recovery attacks. Our best key-recovery attack re-
quires only 238 steps in the related-key scenario. Since the relevance of
related-key properties is sometimes called into question, we also show
how the described effects can help speed up exhaustive search (without
related keys), thereby reducing the effective key length of Moustique
from 96 bits to 90 bits.

Keywords: eSTREAM, Moustique, related keys.

1 Introduction

eSTREAM [6] is a multi-year effort to identify promising new stream ciphers.
Sponsored by the ECRYPT Network of Excellence, the project began in 2004
with proposals for new stream ciphers being invited from industry and acad-
emia. These proposals were intended to satisfy either a software-oriented or
a hardware-oriented profile (or both if possible). The original call for proposals
generated considerable interest with 34 proposals being submitted to the two dif-
ferent performance profiles. Among them was Mosquito [3], a self-synchronising
stream cipher designed by Daemen and Kitsos.

As a self-synchronising stream cipher Mosquito was already a rather un-
usual submission. There was only one other self-synchronising stream cipher
submitted, SSS [8]. Indeed it has long been recognised that the design of (se-
cure) self-synchronising stream ciphers is a difficult task and attacks on SSS [5]
and Mosquito [7] were proposed. As a result of the attack on Mosquito, a
tweaked-variant of Mosquito, called Moustique [4], was proposed for the sec-
ond phase of analysis. This cipher is now one of the finalists in the eSTREAM
project.

In this paper we describe a set of simple related-key pairs for Moustique. Our
observation illustrates unfortunate aspects of the tweaks in moving from Mos-
quito to Moustique. They lead directly to a very strong distinguisher for the

S. Vaudenay (Ed.): AFRICACRYPT 2008, LNCS 5023, pp. 246–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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keystream generated from two related keys; and further to a rather devastating
key-recovery attack in the related-key setting [2]. In fairness it should be observed
that related-key phenomena are not to everyone’s taste [1]. Indeed, Daemen and
Kitsos state that they make no claim for the resistance of the cipher to attack-
ers that may manipulate the key. However, we take the view that related-key
weaknesses might be viewed as certificational and that the very simple partition
of the keyspace according to correlated keystreams is not particularly desirable.
Aside from very efficient distinguishers and key-recovery attacks in the related-
key setting, the related keys also lead to an improvement over exhaustive search
in a non-related-key setting.

The paper is organised as follows. In the next section we describe Moustique
and make the observations that we need for attacks in Section 3. We then describe
attacks on Moustique in the related-key setting in Section 4 and use Section 5
to describe implications on key recovery in the standard (known keystream)
setting. We summarise our experimental confirmation in Section 6 and close
with our conclusions. Throughout we will use established notation.

2 Description of Moustique

In this section we describe the parts of the Moustique description that are
relevant to our observations. More information can be found in [4]. Moustique
uses a key of 96 bits, denoted by kj , with 0 ≤ j ≤ 95. At each step Moustique
takes as input one bit of ciphertext and produces one bit of keystream.

Moustique consists of two parts: a 128-bit conditional complementing shift
register (CCSR) holding the state and a nonlinear output filter with 8 stages,
see Figure 1.

2.1 The CCSR

The CCSR is divided into 96 cells, denoted by qj with 1 ≤ j ≤ 96. Each cell
contains between 1 and 16 bits, denoted by qj

i . The updating function of the
CCSR is given by:

Qj
0 = gx(qj−1

0 , kj−1, 0, 0), j = 1, 2,

Qj
i = gx(qj−1

i , kj−1, q
v
i , qw

i ), 2 < j < 96, ∀i and j = 96, i = 0
Q96

i = g2(q95
i , q95−i

0 , q94
i , q94−i

1 ), i = 1, 2, . . . 15.

(1)

The Qj
i are the new values of the qj

i after one iteration. The subscript indices
are always taken modulo the number of bits in the particular cell. The values
of x, v and w are defined in Table 1. A value 0 for v or w indicates that the
ciphertext feedback bit is used as input. The gx functions are defined as follows:

g0(a, b, c, d) = a + b + c + d (2)
g1(a, b, c, d) = a + b + c(d + 1) + 1 (3)
g2(a, b, c, d) = a(b + 1) + c(d + 1) (4)

Addition and multiplication operations are over GF(2).
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Fig. 1. State and filter of Moustique. The only difference to Mosquito is that 1/3 of
Moustique state is now updated using a linear function g0 to improve diffusion within
the CCSR.

Table 1. The use of the functions g0 and g1 in the CCSR

Index Function v w

(j − i) ≡ 1 mod 3 g0 2(j − i − 1)/3 j − 2
(j − i) ≡ 2 mod 3 g1 j − 4 j − 2
(j − i) ≡ 3 mod 6 g1 0 j − 2
(j − i) ≡ 0 mod 6 g1 j − 5 0

2.2 The Filter

The first stage of the filter compresses the 128 bits of the CCSR to 53 bits. First,
the filter input a0 = (a0

1, . . . , a
0
128) is obtained by re-indexing the CCSR cells qj

i

in the following way:

a0
i = qi

0, 1 ≤ i ≤ 96

a0
i = qi−8

1 , 97 ≤ i ≤ 104

a0
i = qi−12

2 , 105 ≤ i ≤ 108

a0
i = qi−16

3 , 109 ≤ i ≤ 112

a0
105+2i = q95

i , 4 ≤ i ≤ 7

a0
106+2i = q96

i , 4 ≤ i ≤ 7

a0
113+i = q96

i , 8 ≤ i ≤ 15.

(5)
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Then, the 53 bits of output are obtained by taking 53 applications of g1:

a1
4i mod 53 = g1(a0

128−i, a
0
i+18, a

0
113−i, a

0
i+1), 0 ≤ i < 53. (6)

The next four stages of the filter iteratively transform these 53 bits in a non-
linear fashion. The sixth stage compresses the 53 bits to 12. Finally the last two
stages exclusive-or these 12 bits together to produce a single bit of keystream.
For simplicity, we omit the full description of the filter and refer the reader to
the cipher specifications [4]. However, we note that the only non-linear filter
component is the function g1.

3 Observations on Moustique

In this section we provide the basic observations that we will need in the paper.
Some have already been observed in previous work [7].

3.1 Limited Impact of the IV

Observation 1. The IV of Moustique influences only the first 105 bits of the
keystream.

This is a consequence of the fact that the IV of Moustique is used only to ini-
tialize the state, and as every self-synchronising stream cipher does, it gradually
overwrites its state with ciphertext bits.

3.2 Differential Trails in the Filtering Function

As was done in the attack on Mosquito [7], we can make some simple obser-
vations on the filter function of Moustique.

We note that the first stage of the filter is compressing and that no new
information enters the filter after this stage. This leads to the first observation:

Observation 2. Any two 128-bit CCSR states that produce the same 53-bit
output after the first stage of filtering also produce an equal keystream bit.

Recall that the first stage of the Moustique output filter only uses the function
g1(a, b, c, d) = a + b + c(d + 1) + 1. So a consequence of this observation is that
if we flip input c, the output of g1 is unaffected with probability p = Pr[d = 1].
Similarly, if we flip d, the output is unaffected with probability p = Pr[c = 0].
To exploit this, we can observe the following:

Observation 3. State bits q1
0 , . . . , q17

0 and q71
0 , . . . , q75

0 are used in the filter input
only in one location, and only as the third or fourth input to the function g1.

Suppose we flip one of these 22 bits. The two outputs of g1 are equal with
probability p and, consequently, the two outputs of the filter will be equal with
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probability 0.5+ p/2. If the inputs to g1 are balanced, then we have p = 0.5 and
the probability the output bit is unchanged is 0.75 (i.e. with bias ε = 0.25).

3.3 Impact of Key Bits on the CCSR

The chosen ciphertext attack on Mosquito [7] exploited slow diffusion within
the CCSR and so the state-update function of Mosquito was tweaked. The state
update of Moustique uses a linear function g0 for updating one third of the
state bits. While this improves the worst-case diffusion, it exhibits weaknesses
that we exploit to construct related-key pairs that result in highly correlated
keystreams.

Moustique only uses key bits in the state-update function of the CCSR. Each
of the 96 key bits is added to one of the 96 bits qj

0. The state-update function
of the CCSR introduces diffusion in one direction only: a cell with index j does
not depend on cells with indices j′ > j. An immediate consequence is that key
bit k95 affects state bit q96

0 only.
There are however more useful implications, which we introduce next. By

expanding (1) and Table 1, we obtain the following equations:

Q1
0 = c + k0

Q2
0 = q1

0 + k1 + 1
Q3

0 = q2
0 + k2 + c(q1

0 + 1) + 1
Q4

0 = q3
0 + k3 + q2

0 + q2
0

Q5
0 = q4

0 + k4 + q1
0(q

3
0 + 1) + 1

Q6
0 = q5

0 + k5 + q1
0(c + 1) + 1

Q7
0 = q6

0 + k6 + q4
0 + q5

0

Q8
0 = q7

0 + k7 + q4
0(q

6
0 + 1) + 1

Q9
0 = q8

0 + k8 + c(q7
0 + 1) + 1

Q10
0 = q9

0 + k9 + q6
0 + q8

0

Q11
0 = q10

0 + k10 + q7
0(q9

0 + 1) + 1
...

Here c denotes the ciphertext feedback bit and we observe the following:

Observation 4. In the computation of Q4
0, the bit q2

0 is cancelled. Only bit Q3
0

depends on q2
0 .

This leads to a related-key pair that for any ciphertext produces CCSR states
with a one-bit difference. To see this, consider two instantiations of Moustique
running in decryption mode with the two keys denoted by k and k∗. Assume

ki = k∗
i for i �= 1, 2 and

ki = k∗
i + 1 for i = 1, 2.
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Fig. 2. CCSR differential propagation using related keys k = (k0, k1, k2, k3, . . . , k95)
and k∗ = (k0, k1 + 1, k2 + 1, k3, . . . , k95)

We use both instantiations of Moustique to decrypt the same ciphertext and
observe the propagation of differences through the CCSR cells.

In the first iteration of the CCSR, the differences in k1 and k2 will cause
differences in Q2

0 and Q3
0. After the second iteration, there will again be a dif-

ference in Q2
0, but not in Q3

0, because the incoming difference in q2
0 cancels out

the difference in k2. What is left of course is the difference in q3
0 , which propa-

gates through the CCSR and the filter stages. However, after 92 iterations, this
unwanted difference has been propagated out of the CCSR. We obtain a steady
state behavior: at every iteration, both CCSRs differ in bit q2

0 only. Figure 2
illustrates the propagation of the related-key differential within the CCSR.

Since Moustique has a cipher function delay of nine iterations, we can start
deriving information from the keystream after nine more iterations. This will be
demonstrated in the next section.

4 Related-Key Effects

4.1 Correlated Keystreams

There are several classes of related keys for Moustique. We start with the
simplest case which, coincidentally, appears to demonstrate the greatest bias.

First Related-Key Pairs. Consider two CCSR states with a difference only
in bit q2

0 . According to Observation 4, this bit affects only one bit of the 53-bit
output, namely bit a1

8, which is computed as

a1
8 = q96

14 + q19
0 + q96

3 (q2
0 + 1) + 1.

Notice that if q96
3 = 0, the difference is extinguished and the two states pro-

duce equal output. If q96
3 = 1, the difference passes on and the two outputs will
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Table 2. Related-key pairs and correlated keystreams. All these related-key pairs, and
the magnitude of the correlation, have been experimentally verified.

Position j of the Key bits to flip to induce Probability
single bit difference the required difference z = z∗

2 1,2 0.8125
5 4,5,6 0.75
8 7,8,9,12 0.75
11 10,11,12 0.75
14 13,14,15,21 0.75
17 16,17,18 0.75
71 70,71,72 0.75
74 73,74,75 0.75

presumably collide with probability 1
2 . In fact q96

3 is computed using a non-
balanced function g2 and we have that Pr[q96

3 = 0] = 5
8 .

So, after 105 cycles of IV setup, the two instances of Moustique decrypting
equal ciphertexts with related keys k and k∗ will produce equal keystream bits
z and z∗ for which Pr[z = z∗] = 5

8 + 3
8 × 1

2 = 13
16 .

More Advanced Related-Key Pairs. We can extend the simple related keys
already described. This allows us to obtain a range of related-key pairs that
generate a 1-bit difference in the CCSR. Using Table 1, the following observation
is easy to verify.

Observation 5. If j ≤ 77 and j ≡ 2 mod 3, then qj
0 occurs in the CCSR update

only linearly.

This implies that for each of q5
0 , q

8
0 , q

11
0 , q14

0 , . . . , q77
0 , we can find a set of key bits

such that by flipping these key bits simultaneously and iterating the scheme, a
one-bit difference between the two CCSRs is retained in a single bit position qj

0.
Among these 25 one-bit differences in the CCSR state, eight will also induce

correlated keystream; these are bits q2
0 , q

5
0 , q

8
0 , q

11
0 , q14

0 , q17
0 , q71

0 and q74
0 (Obser-

vation 3). Table 2 lists the pairs of related keys that are generated along with
the correlation in the associated keystream outputs. Since the correlation is ex-
tremely high, only a very small amount of keystream is required to reliably
distinguish these related keystreams from a pair of random keystreams.

Furthermore, by simultaneously flipping relevant key bits for two or more
indices j, we obtain a range of related keys with weaker correlation. The bias
can be estimated by the Piling-Up Lemma; in the weakest case where all 8 keybit
tuples are flipped, it is approximately ε = 2−8.6. We have verified this estimate
experimentally, and we now make the following conclusion.

Observation 6. Each key of Moustique produces correlated keystream with
(at least) 28 − 1 = 255 related keys, with the bias ranging from ε = 2−1.7 to
ε = 2−8.6.
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4.2 Key-Recovery Attacks

A distinguisher can often be exploited to provide a key-recovery attack, and this
is also the case here. Using (6) with i = 42, (5), and the definition of g1 we have
that

a1
9 = q86

0 + q60
0 + q71

0 (q43
0 + 1) + 1.

As described in Section 4.1, if we take two instantiations of Moustique and
flip the key bits k70, k71, and k72 in one instantiation, then only q71

0 will change.
This change can only propagate to the output if the bit q43

0 equals zero. Thus, a
difference in the output of two copies of Moustique running with these related
keys gives us one bit of information about the CCSR state (the value q43 = 0).
Furthermore, the state bit q43

0 only depends on the first 43 bits of the key, which
leads to an efficient divide-and-conquer attack as follows.

We first observe the output of two related instances of Moustique, using
some (arbitrary) ciphertext c and record the time values where the output bits
differ. We then guess 43 key bits k0, . . . , k42, compute the state bit q43

0 under
the same ciphertext c, and check whether indeed q43

0 = 0 for all the recorded
values. If there is a contradiction then we know that our guess for the 43-bit
subkey was wrong. On average, only 8 bits of keystream are required to eliminate
wrong candidates; and n bits of keystream eliminate a false key with probability
1 − 2−n/4.

The final attack requires a slight adjustment, as the existence of related keys
introduces some false positives. Namely, certain related keys produce extinguish-
ing differential trails that never reach q43

0 . For example, if the guessed key only
differs from the correct key in the bits k1 and k2 then this difference affects q2

0

only, and not q43
0 . Thus, the key with bits k1 and k2 flipped passes our test. The

same holds for all combinations of the 14 values of j smaller than 43 and with
j ≡ 2 mod 3; as well as bit k39 and pair k41, k42. Altogether, we have found that
out of the 243 key candidates, 216 survive and after running our attack we still
need to determine 96− (43− 16) = 69 key bits. This can be done by exhaustive
key search, and the 269 complexity of this stage dominates the attack.

Notice that in the first stage, we know in advance which related keys give false
positives. Thus, we only need to test one key in each set of 216 related keys, and
the complexity of the first stage is 243−16 = 227. The complexity of the second
stage can be reduced if we were to allow the attacker access to multiple related
keys.

In such a case, a second stage to the attack would use (6) with i = 16:

a1
11 = q96

3 + q34
0 + q89

1 (q17
0 + 1) + 1.

The state bit q17
0 can be changed by flipping k16, k17 and k18. The state bit q89

1

depends on 89 key bits, of which we know already 43−16 = 27 bits. In addition,
we found 231 related-key differentials that extinguish without ever reaching q89

1 .
Hence, we need to test 289−27−31 = 231 keys to determine 31 more bits. In total
we have then determined 27 + 31 = 58 bits of the key and the remaining 38 bits
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Table 3. The codewords of the (7,4) Hamming code

c0 0000000 c4 0100110 c8 1000101 c12 1100011
c1 0001011 c5 0101101 c9 1001110 c13 1101000
c2 0010111 c6 0110001 c10 1010010 c14 1110100
c3 0011100 c7 0111010 c11 1011001 c15 1111111

can be determined by exhaustive search. The complexity of the attack can be
estimated by 227 + 231 + 238 which is dominated by the third brute-force phase.

We have verified the first two stages of the attack experimentally, and are
indeed able to recover 58 bits of the key, given only 256 bits of keystream from
two related-key pairs. Recovering the first 27 bits requires only a few minutes
and 256 bits of output from a single related-key pair.

5 Accelerated Exhaustive Key Search

Next, we show how the existence of related keys in Moustique can be used in
cryptanalysis even if we cannot observe the output of the cipher in a related-key
setting.

In Section 4, we observed that each key has eight related keys that produce
strongly correlated output. In particular, the correlation can be detected from
very short keystream. Thus, we can imagine the following attack scenario: given,
say, 128 bits of cipher output from a key-IV pair (k, IV ), compare this to the
output of the cipher, using a candidate key k′, the same IV and equal ciphertext.
If the outputs are not correlated, eliminate key k′ as well as its 8 related keys.

In order to compete with brute force, we need to be able to eliminate related
keys efficiently. We now discuss two strategies representing different trade-offs
between required keystream and computational complexity.

5.1 The Strong Correlation Attack

In the first approach we use the (7, 4) Hamming code. As Hamming codes are
perfect, we know that for each 7-bit string s, there exists a codeword ci such
that the Hamming distance between s and ci is at most one. The codewords of
the (7, 4) Hamming code are listed in Table 3.

Now, for each codeword ci, we fix candidate key bits k1, k4, k7, k10, k13, k16, k70

to this codeword, and exhaustively search over the remaining 89 key bits. This
strategy guarantees that we test either the correct key or one of the closely
related keys given in Table 2. A related key can then be easily detected from
the strong correlation of the two keystreams. For example, assume that the
correct subkey is (k1, k4, k7, k10, k13, k16, k70) and the closest codeword is (k1, k4+
1, k7, k10, k13, k16, k70). Then, according to Table 2, k∗ = (k1, k2, k3, k4 + 1, k5 +
1, k6 + 1, k7, . . . , k95) is a related key that has been selected for testing.

Our experiments suggest that 128 keystream bits are sufficient to detect cor-
relation between the correct key k and a related candidate key k∗ (see Sect. 6
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for experimental results). Given that IV setup takes 105 cipher clocks, the to-
tal worst-case complexity of our attack is (105 + 128) · 24 · 289 ≈ 2100.9 cipher
clocks. In comparison, naive brute force requires on average 2 keystream bits to
eliminate false candidates, so the complexity is (105 + 2) · 296 = 2102.7 cipher
clocks.

5.2 The Piling-Up Attack

Following Observation 6, we partition the keys into 288 sets of 28 related keys
and test only one key in each set. After 105 clocks of IV setup, the states cor-
responding to two related keys differ in at most 8 bits (given in Table 2). If

a0
40 = a0

43 = 1 and a0
97 = a0

100 = a0
103 = a0

106 = a0
109 = a0

112 = 0, (7)

then none of these 8 bits influences a1, the output of the first filter stage, and
hence the keystream bits generated by two related keys are equal. Consequently,
if, while testing a key k′ we observe that the bit of keystream generated by k′

differs from the bit of the observed keystream at a time when the candidate state
satisfies (7), then we are sure that the key k we are looking for is not a related
key of k′ and we can discard k′ as well as its 28 − 1 related keys.

To estimate the amount of keystream needed to eliminate wrong keys, we note
that two unrelated keystreams overlap with probability 1

2 , so we can use half of
the available keystream to test for condition (7). As Pr[a0

112 = 0] = 5
8 , while

the remaining bits in (7) are balanced, condition (7) is true with probability
p = 5

8 · 1
27 . Thus, we need to generate on average 2

p = 409.6 bits of keystream
from one candidate key in order to rule out an entire class of 28 related keys. In
total, the complexity of our attack can be estimated at (105+409.6) ·288 = 297.0

cipher clocks. Our experiments confirm this estimate and suggest that 5000-6000
bits of known keystream are sufficient to eliminate all false candidates with high
confidence.

Both our strategies for accelerated exhaustive key search are rather simple and
just as easily parallelisable as exhaustive search, so they are likely to provide
an advantage over simple brute force in practice. The piling-up attack is an
estimated 50 times faster than exhaustive key search, indicating that the effective
key length of Moustique is reduced to 90 bits instead of the claimed 96-bit
security.

6 Experimental Verification

The results in this paper were verified using the source code for Moustique
that was submitted to eSTREAM [6]. All sets of key bits identified in Table 2
were tested with one thousand random keys and their related partners. The min-
imum, maximum, and average number of agreements between the two generated
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keystreams, over the first 128 bits, was recorded. Note that for un-correlated
keystreams we would expect 64 matches.

Key bits to induce Minimum # Maximum # Average #
the required difference of matches of matches of matches

1,2 91 118 104.02
4,5,6 82 111 96.10

7,8,9,12 79 109 96.03
10,11,12 74 108 95.81

13,14,15,21 79 110 96.11
16,17,18 80 114 95.72
70,71,72 77 109 96.23
73,74,75 81 112 95.94

We then constructed a distinguisher by setting the agreement threshold to
t ≥ 74. We chose randomly 10 000 related-key pairs, all of which passed the
test, indicating that the false negative rate is below 0.01%. In comparison, out
of 10 000 128-bit keystreams obtained from random key pairs, 440 passed the
test, so the false positive rate was below 5%. Thus, we can use our accelerated
key search to eliminate 95% of the keys, and then brute-force the remaining can-
didates. The total complexity of the attack is still below that of naive exhaustive
search, and the success rate is at least 99.99%.

7 Conclusions

In moving from Mosquito, it seems that the design of the self-synchronizing
stream cipher Moustique was established in a rather ad hoc way. While the
tweaked design resists the chosen-ciphertext attack on Mosquito, we showed
that it still exhibits weaknesses that lead to strong distinguishers in the related-
key setting. Further, we presented two different strategies for exploiting those
distinguishers in a key-recovery attack. The first strategy allows the attacker
to recover the 96-bit secret key in 269 steps, assuming that the attacker is able
to observe the output of two instances of the cipher using the secret key and
a related key. The complexity of this attack can be reduced to 238 steps if the
attacker is able to observe the output of three instances of the cipher using the
secret key and two related keys. Both require a negligible amount of ciphertext,
e.g. less than 256 bits.

We have also exploited the observations we made in a non-related-key attack.
Our first attack breaks the cipher in around 2101 steps, using only 128 bits of
known plaintext. If furthermore a few thousand keystream bits are known, the
complexity is reduced to 297 steps. In comparison, exhaustive search would take
2103 equivalent steps, indicating that Moustique falls about 6 bits short of the
claimed 96-bit security. While, admittedly, a 297 attack is still far from being
practical, it illustrates the relevance of related-key weaknesses in the standard
(non-related-key) setting.
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Abstract. Replacing random permutations by random functions for the
update of a stream cipher introduces the problem of entropy loss. To
assess the security of such a design, we need to evaluate the entropy of the
inner state. We propose a new approximation of the entropy for a limited
number of iterations. Subsequently, we discuss two collision attacks which
are based on the entropy loss. We provide a detailed analysis of the
complexity of those two attacks as well as of a variant using distinguished
points.
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1 Introduction

Recently, several stream ciphers have been proposed with a non-bijective update
function. Moreover, in some cases the update function seems to behave like a
random function as for the Mickey stream cipher [BD05]. Using a random
function instead of a random permutation induces an entropy loss in the state.
An attacker might exploit this fact to mount an attack. Particularly, we will
study some attacks which apply the approach of Time–Memory tradeoff [Hel80]
and its variants [HS05]. At first we introduce the model with which we are going
to work.

Stream cipher model. The classical model of an additive synchronous stream
cipher (Fig. 1) is composed of an internal state updated by applying a function
Φ. Then a filter function is used to extract the keystream bits from the internal
state. To obtain the ciphertext we combine the keystream with the plaintext.

The particularity of our model is that Φ is a random mapping which allows us
to make some statistical statements about the properties of the stream cipher.

Definition 1. Let Fn = {ϕ | ϕ : Ωn → Ωn} be the set of all functions which
map a set Ωn = {ω1, ω2, . . . , ωn} of n elements onto itself. We say that Φ is a
random function or a random mapping if it takes each value ϕ ∈ Fn with the
same probability Pr[Φ = ϕ] = 1/nn.
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ciphertext

filter

plaintext

state Φ

function

Fig. 1. Model of a simple stream cipher

For an extended definition of a random function we refer to the book of Kolchin
[Kol86].

Let Sk be the random variable denoting the value of the state after k iterations
of Φ, for k ≥ 0. From the model in Fig. 1 we see that Sk = Φ(Sk−1) where the
value of Φ is the same for all iterations k > 1. The probability distribution of
the initial state S0 is {pi}n

i=1 such that

pi = Pr[S0 = ωi] .

If we do not state otherwise, we assume a uniform distribution thus pi = 1/n
for all 1 ≤ i ≤ n. By

pΦ
i (k) = Pr[Φk(S0) = ωi]

we describe the probability of the state being ωi after applying k times Φ on the
initial state S0. If we write only pϕ

i (k) we mean the same probability but for a
specific function ϕ ∈ Fn. The notation above allows us to define the entropy of
the state after k iterations of Φ

HΦ
k =

n∑
i=1

pΦ
i (k) log2

(
1

pΦ
i (k)

)
.

If pΦ
i (k) = 0 we use the classical convention in the computation of the entropy

that 0 log2(
1
0 ) = 0. This can be done, since a zero probability has no influence on

the computation of the entropy. In this article we are interested in expectations
where the average is taken over all functions ϕ ∈ Fn. To differentiate between a
value corresponding to a random mapping Φ, to a specific function ϕ, and the
expectation of a value, taken over all functions ϕ ∈ Fn, we will write in the
following the first one normal (e.g. HΦ

k ), the second one upright (e.g. Hϕ
k ), and

the last one bold (e.g. Hk). For instance, the formula:

Hk = E(HΦ
k )

denotes the expected state entropy after k iterations.
The subsequent article is divided in two main sections. In Section 2, we discuss

ways of estimating the state entropy of our model. We give a short overview
of previous results from [FO90a] and [HK05] in Section 2.1. Subsequently in
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Section 2.2, we present a new estimate which is, for small numbers of iterations,
more precise than the previous one. In Section 3, we examine if it is possible to use
the entropy loss in the state to launch an efficient attack on our model. We discuss
two collision attacks against Mickey version 1 [BD05] presented in [HK05]. We
give a detailed evaluation of the costs of these attacks applied on our model. For
this evaluation we consider the space complexity, the query complexity and the
number of different initial states needed. By the space complexity we mean the
size of the memory needed, by the query complexity we mean the number of times
we have to apply the update function during the attack. For the first attack, we
show that we only gain a factor on the space complexity by increasing the query
complexity by the same factor. For the second attack, we demonstrate that,
contrary to what is expected from the results in [HK05], the complexities are
equivalent to a direct collision search in the initial values. In the end, we present
a new variant of these attacks which allows to reduce the space complexity;
however the query complexity remains the same.

2 Estimation of Entropy

The entropy is a measure of the unpredictability. An entropy loss in the state
facilitates the guessing of the state for an adversary. In this section, we therefore
discuss different approaches to estimate the expected entropy of the inner state.

2.1 Previous Work

Flajolet and Odlyzko provide, in [FO90a], a wide range of parameters of random
functions by analyzing their functional graph. A functional graph of a specific

7 12
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311
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Fig. 2. Example of a functional graph for ϕ : x �→ x2 + 2 (mod 20)

function ϕ is a graph which has a directed edge from vertex x to vertex y if and
only if ϕ(x) = y. An example for ϕ(x) = x2 + 2 (mod 20) can be seen in Fig. 2.
For functions on a finite set of elements, such a graph consists of one or more
separated components, where each component is build by a cycle of trees, i.e.
the nodes in the cycle are the root of a tree.

To find the expected value of a given parameter of a random function, Flajolet
and Odlyzko construct the generating function of the functional graph associ-
ated with this parameter. Subsequently, they obtain an asymptotic value of the
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expectation by means of a singularity analysis of the generating function. All
asymptotic values are for n going to +∞. In the following, we present some ex-
amples of the examined parameters. The maximal tail length is, for each graph,
the maximal number of steps before reaching a cycle. An r–node is a node in the
graph with exactly r incoming nodes which is equivalent to a preimage of size
r. By the image points we mean all points in the graph that are reachable after
k iterations of the function. The asymptotic values of these parameters are:

– the expected number of cycle point cp(n) ∼ √
πn/2,

– the expected maximal tail length mt(n) ∼ √
πn/8,

– the expected number of r–nodes rn(n, r) ∼ n
r!e and

– the expected number of image points after k iterations ip(n, k) ∼ n(1 − τk)
where τ0 = 0 and τk+1 = e−1+τk .

For all these values, the expectation is taken over all functions in Fn.
In [HK05], Hong and Kim use the expected number of image points to give an

upper bound for the state entropy after k iterations of a random function. They
utilize the fact that the entropy is always less or equal than the logarithm of
the number of points with probability larger than zero. After a finite number of
steps, each point in the functional graph will reach a cycle, and thus the number
of image points can never drop below the number of cycle points. Therefore, the
upper bound for the estimated entropy of the internal state

Hk ≤ log2(n) + log2(1 − τk) (1)

is valid only as long as ip(n, k) > cp(n). We see that for this bound the loss of
entropy only depends on k and not on n.

In Fig. 3 we compare, for n = 216, the values of this bound with the empirically
derived average of the state entropy.

To compute this value we chose 104 functions, using the HAVEGE random
number generator [SS03], and computed the average entropy under the assump-
tion of a uniform distribution of the initial state. Even if n is not very big, it
is sufficient to understand the relation between the different factors. We can see
in the graph that if k stays smaller than mt(n) this bound stays valid and does
not drop under log2(cp(n)).

2.2 New Entropy Estimation

The expected number of image points provides only an upper bound (1) for the
expected entropy. We found a more precise estimation by employing the methods
stated in [FO90a].

For a given function ϕ ∈ Fn, let ωi be a node with r incoming nodes (an r–
node). The idea is that this is equivalent to the fact that ωi is produced by exactly
r different starting values after one iteration. Thus, if the initial distribution of
the state is uniform, this node has the probability pϕ

i (1) = r/n. The same idea
works also for more than one iteration.
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Fig. 3. Upper bound and empirical average of the entropy for n = 216

Definition 2. For a fixed n let us choose a function ϕ ∈ Fn. Let ϕ−k(i) =
{j|ϕk(ωj) = ωi} define the preimage of i after k iterations of ϕ. By rnϕ

k (r) =
#{i| |ϕ−k(i)| = r} we denote the number of points in the functional graph of ϕ
which are reached by exactly r nodes after k iterations.

For a random function Φ on a set of n elements, we define by rnk(n, r) the
expected value of rnϕ

k (r), thus

rnk(n, r) =
1
nn

∑
ϕ∈Fn

rnϕ
k (r) .

A small example might help to better understand these definitions. For n = 13

reaches A in 2 steps

reaches B in 2 steps

BA

Fig. 4. Example of a functional graph to illustrate rnϕ
k (r)

we consider a function ϕ with a functional graph as displayed in Fig. 4. The
only points that are reached by r = 3 points after k = 2 iterations are A and
B. Thus, in this case we have rnϕ

2 (13, 3) = 2. The value rn2(13, 3) is then the
average taken over all functions ϕ ∈ F13.

Using Def. 2 we can state the following theorem.
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Theorem 1. In the case of a uniform initial distribution the expected entropy
of the inner state after k iterations is

Hk = log2(n) −
n∑

r=1

rnk(n, r)
r

n
log2(r) . (2)

Proof. Let us fix a function ϕ. We use the idea that after k iterations of ϕ we
have rnϕ

k (r) states with probability r
n . Thus, the entropy after k iterations for

this specific function is

Hϕ
k =

n∑
r=1

rnϕ
k (r)

r

n
log2

(n

r

)

= log2(n)
1
n

n∑
r=1

r rnϕ
k (r) −

n∑
r=1

rnϕ
k (r)

r

n
log2(r) .

We ignore the case r = 0 since it corresponds to a probability zero, which is not
important for the computation of the entropy. Each 1 ≤ j ≤ n appears exactly in
one preimage of ϕ after k iterations. We can thus see directly from the definition
of rnϕ

k (r) that
∑n

r=1 r rnϕ
k (r) = n. Therefore, we can write

Hϕ
k = log2(n) −

n∑
r=1

rnϕ
k (r)

r

n
log2(r) .

By using this equation, we can give the expected entropy after k iterations as

Hk =
1
nn

∑
ϕ∈Fn

Hϕ
k

=
1
nn

∑
ϕ∈Fn

[
log2(n) −

n∑
r=1

rnϕ
k (r)

r

n
log2(r)

]

= log2(n) − 1
nn

∑
ϕ∈Fn

[
n∑

r=1

rnϕ
k (r)

r

n
log2(r)

]
.

Since we only have finite sums we can change the order:

Hk = log2(n) −
n∑

r=1

⎡
⎣ 1

nn

∑
ϕ∈Fn

rnϕ
k (r)

⎤
⎦ r

n
log2(r) .

We conclude our proof by applying Def. 2.

In the same way we can compute the entropy for any arbitrary initial
distribution.
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Theorem 2. For a given n, let P = {p1, p2, . . . , pn} define the distribution of
the initial state. Then, the expected entropy of the state after k iterations is
given by

HP
k =

n∑
r=1

rnk(n, r)
1(
n
r

) ∑
1≤j1<···<jr≤n

(pj1 + · · · + pjr ) log2

1
pj1 + · · · + pjr

. (3)

Proof. Let us choose a specific ϕ and an index i. After k iterations of ϕ, the
state ωi has the probability

∑
j∈ϕ−k(i) pj . Therefore, the expected entropy after

k iterations is given by

HP
k =

1
nn

∑
ϕ∈Fn

n∑
i=1

⎛
⎝ ∑

j∈ϕ−k(i)

pj

⎞
⎠ log2

1∑
j∈ϕ−k(i) pj

. (4)

For a given r we fix a set of indices {j1, . . . , jr}. Without loss of generality we
assume that they are ordered, e.i. 1 ≤ j1 < · · · < jr ≤ n. We now want to know
how many times we have to count (pj1 + · · · + pjr ) log2

1
pj1+···+pjr

in (4). This is

equivalent to the number of pairs (i, ϕ) where ϕ−k(i) = {j1, . . . , jr}.
From Def. 2 we know that nnrnk(n, r) is the number of pairs (i, ϕ)

such that |ϕ−k(k)| = r. Due to symmetry, each set of indices of size r is
counted the same number of times in (4). There are

(
n
r

)
such sets. Thus,

(pj1 + · · · + pjr ) log2
1

pj1+···+pjr
is counted exactly nnrnk(n,r)

(n
r)

times and we can

write

HP
k =

1
nn

n∑
r=1

nnrnk(n, r)(
n
r

) ∑
1≤j1<···<jr≤n

(pj1 + · · · + pjr ) log2

1
pj1 + · · · + pjr

,

which is equivalent to (3).

Theorem 1 can also be shown by using Theorem 2; however the first proof is
easier to follow. Finally, we want to consider a further special case.

Corollary 1. For a given n let the distribution of the initial state be Pm =
{p1, p2, . . . , pn}. From the n possible initial values only m occur with probability
exactly 1

m . Without loss of generality we define

pi =

{
1
m 1 ≤ i ≤ m

0 m < i ≤ n .

In this case we get

HPm
k =

n∑
r=1

rnk(n, r)
1(
n
r

) r∑
�=0

(
m

�

)(
n − m

r − �

)
�

m
log2

m

�
. (5)

Proof. For a given r, let us consider the sum (pj1 +· · ·+pjr) for all possible index
tuples 1 ≤ j1 < · · · < jr ≤ n. In

(
m
�

)(
n−m
r−�

)
cases we will have (pj1+· · ·+pjr) = �

m
for 0 ≤ � ≤ r. Thus, (5) follows directly from Theorem 2.
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To approximate rnk(n, r) for one iteration, we use directly the results for the
expected number of r–nodes, given in [FO90a], since rn1(n, r) = rn(n, k) ∼ n

r!e .
We can see that already for k = 1, a uniform initial distribution, and n large
enough, there is a non negligible difference between our estimate (2)

H1 ∼ log2(n) − e−1
n∑

r=1

1
(r − 1)!

log2(r) ≈ log2(n) − 0.8272

and the upper bound (1)

H1 ≤ log2(n) + log2(1 − e−1) ≈ log2(n) − 0.6617 .

For more than one iteration we need to define a new parameter.

Theorem 3. For n → ∞ we can give the following asymptotic value

rnk(n, r) ∼ n ck(r) (6)

of the expected number of points in the functional graph which are reached by r
points after k iterations, where

ck(r) =

{
1

r!e for k = 1
D(k, r, 1)f1(k)1

e for k > 1

D(k, r, m) =

⎧⎪⎨
⎪⎩

1 for r = 0
0 for 0 < r < m∑�r/m�

u=0
ck−1(m)u

u! D(k, r − mu, m + 1) otherwise

and

f1(k) =

{
1 for k = 1
ee−1f1(k−1) for k > 1 .

Proof. The concept of this proof is that we see the functional graph as a combi-
natorial structure. We are going to build the generating function corresponding
to this structure where we mark a desired parameter. By means of the singularity
analysis of the generating function we obtain the asymptotic value of this para-
meter. The difficulty is to mark the right property in the generation function.
The rest of the proof is just following the method described in [FO90a].

For an arbitrary structure, let an define the number of elements of this struc-
ture with size n for n ≥ 1. Then, the exponential generating function of the
infinite sequence {an}n≥1 is defined as

A(z) =
∑
n≥1

an
zn

n!
.

By [zn]A(z) we mean the n’th coefficient an of A(z). The nice property of a gen-
erating function is that many combinatorial constructions on the structure cor-
respond to simple manipulation of the generating function. We refer the reader
to [FS96] for a deeper introduction to the area of generating functions.
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The functional graph of a function which maps a finite set onto itself can be
described in the following recursive way:

FuncGraph = SET (Component) ,

Component = CY CLE(Tree) ,

T ree = Node × SET (Tree) .

Each of this constructions: SET , CY CLE and × (concatenation) can be applied
directly on a generating function.

We are interested in the average value of a specific parameter, where the
average is taken over all functions of size n. For this purpose we need a bivariate
generating function. Let F =

⋃
n≥1 Fn be the set of all functions which map a

finite set onto itself. For a specific ϕ ∈ F , we denote by |ϕ| the size n of the
finite set. With ξ(ϕ) we define a specific property of the function. In our case
we are interested in ξr,k(ϕ) = rnϕ

k (|ϕ|, r). The bivariate generating function for
this parameter, marked by the variable u, is then defined by

ξr,k(u, z) =
∑
ϕ∈F

uξr,k(ϕ) z
|ϕ|

|ϕ|! .

By ξr,k,n =
∑

ϕ∈Fn
ξr,k(ϕ) we mean the sum of ξr,k(ϕ) taken over all ϕ ∈ Fn.

Let
Ξ(z) =

∑
n≥1

ξr,k,n
zn

n!

be the generating function for ξr,k,n. Thus, it is clear that the average value of
ξk,r is given by

E(ξk,r|Fn) =
ξk,r
n

nn
=

n!
nn

[zn]Ξ(z) .

To obtain the function Ξ(z) we use that

Ξ(z) =
∂

∂u
ξr,k(u, z)

∣∣∣∣
u=1

.

Since in our case the evaluation of [zn]Ξ(z) is not directly possible, we can use
a singularity analysis to get an asymptotic value for n → ∞. More information
about singularity analysis can be found in [FO90a] and [FO90b].

We now have to define the function ξr,k(u, z). For this, we start by a tree. A
node in a tree which is reached by r nodes after k iterations can be described
by the concatenation of three elements:

1. A node.
2. A SET of trees where each tree has a depth smaller than k − 1.
3. A concatenation of j trees where the order of the concatenation is not im-

portant and where 1 ≤ j ≤ r. Each of these trees has a depth larger or equal
to k − 1 and their roots are reached by respectively i1, . . . , ij nodes after
k − 1 iterations such that i1 + · · · + ij = r.
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A

2.

1.

3.

Fig. 5. Example of the structure explained in 1.-3. for the node A

In Fig. 5 these three elements are marked for the node A.
To write the corresponding generating function we need some notations:
The generating function of a set of trees of depth smaller than k − 1, as

described in 2., is given by f1(k, z) where

f1(k, z) =

{
1 for k = 1
ez f1(k−1,z) for k > 1 .

By Par(r) we mean the integer partition of r, i.e. the set of all possible se-
quences [i1, . . . , ij ] for 1 ≤ j ≤ r such that 1 ≤ i1 ≤ · · · ≤ ij ≤ r and i1+· · ·+ij =
r. For example, for r = 4 we have Par(4) = {[1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4]}.

Since the order of the concatenation in 3. is not important, we need a correc-
tion term f2([i1, . . . , ij ]). If there are some ix1 , . . . , ix�

with 1 ≤ x1 < · · · < x� ≤ j
and ix1 = · · · = ix�

we have to multiply by a factor 1/�! to compensate this re-
peated appearance, e.g. f2([1, 1, 1, 1, 2, 2, 3]) = 1

4!2!1! .
Let tr,k(u, z) be the generation function of a tree. By ck(r, z) we define a

variable such that
ck(r, z)tr,k(u, z)r

is the generating function of a tree where the root is reached by r nodes after k
iterations. For k = 1, such a tree has r children, where each child is again a tree.
In terms of generating functions, this structure can be represented by z

tr,k(u,z)r

r! .
Thus, we get

c1(r, z) =
z

r!
.

For k > 1 we can use the structure given in 1.-3. and our notations to write:

ck(r, z)

= 1
tr,k(u,z)r

1.︷︸︸︷
z

2.︷ ︸︸ ︷
f1(k, z)

3.︷ ︸︸ ︷∑
[i1,...,ij ]∈Par(r)

[
ck−1(i1, z)tr,k(u, z)i1

] · · · [ck−1(ij , z)tr,k(u, z)ij
]
f2([i1, . . . , ij ])

= zf1(k, z)
∑

[i1,...,ij ]∈Par(r) ck−1(i1, z) · · · ck−1(ij , z)f2([i1, . . . , ij]) .
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In total we get

ck(r, z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z/r!, for k = 1

z f1(k, z)
∑

[i1,...,ij ]∈Par(r)

ck−1(i1, z) · · · ck−1(ij , z) f2([i1, . . . , ij])

for k > 1 .

(7)

We can now write the generation function of a tree where we mark with the
variable u the nodes which are reached by r other nodes after k iterations.

tr,k(u, z) = zetr,k(u,z) + (u − 1)tr,k(u, z)rck(r, z) ,

The first part describes a tree as a node concatenated with a set of trees. The
second part correspond to our desired parameter. By applying the properties
that a graph of a random function is a set of components where each component
is a cycle of trees we get the generating function for a general functional graph

ξr,k(u, z) =
1

1 − tr,k(u, z)
.

Now, we can follow the steps as described at the beginning of this proof. We will
use the fact that the general generating function of a tree tr,k(1, z) = t(z) = zez

has a singularity expansion

t(z) = 1 −
√

2
√

1 − ez − 1
3
(1 − ez) + O((1 − ez)3/2)

for z tending to e−1. Finally, by applying the singularity analysis for z → e−1

we get
E(ξr,k|Fn) ∼ n ck(r, e−1) .

Remark 1. In the construction of our generating function we only count the
nodes in the tree which are reached by r points after k iterations (e.g. node A
in Fig. 4). We ignore the nodes on the cycle (e.g. node B in Fig. 4). However,
the average proportion of the number of cycle points in comparison to the image
size after k iterations is

cp(n)
ip(n, k)

∼
√

πn/2
n(1 − τk)

.

For a fixed k and n → ∞ it is clear that this proportion gets negligible.

Thus, we can write
rnk(n, r) ∼ n ck(r, e−1) .

The computation of ck(r, e−1) as defined in (7) is not very practical. In
this paragraph, we will show that we can do it more efficiently using dynamic
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programming. For simplicity we write in the following ck(r, e−1) = ck(r) and
f1(k, e−1) = f1(k). We define the new value D(k, r, m) by

D(k, r, m) =
∑

[i1,...,ij ]∈Par≥m(r)

ck−1(i1) · · · ck−1(ij)f2([i1, . . . , ij ])

where Par≥m(r) is the set of all partitions of the integer r such that for each
[i1, . . . , ij ] ∈ Par≥m(r) must hold that i� ≥ m for all 1 ≤ � ≤ j. Using this,
we can give the recursive definition of D(k, r, m) and ck(r) as described in this
theorem.

Proposition 1. For fixed values R and K we can compute ck(r), as described
in Theorem 3, for all r ≤ R and k ≤ K in a time complexity of O

(
KR2 ln(R)

)
.

Proof. We use dynamic programming to compute ck(r).
The computation of f1(k) can be done once for all k ≤ K and then be stored.

Thus, it has a time and space complexity of O(K). For k = 1, if we start with
r = 1 we can compute c1(r) for all r ≤ R in R steps. The same is true for
1 < k ≤ K if we already know D(k, r, 1) and f1(k).

The most time consuming factor is the computation of D(k, r, m). For a given
k′, let us assume that we have already computed all ck′−1(r) for 1 ≤ r ≤ R. In
the computation of D(k, r, m) we will go for r from 1 to R, and for m from r to
1. This means that

– For a given r′ we already know all D(k′, r, m) with r < r′.
– For a fixed r′ and m′ we already know all D(k′, r′, m) with m > m′.
– To compute

�r/m�∑
u=0

ck−1(m)u

u!
D(k, r − mu, m + 1)

we need 
r/m� steps.

Thus in total, for each 1 < k ≤ K we need

R∑
r=1

r∑
m=1

⌊ r

m

⌋

steps to compute all D(k, r, m). By using that
r∑

m=1

1
m

= ln(r) + C + O

(
1
r

)

where C = 0.5772 . . . is the Euler constant, and

R∑
r=1

r ln(r) ≤ ln(R)
R∑

r=1

r

= ln(R)
R(R + 1)

2

we obtain the final time complexity of O(KR2 ln(R)).
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Let us go back to the expected entropy in (2). By using (6) we can write for
n → ∞

Hk ∼ log2(n)−
R∑

r=1

ck(r) r log2(r)︸ ︷︷ ︸
(a)

−
n∑

r=R+1

ck(r) r log2(r)

︸ ︷︷ ︸
(b)

, (8)

where (a) represents an estimation of the entropy loss which does not depend
on n and (b) is an error term. In Fig. 6, we see that the value ck(r) r log2(r)
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Fig. 6. The course of ck(r) r log2(r) for different values of k and r

decreases fast with growing r. However, for larger k this decrease becomes slower.
If we want (b) to be negligible for larger k we also need a larger value for R. In
Table 1, we compare our entropy estimator

Hk(R) = log2(n) −
R∑

r=1

ck(r) r log2(r) (9)

with the estimated lower bound of the loss given by the expected number of
image points (1) and the empirical results from the experiment presented in
Fig. 3. From (6) and (8) we know that

Hk ∼ Hk(R)

for n → ∞ and R → n. We can see that for small k, in the order of a few
hundred, we reach a much better approximation than the upper bound (1). For
example, for most of the modern stream ciphers, the number of iterations for
a key/IV–setup is in this order of magnitude. However, for increasing values of
k we also need bigger values of R and, thus, this method gets computationally
expensive. For k = 100 and R = 1000 the result of our estimate is about 0.02
larger than the empirical data. The fact that our estimate is larger shows that
it is not due to the choice of R (it does not change a lot if we take R = 2000)
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Table 1. Comparison of different methods to estimate the entropy loss

k 1 2 3 · · · 10 · · · 50 · · · 100

empirical data, n = 216 0.8273 1.3458 1.7254 · · · 3.1130 · · · 5.2937 · · · 6.2529

image points (1) 0.6617 1.0938 1.4186 · · · 2.6599 · · · 4.7312 · · · 5.6913

R = 50 0.8272 1.3457 1.7254 · · · 3.1084 · · · 2.6894 · · · 1.2524
Hk(R), (9) R = 200 0.8272 1.3457 1.7254 · · · 3.1129 · · · 5.2661 · · · 5.5172

R = 1000 0.8272 1.3457 1.7254 · · · 3.1129 · · · 5.2918 · · · 6.2729

but to the fact that our n = 216 is relatively small and, thus, the proportion of
cycle points which is about √

πn/2
n(1 − τk)

≈ 0.253

is not negligible.
In this section we presented a new entropy estimator. We could show that if

the number of iterations is not too big, it is much more precise than the upper
bound given by the image size. In addition, the same method can be used for
any arbitrary initial distribution.

3 Collision Attacks

In the previous section, we studied the loss of entropy in the inner state of our
stream cipher model. In this section, we examine if it is possible to exploit this
loss for a generic attack on our model. Hong and Kim present in [HK05] two
attacks on the Mickey stream cipher [BD05], based on the entropy loss in the
state. This stream cipher has a fixed update function; however Hong and Kim
state, due to empirical results, that the update function behaves almost like
a random function with regard to the expected entropy loss and the expected
number of image points. Thus, these attacks are directly applicable on our model.
We will give a detailed complexity analysis of these attacks and will show that
in the case of a real random function they are less efficient than what one might
assume from the argumentation of Hong and Kim.

Let us take two different initial states S0 and S′
0 and apply the same function

iteratively onto both of them. We speak about a collision if there exists k and k′

such that Sk = Sk′ , for k �= k′, or Sk = S′
k′ for any arbitrary pair k, k′. The idea

of Hong and Kim was that a reduced entropy leads to an increased probability of
a collision. Once we have found a collision, we know that the subsequent output
streams are identical. Due to the birthday paradox, we assume that with an
entropy of m-bits we reach a collision, with high probability, by choosing 2

m
2

different states.
The principle of the attacks is that we start from m different, randomly chosen,

initial states and that we apply iteratively the same update function k times on
each of them. In the end, we search for a collision and hope that our costs are
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less than for a search directly in the initial states. We will study the two attacks
proposed in [HK05] as well as a variant using distinguished points. For each of
these attacks we provide a detailed complexity analysis where we examine the
query and the space complexity as well as the number of necessary initial states
to achieve a successful attack with high probability. By the query complexity we
mean the number of all states produced by the cipher during the attack which
is equivalent to the number of times the updated function is applied. By the
space complexity we mean the number of states we have to store such that we
can search for a collision within them. Each time we compare the results to the
attempt of finding a collision directly within the initial states which has a space
and query complexity of ∼ √

n.
All these attacks consider only the probability of finding a collision in a set

of states. This is not equivalent to an attack where we have m − 1 initial states
prepared and we want the probability that if we take a new initial state, it will
be one of the already stored. In such a scenario, the birthday paradox does not
apply. We also never consider how many output bits we would really need to
store and to recognize a collision, since this value depends on the specific filter
function used. In the example of Mickey, Hong and Kim states that they need
about 28 bits.

3.1 States After k Iterations

The first attack of Hong and Kim takes randomly m different initial states,
applies k times the same instance of Φ on each of them, and searches a collision
in the m resulting states. Using (1) we know that the average entropy after k
iterations is less than log2(n)+ log2(1− τk). Hong and Kim conjecture, based on
experimental results, that this is about the same as log2(n)− log2(k) + 1. Thus,
with high probability we find a collision if m > 2(log2(n)−log2(k)+1)/2 =

√
2n/k.

This attack stores only the last value of the iterations and searches for a
collision within this set. This leads to a space complexity of m ∼ √

2n/k for
large enough k. However, Hong and Kim did not mention that we have to apply
k times Φ on each of the chosen initial states, which results in a query complexity
of mk ∼ √

2kn. This means that we increase the query complexity by the same
factor as we decrease the space complexity and the number of initial states.

The question remains, if there exists any circumstances under which we can
use this approach without increasing the query complexity. The answer is yes, if
the stream cipher uses a set of update functions which loose more than 2 log2(k)
bits of entropy after k iterations. Such a characteristic would imply that we do
not use random functions to update our state, since they have different properties
as we have seen before. However, the principle of the attack stays the same.

3.2 Including Intermediate States

The second attack in [HK05] is equivalent to applying 2k − 1 times the same
instance of Φ on m different initial states and searching for a collision in all
intermediate states from the k-th up to the (2k − 1)-th iteration. Since after
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k − 1 iterations we have about log2(n) − log2(k) + 1 bits of entropy, Hong and
Kim assume that we need a m such that mk ∼ √

n/k. They state that this
result would be a bit too optimistic since collisions within a row normally do
not appear in a practical stream cipher. However, they claim that this approach
still represents a realistic threat for the Mickey stream cipher. We will show
that for a random function, contrary to their conjecture, this attack has about
the same complexities as a direct collision search in the initial states.

Let us take all the 2km intermediate states for the 2k−1 iterations. Let Pr[A]
define the probability that there is no collision in all the 2km intermediate states.
If there is no collision in this set then there is also no collision in the km states
considered by the attack. Thus, the probability of a successful attack is even
smaller than 1 − Pr[A]. By means of only counting arguments we can show the
following proposition.

Proposition 2. The probability of no collision in the 2km intermediate states
is

Pr[A] =
n(n − 1) · · · (n − 2k + 1)

n2km
, (10)

where the probability is taken over all functions ϕ ∈ Fn and all possible choices
of m initial states.

Proof. Let Pr[I] be the probability of no collision in the m initial states. We
can see directly that

Pr[A] = Pr[A ∩ I]
= Pr[A|I] Pr[I] .

Let us assume that we have chosen m different initial states. This happens with
a probability of

Pr[I] =

(
n
m

)
m!

nm
. (11)

In this case we have

– nn different instances ϕ ∈ Fn of our random functions, where each of them
creates

–
(

n
m

)
m! different tables. Each table can be produced more than once. There

exists
– n (n − 1) . . . (n − 2km + 1) different tables that contain no collisions. Each

of them can be generated by
– nn−(2k−1)m different functions, since a table determines already (2k − 1)m

positions of ϕ.

Thus, we get the probability

Pr[A|I] =
n (n − 1) . . . (n − 2km + 1) nn−(2k−1)m

nn
(

n
m

)
m!

(12)

for m > 0 and 2km ≤ n. By combining (11) and (12) we can conclude our proof.
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The probability of Pr[A] given in (10) is exactly the probability of no collision
in 2km random points, which means that we need at least an m such that
2km ∼ √

n. This leads to a query complexity of ∼ √
n and a space complexity

of ∼ √
n/2.

3.3 Improvement with Distinguished Points

By applying the known technique of distinguished points [DQ88] we can reduce
the space complexity in the second attack; however the query complexity stays
the same.

By distinguished points (DPs) we mean a subset of Ωn which is distinguished
by a certain property, e.g. by a specific number of 0’s in the most significant
bits. In our new variant of the second attack we iterate Φ in each row up to the
moment where we reach a DP. In this case we stop and store the DP. If we do
not reach a DP after kMAX iterations we stop as well but we store nothing. If
there was a collision in any of the states in the rows where we reached a DP,
the subsequent states would be the same and we would stop with the same DP.
Thus it is sufficient to search for a collision in the final DPs.

Let d be the number of distinguished points in Ωn. We assume that the ratio c =
d
n is large enough that with a very high probability we reach a DP before the end of
the cycle in the functional graph. This means that the averagenumber of iterations
before arriving at a DP is much smaller than the expected length of the tail and the
cycle together (which would be about

√
π n
2 due to [FO90a]). We assume that in

this case the average length of each row would be in the range of 1/c like in the
case of random points. We also suppose that that we need about m/c ∼ √

n query
points to find a collision, like in the previous case. This leads to a query complexity
of ∼ √

n and a space complexity of only ∼ c
√

n. Empirical results for example for
n = 220, 0.7 ≤ log2(d)

log2(n) ≤ 1 and kMAX =
√

n confirm our assumptions.
A summary of the complexities of all attacks can be found in Table 2, where

we marked by (new) the results that where not yet mentioned by Hong and
Kim. In the case where we consider only the states after k iterations, we have to
substantially increase the query complexity to gain in the space complexity and
the number of initial states. We were able to show that even when we consider all
intermediate states, the query complexity has a magnitude of

√
n. The variant

using the distinguished points allows to reduce the space complexity by leaving
the other complexities constant.

Table 2. Complexities of attacks

attack # initial states space complexity query complexity
after k iterations, 3.1 ∼

�
2n/k ∼

�
2n/k ∼

√
2kn (new)

with interm. states, 3.2 ∼
√

n/2k (new) ∼
√

n/2 (new) ∼
√

n (new)
with DPs, 3.3 ∼ c

√
n (new) ∼ c

√
n (new) ∼

√
n (new)
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4 Conclusion

In this article, we studied a stream cipher model which uses a random update
function. We have introduced a new method of estimating the state entropy in
this model. This estimator is based on the number of values that produce the
same value after k iterations. Its computation is expensive for large numbers of
iterations; however, for a value of k up to a few hundred, it is much more precise
than the upper bound given by the number of image points.

In this model, we have also examined the two collision attacks proposed in
[HK05] which are based on the entropy loss in the state. We pointed out that the
first attack improves the space complexity at the cost of significantly increasing
the query complexity. We proved that the complexity of the second attack is
of the same magnitude as a collision search directly in the starting values. In
addition we discussed a new variant of this attack, using distinguished points,
which reduces the space complexity but leaves the query complexity constant.

The use of a random function in a stream cipher introduces the problem of en-
tropy loss. However, the studied attacks based on this weakness are less effective
than expected. Thus, the argument alone that a stream cipher uses a random func-
tion is not enough to threaten it due to a collision attack based on the entropy loss.
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Abstract. In this paper, we analyze the initialization algorithm of Grain,
one of the eSTREAM candidates which made it to the third phase of the
project. We point out the existence of a sliding property in the initializa-
tion algorithm of the Grain family, and show that it can be used to reduce
by half the cost of exhaustive key search (currently the most efficient at-
tack on both Grain v1 and Grain-128). In the second part of the paper, we
analyze the differential properties of the initialization, and mount several
attacks, including a differential attack on Grain v1 which recovers one out
of 29 keys using two related keys and 255 chosen IV pairs.

1 Introduction

Symmetric encryption algorithms are traditionally categorized into two types of
schemes: block ciphers and stream ciphers. Stream ciphers distinguish themselves
from block ciphers by the fact that they process plaintext symbols (typically bits)
as soon as they arrive by applying a very simple but ever changing invertible
transformation. As opposed to block ciphers, stream ciphers do not derive their
security from the complexity of the encryption transformation, but from the
unpredictable way in which this transformation depends on the position in the
plaintext stream.

The most common type of stream ciphers are binary additive stream ciphers.
The encryption transformation in this type of ciphers just consists of an exclusive
or (XOR) with an independent sequence of bits called key stream. The key stream
bits are derived from a secret internal state which is initialized using a secret
key, and is then continuously updated.

The security of a binary additive stream cipher depends directly on the un-
predictability of its key stream. In particular, the same sequence of key stream
bits should never be reused to encrypt different plaintexts, and hence, a stream
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cipher should never be reinitialized with the same secret key. However, in order
to avoid having to perform an expensive key agreement protocol for every single
message, all modern stream ciphers accept during their initialization phase an
additional parameter, typically called initialization vector (IV), which allows to
generate different key streams from the same secret key.

Although the possibility to reuse the same key for several messages is an
indispensable feature in many practical applications, the introduction of initial-
ization vectors in stream ciphers also opens new opportunities for the adversary.
Several recent stream cipher proposals [1,2,3,4] have succumbed to attacks ex-
ploiting relations between key stream bits generated from the same key but
different (known or chosen) IVs. This clearly demonstrates the importance of a
carefully designed initialization algorithm.

In this paper, we analyze the initialization algorithm of Grain, a family of
hardware-oriented stream ciphers submitted to the eSTREAM Stream Cipher
Competition. We will first show that a sliding property of the initialization al-
gorithm, which was already noted in [5] but never formally published, not only
results in a very efficient related-key attack, but can also be used more generally
to reduce the cost of exhaustive key search. We will then study the differen-
tial properties of the initialization, and develop a differential attack on Grain v1
which recovers one out of 29 keys, and requires two related keys and 255 cho-
sen IV pairs. We will show that similar attacks apply to Grain-128, and that
the requirement for related keys can be dropped if we consider reduced-round
variants.

We finally note that we do not consider any of the attacks presented in this
paper to be a serious threat in practice. However, they certainly expose some
non-ideal behavior of the Grain initialization algorithm.

2 Description of Grain

Grain is a family of stream ciphers, proposed by Hell, Johansson, and Meier in
2005 [6], which was designed to be particularly efficient and compact in hard-
ware. Its two members, Grain v1 and Grain-128, accept 80-bit and 128-bit keys
respectively. The original version of the cipher, later referred to as Grain v0,
was submitted to the eSTREAM project, but contained a serious flaw, as was
demonstrated by several researchers [7,8]. As a response, the initial submission
was tweaked and extended to a family of ciphers.

In the next two sections we first describe the building blocks common to all
members of the Grain family. Afterwards, we will show how these blocks are
instantiated for the specific ciphers Grain v1 and Grain-128

2.1 Keystream Generation

All Grain members consist of three building blocks: an n-bit nonlinear feed-
back shift register (NFSR), an n-bit linear feedback shift register (LFSR), and a
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NFSR

g

LFSR

f

h∗

zt

Fig. 1. Grain during the keystream generation phase

nonlinear filtering function. If we denote the content of the NFSR and the LFSR
at any time t by Bt = (bt, bt+1, . . . , bt+n) and St = (st, st+1, . . . , st+n), then the
keystream generation process is defined as

st+n = f(St) ,

bt+n = g(Bt) + st ,

zt = h∗(Bt, St) ,

where g and f are the update functions of the NFSR and LFSR respectively,
and h∗ is the filtering function (see Fig. 1).

2.2 Key and IV Initialization

The initial state of the shift registers is derived from the key and the IV by
running an initialization process, which uses the same building blocks as for key
stream generation, and will be the main subject of this paper. First, the key and
the IV are loaded into the NFSR and LFSR respectively, and the remaining last
bits of the LFSR are filled with ones. The cipher is then clocked for as many
times as there are state bits. This is done in the same way as before, except that
the output of the filtering function is fed back to the shift registers, as shown in
Fig. 2 and in the equations below.

rt = h∗(Bt, St) + st ,

st+n = f(rt, st+1, . . . , st+n−1) ,

bt+n = g(Bt) + rt .

2.3 Grain v1

Grain v1 is an 80-bit stream cipher which accepts 64-bit IVs. The NFSR and the
LFSR are both 80 bits long, and therefore, as explained above, the initialization
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Fig. 2. Grain during the initialization phase

takes 160 cycles. The different functions are instantiated as follows:

f(St) = st + st+13 + st+23 + st+38 + st+51 + st+62 ,

g(Bt) = bt + bt+14 + bt+62

+ g′(bt+9, bt+15, bt+21, bt+28, bt+33, bt+37, bt+45, bt+52, bt+60, bt+63) ,

h∗(Bt, St) =
∑
i∈A

bt+i + h(st+3, st+25, st+46, st+64, bt+63) ,

with A = {1, 2, 4, 10, 31, 43, 56}, g′ a function of degree 6, and h a function of
degree 3. The exact definitions of these functions can be found in [6].

2.4 Grain-128

Grain-128 is the 128-bit member of the Grain family. The IV size is increased
to 96 bits, and the shift registers are now both 128 bits long. The initialization
takes 256 cycles, and the functions are defined as follows:

f(St) = st + st+7 + st+38 + st+70 + st+81 + st+96 ,

g(Bt) = bt + bt+26 + bt+56 + bt+91 + bt+96

+ bt+3bt+67 + bt+11bt+13 + bt+17bt+18

+ bt+27bt+59 + bt+40bt+48 + bt+61bt+65 + bt+68bt+84,

h∗(Bt, St) =
�

i∈A
bt+i + h(st+8, st+13, st+20, st+42, st+60, st+79, st+95, bt+12, bt+95) .

In the equations above, A = {2, 15, 36, 45, 64, 73, 89}, and h is a very sparse func-
tion of degree 3. Again, we refer to the specifications [9] for the exact definition.

3 Slide Attacks

In this section we discuss a first class of attacks on Grain’s initialization phase,
which are based on a particular sliding property of the algorithm. Slide attacks
have been introduced by Biryukov and Wagner [10] in 1999, and have since
then mainly been used to attack block ciphers. A rather unique property of this
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cryptanalysis technique is that its complexity is not affected by the number of
rounds, as long as they are all (close to) identical. This will also be the case in the
attacks presented below: the attacks apply regardless of how many initialization
steps are performed.

Note that although we will illustrate the attacks using Grain v1, the discussion
in the next sections applies to Grain-128 just as well.

3.1 Related (K, IV) Pairs

The sliding property exploited in the next sections is a consequence of the similar-
ity of the operations performed in Grain at any time t, both during initialization
and key generation, as well as of the particular way in which the key and IV
bits are loaded. More specifically, let us consider a secret key K = (k0, . . . , k79),
used in combination with an initialization vector IV = (v0, . . . , v63). During the
first 161 cycles (160 initialization steps and 1 key generation step), the registers
will contain the following values:

B0 = (k0, . . . . . . , k78, k79) S0 = (v0, . . . , v62, v63, 1, . . . , 1, 1)
B1 = (k1, . . . . . . , k79, b80) S1 = (v1, . . . , v63, 1, 1, . . . , 1, s80)

...
...

B160 = (b160, . . . , b238, b239) S160 = (s160, . . . . . . . . . . . . , s238, s239)
B161 = (b161, . . . , b239, b240) S161 = (s161, . . . . . . . . . . . . , s239, s240)

in
it
.
p
h
a
se

Let us now assume that s80 = 1. Note that if this is not the case, it suffices
to flip v13 for the assumption to hold. We then consider a second key K∗ =
(k1, . . . , k79, b80) together with the initialization vector IV∗ = (v1, . . . , v63, 1).
After loading this pair into the registers, we obtain:

B∗
0 = (k1, . . . . . . , k79, b80) S∗

0 = (v1, . . . , v63, 1, 1, . . . , 1, 1)

This, however, is identical to the content of B1, and since the operations during
the initialization are identical as well, the equality B∗

t = Bt+1 is preserved until
step 159, as shown below.

B∗
0 = (k1, . . . . . . , k79, b80) S∗

0 = (v1, . . . , v63, 1, 1, . . . , 1, 1)
...

...
B∗

159 = (b160, . . . , b238, b239) S∗
159 = (s160, . . . . . . . . , s238, s239)

B∗
160 = (b161, . . . , b239, b

∗
239) S∗

160 = (s161, . . . . . . . . , s239, s
∗
239)

B∗
161 = (b162, . . . , b∗239, b

∗
240) S∗

161 = (s162, . . . . . . . . , s∗239, s
∗
240)

in
it

.
ph

as
e

In step 160, b∗239 and s∗239 are not necessarily equal to b240 and s240, since the
former are computed in initialization mode, whereas the latter are computed in
key stream generation mode. Nevertheless, and owing to the tap positions of
Grain v1, the equality will still be detectable in the first 15 keystream bits.
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Moreover, if h∗(B∗
159, S

∗
159) = h∗(B160, S160) = 0 (this happens with proba-

bility 1/2), then both modes of Grain are equivalent, and hence the equality is
preserved in the last step as well. After this point, (B∗

t , S∗
t ) and (Bt+1, St+1) are

both updated in key stream generation mode; their values will therefore stay
equal till the end, leading to identical but shifted key streams.

With an appropriate choice of IVs, similar sliding behaviors can also be ob-
served by sliding the keys over more bit positions. In general, we have the fol-
lowing property for 1 ≤ n ≤ 16:

Property 1. For a fraction 2−2·n of pairs (K, IV), there exists a related pair
(K∗, IV∗) which produces an identical but n-bit shifted key stream.

Note that the existence of different (K, IV) pairs which produce identical but
shifted key streams is in itself not so uncommon in stream ciphers. When a
stream cipher is iterated, its internal state typically follows a huge predefined
cycle, and the role of the initialization algorithm is to assign a different starting
position for each (K, IV) pair. Obviously, if the total length of the cycle(s) is
smaller than the number of possible (K, IV) pairs multiplied by the maximum
allowed key stream length, then some overlap between the key stream sequences
generated by different (K, IV) pairs is unavoidable. This is the case in many
stream ciphers, including Grain. However, what is shown by the property above,
is that the initialization algorithm of Grain has the particularity that it tends to
cluster different starting positions together, instead of distributing them evenly
over the cycle(s).

3.2 A Related-Key Slide Attack

A first straightforward application of the property described in the previous
section is a related-key attack. Suppose that the attacker somehow suspects
that two (K, IV) pairs are related in the way explained earlier. In that case, he
knows that the corresponding key stream sequences will be shifted over one bit
with probability 1/4, and if that happens, he can conclude that s80 = 1. This
allows him to derive a simple equation in the secret key bits. Note that if the
(K, IV) pairs are shifted over n > 1 positions, then with probability 2−2·n the
attacker will be able to obtain n equations.

As is the case for all related key attacks, the simple attack just described
is admittedly based on a rather strong supposition. In principle, however, one
could imagine practical situations where different session keys are derived from
a single master key in a funny way, making this sort of related keys more likely
to occur, or where the attacker has some means to transform the keys before
they are used (for example by causing synchronization errors).

3.3 Speeding Up Exhaustive Key Search

A second application, which is definitely of more practical relevance, is to use
the sliding property of the initialization algorithm to speed up exhaustive key
search by a factor two.
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The straightforward way to run an exhaustive search on Grain v1 is described
by the pseudo-code below:

for K = 0 to 280 − 1 do
perform 160 initialization steps;
generate first few key stream bits (z0, . . . , zt);
check if (z0, . . . , zt) matches given key stream;

end for

Let us now analyze the special case where the given key stream sequence was
generated using an IV which equals I = (1, . . . , 1). In this case, which can easily
be enforced if we assume a chosen-IV scenario, the algorithm above can be
improved by exploiting the sliding property. In order to see this, it suffices to
analyze the contents of the registers during the initialization:

B0 = (k0, . . . . . . , k78, k79) S0 = (1, . . . , 1, 1, . . . . . , 1 1)
B1 = (k1, . . . . . . , k79, b80) S1 = (1, . . . , 1, 1, . . . . . , 1 s80)
B2 = (k2, . . . . . . , b80, b81) S2 = (1, . . . , 1, 1, . . . , s80, s81)

...
...

B160 = (b160, . . . , b238, b239) S160 = (s160, . . . . . . . , s238, s239)
B161 = (b161, . . . , b239, b240) S161 = (s161, . . . . . . . , s239, s240)

in
it

.
ph

as
e

The improvement is based on the observation that if s80 = 1, we can check two
keys without having to recalculate the initialization. If s81 = 1 as well, then we
can simultaneously verify three keys, and so on. In order to use this property to
cover the key space in an efficient way, we need to change the order in which the
keys are searched, though. This is done in the pseudo-code below:

K = 0;
repeat

perform 160 initialization steps;
generate first 16 key stream bits (z0, . . . , z15);
for t = 0 to [largest n < 16 for which Sn = I] do

check if (zt, . . . , z15) matches given key stream;
K = Bt+1;

end for
until K = 0

Since K is updated in an invertible way, we know that the code will eventually
reach K = 0 again. At this point, the code will only have checked a cycle of
keys with an expected length of 279. This, however, is done by performing only
278 initializations, making it twice as fast as the standard exhaustive search
algorithm. If we are unlucky, and the secret key is not found, then the algorithm
can simply be repeated with a different starting key in order to cover a different
cycle.
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Finally note that the algorithm retains a number of useful properties of the
regular exhaustive search algorithm: it can be used to attack several keys simul-
taneously, and it can easily be parallelized (using distinguished points to limit
overlap). One limitation however, is that it can only be applied if the attacker
can get hold of a keystream sequence corresponding to IV = (1, . . . , 1), or of a
set of keystream sequences corresponding to a number of related IVs. Depending
on how the IVs are picked, the latter might be easier to obtain.

3.4 Avoiding the Sliding Property

As discussed earlier, the existence of related (K, IV) pairs in Grain cannot be
avoided without increasing the state size. However, in order to avoid the par-
ticular sliding behavior of the initialization algorithm, one could try to act on
the two factors that lead to this property: the similarity of the computations
performed at different times t, and the self-similarity of the constant loaded into
the last bits of the LFSR. The similarity of computations could be destroyed by
involving a counter in each step. This would effectively increase the size of the
state, but one could argue that this counter needs to be stored anyway to de-
cide when the initialization algorithm finishes. An easier modification, however,
would be to eliminate the self-similarity of the initialization constant. If the last
16 bits of the LFSR would for example have been initialized with (0, . . . , 0, 1),
then this would already have significantly reduced the probability of the sliding
property.

4 Differential Attacks

In this second part, we will analyze the differential properties of the initialization
algorithm. We will first show how to generate (truncated) differential character-
istics with useful properties, and will then discuss some additional techniques to
efficiently use these characteristics in a key recovery attack.

4.1 Truncated Differential Characteristics

The main idea of differential cryptanalysis [11] is to apply differences at the
input of a cryptographic function, and to search for non-random properties in
the distribution of the corresponding differences at the output. An important
tool to find such non-random properties are differential characteristics, which
describe possible ways in which differences propagate throughout the internal
structure of a function. If the probability that such a characteristic is followed
from input to output is sufficiently high, then it will be possible to detect this
in the distribution of the output differences.

In the case of stream ciphers, the inputs and outputs that are assumed to be
accessible to the adversary are the IV and the keystream sequence respectively.
In the attacks described below, we will only consider the difference in a single
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keystream bit, and ignore all other outputs. In the case of block ciphers, this
technique is referred to as truncated differential cryptanalysis.

Finding high probability differential characteristics often boils down to finding
sparse characteristics. In the case of Grain such characteristics are relatively easy
to find by starting from a difference in a single bit in the state at some step t,
and analyzing how this difference propagates, both backwards and forwards.
Each time a difference enters the non-linear functions g′ or h, we need to make
a choice, since there will typically be several possible output differences. A good
approach consists in choosing the difference which introduces as few additional
differences in the next step as possible, in particular in the NFSR, since bits in
this register are more often used as inputs to the non-linear functions than bits
in the LFSR. An example of a characteristic found this way is depicted in Fig. 3.

Bt St 0 −20 −40 −60 −80 −100

160

140

120

100

80

60

40

20

−0

Fig. 3. A truncated differential path in Grain v1 and its probability on a log2 scale.
Differences are denoted by black pixels; bits which do not affect the output are gray.
The bit positions which affect either g′ or h are marked with dashed lines.

The probability of the truncated characteristic in Fig. 3 is almost 2−100. In
order to detect a significant bias in the difference of the single output bit which
is predicted by this characteristic, we would in principle need to analyze this
difference for at least 22·100 different IV pairs, which can obviously never be
achieved with a 64-bit IV. However, if we allow the attacker to apply changes to
the key as well (assuming a related-key scenario), then this hypothetical number
can be significantly reduced, as shown in Fig. 4. In this case, the number of
required IV pairs is about 22·47. This is still considerably higher than 263, the
total number of possible IV pairs, but in the next section we will introduce a
technique to further reduce this requirement.
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Bt St 0 −20 −40 −60 −80 −100

160

140

120

100

80

60

40

20

−0

Fig. 4. A related-key truncated differential path in Grain v1 and its probability

4.2 Partitioning the Key and IV Space

In order to the reduce the number of IV pairs needed to detect the bias in the differ-
ence of the output bit, we will exploit the fact that the propagation of differences in
the first few steps only depends on a rather limited number of key and IV bits (or
combinations of them). Hence, if we would guess these key bits, we would be able
to get rid of the probabilistic behavior of the first part of the initialization.

Instead of trying to determine exactly which combination of key or IV bits
affect the propagation of the differences up to a given step t (which would in
fact be relatively easy to do in the case of Grain-128), we will use an alternative
technique which allows us to consider the internal operations of the cipher as a
black box. To this end, we introduce the function Ft(K, IV) which returns 1 or
0 depending on whether or not the characteristic is followed in the first t steps
when the algorithm is initialized with values (K, IV) and (K ′, IV′) satisfying the
input difference. The idea now is to partition the key and IV spaces into classes
{K1,K2, . . .} and {IV1, IV2, . . .} according to the following equivalence relation:

Definition 1. Two keys K1 and K2 are t-equivalent if Ft(K1, IV) = Ft(K2, IV)
for all IVs. Similarly, two initialization vectors IV1 and IV2 are t-equivalent if
Ft(K, IV1) = Ft(K, IV2) for all keys K.

In order to check for t-equivalence in practice, we can write Ft as a product
f1 · f2 · · · ft, where fi indicates whether the desired difference at the input of
round i propagates to the desired difference at the output of the round. If we
observe that fi(K1, IV) = fi(K2, IV) for all i and for a sufficient number of
random IVs, then we conclude that K1 and K2 are most likely t-equivalent.
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Fig. 5. A related-key truncated differential path in Grain-128 and its probability

Before proceeding with the description of the proposed attack, we introduce
some additional notation:

p1: the total probability of the characteristic in the first t steps.
p2: the probability of the characteristic in the remaining steps.
pK : the fraction of keys for which Ft(K, ·) �= 0 (weak keys).
pIV: the fraction of IVs for which Ft(·, IV) �= 0 (weak IVs).

nK/nIV: the number of key/IV bits.
NK/NIV : the number of weak equivalence classes.

The attack itself consists of two phases:

1. Initialize the stream cipher with a pair of unknown but related keys (K, K ′)
using N different pairs of related weak IVs (IVi, IV′

i). For each IVi, com-
pute in which class IV i it resides, and depending on the difference in the
keystream bit, increment the counter c0

IVi
or c1

IVi
.

2. For all NK weak key classes Ki, compute the counters c0
Ki

and c1
Ki

, with

c0
Ki

=
∑

Ft(Ki,IVj)=1

c0
IVj

and c1
Ki

=
∑

Ft(Ki,IVj)=1

c1
IVj

.

If N is sufficiently large, and assuming that the unknown key K was indeed weak,
we expect the counters above to be biased for the correct key class. In order to
get a rough estimate of the minimal value of N , we note that Ft(Ki, IVj) equals
1 with probability p1 · p−1

K · p−1
IV , and hence the expected value of c0

Ki
+ c1

Ki
(i.e.,

the number of IV pairs satisfying the characteristic up to step t, assuming a weak
key K ∈ Ki), is N · p1 · p−1

K · p−1
IV . In order to be able to detect a bias between
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Table 1. Summary of the attacks

Cipher Grain v1 Grain v1 Grain-128 Grain-128 Grain-128

Rounds 160 112 256 224 192
Related keys yes no yes no no
# Weak keys 271 280 287 2126 2126

# Weak IVs 257 263 284 293 293

# Chosen IV pairs 255 (272) 273 (296) 235

t 33 28 75 78 76
p1 2−23 2−3 2−64 2−6 2−6

p2 2−24 2−35 2−31 2−47 2−17

NK 222 8 227 72 72
NIV 221 8 232 64 64

Bt St 0 −20 −40 −60 −80 −100

112

92

72

52

32

12

Fig. 6. A truncated differential in Grain v1 reduced to 112 rounds

c0
Ki

and c1
Ki

, we need this number to be at least p−2
2 , resulting in the following

bound:
N >

pK · pIV

p1 · p2
2

.

When we apply this idea to Grain v1, we obtain an attack which can success-
fully recover one key out of 29 and requires at least 255 chosen IVs (see Table 1).
In the case of Grain-128, we can recover one key out of 241 using 273 chosen IVs.

4.3 Attacks on Reduced Versions

In Sect. 4.1, we were forced to introduce related keys in order to increase the
probability of the differential characteristics in Grain v1 and Grain-128. This
is not necessary anymore if we consider reduced-round variants of the ciphers,
though. Table 1 summarizes the complexity of a number of regular (not related-
key) attacks for different reduced versions.
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Fig. 7. A truncated differential in Grain-128 reduced to 192 rounds
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Fig. 8. A truncated differential in Grain-128 reduced to 224 rounds

5 Conclusions

In this paper, we have analyzed the initialization algorithm of Grain taking
two very different approaches. First we have studied a sliding property in the
initialization algorithm, and shown that it can be used to reduce by half the
cost of exhaustive key search. While this might not be significant for Grain-
128, it could have some impact on Grain v1, given its relatively short 80-bit key.
Moreover, we have shown that this attack could be avoided by making a minor
change in the constant used during the initialization.
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In the second part of the paper, we have analyzed the differential properties of
the initialization. We have constructed truncated differential characteristics for
Grain v1, and have shown that by considering a specific partitioning of the key
and the IV space, these characteristics can be used to mount a differential attack
requiring two related keys and 255 chosen IV pairs, which recovers one key out
of 29. A similar attack also applies to Grain-128. As is the case for all related-
key attacks, the practical impact of this result is debatable, but regardless of
this, it can certainly be considered as a non-ideal behavior of the initialization
algorithm.
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Abstract. We propose practical password recovery attacks against two
challenge-response authentication protocols using MD4. When a res-
ponse is computed as MD4(Password||Challenge), passwords up to 12
characters are practically recovered. To recover up to 8 characters, we
need 16 times the amount of eavesdropping and 16 times the number
of queries, and the off-line complexity is less than 235 MD4 computa-
tions. To recover up to 12 characters, we need 210 times the amount of
eavesdropping and 210 times the number of queries, and the off-line com-
plexity is less than 240 MD4 computations. When a response is computed
as MD4(Password||Challenge||Password), passwords up to 8 characters
are practically recovered by 28 times the amount of eavesdropping and
28 times the number of queries, and the off-line complexity is less than
239 MD4 computations. Our approach is similar to the “Impossible dif-
ferential attack”, which was originally proposed for recovering the block
cipher key. Good impossible differentials for hash functions are achieved
by using local collision. This indicates that the presence of one practical
local collision can damage the security of protocols.

Keywords: Challenge and Response, Prefix, Hybrid, Impossible Differ-
ential Attack, Local Collision, Hash Function, MD4.

1 Introduction

Authentication protocols have recently taken an important role and thus the
security of authentication protocols must be carefully considered.

There are many authentication protocols that use hash functions. The secu-
rity of hash functions is therefore critical for authentication protocols. For hash
function H , there is an important property called collision resistance: it must be
computationally hard to find a pair of (x, x′) such that H(x) = H(x′), x �= x′.

The hash functions MD5 and SHA-1 are widely used, and their designs are
based on MD4 [7,8]. In 2005, the collision resistance of such hash functions
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was broken [16,17,18,19]. As a result, reevaluating the security of authentication
protocols with widely used hash functions is important.

This paper analyzes challenge-response password authentication protocols.
These protocols are classified as Prefix, Suffix, and Hybrid approaches, and their
security has been discussed by [14].

Definitions: Prefix, Suffix, and Hybrid
Let C be a challenge, P be a password, and H be a hash function. The responses
of the Prefix, Suffix, and Hybrid approaches are computed as H(P ||C), H(C||P ),
and H(P ||C||P ), respectively. (Two P s in the hybrid approach are the same
password.)

Challenge Handshake Authentication Protocol (CHAP) [13] is an example
of practical use of the prefix approach and Authenticated Post Office Protocol
(APOP) [9] is that for the suffix approach. The hybrid approach was proposed
by Tsudik [14].

Previous Works

Researchers have shown the reevaluation of authentication protocols. Preneel
and van Oorschot showed how to attack suffix and hybrid1 approaches by using
collisions [10]. Therefore, the security of the suffix and hybrid approaches has the
same level as that of the collision resistance of the hash function used. Preneel
and van Oorschot generate collisions by using the birthday paradox, which is
too complex for the widely used hash function for practical computation.

In 2006, attacks against NMAC and HMAC were proposed by Contini and
Yin [3], Rechberger and Rijmen [11], and Fouque et al. [4]. Among these attacks,
the inner key recovery of NMAC-MD4 and HMAC-MD4 by Contini and Yin [3]
is important for our work. Contini and Yin recovered the inner key by using the
MD4 collision. However, using this collision requires an impractical number of
queries. For example, Contini and Yin’s method needs 263 queries and so their
attack is not practical. Their attack is applicable to password recovery against
the prefix- and hybrid-MD4.

In 2007, Leurent and Sasaki et al. independently proposed practical password
recovery attacks against APOP using suffix-MD5 [6,12]. These attacks recovered
a password by using a property by which many MD5 collisions could be generated
in practical time.

Wang et al. improved the password recovery attack against the prefix-MD4
[15]. They used two-round-collisions of MD4 to attack a protocol. As a result,
attack complexity is reduced to 237 queries. However, asking 237 queries is com-
pletely impractical for real protocols.

A summary of previous works is shown in Table 1.
From Table 1, practical attacks against the prefix and hybrid approaches using

practical hash functions such as MD4 or MD5 is appealing.

1 Their attack target was Envelop MAC. This technique can be applied to suffix and
hybrid approaches.
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Table 1. List of attacks against challenge-response authentication protocols

Prefix Suffix Hybrid

Theoretical attack with [10] [10]
general hash function

Theoretical attack with [3] [6] [3]
MD4 or MD5 [15] [12]

Practical attack with Our result [6] Our result
MD4 or MD5 [12]

Our Contribution

This paper proposes the following two attacks (New results are shown in Table 1.):

– Practical password recovery attack against prefix-MD4:
We propose a password recovery attack against the MD4(P ||C) approach
that recovers up to 12 characters. We have experimentally confirmed that
up to 8 characters are recovered using this approach. Up to 8 characters are
recovered with 16 times the amount of eavesdropping, 16 times the number
of queries, and less than 235 off-line MD4 computations. In the case of up
to 12 characters, we need 210 times the amount of eavesdropping, 210 times
the number of queries, and less than 240 off-line MD4 computations.

– Practical password recovery attack against hybrid-MD4:
We propose a password recovery attack against the MD4(P ||C||P ) approach.
This attack is similar to the attack against the prefix-MD4. We have exper-
imentally confirmed up to 8 characters are recovered using this approach.
This attack needs 28 times the amount of eavesdropping, 28 times the num-
ber of queries, and less than 239 off-line MD4 computations.

Our attack has a unique technique for recovering a password with an approach
that is similar to the “Impossible differential attack”, which was named by Biham
et al. [1,2] and was originally proposed for recovering a block cipher key. We
generate challenges C and C′ so that particular differences never occur in the
computation of responses R and R′. Then, from R and R′, we inversely compute
a hash function by guessing part of the passwords. If inverse computation reaches
the impossible differentials, we can determine whether our guess was wrong.

In our work we identified the input differences and impossible differentials
that make a long impossible differential path. Such a path can be constructed
by using the local collision of the hash function. We focused on the characteristic
that if two messages collide in an intermediate step, the following several steps
never have differences until the next message differences are inserted. Due to
this characteristic, the effective long impossible differential path is achieved.

Our password recovery attacks require a small number of queries, while pre-
vious works need an impractical number of queries. The most effective improve-
ment is the use of a short local collision. Since probability of forming a local
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collision is much higher than that of a collision, attack complexity becomes
practical. Use of a local collision also enlarges the range of hash functions used
for attacking protocols. This concept is shown in Figure 1.

Fig. 1. Our improvement: using local collision

Only the hash functions that belong to (1) in Figure 1 are considered in most
previous work, whereas, our attack can use both (1) and (2). The use of a local
collision for attacking protocols has a large impact since the presence of one
practical local collision can damage the security of protocols.

This paper is organized as follows. Section 2 describes related works. Section
3 describes the password recovery attack against the prefix approach. Section
4 describes the password recovery attack against the hybrid approach. Section
5 discusses countermeasures against our attack and the possibility of replacing
MD4 with MD5. Finally, we conclude this paper.

2 Related Works

2.1 Description of MD4

The MD4 [7] input is an arbitrary length message M , having 128-bit data H(M).
The MD4 input has a Merkle-Damg̊ard structure. First, the input message is
padded to be a multiple of 512 bits.

In the padding procedure, bit ‘1’ is added to the tail of the message, then, bit
‘0’s are added until the length of the padded message becomes 448 on modulo
512. Finally, the message length before padding is added to the last 64 bits.

The padded message M∗ is divided into 512-bit strings M0, . . . , Mn−1. The
initial value (IV) for the hash value is set to
H0 = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476).
Finally, Hn, which is the hash value of M is computed by using compression
function h as follows:

H1 ← h(H0, M0), H2 ← h(H1, M1), . . . , Hn ← h(Hn−1, Mn−1).

Compression function of MD4
Basic computations in the compression function are 32-bit. We omit the notation
of “mod 232”. The input to the compression function is a 512-bit message Mj

and a 128-bit value Hj . First, Mj is divided into (m0, . . . m15), where each mi is
a 32-bit message, and (a0, b0, c0, d0) are set to be IV . The compression function
consists of 48 steps. Steps 1–16 are called the first round (1R). Steps 17–32 and
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Table 2. Message index for each step in MD4

1R (steps 1–16) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2R (steps 17–32) 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
3R (steps 33–48) 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

33–48 are the second and third rounds (2R and 3R). In step i, chaining variables
ai, bi, ci, di (1 ≤ i ≤ 48) are updated by the following expression.
ai = di−1, bi = (ai−1 + f(bi−1, ci−1, di−1) + mk + ti) ≪ si,
ci = bi−1, di = ci−1,
where f is a bitwise Boolean function defined in each round, mk is one of
(m0, . . . m15), and index k for each step is shown in Table 2.

ti is a constant number defined in each round, ≪ si denotes left rotation by
si bits, and si is defined in each step. Details of f and ti are as follows.

1R : ti = 0x00000000, f(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z),
2R : ti = 0x5a827999, f(X, Y, Z) = (X ∧ Y ) ∨ (Y ∧ Z) ∨ (X ∧ Z),
3R : ti = 0x6ed9eba1, f(X, Y, Z) = X ⊕ Y ⊕ Z.

After 48 steps are computed, Hj+1 is calculated as follows.
aa0 ← a48 + a0, bb0 ← b48 + b0, cc0 ← c48 + c0, dd0 ← d48 + d0,
Hj+1 ← (aa0, bb0, cc0, dd0).

2.2 Key Recovery Attack Against Envelop MAC

The attack against Envelop MAC proposed by Preneel and van Oorschot [10]
recovers secret information located behind messages. Therefore, this attack can
be applied to the suffix approach and the latter part of hybrid approach. The
main idea is that message length is arranged so that part of the secret is located
in the second last block and the other part is located in the last block. Then, by
using collisions that are generated with the complexity of the birthday paradox,
the secret located in the second last block is recovered. Since the complexity of
the birthday paradox is practically out of reach, this attack is impractical.

2.3 Practical Password Recovery Attacks Against APOP

The authentication protocol APOP takes the suffix-MD5 approach. Leurent and
Sasaki et al. independently proposed attacks against APOP [6,12]. The attack
approach is similar to the attack against Envelop MAC [10]. However, since the
MD5 collision can be practically generated, Leurent and Sasaki et al. succeeded
in practically breaking suffix-MD5.

Different from [10], Leurent and Sasaki et al.’s attack cannot be applied to the
hybrid approach. Practically generating collision requires the knowledge of in-
termediate value of the response computation. However, in the hybrid approach,
the attacker cannot determine the intermediate value due to the password before
the challenge.
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2.4 Key Recovery Attacks Against NMAC-MD4 and HMAC-MD4

NMAC and HMAC have many common structures. In this paper we only describe
NMAC. We denote the MD4 digest for message M and the initial value IV by
MD4(IV, M). NMAC-MD4 for message M is denoted by MD4(sk2, MD4(sk1,
M)), where sk1 and sk2 are the secret keys.

Contini and Yin succeeded in recovering sk1 [3]. First, they determined the
differential path that MD4(sk1, M), and MD4(sk1, M ′) become a collision pair
for randomly fixed sk1 with a probability of 2−62. Therefore, they obtain a
collision by 263 times the number of queries. After that, they recover the values
of intermediate chaining variables by little modification of the collision message
pair.

The NMAC-MD4 situation is similar to those for the prefix and hybrid ap-
proaches. In NMAC-MD4, all messages can be chosen by the attacker; however,
IV is secret, and this makes all intermediate chaining variables unknown. In
the prefix and hybrid approaches, IV is public information; however, the first
part of the message is secret, and this makes all intermediate chaining variables
unknown. Since Contini and Yin’s method recovers the value of intermediate
chaining variables, their attack can recover a password for the prefix and hybrid
approaches. However, their attack needs 263 times the number of queries, which
is impractical.

2.5 Password Recovery Attack Against Prefix-MD4

Wang et al. improved Contini and Yin’s attack [15]. Their main improvement is
in reducing complexity by using two-round-collisions, whereas Contini and Yin
used full-collisions. Since the complexity of generating two-round-collisions is
smaller than that of generating full-collisions, the number of queries is reduced
to 237 MD4. After they obtained a two-round-collision, they recovered the values
of intermediate chaining variables in the same way used by Contini and Yin.

2.6 Summary of Related Works

Preneel and van Oorschot proposed a general attack against the suffix and hybrid
approaches. Since this attack needs too many queries, the attack is not practical.
Leurent and Sasaki et al. proposed practical password recovery attacks against
suffix-MD5; however, their method does not work for the prefix and hybrid
approaches. Contini and Yin’s attack can be applied to the prefix and hybrid
approaches, but it needs an impractical number of queries. Wang et al. improved
the attack against the prefix-MD4; however, complexity is still impractical. In
the end, determining how to recover the passwords for the prefix and hybrid
approaches in practical time remains a problem.

3 Password Recovery for Prefix-MD4

This section explains how to recover a password using the MD4(P ||C) app-
roach. In our attack, up to 8 characters are recovered by 16 times the amount of
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eavesdropping, 16 times the number of queries, and less than 235 off-line MD4
computations. In the case of 9 to 12 characters, we need 210 times the amount of
eavesdropping, 210 times the number of queries, and less than 240 off-line MD4
computations.

This attack takes a similar approach as that of the impossible differential
attack, so we use a pair of challenges (C, C′) that has specific differences. In
the prefix approach, the bit position of C and C′ after concatenated with a
password depends on the password length. Therefore, to insert differences in a
desired position, we need to know the password length in advance. In this section,
we assume that the password length is already recovered by the password length
recovery attack proposed by [15]2.

Sections 3.1 and 3.2 discuss the overall strategy of our attack against the
prefix-MD4. Sections 3.3 to 3.6 explain how to recover up to 8 password charac-
ters. Finally, in section 3.7, we extend our attack to recover up to 12 password
characters.

3.1 Analysis of Problems of Related Works

So far, the best attack against the prefix-MD4 was created by Wang et al. [15].
This method has two main problems.

1. The complexity of the yielding collision up to the second round (235) is
impractical.

2. The complexity of analyzing a password by recovering internal chaining vari-
ables (235) is impractical.

To solve these problems, we use a different approach when analyzing a password.
In this attack, we apply an impossible differential attack to recover the password
of the prefix-MD4. This enables us to use a short local collision instead of a full-
collision, and thus, the complexity of the attack becomes practical.

3.2 Overall Strategy

The high-level overview of the attack is as follows.

1. Determining ΔC (Section 3.3):
Determine differences of challenges ΔC such that a local collision occurs in
the first round. If a local collision occurs, differences in the latter step of the
second round are fixed or very limited.

2. Generate (C, C′) such that C′ −C = ΔC. Obtain their responses R and R′.
3. Backward difference tracing (Section 3.4):

Inversely compute the differences of the intermediate chaining variables from
R and R′. Here, we exhaustively guess m1, which is a part of the password.

4. Matching decision (Section 3.5):
If the guess is accurate, the inversely computed differences will match the
differences fixed in step 1, and we can thus determine the accuracy of the
guess for m1.

2 Password length recovery attack procedure is described in Appendix A.
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– In the prefix-MD4, an 8-character password is allocated in m0 and m1.
– Δm7 and Δm11 make a local collision in 1R with the probability of 2−4. If a

local collision occurs, there is no difference until m7 appears in 2R. On the other
hand, intermediate values are inversely computed from R and R′. We exhaustively
guess m1. For each guess, inverse computation is carried out until an unknown m0

appears in 3R. Finally, by comparing these differences, we determine the accuracy
of the guess.

Fig. 2. Overall strategy: impossible differential attack on prefix-MD4

This concept is also described in Figure 2. In Figure 2, we use the fact that
message differences are located in m7 and m11 for the sake of simplicity. A
detailed strategy for identifying message differences is introduced in section 3.3

3.3 Determining ΔC

When we determine message differences, the following two characteristics are
considered.

- A local collision occurs in the first round with a high probability.
- A no-difference state will continue until the latter step of the second round.

(See Table 2 in order to check the message order in the second round.)
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Moreover, since this attack can work for only 1-block messages3, we need to make
certain that the message after the padding is a 1 block message; 512 bits. Con-
sidering the password length and padding rules, differences can only be present
in m2 - m13.

Considering the above characteristics, followingare thebestmessagedifferences.

Δm7 = ±2j, Δm11 = ∓2j+19, Δmi = 0 for other i

The above differences give the local collision in the first round a probability of
2−4. The value of j is flexible. If both j and j +19 are not MSB in each byte, we
can construct challenges with only ASCII characters. In the end, we can expect
to obtain a local collision by trying 16 challenge pairs.

3.4 Backward Difference Tracing

Backward difference tracing inversely computes the values of intermediate chain-
ing variables from responses R and R′. Let the hash value be (aa0, bb0, cc0, dd0).
Output chaining variables in step 48 are then computed as follows.
a48 = aa0 − a0, b48 = bb0 − b0, c48 = cc0 − c0, d48 = dd0 − d0.
To perform these expressions, (a0, b0, c0, d0) needs to be public IV. This attack
therefore succeeds if and only if the message is a 1-block message.

From the step updating function shown in section 2.1, if the values of output
chaining variables and the message in step i are known, the input chaining
variables in step i can be computed by the following expressions.
ai = (bi+1 ≫ si) − mk − ti − f(ci+1, di+1, ai+1), bi = ci+1,
ci = di+1, di = ai+1.
In MD4, unknown passwords m0 and m1 are used in steps 33 and 41, respectively,
in the third round. Here, we exhaustively guess the value of m1. Since m1 is 32-
bit, the number of guesses is at most 232. For each guess of m1, backward tracing
is carried out until step 34. By applying this process to R and R′, we compute
the values of (a33, b33, c33, d33) and (a′

33, b
′
33, c

′
33, d

′
33). Moreover, considering that

m0 has no difference, we can inversely compute Δa32 = a32 − a′
32 even though

we cannot determine the values of a32 and a′
32. Since c33 = b32, d33 = c32 =

b31, a33 = d32 = c31 = b30, the values we can obtain by backward difference
tracing are b32, b

′
32, b31, b

′
31, b30, b

′
30, and Δb29

4. (Δb32, Δb31, andΔb30 can also be
computed.)

3.5 Matching Decision

The matching decision determines whether the differences computed by back-
ward difference tracing will follow the differential path where a local collision
occurred. The message differences are (Δm7 = 2j, Δm11 = −2j+19), which are
used in steps 30 and 31, respectively, in the second round. Therefore, if a local
collision in the first round is archived, the following expression is guaranteed.
3 This restriction is caused by backward difference tracing. See section 3.4 for details.
4 If a guess of m1 changes, the result of backward difference tracing also completely

changes.
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Δa29 = Δb29 = Δc29 = Δd29 = 0,
Δb30 = (Δa29 + Δf(b29, c29, d29) + Δm7) ≪ 5 = (0 + 0 + 2j) ≪ 5 = 2j+5.

If Δb29 and Δb30 obtained by backward difference tracing are 0 and 2j+5, re-
spectively, we can determine the guess of m1 is correct, so m1 is recovered.

Proof
The probability of generating a local collision is 2−4 and of making a correct
guess is 2−32. Therefore, with a probability of 2−36, we succeed in a matching
decision with a correct guess. If the guess is wrong, the matching decision suc-
ceeds with a probability of only 2−64. Due to this huge gap, we can recover the
correct password.

After m1 is recovered using this method, we recover m0 by an exhaustive search.

3.6 Algorithm for Recovering Eight Characters

We summarize the algorithm of password recovery as follows.

1. Eavesdrop a pair of C and R.
2. Generate C′ ← C + ΔC.
3. Send C′, then obtain corresponding R′.
4. for (guessm1 = 0 to 0xffffffff) {
5. From R and R′, compute Δb29 and Δb30 by backward difference tracing.
6. if (Δb29 = 0 ∧ Δb30 = 2j+5) {
7. Password for m1 is guessm1. goto line 10.
8. }
9. }

10. if (m1 is recovered?) {
11. Exhaustively search m0. Then, halt this algorithm.
12. } else {
13. Local collision did not occur. goto line 1; repeat this algorithm.
14. }

In this attack, since the local collision occurs with a probability of 2−4, we need
to try 16 pairs of C and C′. Therefore, 16 times the amount of eavesdropping and
16 times the number of queries are necessary5. For each R and R′, the dominant
off-line complexity is 232 computation of the backward difference tracing from
steps 41 to 33. Considering MD4 consists of 48 steps and we try sixteen R
and sixteen R′, the total complexity is 32 × 232 × 9/48 = less than 235 MD4
computations.

5 If eavesdropped C has an inappropriate length for the attack, for example, C is
longer than 1 block, we need to make both C and C′. In this case, 32 queries are
necessary.
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3.7 Extension to Recovering Twelve Characters

When a password is 12 characters, m2 is fixed as well as m0 and m1. The attack
procedure is similar to that used in the case of 8 characters.

Determining ΔC: We use the same ΔC as those in the case of 8 characters.

Backward difference tracing: m0, m1 and m2 are used in steps 33, 41 and 37
respectively in the third round. Therefore, by exhaustively guessing the value of
m1, backward tracing can be performed until step 37. As a result, the values of
b36, b

′
36, b35, b

′
35, b34, b

′
34, and Δb33 are computed from R and R′.

Matching decision: As explained in section 3.5, if a local collision occurs,
Δa29, Δb29, Δc29 and Δd29 are certain to be 0, and Δb30 is 2j+5. This signifi-
cantly limits the number of possible differences in the following few steps. As a
result of our analysis, we found that when the value of j is fixed to 12, Δb33 and
Δb34 have the following difference with a probability of 2−6. Details are shown in
Appendix B. Here, * means that the signs ‘+’ and ‘-’ do not have any influence.

Δb33 = ∗2j+8 ∗ 2j+31, Δb34 = ∗2j+5 ∗ 2j+8 ∗ 2j+14 ∗ 2j+17.

If both Δb33 and Δb34 computed by backward difference tracing have the above
differences, we can determine that the guess of m1 is correct.

Proof
The probability of generating a local collision in the first round is 2−4 and of
making a correct guess is 2−32. If both occur with a probability of 2−36, Δb33

and Δb34 have the above differences with a probability of 2−6. Overall, with a
probability of 2−42, we succeed in obtaining a matching decision with a correct
guess. If the guess is wrong, the probability that both Δb33 and Δb34 have the
above differences is 2−64. Due to the gap of 2−42 and 2−64, we can say that if
the matching decision succeeds, differences propagate in the same way as we ex-
pected, so a local collision occurs and the guess of m1 is correct. Consequently,
password m1 is recovered.

Complexity analysis: Since the local collision occurs with a probability of
2−4 and both Δb33 and Δb34 have expected differences with a probability of
2−6, we need 210 times the amount of eavesdropping and 210 times the number
of queries. For each R and R′, the dominant off-line complexity is 232 computa-
tion of the backward difference tracing from steps 37 to 33. Therefore, the total
complexity is 2 × 210 × 232 × 5/48 = less than 240 MD4 computations.

4 Password Recovery for MD4(P ||C||P )

This section explains the password recovery attack against the hybrid-MD4.
We assumed that the same password is concatenated both before and after the
challenge.
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Table 3. Challenge length and password position for hybrid-MD4

Composition of message

P1 P2 Challenge P1 P2 Padding
↓ ↓ � �� � ↓ ↓ � �� �

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

Positions of password in 3R

P1 P1 P2 P2

↓ ↓ ↓ ↓
m0 m8 m4 m12 m2 m10 m6 m14 m1 m9 m5 m13 m3 m11 m7 m15

The recovering procedure is basically the same as that for the prefix-MD4. To
recover the password, we need to know the password length in advance. However,
in the hybrid approach, there is no efficient method for recovering the password
length. As a result, we first run an exhaustive search for up to 4 characters. If
the password is not recovered, we run the procedure for recovering 5 characters.
If we fail, we increase the password length by 1 character and run the recovery
procedure. This section explains the recovering procedures for 8 characters.

4.1 Determining Challenge Length and Message Differences

Let an 8-characters password be P , the first 4 characters of P be P1, and the
latter 4 characters of P be P2, so P = (P1||P2). In the hybrid-MD4, P before
the challenge makes m0 = P1 and m1 = P2. However, the location of P after
the challenge is not fixed. Its location depends on the challenge length. We
determine the challenge length so that backward difference tracing can go back
as many steps as possible. With this strategy, challenge length is determined to
be m2 − m7, as shown in Table 3.

Since the challenge string finishes at m7, message differences can be present
only for m2 - m7. We therefore choose message difference (Δm3 = 2j, Δm7 =
−2j+19), which generate a local collision in the first round with a probability of
2−4.

4.2 Backward Difference Tracing and Matching Decision

The backward difference tracing procedure is the same as that for the prefix-
MD4. We exhaustively guess the 32-bit value P2, and for each guess, inversely
compute values of intermediate chaining variables until step 34. As a result, we
obtain the value of b33, b

′
33, b32, b

′
32, b31, b

′
31, and Δb30.

On the other hand, if a local collision occurs, Δm3 = 2j in step 29 gives
Δb29 = 2j+3 a probability of 1, and the possible form of Δb30 and Δb31 is very
limited. As a result of our analysis, we found that when the value of j is fixed
to 12, Δb30 and Δb31 have the following difference with a probability of 2−4.
Details are shown in Appendix C.

Δb30 = −2j+24, Δb31 = 0
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Table 4. Results of our attacks

Attack target Number of Number of Off-line complexity
eavesdropping queries (Unit: MD4 computation)

Prefix-MD4 8 characters 16 16 Less than 235

Prefix-MD4 12 characters 210 210 Less than 240

Hybrid-MD4 8 characters 28 28 Less than 239

If both Δb30 and Δb31 computed by backward difference tracing have the above
differences, we can determine the guess of P2 is correct. (The proof is the same
as that for the prefix-MD4 so it is omitted here.)

After P2 is recovered, we exhaustively guess the value of P1. Finally, 8 pass-
word characters of the hybrid-MD4 are recovered.

4.3 Complexity Analysis

Since the local collision occurs with a probability of 2−4 and both Δb30 and
Δb31 have expected differences with a probability of 2−4, we need 28 times the
amount of eavesdropping and 28 times the number of queries. For each R and R′,
the dominant off-line complexity is 232 computation of the backward difference
trace from steps 42 to 34. Overall, the complexity is 2 × 28 × 232 × 9/48 = less
than 239 MD4 computations.

5 Discussion and Conclusion

Summary of proposed attacks
This paper proposed password recovery attacks against the prefix- and hybrid-
MD4. The attack against the prefix-MD4 recovers up to 12 password characters
and the attack against the hybrid-MD4 recovers up to 8 password characters.
Their complexity is summarized in Table 4.

The critical idea behind our attack is applying an impossible differential at-
tack to recover the password of the prefix-MD4. This enables us to use a short
local collision that occurs with a probability of 2−4, and thus the complexity
becomes practical.

Countermeasures and consideration of hash function design
First, we propose countermeasures for our attack.

- The simple solution is replacing MD4 with strong hash functions.
- Since our attack works if and only if a message is a 1-block message, only

allowing challenges that are longer than 1 block is effective.
- If the password length is longer than the recoverable limit, our attack cannot

recover even one character. Therefore, using passwords longer than 12 char-
acters for the prefix-MD4 and 8 characters for the hybrid-MD4 can prevent
our attack.
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Table 5. Message index for each step in MD5

1R (steps 1-16) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2R (steps 17-32) 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
3R (steps 33-48) 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
4R (steps 49-64) 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

From our attacks, we have developed ideas regarding good hash function design.

- Our attack does not use full-collision, but instead uses local collision. There-
fore, considering only the collision resistance of the hash function is not
enough to discuss the security of protocols. Construction that prevents a
practical local collision is therefore important.

- Our attack uses a characteristics by which the differential path up to the
intermediate step can be controlled with a high probability. (We did not
attempt controlling the differential path for all the steps. Actually, our attack
disregards what differences exist in R and R′.) Considering this, the step
updating function must avoid the partial differential path that occurs with
a high probability. (A local collision can be used to achieve a long partial
differential path.)

- Backward difference tracing can reduce the security of hash functions. In au-
thentication protocols using a password, the bit length of a password tends
to be short, and this makes the attack against the protocol easier. To avoid
backward difference tracing, message expansion is important. Message ex-
pansion should expand short secret bits to various parts of messages.

Possibility of attacks against prefix-MD5 and hybrid-MD5
We conclude this paper by discussing attacks against the prefix- and hybrid-
MD5. Analysis on the prefix-MD5 is important since it is practically used, for
example [13]. MD5 consists of 64 steps. Table 5 shows the message index of MD5.

Prefix-MD5: An interesting observation is that m0 in the fourth round is lo-
cated in the initial step of the fourth round. Therefore, similar to MD4, backward
difference tracing is effectively applied by exhaustively guessing m1.

Hybrid-MD5: Another interesting observation is that the MD5 message order
is also suitable for attacking the hybrid-MD5. If a challenge will locate in m2-
m6, the password before the challenge becomes (m0, m1), and the password after
the challenge becomes (m7, m8). Therefore, by exhaustively guessing m1(= m8),
backward tracing is effectively performed.

In MD5, the presence of an effective short local collision is not yet known;
however, it may be found if the analysis technique is improved. Therefore, use
of the prefix- and hybrid-MD5 approaches need to be carefully considered.
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A Password Length Recovery for Prefix Approach

Wang et al. showed that the password length of the prefix approach can be
recovered with a very small number of queries [15]. This attack works against
hash functions that attach message length as padding string and compute the
hash value by iteratively updating initial values, for example, MD5, SHA-1, and
SHA-2. At first, the attacker eavesdrops challenge C and response R. Then, the
attacker makes a guess at the password length. Here, the attacker can check the
accuracy of the guess by only one query.

To recover the password length, the padding part must be carefully considered.
An important characteristic is that the padding string is dependent on only the
message length, not the message itself.

The recovering procedure is shown in Table 6. Here, we denote a computation
for a hash value of M by using hash function H and initial value A by H(A, M).
We also denote the computation of compression function h for processed message
m and initial value A by h(A, m).

For line 5 of the above procedure, if the guess is correct, (Pass||C||Pad1)
becomes the end of the block, and X becomes another block. Since the output
of the compression function for (Pass||C||Pad1) is exactly R, R′ should be equal
to h(R, (X ||Pad2)). Figure 3 shows the behavior of the hash computation when
the guess is correct.

Finally, the password length is recovered. To check the accuracy of n guesses,
one times the amount of eavesdropping and n times the number of queries is
needed.

This attack takes a similar approach as that used in the “Extension Attack”
that was mentioned in [5] by Kaliski and Robshaw. The extension attack is used
for forging MAC. On the other hand, the password length recovery attack fo-
cuses on the property in which the padding string is dependent on only message
length, and the password length is recovered by the chosen message attack.

Remarks
This method can be applied to the prefix approach, but not to the suffix and

Table 6. Algorithm for recovering password length for prefix approach

1. Eavesdrop a pair of C and R = H(IV, (Pass||C)).
2. Determine L, which is a guess at the password length.
3. Based on L, identify the padding string for (Pass||C). Let this be Pad1.
4. Generate C′ so that C′ = (C||Pad1||X) where X is any string except for Null.
5. Send C′ and obtain R′ = H(IV, (Pass||C′)) = H(IV, (Pass||C||Pad1||X)).
6. Compute the padding string for (Pass||C||Pad1||X). Let this be (Pad2).
7. Locally computes h(R, (X||Pad2)), and check if it matches with R′.
8. If they are matched, the guess is right, and halt this procedure. Otherwise change

L and goto line 3.



306 Y. Sasaki et al.

Table 7. Differential path of matching part for prefix-MD4

Step 30 (Δa29, Δb29, Δc29, Δd29) (0, 0, 0, 0)
ΔMAJ(b29, c29, d29) 0

Δm7 2j

s30 5

Step 31 (Δa30, Δb30, Δc30, Δd30) (0, 2j+5, 0, 0)
ΔMAJ(b30, c30, d30) 0

Δm11 −2j+19

s31 9

Step 32 (Δa31, Δb31, Δc31, Δd31) (0, −2j+28, 2j+5, 0)
ΔMAJ(b31, c31, d31) 0

Δm15 0
s32 13

Step 33 (Δa32, Δb32, Δc32, Δd32) (0, 0, −2j+28, 2j+5)
ΔXOR(b32, c32, d32) ∗2j+5 ∗ 2j+28

Δm0 0
s33 3

Step 34 (Δa33, Δb33, Δc33, Δd33) (2j+5, ∗2j+8 ∗ 2j+31, 0, −2j+28)
ΔXOR(b33, c33, d33) ∗2j+8 ∗ 2j+28 ∗ 2j+31

Δm8 0
s34 9

Step 35 (Δa34, Δb34, Δc34, Δd34) (−2j+28, ∗2j+5 ∗ 2j+8 + 2j+14 ∗ 2j+17,
∗2j+8 ∗ 2j+31, 0)

hybrid approaches. In line 4 of the above procedure, string X is added to the
tails of messages. However, if we add X in the suffix and hybrid approaches, the
password is moved to before X , and we thus cannot keep the message before X
unchanged.

B Differential Path of Matching Part for Prefix-MD4

Table 7 shows the differential path that Δb33 = ∗2j+8 ∗ 2j+31, and Δb34 =
∗2j+5 ∗ 2j+8 + 2j+14 ∗ 2j+17. The probability that this differential path holds is
2−4. The analysis is as follows.

1. Δb30 = 2j+5 must not have carry. This succeeds with a probability of 1/2.

Fig. 3. Behavior when guess is correct
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2. In step 31, ΔMAJ must be 0. This succeeds with a probability of 1/2.
3. Δb31 = −2j+28 must not have carry. This succeeds with a probability of 1/2.
4. In step 32, ΔMAJ must be 0. This succeeds with a probability of 1/4.
5. Δb33 = ∗2j+8 ∗ 2j+31 must not have carry. This succeeds with a probability

of 1/4.

If we choose j = 12, Δb31 = (−2j+19) << 9 = −2j+28 never has carry since
−2j+19 becomes MSB. Therefore, the total probability of this differential path
is 2−6.

C Differential Path of Matching Part for Hybrid-MD4

Table 8 shows the differential path that Δb30 = −2j+24, and Δb31 = 0. The
probability that this differential path holds is 2−4. The analysis is as follows.

1. Δb29 = 2j+3 must not have carry. This succeeds with a probability of 1/2.
2. In step 30, ΔMAJ must be 0. This succeeds with a probability of 1/2.
3. Δb30 = −2j+24 must not have carry. This succeeds with a probability of 1/2.
4. In step 31, ΔMAJ must be 0. This succeeds with a probability of 1/4.

If we choose j = 12, Δb30 = (−2j+19) << 5 = −2j+24 never has carry since
−2j+19 becomes MSB. Therefore, the total probability of this differential path
is 2−4.

Table 8. Differential path of matching part for hybrid-MD4

Step 29 (Δa28, Δb28, Δc28, Δd28) (0, 0, 0, 0)
ΔMAJ(b28, c28, d28) 0

Δm3 2j

s29 3

Step 30 (Δa29, Δb29, Δc29, Δd29) (0, 2j+3, 0, 0)
ΔMAJ(b29, c29, d29) 0

Δm7 −2j+19

s30 5

Step 31 (Δa30, Δb30, Δc30, Δd30) (0, −2j+24, 2j+3, 0)
ΔMAJ(b30, c30, d30) 0

Δm11 0
s31 9

Step 32 (Δa31, Δb31, Δc31, Δd31) (0, 0, −2j+24, 2j+3)
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Abstract. In the context of iterated hash functions, “dithering” desig-
nates the technique of adding an iteration-dependent input to the com-
pression function in order to defeat certain generic attacks. The purpose
of this paper is to identify methods for dithering blockcipher-based hash
functions that provide security bounds and efficiency, contrary to the
previous proposals. We considered 56 different constructions, based on
the 12 secure PGV schemes. Proofs are given in the blackbox model
that 12 of them preserve the bounds on collision and inversion resistance
given by Black et al. These 12 schemes avoid the need for short dither
values, induce negligible extra-computation, and achieve security inde-
pendent of the dither sequence used. We also identify 8 schemes that lead
to strong compression functions but potentially insecure hash functions.
Application of our results can be considered to popular hash functions
like SHA-1 or Whirlpool.

1 Introduction

The idea of making hash functions out of blockciphers goes back to 1978, when
Rabin [40] proposed to hash (m1, . . . , m�) as DESm�

(. . . (DESm1(IV ) . . . ). Sub-
sequent works devised less straightforward schemes, with either one or two calls
to the blockcipher within a compression function [30, 33, 37, 39, 28]. In 1993
research went a step further when Preneel et al. [38] conducted a systematic
analysis of all 64 compression functions of the form f(h, m) = EK(P ) ⊕ F , for
K, P, F ∈ {m, h, m ⊕ h, v}, where v is a constant. They showed that only 4 of
these schemes resist all considered vulnerabilities, and 8 others just have the
non-critical attribute of easily found fixed-points. A decade later, Black et al. [9]
proved the security of hash functions based on these 12 PGV schemes in the
blackbox model.

Like a majority of hash functions blockcipher-based hash functions follow the
Merkle-Damg̊ard (MD) paradigm [16,31]. Recent generic attacks [17,22,24,23,20]
that exploit its structure led to proposals to extend the basic MD construction.
These include the idea of dithering, i.e. adding an input (the dither) to the
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compression function, whose value depends on the iteration count. The goal is
to defeat attacks based on message block repetitions (like [17, 24]).

Proposals of dither sequences came from Kelsey and Schneier [24] (using a
counter), from Biham and Dunkelman [5, 6] (as part of the HAIFA framework,
using the number of bits hashed so far), and from Rivest [41] (using an abelian
square-free sequence). However, the method proposed [6, 41] for integrating the
dither value into concrete hash functions is inefficient, in the sense that it in-
creases the number of calls to the compression function. This method indeed
consists in reducing the effective size of a message block to make way for the
dither, i.e. filling the dither into the space freed up. This motivated Rivest’s
proposal to use short dithers (2-byte) encoding particular patterns over a small
alphabet. Another drawback of this method is that system parameters have to
be modified such that message chunks become, for example, 448 bits long instead
of 512 with a 64-bit counter, or 496 with Rivest’s method. It thus seems valu-
able to explore generic dithering methods that preserve efficiency and system
parameters, and that are still simple to apply.

1.1 Contribution

We will be concerned with the problem of constructing dithered compression
functions from blockcipher-based schemes, grounding our work on the 12 se-
cure PGV schemes. We first introduce 56 dithered variants, along with security
definitions adapted for dithered functions. Our blackbox analysis singles out 12
dithered schemes leading to hash functions as secure as the original (undithered)
ones, as far as collision and inversion resistance are concerned. The bounds given
are independent of the dither sequence use, contrary to 32 other constructions.
A counter-intuitive fact is proven, that 8 out of 56 dithered schemes lead to
hash functions which are not collision resistant when the dithering method of
HAIFA [6] is used, despite having a collision-resistant compression function. This
re-opens the suitability issue of the Merkle-Damg̊ard theorem for dithered hash
functions, and suggests that a careful revisit is required.

We emphasize that our results say nothing on the resistance to generic second-
preimage attacks as [17,24] that dithering aims at preventing. The resistance to
these attacks depends on the dither sequence used, whereas our point is to show
that previously known security bounds can hold as well when dithering is used,
independently of the sequence chosen.

Apart from our formal security analysis, the interest of our constructions is
twofold: Firstly, they are efficient, because the number of calls to the compres-
sion function is no longer increased by dithering; secondly, they allow dither
values of arbitrary length (up to the size of the key of the blockcipher), with no
performance penalty. As a result, a counter supporting large messages can now
be used. More generally, it avoids the need for short dither value with non-trivial
patterns like [41], which in addition provides fewer security guarantees than a
counter (see [12]).
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1.2 Related Work

After a very calm period during the 90s, the results of [9] seem to have triggered
a regain of interest for blockcipher-based hashing: In 2005 Black et al. [8] proved
that a compression function of the form f2 (hi−1, mi, EK(f1(hi−1, mi))) cannot
be provably secure with respect to EK . This result has been recently extended by
Rogaway and Steinberger [43], who proved generic upper bounds on the security
of permutation-based hash functions.

Along the same lines, combinations of fixed permutations were previously stud-
ied by Shrimpton and Stam [45]. Another impossibility result is due to Boneh and
Boyen [11] for hash functions combiners, later generalized by Pietrzak [35]. In [29],
Lee et al. extend the [9] results to 22 other constructions, using similar blackbox
proofs, and in [46] Stam simplifies the [9] proofs. In [26], Knudsen and Rijmen
study known-key distinguishers for blockciphers; though unrealistic for attacking
encryption primitives, this scenario can be relevant for blockcipher-based hashing
(they show near-collisions for Matyas-Meyer-Oseas, see Appendix B).

More concretely, the recent hash functions Maelstrom [19] and Grindahl [27]
are based on AES, and blockcipher-based designs remain a promising alternative
for several researchers (e.g. [25]). The NIST hash competition may also mark a
revival of hash functions built on blockciphers.

Stream-cipher-based hash function attracted less attention. They offer a less
confortable framework because (1) they are generally not defined to operate over
“blocks”, (2) until now they have been less reliable than blockciphers, and (3)
they often have a slow initialization. A counter-example is Bernstein’s compres-
sion function Rumba [3] is based on the stream cipher Salsa20. We can also
cite [14], based on RC4.

Fewer works have been produced about dithering. We can cite Shoup’s con-
struction [44] for universal one-way hash functions, which can be seen as a kind
of dithering (a sequence of values called the “schedule” is input through itera-
tions, see also [32]). More recently, Bouillaguet et al. [12] presented another generic
second-preimage attack, slower than [24] in general, but performing slightly better
when certain dither sequences are used. For etymological issues, see Appendix C.

1.3 Notations

We adopt the notations of [9], with only minor changes: A blockcipher is a
map E : {0, 1}κ × {0, 1}μ �→ {0, 1}μ, such that Ek(·) = E(k, ·) is a permu-
tation on {0, 1}μ for all k ∈ {0, 1}κ, and its inverse is written E−1. The set
of all blockciphers with κ-bit key and μ-bit messages is denoted Bloc(κ, μ).
A blockcipher-based hash function is a map H : Bloc(κ, μ) × D �→ R, where
D ⊆ {0, 1}� and R = {0, 1}n, defined iteratively by a compression function
f : Bloc(κ, μ)× {0, 1}n1 × {0, 1}n2 �→ {0, 1}n2, where n1 is the size of a message
block, and n2 the size of chaining values. In the remainder of the paper, we as-
sume μ = n1 = n2 = n. We write fE (resp. HE) to denote the compression (resp.
hash) function instantiated with a particular E. Eventually, an adversary is an
algorithm with oracle-access to E and E−1—working within this setting is also
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known as analysis in the blackbox model, along with the assumption that each
Ek is a random permutation. Furthermore, we set h+ = f(h, m) the output of
a compression function. In the context of iterated hashing, blocks and chaining
values are indexed as follows: h0 is the IV, m̄ = (m1, . . . , m�) is the (encoded)
message, h1 = f(h0, m1), and so on until h� = f(h�−1, m�) = H(m̄).

2 Dithering the PGV Schemes

The 12 PGV schemes f1, . . . , f12 are depicted in Fig. 1 and 2: f1 is the Matyas-
Meyer-Oseas [30] construction (MMO), and one of the simplest schemes; f3 is
the Miyaguchi-Preneel construction, notably employed in Whirlpool [2], with as
blockcipher a variant of Rijndael; f5 is the Davies-Meyer construction, somehow
the dual of MMO: Its structure is similar, except that the inputs of h and m play
reversed roles. However, it has the undesirable attribute of easily found fixed-
points; indeed, for an arbitrary m, choosing h = E−1

m(0) implies f5(h, m) = h.
The Davies-Meyer construction is used by the hash function Maelstrom-0 [19] (a
variant of Whirlpool), and implicitly by some dedicated hash functions like MD5
and SHA-1.

We consider dithered versions obtained with a single input of the dither value
d through an xor operation (in practice, it might be replaced by any easy-to-
invert mapping which is a permutation for one of its inputs fixed). We suppose d
non-null, and of convenient length (that is, not larger than its input slots in the
blockcipher). The dithered PGV (dPGV) schemes are then classified into five
subsets, describing the possible points for the dither d, see Table 1.

Table 1. Subsets of dithered PGV schemes.

Subset Input point Modification

C1 chaining value h ← h ⊕ d
C2 message block m ← m ⊕ d
C3 output h+ ← h+ ⊕ d
C4 key Ek ← Ek⊕d

C5 plaintext Ek(·) ← Ek(· ⊕ d)

We write fi,j for the dithered scheme obtained by applying the j-th transform
to fi; thus fi,j ∈ Cj , for all (i, j) ∈ {1, . . . , 12} × {1, . . . , 5}. Clearly, |Ci| = 12
for i = 1, . . . , 5, but there are only 56 distinct dithered schemes, rather than 60,
because f1,1 ≡ f1,4, f5,2 ≡ f5,4, f9,1 ≡ f9,4, and f10,2 ≡ f10,5.

A crucial observation is that almost all schemes of C4 and C5 are formally
equivalent to a C3 scheme, up to variable renaming, e.g.

f4,4(h, m, d) = Eh⊕d(h ⊕ m) ⊕ m = Eh′(h′ ⊕ m′) ⊕ m′ ⊕ d = f4,3(h′, m′, d),
f9,5(h, m, d) = Eh⊕m(m ⊕ d) ⊕ m = Eh′⊕m′(m′) ⊕ m′ ⊕ d = f9,3(h′, m′, d),
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Fig. 1. PGV schemes f1 to f6, where a hatch marks the key input (we assume keys
and message blocks of same size, cf. §1.3)

for h′ = h ⊕ d, m′ = m ⊕ d. We denote C+
3 the set of schemes that can be

expressed in C3 form. Only four members of C4∪C5 do not admit such rewriting,
namely the ones equivalent to a scheme of C1 or C2. We thus have

C+
3 = (C3 ∪ C4 ∪ C5) \ {f1,4, f5,4, f9,4, f10,5}.

This set is used later for simplifying security proofs (we shall exploit the C3

structure for proving security bounds on C+
3 schemes). To summarize, we have

|C1 ∪ C2| = 24, |C+
3 | = 32, and (C1 ∪ C2) ∩ C+

3 = ∅.
Note that if fi admits easily found fixed-points (as do 8 of the 12 PGV

schemes), then any dithered variant also possesses the property. For instance,
f5,5 admits the fixed-point E−1

m(0) ⊕ d, for any choice of m. It follows that
exactly 37 among the 56 dithered schemes have trivial fixed-points.

To illustrate our constructions, Figure 3 depicts the dithered variants of MMO
(f1): For a given d, dMMO1 is similar to MMO up to a reordering of the permu-
tation indexes (more precisely, the h-th permutation takes (h⊕d) as new index).
dMMO2 simulates the undithered MMO for a blockcipher E′(·) = E(·⊕d), while
dMMO3 has simply the output of MMO xored with d, as in Shoup’s method [44].
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Fig. 2. PGV schemes f7 to f10, where a hatch marks the key input (we assume keys
and message blocks of same size, cf. §1.3)
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(d) dMMO4: h+ = Eh(m⊕d)⊕m⊕d.

Fig. 3. Dithered versions of the Matyas-Meyer-Oseas scheme
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The structure of dMMO4 is somewhat similar to the RMX transform for ran-
domized hashing [21].

3 Security Definitions for Dithered Functions

We build on the formal definitions of [9] (recalled in Appendix A), extending them
to the case of dithered functions: A collision for dithered compression functions
where dithers are distinct is termed a Δ-collision—in essence, this is somewhat
analogous to a free-start collision for hash functions, in the sense that here the
dithers are distinct and public. Such a collision does not trivially translate into
a collision for the derived hash function, mainly due to the MD-strengthening
padding. We reserve the term collision to the case where a pair of inputs map to
the same image with same dither values. This is in order to maintain the usefulness
of the MD paradigm ported over to dithered hash functions.

In the following definitions, A is an adversary that has access to E and E−1,
and f is a dithered blockcipher-based compression function, f : Bloc(κ, n) ×
{0, 1}n × {0, 1}n × {0, 1}k �→ {0, 1}n, for some fixed k > 0. The IV of the hash
function is an arbitrary constant h0, introduced for considering collisions with
the empty string. Furthermore, we introduce the following definition:

Definition 1 (Dither sequence). A dither sequence is defined by a triplet
(I,D, d), where I ⊆ N is the set of iteration indexes, D ⊆ {0, 1}k is the set
of valid dither values, and d is a function I �→ D returning the dither value
corresponding to an iteration index.

This definition is independent of the particular input method, and is relevant
for any iterated hash function. In the remainder, we let δ = |D| ≤ 2k, and write
d for a dither value1.

Definition 2 (Collision for Dithered Compression Function). The ad-
vantage of A in finding a collision in f is

Advcol
f (A) = Pr

⎡
⎢⎣E

$← Bloc(κ, μ), (h, m, d) = (h′, m′, d), d ∈ D,

(h, m, d, h′, m′) $← A [
fE(h, m, d) = fE(h′, m′, d)

or fE(h, m, d) = h0

]
⎤
⎥⎦ .

This notion of collision can be viewed as a variant of target-collision resis-
tance [34], where the key indexing the function is chosen by the attacker.

Definition 3 (Δ-Collision for Dithered Compression Functions). The
advantage of A in finding a Δ-collision in f is

AdvΔcol
f (A) = Pr

⎡
⎢⎣E

$← Bloc(κ, μ), (h, m, d) = (h′, m′, d′), (d, d′) ∈ D2,

(h, m, d, h′, m′, d′) $← A [
fE(h, m, d) = fE(h′, m′, d′)

or fE(h, m, d) = h0

]
⎤
⎥⎦ .

1 The notation Pr[α|β] stands here for the probability of the event β after the experi-
ment α. This should not be confused with the notation of conditional probabilities.
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The notion capturing one-wayness is termed as “inversion” rather than “preim-
age”, merely because of the different sampling rule for the challenge image (see [9,
Ap. B] for a discussion).

Definition 4 (Inversion for Dithered Compression Function). The ad-
vantage of A in inverting f is

Advinv
f (A) = Pr

[
E

$← Bloc(κ, μ), h+ $← Range(fE), d ∈ D,

(h, m, d) $← A f(h, m, d) = h+

]
.

Let Adv be any of the advantages defined above. For q ≥ 0, we write Adv(q) =
maxA (Adv(A)), where the maximum is taken over all adversaries making at
most q oracle queries. The definitions for hash functions apply as well for dithered
hash functions, where a random blockcipher is used, and a given dither sequence
is considered.

4 Collision Resistance

4.1 Blackbox Bounds

Theorem 1 (Collision Resistance of dPGV Hash Functions). Let H be a
hash function built on a dithered PGV scheme f /∈ C2, where MD-strengthening is
applied. Then the best advantage for a q-bounded adversary in finding collisions is

Advcol
H (q) ≤ q(q + 1)

2n
, for f ∈ C1,

Advcol
H (q) ≤ (δ2 + δ)(q2 + q)

2n+1
, for f ∈ C+

3 ,

where δ = |D| is the number of valid dither values.

This gives for C1 schemes a bound on collision resistance independent on the
dither sequence used. But for C3 schemes the bound depends on the size of the
dither domain D: Clearly, when D is large (e.g. when δ = |D| = 2n) this bound is
not relevant. However, it makes sense for example for Rivest’s dithering proposal,
for which δ ≤ 215.

We prove Theorem 1 by first upper bounding Advcol
H by a collision-finding

advantage for the compression function (see Lemma 1), then bounding this ad-
vantage in the blackbox model (Propositions 1 and 2).

Lemma 1 (Dithered Extension of MD Theorem). Let H be a hash func-
tion built on a dithered PGV scheme f ∈ C1 ∪ C+

3 and using MD-strengthening.
Then Advcol

H (q) ≤ AdvΔcol
f (q). Furthermore, if f ∈ C1, then Advcol

H (q) ≤
Advcol

f (q).

This lemma states that the security of the hash function built on a dPGV scheme
can be reduced to the security of its compression function, except for C2 func-
tions. We show later a counter-example of C2-based hash functions which are not
collision resistant, despite having a collision-resistant compression function.
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Proof. Assume given an arbitrary colliding pair (m̄, m̄′) for a HE with random
E ∈ Bloc(n, n), and set � = |m̄|, �′ = |m̄′| (in blocks). We distinguish two cases:

1. � = �′: If m� = m′
� or h�−1 = h′

�−1, then we get a collision on f with the
distinct tuples (h�−1, m�, d�) and (h′

�−1, m
′
�, d�); otherwise, h�−1 = h′

�−1 and
m� = m′

�; we then work inductively with the same argument backwards until
a collision is found, which necessarily exists, because m̄ = m̄′ by hypothesis.
Therefore, Advcol

H (q) ≤ Advcol
f (q) for messages of same length.

2. � = �′: Since MD-strengthening is applied, we have m� = m′
�′ , that neces-

sarily leads to distinct Δ-colliding tuples for f with distinct message block,
thus Advcol

H (q) ≤ AdvΔcol
f (q). If d� = d�′ , we even get a collision on f (with

same dither value). Furthermore, for C1 functions, the pairs (h�−1 ⊕ d�, m�)
and (h�′−1 ⊕ d�′ , m�′) form a collision for the original (undithered) scheme,
hence Advcol

H (q) ≤ Advcol
f (q) in this case.

This covers all possible cases, showing reductions to the security of the dithered
compression function f , which completes the proof. ��

For functions of C2, the advantage cannot be bounded by Advcol
f (q) since the

case mi ⊕ di = m′
j ⊕ d′j may occur, for di = d′j , which does not necessarily lead

to a collision on the original undithered scheme. To prove such inequality, one
should add the assumption that the dither and the message length padded in the
last block do not overlap; e.g. consider the dither coded on the n/2 first bits of
the blocks, while at most n/2 bits are dedicated to encoding the message length.

Proposition 1 (Collision Resistance of dPGV Schemes). Let f be a dit-
hered PGV scheme. Then the best advantage of a q-bounded adversary in finding
collisions in f is Advcol

f (q) ≤ q(q + 1)/2n.

Proof. For ease of exposition, consider the dithered MMO schemes, instantiated
with a random E: From arbitrary colliding inputs (h, m, d) and (h′, m′, d) with
image h+, we can construct colliding inputs (h�, m�) and (h′

�, m
′
�) for the original

undithered scheme as follows:

h� h′
� m� m′

� h+
�

dMMO1 h ⊕ d h′ ⊕ d m m′ h+

dMMO2 h h′ m ⊕ d m′ ⊕ d h+ ⊕ d
dMMO3 h h′ m m′ h+ ⊕ d
dMMO4 h h′ m ⊕ d m′ ⊕ d h+

A similar method applies for all dithered PGV schemes. The proposition now
follows from the bound q(q + 1)/2 given in Lemma 3.3 of [9]. ��

Proposition 2 (Δ-Collision Resistance of dPGV Schemes). Let f be a
dithered PGV scheme. If f ∈ C1 ∪ C2, then the best advantage of a q-bounded
adversary in finding Δ-collisions in f is AdvΔcol

f (q) = 1. If f ∈ C+
3 , then

AdvΔcol
f (q) ≤ (δ2 + δ)(q2 + q)/2n+1.
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The idea of the proof of Proposition 2 for f ∈ C+
3 is similar to the one of the proof

of [9, Lemma 3.3]. In short, we first show that any collision for a C+
3 scheme can be

used to find values (xr , kr, Ekr (xr)) and (xs, ks, Eks(xs)) satisfying a particular
relationship, then we bound the cost of finding such values. The proof strategy
is fairly standard. The simulator used for E and E−1 is described in [9, Fig. 4].

Proof. For f ∈ C1 ∪C2, we simply show how to construct a collision: For f ∈ C1,
pick an arbitrary triplet (h, m, d) such that d ∈ D. Then construct (h′, m′, d′) by
choosing an arbitrary d′ ∈ D distinct from d, and setting h′ = h⊕d⊕d′, m′ = m.
For f ∈ C2, a similar method can be applied with h′ = h, and m′ = m ⊕ d ⊕ d′.
In both cases the constructed pairs map to the same image.

For f ∈ C+
3 , we just give the proof for MMO dithered variants (a similar one

can easily be derived for any C+
3 scheme): First, observe that dMMO2 (∈ C5) and

dMMO3 (∈ C3) are in C+
3 , while dMMO1, dMMO4, dMMO5 are not in C+

3 . Hence,
the proof considers only dMMO2 and dMMO3.

Then, observe that for both dMMO2 and dMMO3 finding a Δ-Collision is
equivalent to finding a tuple (h, h′, m, m′, d̃) such that (Eh(m)⊕Eh′(m′)⊕m⊕
m′) ∈ D⊕, for

D⊕ =
{

d̃ = d ⊕ d′, (d, d′) ∈ D2
}

, and δ⊕ = |D⊕| .

Indeed, for such a tuple (h, h′, m, m′, d̃ = d ⊕ d′), we have that

• (h, m, d) and (h′, m′, d′) form a collision for dMMO3, because

Eh(m) ⊕ m ⊕ d = Eh′(m′) ⊕ m ⊕ d′

• (h, m ⊕ d, d) and (h′, m′ ⊕ d′, d′) form a collision for dMMO2, because

Eh((m ⊕ d) ⊕ d) ⊕ (m ⊕ d) = Eh′((m′ ⊕ d′) ⊕ d′) ⊕ (m′ ⊕ d′)

We have thus shown that for any Δ-collision for dMMO2 (or dMMO3), one can
return two triplets (xr , kr, yr) and (xs, ks, ys) such that xr ⊕ xs ⊕ yr ⊕ ys ∈ D⊕
and yr = Ekr (xr), ys = Eks(xs). Using arguments similar to [9, Lemma 3.3
proof], we will show that this event is unlikely.

As preliminaries, consider an adversary A making q queries (to E or E−1)
and who gets q triplets (xi, ki, yi), such that yi = Eki(xi), i = 1, . . . , q. These
triplets are constructed by the simulator described in [9, Fig. 4]. Following these
notations, A succeeds only if there exists distinct r, s such that (xr ⊕ xs ⊕ yr ⊕
ys) ∈ D⊕, or xr ⊕ yr = h0.

Now, in the process of simulating E (and E−1) we let Ci stand for the event
“xi ⊕ yi = h0 or there exists j < i such that (xi ⊕ xj ⊕ yi ⊕ yj) ∈ D⊕”; in other
words, this is the event “A succeeds”.

The probabilistic argument is that, depending on the oracle queried, either yi

or xi was (uniformly) randomly selected from a set of size ≥ 2n − (i − 1) (see
the definition of the simulator in [9, Fig. 4]). Hence Pr[Ci] ≤ i · δ⊕/(2n− (i−1)),
because there are δ⊕ = |D⊕| values of (xi ⊕ xj ⊕ yi ⊕ yj) for which A succeeds.
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It follows that for a number of queries q ≤ 2n−1,

AdvΔcol
f (q) ≤ Pr[C1 ∨ · · · ∨ Cq] ≤

∑
0<i≤q

i · δ⊕
(2n − i + 1)

≤ δ⊕
2n − 2n−1

∑
0<i≤q

i,

that is, AdvΔcol
f (q) ≤ δ⊕ · q(q + 1)/2n ≤ (δ2 + δ)(q2 + q)/2n+1.

We have proven the bound when f is dMMO2 or dMMO3. As suggested in
§2, a similar proof can be given for any f ∈ C+

3 : the only difference will be
in the conversion of the tuple (h, h′, m, m′, d̃ = d ⊕ d′) for which (Eh(m) ⊕
Eh′(m′)⊕m⊕m′) ∈ D⊕ to a collision for f . For instance, consider f2,5(h, m, d) =
Eh(m ⊕ h ⊕ d) ⊕ m ⊕ h; from the tuple above we can construct the collision

f2,5(h, m ⊕ h ⊕ d) = Eh(m) ⊕ m ⊕ d = f2,5(h′, m′ ⊕ h′ ⊕ d′, d′).

Similar conversion can be given for the other C+
3 schemes. The rest of the proof

is then independent of the scheme considered, hence apply as well to any f ∈ C+
3 .
��

Proof (Theorem 1). The result follows directly from Lemma 1 and the bounds
given in Propositions 1 and 2. ��

4.2 Finding Collisions for C2 Hash Functions

We describe an attack for 8 of the 12 schemes of C2 (namely f5,2, . . . , f12,2),
when the dither sequence scheme is the one of HAIFA [6], i.e. where di is the
number of message bits hashed so far, and when MD-strengthening is applied.
The attack exploits the structure of the compression function, and computes a
pair of message colliding for any choice of a blockcipher.

The method is inspired from slide attacks on blockciphers [7]: Consider an
arbitrary message m̄ = (m1, . . . , m�), split into � blocks, with {di}0<i≤� the
dither sequence. Compute the fixed-point h0 = h1 corresponding to m1, and
construct the message m̄′ = (m′

1, . . . , m
′
�−1) by setting m′

i = mi+1 ⊕ di+1 ⊕ d′i,
for i = 1, . . . , � − 2. The last message blocks m� and m′

�−1 have to follow the
MD-strengthening rule, that is, having the number of bits of the message coded
in their least significant bits. Since we consider a dither sequence coding the
number of message bits hashed so far, the padded values will be equal to d� and
d�−1, respectively. Therefore m′

�−1 = m� ⊕ d� ⊕ d�−1 is a valid last block, and
we end up with h� = h′

�−1, giving a collision with m̄. Note that no call to the
compression is needed, nor to the blockcipher.

When MD-strengthening is not used, this technique can be applied for any
dither sequence, for the 8 schemes f5,2, . . . , f12,2. This concerns for instance
Rivest’s dithering, that uses a special dither for the last block instead of MD-
strengthening. The fact that a secure compression function (i.e. a provably secure
PGV scheme) can lead to a weak hash function contrasts with the result of Black
et al. where certain weak compression functions (namely non-preimage-resistant)
are shown to provide collision-resistant hash functions.
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5 Inversion Resistance

Theorem 2 below holds for inverting a random range point, rather than the image
of a random domain point (the latter problem being refered as “preimage”).
Quoting [9, Ap. B], though these measures “can, in general, be far apart, it is
natural to guess that they coincide for ’reasonable’ hash functions”.

Theorem 2 (Inversion Resistance of dPGV Hash Functions). Let H be
a hash function built on a dithered PGV scheme f , where MD-strengthening is
applied. Then the best advantage of a q-bounded adversary in inverting H is

Advinv
H (q) ≤ q

2n−1
, for f ∈ C1 ∪ C2,

Advinv
H (q) ≤ δ · q

2n−1
, for f ∈ C+

3 .

Proposition 3 (Inversion Resistance of dPGV Schemes). Let f be a
dithered PGV scheme. Then the best advantage of a q-bounded adversary in in-
verting f is Advinv

f (q) ≤ δ·q/2n−1. Furthermore, if f ∈ C1∪C2, then Advinv
f (q) ≤

q/2n−1.

Proof. For C1 and C2, just observe that a preimage oracle for the C1 or C2 version
of a PGV scheme can be used to solve the preimage problem for the original
scheme, whose bound is q/2n−1, from [9].

For C+
3 , the problem is equivalent to finding h and m such that (F (h, m) ⊕

h+) ∈ D, with F the original (undithered) scheme, for a fixed h+. This equa-
tion is satisfied for a random permutation and arbitrary h, m, h+ with proba-
bility δ/2n. We can use the same strategy as for proving Proposition 1: e.g. for
dMMO3 ∈ C3, let Ci be the event “the i-th query (xi, ki, yi) satisfies (yi ⊕ xi ⊕
h+) ∈ D”, i ∈ {1, . . . , q}; then we have Pr[Ci] ≤ δ/(2n − (i − 1)). By the union
bound, we get

Advinv
f (q) ≤ Pr[C1 ∨ · · · ∨ Cq] ≤ δ · q

2n−1
.

��
Proof (Theorem 2). An oracle inverting H can be trivially used for inverting
its dithered compression function. The result of the theorem then follows from
Proposition 3. ��

6 Conclusions

Among the 56 dPGV schemes studied,

• 12 inherit the bounds on collision and inversion resistance of the the
original (undithered) constructions, independently of the dither sequence
considered (these are of the form fi,1, i ∈ [1, 12])
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• 37 have the “fixed-point” attribute (fi,j , i ∈ [5, 12])
• 8 lead to weak hash functions for HAIFA’s dithering (fi,2, i ∈ [5, 12])

It appears that the most reliable schemes have the dither value simply xored
with the initial chaining value h (subset C1). Nevertheless, the schemes of C2

fail to achieve similar security just because the overlap of dither and padding
might allow collisions, for particular dither sequence. This problem can be easily
avoided in practice, e.g. by encoding the dither in big-endian, and the message-
dependent padding in little-endian, such that the two values do not overlap. In
this case, C2 becomes as secure as C1, with the added benefit that it requires no
change in the implementation of the hash function (whereas all other Ci’s do).

Another desirable property concerns all 56 schemes considered: The fact that
efficiency is no longer affected by the length of dither values allows to use a
large counter, which provides better protection against attacks as [17,24,20] than
schemes with short dithers [12]. An additional feature which can be derived from
our constructions is randomized hashing, e.g. by choosing a random starting point
for the counter. This would avoid extra changes to the compression function, like
the RMX transform [21].

Eventually, we stress that dithering not only protects against generic short-
cut attacks for second-preimage—which we might live with, since they remain
much slower than collision search—but also provides a safety net against more
elaborate attacks, and is expected to complicate some existing dedicated attacks.

Further work may consider the existence of generic second-preimage attacks
for dPGV schemes instantiated with particular dither sequences, as well as re-
finement of our proofs at the light of Stam’s recent improvements [46].
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A Definitions

Definition 5 (Collision for Hash Functions). Let H be a blockcipher-based
hash function. The advantage of A in finding collisions in H is

Advcol
H (A) = Pr

[
E

$← Bloc(κ, n), m̄ = m̄′,

(m̄, m̄′) $← A HE(m̄) = HE(m̄′)

]
.

Definition 6 (Collision for Compression Functions). Let f be a
blockcipher-based compression function. The advantage of A in finding collisions
in f is

Advcol
f (A) = Pr

⎡
⎢⎣E

$← Bloc(κ, μ), (h, m) = (h′, m′),

(h, m, h′, m′) $← A [
fE(h, m) = fE(h′, m′)

or fE(h, m) = h0

]
⎤
⎥⎦ .

B Near-Collisions for dPGV and PGV Schemes

For the 32 schemes of C+
3 , which can be rewritten as f(h, m, d) = F (h, m) ⊕ d,

near-collisions might be easily found, depending on the structure of D: sup-
pose there exists d, d′ ∈ D such that d ⊕ d′ has weight w. Then, f(h, m, d) ⊕
f(h, m, d′) = d⊕ d′ and has weight w as well. This trivial property seems not to
imply any weakness on the hash functions, since an adversary has no freedom
on choosing the dither value for a given iteration count.

In the “known-key” scenario for blockciphers, Knudsen and Rijmen [26]
presents a distinguisher for 7-round Feistel blockciphers based on the finding
messages m, m′ such that Ek(m) ⊕ m ⊕ Ek(m′) ⊕ m′ = 0 . . . 0‖x, where x
is a random n/2-bit value. As they observe, it can be applied to find “half-
collisions” on MMO (f1) instantiated with a similar blockcipher; indeed, MMO
sets f(h, m) = Eh(m)⊕ m, thus one can choose a h which shall play the role of
the “known-key” (note that in [26] the key cannot be chosen). We observe that
a similar method can be applied to the other PGV schemes f2, . . . , f8 (for some
of them, by conveniently choosing the null value for h or m).

C Origins of Dithering

The use of the term “dither” in the context of hash functions finds its origin
in signal processing, which itself borrowed it from engineers, who adapted the
ancient word “didder” to a mechanical problem. The three quotes below give a
bit more details about this story.

Quoting Rivest [41]: “The word ‘dithering’ derives from image-processing,
where a variety of gray or colored values can be represented by mixing together
pixels of a small number of basic shades or colors; this is done in a random
or pseudo-random manner to prevent simple visual patterns from being visible.
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We adapt the term dithering here to refer to the process of adding an additional
’dithering’ input to a sequence of processing steps, to prevent an adversary from
causing and exploiting simple repetitive patterns in the input.”

Quoting Wikipedia [47]: “Dither is an intentionally applied form of noise,
used to randomize quantization error, thereby preventing large-scale patterns
such as contouring that are more objectionable than uncorrelated noise. (. . . )
Dither most often surfaces in the fields of digital audio and video, where it is
applied to rate conversions and (usually optionally) to bit-depth transitions; it is
utilized in many different fields where digital processing and analysis is used—
especially waveform analysis.”

Quoting Pohlman [36]: “one of the earliest [applications] of dither came in
World War II. Airplane bombers used mechanical computers to perform navi-
gation and bomb trajectory calculations. Curiously, these computers (boxes filled
with hundreds of gears and cogs) performed more accurately when flying on board
the aircraft, and less well on ground. Engineers realized that the vibration from
the aircraft reduced the error from sticky moving parts. Instead of moving in short
jerks, they moved more continuously. Small vibrating motors were built into the
computers, and their vibration was called ‘dither’ from the Middle English verb
‘didderen,’ meaning ‘to tremble.’ Today, when you tap a mechanical meter to
increase its accuracy, you are applying dither, and modern dictionaries define
‘dither’ as ‘a highly nervous, confused, or agitated state.’ In minute quantities,
dither successfully makes a digitization system a little more analog in the good
sense of the word.”
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Abstract. In this paper, we describe a new broadcast encryption scheme
for stateless receivers. The main difference between our scheme and the
classical ones derived from the complete subtree paradigm is that the group
of privileged users is described by attributes. Actually, some real applica-
tions have been described where the use of a more adaptable access struc-
ture brings more efficiency and ease of deployment. On the other side, the
decryption algorithm in so far existing attribute-based encryption schemes
adapted forbroadcast applications is time-consuming for the receiver, since
it entails the computation of a large number of pairings. This is a real draw-
back for broadcast applicationswheremost of the technological constraints
are on the receiver side.

Our scheme can be viewed as a way to benefit at the same time from
the performance of decryption of the classical broadcast schemes and
the management easiness provided by the use of a more adaptable data
structure based on attributes. More precisely, our scheme allows one to
select or revoke users by sending ciphertexts of linear size with respect
to the number of attributes, which is in general far less than the number
of users. We prove that our scheme is fully collusion secure in the generic
model of groups with pairing.

Keywords: Public-key broadcast encryption, Attribute-based encryp-
tion, Generic model of groups with pairing.

1 Introduction

A broadcast encryption scheme [FN93] is used whenever an emitter wants to
send messages to several recipients using an unsecured channel. Such a scheme
actually allows the broadcaster to choose dynamically a subset of privileged users
inside the set of all possible recipients and to send a ciphertext, readable only
by the privileged users. This kind of schemes is helpful in numerous commer-
cial applications such as the broadcast of multimedia content or pay-per-view
television.

Many schemes have been suggested to solve this problem regarding two main
settings. The first one deals with almost fixed sets of privileged users. In this
case the encryption is efficient but modifying the set of privileged users entails
the sending of a long message. The second setting is aimed at the management
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of very large or very small sets of privileged users. Schemes designed for that
purpose allow one to change at no cost the set of privileged users but the size of
the encryption grows linearly with the size of the set of revoked users.

In this paper, we consider the real application where an emitter produces dif-
ferent kinds of content for different categories of users. This is a natural problem
to deal with for a broadcaster which proposes to its customers several subscrip-
tion packages, or for different broadcasters using the same asymmetrical broad-
cast encryption scheme. In this case, it is very possible that the set of privileged
users has to be changed dramatically along with the type of content. As this set
can not be considered as being particularly small or large, this situation is not
covered by usual broadcast encryption schemes.

Recently, a notion of attribute-based encryption has been introduced in
[SW05]. This notion seems to address that kind of problem. In [GPSW06],
the authors present a declination of these ideas with applications in “targeted”
broadcast encryption. In ciphertext-policy schemes, which is our concern here,
each user is associated with a set of attributes and its decryption key depends
on this set. A ciphertext contains an access policy based on these attributes:
only users satisfying this policy may obtain the plaintext, and even a collusion
of other users can not obtain it. In broadcast applications, the main drawback
of this family of schemes is that the decryption may require large computations
which cannot be quickly achieved by low-cost decoders.

Our Contribution. In this paper, we propose a broadcast encryption scheme,
with attribute-based mechanisms: it allows the broadcaster to select or to re-
voke not only single users, but groups of users defined by their attributes. This
scheme can be seen as an attribute-based encryption scheme, with efficient de-
cryption and restriction of access policy: the restriction of access policy (using
AND and NOT functions) is enough to provide broadcast encryption since the
OR function can be simulated using concatenation, exactly like in the Subset-
Cover framework.

The idea behind this scheme is the ability to compute a specific greatest
common divisor of polynomials. Each receiver is associated with a polynomial
(with roots depending on its attributes), and a ciphertext is associated with
another polynomial (with roots depending on required attributes and revoked
attributes). A receiver in the access policy defined by a ciphertext computes the
greatest common divisor of its polynomial and of the polynomial associated with
the ciphertext: this divisor is the same for all receivers in the access policy. A
receiver not in this access policy can not compute this specific polynomial.

In this scheme, the size of the decryption key given to a receiver is linear in
the number of attributes associated with this receiver. The size of a ciphertext is
linear in the number of attributes used in the access policy. The public encryption
key is quite long: its size is linear in the total number of attributes used in the
scheme. This is not a real drawback for realistic situations where anyway the
broadcaster must have a database containing the list of users together with their
attributes. Moreover, a broadcaster which intends to use only a small set of
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attributes requires only an encryption key with a size linear in the size of this
small set.

This scheme has a new design, since it is not based on secret sharing like
previous attribute-based schemes. This design allows the decryption algorithm to
use only a fixed number (3) of pairing computations. As a broadcast encryption
scheme, it uses the Subset-Cover framework suggested in [NNL01]. We prove the
security of this scheme against full collusions in the generic model of groups with
pairings. Another interesting feature in this scheme is that new decryption keys
can be built without any modification of previously distributed decryption keys:
adding new decryption keys requires only to extend the public key to take new
attributes into account.

1.1 Related Work

Stateful Broadcast Schemes. The first broadcast schemes were based upon
stateful receivers, which means that the receivers have a memory that can store
some information about the past messages. Such receivers have the possibility
to refresh their decryption key using information given in broadcasted messages.
This is the case of “Logical Key hierarchy” (LKH) presented independently in
[WGL98] and in [WHA99]: users have assigned positions as leaves in a tree, and
have keys corresponding to nodes on the path from user’s leaf to the root. The
key corresponding to the root is used to encrypt messages to users. When users
are revoked or when a new user joins, a rekey occurs, using keys corresponding to
internal nodes. These techniques have been later improved in [CGI+99, CMN99,
PST01].

These schemes are aimed at practical applications where the set of privileged
users is updated rarely and in a marginal way. The ciphertexts are very short
and are computed from a key known by all current users. In return, changing the
set of privileged users (add or exclude a user) is bandwidth-consuming and must
be done on a per user basis: each change entails the distribution of a new global
key to privileged users. Moreover, this can only be done if all users are on-line
which is a strong limitation in some applications. The frequent and important
changes in the set of privileged users make these schemes inappropriate for the
previously mentioned applications.

Stateless Broadcast Schemes.A different kind of broadcast schemes have been
introduced later on: the goal is to avoid frequent rekeys. In [KRS99, GSW00],
users have different decryption keys, and each decryption key is known by a well-
chosen set of users. When the broadcaster wants to exclude a given set of users,
it builds ciphertexts corresponding to decryption keys that these specific users do
not know. Rekey occurs only after large permanent modifications of the privileged
set of users. The ciphertexts are longer than with the LKH schemes mentioned in
the previous paragraph.

Stateless receivers extend this last case: in [NNL01], the broadcaster can
choose any set of privileged users without any rekey, i.e. the receivers can keep
the same decryption keys during the whole life of the broadcast system. These
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schemes, called Complete Subtree (CS) and Subset Difference (SD) are based
on a binary tree structure, where users are placed in the leaves. They have sub-
sequently been improved in [HS02, GST04], and an efficient extension to the
public-key case based on hierarchical identity-based encryption has been pro-
posed in [DF02]. This extension has been confirmed in [BBG05] with the first
hierarchical identity-based encryption with constant-size ciphertexts.

The efficiency of these schemes are only proved when few users are revoked,
but the binary tree structure presented in [NNL01] and its following improve-
ments may be used to characterize groups of users by attributes: for example, the
left subtrees of the internal nodes at a given level may correspond to users with
a given attribute, and the right subtrees to users with this attribute missing.
This seems doable, even if the tree structure constrains the organization of the
attributes (the binary tree must be balanced to keep a good efficiency, so every
attribute must concern about half of the users). The Figure 1.1 shows that the
selection of users with a given attribute, or the revocation of users without this
attribute, is efficient if the attribute corresponds to a high level in the tree, but
very inefficient when the attribute is near the leafs. As a consequence, the use
of these schemes for selection or revocation of users regarding to their attributes
i s not practical, since the size of ciphertexts may be linear in the number of
revoked users.
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Fig. 1. Selection with CS/SD scheme: first attribute versus last attribute

New public-key broadcast schemes with constant-size ciphertexts have been
proposed in [BGW05] (scheme 1) and in [DPP07] (scheme 2). In these schemes, a
receiver needs however the exact knowledge of the set of privileged users, which
means the transmission of an information with non-constant size, which is not
mentioned in the ciphertexts.

These schemes require moreover decryption keys of size linear in the number
of users (this is clearly stated in [DPP07]; in [BGW05], a receiver has a constant-
size private key, but needs the encryption key to perform a decryption). This
storage may be excessive for low-cost devices.

Broadcast Scheme from HIBE with Wildcards. Management of attributes
can be performed by the combination of the scheme given in [DF02] with a
hierarchical identity-based encryption scheme with wildcards, like presented in
[ACD+06, BDNS06]. The resulting scheme would allow the selection of users
with given attributes, i.e. build ciphertexts addressed to intersections of groups.
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The revocation of all users with a fixed attribute from the SD technique is
however unclear, and its use is not efficient since the size of the ciphertexts is
not constant in the hierarchical identity based encryption (see [BBG05]).

Attribute-Based Encryption. Attribute-based encryption has been suggested
in [SW05], and later developed in [GPSW06]. In a first version (later called key-
policy attribute-based encryption), the goal is to define access policies, and to
allow a user to obtain some information if the access policy associated with this
user is valid for this content. In this way, the decryption key given to a user
depends on an access policy, and the encryption of a content relies on attributes,
which are used in the evaluation of an access policy. Even a collusion of users
with invalid access policies for a given ciphertext should not be able to obtain
the corresponding plaintext.

Later, in [BSW07], a new scheme is proposed, but with an inversion: the access
policy is defined with the content, and attributes are used to build decryption
keys given to users. These ciphertext-policy attribute-based encryption schemes
have direct applications for broadcast: the access policy defines a set of privileged
users. With a relevant distribution of attributes, any set of privileged users may
be described by an access policy.

In these schemes, an access policy is build using secret sharing techniques,
like Shamir’s one based on polynomials. An access policy is defined by a tree,
where leaves correspond to the presence of an attribute (the evaluation of a leaf
is true if the corresponding attribute is used) and internal nodes are threshold
functions (in particular, these nodes may be AND, or OR functions). With such
structure, revocation is quite difficult, since adding attributes can only provide
a larger access to the content.

This problem is solved in [OSW07], where the access policy may be non-
monotonic: the use of NOT functions becomes possible. Combining results from
[BSW07, OSW07] gives rise to a ciphertext-policy attribute-based encryption
which can be used for broadcast applications. The design of these schemes re-
quires however a receiver to perform a large number of pairing computations
(linear in the number of attributes used in the access policy). A low-cost re-
ceiver may not be able to compute so much pairings in complex access policies.

Our scheme has a completely different design, and it allows only very specific
access policies. An access policy in this scheme is a disjunction (OR function, us-
ing the Subset-Cover framework) of conjunctions (AND functions) of attributes
and of negations of attributes. Such access policy is more restrictive, but it is
enough for practical broadcast applications. In return, a receiver performs only
3 pairing computations whatever the access policy is.

Dynamic Broadcast Encryption Scheme. The notion of dynamic schemes
has been defined in [DPP07]. In such schemes, new users can be added without
modification of previously distributed decryption keys. The encryption key has
only to be slightly extended. This feature seems to be very useful in practical
applications. The dynamic schemes suggested in [DPP07] requires ciphertexts of
size linear in the number of revoked users. This feature is quite rare in broadcast
schemes, but common in attribute-based encryption schemes.
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1.2 Organization

The paper is organized as follows. In Section 2, we give a formal definition of
groups of users, and an associated definition of attribute-based broadcast encryp-
tion schemes. In Section 3, we describe our scheme and prove its correctness. In
Section 4, we prove the security of this scheme.

2 Preliminaries

We give a formal definition of groups of users and an associated definition of
attribute-based broadcast encryption schemes deduced from the definition given
in [BGW05]. We present then the security model. The last part explains how to
define groups of users in concrete applications.

2.1 Groups of Users

In our applications, we have a large number of users, and a large number of
groups (in practice, we need for each user a group containing this single user).
Each user belongs to a few groups of users. We choose a description which takes
advantage of this fact.

Let U be the set of all users. We represent an element of U by an integer in
{1, . . . , n}. A group of users is a subset G of U . From the inverse point of view,
for a fixed number l of groups of users, we can associate with a user u ∈ U the
set of groups he belongs to: B(u) = {i ∈ {1, . . . , l} / u ∈ Gi} ⊂ {1, . . . , l}.

2.2 Attribute-Based Broadcast Encryption Schemes

In this part, we give a formal definition of an attribute-based broadcast encryp-
tion scheme. This model does not take into account the fact that the scheme
could be dynamic, like in [DPP07], even if our scheme seems dynamic. The fol-
lowing definitions are just a slight adaptation of [BGW05, BSW07] to deal with
groups of users.

A public-key attribute-based broadcast encryption scheme with security pa-
rameter λ is a tuple of three randomized algorithms:

– Setup(λ, n, (B(u))1≤u≤n): takes as input the security parameter λ, the num-
ber of users n, and groups of users. It outputs an encryption key EK, and n
decryption keys (dku)1≤u≤n.

– Encrypt(EK,BN ,BR): takes as input the encryption key EK and two sets
of groups BN and BR. It outputs a header hdr and a message encryption key
K ∈ K, where K is a finite set of message encryption keys.

– Decrypt(dku, hdr): takes as input a decryption key given to a user u and a
header hdr. If the header hdr comes from an encryption using (BN ,BR) such
that BN ⊂ B(u) and B(u) ∩ BR = ∅, then it outputs a message encryption
key K ∈ K. In the other case, it outputs ⊥.
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In the encryption process, a message M is encrypted with a key K and the
resulting ciphertext C is sent together with the header hdr. Users in all groups
mentioned in BN (needed groups) and outside all groups mentioned in BR (re-
voked groups) can compute K from the header hdr and their decryption key
dku. Using the key K, a user recovers M from C.

Note that in these definitions, the decryption key and the header are the only
elements that a user needs in the computation of the key K. The encryption key
and the knowledge of the set of privileged users are not necessary for decryption.
The header corresponds then exactly to the cost of the broadcast scheme in terms
of transmission. In fact, in our scheme, the knowledge of the set of privileged
users is implicitly included in the header, encoded in the attributes corresponding
to the required and revoked groups.

In this description, we do not allow an encryption for an arbitrary set of
privileged users, which is the usual definition of a broadcast encryption scheme.
Any set of privileged users can however be represented by a union of sets used in
this “basic encryption” for well-chosen groups of users (in fact, it is enough that
each user belongs to a group containing only this single user). Different basic
encryptions are then used to encrypt a common key, instead of a message. The
full message can then be sent, using this common key.

2.3 Security Model

We consider semantic security of attribute-based broadcast encryption schemes.
The adversary is assumed static, as in previous models: the only difference with
standard definitions is that the groups of users are given to the adversary before
the beginning of the game played by the challenger and the adversary A:

– The challenger and the adversary are given l fixed groups of users, defined
by (B(u))1≤u≤n.

– The adversary A outputs two sets of groups BN and BR corresponding to a
configuration it intends to attack.

– The challenger runs Setup(λ, n, (B(u))1≤u≤n) and gives to A the encryp-
tion key EK, and the decryption keys dku corresponding to users that the
adversary may control, i.e. such that BN ∩ B(u) �= BN or BR ∩ B(u) �= ∅.

– The challenger runs Encrypt(EK,BN ,BR), and obtains a header hdr and a
key K ∈ K. Next, the challenger draws a random bit b, sets Kb = K, picks
up randomly K1−b in K, and gives (hdr, K0, K1) to the adversary A.

– The adversary A outputs a bit b′.

The adversary A wins the previous game when b′ = b. The advantage of A in
this game, with parameters (λ, n, (B(u))1≤u≤n), is |2 Pr[b′ = b] − 1|, where the
probability is taken over the choices of b and all the random bits used in the
simulation of the Setup and Encrypt algorithms:

Advind(λ, n, (B(u)),A) = |2 Pr[b′ = b] − 1|.
An attribute-based broadcast encryption scheme is semantically secure against

full static collusions if for all randomized polynomial-time (in λ) adversary A and
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for all groups of users (B(u))1≤u≤n with at most l groups, Advind(λ, n, (B(u)),A)
is a negligible function in λ when n and l are at most polynomials in λ.

From such semantically secure schemes, we can build schemes secure in a
stronger model: the use of generic transformations, like the ones presented in
[FO99a, FO99b, OP01] has a negligible cost, and we obtain chosen-ciphertext
security in the random oracle model. This explains why our security model is
limited to chosen-plaintexts attacks.

2.4 Well-Chosen Groups of Users

In real broadcast applications, one has often to deal with obvious groups of users,
because users are classified for instance by subscription package or subscription
period. These groups are easily managed by an attribute-based broadcast en-
cryption scheme, by simply using one attribute for each obvious group of users.

In some circumstances, it may happen that the group of privileged users does
not fit easily with a description based on these obvious groups of users. Even if
rare, it is preferable to be able to deal with such situations.

A solution consists in adding some extra attributes to the set of attributes
corresponding to obvious groups. These new attributes describe a binary tree
structure over the users, and allows the same management of users as in the
SD-scheme. More precisely, we place users in the leaves of a binary tree, each
node corresponds to a new attribute and each user receives the attributes of its
parent nodes. At most 2n new attributes are added, and a user belongs to at
most �log2(n)	 + 1 new groups.

With this setting, there is an attribute for each user and this simple fact
guarantees that any subset of users can be described by attributes. Moreover,
basic encryption with privileged users corresponding to members of one group,
excluding members of another group give at least the same sets as in the SD-
method presented in [NNL01]. The efficiency of the attribute-based broadcast
encryption scheme is then at least as good as in the SD-method, for any set of
privileged users.

3 Construction

In this section, we first present bilinear maps. We describe next the Setup, En-
crypt and Decrypt algorithms of a public-key attribute-based broadcast encryp-
tion scheme based on groups with a bilinear map. The correctness can then be
verified.

3.1 Bilinear Maps

In the following definitions, we consider the symmetric setting of bilinear maps,
like in [Jou00, BF01]. Let G1 and G2 be two cyclic groups of prime order p. The
group laws in G1 and G2 are noted additively. Let g1 be a generator of G1. Let
e : G1 × G1 → G2 be a non-degenerate pairing:
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– for all a, b ∈ (Z/pZ), e(a g1, b g1) = ab.e(g1, g1),
– let g2 = e(g1, g1), g2 is a generator of G2.

We make the assumption that the group laws in G1 and G2, and the bilinear
map e can be computed efficiently.

3.2 Setup Algorithm

From the security parameter λ, the first step of the setup consists in constructing
a tuple (G1, G2, g1, g2, e, p), where:

– p is a prime, the length of which is λ,
– G1 and G2 are two cyclic groups of prime order p,
– e is a non-degenerate pairing from G1 × G1 into G2,
– g1 is a generator of G1 and g2 = e(g1, g1).

Four elements (α, β, γ and δ) are randomly chosen in (Z/pZ)∗. Each group
of users Gi, mentioned in (B(u))1≤u≤n is then associated with an attribute μi

randomly chosen in (Z/pZ), such that all these attributes are pairwise different
and different from α. Another attribute μ0 is chosen with the same constraints,
corresponding to a virtual group containing no users. The encryption key is:

EK =
(
g1 , β γ δ g1 , (μi)0≤i≤l ,

(
αi g1

)
0≤i≤l

,
(
αi γ g1

)
0≤i≤l

,
(
αi δ g1

)
0≤i≤l

)
.

For each user u ∈ U , su is randomly chosen in (Z/pZ)∗. Let Ω(u) be the set of
attributes corresponding to the groups he belongs to: Ω(u) = {μi ∈ (Z/pZ) / i ∈
B(u)}. Let l(u) be the size of Ω(u), i.e. the number of groups containing u. Let
Π(u) =

∏
μ∈Ω(u)(α − μ). The decryption key of u is:

dku =
(
Ω(u), (β + su) δ g1 , γ su Π(u) g1 ,

(
αi γ δ su g1

)
0≤i<l(u)

)
.

3.3 Encryption Algorithm

If BN ∩ BR �= ∅, the encryption algorithm aborts and returns ⊥, since a user
can not be simultaneously inside and outside a given group of users. Otherwise,
let ΩN = {μi / i ∈ BN} and ΩR = {μi / i ∈ BR}. Let lN = |BN | be the
number of required groups and lR = |BR| be the number of revoked groups1. Let
ΠN =

∏
μ∈ΩN (α − μ), let ΠR =

∏
μ∈ΩR(α − μ) and let ΠNR = ΠNΠR. Let z

be randomly chosen in (Z/pZ)∗. The result of the encryption is:

hdr =
(
ΩN , ΩR, z ΠNR g1 , γ z ΠN g1 ,

(
αi δ z g1

)
0≤i<lR

)
, K = β γ δ z ΠN g2.

All these elements can be computed using only the encryption key EK.

1 A slight modification occurs when BR is empty: in such case, the encryption considers
that the virtual group containing no users is revoked and then ΩR = {μ0}, lR = 1.
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3.4 Decryption Algorithm

We consider here the decryption of a header hdr with a decryption key dku:{
dku = (Ω(u), dk1, dk2, dk3,0, . . . , dk3,l(u)−1) ,

hdr = (ΩN , ΩR, hdr1, hdr2, hdr3,0, . . . , hdr3,lR−1) .

The receiver u is valid for this header if Ω(u) contains ΩN and if the
intersection between ΩR and Ω(u) is empty. To decrypt the header, the
valid receiver u uses the extended Euclidean algorithm over the polynomials∏

μ∈(ΩN∪ΩR)(X − μ) and
∏

μ∈Ω(u)(X − μ). It obtains two unitary polynomials,
V (X) =

∑
0≤i<l(u) viX

i and W (X) =
∑

0≤i<lR wiX
i, in (Z/pZ)[X ], such that:

V (X)
∏

μ∈(ΩN∪ΩR)

(X − μ) + W (X)
∏

μ∈Ω(u)

(X − μ) =
∏

μ∈ΩN

(X − μ).

From these polynomials, the receiver computes the key:

K(dku, hdr) = e(dk1, hdr2) − e

�
�

l(u)−1�
i=0

vi dk3,i , hdr1

�
� − e

�
�dk2 ,

lR−1�
i=0

wi hdr3,i

�
� .

3.5 Proof of Correctness

If dku is the valid decryption key given to a user u, if hdr is a header built using
the encryption and if u is a valid user for hdr, then the decryption gives:

K(dku, hdr) = (β + su) γ δ z ΠN g2 − γ δ z su V (α)ΠNR g2 − γ δ z su W (α)Π(u) g2.

By definition of the two polynomials V and W , we have the following rela-
tion: V (α)ΠNR + W (α)Π(u) = ΠN . The computed key is then exactly the key
associated with the header in the encryption:

K(dku, hdr) = (β + su) γ δ z ΠN g2 − γ δ z su ΠN g2 = β γ δ z ΠN g2.

4 Security of the Scheme

The previous scheme can be proved in different ways. The usual strategy is first
to define some security assumption and to prove this assumption in the generic
model of groups with pairing. The reduction of the security of the scheme to this
assumption concludes the proof. Following this strategy, we need a new security
assumption which is an extension of the decisional version of the General Diffie-
Hellman Exponent (GDHE) problem, precisely studied in the full version of
[BBG05]. For the sake of simplicity, we prefer here a more direct proof in the
generic model of groups with pairing.

In this section, we define the decisional problem upon which our broadcast
encryption mechanism is built. We assess its security in the framework of the
generic model of groups with pairing.
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4.1 A Decisional Problem

Let G1 and G2 be two cyclic groups of prime order p and e be a non-degenerate
pairing from G1×G1 into G2. Let g1 be a generator of G1 and g2 = e(g1, g1). Let
α, β, γ, δ, z be elements of (Z/pZ)∗. For all i ∈ {0, . . . , l}, let μi be an element
of (Z/pZ) different from α and from μj where j < i.

The encryption key is:

EK =
(
g1 , β γ δ g1 , (μi)0≤i≤l ,

(
αi g1

)
0≤i≤l

,
(
αi γ g1

)
0≤i≤l

,
(
αi δ g1

)
0≤i≤l

)
.

For each user u ∈ U , Ω(u) is a subset of {μ1, . . . , μl}. Let l(u) = |Ω(u)| and
let Π(u) =

∏
μ∈Ω(u)(α − μ). The decryption key dku of the user u is:

dku =
(
Ω(u), (β + su) δ g1 , γ su Π(u) g1 ,

(
αi γ δ su g1

)
0≤i<l(u)

)
.

Let ΩN be a subset of {μ1, . . . , μl}, let ΩR be a non-empty subset of
{μ0, . . . , μl} such that ΩN ∩ ΩR = ∅, let lR = |ΩR|. Let R be the set of re-
voked users for these sets:

R =
{
u ∈ U / Ω(u) ∩ ΩN �= ΩN or Ω(u) ∩ ΩR �= ∅} .

Let ΠN =
∏

μ∈ΩN (α − μ), let ΠR =
∏

μ∈ΩR(α − μ) and let ΠNR = ΠNΠR.
The header hdr and the key K are defined by:

hdr =
(
ΩN , ΩR, z ΠNR g1 , γ z ΠN g1 ,

(
αi δ z g1

)
0≤i<lR

)
, K = β γ δ z ΠN g2.

Let b be a bit, let K1−b be an element of (Z/pZ)∗, let Kb = K. The decisional
problem is the following: guess b from the knowledge of EK, hdr, K0, K1 and all
the dku, where u ∈ R.

4.2 Interpretation in the Generic Model

In this section, we use the notations of the full version of [BBG05] in order to
assess the difficulty of the preceding decisional problem in the generic model of
groups with pairing model. This extends the classical model of generic groups
presented in [Nec93, Sho97].

The first part of the proof consists in showing that there exists no formula
giving the key from the header, the encryption key, and the decryption keys
corresponding to revoked users. The second part details why an adversary can
not distinguish the key from a random element in the generic model of groups
with pairing.

No Formula. Let P be the ring of polynomials over the variables A, B, C, D, Z
and {Su, u ∈ R}. Each of these variables represent an element picked at random
in the decisional problem and not explicitly unveiled: A is used for α, B for β,
C for γ, D for δ, Z for z and for all u ∈ U , Su is used for su.
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Let D be the tuple of elements in P , corresponding to the discrete logarithms
of elements in G1 given to an adversary in the problem. The tuple D contains
1, B C D, Z ΠNR(A), C Z ΠN (A) and the following polynomials:

• Ai , Ai C and Ai D for all i ∈ {0, . . . , l},
• (B + Su)D and C Su Πu(A), for all u ∈ R,

• Ai C D Su, for all u ∈ R and i ∈ {0, . . . , l(u) − 1},
• Ai D Z for all i ∈ {0, . . . , lR − 1},

where
ΠN(A) =

∏
μ∈ΩN

(A − μ), ΠR(A) =
∏

μ∈ΩR

(A − μ),

Πu(A) =
∏

μ∈Ω(u)

(A − μ), ΠNR(A) = ΠN (A)ΠR(A).

Lemma 1. Let M be the sub-Z-module of P generated by all products of
elements of D. If lR ≤ √

p/2 and for all u, l(u) ≤ √
p/2, the element

B C D Z ΠN (A) is an element of M with probability less than 1/
√

p, this last
probability being taken over all possible choices of the attributes μi in (Z/pZ).

Proof. This lemma is proved in appendix A.1.

Indistinguishability in the Generic Model. In the generic model of groups
with pairing, we consider two injective maps ξ1 and ξ2 from (Z/pZ) into {0, 1}∗,
also known as encoding functions. The additive law on (Z/pZ) induces a group
law over ξ1(Z/pZ) and ξ2(Z/pZ), and the sets ξ1(Z/pZ) and ξ2(Z/pZ) together
with these group laws are respectively denoted by G1 and G2. Oracles corre-
sponding to the group law and the inverse law of each group are provided.
A new law, corresponding to the pairing, is also given as an oracle: for all
x, y ∈ G1, e(x, y) = ξ2(ξ1

−1(x) × ξ1
−1(y)) ∈ G2. An algorithm computing in

this model has only access to these 5 oracles, and has no information about ξ1

and ξ2: its computations are based on queries to these oracles.
In our case, this model means that a challenger will use randomly chosen

encoding functions from (Z/pZ) into a set of p binary strings. The challenger
randomly chooses α, β, γ, δ, z, (μi)0≤i≤l, (su)u∈U following their constraints,
and gives to the adversary all values ξ1 (f(α, β, γ, δ, z, s1, . . . , sn)), where f is in
the tuple D. The adversary receives moreover ξ2(κ0) and ξ2(κ1),where κ1−b is
chosen randomly in (Z/pZ)∗ and κb = β γ δ zΠN . The adversary makes then
queries to oracles and finally outputs its guess b′.

We use the following theorem, proposed and proved in the full version of
[BBG05] (Theorem A.2):

Theorem 1. Let D be a subset of P of size k and suppose that for all f ∈ D,
deg(f) ≤ d. Let φ be an element of P such that φ is not is the sub-Z-module
spanned by the products of any two elements of D. We consider an adversary
which receives the set {ξ1 (f(α, β, γ, δ, z, s1, . . . , sn)) / f ∈ D}, ξ2(κ0) and ξ2(κ1),
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where κ1−b is chosen randomly in (Z/pZ)∗ and κb = φ(α, β, γ, δ, z, s1, . . . , sn).
All such adversary which is allowed to issue at most q queries to the oracles can
not guess the bit b with a probability significantly better than 1/2 :∣∣∣∣Pr[b′ = b] − 1

2

∣∣∣∣ ≤ max(2d, deg(φ)) (q + 2k + 2)2

2p
.

In our context, the set D contains at most nl+3(n+ l)+7 elements. Moreover
these elements have degree less than l+2 and the degree of φ = B C D R ΠN (A)
is less than l + 4. If φ is not in the span generated by the products of any two
elements of D, this lemma implies:∣∣∣∣Pr[b′ = b] − 1

2

∣∣∣∣ ≤ (l + 2) (q + 2nl + 6n + 6l + 14)2

p
.

The results of Lemma 1 and Theorem 1 give the following theorem:

Theorem 2. In the generic model of groups with pairing, the advantage of an
adversary for the problem defined in Part 2.3 of the attribute-based broadcast
encryption scheme presented in Section 3, issuing at most q queries to the oracles
is bounded by:

(l + 2) (q + 2nl + 6n + 6l + 14)2

p −√
p

,

where n is the number of users and l is the number of groups of users.

Proof. We only have to divide the maximum probability obtained by the The-
orem 1 by the factor 1 − 1/

√
p which is a lower bound for the probability that

the polynomial φ is not in the sub-Z-module generated by products of elements
of D which is a consequence of the Lemma 1. The condition on the degrees in
the Lemma 1 is verified, l being polynomial in the security parameter λ whereas
p is exponential in this same parameter.

The arguments that n, q and l are at most polynomials in the security pa-
rameter λ, whereas p is exponential in λ, yield moreover that the given bound
is a negligible function of the security parameter. This concludes the proof of
security of our attribute-based broadcast encryption scheme.

5 Conclusion

In this paper, we have built a new public-key broadcast encryption scheme espe-
cially interesting when dealing with groups of users defined by the conjunction
and exclusion of some attributes. We have described a practical application where
none of previously existing broadcast or attribute-based encryption schemes be-
have in a suitable manner.

We have given a generic way to use attributes in order to manage groups of
users in an efficient way. Finally, we have proved that our scheme is semantically
secure against full static collusions in the generic model of groups with pairing.
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It would be interesting to investigate the possibility to improve the access
structure of our scheme by implementing efficiently the OR, or a threshold func-
tionality. We also believe that the underlying problem of our scheme, based upon
the reconstruction of the greatest common divisor of polynomials, may have some
other interesting applications.

Acknowledgments. The authors would like to thank Cécile Delerablée for help-
ful comments on earlier drafts of this paper.
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A Proof of Lemma 1

A.1 Proof of Lemma 1

Let D′ be the set of elements of P which are products of pairs of elements of
D. By definition, D′ generates M. Suppose that B C D Z ΠN (A) ∈ M. Then
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it is a linear combination with coefficients in Z of elements of D′. Considering
the elements of D′ as polynomials with respect to the variable C, we see that
B C D Z ΠN (A) can only be obtained as a linear combination of terms linear in
the variable C. In the same way, it can only be obtained as a linear combination
of terms linear in the variables D and Z.

All elements in P are homogeneous of degree 0 or 1 in the set of variables
{B} ∪ {Su, u ∈ R}. Elements in D′ are then homogeneous of degree 0, 1 or 2
in the same set of variables, and the polynomial B C D Z ΠN (A) can only be
obtained as a linear combination of homogeneous terms of degree 1.

These terms of D′ which are simultaneously linear in the variables C, D and
Z, and homogeneous of degree 1 in the set of variables {B} ∪ {Su, u ∈ R} are
listed in the four sets below:

D′
1 =

{
B C D Z ΠNR(A)

}
,

D′
2 =

{
(B + Su)C D Z ΠN (A) / u ∈ R}

,

D′
3 =

{
Ai C D Z Su Πu(A) / u ∈ R, i ∈ {0, . . . , lR − 1}} ,

D′
4 =

{
Ai C D Z Su ΠNR(A) / u ∈ R, i ∈ {0, . . . , l(u) − 1}} .

The polynomial in D′
1 is not B C D Z ΠN(A), since ΩR �= ∅. As B only

appears in polynomials in D′
1 and D′

2, at least one polynomial in D′
2 must be used

in the linear combination of elements of D′ which is equal to B C D Z ΠN (A).
We have to cancel linearly independent terms of the form Su C D Z ΠN (A)

appearing in the elements of D′
2 used in the linear combination. By considering

only linear terms in this specific Su in the sets D′
3 and D′

4, one can see that it is
necessary to build a relation of the form

ΠN(A) =
( lR−1∑

i=0

λi Ai
)

Πu(A) +
( l(u)−1∑

i=0

λ′
i Ai

)
ΠNR(A). (1)

By hypothesis, the user u is revoked. We have two cases:

– Either u is in a revoked group, and Ω(u)∩ΩR �= ∅. We consider an attribute
μ in this intersection: the polynomial A − μ divides Πu(A) and ΠNR(A),
and thus it divides the right part of the equation. Since ΩN ∩ ΩR is empty,
A − μ does not divide ΠN (A), and the relation (1) can not exist.

– Either u is not in an imposed group, and ΩN is not included in Ω(u).
So ΠN (A) does not divide Πu(A). As ΠN (A) divides ΠNR(A), it divides
(
∑lR−1

j=0 λ′
jA

j)Πu(A) as well. It means that we have:

( lR−1∑
i=0

λiA
i
)

Πu(A) = ΠN (A) Q(A) πu(A),
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where Q(A) is a strict divisor of
∑lR−1

i=0 λiA
i and πu(A) is divisor of Πu(A).

So Equation (1) is equivalent to the following equation:

Q(A)πu(A) +
( l(u)−1∑

i=0

λ′
iA

i
)

ΠR(A) = 1, with deg(Q) < deg(ΠR) − 1.

According to Lemma 2 given in next section of this appendix, such a relation
does happen with probability less than 1/

√
p.

In one case the relation (1) does not exist, in the other case such a relation
exists with a probability less than 1/

√
p. So with probability greater than 1 −

1/
√

p there is a contradiction with the hypothesis that B C D Z ΠN (A) is an
element of M.

A.2 Lemma 2

Consider P1 and P2 two unitary polynomials of the ring (Z/pZ)[X ] with deg P1 =
d1 and deg P2 = d2. We suppose that P1 and P2 are relatively prime. By Bezout’s
Theorem, there exists V1, V2 in (Z/pZ)[X ] unitary such that

V1P1 + V2P2 = 1, with deg V1 < d2 and deg V2 < d1. (2)

The condition over the degrees determines uniquely V1 and V2. We are interested
here in computing the probability that deg V1 < d2 − 1. We have the following
lemma:

Lemma 2. For all (d1, d2) ∈ (N∗)2, for all prime p such that p ≥ (d1 + d2)2,
the probability taken over all the pairs of relatively prime unitary polynomials
(P1, P2) in (Z/pZ)[X ] with degree d1 and d2 that the pair (V1, V2) of unitary
polynomials defined uniquely by the relation (2) satisfies deg V1 < d2−1 is upper
bounded by 1/

√
p.

Proof. Let P1 = Xd1 +
∑d1−1

k=0 νk Xk and P2 = Xd2 +
∑d2−1

k=0 ν′
k Xk be two

unitary polynomials of (Z/pZ)[X ], with degrees d1 ∈ N
∗ and d2 ∈ N

∗. These two
polynomials are relatively non primes if and only if the Sylvester determinant of
dimension d1 + d2 cancels:

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν0 0 · · · · · · 0 ν′
0 0 · · · 0

ν1 ν0
. . .

... ν′
1 ν′

0

. . .
...

... ν1
. . . . . .

...
... ν′

1

. . . 0

νd1−1

...
. . . . . . 0

...
...

. . . ν′
0

1 νd1−1
. . . ν0 ν′

d2−1

... ν′
1

0 1
. . . ν1 1 ν′

d2−1

...
...

. . . . . . . . .
... 0 1

. . .
...

...
. . . . . . νd1−1

...
. . . . . . ν′

d2−1

0 · · · · · · 0 1 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.
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Expanding this determinant, one obtains a polynomial of degree d1 + d2 − 1
in the variables ν0, . . . , νd1−1, ν

′
0, . . . , ν

′
d2−1 over (Z/pZ). By Lemma 1 of [Sch80],

the probability that this polynomial cancels is bounded by (d1 + d2 − 1)/p,
where the probability is taken over the values of ν0, . . . , νd1−1, ν

′
0, . . . , ν

′
d2−1. As

a consequence, there is at least (p+1−d1−d2) pd1+d2−1 pairs of relatively prime
unitary polynomials of degree d1 and d2.

From now on, we suppose that P1 and P2 are relatively prime unitary polyno-
mials. Let (V1, V2) be defined by the relation (2), we suppose that deg V1 < d2−1.
We have immediately that deg V2 < d1 − 1. The relation (2) with these degree
conditions in the (Z/pZ) vector space (Z/pZ)[X ] implies that the following fam-
ily is non free:(

1, {P1(X)Xk / k ∈ {0, . . . , d2 − 2}}, {P2(X)Xk / k ∈ {0, . . . d1 − 2}}) .

This property is captured by the cancellation of the following determinant of
dimension d1 + d2 − 1 depending on the coefficients of P1 and P2:

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ν0 0 · · · · · · 0 ν′
0 0 · · · 0

0 ν1 ν0
. . .

... ν′
1 ν′

0

. . .
...

...
... ν1

. . . . . .
...

... ν′
1

. . . 0
... νd1−1

...
. . . . . . 0

...
...

. . . ν′
0

... 1 νd1−1
. . . ν0 ν′

d2−1

... ν′
1

... 0 1
. . . ν1 1 ν′

d2−1

...
...

...
. . . . . . . . .

... 0 1
. . .

...
...

...
. . . . . . νd1−1

...
. . . . . . ν′

d2−1

0 0 · · · · · · 0 1 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Expanding this determinant, one obtains a polynomial of degree d1 + d2 − 3
in the variables ν0, . . . , νd1−1, ν

′
0, . . . , ν

′
d2−1 over (Z/pZ). Again by Lemma 1 of

[Sch80], the probability that this polynomial cancels is bounded by (d1+d2−3)/p,
where the probability is taken over the values of ν0, . . . , νd1−1, ν

′
0, . . . , ν

′
d2−1. As a

consequence, there exists at most (d1 +d2 −3) pd1+d2−1 pairs of relatively prime
unitary polynomials of degree d1 and d2 such that Bezout’s equation returns a
unitary polynomial V1 of degree strictly less than d2 − 1.

We just have to compute the quotient of the sizes of the two aforementioned
sets in order to bound the probability that a pair of relatively prime unitary
polynomials verifies Bezout’s equation (2) with deg(V1) < d2 − 1:

d1 + d2 − 3
p + 1 − d1 − d2

.

If d1 + d2 ≤ √
p, this probability is bounded by 1/

√
p.
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Abstract. In this paper, we prove lower bounds for a large class of
Subset Cover schemes (including all existing schemes based on pseudo-
random sequence generators). In particular, we show that

– For small r, bandwidth is Ω(r)
– For some r, bandwidth is Ω(n/ log(s))
– For large r, bandwidth is n − r

where n is the number of users, r is the number of revoked users, and s
is the space required per user.

These bounds are all tight in the sense that they match known con-
structions up to small constants.

Keywords: Broadcast Encryption, Subset Cover, key revocation, lower
bounds.

1 Introduction

A Broadcast Encryption scheme is a cryptographic construction allowing a
trusted sender to efficiently and securely broadcast information to a dynamically
changing group of users over an untrusted network. The area is well studied and
there are numerous applications, such as pay-per-view TV, CD/DVD content
protection, and secure group communication. For instance, the new Advanced
Access Content System (AACS) standard, which is used for content protection
with next-generation video disks, employs Broadcast Encryption.

A Broadcast Encryption scheme begins with an initialization phase where
every user is given a set of secrets. Depending on the application, a “user” in the
scheme could be an individual, a subscriber module for a cable TV receiver, or a
model of HD-DVD players. When the initialization is complete, the sender can
transmit messages. For each message it wants to transmit, it selects a subset of
users to receive the message. We will refer to this subset of intended recipients
as members (another common name is the privileged set). It then encrypts and
broadcasts the message, using the secrets of the members, in such a way that
only the members can decrypt the broadcast. Even if all the non-members (or
revoked users) collude, they should not be able to decrypt the broadcast. The
term key revocation scheme is also used for Broadcast Encryption schemes.
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The performance of a Broadcast Encryption scheme is generally measured
in three parameters: bandwidth, space and time. Bandwidth is the size of the
transmission overhead incurred by the scheme, space is the amount of storage
for each user, and time is a measurement of the computation time needed for
users to decrypt a message. In this paper, we will focus on the tradeoff between
bandwidth and space.

In general, Broadcast Encryption schemes work by distributing a fresh mes-
sage key, so that only the current members can recover the message key. The
actual message is then encrypted under the message key and broadcast. This con-
struction means that the bandwidth, i.e., the overhead incurred by the scheme,
does not depend on the sizes of the messages the sender wants to transmit.

The problem of Broadcast Encryption was first described by Berkovits in [5],
and later Fiat and Naor started a more formal study of the subject [7].

There are two naive schemes solving the broadcast encryption problem. In the
first naive scheme, we give each user her own secret key shared with the sender.
With this scheme, the space is 1 and the bandwidth is m, where m the number
of members. In the second naive scheme, we assign a key to every possible subset
of users, and give all users belonging to a subset access to the key for that subset.
In this case the space is 2n−1, where n is the number of users, and the bandwidth
is 1.

In 2001, the Subset Cover framework was introduced by Naor et al. [16],
along with two schemes, Complete Subtree and Subset Difference. In Subset
Cover based schemes, there is a family of subsets of users, where each subset is
associated with a key. When the sender wishes to make a broadcast, she finds
a cover of the members using the subsets and encrypts the message key with
each of the subset keys used in the cover. Both naive schemes can be seen as
Subset Cover schemes; in the scheme with constant space, the family consists
only of singleton subsets, and in the scheme with constant bandwidth, the family
consists of all subsets of users. The Subset Cover principle is very general, and
most published schemes are Subset Cover schemes.

In most Subset Cover schemes, each user is a member of a large number
of subsets, so storing the key for each subset would be expensive in terms of
memory. To solve this, the keys are chosen in such a way that users can compute
the keys they should have using some smaller set of secrets and a key derivation
algorithm. Schemes where keys are unrelated are called information-theoretic.

The most common key derivation algorithm is a straightforward application
of a Pseudo-Random Sequence Generator (PRSG). The first protocol of this
type was Subset Difference which has a bandwidth of min(2r − 1, n − r) with
a user space s = O(

log2 n
)

where r is the number of revoked users. Many
more schemes [11,4,10,13,12] have been proposed using the same kind of key
derivation. They all have a bandwidth of O(r), the same as Subset Difference,
and their improvements lie in that some of them have a space of O(log n), some
offer increased flexibility, and some improve the bandwidth to c · r for c < 1 (as
opposed to c = 2 in the original scheme).
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Other forms of key derivation, such as RSA accumulators [2,3,8] and bilinear
pairings [6], have also been studied for Subset Cover based broadcast encryption.

There have been attempts to reduce bandwidth by modifying the problem,
for instance by allowing some free-riders (non-members who can still decrypt
the broadcast) [1] or relaxing the security requirements [14].

There has been some analysis of lower bounds for Broadcast Encryption

schemes. In 1998 Luby and Staddon [15] showed s ≥
(

(n
r)

1/b

b − 1
)

/r for Broad-

cast Encryption without key derivation, using the Sunflower lemma. This bound
was sharpened in 2006 by Gentry et al. [9] to s ≥ (

(
n
r

)1/b − 1)/r. We remark
that schemes using key derivation beat these bounds.

1.1 Our Contribution

Table 1. Upper and lower bounds for Subset Cover schemes

Key derivation Lower bound Assumption Upper bound Space

None r log(n/r)
log(rs) — r log(n/r) s = O(log n)

PRSG, small r Ω(r) (our) s ≤ poly(n) O(r) s = O(log n)

PRSG, worst r Ω
�

n
log s

�
(our) — O

�
n

log s

�
—

PRSG, large r n − r (our) r ≥ n − n
6s

n − r s = O(1)

We present lower bounds for a large class of Subset Cover schemes, including
existing schemes based on PRSGs. These lower bounds match known construc-
tions up to a small constant, showing that current PRSG-based schemes are
essentially optimal. Table 1 gives a summary of our results.

Our bounds on the bandwidth usage are strong, and show that the early Sub-
set Difference scheme is in fact very close to being optimal. For instance, our
bound for small r shows that improving the bandwidth to o(r) would require
super-polynomial space, which is unreasonable. In fact, depending on the appli-
cation, space is generally considered reasonable if it is at most logarithmic (or
possibly polylogarithmic) in n.

Our second result implies that, in order to get constant bandwidth b, the
space required is exponential. It also implies that, using polylogarithmic space,
the worst case bandwidth will be almost linear, n/ log log n.

The third result says that, for a small number of members, the first naive
scheme is optimal. With polylogarithmic amount of space, this holds even if the
number of members is almost linear, n/ poly log n.

Also, in most current schemes, the decryption time for members is limited
to be polylogarithmic in n. Our proofs do not make use of any such restric-
tions, so allowing longer decryption time than current schemes cannot lower the
bandwidth requirements.
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1.2 Organization of This Paper

In Section 2 we discuss the structure of Subset Cover based Broadcast Encryp-
tion schemes and define the class of schemes, Unique Predecessor schemes, for
which we prove lower bounds. In Section 3 we give a proof showing that with
polynomial memory in clients, the bandwidth consumption is Ω(r) for “small”
r. In Section 4, we prove a bound for generic r, and in particular show that
for r ≈ n

e , the bandwidth is at least n
1.89 log s . Section 5 shows that for a large

number of revoked users, the worst case bandwidth is n− r, i.e., the same as for
the naive scheme where every user has a single key.

2 Preliminiaries

In this section, we review some preliminaries. The concepts of Broadcast Encryp-
tion and Subset Cover schemes are described, and notation will be introduced.
We also define a class of Broadcast Encryption schemes called Unique Predeces-
sor (UP) schemes to which our lower bounds apply.

2.1 Broadcast Encryption

In Broadcast Encryption, we have a trusted sender, and a set of users. After
some initialization, the sender can securely broadcast messages to some subset
of the users in a way which is efficient for both the sender and users. We will
refer to the users who are targeted by a broadcast as members and the users who
are not as revoked users. As the name Broadcast Encryption implies, we assume
there is a single broadcast medium, so all users see the messages transmitted by
the sender.

When evaluating the efficiency, three parameters are measured: bandwidth,
space, and time (for decryption). Most Broadcast Encryption schemes transmit
encrypted keys, so we will measure the bandwidth in terms of the number of
encrypted keys to be transmitted. The sender uses the broadcast encryption to
distribute a message key Km and then encrypts the actual message under Km,
so the bandwidth overhead incurred does not depend on the size of the actual
message.

The bandwidth required for a scheme with n users out of which r are revoked
can, and generally will, vary, depending on which r users are revoked. We define
the bandwidth b = f(n, r) of the Subset Cover scheme as being that of the
maximum bandwidth over the choice of the set of revoked users R ⊆ [n] such
that |R| = r. Thus, when we say that the bandwidth is at least c1r for r ≤ nc2 ,
we mean that for every such r, there is at least one choice of r revoked users
which requires bandwidth at least c1r.

Similarly, we measure the space as the number of keys, seeds, or other secrets
that a user must store to be able to correctly decrypt transmissions she should
be able to decrypt. It need not be the case that all users have to store the same
amount of secrets, so we let the space of a scheme be the size of the largest
amount of secrets any one user must store.
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We remark that, in general, the keys and secrets may vary in length, so that
our convention of simply counting the number of keys may not measure the
exact bandwidth or space. However, such differences are generally small and not
taking them into account costs us at most a small constant factor.

In this paper, we will not concern ourselves with the computational time of the
clients. Our only assumption will be the very natural (and necessary) assumption
that users cannot derive keys which they should not have access to.

Broadcast Encryption schemes can be classified as either stateful or stateless.
In a stateful scheme, a transmission from the sender may update the set of secrets
a user uses to decrypt future broadcasts, whereas in the stateless case, the secrets
are given to the user at initialization and then remain constant. We focus on the
largest family of Broadcast Encryption schemes, Subset Cover schemes, and such
schemes are stateless.

2.2 Notation

Throughout the paper, we will use the following notation. We let n denote the
total number of users, and identify the set of users with [n] = {1, . . . , n}. We
let m denote the number of members and r the number of revoked users (so
n = r + m). The space of a scheme is denoted by s and the bandwidth by b.
Note that we are generally interested in the bandwidth as a function of r (or
equivalently, of m).

2.3 Subset Cover Schemes

1 2

1, 2 1, 4

3

2, 3

4

3, 4

1, 2, 3 1, 3, 4

(a) Example of a Subset Cover
scheme

1

1, 2 1, 4

2

2, 3

3 4

3, 4

1, 2, 3, 4

(b) Example of a Subset Cover
scheme S with indegree 1

Fig. 1. Illustration of Subset Cover schemes

In this paper, we consider a family of Broadcast Encryption schemes known as
Subset Cover schemes, introduced in [16]. In a Subset Cover scheme, the sender
starts by creating a family of subsets of users. Each such subset is associated
with a key. To make an encrypted broadcast, the sender first computes a cover
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of the current members. A cover is a choice of subsets from the family, so that
all members belong to at least one chosen subset, and no revoked user belong to
any chosen subset. The message broadcasted will then contain, for each subset
in the cover, the message key encrypted under that subset’s key.

Without key derivation, each user would have to store the key for each subset
of which she is a member. However, when using key derivation, keys of subsets
are related in a way that allows a user to derive keys of subsets by applying a
suitable function, typically a one way function, to her set of secrets. Thus the
space decreases, as one secret can be used to derive multiple keys.

Example 1. Figure 1(a) shows an example of a Subset Cover scheme on n = 4
users. In the example, the family of subsets consists of all four singleton subsets,
four subsets of size 2, and two subsets of size 3. An edge from Si to Sj indicates
that the secrets used to derive the key for Si can also be used to derive the key
for Sj . Thus, the secret used by user 2 to derive the key for her singleton set
{2} can also be used to derive the keys for nodes {1, 2}, {2, 3}, and {1, 2, 3}.
Without key derivation, she would have had to store four keys, but now she only
needs to store one secret.

More formally, a Subset Cover scheme consists of a family of subsets F = {S} ⊆
2[n] with the property that for every selection of members M ⊆ [n] there is a
cover T ⊆ F such that ∪S∈T S = M . There is a set of “secrets” K, and each
user i ∈ [n] is given a subset P (i) of these secrets. Additionally, there is, for
each S ∈ F , a set K(S) ⊆ K of secrets and a secret key k(S), with the following
properties:

– Any user with access to a secret in K(S) can compute k(S).
– For every S ∈ F and user i ∈ [n], P (i) ∩ K(S) 	= ∅ if and only if i ∈ S.
– An adversary with access to all secrets in K\K(S) cannot compute k(S)

To send a message key to the set M ⊆ [n] of members, the cover T ⊆ F of
subsets is chosen in such a way that ∪S∈T S = M . The server then broadcasts
the message key encrypted using k(S) for each S ∈ T . The bandwidth required
for this is |T |. We remark that a Subset Cover scheme is required to be able to
cover any member set M ⊆ [n].

Naturally, a Subset Cover scheme should also include efficient ways of comput-
ing k(S) and the cover T , but as we are interested in lower bounds on the tradeoff
between space and bandwidth, these computational issues are not relevant to us.

We denote by B(F) the partially ordered set on the elements of F in which
S1 ≤ S2 if K(S1) ⊆ K(S2), i.e., if any secret that can be used to deduce k(S1)
can also be used to deduce k(S2). Note that S1 ≤ S2 implies S1 ⊆ S2 (since any
user u ∈ S1 will be able to compute k(S2) and thus has to be an element of S2).
From now on, we will ignore the set of secrets and the keys, and only study the
poset B(F), since it captures all information that we need for our lower bounds.
In Figure 1 we show Hasse diagrams of B(F) for two toy example Subset Cover
schemes.
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The number of secrets a user u needs to store, i.e., the space s, is precisely
the number of elements S of B(F) such that u occurs in S, but not in any of
the predecessors of S.

Lemma 1. Any Subset Cover scheme will have at least one singleton node for
each user.

Proof. If there is a user which does not occur in a singleton node, the Broadcast
Encryption scheme would fail when the sender attempts to broadcast only to
that user. ��

2.4 Key Derivation Based on a PRSG

The most common type of key derivation uses a Pseudo-Random Sequence Gen-
erator (PRSG), or equivalently, a family of hash functions. This type of key
derivation was first used in the context of Broadcast Encryption in the Subset
Difference scheme [16]. In [4] it is called Sequential Key Derivation Pattern. The
key derivation described here is the intuitive way to do key derivation using a
PRSG, and all Subset Cover schemes that the authors are aware of that use a
PRSG (or a family of hash functions) do have this form of key derivation.

Let � be a security parameter and let H(x) be a pseudo-random sequence
generator taking as seed a string x of length �. Let H0(x) denote the first � bits
of output when running H(x), let H1(x) denote the next � bits, and so on.

Each subset S in the scheme will be assigned a seed p(S) and a key k(S). The
key k(S) will be computed as k(S) = H0(p(S)), so from the seed for a subset,
one can always compute the key for that subset. All secrets given to users will
be seeds, no user is ever given a key directly. The reason for this is that it gives
an almost immediate proof of the security of the scheme by giving the keys the
property of key indistinguishability, which was proved in [16] to be sufficient for
the scheme to be secure in a model also defined in [16].

Consider an edge e = (Si, Sj) in the Hasse diagram of B(F). The edge means
that someone with access to the secrets to deduce k(Si), i.e. p(Si) should also
be able to deduce p(Sj). If we let p(Sj) = Hc(p(Si)) for some c ≥ 1, anyone
with p(Si) can derive p(Sj). For a node Si with edges to Sj1 , Sj2 , . . . , Sjk

we let
p(Sj1) = H1(p(Si)), p(Sj2) = H2(p(Si)), . . . p(Sjk

) = Hk(p(Si)).
This construction cannot support nodes with indegree greater than 1, since

that would require p(Sj) = Hc1(p(Si1 )) = Hc2(p(Si2)), which, in general, we
cannot hope to achieve. This means that the Hasse diagram will be a forest,
since all nodes have an indegree of either 0 or 1.

2.5 UP-Schemes

When the Hasse diagram of B(F) is a forest, we say that the Subset Cover scheme
is a Unique Predecessor scheme (UP-scheme). Schemes using key derivation as
described in Subsection 2.4 will always be UP-schemes. Schemes not using any
key derivation (there are no edges in B(F)) are also UP-schemes, this class of
schemes is sometimes referred to as information-theoretic.
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Example 2. The scheme in Figure 1(a) is not a UP-scheme, since there are several
sets which have multiple incoming edges, for instance the set {1, 2}. However,
the scheme S in Figure 1(b) is a UP-scheme. In this case, user 1 would have to
store two secrets, one for her singleton node, and one for the node {1, 2, 3, 4}.
The keys for nodes {1, 2} and {1, 4} can be derived from the same secret used
to derive the key for her singleton node.

We view a UP-scheme as a rooted forest S, in which each node V ⊆ [n] is labelled
with the set of users which are in V , but are not in the parent node. The number
of node labels in which a user occurs is the same as the number of secrets that
a user will need to store. Thus, when we say that a scheme S has space s we
mean that every user can be used in a label at most s times.

Lemma 2. Any Unique Predecessor scheme will have at most ns distinct subsets.

Proof. Adding a new node to a Unique Predecessor scheme means increasing the
space for at least one member. Starting from an “empty” scheme, this can be
done at most ns times. ��

2.6 Normalized UP-Schemes

To simplify the proofs, we will work with normalized UP-schemes. We will show
that we can perform a simple normalization of a UP-scheme which gives a
new scheme with the same set of users, no more space, and at most the same
bandwidth. This normalization is similar to the construction of the Flexible SD
scheme in [4].

1 2

2 4

3 4

2 3

1

4

(a) Normalization S ′ of the UP-
scheme S in Figure 1(b)

1

4

3 4

3

(b) The subscheme S ′({1, 3, 4})

Fig. 2. Normalization of UP-schemes

Definition 1. A UP-scheme S is normalized when every node of S is labelled
with exactly one user and S has exactly n trees.
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Example 3. The scheme S from Figure 1(b) is a UP-scheme, but it is not normal-
ized. Two nodes violate the normalization criteria. First, the key for {1, 2, 3, 4}
can be directly derived from the secrets used for {2, 3}, which adds two new
users at the same time. Second, the node {2, 3} also adds two users at once. In
Figure 2(a) shows a normalized scheme S′ which is essentially equivalent with
S. The key for {2, 3} can now be derived from the secret for {3}, and an extra
node {1, 2, 3} was inserted between {2, 3} and {1, 2, 3, 4}.
Lemma 3. Let S be an arbitrary UP-scheme (on n users) with space s and
bandwidth b. Then there exists a normalized UP-scheme S′ (on n users) with
space s′ ≤ s and bandwidth b′ ≤ b.

Proof. The proof consists of two steps. First we ensure that each node is labelled
with exactly one user. Second, we merge identical nodes, which will ensure that
S′ has exactly n trees.

Consider a node labelled with a set U = {u1, . . . , uk} of users with k > 1. Now,
split this node into a chain of k nodes, adding one user at a time (in arbitrary
order) rather than all k at once. Call the resulting forest S0. Note that, strictly
speaking, it is possible that S0 is not a UP-scheme as we have defined it, since
there may be several nodes representing the same subset S of users. However, it
still makes sense to speak of the space and bandwidth of S0, and we note that
the space of S0 is the same as that of S, as each user occurs in the same number
of labels in both. Furthermore, the bandwidth of S0 is no more than that of S,
since all subsets of users present in S are also present in S0, and thus, any cover
in S is also valid in S0.

Next, we describe how to merge nodes representing the same set S ⊆ [n].
Given two such nodes v1 and v2, attach the children of v2 as children to v1,
and remove v2 from the scheme. Note that this operation does not change the
bandwidth of the scheme, since only a single node is removed, and this node
represents a subset which is still present in the resulting scheme. Also, the space
for the resulting scheme will be no larger than the space for the original scheme.
The user which was the label for v2 will now need to store one secret less, whereas
the space will be the same for all other users. Let S′ be the result of applying
this merging until every set is represented by at most one node.

It remains to show that S′ has exactly n trees. By Lemma 1, there must be at
least n trees in S′. Because of the first step every root of a tree will represent a
singleton set, and because of the second step every singleton set can be present
at most once, implying that there are at most n trees. ��
We will, without loss of generality, from now on assume UP-schemes we deal
with are normalized. See Figure 2(a) for an example of a normalized UP-scheme.
We would like to remark that while normalization can only improve bandwidth
and space, it does so at the cost of time. Thus, when applied to improve the
performance of practical schemes, one has to take into account the computation
time of users, as discussed in [4].

We remark that, in general, normalization will introduce key derivation, even
if the original UP-scheme had completely independent keys.
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Definition 2. Given a UP-scheme S and a set X ⊆ [n] of users, the subscheme
of S induced by X, denoted S(X), is defined as follows: for every user y 	∈ X,
we remove all nodes of S labelled with y, and their subtrees.

In other words, S(X) contains the nodes (and thus subsets) which are still usable
when [n] \ X have been revoked. See Figure 2(b) for an example.

3 Few Revoked Users

We prove that when the number of revoked users r is small, any UP-scheme
using at most polynomial space will require bandwidth Ω(r).

As noted in the introduction, the requirement that the space is polynomial
is very generous. Anything beyond polylogarithmic space per user is generally
considered impractical.

Theorem 1. Let c ≥ 0 and 0 ≤ δ < 1. Then, any UP-scheme with n users and
space s ≤ nc will, when the number of revoked users r ≤ nδ, require bandwidth

b ≥ 1 − δ

c + 1
· r (1)

Proof. Let S be an arbitrary UP-scheme with s ≤ nc and let r ≤ nδ. An upper
bound on the number t of sets of users that can be handled using bandwidth
at most b is given by the number of sets of nodes of S of cardinality at most b.
Since S contains at most ns nodes, this is upper-bounded by

b∑
i=1

(
ns

i

)
≤ (ns)b ≤ n(c+1)b (2)

In order for S to be able to handle every set of revoked users of size r, we
need t to be at least

(
n
r

)
, giving

n(c+1)b ≥
(

n

r

)
≥ (n/r)r ≥ n(1−δ)r (3)

and the theorem follows. ��

Theorem 1 comes very close to matching many of the previous works, for instance
Subset Difference [16] with s = O(

log2 n
)

and b = min(2r−1, n−r). For r ≤ √
n,

our bound gives b ≥ r
2(1+c) which is within a factor 4 + o(1).

As mentioned in the introduction, [9] has shown a stronger bound, roughly
r log(n/r)

log(rs) , using the Sunflower lemma. However, their bound applies only to Sub-
set Cover schemes without key derivation, and is in fact stronger than existing
schemes using key derivation – e.g. the Subset Difference scheme mentioned
above for r < n1/3.
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4 Arbitrarily Many Revoked Users

In this section we show that, for a certain choice of r, any UP-scheme has to
use bandwidth at least n

1.89 log s . We start with Theorem 2, which gives a lower
bound on the bandwidth as a function of m/n. Plugging in a suitable value of
m/n in Corollary 1 will then give the desired result.

Theorem 2. Let δ ∈ (0, 1] and ε > 0. Then for every UP-scheme S with n >
2δ(1−δ)

ε2 there exists a set of users M of size δ−3ε ≤ |M |/n ≤ δ+ε which requires
bandwidth b ≥ |M | log(1/δ)

log(s/ε)

Proof. Pick M0 ⊆ [n] randomly where every element is chosen with probability
δ, independently.

Set d = logδ(ε/s) and let X be the set of users which occur at depth exactly
d in S(M0) (where the roots are considered to be at depth 1). Let M = M0 \X .
Since each node can cover at most d users of M , the bandwidth required for M
is at least |M |

d
= |M | log(1/δ)

log(s/ε)

It remains to show that there is a positive probability (over the random choice
of M0) that M ends up having the required size, as this implies that such an M
exists.

The probability that a node at depth d of S remains in S(M0) is δd = ε/s.
The total number of nodes at depth d in S is upper-bounded by ns, and thus,
the expected number of nodes at depth d in S(M0), i.e. the expected size of X ,
is at most δdns = εn. By Chebyshev’s inequality, we have Pr

[∣∣∣ |M0|
n − δ

∣∣∣ ≥ ε
]
≤

δ(1−δ)
nε2 < 1/2. By Markov’s inequality, we have Pr

[
|X|
n ≥ 2ε

]
≤ 1/2. The union

bound then gives that Pr[δ − 3ε ≤ |M |/n ≤ δ + ε] > 0. Thus, there exists some
choice of M0 such that |M | falls within this range. ��

As a corollary, we have:

Corollary 1. For any ε > 0 there exist n0 and s0 such that any UP-scheme S
with n ≥ n0 and s ≥ s0 uses bandwidth at least

n

(e ln(2) + ε) log2(s)
≈ n

1.89 log2(s)
(4)

Proof. Let δ = 1/e. Invoking Theorem 2 with parameters δ and ε′ (the value of
which will be addressed momentarily), we get a set M of size at least (δ − 3ε′)n
requiring bandwidth at least

n
δ − 3ε′

ln(s/ε′)
= n

1 − 3eε′

e ln(2) log2(s) + e ln(1/ε′)
(5)

Pick ε′ small enough so that

e ln(2)
1 − 3eε′

≤ e ln(2) + ε/2.
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Then Equation (5) is lower-bounded by Equation (4) for any s satisfying

e ln(1/ε′)
1 − 3eε′

≤ ε

2
log2(s)

log2(s) ≥
2e ln(1/ε′)
ε(1 − 3eε′)

,

and we are done. ��
We remark that Corollary 1 is tight up to the small constant 1.89, as seen by
the following theorem.

Theorem 3. There exists a UP-scheme S using bandwidth at most
⌈

n
log2(s)

⌉
.

Proof. Partition the users into �n/ log2(s)� blocks of size ≤ log2(s). Then, in
each block, use the naive scheme with exponential space and bandwidth 1, in-
dependently of the other blocks. ��

5 Bandwidth is n − r for Large r

We show that when the number of revoked users gets very large, all UP-schemes
will have a bandwith of n−r, e.g. one encryption per member. Exactly how large
r has to be for this bound to apply depends on s. This is the same bandwidth
as is achieved by the naive solution of just giving each user her own private key.

Theorem 4. For any UP-scheme S and m ≤ n
6s , there is a member set M of

size |M | = m requiring bandwidth b = |M |.
Proof. We will build a sequence M0 ⊆ M1 ⊆ M2 ⊆ . . . ⊆ Mm of sets of members
with the properties that |Mi| = i, and that the bandwidth required for Mi is i.

The initial set M0 is the empty set. To construct Mi+1 from Mi, we pick a
user u 	∈ Mi satisfying:

– There is no v ∈ Mi such that some node labelled with u occurs as the parent
of some node labelled with v

– There is no v ∈ Mi such that the root node labelled with v occurs as the
parent of some node labelled with u

– The root node labelled u has outdegree ≤ 2s

We then set Mi+1 = Mi ∪ {u}. Clearly |Mi| = i, so there are two claims which
remain to be proved. First, that the required bandwidth of Mi is i. Second, that
the process can be repeated at least m times.

To compute the bandwidth of Mi, we prove that the only way to cover Mi is
to pick the singleton sets of every u ∈ Mi. To see this, assume for contradiction
that there exists some set S with |S| > 1 that can be used when constructing a
cover. This corresponds to a node x at depth |S| of some tree, and S is given by
the labels of all nodes from x up to the root. In order for us to be able to use
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S when constructing a cover, all these nodes need to belong to Mi. However,
the first two criterions in the selection of u above guarantee that not all of these
nodes can belong to Mi. The first criterion states that, once we have added a
node, we can never add its parent. The second criterion states that, once we
have added a root, we can never add any of its children. This shows that there
can be no such S.

To see how many steps the process can be repeated, let ri be the total number
of nodes which are “disqualified” after having constructed Mi. Then, Mi+1 can
be constructed if and only if ri < n. First, r0 equals the number of roots which
have degree > 2s. Since the total number of nodes is at most ns, this number
is at most r0 ≤ n/2. When going from Mi to Mi+1, the total number of new
disqualified nodes can be at most 3s – the node added, the parents of the at
most s − 1 non-root occurrences of u, and the at most 2s children of the root
labelled with u. Thus, we have that ri ≤ n/2+3si, which is less then n if i < n

6s .
��

The lower bound of Theorem 4 is tight up to a small constant in the following
sense.

Theorem 5. There exists a UP-scheme S such that for any set M of |M | >
⌈

n
s

⌉
members, the bandwidth is b < |M |.

Proof. Partition the set of users into B =
⌈

n
s

⌉
blocks of size ≤ s, and let each

user share a key with each of the s − 1 other users in her block. Then, given a
set M of size |M | > B, there must be two users i, j ∈ M belonging to the same
block. Using the key shared by i and j to cover both them both, we see that the
bandwidth of M is at most b ≤ |M | − 1. ��

6 Conclusion

In this paper, we have shown lower bounds for a large class of Subset Cover
based Broadcast Encryption schemes. This type of scheme is probably the most
explored class of schemes today, with many constructions. Our proofs are in a
model with very relaxed constraints compared to what is considered practical, so
it would not help to simply relax requirements slightly (e.g. allowing more space
or time). The lower bounds shown in this paper match known constructions very
well.

In particular, our bounds show that it will be impossible to get a bandwidth of
o(r) without increasing the space requirements to unreasonable levels or using
some new form of key derivation. We do not have any lower bounds on the
memory needed for O(r) bandwidth, an open question is thus if it is possible to
get O(r) bandwidth with space o(log n).

Acknowledgements. The authors are grateful to Johan H̊astad for many useful
comments and discussions.
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Abstract. Public-key encryption schemes are a useful and interesting
field of cryptographic study. The ultimate goal for the cryptographer in
the field of public-key encryption would be the production of a very ef-
ficient encryption scheme with a proof of security in a strong security
model using a weak and reasonable computational assumption. This ul-
timate goal has yet to be reached. In this invited paper, we survey the
major results that have been achieved in the quest to find such a scheme.

1 Introduction

The most popular field of study within public-key cryptography is that of public-
key encryption, and the ultimate goal of public-key encryption is the production
of a simple and efficient encryption scheme that is provably secure in a strong
security model under a weak and reasonable computational assumption. The
cryptographic community has had a lot of successes in this area, but these suc-
cesses tend to fall into two categories: the production of very efficient encryption
schemes with security proofs in idealised models, and the production of less-
efficient encryption schemes with full proofs of security in strong models. The
ultimate prize has yet to be claimed.

However, we are getting closer to that important break-through. Schemes
with full security proofs are getting more efficient and the efficient schemes are
getting stronger security guarantees. This paper aims to briefly discuss some of
the history behind the production of standard-model-secure encryption schemes
and to give a personal interpretation of some of the major results.

The first attempt to prove the security of a public-key encryption scheme was
by Rabin [25] in 1979, who described an encryption scheme for which recovering
the message was as intractable as factoring an RSA modulus. Later, Goldwasser
and Micali [21] described a scheme which they could prove hid all information
about the plaintext. However, it wasn’t until the early 1990s that researchers
began to establish reliable and easy to use formal models for the security of
an encryption scheme and that the cryptographic community began to think
about constructing practical and efficient provably-secure public-key encryption
schemes.
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1.1 Notation

We will use standard notation. For a natural number k ∈ N, we let {0, 1}k denote
the set of k-bit strings and {0, 1}∗ denote the set of bit strings of finite length.
We let 1k denote a string of k ones.

We let ← denote assignment; hence, y ← x denotes the assignment to y of
the value x. For a set S, we let x

$← S denote the assignment to x of a uniformly
random element of S. If A is a randomised algorithm, then y

$← A(x) denotes
the assignment to y of the output of A when run on input x with a fresh set of
random coins. If we wish to execute A using a particular set of random coins R,
then we write y ← A(x; R), and if A is deterministic, then we write y ← A(x).

1.2 The IND-CCA2 Security Model

A public-key encryption scheme is formally defined as a triple of probabilistic,
polynomial-time algorithms (G, E ,D). The key generation algorithm G takes as
input a security parameter 1k and outputs a public/private key pair (pk , sk). The
public key implicitly defines a message space M and a ciphertext space C. The
encryption algorithm takes as input the public key pk and a message m ∈ M,
and outputs a ciphertext C ∈ C. The decryption algorithm takes as input the
private key sk and a ciphertext C ∈ C, and outputs either a message m ∈ M
or the error symbol ⊥. We demand that the encryption scheme is sound in the
sense that if C

$← E(pk , m), then m ← D(sk , C), for all keys (pk , sk) $← G(1k)
and m ∈ M.

If we are going to prove that an encryption scheme is secure, then we need
to have some formal notion of confidentiality. The commonly accepted “correct”
definition is that of indistinguishability under adaptive chosen ciphertext attack
(IND-CCA2) was proposed by Rackoff and Simon [26]. It built on the weaker
notion of IND-CCA1 security proposed by Naor and Yung [24].

Definition 1. An attacker A against the IND-CCA2 security of an encryption
scheme (G, E ,D) is a pair of probabilistic polynomial-time algorithms (A1,A2).
The success of the attacker is defined via the IND-CCA2 game:

(pk , sk) $← G(1k)
(m0, m1, state) $← AD

1 (pk)
b

$← {0, 1}
C∗ $← E(pk , mb)
b′ $← AD

2 (C∗, state)

The attacker may query a decryption oracle with a ciphertext C at any point
during its execution, with the exception that A2 may not query the decryption
oracle on C∗. The decryption oracle returns m ← D(sk , C). The attacker wins
the game if b = b′. An attacker’s advantage is defined to be

Adv IND

A (k) = |Pr[b = b′] − 1/2| . (1)
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We require that a “reasonable” attacker’s advantage is “small”. This can either
be phrased by saying that every polynomial-time attacker must have negligible
advantage under the assumption that it is hard to solve some underlying problem
(asymptotic security) or by relating the advantage ε of an attacker that runs in
time t to the success probability ε′ that an algorithm that runs in time t′ has
in breaking some underlying hard problem (concrete security). Much is often
made of the difference in these two approaches, but in practice they are very
similar – they both require that the proof demonstrate a tight reduction from
the encryption scheme to the underlying problem. This issue is discussed in more
detail in a previous paper [17].

It is sometimes convenient to work with a slightly different definition for
advantage. If the IND-CCA2 game encrypts a message defined by the bit b and
the attacker outputs the bit b′, then

Adv IND*

A (k) = |Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]| . (2)

It can easily be shown that

Adv IND*

A (k) = 2 · Adv IND

A (k) . (3)

Hence, it is sufficient to bound Adv IND*

A in order to prove security.
A scheme that is secure against attackers that can only make decryption

oracle queries before receiving the challenge ciphertext C∗ is said to be IND-
CCA1 secure. A scheme that is secure against attackers that do not make any
decryption oracle queries at all is said to be IND-CPA or passively secure.

2 The Random Oracle Methodology

No paper on the history of secure encryption schemes would be complete with-
out a mention of the random oracle methodology. In the early 1990s, after the
development of the IND-CCA2 security model, researchers turned to the random
oracle methodology [4] in order to provide proofs of security for practical public
key encryption schemes. The intuition is simple: secure hash functions would
share many properties with random functions. Hence, it made sense to model a
secure hash function as a completely random function in a security analysis.

This greatly simplifies the process of proving the security of a cryptographic
scheme. By modelling the hash function as a random function, we know that
the hash function will output completely random and independently generated
values on different inputs. Knowledge of the hash values for several different
inputs gives absolutely no information about the hash value for any other input
and therefore the only way that an attacker can compute the hash value for a
given input is to query the hash function oracle on that input. This means that
the attacker’s behaviour is no longer completely black-box – we may now observe
the attacker’s behaviour during the attack process (in some limited way). We
may even construct the responses that the hash function oracle gives in ways
that help prove the security of the cryptosystem (subject to the restriction that
they appear to the attacker to be chosen at random).
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Of course, schemes proven secure using the random oracle methodology are
not necessarily secure when the hash function is instantiated with a given fixed
hash function. There is always the possibility that the particular hash function
will interact badly with the mathematics of the encryption scheme, and that
the resulting system will be insecure. It was, however, hoped that the number of
hash functions that “interacted badly” would be small and that a scheme proven
secure using the random oracle methodology would be secure when the random
oracle was replaced with almost any hash function.

This turned out not to be true. In an amazing paper by Canetti, Goldreich
and Halevi [12], it was shown that it was possible to construct an encryption
scheme that was provably secure using the random oracle methodology, but was
insecure when the random oracle was instantiated with any hash function. The
paper notes that in the standard model (i.e. when we are not using the random
oracle methodology) the attacker has an extra piece of information not available
to the attacker in the random oracle model: the attacker has a description of
the hash function. The paper gives a scheme for which an attacker can use
this description like a password – the attacker submits the description of the
hash function to the decryption oracle as a ciphertext and the decryption oracle
helpfully returns the private key of the encryption scheme.

It is clear that the encryption scheme of Canetti, Goldreich and Halevi is
completely artificial – no real encryption scheme would make use of a decryption
algorithm that would output the private key if it were given a ciphertext of a
particular (checkable) form. However, it does act as a proof of concept: it is
possible to construct a scheme that is secure in the random oracle model, but
insecure in the standard model. We therefore cannot completely trust schemes
that are only proven secure in the random oracle model. A lot of effort has been
expended by cryptographers attempting to find a non-artificial scheme which is
secure in the random oracle model, but insecure in practice, but so far no such
scheme has been found.

Personally, I still think the random oracle model is a useful tool in cryptography.
I believe that it provides trustworthy security guarantees for the vast majority of
practical cryptosystems. Furthermore, I don’t think I know of a single industrial
company or standardisation body that would reject an efficient cryptosystem be-
cause it “only” had a proof of security in the random oracle model.

3 Double-and-Add Schemes

We now turn our attention to schemes that can be proven secure in the stan-
dard model. The approaches to constructing encryption schemes secure in the
standard model tend to fall several categories. The first approach is to use a
“double-and-add” technique, in which a message is encrypted twice (using two
weak encryption schemes) and a checksum value is added to the ciphertext.

3.1 The NIZK Schemes

The first attempt to prove the security of a scheme against chosen ciphertext
attacks was given by Naor and Yung [24]. Their approach was to encrypt a
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message twice using two independent IND-CPA secure encryption schemes, and
then to provide a non-interactive zero-knowledge (NIZK) proof that the two
ciphertexts were encryptions of the same message. The Naor-Yung result only
produced an encryption scheme that was IND-CCA1 secure. Their approach
was extended by Sahai [27] to cover IND-CCA2 attacks by using a slightly more
powerful NIZK proof system.

It is not going to be possible, due to space constraints, to fully explain the
technical details of this scheme. However, we will give an overview of the scheme.
Suppose (G, E ,D) is an IND-CPA secure encryption scheme. The Sahai encryp-
tion scheme works as follows:

– Key generation. Generate two independent key pairs (pk1, sk1)
$← G(1k)

and (pk2, sk2)
$← G(1k), and a random string σ (for use by the NIZK proof).

The public key is pk = (pk1, pk2, σ) and the private key is sk = (sk1, sk2).
– Encryption. To encrypt a message m, compute C1

$← E(pk 1, m) and C2
$←

E(pk2, m), and give a NIZK proof π that C1 and C2 are encryptions of the
same message (using the random string σ). The ciphertext is (C1, C2, π).

– Decryption. To decrypt a message, first check the proof π. If the proof
fails, then output ⊥. Otherwise, output m ← D(sk1, C1).

Of course, as the NIZK proof π proves that C1 and C2 are the encryption of
the same message, we could have equivalently computed m ← D(sk2, C2) in the
decryption algorithm.

The key to understanding the security of this scheme is in understanding the
security properties of the NIZK proof system. We require two properties from
the NIZK proof system:

– Zero knowledge. It should be possible to choose the random string σ in
such a way that the NIZK proof system has a trapdoor τ that allows an
entity in possession of the trapdoor to produce false proofs – i.e. it should be
possible to “prove” that any pair of ciphertexts (C1, C2) are the encryption
of the same message using the trapdoor τ , even if (C1, C2) are encryptions
of different messages. Furthermore, it should be impossible for the attacker
(who only knows the string σ and not the trapdoor τ) to be able to distin-
guish false proofs from real ones.

– Simulation Sound. It should be impossible for the attacker to produce a
proof π that two ciphertexts (C1, C2) are encryptions of the same message
unless the ciphertexts actually are the encryptions of the same message.
Furthermore, this property should hold even if the attacker is given a false
proof π which is computed using the trapdoor τ .

The ideas behind the proof become very simple to understand if one consid-
ers bounding Adv IND*

A rather than Adv IND

A . In the IND* security model, we observe
the difference in the attacker’s behaviour when the challenge encryption C∗ is an
encryption of m0 and when the challenge encryption C∗ is an encryption of m1.
Recall that this C∗ is of the form (C∗

1 , C∗
2 , π∗) where C∗

i
$← E(pk i, mb). First, since

the NIZK proof system is zero knowledge, we may assume that the challenger has
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pk1pk1pk1 pk2pk2pk2

m0m0m0 m1m1m1

C∗

1C∗

1C∗

1 C∗

2C∗

2C∗

2

EEEEEE

Game 1 Game 2 Game 3

Fig. 1. The games used in security proof of the Sahai construction (with the NIZK
proof omitted)

chosen a random string with a trapdoor, and that the NIZK proof π∗ is produced
using the trapdoor τ , rather than by using the normal proof algorithm.

We use a simple game-hopping argument (as illustrated in Figure 1). Let
Game 1 be the game in which the challenge ciphertext C∗ is computed as an
encryption of m0. In other words,

C∗
1

$← E(pk1, m0) C∗
2

$← E(pk 2, m0)

and π∗ is a proof that (C∗
1 , C∗

2 ) are encryptions of the same message. Let Game
2 be the game in which the challenge ciphertext C∗ is computed as

C∗
1

$← E(pk1, m0) C∗
2

$← E(pk 2, m1)

and π∗ is a false proof that (C∗
1 , C∗

2 ) are encryptions of the same message com-
puted using the trapdoor τ . We claim that any attacker that can distinguish
between Game 1 and Game 2 can also break the IND-CPA security of the second
encryption scheme. The reduction makes use of the fact that we may decrypt a
valid ciphertext using the secret key for the first encryption scheme – this allows
us to simulate the decryption oracle.

Similarly, let Game 3 be the game in which the challenge ciphertext C∗ is
computed as

C∗
1

$← E(pk1, m1) C∗
2

$← E(pk 2, m1)

and π∗ is a proof that (C∗
1 , C∗

2 ) are encryptions of the same message. If the
attacker can distinguish between Game 2 and Game 3, then the attacker can
break the IND-CPA security of the first scheme. This time the reduction makes
use of the fact that we may decrypt a valid ciphertext using the secret key for
the second encryption scheme.

The beauty of this construction is that it allows us to prove that secure public-
key encryption schemes exist assuming only the existence of trapdoor one-way
permutations. Sahai [27] notes that passively secure encryption schemes exist
under the assumption that trapdoor one-way functions exist [20] and builds
suitable NIZK proof systems using the results of Feige, Lapidot and Shamir [19]
and Bellare and Yung [6]. This is a wonderful theoretical result, but, due to
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the theoretical nature of the NIZK proof system used in the construction, the
construction is not practical.

3.2 The Cramer-Shoup Encryption Scheme

The first practical public-key encryption scheme that was proven secure in the
standard model was the Cramer-Shoup scheme [14]. Although not explicitly
presented as an extension of the Sahai construction, it can be thought of as
building on these ideas. Suppose G is a cyclic group of prime order p that is
generated by g and that Hash : G

3 → Zp is a (target collision resistant) hash
function. The Cramer-Shoup encryption scheme can be written as1:

G(1k)
ĝ

$← G

x1, x2, y1, y2, z
$← Zp

h ← gz

e ← gx1 ĝx2

f ← gy1 ĝy2

pk ← (g, ĝ, h, e, f)
sk ← (x1, x2, y1, y2, z)

E(pk , m)
r

$← Zp

a ← gr

â ← ĝr

c ← hrm
v ← Hash(a, â, c)
d ← erf rv

Output (a, â, c, d)

D(sk , C)
Parse C as (a, â, c, d)
v ← Hash(a, â, c)
If d �= ax1+y1v âx2+y2v

Output ⊥
m ← c/az

Output m

This scheme is proven secure under the assumption that the DDH problem is
hard to solve in G and the hash function is target collision resistant.

On first glance, this scheme does not appear to have much in common with
Sahai’s double-and-add scheme. However, consider a variant of the ElGamal
encryption scheme [18] in the group G generated by an element h:

G(1k)
z

$← Z
∗
p

g ← h1/z

pk ← g
sk ← z

E(pk , m)
r

$← Zp

a ← gr

c ← hrm
Output (a, c)

D(sk , C)
Parse C as (a, c)
m ← c/az

Output m

This scheme is known to be IND-CPA secure under the DDH assumption. In or-
der to use this scheme with Sahai’s construction, we would need to encrypt the
same message twice using separate random values for each encryption. However,
Bellare, Boldyreva and Staddon [1] show that the ElGamal scheme remains secure
when it is used to encrypt the same message under multiple public keys even if the
same random value r is used in all the encryptions. Hence, we may think of (a, â, c)
as a double encryption of the same message under two separate public keys.

To complete the analogy, we must show that d acts in a manner similar to the
NIZK proof π in the Sahai construction. Therefore, d would have to have prop-
erties similar to simulation soundness and zero knowledge. In the Cramer-Shoup
scheme (a, â, c) is a valid double encryption of the same message providing that
there exists a value r such that a = gr and â = ĝr – i.e. providing that (g, ĝ, a, â)
form a DDH triple. An examination of the security proof for the Cramer-Shoup
1 Technically, this is the CS1a scheme.
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scheme shows that a large portion of that proof is devoted to showing that we can
reject ciphertexts submitted to the decryption oracle for which (g, ĝ, a, â) is not a
DDH triple. This is analogous to simulation soundness. A further examination of
the proof shows that it constructs the challenge ciphertext as a ← gr and â ← gr′

for r �= r′. The “proof” d is falsely constructed from (a, â) using knowledge of
(x1, x2, y1, y2). This is clearly analogous to the zero knowledge property.

We note that the analogy is not entirely correct. In order to verify the correct-
ness of the “proof” d, it is necessary to know the secret values (x1, x2, y1, y2). In
the analogy, this would be the equivalent to requiring the trapdoor τ to verify
the NIZK proof and Sahai’s construction does not appear to work if the trapdoor
is required to verify proofs. However, the similarities between the Cramer-Shoup
encryption scheme and the Sahai construction are striking. Other variants of
the Cramer-Shoup scheme, such as the Kurosawa-Desmedt scheme [23], can be
viewed similarly, albeit with more complex analyses.

4 Signatures and Identities

The security of the “double-and-add” schemes of the preceding section can be
proven because there are two equivalent ways in which a ciphertext can be
decrypted. Therefore, if part of the security proof prevents us from using one
decryption method, then we may still decrypt ciphertexts correctly using the
other decryption method. In this section, we look at a technique which handles
decryption in another way.

The elegant technique we will look at was proposed by Canetti, Halevi and
Katz [13] and converts a passively secure identity-based encryption scheme into
a fully secure public-key encryption scheme using a one-time signature scheme.

The formal security models for identity-based encryption were introduced by
Boneh and Franklin [9]. An identity-based encryption scheme is a set of four
probabilistic, polynomial-time algorithms (IGen ,Ext ,Enc,Dec). The IGen al-
gorithm takes as input the security parameter 1k, and outputs the public para-
meters of the system mpk and the master private key msk . The key extraction
algorithm Ext takes as input an identity ID and the master private key msk ,
and outputs a decryption key sk ID for that identity. The encryption algorithm
Enc takes as input the master public key mpk , an identity ID and a message m,
and outputs a ciphertext C. The decryption algorithm takes as input the master
public key mpk , a ciphertext C and a decryption key sk ID , and outputs either a
message m or an error symbol ⊥. The security notion in which we are interested
is the IND-CPA notion of security for identity-based encryption. The IND-CPA
game for an identity-based encryption is:

(mpk ,msk) $← IGen(1k)
(ID∗, m0, m1, state) $← AExt

1 (pk )
b

$← {0, 1}
C∗ $← Enc(mpk , ID∗, mb)
b′ $← AExt

2 (C∗, state)
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The attacker may query an extraction oracle Ext with an identity ID and the
oracle will return decryption key Ext(msk , ID). The attacker wins the game if
b = b′ and the attacker never queried the extraction oracle on ID∗. We define
the attacker’s advantage in the same way as for public-key encryption.

A one-time signature scheme is a triple of probabilistic, polynomial-time algo-
rithms (SigGen ,Sign,Verify). The SigGen algorithm takes as input the security
parameter 1k and outputs a public/private key pair (vrk , snk). The signing al-
gorithm Sign takes as input a private signing key snk and a message m, and
outputs a signature σ. The verification algorithm Verify takes as input a public
verification key vrk , a message m and a signature σ, and outputs either true
or false. The verification algorithm should verify all signature created using the
signing algorithm. Furthermore, the attacker should not be able to forge a new
signature on any message after having seen a single message/signature pair.

The complete public-key encryption scheme is as follows:

G(1k)
(mpk ,msk)

$← IGen(1k)
pk ← mpk
sk ← msk

E(pk , m)
(vrk , snk)

$← SigGen(1k)
ID ← vrk
c

$← Enc(mpk , ID , m)
σ

$← Sign(snk , c)
Output (c, vrk , σ)

D(sk , C)
Parse C as (c, vrk , σ)
If Verify(vrk , c, σ) �= true

Output ⊥
ID ← vrk
skID

$← Ext(msk , ID)
m ← Dec(mpk , sk ID , c)
Output m

The principle behind the security proof for this elegant construction couldn’t be
simpler. We know that the identity-based encryption scheme is IND-CPA secure,
therefore the public-key encryption scheme is secure if we can find a way to sim-
ulate a decryption oracle. Suppose the challenge ciphertext is (c∗, vrk∗, σ∗) and
consider a ciphertext (c, vrk , σ) submitted to a decryption oracle. If vrk �= vrk∗

then we may request the decryption key for the identity vrk and decrypt the
ciphertext ourselves. If vrk = vrk∗ then either the signature σ is invalid or the
attacker has broken the unforgeability of the one-time signature scheme. Hence,
with overwhelming probability, we may return ⊥ as the decryption oracle’s re-
sponse.

There are a number of other schemes that prove their security using similar
principles [10,11]. In many ways, it is ironic that it was the development of
standard-model-secure identity-based encryption schemes (a harder primitive
to construct) that produced the next chapter in the development of public-key
encryption schemes. However, these schemes are similar to the “double-and-add”
schemes in that they convert a passively secure scheme into a fully secure scheme
using a cryptographic checksum. This two-stage process is never going to be as
efficient as other constructions might be.

5 Extracting Plaintext Awareness

Plaintext awareness is a simple idea with a complicated explanation. An en-
cryption scheme is plaintext aware if it is impossible for a user to create a valid
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ciphertext without knowing the underlying message. This effectively makes a
decryption oracle useless to the attacker – any valid ciphertext he submits to
the decryption oracle will return a message that he already knows. If he submits
a ciphertext to the decryption oracle for which he does not know the underlying
message, then the decryption oracle will return ⊥. This leads to the central theo-
rem of plaintext awareness: that a scheme that is IND-CPA secure and plaintext
aware is IND-CCA2 secure.

The difficulty with this idea is formalising what it means to say that a user
“knows” an underlying message. The first attempt to produce a formal definition
for plaintext awareness was given in the random oracle model [2,5] but had the
disadvantage that it could only be realised in the random oracle model. It took
several years before a definition compatible with the standard model was found.

5.1 Plaintext Awareness Via Key Registration

The first attempt to provide a standard-model definition of plaintext awareness
was given by Herzog, Liskov and Micali [22]. In their model, if a sender wishes
to send a message to a receiver, then both the sender and the receiver must have
a public key. Furthermore, the sender must register their public key with some
trusted registration authority in a process that includes a zero-knowledge proof
of knowledge for the private key. Now, whenever the sender wants to send a mes-
sage, it forms two ciphertexts – an encryption of the message using the receiver’s
public key and an encryption of the message using the sender’s own public key
– and provides a NIZK proof that the ciphertexts are the encryption of the same
message. The receiver decrypts the ciphertext by checking the validity of the NIZK
proof and decrypting the component that was encrypted using their public key.

The plaintext awareness of the scheme can be easily shown: since the NIZK
proves that the encryptions are identical, we know that both ciphertexts are
the encryption of the same message. Furthermore, since the sender has proven
knowledge of the private key, we know that the sender can decrypt the compo-
nent of the ciphertext encrypted using the sender’s public key and recover the
message. Hence, we can conclude that the sender “knows” the message.

This is an interesting idea, and clearly related to the security of the Sahai
construction, but it is never really been adopted to prove the security of practical
schemes. The requirement that the sender must have a registered public key
creates the need for a huge public-key infrastructure which is unlikely to exist
in practice. Furthermore, the scheme still makes use of arbitrary zero-knowledge
proofs of knowledge and NIZK proof systems, which are impractical.

5.2 Using Extractors

In 2004, Bellare and Palacio [3] introduced a new standard-model definition for
plaintext awareness. Their definition has several advantages over the definition of
Herzog, Liskov and Micali. In particular, Bellare and Palacio’s definition doesn’t
require a sender to register a key. It is also compatible with earlier definitions in
the random oracle model, in the sense that a scheme proven plaintext aware using
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the random-oracle-based definition of plaintext awareness is also plaintext aware
using the standard-model-based definition of plaintext awareness (although the
proof of this fact uses the random oracle model).

The Bellare and Palacio definition of plaintext awareness uses a definition of
“knowledge” that is similar to the definition used in zero knowledge. An attacker
A is deemed to “know” a value x if it is possible to alter A to give a new algorithm
A∗ that outputs x.

Let (pk , sk) be a randomly generated key pair for a public-key encryption
scheme (G, E ,D). We consider an attacker A that takes as input a public key
pk and a set of random coins R, and interacts with an “oracle” to which it
can submit ciphertexts. The form of the oracle depends upon the game that
the attacker is playing. In the Real game, the oracle is instantiated using the
decryption algorithm D(sk , ·). In the Fake game, the oracle is instantiated by
an algorithm A∗ which we call the plaintext extractor. This plaintext extractor
A∗ is a stateful, probabilistic, polynomial-time algorithm that depends upon A
and initially takes as input the public key pk and the random coins R used
by A. Since A∗ has all the inputs of A, one can think of A∗ as observing A’s
behaviour as it creates ciphertexts. If the attacker A submits a ciphertext C
to the plaintext extractor A∗, then it is A∗’s task to determine the underlying
message from A’s behaviour.

It would be nice if we were done here, but we also need to consider the pos-
sibility that the attacker A can obtain some ciphertexts for which he does not
know the underlying message. In the real world, this corresponds to the idea
that the attacker might be able to observe ciphertexts created by other people.
In the IND security model, this allows for the fact that the attacker is given
the challenge ciphertext C∗ (for which he does not know the underlying encryp-
tion). This possibility is allowed for in the security model for plaintext awareness
by giving the attacker access to an encryption oracle that, when queried with
some auxiliary information aux , generates a message m

$← P(aux ) (using some
arbitrary, stateful, probabilistic polynomial-time algorithm P) and returns the
ciphertext C

$← E(pk , m). We are forced to give C to the plaintext extractor A∗

so that it may continue to observe A’s behaviour. We forbid A from asking for
the decryption of C. We show the differences between the Real and Fake game
graphically in Fig. 2.

We say that a scheme is plaintext aware if, for any attacker A, there exists
a plaintext extractor A∗ such that, for any plaintext creating algorithm P , the
output x of A in the Real game is indistinguishable from the output x of A in
the Fake game.

Bellare and Palacio [3] prove that any scheme that is IND-CPA secure and
plaintext aware in this model is necessarily IND-CCA2 secure. In an extraordi-
nary paper, Teranishi and Ogata [28] prove that a scheme that is one-way and
plaintext aware in this model is necessarily IND-CCA2 secure. There are weaker
models for plaintext awareness that are similar to this model, and their relation-
ships to the full security model have been well explored by Bellare and Palacio
[3] and by Birkett and Dent [8].



368 A.W. Dent

pk

pk

pk

sk

AA

A
∗

D(·) E(P(·))E(P(·))

mm

C

CCCC

R

R

R
xx

auxaux

Real Game Fake Game

Fig. 2. The Real and Fake games for plaintext awareness

The first scheme that was proven fully plaintext aware in the standard model
was the Cramer-Shoup encryption scheme [16]. This proof relies heavily on the
Diffie-Hellman Knowledge assumption first introduced by Damg̊ard [15]. This
assumption is meant to capture the intuition that the only way the attacker
can compute a Diffie-Hellman tuple (g, h, gr, hr) from the pair (g, h) is by gen-
erating r and computing (gr, hr) directly. The definition states that for every
attacker A that outputs (gr, hr), there exists an algorithm A∗ that can output
r given the random coins of A. This is known as an extractor assumption, as
the algorithm A∗ extracts the random value r by observing the execution of A.
Birkett and Dent [7] have shown that other schemes with a similar structures to
the Cramer-Shoup [14] and Kurosawa-Desmedt [23] schemes are plaintext aware
under similar extractor assumptions.

This highlights the most significant problem with the plaintext awareness
approach to proving security: no-one has yet managed to prove the plaintext
awareness of an encryption scheme without the use of an extractor assumption.
These extractor assumption are poor things on which to base the security of an
encryption scheme as it is very difficult to gain any evidence about whether the
assumption is true or not. It can be as difficult to prove the assumption is false
as it is to prove the assumption is true.

6 Conclusion

The cryptographic community have come a long way in proving the security of
public-key encryption schemes. However, the ultimate prize is still yet to be
claimed: a proof of security for an ultra-efficient encryption scheme in the stan-
dard model. The approaches we have discussed in this paper do make significant
advantages in improving the efficiency of schemes with full security proofs. How-
ever, none of the approaches seem likely to break the final efficiency barrier. Both
the “double-and-add” schemes and the identity-based schemes require separate
encryption and checksum operations. Hence, the resulting encryption schemes re-
quire two “expensive” calculations. On the other hand, the plaintext awareness
approach relies on extractor-based assumptions, which do not engender confidence
in the security of the scheme, and still do not seem to be able to prove the security
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of a scheme that uses less than two “expensive” calculations. It seems as if a new
technique has to be developed before this barrier can be broken.
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Abstract. In this paper we provide explicit formulæ to compute bilin-
ear pairings in compressed form. We indicate families of curves where the
proposed compressed computation method can be applied and where par-
ticularly generalized versions of the Eta and Ate pairings due to Zhao et
al. are especially efficient. Our approach introduces more flexibility when
trading off computation speed and memory requirement. Furthermore,
compressed computation of reduced pairings can be done without any fi-
nite field inversions. We also give a performance evaluation and compare
the new method with conventional pairing algorithms.
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1 Introduction

Cryptographically relevant bilinear maps like the Tate and Weil pairing usually
take values over an extension field Fpk of the base field Fp. Pairing inputs are
typically points on an elliptic curve defined over Fp. It has been known for a
while (see the work of Scott and Barreto [13] and Granger, Page and Stam [7])
that pairing values can be efficiently represented in compressed form by using
either traces over subfields or algebraic tori. The former approach leads to a small
loss of functionality: the trace of an exponential, Tr(gx), can be computed from
the trace Tr(g) and the exponent x alone, but the trace of a product Tr(gh)
cannot be easily computed from Tr(g) and Tr(h). The latter approach does
not suffer from this drawback, since torus elements can implicitly be multiplied
in the compressed representation. With either approach, pairing values can be
� Most of the work presented in this paper was done, while the first author was visiting
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efficiently compressed to one half or one third of the original length, depending
on the precise setting of the underlying fields and curves.

Our contribution in this paper is to provide explicit formulæ to compute
pairings directly in compressed form. Although we do not claim any perfor-
mance improvement over existing methods, we show that full implementation of
arithmetic over Fpk can be avoided altogether; only operations for manipulating
pairing arguments and (compressed) pairing values are needed.

From an implementor’s or hardware designer’s perspective the contribution
of this paper consists of mainly two aspects. Firstly, the explicit formulæ for
multiplication and squaring of torus elements give more flexibility in trading off
computation speed with memory requirement. The second aspect concerns field
inversions during pairing computation. Using projective representation for curve
points, inversions can be avoided in the Miller loop. However, a very efficient
way to then compute the final exponentiation is to decompose the exponent into
three factors and use the Frobenius automorphism to compute powers for two
of these factors. This involves an inversion in Fpk , which can be avoided using
the compressed representation of pairing values. Hence, we can entirely avoid
field inversion during pairing computation and still use fast Frobenius actions
in the final exponentiation. From a more theoretical perspective this approach
can be seen as a first step to further enhancement of the resulting algorithms,
and parallels the case of hyperelliptic curve arithmetic where the introduction
of explicit formulæ paved the way to more efficient arithmetic.

We provide timing results for implementations of different pairing algorithms,
comparing the newly proposed pairings in compressed form with their conven-
tional counterparts. Additionally, we give examples of curve families amenable
to pairing compression where generalized versions of the Eta and Ate pairings
due to Zhao et al. are more efficient than the non-generalized versions. We pro-
vide examples for the three AES security levels 128, 192 and 256 bits. In this
paper we use the notion Eta pairing instead of twisted Ate pairing, because it
has originally been used in the non-supersingular case as well.

This paper is organized as follows. In Sections 2 and 3 we review mathematical
concepts related to pairings and algebraic tori. In Section 4 we discuss torus-
based pairing compression and provide explicit formulæ for pairing computation
in compressed form. We describe how to avoid inversions in Section 5. In Section 6
implementation costs are given and we conclude in Section 7.

2 Preliminaries on Pairings

Let E be an elliptic curve defined over a finite field Fp of characteristic p ≥ 5. Let
r be a prime divisor of the group order n = #E(Fp) and let k be the embedding
degree of E with respect to r, i.e. k is the smallest integer such that r | pk − 1.
We assume that k > 1.

Let Fq be an extension of Fp. An elliptic curve E′ over Fq is called a twist
of degree d if there exists an isomorphism ψd : E′ → E defined over Fqd and d
is minimal with this property. There is a nice summary about twists of elliptic



On Compressible Pairings and Their Computation 373

curves regarding their existence and the possible group orders of E′(Fq) given
by Hess, Smart and Vercauteren in [8].

We consider an r-torsion point P ∈ E(Fp)[r] and an independent r-torsion
point Q ∈ E(Fpk)[r]. We fix G1 = 〈P 〉 ⊆ E(Fp)[r] and G2 = 〈Q〉 ⊆ E(Fpk)[r]. If
the curve has a twist of order d we may choose the point Q arising as Q = ψd(Q′),
where Q′ is an Fpk/d-rational point of order r on the twist E′, see again [8].
Taking this into account we can represent points in 〈Q〉 by the points in 〈Q′〉 ⊆
E′(Fpk/d)[r]. Let t be the trace of Frobenius on E/Fp and λ = (t− 1)k/d mod r.
Notice that λ is a primitive d-th root of unity modulo r.

The i-th Miller function fi,P for P is a function with divisor (fi,P ) = i(P ) −
([i]P )−(i−1)(O). We use Miller functions to compute pairings. Let the function
es be defined by

es : G1 × G2 → μr, (P, Q) �→ fs,P (Q)(p
k−1)/r.

For certain choices of s this function is a non-degenerate bilinear pairing. For
s = r we obtain the reduced Tate pairing τ , s = λ yields the reduced Eta
pairing η and s = T = t− 1 leads to the reduced Ate pairing α by switching the
arguments. Altogether we have

– Tate pairing: τ(P, Q) = fr,P (Q)(p
k−1)/r,

– Eta pairing: η(P, Q) = fλ,P (Q)(p
k−1)/r,

– Ate pairing: α(P, Q) = fT,Q(P )(p
k−1)/r.

To obtain unique values, all pairings are reduced via the final exponentiation by
(pk −1)/r. The Eta pairing was introduced in the supersingular context by Bar-
reto, Galbraith, Ó’ hÉigeartaigh and Scott in [1]. The Ate pairing was introduced
by Hess, Smart and Vercauteren [8]. Actually the concept of the Eta pairing can
be transferred to ordinary curves as well. Hess, Smart and Vercauteren [8] call
it the twisted Ate pairing.

Recently much progress has been made in improving the performance of pair-
ing computation. Main achievements have been made by suggesting variants of
the above pairings which shorten the loop length in Miller’s algorithm, for exam-
ple so called generalized pairings [15], optimized pairings [11], the R-Ate pairing
[10] as well as optimal pairings [14].

As an example we consider the generalized versions of the Eta and Ate pairings
by Zhao, Zhang and Huang [15]:

– generalized Eta pairing: ηc(P, Q) = fλc mod r,P (Q)(p
k−1)/r, 0 < c < k,

– generalized Ate pairing: αc(P, Q) = fT c mod r,Q(P )(p
k−1)/r, 0 < c < k.

For a certain choice of c the loop length of the generalized pairings may turn
out shorter than the loop length of the original pairing. Notice that if T c ≡ −1
(mod r) or λc ≡ −1 (mod r) the loop length is r − 1 which is the same as for
the Tate pairing and does not give any advantage.

For each of the three AES security levels 128, 192 and 256 bits we give ex-
amples of elliptic curve families where generalized pairings lead to a shortening
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of the loop length. The examples all have embedding degree divisible by 6 and
a twist of degree 6 such that the compressed pairing computations of Sections
4 and 5 can be applied. We stress that for all example families the generalized
Eta pairing is more efficient than the Tate pairing. We emphasize the Eta pair-
ing since this goes along with our compression method, but we note that there
are versions of the Ate pairing which have a much shorter loop length than the
pairings suggested here. For example the curves in Example 1 can be used for
an optimal Ate pairing with loop length log2 r/4 (see Vercauteren [14]).

Example 1. We consider the family of elliptic curves introduced by Barreto and
Naehrig in [2]. Let E be an elliptic curve of the family parameterized by p =
36u4 + 36u3 + 24u2 + 6u + 1 and t = 6u2 + 1. From the construction it follows
that the curve has prime order, i.e. r = n, complex multiplication discriminant
D = −3 and embedding degree k = 12. As shown in [2] E admits a twist E′ of
degree d = 6. This also follows from Lemma 4 in Section 4.2. We consider

λ = (t − 1)k/d = (6u2)2 ≡ 36u4 (mod n).

Since n = 36u4 + 36u3 + 18u2 + 6u + 1 for positive values of u the length of
λ is about the same as n, which means that there is no point in using the eta
pairing. But for negative u we obtain λ ≡ −36u3−18u2−6u−1 (mod n) which
is only 3/4 the size of n. Thus the Eta pairing gets faster than the Tate pairing.

For positive u the generalized version of the Eta pairing suggests to use a
different power of λ. For example we could use λ4 = −λ since λ is a primitive
sixth root of unity. We have −λ ≡ −36u4 ≡ 36u3 + 18u2 + 6u + 1 (mod n) and
the length of −λ is as well 3/4 of that of n which yields a faster pairing than
the Tate pairing.

Example 2. A family of curves with embedding degree k = 18 was found by
Kachisa and is described in Example 6.14 of [6]. For those curves we have r(u) =
u6+37u3+343 and t(u) = 1

7 (u4+16u+7). The generalized Ate pairing computing
the loop over T 12 ≡ u3+18 (mod r) for positive u and T 3 ≡ −u3−18 (mod r) for
negative u is more efficient than the standard Ate pairing using T ≡ 1

7 (u4+16u).
The curves have a sextic twist and can be used for the Eta pairing with a

loop over λ = T 3 which for negative u is as short as the generalized Ate pairing
loop. For positive u take T 12 for the generalized Eta pairing.

Example 3. Recently, Kachisa, Schaefer and Scott [9] found a family of pairing
friendly curves with embedding degree k = 36. The curves have a sextic twist and
lead to shorter loops in pairing computation. The group order is parametrized
by a polynomial of degree 12 which we omit for space reasons. The trace of
Frobenius is parametrized by the following polynomial of degree 7:

t = 125339925335955356307102330222u7 + 8758840655324856893143016502u6

+262317360751146188910784278u5 + 4364504419607578015316190u4

+43570655272439907140970u3 + 260978358826886222466u2

+868445151522065613u+ 1238521382045476.
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Both the generalized Ate and Eta pairings can be computed with a loop over
T6 = T 6 mod r with

T6 = 15259304277569437096067973u6 + 913997772652077313277994u5

+22810998708750407745555u4 + 303628259738257192620u3

+2273330651802144795u2 + 9077823883505034u+ 15103919293237.

For details see [9].

3 Preliminaries on Tori

Let Fq be a finite field and Fql ⊇ Fq a field extension. Then the norm of an
element α ∈ Fql with respect to Fq is defined as the product of all conjugates of
α over Fq, namely NF

ql/Fq
(α) = ααq · · ·αql−1

= α1+q+···+ql−1
= α(ql−1)/(q−1).

Rubin and Silverberg describe in [12] how algebraic tori can be used in cryp-
tography. We recall the definition of a torus. For a positive integer l define the
torus

Tl(Fq) =
⋂

Fq⊆F�F
ql

ker(NF
ql /F ). (1)

Thus we have Tl(Fq) = {α ∈ Fql | NF
ql /F (α) = 1, Fq ⊆ F � Fql}. If Fq ⊆ F �

Fql then F = Fqd where d | l so the relative norm is given as NF
ql/F

qd
(α) =

α(ql−1)/(qd−1). The number of elements in the torus is |Tl(Fq)| = Φl(q), where
Φl is the l-th cyclotomic polynomial. We know that

X l − 1 =
∏
d|l

Φd(X) = Φl(X)
∏

d|l,d �=l

Φd(X).

Thus the torus Tl(Fq) is the unique subgroup of order Φl(q) of F
∗
ql . Set Ψl(X) =∏

d|l,d �=l Φd(X) = (X l − 1)/Φl(X).

Lemma 1. Let α ∈ F
∗
ql . Then αΨl(q) ∈ Tl(Fq).

Proof. Let β = αΨl(q), then βΦl(q) = αql−1 = 1, thus β has order dividing Φl(q)
and therefore lies in Tl(Fq). ��
Lemma 2. For each divisor d | l of l it holds Tl(Fq) ⊆ Tl/d(Fqd).

Proof. Let β ∈ Tl(Fq). Then NF
ql/F (β) = 1 for all fields Fq ⊆ F � Fql . In

particular the norm is 1 for all fields Fqd ⊆ F � Fql . And so β ∈ Tl/d(Fqd). ��
Combining the above two Lemmas shows that the element α raised to the power
Ψl(q) is an element of each torus Tl/d(Fqd) for all divisors d | l, d = k.

Let E be an elliptic curve defined over Fp with embedding degree k as in the
previous section. By the definition of the embedding degree we have r � Φd(p)
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for all divisors d | k, d = k. From that we see that the final exponent can be
split up as

pk − 1
r

= Ψk(p)
Φk(p)

r
.

This means that pairing values lie in the torus Tk(Fp) und thus by the preceeding
Lemmas in each torus Tk/d(Fpd) for d | k, d = k.

4 Compressed Pairing Computation

Scott and Barreto [13] show how to compress the pairing value before the final
exponentiation and how to use traces to compute the result. Also the use of tori
has been investigated for the final exponentiation and to save bandwidth.

It is already shown by Granger, Page and Stam [7] how a pairing value in a
field extension Fq6 can be compressed to an element in Fq3 plus one bit. We note
that the technique of compression that we use here has already been explained
in [7] for supersingular curves in characteristic 3. Granger, Page and Stam [7]
mention that the technique works as well for curves over large characteristic
fields. We describe and use the compression in the case of large characteristic and
additionally as a new contribution include the compression into the Miller loop to
compress the computation itself. In the following section 4.1 we recapitulate the
compression for even embedding degree and show how to use it during pairing
computation.

To make the paper as self-contained as possible and to enhance better un-
derstanding we derive and prove certain facts which are already known in the
literature.

4.1 Compression for Even Embedding Degree

Let k be even and let p ≥ 5 be a prime. In this section let q = pk/2 and thus
Fq = Fpk/2 such that Fq2 = Fpk . Choose ξ ∈ Fq to be a nonsquare. Then the
polynomial X2 − ξ is irreducible and we may represent Fq2 = Fq(σ) where σ is
a root of X2 − ξ.

Lemma 3. Let α ∈ Fq2 . Then αq−1 is an element of T2(Fq) and can be rep-
resented by a single element in Fq plus one additional bit. This element can be
computed by one inversion in Fq.

Proof. We compute the q-Frobenius of σ which gives πq(σ) = σq = −σ. The
element α can be written as α = a0 + a1σ with coefficients a0, a1 ∈ Fq. Raising
α to the power of q − 1 we obtain

(a0 + a1σ)q−1 =
(a0 + a1σ)q

a0 + a1σ
=

a0 − a1σ

a0 + a1σ
.

If a1 = 0 we can proceed further by dividing in numerator and denominator by
a1 which gives

(a0 + a1σ)q−1 =
a0/a1 − σ

a0/a1 + σ
=

a − σ

a + σ
. (2)
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It is clear that the above fraction is an element of T2(Fq). It can be represented
by a ∈ Fq only. But we need an additional bit to represent 1 in the torus. If
a1 = 0 we started with an element of the base field and the exponentiation gives
1. In summary αq−1 can be represented by just one value in Fq plus one bit to
describe the unit element 1. ��
The final exponentiation in the reduced pairing algorithm has to be carried out in
the large field Fpk . The idea is to do part of the final exponentiation right inside
the Miller loop to move elements to the torus T2(Fq). Using torus arithmetic we
may compute the compressed pairing value by computations in the torus only
using less memory than with full extension field arithmetic. The rest of the final
exponentiation can be carried out in the end on the compressed pairing value
by also using torus arithmetic only.

Now if we have an elliptic curve with embedding degree k, in the final expo-
nentiation we raise the output of the Miller loop to (pk−1)/r = (q2−1)/r where
r is the order of the used subgroup. Since the embedding degree is k we have
that r � q − 1. Therefore we may split up the final exponentiation and raise the
elements to q − 1 right away. This can be done in the above described manner
by only one Fq inversion. Since the pairing value is computed multiplicatively
we already exponentiate the line functions in the Miller loop by q − 1 and then
carry out multiplications in torus arithmetic.

There is no need to have a representation for 1 in the torus during the pairing
computation. The remaining part of the final exponentiation (q + 1)/r is even,
if q is the power of an odd prime and r is a large prime which thus is also odd.
Therefore both values 1 and −1 are mapped to 1 when the final exponentiation
is completed. We thus may take the representation for −1 whenever 1 occurs
during computation. This will not alter the result of the pairing. Note that the
torus element −1 has a regular representation with a = 0, since then the fraction
(2) assumes the value −1. In this way we can save the bit which is usually needed
to represent 1 when working in the torus.

For α = a0 + a1σ we denote by α̂ ∈ Fq the torus representation of αq−1 for
the pairing algorithm, i.e. α̂ = a0/a1 if a1 = 0 and α̂ = 0 if a1 = 0. The latter
means we identify 1 and −1. Granger, Page and Stam [7] have demonstrated
that arithmetic in the multiplicative group T2(Fq) can now be done via

α̂ − σ

α̂ + σ
· β̂ − σ

β̂ + σ
=

α̂β − σ

α̂β + σ
,

where
α̂β = (α̂β̂ + ξ)/(α̂ + β̂) (3)

if α̂ = −β̂ and α̂ = 0 and β̂ = 0. If α̂ = −β̂ the result is simply 1. If one of the
values represents 1 we return the other value. For squaring a torus element with
α̂ = 0 we compute α̂2 = α̂/2 + ξ/(2α̂).
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The representation of the inverse of a torus element given by α̂ can be seen
to be −α̂, since

α−1 =
(

α̂ − σ

α̂ + σ

)−1

=
α̂ + σ

α̂ − σ
=

−α̂ − σ

−α̂ + σ
. (4)

We point out that doing inversions in torus representation does not need inver-
sions in a finite field. Instead computation of an inverse only requires negation
of a finite field element.

As seen above, we need to compute the result of the Miller loop only up to
sign since −1 will be mapped to 1 in the final exponentiation. If we take the
negative of a torus element, we obtain

− α̂ − σ

α̂ + σ
=

σ2 − α̂σ

σ2 + α̂σ
=

ξ − α̂σ

ξ + α̂σ
=

ξ/α̂ − σ

ξ/α̂ + σ
,

as long as α̂ = 0. If α̂ = 0 we are dealing with the element −1 and the negative
of it is 1. This computation shows that the negative of a torus element α = ±1
represented by α̂ is represented by ξ/α̂.

There may be potential to even further compress the computation inside the
Miller loop. If it is possible to raise elements to Ψk(p) in an efficient way, one
may use the norm conditions in other tori to deduce equations which allow to
achieve even more compact representations for the field elements used in the
pairing computation. We will see in section 4.2 how this works in the special
case k ≡ 0 (mod 6).

4.2 Curves with a Sextic Twist and 6 | k

From now on we assume that 6 | k, i.e. k = 6m, where m is an arbitrary positive
integer. In this section we fix q = pm. Then Fq = Fpm and Fq6 = Fpk . We
have a look at the case where we are dealing with an elliptic curve which has
complex multiplication discriminant D = −3. Under the above assumptions we
give the details of our new method to include compression into the Miller loop.
The existence of twists of degree 6 leads to compressed values of line functions
which can easily be computed by only a few field operations in Fq.

The description of twists and their orders given by Hess, Smart and Ver-
cauteren in [8] yields the following lemma.

Lemma 4. Let E be an ordinary elliptic curve with CM discriminant D = −3.
Let E be defined over Fq where q ≡ 1 (mod 6) and let r be a divisor of the group
order #E(Fq). The curve E can be represented as E : y2 = x3 + B, B ∈ Fq.

Then there exists a twist E′ of degree d = 6 which is defined over Fq and
E′(Fq) has order divisible by r.

The twist is given by E′ : y2 = x3 +B/ξ, where ξ ∈ F
∗
q is not a square or a third

power. A Fq6 -isomorphism is given by

ψd : E′ → E, (x, y) �→ (ξ1/3x, ξ1/2y). (5)
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We can represent the field extensions of Fq contained in Fq6 as Fq2 = Fq(ξ1/2)
and Fq3 = Fq(ξ1/3) respectively. We use the twist to compactly represent the
second argument of the pairing. This also implies that elliptic curve arithmetic
in the group G2 can be replaced by arithmetic in E′(Fq).

The twist also gives rise to further improvements for the compressed pairing
computation. We consider terms which arise from line functions inside the Miller
loop. Let lU,V (Q) be the line function of the line through the points U and V
evaluated at Q. In the Miller loop U and V are points in E(Fp) and Q = ψd(Q′)
for a point Q′ ∈ E′(Fq) on the twist. These assumptions can not be made when
computing the Ate pairing. Let U = (xU , yU ), V = (xV , yV ) and Q′ = (xQ′ , yQ′),
and thus Q = (xQ, yQ) = (τxQ′ , σyQ′) where σ = ξ1/2 ∈ Fq2 and τ = ξ1/3 ∈ Fq3 .
Notice that σq = −σ and that Fq6 = Fq3(σ). For U = −V the line function then
yields

lU,V (Q) = λ(xQ − xU ) + (yU − yQ),

where λ is the slope of the line through U and V , i.e. λ = (yV − yU )/(xV − xU )
if U = ±V and λ = (3x2

U )/(2yU ) if U = V respectively. In the case U = −V the
line function is lU,−U (Q) = xQ − xU .

We take advantage of the fact that Q arises as Q = ψd(Q′) for some point
Q′ ∈ E′(Fq) and obtain

lU,V (Q) = λ(τxQ′ − xU ) + (yU − σyQ′)
= (yU − λxU + λxQ′τ) − yQ′σ.

For U = −V we have lU,−U (Q) ∈ Fq3 . We thus proved the following lemma.

Lemma 5. For U = −V the torus representation of (lU,V (Q))q3−1 can be com-
puted as (λxU − yU − λxQ′τ)/yQ′ ∈ Fq3 .

Although (λxU −yU−λxQ′τ)/yQ′ is an element of Fq3 it is possible to compute it
with just a few Fq computations since λ as well as the coordinates of all involved
points are elements of Fq. Note that no exponentiation in Fq3 is required.

Inside the Miller loop we must carry out multiplications and squarings in
torus representation. Squarings have to be done with elements represented by
full Fq3 elements. But multiplications always include a line function as one factor.
Let μ = −(yU − λxU + λxQ′τ) be the numerator of the representative for the
exponentiated line function. If we compute the torus product with α̂ an arbitrary
Fq3 element and β̂ = μ/yQ′ we get the following.

α̂β =
α̂β̂ + ξ

α̂ + β̂
=

α̂μ + ξyQ′

α̂yQ′ + μ
.

There is no need to invert yQ′ to compute the corresponding torus representation
for (lU,V (Q))q3−1. Instead we directly compute the product representative. Thus
there is only one inversion in Fq3 needed to exponentiate the line function and
compute the product in the Miller loop.
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The final exponentiation is raising to (q6 − 1)/r in terms of q. We may write
this as

q6 − 1
r

= (q3 − 1)(q + 1)
q2 − q + 1

r
.

What we did up to now is to raise line functions to q3−1 in order to already move
the elements to T2(Fq3). But when we now do the exponentiation to q + 1 we
have raised the element to Ψ6(q) and therefore end up with an element in T6(Fq).
This in particular means that our element lies in the kernel of NFq6/Fq2 . If we
use this property we may compress the element α̂ to two Fq elements which also
has been demonstrated similarly by Granger, Page and Stam [7], and compute
the pairing using this compact representation.

Proposition 1. Let p ≡ 1 (mod 3) and α ∈ F
∗
q6 . Then αΨ6(q) can be uniquely

represented by a pair (a0, a1) of Fq elements.

Proof. As seen before we can represent αq3−1 by α̂ as αq3−1 = α̂−σ
α̂+σ . Let

β = αΨ6(q) =
(

α̂ − σ

α̂ + σ

)q+1

.

We represent β by its torus representative β̂, which can be computed as follows:

β =
(

α̂ − σ

α̂ + σ

)q

· α̂ − σ

α̂ + σ
=

α̂q + σ

α̂q − σ
· α̂ − σ

α̂ + σ
=

−α̂q − σ

−α̂q + σ
· α̂ − σ

α̂ + σ
.

If α̂q = α̂ we get β = 1. Otherwise, using (3) we get β̂ = (−α̂q+1 +ξ)/(−α̂q + α̂).
We now make use of the property that α has been raised to Ψ6(q) and thus lies
in the torus T6(Fq). We have NFq6/Fq2 (β) = 1, i. e.

(
β̂ − σ

β̂ + σ

)1+q2+q4

= 1,

which is equivalent to (β̂ − σ)1+q2+q4
= (β̂ + σ)1+q2+q4

. We write β̂ = b0 +
b1τ + b2τ

2 with bi ∈ Fq and use the fact that τq = ζ2τ for ζ a primitive third
root of unity which lies in Fq since q ≡ 1 (mod 3). An explicit computation of
(β̂±σ)1+q2+q4

and simplification of the equation (β̂−σ)1+q2+q4
= (β̂+σ)1+q2+q4

gives the following relation:

−3b1b2ξ + ξ + 3b2
0 = 0.

This equation can be used to recover b2 from b0 and b1 if b1 = 0 as

b2 =
3b2

0 + ξ

3b1ξ
. (6)

If b1 = 0 we have ξ = −3b2
0. Since p ≡ 1 (mod 3) then −3 is a square modulo

p thus ξ is a square which is not true. Therefore b1 can not be 0 in this case.
Summarizing we see that we can represent the element β by b0 and b1 only which
concludes the proof. ��
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We now turn our attention again to the line functions lU,V (Q) used in Miller’s
algorithm.

Proposition 2. Let ζ ∈ Fq be a primitive third root of unity such that τq = ζ2τ .
Let β = (lU,V (Q))Ψ6(q) where Q = ψd(Q′). If β = 1 then β can be uniquely
represented by

c0 =
( −ζ

1 − ζ2
y−1

Q′

)
(yU − λxU ), c1 =

(
ζ2

1 − ζ2
y−1

Q′

)
λxQ′ . (7)

Proof. In the proof of Proposition 1 we have seen how to compute β̂ = (−α̂q+1 +
ξ)/(−α̂q + α̂). For the line function we take α̂ = (λxU − yU − λxQ′τ)/yQ′ from
Lemma 5. We thus obtain

−α̂q =
yU − λxU + λxQ′ζ2τ

yQ′
.

Multiplying with α̂ yields

−α̂q+1 = − 1
y2

Q′

(
(yU − λxU )2 + (1 + ζ2)λxQ′ (yU − λxU )τ + λ2x2

Q′ζ2τ2
)
.

We further have

−α̂q + α̂ =
λxQ′ (ζ2 − 1)τ

yQ′

and compute

β̂ =
(1 + ζ2)λxQ′ (yU − λxU )ξ + λ2x2

Q′ζ2ξτ + ((yU − λxU )2 − ξy2
Q′)τ2

λ(1 − ζ2)xQ′yQ′ξ

=
1 + ζ2

1 − ζ2
· yU − λxU

yQ′
+

ζ2

1 − ζ2
· λxQ′

yQ′
τ +

(yU − λxU )2 − ξy2
Q′

λ(1 − ζ2)xQ′yQ′ξ
τ2.

Recall that τ3 = ξ. Taking ci the coefficient of τ i we have the property c2 = 3c2
0+ξ

3c1ξ
and thus c2 can be computed from c0 and c1. ��

The input Q is not changed during one pairing computation. Hence, y−1
Q′ can

be computed at the beginning of the pairing computation and we do not need
inversions to compute the values of the exponentiated line functions inside the
Miller loop.

For squaring and multiplication in the Miller loop we need formulæ to com-
pute with compressed values. Squaring of an element (a0, a1) can be done with
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the following formulæ which can be derived by computing the square of the
corresponding torus elements explicitly and compressing again. Compute

r0 = a5
0 + ξ(a3

0 − 2a2
0a

3
1) + ξ2(1

3a0 − a3
1),

r1 = a5
0 + ξ(2a3

0 − 2a2
0a

3
1) + ξ2(a0 − 2a3

1),
s0 = a0(a0r0 + a6

1ξ
2 + 1

27ξ3) − 1
3a3

1ξ
3,

s1 = a1(a0r1 + a6
1ξ

2 + 4
27ξ3),

s = 2(a0r0 + a6
1ξ

2 + 1
27ξ3),

c0 =
s0

s
,

c1 =
s1

s
.

Then the square of the Fq6 element represented by (a0, a1) is represented by
(c0, c1). Multiplication can be derived in a similar way. We give formulæ for
the computation of the product of two elements given by (a0, a1) and (b0, b1) in
compressed form.

r0 = a2
0 + 1

3ξ,

r1 = b2
0 + 1

3ξ,

s0 = ξ(a1b1(a0b0 + ξ) + a2
1r1 + b2

1r0),
s1 = a1b1ξ(a0b1 + a1b0) + r0r1,

s2 = a2
1b

2
1ξ + a0a1r1 + b0b1r0,

t0 = a1b1ξ(a0 + b0),
t1 = a1b1ξ(a1 + b1),
t2 = b1r0 + a1r1,

u = t30 + t31ξ + t32ξ
2 − 3ξt0t1t2,

u0 = t20 − t1t2ξ,

u1 = t22ξ − t0t1,

u2 = t21 − t0t2,

v0 = s0u0 + s1u2ξ + s2u1ξ,

v1 = s0u1 + s1u0 + s2u2ξ,

c0 =
v0

u
,

c1 =
v1

u
.

The product is then represented by (c0, c1).

5 Dealing with Field Inversions

In this section we use the assumptions from section 4.2, i. e. q = pm. For com-
pressed computation we need to do inversions during our computations. This
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is usually unpleasant, because inversions are very expensive. First of all, one
can replace inversion of an element a in Fpm by an inversion in Fp and at most
�lg m� + 1 multiplications in Fpm by

1
a

=
ap+p2+···+pm−1

NFpm/Fp
(a)

.

The term in the numerator can be computed by addition chain like methods.
For a description of this method see section 11.3.4 in [5].

5.1 Avoid Inversions by Storing One More Fq Element

The above squaring and multiplication formulæ for compressed computation in-
clude an inversion in Fq. We may avoid to do the inversions in each step by ad-
ditionally storing the denominator and homogenizing the formulae. This means
we represent compressed elements in a projective space. At the cost of providing
memory space for one more Fq element and some additional multiplications we
get rid of all inversions during the Miller loop. For the compressed line functions
computed in Proposition 2 this means that we do not store (c0, c1) given by
equations (7) but instead we store (C0, C1, C), where

C0 =
( −ζ

1 − ζ2

)
(νyU − μxU ), C1 =

(
ζ2

1 − ζ2

)
μxQ′ , C = νyQ′ . (8)

Here μ, ν ∈ Fp are the numerator and denominator of the slope λ of the line
function, i.e. λ = μ/ν. Notice that μ and ν are elements of Fp since they arise
from points in E(Fp) (when the pairing we compute is the Tate or Eta pairing).

5.2 Storing Only One More Fp Element

When m > 1 we are able to compress further, by using the method described
at the beginning of Section 5. The denominator C which has to be stored in a
third coordinate can be replaced by a denominator which is an element in Fp,
namely the norm NFpm/Fp

(C) of the previous denominator in Fq. We only need
to multiply the other two coordinates by Cp+p2+···+pm−1

.
In this way it is possible to avoid inversions during pairing computation. Tak-

ing into account that inversion of torus elements can be done by negating the
representative, we also do not need finite field inversions for the final exponentia-
tion. Normally an inversion is needed to efficiently implement the exponentiation
by using the Frobenius automorphism. Furthermore, the cheap inversion of torus
elements makes it possible to use windowing methods for Miller loop computa-
tions without any field inversions. This is particularly interesting if the loop
scalar can not be chosen to be sparse.

We give an example of the compressed squaring and multiplication formulæ
for embedding degree k = 12.

Example 4. For embedding degree 12 we have q = p2. Let Fp2 = Fp(i) and i2 =
−z for some element z ∈ Fp. Let (A0, A1, A) be an element in compressed form,
i.e. A0, A1 ∈ Fp2 and A ∈ Fp. Squarings and Multiplications can be computed
using the following formulæ.
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Squaring: We can compute the square (C0, C1, C) as follows.

R0 = A5
0 + ξ(A3

0A
2 − 2A2

0A
3
1) + ξ2(1

3A0A
4 − A3

1A
2),

R1 = A5
0 + 2ξ(A3

0A
2 − A2

0A
3
1) + ξ2(A0A

4 − 2A3
1A

2),
S0 = A0(A0R0 + A6

1ξ
2 + 1

27A6ξ3) − 1
3A3

1A
4ξ3,

S1 = A1(A0R1 + A6
1ξ

2 + 4
27A6ξ3),

S = 2A(A0R0 + A6
1ξ

2 + 1
27A6ξ3).

Write S = s0 + is1 with s0, s1 ∈ Fp. Then the square is given by

C0 = S0(s0 − is1),
C1 = S1(s0 − is1),
C = s2

0 + zs2
1.

Multiplication: To multiply two compressed elements (A0, A1, A) and (B0, B1, B)
we have to use the following formulæ.

R0 = A2
0 + 1

3A2ξ,

R1 = B2
0 + 1

3B2ξ,

S0 = ξ(A1B1(A0B0 + ξAB) + A2
1R1 + B2

1R0),
S1 = A1B1ξ(A0B1 + A1B0) + R0R1,

S2 = A2
1B

2
1ξ + A0A1R1 + B0B1R0,

T0 = A1B1ξ(A0B + B0A),
T1 = A1B1ξ(A1B + B1A),
T2 = B1BR0 + A1AR1,

T = T 3
0 + T 3

1 ξ + T 3
2 ξ2 − 3ξT0T1T2,

U0 = T 2
0 − T1T2ξ,

U1 = T 2
2 ξ − T0T1,

U2 = T 2
1 − T0T2,

V0 = S0U0 + S1U2ξ + S2U1ξ,

V1 = S0U1 + S1U0 + S2U2ξ.

Write T = t0 + it1 where t0, t1 ∈ Fp. Then the product (C0, C1, C) of the two
elements is given by

C0 = V0(t0 − it1),
C1 = V1(t0 − it1),
C = t20 + zt21.

For an implementation of a pairing algorithm in compressed form without in-
versions one can use (8) to compute the evaluated compressed line functions
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Table 1. Parameters of the curve used in our implementation

p 82434016654300679721217353503190038836571781811386228921167322412819029493183
n 82434016654300679721217353503190038836284668564296686430114510052556401373769
bitsize 256
t 287113247089542491052812360262628119415
k 12

λc (t − 1)8 mod n

Table 2. Rounded average results of measurements on various CPUs. The upper num-
ber describes cycles needed for the Miller loop, the lower number cycles needed for
final exponentiation.

Core 2 Duo Pentium IV Athlon XP
Ate 16,750,000 50,400,000 38,000,000

13,000,000 38,600,000 29,300,000

Generalized Eta 22,370,000 67,400,000 51,700,000
13,000,000 38,600,000 29,300,000

Tate 30,300,000 90,500,000 69,500,000
13,000,000 38,600,000 29,300,000

Compressed generalized Eta 31,000,000 107,000,000 84,900,000
11,700,000 40,300,000 30,900,000

Compressed Tate 41,400,000 146,000,000 115,000,000
11,700,000 40,300,000 30,900,000

and then use the above formulæ for squaring and multiplication in Miller’s al-
gorithm. The remaining part of the exponent for the final exponentiation is
(p4−p2 +1)/n. The final pairing value can be computed by use of the Frobenius
and a square and multiply algorithm with the above squaring and multiplication
formulæ (see Devigili, Scott and Dahab [4]). Pseudocode of the above squaring
and multiplication algorithms is given in Appendix A.

6 Performance Evaluation

In order to evaluate the performance of the compressed pairing computation, we
implemented several pairing algorithms in C. For all these implementations1 we
used the curve E : y2 = x3 + b over Fp with parameters described in Table 1
which belongs to the family in Example 1. It has been constructed using the
method of Barreto and Naehrig described in [2]. This curve has also been used
for the performance evaluation of pairing algorithms by Devegili, Scott and Da-
hab in [4]. For a fair comparison we implemented pairing algorithms with Fp12

constructed as a quadratic extension on top of a cubic extension which is again
built on top of a quadratic extension, as described in [4] and by Devigili, Scott,

1 The code for our implementation can be found at
http://www.cryptojedi.org/downloads/

http://www.cryptojedi.org/downloads/
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Ó’ hÉigeartaigh and Dahab in [3]. For Ate, generalized Eta and Tate pairings
we thus achieve similar timings as [4]. We do not use windowing methods since
the curve parameters are chosen to be sparse. The final exponentiation for the
non-compressed pairings uses the decomposition of the exponent (pk −1)/n into
the factors (p6 − 1), (p2 + 1) and (p4 − p2 + 1)/n.

In the Miller loop we entirely avoided to do field inversions, by computing the
elliptic curve operations in Jacobian coordinates and by using the compressed
representation and storing denominators separately as described in Subsection
5.2. For multiplication and squaring of torus elements we use the algorithms
given in Appendix A. The figures in table 2 indicate that, depending on the
machine architecture, compressed pairing computation is about 20-45% slower
than standard pairing computation, if both computations are optimized for com-
putation speed rather than memory usage.

Performance was measured on a 2.2 GHz Intel Core 2 Duo (T7500), a 2.4
GHz Intel Pentium IV (Northwood) and an AMD Athlon XP 2600+ running
on 1.9 GHz. The CPU cycles required for Miller loop and final exponentiation
respectively are given in Table 2.

7 Conclusion

We have described explicit formulæ for pairing computation in compressed form
for the Tate and Eta pairings. For different AES security levels we have also
indicated families of curves amenable to pairing compression where generalized
versions of the Eta and Ate pairings are very efficient. Our implementations and
cost measurements show that the pairing algorithms in compressed form are on
certain platforms only about 20% slower than the conventional algorithms. The
algorithms in compressed form have the advantage that they can be implemented
without finite field inversions. This is not only an advantage for pairing com-
putations on restricted devices, but also favors implementation of inversion-free
windowing methods for the Miller loop. Furthermore compressed pairing com-
putation gives more flexibility in trading off computation speed versus memory
requirement.

Neither the algorithms nor the curve families considered herein are exhaus-
tive; we thus hope that these are the first steps toward further algorithmic en-
hancements for compressed pairings and towards new, efficient constructions of
compressible pairing-friendly curves.
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A Compressed Multiplication and Squaring Algorithms

Algorithm 1. Squaring of the element (A0, A1, A)
Require: (A0, A1, A) ∈ Fp2 × Fp2 \ {0} × Fp

Ensure: (C0, C1, C) = (A0, A1, A)2

r1 ← A2
0, r2 ← A0r1, S0 ← r1r2, t0 ← A2, r4 ← r2t0, r5 ← A2

1, r5 ← A1r5,
r3 ← r1r5, r4 ← r4 − r3, r0 ← r4ξ, r0 ← 2r0, S1 ← S0 + r0, r4 ← r4 − r3, r4 ← r4ξ,
S0 ← S0 + r4, t1 ← t20, r4 ← t1A0, r0 ← 1

3r4, r1 ← r5t0, r0 ← r0 − r1, r1 ← 2r1,
r4 ← r4 − r1, r0 ← ξ2r0, r4 ← ξ2r4, S0 ← S0 + r0, S0 ← S0A0, S1 ← S1 + r4,
S1 ← S1A0, r2 ← r2

5 , r2 ← r2ξ
2, r4 ← t1t0, r4 ← 1

27ξ3r4, r1 ← r2 +r4, S0 ← S0 +r1,
S ← S0A, S0 ← S0A0, S ← 2S, r4 ← 4r4, r1 ← r2 + r4, S1 ← S1 + r1, S1 ← S1A1,
r1 ← r5t1, r1 ← 1

3ξ3r1, S0 ← S0 − r1

Write S = s0 + is1

r1 ← (s0 − is1), C0 ← S0r1, C1 ← S1r1, C ← Sr1 = s2
0 + cs2

1

return (C0, C1, C)

Algorithm 2. Multiplication of elements (A0, A1, A) and (B0, B1, B)
Require: (A0, A1, A), (B0, B1, B) ∈ Fp2 × Fp2 \ {0} × Fp

Ensure: (C0, C1, C) = (A0, A1, A) · (B0, B1, B)
R0 ← A2

0, t1 ← A2, r3 ← 1
3 ξt1, R0 ← R0 + r3,

R1 ← B2
0 , t1 ← B2, r3 ← 1

3ξt1, R1 ← R1 + r3

r3 ← A1B1, r4 ← A0B0, t1 ← AB, r5 ← t1ξ, r4 ← r4 + r5, S0 ← r3r4, S2 ← r2
3

S2 ← S2ξ, r4 ← A0B1, r5 ← A1B0, r4 ← r4 + r5, r6 ← r3ξ, S1 ← r6r4, r4 ← R0R1

S1 ← S1 + r4, r4 ← A1R1, r5 ← r4A0, S2 ← S2 + r5, T2 ← r4A, r4 ← r4A1,
S0 ← S0 + r4, r4 ← B1R0, r5 ← r4B, T2 ← T2 + r5, r5 ← r4B0, S2 ← S2 + r5,
r4 ← r4B1, S0 ← S0+r4, S0 ← S0ξ, T0 ← A0B, r4 ← B0A, T0 ← T0+r4, T0 ← r6T0,
T1 ← A1B, r4 ← B1A, T1 ← T1 + r4, T1 ← T1r6

r0 ← T 2
0 , r1 ← T 2

1 , r2 ← T 2
2 , T ← r0T0, r3 ← r1T1, r3 ← r3ξ, T ← T + r3

r3 ← r2T2, r3 ← r3ξ
2, T ← T + r3, r3 ← T1T2, r3 ← r3ξ, U0 ← r0 − r3, r3 ← r3T0

r3 ← 3r3, T ← T −r3 , r3 ← T0T1, U1 ← r2ξ, U1 ← U1−r3 , r3 ← T0T2, U2 ← r1−r3

V0 ← S0U0, r0 ← S1U2, r1 ← S2U1, r0 ← r0 + r1, r0 ← r0ξ, V0 ← V0 + r0

V1 ← S0U1, r0 ← S1U0, V1 ← V1 + r0, r0 ← S2U2, r0 ← r0ξ, V1 ← V1r0

Write T = t0 + it1
r1 ← (t0 − it1), C0 ← V0r1, C1 ← V1r1, C ← Sr1 = t20 + ct21
return (C0, C1, C)
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1 Introduction

Edwards in [13], generalizing an example from Euler and Gauss, introduced an
addition law for the curves x2 + y2 = c2(1 + x2y2) over a non-binary field k.
Edwards showed that every elliptic curve over k can be expressed in the form
x2 + y2 = c2(1 + x2y2) if k is algebraically closed. However, over a finite field,
only a small fraction of elliptic curves can be expressed in this form.

Bernstein and Lange in [4] presented fast explicit formulas for addition and
doubling in coordinates (X : Y : Z) representing (x, y) = (X/Z, Y/Z) on an
Edwards curve, and showed that these explicit formulas save time in elliptic-
curve cryptography. Bernstein and Lange also generalized the addition law to
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the curves x2 + y2 = c2(1 + dx2y2). This shape covers considerably more elliptic
curves over a finite field than x2+y2 = c2(1+x2y2). All curves in the generalized
form are isomorphic to curves x2 + y2 = 1 + dx2y2.

In this paper, we further generalize the Edwards addition law to cover all
curves ax2 + y2 = 1 + dx2y2. Our explicit formulas for addition and doubling
are almost as fast in the general case as they are for the special case a = 1. We
show that our generalization brings the speed of the Edwards addition law to
every Montgomery curve; we also show that, over prime fields Fp where p ≡ 1
(mod 4), many Montgomery curves are not covered by the special case a = 1.
We further explain how to use isogenies to cover the odd part of every curve
whose group order is a multiple of 4; over prime fields Fp where p ≡ 3 (mod 4),
the special case a = 1 covers all Montgomery curves but does not cover all curves
whose group order is a multiple of 4. Our generalization is also of interest for
many curves that were already expressible in Edwards form; we explain how
the twisting can save time in arithmetic. See [2] for a successful application of
twisted Edwards curves to the elliptic-curve method of factorization.

Section 2 reviews Edwards curves, introduces twisted Edwards curves, and
shows that each twisted Edwards curve is (as the name would suggest) a twist
of an Edwards curve. Section 3 shows that every Montgomery curve can be
expressed as a twisted Edwards curve, and vice versa. Section 4 reports the
percentages of elliptic curves (over various prime fields) that can be expressed
as Edwards curves, twisted Edwards curves, “4 times odd” twisted Edwards
curves, etc. Section 5 uses isogenies to cover even more curves: specifically, it
shows that every curve with group order a multiple of 4 and with no point
of order 4 is 2-isogenous to a twisted Edwards curve. Section 6 generalizes the
Edwards addition law, the explicit formulas from [4], and the “inverted” formulas
from [5] to handle twisted Edwards curves. Section 7 analyzes the benefits of the
generalization for cryptographic applications.

2 Edwards Curves and Twisted Edwards Curves

In this section we briefly review Edwards curves and the Edwards addition law
at the level of generality of [4]. We then introduce twisted Edwards curves and
discuss their relationship to Edwards curves.

Review of Edwards Curves. Throughout the paper we consider elliptic curves
over a non-binary field k, i.e., a field k whose characteristic char(k) is not 2.

An Edwards curve over k is a curve E : x2+y2 = 1+dx2y2 where d ∈ k\{0, 1}.
The sum of two points (x1, y1), (x2, y2) on this Edwards curve E is

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1 − dx1x2y1y2

)
.

The point (0, 1) is the neutral element of the addition law. The point (0,−1)
has order 2. The points (1, 0) and (−1, 0) have order 4. The inverse of a point
(x1, y1) on E is (−x1, y1). The addition law is strongly unified: i.e., it can also
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be used to double a point. The addition law also works for the neutral element
and for inverses. If d is a nonsquare in k then, as proven in [4, Theorem 3.3],
this addition law is complete: it works for all pairs of inputs.

Twisted Edwards Curves. The existence of points of order 4 restricts the
number of elliptic curves in Edwards form over k. We embed the set of Edwards
curves in a larger set of elliptic curves of a similar shape by introducing twisted
Edwards curves.

Definition 2.1 (Twisted Edwards curve). Fix a field k with char(k) �= 2.
Fix distinct nonzero elements a, d ∈ k. The twisted Edwards curve with coeffi-
cients a and d is the curve

EE,a,d : ax2 + y2 = 1 + dx2y2.

An Edwards curve is a twisted Edwards curve with a = 1.

In Section 3 we will show that every twisted Edwards curve is birationally equiv-
alent to an elliptic curve in Montgomery form, and vice versa. The elliptic curve
has j-invariant 16(a2 + 14ad + d2)3/ad(a − d)4.

Twisted Edwards Curves as Twists of Edwards Curves. The twisted
Edwards curve EE,a,d : ax2 + y2 = 1+dx2y2 is a quadratic twist of the Edwards
curve EE,1,d/a : x̄2 + ȳ2 = 1 + (d/a)x̄2ȳ2. The map (x̄, ȳ) �→ (x, y) = (x̄/

√
a, ȳ)

is an isomorphism from EE,1,d/a to EE,a,d over k(
√

a). If a is a square in k then
EE,a,d is isomorphic to EE,1,d/a over k.

More generally, EE,a,d is a quadratic twist of EE,ā,d̄ for any ā, d̄ satisfying
d̄/ā = d/a. Conversely, every quadratic twist of a twisted Edwards curve is
isomorphic to a twisted Edwards curve; i.e., the set of twisted Edwards curves
is invariant under quadratic twists.

Furthermore, the twisted Edwards curve EE,a,d : ax2 + y2 = 1 + dx2y2 is a
quadratic twist of (actually is birationally equivalent to) the twisted Edwards
curve EE,d,a : dx̄2 + ȳ2 = 1 + ax̄2ȳ2. The map (x̄, ȳ) �→ (x, y) = (x̄, 1/ȳ) is a
birational equivalence from EE,d,a to EE,a,d. More generally, EE,a,d is a quadratic
twist of EE,ā,d̄ for any ā, d̄ satisfying d̄/ā = a/d. This generalizes the known fact,
used in [4, proof of Theorem 2.1], that EE,1,d is a quadratic twist of EE,1,1/d.

3 Montgomery Curves and Twisted Edwards Curves

Let k be a field with char(k) �= 2. In this section we show that the set of
Montgomery curves over k is equivalent to the set of twisted Edwards curves
over k. We also analyze the extent to which this is true without twists.

Standard algorithms for transforming a Weierstrass curve into a Montgomery
curve if possible (see, e.g., [11, Section 13.2.3.c]) can be combined with our
explicit transformation from a Montgomery curve to a twisted Edwards curve.

Definition 3.1 (Montgomery curve). Fix a field k with char(k) �= 2. Fix
A ∈ k \ {−2, 2} and B ∈ k \ {0}. The Montgomery curve with coefficients A and
B is the curve

EM,A,B : Bv2 = u3 + Au2 + u.
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Theorem 3.2. Fix a field k with char(k) �= 2.
(i) Every twisted Edwards curve over k is birationally equivalent over k to a

Montgomery curve.
Specifically, fix distinct nonzero elements a, d ∈ k. The twisted Edwards curve

EE,a,d is birationally equivalent to the Montgomery curve EM,A,B, where A =
2(a + d)/(a− d) and B = 4/(a− d). The map (x, y) �→ (u, v) = ((1 + y)/(1− y),
(1 + y)/(1− y)x) is a birational equivalence from EE,a,d to EM,A,B, with inverse
(u, v) �→ (x, y) = (u/v, (u − 1)/(u + 1)).

(ii) Conversely, every Montgomery curve over k is birationally equivalent over
k to a twisted Edwards curve.

Specifically, fix A ∈ k \ {−2, 2} and B ∈ k \ {0}. The Montgomery curve
EM,A,B is birationally equivalent to the twisted Edwards curve EE,a,d, where
a = (A + 2)/B and d = (A − 2)/B.

Proof. (i) Note that A and B are defined, since a �= d. Note further that A ∈
k\{−2, 2} and B ∈ k\{0}: if A = 2 then a+d = a−d so d = 0, contradiction; if
A = −2 then a+d = d−a so a = 0, contradiction. Thus EM,A,B is a Montgomery
curve.

The following script for the Sage computer-algebra system [24] checks that the
quantities u = (1+y)/(1−y) and v = (1+y)/(1−y)x satisfy Bv2 = u3+Au2+u
in the function field of the curve EE,a,d : ax2 + y2 = 1 + dx2y2:

R.<a,d,x,y>=QQ[]
A=2*(a+d)/(a-d)
B=4/(a-d)
S=R.quotient(a*x^2+y^2-(1+d*x^2*y^2))
u=(1+y)/(1-y)
v=(1+y)/((1-y)*x)
0==S((B*v^2-u^3-A*u^2-u).numerator())

The exceptional cases y = 1 and x = 0 occur for only finitely many points (x, y)
on EE,a,d. Conversely, x = u/v and y = (u − 1)/(u + 1); the exceptional cases
v = 0 and u = −1 occur for only finitely many points (u, v) on EM,A,B.

(ii) Note that a and d are defined, since B �= 0. Note further that a �= 0 since
A �= −2; d �= 0 since A �= 2; and a �= d. Thus EE,a,d is a twisted Edwards curve.
Furthermore

2
a + d

a − d
= 2

A+2
B + A−2

B
A+2

B − A−2
B

= A and
4

(a − d)
=

4
A+2

B − A−2
B

= B.

Hence EE,a,d is birationally equivalent to EM,A,B by (i). �	
Exceptional Points for the Birational Equivalence. The map (u, v) �→
(u/v, (u− 1)/(u + 1)) from EM,A,B to EE,a,d in Theorem 3.2 is undefined at the
points of EM,A,B : Bv2 = u3 + Au2 + u with v = 0 or u + 1 = 0. We investigate
these points in more detail:

– The point (0, 0) on EM,A,B corresponds to the affine point of order 2 on
EE,a,d, namely (0,−1). This point and (0, 1) are the only exceptional points
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of the inverse map (x, y) �→ ((1 + y)/(1 − y), (1 + y)/(1 − y)x), where (0, 1)
is mapped to the point at infinity.

– If (A + 2)(A− 2) is a square (i.e., if ad is a square) then there are two more
points with v = 0, namely ((−A±√

(A + 2)(A − 2))/2, 0). These points have
order 2. These points correspond to two points of order 2 at infinity on the
desingularization of EE,a,d.

– If (A − 2)/B is a square (i.e., if d is a square) then there are two points
with u = −1, namely (−1,±√

(A − 2)/B). These points have order 4. These
points correspond to two points of order 4 at infinity on the desingularization
of EE,a,d.

Eliminating the Twists. Every Montgomery curve EM,A,B is birationally
equivalent to a twisted Edwards curve by Theorem 3.2, and therefore to a
quadratic twist of an Edwards curve. In other words, there is a quadratic twist
of EM,A,B that is birationally equivalent to an Edwards curve.

We now state two situations in which twisting is not necessary. Theorem 3.3
states that every elliptic curve having a point of order 4 is birationally equivalent
to an Edwards curve. Theorem 3.4 states that, over a finite field k with #k ≡ 3
(mod 4), every Montgomery curve is birationally equivalent to an Edwards curve.

Some special cases of these results were already known. Bernstein and Lange
proved in [4, Theorem 2.1(1)] that every elliptic curve having a point of order 4 is
birationally equivalent to a twist of an Edwards curve, and in [4, Theorem 2.1(3)]
that, over a finite field, every elliptic curve having a point of order 4 and a unique
point of order 2 is birationally equivalent to an Edwards curve. We prove that
the twist in [4, Theorem 2.1(1)] is unnecessary, and that the unique point of
order 2 in [4, Theorem 2.1(3)] is unnecessary.

Theorem 3.3. Fix a field k with char(k) �= 2. Let E be an elliptic curve over
k. The group E(k) has an element of order 4 if and only if E is birationally
equivalent over k to an Edwards curve.

Proof. Assume that E is birationally equivalent over k to an Edwards curve
EE,1,d. The elliptic-curve addition law corresponds to the Edwards addition law;
see [4, Theorem 3.2]. The point (1, 0) on EE,1,d has order 4, so E must have a
point of order 4.

Conversely, assume that E has a point (u4, v4) of order 4. As in [4, Theo-
rem 2.1, proof], observe that u4 �= 0 and v4 �= 0; assume without loss of general-
ity that E has the form v2 = u3 + (v2

4/u2
4 − 2u4)u2 + u2

4u; define d = 1− 4u3
4/v2

4 ;
and observe that d /∈ {0, 1}.

The following script for the Sage computer-algebra system checks that the
quantities x = v4u/u4v and y = (u − u4)/(u + u4) satisfy x2 + y2 = 1 + dx2y2

in the function field of E:

R.<u,v,u4,v4>=QQ[]
d=1-4*u4^3/v4^2
S=R.quotient((v^2-u^3-(v4^2/u4^2-2*u4)*u^2-u4^2*u).numerator())
x=v4*u/(u4*v)
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y=(u-u4)/(u+u4)
0==S((x^2+y^2-1-d*x^2*y^2).numerator())

The exceptional cases u4v = 0 and u = −u4 occur for only finitely many points
(u, v) on E. Conversely, u = u4(1 + y)/(1 − y) and v = v4(1 + y)/(1 − y)x; the
exceptional cases y = 1 and x = 0 occur for only finitely many points (x, y) on
EE,1,d.

Therefore the rational map (u, v) �→ (x, y) = (v4u/u4v, (u−u4)/(u+u4)), with
inverse (x, y) �→ (u, v) = (u4(1 + y)/(1 − y), v4(1 + y)/(1 − y)x), is a birational
equivalence from E to the Edwards curve EE,1,d. �	
Theorem 3.4. If k is a finite field with #k ≡ 3 (mod 4) then every Mont-
gomery curve over k is birationally equivalent over k to an Edwards curve.

Proof. Fix A ∈ k \ {−2, 2} and B ∈ k \ {0}. We will use an idea of Okeya, Ku-
rumatani, and Sakurai [21], building upon the observations credited to Suyama
in [20, page 262], to prove that the Montgomery curve EM,A,B has a point of
order 4. This fact can be extracted from [21, Theorem 1] when #k is prime, but
to keep this paper self-contained we include a direct proof.

Case 1: (A+2)/B is a square. Then (as mentioned before) EM,A,B has a point
(1,

√
(A + 2)/B) of order 4.

Case 2: (A + 2)/B is a nonsquare but (A − 2)/B is a square. Then EM,A,B

has a point (−1,
√

(A − 2)/B) of order 4.
Case 3: (A + 2)/B and (A− 2)/B are nonsquares. Then (A + 2)(A− 2) must

be square, since k is finite. The Montgomery curve EM,A,A+2 has three points
(0, 0), ((−A ± √

(A + 2)(A − 2))/2, 0) of order 2, and a point (1, 1) of order 4,
so #EM,A,A+2(k) ≡ 0 (mod 8). Furthermore, EM,A,B is a nontrivial quadratic
twist of EM,A,A+2, so #EM,A,B(k) + #EM,A,A+2(k) = 2#k + 2 ≡ 0 (mod 8).
Therefore #EM,A,B(k) ≡ 0 (mod 8). The curve EM,A,B cannot have more than
three points of order 2, so it must have a point of order 4.

In every case EM,A,B has a point of order 4. By Theorem 3.3, EM,A,B is
birationally equivalent to an Edwards curve. �	
This theorem does not generalize to #k ≡ 1 (mod 4). For example, the Mont-
gomery curve EM,9,1 over F17 has order 20 and group structure isomorphic to
Z/2 × Z/10. This curve is birationally equivalent to the twisted Edwards curve
EE,11,7, but it does not have a point of order 4, so it is not birationally equivalent
to an Edwards curve.

Theorem 3.5. Let k be a finite field with #k ≡ 1 (mod 4). Let EM,A,B be a
Montgomery curve so that (A + 2)(A − 2) is a square and let δ be a nonsquare.

Exactly one of EM,A,B and its nontrivial quadratic twist EM,A,δB is bira-
tionally equivalent to an Edwards curve.

In particular, EM,A,A+2 is birationally equivalent to an Edwards curve.

Proof. Since (A + 2)(A − 2) is a square both EM,A,B and EM,A,δB contain a
subgroup isomorphic to Z/2Z×Z/2Z. This subgroup accounts for a factor of 4
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in the group order. Since #EM,A,B(k) + #EM,A,δB(k) = 2#k + 2 ≡ 4 (mod 8)
exactly one of #EM,A,B(k) and #EM,A,δB(k) is divisible by 4 but not by 8. That
curve cannot have a point of order 4 while the other one has a point of order 4.
The first statement follows from Theorem 3.3.

The second statement also follows from Theorem 3.3, since the point (1, 1) on
EM,A,A+2 has order 4. �	

4 Statistics

It is well known that, when p is a large prime, there are approximately 2p
isomorphism classes of elliptic curves over the finite field Fp. How many of these
elliptic curves are birationally equivalent to twisted Edwards curves ax2 + y2 =
1 + dx2y2? How many are birationally equivalent to Edwards curves x2 + y2 =
1 + dx2y2? How many are birationally equivalent to complete Edwards curves,
i.e., Edwards curves with nonsquare d? How many are birationally equivalent to
original Edwards curves x2 + y2 = c2(1+x2y2)? How do the statistics vary with
the number of powers of 2 in the group order?

We computed the answers for various primes p by enumerating all complete
Edwards curves, all Edwards curves, all twisted Edwards curves (with a limited
set of a’s covering all isomorphism classes), and all elliptic curves in Weierstrass
form (with similar limitations). We transformed each curve to a birationally
equivalent elliptic curve E and then computed (#E, j(E)), where #E is the
number of points on E and j(E) is the j-invariant of E. Recall that j(E) = j(E′)
if and only if E′ is a twist of E, and that twists are distinguished by #E except
for a few isomorphism classes.

Some parts of these experiments have been carried out before. See, e.g., [15].
However, the information in the literature is not sufficient for our comparison of
Edwards curves (and complete Edwards curves) to twisted Edwards curves.

Answers for Primes p ≡ 1 (mod 4). For p = 1009 we found
– 43 different pairs (#E, j(E)) for original Edwards curves,
– 504 different pairs (#E, j(E)) for complete Edwards curves,
– 673 different pairs (#E, j(E)) for Edwards curves,
– 842 different pairs (#E, j(E)) for twisted Edwards curves,
– 842 different pairs (#E, j(E)) for elliptic curves with group order divisible

by 4, and
– 2014 different pairs (#E, j(E)) for elliptic curves.

We looked more closely at the number of powers of 2 dividing #E and observed
the following distribution:

Curves Total odd 2 · odd 4 · odd 8 · odd 16 · odd 32 · odd 64 · odd
original Edwards 43 0 0 0 0 23 6 6

complete Edwards 504 0 0 252 130 66 24 16
Edwards 673 0 0 252 195 122 42 30

twisted Edwards 842 0 0 421 195 122 42 30
4 divides group order 842 0 0 421 195 122 42 30

all 2014 676 496 421 195 122 42 30
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We observed similar patterns for more than 1000 tested primes p ≡ 1 (mod 4):

Curves Total odd 2 · odd 4 · odd 8 · odd
original Edwards ≈ (1/24)p 0 0 0 0

complete Edwards ≈ (1/2)p 0 0 ≈ (1/4)p ≈ (1/8)p
Edwards ≈ (2/3)p 0 0 ≈ (1/4)p ≈ (3/16)p

twisted Edwards ≈ (5/6)p 0 0 ≈ (5/12)p ≈ (3/16)p
4 divides group order ≈ (5/6)p 0 0 ≈ (5/12)p ≈ (3/16)p

all ≈ 2p ≈ (2/3)p ≈ (1/2)p ≈ (5/12)p ≈ (3/16)p

We do not claim novelty for statistics regarding the set of Montgomery curves (in
other words, the set of twisted Edwards curves) and the set of all elliptic curves;
all of these statistics have been observed before, and some of them have been
proven. Furthermore, the (1/2)p for complete Edwards curves was pointed out
in [4, Abstract]. However, the (2/3)p, (1/4)p, and (3/16)p for Edwards curves
appear to be new observations. We include the old statistics as a basis for com-
parison.

Answers for Primes p ≡ 3 (mod 4). For primes p ≡ 3 (mod 4) the patterns
are different, as one would expect from Theorems 3.4 and 3.5. For example, here
is the analogous table for p = 1019:

Curves Total odd 2 · odd 4 · odd 8 · odd 16 · odd 32 · odd 64 · odd
original Edwards 254 0 0 0 127 68 33 10

complete Edwards 490 0 0 236 127 68 33 10
Edwards 744 0 0 236 254 136 66 20

twisted Edwards 744 0 0 236 254 136 66 20
4 divides group order 822 0 0 314 254 136 66 20

all 2012 680 510 314 254 136 66 20

We observed similar patterns for more than 1000 tested primes p ≡ 3 (mod 4):

Curves Total odd 2 · odd 4 · odd 8 · odd
original Edwards ≈ (1/4)p 0 0 0 ≈ (1/8)p

complete Edwards ≈ (1/2)p 0 0 ≈ (1/4)p ≈ (1/8)p
Edwards ≈ (3/4)p 0 0 ≈ (1/4)p ≈ (1/4)p

twisted Edwards ≈ (3/4)p 0 0 ≈ (1/4)p ≈ (1/4)p
4 divides group order ≈ (5/6)p 0 0 ≈ (1/3)p ≈ (1/4)p

all ≈ 2p ≈ (2/3)p ≈ (1/2)p ≈ (1/3)p ≈ (1/4)p

As above, we do not claim novelty for statistics regarding the set of Montgomery
curves and the set of all elliptic curves; we include these statistics as a basis for
comparison.
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Near-Prime Group Orders. We also looked at how often the odd part of #E
was prime and observed the following distribution for p = 1009:

Curves prime 2 · prime 4 · prime 8 · prime 16 · prime 32 · prime
original Edwards 0 0 0 0 8 2

complete Edwards 0 0 64 42 28 8
Edwards 0 0 64 63 50 14

twisted Edwards 0 0 102 63 50 14
4 divides group order 0 0 102 63 50 14

all 189 98 102 63 50 14

Here is the analogous table for p = 1019:

Curves prime 2 · prime 4 · prime 8 · prime 16 · prime 32 · prime
original Edwards 0 0 0 25 22 9

complete Edwards 0 0 48 25 22 9
Edwards 0 0 48 50 44 18

twisted Edwards 0 0 48 50 44 18
4 divides group order 0 0 64 50 44 18

all 148 100 64 50 44 18

Of course, larger primes p have smaller chances of prime #E, smaller chances of
prime #E/2, etc.

5 Isogenies: Even More Curves

A curve that is not isomorphic to an Edwards curve, and not even isomorphic to
a twisted Edwards curve, might nevertheless be isogenous to a twisted Edwards
curve. This section shows, in particular, that every curve with three points of
order 2 is 2-isogenous to a twisted Edwards curve. This section gives an example
of a curve that is not birationally equivalent to a twisted Edwards curve but that
is 2-isogenous to a twisted Edwards curve. This section also discusses the use
of 2-isogenies for scalar multiplication in an odd-order subgroup of the original
curve.

Our use of isogenies to expand the coverage of twisted Edwards curves is
analogous to the use of isogenies by Brier and Joye in [9] to expand the coverage
of “a4 = −3” Weierstrass curves. We comment that isogenies are also useful
for other curve shapes. For example, over fields Fp with p ≡ 3 (mod 4), every
elliptic curve with a point of order 4 is 2-isogenous to a Jacobi-quartic curve
v2 = u4 − 2δu2 + 1; see [6], [12], [16], [17], and [3] for fast explicit formulas to
perform computations on curves of this shape.

Theorem 5.1. Fix a field k with char(k) �= 2. Every elliptic curve over k having
three k-rational points of order 2 is 2-isogenous over k to a twisted Edwards
curve.
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Proof. Let E be an elliptic curve over k having three k-rational points of order 2.
Write E in Weierstrass form v2 = u3 + a2u

2 + a4u + a6, with points (u0, 0) and
(u1, 0) and (u2, 0) of order 2. Assume without loss of generality that u0 = 0; to
handle the general case, replace u by u − u0.

The polynomial u3 + a2u
2 + a4u + a6 has distinct roots 0, u1, u2 so it factors

as u(u − u1)(u − u2); i.e., E has the form

v2 = u3 − (u1 + u2)u2 + (u1u2)u.

Therefore E is 2-isogenous to the elliptic curve Ē given by

v̄2 = ū3 + 2(u1 + u2)ū2 + (u1 − u2)2ū;

see, e.g., [22, Chapter III, Example 4.5]. The 2-isogeny from E to Ē is given by

ū =
v2

u2
and v̄ =

v(u1u2 − u2)
u2

.

The dual 2-isogeny from Ē to E is given by

u =
v̄2

4ū2
and v =

v̄((u1 − u2)2 − ū2)
8ū2

.

The elliptic curve Ē is isomorphic to EM,2(u1+u2)/(u1−u2),1/(u1−u2), so by The-
orem 3.2 it is birationally equivalent to EE,4u1,4u2 . Therefore the original elliptic
curve E is 2-isogenous to EE,4u1,4u2 . �	

A Numerical Example. Over fields Fp with p ≡ 1 (mod 4), every curve with
three points of order 2 is already birationally equivalent to a twisted Edwards
curve. However, over fields Fp with p ≡ 3 (mod 4), a curve that has three points
of order 2 is not birationally equivalent to a twisted Edwards curve unless it has
a point of order 4; see Theorem 3.4. Theorem 5.1 applies whether or not there
is a point of order 4.

Consider, for example, the elliptic curve given in [7, Appendix A.1, Exam-
ple 11]. This is a Weierstrass-form curve y2 = x3 + ax + b having n points over
a prime field Fp with p ≡ 3 (mod 4), where

p = 704884506943271274200281641864861869675382281803874374287823
572590636465776430902994937116627154697596008175843994317887,

a = 5,

b = 386662904220884846158118978755296957588161144581227227632608
477394833508761427897436830503346162919463497627079364752199,

n/4 = 176221126735817818550070410466215467418845570450968593571955
849984388374202661367791144000780545901540071164046444060971.

There are three roots of x3 + ax + b modulo p, so this elliptic curve has three
points of order 2. It is 2-isogenous to a twisted Edwards curve by Theorem 5.1.
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On the other hand, it is not birationally equivalent to a Montgomery curve,
or to a twisted Edwards curve; if it were, it would have a point of order 4 by
Theorem 3.4, so n would have to be a multiple of 8.

The most important operation in elliptic-curve cryptography is scalar multi-
plication in a prime-order subgroup of an elliptic curve. Consider a point P in
the subgroup of order n/4 of the elliptic curve shown above; n/4 is prime. To
compute Q = mP for any integer m, we do the following:

– compute P ′ = φ(P ), where φ is the 2-isogeny (shown explicitly in the proof
of Theorem 5.1) from this elliptic curve to a twisted Edwards curve;

– compute Q′ = ((m/2) mod (n/4))P ′ on the twisted Edwards curve; and
– compute Q = φ̂(Q′), where φ̂ is the dual isogeny.

The isogeny and dual isogeny are easy to evaluate, so most of the work consists
of the scalar multiplication on the twisted Edwards curve.

6 Arithmetic on Twisted Edwards Curves

Let k be a field with char(k) �= 2. In this section we present fast explicit formulas
for addition and doubling on twisted Edwards curves over k.

The Twisted Edwards Addition Law. Let (x1, y1), (x2, y2) be points on the
twisted Edwards curve EE,a,d : ax2 + y2 = 1 + dx2y2. The sum of these points
on EE,a,d is

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1 − dx1x2y1y2

)
.

The neutral element is (0, 1), and the negative of (x1, y1) is (−x1, y1).
For the correctness of the addition law observe that it coincides with the

Edwards addition law on x̄2 + y2 = 1+(d/a)x̄2y2 with x̄ =
√

ax which is proven
correct in [4, Section 3].

These formulas also work for doubling. These formulas are complete (i.e., have
no exceptional cases) if a is a square in k and d is a nonsquare in k. The latter
follows from EE,a,d being isomorphic to EE,1,d/a; d/a being a nonsquare in k and
from [4, Theorem 3.1] which showed that the Edwards addition law is complete
on EE,1,d′ if d′ is a nonsquare.

Projective Twisted Edwards Coordinates. To avoid inversions we work on
the projective twisted Edwards curve

(aX2 + Y 2)Z2 = Z4 + dX2Y 2.

For Z1 �= 0 the homogeneous point (X1 : Y1 : Z1) represents the affine point
(X1/Z1, Y1/Z1) on EE,a,d.

We checked the following explicit formulas for addition and doubling with
the help of the Sage computer-algebra system, following the approach of the
Explicit-Formulas Database [3].
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Addition in Projective Twisted Coordinates. The following formulas com-
pute (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) in 10M + 1S + 2D + 7add,
where the 2D are one multiplication by a and one by d:

A = Z1 · Z2; B = A2; C = X1 · X2; D = Y1 · Y2; E = dC · D;
F = B − E; G = B + E; X3 = A · F · ((X1 + Y1) · (X2 + Y2) − C − D);
Y3 = A · G · (D − aC); Z3 = F · G.

Doubling in Projective Twisted Coordinates. The following formulas com-
pute (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1) in 3M + 4S + 1D + 7add, where the 1D
is a multiplication by a:

B = (X1 + Y1)2; C = X2
1 ; D = Y 2

1 ; E = aC; F := E + D; H = Z2
1 ;

J = F − 2H ; X3 = (B − C − D) · J ; Y3 = F · (E − D); Z3 = F · J.

Clearing Denominators in Projective Coordinates. Here is an alternative
approach to arithmetic on the twisted Edwards curve EE,a,d when a is a square
in k.

The curve EE,a,d : ax̄2 + ȳ2 = 1 + dx̄2ȳ2 is isomorphic to the Edwards curve
EE,1,d/a : x2 + y2 = 1 + (d/a)x2y2 by x =

√
ax̄ and y = ȳ; see Section 2. The

following formulas add on EE,1,d/a using 10M+ 1S+ 3D+ 7add, where the 3D
are two multiplications by a and one by d:

A = Z1 · Z2; B = aA2; H = aA; C = X1 · X2; D = Y1 · Y2; E = dC · D;
F = B − E; G = B + E; X3 = H · F · ((X1 + Y1) · (X2 + Y2) − C − D);
Y3 = H · G · (D − C); Z3 = F · G.

One can double on EE,1,d/a with 3M + 4S + 6add, independent of the curve
coefficient d/a, using the formulas from [4, Section 4].

Our addition formulas for EE,1,d/a are slower (by 1 multiplication by a) than
our addition formulas for EE,a,d. On the other hand, doubling for EE,1,d/a is
faster (by 1 multiplication by a) than doubling for EE,a,d. Some applications
(such as batch signature verification) have more additions than doublings, while
other applications have more doublings than additions, so all of the formulas are
of interest.

Inverted Twisted Edwards Coordinates. Another way to avoid inversions
is to let a point (X1 : Y1 : Z1) on the curve

(X2 + aY 2)Z2 = X2Y 2 + dZ4

with X1Y1Z1 �= 0 correspond to the affine point (Z1/X1, Z1/Y1) on EE,a,d.
Bernstein and Lange introduced these inverted coordinates in [5], for the case

a = 1, and observed that the coordinates save time in addition. We generalize
to arbitrary a.



Twisted Edwards Curves 401

Addition in Inverted Twisted Coordinates. The following formulas com-
pute (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) in 9M + 1S + 2D + 7add,
where the 2D are one multiplication by a and one by d:

A = Z1 · Z2; B = dA2; C = X1 · X2; D = Y1 · Y2; E = C · D;
H = C − aD; I = (X1 + Y1) · (X2 + Y2) − C − D;

X3 = (E + B) · H ; Y3 = (E − B) · I; Z3 = A · H · I.

Doubling in Inverted Twisted Coordinates. The following formulas com-
pute (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1) in 3M + 4S + 2D + 6add, where the 2D
are one multiplication by a and one by 2d:

A = X2
1 ; B = Y 2

1 ; U = aB; C = A + U ; D = A − U ;
E = (X1 + Y1)2 − A − B; X3 = C · D; Y3 = E · (C − 2dZ2

1 ); Z3 = D · E.

Clearing Denominators in Inverted Coordinates. The following formulas
add in inverted coordinates on EE,1,d/a using 9M+ 1S+ 3D+ 7add, where the
3D are two multiplications by a and one by d:

A = Z1 · Z2; B = dA2; C = X1 · X2; D = Y1 · Y2; E = aC · D;
H = C − D; I = (X1 + Y1) · (X2 + Y2) − C − D;

X3 = (E + B) · H ; Y3 = (E − B) · I; Z3 = aA · H · I.

The following formulas double in inverted coordinates on EE,1,d/a using 3M+
4S + 3D + 5add, where the 3D are two multiplications by a and one by 2d:

A = X2
1 ; B = Y 2

1 ; C = A + B; D = A − B; E = (X1 + Y1)2 − C;
F = aC; Z3 = aD · E; X3 = F · D; Y3 = E · (F − 2dZ2

1 ).

More Parameters. One could consider the more general curve equation

ax2 + y2 = c2(1 + dx2y2)

with addition law

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − ax1x2

c(1 − dx1x2y1y2)

)
.

We do not present explicit formulas for this generalization; these curves are
always isomorphic to twisted Edwards curves. We comment, however, that there
exist curves for which the extra parameter saves a little time.

7 Edwards Versus Twisted Edwards

We introduced twisted Edwards curves as a generalization of Edwards curves. Is
this generalization actually useful for cryptographic purposes?
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Section 4 showed that, over prime fields Fp where p ≡ 1 (mod 4), twisted
Edwards curves cover considerably more elliptic curves than Edwards curves do.
In particular, for “4 times odd” elliptic curves over such prime fields, the coverage
of Edwards curves is only about 60% of the coverage of twisted Edwards curves.
One can choose a to be very small, making twisted Edwards curves essentially
as fast as Edwards curves and thus bringing the speed of the Edwards addition
law to a wider variety of elliptic curves.

Even when an elliptic curve can be expressed in Edwards form, expressing
the same curve in twisted Edwards form often saves time in arithmetic. In this
section we review the issues faced by implementors aiming for top speed. We
give examples of the impact of twisted Edwards curves for implementors who
are faced with externally specified curves, and for implementors who are free to
choose their own curves.

How Twisting Can Save Time. The following table summarizes the speeds of
addition and doubling in standard (projective) coordinates on Edwards curves,
standard coordinates on twisted Edwards curves, inverted coordinates on Ed-
wards curves, and inverted coordinates on twisted Edwards curves:

Coordinates Source of Addition Doubling
algorithms

Edwards [4, §4] 10M+1S+1D 3M+4S
(mult by d/a)

Edwards this paper 10M+1S+3D 3M+4S
(clearing denoms) (mult by a, a, d)

Twisted Edwards this paper 10M+1S+2D 3M+4S+1D
(mult by a, d) (mult by a)

Inverted Edwards [5, §§4–5] 9M+1S+1D 3M+4S+1D
(mult by d/a) (mult by d/a)

Inverted Edwards this paper 9M+1S+3D 3M+4S+3D
(clearing denoms) (mult by a, a, d) (mult by a, a, d)

Inverted twisted Edwards this paper 9M+1S+2D 3M+4S+2D
(mult by a, d) (mult by a, d)

If a curve E is expressible as an Edwards curve, is there any reason to consider
more general expressions of E as a twisted Edwards curve? One might think,
from a glance at the above table, that the answer is no: twisting appears to lose
1D in every coordinate system and for every group operation without gaining
anything. However, there are many situations where the answer is yes!

Specifically, instead of performing computations on the Edwards curve EE,1,d̄

over k, one can perform computations on the twisted Edwards curve EE,a,d over
k for any (a, d) such that d̄ = d/a and such that a is a square in k. (It is
convenient for computing the isomorphism, but certainly not essential, for a to
be the square of a small integer.) In particular, many curves over Fp have d̄
expressible as a ratio d/a where both d and a are small, much smaller than any
integer congruent to d̄ modulo p. In the non-twisted Edwards case the 1D in the
table above is a multiplication by d̄ while the 2D in the twisted Edwards case
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are one multiplication by d and one multiplication by a, often taking less time
than a multiplication by d̄.

Consider, for example, the curve “Curve25519” used in [1] to set speed records
for elliptic-curve Diffie-Hellman before the advent of Edwards curves. Curve25519
is a particular elliptic curve over Fp where p = 2255 − 19. Bernstein and Lange
point out in [4, Section 2] that Curve25519 can be expressed as an Edwards
curve x2 + y2 = 1 + (121665/121666)x2y2. We point out that this curve is
isomorphic to the twisted Edwards curve 121666x2 + y2 = 1 + 121665x2y2, and
that the twisted Edwards curve provides faster arithmetic. Each addition on
the twisted Edwards curve involves only one multiplication by 121665 and one
multiplication by 121666, which together are faster than a multiplication by
20800338683988658368647408995589388737092878452977063003340006470870624536394
≡ 121665/121666 (mod p).

This phenomenon is not an accident. Montgomery curves EM,A,B are normally
chosen so that (A+2)/4 is a small integer: this speeds up u-coordinate arithmetic,
as Montgomery pointed out in [20, page 261, bottom]. The corresponding twisted
Edwards curves have d/a equal to (A − 2)/(A + 2), a ratio of small integers,
allowing fast arithmetic in twisted Edwards form.

The decision between Edwards curves and twisted Edwards curves interacts
with the decision between standard Edwards coordinates and inverted Edwards
coordinates. Frequent additions make inverted Edwards coordinates more im-
pressive; large a, d make inverted Edwards coordinates less impressive.

Choosing Twisted Edwards Curves. Often implementors are free to choose
their own curves for the best possible speed. To illustrate the benefits of this
flexibility we studied “small” twisted Edwards curves modulo several primes of
cryptographic size: 2160 − 47, the largest prime below 2160; 2192 − 264 − 1, the
prime used for NIST’s P-192 elliptic curve; 2224 − 296 + 1, the prime used for
NIST’s P-224 elliptic curve; and 2255 − 19, the prime used in [1]. Specifically, we
enumerated twisted Edwards curves EE,a,d for thousands of small pairs (a, d),
and we checked which curves had small cofactors over Fp, i.e., had group orders
h·prime where the cofactor h is small. We give some examples of twisted Edwards
curves with small cofactor, tiny a, and tiny d, supporting exceptionally fast
arithmetic.

For p = 2192 − 264 − 1, the twisted Edwards curve EE,102,47 : 102x2 + y2 =
1 + 47x2y2 has cofactor 4. Arithmetic on EE,102,47 is impressively fast, and the
cofactor is minimal. The nontrivial quadratic twist EE,1122,517 has cofactor only
28, protecting against the active small-subgroup attacks discussed in (e.g.) [1,
Section 3].

For p = 2224−296+1, the twisted Edwards curve EE,12,1 has cofactor 3456, and
its nontrivial quadratic twist EE,132,11 has cofactor 20. The coefficients a = 12
and d = 1 here are spectacularly small. The cofactor 3456 is not minimal but
can still be considered for cryptographic purposes.

If active small-subgroup attacks are stopped in other ways then one can find
even smaller pairs (a, d). For p = 2160 − 47 the twisted Edwards curve EE,23,−6

has cofactor 4; for comparison, the first Edwards curve we found with small
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parameter d and with cofactor 4 over the same field was EE,1,268. For p =
2255 − 19 the twisted Edwards curve EE,29,−28 has cofactor 4 and the twisted
Edwards curve EE,25,2 has cofactor 8.
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Abstract. Using a method based on Chinese Remainder Theorem for
polynomial multiplication and suitable reductions, we obtain an efficient
multiplication method for finite fields of characteristic 3. Large finite
fields of characteristic 3 are important for pairing based cryptography
[3]. For 5 ≤ � ≤ 18, we show that our method gives canonical multipli-
cation formulae over F3�m for any m ≥ 1 with the best multiplicative
complexity improving the bounds in [6]. We give explicit formula in the
case F36·97 .

Keywords: Chinese Remainder Theorem, finite field multiplication,
pairing based cryptography.

1 Introduction

Finite field multiplication plays an important role in public key cryptography
and coding theory. Public key cryptographic applications accomplished in very
large finite fields. For example, one needs a finite field of at least 2160 elements
for elliptic curve cryptography. For that reason efficient finite field multiplication
has become a crucial part of such applications. A finite field with qn elements is
denoted by Fqn where q is a prime power and n ≥ 1. The elements of Fqn can
be represented by n-term polynomials over Fq. Field elements can be multiplied
in terms of ordinary multiplication of polynomials and modular reduction of the
result product by the defining polynomial of the finite field. The reduction step
has no multiplicative complexity [5, p.8]. So finite field multiplication is directly
related to the polynomial multiplication.

The finite fields of characteristic three are useful for pairing-based cryptogra-
phy. Therefore, special attention has been given to F3m , recently. The elements
of F3m can be represented by at most (m − 1) degree polynomials over F3. To
multiply elements of F3m one can use Karatsuba method [4] or Montgomery for-
mulae [6], which are among the main algorithms used in every finite fields. On
the other hand, for finite fields of fixed characteristics, there are other methods
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that give more efficient algorithms for polynomial multiplication than Karatsuba
and Montgomery in some cases. Some of those methods are Chinese Remainder
Theorem (CRT) method [5] and Discrete Fourier Transform (DFT) method. In
[1,2], using DFT method, multiplication formula in [3] for F36m is improved.

In this paper, using a method based on CRT for polynomial multiplication
over F3 and suitable reductions, we obtained an efficient multiplication method
for finite fields of characteristic 3. For 5 ≤ � ≤ 18, we show that our method
gives canonical multiplication formulae over F3�m for any m ≥ 1 with the best
multiplicative complexity improving the bounds in [6]. Moreover, we give explicit
formula in the case F36·97 .

The rest of paper is organized as follows. In Section 2, we introduced our
method. Applying our method we obtain explicit formulae in Section 3. We also
compare our results with the previous results in Section 3. We conclude our
paper in Section 4.

2 The Method

Let Fq be the field with q elements where q = 3n. Unless stated otherwise, all
polynomials considered here are in F3[x]. Let n ≥ 1 be an integer. A polynomial
A(x) of the form

A(x) = a0 + a1x + ... + an−1x
n−1, an−1 �= 0

is called an n-term polynomial. M(n) denotes the minimum number of multipli-
cations needed in F3 in order to multiply two arbitrary n-term polynomials. We
note that M(n) is also called multiplicative complexity of n-term polynomials.
Let n ≥ 1 be an integer, f(x) be an irreducible polynomial and � ≥ 1 be an
integer such that

� deg(f(x)) < 2n − 1.

Let A(x) and B(x) be arbitrary n-term polynomials, C(x) = A(x)B(x) and
A(x), B(x), C(x) be the uniquely determined polynomials of degree strictly less
than � deg(f(x)) such that

A(x) ≡ A(x) mod f(x)�, B(x) ≡ B(x) mod f(x)�, C(x) ≡ C(x) mod f(x)�.

Notation 1. Let Mf,�(n) denote the minimum number of multiplications needed
in Fq in order to obtain C(x) from given n-term polynomials A(x) and B(x).
Obtaining such C(x) from A(x) and B(x) is called multiplication of n-term poly-
nomials modulo f(x)�.

Let 1 ≤ w ≤ 2n − 2 be an integer and C(x) = c0 + c1x + ... + c2n−2x
2n−2.

Obtaining the last w coefficients c2n−2, c2n−3, ..., c2n−1−w of C(x) is defined as
the multiplication of n-term polynomials modulo (x −∞)w [5,7].

Notation 2. Let M(x−∞),w(n) denote the minimum number of multiplications
needed in Fq in order to obtain c2n−2, c2n−3, ..., c2n−1−w from given n-term poly-
nomials A(x) and B(x).



408 M. Cenk and F. Özbudak

CRT method for finite field polynomial multiplication can be summarized as
follows. For 1 ≤ i ≤ t, let mi(x) = fi(x)�i be the �i-th power (�i ≥ 1) of
an irreducible polynomial fi(x) such that deg(m(x)) ≥ 2n − 1 where m(x) =∏t

i=1 mi(x). Assume that f1(x), ..., ft(x) are distinct. Let w ≥ 1 be an integer
which corresponds to multiplication modulo (x−∞)w (see [7] and [5, p. 34]). It
follows from CRT algorithm that if

w +
t∑

i=1

�i deg(fi(x)) ≥ 2n − 1 (1)

then

M(n) ≤ M(x−∞),w(n) +
t∑

i=1

Mf,�(n). (2)

The value of Mf,�(n) can be bounded from above by M(deg(f �)) ≤ M(� ·
deg(f)). For example in [7], Mf,�(n) ≤ M(� · deg(f)) is used for binary fields.
In [8], we improved the estimate of Mf,�(n) for the binary field F2. The same
techniques also work for any finite field Fq, in particular for F3. Before giving
the improvement, we give the following definition.

Definition 1. Let R = Fq[x] be the ring of polynomials over Fq in variable x,
� ≥ 1 be an integer and

A(Y ) = a0(x) + a1(x)Y + ... + a�−1(x)Y �−1,

B(Y ) = b0(x) + b1(x)Y + ... + b�−1(x)Y �−1

be two �-term polynomials in the polynomial ring R[Y ] over R. Let c0(x), ...,
c2�−2(x) ∈ R be given by

c0(x) + c1(x)Y + ... + c2�−2(x)Y 2�−2 = A(Y )B(Y ).

Let λ(�) denote the minimum number of multiplications needed in R in order to
obtain c0(x), c1(x), ..., c�−1(x).

For the sake of completeness we prefer to give a full proof of this improvement.

Theorem 1. Let f(x) be an irreducible polynomial and � ≥ 1 be an integer such
that � deg(f(x)) < 2n − 1. We have

Mf,�(n) ≤ λ(�)M(deg(f)). (3)

Proof. Let A(x) be an n-term polynomial and A(x) be the uniquely deter-
mined polynomial of degree strictly less than � deg(f(x)) such that A(x) ≡
A(x) mod f(x)�. Let a0(x), a1(x), ..., a�−1(x) be uniquely determined polynomi-
als such that

A(x) = a0(x) + a1(x)f(x) + ... + a�−1(x)f(x)�−1 and deg(ai(x)) < deg(f(x))

for 0 ≤ i ≤ �−1. Let B(x) and b0(x), b1(x), ..., b�−1(x) be defined similarly. Note
that ai(x) and bj(x), for 0 ≤ i ≤ � − 1, 0 ≤ j ≤ � − 1 are obtained without any
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multiplication. Let R = F3[x] and Ã(Y ) and B̃(Y ) be polynomials in R[Y ] such
that

Ã(Y ) = a0(x) + a1(x)Y + ... + a�−1(x)Y �−1,

B̃(Y ) = b0(x) + b1(x)Y + ... + b�−1(x)Y �−1.

Define C̃(Y ) = Ã(Y )B̃(Y ) and let c0(x), c1(x), ..., c�−1(x) ∈ R be the first �

coefficients of C̃(Y ). Since Y i ≡ 0 mod Y � for i ≥ �, Mf,�(n) refers to com-
puting the first � coefficients of Ã(Y )B̃(Y ). Therefore the first � coefficients
c0(x), c1(x), ..., c�−1(x) can be obtained from A(x) and B(x) with at most λ(�)
multiplications of certain coefficients of Ã(Y ) and B̃(Y ) in R. Since each coeffi-
cient of Ã(Y ) and B̃(Y ) is a deg(f(x))-term polynomial over F3, any multipli-
cation can be done with M(deg(f(x))) multiplications over F3. This completes
the proof.
Remark 1. Let1 ≤ w ≤ 2n−1bean integer.Recall that thenotationM(x−∞),w(n)
is given in Notation 2. It is clear that M(1) = 1. Using similar methods as in
Theorem 1 we also obtain that

M(x−∞),w(n) ≤ λ(w)M(1) = λ(w).

Corollary 1. Mx,w(n) corresponds to computing first w coefficients c0, c1, ..., cw

of c(x) and Mx,w(n) = M(x−∞),w(n) ≤ λ(w).

Some effective upper bounds of λ(�) is given in the following lemma which con-
tributes to improvements on Mf,�(n).
Proposition 1. λ(3) ≤ 5, λ(4) ≤ 8, λ(5) ≤ 11, λ(6) ≤ 15, λ(7) ≤ 19, λ(8) ≤
24, and λ(9) ≤ 29.

Proof. We use a Karatsuba type method (cf., for example in [9]). Here we
present an explicit proof of λ(3) ≤ 5 only. The other statements can be proved
similarly (see also [9]). Let A(x) and B(x) be arbitrary n-term polynomials,
C(x) = A(x)B(x) and c0, c1, c2 be the first 3 coefficients of C(x). Then

c0 = D0

c1 = D01 − D0 − D1

c2 = D02 + D1 − D0 − D2

where Di = aibi and Dst = (as + at)(bs + bt). Then

λ(3) ≤ #{D0, D1, D2, D01, D02} = 5.

This completes the proof of λ(3) ≤ 5.
In Table 1, we list some improvements on the upper bound on Mf,�(n). Note

that computation of Mf,�(n) can be done by first computing the polynomial
multiplication then reducing the result modulo f �. Therefore we compare our
bounds with bounds in [6]. For the range of indices i and j in Table 1 and Table 2,
fij denotes an irreducible polynomial of degree i over F3 which are defined as
follows: f11 = x, f12 = x + 1, f13 = x + 2, f21 = x2 + 1, f22 = x2 + x + 2, f23 =
x2 + 2x + 2, f31 = x3 + 2x + 1, f32 = x3 + 2x + 2, f33 = x3 + 2x2 + 2x + 2, f34 =
x3+x2+x+2, f35 = x3+x2+2, f36 = x3+2x2+x+1, f37 = x3+x2+2x+1, f38 =
x3 + 2x2 + 1.
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Table 1. Upper Bounds for Mf,�(n)

f l Mf,�(n)[6] New Mf,�(n)

f11, f12, f13 3 6 5

f11, f12, f13 4 9 8

f11, f12, f13 5 13 11

f11, f12, f13 6 17 15

f11, f12, f13 7 22 19

f11, f12, f13 8 27 24

f11, f12, f13 9 34 29

f21, f22, f23 3 17 15

f21, f22, f23 4 27 24

f21, f22, f23 5 39 33

f31, ..., f38 3 34 30

3 Explicit Formulae and Comparison

In this section, up to our knowledge we give the best known bounds for n-term
polynomial multiplication over F3 for 5 ≤ n ≤ 18 and we give an explicit formula
for multiplication in F36m which is used in id-based cryptography for efficient
Tate paring computations. Using Theorem 1, Proposition 1 and (2), the bounds
in Table 2 are obtained.

Table 2. Upper Bounds for M(n)

n M(n)[6] New M(n) Modulus polynomials

2 3 3 (x − ∞), f11, f12

3 6 6 (x − ∞), f2
11, f12, f13

4 9 9 (x − ∞), f2
11, f12, f13, f21

5 13 12 (x − ∞), f2
11, f12, f13, f21, f22

6 17 15 (x − ∞)2, f11, f12, f13, f21, f22, f23

7 22 19 (x − ∞)2, f2
11, f

2
12, f13, f21, f22, f23

8 27 23 (x − ∞)3, f3
11, f

2
12, f13, f21, f22, f23

9 34 27 (x − ∞)3, f3
11, f

3
12, f

2
13, f21, f22, f23

10 39 31 (x − ∞)3, f3
11, f

2
12, f

2
13, f21, f22, f23, f31

11 46 35 (x − ∞)3, f3
11, f

3
12, f

3
13, f21, f22, f23, f31

12 51 39 (x − ∞)3, f3
11, f

3
12, f

2
13, f21, f22, f23, f31, f32

13 60 43 (x − ∞)3, f3
11, f

2
12, f

2
13, f21, f22, f23, f31, f32, f33

14 66 47 (x − ∞)3, f2
11, f

2
12, f

2
13, f21, f22, f23, f31, f32, f33, f34

15 75 51 (x − ∞)2, f2
11, f

2
12, f

2
13, f21, f22, f23, f31, f32, f33, f34, f35

16 81 55 (x − ∞)3, f3
11, f

2
12, f

2
13, f21, f22, f23, f31, f32, f33, f34, f35

17 94 59 (x − ∞)3, f3
11, f

3
12, f

3
13, f21, f22, f23, f31, f32, f33, f34, f35

18 102 63 (x − ∞)3, f3
11, f

3
12, f

2
13, f21, f22, f23, f31, f32, f33, f34, f35, f36
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Note that we can conclude from Table 2

M(n) ≤
{

3n − 3 if 2 ≤ n ≤ 6
4n − 9 if 7 ≤ n ≤ 18.

The bounds in Table 2 is also valid for any polynomial multiplication over F3m

because of the following Theorem.

Theorem 2. The formulae for multiplication of two arbitrary n-term polynomi-
als over F3 are also valid for multiplication of two arbitrary n-term polynomials
over F3m , where m is any positive integer.

The proof can be found in [10].
The finite fields of F36m , where m is prime are used in id-based cryptography

for efficient computation of the Tate pairing. In [3], multiplication in F36m is
used 18 multiplications in F3m . In [1,2], multiplication in F36m is decreased to
15 multiplications in F3m . In Appendix A, we give a formula for 6 term poly-
nomial multiplication over F3 which requires 15 multiplications in F3. Since the
formula for multiplication of two arbitrary n-term polynomials over F3 is also
valid for multiplication of two arbitrary n-term polynomials over F3m , where m
is any positive integer, the formula given in the Appendix A can be used for the
multiplication in F36m with 15 multiplications in F3m . The following example
compares our formula and the formula given in [1,2].

Example 1. We will show that multiplication in F36·97 can be done with 15 mul-
tiplications in F397 . Let us construct,

F397 ∼= F3[x]/(x97 + x16 + 2),
F36·97 ∼= F397 [y]/(y6 + y − 1).

Let α, β, γ ∈ F36·97 such that α =
5∑

i=0

aiy
i, β =

5∑
i=0

biy
i and γ = α · β =

5∑
i=0

ciy
i.

Then the coefficients of γ can be found as follows: First compute the coefficients

of

(
5∑

i=0

aiy
i

)(
5∑

i=0

biy
i

)
and then reduce it modulo y6 +y−1. Therefore, using

the formula in Appendix A we get
c0 = −m15 − m1 + m10 − m6 − m5 + m7 − m8 − m9 − m12 − m11;

c1 = m15 + m2 − m3 − m4 + m5 − m7 − m8 + m10 − m11 + m12 + m13 + m14;

c2 = −m3 + m5 + m4 − m6 − m1 − m2 − m8 + m9 − m13;

c3 = −m3 − m5 + m7 − m1 − m8 − m9 − m13 − m15;

c4 = m6 + m13 − m12 − m11 − m8 − m10 − m5 − m7 + m2 − m3 − m4;

c5 = m14 − m8 + m9 − m10 − m6 + m13 − m1 + m3 − m11 + m12;

where mi’s are given in Appendix A.
The explicit formula for multiplication in F36·97 in [1,2] can be seen in Appen-

dix B. F36·97 is constructed in [1,2] using tower field representation, i.e.

F397 ∼= F3[x]/(x97 + x16 + 2),
F32·97 ∼= F397 [y]/(y2 + 1),
F36·97 ∼= F32·97 [z]/(z3 − z − 1).
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Therefore, the formula in [1,2] contains multiplication by ∓s,∓(s + 1) and ∓(s−
1), where s ∈ F32·97 is a root of y2 + 1. For both our proposed formula and the
formula in [2], the number of multiplications is 15. The number of additions for
our proposed formula is 137. Note that there are multiplications of form (s∓1)mi

in the formula in [2]. Here s /∈ F3. In calculation of the number of additions, if we
disregard the multiplication by s for the formula in [2], and if we consider the cost
of each multiplication of the form (s ∓ 1)mi for the formula in [2] as 1 addition
only, then the number of additions for the formula in [2] is still 138. Moreover, in
our formula the only nonzero coefficients are ∓1 and we do not need to introduce
intermediate field extensions like F32·97 containing s /∈ F3. Therefore it seems that
our construction would be preferable to the construction in [1,2].

4 Conclusion

For each 5 ≤ � ≤ 18 we obtain a canonical multiplication formula in F3�m which
is valid for any m ≥ 1. To the best of our knowledge, these formulae have the
best known multiplication complexity in the literature improving the bounds in
[6]. Moreover, we give explicit formula in the case F36·97 .
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Appendix A

In Appendix A, we give explicit formula for 6-term polynomial multiplication
over F3. Let A(x) =

∑5
i=0 aix

i and B(x) =
∑5

i=0 bix
i be polynomials over F3.

Let C(x) =
∑10

i=0 cix
i ∈ F3[x] be the polynomial defined by C(x) = A(x)B(x).

We obtain the following explicit formula consisting of the 15 multiplications. We
first define the multiplications mi for 1 ≤ i ≤ 15 and then we give the formula
for obtaining the coefficients of the polynomial C(x) using these multiplications.
m1 = (a0 + a1 + a2 + a3 + a4 + a5)(b0 + b1 + b2 + b3 + b4 + b5);
m2 = (a0 + a1)(b0 + b1);
m3 = a0b0;
m4 = a1b1;
m5 = (a1 − a3 − a5 + a2)(b1 − b3 − b5 + b2);
m6 = (a0 − a2 − a4 + a1 − a5)(b0 − b2 − b4 + b1 − b5);
m7 = (a0 − a2 + a4 + a1 − a3 + a5)(b0 − b2 + b4 + b1 − b3 + b5);
m8 = (a0 − a2 + a4)(b0 − b2 + b4);
m9 = (a1 − a3 + a5)(b1 − b3 + b5);
m10 = (a0 − a1 + a2 − a3 + a4 − a5)(b0 − b1 + b2 − b3 + b4 − b5);
m11 = (a0 + a2 − a4 − a3)(b0 + b2 − b4 − b3);
m12 = (a0 − a4 + a3 + a1 − a5)(b0 − b4 + b3 + b1 − b5);
m13 = (a0 + a2 − a4 + a3)(b0 + b2 − b4 + b3);
m14 = (a1 − a3 − a5 − a2)(b1 − b3 − b5 − b2);
m15 = a5b5;
c0 = m3;
c1 = (m2 − m3 − m4);
c2 = −m15 + m6 − m13 − m12 + m11 − m14 − m8 + m9 − m10 − m1;
c3 = m13 + m5 + m10 − m11 − m14 − m1 − m7 + m8 + m9;
c4 = m13 − m5 + m6 − m10 + m14 − m12 + m8 − m9 − m1;
c5 = −m1 + m10 − m6 − m5 + m7 − m8 − m9 − m12 − m11;
c6 = −m6 + m13 − m1 + m12 − m11 + m14 − m8 + m9 − m10;
c7 = −m13 − m5 + m10 + m11 + m14 − m1 − m7 + m8 + m9;
c8 = −m3 − m6 − m13 + m5 − m1 − m10 + m12 − m14 + m8 − m9;
c9 = −m1 − m2 + m3 + m4 + m5 + m6 + m7 − m8 − m9 + m10 + m11 + m12;
c10 = m15

Appendix B

In Appendix B, we give the multiplication formula for F36·97 given in [2]. Let
α, β ∈ F36·97 be give as:

α = a0 + a1s + a2r + a3rs + a4r
2 + a5r

2s,
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β = b0 + b1s + b2r + b3rs + b4r
2 + b5r

2s,

where a0, ..., b5 ∈ F397 , s ∈ F32·97 and r ∈ F36·97 are roots of y2 +1 and z3−z−1,
respectively. Let γ = αβ be

γ = c0 + c1s + c2r + c3rs + c4r
2 + c5r

2s.

The coefficients c0, ..., c5 ∈ F397 of the product can be computed as follows:
m0 = (a0 + a2 + a4)(b0 + b2 + b4)
m1 = (a0 + a1 + a2 + a3 + a4 + a5)(b0 + b1 + b2 + b3 + b4 + b5)
m2 = (a1 + a3 + a5)(b1 + b3 + b5)
m3 = (a0 + sa2 − a4)(b0 + sb2 − b4)
m4 = (a0 + a1 + sa2 + sa3 − a4 − a5)(b0 + b1 + sb2 + sb3 − b4 − b5)
m5 = (a1 + sa3 − a5)(b1 + sb3 − b5)
m6 = (a0 − a2 + a4)(b0 − b2 + b4)
m7 = (a0 + a1 − a2 − a3 + a4 + a5)(b0 + b1 − b2 − b3 + b4 + b5)
m8 = (a1 − a3 + a5)(b1 − b3 + b5)
m9 = (a0 − sa2 − a4)(b0 − sb2 − b4)
m10 = (a0 + a1 − sa2 − sa3 − a4 − a5)(b0 + b1 − sb2 − sb3 − b4 − b5)
m11 = (a1 − sa3 − a5)(b1 − sb3 − b5)
m12 = a4b4

m13 = (a4 + a5)(b4 + b5)
m14 = a5b5

c0 = −m0 + m2 + (s + 1)m3 − (s + 1)m5 − (s− 1)m9 + (s− 1)m11 −m12 + m14

c1 = m0 − m1 + m2 − (s + 1)m3 + (s + 1)m4 − (s + 1)m5 + (s − 1)m9 −
(s − 1)m10 + (s − 1)m11 − m12 − m13 + m14

c2 = −m0 + m2 + m6 − m8 + m12 − m14

c3 = m0 − m1 + m2 − m6 + m7 − m8 − m12 + m13 − m14

c4 = m0 − m2 − m3 + m5 + m6 − m8 − m9 + m11 + m12 − m14

c5 = m0 +m1 −m2 +m3 −m4 +m5 −m6 +m7 −m8 +m9 −m10 +m11 −m12 +
m13 − m14
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Küçük, Özgül 276
Kunihiro, Noboru 156, 290

Lange, Tanja 389
Lubicz, David 325

Meier, Willi 236
Minier, Marine 1

Naehrig, Michael 371
Nitaj, Abderrahmane 174

Ohta, Kazuo 290
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