
Practical Issues in Detecting Broken Social

Commitments

Jason Heard and Rob Kremer

Computer Science Department
University of Calgary

Calgary, Alberta, Canada
{heard, kremer}@cpsc.ucalgary.ca

Abstract. An open system should admit agents from many sources and
these agents may have conflicting goals. Therefore, some actions that an
agent would like to perform could be detrimental to other agents. Such
actions can be either acceptable or unacceptable within a given system.
Social norms define what actions are acceptable and unacceptable within
a given society. There should be a way to limit the actions of agents to
enforce these social norms. One way to begin to accomplish this goal
is to have the system observe the actions of agents to model their be-
haviour. Behaviours that do not conform to specified norms could then
be detected, and some action could be taken to prevent agents from
performing further actions that violate social norms.

In this paper we discuss the use of social commitments to allow a sys-
tem to define social norms and detect violations of those norms. Social
commitments model an agent’s commitments within a society. Some are
implied while others are explicitly stated. Our system uses social com-
mitments to define social norms. This paper focusses on the practical
requirements that must be met for a system to implement social com-
mitments as a way of defining social norms and detecting violations of
those norms. In addition, we give an overview of how our multi-agent
system design supports this goal.

1 Introduction

One of the goals of multi-agent systems (MAS) is to achieve synergy between
agents. The goal is to accomplish more with a group of agents working together
than could be accomplished by all of the agents working individually [1]. In order
to do this, agents must be designed so that they can work with other agents.
Another goal of multi-agent systems is to admit agents from many sources (or
programmers) into the system [2]. These diverse agents may have conflicting
goals. It is possible for agents with conflicting goals to work together on portions
of their goals (and thereby achieve synergy).

If agents are working on conflicting goals, it may benefit one agent to perform
some act that harms another agent. Take, for example, the case of a simple
auction. It is generally acceptable to outbid another agent (assuming that you
can meet the bid you have given). But it is generally unacceptable for an agent

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 124–135, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Practical Issues in Detecting Broken Social Commitments 125

to state that some resource is worthless, knowing that it is not, so that another
agent will bid lower, or not at all on the object. Both actions obviously are
detrimental to another agent, but only one would be considered a violation of
social norms.

It would be advantageous if the designer of an open system (one that allows
agents with conflicting goals to enter it) takes into account these social norms.
A system with no checks on norms would not facilitate cooperation, and would
not attract many designers or agents to work within it. On the other hand, a
system that is too strict would make it difficult to claim that the agents within it
are autonomous [3]. The system outlined in this paper does not restrict actions
but instead attempts to detect antisocial agents so that they may be avoided as
necessary. To create a system with checks on social norms, that system must be
able to detect violations. In order to detect norm violations some methodology
must be put into place to map social interactions so that norm violations are
observable. Social commitments will be used as the criterion to determine if
actions conform to social norms within our system. Actions that break social
commitments will be considered to be in violation of social norms.

Social commitments model commitments between agents [4,5] at a social level.
Social commitments can be used to define societal norms [6], or to formally
describe a protocol based on the social commitments implied by that protocol
[7]. In order to detect actions that violate social norms as defined above, it is
necessary to detect when social commitments are broken. Some work has been
done to detect broken commitments [7,8]. Our system differs from previous work
in that our system is open and accepts agents that may perform actions the
original system designer didn’t account for. Once a system detects that an agent
has broken a social commitment and has therefore violated a social norm, some
actions should be taken to “punish” the responsible agent. These actions (called
sanctions) are discussed by Pasquier, Flores, and Chaib-draa [9].

Our system employes the use of a social commitment observer agent to detect
broken social commitments. The use of special agents to perform monitoring has
been done previously with “sentinals” [10]. We propose instead the use of a single
agent to perform the monitoring, the use of social commitments as the framework
for detecting unacceptable behaviors, and we maintain a focus on detection,
leaving corrective activities for future research. In some ways, our system is
similar to the systems described in [11] and [12] which employ “governors” and
“coordination artifacts” respectively, but these works are primarily focussed on
helping the MAS work with external agents, and not necessarily on detecting
when those agents violate social norms.

While some work has been done in detecting broken social commitments, it
was done under the assumption that the MAS is aware of all major events [8].
These events are given as logical statements. Work has not been done on how a
non-logical system would map messages and perceived activities to these logical
statements. Here we will attempt to define the requirements that must be met for
the system to be aware of all acts that break social commitments. Based on these
requirements, we have created a system to detect broken social commitments.

126 J. Heard and R. Kremer

Section 2 outlines the social commitment model that will be used through-
out the remainder of this paper. Section 3 breifly describes CASA (Cooper-
ative Agent System Architechture), the basic MAS that was expanded to al-
low for a social commitment observer. Section 4 details the requirements that
must be met in order to detect broken social commitments. Section 5 is a dis-
cussion of the details of the implementation of a social commitment observer
in CASA. Section 6 offers a conclusion and suggests directions for further re-
search.

2 Social Commitments

Before a system can be designed to detect broken social commitments, social
commitments have to be defined and the procedure for creating and disolving
commitments must be outlined. We will draw on the model of social commit-
ments outlined in [6] and [8]. This model has been chosen because Alberti and
others have already shown that commitments can be detected using various
forms of logic. This paper shows how we have implemented the ability to detect
broken commitments in CASA.

A commitment is defined as a set including a debtor (x), a creditor (y), a
condition (p) and a context (G) [6]. Together, the commitment states that x is
committed to y to ensure that p comes about within some social context G. For
the remainder of this paper, G will be assumed to be the system outlined in this
paper, and is therefore the same in all of our cases. In addition, we informally add
to all social commitments a timout (t), which gives the time that a commitment
must be fulfilled by. Formally, this is part of the condition, in the form, “p will
be fulfilled on or before time t,” but for ease of discussion, it will be listed as a
separate field in this paper.

Social commitments are formed, modified, and removed using one of the fol-
lowing actions [6]:

create. This action creates a commitment. In our system, this can result from
any of the policies, and usually an agent becomes the debtor only when it
sends or is sent a message.

discharge. This action occurs when a commitment’s condition has been met,
and therefore fulfills the commitment. This requires no action by the debtor
or creditor other than those actions necessary to bring about the condition.
Our system considers this a resolution that meets our social norms (a “good”
resolution).

cancel. This action removes a commitment from a debtor, without the consent
of the creditor. This is essentially a statement saying that an agent does not
intend to fulfill its commitment, and will probably break it. In our system,
however, a commitment is not technically broken (and therefore a social
norm is not violated) until either an action occurs that makes the condition
impossible to fulfill or the timeout is reached without the condition being
fulfilled.

Practical Issues in Detecting Broken Social Commitments 127

release. This action removes a commitment from a debtor with the permission
of the creditor. This is considered acceptable within the social norms of our
system.

delegate. This action changes the debtor field of the commitment. It requires
the permission of the new debtor. Essentially, we are stating that if an agent
commits to perform an action that another agent was committed to per-
forming, that agent has passed the responsibility and is no longer required
to bring about the condition. However, it could be argued that an agent is
still committed, and would be at fault if the other agent did not fulfill the
commitment.

assign. This action changes the creditor field of the commitment. It requires
the permission of the old creditor.

The social context, G, determines when each of the actions can be performed.
We have informally described when these actions are applied in our system, but
the details of these conversation policies are described in the next section.

It is important to note that although social commitments define acceptable
behaviors in our system, agents do not have to be internally aware of social
commitments. In other words, when programming an agent, the programmer
need not focus on social commitments so long as the agent will, in the end, act
in accordance with the policies and the social commitments they create.

2.1 Conversation Policies

Conversation policies are rules that indicate when actions can and should be
performed on social commitments. Our system adopts the conversation policies
informally described in Table 1. These policies outline acceptable behaviors in
and form the basis of our system. The P-propose policy indicates that a certain

Table 1. An informal description of the conversation policies as defined by Flores and
Kremer [13]

Policy Description

P-propose A proposal commits the proposed agents to reply.
P-counter-offer A counter-offer is considered a reply, and commits addressees to

reply.
P-reply-acc An acceptance releases proposed agents from the commitment to

reply and releases counter-offered agents from the commitment to
reply.

P-reply-rej A rejection releases proposed agents from the commitment to reply
and releases counter-offered agents from the commitment to reply.

P-reply-counter A counter-offer releases proposed agents from the commitment to
reply and releases counter-offered agents from the commitment to
reply.

P-accept An acceptance causes the formation of the proposed/counter-offered
commitment.

P-release A release releases the debtor of the given commitment, if sent by
the creditor.

128 J. Heard and R. Kremer

Table 2. An informal description of conversation policies based on the fish auction
policies described by Venkatraman and Singh [7]

Policy Description

FA-advertise An advertisement at some price commits the advertiser to sending
fish to the bidder if there is one and only one bid within a given
time.

FA-bid A bid commits the bidder to sending money if it receives fish from
the advertiser.

FA-bad A bad fish message essentially cancels the process, and therefore
removes both the advertiser and bidder’s commitments in relation
to that fish.

degree of politeness is required of agents in the system. The requirements could
be amended (politeness does not have to be a requirement) if a system designer
desires a more open system.

It is possible for system designers to add new policies to their system. This
allows other domain specific policies to be put into place when they would aid
in understanding the expectations of agents participating in that system. For
example, we have implemented a set of policies that define a fish auction [7].
These are informally described in Table 2. While there are other possible mes-
sages in the fish auction, they can all be inferred from these policies. Because the
basic set of policies in our system include a way to set up arbitrary commitments
(with the P-propose and P-accept policies, among others), new policies do not
necessarily need to be created to use other protocols with this system.

3 CASA (Cooperative Agent System Architecture)

The work described in this paper expands upon CASA, a communication-based
multi-agent system written in Java. A few of CASA’s unique features are used
to aid in the development, but any flexible MAS could be used as a basis for
this work, with some modifications.

Figure 1 shows a typical run-time configuration of CASA. Every machine run-
ning CASA agents runs a special agent called the local area coordinator (LAC).
The LAC is responsible for resolving agent addresses, keeping track of how to
start up agents, and starting agents on behalf of other agents (that may be run-
ning on other machines). The CASA framework demands very little of agents
running within it, but agents are expected to register with the LAC on start up,
and may register information about how they can be re-started (if they want to
offer services to other agents on demand). The message contents are standard-
ized to a superset of the FIPA message standard [14].1 Once registered, CASA
agents are free to communicate with one another using the CASA message for-
mat over TCP/IP ports. CASA agents may also communicate through a special
kind of agent called a cooperation domain, the subject of the next subsection.
1 The actual messages can be in either XML [15] or a KQML-like [16] format.

Practical Issues in Detecting Broken Social Commitments 129

Area (Computer)Area (Computer)

Local Area

Controller (LAC)

Cooperation

Domain (CD)
Agent C

Agent BAgent A

Local Area

Controller (LAC)

Other Agents

Other Cooperation

Domains

Cooperation

Domain

Observer Agent

Fig. 1. A typical CASA run-time configuration

3.1 Cooperation Domains in CASA

A cooperation domain (CD) is an agent designed to aid agents in communicating
in large groups. The CD allows agents to communicate with one another without
knowing about every other agent. Agents register with the CD, and as a result
they receive all non-private communications that are sent to the CD (including
those they send). In this paper, a “cooperation domain” refers to either an agent
itself or to a virtual location within which all agents (registered to that CD)
operate. Figure 1 shows four agents participating in a conversation through a
cooperation domain, depicted by the double-headed arrows.2

CASA agents are free to communicate directly (not through the CD) but
they lose the power of the services potentially offered through the CD. Another
advantage of the CD is that it gives the creators of the CD the ability to monitor
the communications between its members. Figure 1 shows one such agent, the
“Cooperation Domain Observer Agent,” performing a special role within an
agent conversation. This type of privileged agent can “eavesdrop” on all messages
going through the cooperation domain, and is necessary when implementing a
social commitment observer (see Sect. 5).

4 Detection Conditions

In order for the social commitment observer agent (or just observer) to detect
broken social commitments, certain requirements must be met. The detection
of broken social commitments is inferred from the observer’s observations, the
2 Messages sent in this way may be directed to all the participants (broadcast), to a

specific subset of the participants (multi-cast), to a single agent (directed), or to all
participants who have a particular role in the conversation (role-cast).

130 J. Heard and R. Kremer

Table 3. Requirements for a social commitment observer to detect that a social com-
mitment was formed

Requirement Description

R1-understand The observer understands social commitments and their structure.
R1-form The observer observed the act that formed the social commitment.

This may be either R1-form-accept or R1-form-policy.
R1-form-accept The observer observed the acceptance of the social commitment

(P-accept).
R1-form-policy The observer observed an act that, because of a known conversation

policy, automatically forms a social commitment (P-propose, for
example).

way Sherlock Holmes solves a crime by decoding clues. This means that the
observer does not rely on complaints or other error messages to determine if
commitments are broken. The observer must infer that a social commitment is
broken by observing the communications within the system and using any other
means of apprehension it may possess (such as the ability to perceive some
environment).

To detect the formation of a social commitment, the following conditions must
be met. The observer must understand social commitments (both the concept
and their structure). The observer must also observe the action that causes the
formation of the commitment. This can happen in two ways. First, a social
commitment is formed when an explicit request to form a social commitment
was accepted by another agent, as defined by P-accept (see Table 1). A social
commitment can also be formed through a conversation policy which results from
some communication between agents. This can happen because of P-propose, P-
counter-offer, P-inform, or any other policy that forms a commitment. This last
requirement does not specify a particular set of policies because further policies
can be added to a system by its developer (as mentioned in Sect. 2.1). Table 3
summarizes the conditions outlined above.

Once the observer agent has detected a social commitment it must store this
commitment, as the commitment may be formed long before it is broken. The
observer must then understand the condition portion of the social commitment.

Table 4. Requirements for a social commitment observer to detect that a social com-
mitment was broken

Requirement Description

R2-form The observer detected that a commitment was formed.
R2-store The observer has stored the commitment that was detected in R2-

form.
R2-condition The observer understands the condition part of the commitment.
R2-no-release The observer has not observed an action that releases the debtor

from the commitment.
R2-break The observer observes an action that implies that the condition

portion of the social commitment can never be satisfied.

Practical Issues in Detecting Broken Social Commitments 131

This requirement is non-trivial, as our version of an open system includes the
possibility of agents not understanding all other commitments. In the case where
a commitment has been dissolved properly through one of the conversation poli-
cies (described in Sect. 2.1), nothing further will be required of the debtor.
Therefore, the observer must detect a commitment that has not been properly
dissolved. This implies that the observer is observing all activity of the agent, so
that it isn’t possible that the observer has missed the proper dissolution of the
commitment. Finally, some action must happen that implies that the condition
portion of the social commitment can never be satisfied. This action must be
observed by the observer. Table 4 summarizes the conditions outlined above.

5 Implementation

In CASA, we implemented an agent that can detect broken social commitments
(our social commitment observer). In doing so, we attempted to meet all of the
requirements outlined in Sect. 4. In the following subsections we discuss how and
to what degree we were able to meet each of the requirements.

5.1 Understanding Social Commitments (R1-understand)

The observer’s understanding of social commitments begins with the under-
standing of the debtor and creditor fields of a social commitment. The FIPA
standards define a sender and receiver field within every message. The sender
field is always the agent that is currently sending the message while the receiver
field is always the agent currently receiving the message. In CASA, when a co-
operation domain is used to forward messages, the sender field is always the
sending CD (to meet FIPA standards). Since the CD isn’t (usually) the agent
originally sending the message, it was necessary to add another field to messages
within CASA (which is acceptable by FIPA standards). This is the from field.
It is defined as the original sender of the message. Therefore, within CASA the
from and receiver fields determine the debtor and the creditor of a given commit-
ment. The from and receiver fields of the message are always URLDescriptors,
which are used within CASA to both uniquely define an agent and define how
to communicate with it (locally or across a network).

5.2 Observing Formation of Social Commitments (R1-form)

To observe the creation of all social commitments, the observer ties into a coop-
eration domain as a cooperation domain observer (Section 3.1 briefly describes
this functionality). This allows the observer to meet the R1-form requirement as
described below.

Once each message is received by the social commitment observer, it is
processed to determine which conversation policies apply and therefore which
commitments must be added to the set of current commitments. This is done by
applying each known policy, in turn to the given message. The policies are parsed

132 J. Heard and R. Kremer

in no particular order, and the successful operation of one policy does not imply
that the other policies will not apply to the message. The addition of a new
policy into the system requires only the creation of a new ConversationPolicy
subclass.

5.3 Storing Social Commitments (R2-store)

CommitmentEngine objects store social commitments in a map from (debtor×
creditor) to a set of conditions. In other words, given a debtor and a creditor, the
agent can retrieve a set that defines the conditions that the debtor is committed
to bringing about for the creditor. The conditions need not be understood at
the point of storage, and may be stored in some general format, such as a string
or a bit vector.

5.4 Understanding Conditions (R2-condition)

For any agent, there is a condition that is not understood. This is because
our system does not put a restriction on the language used in describing the
required condition of a social commitment. Therefore, any finite system will
not be able to understand all social commitments. With this difficulty in mind,
we have decided to implement the observer such that it only understands the
commitments described explicitly by one or more conversation policies. It can
still parse that an agent has formed a social commitment because of P-accept,
but it may not be able to parse the condition portion of that commitment. In
this case, the observer cannot detect when that commitment has been broken.
As described below in Sect. 5.5, the observer is still able to detect when a debtor
and creditor agree that the debtor should be released from its commitment (with
the P-release policy). Future work will focus on this restriction (see Sect. 6).

5.5 Observing the Release from Social Commitments
(R2-no-release)

The conversation policies used in Sect. 5.2 are responsible for creating com-
mitments as they are observed. In addition, these policies are responsible for
removing commitments from the set of all commitments when they are properly
dissolved. This is the case with the P-ack, P-reply, and P-release policies.

Because agents are free to communicate outside of a cooperation domain, it is
possible for the following scenario to take place. A message is sent by an agent,
Alice, within a cooperation domain that forms a social commitment, and that
commitment is detected and stored by the social commitment observer. Then,
Alice (or another agent) sends a message that should release Alice from that
commitment, but the message is sent outside of the cooperation domain. In this
case, the commitment may be marked as broken at some time, even though
it was actually properly dissolved. Our system requires that if an agent per-
forms an action that creates a social commitment within a cooperation domain,
any message properly dissolving that commitment must also be sent within the

Practical Issues in Detecting Broken Social Commitments 133

cooperation domain. This requirement is not enforceable within CASA. If the
requirement is not met, the system may detect that the agent has broken a social
commitment, and act as if the agent has broken a social commitment.

5.6 Observing Broken Social Commitments (R2-break)

Like the formation and proper dissolution of commitments, the social commit-
ment observer only detects broken social commitments if the message (or mes-
sages) that breaks the commitment is transmitted through the cooperation do-
main. The main problem with this requirement is not the difficulty of observing
the action that breaks a commitment, but the fact that for some commitments,
there is no such action. For example, let us assume that an agent, Alice, has a
social commitment to another agent, Bob, to send him a message. If we assume
that Alice and Bob are computer programs, and will therefore last as long as they
are needed, and that we don’t care about events beyond the end of the universe
(if the universe does end), then Alice will always be able to send Bob a message
at some time in the future, and no action would prevent this from occurring.

Because some commitments are not breakable, we have added another field to
social commitments: a timeout value. This follows naturally from the fact that
there is a timeout field in every CASA message. This still fits within our formal
definition, because it can be thought of as an addition to the condition portion of
the commitment similar to, “This condition will be brought about before time-
out.” The timeout value can be set so that the social commitment never times
out (if the designer wishes), but as long as it does, the commitment will eventu-
ally be either fulfilled or broken. With a timeout value, we can modify the above
example so that Alice has a social commitment to Bob to send him a message
before August 1, 2005. This commitment will obviously be broken if Alice has
not sent a message to Bob by the specified date. The P-inform and P-request
conversation policies outlined in Sect. 2 both have timeouts in the CASA sys-
tem, and so are easily monitored for breakage. The timeouts of all commitments
are checked within the commitment engine every time the expireCommitments()
function is called. Any commitments broken by the passage of time are treated
as if a policy had determined that the commitment has been broken.

5.7 Initial Results

With the above requirements generally fulfilled, our social commitment observer
is able to detect agents that fail to reply to requests, don’t acknowledge messages
when requested, and those that fail to complete correctly the fish auction as
defined in [7].

6 Conclusion / Future Work

In this paper we have presented an implementation of a working social com-
mitment observer in an open system. Towards this end, we have outlined the

134 J. Heard and R. Kremer

requirements for an observer to detect that a social commitment was formed,
and the requirements for an observer to detect that a social commitment was
broken. Finally, we gave a detailed description of how we met each of the re-
quirements for detecting broken social commitments. While we feel that we have
made good progress in this area, there are several directions for future research.

It would be advantageous to be able to dynamically add policies and known
conditions to the set that the social commitment observer understands. This
would allow agents to define new requirements for their domains, while main-
taining a central authority on commitments within a given cooperation domain.
It may be possible to use the act and performative lattices built into CASA to
store commitment information to aid the social commitment observer. This is
because these lattices can be expanded as needed for each agent, and can then
be passed from one agent to another with a standardized request.

It may also be beneficial to add a standard way for agents to “complain”
about other agents that have broken social commitments. Because the social
commitment observer presented here can detect that any type of commitment
has been formed, the observer could confirm that indeed there was a commitment
formed between the two agents. There would then have to be a way to determine
when complaints are legitimate. This would probably require both the agent that
registers the complaint and the agent that is complained about to be aware of
the complaint verification process. Any agent unaware of this process would be
unfairly judged, because it couldn’t aid in the verification process. A comparative
analysis of the transparent observation system and a complaint system is a future
direction for investigation.

Finally, the social commitment observer can detect when a commitment is
broken, but currently only displays a message to the user or writes an entry
in a log file. In a system that may involve many communications at any time
of day, some form of automated “punishment” to be meted out to agents that
have broken social commitments may be necessary. The simplest punishment
would probably be the ejection of agents that have broken a specified number
of social commitments (or a certain number of commitments per time period).
This ejection could be temporary or permanant. An alternative to the ejection
of undesirable agents is to provide a service similar to the Better Business Bu-
reau found in many cities. This service would give the number and/or type of
commitments broken by some agent at another agent’s request.

References

1. Denzinger, J.: Knowledge-based distributed search using teamwork. In: Proceed-
ings of the First International Conference on Multi-Agent Systems, San Francisco,
CA, USA (1995) 81–88

2. Hewitt, C.E.: The challenge of open systems. Byte 10 (1985) 223–242
3. Jennings, N.R., Campos, J.R.: Towards a social level characterisation of socially

responsible agents. IEEE Proceedings on Software Engineering 144 (1997) 11–25
4. Castelfranchi, C.: Commitments: From individual intentions to groups and orga-

nizations. In: Proceedings of the First International Conference on Multi-Agent
Systems, San Francisco, CA, USA (1995) 41–48

Practical Issues in Detecting Broken Social Commitments 135

5. Singh, M.: Social and psychological commitments in multiagent systems. In: AAAI
Fall Symposium on Knowledge and Action at Social and Organizational Levels,
Monterey, California (1991)

6. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a uni-
fication of normative concepts. Artificial Intelligence and Law 7 (1999) 97–113

7. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols.
Autonomous Agents and Multi-Agent Systems 2 (1999) 217–236

8. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
verification of agent interaction using social integrity constraints. In: Proceedings
of the First International Workshop on Logic and Communication in Multi-Agent
Systems (LCMAS 2003). (2003)

9. Pasquier, P., Flores, R., Chaib-draa, B.: Modelling flexible social commitments
and their enforcement. In: Proceedings of the Fifth International Workshop on
Engineering Societies in the Agents World (ESAW04). (2004)

10. Klein, M., Dellarocas, C.: Domain-independent exception handling services that
increase robustness in open multi-agent systems. Working Paper ASES-WP-2000-
02, Center for Coordination Science, Massachusetts Institute of Technology, Cam-
bridge, MA, USA (2000) http://ccs.mit.edu/ases.

11. Esteva, M., Padget, J.A., Sierra, C.: Formalizing a language for institutions and
norms. In: ATAL ’01: Revised Papers from the 8th International Workshop on
Intelligent Agents VIII, Springer-Verlag (2002) 348–366

12. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordina-
tion artifacts: Environment-based coordination for intelligent agents. In: Third
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS04). Volume 1. (2004) 286–293

13. Flores, R., Kremer, R.: To commit or not to commit: Modelling agent conversations
for action. Computational Intelligence 18 (2003) 120–173

14. Foundation for Intelligent Physical Agents (FIPA): FIPA ACL message struc-
ture specification. document number SC00061G, FIPA TC communication. (2003)
http://www.fipa.org/specs/fipa00061/SC00061G.html.

15. World Wide Web Consortium (W3C): Extensible markup language (XML) (2004)
http://www.w3.org/XML/.

16. Finin, T., Labrou, Y., Mayfield, J.: KQML as an agent communication language.
In Bradshaw, J., ed.: Software Agents, MIT Press (1997) 291–316

	Practical Issues in Detecting Broken Social Commitments
	Introduction
	Social Commitments
	Conversation Policies

	CASA (Cooperative Agent System Architecture)
	Cooperation Domains in CASA

	Detection Conditions
	Implementation
	Understanding Social Commitments (R1-understand)
	Observing Formation of Social Commitments (R1-form)
	Storing Social Commitments (R2-store)
	Understanding Conditions (R2-condition)
	Observing the Release from Social Commitments (R2-no-release)
	Observing Broken Social Commitments (R2-break)
	Initial Results

	Conclusion / Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

