

Lecture Notes in Artificial Intelligence 3859
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Frank Dignum Rogier M. van Eijk
Roberto Flores (Eds.)

Agent
Communication II

International Workshops
onAgent Communication,AC 2005 andAC 2006
Utrecht, Netherlands, July 25, 2005
and Hakodate, Japan, May 9, 2006
Selected and Revised Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Frank Dignum
Department of Information and Computing Sciences
Universiteit Utrecht
3508 TB Utrecht, The Netherlands
E-mail: dignum@cs.uu.nl

Rogier M. van Eijk
Department of Information and Computing Sciences
Universiteit Utrecht
3508 Utrecht, The Netherlands
E-mail: rogier@cs.uu.nl

Roberto Flores
Department of Physics
Computer Science and Engineering
Chistopher Newport University
Newport News VA 23606, USA
E-mail: flores@pcs.cnu.edu

Library of Congress Control Number: 2006937885

CR Subject Classification (1998): I.2.11, I.2, C.2.4, C.2, D.2, F.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-68142-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68142-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11947745 06/3142 5 4 3 2 1 0

Preface

Although everyone recognizes communication as a central concept in multi-
agents, many no longer see agent communication as a research topic. Unfor-
tunately there seems to be a tendency to regard communication as a kind of
information exchange that can easily be covered using the standard FIPA ACL.
However, the papers in this volume show that research in agent communication
is far from finished. If we want to develop the full potential of multi-agent sys-
tems, agent communication should also develop to a level beyond parameter or
value passing as is done in OO approaches!

In this book we present the latest collection of papers around the topic of
agent communication. The collection comprises of the best papers from the agent
communication workshops of 2005 and 2006, enriched with a few revised agent
communication papers from the AAMAS conference. Due to some unfortunate
circumstances the proceedings of the 2005 workshop were delayed, but it gave
us the opportunity to join the best papers of the 2006 edition to this volume.
Together these papers give a very good overview of the state of the art in this
area of research and give a good indication of the topics that are of major interest
at the moment.

The papers are divided into the following four topics:

– Semantics of Agent Communication
– Commitments in Agent Communication
– Protocols and Strategies
– Reliability and Overhearing

The research on the semantics of agent communication has shifted from con-
cepts based on mental attitudes of the agents towards concepts based on social
attitudes. However, FIPA ACL, the de facto agent communication standard lan-
guage, still has an official semantics based on mental attitudes. The first paper
in this volume by V. Louis and T. Martinez describes a first attempt to actually
develop a tool to support verification of compliance to the FIPA ACL semantics,
therefore giving an operational semantics to FIPA ACL. The paper of U. Endriss
shows how conversation protocols can be described in terms of temporal logic.
This allows model checking of the protocols and verifying their correctness with
respect to a number of properties. The third paper on the semantics of agent
communication by G. Boello, R. Damiano, J. Hulstijn and L. van der Torre
is one of the first that tries to combine private and social mental attitudes to
determine the semantics of the communication. Another effort to combine social
commitments with the other attitudes of an agent can be found in the paper
by P. Pasquier and B. Chaib-draa, which is placed under the second topic of
social commitments, but could also have been placed under this heading. The
last paper in this section of the volume by S. Khan and Y. Lesperance describes
a possible semantics for conditional commitments. This is an important step

VI Preface

because since commitments are themselves used as semantics of the communi-
cation it is important to have some grasp of the characteristics of this concept
as well!

The second section of the volume is completely devoted to papers on social
commitments. The first paper in this section by M. Verdicchio and M. Colombetti
discusses how the concept of commitment can be used to build up a library of
speech acts to be used in agent communication. A similar topic is discussed in the
paper of R. Kremer and R. Flores. They add the idea of organizing the speech
acts according to a subsumption hierarchy to facilitate their processing. The pa-
per of G. Muller and L. Vercouter discusses the use of social commitments that
follow from speech acts as constraints on subsequent communication, therefore
truly utilizing the intuitions that come with the “commitment” concept. Once
commitments are seen as constraints on the behavior of the agents, one should
also consider what should be done if the agents do not comply to these con-
straints. This aspect is discussed in the paper of J. Heard and R. Kremer. The
last paper in the section on commitments by A. Mallya and M. Singh discusses
a more advanced aspect of commitments. It looks at preferences with respect to
different commitment protocols which can be used to solve potential conflicts
between different commitments.

The third section of this volume is devoted to protocols and strategies for
communication. It starts with a paper by L. Amgoud and S. Kaci on strategies
for agents to be used during negotiation. The idea is to make these strategies
less restrictive such that good compromises are not discarded too quickly. The
second paper in this section by J. van Diggelen, E. de Jong and M. Wiering also
discusses strategies for communication, but in the domain of ontology alignment.
What is the influence of the strategies that agents use to adopt concepts on
the convergence to the use of one or more concepts? An important question in
order to see what will happen if thousands of agents with different ontologies on
the Web start communicating. The next paper by J. van Diggelen, R-J. Beun,
F. Dignum, R. van Eijk and J-J. Meyer actually continues this discussion. It
describes how agents can align their ontologies on the fly using some extensions
of normal communication protocols. Instead of learning complete ontologies the
agents just learn enough about the concepts to be able to use them properly.

The paper of Pinar Yolum discusses the important topic of designing pro-
tocols and shows some tools that can support this process. Whereas most ap-
proaches see protocols as a kind of finite state machine or Petri net, F. Fischer,
M. Rovatsos, and G. Weiss see protocols as patterns that can be adapted. The
semantics follows from the use rather than the use from the semantics. It is thus
a perfect example of the use of a bottom approach for creating semantics to
communication.

The last two papers in this section discuss communication in relation to the
beliefs of the agents. The first paper, by H-J. Lebbink, C. Witteman and J-J.
Meyer, discusses conversations about changing one’s beliefs. When can an agent
conclude that it should retract some beliefs based on information it hears from
another agent? Preferably this only happens in a way that keeps the beliefs of

Preface VII

the agents “consistent” as far as possible. The paper by I. Letia and R. Vartic
discusses the different consequences of basing communication on firm beliefs and
on defeasible beliefs. Making this distinction allows for more subtle conversations
that also seem to resemble human conversations more closely.

The last section of this volume contains papers that deal with multi-party
communication. The paper of S. Cranefield discusses group communication in
which a reliable shared perception of the order of the messages can be very
important. This leads to a design of a type of synchronous group communica-
tion. The second paper by N. Dragoni, M. Gaspari and D. Guidi discusses the
very important issue of communication breakdowns. Especially communication
over the Internet should be fault-tolerant in order to work for large applications.
They discuss a fault-tolerant ACL and illustrate its use on the Web. The final
paper of this volume also discusses reliability of communication. In the approach
of G. Gutnik and G. Kaminka this is achieved by selective overhearing of com-
munication by other agents. Because trying to monitor all communication is
prohibitively expensive they propose a hierarchical organization of the agents
that can perform a selective overhearing.

We want to conclude this preface by extending our thanks to the members of
the Program Committee of the ACL workshops that were willing to review the
papers in a very short time span, to the external reviewers that probably even
had less time to review their papers and also of course to the authors that were
willing to submit their papers to our workshops and the authors that revised
their papers for this book.

September 2006 Frank Dignum (Utrecht, Netherlands)
Rogier van Eijk (Utrecht, Netherlands)
Roberto Flores (Newport News, USA)

Workshop Organization

Organizing Committee

Rogier van Eijk Universiteit Utrecht, Utrecht, Netherlands
Roberto Flores Christopher Newport University, USA
Marc-Philippe Huget University of Savoie, Annecy, France
Frank Dignum Universiteit Utrecht, Netherlands, (2006)

Program Committee

L. Amgoud IRIT,France
J. Bentahar Laval University, Canada
B. Chaib-draa Laval University, Canada
P. Cohen Oregon Health and Science University, USA
M. Colombetti Politecnico di Milano, Italy
M. Dastani Utrecht University, Netherlands
F. Dignum Utrecht University, Netherlands
R. van Eijk Utrecht University, Netherlands, (2006)
A. El Fallah-Seghrouchni University of Paris 6, France
R. Flores Christopher Newport University, USA, (2006)
F. Guerin University of Aberdeen, UK
M.-P. Huget University of Savoie, France, (2006)
M. d’Inverno Westminster University, UK
A. Jones King’s College, London, UK
F. Lin Athabasca University, Canada, (2006)
N. Maudet University of Paris 9, France
P. McBurney University of Liverpool, UK
S. Parsons City University of New York, USA
P. Pasquier University of Melbourne, Australia, (2006)
S. Paurobally University of Liverpool, UK
J. Pitt Imperial College, UK
N. Roos Maastricht University, Netherlands
D. Traum University of California Los Angeles, USA
G. Weiss Technical University Munich, Germany
M. Wooldridge University of Liverpool, UK, (2006)
P. Yolum Bogazici University, Turkey

X Organization

External Reviewers

D. Grossi Universiteit Utrecht, Netherlands, (2005)
M. Nickles Technical University of Munich, Germany,

(2005)
P. Pasquier Laval University, Canada, (2005)
M. Rovatsos University of Edinburgh, UK, (2005)
J. Saunier University of Paris 9, France, (2006)

Table of Contents

Section I: Semantics of Agent Communication

An Operational Model for the FIPA-ACL Semantics 1
Vincent Louis, Thierry Martinez

Temporal Logics for Representing Agent Communication Protocols 15
Ulle Endriss

ACL Semantics Between Social Commitments and Mental Attitudes 30
Guido Boella, Rossana Damiano, Joris Hulstijn,
Leendert van der Torre

On the Semantics of Conditional Commitment . 45
Shakil M. Khan, Yves Lespérance

Section II: Commitments in Agent Communication

A Commitment-Based Communicative Act Library . 61
Mario Verdicchio, Marco Colombetti

Integrating Social Commitment-Based Communication in Cognitive
Agent Modeling . 76

Philippe Pasquier, Brahim Chaib-draa

Flexible Conversations Using Social Commitments
and a Performatives Hierarchy . 93

Rob Kremer, Roberto A. Flores

Using Social Commitments to Control the Agents’ Freedom of Speech . . . 109
Guillaume Muller, Laurent Vercouter

Practical Issues in Detecting Broken Social Commitments 124
Jason Heard, Rob Kremer

Introducing Preferences into Commitment Protocols 136
Ashok U. Mallya, Munindar P. Singh

XII Table of Contents

Section III: Protocols and Strategies

On the Study of Negotiation Strategies . 150
Leila Amgoud, Souhila Kaci

Strategies for Ontology Negotiation: Finding the Right Level
of Generality . 164

Jurriaan van Diggelen, Edwin D. de Jong, Marco A. Wiering

Combining Normal Communication with Ontology Alignment 181
Jurriaan van Diggelen, Robbert Jan Beun, Frank Dignum,
Rogier M. van Eijk, John-Jules Meyer

Towards Design Tools for Protocol Development . 196
Pınar Yolum

Adaptiveness in Agent Communication: Application and Adaptation
of Conversation Patterns . 211

Felix Fischer, Michael Rovatsos, Gerhard Weiss

Can I Please Drop It? Dialogues About Belief Contraction 227
Henk-Jan Lebbink, Cilia Witteman, John-Jules Meyer

Commitment-Based Policies in Persuasion Dialogues with Defeasible
Beliefs . 243

Ioan Alfred Letia, Raluca Vartic

Section IV: Reliability and Overhearing

Reliable Group Communication and Institutional Action
in a Multi-Agent Trading Scenario . 258

Stephen Cranefield

A Fault Tolerant Agent Communication Language for Supporting
Web Agent Interaction . 273

Nicola Dragoni, Mauro Gaspari, Davide Guidi

Experiments in Selective Overhearing of Hierarchical Organizations 289
Gery Gutnik, Gal A. Kaminka

Author Index . 303

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 1 – 14, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Operational Model for the FIPA-ACL Semantics

Vincent Louis and Thierry Martinez

France Telecom Research & Development
2, avenue Pierre Marzin

22307 Lannion Cedex, France
{vincent.louis, thierry.martinez}@francetelecom.com

Abstract. Despite the effort made to standardize agent communication lan-
guages, almost no tool has been developed to implement agents’ conformance
to their semantics. In this paper, we review the formal principles supporting the
FIPA-ACL semantics and propose an operational model facilitating their im-
plementation. This model has been implemented upon the JADE platform, re-
sulting in more flexible agents, avoiding intensive use of rigid protocols.

1 Introduction

Many research and industrial actors in the field of multi-agent systems have identified
the need for a shared agent communication language (ACL) long ago. The most en-
thusiastic ones consider such a language as the counterpart of human natural lan-
guages for agents. In particular, ACLs should make it possible to convey meanings
instead of “simple” objects with no semantics like in classical object middlewares [1].
At least, ACLs should let heterogeneous agents communicate and interact with each
other [2]. This trend resulted in late nineties in mainly two initiatives to come to a
standard language: KQML (Knowledge Query and Manipulation Language) from the
ARPA knowledge sharing project [3] and FIPA-ACL from the Foundation for Intelli-
gent Physical Agents consortium [4, 5]. Although the usefulness of such languages in
building open, heterogeneous and interoperable agent systems is generally acknowl-
edged, ACLs have also often been criticized because of their formal semantics, which
make them generally difficult to implement and hence seldom implemented [6, 7].

On the one hand, a commonly pointed out difficulty in using these ACLs is that
they assume a mental state-based model for agents. While such mentalistic ap-
proaches are well suited to specify the meaning of communicative acts from the sub-
jective viewpoint of the participants, they cannot ensure any global objective property
of the system. Along this line, a recent stream in the multi-agent community has pro-
posed to use so-called social approaches (as opposed to mentalistic or individual
ones) [2]. These approaches model interactions through public structures, generally
based on the notion of (social) commitment. They lead to recent concrete alternatives
for defining ACLs [8, 9].

On the other hand, because the formal semantics of ACLs rely on complex logical
theories of agency (mixing reasoning on several concepts such as beliefs, intentions
and actions), they require a high level of understanding to design conforming agents.
This matter of fact is not only pointed out at a theoretical level but also at a concrete

2 V. Louis and T. Martinez

development level [10]. Consequently, even if some recent work attempts to simplify
this kind of models [11], designers often prefer protocol-based approaches (such as
[12]). In these cases, they do not benefit from the original semantics of ACLs, which
only account for an intuitive meaning of the communicative acts. As a resulting
drawback, the use of rigid interaction protocols often results in decreasing the flexibil-
ity and therefore the autonomy of agents.

A third possible working direction consists in making available proper tools in or-
der to encompass these difficulties. To our knowledge, little work has investigated
this area. For example, in the FIPA community, most of the existing platforms that
claim to be FIPA-compliant (among the most famous ones, JADE [13], FIPA-OS
[14], Zeus [15]) implement the middleware-related specifications but provide no con-
crete support regarding the ACL semantics-related specifications. In order to promote
such tools, this paper proposes an operational model for implementing the theory of
agency that underlies the FIPA-ACL semantics. This model, which is obviously miss-
ing today, aims at both helping developers to soundly conform to the FIPA-ACL
semantics and leading to the development of proper tools to be integrated into FIPA-
compliant platforms. Actually, this model provides a design framework that ensures
consistency with the theory principles. Interestingly, it is flexible enough to customize
agents’ behaviors, while the built agents also benefit from generic capabilities for
interpreting and generating communicative acts. This paper only focuses on the inter-
pretation part.

The next section reviews some formal principles of the theory of agency underly-
ing the FIPA-ACL semantics, which are relevant to the interpretation of communica-
tive acts. Section 3 describes the main concepts and mechanisms of the model from
which these principles can be implemented. Section 4 illustrates the resulting model
with a simple example. Finally, section 5 concludes and discusses some perspectives.

2 Reviewing FIPA-ACL Semantics

The FIPA Agent Communication Language is defined through a set of communica-
tive acts [5]. Their precise meaning results from their interpretation as particular ac-
tions within a more general theory of agency, namely the theory of rational interaction
proposed by Sadek [16]. Thus, the semantics of FIPA communicative acts is formally
defined by the generic principles of Sadek’s theory that apply to actions. Although the
FIPA specifications list most of these principles [5, Informative Annex A], some
significant ones are unfortunately missing. This section reviews the essential princi-
ples formalizing the interpretation of FIPA-ACL communicative acts and identifies a
general template in the perspective of implementing them.

All formal properties described in this paper are written in FIPA-SL [17], which is
the modal logic language that sustains the theory of agency defining the FIPA-ACL
semantics.

2.1 Mental Attitudes and Actions

First of all, the underlying theory formally specifies agents’ behaviors through mental
state notions describing internal agents’ features that must be interpreted subjectively,

 An Operational Model for the FIPA-ACL Semantics 3

i.e. from their point of view. Mental states are classically described using beliefs and
intentions (according to the widely acknowledged Belief-Desire-Intention paradigm
[18]). Beliefs are formalized by two logical modal operators: (B i p)1 expresses
that agent i believes that p holds and (U i p) expresses that agent i is uncertain
about p, that is, s/he does not believe that p holds but s/he believes that p is more
probably true than (not p). The B operator satisfies a KD45 model and is semanti-
cally defined by a Kripke possible world structure, whereas the semantics of the U
operator is defined in probabilistic terms upon the accessible possible worlds support-
ing the B operator.2 Intentions are mainly formalized by one logical operator, (I i
p), which expresses that agent i intends that p holds. Sadek’s theory actually pro-
vides several degrees of intention (similar, to some extent, to Cohen and Levesque’s
approach [20]), including choice, achievement goal (agent i does not believe that p
holds), persistent goal (agent i will drop her/his goal p until it is satisfied or s/he
comes to believe it is unachievable) and intention itself (agent i commits to perform,
individually or collectively with other cooperative agents, any action s/he believes
that can reach the goal p), each one being defined upon a more primitive choice con-
cept [21]. Within the scope of the FIPA specifications, the intention operator is con-
sidered to be primitive.

A property of agents’ mental attitudes, which is worth mentioning, is that they
must be consistent with their beliefs: agents always believe the mental attitudes they
actually have. Formally, the following property is valid within the theory, for both
primitive (expressed with the previous operators of belief, uncertainty and intention)
and composite mental attitudes (expressed by combining these operators with logical
connectors):

(equiv (B i PHI(i)) PHI(i)) (1)

where i denotes an agent and PHI(i) a mental attitude of i
Consequently, agents’ internal states (including all their mental attitudes) can be

exclusively described by their beliefs. An important corollary is that agents cannot be
uncertain (with the meaning of the U operator) of any of their mental attitudes (since
they fully believe it). The following property is valid within the theory:

(not (U i PHI(i))) (2)

where i denotes an agent and PHI(i) a mental attitude of i
In order to describe temporal facts, the theory supports two other modalities:

(done a p) expresses that action a has just occurred and that p held just before its
occurrence (past-oriented), and (feasible a p) expresses that action a may
possibly occur and that p will hold just after its occurrence, if it actually occurs (fu-
ture-oriented). Both these operators are possible normal modal operators that satisfy a
K model and are semantically defined by a Kripke possible world structure. Their
accessibility relations classically define a branching future (several different actions

1 In this paper, the underlined terms in logical formulas denote schematic variables. Here, i

and p may be respectively replaced with references to agents and formulas.
2 Sadek originally proposed a set of logical properties satisfied by the U operator. More recent

work investigates an axiomatic system for this operator, but without proving its completeness
with respect to the semantic model [19].

4 V. Louis and T. Martinez

may occur in a given possible world) and a linear past (exactly one action has just
occurred in a given possible world).

The resulting framework is a homogeneous multimodal logic powerful enough to
account for very subtle nuances. For example, (exists ?X (B i (feasible
?X p))) expresses that agent i knows an action ?X (which is not explicit) that may
bring about p (e.g. “Mary knows a recipe to cook a cake”), whereas (B i (exists
?X (feasible ?X p))) expresses that agent i believes that there are some
ways of reaching p, without necessarily knowing how to reach it (e.g. “Mary knows
cakes can be cooked”).

2.2 Formally Interpreting Incoming Communicative Acts

FIPA-ACL defines four primitive (Inform, Confirm, Disconfirm and Request) and
eighteen composite communicative acts [5]. Each of them (primitive or composite) is
defined by two semantic features, namely its feasibility precondition and its rational
effect. We now review the formal principles embedded in the theory of agency that
specify how agents should interpret received communicative acts based on their se-
mantic features.

Feasibility Precondition
The feasibility precondition of a communicative act states the condition that must
necessarily hold for this act to be sent. This classical notion of action precondition is
formalized by the following axiom within the theory3. It means that any agent observ-
ing a communicative act performance (left part of the implication) necessarily be-
lieves that its feasibility precondition held just before its performance (right part, in
the scope of the done operator):

(B i (implies (done a true) (done a FP(a)))) (3)

where a, FP(a) and i respectively denote a communicative act, its feasibility
precondition and an agent

This principle is particularly useful to check the consistency of incoming commu-
nicative acts. For example, agents should reject received Inform acts about one of
their own mental attitudes (e.g. when they are told “you intend to jump out the win-
dow”) because applying property (2) to the corresponding propositional content
makes the feasibility precondition inconsistent. Actually, the informative annex of [5]
mentions no property that formally deals with feasibility precondition interpretation,
so that a specification of inconsistent communicative acts is clearly missing.

Rational Effect
The rational effect of a communicative act states what the result expected by agents
performing this act is. It underlies a unique classical actual postcondition of the com-
municative act, namely its “intentional effect”, which is formalized by the following
axiom within the theory. It means that agents observing an act performance (left part
of the implication) believe that the sender intends each receiver believes the sender
intends the rational effect of this act (right part):

3 This axiom, which was actually proposed by Louis [19], generalizes Sadek’s original formal-

ization: (B i (implies (feasible a true) FP(a))).

 An Operational Model for the FIPA-ACL Semantics 5

(B i (implies (done a true)
 (I j (B k (I j RE(a))))
))

(4)

where a, RE(a), i, j and k respectively denote a communicative act, its rational
effect, an agent, the author of a and a receiver of a

Actually, [5, Property 4] only considers the following weaker principle:

(B i (implies (done a true)
 (I j RE(a))))))

(5)

where a, RE(a), i and j respectively denote a communicative act, its rational effect,
any agent and the author of a

The consequent is simplified, assuming that most agents receiving a message
(whether they be cooperative or not with the sender) adopt the primary intention ex-
pressed by the intentional effect, that is, believe the sender intends the rational effect.
Anyway, the important feature of both of these expressions is the surrounding B op-
erator, which makes the intentional effect relative to each observing agent. It means
the intentional effect is not an absolute effect, but rather a subjective one that has to
be interpreted individually (and possibly differently) by each agent. Thus, it is up to
the receiver of a communicative act to satisfy the author’s intention (recognized
through the principles (4) or (5)), depending on her/his specified behavior.

Cooperation Principles
Contrary to some criticisms expressed against FIPA-ACL [22], agents conforming to
the semantics of this language are not necessarily cooperative. Since interpreting the
intentional effect of a received message should be specific to each agent (resulting in
customized behaviors), the informative annex of [5] gives no recommendation about
this process. However, the underlying theory provides some formal principles that
should be made explicit. For instance, we accommodate two principles of Sadek’s the-
ory that guide the agents’ behaviors in the perspective of implementing FIPA agents.

The belief transfer principle states the condition under which an agent comes to be-
lieve what another agent intends s/he believes. It is formally expressed by the follow-
ing axiom schema:

(implies (and (B i (I j (B i p))) (B i CONDB(j,p)))

 (B i p))
(6)

where i, j and p respectively denote two agents and a formula
Sadek’s original principle only applies to facts p denoting a mental attitude of

agent j. We have extended it to any kind of facts by adding a condition
CONDB(j,p) that has to be customized depending on the expected behavior of agent

i. Note that this condition appears under the scope of an i’s belief operator, so that it
can be differently specified (i.e. customized) for each agent. For example, if agent i0
does not trust agent i1 at all, the i0-related condition can simply be specified to be
false for j=i1 and any p.

Similarly, the intention transfer principle states the condition under which agents
adopt intentions of other agents. In other words, it sets the extent to which agents are

6 V. Louis and T. Martinez

cooperative with other agents. It can be formally expressed by an axiom schema of
the following form:

(implies (and (B i (I j p)) (B i CONDI(j,p)))

 (I i p))
(7)

where i, j and p respectively denote two agents and a formula that is not a mental
attitude of i

Here, the agents’ cooperative inclination can be customized by specifying the condi-
tion CONDI(j,p) (which, as above, is specific to each agent i). Note that the sche-

matic variable p is constrained not to denote a mental attitude of i, so that the applica-
tion of (6) and (7) is mutually exclusive. Actually, we only provide an example of what
could be an intention transfer principle in the perspective of implementing FIPA agents
and we do not claim giving a complete set of axioms in the scope of this paper. For
further interest, [16] and [23] propose extended cooperation principles that could easily
be adapted to this framework in order to get more specific agents’ behaviors.

Identifying a General Template for Formal Principles
As (B i (implies p q)) logically entails (implies (B i p) (B i
q)) within the modal logic supporting the theory of agency, the following template
can be easily identified as matching the reviewed principles that formally characterize
the semantic interpretation of communicative acts:

(implies (and A COND) C) (8)

A denotes the antecedent to recognize for applying the corresponding principle,
COND denotes a condition that must be checked before applying it and C denotes the
consequent resulting from its application. For example, instantiating A with (B i
(done a true)), COND with true (i.e. no additional condition to check) and C
with (B i (done a FP(a))) soundly represents the feasibility precondition
principle (3).

Casting all formal principles of the theory into this template provides a sound but
not necessarily complete set of axioms with respect to this theory. In the perspective
of implementing agents, the soundness ensures the consistency of their behaviors; the
completeness loss is not a problem provided the inferences that are relevant to their
behaviors are preserved. Anyway, as the underlying theory of agency is intrinsically
not decidable, a trade-off must be found in order to implement it.

The next section develops an operational model for implementing a set of such
templates and therefore a significant part of the FIPA-ACL semantics.

3 Operationalizing the FIPA-ACL Semantics

As previously argued, implementing agents that comply with and thus take full advan-
tage of the FIPA-ACL semantics requires a suitable mechanism. This section de-
scribes the main constituents of a FIPA-ACL operational model that can lead to the
implementation of such a mechanism. These elements can be refined into two main
categories: the first one includes classical constituents BDI-style agents must hold,
whereas the second one introduces new specific elements in order to reify the general

 An Operational Model for the FIPA-ACL Semantics 7

template identified in the previous section for the formal principles defining the
FIPA-ACL semantics. As a prerequisite, we first expose three major constraints a
FIPA-ACL implementation has to deal with.

Firstly, agents conforming to FIPA-ACL are supposed to receive and send com-
municative acts according to their mental states (i.e., their beliefs). As a direct conse-
quence, the aimed mechanism should make it possible to program agents through
these mental states. For example, in order to inform another agent about the value of a
property, an agent is required to have this value among her/his beliefs, as well as the
fact that the receiver does not already believe this value.

Secondly, the aimed mechanism should efficiently handle FIPA-SL expressions,
since the semantics of FIPA-ACL is defined using the terms of this language. For
example, the feasibility precondition and the rational effect of communicative acts are
specified by SL formulas.

Lastly, parts of agents’ behaviors, such as their cooperation abilities, are not im-
posed by the FIPA-ACL semantics and should be customizable. Thus, that the aimed
mechanism should provide flexibility hooks. For example, extending these hooks
should make it possible to setup which requested actions an agent should perform.

3.1 Classical Agent Constituents

Two basic concepts at least are needed to handle the FIPA-ACL semantics: activities
and beliefs.

Activities
By activity, we mean an agent’s performing some course of action, such as issuing a
communicative act, sending an email, switching on a light, … Most of the time, inter-
preting incoming messages results in adding one or several activities to the receiving
agent. For example, handling Query-if communicative acts typically results in an
activity consisting in issuing an Inform act, and handling Request acts typically
results in an activity consisting in performing the requested action. Activities are
generally either primitive or compound, resulting from a planner computation. In an
implementation perspective, the JADE platform provides a “Behaviour” mechanism
that could support the concept of activity.

Beliefs
Agents need to perform some reflexive operations both to access and update their own
beliefs. Interpreting or sending communicative acts indeed intensively refers to the
author’s and receiver’s beliefs, according to their semantic features. For example, in
order to inform another agent about a fact, agents should select the proper act (Inform,
Confirm or Disconfirm) depending on their beliefs about the receiver’s beliefs regard-
ing this fact. Moreover, after issuing this act, they should come to believe the other
agent henceforth believes this fact. Typically, the COND part of the template (im-
plies (and A COND) C) refers to agents’ beliefs.

Such reflexive operations should at least support an Assert operation to add new
believed facts, a Query-if operation to query believed facts, and a Query-ref operation
to query the believed values of identifying expressions. Here are some examples of
invocation of such operations:

8 V. Louis and T. Martinez

1. Assert("(temperature 20)");
2. Query-if("(temperature 21)");
3. Query-if("(temperature-greater-than 10)");
4. Query-ref("(any ?x (temperature ?x))");

The first invocation asserts the agent believes the temperature is 20. The second
one queries whether the agent believes the temperature is 21. The third one queries
whether the agent believes the temperature is greater than 10. The last one queries for
a temperature value believed by the agent.

Considering this example, several issues may generally influence the whole
mechanism implementation. The first issue is the need for a mechanism that ensures
the consistency of the stored beliefs. For example, assuming a classical semantics for
the temperature predicate (i.e., it satisfies exactly one value), an agent should not
believe at the same time (temperature 20) and (temperature 21). The
second issue is the practical need for inference capabilities. In this example, an agent
that believes (temperature 20) should also believe (temperature-
greater-than 10). Finally, the real semantics of the Query operations is worth
highlighting. Query-if returns true for a given fact if the agent believes this fact
(whether the truth value of this fact actually be). It returns false if this fact does not
belong to her/his beliefs (s/he does not necessarily believe it is false). This character-
izes the agent subjectivity.

3.2 Additional Constituents

Beyond the two basic concepts of activity and belief, we introduce two key additional
concepts to build our operational model: semantic representations (SRs) and semantic
interpretation principles (SIPs).

Production function

Perceived
event

Consumption function

Activities

Beliefs {semantic representations}

Consume/produce

Concepts

Alter

Fig. 1. Interpretation abstract process

 An Operational Model for the FIPA-ACL Semantics 9

Semantic Representation (SR)
A semantic representation is a FIPA-SL formula representing a part of the meaning of
an event perceived by the agent, for instance, an incoming message. As SRs refer to
perceived events, they are necessarily expressed as beliefs of the corresponding agent,
ranging from simple beliefs (about the state of the world, her/his own intentions, other
agents’ beliefs, …) to combined ones.

SR is the central concept supporting the general process for interpreting incoming
messages (and more generally perceived events). This process is refined into two
main functions, which can take place simultaneously: the first one consists in produc-
ing SRs while the second one consumes them (see Fig. 1):

1. The production function computes from an input perceived event an output consist-
ing of all SRs expressing the agent understanding of this event. For example, as-
suming agent j perceives the following communicative act:

(Inform
 :sender i
 :receiver j
 :content "((p))")

The production function implemented by j generates the following SRs:
− (B j (done (action i (Inform ...): this SR means j believes that
i has just issued the Inform act, it is the direct representation of the perceived
event;

− (B j (B i p)): this SR means j believes that i believes the content of the
Inform act is true. It represents the interpretation of part of the feasibility pre-
condition of this act (namely, the fact that the sender should believe the
informed content) and can be formally derived using the formal principle (3)
applied to the Inform act;

− Other SRs may represent the interpretation of the intentional effect of the Inform
act, the intentions derived applying cooperation principles, and so on.

2. The consumption function computes from the previously produced SRs new activi-
ties and beliefs within the perceiving agent. In the previous example, the consump-
tion function implemented by j adds (B i p) to j’s beliefs from the second
produced SR. The global interpretation process ends when all SRs are consumed.

In this general interpretation process, the formal principles defining the FIPA-ACL
semantics can be directly connected to the production function. This connection is
detailed in the next subsection about “SIPs”. Another point worth mentioning is the
requirement for a normal form mechanism to ensure that two logically equivalent
FIPA-SL formulas lead to the same SR, resulting in the same understanding of the
agent. Finally, this model provides a natural support to proactive behaviors: internally
generated events (sensor events, activity-triggered events, …) viewed as particular
perceived events are interpreted through the same process.

Semantic Interpretation Principle (SIP)
Semantic interpretation principles provide the basic means to produce and consume SRs
(see Fig. 2). A SIP is closely related to a particular instantiation of the general template
(implies (and A COND) C) corresponding to one formal principle of the theory:

10 V. Louis and T. Martinez

− It accepts as input the SR representing the A part of the formal principle,
− If the COND part is satisfied (this generally requires accessing the agent’s beliefs),

then:
− It produces as output a set of SRs, representing the C part,
− It consumes the input SR,
− It may add new activities to the agent,
− It may update the agent’s beliefs.

COND checking

Activities

Beliefs Input SR (A)

Set of output SRs (C)

SIP name

Fig. 2. Representation of a SIP

Practically, implementing the FIPA-ACL semantics using our operational model
generally consists in:

− Reusing SIPs that implement generic formal principles of the underlying theory,
such as the intentional effect interpretation (5) or the feasibility precondition
checking (3),

− Customizing SIPs that implement customizable cooperation principles of the the-
ory, such as the belief transfer (6) or the intention transfer (7) principle,

− Defining agent- or application-specific SIPs, providing our model with flexibility
hooks.

This operational model has been implemented as an add-on upon the JADE multi-
agent platform [13]. The following table sums up the main SIPs that have been explic-
itly implemented.

Table 1. List of implemented SIPs on the JADE platform

This SIP… Consists in
ActionFeatures Applying the principles (3) and (5)
BeliefTransfer Applying the principle (6)
IntentionTransfer Applying the principle (7)
ActionPerformance Adding an activity that performs an action intended by

the agent
RationalityPrinciple Adding an activity that brings about an effect intended

by the agent (rationality principle [5, Property 1])
Planning Invoking a planning computation (if available)
Subscribe Adding an observer mechanism on the belief base of

the agent to monitor the truth of a given belief

 An Operational Model for the FIPA-ACL Semantics 11

The ActionPerformance, RationalityPrinciple and Planning SIPs actually imple-
ment three (customizable) principles of the underlying agent theory dealing with the
planning of actions with respect to the agent’s intentions. The first one applies to SRs
of the form (I i (done a true)) and directly performs the action a, by adding
a proper activity to the agent. The rationality principle applies to SRs of the form (I
i p) and performs an action, the rational effect of which matches the formula p, if
the agent knows such an action (the set of known actions include all FIPA communi-
cative acts as well as all application-specific actions). Last, the Planning SIP applies
to SRs of the same form and makes it possible to call an external planning algorithm.
Its result must be an activity to be added into the agent in order to reach the goal p.

The Subscribe SIP makes it possible to properly handle subscription-related FIPA
communicative acts, such as Request-When, Request-Whenever or Subscribe. It ap-
plies to SRs representing the belief of the receiver about the conditional intention of
the sender of a subscription-related act. Such a conditional intention actually states the
sender (or subscriber) adopts a certain “regular” intention (of performing the sub-
scribed action) as soon as a condition becomes true. These regular intention and con-
dition depend on the content of the subscription-related act. The Subscribe SIP then
sets up a special mechanism onto the belief base of the receiver. This mechanism
consists in monitoring the condition and producing a new SR representing the regular
intention as soon as the condition is believed by the receiver. This new SR is in turn
processed by the general interpretation algorithm and, in particular, by the coopera-
tion- and planning-related SIPs.

4 Example

Fig. 3 partially shows the interpretation process applied by an agent j to two almost
equivalent incoming messages from agent i. The first one is an Inform act stating that
i intends j to perform action a. The second one is a Request act requiring j to per-
form a.

The Inform act is interpreted by applying four SIPs:

1. The first SIP produces an SR representing the intentional effect of the act, which
states j believes i intends the rational effect of the Inform act to hold,

2. The second SIP produces an SR stating j believes i intends a to be done, by ap-
plying a belief transfer principle,

3. The third SIP produces an SR stating j intends a to be done, by applying an inten-
tion transfer principle,

4. Then the last SIP creates the activity to perform a.

The Request act is interpreted by applying three SIPs:

1. The first SIP is the same one as the previous 1., except that it applies to a Request
instead of an Inform act,

2. The second and the third SIPs are respectively the same as the previous 3. and 4.,
resulting in the same behavior of j.

This simple example illustrates how agents can react to incoming messages in re-
spect to their meaning rather than their syntax.

12 V. Louis and T. Martinez

Belief Transfer SIP

Intentional Effect SIP
(inform)

Intention Transfer SIP

 ∅

Action performance SIP
Activity

performing a

M1 = (inform
:sender i
:receiver j
:content "((I i
(done a true)))")

Intentional Effect SIP
(request)

(B j (done (action i M2)) true)

M2 = (request
:sender i
:receiver j
:content "(a)")

(B j (done (action i M1)) true)

(B j (I i (B j (I i (done a true))))

(B j (I i (done a true)))

(I j (done a true))

Assuming
a = (action j (<term describing an action>))

Fig. 3. Interpreting Inform and Request messages

5 Concluding Remarks

We have identified a recurrent template for the formal principles of the theory of
agency that defines the FIPA-ACL semantics. Considered as a general primitive in-
ference rule, this template can be thought of as the basis of a global interpretation
process. We define the concepts of “semantic interpretation principle” (SIP) and “se-
mantic representation” (SR) to implement such a template. These notions, together
with proper mechanisms and classical agent-related notions like beliefs and activities,
result in an operational model that makes it possible to implement the FIPA-ACL
semantics.

Agents built upon this operational model, which relies on the identified template,
comply with the formal principles defining the semantics of FIPA-ACL. For example,
these agents reject inconsistent incoming messages, such as Inform messages about
their own mental states. Moreover, they naturally interpret incoming messages ac-
cording to their semantic meaning and not to their syntactic form (see the example in
section 4). Finally, the operational model provides enough flexibility to support spe-
cific behaviors by customizing or specifying additional SIPs.

Considering the effective implementation of our proposed model, we see at least
three solutions: the first one consists in using a dedicated inference engine for the
modal logic theory of agency supporting the FIPA-ACL semantics. In this case, each
instance of SIP is implemented as a particular axiom schema within this engine. For
example, the ARTIMIS technology, which currently supports the deployment of real
agent-based dialogue applications [24,25], relies on this approach. However, it re-
quires a complex inference engine, which is not available on the market, to our

 An Operational Model for the FIPA-ACL Semantics 13

knowledge. The second solution consists in using a rule engine, each instance of SIP
being a rule itself. The anticipated difficulty is to setup the proper data structures to
handle logical formulas and their normal forms. Finally, we have actually considered
a direct ad-hoc implementation of our operational model into the JADE FIPA compli-
ant platform, a first release of which is publicly available since July 2005.

In any case, our operational model is expected to give rise to new reliable software
tools that will make it possible to develop “semantic” agents. Such challenging
agents, which intrinsically work on the meaning of the messages, would no longer
explicitly need interaction protocols. The flexibility and therefore the autonomy of
these agents would thus be significantly improved. For example, an agent expecting
an answer to her/his query from another agent could perfectly deal with an unplanned
sub-query from this other agent before getting the actual answer, which is currently
not possible by implementing protocols like FIPA-Query with finite state machines.

Finally, our operational model provides novel perspectives regarding the often
criticized problem of FIPA compliance testing. Obviously, it remains not possible to
externally check agents’ conformance to the FIPA-ACL semantics because there is no
means to access their private mental states. Anyway, we argue that future complex
systems (disappearing computing, ambient intelligence and so on) will mix both arti-
ficial and human agents and so make illusory any usual conformance test. In this
spirit, our operational model provides a kind of “weak” compliance framework that
ensures that the designed agents at least conform to a subset of a standardized formal
semantics by directly implementing some principles of the corresponding theory.

References

1. Labrou, Y., Finin, T., Peng, Y.: Agent Communication Languages: The Current Land-
scape. IEEE Intelligent Systems, Volume 14(2) (1999) 45–52

2. Singh, M.: Agent Communication Languages: Rethinking the Principles. Computer, Vol-
ume 31(12). IEEE Computer Society Press (1998) 40–47

3. Labrou, Y., Finin, T.: A Proposal for a New KQML Specification. Technical Report TR-
CS-97-03, Computer Science and Electrical Engineering Dept., Univ. of Maryland, USA
(1997)

4. Foundation for Physical Intelligent Agents (FIPA), Geneva, Switzerland, http://www.
fipa.org

5. FIPA: FIPA Communicative Act Library Specification. FIPA00037, http://www.fipa.org/
specs/fipa00037/ (2002)

6. Pitt, J., Mamdani, A.: Some Remarks on the Semantics of FIPA’s Agent Communication
Language. Autonomous Agents and Multi-Agent Systems, Volume 2 (1999) 333–356

7. Chaib-Draa, B., Dignum, F.: Trends in Agent Communication Language. Computational
Intelligence, Volume 18(2) (2002) 89–101

8. Bergeron, M., Chaib-draa, B.: ACL: Specification, Design and Analysis All Based on
Commitments. This Volume (2005).

9. Verdicchio, M., Colombetti, M.: A Commitment-based Communicative Act Library. This
Volume (2005)

10. Willmott, S. (ed.): Technical Input and Feedback to FIPA from Agentcities.RTD and the
Agentcities Initiative. Agentcities Task Force Technical Note 00003, http://
www.agentcities.org/note/00003/ (2003)

14 V. Louis and T. Martinez

11. Paurobally, S., Cunnigham, J., Jennings, N.: A Formal Framework for Agent Interaction
Semantics. This Volume (2005)

12. Pitt J., Bellifemine, F., A Protocol-Based Semantics for FIPA '97 ACL and its implementa-
tion in JADE. CSELT internal technical report (1999). Part of this report has been also
published in Proceedings of AI*IA’99

13. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE A White Paper. exp in search of
innovation, Volume 3(3), Telecom Italia Lab (2003) 6–19

14. emorphia: FIPA-OS, http://fipa-os.sourceforge.net/index.htm
15. Nwana, H., Ndumu, D., Lee, L., Collis, J.: ZEUS: A Tool-Kit for Building Distributed

Multi-Agent Systems. Applied Artifical Intelligence Journal, Volume 13(1) (1999) 129–186
16. Sadek, D.: Attitudes mentales et interaction rationnelle : vers une théorie formelle de la

communication, PhD thesis, Rennes I university, France (1991)
17. FIPA: FIPA SL Content Language Specification. FIPA00008, http://www.fipa.org/

specs/fipa00008/ (2002)
18. Rao, A., Georgeff, M.: Modeling rational agents within a BDI-architecture. Proceedings of

KR’91 (1991) 473–484
19. Louis, V.: Conception et mise en œuvre de modèles formels du calcul de plans d’action

complexes par un agent rationnel dialoguant, PhD thesis, Caen university, France (2002)
20. Cohen, P., Levesque, H.: Intention is choice with commitment. Artificial Intelligence,

Volume 42(2–3) (1990) 213–262
21. Sadek, D.: A Study in the Logic of Intention. Proceedings of KR’92 (1992) 462–473
22. McBurney, P., Parsons, S., Locutions for argumentation in agent interaction protocols. Re-

vised Proceedings of the International Workshop on Agent Communication (AC2004),
New York, NY, USA. Lecture Notes in Artificial Intelligence, Volume 3396. Springer,
Berlin, Germany (2004) 209–225

23. Bretier, P., Panaget, F., Sadek, D.: Integrating linguistic capabilities into the formal model
of a rational agent : Application to cooperative spoken dialogue. Proceedings of the
AAAI’95 Fall Symposium on Rational Agency (1995)

24. Bretier, P., Sadek, D.: A Rational Agent as the Kernel of a Cooperative Spoken Dialogue
System: Implementing a Logical Theory of Interaction. Proceedings of the ECAI’96 3rd
ATAL Workshop (1997)

25. Sadek, D.: Design Considerations on Dialogue Systems: From Theory to Technology —
The Case of ARTIMIS. Proceedings of the ESCA TR Workshop on Interactive Dialogue
for Multimodal Systems, Germany (1999)

Temporal Logics for Representing Agent

Communication Protocols

Ulle Endriss

Institute for Logic, Language and Computation
University of Amsterdam, 1018 TV Amsterdam, The Netherlands

ulle@illc.uva.nl

Abstract. This paper explores the use of temporal logics in the con-
text of communication protocols for multiagent systems. We concentrate
on frameworks where protocols are used to specify the conventions of
social interaction, rather than making reference to the mental states of
agents. Model checking can be used to check the conformance of a given
dialogue between agents to a given protocol expressed in a suitable tem-
poral logic. We begin by showing how simple protocols, such as those
typically presented as finite automata, can be specified using a fragment
of propositional linear temporal logic. The full logic can also express con-
cepts such as future dialogue obligations (or commitments). Finally, we
discuss how an extended temporal logic based on ordered trees can be
used to specify nested protocols.

1 Introduction

Communication in multiagent systems is an important and very active area of
research [15,29,37]. While much work has been devoted to so-called mentalistic
models of communication (see in particular [15]), where communicative acts
are specified in terms of agents’ beliefs and intentions, recently a number of
authors have argued for a convention-based approach to agent communication
languages [9,23,29,31]. Mental attitudes are useful to explain why agents may
behave in certain ways, but (being non-verifiable for an outside observer) they
cannot serve as a basis for specifying the norms and conventions of interaction
required for building open systems that allow for meaningful communication. In
the convention-based approach, protocols specifying the rules of interaction play
a central role.

This paper explores the use of temporal logics in the context of agent com-
munication protocols. Rather than using a form of deontic logic to specify what
agents ought to do, we use temporal logic formulas to specify the class of all
dialogues (sequences of utterances) that are legal according to a given protocol.
The notion of what an agent ought to do is then implicit: the social conven-
tions of communication are fulfilled, if the generated dialogue satisfies the pro-
tocol specification. In particular, we propose to use propositional linear temporal
logic [16,18] to specify protocols and generalised model checking [7] to decide
whether an actual dialogue conforms to such a protocol.

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 15–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

16 U. Endriss

Checking conformance at runtime, which is what we are concerned with here,
can be distinguished from a priori conformance checking which addresses the
problem of checking whether an agent can be guaranteed to always conform
to a given protocol, on the basis of its specification [12,19]. Being able to check
conformance at runtime is a minimal requirement for systems that operate with a
convention-based communication protocol; if violations cannot be detected then
the use of such a protocol will be of little use (but how to react to an observed
violation is an issue that lies outside the scope of this paper).

The remainder of the paper is structured as follows. Section 2 provides an in-
troduction to agent communication protocols and Section 3 covers the necessary
background on temporal logic. In Section 4 the basic ideas of representing dia-
logues as models, using formulas to specify protocols, and applying (generalised)
model checking to verify conformance are introduced. These ideas are then ap-
plied to protocols that can be represented as finite automata (in Section 5) and
to the modelling of dialogue obligations (in Section 6). Section 7 discusses ideas
on the specification of nested protocols using an extended temporal logic based
on ordered trees, and Section 8 concludes with a brief discussion of related work.

2 Background on Protocols

An agent communication protocol lays down the conventions (or norms, or rules)
of communicative interaction in a multiagent system. Agents communicate with
each other by sending messages, which we refer to as dialogue moves (or commu-
nicative acts, or simply utterances). A dialogue is a sequence of such moves. A
dialogue move will typically have, at least, the following components: a sender, a
(list of) receiver(s), a performative determining the type of move, and a content
item defining the actual message content [12,15,37]. An example for a perfor-
mative would be inform ; an example for a content item would be “the city of
Utrecht is more than 1300 years old”. Indeed, the content language may be highly
application-dependent, which means we cannot hope to be able to develop gen-
eral tools for dealing with this particular aspect of communication. In addition,
a dialogue move may also include a time-stamp.

The role of a protocol is to define whether a dialogue is legal, i.e. whether it
conforms to the social rules governing the system to which the protocol in ques-
tion applies. A variety of mechanisms for the specification of protocols have been
put forward in the literature. Pitt and Mamdani [28], for instance, discuss several
protocols based on deterministic finite automata. One of these, the continuous
update protocol, is shown in Figure 1. This protocol may be used to regulate a
dialogue where an agent A continuously updates another agent B on the value of
some proposition. In each round, B may either acknowledge the information or
end the dialogue. Figure 1 only specifies the performative (inform , ack , or end)
and the sender (A or B) for each move. In fact, to keep our examples simple,
throughout this paper we are going to abstract from the other components of
a dialogue move. In the context of automata-based protocols, the definition of
legality of a dialogue reduces to the definition of acceptance of a language by an

Temporal Logics for Representing Agent Communication Protocols 17

0�������	 1�������	 2�������	

3
�������������	 4
�������������	

�� A: inform ��

B: ack

��

��

A: inform

B: end

��
A: end

��

Fig. 1. The continuous update protocol

automaton in the usual sense [26]: A dialogue is legal according to a protocol iff
it would be accepted by the automaton corresponding to the protocol.

Protocols defined in terms of finite automata are complete in the sense of
clearly specifying the range of legal follow-up moves at every stage in a dia-
logue. This need not be the case, however [1]. In general, any set of rules that
put some constraints on a dialogue between agents may be considered a proto-
col (although complete protocols may often be preferred for practical reasons).
Typical examples for protocol rules that constrain a dialogue without necessarily
restricting the range of legal follow-ups at every stage are conversational com-
mitments (e.g. to honour a promise) [9], which require an agent to perform a
certain communicative act at some point in the future. We are going to consider
the specification of dialogue obligations like this in Section 6.

3 Background on Temporal Logic

Temporal logic has found many applications in artificial intelligence and com-
puter science. In fact, over the years, a whole family of temporal logics have been
developed. In this paper, we are mostly going to use propositional linear tempo-
ral logic (PLTL), which is probably the most intuitive of the standard temporal
logics [16,18].

We briefly review the syntax and semantics of this logic. The language of
PLTL builds on a countable set L of propositional letters. The set of well-formed
formulas is the smallest set such that propositional letters are formulas and,
whenever ϕ and ψ are formulas, so are ¬ϕ, ϕ ∧ ψ, and ϕ until ψ. Formulas
are evaluated over a frame (also known as the flow of time). As we are going
to identify the points in a frame with the turns in a dialogue (which, for all
practical purposes, may be assumed to be finite), we define the semantics of
PLTL over finite frames only. A (finite) frame is a pair T = (T, <) where T =
[0, . . . , n] is an initial segment of the non-negative integers and < is the usual
ordering over integers. The elements of T are called time points. A model is a
pair M = (T , V) where T is such a frame and V (called the valuation) is a

18 U. Endriss

mapping from propositional letters in L to subsets of T . Intuitively, V (p) defines
the set of points at which an atomic proposition p ∈ L is true.

We write M, t |= ϕ to express that the formula ϕ is true at time point t in
the model M. This notion of truth in a model is defined inductively over the
structure of formulas:

– M, t |= p iff t ∈ V (p) for propositional letters p ∈ L;
– M, t |= ¬ϕ iffM, t �|= ϕ;
– M, t |= ϕ ∧ ψ iffM, t |= ϕ and M, t |= ψ;
– M, t |= ϕ until ψ iff there exists a t′ ∈ T with M, t′ |= ψ and t < t′, and
M, t′′ |= ϕ for all t′′ ∈ T with t < t′′ and t′′ < t′.

Propositional connectives other than negation and conjunction can be defined
in the usual manner; e.g. ϕ∨ψ = ¬(¬ϕ∧¬ψ). We also use � as a shorthand for
p∨¬p for some propositional letter p, i.e. � is true at any point in a model. The
symbol ⊥ is short for ¬�. Further temporal operators can be defined in terms
of the until-operator:

�ϕ = ⊥ until ϕ
�ϕ = � until ϕ
�ϕ = ¬�¬ϕ

The first of these is called the next-operator: �ϕ is true at t whenever ϕ is
true at a future point t′ and there are no other points in between t and t′ (as
they would have to satisfy ⊥), i.e. ϕ is true at the next point in time. The
eventuality operator � is used to express that a formula holds at some future
time, while �ϕ says that ϕ is true always in the future (it is not the case that
there exists a future point where ϕ is not true). Alternatively, in particular if we
are working with a fragment of PLTL that may not include the until-operator,
these modalities can also be defined directly.

4 Dialogues as Models

Given a modelM and a formula ϕ, the model checking problem is the problem
of deciding whether ϕ is true at every point in M. In the sequel, we are going
to formulate the problem of checking conformance of a dialogue to a protocol as
a (variant of the) model checking problem. The extraordinary success of model
checking in software engineering in recent years is largely due to the availability
of very efficient algorithms, in particular for the branching-time temporal logic
CTL [8]. Given that the reasoning problems faced in the context of agent com-
munication will typically be considerably less complex than those encountered
in software engineering, efficiency is not our main concern. Instead, clarity and
simplicity of protocol specifications must be our main objective.

We are going to use a special class of PLTL models to represent dialogues be-
tween agents and PLTL formulas to specify protocols. For every agent A referred
to in the protocol under consideration, we assume that the set L of propositional
letters includes a special proposition turn(A) and that there are no other propo-
sitions of this form in L. Furthermore, we assume that the set of performatives

Temporal Logics for Representing Agent Communication Protocols 19

in our communication language is a subset of L, and that L includes the special
proposition initial. We say that a model represents a dialogue iff it meets the
following conditions:

– initial is true at point 0 and at no other t > 0;
– exactly one proposition of the form turn() is true at any point t > 0;
– exactly one performative is true at any point t > 0.

Note that we do not allow for concurrent moves. The following is an example for
such a model representing a dialogue (conforming to the protocol of Figure 1):

•
initial

•
inform

turn(A)
•

ack

turn(B)
•

inform

turn(A)
•

end

turn(B)
�� �� �� ��

An actual dialogue determines a partial model: It fixes the frame as well as
the valuation for initial and the propositions in L corresponding to turn-
assignments and performatives, but it does not say anything about any of the
other propositional letters that we may have in our language L (e.g. to repre-
sent dialogue states; see Section 5). We can complete a given partial model by
arbitrarily fixing the valuation V for the remaining propositional letters. Every
possible way of completing a dialogue model in this manner givens rise to a
different PLTL model, i.e. a dialogue typically corresponds to a whole classes of
models. This is why we cannot use standard model checking (which applies to
single models) to decide whether a given dialogue satisfies a formula encoding a
protocol. Instead, the reasoning problem we are interested in is this:

Given a partial model M (induced by a dialogue) and a formula ϕ (the
specification of a protocol), is there a full model M′ completing M such
that ϕ is true at every point in M′?

In other words, we have to decide whether the partial description of a model can
be completed in such a way that model checking would succeed.

The above problem is known as the generalised model checking problem and
has been studied by Bruns and Godefroid [7]. In fact, the problem they address
is slightly more general than ours, as they do not work with a fixed frame and
distinguish cases where all complete instances of the partial model validate the
formula from those where there exists at least one such instance. Generalised
model checking may be regarded as a combination of satisfiability checking and
model checking in the usual sense. If there are no additional propositions in L,
then generalised model checking reduces to standard model checking. If we can
characterise the class of all models representing a given dialogue by means of a
formula ψ, then ϕ and ψ can be used to construct a formula that is satisfiable
(has got a model) iff that dialogue conforms to the protocol given by ϕ.

Note that the generalised model checking problem is EXPTIME-complete
for both CTL and PLTL [7], i.e. there would be no apparent computational
advantages in using a branching-time logic.

20 U. Endriss

Before we move on to show how PLTL can be used to specify protocols in
Sections 5 and 6, one further technical remark is in order. While we have defined
the semantics of PLTL with respect to finite frames, the standard model check-
ing algorithms for this logic are designed to check that all infinite runs through a
given Kripke structure satisfy the formula in question. This is a crucial feature of
these algorithms as they rely on the translation of temporal logic formulas into
Büchi automata [21,34] and acceptance conditions for such automata are defined
in terms of states that are being visited infinitely often. We note here that the
problem of (generalised) model checking for finite models admitting only a single
run is certainly not more difficult than (generalised) model checking for struc-
tures with infinite runs. Furthermore, to directly exploit existing algorithms, our
approach could easily be adapted to a representation of dialogues as structures
admitting only infinite runs. Because our main interest here lies in representing
communication protocols and highlighting the potential of automated reason-
ing tools in this area, rather than in the design of concrete algorithms, in the
remainder of the paper, we are going to continue to work with finite models.

5 Automata-Based Protocols

A wide range of communication protocols studied in the multiagent sys-
tems literature can be represented using deterministic finite automata (see
e.g. [12,27,28,29]). As we shall see, we can represent this class of protocols using
a fragment of PLTL where the only temporal operator required is the next-
operator �.

Consider again the protocol of Figure 1, which is an example for such an
automaton-based protocol. If our language L includes a propositional letter of
the form state(i) for every state i ∈ {0, . . . , 4}, then we can describe the state
transition function of this automaton by means of the following formulas:

state(0) ∧ �inform → �state(1)
state(1) ∧ �ack → �state(2)
state(1) ∧ �end → �state(3)
state(2) ∧ �inform → �state(1)
state(2) ∧ �end → �state(4)

To specify that state 0 is the (only) initial state we use the following formula:

initial↔ state(0)

For automata with more than one initial state, we would use a disjunction on
the righthand side of the above formula.

Next we have to specify the range of legal follow-up moves for every dia-
logue state. Let us ignore, for the moment, the question of turn-taking and only
consider performatives. For instance, in state 1, the only legal follow-up moves
would be ack and end . The seemingly most natural representation of this legality
condition would be the following:

state(1)→ �(ack ∨ end)

Temporal Logics for Representing Agent Communication Protocols 21

This representation is indeed useful if we want to verify the legality of a com-
plete dialogue. However, if we also want to use (generalised) model checking to
establish whether an unfinished dialogue conforms to a protocol, we run into
problems. Take a dialogue that has just begun and where the only event so
far is a single inform move uttered by agent A, i.e. we are in state 1 and the
dialogue should be considered legal, albeit incomplete. Then the next-operator
in the above legality condition would force the existence of an additional time
point, which is not present in the dialogue model under consideration, i.e. model
checking would fail.

To overcome this problem, we use a weak variant of the next-operator. Observe
that a formula of the form ¬ �¬ϕ is true at time point t iff ϕ is true at the
successor of t or t has no successor at all. For the non-final states in the protocol
of Figure 1, we now model legality conditions as follows:

state(0)→ ¬ �¬inform
state(1)→ ¬ �¬(ack ∨ end)
state(2)→ ¬ �¬(inform ∨ end)

Next we specify that states 3 and 4 are final states and that a move taking us
to a final state cannot have any successors:

final↔ state(3) ∨ state(4)
final→ ¬ ��

Automata-based protocols regulating the communication between pairs of agents
will typically implement a strict turn-taking policy (although this need not be so;
see [27] for an example). This is also the case for the continuous update protocol.
After a dialogue has been initiated, it is agent A’s turn and after that the turn
changes with every move. This can be specified as follows:

initial→ ¬ �¬turn(A)
turn(A)→ ¬ �¬turn(B)
turn(B)→ ¬ �¬turn(A)

Alternatively, these rules could have been incorporated into the specification of
legality conditions pertaining to performatives given earlier. Where possible, it
seems advantageous to separate the two, to allow for a modular specification.

Now let ϕcu stand for the conjunction of the above formulas characterising
the continuous update protocol (i.e. the five formulas encoding the transition
function, the formulas characterising initial and final states, the three formulas
specifying the legality conditions for non-final states, and the formulas describing
the turn-taking policy). Then a (possibly incomplete) dialogue is legal according
to this protocol iff generalised model checking succeeds for ϕcu with respect to
the partial model induced by the dialogue.

If we want this check to succeed only if the dialogue is not only legal but also
complete, we can add the following formulas, which specify that any non-final
state requires an additional turn:

non-final↔ state(0) ∨ state(1) ∨ state(2)
non-final→ ��

22 U. Endriss

While our description of how to specify automata-based protocols in PLTL has
been example-driven, the general methodology is clear: It involves the specifica-
tion of both the state transition function (including the identification of initial,
final, and non-final states) and the range of legal follow-ups for any given state.

A special class of automata-based protocols, so-called shallow protocols, have
been identified in [12]. A shallow protocol is a protocol where the legality of a
move can be determined on the sole basis of the previous move in the dialogue.
Many automata-based protocols in the multiagent systems literature, including
the continuous update protocol and those proposed in [27,28,29], are shallow
and allow for an even simpler specification than the one presented here. In fact,
these protocols can be specified using a language L including only the special
symbol initial and propositions for performatives and turn-assignment (along
the lines of the rules for the turn-taking policy given earlier), i.e. for this class of
protocols standard model checking may be used to check conformance. Where
available, a shallow specification may therefore be preferred.

6 Modelling Future Obligations

For many purposes, purely automata-based protocols are not sufficient. For in-
stance, they do not support the specification of general future obligations on
the communicative behaviour of an agent. This is an important feature of many
classes of protocols proposed in the literature. Examples are the discourse obli-
gations of Traum and Allen [33], the commitments in the work of Singh [31] and
Colombetti [9], or the social expectations of Alberti et al. [1].

We should stress that we use the term obligation in rather generic a man-
ner; in particular, we are not concerned with the fine distinctions between, say,
obligations and commitments discussed in the literature [9,30].

In the context of an auction protocol, for example, we may say that, by open-
ing an auction, an auctioneer acquires the obligation to close that auction again
at some later stage. Suppose these actions can be performed by making a dia-
logue move with the performatives open-auction and end-auction , respectively.
Again, to simplify presentation, we abstract from the issue of turn-taking and
only write rules pertaining to performatives. The most straightforward represen-
tation of this protocol rule would be the following:

open-auction → �end-auction

However, in analogy to the problematic aspects of using the next-operator to
specify legal follow-ups in the context of automata-based protocols, the above
rule forces the existence of future turns in a dialogue once open-auction has been
performed. If we were to check an incomplete dialogue against this specification
before the auction has been closed, model checking would fail and the dialogue
would have to be classified as illegal. To be able to distinguish between complete
dialogues where the non-fulfilment of an obligation constitutes a violation of the
protocol and incomplete dialogues where this may still be acceptable, we have
to move to a slightly more sophisticated specification.

Temporal Logics for Representing Agent Communication Protocols 23

To this end, we first define a weak version of the until-operator, which is
sometimes called the unless-operator:

ϕ unless ψ = (ϕ until ψ) ∨ �ϕ

That is, the formula ϕ unless ψ is true at point t iff ϕ holds from t onwards
(excluding t itself) either until a point where ψ is true or until the last point in
the model.

We now use the following formula to specify that opening an auction invokes
the obligation to end that auction at some later point in time:

open-auction → pending ∧ (pending unless end-auction)

The new propositional letter pending is used to mark time points at which
there are still obligations that have not yet been fulfilled. A model representing
a dialogue where open-auction has been uttered, but end-auction has not, will
satisfy this protocol rule. However, in such a model, pending will be true at the
very last time point. If we want to check whether a dialogue does not only not
violate any rules but also fulfils all obligations, we can run generalised model
checking with a specification including the following additional formula:

pending→ ��

No finite model satisfying this formula can make pending true at the last time
point. That is, unless end-auction has been uttered, generalised model checking
will now fail.

In a slight variation of our example, we may require our agent to end the
auction not just at some point in the future, but by a certain deadline. Reference
to concrete time points (“by number”) is something that is typically not possible
(nor intended) in temporal logic. However, if we can model the invocation of the
deadline by means of a proposition deadline (which could be, say, the logical
consequence of another agent’s dialogue moves), then we can add the following
formula to our specification to express that end-auction has to be uttered before
deadline becomes true:

open-auction → (¬deadline unless end-auction)

The examples in this section suggest that PLTL is an appropriate language for
specifying dialogue obligations. Due to Kamp’s seminal result on the expressive
completeness of PLTL over Dedekind-complete flows of time (which include our
finite dialogue frames), we know that we can express any combination of tempo-
ral constraints over obligations expressible in the appropriate first-order theory
also in PLTL [16,25].

Of course, protocol rules that constrain the content item in a dialogue move
(e.g. “the price specified in a bid must be higher than any previous offer”)
cannot be represented in PLTL, nor in any other general-purpose logic. Arguably,
while (temporal) logic is a suitable tool for modelling conversational conventions,
reasoning about application-specific content requires domain-specific reasoners
(even in simple cases such as the comparison of alternative price offers).

24 U. Endriss

•
root

•�ψ • • • •ψ •�ϕ •

• • • •
ϕ

•• • •
�⊥

• • • •
� �ψtime

a
bs

tr
a
ct

io
n

�� �� 		 �

�� �� �� �� �� ��

�� �� �� ��
� �� �� � ��� ���� �� ��

�� �� ���� �� �� ��
��

��

Fig. 2. An ordered tree model

7 Nested Protocols

In practice, a multiagent system may specify a whole range of different inter-
action protocols, and agents may use a combination of several of these during
a communicative interaction [28,36]. For instance, there may be different proto-
cols for different types of auctions available, as well as a meta-protocol to jointly
decide which of these auction protocols to use in a given situation. Such nesting
of protocols could also be recursive.

We propose to use OTL [10,11], a modal logic of ordered trees (see also [4,5]),
to specify nested protocols. This is an extended temporal logic based on frames
that are ordered trees, i.e. trees where the children of each node form a linear
order. In the context of modelling dialogues, again, we may assume that such
trees are finite. OTL is the modal logic over frames that are ordered trees. The
logic includes modal operators for all four directions in an ordered tree. The
formula �ϕ, for instance, expresses that ϕ is true at the immediate righthand
sibling of the current node, while �ψ forces ψ to be true at all of its children.

We briefly summarise the syntax and semantics of OTL; details may be found
in [10]. The set of formulas of OTL is the smallest set extending the language
of classical propositional logic such that. whenever ϕ is a formula, so are �ϕ,
�ϕ, �ϕ, �ϕ, �ϕ, �ϕ, �ϕ and �+ϕ (we omit the discussion of until -style oper-
ators from this short introduction [4,10]). Formulas are evaluated over ordered
trees. An ordered tree T defines the relations of being a parent, child, ances-
tor, descendant, lefthand and righthand sibling over a set of nodes T . The first
sibling to the left of a node is also called that node’s lefthand neighbour (and
righthand neighbours are defined analogously). An ordered tree model is a pair
M = (T , V) where T is such an ordered tree an V is a valuation function from
propositional letters to subsets of T . The truth conditions for atomic formulas
and the propositional connectives are defined as for PLTL. Furthermore:

Temporal Logics for Representing Agent Communication Protocols 25

– M, t |= �ϕ iff t is not the root of T and M, t′ |= ϕ holds for t’s parent t′;
– M, t |= �ϕ iff t has got an ancestor t′ such thatM, t′ |= ϕ;
– M, t |= �ϕ iff t has got a righthand neighbour t′ such thatM, t′ |= ϕ;
– M, t |= �ϕ iff t has got a righthand sibling t′ such thatM, t′ |= ϕ;
– M, t |= �ϕ iff t has got a child t′ such thatM, t′ |= ϕ;
– M, t |= �+ϕ iff t has got a descendant t′ such thatM, t′ |= ϕ.

The truth conditions for � and �are similar. Box-operators are defined in the
usual manner: �ϕ = ¬�¬ϕ, etc. The semantics explains our choice of a slightly
different notation for the downward modalities: because there is (usually) no
unique next node when moving down in a tree, we do not use a next-operator
to refer to children. Figure 2 shows an example for an ordered tree model.

This logic can be given a temporal interpretation. Time is understood to run
from left to right, along the order declared over the children of a node (i.e. not
from top to bottom as in branching-time logics such as CTL), while the child
relation provides a means of “zooming” into the events associated with a node.
In the context of dialogues and nested protocols, the righthand sibling relation
is used to model the passing of time with respect to a single protocol, while the
child relation is used to model the relationship between a dialogue state and the
subprotocol being initiated from that state.

Our example for a nested protocol is inspired by work in natural language
dialogue modelling [13,17]. When a question is asked, besides answering that
question, another reasonable follow-up move would be to pose a clarification
question related to the first question. This latter question would then have to
be answered before the original one. This protocol rule may, in principle, be
applied recursively, i.e. we could have a whole sequence of clarification questions
followed by the corresponding answers in reverse order. In addition, we may also
ask several clarification questions pertaining to the same question (at the same
level). The corresponding protocol is shown in Figure 3. The edge labelled by
clar(B, A) represents a “meta-move”: this is not a dialogue move uttered by
one of the agents involved, but stands for a whole subdialogue following the rules
of the clarification protocol with B (rather than A) being the agent asking the
initial question. That is, the clarification protocol of Figure 3 does not belong
to the class of automata-based protocols discussed in Section 5. Indeed, this
kind of protocol cannot be specified by a simple finite state automaton. Instead
we would require a pushdown automaton [26]. The stack of such a pushdown
automaton would be used to store questions and every answer would cause the
topmost question to be popped again [13].

Suppose initial, final, and non-final states have been specified as in Sec-
tion 5 (using � in place of �). If we treat clar in the same way as we would
treat a simple performative, then the transition function for the clarification
protocol can be specified as follows:

state(0) ∧ �ask → �state(1)
state(1) ∧ �clar→ �state(1)
state(1) ∧ �answer → �state(2)

26 U. Endriss

clar(A,B) :

0�������	 1�������	 2
�������������	�� A: ask �� B: answer ��

clar(B,A)

��

Fig. 3. A clarification protocol

Abstracting from turn-taking issues, the legality conditions for this protocol are
given by the following formulas:

state(0)→ ¬ �¬ask
state(1)→ ¬ �¬(clar ∨ answer)

The next formula says that a node corresponding to a final state in a subdialogue
cannot have any righthand siblings:

final→ ¬ ��

That clar requires a subdialogue to take place can be specified by a formula
that says that every node satisfying clar has to have a child satisfying initial:

clar→ �initial

The next formula specifies that a subdialogue must be completed before the
dialogue at the next higher level may continue. This is expressed by postulating
that, if a node has got a righthand sibling, then its rightmost child (if any)
cannot satisfy non-final:

�� → �(non-final→ ��)

To characterise dialogues that have been completed in their entirety, we may
again add the following rule:

non-final→ ��
We hope that this very simple example gives some indication of the options
available to us when specifying nested protocols using OTL. Our example has
been special in the sense that it only uses a single protocol that can be nested
arbitrarily. In general, there may be several different protocols, each associated
with its own propositions to identify initial, final, and non-final states. Observe
that, for OTL, deriving the partial (ordered tree) model induced by an observed
dialogue is not as straightforward as for PLTL. However, if the moves used
to initiate and terminate subdialogues following a particular protocol clearly
identify that protocol (which seems a reasonable assumption), then constructing
an ordered tree from a sequence of utterances is not difficult.

For OTL, to date, no model checking algorithms (or algorithms for generalised
model checking) have been developed. However, it seems likely that such algo-
rithms could be designed by adapting well-known algorithms for other temporal

Temporal Logics for Representing Agent Communication Protocols 27

logics. And even without the availability of tools for model checking, we believe
that the specification of nested protocols in OTL can be useful to give a precise
semantics to the intuitive “operation of nesting”.

8 Conclusion

In this paper, we have argued that temporal logic can be used to specify
convention-based agent communication protocols in a simple and elegant man-
ner. In particular, we have seen how to use propositional linear temporal logic to
specify both very simple automata-based protocols and protocols involving dia-
logue obligations. Of course, using this logic to express the kinds of properties we
have considered in our examples is not new, but the application of this technique
to the specification of conversational conventions is both novel and, we believe,
very promising. We have then outlined how nested protocols can be specified
using the ordered tree logic OTL, which is an extension of propositional linear
temporal logic, but also permits reasoning about different levels of abstraction
within a single model.

We have also identified generalised model checking as a tool for checking pro-
tocol conformance at runtime. For simple protocol representation formalisms
(such as finite automata), this is not a difficult problem and to resort to so-
phisticated tools such a model checking may seem inappropriate. However, for
richer formalisms, in particular those that allow for the definition of complex
dialogue obligations, the problem is certainly not trivial (witness the work of
Alberti et al. [1], who develop a complex abductive proof procedure to address
conformance checking). Computational issues aside, being able to define the
conformance problem in clear logical terms already constitutes an important
advantage in its own right.

Our aim for this paper has been to promote the use of simple temporal logics
in the context of agent communication. Most of our presentation has been based
on examples, but we hope that the generality of the approach shines through. As
argued already at the end of Section 6, linear temporal logic is very expressive
and can specify a rich class of protocols. Our concrete examples merely highlight
some of the most important features of typical protocols.

The idea of using temporal logic for the representation of convention-based
agent interaction protocols is not new [32,35]. The two cited works both use a
form of the branching-time temporal logic CTL to give semantics to the notion
of social commitment, but they do not attempt to exploit existing automated
reasoning tools developed for these logics. The logic of Verdicchio and Colom-
betti [35] also incorporates some, albeit very restricted, first-order features. In
our view, this is unfortunate as it trades in much of what is attractive about
using temporal logics (decidability, low complexity, simple semantics).

Although there has been a growing interest in model checking for multia-
gent systems in recent years (examples include [3,6,24]), only little work has
specifically addressed issues of communication. An exception is the work of
Huget and Wooldridge [22], which studies model checking as a tool for verifying

28 U. Endriss

conformance to the semantics of an agent communication language in a men-
talistic framework. There has also been a certain amount of work on deductive
approaches to verification in multiagent systems [14], but again without special
focus on communication protocols or conversational conventions.

In our future work, we hope to cover a wider range of protocol features and
show how they may be specified using a suitable temporal logic. For instance, it
would be interesting to explore the use of past-time operators to specify protocol
rules relating to the content of a commitment store (e.g. only challenge arguments
that have previously been asserted), as used in the context of argumentation-
based communication models [2,13,20].

References

1. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Specification and
verification of agent interactions using social integrity constraints. In Workshop
on Logic and Communication in Multi-Agent Systems, 2003.

2. L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using argumentation.
In 4th International Conference on MultiAgent Systems. IEEE, 2000.

3. M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multiagent systems.
Journal of Logic and Computation, 8(3):401–423, 1998.

4. P. Blackburn, B. Gaiffe, and M. Marx. Variable-free reasoning on finite trees. In
Mathematics of Language 8, 2003.

5. P. Blackburn, W. Meyer-Viol, and M. de Rijke. A proof system for finite trees. In
Computer Science Logic. Springer-Verlag, 1996.

6. R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. In 2nd International Conference on Autonomous Agents and Mul-
tiagent Systems. ACM Press, 2003.

7. G. Bruns and P. Godefroid. Generalized model checking: Reasoning about partial
state spaces. In 11th International Conference on Concurrency Theory. Springer-
Verlag, 2000.

8. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
9. M. Colombetti. A commitment-based approach to agent speech acts and conver-

sations. In Workshop on Agent Languages and Conversation Policies, 2000.
10. U. Endriss. Modal Logics of Ordered Trees. PhD thesis, King’s College London,

Department of Computer Science, 2003.
11. U. Endriss and D. Gabbay. Halfway between points and intervals: A temporal

logic based on ordered trees. In ESSLLI Workshop on Interval Temporal Logics
and Duration Calculi, 2003.

12. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-based
agents. In 18th International Joint Conference on Artificial Intelligence. Morgan
Kaufmann, 2003.

13. R. Fernández and U. Endriss. Towards a hierarchy of abstract models for dialogue
protocols. In Proceedings of the 5th International Tbilisi Symposium on Language,
Logic and Computation. ILLC, 2003.

14. M. Fisher. Temporal development methods for agent-based systems. Journal of
Autonomous Agents and Multi-agent Systems, 10:41–66, 2005.

15. Foundation for Intelligent Physical Agents (FIPA). Communicative Act Library
Specification, 2002.

Temporal Logics for Representing Agent Communication Protocols 29

16. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foun-
dations and Computational Aspects, volume 1. Oxford University Press, 1994.

17. J. Ginzburg. Interrogatives: Questions, facts, and dialogue. In Handbook of Con-
temporary Semantic Theory. Blackwell, 1996.

18. R. Goldblatt. Logics of Time and Computation. CSLI, 2nd edition, 1992.
19. F. Guerin and J. Pitt. Guaranteeing properties for e-commerce systems. In Agent-

Mediated Electronic Commerce IV. Springer-Verlag, 2002.
20. C. L. Hamblin. Fallacies. Methuen, London, 1970.
21. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, pages 279–295, 1997.
22. M.-P. Huget and M. Wooldridge. Model checking for ACL compliance verification.

In Advances in Agent Communication. Springer-Verlag, 2004.
23. A. J. I. Jones and X. Parent. Conventional signalling acts and conversation. In

Advances in Agent Communication. Springer-Verlag, 2004.
24. M. Kacprzak, A. Lomuscio, and W. Penczek. Verification of multiagent systems

via unbounded model checking. In 3rd International Conference on Autonomous
Agents and Multiagent Systems. ACM Press, 2004.

25. J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California at Los Angeles, Department of Philosophy, 1968.

26. H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall International, 2nd edition, 1998.

27. S. Parsons, N. Jennings, and C. Sierra. Agents that reason and negotiate by
arguing. Journal of Logic and Computation, 8(3):261–292, 1998.

28. J. Pitt and A. Mamdani. Communication protocols in multi-agent systems. In
Workshop on Specifying and Implementing Conversation Policies, 1999.

29. J. Pitt and A. Mamdani. A protocol-based semantics for an agent communication
language. In 16th International Joint Conference on Artificial Intelligence. Morgan
Kaufmann, 1999.

30. M. J. Sergot. A computational theory of normative positions. ACM Transactions
on Computational Logic, 2(4):581–622, 2001.

31. M. P. Singh. Agent communication languages: Rethinking the principles. IEEE
Computer, 31(12):40–47, 1998.

32. M. P. Singh. A social semantics for agent communication languages. In Issues in
Agent Communication. Springer-Verlag, 2000.

33. D. R. Traum and J. F. Allen. Discourse obligations in dialogue processing. In 32nd
Annual Meeting of the Association for Computational Linguistics, 1994.

34. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In 1st Symposium on Logic in Computer Science. IEEE, 1986.

35. M. Verdicchio and M. Colombetti. A logical model of social commitment for agent
communication. In 2nd International Conference on Autonomous Agents and Mul-
tiagent Systems. ACM Press, 2003.

36. B. Vitteau and M.-P. Huget. Modularity in interaction protocols. In Advances in
Agent Communication. Springer-Verlag, 2004.

37. M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2002.

ACL Semantics Between
Social Commitments and Mental Attitudes

Guido Boella1, Rossana Damiano1, Joris Hulstijn2, and Leendert van der Torre3

1 Università di Torino, Italy
{guido, rossana}@di.unito.it

2 VU Amsterdam, The Netherlands
jhulstijn@feweb.vu.nl

3 University of Luxembourg, Luxembourg
leendert@vandertorre.com

Abstract. There are two main traditions in defining a semantics for agent com-
munication languages, based either on mental attitudes or on social commitments.
In this paper, we translate both traditions in a different approach in which the di-
alogue state is represented by the beliefs and goals publicly attributed to the roles
played by the dialogue participants. On the one hand, this approach avoids the
problems of mentalistic semantics, such as the unverifiability of private mental
states. On the other hand, it allows to reuse the logics and implementations de-
veloped for FIPA compliant approaches.

1 Introduction

Communication in multi-agent systems is often associated with the roles agents play in the
social structure of the systems [1,2]. In contrast, most approaches to the semantics of agent
communication languages (ACL) do not take roles into account. The semantics of speech
acts in mentalistic approaches like FIPA [3] is specified in terms of plan operators whose
preconditions refer to the beliefs, goals and intentions of agents, without considering
the notion of role. Social semantics approaches are based on the idea that a speech act
publicly commits the agents, regardless of the role of roles in communication.

A role-based semantics advances the idea that communication can be described in
terms of beliefs and goals, but that those beliefs and goals must be maintained in pub-
lic. The solution is to attribute beliefs and goals to roles played by the participants in
the dialogue, rather than referring to the participants’ private mental states, which are
kept separate from the dialogue model. The roles’ beliefs and goals are public and are
constructed by the introduction or removal of beliefs and goals by the speech acts. The
public beliefs and goals of a dialogue participant in a particular role may differ in inter-
esting ways from his private beliefs and goals.

Thus, in this paper, we answer the following research questions:

– How to set up a role-based semantics for agent communication languages?
– How to translate the two traditional approaches into a role-based approach?

In [4] we started proposing a role-based semantics for ACL. However, that paper
addresses the problem in a partial way and is focussed on persuasion dialogues and

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 30–44, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

ACL Semantics Between Social Commitments and Mental Attitudes 31

assertive speech acts only. The approach in [4] is based on our normative multi-agent
systems framework [5,6]; it describes roles via the agent metaphor and is formalized in
Input/Output logic. In this paper, we refer to a commonly known framework, the FIPA
formal language, to translate the traditional ACL semantics to a role-based semantics.
Moreover, we model additional categories of speech acts, like commissives and direc-
tives, that we apply in negotiation dialogues between cooperative agents.

The paper is structured as follows. In Section 2 we present our role model followed
by the translation of FIPA-ACL and social semantics [7] into role-based semantics (Sec-
tions 3 and 4). In Section 5 we translate the Propose interaction protocol from FIPA and
from social semantics to our role model, in order to be able to compare the two different
approaches. Conclusions end the paper.

2 The Role Model

Communication among agents in a MAS is often associated with the roles agents play
in the social structure of the systems. The GAIA methodology [1] proposes interaction
rules to specify communication among roles, the ROADMAP methodology [8] specifies
in the Social model the relations among roles, and in AALAADIN [2] interaction is
defined only between the roles of a group: “The communication model within a group
can be more easily described by an abstracted interaction scheme between roles like the
‘bidder’ and the ‘manager’ roles rather than between individual, actual agents”.

Role names, like ‘speaker’ and ‘addressee’ or ‘buyer’ and ‘seller’ are often men-
tioned in the definition of agent communications languages. However, these terms only
serve the function to bind individual agents to the speech acts in the protocol, but they
are not associated with a state which changes during the conversation as a result of the
performed speech acts. In our approach the notion of roles is interpreted as role in-
stances, sometimes also called qua individuals or Role Enacting Agents [9]. The func-
tion played by roles in dialogue is similar to the function they play in an organization,
where they define the power of agents to create commitments. As in organizations, it is
possible that different roles are filled in by the same agent, thus determining ambigui-
ties and conflicts (e.g., a command issued by a friend may not be effective, unless the
friend is also the addressee’s boss).

In [4] we propose to use the notion of role as a basis for a semantics of agent commu-
nication languages. The basic idea is that speech acts can be modelled as plan operators
with preconditions and effects which can refer to beliefs, goals and intentions, but the
mental attitudes they refer to are not the private inaccessible ones of the agents. Rather,
the beliefs, goals and intentions to which speech acts refer are attributed to a public
image of the participants in the dialogue representing the role they play.

The advantage of this approach is that it overcomes the unverifiability problem of
mental attitudes approaches, since the role’s mental attitudes are publicly attributed by
the rules of the dialogue according to the moves performed. Roles represent expecta-
tions, but the model remains neutral with respect to the motivations that agents have
when they play a role: the agents can adopt the mental attitudes attributed to roles as
a form of cooperation, or they can be publicly committed to their roles in more formal
contexts. To play a role, an agent is expected to act as if the beliefs and goals of the

32 G. Boella et al.

role were its own, and to keep them coherent, as it does for its own mental attitudes. It
should adopt his role’s goals and carry them out according to his role’s beliefs.

Note that our model keeps apart the motivations for playing a role from the rules of
the game which affect the state of the roles. In this way, we keep separate the public
character of dialogue from the private motivations of the agents involved in a dialogue.
The roles’ attitudes represent what the agent is publicly held responsible for: if the
agent does not adhere to his role, he can be sanctioned or blamed. So, an agent may be
sincere (i.e., he really acts as expected from his role) for pure cooperativity, or for the
fear of a sanction. Here, we focus on the relation between the role-based semantics and
the existing approaches to ACL semantics, and we are not concerned with the way the
obligation to play a role consistently can be enforced. The introduction of obligations
requires the reference to an explicit multi-agent normative system, as described in [10].

The only thing agents have to do when communicating is to respect the rules of the
dialogue or they are out of the game. The agents thus have to respect the cognitive
coherence of the roles they play or they get into a contradictory position. We adopt
Pasquier and Chaib-draa [11]’s view that dialogue arises from the need of maintaining
coherence of mental states: “two agents communicate if an incoherence forces them
to do so. [...] Conversation might be seen [...] as a generic procedure for attempting to
reduce incoherence”. An agent engaged in the dialogue tries to avoid contradictions, not
with its private mental states, but with the public image which its role constitutes. As
long as an agent plays a game following its constitutive rules, it cannot refuse that what
it has said will be considered as a public display of its position in the game, according
to its role. Consider the example of a liar, who once he starts lying, has to continue the
dialogue consistently with what he said before, independently of his real beliefs.

In order to make the translation possible we need the following formal system:

Definition 1. A dialogue game is composed of 〈A, R, PL, B, G, RL, CR〉 where

– A is a set of agents involved in the interaction, e.g., x, y.
– RN is a set of role names, like r1, r2, ...
– R is a set of role enacting agents, e.g., a = x : r1, b = y : r2. We denote with i, j

variables over role enacting agents.
– SA is a set of speech act types, e.g., inform , request, etc.
– PL : A×RN �→ R is a role playing function a = PL(x, r1) is a role r1 enacting

agent played by agent x ∈ A. We will write a = x : r1 for a = PL(x, r1).
– RL is a set of axioms on the role model.
– CR are the constitutive rules of the dialogue game: they are common beliefs spec-

ifying how speech acts affect the roles’ mental attitudes.
– B and G are the agents’ and roles’ beliefs and goals, respectively.

We can now define the formal language, inspired by FIPA’s specification language.

Definition 2 (Language)
Given a set of propositions L and basic actions ACT :
q := p | ¬q | q ∨ q | B(m, q) | G(n, q) | done(act) | done(i, act) |

message(x, y, SA(i, j, q)) | SA(i, j, q) | a = x : r1

act := action | act; act

ACL Semantics Between Social Commitments and Mental Attitudes 33

where p, q ∈ L, x, y ∈ A, i, j ∈ R, m, n ∈ A ∪ R, r1 ∈ RN and action ∈ ACT . B
and G represent the beliefs and goals.

Note that according to this definition also roles can have beliefs and goals. For simplic-
ity here we do not distinguish goals from intentions.

The done(act) and done(i, act) expressions denote the execution of an action, spec-
ifying or not the agent of the action. We will use done(act) later when act is a joint
action, for example, sell(i, j) = give(i); pay(j). Here we use a minimal definition of
actions which allows us to cover the examples.

Is it possible that roles have mental attitudes? What we are modelling are public men-
tal states of the same kind as the ones associated to role enacting agents in the model
of [9]. A similar solution is proposed also by [12] where beliefs (but not goals) can be
publicly attributed to agents by means of a grounding operator. The right perspective
should be always B(x, B(i, p)) ∧ B(y, B(i, p)), where x and y play a role in the dia-
logue, rather than B(i, p) when i ∈ R. However, for convenience we will use the latter
formula B(i, p). Preconditions and postconditions of speech acts will refer to beliefs
and goals of the roles. The difference is that roles’ mental attitudes have different prop-
erties with respect to those of their players. In particular, they are public: a role knows
what the other role believes and wants, because speech acts are public.

We add the following axioms RL in a dialog game, representing rationality con-
straints; they are mostly inspired by FIPA, apart from those concerning public mental
states and distribution of goals in joint plans. For all roles i, j:

– Each role has correct knowledge about its own mental states, in particular, its beliefs
about its goals are correct. This axiom corresponds to FIPA’s [3] schema φ↔ Biφ,
where φ is governed by an operator formalising a mental attitude of agent i:
(B(i, G(i, p))→ G(i, p)) ∧ (B(i,¬G(i, p))→ ¬G(i, p)) (RL1)
(B(i, B(i, p))→ B(i, p)) ∧ (B(i,¬B(i, p))→ ¬B(i, p)) (RL2)

– Since the beliefs of the roles are public, each role has the complete knowledge
about the other roles’ beliefs and goals:
(B(j, p)↔ B(i, B(j, p))) ∧ (¬B(j, p)↔ B(i,¬B(j, p))) (RL3)
(G(j, p)↔ B(i, G(j, p))) ∧ (¬G(j, p)↔ B(i,¬G(j, p))) (RL4)

– Forwarding a message is a way to perform a speech act:
B(m, message(x, y, SA(i, j, p))→ SA(i, j, p)) (RL5)
where SA ∈ {inform, request, propose, . . . }, for all x, y ∈ A and m ∈ {i, j}.
Note that the sender of the message x is an agent playing the role i in the speech
act and the receiver agent y plays the role j.

– Each agent is aware of which speech acts have been performed, where i = x : r1,
j = y : r2 and m ∈ {i, j}:
message(x, y, SA(i, j, p))→ B(m, message(x, y, SA(i, j, p))) (RL6)

– A rationality constraint concerning the goal that other agents perform an action: if
agent i wants that action act is done by agent j, then agent i has the goal that agent
j has the goal to do act:
G(i, done(j, act))→ G(i, G(j, done(j, act))) (RL7)

– Some FIPA axioms like Property 1 (G(i, p)→ G(i, a1|...|an), where a1|...|an are
feasible alternatives to achieve p) [3] concern the execution of complex actions. In a

34 G. Boella et al.

similar vein, we add two axioms concerning the distribution of tasks. Taking inspi-
ration from [13], we add an axiom to express that if an agent intends a joint action,
then it intends that each part is done at the right moment. If act = act1; ...; actn,
where “;” is the sequence operator, act is a joint action and k < n:
G(i, done(act))→

(done(act1(i1); . . . ; actk(ik))→ G(i, done(actk+1(i)))) (RL8)
If actk+1(j) and i �= j, then by axiom RL7:
G(i, done(act))→

(done(act1(i1); . . . ; actk(ik))→ G(i, G(j, done(actk+1(j))))) (RL9)
Each agent in the group wants that the others do their part.

Note that in the role model it is not assumed that the role’s mental attitudes corre-
spond to the mental attitudes of their players. This assumption can be made only when
an agent is sincere, and can be expressed as:
(B(i, p) ∧ i = x : r ∧ sincere(x, r))→ B(x, p)
(G(i, p) ∧ i = x : r ∧ sincere(x, r))→ G(x, p)

In the next two sections, we show how the semantics of speech acts defined by FIPA
and by social semantics can be expressed in terms of roles.

3 From FIPA to Roles

The semantics of agent communication languages provided by FIPA [3] are paradig-
matic of the models based on mental attitudes. In FIPA, communicative acts are defined
in terms of the mental state of the BDI agent who issues them. The bridge between the
communicative acts and the behavior of agents is provided by the notions of rational ef-
fect and feasibility preconditions. The rational effect is the mental state that the speaker
intends to bring about in the hearer by issuing a communicative act, and the feasibility
preconditions encode the appropriate mental states for issuing a communicative act. To
guarantee communication, the framework relies on intention recognition on the part of
the hearer.

The main drawback of FIPA resides in the fact that mentalistic constructs cannot
be verified [14,15]. So, they are not appropriate in situations in which agents may be
insincere or non cooperative, like in argumentation or negotiation. In contrast, meaning
should be public as Singh [16], Walton and Krabbe [17], Fornara and Colombetti [7]
claim.

In the following, we provide a role-based semantics for FIPA communicative acts
by proposing a translation using constitutive rules CR of our dialogue game. Note,
however, that the beliefs and goals of roles resulting from the translation have different
properties than the beliefs and goals of the agents referred to by FIPA semantics.

The structure of the constitutive rules of dialogue reflects the structure of FIPA op-
erators: the speech act is mapped to the antecedent, while feasibility preconditions and
rational effects are mapped to the consequent. This methodology relies on some FIPA
axioms according to which, when a speech act is executed, its feasibility preconditions
and its rational effects must be true. So, after a speech act, its preconditions and its
rational effect are added to the roles’ beliefs and goals:

ACL Semantics Between Social Commitments and Mental Attitudes 35

B(i, done(act) ∧ agent(j, act))→ G(j, RE(act))) (Property 4 of FIPA) (RL10)
B(i, done(act)→ FP (act)) (Property 5 of FIPA) (RL11)
where FP stands for feasibility preconditions, RE for rational effects, and i and j are
the role enacting agents in the conversation. Since in the role-based semantics these
axioms apply to roles, the belief that the preconditions of the speech act hold is publicly
attributed to the role of the speaker, abstracting from the actual beliefs of the agent who
plays the role.

For space reasons, we do not report here preconditions concerning uncertain beliefs
(the modal operator Uif in FIPA), but the extension to them is straightforward.

Here is FIPA definition of the inform communicative act (CA):
< i, inform(j, p) >

FP: B(i, p) ∧ ¬B(i, B(j, p) ∨B(j,¬p))
RE: B(j, p)

– The first precondition B(i, p) is modelled by the rule:
B(i, inform(i, j, p)→ B(i, p)) (CR12)
The second precondition ¬B(i, B(j, p) ∨B(j,¬p)) is modelled by
B(i, inform(i, j, p)→ ¬B(i, B(j, p) ∨B(i,¬p))) (CR13)
Remember that B(j, p) → B(i, B(j, p)), so now this precondition can be verified
on the public state of the dialogue.

– The effect is accounted for by
B(i, inform(i, j, p)→ G(i, B(j, p))) (CR14)

To model FIPA’s remark that “Whether or not the receiver does, indeed, adopt belief
in the proposition will be a function of the receiver’s trust in the sincerity and reliability
of the sender” we need the following rule:
B(j, (G(i, B(j, p)) ∧ reliable(i, p))→ B(j, p)) (CR15)

We do not want to comment further on this issue here: see e.g., [18,19,20] for the
subjects of reliability and trust. As illustrated in the previous section, we keep separate
reliability and sincerity: sincerity is not part of the game, but it refers to the relation
between the role’s beliefs and the player’s private beliefs.

Concerning the request CA :
< i, request(j, act) >

FP: ¬B(i, G(j, done(act))) ∧ agent(j, act)
RE: done(act)

– The precondition is modelled as follows:
B(i, request(i, j, done(j, act))→ ¬B(i, G(j, done(j, act)))) (CR16)

– The effect is modelled by
B(i, request(i, j, done(j, act))→ G(i, done(j, act))) (CR17)

Analogously to inform, a rule expresses that only a cooperative receiver adopts a
speaker’s goal:
B(j, (G(i, done(j, act)) ∧ cooperative(j, i))→ G(j, done(j, act))) (CR18)

Note that B(j, G(i, done(j, act)) is not the result of an intention reconstruction by
j about i’s goals, but part of the state of the conversation. So only goals which are
publicly stated are adopted in a cooperative dialogue.

36 G. Boella et al.

Since it is of particular importance for our running example, we illustrate how the
propose speech act is defined in FIPA and explain how we model it. Since propose is an
inform act in FIPA, its definition in role-based semantics derives from the definition of
the inform provided above, yielding the following definition:
< i, propose(j, act) >

FP: B(i, G(j, done(act))→ G(i, done(act)))
¬B(i, B(j, G(j, done(act)) → G(i, done(act)))∨
B(j,¬G(j, done(act)) → G(i, done(act))))

RE: B(j, G(j, done(act))→ G(i, done(act)))
Where act is an action of i or a joint action, otherwise we call it a request and not a

propose.
Since an agent is reliable concerning its own mental states (it has a correct view of

what he believes and intends) from rule CR15 it follows that:
B(j, propose(i, j, done(act))→ (G(j, done(act))→ G(i, done(act)))) (CR19)

We illustrate how the accept and reject speech acts are modelled even if they are
defined as inform acts in FIPA:
< i, accept proposal(j, act) >

FP: B(i, G(i, done(act)))∧
¬B(i, B(j, G(i, done(act))) ∨ ¬B(j, G(i, done(act))))

RE: B(j, G(i, done(act)))
Since an agent is accounted reliable about its own mental state:
B(j, accept proposal(i, j, done(act))→ G(i, done(act)))) (CR20)

< i, reject proposal(j, done(act)) >
FP: B(i, G(i, done(act)))¬B(i, B(j, G(i, done(act))) ∨ ¬B(j, G(i, done(act))))
RE: B(j,¬G(i, done(act)))

4 From Commitments to Roles

Agent communication languages based on social commitment constitute an attempt to
overcome the mentalistic assumption of FIPA by restricting the analysis to the public
level of communication (Singh [16], Verdicchio and Colombetti [21]). Communica-
tive acts are defined in terms of the social commitments they publicly determine for
the speaker and the hearer. According to Singh [22], describing communication us-
ing social commitment has the practical consequence that “[...] one can design agents
independently of each other and just ensure that their S-commitment would mesh in
properly when combined”.

The use of social commitments to model communication does not explain how the
social dimension of commitment affects the behavior of the individual agents. While
this approach is mostly appropriate in competitive environments, like negotiation, its
advantages are less clearcut in cooperative ones, like information seeking dialogues.
The reference to obligations to bridge this gap brings into social semantics the contro-
versial issue of obligation enforcement [23].

Here, we show how to define a particular social semantics presented by Fornara and
Colombetti [7] in the role-based semantics (from now on, SC). In the SC model, speech
acts introduce commitments in the dialogue state or manipulate them. A commitment

ACL Semantics Between Social Commitments and Mental Attitudes 37

C(i, j, p | q) has a debtor i, a creditor j, i.e., respectively, the agent which has the
commitment, and the agent to which the commitment is made, a content p and a con-
dition q. A commitment can have different states: unset (i.e., to be confirmed), pending
(i.e., confirmed, but its condition is not true), active (i.e., confirmed and its condition
is true), fulfilled (i.e., its content is true), violated (i.e., the content is false even if the
commitment was active), cancelled (e.g., the debtor does not want to be committed to
the action). A commitment instance is set by a speech act, with a certain state. This
state can be modified by actions of the participants to the dialogue or by events, like the
execution of an action fulfilling the new commitment state.

In order to perform the translation, we adopt the following methodology: we map
each commitment state to a specific configuration of roles’ beliefs and goals, then we
define how speech acts change those beliefs and goals in such a way to reflect the
changes in the commitment state.

In Fornara and Colombetti’s model [7], the difference between propositional and
action commitment lies only in their content. As a result, the difference between an
inform and a promise is reduced to the fact that the content of the commitment they
introduce is a proposition or an action respectively. By contrast, according to Walton
and Krabbe [17], propositional commitment is an action commitment to defend one’s
position. In the mapping between SC and the role model a new distinction emerges:
rather than having commitment stores, we model propositional commitments as beliefs
of the role and action commitments as goals. How roles’ beliefs capture the idea of a
commitment to defend one’s position is the topic of [4]. In this paper we focus on action
commitment only.

Here, we represent conditionals commitment C(i, j, p | q) in a simplified way, as a
conditional goal p of role i in case q is true: B(i, q → G(i, p)). Conditional attitudes can
be better accounted for in a conditional logic, like the Input/Output logic we used in [4].
Here, we stick to FIPA’s solution for the sake of clarity, while aware of its limitations.

An unset commitment corresponds to a goal of the creditor. We translate this in the
CR of a dialogue game in this way:
C(unset, i, j, done(i, act) | q) ≡ q → G(j, G(i, done(i, act))) (CR21)

In the antecedent of this rule, the commitment condition q becomes a condition on
the goal assumed by the creditor of the commitment. At this stage of the commitment
life-cycle, no mental attitude is attributed to the debtor: it has not publicly assumed any
actual goal, but has only been publicly requested to.

A commitment is pending when it is a conditional goal of the creditor and the debtor
of the commitment conditionally wants to perform the action if the associated condition
q is true, and the creditor has this as a belief:
C(pending, i, j, done(i, act) | q) ≡ q → G(j, G(i, done(i, act)))∧

B(i, q → G(i, done(i, act))) ∧B(j, q → G(i, done(i, act))) (CR22)
A commitment is active when it is both a goal of the debtor and of the creditor, and

the pending condition is true:
C(active, i, j, done(j, act) |) ≡ G(i, done(i, act)) ∧G(j, done(i, act)) (CR23)

Note that to make active a pending commitment, it is sufficient that the condition q
is believed true, since from

38 G. Boella et al.

B(i, q ∧ q → G(i, done(i, act))) (CR24)
we can derive G(i, done(i, act)) with axiom RL1.

Commitments are violated or fulfilled when they are goals of the creditor and the
content of the commitment is respectively true or false according to the beliefs of the
creditor (abstracting here from temporal issues):
C(fulfilled, i, j, done(i, act) |) ≡ B(j, done(i, act)) ∧G(j, done(i, act)) (CR25)
C(violated, i, j, done(i, act) |) ≡ B(j,¬done(i, act))∧G(j, done(i, act)) (CR26)

Since roles are public, fulfilment and violation are not dependent on what the agents
subjectively believe about the truth value of the content of the commitment, but on
roles’ public beliefs.

A commitment is cancelled if the creditor does not want the goal to be achieved
anymore, no matter if the debtor still wants it:
C(cancelled, i, j, done(i, act) | q) ≡ ¬G(j, done(i, act)) (CR27)

Given the definition of the commitment state in terms of the mental states of the
roles, we can provide the following translation of the speech acts semantics define by
Fornara and Colombetti [7].

A promise introduces a pending commitment of the speaker (rule CR22):
promise(i, j, done(i, act), q)→ (q → G(j, G(i, done(i, act)))∧

B(i, q → G(i, done(i, act))) ∧B(j, q → G(i, done(i, act)))) (CR28)
A request introduces an unset commitment with the receiver as debtor, i.e., the agent

of the requested action (Rule CR21):
request(i, j, done(j, act), q)→(q→G(i, G(j, done(j, act)))) (CR29)

Accept and reject change the state of an existing unset commitment to pending and
cancelled respectively. In order to account for this fact, we insert in the antecedent of
the rules for accept and reject the reference to the configuration of beliefs and goals that
represent an existing commitment.
(B(i, (q → G(j, G(i, done(i, act))))) ∧ accept(i, j, done(i, act), q))→

(B(i, q → G(i, done(i, act))) ∧B(j, q → G(i, done(i, act)))) (CR30)

(B(i, q → G(j, G(i, done(i, act)))) ∧ reject(i, j, done(j, act), q))→
(B(i,¬G(i, done(i, act))) ∧B(j,¬G(i, done(i, act)))) (CR31)

A propose is a complex speech act composed by a request and a conditional promise;
it introduces an unset commitment with the receiver as debtor and a pending commit-
ment with the speaker as debtor. Since a propose is used in a negotiation, q and p refer
respectively to an action of the speaker and of the receiver.
propose(i, j, done(j, p), done(i, q)) ≡

request(i, j, done(j, p), done(i, q))promise(i, j, done(i, q), s) (CR32)
wheres ≡B(i, done(i, q)→ G(j, done(j, p))) ∧B(j, done(i, q)→ G(j, done(j, p))),
i.e., p is a pending commitment of the receiver.

propose is expressed by the following constitutive rules:
propose(i, j, done(j, p), done(i, q))→

B(i, (done(i, q)→ G(i, G(j, done(j, p))))) ∧B(i, s→ G(i, done(i, q)))∧
B(j, s→ G(i, done(i, q))) (CR33)

ACL Semantics Between Social Commitments and Mental Attitudes 39

CA Seller a Buyer b
(FIPA) (FIPA)

propose BELIEFS BELIEF
G(b, sell(a, b))→ G(a, sell(a, b))

G(b, sell(a, b))→ G(a, sell(a, b))
GOALS GOALS
B(b, G(b, sell(a, b))→ G(a, sell(a, b)))

accept BELIEFS BELIEF
G(b, sell(a, b))→ G(a, sell(a, b)) G(b, sell(a, b))→ G(a, sell(a, b))
G(b, sell(a, b)) G(b, sell(a, b))
G(a, sell(a, b))
G(a, give(a)) G(b, give(a))
give(a)→ G(a, pay(b)) give(a)→ G(b, pay(b))
give(a)→ G(b, pay(b))
GOALS GOALS

B(a,G(b, sell(a, b)))
give(a)

give(a) BELIEFS BELIEFS
G(b, sell(a, b))→ G(a, sell(a, b)) G(b, sell(a, b))→ G(a, sell(a, b))
give(a)→ G(b, pay(b)) give(a)→ G(b, pay(b))
give(a)→ G(a, pay(b))
G(a, give(a)) G(b, give(a))
give(a) give(a)
G(b, pay(b)) G(b, pay(b))
G(a, pay(b))
GOALS GOALS

pay(b)
pay(b) BELIEFS BELIEFS

G(b, sell(a, b))→ G(a, sell(a, b)) G(b, sell(a, b))→ G(a, sell(a, b)))
give(a)→ G(b, pay(b)) give(a)→ G(b, pay(b))
give(a)→ G(a, G(b, pay(b)))
G(b, pay(b)) G(b, pay(b))
pay(b) pay(b)
GOALS GOALS

reject BELIEFS BELIEF
G(b, sell(a, b))→ G(a, sell(a, b)) G(b, sell(a, b))→ G(a, sell(a, b))
¬G(b, sell(a, b)) ¬G(b, sell(a, b))
GOALS GOALS

B(a,¬G(b, sell(a, b)))

Fig. 1. The example with FIPA. Note that for space reasons done(i, act(i)) is abbreviated in
act(i).

5 Example: The Propose Protocol

In this section we propose an example of comparison between FIPA and SC using our
role semantics, as a means to assess the feasibility of the role semantics as an intermedi-
ate language. We choose as example the Propose interaction protocol of FIPA [3]. This

40 G. Boella et al.

simple protocol consists of a propose followed by an acceptance or a refusal, and does
not refer to group coordination or group action (differently from [24]).

In the following, we illustrate how the speech acts in the two approaches introduce
and modify the beliefs and goals of the roles a and b. Eventually, we compare the set
of beliefs and goals produced by the translation of FIPA and SC into the role-based
semantics to assess whether the goals concerning executable actions are the same in
the two approaches (i.e., the agents would act at the same moment), and whether it is
possible to find in FIPA the same commitments as in SC.

The main difficulty in mapping FIPA onto SC concerns the FIPA propose commu-
nicative act. In SC it is viewed as a way to negotiate a joint plan: “If I do q, then you
do p”. This models for example auctions [7]. Instead, FIPA definition of propose refers
to one action only. Here, we are inspired by the example reported in FIPA documenta-
tion [3], which reports the action of selling an item for a given amount of money: we
explicit the fact that the action of selling is a joint plan composed of the proponent’s
action of giving the item and the receiver’s subsequent action of giving the money:
sell(i, j) = give(i); pay(j).

In this way, the FIPA propose act becomes an act of proposing a plan to be performed
by both agents. Once the goals of both agents to perform the plan have been formed,
the plan is distributed between the agents according to axioms RL8 and RL9, and the
goals concerning the steps of the plan are formed.

Apart form the mapping of propose the translation of FIPA and SC semantics to the
role-based semantic is straightforward: at each turn, the constitutive rules for translating
the semantics of FIPA and SC into the role-based semantics are applied (see the defini-
tion of the rules in Sections 3 and 4). Then, modus ponens and the axioms are applied.
Beliefs and goals which are not affected by subsequent speech acts persist.

In FIPA (see Figure 1, where a simplified notation is used), the propose to sell
(propose(a, b, done(sell(a, b))) is an inform that introduces in the role a the be-
lief that the precondition G(b, done(sell(a, b)))) → G(a, done(sell(a, b))) is true.
We skip for space reasons the other feasibility precondition, but the reader can eas-
ily check that it is true and consistent with the state of the dialogue. The ratio-
nal effect is a goal of the speaker, but since the speaker is reliable (it has cor-
rect beliefs about its own mental states), after the proposal, the receiver believes
G(b, done(sell(a, b)))→ G(a, done(sell(a, b))) too, by rule CR15.

The acceptance of the proposal by b in FIPA is an inform that b has the goal
G(b, done(sell(a, b)): acceptproposal(a, b, done(sell(a, b)))

Again, the receiver believes the content of the accept proposal speech act because an
agent is reliable about its own mental states. Since the speaker believes
G(b, done(sell(a, b))), G(a, done(sell(a, b))) and G(b, done(sell(a, b)), it believes
also to have done(sell(a, b)) as a goal (by modus ponens) and, by axiom RL1, it ac-
tually has the goal to sell. Most importantly, if an agent has the goal to make the joint
plan, by the axiom RL8, then it has the goal to do its part at the right moment (and the
other knows this) and the goal that the other does its part. The result of the distribution
is: B(a, give(a)→ G(a, done(pay(b))))) ∧B(b, give(a)→ G(b, done(pay(b)))).

Thus, when done(give(a)) is true, from done(give(a)) → G(a, done(pay(b)))),
we derive that a wants that b does its part G(b, done(pay(b))).

ACL Semantics Between Social Commitments and Mental Attitudes 41

CA Seller a Buyer b
(SC) (SC)

propose BELIEFS BELIEFS
give(a)→ G(a,G(b, pay(b)))
GOALS GOALS

accept BELIEFS BELIEFS
give(a)→ G(a,G(b, pay(b)))
(give(a)→ G(b, pay(b)))→ (give(a)→ G(b, pay(b)))→
G(a, give(a))) G(a, give(a)))
give(a)→ G(b, pay(b)) give(a)→ G(b, pay(b))
G(a, give(a)) G(a, give(a))
GOALS GOALS
give(a)

give(a) BELIEFS BELIEFS
give(a)→ G(a,G(b, pay(b)))
(give(a)→ G(b, pay(b)))→ (give(a)→ G(b, pay(b)))→
G(a, give(a))) G(a, give(a)))
give(a)→ G(b, pay(b)) give(a)→ G(b, pay(b))
G(a, give(a)) G(a, give(a))
give(a) give(a)
G(b, pay(b)) G(b, pay(b))
GOALS GOALS

pay(b)
pay(b) BELIEFS BELIEFS

G(b, pay(b)) G(b, pay(b))
pay(b) pay(b)
GOALS GOALS

reject BELIEFS BELIEF
give(a)→ G(a,G(b, pay(b)))
(give(a)→ G(b, pay(b)))→ (give(a)→ G(b, pay(b)))→
G(a, give(a))) G(a, give(a)))
¬G(b, pay(b)) ¬G(b, pay(b))
GOALS GOALS

Fig. 2. The example with commitments. Note that for space reasons done(i, act) is abbreviated
in act(i).

The translation from SC ACL semantics to the role-based semantics is accomplished
by applying the rules defined in the previous section (see Figure 2). Given the FIPA
propose CA, the corresponding speech act in SC ACL is propose(a, b, done(give(a)),
done(pay(b))). By applying the rule that translates this speech act in the role-based
ACL semantics, we get to the state in which both a and b have the belief that
done(give(a)) → G(a, G(b, done(pay(b)))) representing an unset commitment of b.
Moreover, a pending commitment by a is represented by done(give(a)) →
G(b, done(pay(b))))→ G(a, done(give(s))).

The accept proposal is modelled by accept(b, a, Ci(unset, b, a, pay(b) | give(a)) in
SC. This speech act, whose precondition is true, results in b’s act of creating the belief
of a that b believes done(give(a)) → G(b, done(pay(b))). The application of modus

42 G. Boella et al.

ponens to the belief done(give(a)) → G(b, done(pay(b)))) → G(a, done(give(s))))
and this new belief results in the introduction of an active commitment whose debtor is
role a: G(a, done(give(a))) ∧G(b, done(give(a))).

When give(a) is executed, then the commitment of a to do give(a) is fulfilled and
the commitment of b to do pay(b) is active: its condition done(give(a)) is satisfied.

The reject proposal communicative act in FIPA in SC corresponds to the speech act
reject(b, a, Ci(unset, b, a, pay(r) | give(a))). The reject speech act attributes to both
a and b the belief that b does not have the goal done(pay(a)), thus retaining a’s pending
commitment from becoming active and cancelling the unset commitment from b role.

Which are the main differences between these approaches? By comparing the two
tables in Figures 1 and 2, it is possible to observe that, once translated in the role-based
semantics, the actual commitments and their state coincide in the two approaches, with
a significant exception. The difference can be observed in the first row, where after the
propose speech act there is no equivalent in FIPA of the belief - publicly attributed to
the proponent - that it has the goal that the addressee forms a conditional goal to pay
the requested amount of money for the sold item, where the condition consists of the
proponent giving the item.

This difference is to be ascribed to the definition of the act of proposing in FIPA.
In practice, FIPA does not express the advantage of the proponent in proposing the
plan. For example, in the selling case, there is no clue of the fact that reason why the
proponent proposes the joint plan is that it wants to receive the specified amount of
money. However, this is implicit in the definition of the selling plan. In SC, reciprocity
is expressed by the fact that a propose is composed by a conditional promise together
with a request (see also the model in [25]), thus providing a way to express any kind
of arrangements, even non conventional ones. In SC, the subsequent accept speech act
presupposes the existence of an unset commitment having as debtor the role to which
the proposal has been addressed. However, the accept proposal act in the second turn
fills the gap in FIPA: when the addressee displays the goal to take part in the joint plan,
the distribution of the tasks of giving and paying takes place, generating the appropriate
goals in the two roles.

6 Conclusions

In this paper we propose a role-based semantics for agent communication languages.
In this approach, the state of a dialogue is represented by beliefs and goals publicly
attributed to the roles played by the participants in the dialogue. These beliefs and goals
are added and removed by the speech acts performed by the roles and are distinct - and
potentially different - from the agents’ private ones. The role-based semantics opens
the way to the possibility that they diverge, so that a wide range of cooperative and
non-cooperative situations can be modelled.

We show that both the mentalistic and the social commitment approach to the seman-
tics of agent communication languages, can be translated into a role-based semantics,
showing their differences and similarities. The translation makes it possible to re-use
logics and implementations of the FIPA-style mentalistic approach, while avoiding the
unverifiability of the mental states.

ACL Semantics Between Social Commitments and Mental Attitudes 43

In addition, a role-based semantics makes it possible to represent and study the way
in which mental states attributed to agents in a role, may differ from the private mental
states. Thus a wide range of cooperative and non-cooperative situations can be mod-
elled. As a first example, consider a teacher who is teaching Darwinism to a class
of pupils. Teachers are considered to be reliable. So according to rule RL15, when a
teacher makes an inform speech act, the pupils will publicly adopt the information. But
privately the pupils may not believe the information, for example because of religious
objections against Darwinism. As a second example, reconsider the proposal in Fig-
ure 2. As a result of the acceptance by a of the joint action give(a); pay(b), b publicly
adopts the goal pay(b). But clearly, this is only a means to get the good, as part of the
joint action. It is quite possible that the agent y enacting b, does not have the individual
goal to give the object away.

References

1. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. IEEE Transactions of Software Engineering and Methodology 12(3) (2003)
317–370

2. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view of
multiagent systems. In: LNCS n. 2935: Procs. of AOSE’03, Springer Verlag (2003) 214–230

3. FIPA: FIPA ACL specification. Technical Report FIPA00037, Foundation for Intelligent
Physical Agents, http://www.fipa.org/specs/fipa00037/SC00037J.html (2002)

4. Boella, G., Hulstjin, J., van der Torre, L.: A synthesis between mental attitudes and social
commitments in agent communication languages. In: Procs. of IAT’05, IEEE Press (2005)

5. Boella, G., van der Torre, L.: A game theoretic approach to contracts in multiagent systems.
IEEE Transactions on Systems, Man and Cybernetics - Part C 36(1) (2006)68–79

6. Boella, G., van der Torre, L.: Security policies for sharing knowledge in virtual communities.
IEEE Transactions on Systems, Man and Cybernetics - Part A 36(3) (2006) 439–450

7. Fornara, N., Colombetti, M.: A commitment-based approach to agent communication. Ap-
plied Artificial Intelligence 18(9-10) (2004) 853–866

8. Juan, T., Sterling, L.: Achieving dynamic interfaces with agents concepts. In: Procs. of
AAMAS’04. (2004) 688–695

9. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies. In: Procs. of
AAMAS’03. (2003) 489–496

10. Boella, G., van der Torre, L.: Organizations as socially constructed agents in the agent ori-
ented paradigm. In: LNAI n. 3451: Procs. of the Workshop Engineering Societies in the
Agents World (ESAW), Berlin, Springer Verlag (2004) 1–13

11. Pasquier, P., Chaib-draa, B.: The cognitive coherence approach for agent communication
pragmatics. In: Procs. of AAMAS’03 (2003) 544–551

12. Gaudou, B., Herzig, A., Longin, D.: A logical framework for grounding-based dialogue anal-
ysis. In van der Hoek, W., Lomuscio, A., de Wink, E., eds.: ENTCS: Procs. of LCMAS’05.
157(4) (2005) 117–137

13. Grossi, D., Dignum, F., Dastani, M., Royakkers, L.: Foundations of organizational structures
in multiagent systems. In: Procs. of AAMAS’05. (2005)

14. Maudet, N., Chaib-draa, B.: Commitment-based and dialogue-game based protocols–news
trends in agent communication language. Knowledge Engineering 17(2) (2002) 157–179

15. Wooldridge, M.J.: Semantic issues in the verification of agent communication languages.
Journal of Autonomous Agents and Multi-Agent Systems 3(1) (2000) 9–31

44 G. Boella et al.

16. Singh, M.P.: A social semantics for agent communication languages. In Dignum, F., Greaves,
M., eds.: LNCS n 1916: Issues in Agent Cmmunication: Procs. of the IJCAI Workshop on
Agent Communication Languages. Springer-Verlag, (2000) 31 – 45

17. Walton, D.N., Krabbe, E.C.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. State University of New York Press (1995)

18. Dastani, M., Herzig, A., Hulstijn, J., Van der Torre, L.: Inferring trust. In: LNAI n. 3487:
Procs. of Fifth Workshop on Computational Logic in Multi-agent Systems (CLIMA V),
Springer Verlag (2004) 144– 160

19. Demolombe, R.: To trust information sources: a proposal for a modal logical framework. In
Castelfranchi, C., Tan, Y.H., eds.: Trust and Deception in Virtual Societies. Kluwer (2001)
111 – 124

20. Liau, C.J.: Belief, information acquisition, and trust in multi-agent systems – a modal for-
mulation. Artificial Intelligence 149 (2003) 31–60

21. Verdicchio, M., Colombetti, M.: A logical model of social commitment for agent communi-
cation. In: Procs. of AAMAS’03. (2003) 528–535

22. Singh, M.P.: Social and psychological commitments in multiagent systems. In: AAAI Fall
Symposium in Knowledge and Action at Social and Organizational Level. (1991)

23. Pasquier, P., Flores, R., Chaib-draa, B.: Modeling flexible social commitments and their
enforcement. In Gleizes, M.P., Omicini, A., Zambonelli, F., eds.: LNAI n. 3451: Procs. of
the Workshop Engineering Societies in the Agents World (ESAW), Springer Verlag (2004)
153–165

24. Busetta, P., Merzi, M., Rossi, S., Legras, F.: Intra-role coordination using group communi-
cation: a preliminary report. In: LNAI n. 2922: Procs. of AAMAS’03 Workshop on Agent
Communication Languages and Conversation Policies, Springer Verlag (2003)

25. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event calcu-
lus planning using commitments. In: Procs. of AAMAS’02. (2002) 527–534

26. Kumar, S., Huber, M., Cohen, P., McGee, D.: Toward a formalism for conversational proto-
cols using joint intention theory. Computational Intelligence 18(2) (2002)

27. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Protocol conformance for logic-based agents. In:
Procs. of IJCAI’03, Morgan Kaufmann (2003) 679–684

28. Weiss, G., Nickles, M., Rovatsos, M.: Formulating Agent Communication Semantics and
Pragmatics as Behavioral Expectations In: LNCS n. 3396: Procs. of Agent Communication
workshop (AC’04) Springer Verlag (2005) 153–172

On the Semantics of Conditional Commitment

Shakil M. Khan and Yves Lespérance

Dept. of Computer Science and Engineering,
York University, Toronto, ON, Canada M3J 1P3

{skhan, lesperan}@cs.yorku.ca

Abstract. In this paper, we identify some problems with current for-
malizations of conditional commitments, i.e. commitments to achieve a
goal if some condition becomes true. We present a solution to these prob-
lems. We also formalize two types of communicative actions that can be
used by an agent to request another agent to achieve a goal or perform
an action provided that some condition becomes true. Our account is
set within ECASL [8], a framework for modeling communicating agents
based on the situation calculus.

1 Introduction

In recent years, the importance of agent communication in multiagent systems
has been widely recognized. As a result, many researchers have developed com-
municative multiagent frameworks [3,5,7,16,20,24,26] and attempted to formal-
ize various types of communicative actions in these frameworks. One important
concept in these is the notion of conditional commitment. A conditional commit-
ment is a commitment to achieve some goal if some condition becomes true (e.g.
a commitment to ship some goods when payment of an agreed to amount ar-
rives). Conditional requests are requests that seek to have the addressee acquire
a conditional commitment. Any multiagent framework that deals with negotia-
tion and cooperation ought to handle conditional commitments. Unfortunately,
most definitions found in the literature (in [5,29,24,1], for example) are inade-
quate: they either define conditional commitments as disjunctive goals, which
makes the agents under-committed to the conditional goal, or define them as
conjunctive goals, which renders the agent over-committed.

We will go over some examples to point out the problems associated with the
disjunctive and the conjunctive accounts of conditional commitment. In these,
we use the following modal operators: �φ, i.e. φ eventually holds, Happens(α),
i.e. the action α is performed next, φ Until ψ, i.e. eventually ψ becomes true, and
as long as ψ is false, φ holds, and Before(ψ, φ), i.e. if ψ eventually becomes true,
then φ becomes true before ψ does. The formal semantics of these operators are
given in Section 2.

In the disjunctive account, a conditional commitment to achieve some goal
provided that some condition holds is modeled as a commitment to achieve the
goal if the condition holds, i.e. as a simple material implication. For example,
consider an online marketplace domain. Suppose that there are two agents, a

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 45–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

46 S.M. Khan and Y. Lespérance

seller agent slr, and a buyer agent byr. If we use a disjunctive account, slr’s
conditional commitment to ship some goods to byr on the condition that byr
pays can be modeled as follows:

CondIntdis(slr, GetPaid, Happens(shipGoods(slr, byr)))
.= Int(slr,¬�GetPaid ∨

[¬GetPaid Until
(GetPaid ∧Happens(shipGoods(slr, byr)))]).

This says that slr’s conditional commitment to ship the goods when byr pays
amounts to slr having the intention that byr eventually pays and after that she
ships the goods, if byr eventually pays (as mentioned earlier, the Until construct
in the goal above implies that �GetPaid and �Happens(shipGoods(slr, byr))).
One problem with this account of conditional intention is that there is a counter-
intuitive way to satisfy the conditional intention, namely, the agent may commit
to the triggering condition remaining false and deliberately perform some ac-
tion that makes it remain false. Thus, in the example, to satisfy her conditional
intention, slr may intentionally perform some action to stop byr from paying
her, such as blocking debits from byr. In other words, there is nothing in this
formalization of conditional intention that stops slr from intending not to get
paid and not to send the goods. However, this is counter-intuitive and a model of
conditional commitment should not support this. Thus, with the disjunctive ac-
count of conditional commitment, the agent seems under-committed to the goal.
Examples of accounts in the literature that formalize conditional commitments
as disjunctive goals are [24] and [1].

In the conjunctive account, a conditional commitment to achieve a goal pro-
vided that a condition holds is modeled as a temporally ordered conjunctive
commitment to the triggering condition and the conditional goal, where the
triggering condition is achieved first. Although this model may seem appropri-
ate in many cases, it often leads to problems. For example, suppose that slr
has the conditional commitment to ship a replacement unit provided that byr
reports and returns a defective good. If we use a conjunctive account, this can
be modeled as follows:

CondIntcon(slr, DefGoodRet,Happens(shipRepl(slr, byr))) .=
Int(slr, Before(Happens(shipRepl(slr, byr)), DefGoodRet)

∧�Happens(shipRepl(slr, byr))).

This says that slr’s conditional commitment to ship a replacement unit provided
that byr returns a defective good can be modeled as slr’s intention that byr re-
turns a defective good before slr ships a replacement unit, and eventually slr
ships a replacement unit. Note that, according to this definition, since slr has the
intention that the defective product is returned before she ships the replacement
unit, and that she eventually ships the replacement unit, it follows that slr has
the intention that byr eventually returns a product, i.e. Int(slr, �DefGoodRet).
So slr may deliberately perform some action, such as shipping a defective good in

On the Semantics of Conditional Commitment 47

the first place, to achieve this intention. Thus, the conjunctive account of condi-
tional commitment results in over-committed agents. Both [5] and [29] formalize
conditional commitments as conjunctive goals.

In this paper, we propose a solution to these problems (the under/over-
commitment problems, henceforth). Our solution involves using an additional
constraint with the disjunctive account to eliminate the under-commitment prob-
lem. We use the Extended Cognitive Agent Specification Language (ECASL) [8]
as our base formalism for this. Our account is formulated for internal/mental
states semantics for communication acts. Nevertheless, the same issues arise for
public/social-commitment semantics (as discussed in Section 5). In this paper,
we will use the terms ‘intention’ and ‘commitment’ interchangeably.

The paper is organized as follows: in the next section, we outline the ECASL
framework. In Section 3, we present our model of conditional commitment and
discuss some of its properties. In Section 4, we present some communicative acts
that allow agents to make requests that result in conditional commitments. In
Section 5, we compare our approach to previous work on conditional commit-
ments. Finally in Section 6, we summarize our results and discuss possible future
work.

2 ECASL

The Extended Cognitive Agent Specification Language (ECASL) [8], an exten-
sion of CASL [23,25], is a framework for specifying and verifying complex com-
municating multiagent systems that incorporates a formal model of means-ends
reasoning. In this section, we outline the part of ECASL that is needed for our
formalization of conditional commitment.

In ECASL, agents are viewed as entities with mental states, i.e., knowledge
and goals, and the specifier can define the behavior of the agents in terms of
these mental states. ECASL combines a declarative action theory defined in
the situation calculus with a rich programming/process language, ConGolog [4].
Domain dynamics and agents’ mental states are specified declaratively in the
theory, while the agents’ behavior is specified procedurally in ConGolog.

In ECASL, a dynamic domain is represented using an action theory [17] for-
mulated in the situation calculus [13], a (mostly) first order language for repre-
senting dynamically changing worlds in which all changes are the result of named
actions. ECASL uses a theory D that includes the following set of axioms:

– action precondition axioms, one per action,
– successor state axioms (SSA), one per fluent, that encode both effect and

frame axioms and specify exactly when the fluent changes [18],
– initial state axioms describing what is true initially including the mental

states of the agents,
– axioms identifying the agent of each action,
– unique name axioms for actions, and
– domain-independent foundational axioms describing the structure of situa-

tions [10].

48 S.M. Khan and Y. Lespérance

Within ECASL, the behavior of agents is specified using the notation of the
logic programming language ConGolog [4], the concurrent version of Golog [11].
A typical ConGolog program is composed of a sequence of procedure decla-
rations, followed by a complex action. Complex actions can be composed using
constructs that include primitive actions, waiting for a condition, sequence, non-
deterministic branch, nondeterministic choice of arguments, conditional branch-
ing, while loop, procedure call, nondeterministic iteration, concurrent execution
with and without priorities, and interrupts. To deal with multiagent processes,
primitive actions in ECASL take the agent of the action as argument.

The semantics of the ConGolog process description language is defined in
terms of transitions, in the style of structural operational semantics [15]. The
overall semantics of a program is specified by the Do(δ, s, s′) relation, which
holds if and only if s′ can be reached by performing a sequence of transitions
starting with program δ in s, and the remaining program may legally terminate
in s′.1

The situation calculus underlying ECASL is a branching time temporal logic,
where each situation has a linear past and a branching future. In the framework,
one can write both state formulas and path formulas. A state formula φ(s) takes
a single situation as argument and is evaluated with respect to that situation.
On the other hand, a path formula ψ(s1, s2) takes two situations as arguments
and is evaluated with respect to the interval (finite path) [s1, s2]. A state formula
φ may contain a placeholder constant now that stands for the situation in which
φ must hold. φ(s) is the formula that results from replacing now by s. Similarly,
a path formula ψ may contain the placeholder constants now and then that
stand for the situations that are the endpoints of the interval [now, then] over
which ψ must hold. ψ(s1, s2) denotes ψ with s1 substituted for now and s2 sub-
stituted for then. Where the intended meaning is clear, we sometimes suppress
the placeholder(s).

ECASL allows the specifier to model agents in terms of their mental states
by including operators to specify agents’ information (i.e., their knowledge), and
motivation (i.e., their goals or intentions). We use state formulas within the
scope of knowledge, and path formulas within the scope of intentions. Following
[14,21], ECASL models knowledge using a possible worlds account adapted to
the situation calculus. K(agt, s′, s) is used to denote that in situation s, agt
thinks that she could be in situation s′. s′ is called a K-alternative situation for
agt in s. Using K, the knowledge or belief of an agent, Know(agt, φ, s), is defined
as ∀s′(K(agt, s′, s) ⊃ φ(s′)), i.e. agt knows φ in s if φ holds in all of agt’s K-
accessible situations in s. In ECASL, K is constrained to be reflexive, transitive,
and Euclidean in the initial situation to capture the fact that agents’ knowledge
is true, and that agents have positive and negative introspection. As shown in
[21], these constraints then continue to hold after any sequence of actions since
they are preserved by the successor state axiom for K.

1 Since we have predicates that take programs as arguments, we need to encode pro-
grams and formulas as first-order terms as in [4]. For notational simplicity, we sup-
press this encoding and use formulas and programs as terms directly.

On the Semantics of Conditional Commitment 49

ECASL supports knowledge expansion as a result of sensing actions [21] and
some informing communicative actions. Here, we restrict our discussion to knowl-
edge expansion as a result of inform actions. The preconditions of inform are as
follows:

Poss(inform(inf, agt, φ), s) ≡ Know(inf, φ, s)
∧ ¬Know(inf, Know(agt, φ, now), s).

In other words, the agent inf can inform agt that φ, iff inf knows that φ currently
holds, and does not believe that agt currently knows that φ. The successor state
axiom (SSA) for K can be defined as follows:

K(agt, s∗, do(a, s)) ≡ ∃s′. K(agt, s′, s) ∧ s∗ = do(a, s′) ∧ Poss(a, s′).

This says that after an action happens, every agent learns that it was possible
and has happened. Moreover, if the action involves someone informing agt that
φ holds, then agt knows this afterwards. This follows from the fact that it is a
precondition of inform(inf, agt, φ) that inf knows that φ, that what is known
must be true (i.e. K is reflexive), and that the SSA for K requires the agent to
know that Poss(a, s) after a happens in s. Note that this axiom only handles
knowledge expansion, not revision.

ECASL also incorporates goal expansion and a limited form of goal contrac-
tion. Goals or intentions are modeled using an accessibility relation W over
possible situations. The W -accessible situations for an agent are the ones where
she thinks that all her goals are satisfied. W -accessible situations may include
situations that the agent thinks are impossible, unlike Cohen and Levesque’s [2]
G-accessible worlds. But intentions are defined in terms of the more primitive
W and K relations so that the intention accessible situations are W -accessible
situations that are also compatible with what the agent knows, in the sense that
there is a K-accessible situation in their history. This guarantees that agents’
intentions are realistic, that is, agents can only intend things that they believe
are possible. Thus we have:

Int(agt, ψ, s) .= ∀s′, s∗.[W (agt, s∗, s) ∧K(agt, s′, s) ∧ s′ ≤ s∗] ⊃ ψ(s′, s∗).

This means that the intentions of an agent in s are those formulas that are true
for all intervals between situations s′ and s∗ where the situations s∗ are W -
accessible from s and have a K-accessible situation s′ in their past. Intentions
are future oriented, and any goal formula will be evaluated with respect to a
finite path defined by a pair of situations, a current situation now and an ending
situation then. This formalization of goals can deal with both achievement goals
and maintenance goals. An achievement goal φ is said to be eventually satisfied
if φ holds in some situation between now and then, i.e., if �(φ, now, then),
which is defined as ∃s′. (now ≤ s′ ≤ then ∧ φ(s′)).2 In [22], Shapiro showed
2 We sometimes use � with a path formula ψ argument, in which case, we mean that
ψ holds over some interval [s, then] that starts at some situation s between now and
then; see Table 1 for the formal definition.

50 S.M. Khan and Y. Lespérance

how positive and negative introspection of intentions can be modeled by placing
some constraints on K and W . To make sure that agents’ wishes and intentions
are consistent, W is also constrained to be serial.

ECASL provides an intention transfer communication action, request, which
is defined in terms of inform. This is similar to Herzig and Longin’s account [7],
where a request is defined as informing about one’s intentions, and the requested
goals are adopted via cooperation principles. The request action can be used by
an agent to request another agent to achieve some state of affairs. Formally, we
have:

request(req, agt, φ) .= inform(req, agt, Int(req, φ, now)).

The SSA for W which handles intention change in ECASL, has the same struc-
ture as a SSA for a domain dependent fluent. In the following, W+(agt, a, s∗, s)
(W−(agt, a, s∗, s), resp.) denotes the conditions under which s∗ is added to
(dropped from, resp.) W as a result of the action a in s:

W (agt, s∗, do(a, s)) ≡W+(agt, a, s∗, s) ∨
(W (agt, s∗, s) ∧ ¬W−(agt, a, s∗, s)).

An agent’s intentions are expanded when it is requested something by another
agent. After the request(req, agt, ψ) action, agt adopts the goal that ψ, unless
she has a conflicting goal or is not willing to serve req for ψ. Therefore, this
action should cause agt to drop any paths in W where ψ does not hold. This is
handled in W−:

W−(agt, a, s∗, s) .= [∃req, ψ. a = request(req, agt, ψ)
∧ Serves(agt, req, ψ, s) ∧ ¬Int(agt,¬ψ, s)
∧ ∃s′. K(agt, s′, s) ∧ s′ ≤ s∗ ∧ ¬ψ(do(a, s′), s∗)].

A limited form of intention contraction is also handled in ECASL. Agents
intentions are contracted as a result of a cancelRequest action. ECASL also in-
corporates a formal model of means-ends reasoning and commitment to rational
plans to achieve intentions. See [8] for the details of these.

Table 1 shows some abbreviations that will be used throughout the paper.

3 Conditional Commitments

Having presented our framework, we now return to our discussion about condi-
tional commitments. Informally, an agent agt has a conditional commitment or
intention that ψ on the condition that φ if agt intends to achieve ψ as soon as
the condition φ holds. In our specification, we assume that φ is a state formula,
whereas ψ is a path formula and can represent any kind of goal (achievement,
maintenance, etc.). In other words, the trigger condition φ of a conditional in-
tention takes a single situation now as argument, unlike the goal formula ψ,

On the Semantics of Conditional Commitment 51

Table 1. Some Definitions of Temporal Operators

1. �(ψ, now, then)
.
= ∃s′. now ≤ s′ ≤ then ∧ ψ(s′, then),

2. �(ψ, now, then)
.
= ¬�(¬ψ, now, then),

3. [φ Until ψ](now, then)
.
= ∃s′. now ≤ s′ ≤ then

∧ ψ(s′, then) ∧ ∀s′′. now ≤ s′′ < s′ ⊃ φ(s′′),
4. Before(ψ, φ, now, then)

.
= ∃s′. now ≤ s′ ≤ then

∧ ψ(s′, then) ⊃ ∃s′′. now ≤ s′′ < s′ ∧ φ(s′′),
5. E�(φ, now)

.
= ∃s. now ≤ s ∧ φ(s),

6. A�(φ, now)
.
= ¬E�(¬φ, now),

7. Happens(a, now, then)
.
= do(a, now) ≤ then,

8. HappensC(δ, now, then)
.
= ∃s′. s′ ≤ then ∧Do(δ, s′, then).

which takes two situations now and then as arguments.3 If one wishes to use an
achievement goal φ′ for ψ, one can use �(φ′, now, then), i.e. eventually φ′. For
simplicity, we also assume that the trigger condition φ is a one-time goal, i.e.
once φ becomes true, it remains true forever.

So we now propose a formalization of conditional intentions that avoids the
under/over-commitment problem:

CondInt(agt, φ, ψ, s) .=
Int(agt, DisjGoal(φ, ψ, now, then)

∧NoUnderComm(agt, φ, now, then), s),
DisjGoal(φ, ψ, now, then) .=

[¬φ Until (φ ∧ ψ)](now, then) ∨ ¬�(φ, now, then),
NoUnderComm(agt, φ, now, then) .=

�([Int(agt, �(¬φ, now, then), now) ⊃
Know(agt, A�(¬φ, now), now)], now, then).

That is, agt conditionally intends that ψ provided that φ, iff agt intends that
the following conditions hold:

1. either (a) φ eventually holds, and ψ holds immediately from the time φ
comes to hold, or (b) φ never holds, and

2. if in any situation agt intends that φ never comes to hold, she must also
know in that situation that it can never become true.

Intuitively, this says that one way to fulfill an agent’s conditional intention is
to (1a) satisfy ψ after φ comes to hold, and a second way is that (1b) φ never
comes to hold in the future. This part of our account is as in the disjunctive
approach. However, we add to this that (2) the agent does not intend that

3 We could also handle trigger conditions that are not state formulas. However, in
these cases, since the trigger condition holds over a time interval, it is not always
clear when exactly the triggering of the commitment to the conditional goal should
occur. To avoid these complications, we stick to state formulas as triggers.

52 S.M. Khan and Y. Lespérance

φ never comes to hold unless she knows that it can never hold. Thus we re-
quire that if at some situation, agt intends that φ never comes true, it must
be the case that she knows in that situation that φ can never become true,
and she only intends this because it has become inevitable. So the additional
constraint that NoUnderComm(agt, φ, now, then) ensures that agt will not do
anything intentionally to make the triggering condition φ remain false. One
might be tempted to define NoUnderComm(agt, φ, now, then) as �(¬Int(a-
gt, �(¬φ, now, then), now), now, then), i.e. agt never intends that φ never holds.
However, since some event may make φ impossible to achieve, there is a pos-
sibility that agt may come to intend that φ always be false, if this becomes
inevitable. The only case in which agt intends that φ always be false is when she
knows that it can never become true.

Consider once again our online marketplace example given in Section 1 for
the disjunctive account. Using this definition of conditional commitment, a
seller slr’s intention to send the goods when a buyer byr pays, CondInt(slr,-
GetPaid(byr, slr), Happens(shipGoods(slr, byr),now, then), s)can be formalized
as follows:

Int(slr, DisjGoal(GetPaid(byr, slr),
Happens(shipGoods(slr, byr), now, then), now, then)

∧NoUnderComm(slr, GetPaid(byr, slr), now, then), s).

slr’s intention can be further expanded to:

Int(slr, [GetPaidAndThenSendGoods(byr, slr, now, then)
∨ ¬�(GetPaid(byr, slr), now, then)] ∧

[�((Int(slr, �¬GetPaid(byr, slr), now) ⊃
Know(slr, A�(¬GetPaid(byr, slr), now), now)), now, then)], s),

where,

GetPaidAndThenSendGoods(byr, slr, now, then) .=
[¬GetPaid(byr, slr) Until

(GetPaid(byr, slr) ∧
Happens(shipGoods(slr, byr), now, then))](now, then).

From this, we can see that there are only two ways by which slr can satisfy this
conditional intention: either at some future or current situation byr pays slr and
then slr sends the goods to byr, or, byr never pays slr, and as long as slr does
not know that byr will never pay her, she does not intend not to get paid. Since
slr cannot intend not to get paid, she cannot deliberately perform anything (for
example block payments from byr) to make the triggering condition remain false.
If at a later situation, slr learns that it has become impossible for byr to ever pay
her, slr will inevitably intend that byr never pays her, but otherwise she cannot
acquire this intention. Thus, our formalization of conditional commitment does
not suffer from the under-commitment problem.

On the Semantics of Conditional Commitment 53

Moreover, since we use the disjunctive approach, our account does not suffer
from the over-commitment problem associated with the conjunctive approach.
Consider the second example given in Section 1, where slr has the intention to
ship a replacement unit when byr returns a defective good. Using our definition,
this can be expanded to slr’s intention that either byr never returns a defec-
tive product, or byr returns a defective product and slr ships the replacement
unit after that. Thus slr is not over-committed and will not perform something
deliberately so that byr returns a product. The additional constraint that slr
never intends that byr never return a product unless she knows that byr will
never return a product does not seem to lead to any over-commitment. Thus
our formalization of conditional intention is also free from the over-commitment
problem.

Note that our account allows the agent who has a conditional intention to
intend not to know whether the condition holds. We could easily strengthen the
definition to rule this out, but it is not clear that this is always appropriate.

Next, we show two simple properties of conditional intention. Assume that the
domain theory D (as discussed in Section 2) includes our definition of conditional
commitment given above. Then we have the following theorem that says that if
an agent agt conditionally intends that ψ provided that φ in situation s, and if
she knows that φ holds in s, then agt intends that ψ in s.

Theorem 1

D |= CondInt(agt, φ, ψ, s) ∧Know(agt, φ, s) ⊃
Int(agt, ψ, s).

So when the agent knows that the condition has become true, a conditional in-
tention reduces to an ordinary intention. The second property states that agents
are able to introspect their conditional intentions:

Theorem 2

D |= [CondInt(agt, φ, ψ, s) ⊃
Know(agt, CondInt(agt, φ, ψ, now), s)] ∧
[¬CondInt(agt, φ, ψ, s) ⊃
Know(agt,¬CondInt(agt, φ, ψ, now), s)].

Thus, if an agent has a conditional intention (does not have a conditional inten-
tion, resp.) that ψ provided that φ, then she knows that she has (does not have,
resp.) this conditional intention.

It would be interesting to prove additional results about conditional inten-
tions, for instance, that a conditional intention persists as long as its condition
is known to remain false and not known to have become impossible. We leave
this for future work.

54 S.M. Khan and Y. Lespérance

4 Conditional Requests

We now discuss two communicative acts, requestWhen and reqActWhen, that can
be used by an agent to request someone to achieve ψ or to execute a program δ re-
spectively, on the condition that φ becomes true. Recall that, in ECASL the SSA
for W determines whether an agent adopts a goal when requested; the requested
goal is adopted by the requestee via cooperation principles encoded in the SSA
for W . Thus, we model requests as informing about intentions, rather than as
primitives. In the following, we use CondIntCont(agt, φ, ψ) as an abbreviation
for the content of a conditional intention DisjGoal(φ, ψ, now, then) ∧ NoUn-
derComm(agt, φ, now, then). Now, one simple way to model a requester req’s
request to requestee agt to achieve ψ on the condition that φ is as follows:

requestWhensim(req, agt, φ, ψ) .=
request(req, agt, CondIntCont(req, φ, ψ)).

This says that, req’s conditional request to agt to achieve ψ provided that φ
amounts to req’s request to agt to fulfill the content CondIntCont(req, φ, ψ) of
her own conditional intention. Using the definition of request, this conditional
request amounts to req informing agt that she currently intends to achieve ψ
provided that φ. However, note that the content CondIntCont(req, φ, ψ) of this
conditional intention includes mental attitudes that refer to req, rather than
agt. Since the SSA for W does not automatically replace the agent parame-
ters of mental state operators used in a goal formula, if we model conditional
requests as above, given appropriate conditions (i.e., when agt agrees to serve
req on CondIntCont(req, φ, ψ) and does not currently have the intention that
¬CondIntCont(req, φ, ψ)), agt will adopt the intention that CondIntCont(req,-
φ, ψ), but not that CondIntCont(agt, φ, ψ). Thus she will not have the condi-
tional intention to achieve ψ provided that φ after the conditional request is
performed, and this simple definition is not quite correct.

For example, suppose that the manager agent mgr wants to conditionally
request the seller slr in situation s to ship the goods when the buyer byr pays
her. So mgr can do this by performing the following action in s:

requestWhensim(mgr, slr, GetPaid(byr, slr),
Happens(shipGoods(slr, byr), now, then)),

which can be expanded to:

request(mgr, slr,

CondIntCont(mgr, GetPaid(byr, slr),
Happens(shipGoods(slr, byr), now, then))).

After the request is performed, if slr agrees to serve mgr on CondIntCont(mgr,-
GetPaid(byr, slr), Happens(shipGoods(slr, byr), now, then)), and does not in-
tend that ¬CondIntCont(mgr, GetPaid(byr, slr), Happens(shipGoods(slr, byr),
now, then)), the SSA for W will ensure that:

On the Semantics of Conditional Commitment 55

Int(slr, CondIntCont(mgr, GetPaid(byr, slr),
Happens(shipGoods(slr, byr), now, then)), sr),

which can be expanded to:

Int(slr, DisjGoal(GetPaid(byr, slr),
Happens(shipGoods(slr, byr), now, then), now, then)

∧NoUnderComm(mgr, GetPaid(byr, slr), now, then), sr),

where sr is the situation that results from performing the requestWhen ac-
tion in s. Now, using the definition of conditional intention, we can see that
in sr, slr does not have the conditional intention of sending the goods pro-
vided that byr pays her. The problem is with the mental state operators in the
NoUnderComm(mgr, . . .) part of slr’s intention: they say that mgr will not
intend that the payment not occur unless she knows it can never occur. What
we need is for this constraint to hold for slr.

To deal with this problem, we propose the following model of conditional
requests:

requestWhen(req, agt, φ, ψ) .= request(req, agt, CondIntCont(agt, φ, ψ)).

This says that req’s request to agt to conditionally achieve ψ provided that φ
amounts to req’s request to agt to fulfill the content of agt’s conditional intention
to achieve ψ provided that φ, i.e., CondIntCont(agt, φ, ψ). Using the definition
of request, this can be further expanded to:

requestWhen(req, agt, φ, ψ) .=
inform(req, agt, Int(req, CondIntCont(agt, φ, ψ), now)).

That is, req can request agt to achieve ψ on the condition that φ by informing agt
that she intends that CondIntCont(agt, φ, ψ). Note that, the agent parameter of
CondIntCont(agt, φ, ψ) is now the requestee agt, rather than the requester req.
This guarantees that given that agt serves req and does not have the opposite
intention, she will conditionally intend to achieve ψ provided that φ after req
conditionally requests her this. Thus this formalization of conditional request
does not suffer from the above mentioned problem.

We also define a special type of conditional request, namely, a request to
perform an action when some condition holds:

reqActWhen(req, agt, φ, δ) .=
requestWhen(req, agt, φ, HappensC(δ, now, then)).

This states that req’s conditional request to agt to execute the program δ pro-
vided that φ amounts to req’s conditional request to agt to execute δ starting
in the situation where φ holds.

Now consider what happens when mgr conditionally requests slr to ship the
goods when byr pays her, that is, when mgr performs the reqActWhen(mgr, slr,-
GetPaid(byr, slr), shipGoods(slr, byr)) action. Given that slr agrees to serve

56 S.M. Khan and Y. Lespérance

mgr and does not have the opposite intention, the SSA for W will make slr
adopt the following intention:

Int(slr, CondIntCont(slr, GetPaid(byr, slr),
HappenC(sendGoods(slr, byr), when, then)), sr),

and thus, by the definition of conditional intention, she will conditionally intend
to send the goods when byr pays her. Thus, our formalization of conditional
requests allows the proper transfer of conditional intention from the requester
to the requestee.

We next present a theorem that shows how agents’ intentions are affected
by the requestWhen action. Assume that the domain theory D includes our
definition of these new communicative actions. We can show that:

Theorem 3

D |= [¬Int(agt,¬CondIntCont(agt, φ, ψ), s)
∧ Serves(agt, req, CondIntCont(agt, φ, ψ), s)
∧ Poss(requestWhen(req, agt, φ, ψ), s)] ⊃

CondInt(agt, φ, ψ, do(requestWhen(req, agt, φ, ψ), s)).

This says that if in some situation s, an agent agt does not intend not to fulfill
the content of a conditional intention to achieve ψ provided that φ, and if she
serves another agent req on the content of this conditional commitment in s,
then she will have the conditional intention to achieve ψ given that φ after req
conditionally request her this in s, provided that the request is possible in s.

It would be useful to extend our framework with a communication act that
allows a conditional commitment created as a result of a requestWhen to be
cancelled. We believe that the existing ECASL cancelRequest action can be used
to define such a conditional commitment cancelling act. We leave this for future
work.

5 Related Work

The under-commitment problem that we pointed out in Section 1 is related to
another problem involving intentions discussed by Cohen and Levesque [2]. In
that paper, they consider a robot who drops the intention of bringing a bottle
of beer by breaking the last available bottle and thus making the intention
impossible to achieve. Their solution was twofold: (1) they formalize intentions
as persistent goals and (2) they assume that existing intentions act as a screen
of admissibility over new intentions. In their framework, an agent’s intentions
persist until she knows that they have been achieved, or knows that it has become
impossible to achieve them. Since the robot intends to bring a bottle of beer,
she will not drop this goal until she achieves it or gets to know that it has
become impossible to achieve. However, the robot can break the last available
bottle to make her goal unachievable. But since an agent’s current intentions

On the Semantics of Conditional Commitment 57

provide a screen of admissibility for adopting new intentions, she cannot have
these two conflicting intentions at the same time. Thus since she intends to bring
a bottle, she cannot adopt the intention to break the only available bottle. Note
that while this problem has similarities with the one addressed here, it does not
involve conditional intentions.

In the literature, there has been some work on conditional intention. However,
as mentioned earlier, all of the proposed treatments that we are aware of seem to
suffer from the under- or over-commitment problems. Although it does not ex-
plictly address conditional intentions, the FIPA agent communication language
specification [5] defines a type of communication act that leads to conditional
intentions. In that framework, an agent can conditionally request another agent
to execute an action when some condition holds. This is modeled as follows:
req’s conditional request to agt to perform act when φ holds amounts to req
informing agt that she has the intention that agt execute act and that φ be true
just before that. Note that req’s intention amounts to the conjunction that φ be
true at some point and agt executes act right after that. Thus, this treatment of
conditional intention can be viewed as a conjunctive account where the intention
is to first achieve the triggering condition φ, and then to achieve the conditional
goal. As discussed in Section 1, this leads to the over-commitment problem.

Yolum and Singh [29] present a different model of conditional commitment
that relies on a social obligation-based semantics rather than a traditional one
based on mental states. Their main concern was the study of communication
protocols that accommodate exceptions and take advantage of opportunities.
They model interaction protocols using commitment machines that supply a
content to protocol states and actions in terms of the social commitments of the
participating agents. In their formal semantics, which is only briefly described,
they adopt a branching time temporal model. The semantics for commitments
involves a modal accessibility relation for commitments C that relates a state
of the protocol (i.e. a time-point) s, a debtor agent x, and a creditor agent y
to a set of paths P . Intuitively, x is responsible to y for satisfying φ in state s
iff φ holds at time-point s along all paths p that are C-accessible from (x, y, s).
To model conditional commitment, they introduce a strict implication operator
(denoted by �) that requires the consequent to hold when the antecedent holds.
The strict implication is false when the antecedent is false. Their semantics says
that φ � φ′ holds in a state s iff φ holds in s and for all s′ that satisfy φ, every
s′′ that is similar to s′ (i.e. s ≈ s′) also satisfies φ′. What they mean by the
similarity relation ≈ is not explained. Thus for them, a conditional commitment
C(x, y, φ � φ′) holds in state s iff on all C-accessible paths p, φ holds at s,
and whenever some s′ satisfies φ, every s′′ that is similar to s′ satisfies φ′. Since
they model conditional commitments using the � operator, which behaves like
a conjunction with some additional constraints, it appears that their formaliza-
tion suffers from the over-commitment problem. It is also not clear how their
formalization ensures that the goal is achieved after the condition along the
paths.

58 S.M. Khan and Y. Lespérance

Both [1] and [24] model conditional commitment as a disjunctive goal. In
their social commitment and argument network based framework, Bentahar et
al. [1] define conditional commitments as a simple implication. Their semantics
of conditional commitment goes as follows: M, s |= CondIntBen(agt1, agt2, φ, ψ)
iff M, s |= EF+φ ⇒ M, s |= ABC(agt1, agt2, ψ), where s, E, F+, and ABC de-
notes a timepoint, there exists a path, sometime in the future, and absolute
commitment, respectively. This says that agt1 is committed to agt2 to achieve
ψ on the condition that φ means that agt1 is unconditionally committed to agt2
to achieve ψ if φ holds at some timepoint over some path in the future. Be-
sides suffering from the under-commitment problem associated with disjunctive
accounts, this seems to require commitment to the goal too early, before the
condition becomes true.

In [24], Shapiro et al. describe a framework for specifying communicative
multiagent systems using ConGolog [4] within the situation calculus, an early
version of CASL. Since they were lacking a goal-revision mechanism at that
point, they introduced a type of conditional request, the requestUnless action,
in an attempt to avoid the need for goal-revision. requestUnless(req, agt, φ, ψ)
means that req is requesting agt to adopt the goal that ψ unless φ is obtained.
The execution of requestUnless(req, agt, φ, ψ) makes agt adopt the goal that
φ∨ψ. This amounts to modeling conditional intentions as disjunctive goals, and
hence the account suffers from the under-commitment problem.

6 Conclusion

In this paper, we identified some problems with many existing formalizations of
conditional commitments. These seem to either have the agents over-committed,
intending to achieve the condition under which the goal would have to be
achieved, or under-committed, possibly intending that this condition remain
false forever. We could not find any problem-free account in the literature. We
presented a definition of conditional intentions that does not suffer from these
problems. We then formalized two types of communicative actions that allow
agents to make requests that lead to conditional commitments. We also proved
some properties of conditional commitments and conditional requests. Finally,
we discussed previous work on conditional commitments.

Note that, our framework allows an agent with a conditional intention to not
intend that the trigger condition eventually becomes true. However, it does not
allow her to intend that the trigger condition never comes to hold, without also
knowing that it can never become true. In other words, in our framework, an
agent’s conditional intention that ψ provided that φ is not consistent with her
intention that �¬φ, unless she already knows that this must be the case. This
might be problematic in some cases. For instance, in our example where a seller
has a conditional intention to ship a replacement unit when a buyer returns a
defective product, we might want to say that the seller has the intention that the
buyer never returns a defective good. However, it is not possible for an agent to
consistently have both of these intentions in our framework. One way to overcome

On the Semantics of Conditional Commitment 59

this limitation might be to adopt a richer semantic model of intention, where
one allows different degrees of preferability, similar to the levels of plausibility
in traditional belief revision frameworks such as [6]. Such semantic models and
the resulting logics are more expressive, but much more complex to specify and
reason in.

The theory presented here is a part of our ongoing research on the semantics of
speech acts and agent communication in the situation calculus. In [9], we present
an extended version of this work where we model some simple communication
protocols that deal with conditional requests. Much work remains. In the future,
we would like to prove other properties of conditional commitments, for exam-
ple, about the persistence and revision of such commitments. We also plan to
formalize complex interaction protocols, such as the Contract Net protocol [28]
and the Net Bill protocol [27], using our formalization of conditional intention.
It would also be interesting to try to use this formalization to implement flexible
communication agents and to develop tools to support multiagent programming
as in [19,12].

Acknowledgements

We thank Hector Levesque and the reviewers for useful comments on this work.

References

1. J. Bentahar, B. Moulin, J.-J. Ch. Meyer, and B. Chaib-draa. A logical model of
commitment and argument network for agent communication. In Proc. of AAMAS-
04, pages 792–799, 2004.

2. P. Cohen and H. Levesque. Intention is choice with commitment. Artificial Intelli-
gence, 42(2-3):213–361, 1990.

3. P. Cohen and H. Levesque. Rational interaction as the basis for communication.
In P. Cohen, J. Morgan, and M. Pollack, editors, Intentions in Communication,
pages 221–255. MIT Press, Cambridge, Mass., 1990.

4. G. De Giacomo, Y. Lespérance, and H. Levesque. ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence, 121:109–169,
2000.

5. Foundations for Intelligent Physical Agents. FIPA communicative act library spec-
ification, document 37. 1997-2002.

6. P. Gardenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States.
MIT Press, Cambridge, Massachusetts, 1988.

7. A. Herzig and D. Longin. A logic of intention with cooperation principles and with
assertive speech acts as communication primitives. In Proc. of AAMAS-02, pages
920–927, 2002.

8. S. Khan and Y. Lespérance. ECASL: A model of rational agency for communicating
agents. In Proc. of AAMAS-05, pages 762–769. Utrecht, The Netherlands, July
2005.

9. S. Khan. A situation calculus account of multiagent planning, speech acts, and
communication, MSc Thesis (in preparation), 2005.

60 S.M. Khan and Y. Lespérance

10. G. Lakemeyer and H. Levesque. AOL: A logic of acting, sensing, knowing, and
only-knowing. In Proc. of KR-98, pages 316–327, 1998.

11. H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. Golog: A logic pro-
gramming language for dynamic domains. J. of Logic Programming, 31:59–84, 1997.

12. V. Louis and T. Martinez. An operational model for the FIPA-ACL semantics. In
R. van Eijk, R. Flores, and M.-P. Huget, editors, Proc. of International Workshop
on Agent Communication. LNCS, 2005

13. J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence, 4:463–502, 1969.

14. R. Moore. A formal theory of knowledge and action. Formal Theories of the Com-
monsense World, pages 319–358, 1985.

15. G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI-FN-19, Computer Science Dept., Aarhus University, Denmark, 1981.

16. A. Rao and M. Georgeff. Modeling rational agents within a BDI-architecture. In
R. Fikes and E. Sandewall, editors, Proc. of KR&R-91, pages 473–484, 1991.

17. R. Reiter. Knowledge in Action. Logical Foundations for Specifying and Implement-
ing Dynamical Systems. MIT Press, 2001.

18. R. Reiter. The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz, editor, Arti-
ficial Intelligence and Mathematical Theory of Computation: Papers in the Honor
of John McCarthy. Academic Press, 1991.

19. D. Sadek and P. Bretier. ARTIMIS: Natural dialogue meets rational agency. In
Proc. of IJCAI-97, pages 1030–1035, 1997.

20. D. Sadek. Communication theory = rationality principles + communicative act
models. In Proc. of AAAI-94 Workshop on Planning for Interagent Comm., 1994.

21. R. Scherl and H. Levesque. Knowledge, action, and the frame problem. Artificial
Intelligence, 144(1-2), 2003.

22. S. Shapiro. Specifying and Verifying Multiagent Systems Using CASL. PhD thesis,
Dept. of C.S., U. of Toronto, 2005.

23. S. Shapiro and Y. Lespérance. Modeling multiagent systems with the Cognitive
Agents Specification Language - a feature interaction resolution application. In C.
Castelfranchi and Y. Lespérance, editors, Intelligent Agents Vol. VII - Proc. of
ATAL-00, volume LNAI 1986, pages 244–259, 2001.

24. S. Shapiro, Y. Lespérance, and H. Levesque. Specifying communicative multi-agent
systems. Agents and Multi-Agent Systems – Formalisms, Methodologies, and Ap-
plications, LNAI 1441:1–14, 1998.

25. S. Shapiro, Y. Lespérance, and H. Levesque. The Cognitive Agents Specifica-
tion Language and verification environment for multiagent systems. In Proc. of
AAMAS-02, pages 19–26, 2002.

26. M. Singh. Multiagent Systems: A Theoretical Framework for Intentions, Know-
How, and Communications. LNAI 799, 1994.

27. M. Sirbu. Credits and debits on the internet. Readings in Agents, pages 299–305,
1998.

28. R. Smith. The contract net protocol: High level communication and control in a
distributed problem solver. IEEE Transactions on Computers, C-29(12):1104–1113,
1980.

29. P. Yolum and M. Singh. Commitment machines. In J.-J. C. Meyer and M. Tambe,
editors, Intelligent Agents VIII : 8th Intl. Workshop, ATAL-01, volume LNAI 2333,
pages 235–247, 2002.

A Commitment-Based

Communicative Act Library

Mario Verdicchio1,2 and Marco Colombetti2,3

1 University of Bergamo, Bergamo, Italy
Mario.Verdicchio@UniBG.It

2 Politecnico di Milano, Milano, Italy
{Mario.Verdicchio, Marco.Colombetti}@PoliMi.It

3 University of Lugano, Lugano, Switzerland
Marco.Colombetti@Lu.UniSi.CH

Abstract. The Agent Communication Language (ACL) proposed by
the Foundation for Intelligent Physical Agents (FIPA) is the most com-
plete attempt to create a universally accepted standard so far. Never-
theless, this standard shows some shortcomings which are probably hin-
dering an even greater impact upon the scientific research dealing with
multiagent systems. Although agreeing with the mainstream view that
analyzes agent communication in terms of communicative acts, we part
from FIPA’s assumptions about the semantics, as we shift the focus from
affecting communicating agents’ mental states to modifying the commit-
ments binding them to each other. We show that our commitment-based
framework is powerful enough to allow for the main FIPA communica-
tive acts and provides a semantics which overcomes some of the problems
that are currently affecting the standard.1

1 Introduction

Agent Communication Languages (ACLs) play a very important role in the con-
text of open multiagent systems, which must provide a standard communication
framework that allows all participating agents to interact. The fact that we do
not have an established standard yet has lead us to research for some unre-
solved issues that may have hindered the universal acceptance of the proposals
put forward so far. Our analysis focuses on the proposal by the Foundation for
Intelligent Physical Agents (FIPA) [2] because it has recently emerged as the
best candidate to become an established standard. Some works in the literature,
like [16], aimed at showing that several critical issues rise from expressing the
language’s semantics in terms of mental states and that instead turning to social
states (i.e. commitments) would provide a way to solve some of these issues. We
aim to show that this approach is a real alternative to mentalistic semantics,
and we consider as a fundamental step to rewrite FIPA’s Communicative Act

1 This paper appears also in the Proceedings of the Fourth International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS 05).

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 61–75, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

62 M. Verdicchio and M. Colombetti

Library [3] according to this perspective, that is, express FIPA communicative
acts in terms of commitments between agents. Such a task has led us to classify
them into four different categories, as follows:
1. the acts in this category (i.e. inform and request) are such that even if they

are given a new semantics in terms of commitments, their illocutionary force
(their point, i.e. informing and requesting, respectively) is not affected by
such change;

2. the semantics of the acts that fall in this category (e.g. propose) is slightly
changed when they are described in terms of commitments (for instance, a
propose act is not defined as informing about one’s intentions to perform a
certain action, but as creating a proposal of a commitment to such action);

3. we put into this category those acts, like request-when, that do not express
an illocutionary force, but a compound of illocutionary force and content;
we suggest a way to redefine such acts (e.g. we define a request-when act as
a request act with a temporal conditional content);

4. this last category is comprised of those acts, like confirm and disconfirm,
that are not considered necessary in an approach which does not take mental
states into account; enriching our model to include such acts is beyond the
scope of this work.

This paper is organized as follows: Section 2 provides the formal apparatus our
model is based upon; Section 3 illustrates a way to formalize commitments in a
multiagent system; Section 4 defines FIPA communicative acts belonging to the
first three categories above in terms of commitments; Section 5 finally draws our
conclusions and illustrates the future directions of this work.

2 The Formal Model

As commitments deal with certain states of affairs that occur in time, we first
need to provide some formal definitions about time, events, and actions. To do so,
we provide new definitions which extend the temporal logic that is illustrated
in [16] with a different notation to increase readability. Our starting point is
CTL±, a temporal language close to CTL*, which is a branching temporal logic
including only future-directed temporal operators [1]. Past-directed operators
do not increase the logic’s expressiveness [8], but nevertheless they allow us
to express some properties of computational systems in a far more succinct
way [11]. In CTL±, time is assumed to be discrete, with no start or end point,
and branching only in the future. In the literature we can find temporal logic
proposals that involve branching also in the past [14], but we prefer to rely on the
idea of “historical necessity” [15], according to which agents have no possibility
of changing the past, so that they are enabled to reason about alternatives or
indeterminacy only with respect to the future.

2.1 The Syntax

We call sort set a finite, nonempty set of elements, called sorts ; a finite, possibly
empty sequence of sorts is called a prototype. A CTL± language is a sextuple

A Commitment-Based Communicative Act Library 63

〈Σ, V, C, Ξ, Π, θ〉, where Σ is a sort set, V is a denumerable set of (individual)
variables, C is an arbitrary set of (individual) constants, Ξ is an arbitrary set of
functors, Π is an arbitrary set of predicates, and θ is a function that assigns a
sort to every variable and every constant, and a prototype to every functor and
every predicate. The set V of variables includes denumerable many variables for
every sort.

For every sort σ, we define the set Tσ of terms of sort σ as follows:

– x ∈ Tσ if x ∈ V and θ(x) = σ;
– a ∈ Tσ if a ∈ C and θ(a) = σ;
– f(t1, ..., tn) ∈ Tσ if f ∈ Ξ and

θ(f) = 〈σ, θ(t1), ..., θ(tn)〉;
– nothing else belongs to Tσ.

The set A of atomic formulae is defined as follows:

– (t1 = t2) ∈ A if t1, t2 ∈ Ts for some s ∈ Σ;
– P (t1, ..., tn) ∈ A if P ∈ Π , θ(P) = 〈σ1, ..., σn〉 and

ti ∈ Tσi for 1 ≤ i ≤ n;
– nothing else belongs to A.

The set Φ of CTL± formulae is such that:

– A ⊆ Φ;
– ¬φ ∈ Φ if φ ∈ Φ;
– (φ ∧ ψ) ∈ Φ if φ, ψ ∈ Φ;
– ∀xφ ∈ Φ if x ∈ V and φ ∈ Φ;
– Nextφ, Preφ ∈ Φ if φ ∈ Φ;
– (φUntilψ), (φSinceψ) ∈ Φ if φ, ψ ∈ Φ;
– Aφ if φ ∈ Φ;
– nothing else belongs to Φ.

The temporal operators Next (at the next state), Pre (at the previous state),
Until, Since, and A (on all paths), are primitive. The formulae true, false, (φ ∨
ψ), (φ → ψ), (φ ↔ ψ), and ∃xφ respectively abbreviate ∀x(x = x), ¬true,
¬(¬φ ∧ ¬ψ), (¬φ ∨ ψ), ((φ → ψ) ∧ (ψ → φ)), and ¬∀x¬φ. As usual, φ[t/x]
denotes the result of replacing all free occurrences of variable x in φ with term
t. Formula Eφ abbreviates ¬A¬φ. We also introduce these temporal operators,
SomeFut (sometimes in the future), SomePast (sometimes in the past), AlwFut
(always in the future), AlwPast (always in the past), Some (sometimes), and Alw
(always) as abbreviations, as follows:

SomeFutφ =def trueUntilφ; SomePastφ =def trueSinceφ;
AlwFutφ =def ¬SomeFut¬φ; AlwPastφ =def ¬SomePast¬φ;
Someφ =def SomeFutφ ∧ SomePastφ;
Alwφ =def AlwFutφ ∧ AlwPastφ.

64 M. Verdicchio and M. Colombetti

2.2 The Semantics

A CTL± frame is a structure F = 〈S, π〉, where S is a set of states, and π : S →
S is an injective function that associates to every state a unique predecessor.
Function π is such that every state is the predecessor of at least one state. A
path in F is an infinite sequence p = 〈p0, ..., pn, ...〉 of states, in which every
element pn of the sequence is the predecessor of pn+1 in F . The subsequence of
p starting from element pn is itself a path, which we denote with pn; for every
n > 0, we say that pn is a subpath of p.

A multidomain D = {Dσ}σ∈Σ is a collection of mutually disjoint, nonempty
domains of individuals. A model for CTL± is a triple M = 〈F, D, i〉, where F is a
CTL± frame, D is a multidomain, and i is an interpretation function assigning:

– an individual i(c) ∈ Dθ(c) to every constant c;
– a function i(s, f) : Dσ1 × ...×Dσn → Dσ to every state s and every function

f such that θ(f) = 〈σ, σ1, ..., σn〉;
– a relation i(s, P) ⊆ Dσ1 × ... ×Dσn to every state s and every predicate P

such that θ(P) = 〈σ1, ..., σn〉.

An assignment of individuals to variables is a function v : V → D such that
v(x) ∈ Dθ(x). Given assignment v, an assignment v′ is an x-variant of v (v ≈x v′,
in symbols) if v(y) = v′(y) for all y �= x. The denotation of term t under an
assignment v is defined as follows:

– δM,v(t) = v(t) if t ∈ V ;
– δM,v(t) = i(t) if t ∈ C;
– δM,v(f(t1, ..., tn)) = i(s, f)(δM,v(t1), ..., δM,v(tn)).

Denotations do not depend on paths, so that constants are rigid.
Let us define the conditions under which a formula is true in model M on

path p under assignment v:

M, p, v |= (t1 = t2) iff δM,v(t1) = δM,v(t2);
M, p, v |= P (t1, ..., tn) iff 〈δM,v(t1), ..., δM,v(tn)〉 ∈ i(p0, P);
M, p, v |= ¬φ iff not M, p, v |= φ;
M, p, v |= (φ ∧ ψ) iff M, p, v |= φ and M, p, v |= ψ;
M, p, v |= ∀xφ iff M, p, v′ |= φ for all v′ such that v ≈x v′;
M, p, v |= Next φ iff M, p1, v |= φ;
M, p, v |= Pre φ iff for some path q, q1 = p and M, q, v |= φ;
M, p, v |= (φ Until ψ) iff for some n, M, pn, v |= ψ and

for all m s.t. 0 ≤ m ≤ n, M, pm, v |= φ;
M, p, v |= (φ Since ψ) iff for some path q and for some n, qn = p and

M, q |= ψ and for all m s.t. 0 ≤ m ≤ n, M, qm |= φ;
M, p, v |= Aφ iff for all q s.t. q0 = p0, M, q, v |= φ.

Please note that the definitions of Until and Since deviate from the classical
ones, in that they are inclusive of both states at the boundaries of the relevant
interval. A formula is true in model M on path p if it is true in M on path p
under all assignments:

A Commitment-Based Communicative Act Library 65

M, p |= φ iff M, p, v |= φ for all v.

If φ is a closed formula (i.e. it contains no free occurrences of variables), then its
truth value does not depend on variable assignments. Thus, φ is true in M on
p under v if, and only if, it is true in M on p. Finally, a formula is valid if it is
true on all paths of every model:

|= φ

if and only if M, p |= φ for all models M and all paths p in the frame of M .

3 Commitments and Their Manipulation

To define a logic of commitments we have to deal with agents, typed events
that agents bring about, and sentences of a content language (CL) that are the
content of their commitments. Thus, we need to introduce the relevant sorts in
our language.

3.1 Events and Actions

We assume that the set Σ of CTL± sorts contains at least the elements event
(the sort of events), agent (the sort of agents), eventtype (the sort of event types),
and sentence (the sort of CL sentences), and that the set P of predicates contains
at least the elements Happ, Actor, Type, Comm, and Prec. To indicate that
predicate Happ’s prototype is θ(Happ) = 〈event〉, we write Happ(event), and
we use a similar notation for the other predicates:

– Actor(event,agent);
– Type(event,eventtype);
– Comm(event,agent,agent,sentence);
– Prec(event,agent,agent,sentence).

Intuitively, Happ(e) means that event e has just happened, Actor(e, x) means
that event e, if it happened at all, has been brought about by agent x (we also
say that x is the actor of e), and Type(e, t) means that e is an event of type t.
We assume that an event cannot happen more than once on the same path. This
assumption is captured by the following event uniqueness axiom:

(EU) Happ(e) → PreAlwPast¬Happ(e) ∧ ANextAlwFut¬Happ(e).

Here we define the predicate Done(event,agent,eventtype):

(DD) Done(e, x, t) =def Happ(e) ∧Actor(e, x) ∧ Type(e, t).

The intuitive meaning of Done(e, x, t) is that agent x has just brought about an
event e of type t, or, that x has performed an action e of type t. We thus define
actions as events that have an actor.

66 M. Verdicchio and M. Colombetti

3.2 Commitments and Precommitments

In our approach, we analytically define communicative acts (a special type of
actions) in terms of changes at the level of social relations among agents. We
take commitment to be a primitive concept that underlies the social structure of
a multi-agent system, and describe communicative acts as actions brought about
by an agent to affect the network of commitments that binds it to other agents.
We thus introduce the Comm predicate: to state that a commitment holds at a
state in which agent x (the debtor) is bound, relative to agent y (the creditor),
to the fact that some proposition (the content) is true, we write

M, p, v |= Comm(e, x, y, s).

The first argument of the Comm predicate, e, is the event that has brought
about the state of affairs in which the commitment holds. The content of the
commitment is a formula of a content language represented as a first-order term
s of sort sentence, which is the fourth parameter of the Comm predicate. The
semantics of CL sentences is provided by translating them into formulae of Φ.
More formally, we define a function � � : Dsentence → Φ such that, given a
sentence term s, �s� is the Φ formula it corresponds to. We also introduce a
function � � : Φ→ Dsentence which, given a formula φ ∈ Φ, returns the relevant
term �φ� ∈ Dsentence.

Commitments that have been proposed but not yet accepted nor rejected are
defined as precommitments. They are represented in the same way as commit-
ments: the following formula holds when e has brought about a precommitment
between two agents (the potential debtor x and the potential creditor y) to the
truth of a sentence represented by s:

M, p, v |= Prec(e, x, y, s).

In our approach, agent communication is brought about by means of message
exchanges that under specific conditions count as commitment manipulation
actions. We suppose that the set Deventtype contains the following event types,
corresponding to five basic actions for manipulating commitments:

1. make-commitment: mc(x, y, s);
2. make-precommitment: mp(x, y, s);
3. cancel-commitment: cc(e, x, y, s);
4. cancel-precommitment: cp(e, x, y, s);
5. accept-precommitment: ap(e, x, y, s).

The mc and mp event types have three parameters, x, y, and s, that correspond
to the debtor, the creditor, and the content of the (pre)commitment that is being
created. The cc, cp, and ap event types have one more parameter e, that refers to
the event that has brought about the (pre)commitment that is being cancelled
or accepted. These are types of actions that agents can perform. For instance,
to state that agent x has brought about an event e of making a commitment
towards agent y with content s, we write as follows:

A Commitment-Based Communicative Act Library 67

M, p, v |= Done(e, x, mc(x, y, s)).

We may use the ‘m-dash’ character to express existential quantification, as follows:

Done(e,−, t) =def ∃xDone(e, x, t);
Done(−,−, t) =def ∃e∃xDone(e, x, t);
Done(e,−,−) corresponds to the primitive Happ(e).

Here are the axioms that describe the above mentioned types of commitment
manipulation events in terms of their constitutive effects, that is, the state of
affairs that are the case after a token of the given event type is performed.

These axioms feature the Z temporal operator, which represents the intuitive
concept of “until and no longer” and is defined as follows:

φ Z ψ =def φ WeakUntilψ ∧ AlwFut(ψ → NextAlwFut¬φ),
where
φ WeakUntil ψ =def AlwFut φ ∨ φ Until ψ.

φ Z ψ is true if and only if in the future ψ never becomes true and φ is always
true, or φ is true until ψ eventually becomes true and since then φ is no longer
true.

(MC) Done(e,−, mc(x, y, s))→
A (Comm(e, x, y, s) Z Done(−,−, cc(e, x, y, s)));

(MP) Done(e,−, mp(x, y, s))→
A (Prec(e, x, y, s) Z (Done(−,−, ap(e, x, y, s))∨

Done(−,−, cp(e, x, y, s))));
(AP) Done(e′,−, ap(e, x, y, s))→

A(Comm(e′, x, y, s) Z Done(−,−, cc(e′, x, y, s))).

Axiom MC (Make Commitment) states that if an agent (not necessarily x
or y) performs an action of making a commitment with x as the debtor, y as
the creditor, and s as the content, then on all paths x is committed, relative to
y, to the truth of s, until an agent possibly cancels such a commitment, after
which the commitment no longer exists. Axiom MP (Make Precommitment) is
analogous to MC, and it deals with the creation of a precommitment. Axiom AP
(Accept Precommitment) entails that if an agent performs the action of accepting
a precommitment brought about by event e with x, y, and s respectively as
debtor, creditor, and content, then such acceptance brings about on all paths
a commitment of x, relative to y, to the truth of s, which will hold until it
is possibly cancelled. There are no specific axioms for the actions of cancelling
a precommitment (cp) or a commitment (cc), because the analytical effects of
these commitment manipulations are already illustrated in the axioms dealing
with other actions.

Commitments are said to be fulfilled and violated when their content is settled
true and false, respectively. Before dealing with the truth conditions of formulae,
we must take the following considerations into account. Firstly, the truth of a
sentence including temporal qualifications at a given state (namely, the point of

68 M. Verdicchio and M. Colombetti

reference [10]) can be evaluated only if we know the state at which the sentence
has been uttered (the point of speech). Moreover, branching time brings in a
phenomenon known as contingent future, which means that at a given point of
reference it may be still undetermined if a sentence is going to be true or false
(e.g., “it will rain until 6:00”, stated while it is raining at 4:00). In such a case,
a formula is said to be unsettled, and the relevant commitment is pending. The
truth conditions of CL sentences are thus formalized as follows:

(DT) True(e, s) =def ASomePast(Happ(e) ∧ �s�),
(DF) False(e, s) =def ASomePast(Happ(e) ∧ ¬�s�),
(DU) Unset(e, s) =def ASomePastHapp(e)∧¬True(e, s) ∧ ¬False(e, s).

The truth conditions of sentence s are given with respect to an event e, which
does not necessarily correspond to the event of uttering s. As event e is used to
set a well-defined temporal reference by which we can evaluate the truth of s, all
these definitions rely on the event uniqueness axiom. We then have the following
definitions:

(DL)Fulf(e, x, y, s) =def Comm(e, x, y, s) ∧ True(e, s),
(DV)V iol(e, x, y, s)=def Comm(e, x, y, s) ∧ False(e, s),
(DP)Pend(e, x, y, s) =def Comm(e, x, y, s) ∧ Unset(e, s).

3.3 Action Expressions

So far, we have dealt with commitments with a generic content term s, but
we may want to focus on more specific contents, dealing with future actions
performed by agents. To do so, let us first introduce some derived temporal
operators, which will enable us to write more synthetic formulae:

φ Before ψ =def ¬(¬φ WeakUntil ψ);
φ AsSoonAs ψ =def (ψ → φ) WeakUntil ψ.

Formula φ AsSoonAs ψ holds when at the first state at which ψ is true, also
φ is the case. In other words, φ is true as soon as ψ is (possibly) true. We
define a subdomain Daction ⊆ Dsentence of action expressions, that is, terms
corresponding to a particular subset of CL sentences. We have identified two
action expression schemata, which are expressive enough to allow for a vast
range of formulae dealing with action performances. Let d, sλ, sω, and sχ be
terms of Dsentence. In particular, let d correspond to a formula representing the
performance of an action of a certain type by an agent: �d� = Done(−, t1, t2),
where t1 ∈ Tagent and t2 ∈ Teventtype. We then define the first action expression
schema α∀ as follows:

α∀ = [sλ, sω|sχ]d
�α∀� = ((�sχ� → �d�)WeakUntil�sω�)AsSoonAs�sλ�.

We have M, p, v |= �α∀� if and only if in the sequence of states on path p which
begins at the first occurrence of �sλ� and ends at the subsequent state at which
�sω� is the case, every time �sχ� holds, then �d� is true. The notation with square

A Commitment-Based Communicative Act Library 69

brackets has already been adopted in [18], and it was originally inspired by [9].
We define the other action expression schema, α∃, as follows:

α∃ = 〈sλ, sω|sχ〉d
�α∃� = ((�sχ�Before�sω�)→ ((�sχ� ∧ �d�)Before�sω�)) AsSoonAs �sλ�.

If α∀ is loosely based on the idea of universal quantification, α∃ deals with
existential quantification, in that �α∃� is true on a path where, in the interval
identified by the subsequent occurrences of �sλ� and �sω�, �d� is true at a state
at which �sχ� holds, if it is ever the case. We will refer to a generic action
expression, whether universal or existential, by α. Given an action expression α,
we denote with agent(α) the agent that is designated as the actor of the action
to be performed.

4 Communicative Acts

An institutional action is defined within the context of an artificial institution,
a set of shared rules that regulate the management of a fragment of social real-
ity [13,7], including multiagent systems. It is performed through the execution
of some lower level act that conventionally counts as a performance of the in-
stitutional action; an example is provided by communicative acts, which are
performed by executing lower level acts of message exchange. Institutional ac-
tions thus require a set of conventions for their execution. We adopt the view
according to which the commitment manipulation actions described in the pre-
vious section are institutional actions that are conventionally realized by the
exchange of messages.

4.1 Basic Communicative Acts

In our approach, we call basic those communicative acts that map directly onto
a commitment manipulation action. For every kind of message we introduce a
functor that specifies the type of the action that an agent performs when ex-
changing such a message. This approach is illustrated by the following example.
Suppose that a message is sent to agent y to inform y that �s� is the case. The
exchange of such a message is an event of type inform(y, s), where inform is a
two-place functor denoting the type of the message, y denotes the receiver of the
message, and s is its content. When event e is an exchange of a message of type
inform and content s, sent by agent x to agent y, the following formula holds:

Done(e, x,inform(y, s)).

This event, under given conditions which we illustrate later on, implies the per-
formance of a commitment manipulation action. The semantics of the message
is defined as the effect that exchanging such a message has on the network of
commitments binding the sender and the receiver. The correspondence between
the message exchange event type and the commitment manipulation action type
relies on a relation that is formally described by the formula below,

Conv(x, t, t′),

70 M. Verdicchio and M. Colombetti

which means that an action of type t performed by agent x corresponds to an
action of type t′ in accordance to a convention established in the communication
framework. Here we define a basic set of communicative acts by means of which
agents carry out the commitment manipulation actions. Each communicative act
is accompanied by a possibly empty set of conditions that must hold to make
the message exchange count as a commitment manipulation. These conditions
deal with the agent designated to perform an action (e.g., if x makes a request
to y, y must be the performer of the requested action), with the creators of
precommitments (e.g., if x accepts a proposal by exchanging a message with y,
y must be the issuer of such proposal), and with some presuppositions about the
existence of precommitments (i.e., x cannot reject a proposal that has not been
made). This is formally stated by the following axiom:

(CO)Done(e, x, t) ∧ Conv(x, t, t′) ∧ Ψ → Done(e, x, t′),

where Ψ is to be understood as the conjunction of the formulae indicated in
the fourth column of the table in Figure 1 for each communicative act type. A
comparison between our approach and another work dealing with the notion of
convention [6] can be found in [17].

message
type

Conv(x,t,t’)

t t’

additional
conditions

inform inform(y,s) mc(x,y,s)

request request(y, a) mp(y,x,a) y=agent(a)

agree agree(y,(e,x,y,a)) ap(e,x,y,a)
x=agent(a)
Actor(e,y)

Pre Prec(e,x,y,a)

propose propose(y,a) mp(x,y,a) x=agent(a)

accept-
proposal

accept-
proposal(y,(e,y,x,a))

ap(e,y,x,a)
y=agent(a)
Actor(e,y)

Pre Prec(e,y,x,a)

refuse refuse(y,(e,x,y,a)) cp(e,x,y,a)

reject-
proposal

reject-
proposal(y,(e,y,x,a)) cp(e,y,x,a)

cancel cancel(y,(e,y,x,a)) cc(e,y,x,a)

x=agent(a)
Actor(e,y)

Pre Prec(e,x,y,a)

y=agent(a)
Actor(e,y)

Pre Prec(e,y,x,a)

y=agent(a)
Pre Comm(e,y,x,a)

Fig. 1. FIPA communicative acts as conventions to perform commitment manipulations

4.2 Derived Communicative Acts

Derived communicative acts are defined in terms of the above mentioned basic
communicative acts. We can distinguish two kinds of derivation. In the case of

A Commitment-Based Communicative Act Library 71

the request-when and request-whenever acts, we deal with derivation by content
specialization, in that we define them as a request act with a specialized content.
We thus part from FIPA’s specifications, which define these acts in terms of
an inform act. “Request-when allows an agent to inform another agent that a
certain action should be performed as soon as a given precondition... becomes
true [3].” A very similar description is provided for the request-whenever act. We
avoid defining a request-like act in terms of a basic act of informing since we keep
in mind a fundamental concept from Speech Act Theory (i.e. the direction of fit
[12]), according to which a request has a world-to-word direction (we want the
world to be like what we ask) while an inform act has a word-to-world direction
(what we state must reflect the current state of affairs). Besides, we think that
these definitions clash with the fact that the simple request is considered as
a primitive act in FIPA’s specification. If specialized requests can be defined
in terms of an inform act, we should also be able to define the simple request
in such terms. In our model, the request-when and request-whenever acts are
formally defined as follows:

request-when(y, t1, s1) =def request(y, α1),
α1 = 〈�true�, s1|s1〉�Done(−, y, t1)�;

request-whenever(y, t2, s2) =def request(y, α2),
α2 = [�true�, �false�|s2]�Done(−, y, t2)�.

As it can be easily shown that

�〈�true�, s1|s1〉�Done(−, y,t1)�� ↔ Done(−, y, t1) AsSoonAs �s1�,

by performing a message exchange of type request-when(y, t1, s1), an agent re-
quests y to perform an act of type t1 as soon as �s1� holds. Similarly, as we
have

�[�true�, �false�|s2]�Done(−, y, t2)�� ↔ AlwFut(�s2� → Done(−, y, t2)),

a request-whenever(y, t2, s2) act consists of a request to y to perform a t2 action
every time �s2� is the case.

Following the FIPA specifications, we define the inform-if act as a ‘macro’ act
to inform whether a sentence is true or not. In this case, we deal with derivation
by macro composition, as we define an inform-if act as a disjunction of mutually
exclusive inform acts, as follows.

Done(e, x,inform-if (y, s)) =def

Done(e, x,inform(y, s))∨Done(e, x,inform(y, �¬�s��)),

where φ∨ψ =def (φ ∨ ψ) ∧ ¬(φ ∧ ψ). We then define a query-if act by content
specification as a request for an inform-if act, as follows:

Done(e, x,query-if (y, s)) =def Done(e, x,request(y, α)),
α = 〈�true�, �false�|�true�〉�Done(−, y,inform-if (x, s))�,

where the temporal qualification 〈�true�, �false�|�true�〉φ, which is equivalent to
SomeFutφ, may be specified in order to introduce deadlines for the inform-if act,
as we have 〈�true�, �ψ�|�true�〉φ↔ φ Before ψ.

72 M. Verdicchio and M. Colombetti

Failure and not-understood are two more acts that can be defined as inform
acts with a specific content, expressed in terms of predicates dealing with at-
tempts and message decoding whose definition lies beyond the scope of this work.

4.3 Communicative Acts with Referential Operators

Following FIPA’s specifications [5], we introduce three referential operators, any,
iota, and all, to create referential terms like (any x f), (iota x f), and (all x f)
(with f ∈ Dsentence) which are to be read as “any x”, “the x”, and “all the x”
such that �f� is true . We will not provide a formal definition of such terms,
in that in our approach they are used only as a notation to distinguish one
referential act from another. We assume that there exists a sort URI of uniform
resource identifiers, which identify every object in multidomain D with a unique
name, and a function uri : D → DURI that returns the URI of every element in
D. URIs are assumed to be self-referential. Given a referential term r, we define
the inform-ref act as a specialization of an inform act, as follows:

inform-ref (y, r) =def inform(y, s),

where s corresponds to a specific formula in accordance with r, as follows:

if r = (any x f), then
�s� = �f�[k/x] ∧ uri(k) = n;
if r = (the x f), then
�s� = �f�[k/x] ∧ uri(k) = n ∧ ∀z(�f�[z/x]→ z = k);
if r = (all x f), then
�s� =

∧
i(�f�[ki/x] ∧ (uri(ki) = ni))∧
∀z(�f�[z/x]→

∨
i(z = ki)).

We then define the query-ref act as a request for an inform-ref act, as below:

Done(e, x,query-ref (y, r)) =def Done(e, x,request(y, α)),
α = �SomeFutDone(−, y,inform-ref (x, r))�.

As stated before, we have that:

SomeFutφ↔ 〈�true�, �false�|�true�〉φ.

4.4 The Call for Proposal Act

Let us have a closer look at the logical model (and at the advantages of an
approach based on commitments rather than on mental states) while illustrating
the cfp (call for proposal) act. Like FIPA, we define a cfp act as a query-ref act
with a specific content, as follows:

Done(e, x,cfp(y, τ)) =def Done(e, x,query-ref (y,any w α)),
α = 〈�Done(−, x,pay(y, w))�, �Deadline�|�true�〉 �Done(−, y, τ)�.

A Commitment-Based Communicative Act Library 73

Considering also the query-ref act definition, we can see that a cfp act boils
down to x asking y what is the sum w that x has to pay to y to have service
τ done by y before a certain deadline (the Done(−, x,pay(y, w)) formula can be
easily generalized or adapted to different application domains). Let us analyze
how the commitments between two agents exchanging such a message evolve on
a path p of a model M under an assignment v:

1. M, p, v |= Done(e, x,cfp(y, τ)) (hypothesis)
2. M, p, v |= Done(e, x,query-ref (y,any w α)) (1, cfp def)
3. M, p, v |= Done(e, x,request(y, α′)) (2, query-ref def)
3◦.�α′� = SomeFutDone(−, y,inform-ref (x,any w α))
4. M, p, v |= Done(e, x, mp(e, y, x, α′)) (3,CO)
5. M, p, v |= Prec(e, y, x, α′) (4, MP)

A cfp act to y by x thus leads to the creation of a precommitment of y towards
x to perform an inform-ref act (we could also specify a deadline for such per-
formance). Let us first suppose that y refuses such a precommitment (on a path
p′ that is a subpath of p, ∃n(p′ = pn)):

6′. M, p′, v |= Done(e′, y,refuse(x, (e, y, x, α′))) (hyp)
7′. M, p′, v |= Done(e′, y, cp(e, y, x, α′)) (6′, CO)
8′. M, p′, v |= AAlwFut¬Prec(e, y, x, α′) (7′, MP)

As a result, the call for proposal has been turned down, and the relevant pre-
commitment does not exist anymore. Let us show an alternative course of events
on another subpath p′′:

6′′. M, p′′, v |= Done(e′′, y,agree(x, (e, y, x, α′))) (hyp)
7′′. M, p′′, v |= Done(e′′, y, ap(e, y, x, α′)) (6′′, CO)
8′′. M, p′′, v |= ¬Prec(e, y, x, α′) ∧ Comm(e′′, y, x, α′) (7′′, AP)

An agree act by y turns the precommitment into a commitment. Let us suppose
that later on, on a subpath p′′′ (∃m(p′′′ = p′′m)), y informs x about the sum
k that y requires for service τ (we omit the uri function in the content of the
inform message):

9′′. M, p′′′, v |= Done(e′′′, y,inform(x, ��α�[k/w]�)) (hyp)
10′′. M, p′′′, v |= Done(e′′′, y,inform-ref (x,any w α)) (9′′, inform-ref def)
11′′. M, p′′′, v |= ASomePast(Happ(e′′) ∧ �α′�) (3◦, 6′′, 10′′)
12′′. M, p′′′, v |= True(e′′, α′) (11′′, DT)
13′′. M, p′′′, v |= Fulf(e′′, y, x, α′) (8′′, 12′′, DL)

By performing an inform-ref, y fulfills a commitment, but such act, as it consists
of an inform message exchange, also creates another commitment, as follows:

14′′. M, p′′′, v |= Done(e′′′, y, mc(y, x, ��α�[k/w]�)) (9′′, CO)
15′′. M, p′′′, v |= Comm(e′′′, y, x, ��α�[k/w]�)) (14′′, MC)

Agent y is thus committed to provide service τ before a specific deadline as soon
as x pays k.

74 M. Verdicchio and M. Colombetti

5 Conclusions and Future Work

The cfp example illustrates the advantages of our approach with respect to
FIPA’s. The FIPA standard does not provide any mechanism to verify the ful-
fillment of the agents’ commitments, if not relying on inform messages by the
agents themselves, as in the FIPA Contract Net protocol [4]. Such inform acts
do not entail the completion of a requested task, but provide only a snapshot of
some of the beliefs of the messages’ sender. Such beliefs reflect an actual state
of affairs in which the task has been carried out only under specific assumptions
about the agents’ internal architecture, which we cannot afford if we aim at
creating open multiagent systems. On the contrary, in our model every message
brings about changes in the social reality that underlies the multiagent system:
precommitments are created, cancelled, turned into commitments throughout
the message exchange process. As (pre)commitments are public and reflect an
objective state of affairs between agents, our model naturally provides a method
to verify whether every agent has fulfilled its own duties.

In this work, we have treated referential operators simply as a matter of no-
tation, making inform-ref, query-ref, and cfp acts rely on fairly complex content
language sentences. We think that this solution may be changed in the future,
when we tackle the proxy and propagate acts, whose definition seems to require
some further investigation about the topic of reference.

References

1. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 16, pages 995–1072. MIT Press,
Cambridge, MA, 1990.

2. FIPA. Agent Communication Language Specifications. Specification, Founda-
tion for Intelligent Physical Agents, http://www.fipa.org/repository/aclspecs.html,
2002.

3. FIPA. Communicative Act Library Specification. Specification, Foundation for
Intelligent Physical Agents, http://www.fipa.org/specs/fipa00037/, 2002.

4. FIPA. FIPA Contract Net Interaction Protocol Specification. Specification, Founda-
tion for Intelligent Physical Agents, http://www.fipa.org/specs/fipa00029/, 2002.

5. FIPA. FIPA SL Content Language Specification. Specification, Foundation for
Intelligent Physical Agents, http://www.fipa.org/specs/fipa00008/, 2002.

6. A. Jones and X. Parent. Conventional signalling acts and conversation. In
F. Dignum, editor, Advances in Agent Communication, International Workshop
on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14,
2003, volume 2922 of Lecture Notes in Computer Science. Springer, 2004.

7. A. Jones and M. J. Sergot. A formal characterisation of institutionalised power.
Journal of the IGPL, 4(3):429–445, 1996.

8. F. Laroussinie and P. Schnoebelen. A hierarchy of temporal logics with past.
Theoretical Computer Science, 148(2):303–324, 1995.

9. A.U.Mallya,P.Yolum, andM.P. Singh.Resolving commitments amongautonomous
agents. In F. Dignum, editor, Advances in Agent Communication, Proceedings of the
Interbational Workshop on Agent Communication Languages (ACL 2003), volume
2922 of Lecture Notes in Artificial Intelligence, pages 166–182. Springer, 2004.

A Commitment-Based Communicative Act Library 75

10. H. Reichenbach. Elements of Symbolic Logic. MacMillan, New York, NY, 1947.
11. M. Reynolds. More past glories. In Proceedings of the 15th Annual IEEE Sympo-

sium on Logic in Computer Science (LICS’00), pages 229–240. IEEE Comp. Soc.
Press, 2000.

12. J. R. Searle. Speech Acts. Cambridge University Press, Cambridge, UK, 1969.
13. J. R. Searle. The construction of social reality. Free Press, New York, 1995.
14. C. Stirling. Modal and temporal logics. In S. Abramsky, D. Gabbay, and

T. Maibaum, editors, Handbook of Philosophical Logic, Volume 2, pages 477–563.
Oxford University Press, Oxford, England, 1992.

15. R. Thomason. Combinations of tense and modality. In D. Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic, Vol II: Extensions of Classical Logic,
pages 135–165. Reidel, Dordrecht, The Netherlands, 1984.

16. M. Verdicchio and M. Colombetti. A logical model of social commitment for
agent communication. In J. S. Rosenschein, T. Sandholm, M. J. Wooldridge,
and M. Yokoo, editors, Proceedings of the 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 03), pages 528–535. ACM
Press, 2003.

17. M. Verdicchio and M. Colombetti. A logical model of social commitment for agent
communication. In F. Dignum, editor, Advances in Agent Communication, Interna-
tional Workshop on Agent Communication Languages, ACL 2003, Melbourne, Aus-
tralia, July 14, 2003, volume 2922 of Lecture Notes in Computer Science. Springer,
2004.

18. M. Verdicchio and M. Colombetti. Dealing with time in content language expres-
sions. In R. M. van Eijk, M.-P. Huget, and F. Dignum, editors, Agent Communica-
tion, International Workshop on Agent Communication, AC 2004, New York, NY,
USA, July 19, 2004, Revised Selected and Invited Papers, volume 3396 of Lecture
Notes in Computer Science. Springer, 2005.

Integrating Social Commitment-Based

Communication in Cognitive Agent Modeling

Philippe Pasquier1 and Brahim Chaib-draa2

1 AgentLab, University of Melbourne, Department of Information Systems, Australia
2 DAMAS lab., Laval University, Computer Science Department, Canada

{pasquier, chaib}@iad.ift.ulaval.ca

Abstract. In this paper, we extend the classical BDI architecture for
the treatment of social commitments based communication by: (1) link-
ing social commitments and individual intentions, (2) providing a model
of the cognitive aspect of communication pragmatics in order to autom-
atize social commitment based communication. In particular, we intro-
duce a general decision-making process leading to attitude change in the
appropriate cases.

1 Introduction

Cognitive agent modelings rest on the isolation and formalization of private
mental states such as beliefs, desires and intentions exemplified by the classic BDI
[Beliefs, Desires and Intentions] model. However, social commitments as a way
to capture interagent dependencies has founded improved agent communication
frameworks.

In this paper, we try to narrow the gap between those two paradigms by
proposing an extension of the classic BDI agent model (Section 2), enabling the
resulting deliberative-normative agent to communicate using an agent communi-
cation language based on the manipulation of social commitments: the DIAlogues
Games Agent Language (DIAGAL) (Section 3). This extension involves: refining
intention typology, linking individual intention with social commitments (Sec-
tion 4), and advancing a model of the cognitive aspects of pragmatics (Section
6) that leads to communication moves or attitude change (Section 5).

2 The Classic BDI Model

Various formulations of the BDI model can be found. The model has been ex-
pressed in multimodal logics [18,22], in first order specification languages [12] or
in procedural/algorythmic notation [27, Chapter 4]. In this paper, we will focus
on the procedural specifications.

BDI architecture rests on two main processes: deliberation and means-end
reasoning. Deliberation is the process by which an agent generates its intentions
on the basis of its beliefs and desires, while means-end reasoning consists in
planning a sequence of actions to execute as an attempt at satisfying its inten-
tions. The BDI control algorithm (presented in Figure 1) makes a compromise

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 76–92, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Integrating Social Commitment-Based Communication 77

Procedure. BDICycle(B0,I0)

1: Inputs: B0, set of initial beliefs;
I0, set of initially accepted intentions;

2: Outputs: none, this is not a function!
3: Local: B := B0, object that store the agent’s beliefs;

I := I0, object that stores the agent’s intentions;
D, object that stores the agent’s desires;
List ρ, stores both internal and external percepts;
List π := null, current plan, sequence of actions;

4: Body:
5: while true do
6: Get new percepts ρ;
7: Update B on the basis of ρ;
8: if Reconsider(I ,B) then
9: D := Options(B,I);

10: I := Deliberate(B,D,I); // deliberate if necessary
11: end if
12: if Empty(π) or Succeeded(I ,B) or Impossible(I ,B)) then
13: π := Plan(B,I); // replan if necessary
14: else
15: α := Head(π);
16: Execute(α); // execute an action
17: π := Tail(π);
18: end if
19: end while

Fig. 1. BDI agent’s control loop

between deliberation (a time consuming cognitive activity), means-end reasoning
and acting activities through the Reconsider() function.

At each cycle of the algorithm, the BDI agent updates his beliefs according
to its percepts (lines 6 and 7). If necessary (according to the boolean function
Reconsider(), line 8), the agent (re)deliberates in order to update his desires
and intentions (line 9 et 10). Then, if the current plan is empty or has become
invalid or if the pursued intention has been achieved, has become impossible
or has changed (line 11), the agent (re)plans (line 12). Otherwise (if all the
preceding conditions are false), the agent executes an action from the current
plan (lines 14-16). Notice that this action can be of a complex type.

As stated in [7], intentions are choices to which the agent commits. One of
the main characteristics of individual intentions is that they are associated with
what has been called an individual action commitment for which resources have
been allocated [2,25]. It means that when an agent has accepted an intention,
he is individually committed to achieving particular actions as an attempt to
reach the wanted state (described by the intention). This individual commitment
should not be confused with social commitments.

78 P. Pasquier and B. Chaib-draa

These individual commitments are not represented explicitly and it’s the in-
tention reconsideration process that ensures intentions’ temporal persistence.
The mechanism used by an agent in order to decide when and how to reject
a formerly accepted intention is called individual commitment strategies. One
usually distinguishes three main individual commitment strategies [18,22]:

– Blind commitment (fanatical): agent continues to maintain intention until it
has been achieved;

– Single-minded commitment : agent will continue to maintain intention until
it has been achieved or it is impossible to achieve;

– Open-minded commitment : agent will maintain intention as long at it be-
lieves it is possible.

Communication in the BDI Model. In philosophy of language, Grice in-
troduced the fundamental link that lies between intention and communication
through the definition of non-natural meaning. This accounts for the fact that
literal meaning of a statement does not cover its whole meaning. According to
Levinson’s formulation [13], non natural meaning can be defined as follows. The
locutor A wanted to say z by uttering e, if and only if:

1. A has the intention that e yield to the effect z on B;
2. A has the intention that the previous intention will be achieved by B through

its recognizing of it.

Intention is involved twice in that definition considering the locutor’s prior
intention as well as his communicative intention, i.e. that the interlocutor rec-
ognizes his prior intention and react cooperatively. Consequently, strong coop-
erativity and sincerity assumptions are assumed in agent models that use these
mentalistic trends. For example, if the agent A wants to know if p holds and
believes that B has these pieces of information, he will ask B and hope that B
will recognize its intention and answer cooperatively and sincerely according to
his own knowledge. Even for assertive speech acts, cooperativeness is present.
For example, an assertion involves a belief change as a cooperative answer to it
in a context where sincerity is trusted.

Furthermore, computational complexity of the multi-modal logics used for
specifying speech-act based ACLs with mentalistic semantics forbids their use by
MAS designers (see [8,16] for discussions on that subject). In practical systems,
the communicative behavior of an agent is designed as a simplified reification
of the afore-mentioned concepts. For example, in the JACK-BDI agent frame-
works [11] (based on dMARS [12]), the agent’s communicative behavior is part
of its means-end reasoning, which is implanted as follows. Each plan consists of:
an invocation condition, which is the event that the plan responds to, a con-
text condition, stating conditions under which to use the plan, and a body that
specifies a sequence of actions or subgoals to achieve. Each intention raises a par-
ticular internal event type (goal events). Planning consists in selecting one plan
with that event as the triggering condition and with a context condition that is

Integrating Social Commitment-Based Communication 79

believed true. The choice between competitive plans is generally based on meta-
plans or hardwired strategies (for efficiency). For example, in the JACK-BDI
agent architecture the first eligible plan is chosen by default.

In that setting, dialogical actions are hard-coded in plans as other actions.
Dialogue initiative is hard-coded as the primitive action of sending an ACL
message that initiates a dialogue. Messages received from other agents are inter-
preted as external events of a particular type (message events) that are treated
in the event queue by updating beliefs and trigger the appropriate plan in order
to pursue (or cancel) the conversation.

Social commitment based communication frameworks allow leaving down
these cooperativity and sincerity assumptions by providing a treatment of the
social aspects of communication that is absent in previously proposed purely
mentalistic approaches. The next section will both introduce social commitment
based communication and discuss this point.

3 Social Commitment Based Communication

Social commitment has been introduced as a first class concept to represent so-
cially established (and grounded) interagent dependencies. In particular, social
commitments can model the semantics of agents’ interactions. In that context
being able to cancel or modify commitments is a key feature that allows agents
to reassess the consequences of past dialogues in the context of dynamic envi-
ronments. This semantical flexibility should not be confused with the commonly
considered structural flexibility of dialogues.

Since [17] discusses our modelling of flexible social commitments and their en-
forcement through sanctions, we simply re-introduce the basic of it here. Concep-
tually, commitments are oriented responsibilities contracted towards a partner
or a group. Following [26], we distinguish action commitments from propositional
commitments. Commitments are expressed as predicates with an arity of 6. Thus,
an accepted action commitment takes the form:

C(x, y, α, t, sx, sy)

meaning that agent x is committed towards agent y to α since time t, under
the sanctions sets sx and sy. An accepted propositional commitment would have
propositional content p instead α. Rejected commitments, meaning that x is
not committed toward y to α, takes the form ¬C(x, y, α, t, sx, sy). This notation
for commitments is inspired from [21], and allows us to compose the actions
or propositions involved in the commitments: α1|α2 classically stands for the
choice, and α1 ⇒ α2 for the conditional statement that α2 will occur in case of
the occurrence of the event α1. Finally, agents keep track of each commitment
in which they are debtor or creditor in their agendas, which constitutes a kind
of distributed “Commitment Store”.

In previous work, we proposed a DIAlogue Games Agent Language (DIA-
GAL) [14] for which our social commitment model offers a complete and valid
operational semantics. DIAGAL dialogue games are composed of entry condi-
tions (E), success condition (S), failure conditions (F), all expressed in terms

80 P. Pasquier and B. Chaib-draa

of social commitments and dialogue rules (R) which are expressed in terms
of dialogical commitments (Cg) that allow capturing the conventional level of
communication. For example, here is DIAGAL’s Request game (sanctions are
avoided for the sake of clarity):

Erg ¬C(y, x, α, ti) and ¬C(y, x,¬α, ti)
Srg C(y, x,α, tf)
Frg ¬C(y, x, α, tf)
Rrg 1) Cg(x, y, request (x, y, α), tj)

2) Cg(y, x, request (x, y, α)⇒
Cg(y, x, accept(y, x,α)|refuse(y, x, α), tk), tj)

3) Cg(y, x,accept(y, x,α)⇒ C(y, x, α, tf), tj)
4) Cg(y, x, refuse(y, x, α)⇒ ¬C(y, x,α, tf), tj)

DIAGAL dialogue based communication is grounded and structured through a
so-called contextualisation game that allows the agents to enter and leave games
as well as to structure complex dialogues. All together, our model of flexible
social commitment and their enforcement [17] and the DIAGAL [14] language
provides a complete agent communication framework that introduces a layered
model of agent communication (also formally described in [10]):

1. At the signal level (sometimes called attentional level): the contextualisation
game allows grounding dialogue games as well as their eventual structuration;

2. At the message level : messages (dialogue or speech act) allow fulfilling dia-
logical commitments and advancing the state of opened dialogue games;

3. At the dialogic level : dialogue games allow advancing the state of the social
layer of social commitments;

4. At the social level : social commitments, if they are respected (which is the
case with our model of the enforcement of social commitments) advance the
state of activities;

5. At the activity level : activities advance the state of the environment in a
way that should satisfy the agents or their designers.

According to the principle of information asymmetry, what is said does not
convey anything about what is actually believed. However, what is said socially
commits the locutors toward one another. Social commitments raise action ex-
pectations and the enforcement of social commitments through various social
control mechanisms take place instead of the sincerity and the cooperativeness
assumptions. Social commitments, when modelled with their enforcement mech-
anism (as in [17]), are not necessarily sincere and don’t require the agents to
be cooperative. From this perspective, communication serves to coordinate the
agents whether or not they are cooperative and whether or not they are sincere.

These social commitment based frameworks, enhancing the social aspects of
agents’ communications, entail a change of paradigm: agents do not necessarily
have to reason on others’ intentions anymore but rather they must reason on taken
and to be taken social commitments. However, it has not been indicated how agents
should dynamically use social commitment based communication and social com-
mitments were not taken into account in previous cognitive agents theory.

Integrating Social Commitment-Based Communication 81

In order to fill this gap, we will extend the presented BDI model by: (1)
linking private cognitions with social commitments, (2) providing a model of
the cognitive aspect of communication pragmatics in order to automatize social
commitment based communication. In particular, we will introduce a general
decision-making process leading to attitude change in the appropriate cases.

4 Linking Public Cognition and Social Commitments

According to the classic practical reasoning scheme, private cognitions end up
in intentions through deliberation and we make the usual distinction between
intention to (do something or that someone do something) and intention that (a
proposition holds) [2]. The intention to relates to a particular course of action
(eventually of a complex and structured type), while intention that refers to
a propositional statement that the agent wants to became true. Intentions are
either accepted (IA(p)) or rejected (¬IA(p)).

In order to address communication, we will further distinguish between in-
ternal individual intentions and social individual intentions. Internal individual
intentions are intentions that the agent can try to achieve alone while social in-
dividual intentions are the intentions that relate to other agents’ actions. Social
individual intentions are intentions concerning goals which require other agents
to be worked on. More generally, any intention that is embedded in a somewhat
collective activity would be considered as a social individual intention except if
it is part of an already socially accepted collective plan. Those social intentions
are intentions about a (even indirectly) collective state of affairs indicating that
those intentions will be part of a social activity (a problem requiring action,
permission or opinion of the others: commerce, exchange, joint action, delegated
actions,. . .). A classic example is delegation where an agent A has the social
intention that an agent B achieves a particular action α, IA(αB).

Among internal individual intentions, we will also consider failed individual
intentions which are the intentions that the agent failed to find an individual
plan for or for which the available plans failed. This last type matches the case
where the agent faces an individual problem he cannot solve alone or he failed
to solve alone.

In our framework, failed individual intentions as well as the social individual
intentions will be treated through dialogue. The phase of identifying intentions
involving a social dimension appears to be crucial for integrating social com-
mitment based approaches with existing cognitive agent architectures. In our
approach, all intentions that are not achievable internal intentions will be se-
lected as such. Filtering those failed and social intentions from the other ones is
achieved by selecting the intentions for which the mean-end reasoning failed. In
particular, in the JACK-BDI framework, intentions that don’t match any indi-
vidual plans or for which all available individual plans have failed fall into those
categories. Notice that this implantation implies that trying to achieve individ-
ual action (through execution of individual plans) is the prioritized behavior of
the agent. Figure 2 sums up this intention typology.

82 P. Pasquier and B. Chaib-draa

intention

Collective (We-intention)Individual

Individually acheivableFailed

Planification

Social
(not treatted in standard BDI models)

Communication Plan execution

Failure : no plan available
or all plans available failed

and intention persists
Success, a plan is chosen

Plan success (intention satisfied): redeliberation

Plan failure : redeliberation
and eventual replanification

Fig. 2. Operational typology of intentions

In this context, we can return to the general question: what are the links
between social commitments and private mental states? As a first answer, we
propose linking private and public cognitions as follows. Ideally, an accepted so-
cial commitment is the socially accepted counterpart of an accepted intention.
Commitments in action are the counterparts of “intentions to” while proposi-
tional commitments are the counterparts of “intentions that”. In our approach,
those links are taken into account by positive and negative binary constraints
that link the agents intentions and social commitments. Positive constraints
take into account the correspondence relation introduced above while negative
constraints model the incompatibility relations that hold between incompatible
intentions or/and social commitments.

Let’s take an example to illustrate those relations. If an agent A has the ac-
cepted individual social “intention to” that another agent B achieves an action α
(noted IA(αB)), our links mean that the corresponding social commitment from
B toward A to achieve αB (noted C(B, A, αB , t, sB, sA) must be socially accepted
as part of this intention satisfaction. This ideal link between those two cogni-
tions is captured with a positive constraint. For this constraint to be satisfied,
both elements (the intention and the corresponding commitment) must be ac-
cepted or rejected. However, all other possibilities are also important to consider.
Furthermore, incompatibility relations are modeled with negative constraints.

Those relations between the private and public cognitions are not completely
new since many authors have already considered individual intentions as a spe-
cial kind of individual commitment [2,25]. Our links extend this to reach the
social level in the appropriate cases by saying that social individual intentions
or failed individual intentions should ideally lead to the social acceptance of
their social commitments counterparts through dialogue. Those links comple-
ment Singh’s previous work [20], which introduces the idea of linking individual
and social commitments. Comparable links have been introduced for so-called

Integrating Social Commitment-Based Communication 83

normative-deliberative cognitive agent architecture [6,1,4]. In particular, follow-
ing [5], the following axioms have been introduced [19]:

S-COMM(i, j, τi)→ Ij(τi),1 and
S-COMM(i, j, τi)→ Ii(τi)

From which, one can deduce the following theorem: � ¬S-COMM(i, j, τ) ∨
(Ii(τ)∧Ij (τ)), which clearly states that either the social commitment is rejected
or both i and j have the intention that i achieves the action τ . This formalization
is not compatible with the semantic flexibility of social commitments described
in Section 3. For example, if i decides to violate or cancel the aforementioned
commitment, it is probably because he does not have the corresponding intention
accepted. In that case, we have the accepted commitment S-COMM(i, j, τi) and
the rejected intention ¬Ii(τi) that holds which invalidates the second of the above
axioms. Symmetrically, if the agent j tries to cancel the accepted commitment S-
COMM(i, j, τi), it can be because he does not have the corresponding intention
accepted. In that case, we have S-COMM(i, j, τi) and ¬Ii(τi) which invalidates
the first of the above axioms. In other words, those axioms are not flexible enough
to provide a good modelling of the links that lie between intentions and social
commitments.

Constraints provide bidirectional and symmetric links that go behind the
above mentioned axioms.2 This is why we used constraints in order to model
those links. Examples where a commitment is accepted and the corresponding
intention is not or the reverse are very common and just mean that the positive
constraint linking those two elements is not satisfied. As a consequence, not
only those bidirectional links are more correct than the previously criticized
axioms but they allow for a new question to be asked. When such a constraint
is not satisfied, the agent has to decide which elements’ acceptance state he
will try to change in order to satisfy this positive constraint: his intention or
the corresponding social commitment. This is the basic question of the attitude
change process. Since this notion of attitude change has not been yet modelled
in the context of AI, we will introduce it here.

5 Attitude Change

In cognitive sciences, cognitions gather together all cognitive elements: percep-
tions, propositional attitudes such as beliefs, desires and intentions, feelings and
emotional constituents as well as social commitments. From the set of all private
cognitions result attitudes which are positive or negative psychological disposi-
tions towards a concrete or abstract object or behavior.

For contemporary psychologists, attitudes are the main components of cogni-
tion. These are the subjective preliminary to rational action [9]. Theoretically, an

1 Sometimes formulated : S-COMM(i, j, τi)→ Goalj(Doesi(τ)) .
2 We refer the interested reader to [23] for a discussion about bidirectionality in cog-

nitive modelling.

84 P. Pasquier and B. Chaib-draa

agent’s behavior is determined by his attitudes. The basic scheme highlighted by
those researches is that beliefs (cognition) and desires (affect) lead to intentions
which could lead to actual behaviors or dialogical attempts to get the correspond-
ing social commitments depending on their nature. From another point of view,
it could happen (due to hierarchies, power relations, negotiation, argumentation,
persuasion dialogues,. . .) that an agent becomes socially committed to a counter-
attitudinal course of action or proposition. In that case, attitude change can occur.

The links between private and public cognitions established in Section 4 allow
defining the attitude change process in the way provided by cognitive psychol-
ogy’s classical studies [3]. Ideally, for each accepted or rejected social commit-
ment, the corresponding intention should be accepted or rejected (respectively)
in both the creditor and the debtor mental states. For example, we assume that
C(A, B, αA, t, sA, sB) holds, indicating that A is committed toward B, since time
t, to achieve αA under the sanction sets sA and sB. Then, A and B should ideally
have the intention that A achieves αA, noted I(αA), accepted in their mental
model. If, for example, A doesn’t have I(αA) accepted, he can: (1) revoke or
violate the commitment and face the associated sanctions (2) try to modify the
commitments through further dialogues or (3) he can begin an attitude change,
i.e. adopt this intention and possibly reject incompatible ones.

6 Dialogue Pragmatics

6.1 The Cognitive Coherence Framework

All attitude theories, also called cognitive coherence theories appeal to the con-
cept of homeostasis, i.e. the human faculty to maintain or restore some physio-
logical or psychological constants despite the outside environment variations. All
these theories share as a premise the coherence principle which puts coherence as
the main organizing mechanism: the individual is more satisfied with coherence
than with incoherence. The individual forms an opened system whose purpose is
to maintain coherence as much as possible.

Our pragmatics theory (presented in [15]) follows from those principles by
defining a formal theory of cognitive coherence. Here, elements are both failed
or social intentions and social commitments. Elements are divided in two sets:
the set A of accepted elements (accepted, failed or social, intentions and socially
accepted social commitments) and the set R of rejected elements (rejected so-
cial intentions and socially rejected social commitments). Every non-explicitly
accepted element is rejected. Two types of non-ordered binary constraints on
these elements are inferred from the pre-existing relations that hold between
them in the agent’s cognitive model:

– Positive constraints : positive constraints are inferred from positive relations
like the correspondence relation described in Section 4.

– Negative constraints : negative constraints are inferred from negative relations
like mutual exclusion and incompatibility relations considered in Section 4.

Integrating Social Commitment-Based Communication 85

These constraints can be satisfied or not: a positive constraint is satisfied if
and only if the two elements that it binds are both accepted or both rejected.
On the contrary, a negative constraint is satisfied if and only if one of the two
elements that it binds is accepted and the other one rejected. For each of these
constraints a weight reflecting the importance of the underlying relation can be
attributed.3

Given a partition of elements among A and R, one can measure the coher-
ence degree, C(E), of a non-empty set of elements, E , by adding the weights of
constraints connected to this set (the constraints of which at least a pole is an
element of the considered set) which are satisfied divided by the total weight of
concerned constraints. The general coherence problem is then to find a partition
between the set of accepted elements A and the set of rejected elements R that
maximize cognitive coherence. It is a constraint optimization problem shown
to be NP-complete by [24]. In our case the coherence problem is solved in an
iterative manner by the local search algorithm.

6.2 Local Search Algorithm

Decision theories as well as micro-economical theories define utility as a prop-
erty of some valuation functions. A function is a utility function if and only
if it reflects the agent preferences. In the cognitive coherence theory, according
to the afore-mentioned coherence principle, coherence is preferred to incoher-
ence.

In order to try to maximize its coherence, at each step of his pragmatics’
reasoning, an agent will search for a cognition’s acceptance state change which
maximizes the coherence increase, taking into account the resistance to change of
that cognition (technically a 1-optimal move). If this attitude is a commitment,
the agent will attempt to change it through dialogue and if it is an intention, it
will be changed through attitude change. In that last case, we call the underlying
architecture of the agent to spread the attitude change and re-deliberate.

In our implementation, an agent determines which is the most useful cogni-
tion’s acceptance state change by exploring all states reachable from its current
state and selects the cognition which can in case of a successful change be the
most useful to change. A state is said to be reachable if it can be obtained from
the current state by modifying only one cognition. A notion of cost has been
introduced to advocate for the fact that all cognitions cannot be equally modi-
fied. All explored states are so evaluated through an expected utility function, g,
expressed as below:

g(ExploredState) =C(exploredState)− C(currentState)
− r(cognitionChanged)

where exploredState is the evaluated state, cognitionChanged is the cognition
we are examining the change, and r is a normalized cost function expressed as:

3 This is a way of prioritizing some cognitive constraints as is done in the BOID
architecture [4].

86 P. Pasquier and B. Chaib-draa

1. if cognitionChanged is an intention, its cost of change equals its resistance
to change that reflects the underlying individual commitment strength;

2. if cognitionChanged is a rejected commitment, its cost of change equals its
resistance to change, which is initially low but which could be increased at
each unfruitful attempt to establish it;

3. if cognitionChanged is an accepted commitment, its cost of change is in-
creased by its associated sanctions (which could be null, positive or negative).

The local search algorithm is an informed breath first search algorithm with
the afore-mentioned expected utility measure as its greedy heuristics. We don’t
have a proof of correctness of this algorithm in regards to the general coherence
problem but, as [24] (who used it in another context), it was shown to be optimal
on tested examples.

6.3 Pragmatic Treatment Algorithm

The dialogic behavior of the agent is based on his cognitive coherence calculus
involving failed and social intentions as well as social commitments. Social com-
mitments and their state are memorized in the agent agenda which is maintained
by the DIAGAL dialogue manager. Figure 3 presents the agent pragmatic treat-
ment algorithm that integrates pragmatics reasoning and social commitments’
treatment.

As seen in Section 3, we distinguish extra-dialogical commitments (assigned to
a List on line 5) from dialogical commitments (assigned line 6). Dialogical com-
mitments result from dialogue games’ rules as well as from the contextualisation
game. Extra-dialogical commitments are processed by TreatCommitments() (line
8) which consists in updating the agent representations of commitments by tak-
ing into account dialogical as well as extra-dialogical action of the agents that
has been reported by the agent’s dialogue manager in the agenda. Three cases
are then distinguished:

1. dialogue initiative: there is no active dialogic commitment in the agenda
and the initiate boolean is true (test, line 9), which means that the under-
lying BDI control loop just called the Pragmatic treatment algorithm. The
InitiateDialogue() procedure is called (line 11);

2. ending of a dialogue: there is no more active dialogic commitment in the
agenda and the initiate boolean is false (test, line 13), which means that the
dialog segment is finished. The underlying BDI control loop is called again
(ModifiedBDICycle(), line 14);

3. pursuing a dialogue: there are some dialogical commitments to process, the
TreatDialogCommitment() (line 16) procedure is called.

In order to initiate a dialogue, InitiateDialogue(), generates the intentions and
commitments network according to the principles of representation enunciated
and argued in Section 4. Then, the local search algorithm is called and elements’
acceptance states are changed until a social commitment is encountered and a

Integrating Social Commitment-Based Communication 87

Procedure. CommunicationPragmatics(initiate)

1: Inputs: initiate, boolean variable (true when called by the
underlying BDI architecture, false otherwise)

2: Outputs: none, this is not a function!
3: Global: agenda, object that stores the agent’s agenda
4: Local:
5: List commitments:=agenda.GetCommitments();
6: List dialogCommitments:=agenda.GetDialogCommitments();
7: Body:
8: TreatCommitments(commitments);
9: if dialogCommitments.IsEmpty() and initiate=true then

10: initiate:=false;
11: InitiateDialogue(); // initiate a dialogue
12: else
13: if dialogCommitments.IsEmpty() and initiate=false then
14: ModifiedBDICycle(); // dialog finished
15: else
16: // pursue a dialogue
17: TreatDialogCommitments(dialogCommitments);
18: end if
19: end if

Fig. 3. Pragmatic treatment algorithm

dialogue is initiated as an attempt to realize the desired change.4 The appro-
priate DIAGAL game is chosen by unifying currentState and the games entry
conditions and exploredState with the success conditions of the game (see [14]
for details). The different fields of the commitment indicate the partner and the
subject of the dialogue.

In order to pursue a dialogue, TreatDialogCommitments(), consists in treat-
ing the remaining dialogical commitments. This is done by evaluating the conse-
quences of all the outcomes allowed by the current dialogue games rules on the
cognitive coherence. The resulting choice utility is compared to the local search
choice utility. If the modification allowed by the current dialogue game is less
usefull than the one proposed by local search, then the agent will imbricate a
subjectively more appropriate sub-dialogue game.

In case a dialogue ended, control is given back to the underlying BDI con-
trol loop through the ModifiedBDICycle() (line 14) procedure call. The mod-
ified BDI control loop will take into account the eventual partial or complete
attitude change and will deliberate again eventually generating new intentions
that will be treated according to their nature as indicated by the algorithm of
Figure 4.

4 Notice that the local search can return nothing (e.g., if coherence is already maxi-
mal).

88 P. Pasquier and B. Chaib-draa

Procedure. ModifiedBDICycle(B0, I0)

1: Inputs: B0, set of initial beliefs;
I0, set of initial intentions;
Those inputs are optional (used for the first call)

2: Outputs: none, this is not a function!
3: Global: B := B0, object that stores the agent’s beliefs;

I := I0, stores the agent’s accepted intentions;
Is, stores the agent’s social or failed intentions;
D, object that stores the agent’s desires;
List ρ, stores both internal and external percepts;
List π := null, current plan, sequence of actions;

4: Body:
5: while true do
6: ρ.GetNewPercepts(); // get new percepts ρ
7: B.Update(ρ); // update B on the basis of ρ
8: if Reconsider(I ,B) then
9: D := Options(B,I);

10: I := Deliberate(B,D,I); // deliberate if necessary
11: end if
12: if Empty(π) or Succeeded(I ,B) or Impossible(I ,B)) then
13: π := Plan(B,I); // replan if necessary
14: Is := Filter(B,I); // assign failed or social intentions
15: else
16: α := Head(π);
17: Execute(α); // execute an action
18: π := Tail(π);
19: end if
20: if agenda.Modified()=true then
21: CommunicationPragmatics(false); // pursue a dialogue or answer a new dia-

logue offer
22: end if
23: if not Empty(Is) then
24: CommunicationPragmatics(true); // initiate a dialogue
25: end if
26: end while

Fig. 4. Modified BDI control loop

Finally, the CommunicationPragmatics() procedure is called each time:

– the underlying BDI control loop deliberationproduces either social or failed in-
tentions that the agent cannot fulfill by itself (and thus need to communicate).

– the DIAGAL dialogue manager modifies the agent agenda and this modifica-
tion is not the fulfillment or violation of an extra-dialogical commitment (which
are taken into account as specified in [17]). This ensures that: (1) the agent ex-
ecutes the CommunicationPragmatics() algorithm until all ongoing dialogue
segments are closed and (2) the agent treats dialogues initiatedby other agents.

Integrating Social Commitment-Based Communication 89

7 Examples

Returning to the example of delegation, suppose the modified BDI control loop
of an agent A just generated the intention that B achieves an action α (IA(αB)).
This intention is filtered (line 14) as a social intention and CommunicationPrag-
matics() (line 24) is called which in turn calls the InitiateDialogue() procedure
which produces the coherence framework of Figure 5,a. In these examples, we as-
sume that constraints’ weights are unitary and that elements rejected by default
have a lower default cost of change (0.05) than accepted elements’ default resis-
tance to change (which is 0.2, plus the eventual associated sanctions strength).
Update, reified by an increased by 0.2 of this resistance to change, occurs at each
attempt of change (according to Section 5).

The local search algorithm returns that the best change would be to have
a social commitment from B to A to acheive(α) accepted (as indicated by the
decision tree of Figure 5,b). The appropriate DIAGAL game is the Request game,
that is proposed by A through the contextualisation game. Suppose B refuses
A’s request, the resistance to change of the still rejected commitment would
be updated and redeliberation will occur. If B accepts, the social commitment
would be marked as socially accepted and the enforcement mechanism would be
activated in order to foster its satisfaction.

In a more rich setting involving three agents, suppose that A is already com-
mitted toward a third agent F not to achieve β and has the corresponding inten-
tion accepted when an agent B orders him to achieve β (one can suppose that
there is a permanent commitment to accept B’s request because of his authority
position, . . .). Despite the fact that A has the intention to achieve β rejected,

Fig. 5. Parts b and d indicate A’s reasoning as computed by the local search algorithm
from the states described by in parts a and c respectively. For each reachable state,
the cognitive coherence and expected utility measures are indicated. The black path
indicates the change(s) returned by the local search algorithm (presented section 6.2).

90 P. Pasquier and B. Chaib-draa

the counter attitudinal commitment toward B to do so is accepted. This situa-
tion is presented by the coherence framework of Figure 5,c. The decision tree of
Figure 5,d indicates that an attitude change occurred. Following our algorithms,
agent A has rejected the intention not to achieve β and accepted the intention
to achieve β and is now about to initiate a dialogue with F in order to cancel
the previously accepted social commitment toward him.

Notice that the choice of the default resistances to change and update rules
extends individual commitment strategies (presented in Section 1). In the pro-
posed approach, intention persistence not only depends on the chosen default
resistance to change (the higher it is, the more fanatic the agent is) but also on
accepted commitments’ resistance to change (reflecting sanctions and rewards).
This models social pressure and allows to introduce the concept of attitude
change that is central for the study and modelling of agent behavior changes.

8 Conclusion

In this paper, we unify – both at the theoretical (Section 4) and practical level (Sec-
tion 5) – two important trends in MAS modelling: cognitive agents based on BDI
models and social commitment based communication (a model of flexible social
commitment and their enforcement [17] and the DIAGAL agent language [14]).
Note that the resulting framework automatizes the agent pragmatic reasoning and
communication behavior by giving him tools to measure himself the expected util-
ity of possible communicative behaviors. The proposed model rests on solid cog-
nitive sciences’ results that allow to take into account the motivational aspects of
agent communication. This approach models the persuasive dimension eventually
present in all communications by reifying attitude change when necessary.

Notice that the proposed approach cumulates the advantages of past contri-
butions. Resulting agents can be used in an open system (as long as the other
agents use DIAGAL), no sincerity (of the others) is assumed, no hard-coded
cooperation is needed. Notice that our pragmatic coherence approach includes
the reasoning on sanctions (taken into account in the expected utility function)
so that the chosen punishment strategy influences agent behavior as discussed
in [14]. This is thus a major improvement over the hand written communication
behavior of classical agent implantation (as those described in Section 2).

References

1. G. Boella and L. Lesmo. Social Order in Multi-Agent Systems, chapter Deliberative
normative agents, pages 85–110. Kluwer Academic, 2001.

2. M. E. Bratman. What is intention? In P. R. Cohen, J. L. Morgan, and M. E.
Pollack, editors, Intentions in Communication, pages 15–32. The MIT Press, 1990.

3. J. Brehm and A. Cohen. Explorations in Cognitive Dissonance. John Wiley and
Sons, inc, 1962.

4. J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. Van der Torre. The BOID
architecture: Conflicts between beliefs, obligations, intention and desires. In Pro-
ceedings of the Fifth International Conference on Autonomous Agent, pages 9–16.
ACM Press, 2001.

Integrating Social Commitment-Based Communication 91

5. C. Castelfranchi. Commitments: from individual intentions to groups and orga-
nizations. In Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS-95), pages 41–48, San Francisco, CA, USA, 1995.

6. C. Castelfranchi, F. Dignum, C. Jonker, and J. Treur. Deliberative normative
agents: Principles and architecture. In Intelligent Agents V, Proceedings of the In-
ternationnal Workshop on Agent Theories, Architectures, and Languages (ATAL),
volume 1757 of Lecture Notes in Artificial Intelligence (LNAI), pages 364–378.
Springer-Verlag, 1999.

7. P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42:213–261, 1990.

8. F. Dignum and M. Greaves. Issues in agent communication: An introduction. In
F Dignum and M. Greaves, editors, Issues in Agent Communication, volume 1916
of LNAI, pages 1–16. Springer-Verlag, 2000.

9. P. Erwin. Attitudes and Persuasion. Psychology Press, 2001.

10. R. A. Flores, P. Pasquier, and B. Chaib-draa. Conversational semantics with social
commitments. Journal of Autonomous Agent and Multiagent Systems, Special Issue
on Agent Communication, 2005. To appear.

11. N. Howden, R. Ronnquist, A. Hodgson, and A. Lucas. Jack intelligent agents:
summary of an agent infrastructure. In Proceedings of the Fifth International
Conference on Autonomous Agents. ACM Press, 2001.

12. M. Inverno, M. Luck, M. Georgeff, D. Kinny, and M. Wooldridge. The dmars ar-
chitechure: A specification of the distributed multi-agent reasoning system. Journal
of Autonomous Agents and Multi-Agent Systems, 1-2(9):5–53, 2004.

13. S. C. Levinson. Activity type and language. Linguistics, 17:365–399, 1979.

14. P. Pasquier, M. Bergeron, and B. Chaib-draa. DIAGAL: a Generic ACL for Open
Systems. In Proceedings of The Fifth International Workshop Engineering Soci-
eties in the Agents World (ESAW’04), volume 3451 of Lecture Notes in Artificial
Intelligence (LNAI), pages 139–152. Springer-Verlag, 2004.

15. P. Pasquier and B. Chaib-draa. The cognitive coherence approach for agent com-
munication pragmatics. In Proceedings of The Second International Joint Confer-
ence on Autonomous Agent and Multi-Agents Sytems (AAMAS’03), pages 544–552.
ACM Press, 2003.

16. P. Pasquier and B. Chaib-draa. Modèles de dialogue entre agents cognitifs : un
état de l’art. In Cognito : Cahiers de Sciences Cognitive, 1(4):77–135, 2004.

17. P. Pasquier, R. A. Flores, and B Chaib-draa. Modelling flexible social commit-
ments and their enforcement. In Proceedings of the Fifth International Workshop
Engineering Societies in the Agents World (ESAW’04), volume 3451 of Lecture
Notes in Artificial Intelligence (LNAI), pages 153–165. Springer-Verlag, 2004.

18. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture.
In Proceedings of Knowledge Representation and Reasoning (KR&R-91), pages
473–484. Morgan Kaufmann Publishers: San Mateo, CA, April 1991.

19. L. Royakkers and F. Dignum. No organisation without obligation: How to formalise
collective obligation? In M. Ibrahim, J. Kung, and N. Revell, editors, Proceedings
of the 11th Internationnal Conference on Databases and Expert Systems Applica-
tions, volume 1873 of Lecture Notes in Computer Science (LNCS), pages 302–311.
Springer-Verlag, 2000.

20. M. P. Singh. Social and psychological commitments in multiagent systems. In
AAAI Fall Symposium on Knowledge and Action at Social and Organizational
Levels, pages 104–106, 1991.

92 P. Pasquier and B. Chaib-draa

21. M. P. Singh. A social semantics for agent communication languages. In Issues
in Agent Communication, Lecture Notes in Artificial Intelligence (LNAI), pages
31–45. Springer-Verlag, 2000.

22. M. P. Singh, S. Rao, and M. P. Georgeff. Multiagent Systems : A Modern Approach
to Distributed Artificial Intelligence, chapter Formal Methods in DAI: Logic-Based
Representation and Reasoning, pages 331–376. The MIT Press, 1999.

23. P. Thagard. Coherence in Thought and Action. The MIT Press, 2000.
24. P. Thagard and K. Verbeurgt. Coherence as constraint satisfaction. Cognitive

Science, 22:1–24, 1998.
25. G. H. von Wright. Freedom and determination. North Holland Publishing, 1980.
26. D. N. Walton and E. Krabbe. Commitment in Dialogue: Basic Concepts of Inter-

personal Reasoning. Suny Press, 1995.
27. M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2001.

Flexible Conversations Using Social

Commitments and a Performatives Hierarchy

Rob Kremer1 and Roberto A. Flores2

1 University of Calgary,
Department of Computer Science
Calgary, AB T2N 1N4, Canada
kremer@cpsc.ucalgary.ca

2 Christopher Newport University,
Department of Physics, Computer Science & Engineering,

Newport News, VA 23606 USA
flores@pcs.cnu.edu

Abstract. In this research, we re-arrange FIPA’s ACL performatives
to form a subsumption lattice (ontology) and apply a theory of social
commitments to achieve a simplified and observable model of agent
behaviour. Using this model, we have implemented agent interaction
through social commitments (or obligations) based solely on observation
of messages passed between the agents (such observation is supported by
the cooperation domain mechanism in our agent infrastructure system).
Moreover, because the performatives are in a subsumption lattice, it is
relatively easy for an observer to infer social commitment relationships
even if the observer does not understand the details of messages or even
the exact performatives used (so long as the observer has access to the
performatives ontology).

Our social commitment model can be used in agent implementation
to simplify the specification and observation of agent behaviour even if
the agents themselves are not implemented using social commitments.
This is accomplished through the use of commitment operators attached
to the performatives (as policies) in the subsumption lattice.

In this work, we show how FIPA’s performatives can be interpreted
in a theory of social commitment to allow observable social behaviour
and conformance to social norms.

1 Introduction

The FIPA standard SC00061G [8] has defined inter-agent messages in the enve-
lope/letter pattern, where the “envelope” contains several standard fields which
must be understood by all agents in the community, and the “letter” part may
or may not be understood by other agents. FIPA further defines the contents of
several envelope fields such as performative (the type of the communicative act),
sender, receiver, content, ontology, reply-with, in-reply-to, reply-by and others.

We focus primarily on the performative field as the main means by which
agents can choose their behaviour in reaction to a particular message.

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 93–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

94 R. Kremer and R.A. Flores

Table 1. FIPA performatives

Performative Description

accept-proposal accepting a previous proposal
agree agreeing to perform some action
cancel inform another agent that it no longer need perform some action
call-for-proposal call for proposals to perform an action
confirm informs a given proposition is true
disconfirm informs a given proposition is false
failure an action was attempted but failed
inform a given proposition is true
inform-if inform whether a proposition is true
inform-ref inform the object which corresponds to a descriptor
not-understood did not understand what the receiver just did
propagate pass a message on
propose submit a proposal to perform an action
proxy pass on an embedded message
query-if asking whether a proposition is true
query-ref asking for the object referred to
refuse refusing to perform an action
reject-proposal rejecting a proposal during negotiation
request request to perform some action
request-when request to perform an action when a proposition becomes true
request-whenever request to perform an action each time proposition becomes true
subscribe request to notify the value of a ref. whenever the object changes

Furthermore, we only focus on the behaviour relative to communication acts
(speech acts) in conversation and do not delve into physical acts or domain-
specific acts.

1.1 Performatives

The FIPA standard SC00037J [9] defines 22 “Communicative Act” names as
values for the performative field (see Table 1).

In implementing our agent infrastructure, CASA [13], we have found that the
FIPA performatives were very useful in that they include communicative acts
that we would not have initially thought of ourselves. Unfortunately, it became
obvious that they do not form a computationally useful set for our agents to
decide on an action when they receive a message. When our agents used FIPA’s
flat classification, they had to switch behaviour in an ad-hoc manner for (almost)
each of the 22 performatives. Our agents needed to perform a list of actions for
each performative, and these actions were often duplicated among several of the
performative behaviours. This lead to a complex and error-prone specification.
Furthermore, we had to extend the list of performatives, and each of our agents
had to constantly update the list.

We found that if we arrange the same performatives in a subsumption lattice
(see Figure 1), we can succinctly glean the semantic information we need to clas-

Flexible Conversations Using Social Commitments 95

inform

cancelrequest

query-ref call-for-participation

inform-ref query-if request-when

request-whenever

propose

notifyagree

subscribe

nack

confirm

timeout failure not-understood reject-proposal refuse

disconfirm

accept-proposal

proxy propagate

propose-discharge

done

performative

ack

affirmative-reply

reply

negative-reply

reply-propose-discharge

Fig. 1. The CASA performative subsumption lattice

sify the message and decide on a course of action. Because certain performatives
are subtypes of others, we need only specify individual actions once for the parent
performative type, and those actions are “inherited” by the child performative
types. Thus, we eliminate the redundancies and simplify the specification sig-
nificantly. We also eliminate the need for every agent to always be updated on
the semantics of every extension to the performatives lattice: they can always
interpret a new type of performative in terms of its parent type. (And for an
agent to ask for the parentage of an unknown performative is a trivial operation
which is supported by our infrastructure.)

1.2 The CASA Architecture

The CASA architecture [13] is an experimental infrastructure on which agents
can be implemented. CASA agents work by exchanging messages (via TCP/IP or
by local method calls) which consist of key/value pairs. The keys in the messages
are the various FIPA message field names, but may also include other, extended
keys, as appropriate.

The CASA architecture is a general purpose agent agent environment, but
defines several specialized agents (see Figure 2). CASA defines computational
areas (usually a single computer), and each area has exactly one Local Area
Coordinator (LAC) agent. A LAC agent is a registry of agents for its area, and
is responsible to act as a “white pages directory” for its area, to run agents on
behalf of agents in its or other areas, as well as to perform several other duties.
Another important type of agent is a Cooperation Domain (CD), which acts
like a “meeting room” for agents. Agents may join and then send messages to
a CD which, by default, re-broadcasts the message to all of its members. CDs
are particularly useful for third-party observers of agent conversations. These

96 R. Kremer and R.A. Flores

Area (Computer)Area (Computer)

Local Area
Coordinator

(LAC)

Cooperation
Domain (CD)

Agent C

Agent BAgent A

Local Area
Coordinator

(LAC)

Other Agents

Other Cooperation
Domains

Cooperation
Domain

Observer Agent

Fig. 2. The CASA architecture

observer agents can analyze agent behaviour on the behalf of the larger society of
agents for various purposes such as analysis, possible sanctioning of rogue agents
[11,16], or merely reporting unacceptable, malicious, or erroneous behaviour.

CASA is particularly concerned with agent behaviour and the observability of
agents’ behaviour. Unfortunately, the semantics behind FIPA’s model is based
on the BDI (Beliefs, Desired, Intensions) model, which has long been criticized
as requiring “omniscient” knowledge of the internal workings of all agents in the
environment [17]. Since the inner workings of agents is not typically available to
an outside observer, the observer cannot predict expected behaviour of agents.
Therefore, an observer has no formal bases on which to judge agent behaviour
as “acceptable”, “harmful”, “malicious”, “useful”, etc. to the society of agents.

An alternate agent model is the commitment-based model [1]. Communicative
acts between agents generate social commitments, which form a social “contract”
among the agents. Assuming the communicative acts can be observed (as CASA
is careful to support), an outside observer can infer social commitments among
the observed agents. Our model is formally specified [3,4,5] and forms a clean
formal basis on which an observer can decide whether or not a particular agent is
fulfilling its social commitments, and therefore has a sound foundation on which
to judge agents’ behaviour.

2 Messages and Performatives

As stated in the introduction, we wish to simplify the specification of possible
agent behaviour. As a step in that direction, we arrange our communicative acts,
which we base on the FIPA standard, in a subsumption lattice of performatives
as described in Figure 1. In the lattice, every child performative inherits the
attributes of all of its ancestor performatives. In particular, we can associate

Flexible Conversations Using Social Commitments 97

policies with any performative, which will be inherited by all children of that
performative. This is described in detail in Section 3.

Note that the performatives in Figure 1 are actually a superset of the perfor-
matives defined by FIPA. Some of the new performatives are classes of performa-
tive types which do not add any real semantic information to their children, but
serve to enable our agents (and their observers) to more easily classify performa-
tives into broader categories; thus allowing for more “superficial” specification
where appropriate. For example, an observer, Carol, may note that an agent,
Bob, sent a request to agent Alice, and that Alice replied with a failure perfor-
mative. If Carol is tracking only social commitments, then she would not care
if Alice had replied with a failure, a non-understood, a reject-proposal, a refuse,
or some other descendent of nack and reply; in any of these cases, there is no
social commitment entailed. Indeed, Carol need not understand the performa-
tive in the reply send by Alice, as long as she is aware (by looking it up in the
appropriate ontology) that the performative in Alice’s reply is subsumed by a
nack (negative acknowledge).

Other extensions to the FIPA performatives include the addition of an ack
(acknowledge) performative, which, in CASA, serves as an optional top-level
method of checking receipt of messages. The use of ack will be be further ex-
plained in the light of social commitments in Section 3.

3 Commitments

We model agent communication as generating (or deleting) social commitments,
thus allowing observation of the state of social commitments within a society of
agents. More specifically, the performatives in agent communication acts (mes-
sages), are translated (by a set of polices) to a set of social commitment operators,
which either add or delete a specific class of social commitments. We model a
social commitment as the promise by a debtor agent to a creditor agent(s) to do
some action:

(debtor, creditor, action)

and we model a social commitment operator as either an add or delete of a
commitment (refer to [7] for a detailed view of the life cycle of commitments):

(add|delete, socialCommitment)

We have defined several polices (eg: propose, accept, reject, counter, and in-
form) [5] which can be applied to an agent’s outgoing and incoming messages
and set of social commitment operators:

apply: message×Ppolicy × ontology → PsocialCommitmentOperator

Here, we mean that if we observe an agent’s incoming or outgoing message, we
can interpret it in the context of the agent’s (or the society of agent’s) policies
and ontology. (The ontology is necessary to provide a semantics for the perfor-
matives.) Of course, not all the policies are applicable to a particular message;

98 R. Kremer and R.A. Flores

Table 2. An informal description of the conversation policies as defined by Flores and
Kremer. (The names of some of the policies have changed since the original work).

Policy Description

P-inform commits the addressee to acknowledge
P-ack releases informed agents of the commitment to acknowledge
P-request commits the proposed agents to reply
P-counteroffer commits addressees to reply
P-reply releases proposed agents of the commitment to reply and releases coun-

teroffered agents of the commitment to reply
P-agree an acceptance realizes the shared uptake of proposed/counteroffered

commitments
P-done releases accepted agents of the commitment earlier agree

a matching function (see Section 4.1) is used to choose the subset of applicable
policies. The applicable polices are then executed to produce the set of social
commitment operators.

Furthermore, we can commit this set of social commitment operators to an
existing set of social commitments:

commit: PsocialCommitment×PsocialCommitmentOperator
→ PsocialCommitment

Thus, it is easy to build up (or reduce) a set of social commitments based
on observed messages. Note that this is just as easy for an individual agent to
track its own social commitments (as in our implementation) or for a 3rd party
observer to track all of the social commitments of a society of agents (as in
Heard’s study of sanctioning of rogue agents [11]).

Table 2 informally describes some of the fundamental polices we have de-
fined so far. The policies are meant to be used by a community of agents as
a description of “social norms”. The policies are used to map our FIPA-based
performatives to social commitments.

4 Using Social Commitments with Performatives

As already alluded to, we effectively use policies to annotate the performative
lattice with social commitment operators to form expectations about agent be-
haviour (the “normative” behaviour of agents in a society of agents). Figure
3 illustrates some of the polices by describing the relationship between (part
of) the performative lattice and commitments through policies and commitment
operators. The performative lattice on the left, and the curved arrows originat-
ing on the performatives represent the policies that indicate the associated social
commitment operators (center right column). The arrows originating in the com-
mitment operators illustrate the type of the commitments’ third parameter (an
action) and terminate on the action subtype of the action. Since these particular
policies are about conversational acts, all of these arrows (except the last two)
terminate on subtypes of communication-act.

Flexible Conversations Using Social Commitments 99

Performative

Ack

Reply

Inform

Request

action

reply

ack

Commitment-operator
Operator: add
Commitment: (receiver,sender,ack)

Commitment-operator
Operator: delete
Commitment: (receiver,sender,reply)

Commitment-operator
Operator: delete
Commitment: (sender,receiver,ack)

Commitment-operator
Operator: add
Commitment: (reciever,sender,reply)

Agree

communication-act

Commitment-operator
Operator: add
Commitment: (receiver,sender,content)

Unspecified action

P-inform

P-ack

P-request

P-reply

P-agree

Commitment-operator
Operator: delete
Commitment: (receiver,sender,content)

Confirm

P-confirm

Performatives Policies Commitment Operators Social Commitments

Fig. 3. Part of the CASA performative subsumption lattice together with their rela-
tionship via policies and performative operators to social commitments. The policies
are labelled with the policy names from Table 2.

The curved arrows between the performatives and the social commitment op-
erators in Figure 3 represent some of the policies described in [5] and informally
described in Table 2. For example, the P-inform policy associated with the inform
perforative would read “if Bob receives a message with an inform performative
from Alice, then there exists a social commitment for Bob to send an acknowl-
edgement to Alice (∃sc: socialCommitment, x: ack • sc = (Bob, Alice, x))”.

The reading of the request performative’s P-request policy is a bit more com-
plex. Because request is a subtype of inform, not only do we have to apply
the P-request policy, but also the P-inform policy as well (and likewise up
the lattice for every ancestor performative). So we would read the P-request
policy as “if Bob receives a message with a request performative from Alice,
then there exists a social commitment for Bob to send an acknowledgement
to Alice and another social commitment for Bob to send a reply to Alice,
(∃sc1, sc2 : socialCommitment, x1: ack, x2: reply • sc1 = (Bob, Alice, x1)∧sc2 =
(Bob, Alice, x2))”.

This may seem somewhat redundant since a single conversational act (re-
quest) makes two (very similar) social commitments. But it makes sense and
yields needed flexibility. If Alice were requesting Bob attend a meeting, Bob
might not have his calendar with him, so might not be able to reply to Alice,
but could acknowledge that he had received the request (“I’ll check my calen-
dar”). Alice would then know that Bob had received the request and the social
commitment to acknowledge would be deleted (by policy P-ack), but the social
commitment for Bob to reply to Alice would remain. Later, Bob would reply
(affirmatively [agree] or negatively [by some reply that is subsumed by nack]),

100 R. Kremer and R.A. Flores

and that would remove the second social commitment (by policy P-reply). And
that would end the conversation because there would exist no more conversa-
tional social commitments between the two. (Well, not quite: if Bob had replied
affirmatively [using an agree performative], then Bob and Alice would uptake
the social commitments for Bob to attend the meeting and to tell Alice about it
[by policy P-agree] – but we will get into those details later in Section 5.)

On the other hand, if Bob did have his calendar with him when Alice requested
he attend the meeting, then does Bob have to send an acknowledgement to Alice,
and then send a reply to Alice? That wouldn’t be very efficient. Fortunately, Bob
doesn’t have to respond twice: If Bob immediately sends a reply to Alice, then
the social commitment to reply will be removed (by policy P-reply), and so will
the social commitment to acknowledge. Why? Because, by virtue of reply being
subsumed by ack, the reply will generate two commitment operators

∃delReply, delAck: socialCommitmentOperator •
∃r: reply, a: ack •

delReply = (delete, (Bob, Alice, r)) ∧ delAck = (delete, (Bob, Alice, a))

which will remove both of the commitments set up by the original request.

4.1 Implementation with Social Commitments

Thus, agents can be implemented by dealing with incoming messages by merely
applying all the policies associated with the performative in the message and
also those policies associated with all of the ancestors of the performatives in
the message. These polices will either add or delete social commitments. It is
important to note that this is also exactly what an observer does as well: The
social commitments are in the context of the entire community of agents, so an
observer’s record of social commitments should always be consistent with (be a
superset of) any observed agent’s record of social commitments.

Agents do not have to be implemented using social commitments (as may
have been implied by the previous paragraph). Observers can still use social
commitments to formulate a model of agent behaviour regardless of how the
agent is implemented. The policies merely form a codification of social norms. An
agent that is not implemented using social commitments (who is well behaved)
would still be regarded as not breaking any commitments by an observer using
reasonable social commitment policies (like the ones in Table 2).

CASA implements its agents as either social commitment agents as listed
above, or as reactive agents. Both kinds of agents use the same set of named
policies, but the difference is that the policy implementation is different. When
a social commitment-based agent “sees” an incoming or outgoing message, it
merely applies it’s policies to add or delete social commitments; later (during
otherwise idle time) it will attempt to discharge any social commitments (for
which it is the debtor) by executing them when it can. On the other hand, reac-
tive agents will respond to a message immediately (without “thinking”) when-
ever it “sees” an incoming message. Reactive agents do nothing in idle time, do
nothing with outgoing messages, and don’t keep a record of social commitments.

Flexible Conversations Using Social Commitments 101

Both types of agents follow the same normative protocols, but the sequence of
messages is usually quite different. For example, social commitment agents may
easily and naturally choose to prioritize their tasks; reactive agents can’t handle
prioritized tasks easily.

4.2 Formal Model

It only remains to more formally describe how to apply social commitment oper-
ators to an agent’s record of social commitments. If we assume an agent’s record
of social commitments is a set, SC, the operator op is applied as follows:

∀op: socialCommitmentOperator, sc: socialCommitment•
op = (add, sc)→ SC′ = SC ∪ sc ∧
op = (delete, sc)→ SC′ = SC\match(sc, SC)

(In the above, we use SC′ to represent the value of SC after the operation
has taken place, á la Z [2].) That is, an add operator just inserts a new social
commitment into the record, and a delete operator just removes any matching
social commitments from the record. The match function takes a commitment
and a set of commitments and returns a subset of the second argument as follows:

∀sc : socialCommitment, SC:PsocialCommitment • match(sc, SC) ≡
{i ∈ SC|sc.debtor = i.debtor ∧ sc.creditor = i.creditor ∧

typeOf(sc.action) 	 typeOf(i.action)}
The reader may have noticed that there is no order specified on the ap-

plication of several operators in response to a message, and, as a result, it is
therefore possible that a delete operation may not remove any social commit-
ments at all. In fact, this could be the case in Alice and Bob’s meeting. If Bob
were to reply to Alice (without first sending an acknowledgement) and the ob-
server first applied the (delete,(Bob,Alice,reply)) operator, it would remove both
the (Bob,Alice,reply) and the (Bob,Alice,ack) social commitments from the so-
cial commitments record. Then, when the observer applied the second operator,
(delete,(Bob,Alice,ack)), there would be no change to the social commitments
record. Our choice is not to worry about such null deletions, but other implemen-
tations may wish to avoid such empty applications either by applying the least
specific deletions first if there is a subsumption relationship among operators,
or by changing the match() function to only match on the most specific social
commitment in the argument set.

Space limitations prohibit a detailed account of the formalization here, but a
detailed formalization may be found in [3].

5 An Example

As a more formal example, we repeat the example of Bob and Alice’s meeting
using the more formal framework and tracking the conversation through to the
end (signaled by there being no more social commitments left from the conver-
sation). Figure 4 shows an interaction diagram of the conversation: Alice first

102 R. Kremer and R.A. Flores

AliceAlice BobBob

(performative: inform, content: attend(Bob,x))

(performative: request, content: attend(Bob,x))

(performative: agree, content: attend(Bob,x))

(performative: confirm, content: attend(Bob,x))

m1. Can you
attend this
meeting? m2. Sure...

m4. I m here

m6. Thanks
for coming.

(performative: ack, content: attend(Bob,x))

(performative: ack, content: attend(Bob,x))

(performative: ack, content: attend(Bob,x))

m3. (nod)

m7. (nod)

m5. (nod)

Fig. 4. Alice and Bob’s conversation about a meeting

asks Bob to attend a meeting, “x” 1, by sending a message to Bob with a request
performative and a contents describing the request, (attend(Bob, x)). Bob im-
mediately confirms his acceptance to attend the meeting, by sending a message
back to Alice with an agree performative and the same descriptive content. Alice
acknowledges by sending an ack message back to Bob.

Later, Bob sends another message to Alice, informing him that the predicate,
attend(Bob, x), is true, that he is currently attending the meeting. Alice acknowl-
edges. Alice then responds by sending a message to Bob with a confirm-complete
performative, and the same contents. Bob acknowledges.

Does Alice and Bob’s conversation conform to the social norms implied by the
policies? Figure 5 describes the conversation in terms of the messages, policies,
social commitment operators, and the constantly changing set of social com-
mitments held by both Bob and Alice, and that would be held by an observer
listening to the conversation.

Each row in Figure 5 represents the same message passing between the conver-
sational participants as the corresponding cartoon balloons in Figure 4. In row
m1, Alice sends a message with a request performative to Bob and containing the
content predicate attend(Bob, x). Then Bob, Alice, and the observer can look up
request in the policies in Figure 3 and see that there are two applicable policies
(by searching up the lattice from the request node) representing policy P-inform
and P-propose. To apply these policies, we need only apply the operators, which
are (add, (receiver, sender, reply)) and (add, (receiver, sender, ack)). So we add
these two social commitments to our set of social commitments.

Note that we have a slight notational difficulty here. We need to contextualize
the reply and the ack social commitments with what to reply/acknoweldge to. In

1 The meeting is normally described by an expression, but we omit the details here
for the sake of brevity.

Flexible Conversations Using Social Commitments 103

m7

m6

m5

m4

m3

m2

m1

Id

(Bob, Alice,
attend(Bob,x))

(Alice,Bob,r-p-d(Bob,x)
(Alice, Bob, ack(m4))(delete,(Alice, Bob, ack(m4)))P-ack

attend(
Bob, x)

BobAliceack

(Bob, Alice, ack(m6))(delete,(Bob, Alice, ack(m6)))P-ackattend(
Bob, x)

AliceBoback

(Bob, Alice,
attend(Bob,x))

(Bob, Alice,p-d(Bob,x))
(Alice, Bob, ack(m2))(delete,(Alice, Bob, ack(m2)))P-ack

attend(
Bob, x)

BobAliceack

(Bob, Alice,
attend(Bob,x))

(Alice,Bob,r-p-d(Bob,x)
(Bob, Alice, ack(m6))

(delete,(Bob, Alice,
attend(Bob,x))

(delete, (Alice,Bob,r-p-d(Bob,x))
(add,(Bob, Alice, ack(m6)))

P-confirm

P-reply-p-d
P-inform

attend(
Bob, x)

BobAliceconfirm

(Bob, Alice,
attend(Bob,x))

(Bob, Alice,p-d(Bob,x))
(Alice,Bob,r-p-d(Bob,x)
(Alice, Bob, ack(m4))

(delete,(Bob,Alice,p-d(Bob,x))
(add,(Alice,Bob,r-p-d(Bob,x))
(add,(Alice, Bob, ack(m4)))

P-prop-dis

P-inform

attend(
Bob, x)

AliceBobpropose-
discharge

Bob

Alice

sender

Alice

Bob

rec r
Social CommitmentsOperatorPolicy

Message

(Bob, Alice, reply(m1))
(Bob, Alice, ack(m1))
(Bob, Alice,

attend(Bob,x))
(Bob, Alice,p-d(Bob,x))
(Alice, Bob, ack(m2))

(delete,(Bob, Alice, reply(m1)))
(delete,(Bob, Alice, ack(m1)))
(add,(Bob, Alice,

attend(Bob,x)))
(add,(Bob, Alice, p-d(Bob,x)))
(add,(Alice, Bob, ack(m2)))

P-reply
P-ack
P-agree

P-inform

attend(
Bob, x)

agree

(Bob, Alice, reply(m1))
(Bob, Alice, ack(m1))

(add,(Bob, Alice, reply(m1)))
(add,(Bob, Alice, ack(m1)))

P-request
P-inform

attend(
Bob, x)

request

contentperformative

Fig. 5. Alice and Bob’s conversation about a meeting

the software, this is just done by attaching a copy of the message, which allows
us to take advantage of FIPA’s reply-with field and unambiguously mark the mes-
sage as specifically in the context of the original inform/requestmessage. However,
here, we use the notation “reply(messagei)” to succinctly show the same thing.

The m2 row of Figure 5 shows Bob immediately agreeing to go to the meet-
ing. (He could have acknowledged receipt of the message first, which would have
deleted the (Bob, Alice, ack(m1)) commitment.) He replied with an agree perfor-
mative, which isn’t listed in Figure 3, but is a subtype of affirmative-reply (see
Figure 1). Looking up the policies for affirmative-reply in Figure 3 shows that
four policies are applicable (representing policies P-reply, P-ack, P-agree, and
P-inform). These four policies can be applied in any order, but all sequences will
yield the same end result (although intermediate results may differ). Applying
these policies in the order given, (delete, (Bob, Alice, reply(m1))) will delete both
social commitments (Bob, Alice, reply(m1)) and (Bob, Alice, ack(m1)).

(delete, (Bob, Alice, ack(m1))) will find nothing to delete (because the “target”
has just been deleted), but this is fine. The (add, (Bob, Alice, attend(Bob, x))) op-
erator is parameterized with the action predicate in the contents of the m2 mes-
sage, and adds the (Bob, Alice, attend(Bob, x)) social commitment to the set of
social commitments. Finally, the (add, (Alice, Bob, ack(m2))) operator adds the
required commitment for Bob to acknowledge.

104 R. Kremer and R.A. Flores

The m3 row shows Bob acknowledging the previous agree message, and re-
moving the social commitment for that acknowledgement.

Time passes, and the meeting commences. In row m4, Bob informs Alice that
he has fulfilled his commitment, (Bob, Alice, attend(Bob, x)), to attend the meet-
ing, which invokes two policies, P-inform and P-propose-discharge. This message
does not remove the (Bob, Alice, attend(Bob, x)) commitment. Intuitively, this is
because Alice has not yet confirmed that Bob has attended the meeting and has
satisfactorily fulfilled his commitment. If Alice were an agent that could sense
her environment, and could “see” that Bob were in attendance, Bob would not
have to send this message and we wouldn’t have to include rows m4 and m5 in
the table.

Row m5 shows Alice acknowledging Bob’s inform.
In row m6, Alice has “seen” that Bob is in attendance at the meeting and

sends a message with the confirm performative. This invokes three policies (P-
done, P-reply-propose-discharge, and P-inform) which delete Bob’s outstanding
commitments to attend the meeting and to tell Alice about it and adds a com-
mitment for Bob to acknowledge the confirm message.

Finally, in row m7, Bob acknowledges Alice’s last message, which removes the
last of the social commitments. There being no more social commitments left,
the conversation is over.

Just so the reader is not left with the impression that this work only applies
to hypothetical human examples, we include a snapshot of the CASA system
in the process of an actual agent conversation (see Figure 6). Here, we show
a Cooperation Domain that has just fulfilled its obligations in three distinct
(and interleaved) conversations: a request-to-join-CD conversation, a request-to-
subscribe (to be updated on membership changes) conversation, and a request-
for-a-membership-list conversation. The upper pane in the snapshot shows the
recently discharged social commitments. The lower pane shows the message just
received from another agent (called Jason) acknowledging successful completion
of the get-members request (a reply performative).

5.1 Variations: Flexibility and Efficiency

As already mentioned, if Alice could sense her environment, she could notice on
her own that Bob was attending the meeting, and messages m4 and m5 (rows
m4 and m5 in Figure 5) could be omitted. If this were the case, and Bob sent
the inform message anyway, the conversation would still not be harmed. The
number of the messages in the conversation would drop from 7 to 5.

Our protocols, as defined in Table 2 and Figure 3, call for every message to be
acknowledged. This is an option in our system, and can easily be “turned off”
by merely deleting the policies in Figure 3 associated with P-inform and P-ack.
If we do remove the P-inform policy, then messages m3, m5 and m7 disappear
and the number of messages drops from 7 to 4.

By combining both strategies in the previous two paragraphs, we can reduce
the number of messages in the conversation from 7 to 3. The resulting conver-
sation appears in Figure 7.

Flexible Conversations Using Social Commitments 105

Fig. 6. A CASA CD conversing with another agent requesting to join the CD

5.2 Implementation Considerations

Figure 8 shows the conversational “schema” that arises from the polices involved
in a typical request conversation, like the one between Alice and Bob or between
the CD and another agent in Section 5. This figure is from the viewpoint of
the actual implementation in CASA. The heavy vertical lines represent the two
agents over time. The heavy horizontal arrows indicate messages, and the reader
will no doubt notice that there are eight messages exchanged in this seemingly
simple conversation. The reader should not be put off by this: this is only the
worst case, and we have shown how this conversation can be dramatically sim-
plified (optimized) earlier in this section. CASA can do this optimization.

Each of Figure 8’s messages are labelled above with their possible performa-
tives and their supertype sublattice. Arrows emerging from the performative
names represent the applicable policies and social commitment operators (solid
indicates add, and dashed indicates delete). The policy arrows terminate on
shared (underscored) and private (grayed) social commitments. Some interest-
ing details of the theory and implementation are shown in this diagram that
aren’t explicit elsewhere in this paper:

The lighter-colored (non-underscored) private social commitments in the fig-
ure form the method we use to attach agent executable code (usually a method

106 R. Kremer and R.A. Flores

m6

m2

m1

Id

(Alice,Bob,r-p-d(Bob,x))(delete,(Alice,Bob,r-p-d(Bob,x))P-reply-p-dattend(
Bob, x)

BobAliceconfirm

Bob

Alice

sender

Alice

Bob

rec r
Social CommitmentsOperatorPolicy

Message

(Bob, Alice, reply(m1))
(Alice,Bob,r-p-d(Bob,x))

(delete,(Bob, Alice, reply(m1)))
(add,(Alice,Bob,r-p-d(Bob,x))

P-reply
P-prop-dis

attend(
Bob, x)

done

(Bob, Alice, reply(m1))(add,(Bob, Alice, reply(m1))) P-requestattend(
Bob, x)

request

contentperformative

Fig. 7. Alice and Bob’s conversation about a meeting, without Bob’s inform to Alice,
and without policy P-inform

call) to the policies: one needs to reference some bit of the agent’s code to
“wake” the agent to a particular event. These private social commitments are
always bound to an inform, but are usually referenced from some subtype of
of inform á la the template method design pattern [10]. These template refer-
ences are represented in the figure by the light-colored curved arrows among the
performatives in the sub-lattices at center.

The curved arrow on the extreme left and right of the diagram connecting
social commitments are dependencies between social commitments. This is a
powerful concept that is easily implemented by the observer design pattern [10],
and arises naturally in the system. For example, naturally, one needs to actually
perform an action before proposing to discharge it.

6 Related Work

Conversations and commitments have been studied in argumentation [19], where
the evolution of conversations is motivated by the commitments they imply,
and which are not necessarily made explicit. Others have looked into the me-
chanics of conversations using operations advancing the state of commitments,
which is a view independent of the intentional motives behind their advancement
[6,12,14,15,18]. We share these views, and aim at identifying public elements
binding the evolution of conversations.

7 Conclusion

The main contribution of this paper is to show how the FIPA performatives
can be mapped onto a social commitment theory framework to allow observable
social behaviour. “Rules” (or policies), like those described in this paper, act
as a codification of social norms, so can be easily used by an observer to judge
whether an agent is well behaved relative to the social norms. Social commit-
ments, and the ontology of performatives can be used to implement agents, but
agents do not have be to implemented as social commitment-style agents to be
observed and monitored by an observing agent using commitments as described
here.

Flexible Conversations Using Social Commitments 107

reply(Bob,Alice,x)

act(Bob,Alice,x)

reply-propose-discharge(Alice,Bob,x)
propose-discharge(Bob,Alice,x)

Alice Bob

evaluate(Alice,Bob,x)

reply

nack

[]

request

agree

propose-discharge

[] done

reply-propose-discharge

[] confirm

reply

reply

decide(Bob,Alice,x)

inform

inform

informconsider(Alice,Bob,x)

accept(Bob,Alice,x)inform

ack

ack

ack

ack(Bob,Alice,x)

ack

ack(Bob,Alice,x)

ack

ack(Alice,Bob,x)

ack

ack(Alice,Bob,x)

ack

Fig. 8. An implementation view of the policies associated with a typical client-server
request conversation

Acknowledgments

The authors thank the Canadian Natural Science and Engineering Research
Council (NSERC) for their support.

References

1. C. Castelfranchi. Commitments: From individual intentions to groups and orga-
nizations. In Proceedings of the First International Conference on Multi-Agent
Systems, pages 41–48, San Francisco, CA, June 1995.

2. A. Diller. Z: An Introduction to Formal Methods. John Wiley & Sons, Inc., Sussex,
England, 1990.

3. R.A. Flores. Modelling agent conversations for action. Ph.D. thesis, Department
of Computer Science, University of Calgary, June 2002.

4. R.A. Flores and R. Kremer. Formal conversations for the contract net protocol.
In V. Marik, O. Stepankova, H. Krautwurmova, and M. Luck, editors, Multi-Agent
Systems and Applications II, volume 2322 of Lecture Notes in Artificial Intelligence,
pages 169–179. Springer Verlag, 2002.

5. R.A. Flores and R. Kremer. To commit or not to commit: Modelling agent con-
versations for action. Computational Intelligence, 18(2):120–173, 2003.

6. R.A. Flores and R. Kremer. Principled approach to construct complex conversa-
tion protocols. In A.Y. Tawfik, and S.D. Goodwin, editors, Advances in Artificial
Intelligence, volume 3060 of Lecture Notes in Artificial Intelligence, pages 1–15.
Springer Verlag, 2004.

108 R. Kremer and R.A. Flores

7. R.A. Flores, P. Pasquier, and B. Chaib-draa. Conversational semantic sustained by
social commitments. In F. Dignum, and R. van Eijk, editors, Autonomous Agents
and Multi-Agent Systems. To appear.

8. Foundation for Intelligent Physical Agents (FIPA). FIPA ACL message struc-
ture specification. document number SC00061G, FIPA TC communication.
http://www.fipa.org/specs/fipa00061/SC00061G.html, Dec. 2003.

9. Foundation for Intelligent Physical Agents (FIPA). FIPA communicative act
library specification. document number SC00037J, FIPA TC communication.
http://www.fipa.org/specs/fipa00037/SC00037J.html, Dec. 2003.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley, Reading, Mass., 1994.

11. J. Heard and R. Kremer. Detecting broken social commitments. In this volume.
12. S. Khan and Y. Lesperance. On the semantics of conditional commitments. In this

volume.
13. R. Kremer, R.A. Flores, and C. LaFournie. Advances in Agent Communi-

cation, chapter A Performative Type Hierarchy and Other Interesting Con-
siderations in the Design of the CASA Agent Architecture. In F. Dignum,
and R. van Eijk, and M-P. Huget, editors, Advances in Agent Communi-
cation, volume 2922 of Lecture Notes in Computer Science, pages 59–74.
Springer Verlag, 2004. Available: http://sern.ucalgary.ca/ kremer/papers/-
AdvancesInAgentCommunication KremerFloresLaFournie.pdf.

14. A. Mallya and M. Singh. Introducing Preferences into Commitment Protocols. In
this volume.

15. P. Pasquier, M. Bergeron, and B. Chaib-draa. Diagal: A generic ACL for open
systems. In M.-P. Gleizes, A. Omicini, and F. Zambonelli, editors, ESAW, volume
3451 of Lecture Notes in Artificial Intelligence, pp 139–152. Springer Verlag, 2004.

16. P. Pasquier, R.A. Flores, and B. Chaib-draa. Modelling flexible social commitments
and their enforcement. In M.-P. Gleizes, A. Omicini, and F. Zambonelli, editors,
ESAW, volume 3451 of Lecture Notes in Artificial Intelligence, pages 153–165.
Springer Verlag, 2004.

17. M. Singh. Agent communication languages: Rethinking the principles. IEEE Com-
puter, 31(12):40–47, 1998.

18. M. Verdicchio and M. Colombetti. A commitment-based Communicative Act Li-
brary. In this volume.

19. D. Walton and E. Krabbe. Commitment in Dialogue: Basic Concepts of Interper-
sonal Reasoning. State University of New York Press, 1995.

Using Social Commitments to Control the Agents’
Freedom of Speech

Guillaume Muller and Laurent Vercouter

SMA/G2I/ÉNS des Mines de Saint-Étienne
158 cours Fauriel,

42023 Saint-Étienne
France

{muller, vercouter}@emse.fr

Abstract. Communication is essential in multi-agent systems, since it allows
agents to share knowledge and to coordinate. However, in open multi-agent sys-
tems, autonomous and heterogeneous agents can dynamically enter or leave the
system. It is then important to take into account that some agents may behave
badly, i.e. may not respect the rules that make the system function properly.
In this article, we focus on communication rules and, especially, on the means
necessary to detect when agents lie. Based on a model of the social semantics
adapted to decentralised system, we first explicit the limits of the communicative
behaviour of an agent, through the definition of obligations. Then, we propose a
decentralised mechanism to detect situations where the obligations are violated.
This mechanism is used to identify agents that exceed their rights and to build a
representation of the honesty of the other agents by the way of a reputation value.

Introduction

Communication in multi-agent systems (MAS) is essential for the cooperation and co-
ordination of autonomous entities. However, in open systems, some agents may not
respect – voluntarily or not – the rules that govern a good communicating behaviour. In
this paper, we focus on the detection of incoherent communicative behaviours.

Thanks to a formalism that comes from the social semantics approach of agent com-
munication, agents are enabled to represent and reason on their communications. This
paper first focuses on the adaptation of such a formalism (from [3]) to decentralised
systems. Secondly, some norms are defined that explicit the limits of a good commu-
nicative behaviour. Then a decentralised process to detect lies is proposed. Finally the
outcome of this process is used to update reputation values that, in turn, can be used in
future interactions to trust only communication from highly reputed agents.

This paper is composed as follows: Section 1 presents the communicative frame-
work and defines some contradictory situations that should be avoided in open and
decentralised MAS. Section 2 shortly introduces the formalism of social commitments
that is used, as well as its adaptation to open and decentralised MAS. This formalism
is, then, used in Section 3 to define a process that allows an agent to locally detect liars.
Finally, Section 4 shows how this process is integrated into a more general framework
for the revision of reputation values.

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 109–123, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

110 G. Muller and L. Vercouter

1 Motivations

The work presented in this paper takes place in decentralised and open multi-agents
systems. In such systems, assumptions on the internal implementation of the agents are
reduced to the minimum, in order to allow heterogeneous agents to enter or quit the
system at any time. Some agents might therefore behave unpredictably and disturb the
functioning of the overall system. This situation is particularly dangerous in open and
decentralised systems since cooperation of the composing entities is required for the
core components, like the transmission of communication, to function.

Some guarantees such as authentication, integrity, confidentiality, etc. can be ob-
tained by the use of security techniques. However, there are also some threats upon the
content of the messages.

1.1 Framework

In order to defend against such behaviours, the human societies created mechanisms
based on social interactions. Recent works [16,4,15] suggest to use such mechanisms,
like the calculation and the use of other agents reputation, as a solution to this prob-
lem in open and decentralised MAS. The reputation of an agent is usually evaluated
based on its previous behaviour. The more an agent had bad behaviours, the lower its
reputation is.

In such conditions, it is impossible to build a single reputation value stored in a
central repository and shared by every agent: each agent computes locally its own sub-
jective reputation toward a specific target. We propose [12] to enable agents with a trust
model as shown in Figure 1, although agents built with completely different trust mod-
els, or with no trust model at all, may be present at the same time in the system. The

Trust Intention

 c t
b

b

Interaction with
external observers
and/or evaluators

Lie Detection
with other agents

Communication c t
b

b c t
b

b

Consistency
check

Agent b

UseUpdate

Accept or
refuse

Commitment
Stores

other agentsof
Reputation

Fig. 1. General overview of the trust model

Using Social Commitments to Control the Agents’ Freedom of Speech 111

architecture of the trust model is composed of three main components: the communica-
tion module, the lies detection module and the trust intention module. When a commu-
nication is received from the communication module, as a social commitment, a first
process is started that checks if it can identify a lie based on the current commitment
stores and the incoming commitment. As a result, the process updates the reputation
values associated to the utterer. If the module detects that the message is a lie, then it
also updates its commitment stores according to the refusal of the message. If no lie is
detected, it does not mean there is no lie. Therefore, to prevent a possible future decep-
tion, the commitment is transmitted to the trust intention module. This module uses the
reputation values computed on earlier interactions to decide whether to trust or not the
incoming commitment. We argue that this trust model, by increasing agents information
regarding their peers will increase the efficiency of overall system.

In this paper, we focus on the lie detection module. The following sections first
present the contradictory situations that constitute the basis of the decentralised lie de-
tection process. Then, a model of communication which is well suited for external ob-
servation is presented. Finally, the decentralised process that agents use to detect lies
by reasoning on their peers’ communications is detailed.

1.2 Contradictory Situations

As an example, we use a scenario of information sharing in a peer-to-peer network
of agents. Some peers have some information about the show times for some movie
theaters. Others can query such information. Figure 2 shows such a situation with six
agents. Agent 5 possesses the show times for the “Royal” movie theater. Agent 6 pos-
sesses he show times for the “Méliès” movie theater. Agent 3 has some parts of both
show times. Agent 1 emits a query to know which theaters show the movie “Shrek” on
Saturday evening. The arrows in Figure 2 show the spreading of the query by the means
of the broadcasting mechanism used in peer-to-peer systems like Gnutella. Agent 1
sends this query to its neighbours, i.e. the agents to which it is directly connected. Then,
these agents forward the query to their own neighbours. This process is only iterated
a fixed number of times, in order not to overload the network. During this spreading
process, each agent that receives the query can look if it locally has the queried infor-
mation. If it has this information, it answers by using the same path as the query came
from. Figure 3 shows the replies comming back to Agent 1 using this mechanism for
the query considered in Figure 2. In this scenario, Agent 4 is in such a situation that it
can hide and/or modify some answers for the Méliès theater show times. The case of
simply hiding information is already solved in peer-to-peer systems thanks to the redun-
dancy of information. In this paper we focus on the second and more difficult problem
that consist in an agent sending an information that does not correspond to its beliefs.
For instance, Agent 4, believes that the Méliès shows the movie “Shrek” on Saturday
evening because of the message from Agent 6. However, it can modify Agent 6’s an-
swer so that it expresses that the Méliès does not show the movie “Shrek” on Saturday
evening and send it back to Agent 1.

In such agentified peer-to-peer networks, two types of contradiction can be defined :
contradiction in what is transmitted and contradiction in what is sent. The scenario
presented above underlines the first kind of contradiction. An agent T can commits to

112 G. Muller and L. Vercouter

Méliès 7.00pm Shrek

QryQry

Qry

Qry
Qry

Query
Which cinema

Saturday evening?
shows "Shrek" on

...Royal 8.30am Shrek
Royal 8.30pm Nemo
Royal 8.30pm Shrek
Royal 9.35pm Bambi

Show Times

...
Méliès 9.30am Shrek
Méliès 7.00pm Shrek

Show Times

Show Times

Royal 9.50pm Nemo
Royal 10.30pm Taxi

Agent 6 Agent 5

Agent 4

Agent 1

Agent 2

Agent 3

Fig. 2. Example of querying in a peer-to-peer theater show times sharing

ov1 : 50+60+65+66+71
ov2 : 50+60+70+71+74+75

Answer

Méliès at 7pm

Royal at 8.30pm
Answer

Méliès at 7pm
Méliès 7.00pm Shrek

Méliès at 7pm
Answer Answer

Royal at 8.30pm

Query
Which cinema

Saturday evening?
shows "Shrek" on

...Royal 8.30am Shrek
Royal 8.30pm Nemo
Royal 8.30pm Shrek
Royal 9.35pm Bambi

Show Times

...
Méliès 9.30am Shrek
Méliès 7.00pm Shrek

Show Times

Show Times

Royal 9.50pm Nemo
Royal 10.30pm Taxi

Agent 6 Agent 5

Agent 4

Agent 1

Agent 2

Agent 3

Fig. 3. Getting back the replies form a query in a peer-to-peer theater show times sharing

an agent B on a given content, whereas another agent A was previously committed to
it with an inconsistent content (type of contradiction 4(b), figure 4). The contradiction
in what is sent arises when an agent T commits to inconsistent contents, by sending a
message with a certain content to an agent A and another message with an inconsistent
content to another agent B (type of contradiction 4(a), figure 4).

Using Social Commitments to Control the Agents’ Freedom of Speech 113

T

AB

¬pp

(a) An agent T should not contradict itself.

T

B

A

p

¬p

(b) An agent T should not contradict an ac-
cepted information.

Fig. 4. Contradictory behaviours that are not desirable in open and decentralised MAS

These types of contradiction are often the consequence of lie. In order to detect and
sanction such behaviours, agents should be able to represent and reason about their
peers’ communications. Next section presents a model of communication that agents
can use to detect such contradictory behaviours, in a decentralised system like described
in this section.

2 Agent Communication

The scenario presented in the previous section emphasizes that agents should be able
to reason about their communications in order to detect lies. This requires a formalism
for inter-agent communications. There are three main approaches to communication
modeling [7]: behavioural, mentalistic, and social. Most of those works inherits from
the speech act theory [2,17].

2.1 Various Approaches to Agent Communication

The behavioural approach [14] defines the meaning of a speech act by its usage in
interaction protocols. It is very effective for implementation, but too rigid and static
for open MAS. The mentalistic approach is based on the agents’ mental states [5,9].
This approach is unsuited for observations since, in open systems, agents may come
from external designers and their internal implementation may remain unaccessible.
An agent does not have access to the mental states of another and, therefore, cannot
detect lies based on this representation. [18] discusses more limits to this approach. The
social approach [18,6,3,13,19] associates speech acts with social commitments.

In the context of this work (detailed section 1) agents only have access to what they
perceive. As far as communication is concerned, this implies that an agent only has
access to the messages it sends, receives and observes (directly or that are transmitted
by other agents). Therefore, agents need to represent communications based on their
observations, using a formalism external from the agent. The social semantics therefore
is well suited for observation of the communications by single agents, as it associates
to the utterance of a speech act an object (the social commitment) that is external to
the agent. It also does not consider any constraint on the actual language used in the

114 G. Muller and L. Vercouter

messages. The lies detection process presented in this article is based on an operational
semantics of the social approach from [3].

2.2 Decentralised Model of Social Commitments

In [3], a formalism is presented for social commitments. However, this model is cen-
tralised; commitment are stored in shared places that are publicly available. In open and
decentralised MAS, it is not possible to make such an assumption. This model can be
adapted to decentralised systems as follows:

c(debt, cred, utterance_time, validity_time, state(t), content)

debt is the debtor, the agent which is committed.
cred is the creditor, the agent to which the debtor is committed. Here, we differ

from [3], considering that if an agent has to commit to a set of agents, then it
commits separately to each agent of the set.

utterance_time is the time when the message that created the commitment has been
uttered.

validity_time is the interval of time associated with the commitment. When the current
time is not in this interval, the commitment cannot be in the active state.

state(t) is a function of time. This function returns the state of the commitment object
at time t, that can be either inactive, active, fulfilled, violated or
canceled.

content is the content to which the debtor is committed. Its exact composition is
out of the scope of this paper. However, we make two assumptions on this field: (i)
inconsistency between two contents can be deduced and is defined by a function
inconsistent : C × C �→ {true, false} where C is the domain of the contents; (ii)
there should also be a function context : C �→ S (where S is the overall set of topics
that cont can be about) that returns the topic of the content cont. This latter is used
to compute a reputation value for each possible context, e.g., providing weather
informations, providing theater show times. . .

A commitment follows a life-cycle (as in [6]) that is composed of the following states:

– When the commitment is created, it is either in the active or inactive state,
according to the current time being (resp. or not being) in between the validity time
interval bounds.

– The commitment can be fulfilled (resp. violated) if the agent does (resp.
does not) perform what it is committed to.

– The commitment can also be canceled.

However, in open and decentralised MAS, there is no shared and public place to store
commitments. Therefore, we assume that each agent maintains its own local represen-
tation of the commitments. Consequently, we note xcj

i , a commitment from i (debtor)
to j (creditor) as agent x represents it. Commitments are uniquely identified by the
creditor, the debtor, the utterance_time, and the content.

As a consequence of the decentralization, one agent can observe a message, create
the associated commitment (with the help of a mapping such as [6]) and then may be

Using Social Commitments to Control the Agents’ Freedom of Speech 115

unable to observe another message that would have modified the commitment. Such
situations may occur, for instance, if latter the message is cyphered or if the agent
loses connection with a part of the peer-to-peer network. . . Therefore, according to the
agent considered, the local representation of a commitment can differ. For instance,
an agent can believe that a commitment is in the violated state and discover, with
a message provided later by another agent, that it has been canceled before being vi-
olated. This is the kind of situation the processes described in the next sections deal
with.

The decentralization of the commitments has another consequence: the commitment
stores might be incomplete. A single agent does not have access to the overall set of
commitments of the system since it can only observe some messages. As a conse-
quence, it can build the commitments associated to the messages it has observed. The
local commitment stores only contain commitments the agent has taken or that have
been taken toward it, plus some commitments related to messages the agent may have
observed, if it has the capacity to do so. We note by xCSj

i agent x’s representation of
the commitment store from agent i toward agent j.

The detection of contradictions within these commitment stores constitute the basics
of the detection of lies in our framework. The next section presents how we use such
commitment stores to detect lies.

3 Lies Detection

The scenario presented in Section 1.2 emphasizes that a global result (such as fetching
cinema timetables) is achieved by a collective activity of several agents. Therefore,
agents that do not behave as expected, i.e. that do not respect the obligations that define
a “good” behaviour, can prevent the success of the collective task. We focus here on
communicative actions and on fraud detection within agent communications.

The general outline of the lies detection process is as follows:

1. An agent (that plays the role of detector) observes some messages between other
agents.

2. This detector builds the commitments associated with the messages observed, using
a mapping (e.g. [6]). It adds these commitments to its local representation of the
commitment stores.

3. Based on its local representation of the commitment stores, the detector can detect
violations of some obligations.

4. The detector suspects the target of a lie. It starts a process that aims to determine
if a lie actually occurred or if there is another reason for the inconsistency (e.g. the
detector’s local representations of the commitment stores need to be updated, the
target simply transmitted a lie, . . .).

The process is decentralised due to the fact that the role of detector can be played by any
agent of the system and may require the cooperation of other agents. This section first
introduces the obligations we define, then presents the two processes. The first process
consists in detecting the violations and the second process seeks for the source of the
inconsistency.

116 G. Muller and L. Vercouter

3.1 Obligations in Communicative Behaviours

The good and bad communicative behaviours of agents can be defined according to
the states of their commitment stores. We first need to define what is inconsistency
between commitments in order to define what are the authorized and prohibited states
for the commitment stores.

Inconsistent Commitments. We define the inconsistency of commitments as follows
(where T is the domain of time):

∀t ∈ T , ∀c ∈ bCSy
x , ∀c′ ∈ b′CSy′

x′ ,

(inconsistent(c, c′)
≡

((c.state(t) = active) ∨ (c.state(t) = fulfilled))∧
((c′.state(t) = active) ∨ (c′.state(t) = fulfilled))∧

inconsistent(c.content, c′.content))

Two commitments are inconsistent if they are, at the same time t, in a “positive” state
(active or fulfilled) and if their contents are inconsistent.

Inconsistency in a set of commitments U , is defined if there are two inconsistent
commitents in it, more formally:

inconsistent(U)
≡

∃c ∈ U ∧ ∃c′ ∈ U s.a. inconsistent(c, c′)

By definition, a commitment store is a set of commitments. The formula above there-
fore also define inconsistency of a commitment store. Moreover, as a consequence of the
definition of commitment stores, a union of commitment stores is also a set of commit-
ments. Inconsistency of a union of commitment stores is also expressed in the formula
above as the co-occurence of (at least) two inconsistent commitments in the union.

Obligations and Their Violations. With obligations, we define the limits of an accept-
able communicative behaviour. These obligations are written using deontic logic [20].
The modal operator O is used to represent an obligation such that O(α) expresses that
α is an obligatory state.

In the definition of the obligations we use CSy
x(t) instead of bCSy

x(t) because obli-
gations are defined in a system perspective, not for a single agent. However, each agent
uses a local instanciation of the formulae during the process of detection of a violation.

In the scenario considered in this paper, communication between agents should re-
spect the following obligations (Ω(t) is the set of the agents in the system at time t):

O(∀t ∈ T , ∀x ∈ Ω(t),¬inconsistent(
⋃

y∈Ω(t)

CSy
x(t)))

which is the contradiction of the debtor. In the example shown by Figure 5, Agent 4 is
the debtor of inconsistent commitments (it commits both on the fact that the “Méliès”

Using Social Commitments to Control the Agents’ Freedom of Speech 117

Royal 8.30pm

Answer

NOT AT Méliès

Answer

Méliès 7pm

Detector(D)
Agent 3Agent 4

Agent 1

inconsistent(DCS1
4 ∪ DCS3

4)

Dc3
4

Dc1
4

Fig. 5. Contradiction of the debtor

shows the movie and that it does not show the movie) and is in a situation of contradic-
tion of the debtor. When such a situation is observed, we consider that Agent 4 has lied.
We assume that the messages have the non-repudiation [1] property to prevent an agent
from claiming that it did not send an observed message.

It is important to note that this obligation does not prevent an agent from chang-
ing its beliefs. It only constrains an agent to cancel its previous commitments, that
are still active, about a given content α, if the agent wants to create a commitment
about a content β that would be inconsistent with α. Then, the only way for Agent 4
to give evidence that it did not lie in the example of Figure 5 is to provide a message
proving it has canceled one of the two inconsistent commitments before creating the
other.

We also define a contradiction in transmission:

O(∀t ∈ T , ∀x ∈ Ω(t), ∀c ∈
⋃

y∈Ω(t)

CSy
x , ∀c′ ∈

⋃

y′∈Ω(t)

CSx
y′ ,

(c.utterance_time > c′.utterance_time) ∧ ¬inconsistent(c, c′))

This contradiction (figure 6) only appears if Agent 4 sent its message to Agent 1 after it
received the message from Agent 6. If Agent 4 wants to send its message to Agent 1, it
has to cancel explicitly the commitments for which it is creditor and that are inconsistent
with the message to send.

However, a violation of the obligation is not always a lie. The agent that detects
the violation of the obligation may have a local representation of some commitment
stores that needs to be updated. For instance, the agent might have missed a message
that canceled one of the commitments involved in the inconsistency. The detection of
inconsistencies is therefore only the first step of the detection of lies. When a violation
of one of the obligations is detected, it begins a process that leads either to such an
update or to the evidence that a lie was performed.

118 G. Muller and L. Vercouter

Royal 8.30pm

Answer

NOT AT Méliès

Answer

Méliès 7pm

Detector(D)

Agent 6

Agent 1

Agent 4

inconsistent(DCS4
6 ∪ DCS1

4)

Dc1
4

Dc4
6

Fig. 6. Contradiction in transmission

3.2 Asking for Justification

The detector asks the agent suspected of a lie to provide a “proof” that, at least, one
of the commitments involved in the inconsistency has been canceled. In the commu-
nication framework, a “proof” is a digitally signed message with the non-repudiation
property [1]. If the suspected agent cannot give a proof that it has canceled one of the
commitments, then the detector considers that it lied and sets the state of one of the
commitments for which it is debtor in the violated state. How the detector chooses
its local representation of the commitment to change is free. In the remaining of the
paper, we consider it bases its decision on its trust model.

Previous sections show that there are several cases where the lies detection module
is weak and cannot conclude that a lie occured. That’s the reason why it is used in
conjunction with a trust intention module that estimates the honesty of an agent based
on its past behaviours. Next section presents this trust intention module.

4 Reasoning About Lies

Each time a lie is detected, the beneficiary of this detection should use this informa-
tion to update its representation of the target. The information is usually merged in an
evaluation of the honesty of the target: its reputation. Figure 1 (page 110) shows how
an agent links lies detection with reputation: the lies detection module implements the
processes described in Section 3.1. During these processes the beneficiary may have to
communicate with other agents (observers and evaluators) and uses its local beliefs to
check if an inconsistency occurs. This process can result in an update of the reputation

Using Social Commitments to Control the Agents’ Freedom of Speech 119

attached to some agents. Then, if the commitment bc
x
t (commitment from t to x as per-

ceived by b) has not been detected as a lie, it is transmitted to the trust intention module
that decides whether to accept the message (trust the sender) or refuse it (distrust the
sender).

In this section we focus on and present briefly the reputation of other agents and the
trust intention module. First, we describe different ways to use the detection of a lie in
order to update reputations. We then show how an agent can use the reputation attached
to other agents to avoid being deceived in the future.

4.1 Using Different Kinds of Reputation

Even if a target has lied to another agent, it is not always a systematic liar. In the
same way, an agent that has not yet lied may become dishonest in its future com-
munications. Then, it may be useful to estimate the honesty of the target by a degree
rather by a boolean value. We represent reputation as a real number in the interval
[−1, +1]. An agent which reputation is −1 is considered as a systematic liar whereas
an agent with a reputation of +1 would be always honest. In addition to this inter-
val, an agent’s reputation can take the value unknown if there is too few information
about it.

There exists different kinds of trust [10]. For instance, there are trusts related to
the perceived environment, trust related to the presence of institution, trust between two
specific agents, etc. Here, we focus on the latter: trust between two specific agents based
on their experiences.

An agent maintains a trust model about another agent by the way of reputation val-
ues. An agent can compute a reputation value based on its direct experiences, or based
on external information, therefore there are various kinds of reputation [11]. In the pro-
cesses of building those reputations, CONTE et al. [4] distinguish different roles that
agents can fulfill in a trust framework. In the case of a lie detection process, we identi-
fied a few roles:

A target is an agent that is judged.
A beneficiary is an agent that maintains the reputation value.
An observer is an agent that observes some commitments from the target.
An evaluator is an agent that transforms a set of commitments into a reputation value.
A gossiper is an agent that transmits a reputation value about the target to the benefi-

ciary.

Depending on the agents that play these roles, a reputation value is more or less
reliable. It is then important to identify different kinds of reputations that can have dif-
ferent values. From the notions of observation and detection introduced in the previous
section, we define four kinds of reputation:

Direct Experience based Reputation (DEbRp) is based on direct experiences bet-
ween the beneficiary and the target. A direct experience is a message that has been
sent by the target to the beneficiary and that has either been detected as a lie or as
an honest message.

120 G. Muller and L. Vercouter

Observation based Reputation (ObRp) is computed from observations about com-
mitments made by the target toward agents other than the beneficiary. The benefi-
ciary uses these observations to detect lies and to compute a reputation value.

Evaluation based Reputation (EbRp) is computed by merging recommendations
(reputation values) transmitted by gossipers.

General Disposition to Trust (GDtT) is not attached to a specific target. This value is
not interpersonal and it represents the inclination of the beneficiary to trust another
agent if it does not have any information about its honesty.

For instance, the ObRp can use the accumulation of observations gathered during the
justification process described in section 3.2. As far as the EbRp is concerned, it can be
computed based on recommendations requested to gossipers when needed.

The functions used to compute reputation values based on aggregation of several
sources are out of the scope of this paper. However, the functions for DEbRp, ObRp
and EbRp can be found in [12]. In essence, reputation values are computed based on
the number of positive, neutral or negative experiences, therefore, each time a lie is
detected, the reputation value decreases and each time a correct behaviour is detected,
the reputation value increases. Next section shows how an agent can use these various
reputation values to decide whether to trust or not another agent.

4.2 Preventing Future Deceptions

The aim of the trust intention module is to decide whether the agent should trust or not
a given target regarding a particular information. We consider here the specific case of
communications where this information is a message sent by the target and where the
decision process leads the agent to accept the message or refuse it. However, we think
that this decision mechanism is general and can handle other situations where an agent

Trust intention

message

Distrust intention

Unknown
or not

relevant
or not

discriminant

Unknown
or not

relevant
or not

discriminant

Unknown
or not

relevant
or not

discriminant

EbRp ObRpDEbRp GDtT

> θtrust

< θdistrust < θ′distrust < θ′′distrust

> θ′trust > θ′′trust

Fig. 7. Using reputation values to decide

Using Social Commitments to Control the Agents’ Freedom of Speech 121

should decide whether it trusts or not a target (e.g., anticipating if the target will fulfill
or not its commitments, whether it will obey or not a norm. . .).

Figure 7 shows the decision process. The decision process works as follows: the
agent first tries to use the reputation value it considers the most reliable (DEbRp in the
figure). This kind of reputation may be sufficient to decide to intend to trust or not a
target if it has a high (respectively low) value. This is represented in figure 7 by two
thresholds θtrust and θdistrust. If the DEbRp is greater than θtrust, the agent trusts the
target and accepts the message it received from it. At the opposite, if the DEbRp is
less than θdistrust, the agent distrusts the target and refuses its message. Otherwise, the
DEbRp does not permit the agent to decide whether the target should be trusted or not.
These other cases consist in specific values of the DEbRp: either the “unknown” value,
or a moderate value (between θtrust and θdistrust).

A similar process is then used with the next kind of reputation (ObRp in the figure).
The value is compared to two thresholds (θ′trust and θ′distrust that can be different from
the thresholds used for DEbRp) in order to decide whether to trust or not the target. If
this value is still not discriminant, EbRp is considered for decision. As a last resort, the
agent’s GDtT makes the decision.

To simplify the writings the thresholds appear as fixed values, but it is possible to
consider various thresholds according to the situation (e.g., to express various levels of
risk). Also, Figure 7 shows an ordering of the reputations that we think is common sense
and that may be used in a general case: for instance, an agent may consider a reputation
computed by another agent less reliable than the reputation that it has itself computed
from messages directly observed. However, in some specific cases, it is possible to
consider another ordering.

At the end of this decision mechanism, the agent has decided whether to trust or
distrust the target. Then, there are two ways to deal with the message received: either
the agent took the decision to trust it, in which case the message is accepted, or it took
the decision not to trust it, in which case it is rejected. In the latter case the commitment
associated with the message is canceled.

The main interest of the trust intention module is to preserve the agent from being
deceived by some undetected lies. There are lies that are not detected by the lies detec-
tion module. Reputation can then be used not to believe messages sent by agents that
have often lied in the past.

At the end of this decision process two undesirable cases may happen: (i) messages
that are not lies may be rejected; (ii) undetected lies coming from agents with a high
reputation may be accepted. If the former case should be avoided, the receiver does
not have to definitely reject the message. It may rather asks some justifications to the
target or to other agents. In the latter case, a deception occurs. The lie may be detected
a posteriori if another message received later leads to an inconsistency with the unde-
tected lie.

5 Conclusion

In this paper we address the problem of detecting dishonest agents, i.e. agents that do
not respect their commitments. The work of [8] also addresses this same problem, but
their approach is centralised, therefore our models differ singularly. In this paper, we

122 G. Muller and L. Vercouter

consider decentralised and open systems where no agent has complete knowledge of
the system and where any agent can enter or leave the system at any time.

Our approach proposes to introduce a trust model for communications in open and
decentralised multi-agent systems. First, obligations define what a “good” communica-
tive behaviour for the agents should be. Then, a process that detects lies based on the
violation of those obligations is presented. This process marks as violated the commit-
ments that are detected as lies. Reputation values are computed based on the number
of positive, neutral or negative experiences, therefore, each time a lie is detected, the
reputation value decreases and each time a correct behaviour is detected, the reputa-
tion value increases. Also, agents decide whether to accept or not an incoming message
based on the reputation they associate to the sender. Consequently, reputation acts as a
social sanction for agents that exhibit a prohibited behaviour.

References

1. Definition of non-repudiation, August 2004. http://en.wikipedia.org/wiki/Non-repudiation.
2. J. L. Austin. How to do things with words. Oxford University Press, 1962.
3. J. Bentahar, B. Moulin, and B. Chaib-draa. Towards a formal framework for conversational

agents. In M.-P. Huget and F. Dignum, editors, Proceedings of the Agent Communication
Languages and Conversation Policies AAMAS 2003 Workshop, 2003. July 14th 2003, Mel-
bourne, Australia.

4. R. Conte and M. Paolucci. Reputation in Artificial Societies. Social Beliefs for Social Order.
Kluwer Academic Publishers, 2002.

5. FIPA. Fipa communicative act library specification. Technical Report SC00037J, FIPA:
Fundation For Intelligent Phisical Agents, December 2002. Standard Status.

6. N. Fornara and M. Colombetti. Defining interaction protocols using a commitment-based
agent communication language. In Proceedings of the AAMAS’03 Conference, pages 520–
527, 2003.

7. F. Guerin. Specifying Agent Communication Languages. PhD thesis, University of London
and Imperial College, 2002.

8. J. Heard and R. C. Kremer. Practical issues in detecting broken social commitments. In
R. van Eijk, R. Flores, and M.-P. Huget, editors, Proceedings of the Agent Communication
workshop at AAMAS’05, pages 117–128, Utrecht, The Netherlands, July 2005.

9. Y. Labrou and T. Finin. A semantics approach for kqml - a general purpose communica-
tion language for software agents. In Third International Conference on Information and
Knowledge Management, 1994.

10. D. McKnight and N. Chervany. Trust in Cyber-societies, chapter Trust and Distrust Defini-
tions: One Bite at a Time, pages 27–54. Springler-Verlag Berlin Heidelberg, 2001.

11. L. Mui and M. Mohtashemi. Notions of reputation in multi-agent systems: A review. In
AAMAS’2002 and MIT LCS Memorandum, 2002.

12. G. Muller, L. Vercouter, and O. Boissier. A trust model for inter-agent communication relia-
bility. In Proceedings of the AAMAS’05 TIAS workshop, 2005.

13. P. Pasquier, R. A. Flores, and B. Chaib-draa. Modelling flexible social commitments and
their enforcement. In Proceedings of ESAW’04, 2004.

14. J. Pitt and E. H. Mamdani. A protocol-based semantics for an agent communication lan-
guage. In Proceedings of IJCAI’99, pages 486–491, 1999.

15. J. Sabater and C. Sierra. Social regret, a reputation model based on social relations. SIGecom
Exchanges. ACM, 3.1:44–56, 2002.

Using Social Commitments to Control the Agents’ Freedom of Speech 123

16. M. Schillo and P. Funk. Who can you trust: Dealing with deception. In In Proceedings of the
DTFiAS Workshop, AAMAS’99, pages 95–106, 1999.

17. J. R. Searle. Speech Acts: an essay in the philosophy of language. Cambridge University
Press, 1969.

18. M. P. Singh. Agent communication languages: Rethinking the principles. In M.-P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of Lecture Notes in Computer
Science, pages 37–50. Springer, 2003.

19. M. Verdicchio and M. Colombetti. A commitment-based communicative act library. In
F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. Singh, and M. Wooldridge, editors, Pro-
ceedings of AAMAS’05, pages 755–761, Utrecht, The Netherlands, July 2005. ACM Press.

20. G. von Wright. Deontic logic. In Mind, volume 60, pages 1–15, 1951.

Practical Issues in Detecting Broken Social

Commitments

Jason Heard and Rob Kremer

Computer Science Department
University of Calgary

Calgary, Alberta, Canada
{heard, kremer}@cpsc.ucalgary.ca

Abstract. An open system should admit agents from many sources and
these agents may have conflicting goals. Therefore, some actions that an
agent would like to perform could be detrimental to other agents. Such
actions can be either acceptable or unacceptable within a given system.
Social norms define what actions are acceptable and unacceptable within
a given society. There should be a way to limit the actions of agents to
enforce these social norms. One way to begin to accomplish this goal
is to have the system observe the actions of agents to model their be-
haviour. Behaviours that do not conform to specified norms could then
be detected, and some action could be taken to prevent agents from
performing further actions that violate social norms.

In this paper we discuss the use of social commitments to allow a sys-
tem to define social norms and detect violations of those norms. Social
commitments model an agent’s commitments within a society. Some are
implied while others are explicitly stated. Our system uses social com-
mitments to define social norms. This paper focusses on the practical
requirements that must be met for a system to implement social com-
mitments as a way of defining social norms and detecting violations of
those norms. In addition, we give an overview of how our multi-agent
system design supports this goal.

1 Introduction

One of the goals of multi-agent systems (MAS) is to achieve synergy between
agents. The goal is to accomplish more with a group of agents working together
than could be accomplished by all of the agents working individually [1]. In order
to do this, agents must be designed so that they can work with other agents.
Another goal of multi-agent systems is to admit agents from many sources (or
programmers) into the system [2]. These diverse agents may have conflicting
goals. It is possible for agents with conflicting goals to work together on portions
of their goals (and thereby achieve synergy).

If agents are working on conflicting goals, it may benefit one agent to perform
some act that harms another agent. Take, for example, the case of a simple
auction. It is generally acceptable to outbid another agent (assuming that you
can meet the bid you have given). But it is generally unacceptable for an agent

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 124–135, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Practical Issues in Detecting Broken Social Commitments 125

to state that some resource is worthless, knowing that it is not, so that another
agent will bid lower, or not at all on the object. Both actions obviously are
detrimental to another agent, but only one would be considered a violation of
social norms.

It would be advantageous if the designer of an open system (one that allows
agents with conflicting goals to enter it) takes into account these social norms.
A system with no checks on norms would not facilitate cooperation, and would
not attract many designers or agents to work within it. On the other hand, a
system that is too strict would make it difficult to claim that the agents within it
are autonomous [3]. The system outlined in this paper does not restrict actions
but instead attempts to detect antisocial agents so that they may be avoided as
necessary. To create a system with checks on social norms, that system must be
able to detect violations. In order to detect norm violations some methodology
must be put into place to map social interactions so that norm violations are
observable. Social commitments will be used as the criterion to determine if
actions conform to social norms within our system. Actions that break social
commitments will be considered to be in violation of social norms.

Social commitments model commitments between agents [4,5] at a social level.
Social commitments can be used to define societal norms [6], or to formally
describe a protocol based on the social commitments implied by that protocol
[7]. In order to detect actions that violate social norms as defined above, it is
necessary to detect when social commitments are broken. Some work has been
done to detect broken commitments [7,8]. Our system differs from previous work
in that our system is open and accepts agents that may perform actions the
original system designer didn’t account for. Once a system detects that an agent
has broken a social commitment and has therefore violated a social norm, some
actions should be taken to “punish” the responsible agent. These actions (called
sanctions) are discussed by Pasquier, Flores, and Chaib-draa [9].

Our system employes the use of a social commitment observer agent to detect
broken social commitments. The use of special agents to perform monitoring has
been done previously with “sentinals” [10]. We propose instead the use of a single
agent to perform the monitoring, the use of social commitments as the framework
for detecting unacceptable behaviors, and we maintain a focus on detection,
leaving corrective activities for future research. In some ways, our system is
similar to the systems described in [11] and [12] which employ “governors” and
“coordination artifacts” respectively, but these works are primarily focussed on
helping the MAS work with external agents, and not necessarily on detecting
when those agents violate social norms.

While some work has been done in detecting broken social commitments, it
was done under the assumption that the MAS is aware of all major events [8].
These events are given as logical statements. Work has not been done on how a
non-logical system would map messages and perceived activities to these logical
statements. Here we will attempt to define the requirements that must be met for
the system to be aware of all acts that break social commitments. Based on these
requirements, we have created a system to detect broken social commitments.

126 J. Heard and R. Kremer

Section 2 outlines the social commitment model that will be used through-
out the remainder of this paper. Section 3 breifly describes CASA (Cooper-
ative Agent System Architechture), the basic MAS that was expanded to al-
low for a social commitment observer. Section 4 details the requirements that
must be met in order to detect broken social commitments. Section 5 is a dis-
cussion of the details of the implementation of a social commitment observer
in CASA. Section 6 offers a conclusion and suggests directions for further re-
search.

2 Social Commitments

Before a system can be designed to detect broken social commitments, social
commitments have to be defined and the procedure for creating and disolving
commitments must be outlined. We will draw on the model of social commit-
ments outlined in [6] and [8]. This model has been chosen because Alberti and
others have already shown that commitments can be detected using various
forms of logic. This paper shows how we have implemented the ability to detect
broken commitments in CASA.

A commitment is defined as a set including a debtor (x), a creditor (y), a
condition (p) and a context (G) [6]. Together, the commitment states that x is
committed to y to ensure that p comes about within some social context G. For
the remainder of this paper, G will be assumed to be the system outlined in this
paper, and is therefore the same in all of our cases. In addition, we informally add
to all social commitments a timout (t), which gives the time that a commitment
must be fulfilled by. Formally, this is part of the condition, in the form, “p will
be fulfilled on or before time t,” but for ease of discussion, it will be listed as a
separate field in this paper.

Social commitments are formed, modified, and removed using one of the fol-
lowing actions [6]:

create. This action creates a commitment. In our system, this can result from
any of the policies, and usually an agent becomes the debtor only when it
sends or is sent a message.

discharge. This action occurs when a commitment’s condition has been met,
and therefore fulfills the commitment. This requires no action by the debtor
or creditor other than those actions necessary to bring about the condition.
Our system considers this a resolution that meets our social norms (a “good”
resolution).

cancel. This action removes a commitment from a debtor, without the consent
of the creditor. This is essentially a statement saying that an agent does not
intend to fulfill its commitment, and will probably break it. In our system,
however, a commitment is not technically broken (and therefore a social
norm is not violated) until either an action occurs that makes the condition
impossible to fulfill or the timeout is reached without the condition being
fulfilled.

Practical Issues in Detecting Broken Social Commitments 127

release. This action removes a commitment from a debtor with the permission
of the creditor. This is considered acceptable within the social norms of our
system.

delegate. This action changes the debtor field of the commitment. It requires
the permission of the new debtor. Essentially, we are stating that if an agent
commits to perform an action that another agent was committed to per-
forming, that agent has passed the responsibility and is no longer required
to bring about the condition. However, it could be argued that an agent is
still committed, and would be at fault if the other agent did not fulfill the
commitment.

assign. This action changes the creditor field of the commitment. It requires
the permission of the old creditor.

The social context, G, determines when each of the actions can be performed.
We have informally described when these actions are applied in our system, but
the details of these conversation policies are described in the next section.

It is important to note that although social commitments define acceptable
behaviors in our system, agents do not have to be internally aware of social
commitments. In other words, when programming an agent, the programmer
need not focus on social commitments so long as the agent will, in the end, act
in accordance with the policies and the social commitments they create.

2.1 Conversation Policies

Conversation policies are rules that indicate when actions can and should be
performed on social commitments. Our system adopts the conversation policies
informally described in Table 1. These policies outline acceptable behaviors in
and form the basis of our system. The P-propose policy indicates that a certain

Table 1. An informal description of the conversation policies as defined by Flores and
Kremer [13]

Policy Description

P-propose A proposal commits the proposed agents to reply.
P-counter-offer A counter-offer is considered a reply, and commits addressees to

reply.
P-reply-acc An acceptance releases proposed agents from the commitment to

reply and releases counter-offered agents from the commitment to
reply.

P-reply-rej A rejection releases proposed agents from the commitment to reply
and releases counter-offered agents from the commitment to reply.

P-reply-counter A counter-offer releases proposed agents from the commitment to
reply and releases counter-offered agents from the commitment to
reply.

P-accept An acceptance causes the formation of the proposed/counter-offered
commitment.

P-release A release releases the debtor of the given commitment, if sent by
the creditor.

128 J. Heard and R. Kremer

Table 2. An informal description of conversation policies based on the fish auction
policies described by Venkatraman and Singh [7]

Policy Description

FA-advertise An advertisement at some price commits the advertiser to sending
fish to the bidder if there is one and only one bid within a given
time.

FA-bid A bid commits the bidder to sending money if it receives fish from
the advertiser.

FA-bad A bad fish message essentially cancels the process, and therefore
removes both the advertiser and bidder’s commitments in relation
to that fish.

degree of politeness is required of agents in the system. The requirements could
be amended (politeness does not have to be a requirement) if a system designer
desires a more open system.

It is possible for system designers to add new policies to their system. This
allows other domain specific policies to be put into place when they would aid
in understanding the expectations of agents participating in that system. For
example, we have implemented a set of policies that define a fish auction [7].
These are informally described in Table 2. While there are other possible mes-
sages in the fish auction, they can all be inferred from these policies. Because the
basic set of policies in our system include a way to set up arbitrary commitments
(with the P-propose and P-accept policies, among others), new policies do not
necessarily need to be created to use other protocols with this system.

3 CASA (Cooperative Agent System Architecture)

The work described in this paper expands upon CASA, a communication-based
multi-agent system written in Java. A few of CASA’s unique features are used
to aid in the development, but any flexible MAS could be used as a basis for
this work, with some modifications.

Figure 1 shows a typical run-time configuration of CASA. Every machine run-
ning CASA agents runs a special agent called the local area coordinator (LAC).
The LAC is responsible for resolving agent addresses, keeping track of how to
start up agents, and starting agents on behalf of other agents (that may be run-
ning on other machines). The CASA framework demands very little of agents
running within it, but agents are expected to register with the LAC on start up,
and may register information about how they can be re-started (if they want to
offer services to other agents on demand). The message contents are standard-
ized to a superset of the FIPA message standard [14].1 Once registered, CASA
agents are free to communicate with one another using the CASA message for-
mat over TCP/IP ports. CASA agents may also communicate through a special
kind of agent called a cooperation domain, the subject of the next subsection.
1 The actual messages can be in either XML [15] or a KQML-like [16] format.

Practical Issues in Detecting Broken Social Commitments 129

Area (Computer)Area (Computer)

Local Area
Controller (LAC)

Cooperation
Domain (CD)

Agent C

Agent BAgent A

Local Area
Controller (LAC)

Other Agents

Other Cooperation
Domains

Cooperation
Domain

Observer Agent

Fig. 1. A typical CASA run-time configuration

3.1 Cooperation Domains in CASA

A cooperation domain (CD) is an agent designed to aid agents in communicating
in large groups. The CD allows agents to communicate with one another without
knowing about every other agent. Agents register with the CD, and as a result
they receive all non-private communications that are sent to the CD (including
those they send). In this paper, a “cooperation domain” refers to either an agent
itself or to a virtual location within which all agents (registered to that CD)
operate. Figure 1 shows four agents participating in a conversation through a
cooperation domain, depicted by the double-headed arrows.2

CASA agents are free to communicate directly (not through the CD) but
they lose the power of the services potentially offered through the CD. Another
advantage of the CD is that it gives the creators of the CD the ability to monitor
the communications between its members. Figure 1 shows one such agent, the
“Cooperation Domain Observer Agent,” performing a special role within an
agent conversation. This type of privileged agent can “eavesdrop” on all messages
going through the cooperation domain, and is necessary when implementing a
social commitment observer (see Sect. 5).

4 Detection Conditions

In order for the social commitment observer agent (or just observer) to detect
broken social commitments, certain requirements must be met. The detection
of broken social commitments is inferred from the observer’s observations, the
2 Messages sent in this way may be directed to all the participants (broadcast), to a

specific subset of the participants (multi-cast), to a single agent (directed), or to all
participants who have a particular role in the conversation (role-cast).

130 J. Heard and R. Kremer

Table 3. Requirements for a social commitment observer to detect that a social com-
mitment was formed

Requirement Description

R1-understand The observer understands social commitments and their structure.
R1-form The observer observed the act that formed the social commitment.

This may be either R1-form-accept or R1-form-policy.
R1-form-accept The observer observed the acceptance of the social commitment

(P-accept).
R1-form-policy The observer observed an act that, because of a known conversation

policy, automatically forms a social commitment (P-propose, for
example).

way Sherlock Holmes solves a crime by decoding clues. This means that the
observer does not rely on complaints or other error messages to determine if
commitments are broken. The observer must infer that a social commitment is
broken by observing the communications within the system and using any other
means of apprehension it may possess (such as the ability to perceive some
environment).

To detect the formation of a social commitment, the following conditions must
be met. The observer must understand social commitments (both the concept
and their structure). The observer must also observe the action that causes the
formation of the commitment. This can happen in two ways. First, a social
commitment is formed when an explicit request to form a social commitment
was accepted by another agent, as defined by P-accept (see Table 1). A social
commitment can also be formed through a conversation policy which results from
some communication between agents. This can happen because of P-propose, P-
counter-offer, P-inform, or any other policy that forms a commitment. This last
requirement does not specify a particular set of policies because further policies
can be added to a system by its developer (as mentioned in Sect. 2.1). Table 3
summarizes the conditions outlined above.

Once the observer agent has detected a social commitment it must store this
commitment, as the commitment may be formed long before it is broken. The
observer must then understand the condition portion of the social commitment.

Table 4. Requirements for a social commitment observer to detect that a social com-
mitment was broken

Requirement Description

R2-form The observer detected that a commitment was formed.
R2-store The observer has stored the commitment that was detected in R2-

form.
R2-condition The observer understands the condition part of the commitment.
R2-no-release The observer has not observed an action that releases the debtor

from the commitment.
R2-break The observer observes an action that implies that the condition

portion of the social commitment can never be satisfied.

Practical Issues in Detecting Broken Social Commitments 131

This requirement is non-trivial, as our version of an open system includes the
possibility of agents not understanding all other commitments. In the case where
a commitment has been dissolved properly through one of the conversation poli-
cies (described in Sect. 2.1), nothing further will be required of the debtor.
Therefore, the observer must detect a commitment that has not been properly
dissolved. This implies that the observer is observing all activity of the agent, so
that it isn’t possible that the observer has missed the proper dissolution of the
commitment. Finally, some action must happen that implies that the condition
portion of the social commitment can never be satisfied. This action must be
observed by the observer. Table 4 summarizes the conditions outlined above.

5 Implementation

In CASA, we implemented an agent that can detect broken social commitments
(our social commitment observer). In doing so, we attempted to meet all of the
requirements outlined in Sect. 4. In the following subsections we discuss how and
to what degree we were able to meet each of the requirements.

5.1 Understanding Social Commitments (R1-understand)

The observer’s understanding of social commitments begins with the under-
standing of the debtor and creditor fields of a social commitment. The FIPA
standards define a sender and receiver field within every message. The sender
field is always the agent that is currently sending the message while the receiver
field is always the agent currently receiving the message. In CASA, when a co-
operation domain is used to forward messages, the sender field is always the
sending CD (to meet FIPA standards). Since the CD isn’t (usually) the agent
originally sending the message, it was necessary to add another field to messages
within CASA (which is acceptable by FIPA standards). This is the from field.
It is defined as the original sender of the message. Therefore, within CASA the
from and receiver fields determine the debtor and the creditor of a given commit-
ment. The from and receiver fields of the message are always URLDescriptors,
which are used within CASA to both uniquely define an agent and define how
to communicate with it (locally or across a network).

5.2 Observing Formation of Social Commitments (R1-form)

To observe the creation of all social commitments, the observer ties into a coop-
eration domain as a cooperation domain observer (Section 3.1 briefly describes
this functionality). This allows the observer to meet the R1-form requirement as
described below.

Once each message is received by the social commitment observer, it is
processed to determine which conversation policies apply and therefore which
commitments must be added to the set of current commitments. This is done by
applying each known policy, in turn to the given message. The policies are parsed

132 J. Heard and R. Kremer

in no particular order, and the successful operation of one policy does not imply
that the other policies will not apply to the message. The addition of a new
policy into the system requires only the creation of a new ConversationPolicy
subclass.

5.3 Storing Social Commitments (R2-store)

CommitmentEngine objects store social commitments in a map from (debtor×
creditor) to a set of conditions. In other words, given a debtor and a creditor, the
agent can retrieve a set that defines the conditions that the debtor is committed
to bringing about for the creditor. The conditions need not be understood at
the point of storage, and may be stored in some general format, such as a string
or a bit vector.

5.4 Understanding Conditions (R2-condition)

For any agent, there is a condition that is not understood. This is because
our system does not put a restriction on the language used in describing the
required condition of a social commitment. Therefore, any finite system will
not be able to understand all social commitments. With this difficulty in mind,
we have decided to implement the observer such that it only understands the
commitments described explicitly by one or more conversation policies. It can
still parse that an agent has formed a social commitment because of P-accept,
but it may not be able to parse the condition portion of that commitment. In
this case, the observer cannot detect when that commitment has been broken.
As described below in Sect. 5.5, the observer is still able to detect when a debtor
and creditor agree that the debtor should be released from its commitment (with
the P-release policy). Future work will focus on this restriction (see Sect. 6).

5.5 Observing the Release from Social Commitments
(R2-no-release)

The conversation policies used in Sect. 5.2 are responsible for creating com-
mitments as they are observed. In addition, these policies are responsible for
removing commitments from the set of all commitments when they are properly
dissolved. This is the case with the P-ack, P-reply, and P-release policies.

Because agents are free to communicate outside of a cooperation domain, it is
possible for the following scenario to take place. A message is sent by an agent,
Alice, within a cooperation domain that forms a social commitment, and that
commitment is detected and stored by the social commitment observer. Then,
Alice (or another agent) sends a message that should release Alice from that
commitment, but the message is sent outside of the cooperation domain. In this
case, the commitment may be marked as broken at some time, even though
it was actually properly dissolved. Our system requires that if an agent per-
forms an action that creates a social commitment within a cooperation domain,
any message properly dissolving that commitment must also be sent within the

Practical Issues in Detecting Broken Social Commitments 133

cooperation domain. This requirement is not enforceable within CASA. If the
requirement is not met, the system may detect that the agent has broken a social
commitment, and act as if the agent has broken a social commitment.

5.6 Observing Broken Social Commitments (R2-break)

Like the formation and proper dissolution of commitments, the social commit-
ment observer only detects broken social commitments if the message (or mes-
sages) that breaks the commitment is transmitted through the cooperation do-
main. The main problem with this requirement is not the difficulty of observing
the action that breaks a commitment, but the fact that for some commitments,
there is no such action. For example, let us assume that an agent, Alice, has a
social commitment to another agent, Bob, to send him a message. If we assume
that Alice and Bob are computer programs, and will therefore last as long as they
are needed, and that we don’t care about events beyond the end of the universe
(if the universe does end), then Alice will always be able to send Bob a message
at some time in the future, and no action would prevent this from occurring.

Because some commitments are not breakable, we have added another field to
social commitments: a timeout value. This follows naturally from the fact that
there is a timeout field in every CASA message. This still fits within our formal
definition, because it can be thought of as an addition to the condition portion of
the commitment similar to, “This condition will be brought about before time-
out.” The timeout value can be set so that the social commitment never times
out (if the designer wishes), but as long as it does, the commitment will eventu-
ally be either fulfilled or broken. With a timeout value, we can modify the above
example so that Alice has a social commitment to Bob to send him a message
before August 1, 2005. This commitment will obviously be broken if Alice has
not sent a message to Bob by the specified date. The P-inform and P-request
conversation policies outlined in Sect. 2 both have timeouts in the CASA sys-
tem, and so are easily monitored for breakage. The timeouts of all commitments
are checked within the commitment engine every time the expireCommitments()
function is called. Any commitments broken by the passage of time are treated
as if a policy had determined that the commitment has been broken.

5.7 Initial Results

With the above requirements generally fulfilled, our social commitment observer
is able to detect agents that fail to reply to requests, don’t acknowledge messages
when requested, and those that fail to complete correctly the fish auction as
defined in [7].

6 Conclusion / Future Work

In this paper we have presented an implementation of a working social com-
mitment observer in an open system. Towards this end, we have outlined the

134 J. Heard and R. Kremer

requirements for an observer to detect that a social commitment was formed,
and the requirements for an observer to detect that a social commitment was
broken. Finally, we gave a detailed description of how we met each of the re-
quirements for detecting broken social commitments. While we feel that we have
made good progress in this area, there are several directions for future research.

It would be advantageous to be able to dynamically add policies and known
conditions to the set that the social commitment observer understands. This
would allow agents to define new requirements for their domains, while main-
taining a central authority on commitments within a given cooperation domain.
It may be possible to use the act and performative lattices built into CASA to
store commitment information to aid the social commitment observer. This is
because these lattices can be expanded as needed for each agent, and can then
be passed from one agent to another with a standardized request.

It may also be beneficial to add a standard way for agents to “complain”
about other agents that have broken social commitments. Because the social
commitment observer presented here can detect that any type of commitment
has been formed, the observer could confirm that indeed there was a commitment
formed between the two agents. There would then have to be a way to determine
when complaints are legitimate. This would probably require both the agent that
registers the complaint and the agent that is complained about to be aware of
the complaint verification process. Any agent unaware of this process would be
unfairly judged, because it couldn’t aid in the verification process. A comparative
analysis of the transparent observation system and a complaint system is a future
direction for investigation.

Finally, the social commitment observer can detect when a commitment is
broken, but currently only displays a message to the user or writes an entry
in a log file. In a system that may involve many communications at any time
of day, some form of automated “punishment” to be meted out to agents that
have broken social commitments may be necessary. The simplest punishment
would probably be the ejection of agents that have broken a specified number
of social commitments (or a certain number of commitments per time period).
This ejection could be temporary or permanant. An alternative to the ejection
of undesirable agents is to provide a service similar to the Better Business Bu-
reau found in many cities. This service would give the number and/or type of
commitments broken by some agent at another agent’s request.

References

1. Denzinger, J.: Knowledge-based distributed search using teamwork. In: Proceed-
ings of the First International Conference on Multi-Agent Systems, San Francisco,
CA, USA (1995) 81–88

2. Hewitt, C.E.: The challenge of open systems. Byte 10 (1985) 223–242
3. Jennings, N.R., Campos, J.R.: Towards a social level characterisation of socially

responsible agents. IEEE Proceedings on Software Engineering 144 (1997) 11–25
4. Castelfranchi, C.: Commitments: From individual intentions to groups and orga-

nizations. In: Proceedings of the First International Conference on Multi-Agent
Systems, San Francisco, CA, USA (1995) 41–48

Practical Issues in Detecting Broken Social Commitments 135

5. Singh, M.: Social and psychological commitments in multiagent systems. In: AAAI
Fall Symposium on Knowledge and Action at Social and Organizational Levels,
Monterey, California (1991)

6. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a uni-
fication of normative concepts. Artificial Intelligence and Law 7 (1999) 97–113

7. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols.
Autonomous Agents and Multi-Agent Systems 2 (1999) 217–236

8. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
verification of agent interaction using social integrity constraints. In: Proceedings
of the First International Workshop on Logic and Communication in Multi-Agent
Systems (LCMAS 2003). (2003)

9. Pasquier, P., Flores, R., Chaib-draa, B.: Modelling flexible social commitments
and their enforcement. In: Proceedings of the Fifth International Workshop on
Engineering Societies in the Agents World (ESAW04). (2004)

10. Klein, M., Dellarocas, C.: Domain-independent exception handling services that
increase robustness in open multi-agent systems. Working Paper ASES-WP-2000-
02, Center for Coordination Science, Massachusetts Institute of Technology, Cam-
bridge, MA, USA (2000) http://ccs.mit.edu/ases.

11. Esteva, M., Padget, J.A., Sierra, C.: Formalizing a language for institutions and
norms. In: ATAL ’01: Revised Papers from the 8th International Workshop on
Intelligent Agents VIII, Springer-Verlag (2002) 348–366

12. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordina-
tion artifacts: Environment-based coordination for intelligent agents. In: Third
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS04). Volume 1. (2004) 286–293

13. Flores, R., Kremer, R.: To commit or not to commit: Modelling agent conversations
for action. Computational Intelligence 18 (2003) 120–173

14. Foundation for Intelligent Physical Agents (FIPA): FIPA ACL message struc-
ture specification. document number SC00061G, FIPA TC communication. (2003)
http://www.fipa.org/specs/fipa00061/SC00061G.html.

15. World Wide Web Consortium (W3C): Extensible markup language (XML) (2004)
http://www.w3.org/XML/.

16. Finin, T., Labrou, Y., Mayfield, J.: KQML as an agent communication language.
In Bradshaw, J., ed.: Software Agents, MIT Press (1997) 291–316

Introducing Preferences into Commitment Protocols�

Ashok U. Mallya and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535, USA

{aumallya, singh}@ncsu.edu

Abstract. Commitment protocols enable flexibility in agent interactions by uti-
lizing the semantics of commitments to develop succinct declarative specifica-
tions for protocols that allow a large number of executions. As a consequence,
commitment protocols enable agents to accommodate varying local policies and
respond to exceptions. A consequent weakness of such protocols is that commit-
ment protocols thus fail to distinguish between possible executions that are nor-
mal and those that may be allowed but are not ideal. This paper develops an ap-
proach for specifying preferences among executions that are allowed by a proto-
col. It captures sets of executions via a simple language and gives them a denota-
tional characterization based on branching-time models. It shows how to incorpo-
rate the specifications into rulesets, thereby giving the specifications a natural op-
erational characterization. The rulesets embed into a recent practical framework
for protocols called OWL-P. The paper shows that the operational and denota-
tional characterizations coincide.

1 Introduction

Agents can engage in a rich variety of interactions, and need appropriately rich models
to support their autonomy and heterogeneity. Commitment protocols, which capture the
essence of the desired interactions in high-level terms, are such a model. Protocols regu-
late the externally observable, social behavior of agents, distinguishing what is allowed
from what is not. Current approaches, however, do not make any finer distinctions about
what is normal and what is not.

This paper is about the main consequences of taking a knowledge engineering stance
toward commitment protocols.

– To accommodate the openness of the given system, protocols must apply in a wide
range of contexts. That is, they must generally allow multiple execution paths. For
example, a purchase protocol should allow the possibility that the goods may be
lost and a reminder sent for them.

– To accommodate agent autonomy, protocols must enable the participating agents to
choose their actions and responses to the above kinds of conditions as they see fit.
For example, a purchase protocol should allow the possibilities that negotiations

� We thank Amit Chopra, Nirmit Desai, and the anonymous referees for valuable comments. This
research was supported partly by the NSF under grant DST-0139037 and partly by a DARPA
project.

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 136–149, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Introducing Preferences into Commitment Protocols 137

may fail, that the payment may be made via a third party, that an agent awaiting
missing goods may send a reminder for them.

– To be realistic, the protocols themselves must be based on a study of different usage
scenarios, wherein not all possible executions are considered equal. For example,
as a practical matter, we would all recognize that it is more normal for a purchase
protocol to lead to an exchange of goods and money than for a refund to be issued
or for the goods to be repossessed by the merchant because of lack of payment.

In other words, protocols should be flexible enough to accommodate exceptions, but
should still be described in such a manner that the exceptions are distinguished from
the normal executions. Moreover, there is a hierarchy of exceptions, some being more
acute than others.

Protocol Preferences and Agent Policies. To capture the above motivations, we pro-
pose that protocol specifications be enhanced with modular, pluggable descriptions of
the preferences among executions of the protocol. These preferences are the proto-
col designer’s view of what are the most normal or most desired executions. In this
sense, they have a normative force. Individual agents would have their own policies for
how they participate in a given protocol. The policies should generally be in line with
the protocol preferences. (Verifying compliance with protocol preferences, however, is
nontrivial—we return to this point in Section 5.)

Protocols can be refined to yield protocols that serve the same goal but impose ad-
ditional requirements. For example, payment by cash is a refinement of payment (in
general). Agents contemplating interacting can negotiate about the refinement of the
protocol that they will enact. For example, if a merchant accepts only cash, payment by
check or charge card is ruled out and payment by cash is the only kind of payment that
will work.

More interestingly, agents who are participating in a protocol may negotiate about the
specific actions that each would take (from among those that are allowed by the given
protocol). For example, given that two parties agree to participate as seller and buyer
in a purchase protocol, they might then negotiate about whether buyer can have a third
party pay on his behalf. Protocol preferences thus provide a basis for argumentation
among the parties.

Approach. As explained in greater detail below, in our framework, protocols are deno-
tationally characterized using sets of runs (i.e., computations), and are operationalized
via translation into executable rulesets. With the above background, the approach of this
paper proceeds as follows to enable augmenting protocol specifications with preferences.

– We augment an existing protocol specification language with an ability to specify
preferences among different executions of protocols. For simplicity of specifica-
tion, we use regular expressions over protocol states to capture executions that are
of interest.

– We show how preferences can be operationalized into executable rulesets.
– We show how the above preferences are mapped into a lattice whose points are sets

of runs, and characterized via branching time models.
– We show that the model-theoretic and the operational characterizations coincide.

138 A.U. Mallya and M.P. Singh

Contributions. Our main contribution is in developing a new methodology for design-
ing commitment protocols. Our methodology can be used for the following

Modeling exceptions. In traditional process models, exceptions are modeled in an ad
hoc manner, when the designer demarcates blocks of the process and assigns excep-
tion handlers to those blocks. In our approach, exceptions can be defined separately
from the specification of the process or the protocol. As a result, different excep-
tion conditions can be assigned to the same protocol based on the context of the
protocol execution. This is akin to aspect oriented software.

Selecting protocols. When multiple protocols are available for an agent to realize a
certain interaction, that agent can negotiate with the other parties involved in the
protocol and, based on its preferences, find out if an execution of that protocol with
those participants would be acceptable to it. For example, a customer agent that
does not wish to enact a hotel booking protocol in which the hotel can cancel the
room and award a refund can choose which hotel to interact with if its preferences
are made clear before enactment and if the hotel and the customer try and negotiate
the protocol to enact based on their preferences.

Organization. The rest of this paper is organized as follows. Section 2 first describes
our running example, the purchase protocol. It then describes the background concept of
commitments (Section 2.1) and commitment operations (Section 2.1), before introduc-
ing our proposed preference specification language (Section 2.3). Section 3 describes
two denotational aspects of preferences, the lattice structure (Section 3.1) and the gen-
eral preferences based on commitments and their operations (Section 3.2). Section 4
relates these to OWL-P rules by first giving a brief description of rules in OWL-P (Sec-
tion 4.1) and then the translation from preference specifications to OWL-P rules (Sec-
tion 4.2). Section 5 summarizes the contributions of the paper and discusses related
research and directions for further investigation.

2 Proposed Language

Commitment protocols have been in development for some years now. Recently, Desai
et al.proposed OWL-P as a practical framework and associated language for specifying
and enacting commitment protocols [1]. An OWL-P specification identifies roles that
participate in the protocol, the messages that are exchanged (with the meanings of the
messages in terms of commitments that are created), and a set of rules that constrain the
set of runs of the protocol by defining ordering, data flow, and other constraints. The
present paper augments the OWL-P language to enable specification of preferences
among executions as generated by a protocol.

We formalize protocols as transition systems similar in spirit to commitment ma-
chines [9]. Commitment machines generate computations or runs, which are sequences
of states that a valid protocol execution goes through. Each state is a snapshot of the
evolving state of the system (as the given agents interact), and is labeled by proposi-
tions that hold true. Propositions represent facts about the universe of discourse of the
protocol such as the actions that the protocol participants have taken, commitments that
have been created and operated upon, and messages that have been sent. State changes

Introducing Preferences into Commitment Protocols 139

are caused by messages that the participants send to each other. For compatibility with
this model, we propose a language based on regular expressions over propositions to
specify sets of runs of a protocol over which preferences can be expressed. This section
introduces the language, and describes it in detail with the help of a running example
that is used throughout the paper.

Running Example: Purchase. In typical executions, the customer requests a price
quote from the merchant for a certain item. The merchant quotes a price. The cus-
tomer accepts the quote. The merchant then ships the item and the customer pays for it.
In principle, each party decides whether and how to execute each step.

Let’s summarize the key features of the OWL-P framework.

– An OWL-P specification includes the roles, the meanings of messages, and the
rules that dictate valid executions.

– An OWL-P specification assigns meanings to messages by specifying how mes-
sages assert and retract various propositions and how they create and manipulate
commitments.

– In the OWL-P framework, skeletons are derived for each role. A programmer can
specify the policies for each agent that plays a given role to determine whether and
how to act in enacting the given protocol. Desai et al.discuss this aspect at length
[1].

In Table 1, the policy(x,y) term checks if x wishes to send the message y, and start is
a special term indicating the start state. For the sake of brevity, this table does not indi-
cate that domain propositions are asserted when the corresponding messages are sent,
for example, the proposition rfq(c, m, x) is asserted when the message rfq(c, m, x) is
sent. Figure 1 shows some possible executions of the purchase protocol, as per the
OWL-P specification. The thick circles denote states at which the protocol can be
ended. The figure shows that the protocol can be initiated by any of three messages: the
rfq(c, m, x) (request for quote), quote(m, c, x, p) (advertisement from the merchant)
and acceptQ(c, m, x, ?p) (customer’s willingness to pay any price for x) as a result of
rules 1, 2, and 5 in Table 1. The flexibility of commitment protocols arises because they
use commitments and other propositions to assign meanings to states and thus capture
the essence of an interaction. Treating commitments explicitly enables further kinds of
sophisticated reasoning, such as involving delegation and other kinds of manipulation
of commitments. For example, a customer can delegate a payment commitment to a
third party, such as a bank. We briefly introduce the semantics of commitments to lay
the groundwork for preference specification.

2.1 Commitments

A commitment C(x, y, p) denotes that the agent x is responsible to the agent y for bring-
ing about the condition p. Here x is called the debtor, y the creditor, and p the condition
of the commitment. The condition is expressed in a suitable formal language. Commit-
ments can also be conditional, denoted by CC(x, y, q, p), meaning that x is committed
to y to bring about p if q holds. For example, the commitment CC(m, c, pay(c, m, p),
send(m, c, x)) denotes the commitment by the merchant to the customer to send the
item if the customer pays for it.

140 A.U. Mallya and M.P. Singh

Table 1. A snippet of the OWL-P specification of the purchase protocol

Role 1: Customer, c
Role 2: Merchant, m

Rule 1: policy(c, rfq(c, ?m, ?x)) ∧ start⇒ sendMsg(rfq(c, ?m, ?x))
Rule 2: policy(m, quote(m, ?c, ?x, ?p)) ∧ start⇒ sendMsg(quote(m, ?c, ?x, ?p))
Rule 3: policy(m, quote(m, ?c, ?x, ?p)) ∧ rfq(?c, m, ?x)⇒ sendMsg(quote(m, ?c, ?x, ?p)))
Rule 4: policy(c, ?acptRjct(?m, ?x, ?p)) ∧ quote(?m, c, ?x, ?p)⇒

sendMsg(?acptRjct(c, ?m, ?x, ?p))
Rule 5: policy(c, accept(c, ?m, ?x, ?p)) ∧ start⇒ sendMsg(accept(c, ?m, ?x, ?p))
Rule 6: send(m, c, x) ∧ ¬pay(c, m, p) ∧ return(c, m,x)⇒ cancel(C(c, m, pay(c, m, p))
. . .

Message 1: rfq(c, m, x)
Meaning: c asks m for the price of a certain item x.
Message 2: quote(m, c, x, p)
Meaning: m informs c that the x is available at a price p.
m commits to delivering x to c if c pays for it.
Creates CC(m, c, pay(c, m, p), send(m, c, x)); asserts corresponding proposition.
Message 3: acceptQ(c, m, x, p)
c accepts the price p for the item x, as quoted by the merchant m.
c commits to pay an amount p to m if the item x is delivered to it.
Creates C(c, m, send(m, c, x), pay(c, m, p)); asserts corresponding proposition.
Message 4: rejectQ(c, m,x, p)
Meaning: c rejects the quote p for the item x as quoted by m.
Message 5: send(m, c, x)
Meaning: m delivers the item x to c

Message 6: pay(c, m, p)
Meaning: c pays an amount p to m

Message 7: return(c, m, x)
Meaning: c returns the item x to m
This message is analogous to send(c, m, x).
Message 8: refund(m, c, p)
Meaning: m refunds the amount p to c
This message is analogous to pay(m, c, p).
. . .

2.2 Commitment Operations

Commitments are created, satisfied, and transformed in certain ways. The following
operations are conventionally defined for commitments.

1. CREATE(x, C) establishes the commitment C. This can only be performed by C’s
debtor x.

2. CANCEL(x, C) cancels the commitment C. This can only be performed by C’s
debtor x. Generally, cancellation is compensated by making another commitment.

3. RELEASE(y, C) releases C’s debtor x from commitment C. This only can be per-
formed by the creditor y.

4. ASSIGN(y, z, C) replaces y with z as C’s creditor.

Introducing Preferences into Commitment Protocols 141

s0 rfq(c,m,x) s1

quote(m,c,x,p)

s2quote(m,c,x,p) s4accept(c,m,x,p)

reject(c,m,x,p)

accept(c,m,x,?p)

s3

send(m,c,x)
pay(c,m,p)

s5

s7

s6

send(m,c,x)

s8

refund(m,c,p)

s9

return(c,m,x)

return(c,m,x)

s10

pay(c,m,p)

pay(c,m,p)

send(m,c,x)

pay(c,m,p)

send(m,c,x)
pay(c,m,p)

send(m,c,x)

sX

sX sX

sX

sX

Fig. 1. Purchase Protocol. Thick circles are terminating states, and sX denotes an error state. Note
that this figure does not show the entire state machine.

5. DELEGATE(x, z, C) replaces x with z as the C’s debtor.
6. DISCHARGE(x, C) C’s debtor x fulfils the commitment.

A commitment is said to be active if it has been created, but not yet been operated upon
by a discharge, delegate, assign, cancel, or release. A commitment is satisfied when its
condition becomes true.

A conditional commitment such as CC(c, m, send(m, c, x), pay(c, m, p),) becomes
an unconditional commitment C(c, m, pay(c, m, p)) when its condition send(m, c, x)
holds. A commitment is breached when it is not possible that the commitment will
be satisfied. Realistic settings assign deadlines to commitments to detect their breach or
satisfaction [5]. Conditional commitments can also be satisfied without a transformation
into an unconditional commitment. For example, CC(c, m, send(m, c, x), pay(c, m, p))
is satisfied when pay(c, m, p) is true, regardless of the truth value of send(m, c, x).

2.3 Preference Syntax

As we described earlier, we base our proposal on state-based, declaratively specified
models of commitment protocols, as in OWL-P. Given this model, we wish to devise a
way of specifying preferences among the runs allowed by a protocols. To do this, we
need a representation for runs. Instead of writing out entire runs, we adopt a concise
specification and a corresponding representation scheme for runs. Our developments
are based on Singh’s temporal logic for specifying dependencies among events [7].

Consider a protocol P , whose universe of discourse is the set of propositions P. A
run r is a sequence of states 〈s0 . . . s|r|〉, for which [r]0 represents the first state s0. We
consider only nonempty runs, i.e., a run must contain an initial state. Likewise, [r]�

represents the last state of a run, defined only for finite runs. The operator ≺r orders
states temporally with respect to a run r, so that si ≺r sj implies that si occurs before
sj in the run r. For a state s, [s] denotes the set of propositions that label s.

1. X ·Y matches any run that has a state sm whose label contains Y and another state
sn which occurs before sm with X in its label.

2. matches the appropriate parameter of a message or a commitment operation. For
example, rfq(, m, x) matches all rfq messages sent to m for the item x.

142 A.U. Mallya and M.P. Singh

To give a concrete syntax for the above language, and to precisely specify the semantics
of such a language in terms of the set of runs that each expression denotes, we use the
linear temporal logic-based event ordering language proposed by Singh [7] to specify
preferences between sets of executions in that transition system. We use expressions
over events in this language to specify sets of runs of a protocol over which preferences
can be expressed.

– Although Singh’s language is given semantics based on linear models, the models
are related in an incremental manner to other possibilities: thus the spirit of it is
arguably branching.

– Although we use an event based semantics, the application to state-based models
such as OWL-P is straightforward, given that state labels capture that state’s history.

We repeat here the syntax and semantics of I from [7]. I is the start symbol of the
BNF for the language of I. In this BNF, slant indicates nonterminals, −→ and | are
meta-symbols of the BNF, /* and */ begin and end comments respectively, and all other
symbols are terminals.

L1. I −→ dep | dep ∧ I /*conjunction: interleaving*/
L2. dep −→ seq | seq ∨ dep /* disjunction: choice*/
L3. seq −→ bool | event | event · seq /* before: ordering*/
L4. bool −→ 0 | �

Dependency. A dependency is an expression generated by I . It specifies constraints on
the occurrence and ordering of events.

Event Literal Set. Γ 	= {} is the set of event literals used in I . ΓD is the set of literals
mentioned in a dependency D and their complements, for example, Γe = {e, e}.
For a set of dependencies D, we define ΓD as ΓD =

⋃

D∈D

ΓD .

The formal semantics of I is based on runs, i.e., sequences of events. Legal runs satisfy
the following requirements:

1. Event instances and their complements are mutually exclusive.
2. An event instance occurs at most once in a computation.

These requirements can be satisfied in a system by qualifying the events using time-
stamps or analogous schemes for giving them unique IDs. Such qualification of events
is done in a separate conceptual layer which is at a lower level of abstraction than the
logic layer that we deal with here.

Universe of Runs. UI is the universe of runs; it contains all legal runs involving event
instances from Γ .

2.4 Preference Semantics

For a run τ ∈ UI and I ∈ I, τ |= I means that I is satisfied over the run τ . This notion
can be formalized as follows. Here, τi refers to the ith item in τ and τ[i,j] refers to the

Introducing Preferences into Commitment Protocols 143

subrun of τ consisting of its elements from index i to index j, both inclusive. |τ | is the
last index of τ and may be ω for an infinite run. We use the following conventions in the
specification of semantics below: e, f, e, f , etc. are literals; D, E, etc. are dependencies;
i, j, k, etc. are temporal indices; and τ , etc. are runs. The semantics of I is

M1. τ |= e iff (∃i : τi = e)
M2. τ |= I1 ∨ I2 iff τ |= I1 or τ |= I2

M3. τ |= I1 ∧ I2 iff τ |= I1 and τ |= I2

M4. τ |= I1 · I2 iff (∃i : τ[0,i] |= I1 and τ[i+1,|τ |]I2)

Denotation. The denotation [[D]] of a dependency D is the set of runs that satisfy D,
i.e., [[D]] = {τ : τ |= D}.

Next, we describe how preferences among runs are specified using these expressions.
The specification language I supports dependencies to succinctly specify sets of runs.
To induce a preference structure over such sets, i.e., to specify if one set is preferred
over another, we introduce the preference relation.

Preference Relation. Let R : 2UI �→ 2UI be the preference relation between sets of
runs. R is irreflexive, transitive, and anti-symmetric. (Di, Dj) ∈ R means that any
run that satisfies the constraints in Di is preferred over any run that satisfies the
constraints in Dj , i.e., ∀τi, τj : τi ∈ [[Di]] and τj ∈ [[Dj]], τi is preferred over τj .

Commitment protocols can be expressed as a set of dependencies. For a protocol P
specified in terms of a set of dependencies DP , the denotation of the protocol is the set
of runs that the protocol allows, and is given by [[P]] =

⋃

D∈DP

[[D]].

Preference Lattice. A preference lattice specifies preferences among a set of depen-
dencies. Each dependency labels one node of the lattice, and a preference rela-
tion specifies preferences among these dependencies, and consequently among the
nodes they label. A preference lattice L = 〈Dx, R〉 specifies preferences among
the elements of the set of dependencies Dx using the partial order induced by R
over Dx. For the above L, we define its event literal set to be the set of all events
that are mentioned in the dependencies in Dx, and their negations. ΓL =

⋃

D∈Dx

ΓD.

As an example, consider the purchase protocol described before. The following pref-
erences can be assigned to sets of runs of this protocol.

– A = send(m, c, x) · pay(c, m, p), i.e., runs in which the item is delivered and sub-
sequently paid for.

– B = send(m, c, x) · return(c, m, x) ∧ pay(c, m, p), i.e., runs in which the item is
delivered and subsequently returned (without payment).

– C = send(m, c, x) · pay(c, m, p) · return(c, m, x) · refund(m, c, x), i.e., the runs in
which the item is first delivered, then paid for, returned and the money refunded.

– A is preferred over B; B is preferred over C, i.e., (A, B) ∈ R and (B, C) ∈ R.

144 A.U. Mallya and M.P. Singh

We envision that designers of protocols will specify such preference structures to
tailor existing protocols in ways that best satisfy the interests of the participants of the
protocol. In our purchase protocol example, the protocol itself does not dictate any rel-
ative ordering between the delivery of goods and the payment. The above preferences,
then are used for a particular context in which it is desirable to pay after the goods have
been delivered. Preferences can also be used to negotiate particular protocol executions.
For example, a merchant might not wish to employ the above preference structure on
the purchase protocol since the delivery of the item sold has to be done before payment
is received. Such a merchant would have to negotiate with customers about the relative
ordering of the payment and the item delivery.

3 Denotational Description of Preferences

This section describes how preferences are modeled using a lattice structure and how
this lattice can be used to modularly specify a hierarchy of exceptions.

Preference Node Denotation. The denotation of a preference node ND labeled by D,
with respect to a protocol P and a lattice L = 〈DP , R〉, where D ∈ DP , is the set
of runs allowed by the protocol that are also allowed by D, but not by nodes in L
that are preferred over ND. The motivation for the above is that each run can occur
in at most one node in the lattice. Thus if a given run is allowed by two sets of runs,
one preferred over the other, the less set would not “get credit” for this run. On each
path from the top to the bottom of the lattice, a given run can occur at most once.
Formally, [[ND]] = [[P]] ∩ ([[D]] −

⋃

(Di,D)∈R

[[Di]]).

Based on the above, we derive the following denotational representation

– [[A]] = [[send(m, c, x) · pay(c, m, p)]]. That is, all runs in which the goods are sent
and a payment is made, and in that order.

– [[B]] = [[send(m, c, x) · return(c, m, x) ∧ pay(c, m, p)]]. That is, all runs in which
goods are sent and subsequently returned, without a payment being done.

– [[C]] = [[send(m, c, x) · pay(c, m, p)return(c, m, x) · refund(m, c, p)]]. That is, all
runs in which goods are sent, payment is made, goods are returned, and a refund is
given, in that order.

We also calculate a set of “leftover” runs [[U]] that contains all runs that are valid in the
protocol but not covered by any of the other preference nodes, [[U]] = [[P]] ∩ (UI −⋃

(Di,D) �∈R

[[Di]]). With respect to Figure 1,

– [[A]] contains runs 〈s0 . . . s4s5s7 . . .〉
– [[B]] contains runs 〈s0 . . . s4s5s10〉
– [[C]] contains runs 〈s0 . . . s4s5s7s8s9〉
– Set [[U]] contains all other runs.

Introducing Preferences into Commitment Protocols 145

send(m, c, x) . pay(c, m, p)A

send(m, c, x) . pay(c, m, p) . return(c, m, x) . refund(m, c, p)C

send(m, c, x) . return(c, m, x) pay(c, m, p)B ^

Fig. 2. A preference lattice Lp = 〈{A, B, C}, {(A, B), (B, C), (A, C)}〉 induced over the
runs of the purchase protocol. Here, A = send(m, c, x) · pay(c, m, p), B = send(m, c, x) ·
return(c, m, x) ∧ pay(c, m, p), and C = send(m, c, x)· pay(c, m, p)· return(c, m, x)·
refund(m, c, x).

3.1 Characterization for a Protocol

Figure 2 shows a lattice where each node represents a set of runs, and directed edges
point to nodes that are less preferred. Such a preference lattice could be used to spec-
ify exception in protocols. For example, all runs in the denotation of U can be marked
as runs that cause exceptions. This manner of identifying exceptions is fundamentally
different from traditional process-based concepts of exception modeling. In traditional
approaches, sub-sequences of the protocol would be identified as scopes of exceptions.
The benefit of using our approach is that exceptions are identified in the hierarchy of
runs of the protocol, thus a notion of severity of an exception can be incorporated into
the protocol model. Nodes further down the hierarchy denote more severe exceptions
compared to the nodes higher up in the hierarchy. Moreover, the specification of ex-
ceptions is independent of both the protocol and the preference structure. In the above
example, the same preference structure can be used but with a new specification that the
set of runs [[C]] is a set of exception runs. As a consequence of the preference lattice,
the set [[U]] is also inferred to be a set of exception runs that are mode severe than the
runs in [[C]].

3.2 General Preferences for Commitment Actions

The semantics of commitment operations is the reason for flexibility in enactment of
commitment protocols. For example, the customer in the purchase protocol can dele-
gate its commitment to pay (the merchant) to a bank, achieving third party payment. In
previous work [4], we have shown how such reasoning can be enabled in agent inter-
action protocols. Here, we describe how commitment operations can be used to specify
preferences between protocol runs.

Consider the purchase protocol. In some cases, the designer might want to prevent
cancellation of a an unconditional commitment, i.e., prevention of the cancellation of
the customer’s commitment to pay after the goods have been delivered or the merchant’s
commitment to ship the goods after the payment has been made. The preferences for
this can be encoded as follows

146 A.U. Mallya and M.P. Singh

– P1 = send(m, c, x) · pay(c, m, p)
– P2 = pay(c, m, p) · send(m, c, x)
– P3 = send(m, c, x) · return(c, m, x)
– P4 = pay(c, m, x) · refund(m, c, p)
– P5 = pay(c, m, p) · cancel(m, C(m, c, send(m, c, x))) ∧ send(m, c, x)
– P6 = send(m, c, x) · cancel(c, C(c, m, pay(c, m, p)) ∧ pay(c, m, p)
– P1 and P2 are each preferred over each of P3, P4, P5, and P6

– P3 and P4 are each preferred over P5 and P6

Normal runs

Exception runs

Severe exception runs

send . payP1 pay . sendP2

send . returnP3 pay . refundP4

pay . cancel(send) sendP5 P6^ send . cancel(pay) pay^

Fig. 3. A lattice for the purchase protocol disallowing cancellation of (unconditional) commit-
ments. Message parameters are omitted for clarity.

Th above preference lattice is shown in Figure 3.There is no preference between
P1 and P2, no preference between P3 and P4, and no preference between P5 and P6.
This preference structure restricts the runs of the purchase protocol by disallowing
cancellation of unconditional commitments. Based on our interpretation of the deno-
tation of the lattice nodes, we obtain the following sets of runs (omitting parameters for
clarity):

– [[P1]] = [[send · pay]]. All runs in which the merchant sends the item and the cus-
tomer pays afterwards.

– [[P2]] = [[pay · send]]. All runs in which the customer pays, after which the merchant
sends the item.

– [[P3]] = [[send · return ∧ pay]]. All runs in which the customer returns the item and
never pays. This run cancels an unconditional commitment, hence it valid, although
undesirable.

– [[P4]] = [[pay · refund ∧ send]]. All runs in which the merchant refunds the customer’s
payment and never sends the item. This run cancels an unconditional commitment,
hence it is valid, although undesirable.

– [[P5]] = [[((pay· cancel(send)∧ refund)∨ (refund· pay· cancel(send)))∧ send]]. All
runs in which the merchant cancels its commitment to send the item after the cus-
tomer has paid, never sends the item, and never sends a refund of the customer’s
payment either.

– [[P6]] = [[((send· cancel(pay)∧ return)∨ (return· send· cancel(pay)))∧ pay]]. This
is similar to [[P5]].

Introducing Preferences into Commitment Protocols 147

4 Operational Characterization of Preferences

We have seen how preferences among runs can be mapped to a lattice structure where
each node represent a set of runs. This, however, is only part of the framework for using
preferences in commitment protocols. Since OWL-P is the enactment framework that
we use for protocols, operationalization of run preferences requires that these prefer-
ences are expressed in a form that is compatible with OWL-P. This section describes
how rules are represented in OWL-P, and how a preference lattice can be converted into
such rules.

4.1 OWL-P Enactment

Rules in OWL-P can be cast as Event-Condition-Action rules, i.e., on a certain event, if
certain conditions hold, then perform a certain action. Consider Table 1, which shows
a part of the OWL-P specification of the purchase protocol. Rule 4 states that when
an rfq message is received (event), if the local policy can determine a binding for the
values given (condition), then send an accept or a reject message (action), based on the
policy binding. Rule 6 states that when goods are returned (event), if they were delivered
by the merchant and the payment was not done (condition, then cancel the customers
commitment to pay (action). OWL-P thus allows room for agents to enforce their local
policies so they can make best use of the latitude in execution that the protocol allows.
In addition to these rules, rules encoding commitment operations are incorporated into
every commitment protocol. Given this rule specification in OWL-P, we next present a
mapping from the denotational run preference specification to OWL-P-style rules.

4.2 Incorporating Preferences into OWL-P Rules

In OWL-P [1], protocols are specified as rules. During enactment, these rules are aug-
mented by policies local to an agent, thus binding data values and logic for deciding
between multiple allowed actions in a protocol to create an executable process. The
format of a rule with a policy is

On e

if localPolicy(e, x)
then do a(x)

where e is an event and a(·) is an action (with a corresponding event ea), which depends
on the local policy for its parameters.

Consider the purchase protocol, which requires that the receiverof a rfq (c,m, itemID)
message (which is a request for a price quote for an item)–the merchant m–respond the
the sender–the customer c–with a quote(m, c, itemID, price) message (which is a price
quote). The rule for this requirement will be

On rfq(c, m, itemID)
if localPolicy(rfq(c, m, itemID), price)

then do quote(m, c, itemID, price)

148 A.U. Mallya and M.P. Singh

Where multiple choices of action are afforded by the protocol on the same triggering
event, there will be one rule for each action, with the same event and condition. In
such a case, the local policy decides which rule to enable and which to disable. In case
the policy enables multiple rules, the preference specification of the protocol is used to
decide which action to take.

5 Discussion

Protocols are intended to help us capture agent interactions in a perspicuous manner.
Protocols can be combined to generate richer protocols that correspond to complex
processes. Commitment protocols capture the semantic content of the desired interac-
tions thereby enabling flexible agent behavior, as needed in the face of exceptions and
opportunities. The approach of this paper is a practical approach that enables us to spec-
ify preferences among the executions that can be generated from protocols. Preferences
serve as a rough and ready means to capture design goals wherein the normal executions
are preferred, yet abnormal executions arising from exceptions or unexpected actions
by some of the agents are allowed. The paper developed a declarative representation of
preferences and tied it to an operational characterization of protocols.

Related Literature. One of the first operationalization of commitments for agent inter-
action was done by Yolum and Singh [10]. In their work, protocols were specified by
listing legal states in terms of the commitments and domain propositions that hold at that
state, and using an event calculus planner to generate the set of runs that were allowed.
Winikoff et al. [9] have advanced this line of research. Fornara and Colombetti have
also proposed a commitment-based interaction protocol framework [2]. However, none
of the above approaches specify or operationalize a notion of preferences among the
various execution sequences allowed by a protocol. Our work, therefore, is a significant
step in this direction. Grosof et al. [3] have implemented rule based agent interaction
systems where rules are prioritized. Grosof and colleagues propose what are known as
courteous Logic Programs, or CLPs. In a CLP, when there is ambiguity regarding which
rule to fire, i.e., a conflict arising because multiple rules can be fired at a particular state
of the world, the priorities assigned to the rules are used to resolve the conflict. Our
work is similar to CLPs in this respect, but different in that we propose a scheme in
which preferences among runs are specified, independent of a protocol specification.
Further, we also present a methodology for translating these preferences into rules that
can be embedded into the (rule-based) protocol specification.

Our work is based on the concept of social interaction among agents, which gives
importance only to the publicly observable behavior of agents. We describe how pref-
erences among runs can exist. However, we do not study how agents can reason about
the benefits of using one set of protocol runs over another. Pasquier and Chaib-Draa [6]
introduce the cognitive dissonance theory into multiagent communication by incorpo-
rating the theory and dialogue game protocols into agent interactions. Their theory ex-
plores ways in which agents can decide when to start dialogues with other agents and
what kind of dialogues to initiate, among other things. This line of research is com-
plementary to and would strengthen the interaction framework we have presented here.
Preferences among the available runs of a protocol have also been studied from the

Introducing Preferences into Commitment Protocols 149

game theoretic point of view by Otterloo et al. [8]. They describe a logic that can be
used for reasoning about a strategy to adopt in a game when the preferences of other
agents in the game are known. The work differs from ours because of the use of games
instead of commitment protocols. Also, preferences of agents are assumed to be known
by other agents, which does not always apply in real-world applications such as the
business interaction we have outlined in this paper. We plan to incorporate such reason-
ing among agents into our framework.

This paper opens up some additional challenges. Among these are the specification
of preferences in richer formal languages so that more subtle distinctions among possi-
ble executions can be captured.

References

1. Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. Interaction pro-
tocols as design abstractions for business processes. IEEE Transactions on Software Engi-
neering, 2006. To appear.

2. Nicoletta Fornara and Marco Colombetti. Defining interaction protocols using a
commitment-based agent communication language. In Proceedings of the 2nd International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 520–527.
ACM Press, July 2003.

3. Benjamin N. Grosof and Terrence C. Poon. SweetDeal: Representing agent contracts with
exceptions using XML rules, ontologies, and process descriptions. In Proceedings 12th In-
ternational Conference on the World Wide Web, pages 340–349, 2003.

4. Ashok U. Mallya and Munindar P. Singh. A semantic approach for designing commitment
protocols. In Rogier Van Eijk, editor, Developments in Agent Communication, volume 3396
of Lecture Notes in Artificial Intelligence, pages 37–51. Springer, Berlin, 2005.

5. Ashok U. Mallya, Pınar Yolum, and Munindar P. Singh. Resolving commitments among
autonomous agents. In Frank Dignum, editor, Advances in Agent Communication, volume
2922 of Lecture Notes in Artificial Intelligence, pages 166–182, Berlin, 2003. Springer.

6. Philippe Pasquier and Brahim Chaib-Draa. The cognitive coherence approach for agent
communication pragmatics. In Proceedings of the 2nd International Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), pages 544–551. ACM Press, july
2003.

7. Munindar P. Singh. Distributed enactment of multiagent workflows: Temporal logic for
web service composition. In Proceedings of the 2nd International Joint Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS), 2003.

8. Sieuwert van Otterloo, Wiebe van der Hoek, and Michael Wooldridge. Preferences in game
logics. In Proceedings of the 3rd International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 152–159, 2004.

9. Michael Winikoff, Wei Liu, and James Harland. Enhancing commitment machines. In Pro-
ceedings of the AAMAS-04 Workshop on Declarative Agent Languages and Technologies,
2004.

10. Pınar Yolum and Munindar P. Singh. Flexible protocol specification and execution: Applying
event calculus planning using commitments. In Proceedings of the 1st International Joint
Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pages 527–534. ACM
Press, July 2002.

On the Study of Negotiation Strategies

Leila Amgoud1 and Souhila Kaci2

1 Institut de Recherche en Informatique de Toulouse (I.R.I.T.)–C.N.R.S.
Université Paul Sabatier, 118 route de Narbonne,

31062 Toulouse Cedex 4, France
2 Centre de Recherche en Informatique de Lens (C.R.I.L.)–C.N.R.S.

Rue de l’Université SP 16
62307 Lens Cedex, France

Abstract. The basic idea behind a negotiation is that the agents make offers that
they judge “good” and respond to the offers made to them until a compromise
is reached. The choice of the offer to propose at a given step in a negotiation
dialogue is a strategic matter. In most works on negotiation dialogues, the agents
are supposed to be rational, and thus propose and accept only the offers which
satisfy all their goals. This strategy is very restrictive since in everyday life, it is
difficult to find an offer which satisfies all the agent’s goals.

The aim of this paper is to propose less restrictive strategies than the one used
in the literature. Those strategies are based not only on the goals and beliefs of
the agents but also on their rejections. A three-layered setting is proposed. The
properties of each strategy are given as well as a comparative study between these
strategies.

1 Introduction

Autonomous agents evolve in a community and because of the interdependences which
may exist between them, the agents need to interact in order to exchange information,
ask for services, etc. Negotiation is the most predominant mechanism for communicat-
ing and also for making deals. The basic idea behind a negotiation is that the agents
make offers that they judge “good” and respond to the offers made to them until a com-
promise is reached. Since the agents’ interests are generally conflicting, an offer which
is acceptable for one agent is not necessarily acceptable for another agent.

As argued in [9,10,12,11], the choice of the offer to propose at a given step in a
negotiation dialogue is a strategic matter. Indeed, the acceptability of an offer depends
broadly on the agent profile and its mental states.

There are very few works on negotiation strategies in general if we except the work
done by Maudet et al. in [9,10], and the work done in [1] in the case of argument
selection. Concerning the choice of offers, in most works on negotiation dialogues, the
agents are supposed to be rational, and thus propose and accept only the offers which
satisfy all their goals. This strategy is too restrictive since in everyday life, it is difficult
to find an offer which satisfies all the agent’s goals.

Moreover, recent cognitive psychology studies [6,5,3,13] claim that agents may ex-
press and reason on two components: goals and rejections. Goals describe what the
agent would like to realize, and the rejections describe what is not acceptable for that

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 150–163, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Study of Negotiation Strategies 151

agent. When both goals and rejections are provided we say that we are in a bipolar
framework. Beware that bipolarity is not duality i.e., goals are not simply the comple-
ment of rejections. Note however that rejections and goals are related by a coherence
condition asserting that what is pursued should not be rejected. A formalization of goals
and rejections in a logical setting and reasoning about them have been developed in [2].

We claim that taking into account what an agent rejects, in addition to its goals, in the
offer selection enables a more refined selection, and allows to discard rejected offers.
Let’s suppose, for instance, an agent who has two possible offers x1 and x2 to propose
at a given step. Suppose also that both offers satisfy all the goals of the agent. In this
case, one may say that x1 is as preferred as x2 and the agent can propose any of them.
However, if x1 satisfies one of the rejections of that agent, then x1 will be discarded
and the only possible offer is x2.

The aim of this paper is to propose different strategies allowing agents to select the
offers to suggest, and to decide when to accept the offers made to them. These strategies
are based on both the goals and the rejections of the agents. We will show that these
strategies are less restrictive than the one used in the literature.

This paper is organized as follows: Section 2 presents the different mental states of an
agent as well as their role in selecting offers. In fact, the beliefs will delimit the feasible
offers, the goals will delimit the satisfactory ones and finally, the rejections will delimit
the acceptable offers. In section 3 a general setting for defining strategies is given. In
fact, the definition of a strategy consists of fixing three parameters: an ordering, between
the goals of and the rejections, which depends on agent’s profile, a criterion for defining
the acceptability of an offer, and a criterion for defining the satisfaisability of an offer.
Section 4 presents different agent profiles, and the way in which the selected offers
(called candidate offers) are computed in each case. Section 5 presents a criterion of ac-
ceptability, whereas section 6 provides three criteria of satisfaisability. Some strategies
are then studied in section 7, and some properties are given in section 8. Section 9 is
devoted to some concluding remarks and some perspectives

2 Mental States of the Agents

2.1 Logical Definition

In what follows, L will denote a first order propositional language. Each negotiating
agent has got a set B of beliefs, a set G of goals, and finally a set R of rejections.
Beliefs are informational attitudes and concern the real world. Goals are motivational
attitudes and intrinsic to the agent. They represent what an agent wants to achieve or
to get. Like goals, rejections are also motivational attitudes and intrinsic to the agent.
However, they represent what the agent rejects and considers as unacceptable.

Beliefs are pervaded with uncertainty i.e., they are more or less certain while rejec-
tions and goals may not have equal priority. More formally, we have:

Definition 1 (Mental states of an agent). Each agent is equipped with three bases: B,
R and G such that:

– B = {(bi, αi), i = 1, . . ., n}, where bi is a formula of the language L, and αi is an
element of the interval (0, 1]. The pair (bi, αi) means that the certainty degree of

152 L. Amgoud and S. Kaci

the belief bi is at least equal to αi. When αi is equal to 1 this means that bi is an
integrity constraint which should be fulfilled.

– R = {(rj , βj), j = 1, . . ., m}, where rj is a formula of the language L and βj is
an element of the interval (0, 1]. The pair (rj , βj) means that the priority degree of
the rejection rj is at least equal to βj .

– G = {(gk, λk), k = 1, . . ., p} where gk is a formula of the language L and λk is in
the interval (0, 1]. The pair (gk, λk) means that the priority degree of the goal gk

is at least equal to λk.

Note that for the sake of simplicity, we use numerical numbers to model the prior-
ity/uncertainty degrees. However, a simple ordering on formulas holds as well.

Hypothesis 1. Throughout the paper, the sets of beliefs and rejections are supposed
to be consistent. For the sake of simplicity, we suppose that all beliefs are completely
certain i.e., αi = 1 for i = 1, · · · , n. However this work can be easily generalized to
the case where beliefs are more or less certain.

Since we deal with first order formulas, the satisfaction of formulas is different from the
one of classical logic. Suppose that we have a set of some factsF giving an instantiation
of first order formulas. Let x be an offer andHF

x be the result of instantiating the setH
by x. Then, x satisfiesH if and only if each formula inHF

x is true in the set of facts F .

Example 1. Let F = {¬promotion(AF), stopover(AF), ¬flexible(BA)} andH =
{stopover(x),¬promotion(x) ∨ ¬flexible(x)}.

Then HF
AF = {stopover(AF),¬promotion(AF) ∨ ¬flexible(AF)}. Each for-

mula inHF
AF is true w.r.t. F then AF satisfies H.

Now we have HF
BA = {stopover(BA),¬promotion(BA) ∨ ¬flexible(BA)}.

Then BA doesn’t satisfy H since stopover(BA) is not true in F .

2.2 Role of Beliefs, Rejections and Goals

Although the three sets are involved in the selection of offers, they should be distin-
guished since they do not necessarily behave in the same way.

Beliefs play a key role in delimiting the set of feasible offers.

Definition 2 (Feasible offers). Let x ∈ X . An offer x is feasible if it satisfies the set of
beliefs.

Let’s take the following example about airline companies.

Example 2 (Airline companies). Suppose that the object of the negotiation is an “airline
company”. Let

– X = {AF, AirLib, BA, KLM},
– B = {(¬promotion(x) ∨ ¬flexible(x), 1)},
– R={(¬stopover(x), .9),(dayflight(x)∧¬smoking(x), .4),(¬flexible(x), .1)},
– G = {(promotion(x), .8), (stopover(x), .5),

(dayflight(x), .5)}.

On the Study of Negotiation Strategies 153

Table 1. Some facts

AF AirLib BA KLM

stopover(x) yes yes yes yes
dayflight(x) no no yes yes
promotion(x) no yes no yes
smoking(x) yes no
flexible(x) yes no yes no

Table 1 gives some facts. For example, we have stopover(AF), ¬promotion(AF), etc.
Feasible offers are those which satisfy the setB, namely F={AF, AirLib, BA, KLM}.

Each rejection (rj , βj), which should not be satisfied, induces by complementation an
integrity constraint (¬rj , βj) which should be respected. In what follows, R′ will de-
note the set of induced integrity constraints from the baseR. Such integrity constraints
are intrinsic to an agent and not “imposed” by the environment. That’s why they are not
considered as beliefs in B.

The offers which respect the induced integrity constraints will be acceptable for the
agent.

Definition 3 (Acceptable offers). Let x ∈ X . An offer x is acceptable iff R′ �ca x.
This means that it satisfies the integrity constraints w.r.t. a criterion ca.

In the above definition, the acceptability of an offer depends on a criterion ca. Indeed,
one may, for instance, accept an offer which respects all the integrity constrains. An-
other criterion consists of accepting the offers which respect the most important in-
tegrity constraints. In section 5, we will give a criterion for the acceptability of an
offer.

Regarding goals, they will delimit the set of satisfactory offers. Indeed, the offers
which satisfy the goals of an agent according to some criterion will be satisfactory for
that agent. The satisfaisability of an offer depends also on the chosen criterion. One
may accept the offers which satisfy all its goals. However, it may be the case also that
an agent accepts the offers which satisfy at least its most important goals. In section 6,
different criteria for the satisfaisability of an offer will be proposed.

Definition 4 (Satisfactory offers). Let x ∈ X . An offer x is satisfactory iff G �cs x.
This means that the offer x satisfies the goals of the agent w.r.t. a criterion cs.

Notations 1
– R′

>β = {¬rj | (rj , βj) ∈ R and βj > β}.
– G>λ = {gk|(gk, λk) ∈ G and λk > λ}.
G>λ (resp. R>β) corresponds to the conjunction of goals (resp. of constraints in-

duced by rejections) having a weight greater than λ (resp. β).

– G=λ = {gk | (gk, λk) ∈ G and λk = λ}. G=λ corresponds to the conjunction of
goals having a priority degree equal to λ.

–
∨

(G=λ) =
∨
{gk | (gk, λk) ∈ G and λk = λ}. This corresponds to the disjunction

of all the goals with priority degree equal to λ.

154 L. Amgoud and S. Kaci

– Let � be a pre-order between sets. The notation H � H′ means that the H is at
least as preferred asH′. Let� be the strict ordering associated with�. The symbol
≈ stands for the “equality”, i.e. whenH andH′ are equally preferred by the agent.

3 General Setting for Offer Selection

Selecting offers is an important decision in a negotiation process since it influences the
outcome of the negotiation. This decision follows a three step process:

1. defining a relation � between B, R and G. The ordering on B,R and G is a deter-
mining point in the selection of offers. In the next section, we will show that one
may not have the same set of candidate offers when G � R orR � G.
In [4,14], it has been argued that beliefs should take precedence over goals in or-
der to avoid any wishful thinking. Regarding rejections, beliefs should also take
precedence over them since rejections have the same nature as goals. Moreover, the
feasibility of an offer is more important than its acceptability. Thus, the following
orderings hold: B � R and B � G. The ordering between G and R is not easy to
guess and depends broadly on agents’ profiles. Different agents’ profiles can then
be defined according to the precise ordering between G andR.

2. defining criteria for selecting acceptable offers.
3. defining criteria for selecting satisfactory offers.

Definition 5 (Strategy). Let B,R and G be the agent’s bases and X the set of offers. A
strategy is a triple <�, �ca , �cs>. This system will return a set S ⊆ X of candidate
offers.

In the above definition, we speak about a set of candidate offers. The reason is that it
may be the case that several offers will have the same preference for the agent.

4 Different Agent Profiles

The ordering between beliefs and the other two sets is in some sense imposed by the
nature of the different mental states. However, things seem different for fixing the or-
dering betweenR and G. This ordering depends on the agent’s profile. Indeed, there are
three possibilities for comparing the two sets:

1. the case where both sets have the same preference (R ≈ G).
2. the case whereR is preferred to G (R � G).
3. the case where G is preferred toR (G � R).

Each of the three possibilities corresponds to a specific agent profile. Formally:

Definition 6 (Consensual agent). Let {B, R, G} be the bases of an agent A. A is
consensual iffR ≈ G.

A consensual agent computes separately the acceptable offers and the satisfactory offers
among feasible ones w.r.t. some criteria. The candidate offers are those which are both
acceptable and satisfactory.

On the Study of Negotiation Strategies 155

Definition 7. Let A be a consensual agent. The set of candidate offers S = S1 ∩ S2

such that:

1. S1, S2 ⊆ X , and
2. ∀ x ∈ S1, x is feasible and acceptable, and
3. ∀ x ∈ S2, x is feasible and satisfactory.

This approach is too requiring since it may lead to an empty set of candidate offers.

Definition 8 (Cautious agent). Let {B,R, G} be the bases of an agent A. A is cautious
iffR � G.

A cautious agent starts by selecting the acceptable offers among the feasible ones. The
candidate offers are the satisfactory (w.r.t. some criteria) offers among the acceptable
ones. Formally:

Definition 9. Let A be a cautious agent. The set of candidate offers is S = {x ∈ S′

such that x is satisfactory}, where

1. S′ = {x ∈ X such that x is feasible and acceptable}.
2. S′ is maximal for (⊆) among the sets satisfying the first condition.

This approach is cautious since the agent prefers to select acceptable offers, among
feasible ones, even if none of them satisfies any goal.

Definition 10 (Adventurous agent). Let {B, R, G} be the bases of an agent A. A is
adventurous iff G � R.

An adventurous agent selects first satisfactory offers among feasible ones, then among
the offers it gets, it will choose those which are acceptable w.r.t. some criteria.

Definition 11. Let A be an adventurous agent. The set of candidate offers is S = {x ∈
S′ such that x is acceptable}, where

1. S′ = {x ∈ X such that x is feasible and satisfactory}.
2. S′ is maximal for (⊆) among the sets satisfying the first condition.

This approach is too adventurous since it may lead the agent to select offers which are
not acceptable at all.

5 Acceptability of Offers

An offer is acceptable if it respects the integrity constraints induced by rejections. In
some situations, one cannot find an offer which satisfies all the constraints, and the
set of candidate offers is empty. To relax this criterion, an agent may accept the offers
which respects the constraints at a certain level, called acceptability level. Indeed, the
acceptability level is the complement to 1 of the degree of the less important constraint
that should be respected by offers. Formally:

Definition 12 (Acceptability level). Let x ∈ X . The acceptability level of an offer x,
denoted LevelA(x) = 1−min{β such that x satisfiesR′

>β}.
If x falsifiesR′

>β for all β then LevelA(x) = 0.

156 L. Amgoud and S. Kaci

This criterion has already been used in possibilistic logic and belief revision [7,15].
The acceptable offers are the ones with a greater acceptability level. Indeed, such offers
satisfy more important integrity constraints.

Definition 13 (Acceptability criterion). Let x ∈X andR be the set of rejections. The
offer x is acceptable, denoted

R′ �Level x, iffLevel(x)A ≥ LevelA(x′), ∀x′ ∈ X.

Example 3. In example 2,R′ �Level AF , BA. Indeed, LevelA(AF)=LevelA(BA)= 1
since both AF and BA satisfyR′

>0 = stopover(x) ∧ (¬dayflight(x)∨ smoking(x))
∧ flexible(x), while LevelA(AirLib) = .9 and LevelA(KLM) = .6.

6 Satisfiability of Offers

It is natural that an agent aims to satisfy all its goals. When this is not possible, it may
try to satisfy as much as possible prioritized goals. A cardinality-based selection mode
seems appropriate in this case. Before defining this criterion, let’s first introduce some
notations.

Let β1, · · · , βm be the weights appearing in G s.t. 1 ≥ β1 > · · · > βm > 0. Let G′ =
G1 ∪ . . . ∪ Gm be the representation of G in its well ordered partition. Each Gj , called
layer, contains formulas of G having the weight βj . Let x be an offer and Sx = S1

x ∪ . . .
∪ Sm

x where Sj
x is a subset of Gj containing the goals of Gj satisfied by x.

Definition 14 (Cardinality-based criterion). Let x ∈ X . x is satisfactory, denoted

G �Card x, iff ∀x′ ∈ X:

– ∃ k s.t. ∀ j = 1, . . ., k − 1;|Sj
x| = |S

j
x′ | and |Sk

x | > |Sk
x′ |, or

– |Sj
x| = |S

j
x′ | for j = 1, · · · , m,

where |Sj
x| is the number of formulas in Sj

x.

Let’s illustrate this criterion on the following example:

Example 4. Recall that F = {AF, AirLib, BA, KLM}.
Let’s first put G under its well ordered partition: G′ = G1 ∪ G2, where G1 =
{promotion(x)} and G2 = {stopover(x), dayflight(x)}. Then,
SAF = {} ∪ {stopover(x)},
SAirLib = {promotion(x)} ∪ {stopover(x)},
SBA = {} ∪ {stopover(x), dayflight(x)} and
SKLM = {promotion(x)} ∪ {stopover(x), dayflight(x)}.
G �Card KLM because it is the only offer which satisfies the maximum of prioritized
goals.

The cardinality-based criterion gives priority to the offers which satisfy a maximum
of prioritized goals. A weaker version of this criterion consists of choosing the offers
which satisfy at least one prioritized goal. Formally:

On the Study of Negotiation Strategies 157

Definition 15 (Disjunctive satisfaction level). Let x ∈X . The disjunctive satisfaction
level of an offer x is LevelDS(x) = max{λ such that x satisfies

∨
(G=λ)}.

If x falsifies all formulas of G then LevelDS(x) = 0.

Indeed satisfactory offers are those which satisfy at least one prioritized goal. We define
now the disjunctive-based criterion:

Definition 16 (Disjunctive-based criterion). Let x ∈ X . G �Disj x, iff LevelDS ≥
LevelDS(x′), ∀ x′ ∈X .

Example 5. As shown in the previous example, the use of a cardinality-based criterion,
only one offer (KLM) is satisfactory for the agent. However, using the disjunctive crite-
rion, we can get more satisfactory offers. Indeed, LevelDS(KLM) = LevelDS(Airlib)
= .8 with

∨
G=.8 = {promotion(x)}. Consequently, G �Disj AirLib, KLM .

Another refinement of the cardinality-based criterion can be defined. The idea here is
similar to the one behind the acceptability criterion. A satisfactory offer is the one which
satisfies as much prioritized goals as possible. A satisfaction level is defined as follows:

Definition 17 (Conjunctive satisfaction level). Let x ∈X . The satisfaction level of an
offer x is LevelCS(x) = 1−min{λ such that x satisfies G>λ}.
If x falsifies G>λ for all λ then LevelCS(x) = 0.

Satisfactory offers are then the ones which have a small satisfaction level, since the
smaller this level is, the more important the number of satisfied prioritized goals is.
Formally:

Definition 18 (Conjunctive-based selection). Let x ∈ X . G �Conj x iff LevelCS≥
LevelCS(x′), ∀ x′ ∈ X .

Example 6. We have LevelCS(KLM) = 1 while LevelCS(AF) = LevelCS(BA) =
0 and LevelCS(AirLib) = .5. Then G �Conj KLM .

Note that we get the same result as the one obtained by using the cardinality-based
criterion because KLM satisfies all agent’s goals but this is not always the case

We can show that if an offer is satisfactory w.r.t the cardinality criterion, it is also sat-
isfactory w.r.t the conjunctive criterion. Similarly, each offer which is satisfactory w.r.t
the conjunctive criterion is also satisfactory w.r.t the disjunctive criterion. Formally:

Proposition 1. Let B,R, G be three bases of an agent and x ∈X .

(G �Card x)⇒ (G �Conj x)⇒ (G �Disj x).

7 Particular Strategies

A strategy for selecting the offers to propose during a negotiation dialogue has three
parameters: an ordering betweenR and G, an acceptability criterion and finally a satis-
faisability criterion. Different systems can then be defined using the criteria suggested
in the previous sections. Table 2 summarizes these systems (strategies). This section
aims at presenting some of these strategies as well as their properties.

158 L. Amgoud and S. Kaci

Table 2. Different strategies

�Level , �Conj �Level , �Disj �Level , �Card

Consensual - drastic optimistic ×
(R ≈ G) - pessimistic
Cautious × relaxed requiring
(R � G)
Adventurous × × ×
(G � R)

Definition 19 (Drastic strategy). Let B, R and G be the agent’s bases and X the set
of offers. A drastic system is a triple <�, �Level, �Conj>, such that

– R ≈ G, and
– LevelA(x) = LevelCS(x) = 1 for candidate offers.

In such a system, an agent computes separately acceptable and satisfactory offers. Ac-
ceptable offers are those which falsify all rejections while satisfactory offers are those
which satisfy all goals. Candidate offers are then those which are both acceptable and
satisfactory. However the drawback of this approach is that it is too restrictive and may
lead to an empty set of candidate offers.

Example 7. Since LevelA(x) should be equal to 1, acceptable offers are feasible ones
which satisfy all constraints in R′, i.e. they falsify all rejections. They satisfy
stopover(x) ∧ (¬dayflight(x) ∨ smoking(x)) ∧ flexible(x). Then the set of ac-
ceptable offers is A = {AF, BA}.

Satisfactory offers are feasible ones which satisfy all goals since LevelCS = 1. They
satisfy stopover(x)∧dayflight(x)∧promotion(x). Then the set of satisfactory offers
is S = {KLM}.

Now candidate offers are those which are both acceptable and satisfactory however
this set is empty.

Note that if we only consider goals in this example then the candidate offer is KLM
which is not acceptable (i.e., rejected) by the agent following the chosen acceptability
criterion.

Definition 20 (Optimistic strategy). Let B, R and G be the agent’s bases and X the
set of offers. An optimistic system is a triple <�, �Level, �Disj>, whereR ≈ G.

With an optimistic strategy, one looks for offers which falsify as most as possible pri-
oritized rejections and satisfy as at least one prioritized goal [8]. Formally these offers
satisfy

R′
>β ∧ (

∨
G=λ)

s.t. β is as low as possible and λ is as high as possible.
Let {β1, · · · , βn} and {λ1, · · · , λm} be the degrees appearing in R and G respec-

tively. Note that following definition 12, more βi is close to 1, more offers satisfying
the associated rejection are unacceptable. Also following definition 15, more λj is close
to 1, more offers satisfying the associated goals are satisfactory.

On the Study of Negotiation Strategies 159

We first put β = 0 and λ = λ1. This means that preferred offers are those which
satisfy all the constraints induced by rejections (i.e., falsify all rejections) and satisfy at
least one goal from the prioritized ones, if possible. If the intersection of the correspond-
ing acceptable and satisfactory offers is not empty then we declare offers belonging to
the intersection as the candidate ones otherwise we either increase β or decrease λ. To
ensure that we choose β as low as possible and λ as high as possible, we fix the values
of β and λ in the following way:

⎧
⎨

⎩

β = 0 and λ = λ2 if 1− βn < λ2

β = βn and λ = λ1 if 1− βn > λ2

β = βn and λ = λ2 otherwise.
(1)

The idea behind the optimistic strategy is to select offers which maximize acceptability
or satisfaction. First note that if some offer falsifies all rejections having a weight strictly
greater than β but satisfies at least one rejection with a weight equal to β then it is
unacceptable to a degree β. Indeed it is acceptable to a degree equal to 1− β following
definition 12.

Following equation (1), we give up rejections with weight βn if 1−βn (which repre-
sents the acceptability degree of offers satisfying at least one of these rejections follow-
ing definition 12) is higher than λ2 which represents the satisfaction degree of offers
satisfying one of its corresponding goals following definition 15.

Once the values β and λ are fixed, if there are offers satisfyingR′
>β ∧ (

∨
G=λ) then

we stop otherwise we either increase β or decrease λ, and so on.

Example 8. First we put β = 0 and λ = .8. We have R′
>0 = stopover(x) ∧

(¬dayflight(x) ∨ smoking(x)) ∧ flexible(x) and
∨
G=.8 = promotion(x).

Then acceptable offers are feasible ones which satisfyR′
>0. They are AF and BA.

Satisfactory offers are feasible ones which satisfy
∨
G=.8, they are AirLib and

KLM . Indeed the intersection of the two sets is empty.
Now we put β = .1 and λ= .8 since offers satisfying the rejection (¬flexible(x), .1)

are acceptable to a degree equal to .9 while those satisfying (promotion(x), .8) are sat-
isfactory to a degree equal to .8. The acceptability degree is greater than the satisfaction
degree.

Now acceptable offers satisfy stopover(x)∧(¬dayflight(x)∨smoking(x)). They
are AF, AirLib and BA.

Satisfactory offers satisfy promotion(x). They are AirLib and KLM . Indeed there
is only one candidate offer which is AirLib.

In the case where we only consider goals, candidate offers are AirLib and KLM how-
ever KLM is rejected.

Definition 21 (Pessimistic strategy). Let B, R and G be the agent’s bases and X the
set of offers. A pessimistic strategy is a triple <�, �Level, �Conj>, whereR ≈ G.

With a pessimistic strategy, one selects offers which satisfy as much as prioritized in-
tegrity constraints and goals. Formally these offers should satisfy

R′
>β ∧ G>λ,

with α and β are as low as possible. We follow the same reasoning as in the optimistic
strategy to ensure that α and β are as low as possible.

160 L. Amgoud and S. Kaci

Example 9. Following the drastic strategy, there is no offer which satisfies all con-
straints induced by rejections and all goals.

Now we put β = .1 and λ = 0. Then acceptable offers are those which satisfyR′
>.1.

They are AF , AirLib and BA.
Satisfactory offers satisfy promotion(x) ∧ stopover(x) ∧ dayflight(x). There is

only one satisfactory offer which is KLM . Again, the set of candidate offers is empty.
Let us now put β = .4 and λ = 0. Then acceptable offers satisfy stopover(x). They

are AF , AirLib, BA and KLM . Indeed there is a candidate offer which is KLM .

Note that we obtain the same result as the case where we only consider goals. However
this is not always the case.

Definition 22 (Requiring strategy). Let B, R and G be the agent’s bases and X the
set of offers. A requiring strategy is a triple <�, �Level, �Card>, whereR � G.

Among feasible offers, the agent selects first acceptable offers which falsify as much
as prioritized rejections and among acceptable offers, it selects those which satisfy as
much as possible goals.

Let F be the set of feasible offers. According to definition 13, the set of acceptable
offers are defined as follows:
A = {x : x ∈ F andR�Level x}.

The candidate offers are: S = {x : x ∈ A and G �Card x}. Note that if all acceptable
offers falsify all goals then they are equal w.r.t. cardinality-based criterion and then
selected as candidate offers.

Example 10. The minimal weight in R s.t. the set of acceptable offers is not empty is
equal to 0. Offers satisfyingR′

>0 are BA and AF i.e., A = {BA, AF}.
BA is preferred to AF following cardinality-based criterion, then there is only one

candidate offer which is BA.

Note that if we only consider goals then there is one candidate offer KLM which is not
acceptable for the agent w.r.t. the chosen acceptability criterion.

Definition 23 (Relaxed strategy). Let B,R and G be the agent’s bases and X the set
of offers. A relaxed strategy is a triple <�, �Level, �Disj>, where R � G.

Among feasible offers, the agent selects first those which falsify as most as prioritized
rejections and among acceptable offers, it selects those which satisfy at least one prior-
itized goal as far as possible.

Acceptable offers are computed in the same way as for the requiring criterion. Can-
didate offers x are now acceptable ones which satisfy G �Disj x

Example 11. The set of acceptable offers is the same as in the requiring criterion namely
A = {AF, BA}.

There is no acceptable offer which satisfies the prioritized goal “promotion(x)” then
we look for those which satisfy “stopover(x)” or “dayflight(x)”. The candidate offers
are AF and BA.

Here also, if we only consider goals then candidate offers are AirLib and KLM which
are not acceptable for the agent following the chosen acceptability criterion.

On the Study of Negotiation Strategies 161

8 Properties of the Different Strategies

We defined in the previous section a three-layered setting where different strategies have
been proposed for offers selection. As shown on the running example, these strategies
give different results however some of them are related.

Proposition 2. Let S1, S2 and S3 be the sets of candidate offers returned respectively
by the drastic, requiring and the relaxed strategies. Then,

S1 ⊆ S2 ⊆ S3.

This result means that requiring strategy is a weakening of drastic strategy and it is
weakened by relaxed strategy. In other words, more we weaken the strategy more there
are offers to propose. This is an important point in a negotiation dialogue since the more
an agents has a large choice, the more the negotiation has better chance to success (to
reach an agreement).

The following proposition states that using requiring and relaxed strategies, the set
of candidate offers is not empty as soon as the set of acceptable offers is not empty.

Proposition 3. Let A be the set of acceptable offers computed in the requiring (resp.
relaxed) strategy. If A is not empty then the set of candidate offers is not empty in these
strategies.

In contrast to requiring and relaxed criteria, drastic criterion may lead to an empty set
of candidate offers even if the set of acceptable offers is not empty. This is shown in ex-
ample 7. Indeed in negotiation framework, the use of such criteria may lead negotiation
to a failure.

As we said in the introduction, existing works on negotiation only consider goals
in offers selection. Considering both rejections and goals in this selection enriches the
selection process by providing various and different strategies as given in the previ-
ous section. Let us consider now the proposed strategies and apply them to a unipolar
framework where only goals are considered. Then we have:

Proposition 4. When we only consider goals, the optimistic and the relaxed strategies
are equivalent.

Readers may wonder whether is it really necessary to distinguish between rejections and
goals and not simply use a single set where constraints induced by rejections are priori-
tized over goals. However this is not possible since we use here first order formulas and
in the computation of acceptable offers, we do not look for the consistency ofR (in fact
it is supposed to be consistent) but for the existence of offers satisfying constraints in-
duced by rejections. Let us consider again our example and put both constraints induced
by rejections and goals in the same set. We get {(stopover(x), β1), (¬dayflight(x)∨
smoking(x), β2), (flexible(x), β3), (promotion(x), λ1), (stopover(x), λ2),
(dayflight(x), λ2)}, with β1 > β2 > β3 > λ1 > λ2 however this doesn’t make sense
for all criteria except the drastic one since candidate offers should satisfy all elements
of this set.

162 L. Amgoud and S. Kaci

9 Conclusion

This paper studies the notion of strategy for selecting offers during a negotiation dia-
logue. In fact, the choice of the offer to propose at a given step is very important in a
negotiation dialogue since this influences the outcome of the dialogue. For example, a
too restrictive strategy may lead to an empty set of candidate offers and then the negoti-
ation fails. The more the strategy gives a large choice of offers, the more the negotiation
has a better chance to success, and consequently that the agent reach an agreement.

We have proposed a general setting for defining a strategy, which consists of fixing
three parameters: the agent’s profile, a criterion for defining acceptable offers and fi-
nally another criterion for defining satisfactory offers. The three parameters are defined
on the basis of three mental states of an agent: its beliefs, its goals and its rejections.
The agent’s profile consists of determining whether rejections and goals are equally
preferred or not.

We have proposed different agent’s profiles and different criteria for the notions of
acceptability and satisfiability of offers. A combination of an agent’s profile, a criterion
for selecting acceptable offers and a criterion for selecting the satisfactory ones gives
birth to different strategies which are more or less restrictive. We have studied some of
these strategies.

At the best of our knowledge, very few works have addressed the problem of offer
selection. Moreover all existing works only consider goals in this process. We claim
that rejections play also a key role in this problem since they allow to discard rejected
offers.

An extension of this work would be to study more deeply the remaining strategies
summarized in Table 2, and to compare them to the others. Another interesting work to
do consists of integrating these strategies in a more general architecture of a negotiation
dialogue. The idea is to study the outcome of the dialogue in the case where all the
negotiating agents use the same strategy, and also in the case where they use different
strategies.

References

1. L. Amgoud and N. Maudet. Strategical considerations for argumentative agents. In Proc.
of the 10th International Workshop on Non-Monotonic Reasoning, session “Argument, Dia-
logue, Decision”, NMR’2002, 2002.

2. S. Benferhat, D. Dubois, S. Kaci, and H. Prade. Bipolar representation and fusion of prefer-
ences in the possibilistic logic framework. In 8th International Confenrence on Principle of
Knowledge Representation and Reasoning (KR’02), pages 421–432, 2002.

3. J.C. Borod. The neuropsychology of emotion. Oxford University Press,, 2000.
4. J. Broersen, M. Dastani, and L. van der Torre. Realistic desires. Journal of Applied Non-

Classical Logics, 12(2):287–308, 2002.
5. J.T. Cacioppo and G.G. Bernston. The affect system: Architecture and operating character-

istics. Current Directions in Psychological Science, 8, 5:133–137, 1999.
6. J.T. Cacioppo, W.L. Gardner, and G.G. Bernston. Beyond bipolar conceptualizations and

measures: The case of attitudes and evaluative space. Personality and Social Psychology
Review, 1, 1:3–25, 1997.

On the Study of Negotiation Strategies 163

7. D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In Handbook of Logic in Artificial
Intelligence and Logic Programming, D. Gabbay et al., eds, 3, Oxford University Press:pages
439–513, 1994.

8. D. Dubois, D. LeBerre, H. Prade, and R. Sabbadin. Logical representation and computation
of optimal decisions in a qualitative setting. In AAAI-98, pages 588–593, 1998.

9. A. Kakas, N. Maudet, and P. Moraitis. Flexible agent dialogue strategies and societal com-
munication protocols. In Proc. 3rd International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS’04), 2004.

10. A. Kakas, N. Maudet, and P. Moraitis. Layered strategies and protocols for argumentation
based agent interaction. In Proc. AAMAS’04 1st International Workshop on Argumentation
in Multi-Agent Systems, (ArgMAS’04), 2004.

11. S. Kraus, K. Sycara, and A. Evenchik. Reaching agreements through argumentation: a logi-
cal model and implementation, volume 104. Journal of Artificial Intelligence, 1998.

12. I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and L. Sonenberg.
Argumentation-based negotiation. Knowledge engineering review, 2004.

13. E.T. Rolls. Precis of ”brain and emotion”. Behavioral and Brain Sciences, 23(2):177–234,
2000.

14. R.H. Thomason. Desires and defaults: A framework for planning with inferred goals. In
Proceedings of the seventh International Confenrence on Principle of Knowledge Represen-
tation and Reasoning (KR’00), pages 702–713, 2000.

15. M.A. Williams. Transmutations of Knowledge Systems. In J. Doyle and al. Eds, editors, In-
ternational Conference on principles of Knowledge Representation and reasoning (KR’94),
pages 619–629. Morgan Kaufmann, 1994.

Strategies for Ontology Negotiation:

Finding the Right Level of Generality

Jurriaan van Diggelen, Edwin D. de Jong, and Marco A. Wiering

Institute of Information and Computing Sciences
Utrecht University, the Netherlands

{jurriaan, dejong, marco}@cs.uu.nl

Abstract. In heterogeneous multi agent systems, communication is
hampered by the lack of shared ontologies. Ontology negotiation is a
technique that enables pairs of agents to overcome these difficulties by
exchanging parts of their ontologies. As a result of these micro level so-
lutions, a communication vocabulary emerges on a macro level. The goal
of this paper is to ensure that this communication vocabulary contains
words of the right level of generality, i.e. not overspecific and not over-
generalized. We will propose a number of communication strategies that
enable the agents to achieve these goals. Using experimental results, we
will compare their performance.

1 Introduction

A fundamental communication problem in open multi agent systems (MAS’s) is
caused by the heterogeneity of the agent’s knowledge sources, or more specifi-
cally of the underlying ontologies. Although ontologies are often advocated as a
complete solution for knowledge sharing between agents, this is only true when
all agents have knowledge about each others’ ontology. The most straightforward
way to establish this would be to develop one common ontology which is used by
all agents [6]. However, this scenario would be very unlikely in open multi agent
systems, as those on the internet, because it would require all involved system
developers to reach consensus on which ontology to use. Moreover, a common
ontology forces an agent to abandon its own world view and adopt one that is not
specifically designed for its task [3]. This may result in a suboptimal situation.

Ontology negotiation [2] has been proposed as a technique that enables agents
to preserve their local ontologies, and solve communication problems at agent-
interaction time. Communication problems between heterogeneous agents are
solved by establishing a shared communication vocabulary (or CV). Communi-
cation proceeds by translating from the speaker’s local ontology to the commu-
nication vocabulary, which the hearer translates back to its own local ontology.
When two agents start communicating, they first try to cope with the situation
as is. When the speaker uses a word that the hearer does not understand, it
solves the problem at hand by teaching the meaning of this word to the hearer.
This enables two agents that regularly communicate with each other to build
towards a solution for their semantic integration problem on an as-need basis.

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 164–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Strategies for Ontology Negotiation: Finding the Right Level of Generality 165

Whereas an ontology negotiation protocol provides a nice solution to incre-
mentally establish a communication vocabulary between a pair of heterogeneous
agents, it is not straightforward how this solution scales to whole multi agent
systems. A decentralized approach such as ontology negotiation may give rise
to a proliferation of different CV’s between different agent pairs in the system.
This would be disadvantageous for the agents, as agents would have to use differ-
ent words with different agents, which would make communication unnecessarily
complicated. Furthermore, agents would have to spend much effort on building
CV’s, as the CV that has been built up with one agent may not be useful for
communication with another agent. Therefore, when two agents participate in
ontology negotiation to resolve their mutual misunderstandings, they should also
pursue the goal of establishing a uniform and effective CV for the benefit of the
whole community.

In this paper we will describe communication strategies for ontology negotia-
tion protocols that take this global goal into account. These strategies prescribe
which words and meanings the agents should teach each other during ontology
negotiation. Regarding the words, we aim for a situation where every agent uses
the same unique word for the same meaning. This is to be established by the
agent’s word selection strategy which we have studied in earlier work [13]. Re-
garding the meanings, we aim for a communication vocabulary which enables
the agents to communicate at the right level of generality. Agents with different
areas of expertise should not communicate at an overspecific level, as not ev-
erything that is of interest to one agent is also of interest to another agent. To
prevent the CV from becoming bulky and difficult to learn, the CV should not
contain such overspecific meanings. However, the meanings in the CV should not
be overgeneralized either to enable the agents to convey sufficient information.
Finding the right balance between specificity and generality of words is to be
established by the meaning selection strategy. In this paper, we will show how a
well designed meaning selection strategy contributes to faster semantic integra-
tion in the group of agents.

In the next section, we review related work. In Section 3, we describe the
framework and explain how the communication protocols and strategies fit in.
Section 4 presents the model that is used for the experiments. According to
that model, some integration measures are proposed that measure the degree of
semantic integration. Section 5 gives a precise description of the meaning selec-
tion strategy. In Section 6 the results of the experiments are presented, and the
different meaning selection strategies are compared. We conclude in Section 7.

2 Related Work

Most solutions that have been proposed for semantic integration problems are
not flexible enough to be suitable for large open MAS’s. Approaches such as
ontology alignment [8] require ontologies to be aligned before the agents start
interacting. In open MAS’s it is not known beforehand which agents will interact
with each other, and therefore, one can not tell in advance which ontologies must
be aligned.

166 J. van Diggelen, E.D. de Jong, and M.A. Wiering

Ontology agents [1,9] have been proposed as central services that reconcile
heterogeneous ontologies at agent-interaction time by translating between on-
tologies. Such services have access to a library of concept-mappings between
every ontology in the system. In large open MAS’s, such a library would become
too complex to be reliably maintainable.

Therefore, for large open systems, a decentralized technique is needed that
allows agents to solve ontology problems among themselves at the time they
arise. W. Truszkowski and S. Bailin have coined the term Ontology Negotiation
to refer to such approaches [2]. Other approaches for ontology negotiation are
[17,16,15].

Because the field of ontology negotiation is relatively new, and it is a very am-
bitious approach to achieve semantic integration [12], there are still many open
problems. One of these problems is how a uniform CV that is shared among the
whole group of agents may result from conversations that have taken place be-
tween pairs of agents. The question how a global language system arises from the
interactions between individual agents is well studied in the language evolution
community [11,4]. Most of these approaches serve an explanatory goal, i.e. under-
standing how a communication system may evolve in a group of heterogeneous
agents. Our goals, however, are purely constructive, i.e. we aim at designing
communication strategies that can be used during ontology negotiation in order
to establish a communication vocabulary of a certain quality. In particular we
aim for an optimal distributed communication vocabulary [14], meaning that the
CV is minimal in size and sufficiently expressive. One of the ways to make the
CV minimal in size, is to ensure that the agents communicate at the right level
of generality, which is the topic of this paper.

3 Framework

3.1 Ontologies and Vocabularies

Figure 1 shows an example of two agents in our framework. The dashed rectan-
gle shows the meaning space in the system, i.e. the meanings that are assumed
to exist in the environment of the agents. In the example, the meanings that
constitute the meaning space are m1 to m8.

The agent’s ontology assigns names to meanings in the meaning space. For
example, the ontology of Ag1 specifies that m1 is called “substance” and that
m2 is called “food”. A meaning with its corresponding name will be called a
concept. An arrow from concept c to concept d represents that concept c is more
general than concept d, and conversely that concept d is more specific than
concept c.

Not every agent assigns the same names to the meanings in the meaning space.
For example, Ag1 calls m1 “substance” and m2 “food”, whereas Ag2 calls m1
“matter” and m2 “nutrition”. To avoid naming-conflicts (two agents assigning
the same name to different meanings), we assume that every agent uses a unique
set of names in its ontology. This can be easily achieved by prefixing the names
in the ontology with namespaces.

Strategies for Ontology Negotiation: Finding the Right Level of Generality 167

m2m2

m3m3

m5m5 m6m6

m4m4

m8m8m7m7

m3 meat

m2 foodm2 food

m5 beef m6 pork

m4 breadm4 bread

m2 nutritionm2 nutrition

m7 brownbr m8 whitebrm8 whitebr

ONTONTONTONT

CVCVCVCV

Ag2Ag1

{matter,nutrition,bread,
brownbr,whitebr,food}

{substance,food,meat,
beef,pork,brownbr}

subset(brownbr,food)
disjoint(brownbr,meat)

equiv(food,nutrition)

Meaning space

m1m1

m1 substancem1 substancesubstance m1 matter

Fig. 1. Example ontologies

The property that every agent in the system uses distinct names to represent
meanings is one source of the heterogeneity of the ontologies. Another source
is that the ontologies of the agents contain concepts that correspond to differ-
ent meanings. For example, the meanings m4, m7 and m8 are present in the
ontology of Ag2, but are not present in the ontology of Ag1. This is a typi-
cal characteristic of heterogeneous multi agent systems, where every agent uses
an ontology that is tailored to its own specific task. For example, Ag1 can be
thought of as being a butcher as its ontology reflects expertise on meat. Ag2 can
be thought of as being a baker as its ontology reflects expertise on bread.

Whereas the agents use the concepts in their ontology (ONT) for local knowl-
edge representation and reasoning, for communication they use their communi-
cation vocabulary (CV). Note that the words in the communication vocabulary
are not necessarily shared with the other agents. The CV contains the words
that an agent may use to communicate something, regardless whether this word
will actually be understood by the listener or not. Initially, the CV of an agent
contains only the names of the concepts in its local ontology, as these are the
only words that it knows for the meanings in its ontology. Because these words
are unique, none of the other agents will understand them. When an agent is not
understood by another agent, it explains the meaning of the uncomprehended
word, after which the listener adds the word to its communication vocabulary.
For example, the word “food” in the communication vocabulary of Ag2 is the
result of a conversation in which Ag1 used “food”, Ag2 did not understand it,
after which Ag1 taught the meaning of “food” to Ag2. This teaching process en-
abled Ag2 to formulate a definition of the word “food” in terms of its ontology,
namely “equiv(food,nutrition)”. This states that the word “food” is equivalent

168 J. van Diggelen, E.D. de Jong, and M.A. Wiering

Fig. 2. Message protocol

in meaning with the “nutrition” concept in its ontology. A definition may also
state that a word in the CV means something more specific than a concept in
the ontology. For example, “subset(brownbr,food)” in the CV of Ag1.

3.2 Communication Protocol

Figure 2 shows an ontology negotiation protocol that is used in anemone [15].
Using this protocol, agents like Ag1 and Ag2 may successfully communicate if
this is enabled by their communication vocabularies. Otherwise the agents ex-
tend their communication vocabularies to make communication possible. Three
layers can be distinguished in this protocol. The upper layer is the Normal Com-
munication Protocol (NCP), which deals with information exchange between the
agents. If this is not possible, the agents switch to the Concept Definition Proto-
col (CDP), where the agents give a definition of a word in terms of other words.
If this is not possible (when the listener does not understand the definition),
the agents switch to the Concept Explication Protocol (CEP), where the agents
convey the meaning of a word by pointing to examples.

We will explain the protocol in further depth below. Communication starts
in state 1 where Ag-i wishes to communicate a meaning from its ontology to
Ag-j. For example, suppose that Ag2 wishes to communicate the meaning m8
(corresponding to the concept “whitebr”) to Ag1. In state 1, Ag2 must select an
appropriate word in the communication vocabulary to communicate m8. There
are different possibilities for this. The first possibility is to select a word in the
CV that is equivalent in meaning with m8 (such as the word “whitebr”), and
send a message “ExactInform(whitebr)” after which it ends up in state 3. If the
CV of Ag1 would have contained the word “whitebr”, Ag1 would have translated
this word to its own ontology, and responded “OK”. As Ag1 does not know the
meaning of “whitebr”, it responds with “StartCDP” to incite Ag2 to convey the

Strategies for Ontology Negotiation: Finding the Right Level of Generality 169

meaning of “whitebr” in the Concept Definition Protocol. Another possibility for
Ag2 to convey the meaning m8 is to choose a word in the CV that means some-
thing more general than m8 (such as the words “bread”, “nutrition”, “food” or
“matter”), and send a message with “inform” after which it ends up in state 2.
When Ag1 does not know the word used in the message, it responds “StartCDP”
to start the Concept Definition Protocol. If Ag1 knows the meaning of the word,
it checks whether the message is not overgeneralized. If it believes the message
might be overgeneralized, it responds “ReqSpec” (Request specification) to in-
cite Ag2 to use a more specific word. If Ag1 assesses that the message is not
overgeneralized, it translates the message to its ontology and responds “OK”.
The method for recognizing overgeneralized messages we use here is a simpli-
fied version of the one used in the anemone protocol. If the receiver’s ontology
contains no concepts that mean something more specific than the word in the
message, the receiver assesses that the message is not overgeneralized. In this
case, the receiver regards requesting for a more specific word useless, because
its ontology is not fine grained enough to process any extra information. If the
receiver’s ontology contains concepts that are more specific than the meaning of
the word, the receiver believes that the message might be overgeneralized and
responds “ReqSpec”.

The agents enter the Concept Definition Protocol in state 5, where Ag-i de-
fines the meaning of the word in terms of other words in the communication
vocabulary. Suppose that Ag2 wishes to define “nutrition”, it sends a message
“Define(equiv(nutrition, food))” to Ag-1, which enables Ag1 to derive the defi-
nition of “nutrition” after which Ag1 answers “ExitCDP”. If the receiver of the
“Define” message does not understand the definition of a message, it responds
“StartCEP” to start the Concept Explication Protocol which incites the sender
to explicate the meaning of the word by pointing to examples. If the sender of
the definition is not able to give a definition (for example, Ag2 does not know
any other word for “whitebr”), it sends the message “ProposeStartCEP”.

In the Concept Explication Protocol (state 7), the agent conveys the meaning
of the word by giving a set of positive and negative examples. More information
on this type of concept learning can be found in [5].

3.3 Communication Strategies

Having described the ontology negotiation protocol, we will now describe how
the communication strategy fits in.

Word Selection Strategy
Suppose that Ag2 has the intention to convey the meaning m2. It has two words
in its communication vocabulary that correspond to this meaning, namely “nu-
trition” and “food”. The word selection strategy selects one of these word. In
previous work [13], we have shown that the most effective word selection strat-
egy is to choose the word that has most frequently been used by other agents.
In this paper, we will use this word selection strategy, and focus on the other
communication strategy: the meaning selection strategy.

170 J. van Diggelen, E.D. de Jong, and M.A. Wiering

Meaning Selection Strategy
Consider again the situation in state 1 of the protocol where Ag2 intends to
convey the meaning m8 (“whitebr”). As has been argued in the previous section,
Ag2 may convey this meaning by choosing a word that means m8 or a word that
means something more general than m8, i.e. a word that means m4, m2 or m1.
The meaning selection strategy prescribes which meaning Ag2 should choose. A
good meaning selection strategy selects a meaning that is not overgeneralized in
order not to provoke the response “ReqSpec”. However, the meaning selection
strategy should not select a meaning that is too specific either, to prevent the
communication vocabulary from becoming large and filled with words that are
unnecessarily specific. Examples of overgeneralized concepts are m1 and m2, as
from a god’s eye perspective we can predict that this will provoke a “ReqSpec”
answer from Ag1. An example of an overspecific concept is m8, because from
a god’s eye perspective we can determine that this word contains superfluous
information for Ag1. m4 is at the right level of generality. It is not overspecific
as it is more general than m8 and thereby more widely applicable. Furthermore,
from a god’s eye perspective, we can assess that it is not overgeneralized as it
will not provoke a “ReqSpec” answer.

Of course, the agents do not have access to this god’s eye perspective. They
therefore do not know which words are overgeneralized and which are overspe-
cific. The difficulty of the meaning selection strategy lies in the making of an
educated guess which word is at the right level of specificity. Before we describe
how this can be done, we will present the model in which we can test different
strategies.

4 Model

The experiments are performed using a set of agents MAS = {Ag1..Agn}. The
ontologies of the agents are randomly created and, like the ontologies in Figure 1,
may cover different parts of the meaning space. The formal counterpart of the
meaning space in Figure 1 is defined using graph theory [7]. A meaning space
M is defined as a rooted tree (V, E), where V is a set of vertices, E is a set of
directed edges, and a particular vertex in V is designated as the root. A vertex
vj is a child of vertex vi iff 〈vi, vj〉 ∈ E. A vertex with no children is called a
leaf ; a vertex that is not a leaf is called internal. A vertex vj is a descendant
of vertex vi (and conversely vi is an ancestor of vj) iff there is a directed path
from vi to vj . If T is a rooted tree with root v0, then ln(vi) denotes the level
number of vi which equals the length of the unique directed path from v0 to vi.
The depth of a tree is the largest level number achieved by a vertex in that tree.
The following definition is useful to characterize the shape of a meaning space.

Definition 1. A meaning space M =(V, E) is defined according to B=(b0, .., bd)
if:

– d is the depth of the tree M
– for each vi ∈ V , vi has bln(vi) children

Strategies for Ontology Negotiation: Finding the Right Level of Generality 171

For example, the meaning space in Figure 1 is defined according to (1,2,2,0),
because m1 (at level number 0) has 1 child; m2 (at level number 1) has 2
children; m3 and m4 (at level number 2) have 2 children; m5, m6, m7 and m8
(at level number 3) have 0 children.

An ontology ONT is defined as a tuple 〈C, M, I〉, where C is a set of concept
names, M = (V, E) is a meaning space and I is a bijective mapping from C to
V . To be able to characterize the ontologies in the system, we use the following
definition

Definition 2. Given an ontology ONT = 〈C, M, I〉, where M = (V, E). ONT
is defined according to B and Bg if

– M is defined according to B, and
– V ⊆ V ′, E ⊆ E′, where
• M ′ = (V ′, E′) is a meaning space defined according to Bg.

For example, the ontologies of Ag1 and Ag2 in Figure 1 are defined according
to B = (1, 1, 2, 0) and Bg = (1, 2, 2, 0).

4.1 Integration Measures

In this section, we will define some measures which indicate how well the agents
can understand each other. Suppose that Agi wishes to communicate a mean-
ing m to Agj. If Agi can do this in only the NCP layer (the upper layer in
the protocol of Figure 2), the understandings rate between Agi and Agj with
respect to meaning m is 1; if the agents have to visit the CDP or CEP layer, the
understandings rate is 0.

Definition 3. MPUR: Meaning and Pair dependent Understandings Rate.
MPUR(m, 〈Agi, Agj〉) is

– 1 if the conversation to communicate m from Agi to Agj finishes without
visiting the CDP and CEP layer

– else 0.

The following measure indicates how well an agent Agi can communicate an
average concept to Agj (ONTi is defined as a tuple 〈C, 〈V, E〉, I〉, according to
definition 2):

Definition 4. PUR: Pair dependent understandings rate PUR(〈Agi, Agj〉) =
1

#Vi

∑
m∈Vi

MPUR(m, 〈Agi, Agj〉)

The following measure indicates how well an average agent can communicate an
average meaning to an average other agent.

Definition 5.UR:Understandings rate UR= 1
n2

∑
Agi,Agj∈MAS PUR(〈Agi, Agj〉)

If the understandings rate is 1, every agent can communicate everything to every
other agent.

172 J. van Diggelen, E.D. de Jong, and M.A. Wiering

5 Finding the Right Level of Generality

Using the different integration measures introduced in the previous section, we
can characterize overgeneralized and overspecific concepts in further depth.

5.1 From a God’s Eye View

Property 1. Teaching overgeneralized concepts does not increase MPUR (defini-
tion 3).

We will illustrate this property using the example where Ag2 intends to commu-
nicate m8 (the meaning of “whitebr”) to Ag1. Suppose Ag2’s meaning selection
strategy selects the overgeneralized meaning m1 (the meaning of “matter”). Be-
fore Ag2 sends this message, MPUR(m8, 〈Ag2, Ag1〉) = 0 (because Ag1 does not
understand the word “matter”). After Ag2 has taught the concept “matter”
to Ag1, MPUR(m8, 〈 Ag2, Ag1〉) still equals 0 (because “matter” invokes a
“ReqSpec” response and Ag2’s second attempt to convey m8 fails). Now sup-
pose that Ag2’s meaning selection strategy selects the meaning m4 (corre-
sponding to the word “bread”). This meaning is not overgeneralized, because
MPUR(m8, 〈Ag2, Ag1〉) becomes 1 after the concept “bread” has been taught
to Ag1 (because “bread” invokes an “OK” response).

Property 2. Teaching overspecific concepts gives rise to little increase in PUR
(definition 4).

Consider again the situation where Ag2 intends to communicate m8 (“whitebr”)
to Ag1. Suppose that the CV’s of Ag1 and Ag2 are still in their initial configu-
ration, i.e. they only contain the names of the concepts in their ontologies. Sup-
pose that Ag2’s meaning selection strategy selects the meaning m8 (correspond-
ing to the word “whitebr”). Before Ag2 sends this message, PUR(〈Ag2, Ag1〉)
= 0 (Ag2 can not communicate anything to Ag1). After Ag2 has taught the
word “whitebr” to Ag1, PUR(〈Ag2, Ag1〉) = 1

5 · MPUR(m8, 〈Ag2, Ag1〉) =
1
5 . Now, suppose that Ag2’s meaning selection strategy would have selected
“bread”. After Ag2 has taught the word “bread” to Ag1, PUR(〈Ag2, Ag1〉) = 1

5 ·
(MPUR(m8, 〈Ag2, Ag1〉) + 1

5 ·MPUR(m7, 〈Ag2, Ag1〉) + 1
5 ·MPUR(m4, 〈Ag2,

Ag1〉)) = 3
5 . Note that, compared to the word “bread”, the teaching of the word

“whitebr” gives rise to little increase in understandings rate between the pair
(and therefore also in understandings rate in general). This is why “whitebr” is
overspecific, and “bread” is not.

5.2 From an Agent View

Property 1 and 2 characterize overgeneralized and overspecific words by describ-
ing how their teaching influences the integration measures. However, this char-
acterization can not be immediately used by an agent to find the right level of
generality. Because one agent does not have access to the other agent’s ontology,
it can not compute how the teaching of a word influences the understandings
rate. Therefore the agents follow the expected increase in understandings rate.

Strategies for Ontology Negotiation: Finding the Right Level of Generality 173

We use the notation Exp(c, MPUR(m, 〈Agi, Agj〉)) to refer to the expected
value of MPUR(m, 〈Agi, Agj〉), after the concept c has been taught. Given that
the current MPUR(m, 〈Agi, Agj〉) is 0, the expected value after c is taught can
be calculated as follows (Mi is the meaning space in Agi’s ontology, and Mj the
meaning space in Agj ’s ontology)

– if I(c) = m then Exp(c, MPUR(m, 〈Agi, Agj〉)) = 1
– if m is a descendant of I(c) in Mi then

Exp(c, MPUR(m, 〈Agi, Agj〉)) =Pr(I(c) is not internal in Mj)
– if the first two conditions do not hold then

Exp(c, MPUR(m, 〈Agi, Agj〉)) = 0

The first condition states that if c exactly means m, then the agent is certain
that teaching the word c enables communication of the meaning m. The second
condition states that, if c means something more general than m, the expected
MPUR equals the probability that the other agent does not consider the word c
overgeneralized. In our case this boils down to the probability that the meaning
of c is a leaf in Mi, i.e. the ontology of Agj does not contain more specific
concepts than c. The last condition states that, if c is not equal or more general
than m, c can not be used to communicate m, and therefore the teaching of c
will not increase the MPUR w.r.t. m.

The expected PUR (corresponding to definition 4) after c is taught can be
calculated by averaging over the expected MPUR’s:

– Exp(c, PUR(〈Agi, Agj〉)) =
1

#Vi

∑
m∈Vi

Exp(c,MPUR(m, 〈Agi, Agj〉))

Because the agents must base their decision which meaning to select on expec-
tations, the agents can not be certain that they find the right level of generality.
Therefore, they must decide whether to attach more value to expected MPUR,
or to expected PUR. This decision is set down in the parameters θ1 and θ2

which indicate the importance of respectively MPUR, and PUR. Using these
parameters, the meaning that the meaning selection strategy selects is given by:

Definition 6. Given that Agi intends to communicate a meaning m. The mean-
ing selection strategy is described by:
argmaxc∈Ci(θ1 · Exp(c, MPUR(m, 〈Agi, Agj〉))+
θ2 ·Exp(c, PUR(〈Agi, Agj〉)), where:

– θ1 is the importance factor for MPUR
– θ2 is the importance factor for PUR

In the next section we will investigate the effects of different importance factors
for MPUR and PUR.

6 Experiments

For our experiments, we adopt a group of 15 agents. An agent’s ontology is ran-
domly created according to Bg = (3, 3, 3, 3, 3, 0) and B = (2, 2, 2, 2, 1, 0), and

174 J. van Diggelen, E.D. de Jong, and M.A. Wiering

contains 46 concepts. An experiment consists of t steps, where at each step a
random speaker and hearer is selected from the group of agents, and a ran-
dom concept from the speaker’s ontology. We have prevented the same hearer-
speaker-concept pair to be selected twice in the same experiment. The speaker
communicates the concept to the hearer using a dialogue that conforms to the
anemone communication protocol (Figure 2) and a word selection strategy that
selects the most frequently used word [13]. The speaker follows a meaning se-
lection strategy that conforms to definition 6. After each step, we measure the
following:

1. UR: the understandings rate, calculated according to definition 5.
2. Avg. Dialogue length : The average length of a dialogue of a randomly se-

lected speaker-hearer-concept.
3. Avg. Nr. CDP : The average number of times that a concept is taught in

(only) the CDP layer, in a dialogue of a randomly selected speaker-hearer-
concept.

4. Avg. Nr. CEP : The average number of times that a concept is taught in the
CEP layer, in a dialogue of a randomly selected speaker-hearer-concept.

In the next sections we will describe the results of six different experiments that
were performed using different meaning selection strategies. To obtain statistical
significance, we have performed every experiment 10 times of which we will
present the mean outcomes. For all results, the standard deviation was less than
5 percent of the mean.

6.1 Agents That Know the Ontology Model

In the previous section, we have argued that the speaker can determine the ex-
pected MPUR after teaching a concept by using the probability that the hearer’s
ontology contains no subconcepts of that concept. In this section, we assume that
the agents know the ontology model, i.e. they know that B = (2, 2, 2, 2, 1, 0) and
Bg = (3, 3, 3, 3, 3, 0). With this knowledge, an agent Agi can compute the prob-
ability that a meaning m is considered (non-) overgeneralized by an agent Agj

as follows:

– if ln(m) < the depth of M then Pr(m is internal in Mj) =
∏ln(m)

i=0
bi

bg
i

– if ln(m) = the depth of M then Pr(m is internal in Mj) = 0
– Pr(m is not internal in Mj) = 1 - Pr(m is internal in Mj)

In these formulae, b0, .., bd are typical elements of vector B, and bg
0, .., b

g
d are

typical elements of Bg.
For example, in our experiments, the probability that a meaning at layer

number 0 is internal is 2
3 . The probability that a meaning at layer number 4 is

internal is 2
3 ·

2
3 ·

2
3 ·

2
3 ·

1
3 . The probability that a meaning at layer number 5 is

internal is 0.
A common pattern of dialogues in anemone is that the speaker speaks a

relatively general concept c, after which the hearer requests for specification,

Strategies for Ontology Negotiation: Finding the Right Level of Generality 175

after which the speaker applies its meaning selection strategy a second time
and speaks a more specific concept d. When the speaker applies the meaning
selection strategy for the second time, it can use extra knowledge to compute
the probability that d is considered overgeneralized by the hearer, namely that
concept c is considered overgeneralized. We incorporate this idea in the meaning
selection strategy using a conditional probability. An agent Agi that knows that
a meaning n is overgeneralized for the hearer Agj computes the probability that
a (more specific) meaning m is considered overgeneralized as follows:

Pr(e1|e2) = Pr(e1)
Pr(e2) , where

– e1 is the event that m is internal in Mj

– e2 is the event that n is internal in Mj , where n is an ancestor of m.

This can be proven as follows. According to Bayes theorem [10], Pr(e1|e2) =
Pr(e2|e1)·Pr(e1)

Pr(e2) . Note that Pr(e2|e1) is 1, because e2 is implied by e1. Hence,

Pr(e1|e2) = Pr(e1)
Pr(e2) .

Experiment 1
In the first experiment, we used parameters θ1 = 1 and θ2 = 0. In other words
the agents only take the expected MPUR into account in their meaning selec-
tion strategy. Because they are only interested in the expected increase in MPUR
concerning the meaning that they currently want to convey, we call this strategy
a short term strategy (STS). The results of applying a short term strategy for
10000 steps is shown in Figure 3. The situations at 0 steps can be explained
as follows. Because the agents have not taught any concepts to each other, no
agent understands any other agent, hence UR is 0. This means that in every
dialogue, the agents have to visit the CDP or CEP layer of the protocol. Be-
cause the agents do not share any words that they can use for giving concept

Short Term Strategy

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 2000 4000 6000 8000 10000
Nr Steps

UR
Avg. Dialogue Length
Avg. Nr. CDP
Avg. Nr. CEP

1

1

2

2

3
4

3

4

Fig. 3. Results experiment 1

176 J. van Diggelen, E.D. de Jong, and M.A. Wiering

definitions, all teaching of new words is done using CEP (where the meaning
of a word is conveyed by pointing to shared instances). Hence Avg.Nr.CEP is 1
and Avg.Nr.CDP is 0. Because the agents visit the CEP layer every dialogue,
the average dialogue length is 2.

As the number of steps increase, the agents teach concepts to each other, and
the UR slowly increases. Also, the Avg.Nr.CDP increases because giving defini-
tions becomes a viable option to teach new concepts, once a substantial amount
of concepts is shared. As a result of this, there is less need for CEP, and the
Avg. Nr CEP slowly decreases. Hence, the Avg. dialogue length also decreases.

Experiment 2
In experiment 2, we used parameters θ1 = 0 and θ2 = 1. In other words, the
agents only take the expected PUR into account in their meaning selection strat-
egy. Because they are interested in the expected increase in MPUR concerning
any concept in their ontology, regardless whether they currently intend to convey
it or not, we call this a long term strategy (LTS). The results of applying the
long term strategy for 10000 steps is shown in Figure 4.

Long Term Strategy

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 2000 4000 6000 8000 10000
Nr Steps

UR
Avg. Dialogue Length
Avg. Nr. CDP
Avg. Nr. CEP

1

1

2

2

3

3

4

4

Fig. 4. Results experiment 2

Using the long term strategy, the Avg.Nr.CEP is relatively high in the be-
ginning. This is because the speaker may end up teaching three or four general
concepts to the hearer, before it teaches the concept that is specific enough for
the hearer to accept. As a result of this, the Avg. dialogue length is also rela-
tively high. We can also observe that the strategy that aims at increasing the
PUR, indeed gives rise to a fast increase in UR. Therefore, the Avg.Nr.CEP and
Avg. Dialogue length decrease quickly in the beginning.

One of the reasons that experiment 2 exhibits a faster increase of UR than
experiment 1 is that the Avg.Nr.CEP is higher in experiment 2 than in exper-
iment 1. Another reason is that the concepts that are taught in experiment 1
are overspecific and therefore only increase UR a little (property 2). To support

Strategies for Ontology Negotiation: Finding the Right Level of Generality 177

this claim we included Figure 6 where the strategies in experiments 1 and 2
(and 3) are compared in a graph with the total number of CEP on the x-axis.
Furthermore, this figure reveals that the total number of CEP that is required
to reach an UR of 1 is around 1300 using LTS, and around 5000 using STS.
Therefore, the communication vocabulary that is produced by LTS is also much
smaller than the CV that is produced by STS.

The following table compares the short term strategy (experiment 1) with the
long term strategy (experiment 2).

STS LTS
Increase in UR - +

Initial Avg.Nr.CEP. + -
Avg. Dialogue Length + -

With respect to a fast increase in UR, the LTS performs better than the STS. How-
ever, the dialogues in the LTS are longer, and the Avg.Nr.CEP is high in the be-
ginning. In the following experiment, we aim at achieving the best of both worlds.

Experiment 3
In experiment 3, we used parameters θ1 = 1 and θ2 = 5, such that the agents
take the expected MPUR and PUR into account. Because it is a mixture of the
short term strategy and the long term strategy, we call this the medium term
strategy (MTS). The results are shown in Figure 5. As this Figure reveals, the
MTS gives rise to a faster increase of UR than the STS (experiment 1), and it
gives rise to shorter dialogues and initial Avg.Nr.CEP than the LTS.

Medium Term Strategy

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 2000 4000 6000 8000 10000
Nr Steps

UR
Avg. Dialogue Length
Avg. Nr. CDP
Avg. Nr. CEP

1

1

2

2

3

3

4

4

Fig. 5. Results experiment 3

6.2 Agents That Learn the Ontology Model

The three experiments described in the previous section build on the assumption
that the agents know the ontology model. In this section, we do not make this

178 J. van Diggelen, E.D. de Jong, and M.A. Wiering

Effectivity of Concept Explication

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000
Nr CEP

U
R

STS

LTS

MTS3

3

1

1

2

2

Fig. 6. Comparison of experiments 1,2 and 3

assumption, and make the agents learn the ontology model during their con-
versations. This is done as follows. For every meaning in its ontology, an agent
keeps track of:

– N1 the number of agents that regarded the meaning overgeneralized. These
agents have responded “ReqSpec” to Inform-messages containing this
meaning.

– N2 the number of agents that did not regard the meaning overgeneral-
ized. These agents have responded “OK” to inform-messages containing this
meaning.

N1 and N2 are both initialized to 1. Using these values for meaning m, agent
Agi can approximate the probability that m is internal in a meaning space Mj

as follows:

– Pr(m is internal in Mj) = N1
N1+N2

Experiment 4,5,6
Experiments 4,5 and 6 were performed using STS, LTS and MTS respectively,
with agents that learn the ontology model as they participate in conversations.
Figure 7 shows the results of experiments 4,5 and 6 in a similar fashion as Fig-
ure 6. This figure reveals that STS in experiment 4 gives rise to very similar
results as STS in experiment 1. This is because STS incites agents to select the
most specific meaning. The inaccurate approximation of the ontology model in
experiment 4, does change this strategy, as the agents will continue to select the
most specific meaning anyway. The LTS incites the agents to select the most
general meaning. Therefore, the LTS in experiment 5 gives rise to the same re-
sults as the LTS in experiment 2. The situation is different with the MTS, which
incites agents to select a meaning that is a right balance between specificity and

Strategies for Ontology Negotiation: Finding the Right Level of Generality 179

Effectivity of Concept Explication

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000
Nr CEP

U
R

STS

LTS

MTS3

3

1

1

2

2

Fig. 7. Comparison of experiments 4,5 and 6

generality. An inaccurate approximation of the ontology model, does influence
the results of the MTS, as can be seen when the results of experiment 3 are
compared with experiment 6 in Figure 6 and 7.

7 Conclusion

In this paper, we have argued that finding the right level of generality is impor-
tant for ontology negotiation. We have experimentally supported this claim by
comparing different communication strategies that incite the agents to convey
their information at different levels of generality. An agent that conveys infor-
mation using a very specific word, runs the risk that the other agent does not
know the word. An agent that conveys information using a very general word,
runs the risk of being too vague which would result in a lengthy dialogue.

We have also shown that the agents can reliably assess the right level of
generality themselves. They may do this by recording how many other agents
do and do not consider a meaning overgeneralized. As an agent participates in
conversations, it builds up a model of the other agents’ ontologies, which enables
it to find the right level of generality.

We believe that the communication strategies discussed in this paper are
useful for agents in heterogeneous systems, as they prescribe which individual
actions the agents must undertake in order to achieve the global goal of estab-
lishing an effective communication vocabulary. We intend to continue this line
of research by incorporating tasks in the model. In such a model, the criteria
of overgeneralization and overspecification become dependent on the tasks that
the agents are discussing. Furthermore, we intend to enrich the ontologies of the
agents with additional constructs such as attributes and part-of relations.

180 J. van Diggelen, E.D. de Jong, and M.A. Wiering

References

1. FIPA Ontology Service Specification. http://www.fipa.org/specs/fipa00086/.
2. S. Bailin and W. Truszkowski. Ontology negotiation between intelligent informa-

tion agents. Knowledge Engineering Review, 17(1):7–19, 2002.
3. T. Bylander and B. Chandrasekaran. Generic tasks for knowledge-based reasoning:

the right level of abstraction for knowledge acquisition. Int. J. Man-Mach. Stud.,
26(2):231–243, 1987.

4. E. D. de Jong and L. Steels. A distributed learning algorithm for communication
development. Complex Systems, 14(4), 2003.

5. S. A. Goldman and M. J. Kearns. On the complexity of teaching. Journal of
Computer and System Sciences, 50(1):20–31, Feb. 1995.

6. T. Gruber. A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2):199–220, 1993.

7. D. Malik and M. Sen. Discrete Mathematical Structures: Theory and Applications.
Blackwell, 2004.

8. N. F. Noy and M. A. Musen. Prompt: Algorithm and tool for automated ontology
merging and alignment. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2000.

9. A. D. Preece, K. ying Hui, W. A. Gray, P. Marti, T. J. M. Bench-Capon, D. M.
Jones, and Z. Cui. The KRAFT architecture for knowledge fusion and transfor-
mation. Knowledge Based Systems, 13(2-3):113–120, 2000.

10. J. Rice. Mathematical Statictics and Data Analysis. Duxbury Press, 1995.
11. L. Steels. Language as a complex adaptive system. In M. Schoenauer, editor,

Proceedings of PPSN VI, Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Germany, September 2000.

12. M. Uschold and M. Gruninger. Creating semantically integrated communities on
the world wide web. Semantic Web Workshop Co-located with WWW 2002 Hon-
olulu, 2002.

13. J. van Diggelen, R. Beun, F. Dignum, R. van Eijk, and J.-J. Meyer. A decentralized
approach for establishing a shared communication vocabulary. Proceedings of the
International Workshop on Agent Mediated Knowledge Management (AMKM’05).

14. J. van Diggelen, R. Beun, F. Dignum, R. van Eijk, and J.-J. Meyer. Optimal
communication vocabularies and heterogeneous ontologies. In Developments in
Agent Communication, LNAI 3396. Springer Verlag, 2004.

15. J. van Diggelen, R. Beun, F. Dignum, R. van Eijk, and J.-J. Meyer. ANEMONE:
An effective minimal ontology negotiation environment. Proceedings of the Fifth
Conference on Autonomous Agents and Multi-agent Systems (AAMAS), 2006.

16. J. Wang and L. Gasser. Mutual online ontology alignment. Proceedings of the
Workshop on Ontologies in Agent Systems, held with AAMAS 2002.

17. A. Williams. Learning to share meaning in a multi-agent system. Autonomous
Agents and Multi-Agent Systems, 8(2):165–193, 2004.

Combining Normal Communication with

Ontology Alignment

Jurriaan van Diggelen, Robbert Jan Beun, Frank Dignum, Rogier M. van Eijk,
and John-Jules Meyer

Institute of Information and Computing Sciences
Utrecht University, the Netherlands

{jurriaan, rj, dignum, rogier, jj}@cs.uu.nl

Abstract. This paper considers the combination of agent communica-
tion and ontology alignment within a group of heterogeneous agents. The
agents align their ontologies by constructing a shared communication vo-
cabulary. Because ontology alignment is not a goal in itself, the agents
refrain from it unless they believe it to be inevitable. We discuss three
protocols that all implement lazy ontology alignment, although they give
rise to different communication vocabularies.

1 Introduction

Most protocols which are studied in the agent communication community build
on the assumption that the agents share a common ontology (we refer to these
as normal communication protocols). However, normal communication proto-
cols are difficult to apply in open multi agent systems, as those on the internet,
in which common ontologies are typically not available. In these systems, it is
difficult to realize consensus between all involved system developers on which
ontology to use. Moreover, a common ontology is disadvantageous for the prob-
lem solving capacities of the agents as different tasks typically require different
ontologies [2].

Over the last decade, much research has been conducted on the alignment of
heterogeneous ontologies. Most approaches that deal with these issues require
some form of human intervention. Prompt [9] and Chimaera [7] are examples of
tools that assist humans in merging and aligning ontologies. However, in open
multi agent systems, ontologies have to be aligned on such a large scale, that
human involvement in this task is no longer feasible. Recently, a few approaches
have been proposed that address the problem of heterogeneous ontologies in a
fully automatic way [10,12,14]. The primary focus of these approaches is on con-
cept learning: making the meaning of a concept clear to another agent. These
techniques might seem to make normal communication protocols applicable in
systems with heterogeneous ontologies: before the agents start cooperating, they
teach the concepts in their ontologies to each other. This way, each agent would
know every other agent’s ontology, which would solve their incomprehension.
However, such an approach is highly unpractical in an open multi agent system
as it requires an agent to learn a vast amount of foreign concepts before it is

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 181–195, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

182 J. van Diggelen et al.

able to communicate even the smallest piece of information. To make matters
worse, this must be done not only once, but continuously as new agents enter
and leave the system all the time.

In this paper, we explore ways to efficiently combine ontology alignment tech-
niques with normal agent communication protocols. To make our results as gen-
erally applicable as possible, we deal with these issues in a highly abstract and
formal way. Our approach allows the agents to preserve their private ontologies
for knowledge representation and reasoning. To communicate, the agents build
an intermediate ontology (or interlingua [13]). This ontology is shared among all
agents and indirectly aligns their ontologies. Because the intermediate ontology
is only used for communication purposes, we refer to it as communication vo-
cabulary (or cv). Initially, the communication vocabulary is empty. The agents
enable themselves to communicate by adding concepts to the cv. This way, the
agents gradually extend the cv whenever they consider this necessary. Hence,
the ontology alignment technique boils down to adding concepts to the cv at
the proper moments. Normal communication proceeds by translating a concept
from the speaker’s private ontology to the communication vocabulary which the
hearer translates back again to its own private ontology.

The communication protocols we propose all implement a combination of
normal communication and ontology alignment. We evaluate these protocols ac-
cording to the following criteria:

– Does the combination give rise to a small, yet sufficiently expressive com-
munication vocabulary?

– Does the combination implement lazy ontology alignment?

The first question is of particular importance as the communication vocabulary
should not simply become the union of every agent’s private ontology, as often
occurs in practice. This way, every agent would have to learn every other agent’s
ontology. Not only is this very resource-consuming, the situation only gets worse
as more agents enter the system. In an open system, it would give rise to a
forever growing communication vocabulary rendering itself useless in the long
run. As is shown in [3], a minimal communication vocabulary may already fully
align the agents ontologies.

The second question is of particular importance because the agents should be
able to communicate even if their ontologies are not fully aligned. Otherwise the
agents would have to learn a large number of concepts to align their complete
ontologies, before they can start communicating the matter at hand. Usually, a
limited number of shared concepts suffices for the successful communication of
a particular matter. Therefore, the ontology alignment protocol should be lazy,
providing local solutions for communication problems as they arise.

Section 2 describes the conceptual framework which provides the formal un-
derpinning to study the different ontologies in a MAS. Using these notions, we
define what qualifies as successful communication. Section 3 describes the op-
erational framework dealing with the implementation of ontologies. Section 4
concerns communication. We briefly describe a formal abstraction of a concept
learning technique. On the operational level, we describe three protocols which

Combining Normal Communication with Ontology Alignment 183

combine ontology alignment with normal communication. They all implement
lazy ontology alignment, but differ in quality w.r.t. minimal cv construction.

2 Conceptual Framework

We assume that the agents have access to the same elements in the universe of
discourse (Δ), and use the same symbols to refer to these individuals (given by
the set IND). We will focus on the 1-ary relations between these individuals,
namely sets of individuals. A conceptualization is defined as a set of 1-ary rela-
tions; it is thus a subset of 2Δ. In our framework, the agents may conceptualize
their world differently and are therefore allowed to adopt different conceptual-
izations. Note that, at this level, the elements in the conceptualization are not
yet named. This is done by the ontology, which specifies the conceptualization
[5]. The ontology introduces a set of symbols C which, when interpreted under
their intended interpretation, refer to the elements in the conceptualization (con-
forming to the treatment by Genesereth and Nilsson in [4]). We will refer to the
intended interpretation function with IINT .

Because we are mainly interested in the relations between concepts, an ontol-
ogy is defined as a preorder O = 〈C,≤〉 where ≤ ⊆ C × C is a relation for which
∀x, y ∈ C.x ≤ y ⇔ IINT (x) ⊆ IINT (y). This states that an ontology specifies
a conceptualization as a preorder which is conforming to the subset ordering on
the intended interpretations of the concepts. We will write x ≡ y as a shorthand
for x ≤ y ∧ y ≤ x, and x < y as a shorthand for x ≤ y ∧ ¬(y ≤ x).
Given a subset X of C, we define the following:

– an element x ∈ X is minimal iff ¬∃y ∈ X.y < x
– an element x ∈ X is maximal iff ¬∃y ∈ X.x < y

Let us now consider a simple multi agent system consisting of 2 agents α1 and α2.
We use 1 or 2 in subscript notation whenever we need to stress that something
belongs to α1 or α2. In the system, the following ontologies are important (i ∈
{1, 2}):

– Oi = 〈Ci,≤i〉: the private ontology of αi.
– Ocv = 〈Ccv,≤cv〉: the communication vocabulary.
– Oi·cv = 〈Ci·cv,≤i·cv〉, where Ci·cv = Ci ∪ Ccv: the private ontology of αi, the

cv and their interrelations.
– O1·2 = 〈C1·2,≤1·2〉, where C1·2 = C1 ∪ C2: a God’s eye view of the private

ontologies of α1 and α2.
– O1·2·cv = 〈C1·2·cv,≤1·2·cv〉, where C1·2·cv = C1·2 ∪ Ccv: a God’s eye view of all

ontologies in the MAS.

Example: Consider a travel-agent α1 and an internet travel service α2 (con-
forming to the scenario envisioned in [6]). Figure 1 graphically represents the
ontologies in the system using Euler diagrams. O1 and O2 are the agent’s pri-
vate ontologies; when combined, these ontologies form O1·2.

184 J. van Diggelen et al.

Fig. 1. Example ontologies

2.1 Knowledge Distribution

Not every ontology is known by the agents. For example, O2 is unknown to α1

(the agents can not “look inside each others head”). Ocv on the other hand, is
known by every agent, whereas O1·2·cv is only partially known by the agents. We
distinguish between local knowledge, common knowledge and implicit knowledge
[8]. Local knowledge refers to the knowledge of an individual agent which is not
accessible to other agents. Something is common knowledge if it is known by
every agent and every agent knows that every agent knows it, which is again
known by every agent etc. Something is implicit knowledge within a group, if
someone in the group knows it, or the knowledge is distributed over the members
of the group. By means of communication, the agents can only acquire knowledge
which was already implicit in the group.

Assumption 1

– Oi is local knowledge of αi.
– Ocv is common knowledge of the group.
– Oi·cv is local knowledge of αi.
– O1·2 is implicit knowledge of the group.

Note that this assumption implies that also O1·2·cv is implicit knowledge within
the group. In section 3 it is shown how these characteristics are implemented in
the system.

Combining Normal Communication with Ontology Alignment 185

2.2 Communication

Consider communication between agent αi (the speaker) and αj (the hearer). αi

translates its private concept ∈ Ci to a concept in the communication vocabulary
∈ Ccv, which αj translates back again to a concept ∈ Cj . We refer to these
concepts as follows:

– The transferendum (∈ Ci): what is to be conveyed. αi (the speaker) intends
to convey the meaning of this concept to αj .

– The transferens (∈ Ccv): what conveyes. This concept functions as a vehicle
to convey the meaning of the transferendum to αj .

– The translatum (∈ Cj): what has been conveyed. αj (the hearer) interprets
the received message as this concept.

Using these three concepts, we define the requirements of successful communi-
cation. The first requirement deals with the quality of information exchange, i.e.
soundness. The definition of soundness states that the interpretation of the mes-
sage by the hearer (the translatum) must follow from what the speaker intended
to convey in the message (the transferendum).

Definition 1. Sound Communication
Let Ci be the transferendum, and Cj be the translatum. Communication is sound
iff Ci ≤ Cj.

It is not difficult to satisfy only the soundness requirement of communication.
In the extreme case, the translatum is the top concept to which all individuals
in Δ belong. This is guaranteed to be sound as this concept is a superset of
all other concepts. However, an assertion stating that an individual belongs to
the top concept, does not contain any information about the individual; it is a
trivial fact. For this reason, a second requirement is needed which also takes the
quantity of information exchange into account.

The lossless requirement states that the translatum should not only be a con-
sequence of the transferendum, but should also be the strongest consequence.
This ensures that as much information as possible is preserved in the communi-
cation process.

Definition 2. Lossless communication
Let Ci be the transferendum and Cj the translatum. Communication is lossless
iff Cj is minimal among the set {C′

j |Ci ≤ C′
j}.

Note that in definition 1 and 2 no mention is made of the transferens. This is
because the concepts in the communication vocabulary only serve as vehicles
to convey the speaker’s information to the hearer. To enable sound and lossless
communication, there must be sufficient vehicles available.

3 Operational Framework

This section discusses the data-structures and actions that can be used to im-
plement the conceptual framework. Note that this is only one of many possible

186 J. van Diggelen et al.

implementations. The properties of the components describe the circumstances
under which the requirements of assumption 1 are met.

We first discuss how Oi can be implemented as local knowledge of αi. As
standard in description logic knowledge bases, the agent’s knowledge is repre-
sented by a tuple 〈Ti,Ai〉, containing a TBox and an ABox [1]. The TBox Ti

contains a set of terminological axioms which specify the inclusion relations be-
tween the concepts; it represents the agent’s ontology. The ABox Ai contains a
set of membership statements which specify which individuals belong to which
concepts; it represents the agent’s operational knowledge. Ti and Ai are further
explained below.

The set of concepts Ci is defined conforming to the description logic ALC
without roles. Given a set of atomic concepts Ca

i with typical elements ci, di, the
set Ci with typical elements Ci, Di, is defined by the BNF:
Ci ::= ci|⊥|�|¬Ci|Ci �Di|Ci �Di.

The semantics of the elements in Ci is defined using an interpretation function
I which maps concepts to sets of individuals. I is such that I(�) = Δ, I(⊥) = ∅,
I(¬C) = Δ\I(C), I(C �D) = I(C) ∩ I(D) and I(C � D) = I(C) ∪ I(D). A
terminological axiom is a statement of the form C � D. A TBox T is a set of ter-
minological axioms. An interpretation I satisfies a terminological axiom C � D,
written |=I C � D iff I(C) ⊆ I(D). For a set of statements Γ , we write that
|=I Γ iff for every γ ∈ Γ , it holds that |=I γ. We write that Γ |= Γ ′ iff for all I
: |=I Γ implies |=I Γ ′. We assume that enough terminological axioms are con-
tained in Ti, s.t. it fully implements the local knowledge of agent αi over ≤i, i.e.

Property 1. For i ∈ {1, 2}: Ti |= Ci � Di iff Ci ≤ Di.

Given a TBox, the relation � can be computed efficiently using standard DL
reasoning techniques.

A membership statement is defined as a statement of the form C(a), where C
is a concept and a an individual name (∈ IND). IND refers to the set of individ-
ual names; we assume that the part of I which maps elements of IND to elements
of Δ is common knowledge. An interpretation function I satisfies a membership
statement C(a) iff I(a) ∈ I(C). The ABox A is a set of membership statements.
We assume that the ABox is sound w.r.t. to the intended representation, i.e.
|=IINT A. Note that we do not assume that the ABox completely specifies the
intended interpretation. This would make communication unnecessary as the
agents would already know everything. The assumption of a complete ABox is,
nevertheless, unrealistic. Typically, the domain of discourse will be of such size
that it is unfeasible to enumerate all membership statements.

Let us now focus onOcv. For the purposes of this paper, it suffices to define the
set Ccv as a simpler language than Ci; in particular, we leave out the � and � con-
structors. Given a set of atomic concepts Ca

cv, the elements in Ccv are defined as
Ccv ::= ccv|⊥|�|¬Ccv. The omission of the � and � constructors makes it easier
for an agent to achieve local knowledge of Oi·cv; an extension of the framework
to deal with a cv that includes these constructors is straightforward. The agents
store their knowledge about ≤cv in a TBox, Ti·cv. The protocols described in 4
are such that every agent knows the ordering between the concepts in Ccv:

Combining Normal Communication with Ontology Alignment 187

Property 2. For i ∈ {1, 2}: Ti·cv |= Ccv � Dcv iff Ccv ≤cv Dcv.

Our next focus is Oi·cv. Because the local knowledge of Oi, and the common
knowledge of Ocv has already been discussed above, we only need to focus on
the relations between the concepts in Ci and those in Ccv. This knowledge of agent
αi is stored using terminological axioms of the form Ci � Ccv or Ccv � Ci. These
terminological axioms are added to the TBox Ti·cv. The communication protocols
implement local knowledge of Oi·cv by giving rise to Ti·cv with the property:

Property 3. For i ∈ {1, 2}:
- Ti·cv |= Ccv � Ci iff Ccv ≤i·cv Ci

- Ti·cv |= Ci � Ccv iff Ci ≤i·cv Ccv

Until now, we have described how the first three items of assumption 1 are im-
plemented using common techniques available from description logic research.
The fourth item of the assumption is not yet met. The data structures as de-
scribed until now do not give rise to implicit knowledge of the relations be-
tween two different agent’s private concepts. This is a necessary condition for
any system where the agents must learn to share meaning. Two agents can not
learn something from each other which was not already implicitly present be-
forehand. To solve this, we build on the assumption that an agent not only
knows the ordering between its private concepts, but also has access to the
intended interpretation of its private concepts. This is done using the action
Classify.

Action Classify(C,a)
Output specification:
if a ∈ IINT (C) then add C(a) to A
else add ¬C(a) to A

For example, Classify can be thought of as a subsystem of a robot which
recognizes and classifies objects in the real world. This underlies Luc Steels’ ap-
proach to language creation [11]. In a scenario where the domain of discourse
consists of text corpora, the action Classify can be implemented using a text
classification technique like those used in spam filters.

4 Communication

The communicative abilities of the agents are specified as actions. During the
execution of actions, messages are sent through the instruction send(αj , 〈topic,
p1, .., pn〉), where αj is the addressee of the message, the topic specifies what
the message is about, and p1..pn are parameters of the message. The effect of
this instruction is that αj is able to perform a Receive(αi, 〈topic, x1, .., xn〉)
action, where αi is the sender of the message and x1..xn are instantiated to
p1..pn. For clarity reasons, we will omit Receive actions from the protocols. In
the specification of actions and protocols we will adopt αi as the sender and αj

as the receiver of messages.

188 J. van Diggelen et al.

We first describe how concept learning is established in our framework. Then,
we describe how this concept learning technique can be used in combination with
normal communication to establish lazy ontology alignment.

4.1 Concept Learning

The agents extend the communication vocabulary using the action AddConcept.
We first describe the changes in ontologies from the conceptual level. In describ-
ing these changes we use the notion of projection:

Definition 3. Let O = 〈C,≤〉 be an ontology. For C′ ⊆ C, we define O � C′ to
be 〈C′, {〈x, y〉|〈x, y〉 ∈ ≤ ∧x, y ∈ C′}〉

Suppose αi performs the action AddConcept(αj,Ci,ccv). As a result, the knowl-
edge in the system changes. Let O be the ontology before the action, and O+

be the ontology after the action. The change in ontologies is described as follows
(i ∈ {1, 2}):

1. O+
1·2·cv = 〈C+

1·2·cv,≤+
1·2·cv〉, where C+

1·2·cv = C1·2·cv ∪ {ccv} and ≤+
1·2·cv is the

reflexive, transitive closure of ≤1·2·cv ∪{〈Ci, ccv〉, 〈ccv, Ci〉}.
2. O+

cv = O+
1·2·cv � (Ccv ∪ {ccv})

3. O+
i·cv = O+

1·2·cv � (Ci·cv ∪ {ccv})
4. O+

j·cv = O+
1·2·cv � (Cj·cv ∪ {ccv})

We now describe the changes in ontologies from the operational level. In doing
so, it suffices to regard only items two, three and four, as the first item follows
from these.

The second item (O+
cv) concerns common knowledge. Because αi knows the

exact meaning of ccv, it knows O+
cv. To make it common knowledge, αi sends the

information (≤+
cv \ ≤cv) to αj . This is done in the message with the “bound-

aries” topic (specified below). The third item (O+
i·cv) follows straightforward

from the knowledge of αi that ccv ≡ Ci. The fourth item (O+
j·cv) is the most

difficult one to establish. Given that Ci ≡ ccv, neither Oi·cv, nor Oj·cv gives
sufficient information to establish the relations in O+

j·cv. Therefore, αi conveys
this information to αj by sending an ostensive definition [15], consisting of a
set of positive and negative examples of concept ccv. Upon receiving these ex-
amples, αj uses inductive inference to derive the relations of ccv with the con-
cepts in its private ontology. This is done in the message with the “explication”
topic.

The action AddConcept is specified as follows. Remember that the agents have
access to the intended interpretation of concepts using the Classify action de-
scribed earlier.

Action AddConcept(αj, ccv, Ci)

- add 〈ccv, 〈Ci, Ci〉〉 to Ti·cv

- send (αj ,〈boundaries,ccv, {Dcv|ccv ≤ Dcv}, {Ecv|Ecv ≤ ccv}〉)
- send (αj ,〈explication,ccv,{p|I(p) ∈ IINT (Ci)}, {n|I(n) �∈ IINT (Ci)}〉)

Combining Normal Communication with Ontology Alignment 189

Action Receive(〈boundaries,ccv,Sup,Sub 〉)

- for every C′
cv ∈ Sup: add ccv � C′

cv to Tj·cv

- for every C′
cv ∈ Sub: add C′

cv � ccv to Tj·cv

The “boundaries” message ensures that the ordering on Ccv is common knowl-
edge between αi and αj , thereby satisfying property 2.

Action Receive(〈explication,ccv,P,N 〉)

- add ccv � Cj to Tj·cv, where Cj is minimal among the set {C′
j |∀p ∈ P.I(p) ∈

IINT (C′
j)}

- add Dj � ccv to Tj·cv, where Dj is maximal among the set {D′
j |∀n ∈

N.I(n) �∈ IINT (D′
j)}

We assume that the number of examples in the sets P and N are sufficiently
large, such that all information about the concept Ci is conveyed to αj . Under
this assumption, property 3 holds.

4.2 Protocols for Lazy Ontology Alignment

Building a communication vocabulary is not the primary goal of the agents, but
only a means to achieve successful communication. Therefore, the agents should
only resort to ontology alignment when their communication vocabulary falls
short of successful communication, i.e. the ontology alignment protocol should
be lazy. This requires the agents to know when their communication qualifies as
successful. In section 2.2 we defined successful communication as being sound
and lossless. Whereas these properties are defined using a God’s eye view over
the agents ontologies, the agents can only use their local knowledge to assess
these properties. This plays a central role in our discussions on lazy ontology
alignment. Three different protocols are discussed below.

Protocol 1. In protocol 1, only messages are sent which are guaranteed to re-
sult in lossless communication. This requires the sender of a message to know
whether its message will result in lossless communication or not. The sender
knows that the receiver’s knowledge about a transferens is as accurate as possi-
ble (property 3). Therefore, the sender knows that whenever it uses a transferens
which corresponds exactly to the transferendum, lossless communication will be
established. This idea is captured in the precondition of the InformExact action.
If this speech act cannot be performed, the agent is forced to add the term to
the communication vocabulary.

Action InformExact(αj, Ci(a))
if ∃Ccv.Ccv ≡ Ci then send(αj , 〈InformExact, Ccv(a)〉)
else fail

Action Receive(〈 InformExact,Ccv(a)〉)
Add Cj(a) to Aj , where Cj is minimal among the set {C′

j |Ccv ≤ C′
j}

190 J. van Diggelen et al.

Fig. 2. Protocol P1

It is not difficult to prove that in protocol 1, communication proceeds in a loss-
less fashion as defined in definition 2. The event that is triggered upon receiving
an InformExact message, produces a translatum Cj which is minimal among the
set {C′

j |Ccv ≤ C′}. Because the action that produces an InformExact message
requires the transferendum Ci to be equivalent to Ccv, it follows that Cj is also
minimal among the set {C′

j |Ci ≤ C′}, thereby meeting the lossless requirement.

Example: Consider the ontologies in figure 1. Initially Ccv = {�,⊥}. Suppose
that α1 intends to convey the assertion van1(a). Below, the actions are described
which are performed by the agents. We describe some of the instructions that
are executed within an action; these are preceded with �.
α1 : AddConcept(α2, vancv, van1)
α1 : InformExact(α2,van1(a))
�α1 : send(α2, 〈InformExact, vancv(a)〉)
α2 : receive(α1, 〈InformExact, vancv(a)〉)
�α2 :add roadvehicle2(a) to A

Now, suppose that α2 intends to convey the message campervan2(a), and that
Ca

cv = {vancv}. Here, and in the following examples, the meaning of concepts in
Ca

cv is as expected, e.g. vancv ≡van1. The agents perform the following actions:
α2 : AddConcept(α1,campervancv , campervan2)
α2 : InformExact(α1,campervan2(a))
�α2 : send(α1,〈InformExact, campervancv(a)〉)
· · ·
Although P1 always allows lossless communication, it does not give rise to a
minimal cv. The condition maintained by the sender is a sufficient condition
for lossless communication, but it is not a necessary condition. In the second
dialogue of the example, it was not necessary to add a new concept to the cv,
as lossless communication was already enabled by the concept vancv. Some-
times, the sender adds concepts to the cv that do not contribute to successful
communication. After the agents have exchanged a number of messages, the
communication vocabulary will simply consist of every transferendum that was
conveyed by one of those messages. The following protocol attempts to overcome
the problem of redundantly adding concepts to the cv.

Protocol 2. In protocol 2, the sender uses an InformExact speech act when
allowed. When this is not allowed, i.e. the sender is not able to express itself
exactly in shared concepts, it does not immediately add the concept to the

Combining Normal Communication with Ontology Alignment 191

communication vocabulary. Instead, it conveys the message as accurately as pos-
sible using a more general concept. It is upon the receiver to decide whether this
approximation is accurate enough to meet the lossless criterion.

Because the receiver does not know the transferendum, it cannot directly
check definition 2 for lossless communication. However, the receiver knows two
things about the transferendum, which enables it, in some cases, to check the
lossless condition nonetheless. Firstly, it knows that the transferendum is more
specific than the transferens. Secondly, it knows that the transferens is the most
accurate translation of the transferendum to the communication vocabulary.
Therefore, any concept in Ccv which is more specific than the transferens is not
more general than the transferendum. These ideas underly the action OK.

Fig. 3. Protocol P2

Action Inform(αj, Ci(a))
send(αj , 〈Inform, Ccv(a)〉) where Ccv is minimal among the set {Ccv|Ci ≤ Ccv}

The event that is triggered when an inform message is received is equal to the
event that is triggered when an InformExact message is received. The OK action
fails if the receiver cannot assess that communication was lossless; otherwise it
responds with OK.

Action OK(αi)
Responding to 〈inform, (Ccv(a))〉
if ¬∃Cj for which

1. Cj < Dj, where Dj is minimal among the set {C′
j |Ccv ≤ C′

j} (Dj is the
translatum)

2. ¬∃C′
cv.C′

cv < Ccv ∧ Cj ≤ C′
cv

then send(αi, 〈OK〉)
else fail

192 J. van Diggelen et al.

If the receiver cannot respond with OK, it requests for specification (ReqSpec).
After this, the sender adds a concept to the communication vocabulary.

Theorem 1. If the receiver responds OK then communication was lossless.

Proof: Suppose Ci is the transferendum, Ccv the transferens and Cj the trans-
latum. We prove the theorem by showing that the situation where the receiver
responds OK while communication was not lossless leads to a contradiction. The
conditions for sending and receiving an inform speech act ensure that Ci ≤ Ccv ≤
Cj , and therefore Ci ≤ Cj . Non-lossless communication means that Cj is not
minimal among the set {C′

j |Ci ≤ C′
j}. Therefore ∃C′

j .Ci ≤ C′
j < Cj . This C′

j

meets the first condition in the if-statement of OK; therefore, the second condition
must be false, i.e. ∃C′

cv.C
′
cv < Ccv ∧C′

j ≤ C′
cv. Therefore, Ci ≤ C′

cv ∧C′
cv < Ccv.

This is in contradiction with the condition of Inform which states that Ccv

should be minimal among the set {C′
cv|Ci ≤ C′

cv}. �

Example: Consider the ontologies in figure 1. Suppose that α2 wishes to com-
municate campervan2(a), and that Ca

cv = {vancv}. The dialogue proceeds as
follows:
α2 : Inform(α1, campervan2(a))
�α2 : send(α1, 〈Inform, campervancv(a)〉)
α1 : Receive (α2, 〈Inform, campervancv(a)〉)
�α1 : add van1(a) to A1

α1 : OK
In this example, α1 responded with OK, because in O1 the information provided
by van1 is as accurate as possible.

Now, suppose that α2wishes to communicate campervan2(a), Ca
cv ={vehiclecv}.

α2 : Inform(α1, campervan2)
�α2 : send(α1,〈Inform, vehiclecv(a)〉)
α1 : Reqspec
α2 : AddConcept(α1,campervancv,campervan2)
α2 : InformExact(α1,campervan2(a))
· · ·
In this example α1 did not respond OK at first, because van1 caused the action
the fail. Hereby, α1 correctly recognized non-lossless communication.

Now, suppose that α2 wishes to communicate roadvehicle2(a), and Ca
cv =

{vehiclecv, vancv, (vehicle � ¬van)cv} (in the extended framework, (vehicle �
¬van)cv can be compositionally defined in Ccv, instead of atomic)
α2 : Inform(α1, roadvehicle2(a))
�α2 : send(α1,〈Inform, vehiclecv(a)〉)
α1 : Receive (α2, 〈Inform, vehiclecv(a)〉)
�α1 : add vehicle1(a) to A1

α1 : OK
In this example, α1 responded OK, because it knew that if α2 had more informa-
tion available about individual a, e.g. van1, it would have used a more specific
term, e.g. vancv. Hereby, α1 correctly recognized lossless communication.

Combining Normal Communication with Ontology Alignment 193

Protocol P2 enables the agents to communicate without having to share all
their private concepts. However, the protocol may still give rise to a communi-
cation vocabulary which is unnecessary large. Protocol 3 allows the agents to
remove superfluous concepts from their communication vocabulary.

Protocol 3. Concepts can be removed from the vocabulary if they are re-
dundant. Redundant concepts have the property that their removal does not
affect the expressiveness of the cv. We measure the expressiveness of the com-
munication vocabulary, as the number of private concepts that can be losslessly
communicated, without having to extend the cv.

Definition 4. If ccv is redundant in Ca
cv, then Ca

cv\{ccv} allows for lossless com-
munication of the same concepts as Ca

cv.

Whereas this definition can be verified from a God’s eye view perspective, an
agent can only indirectly check its validity. Agent αi knows which transferendum
Ci uses which transferens Ccv (it knows how to send an inform message). It also
knows which transferens Ccv, is translated into which translatum Ci (it knows
how to receive an inform message). This enables αi to know that a concept Ccv

is redundant if the following holds for ccv:

- no transferendum ∈ Ci requires transferens ccv. This means that αi would
never use ccv in its messages.

- there is another transferens C′
cv ∈ Ccv\ {ccv}, which yields the same trans-

latum as ccv, and is more general than ccv. This means that, as far as αi

is concerned, αj might as well use C′
cv instead of ccv, when αj informs αi

about something.

An agent performs a RemoveConcept action on a concept ccv, when it considers
it redundant using the criteria described above. Concepts may become redun-
dant after a new term is added to the communication vocabulary. Therefore, P3
allows the RemoveConcept action after AddConcept. Because both agents have
different perspectives on the redundancy of terms, both agents get a chance to
perform RemoveConcept. Due to space limitations, we will confine ourselves to
this informal treatment of RemoveConcept.

Example: Consider the ontologies in figure 1. Suppose that α1 wishes to com-
municate vehicle1(a), Ca

cv = {vancv, roadvehiclecv}.
α1 : Inform(α2, vehicle1(a))
�α1 : send(α2, 〈Inform,�(a)〉)
α2 : Reqspec
α1 : AddConcept(α2,vehiclecv,vehicle1)
α1 : RemoveConcept(α1,roadvehiclecv)
α1 : Exit
α2 : Exit
α1 : InformExact(α2,vehicle1(a))
· · ·

194 J. van Diggelen et al.

Fig. 4. Protocol P3

In this example α1 considers the concept roadvehiclecv redundant after it has
added vehiclecv . As a sender, α1 would never use roadvehiclecv , and as a receiver
α1 finds vehiclecv equally accurate as roadvehiclecv .

5 Conclusion

In this paper we have proposed some extensions to normal communication pro-
tocols that allow agents with heterogeneous ontologies to communicate. We have
focussed on lazy ontology alignment and minimal cv construction. By lazy ontol-
ogy alignment, we mean that the agents seek local solutions for communication
problems when they arise. By minimal cv construction, we mean that the agents
come up with a simple solution, i.e. the number of concepts in the communica-
tion vocabulary remains relatively small.

The protocols described in this paper all implement lazy ontology alignment.
With respect to minimal ontology development, P3 performs best, followed by
P2, followed by P1. We will continue this line of research by considering situ-
ations with more than two agents. Furthermore, we will test the framework in
some real-life scenarios of collaborating personal assistants.

References

1. F. Baader, D.L. McGuinnes, and P.F. Patel-Schneider. The description logic hand-
book: Theory, implementation and applications. Cambridge University Press, 2003.

2. T. Bylander and B. Chandrasekaran. Generic tasks for knowledge-based reasoning:
the right level of abstraction for knowledge acquisition. Int. J. Man-Mach. Stud.,
26(2):231–243, 1987.

Combining Normal Communication with Ontology Alignment 195

3. J. van Diggelen, R.J. Beun, F. Dignum, R.M. van Eijk, and J.-J.Ch. Meyer. Opti-
mal communication vocabularies and heterogeneous ontologies. In R.M. van Eijk,
M.-P. Huget, and F. Dignum, editors, Developments in Agent Communication,
LNAI 3396. Springer Verlag, 2004.

4. Michael R. Genesereth and Nils J. Nilsson. Logical foundations of artificial intel-
ligence. Morgan Kaufmann Publishers Inc., 1987.

5. T.R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199–220, 1993.

6. M. Luck, P. McBurney, and C. Preist. Agent technology: Enabling next generation
computing. Agent link community, 2003.

7. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. The chimaera ontology en-
vironment. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI 2000).

8. J-J. Ch. Meyer and W. Van Der Hoek. Epistemic Logic for AI and Computer
Science. Cambridge University Press, 1995.

9. N. F. Noy and M. A. Musen. Prompt: Algorithm and tool for automated ontology
merging and alignment. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2000.

10. M. Obitko and V. Marik. Mapping between ontologies in agent communication.
In Proceedings of the CEEMAS 2003, Prague, Czech Republic, Lecture Notes on
Artificial Intelligence 2691, pages 191–203. Springer-Verlag, 2003.

11. L. Steels. Synthesising the Origins of Language and Meaning Using Co-evolution,
Self-organisation and Level formation. Edinburgh University Press, 1998.

12. Y. Tzitzikas and C. Meghini. Ostensive automatic schema mapping for taxonomy-
based peer-to-peer systems. In Proceedings of the 7th International Workshop on
Cooperative Information Agents, Helsinki, Finland, 2003.

13. M. Uschold and M. Gruninger. Creating semantically integrated communities on
the world wide web. Semantic Web Workshop Co-located with WWW 2002 Hon-
olulu, 2002.

14. A.B. Williams. Learning to share meaning in a multi-agent system. Autonomous
Agents and Multi-Agent Systems, 8(2):165–193, 2004.

15. L. Wittgenstein. Philosophische untersuchungen - Philosophical investigations.
Basil Blackwell, Oxford, german-english edition, 1953.

Towards Design Tools for Protocol Development�

Pınar Yolum

Department of Computer Engineering
Boğaziçi University

TR-34342 Bebek, Istanbul, Turkey
pinar.yolum@boun.edu.tr

Abstract. Interaction protocols enable agents to communicate with each other
effectively. Whereas several approaches exist to specify interaction protocols,
none of them has design tools that can help protocol designers catch semantical
protocol errors at design time. As research in networking protocols has shown,
flawed specifications of protocols can have disastrous consequences. Hence, it is
crucial to systematically analyze protocols in time to ensure correct specification.
This paper studies and formalizes important generic properties of commitment
protocols that can ease their correct development significantly. Since these prop-
erties are formal, they can easily be incorporated in a software tool to (semi-)
automate the design and specification of commitment protocols. Where appropri-
ate we provide algorithms that can directly be used to check these properties in
such a design tool.

1 Introduction

Multiagent systems consist of autonomous, interacting agents. For the agents to inter-
act effectively, their interactions should be regulated. Multiagent interaction protocols
provide a formal ground for realizing this regulation. However, developing effective
protocols that will be carried out by autonomous agents is challenging [2,3].

Similar to the protocols in traditional systems, multiagent protocols need to be spec-
ified rigorously so that the agents can interact successfully. Some important properties
of network protocols have been studied before, where a protocol was represented as a
finite state machine (FSM) [4,5]. However, FSMs are not well-suited for dynamic en-
vironments of multiagent systems [6,7,8]. Contrary to the protocols in static systems,
multiagent protocols need to be specified flexibly so that the agents can exercise their
autonomy by making choices or by dealing with exceptions as best suits them.

Recently, social constructs are being used to specify agent interactions. These ap-
proaches advocate declarative representations of protocols and give semantics to pro-
tocol messages in terms of social (and thus observable) concepts. Alberti et al. specify
interaction protocols using social integrity constraints and reason about the expecta-
tions of agents [9]. Fornara and Colombetti base the semantics of agent communication
on commitments, such that the meanings of messages are denoted by commitments

� This paper also appears as [1]. This research has been supported by Boğaziçi University Re-
search Fund under grant BAP05A104.

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 196–210, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Design Tools for Protocol Development 197

[10]. Yolum and Singh develop a methodology for specifying protocols wherein proto-
cols capture the possible interactions of the agents in terms of the commitments to one
another [8,11].

In addition to providing flexibility, these approaches make it possible to verify com-
pliance of agents to a given protocol. Put broadly, commitments of the agents can be
stored publicly and agents that do not fulfill their commitments at the end of the pro-
tocol can be identified as non-compliant. In order for these approaches to make use
of all these advantages, the protocols should be designed rigorously. For example, the
protocol should guarantee that, if an agent does not fulfill its commitment, it is not
because the protocol does not specify how the fulfillment can be carried out. The afore-
mentioned approaches all start with a manually designed, correct protocol. However,
designing a correct protocol in the first place requires important correctness properties
to be established and applied to the protocol. A correct protocol should define the nec-
essary actions (or transitions) to lead a computation to its desired state. Following a
protocol should imply that progress is being made towards realizing desired end condi-
tions of the protocol. The followed actions should not yield conflicting information and
lead the protocol to unrecoverable errors. That is, the protocol should at least allow a
safe execution.

This paper develops and formalizes design requirements for developing correct and
consistent commitment protocols [12,8]. However, the underlying ideas are generic and
can be applied to other social approaches as well. These requirements detect inconsis-
tencies as well as errors during design time. These requirements can easily be automated
in a design tool to help protocol designers to develop protocols.

The rest of the paper is organized as follows. Section 2 gives a technical background
on event calculus and commitments. Section 3 reviews commitment protocols. Sections
4 and 5 develop correctness and consistency requirements, respectively. Section 6 shows
how these requirements can be implemented in a design tool. Section 7 discusses the
recent literature in relation to our work.

2 Technical Background

We first give a brief overview of event calculus, which we use to formalize the design
requirements. Next, we summarize Yolum and Singh’s formalization of commitments
and their operations.

2.1 Event Calculus

The event calculus (EC) is a formalism based on many-sorted first order logic [13]. The
three sorts of event calculus are time points (T), events (E) and fluents (F). Fluents
are properties whose truth values can change over time. Fluents are manipulated by
initiation and termination of events. Table 1 supplies a list of predicates to help reason
about the events in an easier form. Below, events are shown with a, b, . . .; fluents are
shown with f, g, . . .; and time points are shown with t, t1, and t2.

We introduce the subset of the EC axioms that are used here; the rest can be found
elsewhere [14]. The variables that are not explicitly quantified are assumed to be uni-
versally quantified. The standard operators apply (i.e., ← denotes implication and ∧

198 P. Yolum

Table 1. Event calculus predicates

Initiates(a, f, t) f holds after event a at time t.
Terminates(a, f, t) f does not hold after event a at time t.
InitiallyP (f) f holds at time 0.
InitiallyN(f) f does not hold at time 0.
Happens(a, t1, t2) event a starts at time t1 and ends at t2.
Happens(a, t) event a starts and ends at time t.
HoldsAt(f, t) f holds at time t.
Clipped(t1, f, t2) f is terminated between t1 and t2.
Declipped(t1, f, t2) f is initiated between t1 and t2.

denotes conjunction). The time points are ordered by the < relation, which is defined
to be transitive and asymmetric.

1. HoldsAt(f, t3)← Happens(a, t1, t2) ∧ Initiates(a, f, t1) ∧ (t2 < t3) ∧
¬ Clipped(t1, f, t3)

2. Clipped(t1, f, t4) ↔ ∃a, t2, t3 [Happens(a, t2, t3) ∧ (t1 < t2) ∧ (t3 < t4) ∧
Terminates(a, f, t2)]

3. ¬HoldsAt(f, t)← InitiallyN(f) ∧ ¬Declipped(0, f, t)
4. ¬HoldsAt(f, t3)← Happens(a, t1, t2) ∧ Terminates(a, f, t1) ∧ (t2 < t3) ∧
¬Declipped(t1, f, t3)

2.2 Commitments

Commitments are obligations from one party to another to bring about a certain condi-
tion [15]. A base-level commitment C(x, y, p) binds a debtor x to a creditor y to bring
about a condition p [16]. When a base-level commitment is created, x becomes respon-
sible to y for satisfying p, i.e., p should hold sometime in the future. The condition p
does not involve other conditions or commitments.

A conditional commitment CC(x, y, p, q) denotes that if the condition p is satisfied, x
will be committed to bring about condition q. Conditional commitments are useful when
a party wants to commit only if a certain condition holds or only if the other party is also
willing to make a commitment. It is easy to see that a base-level commitment is a special
case of a conditional commitment, where the condition is set to true. That is, C(x, y, p)
is an abbreviation for CC(x, y, true, p). Commitments are represented as fluents in the
event calculus. Hence, the creation and the manipulation of the commitments are shown
with the Initiates and Terminates predicates.

Compared to the traditional definitions of obligations, commitments can be carried
out more flexibly [16]. By performing operations on an existing commitment, a com-
mitment can be manipulated (e.g., delegated to a third-party). We summarize the opera-
tions to create and manipulate commitments [16,8]. In the following discussion, x, y, z
denote agents, c, c′ denote commitments, and e denotes an event.

1. Create(e, x, C(x, y, p): When x performs the event e, the commitment c is created.
{Happens(e, t) ∧ Initiates(e, C(x, y, p), t)}

Towards Design Tools for Protocol Development 199

2. Discharge(e, x, C(x, y, p)): When x performs the event e, the commitment c is re-
solved.
{Happens(e, t) ∧ Initiates(e, p, t)}

3. Cancel(e, x, C(x, y, p)): When x performs the event e, the commitment c is can-
celed. Usually, the cancellation of a commitment is followed by the creation of
another commitment to compensate for the former one.
{Happens(e, t) ∧ Terminates(e, C(x, y, p), t)}

4. Release(e, y, C(x, y, p)): When y performs the event e, x no longer need to carry
out the commitment c.
{Happens(e, t) ∧ Terminates(e, C(x, y, p), t)}

5. Assign(e, y, z, C(x, y, p): When y performs the event e, commitment c is elimi-
nated, and a new commitment c′ is created where z is appointed as the new creditor.
{Happens(e, t) ∧ Terminates(e, C(x, y, p), t) ∧
Initiates(e, C(x, z, p), t)}

6. Delegate(e, x, z,C(x, y, p): When x performs the event e, commitment c is elimi-
nated but a new commitment c′ is created where z is the new debtor.
{Happens(e, t) ∧ Terminates(e, C(x, y, p), t) ∧
Initiates(e, C(z, y, p), t)}

The following rules operationalize the commitments. Axiom 1 states that a commitment
is no longer in force if the condition committed to holds. In Axiom 1, when the event e
occurs at time t, it initiates the fluent p, thereby discharging the commitment C(x, y, p).

Commitment Axiom 1. Discharge(e, x, C(x, y, p)) ← HoldsAt(C(x, y, p), t) ∧ Hap-
pens(e, t) ∧ Initiates(e, p, t)

The following axiom captures how a conditional commitment is resolved based on the
temporal ordering of the commitments it refers to. When the conditional commitment
CC(x, y, p, q) holds, if p becomes true, then the original commitment is terminated but
a new commitment is created, since the debtor x is now committed to bring about q.

Commitment Axiom 2. Initiates(e, C(x, y, q), t) ∧ Terminates(e, CC(x, y, p, q), t)←
HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t) ∧ Initiates(e, p, t)

3 Commitment Protocols

A commitment protocol is a set of actions such that each action is either an operation on
commitments or brings about a proposition. Agents create and manipulate commitments
they are involved in through the protocol they follow. An agent can start a protocol by
performing any of the actions that is allowed by the role it is playing. The transitions
of the protocol are computed by applying the effect of the action on the current state.
In most cases this correspond to the application of commitment operations. Figure 1
gives an overview of the possible transitions. Given a protocol specification, actions of
the protocol can be executed from an arbitrary initial state to a desired final state. A
protocol run can be viewed as a series of actions; each action happening at a distinct
time point.

200 P. Yolum

Example 1. We consider the Contract Net Protocol (CNP) as our running example
[17]. CNP starts with a manager requesting proposals for a particular task. Each par-
ticipant either sends a proposal or a reject message. The manager accepts one proposal
among the submitted proposals and (explicitly) rejects the rest. The participant with the
accepted proposal informs the manager with the proposal result or the failure of the
proposal.

Fig. 1. Commitment transitions

Example 2. By sending a proposal to the manager, a participant creates a conditional
commitment such that if the manager accepts the proposal, then the participant will de-
liver the result of the proposal (e.g., CC(participant, manager, accepted, result). If the
manager then sends an accept message, this conditional commitment will cease to ex-
ist but the following base-level commitment will hold: C(participant, manager, result).
Since the commitments can be easily manipulated, the participant can manipulate its
commitment in the following ways: (1) it can discharge its commitment by sending the
result as in the original CNP (discharge), (2) it can delegate its commitment to another
participant, who carries out the proposal (delegate), or (3) it can send a failure notice as
in the original protocol (cancel). Meanwhile, if for some reason, the manager no longer
has a need for the proposed task, (1) it can let go of the participant (release) or (2) let
another agent benefit from the proposal (assign).

4 Protocol Correctness

Analysis of commitment protocols poses two major challenges. One, the states of a
commitment protocol are not given a priori as is the case with FSMs. Two, the tran-
sitions are computed at run time to enable flexible execution. To study a commitment
protocol, we study the possible protocol runs that can result. A protocol run specifies

Towards Design Tools for Protocol Development 201

the actions that happen at certain time points. We base the definition of a protocol state
on these time points. More specifically, a state of the protocol corresponds to the set of
propositions and commitments that hold at a particular time point in a particular run.

To ease the explanation, we introduce the following notation. Let F be the set of
fluents in the protocol. F is CS ∪ CCS ∪ PS such that CS is the set of base-level
commitments, CCS is the set of conditional commitments and PS is the set of propo-
sitions in the protocol. Let c be a commitment such that c ∈ CS then O(c) is the set of
operations allowed on the commitment c in the protocol and O = {O(c) : c ∈ CS}.
Since a commitment cannot be part of a protocol if it cannot be created, we omit the
create operation from the set. Hence, O(c) can contain five types of operations in Sec-
tion 2.2, namely, discharge, cancel, release, delegate, and assign. We assume that all
the propositions referred by the commitments in CS and CCS are in PS.

Definition 1. A protocol state s(t) captures the content of the protocol with respect
to a particular time point t. A protocol state s(t) is a conjunction of HoldsAt(f, t)
predicates with a fixed t but possibly varying f . Formally, s(t) ≡

∧
f∈F ′ HoldsAt(f, t)

such that F ′ ⊆ F .

Two states are equivalent if the same fluents hold in both states. Although the two states
are equivalent, they are not strictly the same state since they can come about at different
time points.

Definition 2. The≡ operator defines an equivalence relation between two states s(t) and
s(t′) such thats(t)≡s(t′) if and only if∀f ∈ F : (HoldsAt(f, t) ⇐⇒ HoldsAt(f, t′)).

Protocol execution captures a series of operations for making and fulfilling of com-
mitments. Intuitively, if the protocol executes successfully, then there should not be
any open base-level commitments; i.e., no participant should still have commitments to
others. This motivates the following definition of an end-state.

Definition 3. A protocol state s(t) is a proper end-state if no base-level commitments
exist. Formally, ∀f ∈ F : HoldsAt(f, t)⇒ f ∈ CS.

Generally, if the protocol ends in an unexpected state, i.e., not a proper end-state, one of
the participants is not conforming to the protocol. However, to claim this, the protocol
has to ensure that participants have the choice to execute actions that will terminate their
commitments. The following analysis derives the requirements for correct commitment
protocols.

Holzmann labels states of a protocol in terms of their capability of allowing progress
[4]. Broadly put, a protocol state can be labeled as a progressing state if it is possible
to move to another state. For a protocol to function correctly, all states excluding the
proper end-states should be progressing states. Otherwise, the protocol can move to
a state where no actions are possible, and hence the protocol will not progress and
immaturely end.

Definition 4. A protocol state s(t) is progressing if both of the following hold:

– s(t) is not a proper end-state (e.g., s(t)⇒
∃f ∈ CS : HoldsAt(f, t)).

202 P. Yolum

– there exists an action that if executed creates a transition to a different state. (e.g.,
s(t)⇒ ∃t′ : t < t′ ∧ s(t) ≡ s(t′))

At every state in the protocol, either the execution should have successfully completed
(i.e., proper end-state) or should be moving to a different state (i.e., progressing state).

Definition 5. A protocol P is progressive if and only if each possible state in the pro-
tocol is either a proper end-state or a progressing state.

This follows intuitively from the explanation of making progress. Lemma 1 formalizes
a sufficient condition for ensuring that a commitment protocol is progressive,

Lemma 1. Let P be a commitment protocol and c be a base-level commitment. If
∀c ∈ CS : O(c) = ∅, then P is progressive.

Proof. By Definition 5, every state in P should be a proper end-state or a progress-
ing state. If a state does not contain open commitments then it is a proper end-state
(Definition 3). If the state does contain a base-level commitment, then since at least
one operation exists to manipulate it, the protocol will allow a transition to a new state.
Thus, the state is a progressing state (Definition 4).

Ensuring a progressing protocol is the first step in ensuring correctness. If a protocol
is not progressing, then the participants can get stuck in an unexpected state and not
transition to another state. However, progress by itself does not guarantee that the inter-
actions will always lead to a proper end-state. This is similar in principle to livelocks in
network protocols, where the protocol can transition between states but never reach a
final state [4, p.120].

create(x, C(x, y, p)) delegate(x, z, C(x, y, p))

delegate(z, x, C(z, y, p))

1 2 3

Fig. 2. Infinitely delegating a commitment

Example 3. Consider a participant x whose proposal has been accepted (hence, C(x,
manager, result). Next, the participant delegates its commitment to another participant
z (hence, C(z, manager, result)). Next, participant z delegates the commitment back
to participant x and thus the protocol moves back to the previous state (C(x, manager,
result)). Participants x and z delegate the commitment back and forth infinitely.

Obviously, the situation explained in Example 3 is is not desirable. It is necessary to
ensure progress but this is not sufficient to conclude that the protocol is making effective
progress.

Definition 6. A cycle in a protocol refers to a non-empty sequence of states that start
and end at equivalent states. A cycle can be formalized by the content of the beginning
and ending states. That is, an execution sequence is a cycle if: ∃t, t′, t′′ ∈ T : (s(t) ≡
s(t′)) ∧ (t < t′′ < t′) ∧ (s(t) ≡ s(t′′)).

Towards Design Tools for Protocol Development 203

Definition 7. An infinitely repeating cycle is a cycle with progressing states such that
if the protocol gets on to one of the states then the only possible next transition is to
move to a state in the cycle [4].

In Example 3, the two delegate actions form an infinitely repeating cycle. Once the
protocol gets into either state 2 or state 3, it will always remain in one of these two
states.

Lemma 2. An infinitely repeating cycle does not contain any proper end-states.

Proof. By Definition 7 an infinitely repeating cycle only contains progressing states
and by Definition 4, a progressing state cannot be an end-state.

Given a cycle, it is easy to check if it is infinitely repeating. Informally, for each state in
the cycle, we need to check if there is a possible transition that can cause a state outside
the cycle. This can be achieved by applying all allowed operations (by the proposition)
to the commitments that exist in that state. As soon as applying a commitment operation
to a state in the cycle yields a state not included in the cycle, the procedure stops,
concluding that the cycle is not infinitely repeating.

Lemma 3. Let l be a cycle. Let c ∈ CS be a commitment that holds at a state s(t)
on this cycle at any time t. If discharge, cancel or release ∈ O(c) then cycle l is not
infinitely repeating.

Proof. A cycle is not infinitely repeating if there is a path from a state in the cycle to
a state outside the cycle. Discharging, canceling, or releasing a commitment will lead
the protocol to go to a proper end-state. Since no proper end-state is on an infinitely
repeating cycle, the cycle will not repeat (Lemma 2).

Example 4. In Example 3, if either participant could discharge the commitment or
could have been released from the commitment, then there need not have been an in-
finitely repeating cycle.

Definition 8. A protocol P is effectively progressive if and only if and only if (1) P is
progressive and (2) P does not have infinitely repeating cycles.

Theorem 1. P is an effectively progressive protocol if for any commitment c ∈ CS
either (1) discharge ∈ O(c) or cancel ∈ O(c) or release ∈ O(c) or (2) by applying
finite number of operations a commitment c′ is reached for which discharge ∈ O(c′) or
cancel ∈ O(c′) or release ∈ O(c′) .

Proof. In both cases, for all commitments in P , there is at least one operation de-
fined. Hence, by Lemma 1, P is progressive. Assume that P has an infinite cycle. By
Lemma 3, there has to be a commitment c′′ holding in some state on the cycle for which
none of the operations lead to a state with discharge, cancel, or release operators. Since
P does not allow such a state, P does not contain an infinitely repeating cycles.

Example 5. The protocol P contains three actions: accept a proposal (create
(acceptProposal, participant, C(participant, manager, proposal))), authorize a subcon-
tractor to carry out the proposal (delegate(authorize, participant, subcontractor,
C(participant, manager, proposal))), and carry out the proposal
(discharge(carryOut, subcontractor, C(subcontractor, manager, proposal))).

204 P. Yolum

The protocol in Example 5is effectively progressive since the commitmentC(participant,
manager, proposal) can be delegated to someone who can apply one of the discharge,
cancel, or release operations. An algorithm that checks for an effectively progressive
protocol is given in Section 6.

5 Protocol Consistency

In Section 4 we have defined the requirements to guarantee that a protocol can effec-
tively progress. However, in addition to effective progress, a protocol should always
preserve a consistent computation. In other words, a protocol that functions correctly
does not allow creation of conflicting information. Following the CNP example, a par-
ticipant cannot both refuse to send a proposal and send a proposal at the same time.
That is, the available information that is created by the protocol should be consistent
at every time point of the protocol. To explain the consistency requirements for a com-
mitment protocol, we again start with studying individual states. Since each state is
defined in terms of holding commitments and propositions, we start by defining when
the commitments and propositions are inconsistent.

Definition 9. Let p and r be two propositions such that p, r ∈ PS. If p entails the nega-
tion of r, that is, false← HoldsAt(p, t) ∧HoldsAt(r, t) then p and r are conflicting.
A protocol state s(t) is consistent if s(t) ≡ false.

Obviously, the protocol should never enter an inconsistent state. The set of operations
defined for a commitment should ensure that only consistent states are realized. Notice
that we allow two base-level commitments to exist together even if the propositions
that need to be brought out by these commitments are conflicting. That is, a state could
contain two commitments C(x, y, p) and C(x, y, r) such that p and r are conflicting.
Obviously, both commitments cannot be satisfied simultaneously. Hence, discharging
one commitment restricts the discharging of the second commitment.

Definition 10. A protocol P is consistent if and only if P is progressive and each pos-
sible state in the protocol is consistent.

Lemma 4. Let P be a commitment protocol and c and c′ be two base-level commit-
ments in CS such that c and c′ have conflicting propositions. If O(c) = O(c′) =
{discharge}, then P is not consistent.

Proof. Let C(x, y, p) and C(x, y, r) be any two commitments in CS with conflicting
propositions. If either of them is not discharged, then the protocol state will contain a
base-level commitment. By Definition 3, it will not be a proper end-state. If both of
them discharge, the protocol will move to the false state. Thus, by Definition 10, it will
not be consistent.

Theorem 2. Let P be an effectively progressive commitment protocol, and c and c′

be two base-level commitments in CS with conflicting propositions. If either release∈
O(c′) or cancel∈ O(c′) then P is consistent.

Proof. If discharge ∈ O(c), then P can never move into the false state and hence will
be consistent. If discharge ∈ O(c), by Lemma 4, c′ needs to define an operation other

Towards Design Tools for Protocol Development 205

that discharge to avoid the false state. By Theorem 1, commitment c′ should define at
least one of discharge, release, or cancel. Since discharge is eliminated by Lemma 4,
at least release, or cancel should be defined.

Example 6. Assume that a participant commits to send a proposal and at the same time
refuses to send a proposal (commits not to send a proposal). Then the participant will
not be able to discharge both of its commitments. On the other hand, if the participant
can cancel one of its commitment or if the manager releases the participant from one of
them, then the protocol can continue consistently.

6 Algorithms

The results of the previous sections can be implemented in a design tool. This section
provides algorithms to compute the derived correctness and consistency requirements
of Theorems 1 and 2.

A commitment graph G = (V, E) consists of a set of nodes V and a set of edges
E. Each node denotes a single possible base-level commitment in a given protocol. A
directed edge between node u to v denotes an operation applied on the commitment at
node u, yielding node v. A commitment graph contains two designated nodes, namely
RC and D. These nodes do not contain any commitments. RC is used as a sink node for
all commitments for which a release or a cancel operation is defined. In other words,
if a node u is connected to node RC then the operation on edge (u, RC) could only be
a release or a cancel operation (since these operations resolve the commitment, and do
not create other commitments). Similarly, node D is a sink node for commitments for
which discharge is defined. If a node u is connected to node D then the operation on
edge (u, D) could only be a discharge. If there is an edge (u, v) such that v is not the
RC or the D node, then the operation associated with the edge is either a delegate or
an assign.

Algorithm 1 takes as input the base-level commitment set CS and operations set O
and builds a commitment graph. The algorithm starts by creating the RC and the D
nodes. Then, the algorithm iterates over the set of possible commitments that can be
created by the protocols (possible − commitments) and adds a new node for each
commitment. After adding a node for a commitment, it goes through the operations set
of the commitment and adds an edge between the node and the RC state for cancel and
release operations and an edge between the node and the D state for discharge opera-
tion. If there is an assign or a delegate operation, the algorithm applies the operation on
the commitment and creates a new node with the resulting commitment. The resulting
commitment corresponds to the initiated commitment as explained in Section 2.2. The
new commitment is added to the set of possible commitments.

We assume that the graph contains a standard adjacency matrix that can determine
if a node has an edge to another node. In the commitment graph, this shows whether
applying a single action can transform the commitment either to another commitment
or lead it to one of the discharge, cancel, or release states. The adjacentT o method
serves this purpose. If a commitment node has at least one outgoing edge, then the
commitment is said to have a neighbor (i.e., hasNeighbors() method is true).

206 P. Yolum

Algorithm 1. Build-commitment-graph(CS: Set of base-level commitments; O: Set of
operations on base-level commitments)
1: Create a new node RC {RC stands for a sink node for release and cancel}
2: Create a new node D {D stands for a sink node for discharge}
3: possible-commitments = CS
4: while (possible-commitments ! = ∅) do
5: Remove a commitment c
6: Add a new node c to V
7: for i = 1 to |O(c)| do
8: if (O(c)[i] == delegate) then
9: Add a new node c.delegate to V

10: Add (c, c.delegate) to E
11: Add c.delegate to possible-commitments
12: else if (O(c)[i] == assign) then
13: Add a new node c.assign to V
14: Add (c, c.assign) to E
15: Add c.assign to possible-commitments
16: else if (O(c)[i] == release) || (O(c)[i] == cancel) then
17: Add (c, RC) to E
18: else if (O(c)[i] == discharge) then
19: Add (c, D) to E
20: end if
21: end for
22: end while

Algorithm 2. Color-graph(G:Commitment Graph)
1: visited = ∅
2: whiteList = ∅
3: blackList = ∅
4: for i = 1 to |V| do
5: if (V(i) �∈ visited) then
6: visit(V(i))
7: end if
8: end for

Algorithm 2 checks if all the commitments in the commitment graph can be resolved.
To do this, it functions like a search algorithm. Algorithm 2 takes as input a commitment
graph and visits each node (with Algorithm 3) to color each node. If a node satisfies the
properties in Theorem 1, then it is colored white, if not black. The algorithm terminates
when all nodes are colored.

Algorithm 3 takes as input the node u that will be visited, goes through the nodes as
in depth first search (DFS), and assigns a color. White nodes are stored in the whiteList
and the black nodes are stored in the blackList. All visited nodes are stored in the
visited set. Initially, nodes do not have any color. The node u is first added to the
visited set.

If u does not have any outgoing edges, then it is a singleton in the graph and is not
connected to the rest of the graph. Hence, the commitment has no operations defined

Towards Design Tools for Protocol Development 207

Algorithm 3. visit(u: node)
1: Add u to visited
2: if (u.adjacentTo(D OR CR)) then
3: Add u to whiteList
4: else if (u.hasNeighbors()) then
5: while (u �∈ whiteList) AND (∃ E(u, v): v �∈ visited) do
6: if (v �∈ visited) then
7: visit(v)
8: end if
9: if (v ∈ whitelist) then

10: Add u to whiteList
11: else
12: Add u to blackList
13: end if
14: end while
15: else
16: Add u to blackList
17: end if

and thus cannot be resolved. Such nodes are labeled as black and put into blackList.
If the commitment at node u has one of the discharge, cancel, or release operations
defined (there is an edge between u and RC or u and D), then the color of the node u
becomes white. This means that the protocol allows commitment node u to be resolved.

Otherwise, the neighbors of the node u are analyzed. If any one neighbor node v is
already white, then u is also labeled as white. The intuition is that if the commitment
at v can be resolved and if the commitment at u can be transformed (by delegate or
assign) to v, then v can be resolved, too. If no neighbor node is already white, then
the algorithm visits neighbor nodes that are not already visited. The aim is to find a
directed path from the current node to a white node. When a white node is found, then
all nodes on the path become white and are inserted into whiteList. If a white node
cannot be reached by a directed path, then all nodes on the path become black and are
added to the blackList. Algorithms 2 and 3 are a variant of DFS and thus computes the
set of unresolvable commitments in O(|E|) [18]. The protocol designer can modify the
protocol until the blackList computed by this algorithm is empty.

Algorithm 4. Check-consistency(G: Commitment Graph)
1: inconsistentList=∅
2: for i = 1 to |V |-1 do
3: for j = i + 1 to |V | do
4: Determine if V (i) and V (j) are conflicting
5: if conflicting(V (i) and V (j)) then
6: if (� E(V (i), RC)) AND (� E(V (j), RC)) then
7: Add V (i) and V (j) to inconsistentList
8: end if
9: end if

10: end for
11: end for

208 P. Yolum

Algorithm 4 checks the protocol consistency (Theorem 2). The algorithm compares
all commitments to each other to see if they have conflicting propositions. If so, the
algorithm checks if either of the commitments can be released or canceled.

The inconsistentList keeps the pairs of commitments that fail the test. Algorithm 4
computes the set of inconsistent commitments in O(|V |2). After this set is computed, a
protocol designer can modify the protocol until the set of inconsistent commitments is
empty.

7 Discussion

This work derives some design-time requirements for commitment protocols. These re-
quirements are concerned with allowing sufficient actions for agents to carry out their
actions. However note that we are not concerned about the choices of the agents in
terms of which actions to take. Looking back at Example 3, assume that agent x could
also execute an action that could discharge its commitment (to carry out the proposal),
but choose instead to delegate it to agent z. The protocol then would still loop infinitely.
However, our purpose here is to make sure that agent x has the choice of discharg-
ing. The protocol should allow an agent to terminate its commitment by providing at
least one appropriate action. It is then up to the agent to either terminate it or delegate
it as

The algorithms given in Section 6 can be implemented in a design tool. The design
tool should be fed with a description of the protocol, which contains the actions and
the commitment operation each action corresponds to as specified in Section 3. The
commitment and operation set of the protocol can then be easily formed and fed into
Algorithm 1 for creating a commitment graph. Once, there is a commitment graph both
Algorithms 2 and 4 can be applied to check correctness and consistency, respectively.

We review the recent literature with respect to our work. Fornara and Colombetti
develop a method for agent communication, where the meanings of messages denote
commitments [10]. In addition to base-level and conditional commitments, Fornara and
Colombetti use precommitments to represent a request for a commitment from a second
party. They model the life cycle of commitments in the system through update rules.
However, they do not provide design requirements on correctness or consistency as we
have done here. The requirements and algorithms developed here can easily be applied
to their framework.

Artikis et al. develop a framework to specify and animate computational societies
[19]. The specification of a society defines the social constraints, social roles, and social
states. Social constraints define types of actions and the enforcement policies for these
actions. A social state denotes the global state of a society based on the state of the
environment, observable states of the involved agents, and states of the institutions. Our
definition of a protocol state is similar to the global state of Artikis et al.. The framework
of Artikis et al. does not specify any design rules to establish the correctness of the
executed societies. It would be interesting to apply the design ideas here to their setting
where in addition there are social constraints.

Dignum et al. formalize interaction protocols within an organization through contracts
[20]. They develop a language for specifying contracts that can capture various contracts

Towards Design Tools for Protocol Development 209

and their deadlines. They use the interaction protocols to realize the objectives of the
organization that the agents are situated in. However, they do not provide a methodology
for analyzing contracts defined in that language as we have done here.

Alberti et al. specify interaction protocols using social integrity constraints [9]. Given
a partial set of events that have happened, each agent computes a set of expectations
based on the social integrity constraints; e.g., events that are expected to happen based
on the given constraints. If an agent executes an event that does not respect an expecta-
tion, then it is assumed to have violated one of the social integrity constraints. We have
studied the violating of commitments in richer time structure elsewhere [21]. Alberti et
al. does not provide any design rules to ensure the correctness of their interaction proto-
cols. Since the commitments and their operations are more flexible than the expectations
defined by Alberti et al., our requirements can also be applied to their framework.

Endriss et al. study protocol conformance for interaction protocols that are defined
as deterministic finite automaton (DFA) [22]. The set of transitions of a DFA are known
a priori. If an agent always follows the transitions of the protocol, then it is compliant
to the given protocol. Hence, the compliance checking can be viewed as verifying that
the transitions of the protocol are followed correctly.

McBurney and Parsons propose posit spaces protocol to handle e-commerce transac-
tions of agents [6]. The protocol consists of five locutions: propose, accept, delete, sug-
gest revoke, and ratify revoke. The usage of propose and accept locution resembles the
conditional commitments in commitment protocols. The delete locution corresponds to
the release, or discharge operation. Suggest revoke and ratify revoke enable canceling
of posits. McBurney and Parsons do not provide any design rules to develop posit space
protocols as we have done here. The analysis constructed in this paper may be applied
in the posit space framework.

In our future work, we plan to work on other design criteria for commitment proto-
cols, such as requirements for avoiding possible deadlocks as well as requirements for
conditional commitments.

References

1. Yolum, P.: Towards design tools for protocol development. In: Proceedings of the 4th In-
ternational Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS),
ACM Press (2005) 99–105

2. Huget, M.P., Koning, J.L.: Requirement analysis for interaction protocols. In: Proceedings of
the Central and Eastern European Conference on Multiagent Systems (CEEMAS). Volume
LNAI 2691., Springer-Verlag (2003) 404–412

3. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 177 (2000)
277–296

4. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall, New Jersey
(1991)

5. Gouda, M.G.: Protocol verification made simple: a tutorial. Computer Networks and ISDN
Systems 25 (1993) 969–980

6. McBurney, P., Parsons, S.: Posit spaces: A performative model of e-commerce. In: Pro-
ceedings of the 2nd International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), ACM Press (2003) 624–631

210 P. Yolum

7. Bentahar, J., Moulin, B., Meyer, J.J.C., Chaib-draa, B.: A logical model for commitment and
argument network for agent communication. In: Proceedings of the 3rd International Joint
Conference on Autonomous Agents and MultiAgent Systems (AAMAS), ACM Press (2004)
792–799

8. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event calcu-
lus planning using commitments. In: Proceedings of the 1st International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), ACM Press (2002) 527–534

9. Alberti, M., Daolio, D., Torroni, P.: Specification and verification of agent interaction proto-
cols in a logic-based system. In: Proceedings of the ACM Symposium on Applied Computing
(SAC), ACM Press (2004) 72–78

10. Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent com-
munication language. In: Proceedings of the 1st International Joint Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS), ACM Press (2002) 535–542

11. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus: An approach
for specifying and executing protocols. Annals of Mathematics and Artificial Intelligence 42
(2004) 227–253

12. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols: Enabling
open Web-based multiagent systems. Autonomous Agents and Multi-Agent Systems 2
(1999) 217–236

13. Kowalski, R., Sergot, M.J.: A logic-based calculus of events. New Generation Computing 4
(1986) 67–95

14. Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the Common
Sense Law of Inertia. MIT Press, Cambridge (1997)

15. Castelfranchi, C.: Commitments: From individual intentions to groups and organizations. In:
Proceedings of the International Conference on Multiagent Systems. (1995) 41–48

16. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law 7 (1999) 97–113

17. for Intelligent Physical Agents (FIPA), F.: Contract net interaction protocol specification
(2002) Number 00029.

18. Cormen, T.H., Leiserson, C.E., Rivest, R.: Design and Analysis of Algorithms. MIT Press
(1990)

19. Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computational societies. In: Pro-
ceedings of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), ACM Press (2002) 1053–1061

20. Dignum, V., Meyer, J.J., Dignum, F., HansWeigand: Formal specification of interaction in
agent societies. In: 2nd Goddard Workshop on Formal Approaches to Agent-Based Systems
(FAABS), Maryland (2002)

21. Mallya, A.U., Yolum, P., Singh, M.P.: Resolving commitments among autonomous agents.
In Huget, M.P., Dignum, F., eds.: Proceedings of the AAMAS Workshop on Agent Commu-
nication Languages and Conversation Policies, LNAI 2922, Springer Verlag (2003) 166–182

22. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Protocol conformance for logic-based agents. In:
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Morgan
Kaufmann Publishers (2003) 679–684

Adaptiveness in Agent Communication: Application and
Adaptation of Conversation Patterns

Felix Fischer1,3, Michael Rovatsos2, and Gerhard Weiss3

1 Department of Informatics, University of Munich, 80538 Munich, Germany
fischerf@tcs.ifi.lmu.de

2 School of Informatics, University of Edinburgh, Edinburgh EH8 9LE, UK
mrovatso@inf.ed.ac.uk

3 Department of Informatics, Technical University of Munich, 85748 Garching, Germany
weissg@in.tum.de

Abstract. Communication in multi-agent systems (MASs) is usually governed
by agent communication languages (ACLs) and communication protocols car-
rying a clear cut semantics. With an increasing degree of openness, however, the
need arises for more flexible models of communication that can handle the uncer-
tainty associated with the fact that adherence to a supposedly agreed specification
of possible conversations cannot be ensured on the side of other agents.

In this paper, we argue for adaptiveness in agent communication. We present
a particular approach that combines conversation patterns as a generic way of
describing the available means of communication in a MAS with a decision-
theoretic framework and various different machine learning techniques for ap-
plying these patterns in and adapting them from actual conversations.

1 Introduction

Traditional approaches to agent communication, with their roots in speech act theory
[1], do not respect the autonomy of individual agents in that they suppose effects of
communication on agent’s mental states [25,3] or a normative quality of publicly visi-
ble commitments [7,26]. In environments involving some degree of openness like, for
example, design heterogeneity or dynamically changing populations, such a “norma-
tive” attitude is put into question by the fact that adherence to supposedly agreed modes
of communication cannot be ensured on the side of other agents. While this can be seen
as a witness of a fundamental conflict between agent autonomy and the need for coop-
eration (and communication) with other agents toward a joint goal, there is also a more
practical side to this problem.

Compared to the long-established areas of interaction protocol and agent commu-
nication language (ACL) research (see, e.g., [12,9]), the development of agent archi-
tectures suitable for dealing with provided communication mechanisms in practical
terms has received fairly little attention. As yet, there exists no uniform framework
for defining the interface between the inter-agent communication layer and intra-agent
reasoning, i.e. how specifications of interaction protocols and communication seman-
tics influence agent rationality or, in turn, are influenced themselves by agents’ rational
decision-making processes. Moreover, there is a growing concern that most specifica-
tion methods for ACLs and interaction protocols do not provide sufficient guidance as

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 211–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

212 F. Fischer, M. Rovatsos, and G. Weiss

to which part of the semantics of communication should be specified at a supra-agent
level and which part of them is only a result of agents’ mental processing and cannot be
captured without knowledge of their internal design. Clearly, concentrating on one of
these two sides may either overly constrain agent autonomy (i.e., agents would merely
“execute” centralised communication procedures that modify their internal states) or
lead to uncertainty about the consequences of communication (e.g. in terms of adher-
ence to previously created commitments) and loss of social structure altogether. This
poses two central questions:

1. If strict adherence to communication languages and protocols cannot be taken for
granted, how can meaningful and coherent communication be ensured?

2. Observing the course of conversations that take place in a MAS, how can agents
effectively organise this kind of knowledge and relate it to existing specifications,
so that they can actually benefit from it?

An obvious answer to these questions would be to devise a probabilistic model of agent
conversation, and update it in order to maximise communicative success. There are
two problems, though. Firstly, generic “purely” probabilistic models are not very well
suited to describe intelligent agents (including symbolic agent communication), since
their behaviour is not at all “random”. Instead, one would rather like to identify patterns
and relational properties of communication (like communication protocols containing
variables, for example). The resulting view resembles decision-theoretic learning and
reasoning, where the classical paradigm of direct control exerted on an uncertain en-
vironment is replaced by a more indirect influence via communication between (and
hence via the allegedly rational reasoning processes of) intelligent agents. Secondly,
agent communication cannot exist on its own, but is only a means to the end of coor-
dinating or cooperating with respect to some “physical” actions (i.e., communication
works as a kind of mediator between actions). Hence, success (or optimality) in com-
munication will somehow have to be defined in terms of the actions it entails.

This view is in line with empirical communication semantics [21], where the mean-
ing of an utterance (or sequence thereof) is defined solely in terms of its expected con-
sequences as given by past experience (to say it in terms of speech act theory [1], the
meaning of illocutions is defined solely in terms of their expected perlocutions). Cur-
rently two different “flavours” of empirical communication semantics exist, borrowing
from two different sociological schools of thought. Interaction frames [23] view empir-
ical semantics from the perspective of symbolic interactionism (particularly [8]), thus
focusing on how an individual deals with the communication mechanisms available in
a given social system, while expectation networks [14] take the (more global) point of
view of social systems theory (see, e.g., [13]) to develop methods to analyse the evolv-
ing semantics of communication across an entire society of agents.

In this paper, we focus on a particular instance of the interaction frame approach,
which is formally defined in section 2. In section 3, we introduce a formal framework
for decision-theoretic reasoning about communication, using interaction frames to rep-
resent different classes of conversation and thus to structure the reasoning process hier-
archically. In section 4, we further use methods from the fields of case-based reasoning,
inductive logic programming and cluster analysis to devise a formal scheme for the
adaptation of interaction frames from the actual conversations conducted in a MAS,

Adaptiveness in Agent Communication 213

enabling agents to autonomously (i.e., independent of users and system designers) cre-
ate and maintain a concise model of the different classes of conversation on the basis of
an initial set of ACL and protocol specifications. To our knowledge, the work described
in this paper constitutes the first approach to adaptive communication management for
deliberative, knowledge-based agents, which is an important prerequisite for building
agents that communicate and act in full appreciation of the autonomy of their respective
peer.

2 Conversation Patterns

The greatest common denominator of the multitude of different methods for specifying
ACL semantics and interaction protocols (see, e.g., [15,27] for examples in this volume)
is that they describe the surface structure of possible dialogues and logical constraints
for the applicability of these. The former corresponds to a set of admissible message
sequences, the latter may include statements about environmental conditions, mental
states of the participating agents, the state of commitment stores, etc. In the most sim-
plistic case, these structure/constraint pairs can be represented as a set of conversation
patterns, i.e. combinations of a conversation trace and a set of conditions. For example,

〈
request(a,b,pay($100))→ do(b,pay($100)), {can(b,pay($100))}

〉

expresses that a request of agent a is followed by an action if the requestee b is able
to execute the action, i.e. pay a an amount of $100. The question serving as a point of
departure for the research presented in this paper is how we can build agents that are ca-
pable of processing a set of such (conditioned) conversation patterns in a goal-oriented
and adaptive fashion, given that the reliability of these specification is contingent on
others’ (and the agent’s own) adherence to their prescriptive content.

Before turning to practical reasoning with and adaptation of conversation patterns,
though, we introduce interactions frames as a slightly more complex form of conversa-
tion pattern, quoting [4] for a formal definition of a particular instance of the interaction
frame data structure. This definition uses a language M of speech-act [1] like message
and action patterns of the form perf(A,B,X) or do(A,Ac). In the case of messages (i.e.,
exchanged textual signals), perf is a performative symbol (e.g. request, inform), A
and B are agent identifiers or agent variables and X is the content of the message taken
from a first-order language L . In the case of physical actions (i.e., actions that ma-
nipulate the physical environment) with the pseudo-performative do, Ac is the action
executed by A (a physical action has no recipient as it is assumed to be observable by
any agent in the system). Both X and Ac may contain non-logical substitution variables
used for generalisation purposes (as opposed to logical “content” variables used by
agents to indicate quantification or to ask for a valid binding). We further use Mc ⊂M
to denote the language of “concrete” messages that agents use in communication (and
that do not contain variables other than content variables). Frames are then defined as
follows:

Definition 1 (Interaction frame). An interaction frame is a tuple F =(T,Θ,C,hT ,hΘ),
where

214 F. Fischer, M. Rovatsos, and G. Weiss

– T = 〈p1, p2, . . . , pn〉 is a sequence of message and action patterns pi ∈ M , the
trajectory,

– Θ = 〈ϑ1, . . . ,ϑm〉 is an ordered list of variable substitutions,
– C = 〈c1, . . . ,cm〉 is an ordered list of condition sets, such that c j ∈ 2L is the condi-

tion set relevant under substitution ϑ j ,
– hT ∈ N

|T | is a trajectory occurrence counter list counting the occurrence of each
prefix of the trajectory T in previous conversations, and

– hΘ ∈ N
|Θ| is a substitution occurrence counter list counting the occurrence of each

member of the substitution list Θ in previous conversations.

While the trajectory T (F) models the surface structure of message sequences that are
admissible according to frame F , each element of Θ(F) resembles a past binding of the
variables in T (F), and the corresponding element of C(F) lists the conditions required
for or precipitated by the execution of F in this particular case. hT (F) finally indicates
how often F has been executed completely or just in part, hΘ(F) is used to avoid dupli-
cates in Θ(F) and C(F). What hence distinguishes interaction frames from the methods
commonly used for the specification of ACL and protocol semantics is that they allow
for an explicit representation of experience regarding their practical use.

The semantics of frames has been defined accordingly as a probability distribution
over the possible continuations of an interaction that has started with w ∈Mc and is
computed by summing up over a set F of known frames:

P(w′|w) = ∑
F∈F

ww′=T (F)ϑ

P(ϑ|F,w)P(F |w) (1)

This equation views F as a compact yet concise representation of the interactions that
have taken place so far and projects past regularities into the future. This global view,
however, will hardly be computationally feasible in realistic domains, and it also con-
tradicts the way conversation patterns are used in practice. One would rather expect
different protocols for different purposes, and not all of them need to be reasoned over
at the same time while engaging in a particular kind of interaction.

In the following section, we will instead introduce a framework for conducting
decision-theoretic reasoning about frame selection, as well as action selection within
a single frame. For this hierarchical approach to be reasonable as well as successful, it
is required that the different frames concisely capture the different classes of conver-
sations that can take place. This requirement has to hold as well for frames used by
external observers to model, analyse or describe the interactions in a MAS. Particular
emphasis will hence have to be put on the acquisition and adaptation of communication
patterns from the actual interactions in a MAS, such that the resulting set of patterns
corresponds to the different classes of interactions as perceived by the agent or external
observer. Methods for the adaptation of interaction frames will be explored in section 4.

3 Reasoning with Conversation Patterns

The distinguishing feature of interaction frames as compared to (the methods commonly
used for the specification of) interaction protocols is their ability to capture instance in-
formation, i.e. information about how particular conversation patterns have been used

Adaptiveness in Agent Communication 215

in the past according to the agent’s experience. This additional information provides
agents with a facility to reason about the semantics of communication in an adaptive
fashion. In accordance with the empirical semantics view that considers the meaning
of communication as a function of its consequences as experienced through the eyes
of a subjective observer, agents can adapt existing frame conceptions with new obser-
vations of encounters and project past regularities into the future. In open systems, in
which agents may or may not obey a set of pre-defined conversation patterns, this can
be expected to improve agents’ communication abilities significantly, particularly with
respect to a strategic use of communication.

3.1 Frame Semantics

To gain deeper insight into adaptive agent communication in general and reasoning
about communication patterns in particular, we will now take a procedural view on the
probabilistic semantics of interaction frames defined by equation 1.

The semantics of a set F = {F1, . . . ,Fn} of frames is as follows: Given an encounter
prefix w ∈ M ∗

c , i.e. a sequence of messages already uttered in the current encounter
(possibly the empty sequence) and a knowledge base KB ∈ 2L of beliefs currently held
by the reasoning agent1, F defines a set of possible continuations w′ ∈M ∗

c , which can
be computed as follows:

1. Filter out those frames whose trajectories do not prefix-match w.
2. For each remaining frame F , consider the possible postfixes of T (F) for prefix

w, each of them corresponding to a particular variable substitution (where w has
already committed certain variables to concrete values).

3. Only consider those substitutions for which at least one of the context conditions
in C(F) is satisfied under KB.

For each of these possible continuations, we can then compute a continuation prob-
ability by virtue of similarity, frequency and relevance considerations. The resulting
probability distribution over continuations w′ is the semantics of w under F .

Definition 2. Let ϑ f (F,w) = unifier(w,T (F)[1:|w|]) be the most general unifier of w
and the corresponding trajectory prefix T (F)[1:|w|] of F. Then, the set of possible sub-
stitutions under frame F, beliefs KB, and conversation prefix w is defined as

Θposs(F,KB,w) =
{

ϑ
∣
∣∃ϑ′.ϑ = ϑ f (F,w)ϑ′ ∧∃i.KB |= C[i]ϑ

}
.

In this definition, unifier(v,w) denotes the most general unifier of two message pattern
sequences v and w, Sϑ denotes application of substitution ϑ to a (set or list of) logical
formula(e) or message(s) S (depending on the context). In other words, Θposs is the set
of substitutions that are extensions of ϑ f for which at least one condition in C(F) is
satisfied. Accordingly, the continuations w′ of w that should be expected to occur with

1 In equation 1, the agent’s knowledge is implicit in the terms P(ϑ|F,w) and P(F |w). More
precisely, we could have written P(ϑ|F,w,KB) and P(F|w,KB). For notational convenience,
we further assume that knowledge bases use the same logical language as is used in the content
language of messages.

216 F. Fischer, M. Rovatsos, and G. Weiss

non-zero probability (according to F and under KB) are exactly those that result from
the application of a substitution in Θposs to the postfix of T (F).

In order to conduct (quantitative) decision-theoretic reasoning about frames, how-
ever, the exact quantities of the probabilities P(ϑ|F,w) have to be determined. In order
to obtain well-defined probabilities even for substitutions ϑ that have never occurred
before in actual interactions, we avail ourselves of a method commonly used in the area
of case-based reasoning [11]. Starting from a similarity measure σ defined on message
pattern sequences, we compute the similarity of any possible substitution to a frame by
taking into account the frequencies of previous cases and the relevance of their corre-
sponding condition sets in a single frame.

Definition 3. Let σ : M ∗ ×M ∗ → [0,1] be a similarity measure on message pattern
sequences. Let ci(F,ϑ,KB) denote the relevance of the ith condition of F under ϑ and
KB. Then, the similarity of substitution ϑ to frame F is defined as

σ(ϑ,F) =
|Θ(F)|

∑
i=1

(
similarity

︷ ︸︸ ︷
σ(T (F)ϑ,T (F)Θ(F)[i]) ·

frequency
︷ ︸︸ ︷
hΘ(F)[i] ·

relevance
︷ ︸︸ ︷
ci(F,ϑ,KB)

)

In other words, σ(ϑ,F) assesses to which extent ϑ is “applicable” to F . Definition 4 in
section 4.1 will introduce a distance metric d∗ on the set M ∗

c of finite-length message
sequences, such that d∗(v,w) is the distance between message sequences v and w. Using
this metric, we can define σ(v,w) = 1−d∗(v,w). A possible way to define ci would be to
let ci(F,ϑ,KB) = 1 if KB |=C(F)[i]ϑ and 0 otherwise, such that only those substitutions
of F contribute to the similarity whose corresponding conditions are satisfied under ϑ
and under current belief KB.

The conditional probability P(ϑ|F,w) in equation 1 can be computed by assigning a
probability

P(ϑ|F,w) ∝ σ(ϑ,F) (2)

to all ϑ ∈ Θposs(F,KB,w) and a probability of zero to any other substitution. P(F|w)
simply corresponds to the number hT (F)[|hT (F)|] of successful completions of F nor-
malised over all frames that prefix-match w.

3.2 Decision Making with Frames

In the introductory section, we have argued for the integration of agent communication
with decision-theoretic reasoning, by which agents strive for long-term maximisation
of expected utility. We hence assume that agents are equipped with a utility function
u : M ∗

c × 2L → R, such that u(w,KB) denotes the utility associated with executing a
message (and action) sequence w in belief state KB. As we have pointed out, substantial
positive or negative utility can only be assigned to physical actions in the environment
(though messages may be given a small negative utility to express the communication
cost incurred by them).

In principle, such a utility function could be combined directly with the continuation
probabilities of equation 1 to derive utility-maximising decisions in communication.
However, it will hardly be feasible to compute the continuation probabilities directly,

Adaptiveness in Agent Communication 217

and this approach would also contradict the role usually played by conversation pat-
terns. As we have said, we will instead use a hierarchical approach based on selecting
the appropriate frame for a given situation and then optimising behaviour within this
frame. The former activity is referred to as framing and will be described in the follow-
ing section. The latter is standard expected utility maximisation using frames and can
be described by the following abstract decision-making procedure:

1. If no encounter is running, consider starting one. If a message m is received, update
the encounter prefix: w← wm.

2. If no frame F has been selected, go to 10.
3. Validity check: If |T (F)|= w, go to 9; if unifier(T (F)[1 : |w|],w) =⊥, go to 10.
4. Adequacy check: If Θposs(F,w,KB) = /0, go to 10
5. Compute the expected utility for each own substitution ϑs:

E[u(ϑs,F,w,KB)] = ∑
ϑp

(
u
(
postfix(T (F),w)ϑsϑp,KB

)
·P

(
ϑp|ϑs,F,w

))

6. Determine the optimal substitution ϑ∗ = argmaxϑs E[u(ϑs,F,w,KB)].
7. Desirability check: If u(postfix(T (F),w)ϑ∗ϑp,KB) < b, go to 10.
8. Perform m∗ = T (F)[|w|+ 1]ϑ∗; update the encounter prefix: w← wm∗

9. If no message arrives until deadline, terminate the encounter; go to 1.
10. Framing: Select F , go to 3.

The actual (framing) reasoning cycle is bracketed by steps 1 and 9 which cater for
initiating encounters and ending them if no more messages are received (i.e., if the
other agent does not reply when expected to, and to make sure we heed additional
messages sent by the other party after we considered the encounter completed). We
assume encounter initiation on the side of the agent to be spawned by some sub-social
reasoning layer, e.g. a BDI [19] engine, which determines whether and about what
to converse with whom, depending on the possibility of furthering some private goal
through interaction.

Steps 3, 4 and 7 are used to evaluate the usefulness of the currently active frame F .
The former two cases are straightforward: If the frame has been completed, if it does
not match the encounter prefix w, or if Θposs(F,w,KB) is empty, F cannot be used
any longer. For the latter case, we have to assess the expected utility E[u(ϑs,F,w,KB)]
of any “own” substitution ϑs. To this end, we have to conduct an adversarial search
over substitutions jointly determined by the agent and her peer, as each of the two
agents commits certain variables to concrete values in their turn-taking moves. Using
definition 3 and equation 2, the probability for an opponent’s substitution ϑp in the
remaining steps of T (F) can be computed as

P(ϑp|ϑs,F,w) =
P(ϑp∧ϑs|F,w)

P(ϑs|F,w)
=

σ(ϑ f (F,w)ϑsϑp,F)
∑ϑ σ(ϑ f (F,w)ϑsϑ,F)

,

where ϑp∧ϑs denotes the event of the peer choosing ϑp and the reasoning agent choos-
ing ϑp after having committed to the fixed substitution ϑ f (F,w), so that the final “joint”
substitution will be ϑ f (F,w)ϑsϑp.

218 F. Fischer, M. Rovatsos, and G. Weiss

With this, u can be used to compute the utility of the postfix of T (F) for prefix w
(corresponding to application of ϑ f (F,w)), with ϑp and ϑs applied to obtain a ground
message (and action) sequence still to be executed along T (F). If the utility of the post-
fix under the optimal substitution ϑ∗ is below some threshold b, the frame is discarded.
Otherwise, the next step m∗ along the trajectory of F is performed.

So far, we have said nothing about the process of updating the frame repository F
upon encounter termination (whether after successful completion or failure of selecting
an appropriate frame). This will be done in detail in section 4. What now remains to be
specified is a search strategy to decide between different candidate frames in step 10.
Effectively, it is this search strategy that determines the degree of complexity reduction
achieved by restricting the search space to a single active frame while looking for the
optimal next message or action.

3.3 Framing

Given that the frames in F concisely capture the different classes of conversations that
can take place in a MAS, hierarchical reinforcement learning (HRL) techniques [2]
can be used learn an optimal strategy for frame selection. In HRL, actions available in
a “generic” Markov Decision Process (MDP) are combined into macro-operators that
can be applied over an extended number of decision steps, the general idea being that
compound time-extended policies, which (hopefully) optimally solve sub-problems of
the original MDP, help to reduce the overall size of the state space. Using such macro-
actions, an agent can use S(emi-)MDP (i.e., state history dependent) variants of learning
methods such as Q-learning [28] to optimise its long-term “meta”-strategy over these
macro-policies.

An intuitive HRL approach that lends itself to an application to interaction frames
particularly well is the options framework [17]. In this framework, an option is a triple
o = (I ,π,β) consisting of an input set I ⊆ S of MDP states, a (stationary, stochastic)
policy π : S×A→ [0,1] over primitive actions A and states S , and a stochastic termina-
tion condition β : S→ [0,1]. Option o is admissible in a state s iff s∈ I . If invoked, o will
behave according to π until it terminates stochastically according to β. This definition
can be used to re-interpret interaction frames as options, where π is the (deterministic)
strategy defined by determining m∗, and I and β are defined by the validity, adequacy
and desirability checks performed during the reasoning process of the previous section.

Let s : M ∗
c ×2L → S be some state abstraction function2 that returns a state for each

pair (w,KB) of perceived encounter prefix w and belief KB. If we regard each frame
F ∈ F as an option in the above sense, we can apply the SMDP Q-learning update rule

Q(s,F)← (1−α)Q(s,F)+ α
[

R̂(s,F)+ γτ max
F ′∈F

Q(s′,F ′)
]

,

where s = s(w,KB) and s′ = s(ww′,KB′) are the states resulting from the encounter
sequences w and ww′ and the corresponding knowledge base contents KB and KB′ as
perceived between two re-framing decisions, α is an appropriately decreasing learning

2 It is unrealistic to assume that M ∗
c × 2L itself could be used as state space due to its unman-

ageable size.

Adaptiveness in Agent Communication 219

rate and τ is the number of steps during which F was the active frame (i.e., τ = |w′|).
Further, R̂(s,F) is the discounted reward accumulated in steps t + 1, . . .t +(τ−1).

Using the long-term utility estimates represented by Q, we can determine the optimal
frame to select as

F∗(w,KB) = argmax
F∈F

Q(s(w,KB),F),

while applying a “greedy in the limit” infinite exploration strategy to avoid running into
local minima. It should be noted that this way of learning a frame selection strategy al-
lows for optimising framing decisions within encounters as well as between subsequent
encounters, at least if there is some utility-relevant connection between them.

4 Adaptation of Conversation Patterns

As we have already said, the need for its acquisition and adaptation from actual inter-
actions is an inherent property of empirical semantics. Using a set of interaction frames
for representation, we have further argued that these frames need to model different
classes of interactions within a MAS. In particular, this feature is critical with respect
to the reasoning framework described in the previous section.

In this section, we will present a method for the adaptation and acquisition of models
of empirical semantics using the formalisation of interaction frames given in section 2.
For this, we will introduce a metric on the space M ∗

c of finite-length message sequences
and then extend it to a metric between frames. This allows us to interpret a frame repos-
itory (i.e., a set of known frames) as a (possibly fuzzy) clustering in the “conversation
space”, and hence to measure the quality of a frame acquisition and adaptation method
in terms of the quality of the clustering it produces (referred to as “cluster validity”
in [10]). According to this interpretation, adaptation from a new conversation either
introduces a new cluster (viz frame) or it adds to an existing one with or without mod-
ifying the trajectory of the respective frame. The different alternatives can be judged
heuristically in terms of the corresponding cluster validities, which we will use to de-
vise an algorithm for the adaptation of frame repositories. To perform the necessary
frame modifications in any of the above cases, we will also present a generic algorithm
for merging two frames into one.

Due to lack of space, proofs and examples have largely been omitted from this de-
scription. The interested reader is referred to [6] for a more detailed description.

4.1 A Distance Metric on Message Sequences

As a basis of our interpretation of interaction frames as clusters, we will start by intro-
ducing a distance metric on the set of possible messages and then extend it to finite-
length message sequences. Since messages as defined above are essentially first-order
objects, we could simply use a general purpose first-order distance like the one proposed
in [24]. In [6], we have instead introduced a family of mappings on messages that are
parametrised on two functions ds and Ds and allow us to add a “semantic” flavour in
the form of domain-specific knowledge. The most basic (and domain-independent) in-
stance of this family is in fact a metric on messages (in particular, it satisfies the triangle
inequality), and can easily be extended to message sequences.

220 F. Fischer, M. Rovatsos, and G. Weiss

Definition 4 (Distance between message sequences). Let d : Mc×Mc → [0,1] be a
mapping on messages with

d(m,n) =

{
1

|m|+1 ∑|m|i=1 d(mi,ni) if m = n

1 otherwise.

Further, let |v| and vi denote the length and ith element of sequence v. We define

d∗(v,w) =

{
1
|v| ∑

|v|
i=1 d(vi,wi) if |v|= |w|

1 otherwise.

As we haven shown in [6], d∗ is indeed a metric on the set M ∗
c of finite-length message

sequences.

4.2 A Metric on Frames

Having defined a metric d∗ on the set of finite-length message sequences, we will now
extend this metric (a metric on points, so to speak) to a metric on frames by interpreting
these as sets of the message sequences they represent (i.e., point sets).

[18] proposes a general formalism to define a distance metric between finite sets of
points in a metric space. The distance between two sets A and B is computed as the
weight of the maximal flow minimal weight flow through a special distance network
N[X ,d,M,W,A,B] between the elements of the two sets.

Definition 5 (Netflow distance). Let X be a set with metric d and weighting function
W, M a constant. Then for all A,B ∈ 2X , the netflow distance between A and B in X,
denoted dN

X ,d,M,W (A,B), is defined as the weight of the maximal flow minimal weight
flow from s to t in N[X ,d,M,W,A,B].
As further shown in [18], dN

X ,d,M,W (A,B) is a metric on 2X and can be computed in
polynomial time (in sizeW (A) and sizeW (B) and in the time needed to compute the
distance between two points) if all weights are integers. Also, this metric is claimed to
be much better suited for applications where there is likely a point with a high distance
to any other point than, for example, the Hausdorff metric (which only regards the
maximum distance of any point in one set to the closest point in the other set).

Additionally, one can assign weights to the elements of A and B in order to allevi-
ate the difference in cardinalities between the two sets. Interpreting (integer) weights
as element counts yields a metric on multisets, which is ideally suited to measure the
distance between interaction frames in which multiple instances of a particular mes-
sage sequence have been stored (corresponding to a substitution count larger than one).
Mapping each frame to the set of messages it represents and weighting each element
with the respective substitution count, we directly obtain a metric d f on frames.

Definition 6 (Distance between frames). Let

m f (F) = {m ∈M ∗
c |∃ϑ ∈ Θ(F). m = T (F)ϑ}

be the set of message sequences stored in frame F. Let

W (m f (F))(m) = hΘ(F)[i] iff m = T (F)Θ(F)[i]

Adaptiveness in Agent Communication 221

be a weighting function for elements of m f (F). Then, the distance between two frames
F and G, denoted d f (F,G), is defined as the maximal flow minimal weight flow from s
to t in the transport network N[M ∗

c ,d∗,1,W,m f (F),m f (G)].

As shown in [6], d f is a metric on the set of frames, and d f (F,G) can be computed
in polynomial time in ∑i<|Θ(F)| hΘ(F)[i], ∑i<|Θ(G)| hΘ(G)[i] and the time required to
compute d∗.

4.3 Validity of Frame Modifications

Based on the metrics defined in the previous sections, we can interpret interaction
frames as clusters of points in the space of message sequences, which in particular
allows us to define the quality of a set of frames as a model for actual interactions in
terms of the quality of the corresponding clustering.

[10] refers to this quality as cluster validity and defines the validity of a particular
cluster as the ratio between its compactness, i.e. average distance between points within
this cluster, and its isolation, i.e. minimum distance to any other cluster. Accordingly,
we define the compactness and isolation of a frame using the metrics d∗ and d f on
message sequences and frames, respectively.

Definition 7 (Frame compactness and isolation). Let F be a set of frames, F ∈ F a
single frame. The compactness of F is then defined as the (normalised) average distance
between the individual messages stored in it, weighed by their respective occurrence
counts:

c(F) =
(|Θ(F)|

∑
i=1

|Θ(F)|

∑
j=i+1

hi ·h j

)−1
·
|Θ(F)|

∑
i=1

|Θ(F)|

∑
j=i+1

hi ·h j ·d∗
(
T (F)ϑi,T (F)ϑ j

)

where ϑi = Θ(F)[i] and hi = hΘ[i] denote the ith substitution of F and the corresponding
count. The isolation of F in F is defined as the minimal distance to any other frame in
F :

i(F,F) = min
G∈F \{F}

d f (F,G)

Since c(F) uses d∗ for distances within a single frame F only, there exists a more
efficient way of computing it. If we write w(v,m) to denote the weight of a variable v
in a message pattern m (i.e., the sum of coefficients of d(v, ·) in d∗(m,mϑ) for some
substitution ϑ), then we can precompute w(v,T (F)) for any variable v in the trajectory
of F , and rewrite c(F) to

c(F) ∝
|Θ(F)|

∑
i=1

|Θ(F)|

∑
j=i+1

hi ·h j ·∑
v

w
(
v,T (F)

)
·d∗

(
vϑi,vϑ j

)

According to definition 7, c(F) is zero for frames with only one distinct substitution,
so defining overall validity as the sum or product of individual validities i(F,F)/c(F)
is not a good idea. Instead, we define the validity of a frame repository F as the ratio
between average isolation and average compactness for all the frames in F , taking
special care of situations where only frames with a single substitution exist.

222 F. Fischer, M. Rovatsos, and G. Weiss

Definition 8 (Frame validity). Let F be a set of frames. The validity of F is defined as

v(F) =

{∑F∈F i(F,F)
∑F∈F c(F) if ∃F ∈ F . |Θ(F)|> 1
1
|F | ∑F∈F i(F,F) otherwise

In analogy to cluster analysis we conjecture that the higher the validity v(F) of a frame
repository F built from a particular set of concrete interactions, the better it models
the different classes of conversation in a MAS. Facing different alternatives for the
incorporation of an interaction that has just been perceived, each of them corresponding
to a specific modification of F , we can judge their quality simply by measuring v(F)
before and after this modification and hence devise an algorithm that tries to maintain a
frame repository with the highest possible validity.

4.4 Frame Abstraction and Merging

Before we can apply the results of the previous section to an algorithm for the acquisi-
tion and adaptation of interaction frames from actual interactions, we will first have to
make explicit the actual modifications that can be performed on interaction frames and
sets thereof in order to adapt them to newly observed interactions. We do so by pro-
viding a general algorithm for merging two interaction frames into one. This algorithm
can then be used to simply add a new message to an existing frame (by interpreting the
message as a “singular” frame with ground trajectory and only the empty substitution)
or to reorganise a whole repository. In order to distinguish these two activities, and ac-
cording to the point in time they are performed relative to the actual interactions, we
might refer to them as online and offline merging.

Starting with frame trajectories and following Occam’s Razor, the trajectory of the
frame obtained by merging F and G should be the least abstract message pattern se-
quence that can be unified with both trajectories T (F) and T (G) using standard first-
order unification, i.e. the least general generalisation (lgg) [16] of the two, denoted
lgg(T (F),T (G)). The following inductive definition of least general generalisation for
message sequences can be turned into a simple algorithm for its computation.

Definition 9 (Least general generalisation). The least general generalisation (lgg) of
two terms is given by

lgg(f (s1, . . . ,sk),g(t1, . . . ,tl)) =

{
f (lgg(s1, t1), . . . , lgg(sk,tk)) if f = g and k = l

x otherwise,

where x is a new variable (i.e., one that does not occur in any si or ti) such that
lgg(s,t) is unique for any subterms s and t throughout the lgg (i.e., equal terms are
replaced with the same variable). The lgg of two messages with the same performative
is given by lgg(p(a,b,x), p(c,d,y)) = p(lgg(a,c), lgg(b,d), lgg(x,y)). It is undefined if
the performatives differ. The lgg of two message sequences of equal length is given by
lgg((m1, . . . ,mk),(n1, . . . ,nk)) = (lgg(m1,n1), . . . , lgg(mk,nk)). As before, it has to be
ensured that lgg(s,t) is unique throughout the lgg for any two subterms s and t.

Adaptiveness in Agent Communication 223

In an algorithm, uniqueness of the lgg is usually achieved by means of a table that holds
the lggs computed so far for any pair of arguments.

Along with the lgg, definition 9 also yields two substitutions, namely the most gen-
eral unifier (mgu) of the lgg with each of its arguments, and we use the abbreviation
ϑm(m,n) = mgu(m, lgg(m,n)). To obtain the substitutions and conditions of the merged
frame, the ϑm have to be applied to the substitutions and conditions of the respective
frame. For this, let F be one of the frames to merge, let t denote the trajectory of the
resulting frame and c j and ϑ j the condition and substitution of the resulting frame that
correspond to C(F)[j] and Θ(F)[j]. If the new frame is to hold all the conversations of
F , then tϑi = T (F)Θ(F)[i] has to hold for 1≤ i≤ |Θ(F)|. The definition of ϑm implies
that T (F) = tϑm(T (F), ·) and thus tϑm(T (F), ·)Θ(F)[i] = tϑi.

If accordingly ϑi is computed as ϑi = ϑm(T (F), ·)Θ(F)[i], however, information
might be lost about correlations between multiple conversations originating from the
same frame. To retain this kind of information, substitutions should be concatenated
rather than applied unless the right side of ϑm(T (F), ·) is a variable (which is quite
common, as it results from the introduction of a new variable for a variable in the course
of computing the lgg). The following definition formalises this concept of selective
application of a substitution.

Definition 10. Let ϑ = [v1/t1, . . . ,vn/tn] be a single variable substitution and Θ =
〈s1, . . . ,sm〉 a list of substitutions. Then, ϑ � Θ denotes the list of substitutions that
results from selectively prepending ϑ to each element of Θ and is given by ϑ � Θ =
〈r1, . . . ,rm〉 where ri = [v1/ri1, . . . ,vn/rin] · si and

ri j =

{
t jsi if t j is a variable

t j otherwise

As for the conditions of the merged frame, ciϑi = C(F)Θ(F)[i] has to hold analogously.
Replacing ϑi with the above result yields ciϑmΘ(F)[i] = C(F)Θ(F)[i] and thus ciϑm =
C(F). Writing ϑ−1 for the “inverse” of a substitution ϑ (replacing terms by variables), ci

can hence be defined as ci = C(F)ϑ−1
m . This finally leads us to the following definition

of a merging operation on frames:

Definition 11 (frame merging). Let F and G be two interaction frames with |T (F)|=
|T (G)|. Then, the result of merging F and G, denoted by M(F,G), is given by

M(F,G) =
〈
lgg

(
T (F),T (G)

)
,

C(F)ϑm
(
T (F),T (G)

)−1 ·C(G)ϑm
(
T (G),T (F)

)−1
,

ϑm
(
T (F),T (G)

)
� Θ(F) ·ϑm

(
T (G),T (F)

)
� Θ(G),

hmax(F,G),

hΘ(F) ·hΘ(G)
〉
,

where hmax(F,G) = 〈h1,h2, . . . 〉 with

hi =

⎧
⎨

⎩

max
{

hT (F)[i],hT (G)[i],∑
k

hΘ(M(F,G))[k]
}

if i = |T (F)|

max
{

hT (F)[i],hT (G)[i],hi+1
}

if i < |T (F)|.

224 F. Fischer, M. Rovatsos, and G. Weiss

The rather complex definition of the step counter values for the merged frame stems
from the fact that it is impossible to determine the value hT (merge(F,G)) would have
taken if merge(F,G) had been in the repository during all the conversations stored in
F and G just from the information provided by F and G. On the other hand, it is
also impossible to determine which additional conversations would have been stored
in merge(F,G) if this had been the case, so it seems fair to approximate hT based
on the following observations: Obviously, max(hT (F),hT (G)) is a lower bound for
hT (merge(F,G)). In addition to that, the sum of the values of hΘ is a lower bound for
the value of hT [|T |], since it resembles the exact number of past conversations stored
in the frame. Finally, for each i, hT [i] is a lower bound for hT [j] with j < i. Hence, as
we cannot infer any upper bounds from the counter values alone, we simply choose
the values of hT (merge(F,G)) such that the bounds are tight. If only online merging is
used, this approximation always yields accurate values for hT .

4.5 An Algorithm for Learning Frames

Based on the formal notion of validity of a set of frames presented in section 4.3,
which extends cluster validity to the space of multi-agent conversations, and on the
frame merging procedure given in section 4.4, the following simple algorithm com-
putes the best way to incorporate a newly observed message sequence m into a frame
repository F :

function flea(F ,m) returns a frame repository

inputs: frame repository F , message sequence m
/* compute the singular frame F for m */
F :=

(
m,Cm,{},〈1, . . . ,1〉,〈1〉

)

/* compute the set F of alternatives for inclusion of m */
F :=

{
F ∪{F}

}
∪�F ′∈F

{
F \ {F ′}∪M(F ′,F)

}

/* return the most valid frame repository */
return argmaxF ′∈F v(F ′)

While the surface structure of a particular message sequence equals the message
sequence itself, identification of a set Cm of logical conditions that held during a con-
versation (according to the observer’s world model) and that were relevant or crucial
is clearly a nontrivial task. If frames exist, however, the execution of which was hin-
dered due to reasons of context (especially if pre-specified “protocol” frames are used),
these can be used to identify conditions other than those (physically) required for the
execution of the individual messages.

Since the above algorithm only considers a single frame at a time for inclusion into
the repository, it is unable to detect structures in the space of interactions that develop
over time. This corresponds to a more general problem of order dependence in incre-
mental unsupervised learning and might in practice result in several frames actually
modelling the same class of interactions. This problem can be handled, though, by sup-
plementing the above online merging algorithm with one that periodically checks if two
frames in the repository can be merged to increase its overall validity.

Adaptiveness in Agent Communication 225

5 Conclusion

In this paper, we have presented a novel approach to adaptive agent communication.
Agents in open environments that communicate according to high-level pre-specified
conversational patterns can use the approach to augment these patterns with empiri-
cal observation of actual conversations, and conduct decision-theoretic reasoning about
them in the framework of empirical semantics. Interaction frames have been used as the
central data structure, allowing for the integration with our previous work on interaction
frames [4,5,20]. The basic principles of the approach, however, could also be applied to
other, possibly more complex, forms of representation.

Our current work focuses on an experimental exploration of the benefits and limita-
tions of our approach in real-world “communication learning” tasks. An experimental
evaluation in the context of proposal-based and argumentation-based negotiation can
be found in [22]. Further applications include performance measurement of a MAS or
of individual agents with respect to communication or the design of new interaction
protocols. An open issue that will have to be dealt with in future work to allow for
the acquisition of conversation patterns from scratch is the discovery of conditions that
were relevant or crucial for a particular class of conversation. While inductive logic
programming techniques may again be the appropriate means to attack this problem,
the transition to relative least general generalisation (which might be required to handle
background knowledge already available for a particular class of conversation) would
make this one disproportionately harder to solve.

References

1. J. L. Austin. How to do things with Words. Clarendon Press, 1962.
2. A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning.

Discrete Event Dynamic Systems, 13(4):41–77, 2003.
3. P. R. Cohen and H. J. Levesque. Communicative actions for artificial agents. In Proceedings

of the First International Conference on Multi-Agent Systems (ICMAS), pages 65–72, 1995.
4. F. Fischer and M. Rovatsos. An empirical semantics approach to reasoning about communi-

cation. Engineering Applications of Artificial Intelligence, Special Section on Best Papers of
CIA 2004, 18(7):809–823, 2005.

5. F. Fischer, M. Rovatsos, and G. Weiss. Hierarchical reinforcement learning in communica-
tion-mediated multiagent coordination. In Proceedings of the 3rd International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pages 1334–1335. ACM
Press, 2004.

6. F. Fischer, M. Rovatsos, and G. Weiss. Acquiring and adapting probabilistic models of
agent conversation. In Proceedings of the 4th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 106–113. ACM Press, 2005.

7. N. Fornara and M. Colombetti. Operational specification of a commitment-based agent
communication language. In Proceedings of the 1st International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pages 536–542. ACM Press, 2002.

8. E. Goffman. Frame Analysis: An Essay on the Organisation of Experience. Harper and Row,
New York, NY, 1974. Reprinted 1990 by Northeastern University Press.

9. M.-P. Huget, editor. Communication in Multiagent Systems, volume 2650 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, Berlin, Germany, 2003.

226 F. Fischer, M. Rovatsos, and G. Weiss

10. A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice Hall, Upper Saddle
River, NJ, 1988.

11. J. L. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Francisco, CA, 1993.
12. M. T. Kone, A. Shimazu, and T. Nakajima. The state of the art in agent communication

languages. Knowledge and Information Systems, 2:259–284, 2000.
13. N. Luhmann. Social Systems. Stanford University Press, Palo Alto, CA, 1995.
14. M. Nickles, M. Rovatsos, and G. Weiss. Empirical-rational semantics of agent communica-

tion. In Proceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2004.

15. S. Paurobally, J. Cunningham, and N. Jennings. A formal framework for agent interaction
semantics. In this volume.

16. G. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163, 1971.
17. D. Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis, Department of

Computer Science, University of Massachusetts, Amherst, 2000.
18. J. Ramon and M. Bruynooghe. A polynomial time computable metric between point sets.

Acta Informatica, 37(10):765–780, 2001.
19. A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In Proceedings of

Knowledge Representation and Reasoning (KR&R), pages 439–449, 1992.
20. M. Rovatsos, F. Fischer, and G. Weiss. Hierarchical reinforcement learning for communicat-

ing agents. In Proceedings of the 2nd European Workshop on Multiagent Systems (EUMAS),
pages 593–604, 2004.

21. M. Rovatsos, M. Nickles, and G. Weiss. Interaction is meaning: A new model for com-
munication in open systems. In Proceedings of the 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2003.

22. M. Rovatsos, I. Rahwan, F. Fischer, and G. Weiss. Adaptive strategies for practical argument-
based negotiation. In Proceedings of the 2nd International Workshop on Argumentation in
Multi-Agent Systems (ArgMAS), 2005.

23. M. Rovatsos, G. Weiss, and M. Wolf. An Approach to the Analysis and Design of Multi-
agent Systems based on Interaction Frames. In Proceedings of the 1st International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS). ACM Press, 2002.

24. M. Sebag. Distance induction in first order logic. In Proceedings of the 7th International
Workshop on Inductive Logic Programming, 1997.

25. M. P. Singh. A semantics for speech acts. Annals of Mathematics and Artificial Intelligence,
8(1–2):47–71, 1993.

26. M. P. Singh. A social semantics for agent communication languages. In Proceedings of the
IJCAI Workshop on Agent Communication Languages, 2000.

27. M. Verdicchio and M. Colombetti. A commitment-based communicative act library. In this
volume.

28. C. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

Can I Please Drop It?

Dialogues About Belief Contraction

Henk-Jan Lebbink1,2, Cilia Witteman2, and John-Jules Meyer1

1 Computer Science, Utrecht University, the Netherlands
henkjan@cs.uu.nl

2 Social Science, Radboud University Nijmegen, the Netherlands

Abstract. This paper presents a dialogue game in which agents in a
multiagent system try to contract beliefs in agreement with other agents.
The dialogue game defines the semantics of the communicative act of as-
king support to contract beliefs. In addition, a decision game is presented
that defines when agents are allowed to contract propositions from their
private belief states. These games if combined allow agents to contract
beliefs in a distributed fashion.

1 Introduction

Of general interest in the domain of multiagent systems (MAS) is the situation
in which agents disagree about what to believe. Different approaches can be
taken to tackle such disagreements. In Lebbink et al. [1], agents try to resolve
disagreements by requesting other agents to accept propositions such that the
dispute is resolved. An agent could also try to convince other agents to accept
to retract certain propositions. Yet another approach is taken in this article,
in which agents propose to contract their own beliefs. This paper deals with
dialogue games that enable agents to ask other agents whether they support the
speaker’s belief contraction.

Dialogue games have recently received more attention in the field of computer
science, and, especially, in the community of MAS [2,3]. In MAS, autonomous
software agents communicate and cooperate to reach private and collective goals.
Issues related to cooperation and plans are not addressed, our focus will be pri-
marily on the agent’s motivation to communicate proposals and their answers. A
dialogue typology by Walton and Krabbe [4] identifies four different categories
of dialogues by distinguishing the agents’ initial situations and goals. The cate-
gories are: Persuasion dialogues, in which agents seek to convince other agents
to believe propositions [5,6]; Negotiation dialogues, in which participants seek
to agree on how to divide a resource [7,8]; Deliberation dialogues, in which par-
ticipants make plans by discussing which actions to perform in which situations
[9]; Informati on seeking dialogues, in which agents seek to find truth-values
of propositions by asking other agents [10,11,12]. The current work contributes
to the category of persuasion dialogues: asking others to agree not to believe
propositions.

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 227–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

228 H.-J. Lebbink, C. Witteman, and J.-J. Meyer

Beun [11] and Lebbink et al. [1] describe communicative acts and communi-
cation rules that form dialogue games that agents play to balance their desire
and belief states. Such dialogue games consist of preconditions for uttering com-
municative acts, and post-conditions that state the agents’ cognitive states after
incoming and outgoing information has been processed. To describe the moti-
vation to request and ask for support of belief contractions, agents have desires
not to believe propositions.

Under the assumption that agents benefit from coordinating their decisions,
agents may need to seek approval for dropping their beliefs, especially when they
are engaged in plans that require agreement about beliefs. Agents may need to
seek approval for dropping beliefs if they are, for example, engaged in coope-
rative plans that require agreements about beliefs. To effect such coordination,
we set the objective to define dialogue games in which belief contractions are
coordinated between agents in a distributed fashion. In an example dialogue,
medical expert Sarah asks Fred whether he supports her belief contraction that
a patient is diagnosed with a certain disease. To agree on this, Fred needs to con-
tract other beliefs that are preconditions (i.e. symptoms) that made him agree
with the diagnosis. To coordinate this contraction, he starts a sub-dialogue to
contract these preconditions.

We start by discussing related and—however inspiring—unrelated work. Sec-
tion 4 describes the agent’s motivation to confer with others to contract beliefs;
the agent’s cognitive state is presented and an example dialogue is given. Sec-
tion 5 deals with the agent’s decision games for fixing beliefs. We then turn to a
dialogue game with questions whether other agents support belief contractions
(Section 6). We conclude in Section 7.

2 Representing Inconsistent Information

A paraconsistent logic is a non-trivial logic that allows both a statement and
its negation to be asserted without absurdity following [13,14]. A proposition in
these logics is a statement that is true or false, or both. In classical, modal logic
and most other standard logics, anything can be proven from a contradiction
(ex contradictione quodlibet). In a paraconsistent logic the logical principle that
anything follows from absurdity is dropped, thus allowing absurdity without
being proverbially called ‘explosive’.

Different approaches can be taken to represent inconsistent propositions from
classical logic in a consistent manner; these representations are called paracon-
sistent propositions. In Lebbink et al. [12,1], a multi-valued logic is defined in
which propositions have truth-values taken from a bilattice structure [15,16].
This logic does not have a Kripke style possible world semantics [17] such as
adopted in modal logic [18], nor a Tarskian deflationist semantics (redundancy
semantics) [19] that most classical logics adopt, but a Wittgensteinian semantics
based on use [20]. Roughly, in a semantics based on use, a community of agents
agrees about the criteria to determine a proposition’s truth-value, including
the truth-value associated with inconsistency. In a paraconsistent logic with a

Can I Please Drop It? Dialogues About Belief Contraction 229

use-semantics, agents can assign interpretations to propositions that are incon-
sist ent in the classical sense. For our current purpose of defining dialogue games,
we will use belief sets that allow paraconsistent propositions; we will however
not define paraconsistent propositions, but we will assume these propositions
can be represented in belief sets consistently.

3 Related Work

Belief revision is taken to be the changing of one’s beliefs after acquiring new
information [21,14]. In general, agents often have a bounded capacity to check
whether new information is consistent with their current beliefs. These agents
could be justified to believe that new information is consistent with their current
beliefs, and only later conclude that the information is not. In such situations,
agents have to contract beliefs to regain a consistent belief state. If agents are
a priori justified to accept new beliefs, and they conclude later that the new
beliefs do introduce contradictions, then the agents’ behaviour does not adhere
to the postulates of belief revision [22]. However, if an agent corrects her faulty
behaviour by contracting sufficient information, her belief state may become
consistent again and her overall behaviour could adhere to the postulates of
belief revision. The analysis whether our agent’s behaviour obey s the AGM
postulates is beyond the scope of this article. This is because the current focus
is on the rules to coordinate belief contractions that results in a distributed
contraction process.

Most philosophers and logicians embrace epistemic commitment as a goal of
logic; it is this epistemic commitment agents may said to have towards their
beliefs. While most logics—such as dynamic deontic logic [23]—regard commit-
ments as actions to do something, in our approach beliefs are regarded as com-
mitments to assert “to believe” something. Under a semantics based on use,
according the community that agreed on the criteria for an agent to correctly
predicate “to believe” a proposition, an agent may predicate “to believe” the
proposition, if the criteria to do so have been met [20]. That is to say that if
criteria have been met, the agent commits herself to believe the consequences of
these criteria.

The current approach defines the semantics of communicative acts with pre-
conditions and post-conditions in a similar fashion as the de facto standard on
ACLs from FIPA [24]. These ACL’s provide a mentalist semantics of communi-
cative acts, but leave unspecified what agents may believe about other agents
after receiving and uttering communicative acts. What is also lacking is a treat-
ment of questions for belief contractions. Recently however, in [25] an extension
of FIPA ACLs has been proposed in which communicative acts are defined with
argumentation-theoretic preconditions. One of these acts implements the se-
mantics for contracting propositions to undercut arguments. In our approach,
unbalanced cognitive states will motivate agents to communicate [26,11]. Our
communicative acts are not focussed on arguments why certain beliefs have to
be discarded, but whether—or not—agents balance their desire and belief states.

230 H.-J. Lebbink, C. Witteman, and J.-J. Meyer

In general, our agents’ desires to believe certain propositions can originate from
collaborative or competitive plans, or from exogenous sources such as users.

4 An Agent’s Motivation and Her Cognitive State

Next the agent’s cognitive state will be presented and her motivation to confer
with other agents when to contract beliefs. To aid the presentation of dialogue
games, two key players are given a name: Sarah will be denoted by variable s
and she is the speaker in the dialogue; John will be denoted by variable j and he
listens to what Sarah has to say. Our dialogue game can handle n participants;
other agents have names drawn from the set of agent names A.

4.1 Motivation to Confer with Other Agents on Belief Contractions

An agent can be said to be motivated to ask other agents for permission to
contract her beliefs if she is not certain that her other beliefs are indirectly
justified by the beliefs she is about to contract. Consider the following situation.
If Sarah believes a certain proposition p and she believes that John believes that
she believes p, John could have used Sarah’s beliefs to justify his own beliefs,
say to believe proposition q. If Sarah were to contract her belief p then John’s
belief q could become unjustified; Sarah however does not need to be aware of
the existence of such specific and potentially unjustified proposition q, but she
can know that if she were to contract p without conferring with John, unjustified
propositions can in principle exists.

A selfish agent need not be bothered whether other agents believe propositions
that are unjustified because of the selfish agent’s unwillingness to confer with
others. However, even a selfish agent may be justified and motivated to check
with others if she has justified (private) beliefs based on testimony of other
agents’ beliefs. These latter beliefs may become unjustified due to imprudent
contraction, possibly also rendering beliefs of the careless agent unjustified. This
situation could have been avoided if careless agent Sarah had conferred with
John that she is about to contract her believe in p. John could have protested to
the proposed contraction by revealing dependencies between their beliefs. This
communication regarding a proposed contraction will be formally modelled.

We assume that an agent is not allowed to have conflicting desires, such as
the desire to believe p and at the same time the desire to be ignorant about p.
However, agents can have mutually conflicting desires. For example, Sarah may
desire to believe p and John may desire that Sarah does not believe p. Agents
will give precedence to private desires and are assumed to behave cooperatively
unless they have mutually conflicting desires.

4.2 The Agent’s Cognitive State

An agent’s cognitive state is assumed to consist of a finite number of mental
states, which are taken to be theories of multi-valued logic (MVL) [12,1]. A belief

Can I Please Drop It? Dialogues About Belief Contraction 231

state based on a theory of MVL allows an agent to have a lack of belief, partial
belief, and even inconsistent belief in a consistent manner. However, without loss
of generality, a mental state will be a set of atomic propositions.

We will not present a full repertoire of all possible mental states agents may
have regarding themselves and others; only those are identified that are used in
the present paper. Sarah’s private belief state is denoted Bs; ψ ∈ Bs states that
she believes proposition ψ. John’s private desire DjIj is the set of propositions
that John desires to be ignorant about, i.e. those propositions that John desires
not to believe; ψ ∈ DjIj states his desires not to believe ψ. Mental state BsBj

is the set of manifested beliefs of John that Sarah is aware of; ψ ∈ BsBj states
that Sarah believes that John believes ψ. An agent can be aware of other agents’
desires; ψ ∈ BsDjIj states that Sarah is aware that John desires not to believe
ψ. Manifested ignorance state BsIj is the set of propositions that Sarah is aware
that John does not believe; ψ ∈ BsIj states that Sarah is aware that John does
not believe ψ. Other mental states such as higher-order manifested mental states
are defined likewise; all mental states have a formal semantics based on theories
of MVL.

Mental states are part of structure CS which represents the agent’s cognitive
state: CSs |= Π states that the set of criteria Π hold for Sarah’s cognitive
state. To put that Sarah does not believe that John believes ψ, and, at the
same time, that she does desire John to be ignorant about ψ, is denoted by
CSs |= {(ψ �∈ BsBj), (ψ ∈ DsIj)}. Sarah may not believe that John believes ψ,
while at the same time, she may not believe that John does not believe ψ, this
is denoted by CSs |= {(ψ �∈ BsBj), (ψ �∈ BsIj)}. If Π is a singleton set, we write
CSs |= ψ ∈ Bs instead of CSs |= {ψ ∈ Bs}. We write {CSs, CSj} |= Π instead
of ∀π ∈ Π (CSs |= π ‘or’ CSj |= π).

Because mental states are sets of propositions, addition and contraction of
propositions is equal to set-theoretic inclusion and exclusion respectively. The
action of contracting belief ψ ∈ Bs from Sarah’s cognitive state is denoted
cont(CSs, ψ, Bs) yielding CS′

s, after which CS′
s |= ψ �∈ Bs. An inference rule is

introduced as a special proposition, φ � ψ; it will be given a semantics with an
agent’s decision rule in Section 5.2.

4.3 Example Dialogue

For the example dialogue, assume the following situation in which three medical
experts Sarah, John and Fred consult each other about their patient’s situation.
A few weeks ago Sarah told John and Fred that she believes proposition ψ
that “the patient is suffering from disease X”. However, new lab results indicate
that this diagnosis should be refuted. Because Sarah believes that John and Fred
believe that she believes ψ, she first has to contract her previous diagnosis before
she can make a new one.

In Figure 1.1, Sarah rings Fred and John asking whether they agree that
she contracts her belief in proposition ψ. The communicative act qbc1(ψ) is a
question with the reading: “is it ok if I drop my belief that the patient is suffering
from disease X”. In subsequent sections, the communicative act will be given a

232 H.-J. Lebbink, C. Witteman, and J.-J. Meyer

formal semantics. If a contraction of ψ is possible for John, he may grant Sarah’s
request (Figure 1.2). Fred however cannot accept Sarah to contract her belief in
ψ, because, in the example, he believes proposition φ that “the patient shows
symptom Y ”, and this symptom is a sufficient criterion to determine disease
X . Fred can only accept not to believe that the patient has disease X if he
also accepts not to believe that the patient has symptom Y . Fred asks Sarah
and John whether he may drop his belief φ in a counter-question qbc3(φ). In
Figure 1.3, both Sarah and John resp ond that Fred may drop his belief φ. In
the last figure, Fred responds to Sarah that it is okay with him that she drops
her belief in ψ.

1:

�s �j

�f

�qbr1(ψ)

�
�
�
�
���

qbr1(ψ)

2:

�s �j

�f�
�

�
�

���

qbr3(φ)

� gqbr(ψ)

�
�
�
�
���

qbr3(φ)

3:

�s �j

�f

�
�

�
�

��	
gqbr(φ)

�
�
�
�
���

gqbr(φ)

4:

�s �j

�f�
�

�
�

���

gqbr(ψ)

Fig. 1. Dialogues about belief contraction with a sub dialogue

The dialogue started by Sarah resulted in a sub dialogue started by Fred to
drop those propositions to positively answer the first dialogue. In subsequent sec-
tions, dialogue and decision rules will be presented to formalize similar patterns
of communication and decision-making.

Example 1 (Agent’s initial cognitive states). The agents from the example dia-
logue are equated with the following cognitive states. All agents believe that φ
is a sufficient criterion to determine ψ, denoted φ � ψ.

– CSs |= {(ψ, φ � ψ ∈ Bs, BsBj, BsBf , BsBjBs, BsBfBs), (ψ ∈ DsIs)};
– CSj |= {(ψ, φ � ψ ∈ Bj , BjBs, BjBf , BjBsBj , BjBfBj)};
– CSf |= {(φ, ψ, φ � ψ ∈ Bf , BfBs, BfBj , BfBsBf , BfBjBf)}.

5 Decision Games for Fixing Beliefs

A generic definition of decision games will be provided First, which will be in-
stantiated in Section 5.2 with a game to decide to believe. This game provides

Can I Please Drop It? Dialogues About Belief Contraction 233

intuition what it means for a proposition to be cognitively entrenched (Sec-
tion 5.3), which will be needed in the definition of the game to decide to be
ignorant (Section 5.4).

5.1 Decision Games

A decision game is a finite set of decision rules that define in which situations
agents are allowed to make decisions. A decision rule itself is defined by the
preconditions and post-conditions of a decision. A generic decision rule for a
decision δ ∈ LD is defined as a template which can be instantiated with a
concrete decision. The decision language is denoted LD. A decision δ is allowed
for Sarah if the set of preconditions of δ hold in Sarah’s cognitive state, i.e.
CSs |= pre(δ). After the decision is made, Sarah’s cognitive state is updated,
resulting in a new cognitive state in which the post-conditions of δ hold, i.e.
CS′

s |= post(δ).
CSs |= pre(δ) =⇒ CS′

s |= post(δ)

In sections 5.2 and 5.4, decision δ will be instantiated with decision
d2a(s, ψ, Bs) ∈ LD, which states that Sarah decides to add proposition ψ to
her belief state, and decision d2c(s, ψ, Bs) ∈ LD, which states that Sarah deci-
des to contract ψ from her belief state.

5.2 A Decision Game to Decide to Believe

Different cognitive processes can be distinguished that describe (or prescribe)
an agent’s ability to come to believe propositions. A distinction can be made
between (i) the agent’s process of deciding to believe a proposition based on her
private beliefs and private inference rules, and (ii) the agent’s decision process
based on manifested beliefs of others. The two decisions are distinguished with
an index 1 and 2.

An agent may derive a new belief φ from an inference rule ψ � φ and its
antecedent ψ. For reasons of efficiency, this decision rule may only be applied if
the agent does not already believe the consequent φ. Sarah is allowed to decide to
believe proposition φ if the following three criteria hold, i.e. if the three criteria
are part of the preconditions of the decision d2a1(s, φ, Bs).

(ψ ∈ Bs), (ψ � φ ∈ Bs), (φ �∈ Bs) ∈ pre(d2a1(s, φ, Bs)) (1)

Next we consider another decision describing the agent’s ability to obtain new
beliefs by conforming to other agents’ beliefs. We restrict the agents’ ability to
decide to believe propositions that balance an unbalanced desire and belief state.
An agent’s cognitive state is said to have an unbalanced state if the agent desires
to believe a proposition but does not believe it. These unbalanced states are the
motivation to perform decisions, and, as we will see later, to utter communicative
acts.

234 H.-J. Lebbink, C. Witteman, and J.-J. Meyer

Sarah is allowed to decide to believe a proposition if the following criteria
hold. She believes that John believes proposition ψ, she does not herself believe
ψ, and she desires to believe ψ.

(ψ ∈ BsBj), (ψ �∈ Bs), (ψ ∈ DsBs) ∈ pre(d2a2(s, ψ, Bs)) (2)

The post-conditions are straightforward. After Sarah has decided to believe
ψ, she does in fact believe ψ, i.e. (ψ ∈ Bs) ∈ post(d2a(s, ψ, Bs)).

5.3 Cognitive Preconditions and Cognitive Entrenchment

Set Π1 is a cognitive precondition on set Π2 if Π1 is a set of conditions on a
cognitive state, and if Π1 holds in the cognitive state and the cognitive state
is closed under decision-making, then Π2 will hold in that cognitive state. A
cognitive precondition will be used in this chapter to define purposeful decision-
making, and in subsequent chapters to define purposeful communication.

A set of conditions on a cognitive state Π1 is a direct cognitive precondition for
a set of conditions on the same cognitive state Π2 if the following condition holds.
If and only if a decision δ ∈ LD exists for which Π1 is part of the preconditions
of δ, and Π2 is part of the post-conditions of δ.

Definition 1 (Direct cognitive preconditions). Given sets Π1, Π2 and de-
cision δ ∈ LD, set Π1 is a partial cognitive precondition for Π2, denoted
dpc(Π1, δ, Π2), if holds:

dcp(Π1, δ, Π2) if Π1 = pre(δ) and Π2 ⊆ post(δ) (3)

A cognitive precondition is the transitive closure of direct cognitive precondition
over a finite sequence of decisions 〈δ1, . . . , δn−1〉. Due to decision δ1, set Π1 is
a direct cognitive precondition for some set Π2 which, due to decision δ2, is a
direct cognitive precondition for set Π3, etc. Set Πn is part of the post-conditions
of the last decision δn−1.

Definition 2 (Cognitive preconditions). Given sets Π1, Πn and a sequence
of decision 〈δ1, . . . , δn−1〉 with n ≤ 2 and δ1, . . . , δn−1 ∈ LD, set Π1 is a cognitive
precondition for Πn, denoted cp(Π1, 〈δ1, . . . , δn−1〉, Πn), if holds:

cp(Π1,〈δ1, δ2, . . . , δn−1〉, Πn) ≡ ∃Π2 · · · Πn−1

(dpc(Π1, δ1, Π2) ∧ dpc(Π ′
2, δ2, Π3) ∧ (Π2 ⊆ Π ′

2) ∧ · · · ∧
dpc(Π ′

n−2, δn−2, Πn−1) ∧ dpc(Π ′
n−1, δn−1, Πn) ∧ (Πn−1 ⊆ Π ′

n−1)
(4)

An agent s ∈ A will have at her disposal a set of decisions Δs ⊆ LD. The
set Π1 is a cognitive precondition for Πn if s has a finite sequence of decisions
〈δ1, . . . , δn−1〉 with δ1, . . . , δn−1 ∈ Δs such that Equation 4 holds. Furthermore,
we define the following abbreviations, and if Π1 or Πn is a singleton set, we leave
out the set and write its element.

Δs |= Π1//Πn ≡ ∃δ1 · · · δn−1 ∈ Δs cp(Π1, 〈δ1, . . . , δn−1〉, Πn) (5)
Δs |= Π1/Πn ≡ (Δs |= Π ′

1//Πn) ∧ (Π1 ⊆ Π ′
1) (6)

Can I Please Drop It? Dialogues About Belief Contraction 235

Cognitive precondition describe relations between different states of an agent’s
cognitive state. The presence of decisions form a relation that describes which
properties of a cognitive state hold as a result of decisions and other cogni-
tive state properties if the cognitive state is closed under decision-making. This
relation between a cognitive state and the same cognitive state closed under
decision-making will be used especially to purposefully adopt and discard beliefs
with the aim of satisfying desires.

A condition on a cognitive state is cognitively entrenched in the cognitive state
if after making the condition invalid, it will become valid again after closing the
cognitive state under decision-making. Stated differently, if a condition holds in
an agent’s cognitive state, then if the agent makes a decision after which the
condition is not valid anymore, the agents is allowed to make a decision such
that the condition is valid again.

Cognitive entrenchment can be defined for any mental state. For our current
needs, it suffices to define entrenchment for beliefs only. A proposition ψ is
cognitively entrenched in an agent’s belief state if the agent has a sequence of
decision at her disposal that would become applicable if proposition ψ were
removed from her belief state. Removing proposition ψ would trigger decision
which would result in the agent adopting belief ψ again. This is denoted by
ψ ∈∈ Bs.

CSs, Δs |= ψ ∈∈ Bs iff Δs |= Π//ψ ∈ Bs and cont(CSs, ψ, Bs) |= Π (7)

5.4 A Decision Game to Decide to Be Ignorant

The motivation to decide to be ignorant is defined in a similar fashion as the
motivation to decide to believe a proposition based on manifested beliefs; both
motivations are defined as an unbalanced desire and belief state. Two semanti-
cally different decisions are distinguished with index 1 and 2.

Sarah is allowed to contract ψ from her belief state if the following criteria
hold. She desires not to believe ψ, she believes ψ, ψ is not cognitively entren-
ched in her belief state, and she is not motivated to confer with other agents
(Section 4.1).

(ψ ∈ DsIs), (ψ ∈ Bs), (ψ ∈�∈ Bs),
{ψ �∈ BsBaBs | a ∈ A \ s} ∈ pre(d2r1(s, ψ, Bs)) (8)

The second situation in which Sarah is allowed to contract ψ is if the following
criteria hold. She believes that John desires to be ignorant about ψ, she believes
ψ, ψ is not cognitively entrenched in her belief state, and she is not motivated
to confer with other agents.

(ψ ∈ BsDjIj), (ψ ∈ Bs), (ψ ∈�∈ Bs),
{ψ �∈ BsBaBs | a ∈ A \ s} ∈ pre(d2r2(s, ψ, Bs)) (9)

The post-conditions are straightforward. After Sarah has decided not to be-
lieve ψ, she is in fact ignorant about ψ, i.e. (ψ �∈ Bs) ∈ post(d2r(s, ψ, Bs).

236 H.-J. Lebbink, C. Witteman, and J.-J. Meyer

Example 2 (Sarah contracts ψ but not φ). In the example dialogue, the new
lab results indicate that proposition φ “the patient shows symptom Y” is not
valid anymore. Sarah desires not to believe ψ because she wanted to diagnose a
different disease; although ψ is not entrenched in her belief state anymore, and
she desires not to believe the proposition, she may not contract ψ because she
believes that the others believe that she still believes ψ. CSs |= ψ ∈ BsBjBs ∩
BsBfBs. Consequently, she is not allowed to contract her belief ψ.

6 Dialogue Game with Questions for Belief Contraction

The following chapter will present communicative acts that allow agents to ex-
change information. These communicative acts will be given a meaning in what
we will call dialogue games, which are sets of rules on the usage of communica-
tive acts. The moves of a dialogue game are the utterances in a dialogue between
agents. Stated differently, the exchange of information is the result of a game
in which agents take turns to make moves that reflect the utterance of commu-
nicative acts. With language games, the later Wittgenstein described that the
meaning of words and sentences are determined by criteria for their correct usage
[20]. In a similar fashion will we describe that the meaning of communicative
acts is determined by the criteria for their correct usage. A dialogue game defines
the meaning of communicative acts with rules on how use the acts correctly.

6.1 Dialogue Games

The abstract communicative act λ(s, j, ψ) states that speaker Sarah utters a λ
act with contents proposition ψ to listener John. A generic dialogue rule for
λ(s, j, ψ) states that if all criteria part of the set of preconditions hold in Sarah’s
cognitive state, then, after the utterance of the act, the post-conditions hold
for Sarah or John. Confusion for which agent the post-condition hold is unlikely
because (as we see later) mental states unambiguously refer to either the speaker
or listener.

CSs |= pre(λ(s, j, ψ)) =⇒ {CS′
s, CS′

j} |= post(λ(s, j, ψ))

In this section, communicative act λ will be instantiated with acts to express
questions for belief contractions and their possible answers.

6.2 Questions for Belief Contraction Approval

Sarah is in the state of being motivated to ask approval to be ignorant about a
proposition ψ if the following two criteria hold. Sarah believes ψ, and she has
the desire to be ignorant about ψ. Stated differently, if she believes ψ, and she
desires to be ignorant about ψ, then she has a motive to ask John whether she
may be ignorant about ψ. The act reads “may I be ignorant about ψ?”; qbc is
short for a question for belief contraction. To differentiate between different acts,
this qbc is indexed 1.

(ψ ∈ DsIs), (ψ ∈ Bs) ∈ pre(qbc1(s, j, ψ)) (10)

Can I Please Drop It? Dialogues About Belief Contraction 237

The situation in which Sarah is allowed to utter a qbc can be restricted. Sarah
is motivated to ask all other agents for approval to discard beliefs; however, she
needs only address this to those agents she believes that are aware that she
believes the proposition she desires to discard (cf. Section 4.1)

(ψ ∈ BsBjBs) ∈ pre(qbc1(s, j, ψ)) (11)

After utterance of qbc(s, j, ψ), John may conclude that Sarah has the desire
to be ignorant about ψ, and that she believes ψ. John’s cognitive state should
change, yielding the following post-conditions.

(ψ ∈ BjDsIs), (ψ ∈ BjBs) ∈ post(qbc1(s, j, ψ)) (12)

After the utterance of the qbc(s, j, ψ), Sarah may conclude that John is aware
that she desires to be ignorant about ψ, and, in addition, that John is aware that
she believes ψ. Sarah’s cognitive state has changed according to the following
post-conditions.

(ψ ∈ BsBjDsIs), (ψ ∈ BsBjBs) ∈ post(qbc1(s, j, ψ)) (13)

To prevent the situation that Sarah utters the same qbc more than once, the
following precondition is added, (ψ �∈ BsBjDsIs) ∈ pre(qbc1(s, j, ψ)).

Example 3 (Sarah confers with John and Fred about ψ). After Sarah has con-
tracted φ (Example 2), ψ is not entrenched anymore, and because she has the
desire to not believe ψ she could have contracted her belief ψ had it not been
that she still needs to confer with the others. The preconditions of the qbc1 apply
in such situations; Sarah may utter a qbc1 to both John and Fred.

6.3 Affirmative Answers to Questions

Sarah is motivated to utter an affirmative response to a qbc(j, s, ψ) if she believes
that John has the desire to be ignorant about ψ, and she is ignorant about ψ.
This act is called granting a qbc, gqbc for short.

(ψ ∈ BsDjIj), (ψ �∈ Bs) ∈ pre(gqbc1(s, j, ψ)) (14)

A variation to this communicative act is the act in which Sarah pleases John
by responding affirmatively although she does believe ψ. In this situation, Sarah
has suggested that she does not believe ψ although she does. As a result, John
is incorrectly justified to believe that Sarah does not believe ψ. From Sarah’s
perspective, it does not matter whether John has an incorrect picture of Sarah’s
cognitive state because she is not aware of a dependency of her (private) beliefs
with John’s incorrect belief of her belief. That is, for all Sarah’s (other) beliefs φ
holds that these do not have a cognitive precondition which is Sarah’s belief that
John believes ψ. Sarah cannot be bothered whether John’s beliefs regarding her
beliefs are incorrect, because these incorrect beliefs would not make her (private)
beliefs unjustified.

238 H.-J. Lebbink, C. Witteman, and J.-J. Meyer

(ψ ∈ BsDjIj), (ψ ∈ Bs),
{¬(ψ ∈ BsBj/φ ∈ Bs) | φ ∈ Bs}

∈ pre(gqbc2(s, j, ψ)) (15)

After the utterance of a gqbc(s, j, ψ), listener John may deduce that Sarah is
ignorant about ψ. The following post-conditions hold for John’s cognitive state.

(ψ ∈ BjIs) ∈ post(gqbc(s, j, ψ)) (16)

Similar post-conditions hold for the speaker. Speaker Sarah may conclude
that John is aware that she is ignorant about ψ, i.e. ψ ∈ BsBjIs. A weaker post-
condition is that Sarah does not believe that John believes that she believes ψ,
i.e. ψ �∈ BsBjBs. Although the former condition implies the latter (but not vice
versa), we will explicitly list it, because we have not given a (formal) relation
between the different mental states. Note that this weaker post-condition is used
in the precondition to contract a proposition (Section 5.4). The following post-
conditions hold for Sarah.

(ψ �∈ BsBjBs), (ψ ∈ BsBjIs) ∈ post(gqbc(s, j, ψ)) (17)

To prevent Sarah from uttering the same gqbc more than once, she should
not believe that John already believes that she is ignorant about ψ, i.e. (ψ �∈
BsBjIs) ∈ pre(gqbc(s, j, ψ)).

Example 4 (John answers Sarah affirmatively). Assume John never had believed
that the patient shows symptoms Y , i.e. φ. After the update of Sarah’s commu-
nicative act qbc1(ψ) to John (Figure 1.2), John believes that Sarah desires to be
ignorant about ψ. Because none of his other beliefs are based on his believe in
ψ, he is allowed to respond with a gqbc2(ψ).

6.4 Auxiliary Questions for Belief Contraction

The act of posing an auxiliary question to approve belief contraction is a question
about a proposition which is believed by the agent and which is (part of) the
reason why another belief is cognitively entrenched.

Two different auxiliary questions are presented and are indexed 2 and 3.
Sarah is motivated to put an auxiliary question (with index 2) regarding ψ if the
following four criteria hold. Sarah desires to be ignorant about φ, she believes
φ, ψ is a cognitive precondition for belief φ, and she believes ψ.

(φ ∈ DsIs), (φ ∈ Bs), (ψ ∈ Bs),
(ψ ∈ Bs/φ ∈ Bs)

∈ pre(qbc2(s, j, ψ)) (18)

If the preconditions of a qbc2 hold for Sarah’s cognitive state, at least one
cognitive precondition (ψ ∈ Bs) exists if ψ is cognitively entrenched in her belief
state. To achieve a non-entrenched state, Sarah needs to contract belief ψ; she
asks support for this action by asking the other agents for approval. This sub
dialogue may terminate in the situation in which ψ is not entrenched anymore.

Can I Please Drop It? Dialogues About Belief Contraction 239

Sarah is motivated to put an auxiliary question (with index 3) regarding ψ if
the following criteria hold. Sarah believes that John desires to be ignorant about
φ, she believes φ, ψ and ψ is a cognitive precondition for belief φ.

(φ ∈ BsDjIj), (φ ∈ Bs), (ψ ∈ Bs),
(ψ ∈ Bs/φ ∈ Bs)

∈ pre(qbc3(s, j, ψ)) (19)

Additional preconditions are equal to those of the qbc1. Additionally, because
the listening agent cannot distinguish an auxiliary question from a regular ques-
tion, the post-conditions are equal to those of a regular question. Questions
may trigger auxiliary questions, which are perceived as regular questions, which
may trigger new additional auxiliary questions. In this fashion, new dialogues
are initiated resulting in a distributed process of agents considering to contract
beliefs.

Example 5 (Fred poses auxiliary questions). In the example, Fred believes that
the patient shows symptom Y , i.e. he believes φ. Fred also believes ψ due to φ,
and ψ is entrenched in his belief state. After the update of communicative act
qbc1(s, f, ψ) (Figure 1.1), Fred is aware of Sarah desire to be ignorant about ψ, To
‘un-entrench’ ψ, he needs to contract φ first. With qba3(f, s, φ) and qba3(f, j, φ)
(Figure 1.2), he confers with John and Sarah whether he may.

6.5 Negative Answers to Questions

If Sarah has run out of options (that is, communicative acts) to ‘un-entrench’
proposition ψ, she is unable to become ignorant about ψ. If in such situations an
agent asks her for approval to drop ψ, Sarah cannot comply, because she cannot
un-entrench ψ and can therefore only answer negatively. In the current dialogue
game, Sarah has run out of (auxiliary) questions if for all cognitive preconditions
φ for some ψ that needs to be un-entrenched, the post-conditions of the act of
a gqbc or dqbc regarding ψ hold for all other agents. This means that all other
agents have responded to her qbc’s to un-entrench ψ, which seem to have failed.
The act is called denial of a qbc, dqbc for short.

{(post(gqbc(a, s, φ))∨post(dqbc(a, s, φ))) | (a ∈ A\ s)∧ (φ ∈ Bs/ψ ∈ Bs)} (20)

Sarah may utter a dqbc in response to a qbc(j, s, ψ) if the following three
criteria hold. Sarah believes that John has the desire to be ignorant about ψ,
she believes ψ, and she ran out of (auxiliary) questions which, if answered, could
have resulted in the situation in which ψ is not cognitively entrenched anymore.

(ψ ∈ BsDjIj), (ψ ∈ Bs), (20) ∈ pre(dqbc(s, j, ψ)) (21)

Addressee John may derive properties of Sarah’s cognitive state from the mo-
tivations of a dqbc(s, j, ψ). Note that the propositions that could have convinced
Sarah to become ignorant are not accessible to John. In a similar fashion, Sarah
can derive properties of John’s cognitive state.

(ψ ∈ BjBs), (ψ ∈ BsBjBs) ∈ post(dqbc(s, j, ψ)) (22)

240 H.-J. Lebbink, C. Witteman, and J.-J. Meyer

To rule out that the dqbc is superfluous, the following precondition should
hold: (ψ �∈ BsBjBs) ∈ pre(dqbc(s, j, ψ)).

7 Discussion and Conclusions

Our goal was to define a dialogue game in which agents can contract beliefs
in a coordinated and distributed fashion. An agent is said to be motivated to
confer with other agents if it is possible that her current beliefs depend on the
beliefs she is about to contract. If these dependencies do not exist, propositions
can be contracted safely (as far as the agent can know). Agents are allowed to
lie about their beliefs if this would not introduce ungrounded beliefs as far as
agents can know from their local perspective; no global guarantees of ungrounded
propositions are given.

We succeeded in defining a dialogue game that specifies when agents have to
contract beliefs such that contraction is coordinated and distributed. The agents
do not use global knowledge about other agent’s cognitive state, but instead use
only local knowledge to coordinate contractions. The semantics of the different
communicative acts allow the agent to initiate new and related sub-dialogues.
These sub-dialogues result in the distributed nature of the process of agents
contracting beliefs. These sub-dialogues are not about arbitrary propositions,
but are confined to the propositions that are related to those propositions agents
desire to contract. In multiagent systems, different agents may entertain different
believe in ψ, and these beliefs may justify other agent’s beliefs. If only one agent
desires to contract a belief, it may be necessary that several agents also need to
contract beliefs for the first agent to achieve successfully her desire to become
ignorant about ψ.

Future research will address problems that result when agents use the rules of
the dialogue and decision games with only their local knowledge. An application
of these dialogue games is in the definition of agents agreeing to disagree about
propositions [26]: Agents have run out of communicative acts, including acts for
contracting beliefs, to resolve a disagreement. If such a pervasive disagreement
were identified, a dialogue about meaning revision would be justified.

References

1. Lebbink, H.J., Witteman, C., Meyer, J.J.: A dialogue game to offer an agreement
to disagree. In: Second International Workshop for Programming Multi-Agent
Systems: Language and Tools (ProMAS’04), New York, NY, USA (2004) 103–114
Held with the Third International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’04).

2. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some
formal inter-agent dialogues. Journal of Logic and Computation 13 (2003) 347–376

3. Reed, C.A.: Dialogue frames in agent communication. In Demazeau, Y., ed.: Pro-
ceedings of the Third International Conference on Multi-Agent Systems (ICMAS
98), Paris, IEEE Press (1998) 246–253

Can I Please Drop It? Dialogues About Belief Contraction 241

4. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of In-
terpersonal Reasoning. SUNY Press. Albany, NY, USA (1995)

5. McBurney, P., Parsons, S.: Representing Epistemic Uncertainty by means of Dia-
lectical Argumentation. Annals of Mathematics and Artificial Intelligence,
Special Issue on Representations of Uncertainty 32 (2001) 125–169

6. Prakken, H.: On Dialogue Systems with Speech Acts, Arguments, and Counter-
arguments. In Ojeda-Aciego, M., de Guzman, M.I.P., Brewka, G., Pereira, L.M.,
eds.: Proceedings of the 7th European Workshop on Logic for Artificial Intelligence
(JELIA’00), Berlin, Germany, Springer Lecture Notes in AI 1919, Springer Verlag
(2000) 224–238

7. McBurney, P., van Eijk, R.M., Parsons, S., Amgoud, L.: A Dialogue game protocol
for agent purchase negotiations. Journal of Autonomous Agents and Multi-Agent
Systems 7 (2003) 232–273

8. Sadri, F., Toni, F., Torroni, P.: Logic agents, dialogues and negotiation: and abduc-
tive approach. In Schroeder, M., Stathis, K., eds.: Proceedings of the Symposium
on Information Agents for E-Commerce, Artificial Intelligence and the Simulation
of Behaviour Conference (AISB 2001), York, UK, AISB (2001)

9. Hitchcock, D., McBurney, P., Parsons, S.: A framework for deliberation dialogues.
In Hansen, H.V., Tindale, C.W., Blair, J.A., Johnson, R.H., eds.: Proceedings of the
Fourth Biennial Conference on the Ontario Society of the Study of Argumentation
(OSSA 2001), Windsor, Ontario, Canada (2001)

10. Hulstijn, J.: Dialogue Models for Inquiry and Transaction. PhD thesis, Universiteit
Twente, Enschede, The Netherlands (2000)

11. Beun, R.J.: On the Generation of Coherent Dialogue: A Computational Approach.
Pragmatics & Cognition 9 (2001) 37–68

12. Lebbink, H.J., Witteman, C., Meyer, J.J.: Dialogue Games for Inconsistent and
Biased Information. Electronic Lecture Notes of Theoretical Computer Science 85
(2004)

13. Rescher, N., Brandom, R.: The Logic of Inconsistency. A Study in Non-Standard
Possible-World Semantics and Ontology. Basil Blackwell, Oxford (1980)

14. Priest, G., Tanaka, K.: Paraconsistent Logic. In Zalta, E.N., ed.:
The Stanford Encyclopedia of Philosophy. (Winter 2004)

15. Ginsberg, M.L.: Multivalued Logics: A Uniform Approach to Reasoning in Artifi-
cial Intelligence. Computational Intelligence 4 (1988) 265–316

16. Arieli, O., Avron, A.: Bilattices and paraconsistency. In: First World Congress on
Paraconsistency (WCP’97), Gent, Belgium (1997)

17. Kripke, S.: Semantical considerations on modal logic. Acta Philosophica Fennica
16 (1963) 83–94

18. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science.
Cambridge University Press (1995)

19. Horwich, P.: Meaning. Clarendon Press, Oxford , UK (1998)
20. Ellenbogen, S.: Wittgenstein’s Account of Truth. SUNY series in philosophy. State

University of New York Press (2003)
21. Koons, R.: Defeasible Reasoning. (Spring 2005)
22. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States.

A Bradford book. The MIT Press (1988)
23. Dignum, F., Weigand, H., Verharen, E.: A formal specification of deadlines using

dynamic deontic logic. Technical report, CSR 96-09, Eindhoven University of Tech-
nology (1996)

24. FIPA: Communicative act library specification. standard sc00037j. Technical re-
port, Foundation for Intelligent Physical Agents (2002)

242 H.-J. Lebbink, C. Witteman, and J.-J. Meyer

25. McBurney, P., Parsons, S.: Locutions for argumentation in agent interaction proto-
cols. In: Third International Joint Conference on Autonomous Agents and Mulit-
Agent Systems (AAMAS’04), New York, NY, USA (2004) 164–178

26. Lebbink, H.J., Witteman, C., Meyer, J.J.: A dialogue game to offer an agreement
to disagree. In: Third international joint conference on Autonomous Agents &
Multi-Agent Systems (AAMAS’04), New York, NY, USA (2004) 1238–1239

Commitment-Based Policies in Persuasion

Dialogues with Defeasible Beliefs

Ioan Alfred Letia and Raluca Vartic

Technical University of Cluj-Napoca
Department of Computer Science

Baritiu 28, RO-3400 Cluj-Napoca, Romania
{letia, rvartic}@cs-gw.utcluj.ro

Abstract. We advance a model to express the preconditions for engag-
ing in dialogues in terms of the agents’ mental attitudes, in a defeasible
logic context (beliefs are divided into strict and defeasible ones). Then,
we give a protocol for the persuasion dialogue between two agents, which
provides the means of identifying both false premises and logical fallacies.
Communicative acts are organized in a hierarchy, and relations between
speech acts and social commitments are expressed via policies involving
operations on social commitments. Including commitments renders an
observable behaviour of the communicating agents.

Keywords: agent, argumentation, protocol.

1 Introduction

There are two main trends for designing agent communication. The first is based
on the mental attitudes of the agents, where speech acts can be initiated when
a set of preconditions hold, and a so called rational effect is produced after they
have been uttered. The second approach relies on the notion of commitment,
which can be seen as a responsibility to the community of agents taken by the
speaker agent. Recent work has considered the benefits and shortcomings of the
two trends, and has searched for ways to combine them, in order to exploit the
advantages provided by each one [1]. This paper is also an attempt to merge the
two approaches, but our focus is on protocols for dialogues.

Agents can engage in different dialogue types (such as information seeking,
inquiry, persuasion). Starting a particular kind of dialogue is triggered by a set
of preconditions, traditionally expressed in terms of the agents’ mental states [2],
an approach we preserve throughout the paper, but which we intend to extend
by assuming agents practice reasoning mechanisms involving defeasible logic.

Parts of an agent’s knowledge may often be uncertain or incomplete, and a
system of preferences would be needed to decide between rules with conflicting
conclusions. We claim that by introducing defeasibility into the agents’ knowl-
edge bases a convenient mechanism for treating such issues, which are quite
common in the real world, is provided. We also believe that defeasible logic is

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 243–257, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 I.A. Letia and R. Vartic

suitable for the dynamics of the dialogue, which may cause agents to add new
knowledge or change their existing beliefs.

We propose a refinement of protocols, arguing that they should allow for the
verification of both the correctness of the premises and the soundness of the
logical argumentation. We illustrate our method by focusing on a protocol for
the persuasion dialogue.

Once this protocol is defined, we intend to provide a link to social commit-
ments. We claim this is necessary because an external observer can only notice
the messages exchanged by agents, which is usually not enough to deduce what
protocol has been employed, and hence there is no way for an external agent
to verify the compliance of the agents to protocols. On the other hand, if there
is a link between the communication acts and commitments, the observer can
infer the compliance of agents to community rules by watching how the social
commitments evolve [3].

2 Redefining the Dialogues

The first contribution of this paper is providing the rules that trigger certain
dialogues, in a defeasible logic context. We take as a starting point the work in
[2], which includes a recent classification of the possible dialogues between com-
municating agents, and gives the preconditions required to initiate each type of
dialogue, in terms of the agents’ mental states. We intend to extend that anal-
ysis and argue that real argumentation scenarios often require a more complex
representation of the agents’ knowledge. Their beliefs are not equally strong,
and some rules may only be useful in certain situations. Defeasible logic pro-
vides the means to capture such a scenario, in terms of strict and defeasible
rules, defeaters and a system of preferences which can decide between rules with
conflicting conclusions.

2.1 Defeasible Knowledge and Reasoning

Traditional mechanisms for knowledge representation fail to expressively depict
the complexity of real environments. We often rely on rules like “People in our
country speak our language” when asking a random passer-by for the time, for
example. This rule may not fire if the person is a foreign tourist, so it is not a
rule that always leads to an indisputable conclusion when its premises are true,
but it is useful in most cases. Defeasible logic allows this kind of rules, called
defeasible rules, to be stated, and they will hold whenever there is no stronger
evidence pointing to the contrary. Superiority relations between defeasible rules
with conflicting conclusions state that one rule overrides another.

Of course, it is possible to express such knowledge using classical logic as well,
but in defeasible logic it comes handy, while in classical logic it is more difficult
and quite unnatural. Dialogues often involve statements that can be reasonable
in a certain context, but become useless when the context is changed. Defea-
sible logic provides a natural manner for expressing such situations. Another

Commitment-Based Policies in Persuasion Dialogues 245

thing to be considered is that information previously unknown to agents may be
provided during discussions, and such information sometimes causes agents to
revise their knowledge. Classical logic is rigid to changes, entire rules would have
to be rewritten, while defeasible logic is quite flexible from this point of view,
by allowing new rules to be included in the knowledge base, and priority rela-
tions to state which rule is preferred. This feature can also be used to introduce
exceptions for rules, a common practice in dynamic or unknown environments,
where new information may be found at every step.

As computers are integrated into real life scenarios, humans tend to be reluc-
tant with respect to computers making decisions for them. In order for humans
to accept results provided by computers in fields where they were the decision
makers and experts, like law, medicine, politics or business, computers need to
provide their results in a meaningful manner. As defeasible logic resembles hu-
man reasoning, arguments expressed in this logic are easy to understand.

Conclusions in defeasible logic with regard to a literal q can be: +Δq: q is
definitely provable (using only strict rules), −Δq: q is not definitely probable,
+∂q: q is defeasibly provable, −∂q: q is not defeasibly provable.

We use defeasible logic for dialogues to divide beliefs (B) into strict (BS) and
defeasible (BD) ones. For example, we can say that an agent X has a strict belief
that p is true if it can prove +Δp (it can prove p using only strict rules). Agent X
has a defeasible belief that p holds if it can prove +∂p and −Δp (it cannot prove
p using just strict rules but it can prove it, and the proof includes defeasible
rules). If agent X either strictly or defeasibly believes p holds, than we can state
that X believes p to be true. Similar notations are used for representing that an
agent knows whether (W) some p is true or false:

BSXp→ BXp
BDXp→ BXp
WSXp→WXp
WDXp→ WXp

2.2 Dialogues

The new dialogue preconditions are presented in Table 1, where we use the
following notations: A - agreement, C - conflict of opinions, P - persuasion
dialogue, IS - information seeking dialogue, I - inquiry dialogue, V - verification
dialogue, Q - query-like dialogue.

Table 1. Dialogue preconditions

BAWDBp∧ BAWSBp∧
¬BABBp∧ ¬BABBp∧

BABBp BABSB¬p BABDB¬p BA¬WSBp ¬BABB¬p ¬BABB¬p
BSAp IABBp A C P P P
BDAp IABBp A P P P
¬WAp IAWAp IS IS IS I IS IS
IAWAp Q Q Q Q Q Q
IABAp Q Q Q Q Q Q
IABABBp V V V V V V

246 I.A. Letia and R. Vartic

The use of defeasible logic has an impact on the preconditions required for the
persuasion dialogue. Agent A has no chance of success when trying to convince
an agent B of something that directly contradicts one of agent B’s strict beliefs.
This makes sense if we are considering one’s chances of convincing a political
party member that it is better to vote for the competition. We see the first
benefit of including defeasible logic in the scene. The table also identifies the
situation where agents stand on irreconcilable conflicting positions, both having
strict conflicting beliefs, or when they agree with respect to a proposition p.

2.3 A Protocol for Persuasion Dialogues

We begin by defining a protocol we call WhySupport (WS), which would be
engaged by an agent X in order to find the reasons behind a certain proposition
p (for example after Y has asserted p).

The protocol has been enhanced to allow reasoning about inferences. We argue
that for an argument (p) to be accepted by an agent, it is not enough to have all
the elements of the support of the argument accepted, but the agent additionally
has to accept that the support (S) of the argument will indeed lead to the con-
clusion (S ⇒ p). Therefore, we introduce a new protocol called HowArgument,
explained and defined right after this protocol. The WhySupport protocol starts
with agent X asking agent Y for the backing of p, and Y will respond with the
support for p. Agent X can accept or reject the justification or it can engage the
protocol WhySupport for some (possibly all) of the elements of the reply.

WhySupport(X, Y, p)

1. X : Why(p)
2. Y : ReplySupport(p,S),where S is the support of an argument for p

3. for each s in S:

�
�
�

X : Accept(s), if BXAcceptable(s)
X : Reject(s), if BSX¬s
WhySupport(X,Y, s), otherwise

4.

��
�

X : Accept(S ⇒ p), if BXAcceptable(S ⇒ p)
X : Reject(S ⇒ p), if BSX¬(S ⇒ p)
HowArgument(X,Y, S ⇒ p), otherwise

5. X: Accept(p) or Reject(p)

We notice that an agent will reject something that contradicts one of its
strong (strict) beliefs. When a rejection occurs, the protocol ends. Receiving a
rejection on a rule p without being asked for an explanation for p is a sign the
communication partner has a strict rule suggesting ¬p.

The protocol HowArgument can be applied in the process of accepting an
argument p with the support S, when the agent cannot readily accept that if all
the elements in S hold, p will also hold (S ⇒ p). For example, one might not
find readily acceptable the argument p=perimeter of the triangle is 12, with the
support S=(triangle is right, leg1 is 3, leg2 is 4, h2 = leg12 + leg22, perime-
ter=h+leg1+leg2), and ask for additional explanations, which could be for ex-
ample R=(h=5). Now the agent has to accept that all the elements of R are
true, and S and R together will lead to p.

Commitment-Based Policies in Persuasion Dialogues 247

HowArgument(X, Y, S ⇒ p)

1. X : How(S ⇒ p)
2. Y : ReplyArgument(S⇒ p, R), where S ∪R⇒ p

3. for each r in R:

�
�
�

X : Accept(r), if BXAcceptable(r)
X : Reject(r), if BSX¬(r)
WhySupport(X,Y, r), otherwise

4.

�
�
�

X : Accept(S ∪R⇒ p), if BXAcceptable(R⇒ p)
X : Reject(S ∪ R⇒ p), if BSX¬(R⇒ p)
HowArgument(X,Y, S ∪ R⇒ p), otherwise

5. X : Accept(S ⇒ p) or Reject(S ⇒ p)

This protocol allows an agent to reject an argument, even though it believes
its support to be true. Agents can reject an argument if they believe there are
falsehoods among the premises or logical fallacies (sophisms).

The WhySupport and HowArgument protocols can be used to define protocols
for different dialogue types. We take as an example the persuasion dialogue and
define the following protocol:

Persuasion(X, Y, p)

1. X : Assert(p)

2.

��
�

Y : Accept(p), if BXAcceptable(p)
Y : Reject(p), if BSY ¬p
WhySupport(Y,X, p), otherwise

3. if the result of the previous step was a rejection:
Persuasion(Y,X,¬p), if IY BX¬p

The protocol starts with agent X trying to convince agent Y that a proposition
p holds. Y has 4 options: it can accept or reject X’s assertion and the protocol
ends, it can reject the assertion and try to persuade X that in fact ¬p holds (if it
has an intention to influence X to believe ¬p), or it can seek for the justification
for X’s utterance (why? how?) before reaching a conclusion.

An interesting discussion is what happens in case agent Y believes defeasibly
that ¬p is the case, and agent X engages agent Y in a persuasion dialogue with
the goal of influencing agent Y to believe p. Agent Y cannot readily accept or
reject X’s statement, so it will engage the WhySupport protocol, in order to
obtain more information, which will help it make a better decision.

The main enhancement as against existing persuasion protocols is the possi-
bility to demand an explanation for inferences. Other protocols [2] allow agents
to call for justifications for previous utterances, but it is not clear what happens
if an agent X is provided with an acceptable (true) support, but X has no proof
that the given support will indeed lead to the alleged consequence. If we presume
the inference ends up being accepted, the agents could easily be persuaded with
arguments like: “You should vote for Y because the Earth is not flat”, or less
obvious, but not uncommon ones like: “You should get a Ford Taurus because it
is the most popular selling car in its class”, or “All birds are animals. Lassie is an
animal. Hence Lassie is a bird”. On the other hand, if unreadily acceptable infer-
ences lead to the whole argument being rejected, agents would be given only one

248 I.A. Letia and R. Vartic

Communication act

Inform

Assert

Request

QueryIf Why How

Reply

ReplyWhether ReplySupport ReplyArgument

Accept Reject

Fig. 1. Taxonomy of communicative acts

chance to provide an argument standing for an inference acceptable to another
agent. As agent knowledge is usually not public, this may often be impossible,
and valid arguments could end up being rejected, such as the initial argument
given for the perimeter of a triangle, stated earlier.

The given examples of logical fallacies show why it is not enough to check
for the truth state of the premises. The problem of determining the truth of a
statement by means of argumentation is not straightforward. Both formal va-
lidity of arguments and material truth have to be verified. Formal validity has
been rigorously defined by argumentation corpora. Providing mechanisms for
checking the validity requirements for all argument types (categorical, disjunc-
tive, hypothetical) is beyond the scope of this paper. What we do provide is an
enhancement to argument validation, by allowing agents to demand and provide
a vindication for claimed implications. This increases the persuader’s chances of
proving its point if it is a valid one, and it decreases the chances for the agent
to be persuaded to be fooled. An interesting problem that still stands is how the
agents will deal with information that cannot be checked using their knowledge
bases. We do not deal with this issue here, but a possible solution is seeking the
help of another agent, or asking a human specialist.

3 Commitment-Based Dialogues

Unlike mental attitudes, which are private to the agent, commitments have a
public nature. They link the agents to the community they are part of. By
observing the evolution of the commitments in a society of agents, one can draw
conclusions about the behaviour of the agents. An agent is well behaved if it
fulfills its commitments promptly.

A commitment is a relation between two agents (the debtor and the cred-
itor), and it represents the responsibility of the debtor to execute an action
(C(debtor, creditor, action)).

A subsumption lattice has been used [3] to arrange the FIPA ACL performa-
tives, and social commitments to observe agent behaviour, taking into consider-
ation just the messages passed between agents.

Commitment-Based Policies in Persuasion Dialogues 249

We give our own taxonomy for the set of communicative acts (CAs) likely
to occur in agent dialogues in figure 1. We have used non-FIPA communication
acts for the sake of expressivity. A mapping to FIPA performatives can be per-
formed. For example, the three subtypes of reply could be expressed by a reply
performative, and a part of the content of the message (a flag) would be used to
identify the type of reply.

An agent can represent this hierarchy using strict rules (figure 2).

r1 : type(M, inform)→ type(M,communicationAct)
r2 : type(M,request)→ type(M,communicationAct)
r3 : type(M,reply)→ type(M,communicationAct)
r4 : type(M,accept)→ type(M,communicationAct)
r5 : type(M,reject)→ type(M,communicationAct)
r6 : type(M,assert)→ type(M,inform)
r7 : type(M,queryIf)→ type(M,request)
r8 : type(M,why)→ type(M,request)
r9 : type(M,how)→ type(M,request)
r10 : type(M,replyW)→ type(M,reply)
r11 : type(M,replyS)→ type(M,reply)
r12 : type(M,replyA)→ type(M,reply)

Fig. 2. Hierarchy of communication acts

Similar to [3], agent communication is modeled to act upon social commitments.
A communication act may add or delete social commitments, and hence an out-
sider could observe the state of social commitments within a community of agents.
Commitments involve one agent performing an action for another agent. In this
paper, we restrict actions to speech acts. The messages are translated to commit-
ment operators through a set of policies, expressed as defeasible rules in figure 3.

For instance, a request utterance adds an obligation for the receiver to reply
on the subject (r14). A reply sent by solicited agent on the content of the initial
request will remove this obligation (r20). Child nodes (subtypes) inherit the
policies of their parent nodes, and may add policies of their own. For example,
in case agent X will send a message of type why (Why(p) for example) to agent
Y, we will have to apply two policies (r14 and r16), and so agent Y will have
a commitment to reply to agent X, and another commitment to reply with the
support for the content of the initial message (p). If agent Y replies with the
support for p, two commitment policies will be applied (r20 and r22), and both
commitments will be deleted, because a message of type replySupport is also of
type reply (r11).

In this example, an inform message activates a commitment for the informed
agent to accept or reject the information provided. This requirement may be too
strong for some agent societies, so we must allow for variations of policies in
order to fit the specifics of every community of agents.

An external observer can only see the messages exchanged between agents,
which is usually not enough to deduce what protocol is being used. Instead, the

250 I.A. Letia and R. Vartic

r13 : sent(F,T, M), type(M,inform), firstElem(M,C)⇒ c(T, F, accRej(C))
r14 : sent(F,T, M), type(M,request), firstElem(M,C)⇒ c(T, F, reply(C))
r15 : sent(F,T, M), type(M,queryIf), firstElem(M, C)⇒ c(T, F, replyW (C))
r16 : sent(F,T, M), type(M,why), firstElem(M,C)⇒ c(T, F, replyS(C))
r17 : sent(F,T, M), type(M,how), firstElem(M,C)⇒ c(T, F, replyA(C))
r18 : sent(F,T, M), type(M,accept), firstElem(M, C)⇒ ¬c(F, T, acceptReject(C))
r19 : sent(F,T, M), type(M,reject), firstElem(M,C)⇒ ¬c(F, T, acceptReject(C))
r20 : sent(F,T, M), type(M,reply), firstElem(M,C)⇒ ¬c(F, T, reply(C))
r21 : sent(F,T, M), type(M,replyW), firstElem(M,C)⇒ ¬c(F, T, replyW (C))
r22 : sent(F,T, M), type(M,replyS), firstElem(M,C)⇒ ¬c(F, T, replyS(C))
r23 : sent(F,T, M), type(M,replyA), firstElem(M,C)⇒ ¬c(F, T, replyA(C))

r18 > r13, r19 > r13, r20 > r14, r21 > r15, r22 > r16, r23 > r17

Fig. 3. Commitment policies

observer will be able to infer the state of the social commitments by identifying
the speech acts employing social policies.

4 Running Example

As an example we illustrate a possible persuasion dialogue between an adept
of Einstein’s general relativity theory and someone only familiar with Newton’s
laws of physics, considering the communicative acts in figure 1, and the policies
and commitments expressed as defeasible rules in 3. In this particular discussion,
the ignorant Newton fan (N) wants to convince the Einstein adept (E) that time
and space are absolute. E disagrees, and makes N acquainted with some elements
of general relativity.

Here is the sample dialogue:

N: Time and space are absolute.
E: No, they are not.
N: Why would you say that?
E: Einstein’s general relativity laws prove they are not.
N: How?
E: Since the speed of light is constant, time and space are not

absolute.
N: How could the speed of light be constant?
E: Experiments prove that it is.
N: Apparently they do. I don’t really understand how this goes,

but I guess you have a point.
N: How does this prove time and space are not absolute?
E: If the speed of light is the same for all observers, regardless

of their motion relative to the source of the light, then clearly
distances are stretched and shrunk, and hence they are not
absolute.

N: Oh, I get it now.

Commitment-Based Policies in Persuasion Dialogues 251

We denote by tsa the proposition “time and space are absolute”, by el “Ein-
stein’s general relativity laws”, by ccst the proposition “the speed of light is
constant”, by e the “experiments” and by tsss the statement “time and space
stretch and shrink”.

We will use this sample dialogue to illustrate the effects of the mental states
on the communicative acts uttered by agents (table 2), and the effects of these
communicative acts on both the mental attitudes of the agents (table 2) and the
social commitments (table 3).

Table 2. Trace of mental states in the dialogue

Mental triggers CAs Changes in Mental States

BDN tsa N: Assert(tsa) BEBN tsa
IN BEtsa
BN¬WSEtsa
BSE¬tsa E: Reject(tsa) BN BSE¬tsa
BSE¬tsa E: Assert(¬tsa)
IEBN¬tsa
BEBDN tsa
BDN tsa N: Why(¬tsa)
BSEel → ¬tsa E: Reply-support(¬tsa, el) BN BEel ⇒ ¬tsa
BSEel BN BEel
BN Acceptable(el) N: Accept(el) BN el
¬BN el ⇒ ¬tsa N: How(el ⇒ ¬tsa)
BSE [el, ccst] → ¬tsa E: Reply-argument(BN BE [el, ccst] ⇒ ¬tsa
BSEccst el ⇒ ¬tsa, ccst) BN BEccst
¬BN ccst N: Why(ccst)
BSEe → ccst E: Reply-support(ccst, e) BN BEe ⇒ ccst
BSEe BN BEe
BN Acceptable(e) N: Accept(e) BN e
BN Acceptable(e ⇒ ccst) N: Accept(e ⇒ ccst) BN e ⇒ ccst
BN Acceptable(ccst) N: Accept(ccst) BN ccst
¬BN [el, ccst] ⇒ ¬tsa N: How([el, ccst] ⇒ ¬tsa)
BN ccst
BDN tsa
BSEtsss E: Reply-argument(BN BEtsss
BSE [ccst, tsss] → ¬tsa ccst ⇒ ¬tsa, tsss) BN BE [ccst, tsss] ⇒ ¬tsa
BN Acceptable(tsss) N: Accept(tsss) BN tsss
BN Acceptable(N: Accept(BN [el, ccst, tsss] ⇒ ¬tsa

[el, ccst, tsss] ⇒ ¬tsa) [el, ccst, tsss] ⇒ ¬tsa)
BN¬tsa N: Accept(¬tsa) BN¬tsa

In table 2, the messages sent by the agents appear in the second column. The
first column represents the subset of the agent mental states triggering these
speech acts, whilst the third column shows the changes regarding the mental
attitudes of the agents (like new beliefs) induced by the messages.

For example, in the first row, we assume that the preconditions for agent N
to start a persuasion dialogue hold. As a consequence, the protocol will start
with agent N sending the first message (N : Assert(tsa)), stating that time and
space are absolute. From this message, agent E can tell that agent N believes
tsa (second column).

Next, in the second row, we notice agent E strictly believes that the content
of the message previously sent by N is not the case, and so it will reject N’s

252 I.A. Letia and R. Vartic

statement (E : Reject(tsa)). Agent N does not have access to E’s beliefs, but
the prompt rejection of its assertion signals that E strictly believes that “time
and space are absolute” is a false statement. From now on, N knows that it is
not worth trying to persuade E on this matter.

We have assumed agent E, on the other hand, intends to influence N to adopt
its position on the time and space fabric (IEBN¬tsa), and it also believes N’s
position on the matter is not rigid (BEBDN tsa), conditions which will trigger
the initiation of a persuasion dialogue in the opposite direction and having as
subject the negation of the original one. If agent E had a strict belief that tsa
was true, there would be no possible reconciliation. But in our example, agent N
is willing to debate the truth of its belief (BDN tsa), and step by step is provided
with evidence it has to accept.

Before the last row, agent N has two conflicting defeasible rules in its knowl-
edge base:

r1 : nl⇒ tsa.
r2 : el, ccst, tsss⇒ ¬tsa.

The first rule (r1) states that when applying Newton’s laws of physics, time
and space are absolute. The second rule (r2), states that if we are applying
Einstein’s general relativity theory, because the speed of light is constant and
time and space stretch and shrink, one can conclude that time and space are
not absolute. The agent will need to establish preferences among these rules, in
order to be able to reach a conclusion. We have assumed the agent inferred the
superiority relation:

r2 > r1

This superiority relation allows agent N to conclude that time and space are not
absolute (the last row of table 2), when the discussion takes place in the context
of Einstein’s general relativity laws. And the first rule is still there to be used, in
a context where general relativity is not applied, but Newton’s laws of physics
are.

An agent is rigid to revising its position about a statement if this position
employs only strict rules. By contrast, the agent is open to changing its position
regarding a defeasible belief (BDAb), if presented with an argument suggesting
its contrary (¬b), on the condition that this argument is stronger (from the
agent’s point of view) than the argument the agent itself can derive in order to
defend its belief.

In table 3, we are concerned with the evolution of social commitments as
messages are exchanged. In the first column we have the CAs, in the second
column the operation corresponding to the CA, and in the third column the
active social commitments after the CA in the first column has been uttered.

The message that starts the persuasion protocol (first row: N : Assert(tsa))
adds a commitment for the receiving agent to accept or reject the assertion
(second column), and thus the commitment C(E, N, ar(tsa)) becomes active
(third column). We assume that agents have among their goals displaying a
good social behaviour, which they can achive by complying to social norms, and
in our case by promptly fulfilling their commitments.

Commitment-Based Policies in Persuasion Dialogues 253

Table 3. Trace of commitments in the dialogue

CAs Commitment operations Commitments

N: Assert(tsa) +C(E, N, ar(tsa)) C(E, N, ar(tsa))
E: Reject(tsa) -C(E,N,ar(tsa))
E: Assert(¬tsa) +C(N, E, ar(¬tsa) C(N, E, ar(¬tsa))
N: Why(¬tsa) +C(E, N, rs(¬tsa)) C(N, E, ar(¬tsa))

+C(E, N, r(¬tsa)) C(E, N, rs(¬tsa))
C(E, N, r(¬tsa))

E: Reply-support(¬tsa, el) -C(E, N, rs(¬tsa)) C(N, E, ar(¬tsa))
-C(E, N, r(¬tsa))

N: Accept(el) C(N, E, ar(¬tsa))
N: How(el ⇒ ¬tsa) +C(E, N, ra(el ⇒ ¬tsa)) C(N, E, ar(¬tsa))

+C(E, N, r(el ⇒ ¬tsa)) C(E, N, ra(el ⇒ ¬tsa))
C(E, N, r(el ⇒ ¬tsa))

E: Reply-argument(-C(E, N, ra(el ⇒ ¬tsa)) C(N, E, ar(¬tsa))
el ⇒ ¬tsa, ccst) -C(E, N, r(el ⇒ ¬tsa))

N: Why(ccst) +C(E, N, rs(ccst)) C(N, E, ar(¬tsa))
+C(E, N, r(ccst)) C(E, N, rs(ccst))

C(E, N, r(ccst))
E: Reply-support(ccst, e) -C(E, N, rs(ccst)) C(N, E, ar(¬tsa))

-C(E, N, r(ccst)
N: Accept(e) C(N, E, ar(¬tsa))
N: Accept(e ⇒ ccst) C(N, E, ar(¬tsa))
N: Accept(ccst) C(N, E, ar(¬tsa))
N: How([el, ccst] ⇒ ¬tsa) +C(E, N, ra([el, ccst] ⇒ ¬tsa)) C(N, E, ar(¬tsa))

+C(E, N, r([el, ccst] ⇒ ¬tsa)) C(E, N, ra([el, ccst] ⇒ ¬tsa))
C(E, N, r([el, ccst] ⇒ ¬tsa))

E: Reply-argument(-C(E, N, ra([el, ccst] → ¬tsa)) C(N, E, ar(¬tsa))
[el, ccst] ⇒ ¬tsa, tsss) -C(E, N, r([el, ccst] ⇒ ¬tsa))

N: Accept([el, ccst] ⇒ tsss) C(N, E, ar(¬tsa))
N: Accept(

[el, ccst, tsss] ⇒ ¬tsa)
N: Accept(¬tsa) -C(N, E, ar(¬tsa))

Agent E will respect its obligation to accept or to reject the absolutness of
time and space by sending a message that rejects tsa (second row). The effect
will be the deletion of the obligation induced by the previous line, and thus
the set of active commitments will become empty. The dialogue continues, with
new commitments for agents to respond being added and with agents promptly
obeying.

We notice that if all agents comply to the protocol, all the commitments
induced by the protocol will have been fulfilled at the end. In order to satisfy
this requirement, we have to correctly identify the CAs inducing policies on
commitments.

We can consider some improvements for the dialogue above. For example,
rejecting a statement p, and asserting ¬p is superfluous. If a set of rules can
express that Reject(p) is subsumed by Assert(¬p), the agent could skip sending
the Reject message.

Another improvement refers to the intermediary steps taken by an agent in
order to find the conclusion with regard to an issue it is committed to accept or
reject. If we could restrict the agents to send over only the relevant messages and
perform the other operations internally, the number of exchanged messages would
be reduced (table 4). For example, in the case of the Why-Support protocol, it is
inefficient for the initiating agent to reveal the way it deals with the justification

254 I.A. Letia and R. Vartic

Table 4. Trace of the improved dialogue

Messages Internal ops Commitments

N: Assert(tsa) C(E, N, ar(tsa))
E: Assert(¬tsa) C(N, E, ar(¬tsa))

N: Why(¬tsa) C(N, E, ar(¬tsa))
C(E, N, rs(¬tsa))
C(E, N, r(¬tsa))

E: Reply-support(¬tsa, el) C(N, E, ar(¬tsa))
Accept(el) C(N, E, ar(¬tsa))

N: How(el ⇒ ¬tsa) C(N, E, ar(¬tsa))
C(E, N, ra(el ⇒ ¬tsa))
C(E, N, r(el ⇒ ¬tsa))

E: Reply-argument(C(N, E, ar(¬tsa))
el ⇒ ¬tsa, ccst)

N: Why(ccst) C(N, E, ar(¬tsa))
C(E, N, rs(ccst))
C(E, N, r(ccst))

E: Reply-support(ccst, e) C(N, E, ar(¬tsa))
N: Accept(e) C(N, E, ar(¬tsa))
N: Accept(e ⇒ ccst)
N: Accept(ccst)

N: How([el, ccst] ⇒ ¬tsa) C(N,E,ar(¬tsa))
C(E,N,ra([el, ccst] ⇒ ¬tsa))
C(E, N, r([el, ccst] ⇒ ¬tsa))

E: Reply-argument(, C(N,E,ar(¬tsa))
[el,ccst] ⇒ ¬tsa,tsss)

N: Accept(tsss) C(N, E, ar(¬tsa))
N: Accept([el,ccst, tsss] ⇒ ¬tsa)
N: Infer(r2>r1)

N: Accept(¬tsa)

provided by the other agent. Instead, it could just send a message when reaching
a conclusion (acceptance or rejection) regarding the initial statement, or when
it has to request further clarification. The same stands for the How-Argument
protocol.

In table 4, the messages between agents appear in the first column, and the
internal operations performed by the agents in the second column. We can see the
result is a fairly short dialogue (11 messages) for a relatively complex problem.
If we allow more complex statements (for example [el, e]→ ccst as the support
for ¬tsa) the dialogue can be simplified even further, most of the effort can focus
on the agents’ internal reasoning, and communication is minimized.

5 Related Work

Papers [4] and [2] propose definitions of protocols for different types of dia-
logues, including persuasion. Similar work has been proposed as protocols for
dialogue games [5,6]. These protocols assume an agent should be given only one
chance to build an argument to be accepted by others. Should an agent not find
the argument acceptable because it fails to see the logical connections, these
approaches do not give the initiator of the dialogue the chance to defend its ar-
gument by providing details regarding its logical implications. The protocol sug-
gested by us includes a more complex method of investigating the issue discussed

Commitment-Based Policies in Persuasion Dialogues 255

by the agents, by supplying a mechanism for checking the accuracy of the logical
argumentation.

These approaches do not commit to a mechanism for agents pondering on the
acceptability of arguments. Including defeasible logic for reasoning upon speech
acts and communication protocols is a first, to the best of our knowledge, al-
though this is not the first time defeasibility has been found useful for agent
interactions (it has been used to represent business contracts [7], and for declar-
ing negotiation strategies [8]).

An alternative for representing uncertain, incomplete knowledge is the rough
sets, where imprecise concepts are represented as a pair of precise concepts,
namely the lower and upper approximation. The lower approximation is a set
including only the objects that certainly belong to the concept, while the up-
per approximation contains the objects which have a probability of belonging to
the concept. This is somewhat analogous to the situations when a statement is
strictly or defeasibly provable. Weakest sufficient condition and strongest nec-
essary condition are used to generate approximate queries [9], and answers to
these queries allow classifying the objects into the ones belonging to the concept,
the ones not belonging to the concept and the ones for which the membership
is unknown. This representation has proven useful to a large range of domains,
such as bioinformatics, financing or engineering, and it is a valid alternative for
representing agent knowledge. We will look deeper into the advantage rough sets
could bring to our work.

Research on communication based on mental attitudes revolves around the
specification for an agent communication language proposed by FIPA [10], and
reusing the work in this direction is the main argument for preserving this ap-
proach. An improved semantics for the FIPA CAs and a layered framework to
facilitate protocol verification has also been reported [11].

Commitments attempted to solve the problems conveyed by the mentalistic
approach [12] (the contrast between the public character of the conversation
and the private nature of the goals and beliefs of the agents, the impossibility to
check the compliance of the agents to the ACL semantics and the fact that the
sincerity assumption is not appropriate for non-cooperative systems).

The need for messages to reflect changes in the social reality of the multi-
agent system, an issue addressed by this paper, has already been tackled [13],
within a commitment based semantics for FIPA communication acts, involving
a manipulation of commitments and precommitments. This approach takes into
consideration commitments regarding the content of the messages, and not the
CAs themselves, which is why the solution in [3] fit our needs better.

McGinnis et al propose adaptive protocols, by means of synthesis rules [14],
an approach using the LCC (Lightweight Coordination Calculus) language and
framework [15], which brings the advantage of dynamic, flexible protocol. This
method takes advantage of communication patterns (request-reply), as do we
with the help of policies. The example of information seeking dialogue given
in [14] does not allow refining the argumentation by challenging inferences, but
this feature could be easily added. We have preferred to define a static protocol

256 I.A. Letia and R. Vartic

and use performatives instead of dialogue structures, because our focus was on
how specific protocols could be refined, but there is no reason why synthesized
protocols should not be used within a community of agents with communication
enhanced to support reasoning validation. However, this approach is better suited
for domains with highly irregular communication.

6 Conclusions and Future Work

Using defeasible beliefs for stating the preconditions of dialogues induces an in-
creased efficiency of dialogues, by pointing out situations when dialogues should
not be initiated, or when dialogues should end, and it introduces a more detailed
view of how agents stand in regard to certain statements. Defeasibility also al-
lows agents to discuss and agree on matters which are not rigorously provable,
but are very often encountered in real dialogues, and the derived arguments are
comprehensible

We claimed that dialogue protocols should allow the verification of both the
correctness of the premises and the accuracy of the logical argumentation. We
have advanced a persuasion protocol which meets these requirements, and we
have discussed its behaviour on an example, but the other types of interactions
could also benefit from our approach.

Furthermore, the relations between speech acts and social commitments allow
the verification of the compliance of agents to the behaviour desired in a given
agent community. The evolution of mental states is important for the evolution
of the dialogue, while the evolution of social commitments can be used to reason
on the compliance of the agents to the policies of the community.

We will extend our work to cover all types of dialogue involving argumentation,
such as inquiry, deliberation, information-seeking, query. We shall also define
protocols for other types of interactions, such as political debates, where the
main goal is not convincing each other, but persuading the audience. Finally,
we want to verify our theoretical studies by building a system of agents that
conform to these protocols. Some of the challenges we have identified so far are
avoiding the scanning of the entire database in order to check trigger conditions
for dialogue types when knowledge changes occur, and handling new, unverifiable
information.

Another improvement refers to enhancing the existing protocols to support
practical reasoning and verification of the fulfillment of commitments regarding
actions which are not communication related. If an agent agrees to execute an
action, a commitment regarding that action should become active.

Acknowledgements

We are grateful to the anonymous reviewers for useful comments. Part of this
work was supported by the grant 27702-990 from the National Research Council
of the Romanian Ministry for Education and Research.

Commitment-Based Policies in Persuasion Dialogues 257

References

1. Boella, G., Hulstijn, J., van der Torre, L.: A synthesis between mental attitudes
and social commitments in agent communication languages. In Skowron, A., ed.:
Intelligent Agent Technology. (2005) 358–364

2. Cogan, E., Parsons, S., McBurney, P.: What kind of an argument are we going
to have today. In: 4th International Joint Conference on Autonomous Agents and
Multiagent Systems, Utrecht, Netherlands, ACM Press (2005) 544–551

3. Kremer, R., Flores, R.: Using a performative subsumption lattice to support
commitment-based conversations. In: 4th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, Utrecht, Netherlands, ACM Press
(2005) 114–121

4. Parsons, S., Wooldridge, M., Amgoud, L.: An analysis of formal inter-agent dia-
logues. In: 1st International Joint Conference on Autonomous Agents and Multi-
agent Systems, ACM Press (2002) 394–401

5. McBurney, P., Parsons, S.: Games that agents play: a formal framework for dia-
logue between autonomous agents. Journal of Logic, Language, and Information
—Special issue on logic and games 11(3) (2002)

6. Amgoud, L., Maudet, N., Parsons, S.: Modelling dialogues using argumentation.
In: 4th International Conference on Multi-Agent Systems, IEEE Computer Society
(2000) 31–38

7. Governatori, G., Hoang, D.P.: DR-CONTRACT: An architecture for e-contracts
in defeasible logic. In: EDOC Workshop on Contract Architecures and Languages.
(2005)

8. Skylogiannis, T., Antoniou, G., Skylogiannis, N., Governatori, G.: DR-
NEGOTIATE - a system for automated agent negotiation with defeasible logic-
based strategies. In: IEEE International Conference on e-Technology, e-Commerce
and e-Service. (2005) 44–49

9. Doherty, P., Sza�las, A., �Lukaszewicz, W.: Approximative query techniques for
agents with heterogeneous ontologies and perceptive capabilities. In: 9th Interna-
tional Conference on the Principles of Knowledge Representation and Reasoning,
AAAI Press (2004) 459–468

10. FIPA: Fipa communicative act library specification. Technical report, Foundation
for Intelligent Physical Agents (2002)

11. Paurobally, S., Cunningham, J., Jennings, N.R.: A formal framework for agent in-
teraction semantics. In: 4th International Joint Conference on Autonomous Agents
and Multiagent Systems, Utrecht, Netherlands, ACM Press (2005) 91–98

12. Singh, M.P.: A social semantics for agent communication languages. In: Issues in
Agent Communications. LNCS 1916, Springer (2000) 31–45

13. Verdicchio, M., Colombetti, M.: A commitment-based communicative act library.
In: 4th International Joint Conference on Autonomous Agents and Multiagent
Systems, Utrecht, Netherlands, ACM Press (2005) 755–761

14. McGinnis, J., Robertson, D., Walton, C.: Protocol synthesis with dialogue struc-
ture theory. In: 4th International Joint Conference on Autonomous Agents and
Multiagent Systems, Utrecht, Netherlands, ACM Press (2005) 1329–1330

15. Robertson, D.: A lightweight coordination calculus for agent systems. In: Declar-
ative Agent Languages and Technologies. LNCS 3476, Springer (2005) 183–197

Reliable Group Communication and Institutional
Action in a Multi-agent Trading Scenario

Stephen Cranefield

Department of Information Science
University of Otago

PO Box 56, Dunedin, New Zealand
scranefield@infoscience.otago.ac.nz

Abstract. This paper proposes the use of reliable group communication as a
complement to traditional asynchronous messaging in multi-agent systems. In
particular, the mechanism of message publication on a virtually synchronous
group communication channel is described and an example electronic trading
scenario (the game of Pit) is used to illustrate how this form of communication
supports the design of interaction protocols in which a shared perception of the
order of messages is important. It is also shown that this style of messaging can
be used to support the definition of social commitments based on a shared under-
standing of message order within a conversation.

1 Introduction

One of the most common criteria used in definitions of the term “agent” is a require-
ment for the entity under consideration to be autonomous [1]. This criterion has led
researchers in the field of multi-agent systems to focus on asynchronous modes of com-
munication such as KQML [2] or FIPA ACL [3] messaging, because handling a syn-
chronous message (such as a remote method call in a distributed object-oriented system)
requires the recipient to devote some of its computational resources to handling incom-
ing requests at a time dictated by the initiator, and this implies a loss of some of its
autonomy.

However, it has also been recognised by the MAS community that in order for agents
to form societies in which agents can collaborate or provide services to each other, there
must be some standards or agreements within the societies on ontologies, interaction
protocols and notions of commitment and trust. Adopting a common ontology and in-
teraction protocol can be seen as a choice made by an agent (or agent designer) to forgo
some of its autonomy in order to gain the benefits of being part of a community.

For a similar reason there is a need for communications infrastructure in multi-
agent systems to provide a range of communication mechanisms, including those with
stronger guarantees than are provided by asynchronous messaging. Providing a range
of communication mechanisms will give agents (or protocol and institution design-
ers) a range of options that can be used for specific interactions, just as a human may
seek a face-to-face meeting or make a phone call when reaching a rapid consensus
is desired, and two parties negotiating a house sale may use a different communication
channel than they would for negotiating a choice of film to watch together. In particular,

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 258–272, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reliable Group Communication and Institutional Action 259

the available communication mechanisms should include the ability to reliably multi-
cast messages to groups of agents, not only for efficient distribution of information to
multiple parties, but also to enable commitments made between agents to be publicly
observed and therefore more likely to be honoured (e.g. consider the wedding vows
exchanged between bride and groom in the presence of witnesses).

This paper focuses on a particular model of reliable group communication: the
use of named channels that can be configured to guarantee the property of virtual
synchrony:allagentsconnectedtothesamechannelwillperceiveallmessage‘publication’
and agent joining and leaving events in the same order. We argue that there are
many situations, particularly in commerce, where the order of a set of messages sent
by various agents is highly significant. In a distributed system with asynchronous
communication, interaction protocols for such scenarios must be complicated with
interactions to implement transactional behaviour or to detect and recover from invalid
states to ensure that the agents involved reach a common understanding of the interaction
state. In contrast, implementing virtually synchronous group communication channels
within the agent infrastructure and extending interaction protocol notations to include
the publication of messages on such channels should allow simpler (and therefore
more understandable and maintainable) interaction protocols to be developed for such
situations. We illustrate the use of this mechanism within an interaction protocol for an
electronic trading scenario: an electronic version of the card game Pit.

There is increasing interest in models of agent communication that are based on so-
cial semantics, and in particular the notion of public commitments made between agents
is a subject of much research. In this paper we show how publications on a virtually syn-
chronous channel can be defined to count as institutional acts representing the making of
commitments that are conditional on a shared understanding of the interaction history.
We believe this ability will be useful in developing agent-based e-commerce systems.

The structure of the paper is as follows. Section 2 discusses previous work on group
communication in multi-agent systems, gives a brief overview of reliable group com-
munication mechanisms, and presents the notion of virtually sychronous group commu-
nication channel used in this paper. Section 3 describes the card game Pit and presents
an interaction protocol for a phase of Pit based on such channels. This is followed in
Section 4 by an analysis of this scenario using a formal model of commitments and
institutional action developed by Verdicchio and Colombetti. A summary of their for-
malism is presented and it is used to model reliable group communication and the use
of publications that ‘count as’ making a conditional commitment to change to a trad-
ing state in the Pit scenario. Finally, some related work is discussed in Section 5, and
Section 6 concludes the paper.

2 Reliable Group Communication

In distributed systems it is useful to be able to send the same information to a set of dis-
tributed processes with a single command. This is referred to as broadcasting, or, when
distinct groups of recipients can be specified, multicasting. When all processes are run-
ning on a network that supports a multicast network protocol, such as IP Multicast,
there can be sizable performance gains over replicating unicast messages to multiple

260 S. Cranefield

recipients. However, at the application level, and for agents in particular, there can be
benefits from having a multicast communication primitive available, even if the under-
lying implementation must simulate this by sending multiple unicast messages. Kumar
et al. [4] argue that communication addressed to groups is a common feature of human
society, and so it is important that agent communication languages and their underlying
semantics support group communication. Busetta et al. [5] discuss the use of channeled
multicasting for agent communication where messages can be addressed to channels
that have a name, a theme (a list of terms from an application-specific taxonomy) and
an IP multicast group address. Their architecture allows agents to “tune in” to chan-
nels of interest to receive messages that were addressed to channel names or themes,
rather than to individually named agents. This architecture then allows specialist agents
(when requested) to “overhear” conversations and provide additional information to the
participants when appropriate, and it can also be used for monitoring the behaviour of
agents.

This paper extends the above work by considering the use of reliable group commu-
nication channels for agent communication. Researchers into data replication, failure
detection and failure recovery in distributed systems have developed protocols that pro-
vide applications with multicast primitives having various reliability guarantees [6].
Depending on the application, desirable properties may include FIFO ordering (mes-
sages are guaranteed to be received in the order that each process sent them), causal
ordering (if B sends a message after receiving a message from A, all recipients of the
two messages see them in this order), agreed ordering (all recipients see all messages
in the same order), safety (agreed ordering with the additional guarantee of atomic de-
livery: a message is either delivered to all members or, in the case of any members
having failed, none) and virtual synchrony (all processes observe the same events in the
same order, including processes joining or leaving a group)1. The JGroups library [8]
combines these ideas with a channel-based architecture. Java applications can create a
channel that is connected to a named group—all agents having channels connected to
a group are automatically members of that group. The channel constructor is passed a
symbolic description of the stack of protocols that are to be used in the channel’s im-
plementation, and these can be chosen so that particular properties such as safety and
virtual synchrony are assured by the underlying protocols.

In this paper we assume that the following operations (which are supported by the
Java JGroups library [8]) are available to agents:

Join a named group
The agent connects to a virtually synchronous channel associated with the group.

Submit a message for publication on a group’s channel
The agent submits a message to a channel so that it will be sent to all members of
a group (including the sender).

Leave a named group
The agent leaves a group by disconnecting from the associated channel, or (depend-
ing on the channel properties) this event may be considered by other group mem-
bers to have implicitly occurred if the agent’s channel fails to respond to pings—in
JGroups these are optionally sent as part of the channel’s protocol stack.

1 This list follows the terminology of Dolev and Malki [7].

Reliable Group Communication and Institutional Action 261

In addition, whenever an agent joins or leaves a group the agent receives a message
from the channel containing an updated “view” of the group membership.

3 Example Scenario: The Pit Game

This section discusses an example scenario where a reliable group communication
channel provides an agent with guarantees about another agent’s state that would be
complex to achieve using forms of communication with weaker guarantees.

Pit [9] is a card game dating from 1904 that simulates commodity trading in the
American Corn Exchange of that era. It is notable for the way in which players trade
cards publicly in a concurrent and asynchronous manner. As an application involving
concurrent activity, competitive behaviour and rules designed to ensure fair play, Pit is
a good testbed application for investigating issues of electronic agent communication
and institutional rules and actions. It has the flavour of a realistic e-commerce scenario
while also having a simple and well defined economy in which the players seek to profit
through trade. It is for this reason that we choose Pit as an example application. Pit
could be implemented using many implementation technologies. We are interested in a
solution that views Pit as an electronic institution [10], with explicit representations of
the commitments that agents make to each other. In the type of real e-trading scenarios
that Pit is based on, such explicit representations of the social state will be necessary to
support reasoning about agent compliance and to justify judgements about trust and the
imposition of sanctions.

Previous work has investigated the use of MAS techniques to implement an extended
version of Pit designed to be scalable to large numbers of players [11], and the game
theory of a simplified version of Pit [12]. This paper is based on the original version of
Pit (or, at least, an electronic version that is intended to be as close as possible to the
original) and, in particular, investigates one state transition in the game.

In the simplest form of Pit there is a deck of cards, each representing a unit of a
tradeable commodity such as barley, with nine identical cards for each commodity. The
game proceeds in repeated rounds of card trading until one player wins by reaching a
score of 500 points. A round begins with each player being randomly dealt nine cards
and ends when a player manages to “corner the market” on a single commodity by
possessing all nine cards of that type, and is the first to announce this fact. The score
earned for this ranges from 60 to 100 points, depending on the commodity. Once dealing
is completed, trading takes place by players concurrently and vocally advertising the
number of cards they wish to trade (which must be at least two, and the cards must
be of the same commodity). When a trading partner is identified, the trading partners
exchange the agreed number of cards, consider their new hand and either announce
the achievement of a “corner” or select some new cards to trade and then return to the
advertising phase. At all times, a player can only see the face of his or her own cards—
the other players’ cards can not be distinguished from each other as their backs have a
uniform appearance.

In the physical game, players advertise the number of cards they wish to trade by
holding those cards up in the air (with only the backs visible to other players) while
shouting, for example, “Two! Two! Two!”. At the same time they look around the room

262 S. Cranefield

to locate and make eye contact with another player seeking to trade the same number of
cards. It then becomes clear if those players wish to complete the trade: the players fo-
cus their attention on each other and the cards are physically exchanged. If at any time
one party decides not to trade or their attention is drawn to another, more favoured,
trading partner, this is immediately apparent. This feature of the game is difficult to
reproduce in an online version where players are in different locations and communi-
cate via messages. While safe trading transactions could be achieved by introducing
trusted agents or co-opting other players to to act as notaries that manage the trans-
action, our preference is to preserve the peer-to-peer nature of the physical version of
Pit. The approach taken here is to analyse the game in terms of commitments made by
players, and to investigate mechanisms that allow these commitments to be understood
and observed.

When players are advertising their desire to trade, they have no commitments to
others (apart from having to obey the rules of the game). They are free to make and
break eye contact until they locate a player with whom they are happy to trade and
who appears to want to trade with them. At this point there is an important transition in
the system. A player beginning a card exchange with another player must focus on that
operation and is therefore forgoing the chance to actively seek a possibly preferred trad-
ing partner (e.g. one with a score that is further from the winning margin) and to attract
his or her attention. In an electronic version of the game, a card exchange transaction
may involve executing a relatively complex protocol, so each player would like to have
confidence that the other party is committed to the transaction before beginning the ex-
change. In fact, to have complete certainty that it is safe to begin the transaction, each
party A must know that the other party B is committed, that B knows that A is com-
mitted, that B knows that A knows that B knows that A is committed, ad infinitum—in
other words, the trading partners must achieve common knowledge of their mutual com-
mitment [13]. Another way to view this is that the two players must make a joint action
to change their institutional state to one in which they must complete the trade with one
another.

It has been proven that it is impossible to achieve common knowledge in a distributed
system using asynchronous messages on an unreliable network [13]. However, various
approximations of common knowledge are possible, e.g. making use of a “publica-
tion” multicasting primitive allows (logically) “time-stamped common knowledge” to
be achieved [14]. Although we do not take an epistemological viewpoint of distributed
systems in this paper, we rely on the properties of the reliable group communication
mechanism presented in Section 2. This is similar to the notion of publication in the
above-cited research, but does not expose logical timestamps to the application layer.

Our reliable group communication operations are applied to the Pit scenario as fol-
lows. Each player follows the same protocol, which depends on the player’s state. For
much of the game, and particularly when an agent is in the Advertising state, normal
asynchronous FIPA-style messaging is used. However, this paper addresses one par-
ticular state transition in which reliable multicasting has a valuable role to play: the
transition from state SeekingPartner(P) (meaning that the player is seeking to estab-
lish a trading session with another player P) to state TradingWith(P) (meaning that the
player has agreed with player P to begin trading their advertised cards). A player enters

Reliable Group Communication and Institutional Action 263

state SeekingPartner(P) after identifying a player P that is advertising the same num-
ber of cards as itself and with whom it wishes to trade. It then begins the protocol that
is shown in Figure 1 as a sequence diagram in an extended version2 of UML 2.0 [15].

A brief summary of the notation is as follows. The operators in the boxed regions
are: opt, meaning an optional section; loop—the “(*)” means there is no lower or
upper limit to the number of iterations; par, meaning parallel composition by arbitrary
interleaving of the interactions in the subsections of the box; alt, meaning a guarded
choice of the interactions in the subregions, with the guard written in square brackets;
and nondet, meaning a non-deterministic choice that is not under the control of the
agent3.

The protocol assumes that for each pair of players there is a group, and that the agent
infrastructure only allows those players to join that group. In practice these groups will
only exist if they are needed and associated channels are created. A player A attempts
to “catch the eye” of another player B by connecting to a channel for the group {A, B}
(A could also send a standard asynchronous unicast message of invitation to the other
player, but this is not depicted due to space constraints).

Upon connection, the channel sends the current list of group members to A as a
members message, and this is repeated when the membership changes, e.g. if A was the
only member initially and then B joins. If B joins the group before a timeout period, A
submits the statement att(A, N, B), meaning “A agrees to trade N cards with B”, to the
channel. For the two players to know that each other is committed to trading, they must
each have submitted matching att statements to the group. If neither player has crashed
or dropped off the network, these messages will eventually be published by the channel
and received by each player. However, if a player wishes to withdraw its agreement
before receiving the agreement of the other, it can submit a cancelled(att(. . .)) message
to its channel. This is where the virtually synchronous property of the channels come
into play: all members, att and cancelled messages will be received in the same order
by both players. A cancellation is only deemed valid if it is received before the other
player’s agreement arrives, and virtual synchrony guarantees that both players agree on
the validity of any cancellation publications.

Finally, if player A observes its own and player B’s att statements without observing
any cancellations or a notification of B leaving the group in between, then it changes to
state TradingWith(B) and begins to follow a separate trading protocol4. However, it is
important to note that virtual synchrony only guarantees logically simultaneous receipt
of messages, not real-time synchrony. The trading protocol must therefore be designed
with an initial phase that verifies that both agents have reached the TradingWith(. . .)
state, just as the illustrated protocol begins by waiting until both players have joined the
group.

2 The extensions are: (i) The identification of the state of a lifeline, written in square brackets
under the lifeline name and role, and a notation (appearing at the bottom of the diagram) for a
state change action; (ii) the introduction of the nondet interaction type described in the main
text above.

3 This requires a branching time semantics whereas UML 2.0 sequence diagrams have trace-
based semantics, but we don’t address this issue.

4 A discussion of possible trading protocols is beyond the scope of this paper.

264 S. Cranefield

sd seek_trade_agreement

p[A]: Player
[SeekingPartner(B)] c[A,B] : Channel

opt

A, N, B

connect

members(m)

nondet

given_up_waiting: boolean = false
negotiation_is_live: boolean = false
agreement_made: boolean = false
agreed_parties: Set = {}

 m == {A}

members(m)

t1 = now

t2 = now

Case when B isn't
connected yet

B was already
connected or has
just connected m == {A, B}

negotiation_is_live = true

given_up_waiting = true

t2 - t1 >= timeout

nondet
members(m) B has

disconnected
 m == {A}

negotiation_is_live = false

[!given_up_waiting & !negotiation_is_live]loop(*)

[negotiation_is_live & agreed_par ties != {A,B}]loop(*)

publish(x, cancelled(att(x,N,y)))

 (x == A & y == B) | (x == B & y == A)

Cancellation from
either A or B is
published

negotiation_is_live = false

par submit(att(A,N,B))

opt submit(cancelled(att(A,N,B)))

publish(x, att(x,N,y))

agreed_parties = agreed_parties U {x}

Agreement from
A or B is
published

 (x == A & y == B) | (x == B & y == A)

[agreed_parties == {A,B }]

[else]

alt

p[A]: Player
[TradingWith(B)]

«become»

disconnect

p[A]: Player
[Advertising]

«become»

Fig. 1. The “seek trade agreement” protocol

Reliable Group Communication and Institutional Action 265

If the protocol in Figure 1 ends without both players agreeing, player A will return
to the (previous) Advertising state and its associated protocol.

The use of virtually synchronous group multicasting ensures that the two players
have a consistent view of the outcome of the negotiation, and therefore they each know
that it is safe to change state and begin the card trading protocol. However, this assumes
that each player believes that the other is correctly following the protocol. In an open
system, such a belief can only be justified by appealing to the rules of the society in
which the agent exists. The rules of Pit should be defined to ensure that the submission
of an agree to trade (att) statement is only done with the intent of subsequently changing
state if the other player also agrees to trade. The act of submitting an att statement
should therefore be treated as having the secondary effect (within the institution of
Pit) of making a conditional commitment to change to the TradingWith(B) state in the
appropriate circumstances. In the next section we show how this can be formalised, and
demonstrate that the use of the publication mechanism allows the conditional part of
this commitment to be defined in a way that guarantees that both agents have a common
understanding of when each other becomes committed to the trade.

4 Publication as an Institutional Action in Pit

Following the path set by researchers of electronic institutions [10] we seek an un-
derstanding of Pit as a social interaction governed by norms, permissions, obligations,
commitments, etc. In this section, a preliminary analysis of the “seek trade agreement”
scenario in Figure 1 is presented, showing how the submission of an att statement to
the channel can be defined to imply the performance of an institutional action: making
a commitment to change to the TradingWith(. . .) state if both players’ att messages are
published with no intervening cancelled message. Based on the formalism of Verdic-
chio and Colombetti [16,17] for modelling commitments, agent communication and
institutional action, we model the publication mechanism and the institutional meaning
of an att submission.

4.1 Verdicchio and Colombetti’s Formal Model

Verdicchio and Colombetti use a temporal logic CTL±, based on CTL∗ [18]. The se-
mantics of CTL± assumes that time is discrete, with potentially many possible next
states for any given state, i.e. agents’ choices and the nondeterminism of the environ-
ment are represented by a future-branching tree of states. Standard temporal primitive
and derived modal operators are used, and these can be applied in the future direction
(when adorned with a superscript ‘+’) or the past (similarly indicated by a ‘−’). The
operators include X (the next/previous state), F (eventually), G (always) and U (until)5.
The until operator is a binary operator meaning that the formula on its left will remain
true for a (possibly empty) sequence of states, followed by a state in which the formula
on its right holds. In addition, the path quantifiers A (for all paths) and E (there exists

5 The presentation here uses the original notation of Verdicchio and Colombetti. In recent work
[17] they use mnemonic names for temporal operators, e.g. SomeFut (sometime in the future)
for F+.

266 S. Cranefield

a path) are used to constrain the set of possible paths through time that contain a given
state.

The occurrence of an event e in a state is modelled by the truth of the proposition
Happ(e) in that state. There is assumed to be a unique constant e to represent each
distinct event, and this uniqueness constraint is represented by the following axiom:

Happ(e)→ X−G−¬Happ(e) ∧ AX+G+¬Happ(e)

Other axioms are used to constrain the ‘physics’ of action, but are not presented here.
Events have types, represented by logical terms such as rain(it rains) or inform(a, b, φ)

(a informs agent b of statement φ, where φ is a statement in an agent content language
represented as a term). The type of an event is represented by a proposition of the form
EvType(e, t). The following abbreviation is defined:

Happ(e, t) =def EvType(e, t) ∧ Happ(e)

Some events represent actions that are brought about by an agent. The following
predicates and abbreviations are used to represent actions:

Actor(a, e) : agent a is an actor of event e

Done(e, a, t) =def EvType(e, t) ∧ Actor(e, a) ∧ Happ(e)
Done(a, t) =def ∃e Done(e, a, t)

to which we add:

Happt(t) =def ∃e EvType(e, t) ∧ Happ(e)

The formalism also includes a number of predicates used to represent the existence
and state of commitments between agents. Comm(e, a, b, τ) means that event e has
brought about a commitment between debtor a and creditor b to the truth of the CTL±

formula τ (which is encoded here as a term). Action types mc(a, b, τ) and cc(e, a, b, τ)
are defined to represent making and cancelling a commitment, and axioms are used
to define the meaning of these. In particular, the performance by agent a of an action
mc(a, b, τ) implies that in all possible futures Comm(e, a, b, τ) holds forever or until
an act of cancelling the commitment is done, in which case Comm(e, a, b, τ) ceases
to be true6. Temporal formulae are used to define the notion of fulfilment and viola-
tion of a commitment, represented by the predicates Fulf(e, a, b, τ) and Viol(e, a, b, τ)
respectively. The definition for fulfilment is:

Fulf(e, a, b, τ) =def Comm(e, a, b, τ) ∧ AF−(Happ(e) ∧ �τ�)

where ‘�.�’ represents the mapping from a term encoding a temporal formula to the for-
mula itself. This definition says that to determine the satisfaction of τ as a commitment,
τ should be evaluated in the (possibly prior) state in which the event e—the making of
the commitment—was performed.

6 A counterintuitive feature of this formalism is that a commitment is modelled as continuing to
exist (in an inactive state) even after it has been fulfilled.

Reliable Group Communication and Institutional Action 267

Within an institution, acts of one type (e.g. raising one’s hand during an auction) can
be deemed to “count as” an action of another type (e.g. offering to buy the item being
auctioned at the current price). This type of institutional fact is declared by asserting
within the theory defining an institution a proposition of the form CountsAs(t, t′), where
the meaning of the predicate CountsAs is given by the following axiom7:

Done(e, a, t) ∧ CountsAs(t, t′)→ Done(e, a, t′)

The left hand side can include additional conjuncts testing for logical possibility and
authorisation, but for the sake of brevity we do not discuss that here.

4.2 Modelling the Publication Mechanism

In our Pit protocol we consider the submission of an att statement to the channel as
making a commitment to trade under certain conditions. To define this formally we
must first model the publication mechanism using CTL±. We use the following event
types to represent agents leaving or joining a group (we do not model these as actions
because leaving a group may occur due to a failure that is not brought about by an agent
itself):

join group(a, g)
leave group(a, g)

The following predicates are used to model group membership and agents’ views of
group membership:

member(a, g) : agent a is a member of group g

member in view(a, g, b) : a is a member of g in b’s current local view

These action types represent agents submitting and observing publications, and observ-
ing group membership changes:

submit(φ, g)
observe pub(e, a, φ, g)
observe join group(e, a, g)
observe leave group(e, a, g)

where φ is a statement to be published (represented as a term), g is a group name and e
is the event that is being observed—either the submission of a publication or an agent
joining or leaving the group. If more than one agent joins or leaves a group in a single
state, this is modelled as separate but concurrent events.

CTL± axioms are used to define the meanings of the event and action types and the
constraints on the publication mechanism; here we only present a sample:

¬member(a, g)→ ¬Happt(leave group(a, g))

7 An alternative and more complex treatment of the notion of “counting as” is given by Jones
and Parent [19].

268 S. Cranefield

CountsAs(submit(att(a, n, b), {a, b}),
mc(a, b, ((Done(a, observe pub(−, b, att(b, n, a), {a, b}))

∧ (¬Done(a, observe pub(−, a, cancelled(a, n, b), {a, b}))
U−

Done(a, observe pub(−, a, att(a, n, b), {a, b}))))
∨
(Done(a, observe pub(−, a, att(a, n, b), {a, b}))
∧ (¬Done(a, observe pub(−, b, cancelled(b, n, a), {a, b}))

U−

Done(a, observe pub(−, b, att(b, n, a), {a, b})))))
S+

Done(a, change state(SeekingPartner(b), TradingWith(b), pit))))

Fig. 2. The institutional meaning of submitting an agreement to trade

¬member(a, g) ∧ Happt(join group(a, g))→ AX+member(a, g)
¬member(a, g) ∧ ¬Happt(join group(a, g))→ AX+¬member(a, g)
Done(a, observe join group(−, b, g))→ member in view(b, g, a)
Done(a, observe pub(e,−,−,−))→

X−G−¬Done(a, observe pub(e,−,−,−)) ∧
AX+G+¬Done(a, observe pub(e,−,−,−))

where, following Verdicchio and Colombetti, ‘−’ is an abbreviation for an existentially
quantified variable different from any other.

Three other important axioms (not shown here for reasons of space) state that a
group member will observe its own publication unless a group membership change is
observed first (the atomic delivery property), all group members observe a publication
if any of them does, but the global order of these observations is not constrained, and
any two group members observe any pair of observations in the same relative order.

4.3 Modelling the Trading Commitment in Pit

In the Pit protocol in Figure 1 the agents communicate by submitting att and can-
celled statements to the channel to be published. In this section we define the act of
submitting an att statement for publication as making a commitment to change state if
the appropriate conditions apply. To do this, we must first define another action type:
change state(s, s′, inst). This represents the act of changing from state s to state s′ in
institution inst. The institutional meaning of submitting an att message to the channel
can now be defined as shown in Figure 2. The binary operator S+, meaning “as soon as
〈LHS〉 then 〈RHS〉”, is defined by Verdicchio and Colombetti as follows:

φ S+ψ =def (φ→ ψ) ∧ (X+(φ→ ψ)) W+φ

where W+ is the future version of the usual “weak until” operator:

φ W+ψ =def G+φ ∨ φ U+ψ

Reliable Group Communication and Institutional Action 269

The declaration in Figure 2 states that the act of submitting an att statement for
publication counts as making a commitment that whenever a publication from one of
the two agents is observed, if when looking backwards to find the matching publication
from the other agent no cancellation of that publication has occurred more recently, then
a change of state from SeekingPartner(b) to TradingWith(b) will be performed. While
this might look complicated as a way of modelling the game of Pit (if one were just
looking for a way of implementing Pit specifically), we believe this is exactly the type
of explicit representation of commitments that will be useful in building agent-based
e-commerce systems in general.

Analysing the axioms defining the properties of publication, together with the defini-
tion of fulfilment in Section 4.1, it is possible to infer8 that if one of the two negotiating
agents is committed to changing state then (eventually) they both are. The reasoning is
as follows. Suppose agent a has observed the publication of an an att message from b,
with a later publication of a matching att message from itself (in a state s say), and no
cancelled publication was observed in between, then it can conclude that it has become
commited to change to state TradingWith(b) in state s. It can also conclude that agent
b saw (or will see) the same sequence of publications (leading to a state s′ say) and
therefore that b became (or will become) commited to change state to TradingWith(a)
at s′. What a cannot determine is the precise time at which agent b reaches state s′,
however, we cannot hope to achieve perfect synchronisation in a distributed system.

This type of reasoning allows the protocol to be verified to lead to joint commitments
between a and b to change state to a new phase of interaction: trading cards with each
other.

5 Related Work

Section 2 discussed some prior work on group communication in multi-agent systems.
In particular, this paper extends the work of Busetta et al. [5] by considering the use of
group communication channels that implement reliable multicasting.

Cheriton and Skeen [21] have presented some limitations of the use of causally and
totally ordered (agreed order) multicasting as a generic mechanism for solving a variety
of distributed computing problems. These limitations are: (i) messages can be delivered
out of order from the application viewpoint if there are causal relationships unknown to
the multicasting infrastructure, e.g. due to out-of-channel communications or interac-
tions with the environment; (ii) it is not possible to treat particular sequences of messages
as atomic operations so that no other messages are delivered between them; (iii) there
can be causal relationships between events at the application level that are not captured
by the semantics of causally and totally ordered multicasting, e.g. when a particular mes-
sage should only be sent if another message has not been received yet; and (iv) they lack
efficiency and scalability compared to protocols directly based on application state.

The last limitation above is an important one, but we believe there is still a signif-
icant role for reliable multicasting to play within particular phases of an interaction

8 How agents or specialised auditor agents could reason automatically using such axioms is a
subject of subsequent research; in particular, a rule language based on CTL± that supports
run-time monitoring of commitments has been developed [20].

270 S. Cranefield

protocol, where only a small group of agents (possibly a subset of all the participants)
are involved. Furthermore, in some applications, such as Pit, interaction protocols are
best described in terms of agents’ individual states rather than a global state of the in-
teraction. Our answer to the other three limitations is that designers of protocols using
reliable multicasting do need to be aware of these issues, and they should not expect
this technique to be a panacea. However, we believe that the problems identified can all
be prevented by careful protocol design.

Paurobally et al. [22] proposed the use of synchronisation protocols that run in a
layer between the network protocols and the interaction protocols that an agent follows.
These synchronisation protocols ensure that the participants in an interation have a con-
sistent belief in the state of the protocol. This is similar to the work discussed in this
paper in that it relies on an underlying protocol layer to enable synchronisation without
complicating the higher level interaction protocol.

The formal model of action and commitment used in this paper is that of Verdicchio
and Colombetti [16,17], which uses the full power (and incurs the full complexity) of a
CTL∗-style logic. Mallya et al. [23] have investigated a simpler temporal language, with
semantics based on a timed version of CTL, in which temporal interval expressions can
be used as existential and universal quantifiers of propositional formulae. They provided
an analysis showing how to determine when a given commitment could be known to be
fulfilled or violated.

The concept of a commitment machine [24,25] has been proposed as a high-level
way of defining agent interaction protocols in terms of states that are sets of facts and
(possibly conditional) commitments between agents, and the effects that actions have on
facts and commitments. Modelling the institutional effect of an att publication using this
formalism may allow a simpler and more abstract form of the “seek trade agreement”
protocol to be defined.

6 Conclusion

This paper has proposed the use of reliable group communication mechanisms in multi-
agent systems and demonstrated its utility in a peer-to-peer electronic trading scenario
where agents may require some guarantees about the state of other agents. It has also
demonstrated how a publication on a virtually synchronous group communication chan-
nel can be formally defined to count as the establishment of a commitment that is
dependent on the commonly understood order of future publications—thus allowing
distributed agents to have a shared understanding of each other’s commitments.

As in human society, software agents should have a range of communication mech-
anisms with varying properties available to them. Providing agent messaging infras-
tructure supporting various modes of group communication will allow the declarative
definition of simpler interaction protocols where agents act in a peer-to-peer manner
and, for particular phases, need some guarantees about the institutional state of their
peers. However, reliable group communication comes at a computational cost—for ex-
ample, with JGroups, the first node to connect to a channel for a group becomes the
coordinator for that group. The channel for that node is responsible (via appropriate
underlying protocols) for ensuring atomic delivery and agreed order semantics for mul-
ticasts. Reliable multicasting is also unlikely to be practically scalable to larger groups

Reliable Group Communication and Institutional Action 271

of agents. Therefore, the appropriate role of this technique is for particular phases of
interaction protocols where synchronised agreements are needed amongst small groups
of agents, with standard asynchronous messaging used elsewhere.

Acknowledgements

The author would like to thank Marco Colombetti for sharing his ideas during a visit to
the University of Otago in 2003, and Francesco Fumarola for his work evaluating the
use of the JGroups toolkit in a multi-agent implementation of Pit.

References

1. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowledge Engi-
neering Review 10 (1995) 115–152

2. Finin, T., Labrou, Y., Mayfield, J.: KQML as an agent communication language. In Brad-
shaw, J.M., ed.: Software Agents. MIT Press (1997)

3. FIPA: FIPA ACL message representation in string specification, Foundation for Intelligent
Physical Agents. http://www.fipa.org/specs/fipa00070/ (2002)

4. Kumar, S., Huber, M.J., McGee, D., Cohen, P.R., Levesque, H.J.: Semantics of agent com-
munication languages for group interaction. In: Proceedings of the Seventeenth National
Conference on Artificial Intelligence (AAAI 2000), AAAI Press / MIT Press (2000) 42–47

5. Busetta, P., Donà, A., Nori, M.: Channeled multicast for group communications. In: Pro-
ceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2002), ACM Press (2002) 1280–1287

6. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures. ACM
Transactions on Computer Systems 5 (1987) 47–76

7. Dolev, D., Malki, D.: The Transis approach to high availability cluster computing. Commu-
nications of the ACM 39 (1996) 64–70

8. JGroups project home page. http://www.jgroups.org (2004)
9. Parker Brothers: Pit rules. http://www.hasbro.com/common/instruct/pit.pdf (1904)

10. Cortés, U.: Electronic institutions and agents. AgentLink News 15 (2004) 14–15
http://www.agentlink.org/newsletter/15/AL-15.pdf.

11. Purvis, M., Nowostawski, M., Cranefield, S., Oliveira, M.: Multi-agent interaction technol-
ogy for peer-to-peer computing in electronic trading environments. In Zhang, C., Guesgen,
H.W., Yeap, W.K., eds.: Proceedings of the 8th Pacific Rim International Conference on Arti-
ficial Intelligence. Volume 3157 of Lecture Notes In Artificial Intelligence., Springer (2004)
625–634

12. van Ditmarsch, H.: Some game theory of Pit. In Zhang, C., Guesgen, H.W., Yeap, W.K.,
eds.: Proceedings of the 8th Pacific Rim International Conference on Artificial Intelligence.
Volume 3157 of Lecture Notes in Artificial Intelligence., Springer (2004) 946–947

13. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press,
Cambridge, MA (1995)

14. Neiger, G., Toueg, S.: Simulating synchronized clocks and common knowledge in distributed
systems. Journal of the ACM 40 (1993) 334–367

15. Object Management Group: UML 2.0 superstructure final adopted specification. Document
ptc/03-08-02, http://www.omg.org/cgi-bin/doc?ptc/2003-08-02 (2003)

16. Verdicchio, M., Colombetti, M.: A logical model of social commitment for agent commu-
nication. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2003), ACM Press (2003) 528–535

272 S. Cranefield

17. Verdicchio, M., Colombetti, M.: A commitment-based communicative act library. In: Pro-
ceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2005), ACM Press (2005) 755–761 (An extended version appears in this
volume).

18. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branching versus
linear time temporal logic. Journal of the ACM 33 (1986) 151–178

19. Jones, A.J.I., Parent, X.: Conventional signalling acts and conversation. In Dignum, F., ed.:
Advances in Agent Communication, International Workshop on Agent Communication Lan-
guages, ACL 2003. Volume 2922 of Lecture Notes in Computer Science., Springer (2004)
1–17

20. Cranefield, S.: A rule language for modelling and monitoring social expectations in multi-
agent systems. In Boissier, O. et al., eds.: Coordination, Organizations, Institutions, and
Norms in Multi-Agent Systems. Volume 3913 of Lecture Notes in Computer Science.,
Springer (2006) 246–258

21. Cheriton, D.R., Skeen, D.: Understanding the limitations of causally and totally ordered
communication. Operating Systems Review 27 (1993) 44–57 (Proceedings of the 14th ACM
Symposium on Operating System Principles).

22. Paurobally, S., Cunningham, J., Jennings, N.R.: Ensuring consistency in the joint beliefs of
interacting agents. In: Proceedings of the 2nd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2003), ACM Press (2003) 662–669

23. Mallya, A.U., Yolum, P., Singh, M.P.: Resolving commitments among autonomous agents.
In Dignum, F., ed.: Advances in Agent Communication, International Workshop on Agent
Communication Languages, ACL 2003. Volume 2922 of Lecture Notes in Computer Sci-
ence., Springer (2004) 166–182

24. Yolum, P., Singh, M.P.: Commitment machines. In Meyer, J.-J., Tambe, M., eds.: Intelligent
Agents VIII: 8th International Workshop, ATAL 2001. Volume 2333 of Lecture Notes in
Computer Science., Springer (2002) 235–247

25. Winikoff, M., Liu, W., Harland, J.: Enhancing commitment machines. In Leite, J., Omicini,
A., Torroni, P., Yolum, P., eds.: Declarative Agent Languages and Technologies II. Volume
3476 of Lecture Notes in Computer Science., Springer (2005) 198–220

A Fault Tolerant Agent Communication Language
for Supporting Web Agent Interaction

Nicola Dragoni, Mauro Gaspari, and Davide Guidi

Dipartimento di Scienze dell’Informazione
University of Bologna, Italy

Abstract. Agent Communication Languages (ACLs) have been developed to
provide a way for agents to communicate with each other supporting coopera-
tion in Multi-Agent Systems. In the past few years many ACLs have been pro-
posed for Multi-Agent Systems and some standards emerged such as FIPA ACL
or KQML. Despite these efforts, an important issue in the research on ACLs is
still open and concerns how these languages should deal with failures of agents
in asynchronous Multi-Agent Systems. The Fault Tolerant ACL presented in this
paper addresses this issue providing knowledge-level fault tolerant communica-
tion primitives. To illustrate the potentiality of our ACL, we show how it can be
effectively used to support fault tolerant Web agent interaction in common Web
Service usage scenarios.

1 Introduction

Communication among software agents is an essential property of agency [1,2]. The
power of agent systems strongly depends on inter-agent communication and as agents
grow more powerful, their need for communication increases [3]. Agent Communi-
cation Languages (ACLs) have been developed to provide adequate inter-agent com-
munication mechanisms. They allow agents to effectively communicate and exchange
knowledge with other agents despite differences in hardware platforms, operating
systems, architectures and programming languages. In the last decade many Agent
Communication Languages have been proposed for Multi-Agent Systems (MAS),
incorporating specific mechanisms of agent communication. Many of these commu-
nication mechanisms are based on speech act theory, which has originally been de-
veloped as a basic model of human communication [4]. The more promising ACLs
that have adopted the speech act theory are KQML [5] and the FIPA ACL [6]. The
goal of these languages is to support high-level, human like, communication between
intelligent agents, exploiting Knowledge-Level features rather than symbol-level ones.
They should support Knowledge-Level programming of MAS [7]: agents should be
concerned with the use, request and supply of knowledge and not with symbol level
issues such as the reliability, synchronization of competing requests, the allocation of
resources or the physical allocation of agents on a network.

Despite these efforts, an important issue in the research on ACLs is still open and
concerns how to deal with possible failures of agents. This issue will become more
and more important in the foreseeable future, being that agents are one of the main

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 273–288, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

274 N. Dragoni, M. Gaspari, and D. Guidi

building blocks of the emerging Semantic Web infrastructure. This depends on the ge-
ographically distributed nature of the Internet and on the asynchronous nature of many
Multi-Agent Systems. Asynchronous Multi-Agent Systems on the Web are prone to the
same failures that can occur in any distributed software system. An agent may become
unavailable suddenly due to various reasons. The agent may die due to unexpected con-
ditions, improper handling of exceptions and other bugs in the agent program or in the
supporting environment. The machine on which the agent process is running may crash
due to hardware and/or software faults or it may become unreachable as a result of a
network partition. Agent communication languages should provide high-level mecha-
nisms to deal with these events maintaining a Knowledge-Level characterization of the
communication primitives.

In this paper we address this issue proposing a Fault Tolerant Agent Communica-
tion Language (FT-ACL) which deals with crash failures of agents. FT-ACL provides
fault-tolerant versions of common conversation performatives and an anonymous inter-
action protocol based on fault-tolerant one-to-many requests for knowledge. Moreover
FT-ACL has been designed for open architectures and deals with a dynamic set of
competences and agents. In the design we give special attention to the Knowledge-
Level features of the ACL primitives as in [7], presenting a set of Knowledge-Level
requirements that FT-ACL satisfies. We present the ACL and we provide a few pro-
gramming examples, among them a fault tolerant solutions to the well known Contract
Net protocol.

To illustrate the potentiality of our ACL, we show how it can be effectively used to
support fault tolerant Web agent interaction in common Web Service usage scenarios.

2 The Design of a Fault Tolerant ACL

The first steps towards the design of our fault tolerant ACL concern the identification
of underlying failure model assumptions. These assumptions are then used in the spec-
ification of the communication primitives and of the related agents’ infrastructure.

We assume a description of agents based on two levels: a Knowledge-Level which fo-
cuses on agents’ competences and on the definition of the ACL primitives that abstracts
from implementation details, and an Architectural-Level which specifies the agents’
infrastructure showing how these competences and primitives are realized. This ap-
proach has several advantages. Firstly, this clear distinction allows to manage agents
as abstract entities which operate at the Knowledge-Level executing high level com-
munication primitives. All the implementation details, such as the interaction of the
architectural components of an agent, synchronization and management of failures, are
handled at the Architectural-Level. Secondly, it is possible to define a set of require-
ments that should be satisfied at the Knowledge-Level and that can be proved at the
Architectural-Level.

Failure Model. The failure model we have adopted is based on a well known classifi-
cation of process failures in distributed systems [8]. Following that model, we say that
an agent is faulty in an execution if its behaviour deviates from that prescribed by the
algorithm it is running; otherwise, it is correct. The failure model we consider is the one

A Fault Tolerant ACL for Supporting Web Agent Interaction 275

that deal with crash failures of agents in a fully asynchronous Multi-Agent System: a
faulty agent is crashed if it stops prematurely and does nothing from that point on. Be-
fore stopping, however, it behaves correctly. Note that considering only crash failures
is a common fault assumption in distributed systems, since several mechanisms can be
used to detect more severe failures and to force a crash in case of detection.

We assume that agents communicate by asynchronous and reliable message passing,
i.e., whenever a message is sent it must be eventually received by the target agent 1. The
asynchrony of the system implies that there is no bound on message delay, clock drift
or the time necessary to execute a step.

2.1 Knowledge-Level Description

Following the style of [7], an agent in the system has a symbolic (logical) name and a
virtual knowledge base (VKB). The communication actions are asynchronous, allowing
buffering of messages and supporting non blocking ask performatives. We also assume
that each communication action contains information in a given knowledge representa-
tion formalism.

Let AACL be a countable set of agent names ranged over by â, b̂, ĉ,. . .. Let VKBâ

be the virtual knowledge base of agent â which can be encoded in any knowledge
representation formalism; w, w′, w′′ will range over VKB. We adopt the following
abstract syntax for communication actions: performative(â, b̂, p) where performative
represents the communication action, â and b̂ are the names of the recipient agent and
of the sender agent respectively, and p is the contents of the message.

Agents react to messages received from other agents and from the user. Each agent
has an associated handler function which maps the received message into the list of
communication actions which must be executed when that message is received. Hâ

will be the handler function of agent â. We assume that the handler function is enclosed
in the VKB of an agent. The handler function is expressed by a set of Prolog-like rules
{r1, r2 . . . , rn} having the form:

handler(performative(â, b̂, p))← body (1)

where body is a sequence of literals h1 ∧ h2 . . . ∧ hn in which each hi can be a com-
munication action, a dynamic primitive or a predicate on the VKB of the agent.

FT-ACL Primitives. FT-ACL includes a set of standard conversation performatives
and supports an anonymous interaction protocol integrated with agent-to-agent com-
munication. This allows an agent to perform a request of knowledge without knowing
the name of the recipient agent and to continue the cooperation using agent-to-agent
communication. In more detail, thanks to the anonymous interaction protocol an agent
is able to:

– ask all agents in the system for some knowledge without knowing the names of the
recipient agents and wait for all or some replies. This can be done by means of a
performative ask-everybody.

1 Reliable message passing can be obtaining simply using TCP.

276 N. Dragoni, M. Gaspari, and D. Guidi

– share its own knowledge with all the agents in the system without knowing their
names. This can be done by means of the performatives register and unregister.

Moreover, FT-ACL supports a dynamic set of agents, allowing the creation of new
agents and the termination of existing ones.

Given the failure model we have adopted, some of the primitives of current ACLs
can fail when one or more target agents crash. Since we assume asynchronous commu-
nication, ACL primitives do not explicitly wait for answers. Thus it is not possible to
detect that the target agent has crashed when a communication action is executed. A
fault-tolerant ACL should provide mechanisms to deal with this eventuality. For exam-
ple an agent that executes an ask primitive should not wait for a response if the target
agent has crashed. To solve this problem we associate a failure continuation to all the
communication primitives that need to deal with a failure of the target agents. Thus FT-
ACL primitives allow agents to specify their reactions to unexpected crashes defining
an adequate failure continuation despite the fact that they are executed asynchronously.

We use a similar mechanism to specify the agent behaviour when it receives an an-
swer to a given request for knowledge. This functionality is usually realized adding
:reply-to and :reply-with parameters to the performatives (as in KQML) or matching
answers with a template of the request (as in [7]). In FT-ACL we use success contin-
uations to specify the agent behaviour when it receives an answer to a given request or
in general when the communication action succeeds. Thus the code that the agent must
execute when it will receive a tell message containing the answer to a given request is
specified together with the request, despite the performative is executed asynchronously.

Table 1. Primitives of FT-ACL

Standard conversation performatives:
ask-one(â, b̂, p)[on answer(body1) + on fail(body2)]
insert(â, b̂, p)[on ack(body1) + on fail(body2)]
tell(â, b̂, p)

One-to-many performative:
ask-everybody(b̂, p)[on answers(body1) + on fail(body2)]

Support for anonymous interaction:
register(b̂, p) unregister(b̂, p)
all-answers(p)

Support for creation and termination of agents:
create(b̂, w) clone(b̂)
bye

The primitives of the language are shown in Table 1. The standard conversation per-
formatives are a small subset of those defined in KQML and allow one-to-one agent
interaction. Executing the performative insert, an agent b̂ tells an agent â to insert p in
its VKB. A success continuation on ack(body1) can be associated with this primitive
and is called when â has inserted p in its VKB and b̂ has received an acknowledge-
ment of this event. As a consequence, the program body1 is executed by b̂. Instead,

A Fault Tolerant ACL for Supporting Web Agent Interaction 277

if p cannot be inserted in â’s VKB because â is crashed, then the failure continuation
on fail(body2) is activated and b̂ executes the program body2. If the success continua-
tion is missing agent b̂ has no way to control that p is in the VKB of agent â. On the
other hand the stronger version of this performative, which include the success contin-
uation, allows us to approximate common knowledge because agent b̂ knows that agent
â has added p in his VKB.

The performative tell is similar to the insert primitive, but is less restrictive: an agent
b̂ simply sends some knowledge p to an agent â without requiring any information about
the success of the performative. At the moment, no continuations can be associated with
this performative, although the realization of a stronger version is possible.

Executing the performative ask-one an agent b̂ asks an agent â for an instantiation
of p which is true in the VKB of â. This performative is associated with a success
continuation on answer(body1) which is called when b̂ receives the reply of the agent
â. As a consequence, the program body1 is executed by b̂. Instead, when â cannot reply
because it is crashed, the failure continuation on fail(body2) is called and b̂ executes the
program body2.

The anonymous interaction protocol is implemented through the ask-everybody one-
to-many performative: an agent which executes it does not need to know the names
of all the agents which are interested in a query. In particular, the performative ask-
everybody allows an agent b̂ to ask all agents in the system which are able to deal with p
for an instantiation of p which is true in their VKB. When b̂ executes ask-everybody, an
ask-one message is sent to all the agents interested in p (except b̂). The performative is
associated with the success continuation on answers(body1), which is called each time
b̂ receives a reply to the multicast query and it can remain active until all the replies
are arrived. Instead, if no agents are able to reply because they are all crashed, then the
failure continuation on fail(body2) is called. This success continuation remains active
until it succeeds, allowing agents to realize different protocols. For example, if b̂ wants
to wait all the answers of the correct agents in the system which are able to deal with p,
then it can do that executing the performative ask-everybody with

body1
def
= body3 ∧ all-answers(p) ∧ body4 (2)

where all-answer(p) is a boolean predicate which returns true if all the correct agents
have already replied about p or false if there is at least one correct agent which has not
yet replied. Therefore each reply to the multicast query of b̂ is handled by the program
body3, which is executed when the success continuation on answers(body1) is called.
Instead the program body4 is executed only when the predicate all-answers(p) returns
true, that is only when the last reply is arrived.

To show another example, consider an agent performative ask-first(b̂, p) which re-
alizes the anonymous interaction protocol with the difference that b̂ waits only for the
first reply it receives and discards all the others. This performative can be easily im-
plemented by the performative ask-everybody simply associating to this performative
the success continuation on answer(body1) instead of on answers(body1). So, when b̂
receives the first reply, the function on answer(body1) is called, the program body1 is
executed and then the function becomes inactive. In this way, all the other replies are
discarded.

278 N. Dragoni, M. Gaspari, and D. Guidi

The multicast request performed by ask-everybody is forwarded to all the agents
on the basis of agents’ declarations. An agent b̂ can declare its competences through
the register(b̂, p) and unregister(b̂, p) primitives. The primitives create, clone and bye
are provided to support an open and dynamic Multi-Agent System: new agents can be
created from other agents in the system (for example to cooperate with the existing
ones) and agents can leave the community when their tasks terminate. These primitives
are well integrated with the anonymous interaction protocol. For example, if d̂ is the
clone of an agent b̂ and d̂ is able to deal with p, then the request ask-everybody(b̂, p)
will also reach agent d̂.

Knowledge-Level Requirements. In [7] several conditions are postulated which re-
quire a careful analysis of the underlying agent architecture in order to ensure Know-
ledge-Level behaviour. We recall these Knowledge-Level Programming Requirements
below extended to deal with crashes of agents (condition (4)).

(1) The programmer should not have to handle physical addresses of agents explicitly.
(2) The programmer should not have to handle communication faults explicitly.
(3) The programmer should not have to handle starvation issues explicitly. A situation

of starvation arises when an agent’s primitive never gets executed despite being
enabled.

(4) The programmer should not have to handle communication deadlocks explicitly.
A communication deadlock situation occurs when two agents try to communicate,
but they do not succeed; for instance because they mutually wait for each other to
answer a query [9] or because an agent waits a reply of a crashed agent forever.

Our ACL has been designed taking into account the above Knowledge-Level require-
ments. For example, condition (4) requires that no communication deadlocks can occur
using FT-ACL. To satisfy this requirement we have designed fault tolerant ask perfor-
matives avoiding agents to wait for replies of crashed agents forever. In Section 2.2 we
will show how it is possible to support fault tolerant and knowledge level communica-
tion and therefore to satisfy the Knowledge-Level requirements.

Example: Specification of a Fault Tolerant Contract Net Protocol. To illustrate the
expressive power of FT-ACL, we give a fault tolerant specification of the Contract
Net Protocol [10], a protocol which allows an agent to distribute tasks among a set of
agents by means of negotiation. We only model a restricted version of the protocol with
a single manager agent â and a set of workers ŝ1, ..., ŝn with n ≥ 1.

Moreover, we define a new agent primitive ask-best which allows a query to be sent
to an agent of a presorted list L of agents. In particular, executing this performative a
knowledge p is sent to the first agent in L. If that agent is not able to reply because it
crashed, then the message is sent to the second agent in L and so on. This performative
can be programmed recursively with FT-ACL as follows:

ask-best([], â, p)[on answer(body1) + on fail(body2)] = body2

ask-best(L, â, p)[on answer(body1) + on fail(body2)] =
ask-one(first(L), â, p)[on answer(body1) + on fail(body3)] and

body3
def
= ask-best(rest(L), â, p)[on answer(body1) + on fail(body2)]

A Fault Tolerant ACL for Supporting Web Agent Interaction 279

A Contract Net can be defined by the set of agents S = {â, ŝ1, ..., ŝn} running in
parallel. The handler functions are defined as follows2:

Hâ: handler(tell(â, Y , startCN))←
ask-everybody(â, bid(task, Z))[on answer(body1) + on fail(body2)]

where

body1
def
= update(bid(content, sender)) ∧

all-answers(bid(task, Z)) ∧
best bid(task, L) ∧
ask-best(L, â, dotask(task, R))[on answer(body3) + on fail(body4)]

body2 = body4
def
= tell(Y, â, ContractNetFailed)

body3
def
= update(done(content))∧

tell(Y, â, ContractNetOK)

Hŝi : handler(ask-one(ŝi, X, bid(T, Z)))←
bid(T, Z) ∧
tell(X, ŝi, bid(T, Z))

handler(ask-one(ŝi, X, dotask(T, R)))←
dotask(T, R) ∧
tell(X, ŝi, dotask(T, R))

The domain-specific predicates used in the handler function are defined as follows:

– update(bid(content, sender)): updates the agent VKB with a new bid (speci-
fied in the message bid(content, sender)).

– best bid(task, L): retrieves from agent VKB a list L of agents which are able to
perform a given task.

– bid(T, Z): stores in the variable Z a bid for the task T.
– dotask(T, R): instantiates variable R with the result of the execution of task T.

When the manager â receives a startCN message, it exploits ask-everybody to per-
form a multicast request for bids on a given task (message bid(task, Z)). Then it starts
waiting for answers. If all the agents ŝi interested in the task have crashed, then body2

is executed and a message of ContractNetFailed is sent to the starter of the protocol
(another agent or the user) notifying the failure. When an agent ŝi receives a query,
it consults its VKB (bid(T, Z) predicate) and replies with its bid (message bid(T, Z)).
When â has received all the replies of the correct agents (that is, when the predicate
all-answers(bid(task, Z)) returns true), then it exploits the fault-tolerant performative
ask-best to send to the agent which has submitted the best bid a request for the execu-
tion of the task. The best bid is retrieved from agent VKB by means of the predicate
best bid. In this interaction succeeds, the protocol ends successfully (message Contract-
NetOK in body3). Otherwise, the request is sent to the second agent with the best bid

2 We use the expressions content and sender to represent the content and the sender of a
message respectively.

280 N. Dragoni, M. Gaspari, and D. Guidi

(in the list L) and so on. Only when all the agents in L dynamically becomes crashed,
the protocol fails and a ContractNetFailed message is sent to the starter of the protocol
(program body4). In all the other cases FT-ACL allows the program to tolerate agent
crashes.

2.2 Architectural-Level Description

We illustrate a generic agent architecture which is able to support FT-ACL. This archi-
tecture allows us to prove that the Knowledge-Level requirements hold at the Architec-
tural Level. A generic agent is composed of three components (Figure 1): a Knowledge-
Base (KB) component, a Facilitator component and a Failure Detector component.

KB−componentFACILITATOR

control
messagesmessages

outgoing

incoming messageswhich need control
incoming messages

DETECTOR
FAILURE

Fig. 1. Generic agent architecture which supports FT-ACL

The KB-component implements the VKB of an agent and its reactive behaviour. It
only deals with Knowledge-Level operations and it is able to answer requests from other
agents. The other two components (Facilitator and Failure Detector) allow knowledge-
level and fault tolerant communication respectively. Since a detailed discussion about
the KB-component is out of the scope of the paper, we prefer to omit it and to focus on
the remaining components.

To realize the anonymous interaction protocol we exploit a distributed facilitator ser-
vice which is hidden at the Knowledge-Level and provides mechanisms for registering
capabilities of agents and delivering messages to the recipient agents. Facilitators are
distributed and encapsulated in the architecture of agents. Therefore each agent has its
own facilitator component which executes a distributed algorithm: it forwards control
information to all the other local facilitators and delivers messages to their destinations.
Howewer, there is no need to have a different physical facilitator for every agent, be-
cause facilitators can also be shared between agents. Having an architecture where the
kb-component and the facilitator are separated entities that work together, leads to a
high level of flexibility. Note that since the facilitators are encapsulated in the agent ar-
chitecture, they are not visible at the Knowledge-Level. Therefore, although facilitators
deal with some low-level issues, we do not violate our Knowledge-Level requirements.

Finally, the failure detector component is needed to support fault tolerant commu-
nication. The concept of unreliable failure detectors for systems with crash failures
has been proposed by Chandra and Toueg in [11]: since impossibility results for asyn-
chronous systems stem from the inherent difficulty of determining whether a process

A Fault Tolerant ACL for Supporting Web Agent Interaction 281

has actually crashed or is only “very slow”, Chandra and Toueg propose to augment
the asynchronous model of computation with a model of a failure detection mechanism
that can make mistakes (and therefore it is unreliable). Our failure detector mechanism
is based on this model and is distributed: each agent has a local failure detector com-
ponent which monitors a subset of the agents in the system (for example, the known
agents) and maintains a list of those that it currently suspects to have crashed. Each
failure detector component can make mistakes by erroneously adding processes to its
list of suspects, i.e., it can suspect that an agent b̂ has crashed even though b̂ is still
running. If this component later believes that suspecting b̂ was a mistake, it can remove
b̂ from its list. Thus, each module may repeatedly add and remove processes from its
list of suspects. All the observations made by a local failure detector are communicated
to the local facilitator, which will take them into account in all agent interactions. The
failure detector component is fundamental to avoid infinite waits for replies of crashed
agents (blocking the agent execution).

Note that this is a generic agent architecture: the failure detector and the facilitator
components are standard for all the agents in a Multi-Agent System, while the KB-
component can be instantiated with different VKBs.

Ensuring Knowledge-Level Requirements. In [12,13] a formal specification of the
agent architecture and of the FT-ACL primitives has been provided. The formal ap-
proach exploits the Algebra of Actors [14], an actor-based algebra which represents a
compromise between standard process algebras and the Actor model [15]. To formally
express the fault tolerance of FT-ACL, an extension of the Algebra of Actors to model
crash failures of actors and their detection has been required [13]. This extension has
allowed to model a failure detector component with the following two properties:

Property 1. If an agent b̂ really crashes, then it is permanently suspected by every
correct agent.

Property 2. If an agent b̂ is correct, then it can be erroneously suspected by any correct
agents.

Property 1 guarantees that if an agent is really crashed, then sooner or later all the
other agents in the system will permanently suspect that agent. Property 2 models the
unreliability of the failure detector component stating that each correct agent can be er-
roneously suspected by any correct agents. Of course, each mistake of a failure detector
can be dynamically corrected.

Given these properties, the formal encoding in the Algebra of Actors has been used
in [12] to prove that the Knowledge-Level requirements discussed in Section 2.1 are
satisfied by our ACL.

Implementation. A prototype of FT-ACL has been realized. Our objective is to pro-
vide add-on primitives for several programming languages that enable the use of agents
in that particular language. We just provide a minimum common platform for agent
communication, that is flexible enough to handle different high level behaviours and
specializations built upon it. The modular aspect of the architecture is fully exploited

282 N. Dragoni, M. Gaspari, and D. Guidi

in the implementation: the facilitator component is built in the Project JXTA 2.0 Super-
Peer Virtual Network [16] using the Java language, while the agent code can be written
in every programming language that has TCP support. Currently Java and Python are
supported, while versions for Prolog and Lisp will be ready soon. The failure module
has a plugin behaviour and it is currently implemented as a simple time-limit algorithm.
While this method could be sufficient for a generic use, it can be overridden with a spe-
cial purpose one coded for a particular context.

3 Exploiting FT-ACL in Common Web Service Usage Scenarios

We exploit FT-ACL to support Web agent interaction in an Agent-based Open Service
Architecture (AOSA) [17]. We support User Agents which provide intelligent support
and advanced services to users and Worker Agents which provide complex problem
solving capabilities with respect to a given application domain. Capabilities of Worker
Agents can be published and shared on the Web, for example by means of a set of well
defined Web Services and an associated ontology. A general view of this architecture is
depicted in Figure 2.

Fig. 2. An Agent-based Open Service Architecture

All the agents in the AOSA communicate each other by means of the FT-ACL prim-
itives which subsume usual service invocation primitives. Also, the discovery facility
is integrated with fault tolerant one-to-many primitives to manage multiple (non serial-
ized) asynchronous responses.

Here we argue that, despite the fact that our ACL only provides a small set of prim-
itives, they can be successfully used to support fault tolerant Web agent interaction in
common Web Service usage scenarios. To illustrate this, we consider some of the W3C
Web Service Usage Scenarios [18] and we show how they can be realized by means of
our ACL. Then in Section 3.1 we show how FT-ACL can be used to realize a Travel
Agent Service.

Scenario: Fire-and-Forget to a Single Receiver (S001)
Scenario definition: a sender wishes to send an unacknowledged message to a single
receiver (e.g. send a stock price update every 15 minutes).

A Fault Tolerant ACL for Supporting Web Agent Interaction 283

Realization: let be â a worker agent which implements the Web Service and b̂ a generic
receiver agent. Then â can send an unacknowledged message to b̂ using the FT-ACL

primitive tell(b̂, â, p), where p is the content of the message.

Scenario: Request/Response (S003)
Scenario definition: two parties wish to conduct electronic business by the exchange of
business documents. The sending party packages one or more documents into a request
message, which is then sent to the receiving party. The receiving party then processes
the message contents and responds to the sending party.
Realization: this is a generic asynchronous messaging scenario which can be easily
realized using the FT-ACL primitives ask-one and tell. Let be â and b̂ the sending
and receiving agent respectively. To send a request to b̂, â can execute ask-one(b̂, â,
p)[on answer(body1) + on fail(body2)]. The receiving agent b̂ can reply to this mes-
sage using tell(â, b̂, p). Note that, thanks to the fault tolerance of the primitive ask-one,
â does not wait b̂’s reply forever, even if b̂ is crashed. If this is the case, the failure con-
tinuation on fail(body2) is executed by â.

Scenario: Request with Acknowledgment (S010)
Scenario definition: a sender wishes to reliably exchange data with a receiver. It wishes
to be notified of the status of the data delivery to the receiver. The status may take the
form of (a) the data has been successfully delivered to the receiver, or (b) some failure
has occurred which prevents the successful delivery to the receiver.
Realization: this scenario can be realized by means of the FT-ACL primitive insert:
to reliably exchange p with b̂, an agent â can execute insert(b̂, â, p)[on ack(body1) +
on fail(body2)]. The continuations are called depending on the result of this communi-
cation: if â has reliably communicated with b̂ then the success continuation
on ack(body1) is called, otherwise if b̂ is crashed the failure continuation on fail(body2)
is called.

Scenario: Third Party Intermediary (S030)
Scenario definition: A blind auction marketplace serves as a broker between buyers
and suppliers. Buyers submit their requirements to the marketplace hub, which broad-
casts this information to multiple suppliers. Suppliers respond to the marketplace hub
where the information is logged and ultimately delivered to the buyer.
Realization: let be â an agent buyer, b̂ an agent broker and S = {ŝ1, ..., ŝn|n ≥ 1} a
set of n agent suppliers. Firstly, agent â submits its requirements to agent b̂ using the
primitive ask-one(b̂, â, p)[on answer(body1) + on fail(body2)], where p is the description
of the requirements. When b̂ receives this request, it forwards p to the set Sp ⊆ S of
agent suppliers which are able to provide p. This is a generic case of content-based
anonymous interaction and can be realized by means of the primitive ask-everybody(b̂,
p)[on answers(body1) + on fail(body2)]. Indeed, the set Sp of agent suppliers depends
on the content p of the interaction and it is dynamically retrieved at run time. Suppliers
can dynamically register and unregister their competences by means of the primitives
register and unregister respectively. When an agent supplier ŝip ∈ Sp, 1 ≤ ip ≤ n,

receives b̂’s request it replies using tell(b̂, ŝip , psi). Observe that, thanks to the fault

284 N. Dragoni, M. Gaspari, and D. Guidi

tolerant primitive ask-everybody, b̂ does not wait for replies of crashed suppliers for-
ever, but instead sooneror later itwillbeable to reply to theagentbuyer âusing tell(â, b̂, p’).

Scenario: Registry based Discovery (S601)
Scenario definition: Agents use a registry to discover Web Services and the interface
specifications.
Realization: in our architecture the registry of Web Service specifications is distributed
in the peer-to-peer network of facilitators. Each agent can dynamically update its own
competences making them available to other agents by means of the primitives reg-
ister and unregister. To discover a service agents can use the FT-ACL one-to-many
primitives ask-everybody simply specifying the knowledge p to be discovered.

3.1 Design of a Semantic Travel Agent Service

In this example we illustrate how FT-ACL can be used in our AOSA to realize a Travel
Agent Service. The purpose of the case study is to show how Knowledge-Level agents
can effectively communicate to realize distributed applications exploiting existing Web
Services in a context where failures are possible.

Scenario. In this scenario, a user gets the location of a Travel Agent Service (TAS) and
submits to it a destination and some dates. The TAS inquiries airlines about deals and
presents them to the user. We extend this scenario supporting several TASs which are
dynamically retrieved. In this way the user can choose among several solutions provided
by different TASs (which can have different intelligent behaviours).

Fig. 3. Travel Agent Service Case Study

Realization. Figure 3 shows how this scenario can be realized by means of our OSA.
User agents act as interface between users and the system, allowing users to specify a
query and displaying the result. A TAS is implemented by a Worker agent which is able
to compose available Airline Web Services (for example using AI planning techniques
[19]) and to invoke the ones which are needed to solve a given query. For the sake of
simplicity, we assume the existence of an ontology called TAS Ontology which formally

A Fault Tolerant ACL for Supporting Web Agent Interaction 285

defines all the terms related to the case study.3 To load the ontology, an agent executes
the load routine of our AOSA specifying the URI of the ontology:

load(Ontology_URI)

New TASs can be dynamically added or removed in/from the system by means of
the FT-ACL primitives register and unregister respectively. For example, the following
code allows an agent to register itself as a new TAS in the system (the special term self
represents the agent which executes a primitive):

register(self, Travel_Agent_Service, Travel_Agent_Code)

Let’s suppose that a user wants to get the best combination of flights from Bologna
to Tampa which satisfies his needs (prices, number of transfer airports, etc...). Let
d start and d ret be the departure and return dates of the flight respectively. To
dynamically retrieve all the TASs, the User agent simply executes:

ask-everybody(self, TAS(BLG,TMP,d_start,d_ret))[on_answer(
find_best) + on_fail(handle_fail)]

where find best and handle fail are the functions which define the success and
failure continuation respectively. For example, the function find best could store all
the replies of TASs and select the best one according to the user’s preferences.

Thanks to the primitive ask-everybody, the query is sent to all the Worker agents
actually registered in the system as TASs (that is, all the Worker agents which have
registered the service Travel Agent Service). When a TAS receives a request,
it creates a plan composing the Web Services it knows and then it executes the plan
invoking the related Web Services. Note that this is possible thanks to the agentification
of the Airline Web Services: represented as agents’ competences, Web Services can be
composed using AI planning techniques to solve the Worker agent’s goal. After this
step, the TAS replies to the User agent executing a tell primitive:

tell(UserAgentName, self, Query_solution)

Worker agents invoke Web Services using the ask-one primitive:

ask-one(WSName, self, par_flight)[on_answer(store_flight)
+ on_fail(store_fail)]

where par flight represents the parameters of the flight, store flight is the
success continuation (which stores in the Worker agent VKB the result of the Web

3 It would not be difficult to define such ontology, for example using OWL [20], but it would be
outside the scope of this case study.

286 N. Dragoni, M. Gaspari, and D. Guidi

Service execution) and store fail is the failure continuation. Note the importance
of the failure continuation. If a Web Service in a Worker agent plan is not available, then
the Worker agent must be able to calculate a new plan which does not have that Web
Service. That is, the Worker agents must not wait replies forever. This is a fundamental
property which guarantees liveness and the impossibility of communication deadlock.

When all the available TASs have replied4, then the User agent selects the best so-
lution according to the users’ needs (success continuation find best). Instead, if no
TASs are available then the failure continuation handle fail is called and executed.
Note that all the agent behaviours can be programmed in a fault-tolerant way specifying
the success and failure continuations for each interaction.

4 Related Work and Conclusion

The goal of developing robust multi-agent systems has been addressed in the literature
in the last years [21,22,23,24] and some of the ideas presented by these authors are
similar to the solution we propose in our approach. For example the idea of introducing
sentinels to intercept exceptions [23] is similar to our facilitator level. The main dif-
ference among the two approaches is that facilitators and sentinels operate at different
levels: while sentinels may still operate at Knowledge-Level, facilitators are specialized
components which are directly designed to operate at a lower level. This low level char-
acterization of facilitators (which aims to hide most low level details at the agent level)
is fundamental to support Knowledge-Level agent programming [7]. The novelty of our
approach is to embed some of the failure detection mechanisms in the ACL maintaining
a Knowledge-Level characterization. On one hand we define a set of high-level com-
munication primitives which are fault tolerant. On the other hand we provide a minimal
interface which allows agents to deal with crash failures whenever this is necessary.

The main advantage of FT-ACL with respect to current ACLs such as KQML [5]
and the FIPA ACL [6] is that we provide a set of fault-tolerant communication primi-
tives which are well integrated at Knowledge-Level. Most of the current ACLs do not
provide a clear distinction between conversation and network primitives, as these are
often considered at the same level. Moreover, failures crashes and fault tolerance are
often not present in the specifications. However, it is important to highlight that the
main goal of FT-ACL is not to replace FIPA ACL or KQML or to become a new FIPA
compliant ACL. FT-ACL primitives represent just a subset of FIPA ACL/KQML prim-
itives and at the moment these languages are more mature. However, despite FT-ACL

has a small set of primitives, it has been designed and implemented to overcome some
important limitations of current ACLs, such as the integration of one-to-many performa-
tives or the ability to support fault-tolerant communication in open and dynamic Multi-
Agent Systems. Therefore, the main goal of our research in inter-agent communication
is to design and realize a core ACL which satisfies a set of well-defined Knowledge-
Level programming requirements addressing fundamental issues such as fault tolerance
and anonymous interaction. From this point of view, FT-ACL can be considered an

4 Note that this agent behaviour (to automatically detect and wait all the replies concerning a
task despite crashes of agents) is supported by our architecture.

A Fault Tolerant ACL for Supporting Web Agent Interaction 287

enhancement compared with current ACLs and, once extended with more primitives, it
could be used as a valid alternative for building real Multi-Agent Systems.

Finally, we have also shown that FT-ACL can be used for inter-agent communi-
cation as well as for Web Service invocation. This feature has been illustrated show-
ing how FT-ACL can support many common Web services usage scenarios and by
means of a Travel Agent Service case study. This highlights a further advantage of our
approach which successfully integrates different issues, such as high-level inter-agent
communication and fault tolerance, in a Web based infrastructure maintaining a clean
design of the architecture and a Knowledge-Level characterization.

References

1. Chaib-draa, B., Dignum, F.: Trends in agent communication language. Computational Intel-
ligence 2(5) (2002)

2. Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE Computer
31(12) (1998) 40–47

3. Luck, M., McBurney, P., Preist, C.: Manifesto for Agent Technology: Towards Next Gener-
ation Computing. Autonomous Agents and Multi-Agent Systems 9(3) (2004) 203–252

4. Searle, J.: Speech Acts. Cambridge University Press (1969)
5. Finin, T., Labrou, Y., Mayfield, J.: KQML as an Agent Communication Language. In:

Software Agents. MIT Press (1997) 291–316
6. FIPA: Communicative Act Library Specification. Technical Report SC00037J, Foundation

for Intelligent Physical Agents (2002)
7. Gaspari, M.: Concurrency and Knowledge-Level Communication in Agent Languages. Ar-

tificial Intelligence 105(1-2) (1998) 1–45
8. Mullender, S.: Distributed Systems. ADDISON-WESLEY (1993)
9. Singhal, M.: Deadlock Detection in Distributed Systems. IEEE Computer 22(11) (1989)

37–48
10. Smith, R.G.: The Contract Net Protocol: High Level Communication and Control in a Dis-

tributed Problem Solver . IEEE Transactions on Computers 29(12) (1980) 1104–1113
11. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Jour-

nal of the ACM 43(2) (1996) 225–267
12. Dragoni, N., Gaspari, M.: Fault Tolerant Knowledge Level Communication in Open Asyn-

chronous Multi-Agent Systems. Technical Report UBLCS-2005-10, Department of Com-
puter Science, University of Bologna, ITALY (2005)

13. Dragoni, N., Gaspari, M.: An Object Based Algebra for Specifying A Fault Tolerant Software
Architecture. Journal of Logic and Algebraic Programming (JLAP) 63 (2005) 271–297

14. Gaspari, M., Zavattaro, G.: An Algebra of Actors. In: Proceedings of IFIP Conference on
Formal Methods for Open Object-based Distributed Systems (FMOODS), Kluwer Academic
Publisher (1999) 3–18

15. Agha, G.: Actors: a Model of Concurrent Computation in Distributed Systems. MIT Press
(1986)

16. Traversat, B., Arora, A., Abdelaziz, M., Duigou, M., Haywood, C., Hugly, J.C., Pouy-
oul, E., Yeager, B.: Project JXTA 2.0 Super-Peer Virtual Network. Available online:
http://www.jxta.org/ (2003)

17. Dragoni, N., Gaspari, M., Guidi, D.: Integrating Knowledge-Level Agents in the (Semantic)
Web: an Agent-based Open Service Architecture. In Proc. of the 18th International FLAIRS
Conference, AAAI Press (2005)

288 N. Dragoni, M. Gaspari, and D. Guidi

18. He, H., Haas, H., Orchard, D.: Web Services Architecture Usage Scenarios. Technical Report
NOTE-ws-arch-scenarios-20040211, W3C (2004)

19. Carman, M., Serafini, L., Traverso, P.: Web Service Composition as Planning. In: Proceed-
ings of ICAPS Workshop on Planning for Web Services, Trento, Italy (2003)

20. W3C Web-Ontology Working Group: OWL Web Ontology Language Guide. (10 February
2004) W3C Recommendation.

21. Shah, N., Chao, K., Anane, R., Godwin, N.: A Flexible Approach to Exception Handling
in Open Multi-agent Systems. In: Proceedings of the 2nd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-03) Challenges’03 Workshop.
(2003) 7–10

22. Parsons, S., Klein, M.: Towards Robust Multi-Agent Systems: Handling Communication Ex-
ceptions in Double Auctions. In: 3rd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2004), 19-23 August 2004, New York, NY, USA, IEEE
Computer Society (2004) 1482–1483

23. Klein, M., Rodrguez-Aguilar, J.A., Dellarocas, C.: Using Domain-Independent Exception
Handling Services to Enable Robust Open Multi-Agent Systems: The Case of Agent Death.
Autonomous Agents and Multi-Agent Systems 7(1-2) (2003) 179–189

24. Kumar, S., Cohen, P., Levesque, H.: The Adaptive Agent Architecture: Achieving Fault-
Tolerance Using Persistent Broker Teams. In: Proceedings of the Fourth International Con-
ference on MultiAgent Systems (ICMAS-2000), Washington, DC, USA, IEEE Computer
Society (2000) 159

Experiments in Selective Overhearing of Hierarchical
Organizations�

Gery Gutnik and Gal A. Kaminka��

The MAVERICK Group,
Computer Science Department, Bar-Ilan University, Israel

{gutnikg, galk}@cs.biu.ac.il

Abstract. Lately, overhearing has gained interest in monitoring multi-agent set-
tings. Previous investigations provided an extensive set of techniques using over-
hearing. However, most previous investigations rely on a problematic assumption
that all inter-agent communications can be overheard. In the real-world settings,
it is reasonable to assume that the available overhearing resources will be essen-
tially limited. Thus, overhearing targets should be carefully chosen. We provide
a theoretical and empirical study of selective overhearing. In particular, we focus
on overhearing hierarchical organizations that are highly popular in the real-world
settings. This paper first presents a theoretical approach for modelling overhear-
ing in hierarchical organizations . Then, based on the proposed model, we present
experiments in simulating conversations in hierarchical organizations, and empir-
ically examine a set of overhearing strategies particularly suited for such organi-
zations. Based on these extensive experiments, we are able to determine efficient
overhearing strategies and isolate the parameters influencing their behavior.

1 Introduction

Recent multi-agent systems (MAS) are often built applying an open, distributed ar-
chitecture. These systems involve various challenges of monitoring geographically-
distributed and independently-built multiple agents. Monitoring by overhearing [1] has
been found to provide a powerful monitoring technique particularly suited for open dis-
tributed MAS settings. According to this technique, an overhearing agent cooperatively
monitors the exchanged communications between application agents. The overhearing
agent uses these observed communications to independently assemble and infer the
monitoring information on the corresponding MAS settings.

Previous investigations on overhearing have demonstrated a range of overhearing
techniques. Novick and Ward [2] modelled overhearing by pilots that seek to maintain
their own situational awareness. Kaminka et al. [1] developed a plan-recognition ap-
proach to overhearing in order to monitor the state of distributed agent teams. Aielo
et al. [3] and Bussetta et al. [4,5] investigated an architecture that enables overhearing,
so that domain experts can provide advice to problem-solving agents when necessary.
Legras [6] examined the use of overhearing for maintaining organizational awareness.

� This research was supported in part by BSF Grant #2002401.
�� Gal Kaminka is also affiliated with Carnegie Mellon University.

F. Dignum, R. van Eijk, and R. Flores (Eds.): AC 2005/2006, LNAI 3859, pp. 289–302, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

290 G. Gutnik and G.A. Kaminka

Rossi and Busetta [7] applied overhearing to monitor state transitions in multi-agent
settings and recognize changes in agents’ social roles. Recent investigations proposed a
formal approach to overhearing: our work in [8] introduced a theoretical model to over-
hearing and applied it for conversation recognition, while Platon et al. [9] addressed
design patterns for overhearing.

Although these previous investigations provided an extensive set of overhearing tech-
niques, most rely on the ability of an overhearing agent to overhear all inter-agent
communications. However, this assumption can be challenged both in the real-world
settings and in the majority of multi-agent applications (particularly, large-scale MAS).
Instead, we can reasonably assume that overhearing resources are essentially limited.
Under the restriction of limited overhearing resources, a single overhearing agent or a
team of overhearers will be able to overhear only a subset of conversations committed
in monitored organizations. Consequently, efficient allocation of overhearing resources,
i.e. selectivity in which agents will be overheard, is an important aspect of overhearing.

We propose a theoretical and empirical study of limited-resource overhearing in hier-
archical organizations. These hierarchical organizational-structures are often associated
with corporate and military organizations, which are widely spread in the real-world set-
tings. This paper presents a model for overhearing hierarchical organizations providing
a definition for (i) specification of conversations’ characteristics in such organizations
and (ii) overhearing strategies suitable for these settings. Based on the proposed model,
we performed an extensive set of experiments simulating overhearing in pyramidal-
hierarchical organizations. In these experiments, various centralistic overhearing strate-
gies have been examined qualitatively and quantitatively.

Specifically, two overhearing strategies have been found to be efficient. The effi-
ciency of overhearing strategies was measured as a percentage of optimal overhearing
strategy, which can be calculated post factum (see Section 3.2). The first overhear-
ing strategy addresses overhearing most important agents in multi-agent settings. This
overhearing strategy assumes overhearing highly-valuable communications to be the
key to efficiency. On the other hand, the second overhearing strategy proposes to over-
hear agents that are less-important, but highly-communicative (i.e. involved in a large
number of conversations). Here, its efficiency is based on gathering large amounts of
information.

Analyzing these strategies in various configurations, we come to some interesting
conclusions. The first overhearing strategy behaves as a parabolic curve with a long
tail as communication activity level increases, while the second strategy maintains its
linearity. Therefore, monitoring organizations, in some conditions, it is more efficient
to overhear few highly-valuable conversations, while in other conditions, it is more
efficient to overhear many less-valuable conversations and, thus, gather information on
monitored settings due to the quantity of overheard information. In our experiments,
we have also been able to examine the various factors that influence the shape and
performance of these two strategies.

This paper is organized as follows. The next section presents a brief discussion of
previous investigations providing the initial motivation for our work. In Section 3,
we discuss in details the proposed model for overhearing hierarchical organizations,

Experiments in Selective Overhearing of Hierarchical Organizations 291

whereas Section 4 describes the set of performed experiments and their results. Sec-
tion 5 concludes and presents directions for future research.

2 Background and Motivation

Work by Nowick and Ward [2] shows an early use of cooperative overhearing to model
interactions between pilots and air-traffic controllers. In this model, pilots maintain mu-
tuality of information with the controller not only by dialogue, but also by listening
to the conversations of other pilots. While each pilot and controller act cooperatively,
the other pilots are not necessarily collaborating on a joint task. Rather, they use over-
hearing to maintain their situational awareness out of their own self-interest. Similarly,
Legras [6] uses overhearing as a method that allows agents to maintain organizational
knowledge. In this approach, agents broadcast changes in their organizational member-
ships. Other agents use this information to maintain organizational awareness.

In contrast, investigations in [3,4,5] describe collaborative settings in which the over-
hearing agent may act on overheard messages to assist the communicating agents. The
settings they describe involve communicating agents, who are engaged in problem solv-
ing. An overhearing agent monitors their conversations, and offers expert assistance if
necessary.

Kaminka et al. [1] used plan recognition in overhearing a distributed team of agents,
which are collaborating to carry out a specific task. Knowing the plan of this task and its
steps, the monitor uses overheard messages as clues for inferring the state of different
team-members. The authors presented a scalable probabilistic representation (together
with associated algorithms) supporting such inference, and showed that knowledge of
the conversations that take place facilitates a significant boost in accuracy.

Rossi and Busetta [7] applied overhearing to identify social roles in multi-agent set-
tings. Initially, the authors used overhearing to monitor changes in MAS settings caused
by transition from one state to another. Using a set of predefined transition rules, the
monitor relies on overheard messages to follow the progress of MAS application and to
determine possible faults and inconsistency. Then, the information gathered from over-
hearing is used to identify agent’s social roles. These social roles may change over time.
Thus, the monitor uses overheard messages, together with its knowledge of MAS status,
to determine social roles of communicating agents at various time intervals based on a
predefined set of social rules.

Finally investigations in [8,9] proposed a formal approach to overhearing. Our work
in [8] introduced a comprehensive theoretical model for overhearing and applied it to
one of the key steps in overhearing–conversationrecognition, i.e. identifying the conver-
sation that took place given a set of overheard messages. We developed a family of algo-
rithms to this problem and showed their relative appropriateness for large-scale settings
by analyzing their complexity. Platon et al. [9] addressed overhearing in terms of its ar-
chitecture and implementation. Here, overhearing is referred as a design pattern and its
various types are distinguished. In addition, the authors propose a set of implementation
methods for overhearing and compare their relative strengths and weaknesses.

Most previous work assumes that all inter-agent communications can be overheard.
However, this assumption is challenged in the real-world settings and in particular in

292 G. Gutnik and G.A. Kaminka

large-scale multi-agent systems. In such settings, it is reasonable to assume that the
overhearing resources are essentially limited. Therefore, it is important to be efficient,
i.e. selective about which agents will be overheard, while others will not.

We focus on selective overhearing of organizations with hierarchical structure. These
organizations are highly popular in real-world settings (e.g. corporate and military or-
ganizations). In such organizations, the importance of conversations varies with respect
to organizational roles of their participants. Thus, our initial overhearing strategy has
been to overhear agents with most important organizational roles. However, as we show
later in the paper, in some conditions, this overhearing strategy performs poorly.

Therefore, the strategy of overhearing agents of most important organizational roles
is insufficient. In this paper, we empirically determine a set of overhearing strategies that
can be applied to efficiently overhear hierarchical organizations under the restriction of
limited overhearing resources.

3 Overhearing in Hierarchical Organizations

Overhearing extracts information from conversation systems [8]–the set of conversa-
tions generated by an organization. Thus, conversation systems change based on the
type of organization that is being overheard, and, in turn, overhearing agents must adapt
their overhearing strategies to match the conversation system.

This section first describes the conversation systems expected to be generated in
hierarchical organizations (Section 3.1). It then continues by proposing a number of
overhearing strategies for such organizations (Section 3.2).

3.1 Modelling Conversation Systems

We define a conversation system of hierarchical organizations as a tuple (L, A, P, Λ,
I, C). Some of these parameters have already been defined in [8], while others extend
the previously proposed model. All of these are defined below.

Hierarchy Levels (L). The notion of hierarchy levels is an extension of our previous
model. It is used to determine the relative value of various organizational roles. Thus,
one agent is considered to be more valuable (in terms of conversations it commits)
than another agent if and only if its hierarchy level is higher than the hierarchy level of
the other agent. For each hierarchy level, we define a value range associated with it, i.e
νrange = [νmin(l), νmax(l)], ∀l ∈ L. It is used to define relation between two hierarchy
levels. Thus, we will say that one hierarchy level is higher than another hierarchy level if
and only if its minimum value is greater than the maximum value of the other hierarchy
level, i.e. l1 > l2 where l1, l2 ∈ L⇔ νmin(l1) > νmax(l2).

Agents (A). A indicates the set of communicating agents in organization. As already
mentioned, each communicating agent is associated with a hierarchy level, ∀a ∈ A,
∃l ∈ L such that L(a) = l. The distribution of agents among hierarchy levels de-
termines the type of hierarchical structure in organization. For instance, in pyramidal-
hierarchical structure, discussed in this paper (see section 4.1), the number of agents in
higher hierarchal levels is always smaller than in the lower ones.

Experiments in Selective Overhearing of Hierarchical Organizations 293

Conversation Protocols (P). P indicates the set of conversation protocols used in a
conversation system. A detailed definition of conversation protocol p ∈ P can be found
in [8]. Here, we refer only to one of its components–a set of its conversation roles,
denoted by R(p). For each role, we define the value of its implementation in a given
conversation protocol as ν(r), ∀r ∈ R(p).

Conversation Topics (Λ). Λ denotes the set of conversation topics. Each topic has a
relative value indicated as ν(λ), ∀λ ∈ Λ. This value associates each conversation topic
to a corresponding hierarchy level, i.e. ∀λ ∈ Λ ∃l ∈ L such that νmin(l) ≤ ν(λ) ≤
νmax(l).

Intervals (I). An interval is a time period within the lifetime of a multi-agent sys-
tem. Thus, we define I as follows: I = {[t1, t2]| t1, t2 time stamps, t1 ≥ 0, t2 ≤
lifetime, t1 ≤ t2}.

Conversations (C). We define a conversation as a group of agents g ∈ 2A implementing
a conversation protocol p ∈ P on a conversation topic λ ∈ Λ within a time interval
i ∈ I . Thus, the C set can be formulated as

C ⊆ {(p, g, λ, i)|p ∈ P, g ∈ 2A, λ ∈ Λ, i ∈ I}

Using this definitions, we can formulate the value of conversation for a certain com-
municating agent as ν(c, a) = ν(λ) ⊕ ν(r) where c = (p, g, λ, i), a ∈ g and r =
R(a, c) ∈ R(p). Meaning that the value of conversation c for agent a (participating in
it) is a function of conversation topic λ and role r (within conversation protocol p) that
agent a implements. The information value of conversations distinguishes between the
more important conversations and the less important ones.

A set of conversations (C), generated in hierarchical organizations, has the following
characteristics:

– Conversations Distribution. Conversations distribution depends on the distribution
of agents among various hierarchy levels. For instance, in pyramidal-hierarchical
organizations, lower levels are the "working" levels. Thus, most conversations are
held between agents in lower hierarchical levels.

– Conversation Topics. Agents communicate on topics within the scope of their orga-
nizational responsibility. Thus, agents mainly communicate on conversation topics
associated with their hierarchy level or topics relatively close to it. As a result,
agents of higher hierarchy levels commit conversations on more valuable topics.

– Conversation Groups. Agents communicate mostly with their peers, subordinates
and their close superiors. Thus, most communications are held between agents of
the same hierarchy levels or between agents in relatively close hierarchy levels.

– Conversation Roles. Mostly, agents of higher hierarchical levels implement higher-
value roles in conversation protocols.

3.2 Modelling Overhearing

In this section, we present our model of overhearing organizations. Section 3.2 intro-
duces overhearing strategies for a single overhearing agent and for teams of overhearers,

294 G. Gutnik and G.A. Kaminka

whereas section 3.2 presents an evaluation technique to compare various overhearing
strategies.

Overhearing Strategies. A single overhearing agent, acting in a cooperative envi-
ronment, assumes some knowledge on monitored organization. An overhearing agent
usually knows what agents communicate in these settings, which protocols are being
used, on which topics the conversations are being held and etc. On the other hand, some
information remains unknown. For instance, it does not necessarily know the complete
list of conversations being held in organization at any given time.

We assume that a single overhearing agent is able to overhear all conversations held
by its target agent, i.e. the communicating agent being overheard. Of course, only con-
versations within overhearing time interval, the time period in which the communicating
agent is targeted, are being overheard.

The overhearing agent performs conversation recognition [8] for each conversation.
Initially, the overhearing agent does not know the agents, protocol and topic associated
with an overheard conversation. Only as the time progresses, the overhearer is able to
recognize the various conversation parameters. The overhearing agent starts overhear-
ing assuming that the conversation protocol and topic can be any of the p ∈ P and
λ ∈ Λ respectively. Gradually, the overhearer is able to disqualify inappropriate proto-
cols and topics until it determines the correct protocol and topic. This information, at its
different stages, can be used to determine whether to continue to overhear the current
agent or to find another target.

Since a single overhearing agent can only hear a small subset of conversations in
a conversation system, multiple overhearing agents can be deployed to maximize cov-
erage of the overheard conversations. However, the available overhearing resources,
i.e. the number of overhearing agents, are limited. Thus, overhearing targets should be
carefully chosen in order to increase the total efficiency of overhearing group.

The systematic targeting of communicating agents by an overhearing team is called
overhearing strategy. Various strategies can be proposed: centralized vs. distributed, full
vs. limited knowledge of conversation systems, various levels of collaboration between
overhearing agents, etc.

We focus on centralized overhearing strategies with full information disclosure and
leave investigation of other strategies for future work. Here, a central agent has knowl-
edge of the conversation system parameters (e.g. agents’ hierarchy levels, conversing
agents at time t, etc.). Using this information, it directs the choice of target agents for
each overhearing agent in overhearing group.

Comparing Overhearing Strategies. Each overhearing strategy may choose to over-
hear different target agents, and, thus, overhears different conversations. Consequently,
some strategies may perform well while others perform poorly. Furthermore, the same
overhearing strategy may vary in its performance under different configurations of con-
versation systems and overhearing resources.

Thus, contrasting overhearing strategies is important in order to determine which
strategy should be applied under certain conditions. The overhearing strategies are eval-
uated in three steps. First, the optimal overhearing value, also referred as optimum, is
calculated (Algorithm 1). Optimum, denoted as νoptimum, is the value of most efficient

Experiments in Selective Overhearing of Hierarchical Organizations 295

overhearing possible, i.e. at each time unit t overhearing the communicating agents
with highest conversation values. Then, we use Algorithm 2 to calculate the strategy’s
overhearing value, denoted νgroup, which is the accumulative value of all overheard
conversations using the specific overhearing strategy. Finally, the overhearing strategy
is evaluated as a percentage of optimum, (νgroup/νoptimum) ∗ 100. Using this evalua-
tion, we compare various overhearing strategies.

Algorithm 1 introduces the calculation of optimal overhearing value. For each time
unit t (lines 2–8), optimum at time t is calculated and accumulated in νoptimum (line
7). The optimum at time t for k overhearing agents is defined as a sum of conversation
values of k agents with the highest conversation values at time t (lines 6–7). A conver-
sation value of agent a ∈ A at time t–denoted as νt(a)–is the accumulative value of its
conversations at time t (lines 4–5). This algorithm makes a simplifying assumption on
changing overhearing targets. It assumes that a change of overhearing target by an over-
hearing agent is instantaneous and has no cost. This assumption is also used in other
calculations.

Algorithm 1. Calculate Optimal Overhearing Value
1: νoptimum ← 0
2: for all t such that 0 ≤ t ≤ lifetime do
3: νt(a)← 0 ∀a, a ∈ A
4: for all c = (p, g, λ, i) such that c ∈ Ct do
5: νt(a)← νt(a) + νt(c, a) ∀a, a ∈ g
6: At,k ← k agents in A with highest νt(a) values
7: νoptimum ← νoptimum + νt(a) ∀a, a ∈ At,k

8: return νoptimum

Algorithm 2 presents the calculation of overhearing value for a team of k overhearers
implementing specific strategy. Again, for each time unit t (lines 2–6), we calculate its
overhearing value at time t and accumulate it in νgroup (line 6). An overhearing value
at time t is defined as an accumulative conversation value of overheard agents. Thus, in
lines 3–6 , for each overheard conversation, in a set of overheard conversations at time t
(OCt), its conversation value is accumulated for each participating agent that has been
overheard (the OAt parameter indicates the set of agents overheard at time t).

Algorithm 2. Calculate Group Overhearing Value
1: νgroup ← 0
2: for all t such that 0 ≤ t ≤ lifetime do
3: OCt ← overheard conversations at time t
4: OAt ← k overheard agents at time t
5: for all c = (p, g, λ, i) such that c ∈ OCt do
6: νgroup ← νgroup + νt(c, a) ∀a, a ∈ g ∧ a ∈ OAt

7: return νgroup

296 G. Gutnik and G.A. Kaminka

4 Experiments

This section presents an empirical analysis of limited-resource overhearing in
pyramidal-hierarchical organizations. Section 4.1 defines the experimental settings,
while Section 4.2 analyzes the results of the experiments.

4.1 Experimental Settings

The experimental settings have been defined to simulate communications in pyramidal-
hierarchical organizations. The number of communicating agents, i.e. |A|, was set to 50
simulating relatively small organizations. These simulated settings have been defined as
highly hierarchical: the number of hierarchy levels (|L|) was set to 7. The value range
for each hierarchy level was calculated as a relative portion of [1,100], which was di-
vided equally ∀l ∈ L. Agents were hyperbolically distributed among different hierarchy
levels to simulate pyramidal-hierarchical structure. Thus, the number of agents, related
to a hierarchy level, becomes smaller as hierarchy levels get higher.

The number of topics, i.e. |Λ|, has been set to 80. This value reflects our intuition
that each agent has at least one conversation topic under its direct responsibility. The
additional topics are generally common to all communicating agents. Each topic has
been randomly given a value between 1 and 100 associating it with a hierarchy level.

The number of protocols was defined as 25, almost twice the number of interaction
protocols specified by FIPA [10], simulating a diversity of interactions that are possible
in organization. The duration of each protocol has been randomly set to a value within
{5,10,15,20,25}, whereas the lifetime of entire conversation system was determined
to 1000. For each protocol, two roles have been defined. Their values were randomly
set to one of the following combinations: {50,50}, {67,33}, {75,25} and {99,1}. In
this manner, we simulate differences in the importance of roles within the conversa-
tion. Finally, the conversation value is calculated using an accumulative function, i.e.
ν(c, a) = ν(λ)+ν(r) (see Section 3.1). Thus, conversation values range from 1 to 199.

In the experiments below, we generated conversation systems and simulated their
dynamic execution. These conversation systems have been statistically generated sup-
porting the characteristics of hierarchical organizations described in Section 3.1. In
each conversation system, a constant level of conversations was maintained at all time
throughout the lifetime of the conversation system.

Addressing certain configuration, various overhearing strategies can be compared
as shown in Section 3.2. In Section 4.2, we compare proposed overhearing strategies
using their evaluation values (as a percentage of optimum) in different configurations
of activity levels, overhearing resources and value of information. Each evaluation is
performed based on an average of 50 independent experiments committed with respect
to corresponding configuration.

4.2 Results

Centralistic Overhearing Strategies. Our initial hypothesis has been that the most
successful overhearing in pyramidal-hierarchical organizations (under the restriction of
selectivity) can be achieved by overhearing conversations committed by most important

Experiments in Selective Overhearing of Hierarchical Organizations 297

agents. The main intuition behind this hypothesis is that most important agents commit
the most valuable conversations.

Thus, our first overhearing strategy, called MostImportantStatic, was defined to im-
plement this hypothesis. According to this strategy, k overhearing agents were set to
overhear the k most important agents (in terms of their hierarchy level). To examine our
argument, we defined an additional overhearing strategy, called RandomStatic, to serve
as a control strategy. Here, k overhearers were set to target k random agents chosen at
the beginning of the experiment.

The comparison of these two strategies is presented in Figure 1. The values on the
X-axe show the activity levels of the examined conversation systems, i.e. the ratio be-
tween the number of conversations at time t (|Ct|) and the number of communicating
agents (|A|), whereas the Y-axe determines the performance of compared strategies as
a percentage of optimum. In results shown in Figure 1, the overhearing coverage, de-
fined as the ratio between the number of overhearers and the number of communicating
agents–k/|A|, was set to 30%. We can clearly see that MostImportantStatic strategy
has been more efficient. However, both strategies perform poorly for low and medium
activity levels (1%-100%)—maximum up to 70% and 40% of optimum respectively.

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Random Static
Most Important Static
Random Active

Fig. 1. Initial Overhearing Strategies

Analyzing this poor performance, we came to the conclusion that the main drawback
of these strategies is that their overhearing targets are determined statically. Thus, in
case that the overheard agent is idle (i.e. committing no conversations), overhearing it
has zero-value. In low and medium activity levels, the probability of an agent to be
idle is relatively high. In such conditions, the static strategies perform poorly. However,
as the activity level grows, the probability of an agent to be idle reduces. Thus, static
overhearing strategies monotonically rise as the activity level grows until the probability
of an agent to be idle is close (or equal) to 0.

We developed a new overhearing strategy based on this conclusion. Similarly to
RandomStatic strategy, RandomActive chooses k target agents at the beginning of the

298 G. Gutnik and G.A. Kaminka

experiment. However, each time a target agent is idle, an alternative target is randomly
chosen. Figure 1 shows also the performance results of this strategy. Here, we can see
that at low activity levels RandomActive performs better than the MostImportantStatic
strategy.

Based on the insight gained, we develop two additional strategies. The first strat-
egy is called MostImportantActive strategy. It improves our initial MostImportantStatic
strategy. The overhearing targets are determined as the k most important agents from
those that are currently active. The second overhearing strategy, called MostActive, im-
plements a slightly different approach. In contrast to MostImportantActive, MostActive
targets k most active agents, i.e. k agents that commit the highest number of conversa-
tion at time t. Since the overhearing agent overhears all conversations committed by its
target, overhearer can be efficient due to quantity of overheard conversations and not
their "quality". Moreover, in pyramidal-hierarchical organizations, most conversations
are held between agents of lower hierarchy levels. Thus, in fact, MostActive targets the
less important agents. Both overhearing strategies proved to be highly efficient (Fig-
ure 2). Thus, the rest of the paper will focus on a detailed comparison of these two
strategies.

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Most Important Static

Fig. 2. Most Important vs. Most Active

Most Important Active vs. Most Active. At first, we analyzed these two strategies
in various conditions of activity level maintaining the overhearing resources constant.
This comparison led to a surprising result. The MostImportantActive strategy behaves
as a parabolic curve with a long tail as the activity level increases, while MostActive
strategy remains linear (see Figures 2, 3 and 4 for example).

This result can be explained as follows. At low activity levels, each communicating
agent is either idle or involved in few conversations. Thus, overhearing important active
agents is more efficient due to the higher value of their conversations. However, as the
activity level grows, low-level agents become involved in more and more conversations.
Consequently, at some point, overhearing a number of less-valuable conversations,

Experiments in Selective Overhearing of Hierarchical Organizations 299

committed by less important agents, becomes more efficient than overhearing a sin-
gle high-value conversation of an important agent.The efficiency gap, between these
strategies, becomes more significant as activity level increases and low-level agents
become involved in greater number of conversations. However, at some point, the ef-
ficiency trade-off between these strategies changes. The conversation activity of high-
level agents increases as well. At some point, it again becomes more efficient to overhear
few conversations committed by important agents than to overhear many conversations
held by low-level agents.

This surprising result implies that in monitoring organizations, an overhearer should
decide when it is more efficient to target few highly-valuable communications, and
when the total information, gathered from a large number of less-valuable communica-
tions, is more efficient in understanding the current status of the organization.

Value of Conversations. To understand the nature of these two strategies, we sought to
isolate the parameters influencing the intersection points. As already explained above,
this trade-off depends on whether it is more efficient to target small number of high-
value communications or a large number of low-value conversations. Therefore, in the
following experiments we changed the ratio between the low-value and the high-value
conversations, i.e. the ratio between an average value of conversations in high and low
hierarchy levels respectively.

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(a) Conversations Value Ratio 1:3

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(b) Conversations Value Ratio 1:3 1
2

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(c) Conversations Value Ratio 1:5

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(d) Conversations Value Ratio 1:8

Fig. 3. Overhearing Strategies Comparison with Respect to Conversations Value

300 G. Gutnik and G.A. Kaminka

In our experimental environment, the value of conversation ranges between 1 and
199. In average, conversations committed by agents of lowest hierarchy level are valued
nearly 50, while conversations of highest-level agents value around 150 (ratio 1:3). In
our experiments, we have also examined the behavior of the proposed strategies for
additional ratios.

Figures 3(a-d) show the performance results of these strategies for 1:3, 1:3 1
2 , 1:5 and

1:8 ratios (where overhearing coverage is set to 20%). It can clearly be seen that as
the ratio of conversations value increases, the MostImportantActive strategy improves,
while the MostActive strategy deteriorates. At some point (Figure 3-c), the two intersec-
tion points turn into one, i.e. the two strategies intersect at the bottom of the parabola.
Then, in Figure 3-d, the two graphs do not intersect at all–the MostImportantActive
strategy remains more efficient even in its parabolic form.

Thus, in case the difference between high-level and low-level conversation values is
significant, it is more efficient to target highly important agents than to overhear low-
level, highly-communicative ones.

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(a) Overhearing Coverage 5%

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(b) Overhearing Coverage 25%

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(c) Overhearing Coverage 50%

Fig. 4. Overhearing Strategies Comparison with Respect to Overhearers Number

Number of Overhearers. Finally, we examine the influence of selectivity. Figures 4(a-
c) show the behavior of the proposed strategies for various levels of overhearing cov-
erage (5%, 25% and 50%). We can see that both strategies become more efficient with
higher overhearing coverage. Clearly, this conclusion is to some extent straightfor-
ward. However, an additional, less-trivial conclusion can be made. The gap between the

Experiments in Selective Overhearing of Hierarchical Organizations 301

MostActive and the MostImportantActive strategies becomes less significant in larger
overhearing groups. It can be seen that the parabolic curve of MostImportantActive
graph becomes less concave. In large overhearing groups, this effect can be explained
by a significant overlap in overhearing targets for both strategies.

5 Conclusions and Future Work

Lately, overhearing has become an acceptable method for monitoring multi-agent sys-
tems. Previous investigations proposed an extensive set of techniques and practises us-
ing overhearing. However, the problem of selective overhearing, under the restriction
of limited overhearing resources, has not been addressed so far.

In this paper, we present an empirical study of limited-resource overhearing for
hierarchically-structured organizations. Our work provides a model addressing both the
characteristics of conversations in such organizations and the overhearing strategies ap-
propriate for these settings.

Based on this model, we performed a set of experiments simulating conversations in
hierarchical organizations and examined some of the proposed overhearing strategies.
Analyzing the results of performed experiments, we were able to determine efficient
overhearing strategies and to isolate the parameters influencing their performance. The
main conclusions of our experiments can be summarized as:

1. Efficient overhearing strategies. The selective overhearing strategies of targeting k
most important active agents and of targeting k most communicative agents have
been found to be highly efficient.

2. Strategies Comparison. A double efficiency trade-off has been found comparing
these two strategies. Thus, in some conditions, it is more efficient to overhear few
highly-valuable communications, while, in other conditions, it is more efficient to
target large number of less-valuable conversations.

3. Value of information. In organizations, where conversations committed by agents
in high hierarchy levels are considerably more important than conversations com-
mitted in low hierarchy levels, the strategy of targeting k most important agents
achieves better performance results.

4. Number of overhearers. For larger overhearing teams, both strategies perform bet-
ter and the performance gap between them decreases due to the significant overlap
in overheard conversations.

Currently, only centralized overhearing strategies have been concerned. Thus, in the
future, we would like to examine the behavior of distributed and other overhearing
strategies in these settings.

References

1. Kaminka, G., Pynadath, D., Tambe, M.: Monitoring teams by overhearing: A multi-agent
plan-recognition approach. JAIR 17 (2002) 83–135

2. Novick, D., Ward, K.: Mutual beliefs of multiple conversants: A computational model of
collaboration in air traffic control. In: Proceedings of AAAI-93. (1993) 196–201

302 G. Gutnik and G.A. Kaminka

3. Aiello, M., Busetta, P., Dona, A., Serafini, L.: Ontological overhearing. In: Proceedings of
ATAL-01. (2001)

4. Busetta, P., Dona, A., Nori, M.: Channelled multicast for group communications. In: Pro-
ceedings of AAMAS-02. (2002)

5. Busetta, P., Serafini, L., Singh, D., Zini, F.: Extending multi-agent cooperation by overhear-
ing. In: Proceedings of CoopIS-01. (2001)

6. Legras, F.: Using overhearing for local group formation. In: Proceedings of AAMAS-02.
(2002)

7. Rossi, S., Busetta, P.: Towards monitoring of group interactions and social roles via over-
hearing. In: Proceedings of CIA-04, Erfurt, Germany (2004) 47–61

8. Gutnik, G., Kaminka, G.: Towards a formal approach to overhearing: Algorithms for con-
versation identification. In: Proceedings of AAMAS-04. (2004)

9. Platon, E., Sabouret, N., Honiden, S.: T-compound: An agent-specific design pattern and its
environment. In: Proceedings of 3rd international workshop on Agent Oriented Methodolo-
gies at OOPSLA 2004. (2004) 63–74

10. FIPA: Fipa-ACL specifications, at www.fipa.org (2005)

Author Index

Amgoud, Leila 150

Beun, Robbert Jan 181
Boella, Guido 30

Chaib-draa, Brahim 76
Colombetti, Marco 61
Cranefield, Stephen 258

Damiano, Rossana 30
de Jong, Edwin D. 164
Dignum, Frank 181
Dragoni, Nicola 273

Endriss, Ulle 15

Fischer, Felix 211
Flores, Roberto A. 93

Gaspari, Mauro 273
Guidi, Davide 273
Gutnik, Gery 289

Heard, Jason 124
Hulstijn, Joris 30

Kaci, Souhila 150
Kaminka, Gal A. 289
Khan, Shakil M. 45
Kremer, Rob 93, 124

Lebbink, Henk-Jan 227
Lespérance, Yves 45
Letia, Ioan Alfred 243
Louis, Vincent 1

Mallya, Ashok U. 136
Martinez, Thierry 1
Meyer, John-Jules 181, 227
Muller, Guillaume 109

Pasquier, Philippe 76

Rovatsos, Michael 211

Singh, Munindar P. 136

van der Torre, Leendert 30
van Diggelen, Jurriaan 164, 181
van Eijk, Rogier M. 181
Vartic, Raluca 243
Vercouter, Laurent 109
Verdicchio, Mario 61

Weiss, Gerhard 211
Wiering, Marco A. 164
Witteman, Cilia 227

Yolum, Pınar 196

	Title Page
	Preface
	Organization
	Table of Contents
	An Operational Model for the FIPA-ACL Semantics
	Introduction
	Reviewing FIPA-ACL Semantics
	Mental Attitudes and Actions
	Formally Interpreting Incoming Communicative Acts

	Operationalizing the FIPA-ACL Semantics
	Classical Agent Constituents
	Additional Constituents

	Example
	Concluding Remarks
	References

	Temporal Logics for Representing Agent Communication Protocols
	Introduction
	Background on Protocols
	Background on Temporal Logic
	Dialogues as Models
	Automata-Based Protocols
	Modelling Future Obligations
	Nested Protocols
	Conclusion
	References

	ACL Semantics Between Social Commitments and Mental Attitudes
	Introduction
	The Role Model
	FromFIPAtoRoles
	From Commitments to Roles
	Example: The Propose Protocol
	Conclusions
	References

	On the Semantics of Conditional Commitment
	Introduction
	ECASL
	Conditional Commitments
	Conditional Requests
	Related Work
	Conclusion
	References

	A Commitment-Based Communicative Act Library
	Introduction
	The Formal Model
	The Syntax
	The Semantics

	Commitments and Their Manipulation
	Events and Actions
	Commitments and Precommitments
	Action Expressions

	Communicative Acts
	Basic Communicative Acts
	Derived Communicative Acts
	Communicative Acts with Referential Operators
	The Call for Proposal Act

	Conclusions and Future Work
	References

	Integrating Social Commitment-Based Communication in Cognitive Agent Modeling
	Introduction
	The Classic BDI Model
	Social Commitment Based Communication
	Linking Public Cognition and Social Commitments
	Attitude Change
	Dialogue Pragmatics
	The Cognitive Coherence Framework
	Local Search Algorithm
	Pragmatic Treatment Algorithm

	Examples
	Conclusion
	References

	Flexible Conversations Using Social Commitments and a Performatives Hierarchy
	Introduction
	Performatives
	The CASA Architecture

	Messages and Performatives
	Commitments
	Using Social Commitments with Performatives
	Implementation with Social Commitments
	Formal Model

	An Example
	Variations: Flexibility and Efficiency
	Implementation Considerations

	Related Work
	Conclusion
	References

	Using Social Commitments to Control the Agents’ Freedom of Speech
	Motivations
	Framework
	Contradictory Situations

	Agent Communication
	Various Approaches to Agent Communication
	Decentralised Model of Social Commitments

	Lies Detection
	Obligations in Communicative Behaviours
	Asking for Justification

	Reasoning About Lies
	Using Different Kinds of Reputation
	Preventing Future Deceptions

	Conclusion
	References

	Practical Issues in Detecting Broken Social Commitments
	Introduction
	Social Commitments
	Conversation Policies

	CASA (Cooperative Agent System Architecture)
	Cooperation Domains in CASA

	Detection Conditions
	Implementation
	Understanding Social Commitments (R1-understand)
	Observing Formation of Social Commitments (R1-form)
	Storing Social Commitments (R2-store)
	Understanding Conditions (R2-condition)
	Observing the Release from Social Commitments (R2-no-release)
	Observing Broken Social Commitments (R2-break)
	Initial Results

	Conclusion / Future Work
	References

	Introducing Preferences into Commitment Protocols
	Introduction
	Proposed Language
	Commitments
	Commitment Operations
	Preference Syntax
	Preference Semantics

	Denotational Description of Preferences
	Characterization for a Protocol
	General Preferences for Commitment Actions

	Operational Characterization of Preferences
	OWL-P Enactment
	Incorporating Preferences into OWL-P Rules

	Discussion
	References

	On the Study of Negotiation Strategies
	Introduction
	Mental States of the Agents
	Logical Definition
	Role of Beliefs, Rejections and Goals

	General Setting for Offer Selection
	Different Agent Profiles
	Acceptability of Offers
	Satisfiability of Offers
	Particular Strategies
	Properties of the Different Strategies
	Conclusion
	References

	Strategies for Ontology Negotiation: Finding the Right Level of Generality
	Introduction
	Related Work
	Framework
	Ontologies and Vocabularies
	Communication Protocol
	Communication Strategies

	Model
	Integration Measures

	Finding the Right Level of Generality
	From a God’s Eye View
	From an Agent View

	Experiments
	Agents That Know the Ontology Model
	Agents That Learn the Ontology Model

	Conclusion
	References

	Combining Normal Communication with Ontology Alignment
	Introduction
	Conceptual Framework
	Knowledge Distribution
	Communication

	Operational Framework
	Communication
	Concept Learning
	Protocols for Lazy Ontology Alignment

	Conclusion
	References

	Towards Design Tools for Protocol Development
	Introduction
	Technical Background
	Event Calculus
	Commitments

	Commitment Protocols
	Protocol Correctness
	Protocol Consistency
	Algorithms
	Discussion
	References

	Adaptiveness in Agent Communication: Application and Adaptation of Conversation Patterns
	Introduction
	Conversation Patterns
	Reasoning with Conversation Patterns
	Frame Semantics
	Decision Making with Frames
	Framing

	Adaptation of Conversation Patterns
	A Distance Metric on Message Sequences
	A Metric on Frames
	Validity of Frame Modifications
	Frame Abstraction and Merging
	An Algorithm for Learning Frames

	Conclusion
	References

	Can I Please Drop It? Dialogues About Belief Contraction
	Introduction
	Representing Inconsistent Information
	Related Work
	An Agent’s Motivation and Her Cognitive State
	Motivation to Confer with Other Agents on Belief Contractions
	The Agent’s Cognitive State
	Example Dialogue

	Decision Games for Fixing Beliefs
	Decision Games
	A Decision Game to Decide to Believe
	Cognitive Preconditions and Cognitive Entrenchment
	A Decision Game to Decide to Be Ignorant

	Dialogue Game with Questions for Belief Contraction
	Dialogue Games
	Questions for Belief Contraction Approval
	Affirmative Answers to Questions
	Auxiliary Questions for Belief Contraction
	Negative Answers to Questions

	Discussion and Conclusions
	References

	Commitment-Based Policies in Persuasion Dialogues with Defeasible Beliefs
	Introduction
	Redefining the Dialogues
	Defeasible Knowledge and Reasoning
	Dialogues
	A Protocol for Persuasion Dialogues

	Commitment-Based Dialogues
	Running Example
	Related Work
	Conclusions and Future Work
	References

	Reliable Group Communication and Institutional Action in a Multi-agent Trading Scenario
	Introduction
	Reliable Group Communication
	Example Scenario: The Pit Game
	Publication as an Institutional Action in Pit
	Verdicchio and Colombetti’s Formal Model
	Modelling the PublicationMechanism
	Modelling the Trading Commitment in Pit

	Related Work
	Conclusion
	References

	A Fault Tolerant Agent Communication Language for Supporting Web Agent Interaction
	Introduction
	The Design of a Fault Tolerant ACL
	Knowledge-Level Description
	Architectural-Level Description

	Exploiting $\mathbb{FT-ACL}$ in CommonWeb Service Usage Scenarios
	Design of a Semantic Travel Agent Service

	Related Work and Conclusion
	References

	Experiments in Selective Overhearing of Hierarchical Organizations
	Introduction
	Background and Motivation
	Overhearing in Hierarchical Organizations
	Modelling Conversation Systems
	Modelling Overhearing

	Experiments
	Experimental Settings
	Results

	Conclusions and Future Work
	References

	Author Index

