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Abstract. We consider the problem of estimating the model count
(number of solutions) of Boolean formulas, and present two techniques
that compute estimates of these counts, as well as either lower or upper
bounds with different trade-offs between efficiency, bound quality, and
correctness guarantee. For lower bounds, we use a recent framework for
probabilistic correctness guarantees, and exploit message passing tech-
niques for marginal probability estimation, namely, variations of Belief
Propagation (BP). Our results suggest that BP provides useful informa-
tion even on structured loopy formulas. For upper bounds, we perform
multiple runs of the MiniSat SAT solver with a minor modification, and
obtain statistical bounds on the model count based on the observation
that the distribution of a certain quantity of interest is often very close
to the normal distribution. Our experiments demonstrate that our model
counters based on these two ideas, BPCount and MiniCount, can provide
very good bounds in time significantly less than alternative approaches.

1 Introduction

The model counting problem for Boolean satisfiability or SAT is the problem of
computing the number of solutions or satisfying assignments for a given Boolean
formula. Often written as #SAT, this problem is #P-complete [21] and is widely
believed to be significantly harder than the NP-complete SAT problem, which
seeks an answer to whether or not the formula in satisfiable. With the amazing
advances in the effectiveness of SAT solvers since the early 90’s, these solvers
have come to be commonly used in combinatorial application areas like hardware
and software verification, planning, and design automation. Efficient algorithms
for #SAT will further open the doors to a whole new range of applications, most
notably those involving probabilistic inference [1, 4, 12, 14, 17, 19].

A number of different techniques for model counting have been proposed over
the last few years. For example, Relsat [2] extends systematic SAT solvers for
model counting and uses component analysis for efficiency, Cachet [18] adds
caching schemes to this approach, c2d [3] converts formulas to the d-DNNF form
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which yields the model count as a by-product, ApproxCount [23] and SampleCount

[9] exploit sampling techniques for estimating the count, MBound [10] relies on the
properties of random parity or xor constraints to produce estimates with correct-
ness guarantees, and the recently introduced SampleMinisat [8] uses sampling of
the backtrack-free search space of systematic SAT solvers. While all of these ap-
proaches have their own advantages and strengths, there is still much room for
improvement in the overall scalability and effectiveness of model counters.

We propose two new techniques for model counting that leverage the strength
of message passing and systematic algorithms for SAT. The first of these yields
probabilistic lower bounds on the model count, and for the second we introduce
a statistical framework for obtaining upper bounds.

The first method, which we call BPCount, builds upon a successful approach for
model counting using local search, called ApproxCount. The idea is to efficiently
obtain a rough estimate of the “marginals” of each variable: what fraction of
solutions have variable x set to true and what fraction have x set to false?
If this information is computed accurately enough, it is sufficient to recursively
count the number of solutions of only one of F |x and F |¬x, and scale the count
up appropriately. This technique is extended in SampleCount, which adds ran-
domization to this process and provides lower bounds on the model count with
high probability correctness guarantees. For both ApproxCount and SampleCount,
true variable marginals are estimated by obtaining several solution samples using
local search techniques such as SampleSat [22] and computing marginals from the
samples. In many cases, however, obtaining many near-uniform solution samples
can be costly, and one naturally asks whether there are more efficient ways of
estimating variable marginals.

Interestingly, the problem of computing variable marginals can be formulated
as a key question in Bayesian inference, and the Belief Propagation or BP al-
gorithm [15], at least in principle, provides us with exactly the tool we need.
The BP method for SAT involves representing the problem as a factor graph
and passing “messages” back-and-forth between variable and factor nodes until
a fixed point is reached. This process is cast as a set of mutually recursive equa-
tions which are solved iteratively. From the fixed point, one can easily compute,
in particular, variable marginals.

While this sounds encouraging, there are two immediate challenges in ap-
plying the BP framework to model counting: (1) quite often the iterative pro-
cess for solving the BP equations does not converge to a fixed point, and (2)
while BP provably computes exact variable marginals on formulas whose con-
straint graph has a tree-like structure (formally defined later), its marginals
can sometimes be substantially off on formulas with a richer interaction struc-
ture. To address the first issue, we use a “message damping” form of BP which
has better convergence properties (inspired by a damped version of BP due to
[16]). For the second issue, we add “safety checks” to prevent the algorithm
from running into a contradiction by accidentally eliminating all assignments.1

1 A tangential approach for handling such fatal mistakes is incorporating BP as a
heuristic within backtrack search, which our results suggest has clear potential.
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Somewhat surprisingly, avoiding these rare but fatal mistakes turns out to be
sufficient for obtaining very close estimates and lower bounds for solution counts,
suggesting that BP does provide useful information even on highly structured
loopy formulas. To exploit this information even further, we extend the frame-
work borrowed from SampleCount with the use of biased coins during randomized
value selection.

The model count can, in fact, also be estimated directly from just one fixed
point run of the BP equations, by computing the value of so-called partition
function [24]. In particular, this approach computes the exact model count on
tree-like formulas, and appeared to work fairly well on random formulas. How-
ever, the count estimated this way is often highly inaccurate on structured loopy
formulas. BPCount, as we will see, makes a much more robust use of the informa-
tion provided by BP.

The second method, which we call MiniCount, exploits the power of mod-
ern DPLL [5, 6] based SAT solvers, which are extremely good at finding sin-
gle solutions to Boolean formulas through backtrack search.2 The problem of
computing upper bounds on the model count has so far eluded solution be-
cause of an asymmetry which manifests itself in at least two inter-related forms:
the set of solutions of interesting N variable formulas typically forms a mi-
nuscule fraction of the full space of 2N variable assignments, and the applica-
tion of Markov’s inequality as in SampleCount does not yield interesting upper
bounds. Note that systematic model counters like Relsat and Cachet can also
be easily extended to provide an upper bound when they time out (2N minus
the number of non-solutions encountered), but these bounds are uninteresting
because of the above asymmetry. To address this issue, we develop a statis-
tical framework which lets us compute upper bounds under certain statistical
assumptions, which are independently validated. To the best of our knowledge,
this is the first effective and scalable method for obtaining good upper bo-
unds on the model counts of formulas that are beyond the reach of exact model
counters.

More specifically, we describe how the DPLL-based solver MiniSat [7], with
two minor modifications, can be used to estimate the total number of solutions.
The number d of branching decisions (not counting unit propagations and failed
branches) made by MiniSat before reaching a solution, is the main quantity
of interest: when the choice between setting a variable to true or to false

is randomized,3 the number d is provably not any lower, in expectation, than
log2(model count). This provides a strategy for obtaining upper bounds on the
model count, only if one could efficiently estimate the expected value, E [d], of
the number of such branching decisions. A natural way to estimate E [d] is to
perform multiple runs of the randomized solver, and compute the average of d
over these runs. However, if the formula has many “easy” solutions (found with
a low value of d) and many “hard” solutions, the limited number of runs one can
perform in a reasonable amount of time may be insufficient to hit many of the

2 [8] have recently independently proposed the use of DPLL solvers for model counting.
3 MiniSat by default always sets variables to false.
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“hard” solutions, yielding too low of an estimate for E [d] and thus an incorrect
upper bound on the model count.

Interestingly, we show that for many families of formulas, d has a distribution
that is very close to the normal distribution. Under the assumption that d is
normally distributed, when sampling various values of d through multiple runs
of the solver, we need not necessarily encounter high values of d in order to
correctly estimate E [d] for an upper bound. Instead, we can rely on statistical
tests and conservative computations [20, 26] to obtain a statistical upper bound
on E [d] within any specified confidence interval.

We evaluated our two approaches on challenging formulas from several do-
mains. Our experiments with BPCount demonstrate a clear gain in efficiency,
while providing much higher lower bound counts than exact counters (which of-
ten run out of time or memory) and competitive lower bound quality compared
to SampleCount. For example, the runtime on several difficult instances from the
FPGA routing family with over 10100 solutions is reduced from hours for both
exact counters and SampleCount to just a few minutes with BPCount. Similarly, for
random 3CNF instances with around 1020 solutions, we see a reduction in com-
putation time from hours and minutes to seconds. With MiniCount, we are able
to provide good upper bounds on the solution counts, often within seconds and
fairly close to the true counts (if known) or lower bounds. These experimental
results attest to the effectiveness of the two proposed approaches in significantly
extending the reach of solution counters for hard combinatorial problems.

2 Notation

A Boolean variable xi is one that assumes a value of either 1 or 0 (true or
false, respectively). A truth assignment for a set of Boolean variables is a map
that assigns each variable a value. A Boolean formula F over a set of n such
variables is a logical expression over these variables, which represents a function
f : {0, 1}n → {0, 1} determined by whether or not F evaluates to true under
a truth assignment for the n variables. A special class of such formulas consists
of those in the Conjunctive Normal Form or CNF: F ≡ (l11 ∨ . . . ∨ l1k1) ∧ . . . ∧
(lm1 ∨ . . . ∨ lmkm), where each literal llk is one of the variables xi or its negation
¬xi. Each conjunct of such a formula is called a clause. We will be working with
CNF formulas throughout this paper.

The constraint graph of a CNF formula F has variables of F as vertices
and an edge between two vertices if both of the corresponding variables appear
together in some clause of F . When this constraint graph has no cycles (i.e., it
is a collection of disjoint trees), F is called a tree-like or poly-tree formula.

The problem of finding a truth assignment for which F evaluates to true is
known as the propositional satisfiability problem, or SAT, and is the canonical
NP-complete problem. Such an assignment is called a satisfying assignment or a
solution for F . In this paper we are concerned with the problem of counting the
number of satisfying assignments for a given formula, known as the propositional
model counting problem. This problem is #P-complete [21].
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3 Lower Bounds Using BP Marginal Estimates

In this section, we develop a method for obtaining a lower bound on the solu-
tion count of a given formula, using the framework recently used in the SAT
model counter SampleCount [9]. The key difference between our approach and
SampleCount is that instead of relying on solution samples, we use a variant of
belief propagation to obtain estimates of the fraction of solutions in which a vari-
able appears positively. We call this algorithm BPCount. After describing the basic
method, we will discuss two techniques that improve the tightness of BPCount

bounds in practice, namely, biased variable assignments and safety checks.

3.1 Counting Using BP: BPCount

We begin by recapitulating the framework of SampleCount for obtaining lower
bound model counts with probabilistic correctness guarantees. A variable u will
be called balanced if it occurs equally often positively and negatively in all solu-
tions of the given formula. In general, the marginal probability of u being true in
the set of satisfying assignments of a formula is the fraction of such assignments
where u = true. Note that computing the marginals of each variable, and in
particular identifying balanced or near-balanced variables, is quite non-trivial.
The model counting approaches we describe attempt to estimate such marginals
using indirect techniques such as solution sampling or iterative message passing.

Given a formula F and parameters t, z ∈ Z
+, α > 0, SampleCount performs t

iterations, keeping track of the minimum count obtained over these iterations. In
each iteration, it samples z solutions of (potentially simplified) F , identifies the
most balanced variable u, uniformly randomly sets u to true or false, simplifies
F by performing any possible unit propagations, and repeats the process. The
repetition ends when F is reduced to a size small enough to be feasible for exact
model counters like Cachet. At this point, let s denote the number of variables
randomly set in this iteration before handing the formula to Cachet, and let M ′

be the model count of the residual formula returned by Cachet. The count for
this iteration is computed to be 2s−α×M ′ (where α is a “slack” factor pertaining
to our probabilistic confidence in the bound). Here 2s can be seen as scaling up
the residual count by a factor of 2 for every uniform random decision we made
when fixing variables. After the t iterations are over, the minimum of the counts
over all iterations is reported as the lower bound for the model count of F , and
the correctness confidence attached to this lower bound is 1 − 2−αt. This means
that the reported count is a correct lower bound with probability 1 − 2−αt.

The performance of SampleCount is enhanced by also considering balanced
variable pairs (v, w), where the balance is measured as the difference in the
fractions of all solutions in which v and w appear with the same sign vs. with
different signs. When a pair is more balanced than any single literal, the pair
is used instead for simplifying the formula. In this case, we replace w with v
or ¬v uniformly at random. For ease of illustration, we will focus here only on
identifying and randomly setting balanced or near-balanced variables.
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The key observation in SampleCount is that when the formula is simplified by
repeatedly assigning a positive or negative polarity to variables, the expected
value of the count in each iteration, 2s × M ′ (ignoring the slack factor α), is
exactly the true model count of F , from which lower bound guarantees follow.
We refer the reader to Gomes et al. [9] for details. Informally, we can think of
what happens when the first such balanced variable, say u, is set uniformly at
random. Let p ∈ [0, 1]. Suppose F has M solutions, F |u has pM solutions, and
F |¬u has (1 − p)M solutions. Of course, when setting u uniformly at random,
we don’t know the actual value of p. Nonetheless, with probability a half, we
will recursively count the search space with pM solutions and scale it up by a
factor of 2, giving a net count of pM.2. Similarly, with probability a half, we
will recursively get a net count of (1 − p)M.2 solutions. On average, this gives
1/2.pM.2 +1/2.(1 − p)M.2 = M solutions.

Interestingly, the correctness guarantee of this process holds irrespective of
how good or bad the samples are. However, when balanced variables are correctly
identified, we have p ≈ 1/2 in the informal analysis above, so that for both
coin flip outcomes we recursively search a space with roughly M/2 solutions.
This reduces the variance tremendously, which is crucial to making the process
effective in practice. Note that with high variance, the minimum count over t
iterations is likely to be much smaller than the true count; thus high variance
leads to poor quality lower bounds.

The idea of BPCount is to “plug-in” belief propagation methods in place of
solution sampling in the SampleCount framework, in order to estimate “p” in the
intuitive analysis above and, in particular, to help identify balanced variables.
As it turns out, a solution to the BP equations [15] provides exactly what we
need: an estimate of the marginals of each variable. This is an alternative to
using sampling for this purpose, and is often orders of magnitude faster. One
bottleneck, however, is that the basic belief propagation process is iterative and
does not even converge on most formulas of interest. We therefore use a “message
damping” variant of standard BP, very similar to the one introduced by [16]. This
variant is parameterized by κ ∈ [0, 1], and has the property that as κ decreases,
the dynamics of the equations go from standard BP (for κ = 1) to a damped
variant with assured convergence (for κ = 0). The equations are analogous to
standard BP for SAT (see e.g. [13] Figure 4 with ρ = 0 for a full description),
differing only in the added κ exponent in the iterative update equation as shown
in Figure 1. We use its output as an estimate of the marginals of the variables
in BPCount. Note that there are several variants of BP that assure convergence,
such as by [25] and [11]; we chose the “κ” variant because of its good scaling
behavior.

Given this process of obtaining marginal estimates from BP, BPCount works
almost exactly like SampleCount and provides the same lower bound guarantees.
Using Biased Coins. We can improve the performance of BPCount (and also
of SampleCount) by using biased variable assignments. The idea here is that
when fixing variables repeatedly in each iteration, the values need not be chosen
uniformly. The correctness guarantees still hold even if we use a biased coin
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ηa→i =
∏

j∈V (a)\i

⎡
⎣

(∏
b∈Cs

a(i)(1 − ηb→i)
)κ

(∏
b∈Cs

a(i)(1 − ηb→i)
)κ

+
(∏

b∈Cu
a (i)(1 − ηb→i)

)κ

⎤
⎦

Notation. V (a): all variables in clause a. Cu
a (i), i ∈ V (a): clauses where i appears

with the opposite sign than it has in a. Cs
a(i), i ∈ V (a): clauses where i appears

with the same sign as it has in a (except for a).

Fig. 1. BP (κ) update equation

and set the chosen variable u to true with probability q and to false with
probability 1 − q, for any q ∈ (0, 1). Using earlier notation, this leads us to
a solution space of size pM with probability q and to a solution space of size
(1 − p)M with probability 1 − q. Now, instead of scaling up with a factor of
2 in both cases, we scale up based on the bias of the coin used. Specifically,
with probability q, we go to one part of the solution space and scale it up by
1/q, and similarly for 1 − q. The net result is that in expectation, we still get
q.pM/q + (1 − q).(1 − p)M/(1 − q) = M solutions. Further, the variance is
minimized when q is set to equal p; in BPCount, q is set to equal the estimate of p
obtained using the BP equations. To see that the resulting variance is minimized
this way, note that with probability q, we get a net count of pM/q, and with
probability (1 − q), we get a net count of (1 − p)M/(1 − q); these balance out
to exactly M in either case when q = p. Hence, when we have confidence in
the correctness of the estimates of variable marginals (i.e., p here), it provably
reduces variance to use a biased coin that matches the marginal estimates of the
variable to be fixed.

Safety Checks. One issue that arises when using BP techniques to estimate
marginals is that the estimates, in some case, may be far off from the true
marginals. In the worst case, a variable u identified by BP as the most balanced
may in fact be a backbone variable for F , i.e., may only occur, say, positively in
all solutions to F . Setting u to false based on the outcome of the corresponding
coin flip thus leads one to a part of the search space with no solutions at all, so
that the count for this iteration is zero, making the minimum over t iterations
zero as well. To remedy this situation, we use safety checks using an off-the-shelf
SAT solver (Minisat or Walksat in our implementation) before fixing the value
of any variable. The idea is to simply check that u can be set both ways before
flipping the random coin and fixing u to true or false. If Minisat finds, e.g., that
forcing u to be true makes the formula unsatisfiable, we can immediately deduce
u = false, simplify the formula, and look for a different balanced variable. This
safety check prevents BPCount from reaching the undesirable state where there
are no remaining solutions at all.

In fact, with the addition of safety checks, we found that the lower bounds
on model counts obtained for some formulas were surprisingly good even when
the marginal estimates were generated purely at random, i.e., without actually
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running BP. This can perhaps be explained by the errors introduced at each
step somehow canceling out when several variables are fixed. With the use of
BP, the quality of the lower bounds was significantly improved, showing that BP
does provide useful information about marginals even for loopy formulas. Lastly,
we note that with SampleCount, the external safety check can be conservatively
replaced by simply avoiding those variables that appear to be backbone variables
from the obtained samples.

4 Upper Bound Estimation

We now describe an approach for estimating an upper bound on the solution
count. We use the reasoning discussed for BPCount, and apply it to a DPLL style
search procedure. There is an important distinction between the nature of the
bound guarantees presented here and earlier: here we will derive statistical (as
opposed to probabilistic) guarantees, and their quality may depend on the par-
ticular family of formulas in question. The applicability of the method will also
be determined by a statistical test, which succeeded in most of our experiments.

4.1 Counting Using Backtrack Search: MiniCount

For BPCount, we used a backtrack-less branching search process with a random
outcome that, in expectation, gives the exact number of solutions. The ability to
randomly assign values to selected variables was crucial in this process. Here we
extend the same line of reasoning to a search process with backtracking, and ar-
gue that the expected value of the outcome is an upper bound on the true count.
We extend the MiniSat SAT solver [7] to compute the information needed for
upper bound estimation. MiniSat is a very efficient SAT solver employing con-
flict clause learning and other state-of-the-art techniques, and has one important
feature helpful for our purposes: whenever it chooses a variable to branch on, it
is left unspecified which value should the variable assume first. One possibility is
to assign values true or false randomly with equal probability. Since MiniSat

does not use any information about the variable to determine the most promising
polarity, this random assignment in principle does not lower MiniSat’s power.

Algorithm MiniCount: Given a formula F , run MiniSat with no restarts, choos-
ing a value for a variable uniformly at random at each choice point (option
-polarity-mode=rnd). When a solution is found, output 2d where d is the num-
ber of choice points on the path to the solution (the final decision level), not
counting those choice points where the other branch failed to find a solution.

The restriction that MiniCount cannot use restarts is the only change to the
solver. This limits somewhat the range of problems MiniCount can be applied to
compared to the original MiniSat, but is a crucial restriction for the guarantee of
an upper bound (as explained below). We found that MiniCount is still efficient
on a wide range of formulas. Since MiniCount is a probabilistic algorithm, its
output, 2d, on a given formula F is a random variable. We denote this random
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variable by #FMiniCount, and use #F to denote the true number of solutions of
F . The following proposition forms the basis of our upper bound estimation.

Proposition 1. E [#FMiniCount] ≥ #F .

Proof. The proof follows a similar line of reasoning as for BPCount, and we give
a sketch of it. Note that if no backtracking is allowed (i.e., the solver reports 0
solutions if it finds a contradiction), the result follows, with strict equality, from
the proof that BPCount (or SampleCount) provides accurate counts in expectation.
We will show that the addition of backtracking can only increase the value of
E [#FMiniCount], by looking at its effect on any choice point. Let u be any choice
point variable with at least one satisfiable branch in its subtree, and let M
be the number of solutions in the subtree, with pM in the left branch (when
u =false) and (1 − p)M in the right branch (when u =true). If both branches
under u are satisfiable, then the expected number of solutions computed at u
is 1/2.pM.2 +1/2.(1 − p)M.2 = M , which is the correct value. However, if either
branch is unsatisfiable, then two things might happen: with probability half
the search process will discover this fact by exploring the contradictory branch
first and u will not be counted as a choice point in the final solution (i.e., its
multiplier will be 1), and with probability half this fact will go unnoticed and u
will retain its multiplier of 2. Thus the expected number of reported solutions at
u is 1/2.M.2 +1/2.M = 3

2M , which is no smaller than M . This finishes the proof.

The reason restarts are not allowed in MiniCount is exactly Proposition 1. With
restarts, only solutions reachable within the current setting of the restart thresh-
old can be found. This biases the search towards “easier” solutions, since they
are given more opportunities to be found. For formulas where easier solutions
lie on paths with fewer choice points, MiniCount with restarts could undercount
and thus not provide an upper bound in expectation.

With enough random sample outputs, #FMiniCount, obtained from MiniCount,
their average value will eventually converge to E [#FMiniCount] by the Law of
Large Numbers, thereby providing an upper bound on #F because of Proposi-
tion 1. Unfortunately, providing a useful correctness guarantee on such an upper
bound in a manner similar to the lower bounds seen earlier turns out to be
impractical, because the resulting guarantees, obtained using a reverse variant
of the standard Markov’s inequality, are too weak. Further, relying on the sim-
ple average of the obtained output samples might also be misleading, since the
distribution of #FMiniCount is often heavy tailed, and it might take very many
samples for the sample mean to become as large as the true solution count.

4.2 Estimating the Upper Bound

In this section, we develop an approach based on statistical analysis of the sample
outputs that allows one to estimate the expected value of #FMiniCount, and thus
an upper bound with statistical guarantees, using relatively few samples.

Assuming the distribution of #FMiniCount is known, the samples can be used
to provide an unbiased estimate of the mean, along with confidence intervals
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on this estimate. This distribution is of course not known and will vary from
formula to formula, but it can again be inferred from the samples. We observed
that for many formulas, the distribution of #FMiniCount is well approximated by
a log-normal distribution. Thus we develop the method under the assumption
of log-normality, and include techniques to independently test this assumption.
The method has three steps:

1. Generate n independent samples from #FMiniCount by running MiniCount n
times on the same formula.

2. Test whether the samples come from a log-normal distribution (or a distri-
bution sufficiently similar).

3. Estimate the true expected value of #FMiniCount from the samples, and cal-
culate the (1 −α)% confidence interval for it, using the assumption that the
underlying distribution is log-normal. We set the confidence level α to 0.01,
and denote the upper bound of the resulting confidence interval by cmax.

This process, some of whose details will be discussed shortly, yields an upper
bound cmax along with a statistical guarantee that cmax ≥ E [#FMiniCount] and
thus cmax ≥ #F :

Pr [cmax ≥ #F ] ≥ 1 − α

The caveat in this statement (and, in fact, the main difference from the similar
statement for the lower bounds for BPCount given earlier) is that it is true only
if our assumption of log-normality holds.

Testing for Log-Normality. By definition, a random variable X has a log-
normal distribution if the random variable Y = log X has a normal distribution.
Thus a test whether Y is normally distributed can be used, and we use the
Shapiro-Wilk test [cf. 20] for this purpose. In our case, Y = log(#FMiniCount)
and if the computed p-value of the test is below the confidence level α = 0.05, we
conclude that our samples do not come from a log-normal distribution; otherwise
we assume that they do. If the test fails, then there is sufficient evidence that the
underlying distribution is not log-normal, and the confidence interval analysis
to be described shortly will not provide any statistical guarantees. Note that
non-failure of the test does not mean that the samples are actually log-normally
distributed, but inspecting the Quantile-Quantile plots (QQ-plots) often sup-
ports the hypothesis that they are. QQ-plots compare sampled quantiles with
theoretical quantiles of the desired distribution: the more the sample points align
on a line, the more likely it is that the data comes from the distribution.

We found that a surprising number of formulas had log2(#FMiniCount) very
close to being normally distributed. Figure 2 shows normalized QQ-plots for
dMiniCount = log2(#FMiniCount) obtained from 100 to 1000 runs of MiniCount on
various families of formulas (discussed in the experimental section). The top-left
QQ-plot shows the best fit of normalized dMiniCount (obtained by subtracting
the average and dividing by the standard deviation) to the normal distribution:
(normalized dMiniCount = d) ∼ 1√

2π
e−d2/2. The ‘supernormal’ and ‘subnormal’

lines show that the fit is much worse when the exponent of d is, for example,
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Fig. 2. Sampled and theoretical quantiles for formulas described in the experimental
section (top: alu2 gr rcs w8, lang19; bottom: 2bitmax 6, wff-3-150-525, ls11-norm)

1.5 or 2.5. The top-right plot shows that the corresponding domain (Langford
problems) is somewhat on the border of being log-normally distributed, which
is reflected in our experimental results to be described later.

Note that the nature of statistical tests is such that if the distribution of
E [#FMiniCount] is not exactly log-normal, obtaining more and more samples will
eventually lead to rejecting the log-normality hypothesis. For most practical
purposes, being “close” to log-normally distributed suffices.

Confidence Interval Bound. Assuming the output samples from MiniCount

{o1, . . . , on} come from a log-normal distribution, we use them to compute the
upper bound cmax of the confidence interval for the mean of #FMiniCount. The
exact method for computing cmax for a log-normal distribution is complicated,
and seldom used in practice. We use a conservative bound computation [26]: let
yi = log(oi), ȳ = 1

n

∑n
i=1 yi denote the sample mean, and s2 = 1

n−1

∑n
i=1(yi−ȳ)2

the sample variance. Then the conservative upper bound is constructed as

c̃max = ȳ +
s2

2
+

(
n − 1

χ2
α(n − 1)

− 1
)√

s2

2

(
1 +

s2

2

)

where χ2
α(n−1) is the α-percentile of the chi-square distribution with n−1 degrees

of freedom. Since c̃max ≥ cmax we still have Pr [c̃max ≥ E [#FMiniCount]] ≥ 1 − α.
The main assumption of the method described in this section is that the dis-

tribution of #FMiniCount can be well approximated by a log-normal. This, of
course, depends on the nature of the search space of MiniCount on a particular
formula. As noted before, the assumption may sometimes be incorrect. In par-
ticular, one can construct a pathological search space where the reported upper



138 L. Kroc, A. Sabharwal, and B. Selman

bound will be lower than the actual number of solutions. Consider a problem P
that consists of two non-interacting subproblems P1 and P2, where it is sufficient
to solve either one of them to solve P . Suppose P1 is very easy to solve (e.g.,
requires few choice points that are easy to find) compared to P2, and P1 has
very few solutions compared to P2. In such a case, MiniCount will almost always
solve P1 (and thus estimate the number of solutions of P1), which would leave
an arbitrarily large number of solutions of P2 unaccounted for. This situation vi-
olates the assumption that #FMiniCount is log-normally distributed, but it may
be left unnoticed. This possibility of a false upper bound is a consequence of
the inability to prove from samples that a random variable is log-normally dis-
tributed (one may only disprove this assertion). Fortunately, as our experiments
suggest, this situation is rare and does not arise in many real-world problems.

5 Experimental Results

We conducted experiments with BPCount as well as MiniCount, with the primary
focus on comparing the results to exact counters and the recent SampleCount

algorithm providing probabilistically guaranteed lower bounds. We used a cluster
of 3.8 GHz Intel Xeon computers running Linux 2.6.9-22.ELsmp. The time limit
was set to 12 hours and the memory limit to 2 GB.

We consider problems from five different domains, many of which have previ-
ously been used as benchmarks for evaluating model counting techniques: circuit
synthesis, random k-CNF, Latin square construction, Langford problems, and
FPGA routing instances from the SAT 2002 competition. The results are summa-
rized in Table 1. The columns show the performance of BPCount and MiniCount,
compared against the exact solution counters Relsat, Cachet, and c2d (we report
the best of the three for each instance; for all but the first instance, c2d exceeded
the memory limit) and SampleCount. The table shows the reported bounds on
the model counts and the corresponding runtime in seconds.

For BPCount, the damping parameter setting (i.e., the κ value) we use for
the damped BP marginal estimator is 0.8, 0.9, 0.9, 0.5, and either 0.1 or 0.2
for the five domains, respectively. This parameter is chosen (with a quick man-
ual search) as high as possible so that BP converges in a few seconds or less.
The exact counter Cachet is called when the formula is sufficiently simplified,
which is when 50 to 500 variables remain, depending on the domain. The lower
bounds on the model count are reported with 99% confidence. We see that a
significant improvement in efficiency is achieved when the BP marginal estima-
tion is used through BPCount, compared to solution sampling as in SampleCount

(also run with 99% correctness confidence). For the smaller formulas considered,
the lower bounds reported by BPCount border the true model counts. For the
larger ones that could only be counted partially by exact counters in 12 hours,
BPCount gave lower bound counts that are very competitive with those reported
by SampleCount, while the running time of BPCount is, in general, an order of
magnitude lower than that of SampleCount, often just a few seconds.

For MiniCount, we obtain n = 100 samples of the estimated count for each for-
mula, and use these to estimate the upper bound statistically using the steps
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described earlier. The test for log-normality of the sample counts is done with a
rejection level 0.05, that is, if the Shapiro-Wilk test reports p-value below 0.05, we
conclude the samples do not come from a log-normal distribution, in which case no
upper bound guarantees are provided (MiniCount is “unsuccessful”). When the test
passed, the upper bound itself was computed with a confidence level of 99% using
the computation of [26]. The results are summarized in the last set of columns in
Table 1. We reportwhether the log-normality test passed, the average of the counts
obtained over the 100 runs, the value of the statistical upper bound cmax, and the
total time for the 100 runs. We see that the upper bounds are often obtained within
seconds or minutes, and are correct for all instances where the estimation method
was successful (i.e., the log-normality test passed) and true counts or lower bounds
are known. In fact, the upper bounds for these formulas (except lang-2-23) are cor-
rect w.r.t. the best known lower bounds and true counts even for those instances
where the log-normality test failed and a statistical guarantee cannot be provided.
The Langford problem family seems to be at the boundary of applicability of the
MiniCount approach, as indicated by the alternating successes and failures of the
test in this case. The approach is particularly successful on industrial problems
(circuit synthesis, FPGA routing), where upper bounds are computed within sec-
onds. Our results also demonstrate that a simple average of the 100 runs provides
a very good approximation to the number of solutions. However, simple averaging
can sometimes lead to an incorrect upper bound, as seen in wff-3-1.5, ls13-norm,
alu2 gr rcs w8, and vda gr rcs w9, where the simple average is below the true count
or a lower bound obtained independently. This justifies our statistical framework,
which as we see provides more robust upper bounds.

6 Conclusion

This work brings together techniques from message passing, DPLL-based SAT
solvers, and statistical estimation in an attempt to solve the challenging model
counting problem. We show how (a damped form of) BP can help significantly
boost solution counters that produce lower bounds with probabilistic correct-
ness guarantees. BPCount is able to provide good quality bounds in a fraction
of the time compared to previous, sample-based methods. We also describe the
first effective approach for obtaining good upper bounds on the solution count.
Our framework is general and enables one to turn any state-of-the-art complete
SAT/CSP solver into an upper bound counter, with very minimal modifications
to the code. Our MiniCount algorithm provably converges to an upper bound,
and is remarkably fast at providing good results in practice.
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